WO2019078262A1 - 骨軟骨修復を誘導する多能性幹細胞 - Google Patents

骨軟骨修復を誘導する多能性幹細胞 Download PDF

Info

Publication number
WO2019078262A1
WO2019078262A1 PCT/JP2018/038687 JP2018038687W WO2019078262A1 WO 2019078262 A1 WO2019078262 A1 WO 2019078262A1 JP 2018038687 W JP2018038687 W JP 2018038687W WO 2019078262 A1 WO2019078262 A1 WO 2019078262A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
muse
negative
stem cells
pluripotent stem
Prior art date
Application number
PCT/JP2018/038687
Other languages
English (en)
French (fr)
Inventor
直輔 亀井
真理 出澤
越智 光夫
Original Assignee
国立大学法人広島大学
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学, 国立大学法人東北大学 filed Critical 国立大学法人広島大学
Priority to AU2018352904A priority Critical patent/AU2018352904A1/en
Priority to US16/756,682 priority patent/US20200237828A1/en
Priority to JP2019549320A priority patent/JPWO2019078262A1/ja
Priority to EP18867476.6A priority patent/EP3698802A4/en
Priority to KR1020207010507A priority patent/KR20200070247A/ko
Priority to CN201880067351.0A priority patent/CN111225676A/zh
Priority to SG11202003507QA priority patent/SG11202003507QA/en
Priority to CA3079500A priority patent/CA3079500A1/en
Publication of WO2019078262A1 publication Critical patent/WO2019078262A1/ja
Priority to US17/844,882 priority patent/US20220313741A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • C12N5/0695Stem cells; Progenitor cells; Precursor cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • C12N2509/10Mechanical dissociation

Definitions

  • the present invention relates to cell preparations and / or pharmaceutical compositions used in regenerative medicine. More specifically, the present invention relates to a cell preparation or pharmaceutical composition comprising pluripotent stem cells effective for treatment or repair of osteochondral injury.
  • ES cells embryonic stem cells
  • NSPC neural stems / Progenitor cells
  • iPS cells induced pluripotent stem cells
  • UCBC cord blood stem cells
  • bone marrow mesenchymal cell fraction is isolated from adults and is known to have the ability to differentiate into, for example, bone, cartilage, adipocytes, nerve cells, skeletal muscle and the like (non-patent) Literatures 4 and 5).
  • MSCs are a cell group including various cells, the substance of their differentiation ability is not known, and the therapeutic effect is largely dispersed.
  • iPS cells (patent document 1) have been reported as adult-derived pluripotent stem cells, but for establishment of iPS cells, a gene or a specific gene in the skin fibroblast fraction that is a mesenchymal cell is specified. In addition to requiring the extremely complicated operation of introducing a compound into somatic cells, there is an extremely high hurdle for clinical application due to the high tumorigenicity of iPS cells.
  • MSCs mesenchymal stem cells
  • SSEA-3 Serial-Specific Embryonic Antigen-3
  • Muse cells Multilineage-differentiating Stress Enduring cells; Muse cells
  • Muse cells can be enriched by stimulating the mesenchymal cell fraction with various stresses.
  • Patent No. 4183742 International Publication No. 2011/07900
  • An object of the present invention is to provide a new medical application using pluripotent stem cells (Muse cells) in regenerative medicine. More specifically, the present invention aims to provide a cell preparation and / or a pharmaceutical composition for repairing osteochondral injury, which comprises Muse cells.
  • Muse cells By injecting or administering Muse cells into an immunodeficient rat model, Muse cells locally accumulate at the osteochondral injury site, differentiate into chondrocytes at the injury site, and cause osteochondral injury. They have found that they can be repaired and have completed the present invention.
  • the present invention is as follows.
  • [Item 1] A cell preparation for treating or repairing osteochondral injury, comprising SSEA-3 positive pluripotent stem cells isolated from mesenchymal tissue or cultured mesenchymal cells of a living body.
  • [Item 2] The cell preparation according to the above-mentioned [1], which contains a cell fraction in which SSEA-3 positive pluripotent stem cells are enriched by external stress stimulation.
  • [Item 3] The cell preparation according to [Item 1] or [Item 2], wherein the pluripotent stem cells are CD105 positive.
  • [Item 4] The cell preparation according to any one of [Item 1] to [Item 3], wherein the pluripotent stem cells are CD117 negative and CD146 negative.
  • [Item 5] The cell preparation according to any one of [Item 1] to [Item 4], wherein the pluripotent stem cells are CD117 negative, CD146 negative, NG2 negative, CD34 negative, vWF negative, and CD271 negative.
  • the pluripotent stem cell is CD34 negative, CD117 negative, CD146 negative, CD271 negative, NG2 negative, vWF negative, Sox10 negative, Snai1 negative, Slug negative, Tyrp1 negative, and Dct negative as described above
  • [Item 7] The cell preparation according to any one of [Item 1] to [Item 6], wherein the pluripotent stem cells are pluripotent stem cells having all of the following properties: (I) low or no telomerase activity; (Ii) have the ability to differentiate into cells of any of the three germ layers; (Iii) show no neoplastic growth; and (iv) have self renewal ability.
  • [Item 8] The cell preparation according to any one of [Item 1] to [Item 7], wherein the pluripotent stem cells have the ability to accumulate at the osteochondral injury site.
  • [Item 9] The cell preparation according to any one of [Item 1] to [Item 8], wherein the pluripotent stem cells have the ability to differentiate into chondrocytes.
  • the present invention is based on an osteochondral tissue regeneration mechanism in which Muse cells differentiate into chondrocytes at the injury site by administering Muse cells directly to the injury site or from a vein or the like to a subject suffering from osteochondral injury.
  • Osteochondral injury, in particular subchondral bone covered by fibrous tissue can be repaired.
  • FIG. 1 shows the gross appearance of repaired tissue in control, non-Muse and Muse groups at 4 and 12 weeks after treatment.
  • the Muse group was completely replenished with the white tissue at the same level as normal tissue.
  • FIG. 2 shows a scoring system with the naked eye, with a trend towards improvement in the Muse group at 4 weeks after treatment. Also, at 12 weeks, the Muse group showed significantly better results than the other groups. * P ⁇ 0.05.
  • FIG. 3A shows histologic evaluation of repair tissue with Safranin O / Fast Green staining at 4 and 12 weeks.
  • FIGS. 3B and 3C show H & E stained images at 12 weeks. Scale bars: A and B: 500 ⁇ m, C: 100 ⁇ m.
  • FIG. 4 shows the results of histological scoring using the Sellers scale at weeks 4 and 12 and, unlike either the non-Muse group or the control group, a histologically significant difference in the Muse group was recognized. * P ⁇ 0.05.
  • the present invention relates to a fine preparation or pharmaceutical composition for treating or repairing osteochondral injury, which comprises SSEA-3 positive pluripotent stem cells (Muse cells).
  • the present invention uses osteocalcinosis, traumatic cartilage damage, rheumatoid arthritis, and osteochondral damage such as cancer using a cell preparation or pharmaceutical composition containing SSEA-3 positive pluripotent stem cells (Muse cells).
  • Use cells SSEA-3 positive pluripotent stem cells
  • osteochondral injury refers to, but is not limited to, damage to bone and / or cartilage caused by the above-mentioned diseases and the like, and damage caused as a result of accident and surgical operation.
  • damage means a change in normal structure or function, has the same meaning as a commonly used term, and can be used synonymously with a disorder, degeneration, trauma or defect.
  • bone refers primarily to hydroxyapatite, calcium and phosphate components deposited in the form of collagen (mainly type I collagen), and bone cells (eg, osteoblasts, bone) Cells and calcified (mineralized) connective tissue including osteoclasts) and bone marrow that forms inside the true endochondral bone.
  • Bone tissue is significantly different from other tissues, including cartilage tissue. Specifically, bone tissue is vascularized composed of cells and a biphasic medium (including mineralization, mineral component (mainly hydroxyapatite crystals) and organic component (mainly type I collagen)) It is an organization.
  • Glycosaminoglycans constitute less than 2% of this organic component and less than 1% of the biphasic medium itself, or the bone tissue itself. Furthermore, as compared to cartilage tissue, the collagen present in bone tissue is present in a highly organized and parallel arrangement.
  • cartilage refers to chondrocytes or chondrocyte-like cells, interstitium (eg, type I, II, IX, and XI collagens), proteoglycans (eg, chondroitin sulfate proteoglycans), Refers to connective tissues including keratan sulfate proteoglycans and dermatan sulfate proteoglycans) and other proteins.
  • Cartilage includes articular cartilage and non-articular cartilage.
  • “Articular cartilage” refers to an avascular non-mineralized connective tissue that covers the articulating surface of bone in a joint and serves as a friction reducing joint between two opposing bone surfaces. Articular cartilage allows exercise without direct bone-to-bone contact. Articular cartilage derives in part nutrients from adjacent synovial blood vessels and covered bone blood vessels. Articular cartilage contains type II and type IX collagen and various proteoglycans and does not contain type X collagen associated with endochondral bone formation. Articular cartilage covers the top of the bone, and the bone below the cartilage is called subchondral bone.
  • osteochondral damage damage that has spread to cartilage and subchondral bone
  • cartilage damage cartilage full-thickness defect
  • cartilage damage partial cartilage damage
  • “cartilage damage” includes the above-mentioned “bone cartilage damage” and “cartilage damage”.
  • Non-articular cartilage refers to cartilage that does not cover the articular surface, including fibrocartilage (joint disc, fibrocartilage disc, connective fibrocartilage, and periarticular fibrocartilage) and elastic cartilage.
  • fibrocartilage micropolysaccharide meshwork is combined with protruding collagen bundles, and chondrocytes are more widely dispersed than hyaline cartilage or articular cartilage.
  • the joint disc is subjected to impact and is found in joints that move frequently (e.g., knee meniscus). Examples of such joints include, but are not limited to, temporomandibular mandible, chest link joints, wrist joints, and knee joints.
  • fibrocartilage discs which adhere closely to opposite surfaces, consist of concentric rings of fibrous tissue interspersed with a thin layer of cartilage.
  • An example of such a fibrocartilage disc is the spinal disc.
  • the connective fibrocartilage intervenes between the bone surfaces of these joints and is able to move slightly between the vertebral bodies and the pubis.
  • the periarticular fibrocartilage surrounds the edges of several joint cavities, such as the acetabulum on the buttocks and the glenoid fossa on the shoulder.
  • Pluripotent stem cells The pluripotent stem cells used in the cell preparation of the present invention were found to be present in human beings by one of the present inventors, and were named "Muse (Multilineage-differentiating Stress Enduring) cells". It is. Muse cells are obtained from skin tissue such as bone marrow fluid, adipose tissue (Ogura, F., et al., Stem Cells Dev., Nov 20, 2013 (Epub) (published on Jan 17, 2014)) and dermal connective tissue. It can also be scattered in the connective tissues of each organ.
  • this cell is a cell having both the properties of pluripotent stem cells and mesenchymal stem cells, and, for example, each cell surface marker “SSEA-3 (Stage-specific embryonic antigen-3)” It is identified as a "CD105" double positive. Therefore, Muse cells or cell populations containing Muse cells can be separated from living tissue, for example, using these antigen markers as indicators. Details of methods for separation, identification and characteristics of Muse cells are disclosed in WO 2011/07900. Also, as reported by Wakao et al. (2011, above), when mesenchymal cells are cultured from bone marrow, skin etc. and used as a population of Muse cells, all of the SSEA-3 positive cells are CD105. It is known to be positive cells.
  • Muse cells when separating Muse cells from mesenchymal tissue or cultured mesenchymal stem cells of a living body, Muse cells can be purified and used simply as SSEA-3 as an antigen marker.
  • SSEA-3 which can be used in a cell preparation for treating osteochondral injury (including sequelae), is separated from mesenchymal tissue or cultured mesenchymal tissue of a living body as an antigen marker
  • the cell population containing the pluripotent stem cells (Muse cells) or Muse cells may be simply referred to as "SSEA-3 positive cells”.
  • “non-Muse cell” refers to a cell contained in mesenchymal tissue or cultured mesenchymal tissue of a living body, and is a cell other than “SSEA-3 positive cell”.
  • Muse cells or cell populations containing Muse cells can be treated as living tissues (eg, using a single antibody against the cell surface marker SSEA-3, or using both respective antibodies against SSEA-3 and CD105).
  • a living body means a living body of a mammal. In the present invention, the living body does not include embryos whose developmental stage precedes the fertilized egg or blastocyst stage, but includes embryos of developmental stages after blastocyst stage including the fetus and blastocyst.
  • Mammals include, but are not limited to, primates such as humans and monkeys, rodents such as mice, rats, rabbits and guinea pigs, cats, dogs, sheep, pigs, cattle, horses, donkeys, goats, ferrets etc.
  • Be Muse cells used in the cell preparation of the present invention are clearly distinguished from embryonic stem cells (ES cells) and iPS cells in that they are separated directly from the tissue of a living body with markers.
  • ES cells embryonic stem cells
  • iPS cells embryonic stem cells
  • meenchymal tissue refers to tissues present in various organs and tissues such as bone, synovium, fat, blood, bone marrow, skeletal muscle, dermis, ligament, tendon, dental pulp, umbilical cord, cord blood and the like.
  • Muse cells can be obtained from bone marrow, skin, and adipose tissue.
  • Muse cells may be separated from cultured mesenchymal cells such as fibroblasts and bone marrow mesenchymal stem cells by using the above separation means.
  • the Muse cells used may be autologous or allogeneic to the recipient receiving the cell transplantation.
  • Muse cells or cell populations containing Muse cells can be separated from living tissue using, for example, SSEA-3 positive and SSEA-3 plus CD105 double positive indicators.
  • SSEA-3 positive and SSEA-3 plus CD105 double positive indicators are known to include various types of stem and progenitor cells.
  • Muse cells are not the same as these cells.
  • Such stem cells and progenitor cells include skin-derived progenitor cells (SKP), neural crest stem cells (NCSC), melanoblasts (MB), perivascular cells (PC), endothelial progenitor cells (EP), adipose-derived stem cells (ADSC) Can be mentioned.
  • Muse cells can be separated using the “non-expression” of the marker unique to these cells as an index.
  • Muse cells include CD34 (EP and ADSC markers), CD117 (c-kit) (MB markers), CD146 (PC and ADSC markers), CD271 (NGFR) (NCSC markers), NG2 (marker of PC), vWF factor (von Willebrand factor) (marker of EP), Sox10 (marker of NCSC), Snai1 (marker of SKP), Slug (marker of SKP), Tyrp1 (marker of MB), and At least one of 11 markers selected from the group consisting of Dct (MB marker), for example, 2, 3, 4, 5, 6, 7, 8, 9, 10 It is possible to separate non-expression of single or eleven markers as an index.
  • non-expression of CD117 and CD146 can be separated as an indicator, and further non-expression of CD117, CD146, NG2, CD34, vWF and CD271 can be separated as an indicator; It is possible to separate non-expression of 11 markers as an index.
  • Muse cells having the above-mentioned characteristics used in the cell preparation of the present invention are as follows: (I) low or no telomerase activity; (Ii) have the ability to differentiate into cells of any of the three germ layers; (Iii) does not exhibit neoplastic growth; and (iv) may have at least one property selected from the group consisting of having self renewal ability.
  • Muse cells used in the cell preparation of the present invention have all the properties described above.
  • "low or no telomerase activity” means that low or undetectable when telomerase activity is detected using, for example, TRAPEZE XL telomerase detection kit (Millipore). Say.
  • the "low" telomerase activity is, for example, a telomerase activity similar to that of human somatic cells, or 1/5 or less, preferably 1/10 or less of that of Hela cells. It means having the activity.
  • Muse cells have the ability to differentiate into three germ layers (endodermal, mesodermal and ectodermal) in vitro and in vivo, eg, induction culture in vitro Thus, they can be differentiated into hepatocytes, neurons, skeletal muscle cells, smooth muscle cells, osteocytes, adipocytes and the like. It may also show the ability to differentiate into three germ layers when transplanted to the testis in vivo.
  • Muse cells proliferate at a growth rate of about 1.3 days in suspension culture, but proliferate from one cell in suspension culture to form embryoid-like cell clusters, and proliferation is stopped in about 14 days.
  • cell proliferation is started again, and the cells proliferated from the cell mass spread.
  • transplanted to the testis it has the property of not becoming cancerous for at least half a year.
  • Muse cells have the ability to self renew (self-renew).
  • self renewal means that differentiation of cells contained in an embryoid-like cell mass obtained by culturing from one Muse cell in suspension culture into tridermal cells can be confirmed at the same time. By bringing the cells of the embryoid-like cell mass into suspension culture again with one cell, the next generation embryoid-like cell mass is formed, and from there, the embryo in tridermal differentiation and suspension culture again. It means that a body-like cell mass can be confirmed. The self renewal may be repeated one or more cycles.
  • the cell fraction containing Muse cells used in the cell preparation of the present invention provides external stress stimulation to mesenchymal tissue or cultured mesenchymal cells of a living body, and cells other than cells resistant to the external stress.
  • Cells enriched in SSEA-3 positive and CD105 positive pluripotent stem cells having at least one, preferably all of the following properties obtained by a method comprising killing the cells and recovering the surviving cells: It may be a fraction.
  • Iv have the ability to differentiate into three germ layers;
  • V) show no neoplastic growth; and (vi) have self renewal ability.
  • the above-mentioned external stress may be protease treatment, culture under low oxygen concentration, culture under low phosphate conditions, culture under low serum concentration, culture under low nutrient conditions, culture under exposure to heat shock, low temperature Culture, freezing, culture in the presence of harmful substances, culture in the presence of active oxygen, culture under mechanical stimulation, culture under shaking, culture under pressure, or physical shock It may be any or a plurality of combinations.
  • the treatment time with the above-mentioned protease is preferably performed in total for 0.5 to 36 hours in order to apply external stress to cells.
  • the protease concentration may be a concentration used when detaching cells adhered to the culture vessel, breaking up the cell mass into single cells, or recovering single cells from tissue.
  • the protease is preferably a serine protease, an aspartic protease, a cysteine protease, a metalloprotease, a glutamic acid protease or an N-terminal threonine protease. Furthermore, it is preferred that the protease is trypsin, collagenase or dispase.
  • the cell preparation of the present invention is not limited, but the Muse cells obtained in (1) or the cell population containing Muse cells may be saline or a suitable buffer (eg, phosphorus Obtained by suspending in acid-buffered saline).
  • a suitable buffer eg, phosphorus Obtained by suspending in acid-buffered saline.
  • the cells may be cultured prior to cell transplantation and grown until a predetermined cell concentration is obtained.
  • Muse cells do not become tumorous, and therefore, there is a possibility of canceration even if cells recovered from living tissues are contained undifferentiated. Is low and safe.
  • the culture of the recovered Muse cells can be carried out in a conventional growth medium (eg, ⁇ -minimum essential medium ( ⁇ -MEM) containing 10% calf serum), although not particularly limited.
  • a medium, additives eg, antibiotics, serum
  • Muse cells of a predetermined concentration are selected.
  • a medium, additives eg, antibiotics, serum
  • Muse cells of a predetermined concentration are selected.
  • bone marrow fluid of about several ml is collected from human ilium and, for example, it is effective to culture bone marrow mesenchymal stem cells as adherent cells from bone marrow fluid.
  • Muse cells can be separated using an SSEA-3 antigen marker as an indicator, and autologous or allogeneic Muse cells can be prepared as a cell preparation.
  • SSEA-3 antigen marker as an indicator
  • culturing and expanding the cells until an effective therapeutic amount is reached and then preparing autologous or allogeneic Muse cells as a cell preparation it can.
  • Muse cells in cell preparations, dimethylsulfoxide (DMSO), serum albumin, etc. are protected to protect the cells, and antibiotics etc. are contained in the cell preparation to prevent bacterial contamination and proliferation. May be Furthermore, other pharmaceutically acceptable ingredients (eg, carriers, excipients, disintegrants, buffers, emulsifiers, suspensions, soothing agents, stabilizers, preservatives, preservatives, physiological saline, etc.) and the like Cells or components other than Muse cells contained in mesenchymal stem cells may be contained in the cell preparation. One skilled in the art can add these factors and agents to the cell preparation at appropriate concentrations. Thus, Muse cells can also be used as a pharmaceutical composition containing various additives.
  • DMSO dimethylsulfoxide
  • serum albumin etc.
  • antibiotics etc. are contained in the cell preparation to prevent bacterial contamination and proliferation. May be Furthermore, other pharmaceutically acceptable ingredients (eg, carriers, excipients, disintegrants, buffers, emulsifiers,
  • the number of Muse cells contained in the cell preparation prepared above is such that the desired effect in osteochondral injury (eg, regeneration of bone and cartilage, disappearance of various diseases associated with osteochondral injury, etc.) can be obtained.
  • the adjustment can be appropriately made in consideration of the sex, age, body weight, condition of affected area, condition of cells used, etc. of the subject.
  • various effects of Muse cell transplantation were examined on a rat osteochondral defect model in which a part of the femur was deleted. For about 200 to 300 g of rats, intraarticular administration of SSEA3 positive cells at 5 ⁇ 10 4 cells / head gave a very good effect.
  • the cell preparation of the present invention can be administered several times (eg, 2 to 10 times), as appropriate, at intervals (eg, twice a day, once a day, once a week) until a desired therapeutic effect is obtained. It may be administered twice, once a week, once every two weeks, once a month, once every two months, once every three months, once every six months).
  • a therapeutically effective dose is preferably, for example, a dose of 1 to 10 times at 1 ⁇ 10 3 cells to 2 ⁇ 10 7 cells per individual.
  • the total administration amount in one individual is not limited, but is 1 ⁇ 10 3 cells to 2 ⁇ 10 8 cells, 1 ⁇ 10 4 cells to 1 ⁇ 10 8 cells, 2 ⁇ 10 4 cells to 5 ⁇ 10 7 cells, 5 ⁇ 10 4 cells to 2 ⁇ 10 7 cells, 1 ⁇ 10 5 cells to 1 ⁇ 10 7 cells, and the like.
  • the cell preparation of the present invention may be directly administered to an osteochondral injury site (for example, a joint, a femur, etc.), although it is not particularly limited, and may be intravenously administered.
  • rat osteochondral defect model can be constructed and used to examine the therapeutic effect of osteochondral injury by the cell preparation of the present invention.
  • Rats used as the model generally include, but are not limited to, immunodeficient rats (eg, F344 / NJcl-rnu / rnu), Wistar rats, Sprague Dawley (SD) rats.
  • a rat model in which osteochondral defects were made by using a metal drill having a spherical tip with a diameter of 1 mm in a rat femur was used.
  • the cell preparation of the present invention is Muse cells of human origin, it has a different relation to the rat to which the preparation is administered.
  • an immunosuppressant such as cyclosporin
  • an immunosuppressant is administered before or simultaneously with administration of xenogeneic cells in order to suppress rejection of xenogeneic cells in vivo.
  • the cell preparation of the present invention can restore the function of bone and cartilage in patients with osteochondral injury to normal.
  • "recovery" of osteochondral function means treatment, repair and alleviation of various dysfunctions associated with osteochondral injury (including defects), and as an example, it does not affect daily life. It means to alleviate osteochondral damage to a degree.
  • “restoring” osteochondral function means that the dysfunction caused by osteochondral injury is ameliorated, alleviated or eliminated to return to the state before osteochondral injury.
  • histological scoring generally by Sellers using Safranin O / First Green for staining of osteochondral tissue is used Can be done [8].
  • Example 1 Cell Preparation Human Bone Marrow MSCs (hBMSC; Lonza, Basel, Switzerland) were purchased and used with 10% fetal bovine serum (FBS), 0.1 mg / ml kanamycin, and 1% Glutamax (Thermo Fisher Scientific, Waltham , MA) in Eagle's minimal essential medium ( ⁇ -MEM) at 37 ° C. and 5% CO 2 . After hBMSCs reached 90-100% confluency, they were subcultured using 0.25% trypsin-ethylenediaminetetraacetic acid at a ratio of 1: 2. The protocol by Kuroda et al. Was followed [5].
  • FBS fetal bovine serum
  • ⁇ -MEM Eagle's minimal essential medium
  • hBMSCs were separated into Muse cells (SSEA-3 + ) and non-Muse cells (SSEA-3 ⁇ ) depending on the presence or absence of expression of SSEA-3.
  • hBMSC were incubated with SSEA-3 antibody (1: 100; Merck Millipore, Darmstadt, Germany) and detected by Allophycocyanin conjugated anti-rat IgM (Jackson ImmunoResearch, West Grove, PA) in antibody diluent, Special Order
  • SSEA-3 antibody 1: 100; Merck Millipore, Darmstadt, Germany
  • Allophycocyanin conjugated anti-rat IgM Jackson ImmunoResearch, West Grove, PA
  • the cells were sorted by Research Product FACSAria II (Becton Dickinson, Franklin Lakes, NJ).
  • Example 2 Cell injection to osteochondral defect site This example was performed on 16 10-week-old immunodeficient rats (32 knees) (F344 / NJcl-rnu / rnu). Osteochondral defects (diameter 2 mm, depth 2 mm) were created left and right within the patellar groove of the femur using a commercially available metal drill with a 1 mm diameter spherical tip. Immediately after closing the knee joint, the rat knees were distributed unevenly in 3 groups (Table 1): control group-PBS injection; non Muse group-intraarticular injection of non Muse cells (5 x 10 4 ); Muse group-intra-articular injection of Muse cells (5 x 10 4 ). The cells were suspended in 50 ⁇ l PBS.
  • Example 3 Macroscopic and Histological Evaluation (1) Macroscopic Evaluation At 4 and 12 weeks after treatment, rats were sacrificed by intraperitoneal injection of a lethal dose of pentobarbital sodium. The femoral condyle was visually assessed using a gross scoring system according to Wayne et al. [6] [7]. “14" was the best and "0” was the worst (Table 2).
  • Example 4 Immunostaining At 4 and 12 weeks post-treatment, sections are pretreated with antigen recovery reagent (Immunoactive, Matsunami Glass Ind., Osaka, Japan) to block endogenous peroxidase activity. Immerse in 3% H 2 O 2 .
  • antigen recovery reagent Immunoactive, Matsunami Glass Ind., Osaka, Japan
  • Sections are blocked with blocking solution (Protein Block Serum-Free; Dako, Carpinteria, CA) and type I collagen (1: 250, Daiichi Fine Chemical, Toyama, Japan) and type II collagen (1: 250, Daiichi Fine Chemical)
  • Incubate with mouse monoclonal antibody against Reactions for visualization are performed using avidin-biotin peroxidase system (Vectastain Elite ABC kit; Vector Laboratories, Inc., Burlingame, CA), and 3,3'-diaminobenzidine (Peroxidase Substrate kit, Vector Laboratories, Inc. Sections are colored using.
  • Example 5 Results of Various Experiments (1) Macroscopic Findings At 4 weeks, the margins of the injured part were easily identified in the patella groove of the control and non-Muse groups, and no repair tissue was detected. Also, at 4 and 12 weeks, osteoarthritic changes with adjacent cartilage degeneration increased in the control group compared to the Muse and non-Muse groups. At 12 weeks, in the non-Muse group, the depth of injury filled with brown tissue and decreased. On the other hand, in the Muse group, the white tissue completely covers the lesion, which is smooth and has a homogeneous surface according to the surrounding tissue, and it is difficult to clearly identify the margin of the lesion. There is ( Figure 1).
  • Intra-articular injection of Muse cells is a promising method to repair osteochondral injuries, in particular subchondral bone covered by fibrous tissue.

Abstract

多種系統に分化できるストレス耐性のある(Muse)細胞は、間葉系幹細胞(MSC)集団に存在する段階特異的な胚抗原3(SSEA-3)陽性細胞である。Muse細胞は、胚性幹細胞としての全ての胚葉に分化する多能性を有する。本研究では、骨軟骨損傷を修復するためのMuse細胞移植の有効性を調査することを目的とした。Muse細胞は、ヒト骨髄MSCから単離した。骨軟骨損傷は、免疫不全ラットの膝蓋溝に生じさせた。該ラットに細胞を注射し、3群に分けた:対照群には、PBSを注射した;非Muse細胞群には、5×104個のSSEA-3陰性の非Muse細胞を注射した;Muse細胞群には、5×104個のSSEA-3陽性のMuse細胞を注射した。修復された組織は、Muse群において処置後の12週でほぼ平滑な均質表面を有し、対照及び非Muse群では修復組織は検出されなかった。組織学的評価によれば、処置後の4週及び12週で他の群と比較して、Muse群では骨軟骨損傷部位でより良好な修復を示した。Muse細胞は、骨軟骨損傷の治療のための新たな有望な細胞源であり得る。

Description

骨軟骨修復を誘導する多能性幹細胞
 本発明は、再生医療に用いられる細胞製剤及び/又は医薬組成物に関する。より具体的には、本発明は、骨軟骨損傷の治療又は修復に有効な多能性幹細胞を含む細胞製剤又は医薬組成物に関する。
 軟骨病変は、自己修復能力が限られていることや関節機能の低下に起因する関節障害の原因となり、これは、特に高齢患者の重大な障害に該当する(非特許文献1)[1]。
 骨髄刺激技術や骨軟骨移植などの方法を用いたいくつかの臨床試験が軟骨修復を改善する試みとして行われてきたが、成功は限定的なものあった。1994年に、Brittbergらは、自家軟骨移植(ACI)と呼ばれる第1世代の細胞治療を実施した(非特許文献2)[2]。Ochiらは、アテロコラーゲンゲルを軟骨細胞と組み合わせて使用することにより、ACIを改変し、良好な臨床転帰をもたらした(非特許文献3)[3]。しかしながら、インタクトな軟骨の罹患率、脱分化、及び2段階の外科的処置のために、成功は依然として限定的であった。
 近年、再生医療分野において、幹細胞を用いた細胞療法が様々な疾患に対して研究が行われ、臨床応用への可能性が期待されている幹細胞として、胚性幹細胞(ES細胞)、神経幹/前駆細胞(NSPC)、人工多能性幹細胞(iPS細胞)、臍帯血幹細胞(UCBC)が知られている。
 また、骨髄間葉系細胞画分(MSC)は、成体から単離され、例えば、骨、軟骨、脂肪細胞、神経細胞、骨格筋等に分化する能力を有することが知られている(非特許文献4及び5)。しかしながら、MSCは様々な細胞を含む細胞群であり、その分化能の実体が分かっておらず、治療効果にバラつきが大きい。また、成体由来の多能性幹細胞としてiPS細胞(特許文献1)が報告されているが、iPS細胞の樹立には、間葉系細胞である皮膚線維芽細胞画分に特定の遺伝子や特定の化合物を体細胞に導入するという極めて複雑な操作を必要とすることに加え、iPS細胞が高い腫瘍形成能力を有することから、臨床応用への極めて高いハードルが存在している。
 過去10年間に、間葉系幹細胞(MSC)を容易に単離することができるようになり、様々な組織から非常にアクセスしやすく、しかも非常に速やかに増殖することから、臨床応用のための細胞ベースの治療法として広く使用されている。さらに、三胚葉系に幅広く分化することができる(非特許文献6)[4]。
 本発明者らの一人である出澤の研究により、間葉系細胞画分に存在し、誘導操作なしに得られる、SSEA-3(Stage-Specific Embryonic Antigen-3)を表面抗原として発現している多能性幹細胞(Multilineage-differentiating Stress Enduring cells;Muse細胞)が間葉系細胞画分の有する多能性を担っており、組織再生を目指した疾患治療に応用できる可能性があることが分かってきた。また、Muse細胞は、間葉系細胞画分を種々のストレスで刺激することにより濃縮できることもわかってきた(特許文献2;非特許文献7)。
 しかしながら、胎児発育不全に伴う脳障害の改善及び/又は治療にMuse細胞を使用し、期待される治療効果が得られることを明らかにした例はない。
特許第4183742号公報 国際公開第2011/007900号
A. Mobasheri, et al., Histol. Histopathol., vol. 24, p.347-366 (2009) M. Brittberg, et al., N. Engl. J. Med., vol. 331, p.889-895 (1994) M. Ochi, et al., J. Bone. Joint Surg. Br., vol. 84, p.571-578 (2002) M. Dezawa, et al., J. Clin. Investi., vol. 113, p.1701-1710 (2004) M. Dezawa, et al., Science, vol. 309, p.314-317 (2005) K. Tamai, et al., Proc. Natl. Acad. Sci. USA, vol. 108, p.6609-6614 (2011) S. Wakao, et al., Proc. Natl. Acad. Sci. USA, Vol. 108, p.9875-9880 (2011)
 本発明は、再生医療において、多能性幹細胞(Muse細胞)を用いた新たな医療用途を提供することを目的とする。より具体的には、本発明は、Muse細胞を含有する、骨軟骨損傷を修復するための細胞製剤及び/又は医薬組成物を提供することを目的とする。
 本発明者らは、免疫不全ラットモデルに、Muse細胞を注入又は投与することにより、Muse細胞が、骨軟骨損傷部位に局所的に蓄積し、損傷部位において軟骨細胞に分化し、骨軟骨損傷を修復し得ることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、以下の通りである。
 [項目1]生体の間葉系組織又は培養間葉系細胞から分離されたSSEA-3陽性の多能性幹細胞を含む、骨軟骨損傷を治療又は修復するための細胞製剤。
 [項目2]外部ストレス刺激によりSSEA-3陽性の多能性幹細胞が濃縮された細胞画分を含む、上記[1]記載に細胞製剤。
 [項目3]前記多能性幹細胞が、CD105陽性である、上記[項目1]又は[項目2]に記載の細胞製剤。
 [項目4]前記多能性幹細胞が、CD117陰性及びCD146陰性である、上記[項目1]~[項目3]のいずれかに記載の細胞製剤。
 [項目5]前記多能性幹細胞が、CD117陰性、CD146陰性、NG2陰性、CD34陰性、vWF陰性、及びCD271陰性である、上記[項目1]~[項目4]のいずれかに記載の細胞製剤。
 [項目6]前記多能性幹細胞が、CD34陰性、CD117陰性、CD146陰性、CD271陰性、NG2陰性、vWF陰性、Sox10陰性、Snai1陰性、Slug陰性、Tyrp1陰性、及びDct陰性である、上記[項目1]~[項目5]のいずれかに記載の細胞製剤。
 [項目7]前記多能性幹細胞が、以下の性質の全てを有する多能性幹細胞である、上記[項目1]~[項目6]のいずれかに記載の細胞製剤:
(i)テロメラーゼ活性が低いか又は無い;
(ii)三胚葉のいずれの胚葉の細胞に分化する能力を持つ;
(iii)腫瘍性増殖を示さない;及び
(iv)セルフリニューアル能を持つ。
 [項目8]前記多能性幹細胞が、骨軟骨損傷部位に蓄積する能力を有する、上記[項目1]~[項目7]のいずれかに記載の細胞製剤。
 [項目9]前記多能性幹細胞が、軟骨細胞に分化する能力を有する、上記[項目1]~[項目8]のいずれかに記載の細胞製剤。
 本発明は、骨軟骨損傷を患っている対象に対し、Muse細胞を損傷部位に直接、又は静脈等から投与することにより、Muse細胞が損傷部位において軟骨細胞に分化するという骨軟骨組織再生メカニズムによって、骨軟骨損傷、特に繊維組織によって覆われた軟骨下骨を修復することができる。
図1は、処置後の4週及び12週における、対照群、非Muse群、及びMuse群での修復された組織の肉眼的所見を示す。12週では、Muse群は、正常組織と同レベルで白色の組織により損傷部位が完全に補充された。 図2は、肉眼による評点システムを示し、処置後の4週では、Muse群で改善傾向が見られた。また、12週では、Muse群は、他の群より有意に良好な結果を示した。*P<0.05。 図3Aは、4週及び12週における、サフラニンO/ファーストグリーン染色を用いた修復組織の組織学的評価を示す。図3B及びCは、12週におけるH&E染色像を示す。スケールバー:A及びB:500μm、C:100μm。 図4は、4週及び12週でSellersスケールを用いた組織学的スコアリングを行った結果を示し、非Muse群及び対照群のいずれかとも異なり、Muse群において、組織学的に有意な差が認められた。*P<0.05。
 本発明は、SSEA-3陽性の多能性幹細胞(Muse細胞)を含む、骨軟骨損傷を治療または修復するための細製剤又は医薬組成物に関する。
1.適用疾患
 本発明は、SSEA-3陽性の多能性幹細胞(Muse細胞)を含む細胞製剤又は医薬組成物を用いて変形性関節症、外傷性軟骨損傷、関節リウマチ、及び癌などの骨軟骨損傷に関連する疾患又は症候状態の治療、修復または緩和に使用することができる。本発明において、「骨軟骨損傷」とは、限定されないが、上記疾患等に起因した骨及び/又は軟骨の損傷、並びに事故及び外科的操作の結果により生じた損傷を指す。ここで、「損傷」とは、正常な構造又は機能の変化を意味し、一般的に使用される用語と同じ意味を有し、障害、変性、外傷、又は欠損と同義に使用され得る。
 本発明において使用するとき、「骨」とは、主に、ヒドロキシアパタイト、コラーゲン(主にI型コラーゲン)の形態で沈着したカルシウムおよびリン酸の成分、および骨細胞(例えば、骨芽細胞、骨細胞、および破骨細胞)、ならびに真の軟骨内骨の内部で形成する骨髄を含む石灰化(鉱化)された結合性の組織をいう。骨組織は、他の組織(軟骨組織を含む)とは有意に異なる。具体的には、骨組織は、細胞、および二相性の媒体(鉱化、無機成分(主にヒドロキシアパタイト結晶)および有機成分(主にI型コラーゲン)を含む)から構成される脈管化した組織である。グリコサミノグリカンは、2%未満のこの有機成分および1%未満の二相性媒体自身、または骨組織自体を構成する。さらに、軟骨組織と比較して、骨組織に存在するコラーゲンは、非常に組織化された平行の配置で存在する。
 本発明において使用するとき、「軟骨」とは、軟骨細胞または軟骨細胞様細胞、細胞間質(例えば、I型、II型、IX型、およびXI型コラーゲン)、プロテオグリカン(例えば、コンドロイチン硫酸プロテオグリカン、ケラタン硫酸プロテオグリカン、およびデルマタン硫酸プロテオグリカン)、および他のタンパク質を含む結合組織をいう。軟骨には、関節軟骨および非関節軟骨が含まれる。
 「関節軟骨」は、関節内の骨の連接表面を覆い、2つの対向する骨表面の間の摩擦低減接合部分としての機能を果たす無血管の非無機化結合組織をいう。関節軟骨により、骨同士が直接接触することなく運動することが可能である。関節軟骨は、隣接する滑膜の血管および被覆される骨の血管から部分的に栄養素を得ている。関節軟骨は、II型およびIX型のコラーゲンならびに種々のプロテオグリカンを含み、軟骨内性骨形成に関連するX型コラーゲンを含まない。関節軟骨は骨の上を覆っており、軟骨の下の骨のことを軟骨下骨と呼ぶ。損傷が軟骨と軟骨下骨まで広がったものを骨軟骨損傷(軟骨全層欠損)といい、軟骨層までで留まるものを軟骨損傷(軟骨部分損傷)という。本発明において、「軟骨損傷」とは、上記「骨軟骨損傷」及び「軟骨損傷」を包含するものである。
 「非関節軟骨」は、関節表面を被覆しない軟骨をいい、線維軟骨(関節円板、線維軟骨円板、結合線維軟骨、および関節周縁線維軟骨)および弾性軟骨が含まれる。線維軟骨では、ミクロポリサッカリド網が突出したコラーゲン束と組み合わされ、軟骨細胞が硝子軟骨または関節軟骨よりも広範に散在している。関節円板は衝撃に曝され、且つ頻繁に運動する関節(例えば、膝の半月板)で見出される。このような関節の例には、側頭下顎骨、胸鎖関節、手関節、および膝関節が含まれるが、これらに限定されない。二次軟骨結合は、線維軟骨の半月板によって形成される。対向する両表面に密接して接着するこのような線維軟骨円板は、軟骨の薄層が介在した線維組織の同心円状の輪から構成される。このような線維軟骨円板の例は、脊髄の椎間板である。結合線維軟骨は、これらの関節の骨表面の間に介在し、椎体の間および恥骨の間をわずかに移動することが可能である。関節周縁線維軟骨は、いくつかの関節腔(臀部の寛骨臼および肩の関節窩など)の縁部を取り囲む。
2.細胞製剤
(1)多能性幹細胞(Muse細胞)
 本発明の細胞製剤に使用される多能性幹細胞は、本発明者らの一人である出澤が、ヒト生体内にその存在を見出し、「Muse(Multilineage-differentiating Stress Enduring)細胞」と命名した細胞である。Muse細胞は、骨髄液、脂肪組織(Ogura,F.,et al.,Stem Cells Dev.,Nov 20,2013(Epub)(published on Jan 17,2014))や真皮結合組織等の皮膚組織から得ることができ、各臓器の結合組織にも散在する。また、この細胞は、多能性幹細胞と間葉系幹細胞の両方の性質を有する細胞であり、例えば、それぞれの細胞表面マーカーである「SSEA-3(Stage-specific embryonic antigen-3)」と「CD105」のダブル陽性として同定される。したがって、Muse細胞又はMuse細胞を含む細胞集団は、例えば、これらの抗原マーカーを指標として生体組織から分離することができる。Muse細胞の分離法、同定法、及び特徴などの詳細は、国際公開第WO2011/007900号に開示されている。また、Wakaoら(2011、上述)によって報告されているように、骨髄、皮膚などから間葉系細胞を培養し、それをMuse細胞の母集団として用いる場合、SSEA-3陽性細胞の全てがCD105陽性細胞であることが分かっている。したがって、本発明における細胞製剤においては、生体の間葉系組織又は培養間葉系幹細胞からMuse細胞を分離する場合は、単にSSEA-3を抗原マーカーとしてMuse細胞を精製し、使用することができる。なお、本明細書においては、骨軟骨損傷(後遺症を含む)を治療するための細胞製剤において使用され得る、SSEA-3を抗原マーカーとして、生体の間葉系組織又は培養間葉系組織から分離された多能性幹細胞(Muse細胞)又はMuse細胞を含む細胞集団を単に「SSEA-3陽性細胞」と記載することがある。また、本明細書においては、「非Muse細胞」とは、生体の間葉系組織又は培養間葉系組織に含まれる細胞であって、「SSEA-3陽性細胞」以外の細胞を指す。
 簡単には、Muse細胞又はMuse細胞を含む細胞集団は、細胞表面マーカーであるSSEA-3に対する抗体を単独で用いて、又はSSEA-3及びCD105に対するそれぞれの抗体を両方用いて、生体組織(例えば、間葉系組織)から分離することができる。ここで、「生体」とは、哺乳動物の生体をいう。本発明において、生体には、受精卵や胞胚期より発生段階が前の胚は含まれないが、胎児や胞胚を含む胞胚期以降の発生段階の胚は含まれる。哺乳動物には、限定されないが、ヒト、サル等の霊長類、マウス、ラット、ウサギ、モルモット等のげっ歯類、ネコ、イヌ、ヒツジ、ブタ、ウシ、ウマ、ロバ、ヤギ、フェレット等が挙げられる。本発明の細胞製剤に使用されるMuse細胞は、生体の組織から直接マーカーを持って分離される点で、胚性幹細胞(ES細胞)やiPS細胞と明確に区別される。また、「間葉系組織」とは、骨、滑膜、脂肪、血液、骨髄、骨格筋、真皮、靭帯、腱、歯髄、臍帯、臍帯血などの組織及び各種臓器に存在する組織をいう。例えば、Muse細胞は、骨髄や皮膚、脂肪組織から得ることができる。例えば、生体の間葉系組織を採取し、この組織からMuse細胞を分離し、利用することが好ましい。また、上記分離手段を用いて、線維芽細胞や骨髄間葉系幹細胞などの培養間葉系細胞からMuse細胞を分離してもよい。なお、本発明の細胞製剤においては、使用されるMuse細胞は、細胞移植を受けるレシピエントに対して自家であってもよく、又は他家であってもよい。
 上記のように、Muse細胞又はMuse細胞を含む細胞集団は、例えば、SSEA-3陽性、及びSSEA-3とCD105の二重陽性を指標にして生体組織から分離することができるが、ヒト成人皮膚には、種々のタイプの幹細胞及び前駆細胞を含むことが知られている。しかしながら、Muse細胞は、これらの細胞と同じではない。このような幹細胞及び前駆細胞には、皮膚由来前駆細胞(SKP)、神経堤幹細胞(NCSC)、メラノブラスト(MB)、血管周囲細胞(PC)、内皮前駆細胞(EP)、脂肪由来幹細胞(ADSC)が挙げられる。これらの細胞に固有のマーカーの「非発現」を指標として、Muse細胞を分離することができる。より具体的には、Muse細胞は、CD34(EP及びADSCのマーカー)、CD117(c-kit)(MBのマーカー)、CD146(PC及びADSCのマーカー)、CD271(NGFR)(NCSCのマーカー)、NG2(PCのマーカー)、vWF因子(フォンビルブランド因子)(EPのマーカー)、Sox10(NCSCのマーカー)、Snai1(SKPのマーカー)、Slug(SKPのマーカー)、Tyrp1(MBのマーカー)、及びDct(MBのマーカー)からなる群から選択される11個のマーカーのうち少なくとも1個、例えば、2個、3個、4個、5個、6個、7個、8個、9個、10個又は11個のマーカーの非発現を指標に分離することができる。例えば、限定されないが、CD117及びCD146の非発現を指標に分離することができ、さらに、CD117、CD146、NG2、CD34、vWF及びCD271の非発現を指標に分離することができ、さらに、上記の11個のマーカーの非発現を指標に分離することができる。
 また、本発明の細胞製剤に使用される上記特徴を有するMuse細胞は、以下:
(i)テロメラーゼ活性が低いか又は無い;
(ii)三胚葉のいずれの胚葉の細胞に分化する能力を持つ;
(iii)腫瘍性増殖を示さない;及び
(iv)セルフリニューアル能を持つ
からなる群から選択される少なくとも1つの性質を有してもよい。本発明の一局面では、本発明の細胞製剤に使用されるMuse細胞は、上記性質を全て有する。ここで、上記(i)について、「テロメラーゼ活性が低いか又は無い」とは、例えば、TRAPEZE XL telomerase detection kit(Millipore社)を用いてテロメラーゼ活性を検出した場合に、低いか又は検出できないことをいう。テロメラーゼ活性が「低い」とは、例えば、体細胞であるヒト線維芽細胞と同程度のテロメラーゼ活性を有しているか、又はHela細胞に比べて1/5以下、好ましくは1/10以下のテロメラーゼ活性を有していることをいう。上記(ii)について、Muse細胞は、in vitro及びin vivoにおいて、三胚葉(内胚葉系、中胚葉系、及び外胚葉系)に分化する能力を有し、例えば、in vitroで誘導培養することにより、肝細胞、神経細胞、骨格筋細胞、平滑筋細胞、骨細胞、脂肪細胞等に分化し得る。また、in vivoで精巣に移植した場合にも三胚葉に分化する能力を示す場合がある。さらに、静注により生体に移植することで損傷を受けた臓器(心臓、皮膚、脊髄、肝、筋肉等)に遊走及び生着し、組織に応じた細胞に分化する能力を有する。上記(iii)について、Muse細胞は、浮遊培養では増殖速度約1.3日で増殖するが、浮遊培養では1細胞から増殖し、胚様体様細胞塊を作り14日間程度で増殖が止まる、という性質を有するが、これらの胚様体様細胞塊を接着培養に持っていくと、再び細胞増殖が開始され、細胞塊から増殖した細胞が広がっていく。さらに精巣に移植した場合、少なくとも半年間は癌化しないという性質を有する。また、上記(iv)について、Muse細胞は、セルフリニューアル(自己複製)能を有する。ここで、「セルフリニューアル」とは、1個のMuse細胞から浮遊培養で培養することにより得られる胚様体様細胞塊に含まれる細胞から3胚葉性の細胞への分化が確認できると同時に、胚様体様細胞塊の細胞を再び1細胞で浮遊培養に持っていくことにより、次の世代の胚様体様細胞塊を形成させ、そこから再び3胚葉性の分化と浮遊培養での胚様体様細胞塊が確認できることをいう。セルフリニューアルは1回又は複数回のサイクルを繰り返せばよい。
 また、本発明の細胞製剤に使用されるMuse細胞を含む細胞画分は、生体の間葉系組織又は培養間葉系細胞に外的ストレス刺激を与え、該外的ストレスに耐性の細胞以外の細胞を死滅させ、生き残った細胞を回収することを含む方法によって得られる、以下の性質の少なくとも1つ、好ましくは全てを有する、SSEA-3陽性及びCD105陽性の多能性幹細胞が濃縮された細胞画分であってもよい。
(i)SSEA-3陽性;
(ii)CD105陽性;
(iii)テロメラーゼ活性が低いか又は無い;
(iv)三胚葉に分化する能力を持つ;
(v)腫瘍性増殖を示さない;及び
(vi)セルフリニューアル能を持つ。
 上記外的ストレスは、プロテアーゼ処理、低酸素濃度での培養、低リン酸条件下での培養、低血清濃度での培養、低栄養条件での培養、熱ショックへの曝露下での培養、低温での培養、凍結処理、有害物質存在下での培養、活性酸素存在下での培養、機械的刺激下での培養、振とう処理下での培養、圧力処理下での培養又は物理的衝撃のいずれか又は複数の組み合わせであってもよい。例えば、上記プロテアーゼによる処理時間は、細胞に外的ストレスを与えるために合計0.5~36時間行うことが好ましい。また、プロテアーゼ濃度は、培養容器に接着した細胞を剥がすとき、細胞塊を単一細胞にばらばらにするとき、又は組織から単一細胞を回収するときに用いられる濃度であればよい。プロテアーゼは、セリンプロテアーゼ、アスパラギン酸プロテアーゼ、システインプロテアーゼ、金属プロテアーゼ、グルタミン酸プロテアーゼ又はN末端スレオニンプロテアーゼであることが好ましい。さらに、前記プロテアーゼがトリプシン、コラゲナーゼ又はジスパーゼであることが好ましい。
(2)細胞製剤の調製及び使用
 本発明の細胞製剤は、限定されないが、上記(1)で得られたMuse細胞又はMuse細胞を含む細胞集団を生理食塩水や適切な緩衝液(例えば、リン酸緩衝生理食塩水)に懸濁させることによって得られる。この場合、自家又は他家の組織から分離したMuse細胞数が少ない場合には、細胞移植前に細胞を培養して、所定の細胞濃度が得られるまで増殖させてもよい。なお、すでに報告されているように(国際公開第WO2011/007900号パンフレット)、Muse細胞は、腫瘍化しないため、生体組織から回収した細胞が未分化のまま含まれていても癌化の可能性が低く安全である。また、回収したMuse細胞の培養は、特に限定されないが、通常の増殖培地(例えば、10%仔牛血清を含むα-最少必須培地(α-MEM))において行うことができる。より詳しくは、上記国際公開第WO2011/007900号パンフレットを参照して、Muse細胞の培養及び増殖において、適宜、培地、添加物(例えば、抗生物質、血清)等を選択し、所定濃度のMuse細胞を含む溶液を調製することができる。ヒト対象に本発明の細胞製剤を投与する場合には、ヒトの腸骨から数ml程度の骨髄液を採取し、例えば、骨髄液からの接着細胞として骨髄間葉系幹細胞を培養して有効な治療量のMuse細胞を分離できる細胞量に達するまで増やした後、Muse細胞をSSEA-3の抗原マーカーを指標として分離し、自家又は他家のMuse細胞を細胞製剤として調製することができる。あるいは、例えば、Muse細胞をSSEA-3の抗原マーカーを指標として分離後、有効な治療量に達するまで細胞を培養して増やした後、自家又は他家のMuse細胞を細胞製剤として調製することができる。
 また、Muse細胞の細胞製剤への使用においては、該細胞を保護するためにジメチルスルフォキシド(DMSO)や血清アルブミン等を、細菌の混入及び増殖を防ぐために抗生物質等を細胞製剤に含有させてもよい。さらに、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)や間葉系幹細胞に含まれるMuse細胞以外の細胞又は成分を細胞製剤に含有させてもよい。当業者は、これら因子及び薬剤を適切な濃度で細胞製剤に添加することができる。このように、Muse細胞は、各種添加物を含む医薬組成物として使用することも可能である。
 上記で調製される細胞製剤中に含有するMuse細胞数は、骨軟骨損傷における所望の効果(例えば、骨・軟骨の再生、骨軟骨損傷に関連した各種疾患の消失など)が得られるように、対象の性別、年齢、体重、患部の状態、使用する細胞の状態等を考慮して、適宜、調整することができる。後述する実施例においては、大腿骨の一部を欠損させたラット骨軟骨欠損モデルに対して、Muse細胞移植による各種の効果を検討した。約200~300gのラットに対しては、SSEA3陽性細胞を5×104細胞/頭で関節内投与することにより、非常に優れた効果が得られた。この結果から哺乳動物一個体あたり1.6~2.5×105細胞/kgを体重換算した細胞量を投与することで優れた効果が得られることが期待される。なお、対象とする個体はラット、ヒトを含むがこれに限定されない。また、本発明の細胞製剤は、所望の治療効果が得られるまで、複数回(例えば、2~10回)、適宜、間隔(例えば、1日に2回、1日に1回、1週間に2回、1週間に1回、2週間に1回、1カ月に1回、2カ月に1回、3カ月に1回、6カ月に1回)をおいて投与されてもよい。したがって、対象の状態にもよるが、治療上有効量としては、例えば、一個体あたり1×103細胞~2×107細胞で1~10回の投与量が好ましい。一個体における投与総量としては、限定されないが、1×103細胞~2×108細胞、1×104細胞~1×108細胞、2×104細胞~5×107細胞、5×104細胞~2×107細胞、1×105細胞~1×107細胞などが挙げられる。また、本発明の細胞製剤は、特に限定されないが、骨軟骨損傷部位(例えば、関節、大腿骨など)に直接に投与されてもよく、また、静脈内に投与されてもよい。
3.ラット骨軟骨欠損モデルの作製
 本明細書においては、本発明の細胞製剤による骨軟骨損傷の治療効果を検討するためにラット骨軟骨欠損モデルを構築し、使用することができる。該モデルとして使用されるラットには、限定されないが、一般的に、免疫不全ラット(例えば、F344/NJcl-rnu/rnu)、Wistar系ラット、スプラーグドーリー(SD)系ラットが挙げられる。後述する実施例においては、ラットの大腿骨に直径1mmの球形の先端を有する金属ドリルにより骨軟骨を欠損させたラットモデルを使用した。本発明の細胞製剤はヒト由来のMuse細胞であるため、該製剤を投与されるラットとは異種の関係にある。通常、モデル動物において異種の細胞等が投与される実験では、異種細胞の生体内で拒絶反応を抑制するために、異種細胞の投与前又は同時に免疫抑制剤(シクロスポリンなど)が投与される。
4.Muse細胞による治療効果
 本発明の実施形態では、本発明の細胞製剤は、骨軟骨損傷の患者の骨及び軟骨の機能を正常に回復させることができる。本明細書において使用するとき、骨軟骨機能の「回復」とは、骨軟骨損傷(欠損を含む)に伴う各種の機能障害の治療、修復及び緩和を意味し、一例として、日常生活に差し支えない程度にまで骨軟骨損傷を緩和することを意味する。また、骨軟骨の機能を「回復する」とは、骨軟骨損傷に起因した機能障害が改善、緩和、又は除去されて、骨軟骨損傷前の状態に戻ることを意味する。また、骨軟骨機能の回復の評価には、限定されないが、組織学的評価として、一般的には、骨軟骨組織の染色にサフラニンO/ファーストグリーンを使用するSellersによる組織学的スコアリングを用いて行うことができる[8]。
 以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
 本研究の動物実験に関する手法は、広島大学動物実験のガイドラインに従って実施された。すべてのプロトコールは、広島大学大学院生物医学研究科実験動物科学研究施設委員会により承認され、使用された。
実施例1:細胞調製
 ヒト骨髄MSC(hBMSC;Lonza、Basel、Switzerland)を購入し、これを10%ウシ胎児血清(FBS)、0.1mg/mlカナマイシン、及び1%Glutamax(Thermo Fisher Scientific、Waltham、MA)を含むイーグル最小必須培地(α-MEM)中で、37℃にて5%CO2で培養した。hBMSCが90~100%コンフルエントに達した後、0.25%トリプシン-エチレンジアミン四酢酸を用いて1:2の比で継代培養した。Kurodaらによるプロトコールに従った[5]。簡潔に述べると、hBMSCを、SSEA-3の発現の有無に応じて、Muse細胞(SSEA-3+)及び非Muse細胞(SSEA-3-)に分離した。hBMSCをSSEA-3抗体(1:100;Merck Millipore、Darmstadt、Germany)とともにインキュベートし、抗体希釈液中でAllophycocyaninをコンジュゲートした抗ラットIgM(Jackson ImmunoResearch、West Grove、PA)によって検出し、Special Order Research ProductであるFACSAria II(Becton Dickinson、Franklin Lakes、NJ)によって選別した。
実施例2:骨軟骨欠損部位への細胞注入
 本実施例は、16匹の10週齢の免疫不全ラット(32個の膝)(F344/NJcl-rnu/rnu)で行った。直径1mmの球形の先端を有する市販の金属ドリルを用いて、大腿骨の膝蓋骨溝内に骨軟骨欠損(直径2mm、深さ2mm)を左右に作製した。膝関節を閉じた直後に、ラットの膝を3群に不均一に分布させた(表1):対照群-PBS注射;非Muse群-非Muse細胞の関節内注射(5×104);Muse群-Muse細胞の関節内注射(5×104)。細胞を50μlのPBSに懸濁させた。
Figure JPOXMLDOC01-appb-T000001
実施例3:肉眼的及び組織学的な評価法
(1)肉眼的な評価法
 処置後の4週及び12週で、致死量のペントバルビタールナトリウムを腹腔内に注射して、ラットを屠殺した。Wayneら[6][7]による肉眼的スコアリングシステムを用いて、大腿顆を肉眼的に評価した。「14」が最も良く、「0」が最も悪かった(表2)。
表2.肉眼的スコアリングシステム
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
(2)組織学的な評価法
 修復組織を、パラホルムアルデヒドを含むリン酸緩衝溶液(4%)中で1日間固定し、10%EDTA(Nacalai Tesque,Inc.、Kyoto、Japan)で4週間、脱灰した後、パラフィンブロックに包埋した。試料を5μm切片に矢状に切断した。組織学的評価のために、切片をサフラニンO/ファーストグリーン(Muto Pure Chemicals Co.Ltd.,Japan)で染色し、Sellersスケールの組織学的スコアリングを行った(表3)[8]。ヘマトキシリン及びエオシン(H&E)染色を用いて、修復組織の細胞密度を評価した。
表3.修復組織の組織学的評価のためのSellersスケール
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
実施例4:免疫染色
 処理後の4週及び12週で、切片を抗原回収試薬(Immunoactive、Matsunami Glass Ind.、Osaka、Japan)で前処理し、内因性ペルオキシダーゼ活性をブロックするために、0.3%H22に浸漬する。切片をブロッキング溶液(Protein Block Serum-Free;Dako、Carpinteria、CA)でブロッキングし、I型コラーゲン(1:250、Daiichi Fine Chemical、Toyama、Japan)及びII型コラーゲン(1:250、Daiichi Fine Chemical)に対するマウスモノクローナル抗体とともにインキュベートする。視覚化のための反応は、アビジン-ビオチンペルオキシダーゼ系(Vectastain Elite ABCキット;Vector Laboratories,Inc.、Burlingame、CA)を用いて行い、3,3’-ジアミノベンジジン(Peroxidase Substrateキット、Vector Laboratories,Inc.)を用いて切片を着色する。
実施例5:各種実験の結果
(1)肉眼的所見
 4週で対照及び非Muse群の膝蓋溝において損傷部辺縁が容易に同定され、修復組織は検出されなかった。また、4週及び12週で、Muse群及び非Muse群と比較して、対照群において、隣接する軟骨の変性を伴う変形性関節症変化が増加した。12週で、非Muse群では、損傷部の深さは、褐色組織で満たされ、減少した。一方、Muse群では、白色組織で完全に損傷部が被覆され、これは、周囲組織に応じて、平滑であり、均質な表面を有し、損傷部辺縁を明確に特定することが困難である(図1)。肉眼的スコアリングでは、処置後の4週では3群間に有意差はなかったが、対照、非Muse群、Muse群の順で改善傾向が見られた(対照群:0.8±0.4;非Muse群:1.3±0.5、Muse群:1.8±0.8)。しかしながら、Muse群の肉眼的な結果は、欠陥部の補充によって測定すると、処置後、12週で他の群の結果よりも有意に良好であった(対照群:0.5±0.6、非Muse群:1.5±0.5、Muse群:10.0±1.5)(図2)。個々のパラメーターの肉眼的スコアを表4に示した。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
(2)組織学的所見及びスコアリング
 4週および12週で、対照群及び非Muse群の屠殺時には、線維組織は少量であったが、損傷部位に修復組織は見られなかった。4週でのMuse群においては、軟骨の置換はなく、軟骨下骨の修復を伴う損傷の部分的修復が見られた。また、12週でのMuse群においては、軟骨損傷の修復が確認され、軟骨下骨の完全修復が伴っていたが、繊維組織で覆われ、統合に加えて、骨軟骨接合が観察された(図3A)。4週及び12週で、それぞれ、Sellersスケールに基づいて、以下の結果が記録された:対照群(4週:26.2±1.6;12週:27.8±1.5)、非Muse群(4週:27.2±1.2;12週:25±0.6)、及びMuse群(4週:17.4±0.6;12週:11.8±2.0)。非Muse群は、処置後の12週で、対照群よりも有意に良好な結果を示した。さらに、Muse群のスコアは、処置後の4週と12週の両方で他の群よりも有意に良好であった(図4)。個々のパラメーターのSellersスコアを表5に示した。また、12週でのH&E染色は、他の群と比較して、Muse群の修復組織の細胞密度が高いことを示した(図3B、C)。
表5.Sellersスコア
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 Muse細胞の関節内注射は、骨軟骨損傷、特に繊維組織によって覆われた軟骨下骨を修復する有望な方法である。
参考文献
[1] A. Mobasheri, C. Csaki, A.L. Clutterbuck, M. Rahmanzadeh, and M. Shakibaei, Mesenchymal stem cells in connective tissue engineering and regenerative medicine: applications in cartilage repair and osteoarthritis therapy. Histol Histopathol, vol. 24, no. 3, pp. 347-366, 2009.
[2] M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med, vol. 331, no. 14, pp. 889-895, 1994.
[3] M. Ochi, Y. Uchio, K. Kawasaki, S. Wakitani, and J. Iwasa, Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. J Bone Joint Surg Br, vol. 84, no. 4, pp. 571-578, 2002.
[4] K. Tamai, T. Yamazaki, T. Chino, et al., PDGFRalpha-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia. Proc Natl Acad Sci U S A, vol. 108, no. 16, pp. 6609-6614, 2011.
[5] Y. Kuroda, S. Wakao, M. Kitada, T. Murakami, M. Nojima, and M. Dezawa, Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc, vol. 8, no. 7, pp. 1391-1415, 2013.
[6] J.S. Wayne, C.L. McDowell, K.J. Shields, and R.S. Tuan, In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue Eng, vol. 11, no. 5-6, pp. 953-963, 2005.
[7] W. Cui, Q. Wang, G. Chen, et al., Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs. J Biosci Bioeng, vol. 111, no. 4, pp. 493-500, 2011.
[8] R.S. Sellers, D. Peluso, and E.A. Morris, The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg Am, vol. 79, no. 10, pp. 1452-1463, 1997.

Claims (9)

  1.  生体の間葉系組織又は培養間葉系細胞から分離されたSSEA-3陽性の多能性幹細胞を含む、骨軟骨損傷を治療又は修復するための細胞製剤。
  2.  外部ストレス刺激によりSSEA-3陽性の多能性幹細胞が濃縮された細胞画分を含む、請求項1に記載に細胞製剤。
  3.  前記多能性幹細胞が、CD105陽性である、請求項1又は2に記載の細胞製剤。
  4.  前記多能性幹細胞が、CD117陰性及びCD146陰性である、請求項1~3のいずれか1項に記載の細胞製剤。
  5.  前記多能性幹細胞が、CD117陰性、CD146陰性、NG2陰性、CD34陰性、vWF陰性、及びCD271陰性である、請求項1~4のいずれか1項に記載の細胞製剤。
  6.  前記多能性幹細胞が、CD34陰性、CD117陰性、CD146陰性、CD271陰性、NG2陰性、vWF陰性、Sox10陰性、Snai1陰性、Slug陰性、Tyrp1陰性、及びDct陰性である、請求項1~5のいずれか1項に記載の細胞製剤。
  7.  前記多能性幹細胞が、以下の性質の全てを有する多能性幹細胞である、請求項1~6のいずれか1項に記載の細胞製剤:
    (i)テロメラーゼ活性が低いか又は無い;
    (ii)三胚葉のいずれの胚葉の細胞に分化する能力を持つ;
    (iii)腫瘍性増殖を示さない;及び
    (iv)セルフリニューアル能を持つ。
  8.  前記多能性幹細胞が、骨軟骨損傷部位に蓄積する能力を有する、請求項1~7のいずれか1項に記載の細胞製剤。
  9.  前記多能性幹細胞が、軟骨細胞に分化する能力を有する、請求項1~8のいずれか1項に記載の細胞製剤。
PCT/JP2018/038687 2017-10-17 2018-10-17 骨軟骨修復を誘導する多能性幹細胞 WO2019078262A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2018352904A AU2018352904A1 (en) 2017-10-17 2018-10-17 Pluripotent stem cells inducing osteochondral repair
US16/756,682 US20200237828A1 (en) 2017-10-17 2018-10-17 Pluripotent stem cells inducing osteochondral repair
JP2019549320A JPWO2019078262A1 (ja) 2017-10-17 2018-10-17 骨軟骨修復を誘導する多能性幹細胞
EP18867476.6A EP3698802A4 (en) 2017-10-17 2018-10-17 PLURIPOTENT STEM CELLS INDUCING OSTEOCHONDRAL REPAIR
KR1020207010507A KR20200070247A (ko) 2017-10-17 2018-10-17 골연골 수복을 유도하는 다능성 간세포
CN201880067351.0A CN111225676A (zh) 2017-10-17 2018-10-17 诱导骨软骨修复的多能性干细胞
SG11202003507QA SG11202003507QA (en) 2017-10-17 2018-10-17 Pluripotent stem cells inducing osteochondral repair
CA3079500A CA3079500A1 (en) 2017-10-17 2018-10-17 Pluripotent stem cells inducing osteochondral repair
US17/844,882 US20220313741A1 (en) 2017-10-17 2022-06-21 Pluripotent stem cells inducing osteochondral repair

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762573500P 2017-10-17 2017-10-17
US62/573,500 2017-10-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/756,682 A-371-Of-International US20200237828A1 (en) 2017-10-17 2018-10-17 Pluripotent stem cells inducing osteochondral repair
US17/844,882 Continuation US20220313741A1 (en) 2017-10-17 2022-06-21 Pluripotent stem cells inducing osteochondral repair

Publications (1)

Publication Number Publication Date
WO2019078262A1 true WO2019078262A1 (ja) 2019-04-25

Family

ID=66174455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038687 WO2019078262A1 (ja) 2017-10-17 2018-10-17 骨軟骨修復を誘導する多能性幹細胞

Country Status (9)

Country Link
US (2) US20200237828A1 (ja)
EP (1) EP3698802A4 (ja)
JP (1) JPWO2019078262A1 (ja)
KR (1) KR20200070247A (ja)
CN (1) CN111225676A (ja)
AU (1) AU2018352904A1 (ja)
CA (1) CA3079500A1 (ja)
SG (1) SG11202003507QA (ja)
WO (1) WO2019078262A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183742B1 (ja) 2005-12-13 2008-11-19 国立大学法人京都大学 誘導多能性幹細胞の製造方法
WO2011007900A1 (ja) 2009-07-15 2011-01-20 Dezawa Mari 生体組織から単離できる多能性幹細胞
WO2016131430A1 (en) * 2015-02-20 2016-08-25 Shih-Chieh Hung Use of mesenchymal stem cells in treating osteoarthritis
JP2017500860A (ja) * 2013-12-19 2017-01-12 ユニベルシテ・ド・リエージュUniversite De Liege 哺乳類筋肉由来の幹細胞

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5906934A (en) * 1995-03-14 1999-05-25 Morphogen Pharmaceuticals, Inc. Mesenchymal stem cells for cartilage repair
AU2002337479A1 (en) * 2002-09-04 2004-03-29 Hadasit Medical Research Services & Development Ltd. Compositions comprising bone marrow cells, demineralized bone matrix and rtg polymers for use in the induction of bone and cartilage formation
JP2014133703A (ja) * 2011-03-30 2014-07-24 Clio Inc 生体組織から単離できるssea−3陽性の多能性幹細胞を含む他家移植用細胞治療用組成物
US9399758B2 (en) * 2009-07-15 2016-07-26 Mari Dezawa SSEA3(+) pluripotent stem cell that can be isolated from body tissue
WO2014027474A1 (ja) * 2012-08-17 2014-02-20 株式会社Clio 心筋梗塞の修復再生を誘導する多能性幹細胞
EP3021880A1 (en) * 2013-07-17 2016-05-25 Institut National de la Santé et de la Recherche Médicale Three-dimensional scaffold functionalized with micro-tissues for tissue regeneration
KR102219743B1 (ko) * 2013-11-01 2021-02-23 고쿠리츠 다이가쿠 호진 교토 다이가쿠 신규 연골 세포 유도 방법
JP6452107B2 (ja) * 2014-09-05 2019-01-16 国立大学法人 東京大学 糖尿病性皮膚潰瘍治療のための多能性幹細胞

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183742B1 (ja) 2005-12-13 2008-11-19 国立大学法人京都大学 誘導多能性幹細胞の製造方法
WO2011007900A1 (ja) 2009-07-15 2011-01-20 Dezawa Mari 生体組織から単離できる多能性幹細胞
JP2017500860A (ja) * 2013-12-19 2017-01-12 ユニベルシテ・ド・リエージュUniversite De Liege 哺乳類筋肉由来の幹細胞
WO2016131430A1 (en) * 2015-02-20 2016-08-25 Shih-Chieh Hung Use of mesenchymal stem cells in treating osteoarthritis

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
A. MOBASHERI ET AL., HISTOL. HISTOPATHOL., vol. 24, 2009, pages 347 - 366
A. MOBASHERIC. CSAKIA.L. CLUTTERBUCKM. RAHMANZADEHM. SHAKIBAEI: "Mesenchymal stem cells in connective tissue engineering and regenerative medicine: applications in cartilage repair and osteoarthritis therapy", HISTOL HISTOPATHOL, vol. 24, no. 3, 2009, pages 347 - 366
DEZAWA, MARI: "Tissue repairing cells that exist among mesenchymal stem cells: their potental for cell-based therapy (Differentiation potency of mesenchymal stem cells, and prospects for cell therapy)", NIPPON RINSHO, vol. 69, no. 12, 2011, pages 2128 - 2135, XP009520532, ISSN: 0047-1852 *
HARADA, YOHEI ET AL.: "Combination therapy with intra-articular injection of mesenchymal stem cells and articulated joint distraction for repair of a chronic osteochondral defect in the rabbit", JOURNAL OF ORTHOPAEDIC RESEARCH, vol. 33, no. 10, 20 July 2015 (2015-07-20), pages 1466 - 1473, XP055598117 *
J.S. WAYNEC.L. MCDOWELLK.J. SHIELDSR.S. TUAN: "In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering", TISSUE ENG, vol. 11, no. 5-6, 2005, pages 953 - 963
K. TAMAI ET AL., PROC. NATL. ACAD. SCI. USA, vol. 108, 2011, pages 9875 - 9880
K. TAMAIT. YAMAZAKIT. CHINO ET AL.: "PDGFRalpha-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia", PROC NATL ACAD SCI USA, vol. 108, no. 16, 2011, pages 6609 - 6614, XP055044096, DOI: 10.1073/pnas.1016753108
M. BRITTBERG ET AL., N. ENGL. J. MED., vol. 331, 1994, pages 889 - 895
M. BRITTBERGA. LINDAHLA. NILSSONC. OHLSSONO. ISAKSSONL. PETERSON: "Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation", N ENGL J MED, vol. 331, no. 14, 1994, pages 889 - 895
M. DEZAWA ET AL., J. CLIN. INVESTI., vol. 113, 2004, pages 1701 - 1710
M. DEZAWA ET AL., SCIENCE, vol. 309, 2005, pages 314 - 317
M. OCHI ET AL., J. BONE. JOINT SURG. BR., vol. 84, 2002, pages 571 - 578
M. OCHIY. UCHIOK. KAWASAKIS. WAKITANIJ. IWASA: "Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee", J BONE JOINT SURG BR, vol. 84, no. 4, 2002, pages 571 - 578
MAHMOUD, E. E. ET AL.: "Repair of osteochondral defect depending upon cell therapy using Muse cell", JOURNAL OF JAPAN ORTHOPEDIC ASSOCIATION, vol. 90, no. 3, 2016, pages S532, 3 - 7-EW-2, XP009520535, ISSN: 0021-5325 *
MAHMOUD, E. E. ET AL.: "The effect of multilineage differentiating stress enduring (MUSE) cell transplantation on osteochondral repair", JAPANESE JOURNAL OF JOINT DISEASES, vol. 34, no. 3, 31 October 2015 (2015-10-31), pages 347, XP009520533, ISSN: 1883-2873 *
MAHMOUD, E. E. ET AL.: "Therapeutic Potential of Multilineage-Differentiating Stress-Enduring Cells for Osteochondral Repair in a Rat Model", STEM CELLS INTERNATIONAL, vol. 2017, October 2017 (2017-10-01), pages 1 - 8, XP055598115 *
NAKAYAMA, TAKAYUKI ET AL.: "Cell Therapy Using Adipose-Derived Mesenchymal Stromal Cells : Current Status and Perspectives", JAPANESE JOURNAL OF TRANSFUSION AND CELL THERAPY, vol. 59, no. 3, 2013, pages 450 - 456, XP055586411 *
OGURA, F. ET AL., STEM CELLS DEV., 20 November 2013 (2013-11-20)
R.S. SELLERSD. PELUSOE.A. MORRIS: "The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage", J BONE JOINT SURG AM, vol. 79, no. 10, 1997, pages 1452 - 1463, XP002567694
See also references of EP3698802A4
W. CUIQ. WANGG. CHEN ET AL.: "Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs", J BIOSCI BIOENG, vol. 111, no. 4, 2011, pages 493 - 500
Y. KURODAS. WAKAOM. KITADAT. MURAKAMIM. NOJIMAM. DEZAWA: "Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells", NAT PROTOC, vol. 8, no. 7, 2013, pages 1391 - 1415, XP055496476

Also Published As

Publication number Publication date
CN111225676A (zh) 2020-06-02
EP3698802A4 (en) 2021-05-26
US20220313741A1 (en) 2022-10-06
US20200237828A1 (en) 2020-07-30
AU2018352904A1 (en) 2020-05-21
EP3698802A1 (en) 2020-08-26
SG11202003507QA (en) 2020-05-28
KR20200070247A (ko) 2020-06-17
JPWO2019078262A1 (ja) 2020-11-05
CA3079500A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
Mata et al. In vivo articular cartilage regeneration using human dental pulp stem cells cultured in an alginate scaffold: a preliminary study
Kuroda et al. The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression
Barry Biology and clinical applications of mesenchymal stem cells
Nishimura et al. Chondroprogenitor cells of synovial tissue
Gupta et al. Mesenchymal stem cells for cartilage repair in osteoarthritis
Spencer et al. Mesenchymal stromal cells: past, present, and future
Erickson et al. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo
JP7210829B2 (ja) 骨および軟骨の損傷または疾患の予防および治療
JP2023138985A (ja) 単離された椎間板細胞、その使用方法、および哺乳動物組織からそれを調製する方法
Liu et al. Repair of osteochondral defects using human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in a rabbit model
Brehm et al. Stem cell-based tissue engineering in veterinary orthopaedics
Jang et al. Xenotransplantation of human mesenchymal stem cells for repair of osteochondral defects in rabbits using osteochondral biphasic composite constructs
CN101583710A (zh) 用于再生软骨组织的培养基和药物组合物、相关方法、用途和产品
Ribitsch et al. Basic science and clinical application of stem cells in veterinary medicine
KR102091442B1 (ko) 건 또는 인대 손상 치유를 위한 자가 및 동종의 지방유래 중간엽줄기세포 조성물 및 이의 제조방법
Lee et al. Characterization and spinal fusion effect of rabbit mesenchymal stem cells
US10780129B2 (en) Use of mesenchymal stem cells in treating osteoarthritis
CN103748215A (zh) 骨和软骨的自体人成熟多能性极小胚胎样(hvsel)干细胞的细胞再生
KR20210040908A (ko) 인간 유도 만능 줄기세포로부터 연골세포의 펠렛을 제조하는 방법 및 이의 용도
JP2021080184A (ja) 変形性関節症の予防又は治療剤、及び変形性関節症の予防又は治療用医薬組成物
WO2019078262A1 (ja) 骨軟骨修復を誘導する多能性幹細胞
Gugjoo Therapeutic Applications of Mesenchymal Stem Cells in Veterinary Medicine
Åkerlund et al. Prevention and treatment of bone and cartilage damage or disease
US20200101116A1 (en) Human homogeneous amniotic fluid stem cell lines and uses thereof
Music Optimisation of methods for driving Chondrogenesis of human and ovine bone marrow–derived stromal cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549320

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3079500

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018352904

Country of ref document: AU

Date of ref document: 20181017

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018867476

Country of ref document: EP

Effective date: 20200518