WO2020004893A1 - 인간 유도 만능 줄기세포로부터 연골세포의 펠렛을 제조하는 방법 및 이의 용도 - Google Patents
인간 유도 만능 줄기세포로부터 연골세포의 펠렛을 제조하는 방법 및 이의 용도 Download PDFInfo
- Publication number
- WO2020004893A1 WO2020004893A1 PCT/KR2019/007633 KR2019007633W WO2020004893A1 WO 2020004893 A1 WO2020004893 A1 WO 2020004893A1 KR 2019007633 W KR2019007633 W KR 2019007633W WO 2020004893 A1 WO2020004893 A1 WO 2020004893A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cartilage
- cells
- chondrocyte
- pellets
- chondrocytes
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0655—Chondrocytes; Cartilage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/715—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
- A61K31/726—Glycosaminoglycans, i.e. mucopolysaccharides
- A61K31/728—Hyaluronic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/32—Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/05—Inorganic components
- C12N2500/10—Metals; Metal chelators
- C12N2500/20—Transition metals
- C12N2500/24—Iron; Fe chelators; Transferrin
- C12N2500/25—Insulin-transferrin; Insulin-transferrin-selenium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/99—Serum-free medium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/15—Transforming growth factor beta (TGF-β)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/155—Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/38—Hormones with nuclear receptors
- C12N2501/39—Steroid hormones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/45—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2513/00—3D culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/50—Proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/50—Proteins
- C12N2533/54—Collagen; Gelatin
Definitions
- the present invention comprises the steps of (a) culturing human induced pluripotent stem cells to form and obtain an embryoid body (embryoid body); (b) inducing and isolating the obtained embryonic body of step (a) into outgrowth cells; And (c) culturing the isolated dendritic cells of step (b) in the form of pellets; It relates to a method for producing chondrocyte pellets comprising a.
- the present invention also relates to a pharmaceutical composition for use in the treatment of arthritis, including chondrocyte pellets prepared by the above method.
- the present invention also relates to a method for preventing or treating arthritis, which comprises administering a chondrocyte pellet prepared by the method to a patient with arthritis.
- Cartilage is bone tissue consisting of chondrocytes and cartilage substrate, and usually refers to the tissue forming part of the joint.
- Cartilage has a high elasticity and a very low coefficient of friction, which acts as a cushion to prevent friction of the tip, helping to move the joint in the absence of friction.
- it plays a role in forming a site that requires elasticity, such as respiratory organs or auricle, or resistance to pressure, such as costal cartilage, interosseous cartilage.
- Articular cartilage is an elastic white tissue that covers the tip of the bone and protects it from friction.
- Articular cartilage consists of chondrocytes, cells that have been specially differentiated to distribute between the extracellular matrix and the cartilage matrix of various types of collagen, proteoglycan and flexible fibers. do.
- Chondrocytes serve to produce and maintain articular cartilage by producing a composition of extracellular matrix.
- Cell division occurs in chondrocytes, but once growth stops, chondrocytes no longer divide under normal conditions.
- the cartilage is damaged because it is trapped in a small space called lacuna, the migration and recovery of chondrocytes becomes difficult.
- cartilage is avascular tissue, there are no blood vessels for nutrition. Cartilage-free blood vessels interfere with stem cell migration and reduce tissue regeneration.
- cartilage protectants hyaluronic acid, glucosamine, chondroitin, etc.
- surgical treatment Arthroscopic surgery, proximal tibial osteotomy, joint replacement, total knee arthroplasty, bone marrow stimulation, bone-cartilage graft, etc.
- cartilage protector only serves to temporarily protect joints by nourishing chondrocytes or alleviating shock.
- Bone marrow stimulation exposes damaged subchondral bone and fills cartilage damage with blood clots containing stem cells derived from bone marrow.
- fibrotic cartilage rather than fibrotic cartilage.
- Bone-cartilage tissue transplantation is a method of collecting bone-cartilage connective tissue at the site of receiving less weight from the cartilage tissue of the patient and then transplanting the cartilage to the cartilage damage site.
- the first commercialized technique is autologous chondrocytes implantation, which removes a small amount of healthy cartilage from the less-weighted areas of the patient's own cartilage tissue, separates the chondrocytes from them, cultures them in vitro, and injects them back into the damaged area. It is a technique that involves the inconvenience of two surgeries and the damage of cartilage in the healthy area, and above all, the number of cartilage cells collected is small, so that a certain period of time must be cultured and the phenotype of chondrocytes is maintained during the culture period. The dedifferentiation phenomenon cannot occur, and there is a disadvantage in that the cell survival rate after transplantation and the chondrocytes injected are inhomogeneous and concentrated due to gravity, so that it is not distributed well.
- the scaffold provides a three-dimensional system for chondrocytes to maintain the phenotype of chondrocytes and promote the production of free cartilage extracellular matrix.
- it delivers the cells to the site of cartilage damage and provides physical support to the site of implantation to protect the cells from loading forces.
- the scaffolds currently used for cell delivery to the implanted site have various forms such as sponges, gels, fibers and microbeads, and are mainly manufactured using natural or synthetic biomaterials.
- the graft itself has a high efficiency and has the advantage of being evenly distributed in the graft site, but there is a disadvantage that the scaffold can give a spatial limitation when the cells proliferate or secrete extracellular matrix in the scaffold.
- the hydrogel-type scaffold has a disadvantage in that oxygen and nutrients are not supplied smoothly, thereby reducing cell viability and cartilage differentiation, and the membrane-type scaffold cannot form three-dimensional cartilage tissue.
- the artificial cartilage produced has a disadvantage in that the cartilage regeneration is not good because of low binding force with the original tissue (host tissue).
- all scaffolds decompose, and in the case of natural biomaterials that are rapidly degrading, there is a high possibility of cell loss with degradation. In terms of clinical applications, heterogeneous and allogeneic natural materials may cause immune responses. In the case of synthetic materials, harmful decomposition products are generated, which is disadvantageous in terms of safety.
- the shape and depth of cartilage damage is not constant, so if the artificial cartilage of the three-dimensional structure manufactured by the laboratory is larger than the damaged area, the implant should be trimmed to the shape of the damaged area, and if the cartilage implant is smaller than the damaged area, It should be implanted by filling it like a mosaic to the shape of damage.
- the articular cartilage excels or sinks above the surrounding cartilage, it is additionally added to the implant or surrounding normal cartilage due to abnormal weight load. Will cause damage.
- One way to create a small cartilage structure without a support is to induce cell aggregation naturally.
- Rotating techniques can be used to create cell aggregates called aggregation patterns, which are naturally formed by intercellular interactions when cells are dynamically cultured in a suspended state of culture. .
- the cells form three-dimensional cell aggregates, naturally resembling the substrates of free cartilage. Produce extracellular matrix.
- this culture method can not control the number of cells that make one cell aggregate, and because there may be a fusion between the formed chondrogenic tissue (cell), there will be a variety of cartilage tissue size and cartilage differentiation, so cell therapy There is a disadvantage that can not be specified as.
- Another example is a method of culturing micromass / chondrosphere using an adherent culture dish, in which a high concentration suspension of cells with cartilage differentiation capacity is added to the adherent culture dish and allowed to stand in a 37 ° C. incubator. Within hours to days, the cells aggregated, which were suspended in the culture medium, and then three-dimensionally cultured in a non-adhesive dish or dynamic culture conditions.
- This method has the advantage of controlling the number of cells that form cartilaginous tissues, but the ability to form cell aggregates naturally varies depending on the state of the cells, resulting in stable homogenous cartilaginous tissues. There is no guarantee.
- the cell aggregates are cultured together before the extracellular matrix is hardened, fusion between the cartilage tissues formed may occur.
- pellet culture is a method of making an ultrahigh density culture system of cells artificially from the beginning of three-dimensional culture by centrifuging a relatively small number of cells to form cell aggregation.
- the pellet formation process is simple, easily reproducible, and cells with cartilage forming ability synthesize and secrete cartilaginous extracellular matrix under this system to make cartilaginous tissue.
- Pellet culture is the most frequently used method for evaluating the differentiation ability of stem cells into chondrocytes, and has been used to evaluate the effects of foreign factors on chondrocytes.
- the pellet system is a useful method for producing high-quality cartilage tissue, but it is difficult to make sufficient pellet size. It has been judged to be difficult.
- the general pellet culture uses a method in which a cell suspension is placed in a capped tube (conical tube, storage tube, microcentrifuge tube, etc.), and centrifuged and three-dimensionally cultured to make one pellet per tube. There was a disadvantage in culturing.
- the chondrocytes are cultured into pellets and manufactured in an injectable form, the problem of low reproducibility of chondrocytes can be overcome, and there will be no death of internal cells due to the problem of perfusion during the culture process, and the damage site
- the injectable form no incision of the cartilage injury site is required.
- the development of therapeutic agents requires techniques to produce repeatable, reproducible and homogenous chondrogenic tissues, and for use in large area damage, a mass culture system capable of producing a considerable number of chondrogenic tissues is required. .
- mesenchymal stem cells lose intrinsic properties after 3-4 days in vitro, and it has been reported that the production and differentiation of mesenchymal stem cells depends on the condition of the patient's age or disease.
- Damage to the cartilage tissue constituting the joint causes arthritis with swelling, heat, and pain.
- Arthritis occurs regardless of race and is divided into more than 100 types depending on the cause.
- the most common forms are osteoarthritis, a degenerative joint disease caused mainly by aging, and other autoimmune diseases, such as rheumatoid arthritis and psoriatic arthritis, and infections.
- Septic arthritis caused by.
- degenerative arthritis is a representative disease of the elderly and is mainly caused by aging of the joint, but in addition, genetic factors, nutritional imbalance, lack of exercise, excessive exercise or injury, excessive labor, excessive posture, wrong posture, and obesity
- Many factors, such as overload caused by the complex action is a disease that occurs frequently in young people.
- arthritis is a disease with a high incidence in a wide range of ages, but once damaged tissue is not naturally regenerated or repaired, it causes long-term patients' social activities and reduces quality of life.
- Pluripotent stem cells refer to stem cells that have the versatility to differentiate into all three germ layers constituting the living body and thus to differentiate into all the cells or organ tissues of the human body, and generally embryonic stem cells (embryonic stem cell).
- Human embryonic stem cells have many ethical problems because they are made from embryos that can occur in human life, but are known to have superior cell proliferation and differentiation capacity as adult stem cells.
- Human induced pluripotent stem cells hiPSCs
- Human induced pluripotent stem cells have been illuminated as alternative cell sources of regenerative medicine. Human induced pluripotent stem cells can be obtained from various cells by a combination of compounds or genetic elements, and are highly applicable because there is no ethical problem such as embryonic stem cells. The discovery of human induced pluripotent stem cells has thus provided a new strategy in the study of drug screening and treatment of various diseases.
- human induced pluripotent stem cells can be a source of cells for replacing damaged tissues such as articular cartilage, which are limited in regeneration, because of their excellent differentiation into target cells including chondrocytes.
- human induced pluripotent stem cells have unlimited proliferation capacity, human induced pluripotent stem cells in an appropriate culture environment are considered to be an alternative source that can be used as a cell source for chondrocyte culture suitable for mass production.
- the universal differentiation induction technology using human induced pluripotent stem cells is using a differentiation induction method through the production of embryoid bodies.
- the step of spontaneous aggregation of cells into a spherical form called an embryonic embryo through suspension culture should be selected.
- chondrocytes from human induced pluripotent stem cells
- time required for differentiation from human induced pluripotent stem cells to chondrocytes is increased, or the chondrocytes are loosened in cultured pellets.
- chondrocytes are loosened in cultured pellets.
- not fully mature chondrocytes are obtained, or differentiate into not only chondrocytes but also non-chondrocytes, and there is a diversity in the degree of differentiation of each chondrocyte.
- the present inventors solved the problem of ensuring the reproducibility of the chondrocytes and mass production, and as a result of the diligent effort to develop pellets of chondrocytes with a high level of differentiation into chondrocytes, uniform size and homogeneous degree of differentiation, human induction
- a pellet containing the progenitor cells induced by the embryo culture of the embryonic body obtained from pluripotent stem cells was prepared, and administered to the cartilage damage site in the form of injection to confirm that the cartilage regeneration effect was excellent and completed the present invention.
- An object of the present invention is to provide a method for producing pellets having a high differentiation rate from human induced pluripotent stem cells to chondrocytes, and having a uniform size and a different degree of differentiation.
- Another object of the present invention is to provide a pharmaceutical composition or arthritis prevention or treatment method for use in the treatment of arthritis in the form of injection, which is excellent in the regeneration effect of cartilage and does not require surgery.
- the present invention comprises the steps of (a) culturing human induced pluripotent stem cells to form and obtain an embryoid body (embryoid body); (b) inducing and isolating the obtained embryonic body of step (a) into outgrowth cells; And (c) culturing the isolated dendritic cells of step (b) in the form of pellets; It provides a method for producing chondrocyte pellets comprising a.
- the human induced pluripotent stem cells of step (a) may be derived from cord blood mononuclear cells.
- the culturing of step (a) may be an attachment culture.
- step (b) may be made in a gelatin coated plate.
- step (c) may be to culture the pellets by centrifugation of the separated progenitor cells.
- the centrifugation may be performed at a speed of 1100 ⁇ 2500 rpm.
- 95% to 100% of the separated progenitor cells of step (c) may be formed of chondrocyte pellets.
- the culturing of step (c) may be performed in a serum-free medium containing human bone morphogenetic protein (BMP) and transforming growth factor-beta (TGF- ⁇ ).
- BMP bone morphogenetic protein
- TGF- ⁇ transforming growth factor-beta
- the chondrocyte pellets may contain 200 to 5000 protuberant cells of step (b).
- the chondrocyte pellet may be differentiated into vitreous chondrocytes.
- the present invention also provides a pharmaceutical composition to arthritis prevention or treatment method for use in the treatment of arthritis, including chondrocyte pellets prepared by the above method.
- the arthritis is at least one selected from the group consisting of osteoarthritis, rheumatoid arthritis, psoriatic arthritis, septic arthritis, exfoliative osteochondritis, articular ligament damage and meniscus damage. Can be.
- the pharmaceutical composition may be in injectable form.
- the pharmaceutical composition may further include hyaluronic acid.
- the chondrocyte pellet may be administered to a patient using a syringe.
- chondrocytes as a cell therapy for the treatment of arthritis requires techniques that can produce reproducible and homogenous chondrocytes that are repeatedly reproducible and can produce a significant number of chondrocytes for use in large area damage. Mass production systems are required. Accordingly, techniques for artificially culturing and transplanting chondrocytes from stem cells have been developed.
- Stem cells can be classified into embryonic stem cells and adult stem cells according to their differentiation capacity and production time.
- Adult stem cells can be obtained from bone marrow, blood, brain, skin, etc., so there are few ethical problems, but they have limited differentiation ability compared to embryonic stem cells.
- Typical adult stem cells include mesenchymal stem cells (MSCs) and hematopoietic stem cells.
- MSCs mesenchymal stem cells
- hematopoietic stem cells Mesenchymal stem cells differentiate into chondrocytes, osteoblasts, adipocytes, myocytes, and neurons.
- Hematopoietic stem cells mainly contain blood cells such as red blood cells, white blood cells, and platelets. It is known to differentiate into cells.
- Mesenchymal stem cells refer to stem cells differentiated from mesoderm resulting from the division of fertilized eggs, and because they are present in cartilage, bone tissue, adipose tissue, bone marrow, etc., they are relatively easy to obtain, and thus, cells such as rheumatoid arthritis and osteoarthritis It is widely used as a therapeutic composition.
- mesenchymal stem cells lose intrinsic properties after 3-4 days in vitro, and it has been reported that the production and differentiation of mesenchymal stem cells depends on the condition of the patient's age or disease.
- hiPSCs human induced pluripotent stem cells
- Human induced pluripotent stem cells can be differentiated into all three germ layers constituting the living body means a multifunctional stem cell capable of differentiating into all cells or organ tissues of the human body, human embryonic stem cells It is formulated to solve many of the ethical issues you have. Since human induced pluripotent stem cells have self-renewal ability while maintaining undifferentiated and normal karyotypes, human induced pluripotent stem cells are considered to be suitable as cell sources for mass production of cell therapy products.
- chondrocytes from human induced pluripotent stem cells have been developed.
- a technique for increasing the differentiation efficiency into chondrocytes including a process of inducing mesenchymal cells by attaching and culturing human induced pluripotent stem cells, has been developed.
- the period of adhesion and suspension culture by applying chondrogenic factor to mesenchymal cells is at least 39 days, and in order to obtain fully differentiated chondrocytes, additional culture period of 28 days or more is required.
- a long time is required to prepare chondrocytes from pluripotent stem cells.
- the present inventors formed an embryoid body (EB) from human induced pluripotent stem cells, and induced differentiation into chondrocytes after inducing outgrowth cells (OG) similar to mesenchymal cells.
- EB embryoid body
- OG outgrowth cells
- the period required to obtain fully differentiated chondrocytes by culturing the progenitor cells in chondrogenic differentiation medium is 30 days, which is much shorter than the prior art.
- the universal differentiation induction technology using human induced pluripotent stem cells uses a differentiation induction method via embryonic body production.
- the step of spontaneous aggregation of cells into spherical shapes called embryoid bodies should be selected, and embryoid bodies are line-specific. It is a common and important mediator for inducing differentiation.
- Pellet culture is a method of centrifuging a relatively small number of cells to form cell aggregates to create an ultra-high density culture system of cells artificially from the beginning of the three-dimensional culture.
- the pellet formation process is simple, easily reproducible, and cells with cartilage forming capacity synthesize and secrete the cartilaginous extracellular matrix under this system to form cartilaginous tissue.
- a technique for forming embryos from human induced pluripotent stem cells, pelleting them to differentiate into chondrocytes has been developed, but in the above technique, loosening of chondrocyte pellets occurs, and in the step of pellet culture to differentiate chondrocytes ( Alginate gel was used as scaffold.
- the present inventors have cultured single cells constituting the embryoid body by pelleting the embryos and embryos. The number of chondrocyte pellets formed when the somatic progenitor cells were cultured in pellet form was compared.
- a technique has been developed that forms an embryonic-derived outgrowth cell from human induced pluripotent stem cells, and differentiates it into chondrocytes and injects it into arthritis rat models to confirm the therapeutic effect.
- the rate of differentiation of chondrocytes in the case of differentiation into chondrocytes by monolayer culture of protuberant cells was compared.
- COL2A1 collagen type II gene
- COL2A1 collagen type II gene
- the monolayer culture step is an important step in the efficiency of differentiation into chondrocytes, type II collagen was not detected in the chondrocytes obtained through the above technique, and the expression of the aggrecan protein was weak. It is disclosed that a not fully mature chondrocytes can be obtained.
- the plant Since the shape and depth of cartilage damage due to arthritis are not constant, if the artificial cartilage of the laboratory-made three-dimensional structure is larger than the damaged area, the plant should be trimmed to the shape of the damaged area. In this case, it should be transplanted by mosaic filling according to the shape of damage.
- histological cartilage products are implanted in this manner but fail to match the thickness of the damage. If the articular cartilage excels or sinks above the surrounding cartilage, it is additionally added to the implant or surrounding normal cartilage due to abnormal weight load. Will cause damage.
- chondrocytes when the chondrocytes are cultured into pellets and prepared in an injectable form, administration of a plurality of chondrocyte pellets to the damaged areas may be applicable regardless of the shape and thickness of the cartilage damaged areas.
- the injectable form because of the injectable form, no incision of the cartilage injury site is required. Since no surgery is required, no recovery period is needed, and a simple procedure can alleviate the pain of the patient and can provide a continuous and effective treatment effect after the procedure.
- the present inventors prepared chondrocyte pellets in the form of injectables.
- pellets of chondrocytes of uniform size smaller than the internal diameter of a clinically available syringe needle are required.
- the size of the injection needle that can be used for pellet administration of chondrocytes is 10 to 33 gauge, more preferably 15 to 25 gauge, and most preferably 17 to 20 gauge.
- the needle size used in human clinical practice is 18 gauge, the inner diameter is 573 ⁇ m. Therefore, in order to sufficiently contain chondrocytes and easily escape through the injection needle, chondrocyte pellets of 500 ⁇ m or less are required.
- the pellet of 200 embryonic-derived progenitor cells obtained from human induced pluripotent stem cells has a diameter of 152 ⁇ m, and the diameter of 500 pellets is 182 ⁇ m, which is 1000
- the diameter of the pellet of 226 micrometers and 2000 sheets is 278 micrometers, and the diameter of the pellet which consists of 3000 sheets is 334 micrometers, and the diameter of the pellet of 5000 sheets is 462 micrometers.
- the chondrocyte pellets of the present invention can be applied as a composition for treating arthritis by using a syringe.
- the chondrocyte pellet of the present invention may contain 200 to 5000 protuberant cells.
- the present inventors measured the cartilage regeneration effect of pellets containing differentiated chondrocytes in progenitor cells induced by adherent culture of embryonic bodies obtained from human induced pluripotent stem cells.
- pellets of chondrocytes consisting of 2000 dendritic cells were found to repair damaged cartilage similarly to normal tissue.
- the chondrocyte regeneration effect of the chondrocyte pellets according to the present invention was excellent (FIGS. 11 and 12), and completed the present invention.
- the present invention comprises the steps of (a) culturing a human induced pluripotent stem cell to form and obtain an embryoid body; (b) inducing and isolating the obtained embryonic body of step (a) into outgrowth cells; And (c) culturing the isolated dendritic cells of step (b) in the form of pellets; It relates to a method for producing chondrocyte pellets comprising a.
- human induced pluripotent stem cell refers to an undifferentiated stem cell having a differentiation capacity similar to that of an embryonic stem cell using a reverse differentiation technique to human somatic cells. Made in a way to establish, means a stem cell with a differentiation capacity similar to embryonic stem cells.
- Representative methods of reverse differentiation techniques include fusion with ES cells, somatic cell nuclear transfer, and reprogramming by gene factor.
- embryoid body refers to a globular stem cell-derived cell mass generated in a suspended culture state, and potentially has the ability to differentiate into endoderm, mesoderm, ectoderm. It is used as a precursor in most differentiation induction process to secure tissue-specific differentiated cells.
- OG growth cell
- pellet refers to an embryonic-derived progenitor cell mass formed by centrifugation of cells to form cell aggregation and three-dimensional culture thereof.
- carrier in the present invention includes, but is not limited to, hyaline cartilage, fibrotic cartilage or elastic cartilage.
- Cartilage sites such as articular cartilage, ear cartilage, non-cartilage, elbow cartilage, meniscus, knee cartilage, costal cartilage, ankle cartilage, tracheal cartilage, laryngeal cartilage and spinal cartilage.
- the human induced pluripotent stem cells of the present invention may be derived from various cells, but preferably may be derived from cord blood mononuclear cells (CBMC).
- CBMC cord blood mononuclear cells
- the chondrocyte pellet generated from umbilical cord blood mononuclear cell-derived human induced pluripotent stem cells and the peripheral blood mononuclear cell (PBMC) -derived chondrocyte pellets produced from human pluripotent stem cells Comparison of the expression levels of the aggrecan gene (ACAN) and the collagen type II gene (COL2A1) revealed that the expression level of chondrocyte pellets produced from human induced pluripotent stem cells derived from cord blood mononuclear cells It was confirmed that it was very high. It can be seen that the chondrocyte differentiation rate increases when the chondrocyte pellet is prepared from CBMC-hiPSC (FIG. 8).
- the COL2A1, ACAN and COMP (cartilage) genes encoding the major proteins constituting the extracellular matrix (ECM) of cartilage as the progenitor cells are cultured in cartilage differentiation medium in pellet form. It was confirmed that the expression of oligomeric matrix protein gene) and SOX9 (sex-determining region Ybox 9 gene), which is a gene encoding a transcription factor that regulates its expression, are increased (FIG. 4).
- Agrican ACAN is a proteoglycan that aggregates in the extracellular matrix of cartilage and induces interaction with hyaluronan. Type II collagen is the basic protein for vitreous cartilage and features healthy cartilage.
- the expression level of COL1A1 (collagen type I gene) and hypertrophic marker COL10A1, which are representative genes of fibrotic cartilage, are low in COL1A1 in chondrocyte pellets. It was confirmed that the expression ratio of COL2A1 was increased (FIG. 7). Fibrous or hypertrophic cartilage is a more mature type that tends to differentiate into bone. It is understood that the pellet of the chondrocytes according to the present invention has a high expression of the gene representing the vitreous cartilage for the gene representing the fibrous cartilage, and the chondrocytes according to the present invention have the main characteristics of the vitreous cartilage.
- the culturing of step (a) may be of an attachment culture. Cultivation in an ex vivo environment requires a surface such as a culture plate coated with extracellular matrix components to increase cell adhesion.
- step (b) may be made in a gelatin coating plate.
- the step (c) may be characterized in that the cultured in the form of pellets by centrifuging the separated dendritic cells, it can be easily cultured in the form of pellets by agglomerating the projections through the centrifugation step Make sure
- the additional centrifugation may be performed at 1100 to 2500 rpm, more preferably 1300 to 2300 rpm, and most preferably at 1600 to 2000 rpm.
- step (c) 95% to 100% of the separated progenitor cells may be formed of chondrocyte pellets, more preferably 96% to 100% may be formed of chondrocyte pellets, Most preferably, 97% to 100% may be formed into chondrocyte pellets.
- the size of the prominent cells contained in the chondrocyte pellets may be uniform and homogeneous with little difference in the degree of differentiation between the prominent cells.
- the step of forming an embryo of step (a) may be characterized in that the culture in a medium containing fibroblast growth factor 2 (FGF-2).
- FGF-2 fibroblast growth factor 2
- Fibroblast growth factor is a growth factor that stimulates fibroblasts to induce strong proliferation, and there are 23 types.
- FGF-2 is widely distributed in the pituitary gland, brain, kidney, adrenal gland, placenta, bone matrix, cartilage, endothelial cells and fibroblasts, and exists in various isotypes. In vertebrates, five isotypes are found with molecular weights of 18, 22, 225, 24 and 34 kDa. Only the 18 kDa form is detected outside the cell, while other isotypes are confined inside the cell, more specifically in the nucleus.
- FGF-2 is a peptide that plays a very important role at the physiological level and is involved in fetal development, angiogenesis, neuronal differentiation and tissue repair.
- Embryonic body of step (a) in the present invention is a human induced pluripotent stem cells in the medium containing fibroblast growth factor 2 (FGF-2) or human transforming growth factor ⁇ 1 (TGF- ⁇ 1) 35 °C to 39 °C It can be formed by incubating for 4 to 8 days, preferably incubated for 6 days at 37 °C in a medium containing both components.
- FGF-2 fibroblast growth factor 2
- TGF- ⁇ 1 human transforming growth factor ⁇ 1
- the medium of step (a) is 543 ⁇ l / ml sodium bicarbonate (NaHCO 3), 64 ⁇ g / ml L-ascorbic acid 2-phosphate magnesium (L-Ascorbic acid 2-phosphate magnesium) , 14 ng / ml sodium selenite, 107 ⁇ g / ml transferrin, 20 ⁇ g / ml insulin, 100 ng / ml fibroblast growth factor-2 (FGF-2) and 2 Glutamine and HEPES (4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid) were added to DMEM / F12 medium containing ng / ml human transforming growth factor ⁇ 1 (TGF- ⁇ 1).
- the cell aggregation is not made when the embryonic body is made of pellets from the embryonic body single cell (EB Single cell)
- EB Single cell embryonic body single cell
- step (b) of the present invention the embryos are cultured in a medium containing 20% fetal bovine serum (FBS) or 10% penicillin / streptomycin for 6 to 8 days. , Preferably incubated for 7 days in a medium containing both components.
- FBS fetal bovine serum
- the culturing of step (c) may be characterized in that it is made in a serum-free medium containing BMP (human bone morphogenetic protein) and TGF- ⁇ (transforming growth factor-beta).
- BMP human bone morphogenetic protein
- TGF- ⁇ transforming growth factor-beta
- BMP Human bone morphogenetic protein
- TGF- ⁇ transforming growth factor ⁇
- the BMP of the present invention is BMP-1 to BMP-9, preferably BMP-2.
- TGF- ⁇ (transforming growth factor-beta) is a growth factor that promotes proliferation by transforming normal cells and regulates cell growth, differentiation and extracellular matrix protein synthesis.
- TGF- ⁇ of the present invention may be TGF- ⁇ 1 to TGF- ⁇ 3, preferably TGF- ⁇ 3.
- the progenitor cells may contain human bone morphogenetic protein 2 (BMP-2), human transforming growth factor ⁇ 3 (TGF- ⁇ 3), or knockout serum replacement. Incubate for 25 days to 35 days in the chondrocyte differentiation medium containing, preferably for 30 days in a medium containing all three components.
- BMP-2 bone morphogenetic protein 2
- TGF- ⁇ 3 human transforming growth factor ⁇ 3
- the cartilage differentiation medium is 20% knockout serum replacement, 1 ⁇ non-essential amino acids, 1 mM L-glutamine ), 1% sodium pyruvate, 1% ITS + Premix, 10-7 M dexamethasone, 50 ⁇ m ascorbic acid and 40 ⁇ g / mL L-proline 50 ng / mL human bone morphogenetic protein 2 (BMP-2) and 10 ng / mL human transforming growth factor ⁇ 3 (TGF- ⁇ 3) were added to the DMEM medium. Replace daily for 30 days.
- the diameter of the pellet of the chondrocytes is preferably 100 ⁇ 500 ⁇ m, more preferably 160 ⁇ 400 ⁇ m, most preferably 200 ⁇ 300 ⁇ m.
- the chondrocyte pellet of the present invention may contain 200 to 5000 protuberant cells, more preferably 800 to 3500 protuberant cells, and most preferably 1500 to 2500 protuberant cells. can do.
- the expression level of COL2A1 of chondrocytes produced by culturing embryonic-derived progenitor cells formed from human induced pluripotent stem cells in a monolayer culture or pellet form in chondrogenic differentiation medium was compared. As a result, it was confirmed that the expression of COL2A1 was higher when cultured in pellet form (Fig. 9). Through this, it can be seen that the differentiation rate into chondrocytes increases when pelleting the protuberant cells.
- the present invention can also provide a pharmaceutical composition for treating arthritis, including chondrocyte pellets prepared by the above method.
- arthritis refers to chronic inflammation caused by defects, damages, or defects of cartilage in which cartilage, cartilage tissue, and / or joint tissues (such as synovial membrane, arthritis, subchondral bone, etc.) are injured by mechanical stimulation or an inflammatory response do.
- Such arthritis includes osteoarthritis, a degenerative joint disease caused by aging, rheumatoid arthritis and psoriatic arthritis, an autoimmune disease, and septic arthritis caused by an infection. arthritis), exfoliative osteochondritis, joint ligament injury, meniscus damage, but are not limited thereto.
- treatment means (a) inhibiting the development of a disease, disorder or condition; (b) alleviation of a disease, illness or condition; Or (c) eliminating a disease, condition or symptom.
- the pharmaceutical composition of the present invention is a composition that exhibits cartilage regeneration ability when transplanted to a cartilage defect or damaged part, thereby improving and treating cartilage damage, and may itself be a pharmaceutical composition for treating arthritis, or It may also be administered with other pharmacological ingredients to apply as a therapeutic aid for arthritis.
- treatment or “therapeutic agent” in this specification includes the meaning of “therapeutic assistant” or “therapeutic assistant”.
- the pharmaceutical composition for treating arthritis of the present invention includes a pharmaceutically acceptable carrier.
- Pharmaceutically acceptable carriers included in the pharmaceutical composition of the present invention are commonly used in the preparation, lactose, dextrose, sucrose, sorbitol, mannitol ), Starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, Water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, saline, PBS (phosphate) buffered saline) or a medium, and the like, but is not limited to such lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, etc. And the like additionally.
- the pharmaceutical composition for treating arthritis of the present invention is a unit by formulating with a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by those skilled in the art. It may be prepared in a dosage form or incorporated into a large volume container.
- Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories.
- a suppository base witepsol, macrogol, tween 61, cacao butter, laurinum, glycerogelatin and the like can be used.
- the pharmaceutical composition may be characterized as being in injectable form.
- the injectable form refers to a form in which the chondrocyte pellets of the present invention can be administered to a site requiring cartilage regeneration without using a surgical operation, and more specifically, its size can pass through the injection needle. Means small enough to be.
- the pharmaceutical composition for treating arthritis may be characterized in that it further comprises hyaluronic acid (hyaluronic acid).
- the present invention can also provide a method for preventing or treating arthritis, comprising administering the chondrocyte pellets prepared by the method to a patient with arthritis.
- the chondrocyte pellets may be administered to a patient in a therapeutically effective amount.
- therapeutically effective amount means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and optimal administration. The amount varies depending on factors such as formulation method, mode of administration, patient's age, weight, sex, morbidity, food, time of administration, route of administration, rate of excretion, and reaction sensitivity. Those skilled in the art can decide.
- the patient is preferably a mammal, including a human, and may include any group of potential arthritis patients suffering from, suffering from, or potentially suffering from arthritis.
- the pellet of chondrocytes derived from human induced pluripotent stem cells of the present invention has a remarkably high differentiation rate into chondrocytes, uniform size and homogeneous degree,
- the pharmaceutical composition for treating arthritis is excellent in cartilage regeneration when administered to the site of cartilage damage, and it is an injectable form that does not require surgery. Therefore, the simple procedure not only relieves pain of the patient but also provides continuous arthritis treatment after the procedure. can do.
- Figure 1 is a schematic diagram showing a process for producing a 3D chondrocyte cluster (cluster) of the size that can pass through a syringe (syringe) using the induced pluripotent stem cells of the present invention.
- FIG. 2 shows images of CBMC-derived hiPSCs in order from left to right, images of formed embryoid bodies, images of outgrowth cells derived from embryoid bodies attached to gelatin coated culture plates, and prepared cartilage. An image of the cell pellet is shown.
- FIG. 3 shows pellets made of 1000, 2000 and 3000 dendritic cells generated in microwells and chondrocyte pellets cultured in chondrogenic differentiation medium and images stained with toluidine blue.
- Figure 4 shows the genetic properties of chondrocyte pellets generated from CBMC-hiPSC according to the present invention, COL2A1 in chondrocyte pellets at 10, 20 and 30 days after incubation in chondrogenic differentiation medium
- a diagram showing the results of measuring expression levels of (collagen type II gene), aggrecan gene (ACAN), cartilage oligomeric matrix protein gene (COM), and sex-determining region Y-box 9 gene (SOX9) (*, + p ⁇ 005, **, ++ p ⁇ 001, ***, +++ p ⁇ 0001)
- Figure 5 shows the histological analysis of chondrocyte pellets generated from CBMC-hiPSC according to the present invention, safranin O (safranin O), eggs at 10, 20 and 30 days incubation in cartilage differentiation medium Pellets images stained with alkian blue and toluidine blue are shown.
- Figure 6 shows the results of immunohistochemical analysis of chondrocyte pellets generated from CBMC-hiPSC according to the present invention
- a is collagen type II and Agri at 10, 20 and 30 days of culture in cartilage differentiation medium
- An image of chondrocyte pellets stained with an antibody against aggrecan is shown
- b shows an image of chondrocyte pellets stained with an antibody against type I collagen.
- Figure 7 shows the additional analysis of the genetic markers of chondrocyte pellets generated from CBMC-hiPSC or mesenchymal stem cells (MSC) according to the present invention
- a is cultured in hiPSC and cartilage differentiation medium
- COL1A1 collagen type I gene
- hypertrophic marker COL10A1 hypertrophic marker
- B represents the result of measuring the expression ratio of COL2A1 and COL1A1 in the chondrocyte pellets at 10, 20 and 30 days of incubation in cartilage differentiation medium
- c represents MSC or at 30 days of incubation in cartilage differentiation medium.
- Relative expression levels of ACAN, COMP, COL2A1, SOX9, COL1A1 and COL10A1 were measured and measured in chondrocyte pellets generated from CPSMC-derived hiPSC (*, + p ⁇ 005, **, ++ p ⁇ 001, ***, +++ p ⁇ 0001).
- cartilage development markers in cartilage pellets prepared from hiPSCs of various cell lines (DF is derived from skin fibroblasts, PBMC is derived from peripheral blood mononuclear cells, FLS is derived from osteoarthritis fibroblast-like cells, and CBMC is derived from umbilical cord blood monocytes).
- DF is derived from skin fibroblasts
- PBMC is derived from peripheral blood mononuclear cells
- FLS is derived from osteoarthritis fibroblast-like cells
- CBMC is derived from umbilical cord blood monocytes.
- Early Chondrogenic Marker Cartilage Matrix Marker and Hypertrophy and Fibrotic Marker.
- Initial cartilage development markers were identified as SOX9, SOX5 and SOX6, cartilage substrate markers as ACAN, COL2A1 and PRG4, and hypertrophic or fibrous cartilage markers as COL1A1, COL10A1 and RUNX2.
- Figure 9 shows the number of chondrocytes (Macropellet) produced by culturing in the form of chondrocytes and pellets formed by culturing a monolayer in the cartilage differentiation medium (EB-derived outgrowth cells) in accordance with the present invention
- Expression results of SOX9, ACAN, COL2A1, COL1A1 and COL10A1 for each (1 ⁇ 10 ⁇ 5, 3 ⁇ 10 ⁇ 5 and 5 ⁇ 10 ⁇ 5) were measured and compared.
- Figure 10 shows the result of comparing the cartilage pellet formation ability of the embryonic body single cell (EB Single cell) and embryonic body derived progenitor cells (EB-derived outgrowth cells) according to the present invention.
- Images of chondrocyte pellets and chondrocyte pellets formed when the single cells constituting the embryoid body by disassembling the embryos were cultured in the form of pellets in cartilage differentiation medium and when the embryonic-derived progenitor cells were cultured in the form of pellets Represents the ratio of.
- FIG. 11 shows an anterior cruciate ligament transection (ACLT) rabbit model as a osteoarthritis model, and administration of chondrocyte pellets (MIU) and / or hyaluronic acid (HA) into the rabbit joint cavity, respectively, by injection method. Results are shown.
- ACLT anterior cruciate ligament transection
- Figure 12 shows the cartilage regeneration effect of chondrocyte pellets generated from CBMC-hiPSC according to the present invention, MIU (Minimal injectable unit) and / or hyaluronic acid, which is a chondrocyte pellet containing 2000 dendritic cells in the cartilage damage model 4 weeks after the injection of (hyaluronic acid, HA), the state of cartilage was evaluated by the ICRS score method (Destruction score) and the evaluation process is shown.
- MIU Minimal injectable unit
- hyaluronic acid a chondrocyte pellet containing 2000 dendritic cells in the cartilage damage model 4 weeks after the injection of (hyaluronic acid, HA)
- hiPSCs Human induced pluripotent stem cells
- CBMCs cord blood mononuclear cells
- PBS phosphate buffered saline
- STMCELL StemSpan medium
- the obtained hiPSCs were cultured in a vitronectin-coated container (Thermo Fisher Scientific, Waltham, Mass., USA), and the culture medium was incubated with TeSR-E8 medium (STEMCELL Technologies) once every day for replacement. .
- HiPSCs derived from CBMC prepared in ⁇ Example 1> were resuspended in Aggrewell medium (STEMCELL) and inoculated into 100-mm culture plates at a concentration of 2 ⁇ 10 6 cells / well. Inoculated hiPSCs were incubated for 24 hours in a 37 ° C.
- TeSR-E8 medium (543 ⁇ l / ml sodium bicarbonate (NaHCO 3 ), 64 ⁇ g / ml L-ascorbic acid diphosphate magnesium (L- Ascorbic acid 2-phosphate magnesium), 14 ng / ml sodium selenite, 10 7 ⁇ g / ml transferrin, 20 ⁇ g / ml insulin, 100 ng / ml fibroblast growth factor-2 (FGF) -2) and glutamine and HEPES (4- (2-hydroxyethyl) -1 in DMEM / F12 medium containing 2 ng / ml human transforming growth factor beta 1 (TGF- ⁇ 1). -piperazineethanesulfonic acid is added), and then attached and cultured for 6 more days to form and obtain an embryoid body.
- TeSR-E8 medium 543 ⁇ l / ml sodium bicarbonate (NaHCO 3 ), 64 ⁇ g / ml L-ascorbic acid di
- Embryoid bodies formed and obtained in Example 2 were suspended in DMEM medium (Thermo Fisher Scientific) containing 20% Fetal Bovine Serum and 10% penicillin / streptomycin. Incubated with 5% CO 2 at 37 ° C. on gelatin-coated plates for 7 days to induce the formation of outgrowth cells (OG). To this end, the culture plate was coated with a bottom surface for 30 minutes with 0.1% gelatin, and dried completely.
- DMEM medium Thermo Fisher Scientific
- OG outgrowth cells
- the formed OG cells were separated from gelatin coated plates, and passed through a 40 ⁇ m cell strainer (thermo Fisher Scientific) to remove EB clumps and isolate and obtain only single cell OG cells.
- the microwells were counted as 1 ⁇ 10 3 , 2 ⁇ 10 3, or 3 ⁇ 10 3 cells per pellet by counting outgrowth cells (OGs) isolated and obtained in ⁇ Example 3>.
- Chondrocytes were prepared by centrifuging the cells at 1800 rpm for 5 minutes to facilitate the aggregation of cells in pellet form to prepare cartilage pellets.
- the diameter of the pellet consisting of 200 OG cells was 152 ⁇ m
- the diameter of the pellet consisting of 500 was 182 ⁇ m
- the diameter of the pellet consisting of 1000 was 226 ⁇ m
- the diameter of the pellet consisting of 2000 was 278. It was confirmed that the diameter of the pellet consisting of 3,000 ⁇ m and 3,000 was 462 ⁇ m.
- the cartilage differentiation medium was DMEM added with 50 ng / ml human bone morphogenetic protein 2 (BMP2) and 10 ng / ml human transforming growth factor beta 3 (TGF- ⁇ 3).
- cartilage which is a gene encoding a major protein constituting the extracellular matrix of cartilage for 10 days, 20 days and 30 days
- the expression levels of collagen type II gene (COL2A1), aggrecan gene (ACAN), cartilage oligomeric matrix protein gene (COM) and sex-determining region Y-box 9 gene (SOX9) were analyzed in the cell pellet.
- chondrocyte pellets obtained in Example 4 For histological analysis of the chondrocyte pellets obtained in Example 4, 4% paraformaldehyde was used and fixed at room temperature for 2 hours. One layer of gauze was placed on a cassette and the chondrocyte pellets were transferred to gauze. Dehydration was performed sequentially with ethanol solution. The dehydration solution was removed with a graded ethanol and zylene mixture (Duksan Pure Chemicals, Ansan, South Korea) and the paraffin was infiltrated overnight. The following day, chondrocyte pellets were fixed in paraffin blocks and sections of 7 ⁇ m were obtained using a microtome. The slides were dried at 60 ° C. for 10 minutes. Sections were deparaffinized with two cycles of xylene. The sections were rehydrated with a series of sequentially decreasing ethanol and the sections were rinsed with running tap water for 5 minutes.
- chondrocyte pellets prepared in the same manner as in Example 2 to Example 4 from bone marrow-derived mesenchymal stem cells (BMSCs) were used.
- ECM accumulation was confirmed in the inner portion of the chondrocyte pellet even in the early stage of differentiation (day 10).
- Lacunae is one of the main features of articular cartilage.
- a void such as an empty bone cavity, appeared after 10 days.
- the size decreased with differentiation into chondrocytes.
- the ECM accumulates in the empty gap, resembling the osseous cavity in the articular cartilage.
- Example 4 For immunohistochemical analysis of the chondrocyte pellets obtained in Example 4, the sections obtained in the same manner as in Example 6 were dried at 60 ° C. for 2 hours, and desorbed in two cycles of xylene. Paraffinization. The sections were rehydrated with a series of sequentially decreasing ethanol and the sections were rinsed with running tap water for 5 minutes.
- Antigen unmasking was induced by incubation in boiling citrate buffer (Sigma-Aldrich) for 15 minutes followed by cooling for 20 minutes. The cooled sections were then washed twice with deionized water (DW). The activity of endogenous peroxidase was blocked by incubating the sections for 10 min in 3% hydrogen peroxide (Sigma-Aldrich) diluted with DW. Sections were washed twice with DW and then further washed with tris-buffered saline (TBS) containing 0.1% Tween-20. Sections were blocked for 20 minutes at room temperature with TBS containing 1% bovine serum albumin (Sigma-Aldrich, St Louis, MO, USA).
- TBS tris-buffered saline
- Primary antibodies diluted with blocking solution were added to the sections and incubated overnight at 4 ° C. Primary antibodies were diluted in the following proportions; Collagen type I (1/100; Abcam), type II collagen (collagen type II, 1/100; Abcam) and agrican (1/100; GeneTex, Irvine, CA, USA). Negative control slides were treated with the same amount of blocking solution without antibody. The following day, sections were washed three times for 3 minutes each in TBST and secondary antibody (1/200; Vector Laboratories) was applied for 40 minutes at room temperature. Sections were washed with TBST and incubated for 30 minutes in ABC reagent (Vector Laboratories).
- Agrican and type II collagen proteins are known as the major constituents of ECM.
- Type II collagen is a major collagen type that shows hyaline cartilage.
- CBMC-hiPSC Chondrocytes differentiated from CBMC-hiPSC were able to produce ECM component proteins and had higher expression of type II collagen than type I collagen. In conclusion, we found that CBMC-hiPSC can produce chondrocytes similar to those of vitreous cartilage.
- Collagen is the most abundant protein that makes up ECM. There are many types of collagen, but I, II, and X type collagen is mainly associated with cartilage. In Example 7, expression of collagen type I and type II collagen was confirmed by immunohistochemical analysis (FIGS. 6A and 6B). Based on this, the expression of COL10A1, a protein known as the dominant type expressed in COL1A1 and hypertrophic cartilage, was analyzed. The expression of COL1A1 decreased with each observation time point, and the expression of COL10A1 did not change during the differentiation into chondrocytes (FIG. 7A).
- the expression ratio of COL2A1 to COL1A1 was measured, and it was confirmed that the expression ratio of COL2A1 to COL1A1 was increased (FIG. 7B), which indicates that the expression of the glass cartilage gene for the fibrous cartilage gene is high.
- Chondrogenic pellets generated from CBMC-hiPSCs were compared with MSC control pellets generated from mesenchymal stem cells using real-time PCR (FIG. 7C).
- the expressions of COL2A1 and SOX9 were significantly higher in chondrogenic pellets than in MSC control pellets.
- the expression of the fibrous marker COL1A1 and the hypertrophic marker COL10A1 were significantly higher in the MSC Control Pellet. This confirmed that CBMC-hiPSC is more suitable for the generation of chondrocytes for cartilage regeneration of glassy than mesenchymal stem cells.
- DF dermal fibroblasts
- PBMC peripheral blood mononuclear cells
- osteoarthritis fibroblasts similar to those of ⁇ Example 1> to ⁇ Example 4>
- Chondrocyte pellets from hiPSCs derived from cells (FLS) or cord blood mononuclear cells (CBMCs) were prepared in chondrocyte differentiation medium (Example 4) for 21 days.
- cartilage matrix markers and hypertrophy and fibrotic markers in cartilage pellets D21 Pellet
- SOX9, SOX5 and SOX6 as early cartilage markers, ACAN, COL2A1 and PRG4 as cartilage substrate markers, and COL1A1, COL10A1 and RUNX2 as hypertrophic or fibrous cartilage markers were identified.
- CBMC-hiPSC had the highest expression levels of early cartilage development markers and cartilage substrate markers SOX9, SOX5, SOX6, ACAN and COL2A1, and hypertrophic or fibrous cartilage markers COL1A1,
- the expression levels of COL10A1 and RUNX2 were lower than those of the other three hiPSC-derived chondrocyte pellets.
- the single-celled progenitor cells 1 ⁇ were obtained in Example 3. 10 5 , 3 ⁇ 10 5 or 5 ⁇ 10 5 were cultured in monolayer culture or pellet form for 21 days in the cartilage differentiation medium of ⁇ Example 4>. The expression levels of SOX9, ACAN, COL2A1, COL1A1 and COL10A1 were compared in chondrocytes obtained through monolayer culture or pellet form culture, respectively.
- the expression levels of SOX9, ACAN and COL2A1 were high when 1 ⁇ 10 5 , 3 ⁇ 10 5, or 5 ⁇ 10 5 protuberant cells were cultured in pellet form.
- the embryonic-derived progenitor cells were cultured in pellet form, the chondrocyte differentiation ability was high.
- the formation rate of chondrocyte pellets was about 11%, and the embryonic progenitor cells were cultured in pellets. In one case, the rate of chondrocyte formation was about 98%. Through this, it was confirmed that it is efficient to prepare chondrocyte pellets by inducing dendritic cells from the embryo.
- the surgical induction model is a method for inducing osteoarthritis by inducing joint damage through surgical treatment of collateral or cruciate ligaments.
- Meniscus resection and anterior cruciate ligament transection (ACLT) are commonly used.
- the present inventors induced an injury of cartilage similar to osteoarthritis that occurs naturally in rabbits through anterior cruciate ligament dissection.
- the intraarticular injection method used MIU (minimal injectable unit), hyaluronic acid (HA), or MIU (HA), or chondrocyte pellets containing 2000 dendritic cells simultaneously (HA) + MIU) injection.
- Sham control is a rabbit that was resealed without damage to the cartilage area after laparotomy.
- Thirty days after the administration of MIU and / or HA staining with safranin O and toluidine blue confirmed the cartilage regeneration effect.
- the chondrocyte pellets provided by the present invention can be administered to a patient in need of cartilage regeneration without surgical surgery through the injection of homogeneous and small size, and have high probability of differentiation into chondrocytes, especially vitreous chondrocytes. Since the effect is excellent, the industrial applicability is large.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Rheumatology (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Cell Biology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- General Engineering & Computer Science (AREA)
- Virology (AREA)
- Microbiology (AREA)
- Developmental Biology & Embryology (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physical Education & Sports Medicine (AREA)
- Dermatology (AREA)
- Molecular Biology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Materials For Medical Uses (AREA)
Abstract
본 출원은 2018년 06월 25일 출원된 대한민국 특허출원 제10-2018-0072875호를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다. 본 발명은 (a) 인간 유도 만능 줄기세포(human induced pluripotent stem cell)를 배양하여 배아체(embryoid body)를 형성 및 수득하는 단계; (b) 상기 단계 (a)의 수득된 배아체를 돌기세포(outgrowth cell)로 유도 및 분리하는 단계; 및 (c) 상기 단계 (b)의 분리된 돌기세포를 펠렛(pellet) 형태로 배양하는 단계; 를 포함하는 연골세포 펠렛 제조 방법에 대한 것이다. 본 발명은 또한, 상기 제조 방법으로 제조된 연골세포 펠렛을 포함하는 관절염 치료에 사용하기 위한 약학적 조성물; 내지 상기 방법에 의해 제조된 연골세포 펠렛을 관절염 환자에 투여하는 단계를 포함하는 관절염 예방 또는 치료방법에 대한 것이다. 본 발명의 연골세포의 펠렛은 연골세포로의 분화율이 현저하게 높으며, 크기가 균일하고 분화 정도가 균질하며, 이를 포함하는 관절염 치료용 약학적 조성물은 이를 연골 손상 부위에 투여한 경우에 연골 재생 효과가 뛰어나고, 수술이 요구되지 않는 주사가능 형태이므로 간단한 시술로 환자의 통증을 완화할 뿐만 아니라 시술 후에도 지속적인 관절염 치료 효과를 제공할 수 있다.
Description
본 출원은 2018년 06월 25일 출원된 대한민국 특허출원 제10-2018-0072875호를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다.
본 발명은 (a) 인간 유도 만능 줄기세포(human induced pluripotent stem cell)를 배양하여 배아체(embryoid body)를 형성 및 수득하는 단계; (b) 상기 단계 (a)의 수득된 배아체를 돌기세포(outgrowth cell)로 유도 및 분리하는 단계; 및 (c) 상기 단계 (b)의 분리된 돌기세포를 펠렛(pellet) 형태로 배양하는 단계; 를 포함하는 연골세포 펠렛 제조 방법에 대한 것이다.
본 발명은 또한, 상기 제조 방법으로 제조된 연골세포 펠렛을 포함하는 관절염 치료에 사용하기 위한 약학적 조성물에 대한 것이다.
본 발명은 또한, 상기 방법에 의해 제조된 연골세포 펠렛을 관절염 환자에 투여하는 단계를 포함하는 관절염 예방 또는 치료방법에 대한 것이다.
연골(cartilage)은 연골세포와 연골기질로 구성된 뼈 조직이며, 대개 관절의 일부를 이루는 조직을 가리킨다. 연골은 탄력성이 높고 마찰 계수는 매우 낮아, 골단의 마찰을 방지하는 완충 역할을 하여, 마찰이 거의 없는 상태에서 관절이 움직일 수 있도록 도움을 주는 역할을 한다. 이외에도, 호흡기의 기관이나 귓바퀴와 같이 탄력을 요하거나, 늑연골, 치골결합 연골과 같이 압력에 대한 저항력을 요하는 부위를 구성하는 역할을 한다.
관절 연골(articular cartilage)은 탄력성 있는 백색조직으로써, 뼈의 끝부분을 감싸고 있으며 마찰로부터 뼈를 보호한다. 관절 연골은 다양한 종류의 콜라겐(collagen), 프로티오글라이칸(proteoglycan) 및 유연한 섬유로 이루어진 세포외 기질(extracellular matrix)과 연골 기질 사이에 분포하도록 특수하게 분화된 세포인 연골세포(chondrocyte)로 구성된다.
연골세포는 세포외기질의 조성물을 생산하여 관절 연골을 만들고 유지하는 역할을 한다. 연골 모세포에서 세포 분열이 일어나지만 일단 성장이 멈추면 연골세포는 정상적인 환경에서 더 이상 분열하지 않는다. 또한 열공(lacuna)이라는 작은 공간에 갇혀있기 때문에 연골이 손상되고 나면 연골세포의 이동 및 회복이 어렵게 된다. 게다가 연골은 무혈관 조직이기 때문에 영양공급을 위한 혈관이 존재하지 않는다. 연골의 무혈관은 줄기세포의 이동을 방해하며, 조직의 재생력을 감소시킨다. 이러한 특징들은 한번 손상된 연골들이 자연스럽게 치유되는 것은 거의 불가능함을 의미한다. 따라서 체외(in vitro)에서 세포외기질을 생산할 수 있는 기능적인 연골 세포를 생산하거나, 이식을 위해 완전히 성장한 연골을 얻는 것이 중요하다.
손상된 연골조직을 치료하기 위해 약물치료제(진통제, 스테로이드제, 비스테로이드계 항염제 등), 연골보호제(히알루론산(hyaluronic acid), 글루코사민(glucosamine), 콘드로이틴(chondroitin) 등)를 이용하거나 수술적 처치(관절경수술, 경골 근위부 절골술, 관절부분 치환술, 슬관절 전치환술, 골수 자극술, 골-연골조직 이식술 등)를 이용할 수 있다.
그러나 약물치료제의 경우는 통증이나 염증반응 자체를 비특이적으로 완화시키는 효과만을 가지며, 연골보호제는 단지 연골세포에 영양을 공급해 주거나 충격을 완화시킴으로써 일시적으로 관절을 보호해 주는 역할을 할 뿐이다.
또한, 정형외과에서 다양한 임상학적 수술 방법이 시행되는데, 대표적인 방법으로는 골수 자극술(Bone marrow stimulation)과 골-연골조직 이식술(Osteochondral graft)이 있다. 골수 자극술은 손상된 연골하골(subchondral bone)을 노출시켜, 골수로부터 유도된 줄기세포를 포함하는 혈병(blood clot)으로 연골 손상을 메우는 방법으로 비교적 수술이 간편하다는 장점이 있지만 수술 후에 유리 연골(hyaline cartilage)이 아닌 섬유성 연골(fibrotic cartilage)로 재생이 된다는 단점이 있다. 골-연골조직 이식술은 환자 자신의 연골조직에서 체중을 덜 받는 부위의 골-연골 결합조직을 채취한 다음 이를 연골 손상 부위에 이식치료 하는 방법으로, 손상부위가 클 경우 사용할 수 없는 단점이 있다.
이러한 수술 치료 기술의 단점을 극복하기 위해 외부에서 치료세포를 공급하는 세포치료제가 많이 연구되고 있다. 가장 먼저 제품화된 기술은 자가 연골세포 이식술(Autologous Chondrocytes Implantation)로서 환자 자신의 연골조직에서 체중을 덜 받는 부위에서 건강한 연골을 조금 떼어내어 이로부터 연골세포를 분리하고 체외 배양한 후 손상 부위에 다시 주입하는 기법인데, 두 번의 수술로 인한 번거로움과 건강한 부위의 연골이 손상을 입는 단점이 있고 무엇보다 채취한 연골 세포의 수가 적어 일정 기간을 배양하여야 하고 배양 기간 중 연골세포의 표현형(phenotype)이 유지되지 못하는 탈분화(dedifferentiation) 현상이 일어나며, 이식 후 세포의 생존율 감소 및 주입된 연골세포가 비균질적이며 중력 때문에 특정부위에 집중되어 분포가 잘 되지 않는 단점이 있다.
세포치료제의 생체 내 분포 및 분화의 단점을 극복하고자 다양한 형태의 생체소재(biomaterials)를 지지체(scaffolds)로 이용하여 세포를 전달하는 기술이 사용되고 있으며, 나아가 체외에서 3차원 구조의 인공 연골조직(tissue engineered cartilage)을 제작하는 조직공학적 기술이 개발되고 있다.
조직공학적 연골 제조에서 지지체는 연골세포에 3차원 시스템을 제공하여 연골세포의 표현형을 유지하고 유리 연골성 세포외기질 생산을 촉진시킨다. 뿐만 아니라 세포를 연골 손상 부위로 전달하고, 이식 부위에 물리적 지지를 제공하여 부하되는 힘으로부터 세포를 보호한다. 이식부위에 세포 전달을 위해 현재 사용되는 지지체는 스폰지(sponge), 겔(gel), 섬유 및 미세구슬(microbead) 등 다양한 형태를 가지고 있으며, 주로 천연 또는 합성 생체소재를 이용하여 제조된다. 지지체를 이용하는 경우 이식술 자체에는 높은 효율을 보이고 이식 부위에 골고루 분포시킬 수 있는 장점이 있지만, 지지체 내에서 세포가 증식하거나 세포외기질이 분비되는 경우 이 지지체가 오히려 공간적 제한을 줄 수 있는 단점이 있다. 특히, 하이드로겔(hydrogel) 형태의 지지체는 산소와 영양분의 공급이 원활하지 못하여 세포의 생존율과 연골 분화가 떨어지는 단점이 있고, 막(membrane) 형태의 지지체는 3차원의 연골조직을 형성하지 못하며, 3차원 스폰지 또는 메쉬(mesh) 형태의 지지체를 사용하는 경우 제작된 인공 연골이 원래 조직(host tissue)과 결합력이 낮아 연골 재생이 잘 안 되는 단점이 있다. 또한 모든 지지체는 분해를 하게 되는데 분해의 속도가 빠른 천연 생체소재의 경우 분해와 함께 세포가 유실이 될 수 있는 가능성이 높으며, 임상에 적용하는 측면에서 보면 이종 및 동종유래 천연재료는 면역반응을 유발할 수 있고, 합성 재료의 경우 해로운 분해 산물이 생기기도 하기 때문에 안전성 측면에서 자유롭지 않다는 단점이 있다.
지지체를 사용하지 않고 3차원 구조의 인공 연골조직을 제작하는 방법에 대한 연구는 계속 이뤄져 왔는데, 이러한 방법은 세포와 세포의 세포외기질 합성 능력에만 의존하여 조직을 형성하기 때문에 이식이 필요한 손상크기에 맞는 조직을 만들기가 어려워 직접 임상에 적용하는데 있어 매우 제한적이다.
또한, 연골 손상의 모양과 깊이는 일정하지 않기 때문에 실험실에서 제조한 3차원 구조의 인공 연골이 손상 부위보다 클 경우 손상의 모양에 맞추어 이식물을 다듬어야 하고, 반대로 연골 이식물이 손상 부위보다 작을 경우에는 손상 모양에 맞추어 모자이크처럼 채워 넣는 방법으로 이식하여야 한다. 현재 개발된 조직공학적 연골 제품들은 이런 방식으로 이식되지만 손상의 두께는 맞춰주지 못하고 있는데, 관절 연골에서 이식물이 주변의 연골보다 높이 뛰어나오거나 함몰되면 비정상적 체중부하로 인하여 이식물 또는 주변 정상연골에 추가적 손상을 유발하게 된다.
지지체 없는 작은 연골구조물을 만든 방법으로는 자연적으로 세포의 응집을 유도하는 방법이 있다. 회전기술을 이용하여 응집 패턴(aggregation pattern) 이라는 세포집합체를 만들수 있는데, 이는 세포가 배양액에 부유된 상태로 동적 배양(dynamic culture)할 경우 세포간의 작용에 의해 자연적으로 세포집합체(aggregate) 형성이 이뤄진다.
예를 들어, 비부착성 플라스틱 표면에서 세포를 조작하여 3차원 세포집합체를 제조하는 스페로이드(spheroid) 시스템에서 세포는 3차원적인 세포집합체를 형성하고, 자연적으로 유리 연골의 기질과 유사한 자기 자신의 세포외기질을 생산한다. 그런데 이 배양방법은 한 개의 세포집합체를 만드는 세포 수를 조절할 수 없고, 형성된 연골성 조직 사이의 융합(fusion)이 일어날 수 있기 때문에 각각 연골성 조직의 크기 및 연골 분화 정도의 다양성이 존재할 것이므로 세포치료제로서 규격화할 수 없다는 단점이 있다.
또 다른 예로, 부착성 배양접시를 사용하는 마이크로매스(micromass)/콘드로스피어(chondrosphere) 배양 방법이 있는데, 연골 분화능을 갖는 세포의 고농도 현탁액을 부착성 배양접시에 점적하고 37 ℃ 인큐베이터에서 정치하면 수시간 내지 수일 이내에 세포들이 뭉치게 되는데, 이를 배양 배지로 부유시킨 후 비부착성 배양접시 또는 동적 배양 조건에서 삼차원 배양하였다. 이 방법은 연골성 조직을 형성하는 세포 수를 조절할 수 있다는 장점이 있지만, 자연적으로 세포집합체를 형성할 수 있는 능력은 세포의 상태에 따라 차이가 있기 때문에 균일화된 연골성 조직을 안정적으로 얻을 수 있다는 보장을 할 수 없다. 또한 세포외기질이 단단해지기 전에 세포집합체를 한꺼번에 배양할 경우 형성된 연골성 조직 사이의 융합이 일어날 수 있다.
자연적인 세포집합체를 형성하는 세포 수를 동일하게 하기 위해 마이크로웰(microwell)을 사용하는 연구도 이루어졌는데, 간세포의 3차원 배양에서 헤파토스피어(hepatosphere)가 클 경우 내부 중심부의 괴사가 생기기 때문에 원하는 크기로 많은 양의 균일화된 헤파토스피어를 만들 수 있는 3차원 배양 시스템의 개발이 요구되었다. 마이크로몰딩 기술(micromolding techniques) 또는 얇은 폴리-다이메틸실록산(Poly-Dimethylpolysiloxane, PDMS) 막에 기초하여 제작한 직경 300~500 ㎛의 오목한 마이크로몰드를 이용한 기술이 제안되었다. 간세포를 평평한 PDMS, 실린더형 또는 오목한 마이크로웰에서 배양하여 스페로이드를 형성시켰을 때, 오목한 마이크로웰에서 형성된 구체의 크기와 모양은 균일하였고, 크기는 오목한 마이크로웰의 직경에 의해 완벽하게 조절되었으며, 오목한 마이크로웰에서 배양한 세포는 실린더형 마이크로웰이나 평편한 표면에서 보다 빨리 구체를 형성하였고 세포를 회수하기 쉽기 때문에 안정적인 구체를 얻는데 큰 장점이 된다고 하였다. 마이크로몰드를 이용한 마이크로-조직 제조방법은 몰드가 상품화되어 다양한 세포에서 평가되고는 있지만, 이 역시 자연적인 세포 응집을 유도하는 방법이기 때문에 균일화된 연골성 조직을 안정적으로 얻을 수 있다는 보장을 할 수 없고, 만들어진 세포집합체의 크기가 너무 작기 때문에 물리적 강도가 취약하고 다루기가 어려워 3차원 연골세포 치료제로 사용하기에는 한계가 있다.
한편, 지지체 없는 작은 연골구조물을 만든 방법 중 펠렛(pellet) 배양은 비교적 적은 수의 세포를 원심분리하여 세포 응집을 이루어 3차원 배양 시작 단계에서부터 인위적으로 세포의 초고밀도 배양 시스템을 만드는 방법이다. 펠렛 형성 과정은 단순하고, 쉽게 재현 가능하며, 연골 형성 능력을 갖는 세포는 이 시스템 하에서 연골성 세포외기질을 합성, 분비하여 연골성 조직을 만들게 된다. 펠렛 배양법은 줄기세포의 연골세포로의 분화 능력을 평가할 때에 가장 많이 쓰는 방법이고, 연골세포에 미치는 외래인자들의 영향을 평가하는 용도로도 이용되어 왔다. 하지만 펠렛 배양으로 만든 연골구조물의 세포치료제로서 이용가능성에 대한 평가는 이뤄지지 않았는데, 왜냐하면 펠렛 시스템은 양질의 연골성 조직을 만드는데 유용한 방법이지만, 충분한 펠렛 크기를 만들기 어렵다는 문제로 연골 손상 부위의 재생에 적용하기 어렵다고 판단되어 왔다. 또한 일반적인 펠렛 배양은 뚜껑이 있는 튜브(코니컬 튜브, 저장 튜브, 마이크로원심분리 튜브 등)에 세포 현탁액를 넣고 원심분리 후 3차원 배양하여 튜브 하나 당 한 개의 펠렛을 만들 수 있는 방법을 이용하기 때문에 대량배양에는 어려움이 따르는 단점이 있었다.
따라서 연골세포를 펠렛 배양하여 주사가능 형태로 제조하는 경우, 연골세포의 재현가능성이 낮은 문제점을 극복할 수 있으며, 배양 과정 중 관류(perfusion)의 문제로 인한 내부 세포의 사멸이 없을 것이고, 손상 부위에 여러 개의 연골세포 펠렛을 투여함으로써 연골 손상 부위의 모양 및 두께에 상관없이 적용 가능할 것이다. 뿐만 아니라, 주사가능 형태이므로 연골 손상 부위의 절개가 요구되지 않는다. 하지만 치료제로 개발하기 위해서는 반복적으로 재현가능하고 균일화된 연골성 조직을 만들 수 있는 기술이 필요하고, 넓은 부위 손상에 사용하기 위해서는 상당히 많은 개수의 연골성 조직을 제조할 수 있는 대량배양 시스템이 요구된다.
이를 극복하기 위해 인공 세포 배양기술이 발달함에 따라 다기능 줄기세포(multipotent stem cell)나 중간엽 줄기세포(mesenchymal stem cell)로부터 연골세포를 인공적으로 배양하여 이식(implantation)하는 방법이 보고되었다. 최근에는 동종의 제대혈 유래 중간엽 줄기세포(cord blood-derived mesenchymal stem cell)를 배양하여 손상된 연골부위에 이식치료 하는 기술이 제품화되었다(대한민국 등록특허 10-0494265). 중간엽 줄기세포는 상대적으로 수득하기 용이하다는 장점이 있어서 이미 류마티스성 관절염과 골관절염 등의 다양한 질병들의 세포 치료용 조성물로서 널리 사용되고 있다. 하지만, 분화 속도가 늦고 불안정한 표현형으로 인하여 분화 과정에서 원하지 않는 분화나 변형이 일어날가능성이 높으며, 환자로부터 많은 양을 채취해야 한다는 단점이 있다. 또한 중간엽 줄기세포는 체외에서 3일 내지 4일이 지난 후 고유의 특성을 잃게 되며, 중간엽 줄기세포의 생산 및 분화능은 환자의 나이나 병의 상태에 따라 달라진다는 점이 보고되었다. 또한 체내 이식 후 세포 비대성과 관련된 유전자의 발현으로 세포 사멸과 함께 혈관 침투 유발로 연골세포의 석회화를 초래하는 문제점이 있다. 따라서, 체외에서 연골세포 배양을 위한 새로운 세포 근원지가 요구된다.
관절을 구성하는 연골 조직이 손상되면 붓기, 열감, 통증을 동반한 관절염(arthritis)이 유발되는데, 관절염은 인종에 무관하게 발병하며 그 원인에 따라 100여종 이상으로 나누어진다. 그 중 가장 흔한 형태가 주로 노화에 의해 발병하는 퇴행성 관절 질환(degenerative joint disease)인 골관절염(osteoarthritis)이며, 그 외 자가면역질환인 류마티스성 관절염(rheumatoid arthritis)과 건선성 관절염(psoriatic arthritis), 감염에 의한 패혈성 관절염(septic arthritis) 등이 있다. 특히 퇴행성 관절염은 노년층의 대표적인 질환으로 주로 관절의 노화에 의해 발병 하지만, 그 외에도 유전적 요인, 영양 불균형, 운동 부족, 과격한 운동이나 부상, 과도한 노동과 같이 관절에 무리를 주는 행동이나 잘못된 자세, 비만으로 인한 과부하 등 여러 가지 요인이 복합적으로 작용하여 발병하기 때문에 젊은층에서도 빈번히 발병하는 질환이다. 이처럼 관절염은 폭넓은 연령대에서 발병빈도가 높은 질환이지만, 한번 손상된 조직은 자연적으로 재생이나 복구가 잘되지 않아 장기간 환자의 사회적 활동을 제한하고 삶의 질을 저하시키는 원인이 된다.
현재 사용되고 있는 관절염 치료제들은 대부분 수술이 필요한 치료제이며, 회복에 장기간이 요구되는 단점이 있거나 연골 재생 효능은 인정받지 못한 상황이다.
만능 줄기세포는 생체를 구성하는 3가지 배엽(germ layer) 모두로 분화될 수 있어 인체의 모든 세포나 장기 조직으로 분화할 수 있는 다기능성을 지닌 줄기세포를 지칭하며, 일반적으로 배아 줄기세포(embryonic stem cell)가 이에 해당된다. 인간 배아 줄기세포는 인간 생명체로 발생할 수 있는 배아로부터 만들어지기 때문에 많은 윤리적인 문제점을 가지고 있으나, 성체 줄기세포에 비하여 세포 증식 및 분화 능력이 우수한 것으로 알려져 있다. 인간 유도 만능 줄기세포(human induced pluripotent stem cell, hiPSC)는 재생의학의 대체적인 세포 근원지로서 조명을 받았다. 인간 유도 만능 줄기세포는 화합물이나 유전적 요소의 조합으로 여러 세포로부터 수득할 수 있으며, 배아 줄기세포와 같은 윤리적인 문제점이 없기 때문에 활용 가능성이 높다. 이로 인해 인간 유도 만능 줄기세포의 발견은 다양한 질병의 약물 스크리닝 및 치료법 연구에서 새로운 전략을 제공하였다.
중간엽 줄기세포와 다르게 인간 유도 만능 줄기세포는 연골세포를 포함한 표적세포로의 분화능이 뛰어나기 때문에, 관절 연골과 같이 재생력에 한계가 있는 손상된 조직을 대체하기 위한 세포의 근원이 될 수 있다. 또한, 인간 유도 만능 줄기세포는 무제한 증식 능력을 가지고 있기 때문에, 적절한 배양 환경에서 인간 유도 만능 줄기세포는 대량생산에 적합한 연골세포 배양을 위한 세포 근원지로 사용될 수 있는 대체 근원이라고 판단된다.
미분화 상태의 인간 유도 만능 줄기세포를 유지 및 증식하기 위한 배양기술이 매우 까다롭고, 인간 유도 만능 줄기세포를 특정 세포로 완전히 분화하는데 시간이 상당히 오래 걸린다는 단점이 있어 분화 유도 기술을 포함한 관련 기술 개발의 가장 큰 장애요소 중 하나로 작용하고 있다. 현재 수준에서 인간 유도 만능 줄기세포를 이용한 보편적인 분화 유도 기술에서는 대부분 배아체(embryoid body) 제작을 경유한 분화 유도 방법을 이용하고 있다. 즉, 시험관 내(in vitro)에서 인간 유도 만능 줄기세포의 세포-특이적 분화 배양을 실시하기 위해서는 부유배양을 통해 자발적으로 세포가 배아체라고 불리는 구형태로 응집하는 단계가 선결되어야 하며, 배아체는 계통-특이적인 분화를 유도하는 데 있어서, 일반적이고 중요한 매개체로 이용되고 있다.
인간 유도 만능 줄기세포로부터 연골세포를 제조하는 다양한 방법이 보고되고 있으나, 인간 유도 만능 줄기세포로부터 연골세포로 분화하기 위해 요구되는 기간이 증가하거나, 배양된 펠렛에서 연골세포 펠렛의 풀림 현상이 나타나거나, 완전히 분화하지 않은(not fully mature) 연골세포가 수득된다거나, 연골세포 뿐만 아니라 비연골세포로도 분화되며, 연골세포 마다 분화 정도에 있어서 다양성이 존재한다는 한계점이 존재한다.
이에 본 발명자들은 연골세포의 재현가능성 확보 및 대량생산 문제점을 해결하고, 연골세포로의 분화율이 현저하게 높으며 크기가 균일하고 분화 정도가 균질한 연골세포의 펠렛을 개발하고자 예의 노력한 결과, 인간 유도 만능 줄기세포로부터 수득된 배아체의 부착배양에 의해 유도되는 돌기세포를 함유하는 펠렛을 제조하여, 이를 연골 손상 부위에 주사 형태로 투여하여 연골 재생 효과가 뛰어난 것을 확인하고 본 발명을 완성하였다.
본 발명의 목적은, 인간 유도 만능 줄기세포(human induced pluripotent stem cell)로부터 연골세포로의 분화율이 높으며, 크기가 균일하고 분화 정도가 균질한 펠렛(pellet)을 제조하는 방법을 제공하는데 있다.
본 발명의 다른 목적은, 연골의 재생 효과가 뛰어나며, 수술이 요구되지 않는 주사 형태의 관절염 치료에 사용하기 위한 약학적 조성물 내지 관절염 예방 또는 치료방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (a) 인간 유도 만능 줄기세포(human induced pluripotent stem cell)를 배양하여 배아체(embryoid body)를 형성 및 수득하는 단계; (b) 상기 단계 (a)의 수득된 배아체를 돌기세포(outgrowth cell)로 유도 및 분리하는 단계; 및 (c) 상기 단계 (b)의 분리된 돌기세포를 펠렛(pellet) 형태로 배양하는 단계; 를 포함하는 연골세포 펠렛 제조 방법을 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 단계 (a)의 인간 유도 만능 줄기세포는 제대혈단핵구세포(cord blood mononuclear cell) 유래인 것일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 단계 (a)의 배양은 부착배양인 것일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 단계 (b)의 유도는 젤라틴(gelatin) 코팅 플레이트에서 이루어지는 것일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 단계 (c)는 분리된 돌기세포를 원심분리하여 펠렛 형태로 배양하는 것일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 원심분리는 1100 ~ 2500 rpm의 속도에서 수행하는 것일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 (c)단계의 분리된 돌기세포의 95% ~ 100%가 연골세포 펠렛으로 형성되는 것일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 (c)단계의 배양은 BMP(human bone morphogenetic protein) 및 TGF-β(transforming growth factor-beta)를 포함하는 무혈청 배지에서 이루어지는 것일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 연골세포 펠렛은 상기 단계 (b)의 돌기세포를 200 ~ 5000개 함유하는 것일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 연골세포 펠렛은 유리질 연골세포로 분화되는 것일 수 있다.
본 발명은 또한 상기 방법에 의해 제조된 연골세포 펠렛을 포함하는 관절염 치료에 사용하기 위한 약학적 조성물 내지 관절염 예방 또는 치료방법을 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 관절염은 골관절염, 류마티스성 관절염, 건선성 관절염, 패혈성 관절염, 박리성 골연골염, 관절 인대 손상 및 반월상 연골판 손상으로 이루어진 군에서 선택되는 어느 하나 이상인 것일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 약학적 조성물은 주사가능 형태인 것일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 약학적 조성물은 히알루론산(hyaluronic acid)을 추가적으로 포함하는 것일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 연골세포 펠렛은 주사기를 이용하여 환자에 투여되는 것일 수 있다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
관절염을 치료하기 위한 세포치료제로서 연골세포를 제조하려면 반복적으로 재현가능하고 균일화된 연골성 조직을 만들 수 있는 기술이 필요하고, 넓은 부위 손상에 사용하기 위해서는 상당히 많은 개수의 연골성 조직을 제조할 수 있는 대량배양 시스템이 요구된다. 이에 따라, 줄기세포로부터 연골세포를 인공적으로 배양하여 이식하는 기술이 개발되고 있다.
줄기세포는 분화능과 생성시기에 따라 크게 배아 줄기세포(embryonic stem cell)와 성체 줄기세포(adult stem cell)로 구분될 수 있다. 성체 줄기세포는 골수, 혈액, 뇌, 피부 등에서 얻을 수 있어 윤리적인 문제가 적으나, 배아 줄기세포에 비하여 한정된 분화 능력을 가지고 있다.
성체 줄기세포는 다분화능 또는 단분화능 줄기세포로 구분할 수 있다 대표적인 성체줄기세포에는 중간엽 줄기세포(mesenchymal stem cell, MSC)와 조혈모세포(hematopoietic stem cell)가 있다. 중간엽 줄기세포는 연골세포(chondrocyte), 골아세포(osteoblast), 지방세포(adipocyte), 근육세포(myocyte), 신경세포(neuron)로 분화하며 조혈모세포에는 적혈구, 백혈구, 혈소판 등 주로 혈액내의 혈구세포로 분화하는 것으로 알려져 있다.
중간엽 줄기세포는 수정란이 분열하여 생긴 중배엽에서 분화된 줄기세포를 의미하며, 연골, 골조직, 지방조직, 골수 등에 존재하기 때문에 상대적으로 수득이 용이하다는 장점이 있어 이미 류마티스성 관절염, 골관절염 등의 세포치료용 조성물로서 널리 사용되고 있다. 하지만, 분화 속도가 늦고 불안정한 표현형으로 인하여 분화 과정에서 원하지 않는 분화나 변형이 일어날 가능성이 높으며, 환자로부터 많은 양을 채취해야 한다는 단점이 있다. 또한 중간엽 줄기세포는 체외에서 3일 내지 4일이 지난 후 고유의 특성을 잃게 되며, 중간엽 줄기세포의 생산 및 분화능은 환자의 나이나 병의 상태에 따라 달라진다는 점이 보고되었다. 또한 체내 이식 후 섬유성 연골(fibrotic cartilage) 및 세포 비대성(hypertrophic)과 관련된 유전자의 발현으로 세포 사멸과 함께 혈관 침투 유발로 연골세포의 석회화를 초래한다는 문제점이 있다. 따라서, 체외에서 연골세포 배양을 위한 새로운 세포 근원지가 요구된다. 이에 따라, 본 발명에서는 새로운 세포 근원지로서 인간 유도 만능 줄기세포(human induced pluripotent stem cell, hiPSC)를 선택하였으며, 연골재생 효과가 중간엽 줄기세포보다 우수한 것을 확인하였다(도 7c).
인간 유도 만능 줄기세포는 생체를 구성하는 3가지 배엽(germ layer) 모두로 분화될 수 있어 인체의 모든 세포나 장기 조직으로 분화할 수 있는 다기능성을 지닌 줄기세포를 의미하며, 인간 배아 줄기세포가 가지고 있는 많은 윤리적인 문제점을 해결하기 위해 제조되었다. 인간 유도 만능 줄기세포는 미분화성과 정상핵형을 유지한 상태로 자기재생 능력을 갖고 있기 때문에 세포치료제의 대량생산을 위한 세포 근원지로서 적합하다고 판단된다.
인간 유도 만능 줄기세포로부터 연골세포를 제조하는 다양한 기술이 개발되고 있는데, 인간 유도 만능 줄기세포를 부착배양하여 중간엽 세포를 유도하는 공정을 포함하여 연골세포로의 분화 효율을 높이고자 하는 기술이 개발되었다(대한민국 공개특허 10-2016-0068982). 하지만 중간엽 세포에 연골세포 분화 요소(chondrogenic factor)를 처리하여 접착 및 부유 배양하는 기간이 최소 39일이며, 완전히 분화된 연골세포를 얻기 위하여는 추가적으로 28일 이상의 부유배양 기간이 요구되므로, 인간 유도 만능 줄기세포로부터 연골세포를 제조하기 위해 장기간이 필요하다는 단점이 있다. 이에, 본 발명자들은 인간 유도 만능 줄기세포로부터 배아체(embryoid body, EB)를 형성하고, 이로부터 중간엽과 유사한 돌기세포(outgrowth cell, OG)를 유도한 후에 연골세포로 분화시켰다. 본 발명에서는, 돌기세포를 연골 분화 배지(chondrogenic differentiation medium)에서 배양하여 완전히 분화된 연골세포를 수득하기 위해 요구되는 기간은 30일이며, 상기 선행기술에 비하여 훨씬 단축되었다.
미분화 상태의 인간 유도 만능 줄기세포를 유지 및 증식하기 위한 배양기술이 매우 까다롭고, 인간 유도 만능 줄기세포를 특정 세포로 완전히 분화하는데 시간이 상당히 오래 걸린다는 단점이 있어 분화 유도 기술을 포함한 관련 기술 개발의 가장 큰 장애요소 중 하나로 작용하고 있다. 현재 수준에서 인간 유도 만능 줄기세포를 이용한 보편적인 분화 유도 기술에서는 대부분 배아체 제작을 경유한 분화 유도 방법을 이용하고 있다. 즉, 시험관 내(in vitro)에서 인간 유도 만능 줄기세포의 세포-특이적 분화 배양을 실시하기 위해서는 세포가 자발적으로 배아체라고 불리는 구형태로 응집하는 단계가 선결되어야 하며, 배아체는 계통-특이적인 분화를 유도하는 데 있어서 일반적이고 중요한 매개체로 이용되고 있다.
펠렛(pellet) 배양은 비교적 적은 수의 세포를 원심분리하여 세포 응집을 이루어 3차원 배양 시작단계에서부터 인위적으로 세포의 초고밀도 배양 시스템을 만드는 방법이다. 펠렛 형성 과정은 단순하고, 쉽게 재현 가능하며, 연골 형성 능력을 갖는 세포는 이 시스템 하에서 연골성 세포외기질(extracellular matrix)을 합성 및 분비하여 연골성 조직을 만들게 된다.
인간 유도 만능 줄기세포로부터 배아체를 형성하고, 이를 펠렛 배양하여 연골세포로 분화하는 기술이 개발되었으나, 상기 기술에서는 연골세포 펠렛의 풀림 현상이 나타나서, 펠렛 배양하여 연골세포를 분화하는 단계에서 지지체(scaffold)로서 알기네이트 겔(alginate gel)을 사용하였다. 이에 본 발명자들은 배아체 단일 세포(EB Single cell)와 배아체 유래 돌기세포의 연골세포 펠렛 형성능을 비교하기 위하여, 배아체를 분해하여 배아체를 구성하는 단일 세포를 펠렛 형태로 배양한 경우와 배아체 유래 돌기세포를 펠렛 형태로 배양한 경우에 형성되는 연골세포 펠렛의 수를 비교하였다. 그 결과, 배아체를 구성하는 단일 세포는 연골세포 펠렛이 거의 생성되지 않았고, 배아체 유래 돌기세포를 펠렛 형태로 배양한 경우에는 연골세포 펠렛 형성 비율이 100%로 나타났다(도 10). 이를 통해 배아체로부터 돌기세포를 유도하여 연골세포 펠렛을 제조하는 것이 효율적임을 확인하였다.
인간 유도 만능 줄기세포로부터 배아체-유래 돌기세포(EB-derived outgrowth cell)를 형성하고, 이를 연골세포로 분화한 것을 관절염 쥐 모델에 주사하여 치료 효과가 있음을 확인한 기술이 개발되었다. 이는 배아체-유래 돌기세포를 펠렛 형태로 배양하지 않고 직접적으로 연골세포로 분화한 것이며, 이에 본 발명자들은 배아체-유래 돌기세포를 펠렛 형태로 배양하여 연골세포로 분화한 경우와 배아체-유래 돌기세포를 단일층 배양(monolayer culture)하여 연골세포로 분화한 경우의 연골세포 분화율을 비교하였다. 그 결과, 펠렛 배양을 한 연골세포에서 연골의 세포외기질(extracellular matrix)을 구성하는 주요 단백질을 코딩하는 유전자인 COL2A1(collagen type II gene)의 발현이 높게 나타났으며, 이를 통해 펠렛 배양을한 경우에 연골세포로의 분화율이 더 높다는 것을 확인하였다(도 9).
인간 유도 만능 줄기세포로부터 배아체-유래 돌기세포(EB-derived outgrowth cell)를 형성하고, 이를 단일층 배양한 후에, 펠렛 배양하여 연골 발생 계통(chondrogenic lineage)로 분화하는 기술이 개발되었다. 단일층 배양 단계가 연골세포로의 분화 효율에 있어서 중요한 단계이며, 상기 기술을 통해 수득한 연골세포에서 II 형 콜라겐이 검출되지 않았으며, 아그리칸(aggrecan) 단백질의 발현이 약하게 나타났으므로 완전히 분화하지 않은(not fully mature) 연골세포를 수득할 수 있다고 개시하고 있다. 본 발명에서는 이러한 문제를 해결하기 위하여, 돌기세포의 단일층 배양 단계 없이 인간 골형성 단백질 2(human bone morphogenetic protein 2, BMP-2)을 포함하는 연골 분화 배지를 사용하여 바로 펠렛 배양을 수행한 결과, II 형 콜라겐과 아그리칸 단백질의 발현이 높은, 완전하게 분화된 연골세포를 수득할 수 있다는 것을 확인하였다(도 4).
인간 유도 만능 줄기세포로부터 배아체-유래 돌기세포를 형성하고 이를 인간골형성 단백질 2(human bone morphogenetic protein 2, BMP-2)를 포함하는 배지에서 배양하는 경우에, 연골세포로의 분화 효율이 높다는 기술이 개시되었다. 하지만 상기 선행기술에서는 연골세포 뿐만 아니라 비연골세포로도 분화되며, 연골세포 마다 분화 정도에 있어서 다양성이 존재하는 결과를 확인하였으나, 본 발명에서는 인간 유도 만능 줄기세포로부터 연골세포로의 분화율이 95% 이상이며, 각각의 크기가 균일하며 분화 정도가 균질한 연골세포를 포함하고 있는 연골세포 펠렛을 확인하였다.
관절염에 따른 연골 손상의 모양과 깊이는 일정하지 않기 때문에 실험실에서 제조한 3차원 구조의 인공 연골이 손상 부위보다 클 경우 손상의 모양에 맞추어 이 식물을 다듬어야 하고, 반대로 연골 이식물이 손상 부위보다 작을 경우에는 손상 모양에 맞추어 모자이크처럼 채워 넣는 방법으로 이식하여야 한다. 현재 개발된 조직공학적 연골 제품들은 이런 방식으로 이식되지만 손상의 두께는 맞춰주지 못하고 있는데, 관절 연골에서 이식물이 주변의 연골보다 높이 뛰어나오거나 함몰되면 비정상적 체중부하로 인하여 이식물 또는 주변 정상연골에 추가적 손상을 유발하게 된다. 따라서, 연골세포를 펠렛 배양하여 주사가능 형태로 제조하는 경우, 손상부위에 여러 개의 연골세포 펠렛을 투여함으로써 연골 손상 부위의 모양 및 두께에 상관없이 적용 가능할 것이다. 뿐만 아니라, 주사가능 형태이므로 연골 손상 부위의 절개가 요구되지 않는다. 수술이 요구되지 않기 때문에 회복기간이 따로 필요하지 않으며, 간단한 시술로 환자의 통증을 완화할 뿐만 아니라 시술 후 지속적이면서 효과적인 치료 효과를 나타낼 수 있다. 이에 본 발명자들은 주사가능한 형태의 연골세포 펠렛을 제작하였다.
관절염 치료를 위하여 연골 손상 부위에 절개 없이 비침습적인 방법으로 환자에게 연골세포를 적용하기 위해서는 임상적으로 사용 가능한 주사(syringe) 바늘의 내부 직경보다 작으며 균일한 사이즈의 연골세포의 펠렛이 요구된다.
본 발명에서 연골세포의 펠렛 투여에 사용될 수 있는 주사 바늘의 크기는 10 ~ 33 게이지 이며, 보다 바람직하게는 15 ~ 25 게이지 이고, 가장 바람직하게는 17 ~ 20 게이지일 수 있다. 일반적으로 사람의 임상에서 많이 사용하는 주사 바늘의 크기는 18 게이지로, 내부 직경은 573 ㎛이다. 따라서 연골세포를 충분히 함유하며 주사 바늘을 통해 쉽게 빠져나가기 위해서는 500 ㎛ 이하 크기의 연골세포 펠렛이 필요하다.
본 발명자들이 제작한 연골세포 펠렛의 경우, 인간 유도 만능 줄기세포로부터 수득된 배아체 유래 돌기세포 200개로 이루어진 펠렛의 직경은 152 ㎛이고, 500개로 이루어진 펠렛의 직경은 182 ㎛, 1000개로 이루어진 펠렛의 직경은 226 ㎛, 2000개로 이루어진 펠렛의 직경은 278 ㎛, 3000개로 이루어진 펠렛의 직경은 334㎛, 5000개로 이루어진 펠렛의 직경은 462 ㎛이다. 이는 본 발명의 연골세포 펠렛이 주사기를 사용하여 투여하는 관절염 치료용 조성물로 적용 가능하다는 것을 의미한다.
본 발명자들이 인간 유도 만능 줄기세포로부터 수득된 배아체 유래 돌기세포를 펠렛 형태로 배양한 경우, 단일 세포 단위의 돌기세포 200개 미만에서는 세포의응집이 잘 이루어지지 않아서 펠렛 형태로 배양하는데에 어려움이 있었다. 따라서, 본 발명의 연골세포 펠렛은 200개 내지 5000개의 돌기세포를 함유할 수 있다.
본 발명자들은 인간 유도 만능 줄기세포로부터 수득한 배아체의 부착배양에 의해 유도되는 돌기세포에서 분화된 연골세포를 함유하는 펠렛의 연골 재생 효과를 측정하였다. 토끼의 수술 유도 골관절염 모델에서 2000개의 돌기세포로 이루어진 연골세포의 펠렛을 투여한 결과 손상된 연골이 정상 조직과 유사하게 복구되는 것으로 나타났다. 이를 통해 본 발명에 따른 연골세포 펠렛의 연골 재생 효과가 뛰어난 것을 확인하고(도 11 및 도 12), 본 발명을 완성하게 되었다.
따라서, 본 발명은 일 관점에서 (a) 인간 유도 만능 줄기세포(human induced pluripotent stem cell)를 배양하여 배아체(embryoid body)를 형성 및 수득하는 단계; (b) 상기 단계 (a)의 수득된 배아체를 돌기세포(outgrowth cell)로 유도 및 분리하는 단계; 및 (c) 상기 단계 (b)의 분리된 돌기세포를 펠렛(pellet) 형태로 배양하는 단계; 를 포함하는 연골세포 펠렛 제조 방법에 관한 것이다.
본 발명에서 용어, "인간 유도 만능 줄기세포(human induced pluripotent stem cell, hiPSC)"란 인간의 체세포에 역분화 기술을 이용하여 배아 줄기세포(embryonic stem cell)와 유사한 분화능을 가진 미분화 상태의 줄기세포를 확립하는 방식으로 만들어진 것으로, 분화 능력이 배아 줄기세포와 비슷한 수준인 줄기세포를 의미한다. 역분화 기술의 대표적인 방법으로 세포 융합법(fusion with ES cell), 체세포 핵치환법(somatic cell nuclear transfer), 특정 인자 주입법(reprogramming by gene factor) 등이 있다.
본 발명에서 용어, "배아체(embryoid body, EB)"란 부유배양 상태에서 생성된 구형체 모양의 줄기세포 유래 세포 덩어리를 의미하며, 잠재적으로 내배엽, 중배엽, 외배엽으로 분화할 수 있는 능력을 가짐으로써 조직-특이적 분화 세포를 확보하기 위한 대부분의 분화 유도 과정에서 전구체로 이용되고 있다.
본 발명에서 용어, "돌기세포(outgrowth cell, OG)"란 세포의 부착성을 증가시키기 위해 세포외기질 성분이 코팅된 배양 플레이트에서 배아체를 부착배양하는 경우에, 배아체로부터 뻗어나오는 세포를 의미한다.
본 발명에서 용어, "펠렛(pellet)"이란 세포를 원심분리하여 세포 응집을 이루고 이를 3차원 배양하여 형성되는 배아체 유래 돌기세포 덩어리를 의미한다.
본 발명에서 용어 "연골"은 유리질 연골(hyaline cartilage), 섬유성 연골(fibrotic cartilage) 또는 탄성연골(elastic cartilage)을 포함하며, 이에 제한되지 않는다. 관절 연골(articular Cartilage), 귀 연골, 비연골, 팔꿈치 연골, 반월상연골 (meniscus), 무릎 연골, 늑연골, 발목 연골, 기관 연골, 후두 연골 및 척추 연골 등 연골 부위에 제한 없이 포함한다.
본 발명의 상기 인간 유도 만능 줄기세포는 다양한 세포에서 유래된 것일 수 있으나, 바람직하게는 제대혈 단핵구 세포(cord blood mononuclear cell, CBMC)로부터 유래한 것일 수 있다.
본 발명의 구체적인 실시예에 따르면, 제대혈 단핵 세포 유래 인간 유도 만능 줄기세포로부터 생성된 연골세포 펠렛과 말초혈액 단핵세포(peripheral blood mononuclear cell, PBMC) 유래 인간 유도 만능 줄기세포로부터 생성된 연골세포 펠렛에서 아그리칸 유전자(aggrecan gene, ACAN) 및 II 형 콜라겐 유전자(collagen type II gene, COL2A1)의 발현 수준을 비교한 결과, 제대혈 단핵 세포 유래 인간 유도 만능 줄기세포로부터 생성된 연골세포 펠렛의 발현 수준이 월등하게 높은 것을 확인하였다. 이를 통해 CBMC-hiPSC로부터 연골세포 펠렛을 제조하는 경우에 연골세포 분화율이 증가하는 것을 알 수 있다(도 8).
본 발명의 구체적인 실시예에 따르면, 상기 돌기세포를 펠렛 형태로 연골 분화 배지에서 배양할수록 연골의 세포외기질(extracellular matrix, ECM)을 구성하는 주요 단백질을 코딩하는 유전자인 COL2A1, ACAN및 COMP(cartilage oligomeric matrix protein gene)와, 이의 발현을 조절하는 전사인자를 코딩하는 유전자인 SOX9(sex-determining region Ybox 9 gene)의 발현이 증가하는 것을 확인하였다(도 4). 아그리칸(ACAN)은 연골의 세포외기질에서 응집하고 있는 프로티오글라이칸(proteoglycan)이며, 히알루로난(hyaluronan)과의 상호작용을 유도한다. II 형 콜라겐은 유리질 연골을 위한 기초적인 단백질로서 건강한 연골의 특징을 나타낸다.
또한, 본 발명의 구체적인 실시예에 따르면, 연골세포 펠렛에서 섬유성 연골(fibrotic cartilage)의 대표적인 유전자인 COL1A1(collagen type I gene)과 비대성 마커(hypertrophic marker)인 COL10A1의 발현 수준이 낮으며, COL1A1에 대한 COL2A1의 발현 비율이 증가하는 것을 확인하였다(도 7). 섬유 또는 비대성 연골은 뼈로 분화하는 경향이 있는 더 성숙한 타입이다. 이는 본 발명에 따른 연골세포의 펠렛은 섬유성 연골을 나타내는 유전자에 대한 유리질 연골을 나타내는 유전자의 발현이 높다는 것으로, 본 발명에 따른 연골세포는 유리질 연골의 주요한 특성을 가지고 있음을 알 수 있다.
본 발명에 있어서, 상기 단계 (a)의 배양은 부착배양인 것일 수 있다. 생체 외 환경에서 배양하기 위해서는 세포의 부착성을 증가시키기 위한 세포외기질 성분이 코팅된 배양 플레이트와 같은 표면이 요구된다.
본 발명에 있어서, 상기 단계 (b)의 유도는 젤라틴(gelatin) 코팅 플레이트에서 이루어지는 것일 수 있다.
본 발명에 있어서, 상기 단계 (c)는 분리된 돌기세포를 원심분리하여 펠렛 형태로 배양하는 것을 특징으로 할 수 있으며, 원심분리하는 단계를 통해 돌기세포를 응집하여 펠렛 형태로 용이하게 배양할 수 있도록 한다.
상기 추가적인 원심분리는 1100 ~ 2500 rpm에서 수행할 수 있으며, 보다 바람직하게는 1300 ~ 2300 rpm에서 수행할 수 있고, 가장 바람직하게는 1600 ~ 2000 rpm에서 수행하는 것이 바람직하다.
본 발명에 있어서, 상기 (c)단계는 분리된 돌기세포의 95% ~ 100% 가 연골세포 펠렛으로 형성될 수 있으며, 보다 바람직하게는 96% ~ 100% 가 연골세포 펠렛으로 형성될 수 있고, 가장 바람직하게는 97% ~ 100% 가 연골세포 펠렛으로 형성될 수 있다. 연골세포 펠렛에 함유된 돌기세포의 크기는 균일하며 돌기세포간에 분화 정도의 차이가 거의 없는 균질한 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 (a)단계의 배아체를 형성하는 단계는 섬유아세포 증식인자 2(fibroblast growth factor 2, FGF-2)를 포함하는 배지에서 배양하는 것을 특징으로 할 수 있다.
섬유아세포 증식인자는 섬유아세포를 자극하여 강한 증식성을 유도하는 성장인자로서, 23가지의 종류가 존재한다. 그 중에서, FGF-2는 뇌하수체, 뇌, 신장, 부신, 태반, 골기질, 연골, 내피세포, 섬유아세포 등에 널리 분포하며, 여러가지 이소형(isotype)으로 존재한다. 척추동물에서는, 18, 22, 225, 24 및 34 kDa의 분자량을 갖는 5가지 이소형이 발견된다. 18 kDa 형태만이 세포 외부에서 검출되고, 반면 다른 이소형들은 세포 내부로, 보다 구체적으로는 핵에 한정된다. FGF-2는 생리학적 수준에서 매우 중요한 역할을 하는 펩타이드로서, 태아 발달, 혈관신생, 뉴론분화 및 조직 회복에 관여한다.
본 발명에서 상기 (a)단계의 배아체는 인간 유도 만능 줄기세포를 섬유아세포 증식인자 2(FGF-2) 또는 인간 형질전환 생장 인자 β1(TGF-β1)를 포함하는 배지에서 35 ℃ 내지 39 ℃로 4일 내지 8일 동안 배양하여 형성할 수 있으며, 바람직하게는 두 성분 모두 포함된 배지에서 37 ℃로 6일 동안 배양한다.
본 발명의 구체적인 실시예에 따르면, 상기 (a)단계의 배지는 543 ㎕/㎖ 탄산수소나트륨(NaHCO3), 64 ㎍/㎖ L-아스코르브산 2-인산염 마그네슘(L-Ascorbic acid 2-phosphate magnesium), 14 ng/㎖ 아셀렌산나트륨(Sodium selenite), 107 ㎍/㎖ 트렌스페린(Transferrin), 20 ㎍/㎖ 인슐린(Insulin), 100 ng/㎖ 섬유아세포 증식인자-2(FGF-2) 및 2 ng/㎖ 인간 형질전환 생장 인자 β1(TGF-β1)를 포함하는 DMEM/F12 배지에 글루타민(glutamine)과 HEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)가 추가된 것이다.
본 발명의 구체적인 실시예에 따르면, 배아체와 배아체 유래 돌기세포의 펠렛 형성능을 비교한 결과, 배아체를 분해하여 배아체 단일 세포(EB Single cell)로 펠렛을 만든 경우에는 세포 응집이 이루어지지 않아서 연골세포 펠렛이 거의 생성되지 않았고, 배아체 유래 돌기세포를 펠렛 형태로 배양한 경우에는 연골세포 펠렛 형성 비율이 98%로 확인되었다(도 10). 이를 통해, 배아체를 펠렛 형태로 배양하는 경우 보다 배아체 유래 돌기세포를 펠렛 형태로 배양하는 것이 세포 응집에 있어서 더욱 효율적임을 알 수 있다.
본 발명에서 상기 (b)단계는 배아체를 20% 소태아혈청(Fetal Bovine Serum, FBS) 또는 10% 페니실린(penicillin)/스트렙토마이신(streptomycin)을 함유하는 배지에서 6일 내지 8일 동안 배양하며, 바람직하게는 두 성분 모두를 포함하는 배지에서 7일 동안 배양한다.
본 발명에 있어서, 상기 (c)단계의 배양은 BMP(human bone morphogenetic protein) 및 TGF-β(transforming growth factor-beta)를 포함하는 무혈청 배지에서 이루어지는 것을 특징으로 할 수 있다.
BMP(human bone morphogenetic protein)는 골형성(osteogenesis)을 유도하는 단백성 인자이며, BMP-1 내지 9인 9가지 종류가 존재한다. BMP-1을 제외하고 BMP-2 내지 9는 형질전환 생장 인자 β(TGF-β)의 슈퍼패밀리에 속한다. 본 발명의 상기 BMP는 BMP-1 내지 BMP-9이며, 바람직하게는 BMP-2일 수 있다.
TGF-β(transforming growth factor-beta)는 정상세포를 형질전환하여 증식을 촉진하는 생장 인자이며, 세포 성장, 분화 및 세포외기질 단백질 합성에서 조절 작용을 한다. 본 발명의 TGF-β는 TGF-β1 내지 TGF-β3일 수 있으며, 바람직하게는 TGF-β3일 수 있다.
본 발명에서 상기 (c)단계는 돌기세포를 인간 골형성 단백질(human bone morphogenetic protein 2, BMP-2), 인간 형질전환 생장 인자 β3(TGF-β3) 또는 넉아웃 혈청 대체물(knockout serum replacement)을 포함하는 연골세포 분화 배지에서 25일 내지 35일 동안 배양하며, 바람직하게는 세가지 성분 모두를 포함하는 배지에서 30일 동안 배양한다.
본 발명의 구체적인 실시예에 따르면, 상기 연골 분화 배지는 20% 넉아웃 혈청 대체물(knockout serum replacement), 1× 비-필수 아미노산(1x non-essential amino acids), 1 mM L-글루타민(L-glutamine), 1% 소듐 피루브산(sodium pyruvate), 1% ITS+ 프리믹스(Premix), 10-7 M 덱사메타손(dexamethasone), 50 ㎛ 아스코르브산(ascorbic acid) 및 40 ㎍/mL L-프롤린(L-proline)을 포함하는 DMEM 배지에 50 ng/mℓ 인간 골형성 단백질 2(human bone morphogenetic protein 2, BMP-2) 및 10 ng/mℓ 인간 형질전환 생장 인자 β3(TGF-β3)가 추가된 것으로, 연골세분화 배지는 30일 동안 매일 교환한다.
본 발명에 있어서, 상기 연골세포의 펠렛의 직경은 100 ~ 500 ㎛인 것이 바람직하고, 보다 바람직하게는 160 ~ 400 ㎛인 것이 바람직하고, 가장 바람직하게는 200 ~ 300 ㎛인 것이 바람직하다.
본 발명의 연골세포 펠렛은 200개 내지 5000개의 돌기세포를 함유할 수 있으며, 보다 바람직하게는 800개 내지 3500개의 돌기세포를 함유할 수 있고, 가장 바람직하게는 1500개 내지 2500개의 돌기세포를 함유할 수 있다.
본 발명의 구체적인 실시예에 따르면, 인간 유도 만능 줄기세포로부터 형성된 배아체 유래 돌기세포를 연골 분화 배지에서 단일층(monolayer) 배양 또는 펠렛형태로 배양하여 생성된 연골세포의 COL2A1의 발현 수준을 비교한 결과, 펠렛 형태로 배양한 경우에 COL2A1의 발현이 더 높은 것을 확인하였다(도 9). 이를 통해, 돌기세포를 펠렛 배양하는 경우에 연골세포로의 분화율이 증가하는 것을 알 수 있다.
본 발명은 또한, 상기 방법에 의해 제조된 연골세포 펠렛을 포함하는 관절염 치료용 약학적 조성물을 제공할 수 있다.
본 발명에서 용어 "관절염"이란 연골, 연골 조직 및/또는 관절 조직(활막, 관절포, 연골하골 등)이 기계적 자극이나 염증 반응에 의해 상해된 연골의 결함, 손상, 결손에 따른 만성 염증을 의미한다. 이러한 관절염에는 노화에 의해 발병하는 퇴행성 관절 질환(degenerative joint disease)인 골관절염(osteoarthritis), 자가면역질환인 류마티스성 관절염(rheumatoid arthritis)과 건선성 관절염(psoriatic arthritis), 감염에 의한 패혈성 관절염(septic arthritis), 박리성 골연골염, 관절 인대 손상, 반월상 연골판 손상 등이 있으나, 이에 한정되는 것은 아니다.
본 발명에서 용어 "치료"는 (a) 질환, 질병 또는 증상의 발전의 억제; (b) 질환, 질병 또는 증상의 경감; 또는 (c) 질환, 질병 또는 증상을 제거하는 것을 의미한다.
본 발명의 약학적 조성물은 연골 결함 또는 손상 부분에 이식되었을 때 연골 재생 능력을 발휘하여 연골 손상에 대한 개선 및 치료 효과를 나타내는 조성물로서, 그 자체로 관절염 치료용 약학적 조성물이 될 수도 있고, 혹은 다른 약리성분과 함께 투여되어 관절염에 대한 치료 보조제로 적용될 수도 있다.
이에, 본 명세서에서 용어 "치료" 또는 "치료제"는 "치료 보조" 또는 "치료보조제"의 의미를 포함한다.
본 발명의 관절염 치료용 약학적 조성물은 약학적으로 허용되는 담체를 포함한다. 본 발명의 약학적 조성물에 포함되는 약학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토오스(lactose), 덱스트로오스(dextrose), 수크로오스(sucrose), 솔비톨(sorbitol), 만니톨(mannitol), 전분, 아카시아 고무, 인산 칼슘(calcium phosphate), 알기네이트(alginate), 젤라틴, 규산 칼슘(calcium silicate), 미세결정성 셀룰로스(Microcrystalline Cellulose), 폴리비닐피롤리돈(polyvinyl pyrrolidone), 셀룰로스, 물, 시럽, 메틸 셀룰로스(methyl cellulose), 메틸하이드록시벤조에이트(methylhydroxybenzoate), 프로필하이드록시 벤조에이트(propylhydroxybenzoate), 활석(talc), 마그네슘 스테아레이트(Magnesium Stearate), 미네랄 오일, 식염수, PBS(phosphate buffered saline) 또는 배지 등을 포함하나, 이에 한정되는 것은 아니며, 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가적으로 포함할 수 있다.
본 발명의 관절염 치료용 약학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약학적으로 허용되는 담체 및/또는 부형제를 이용하여 제형화함으로써 단위 용량 형태로 제조되거나 또는 대용량 용기 내에 내입시켜 제조될 수 있다.
비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제가 포함된다. 좌제의 기제로는 위텝솔(witepsol), 마크로골(Macrogol), 트윈(tween) 61, 카카오지, 라우린지(laurinum), 글리세로젤라틴 등 이 사용될 수 있다.
본 발명에 있어서, 상기 약학적 조성물은 주사가능 형태인 것을 특징으로 할 수 있다. 상기 주사가능 형태란, 본 발명의 연골세포 펠렛을 외과적인 수술이 필요없이 주사기를 이용하여 연골 재생이 필요한 부위에 투여할 수 있는 형태를 의미하며, 보다 구체적으로 그 크기가 주사 바늘을 통과할 수 있을 정도로 충분히 작은 것을 의미한다.
본 발명에 있어서, 상기 관절염 치료용 약학적 조성물은 히알루론산(hyaluronic acid)을 추가적으로 포함하는 것을 특징으로 할 수 있다.
본 발명의 구체적인 실시예에 따르면, 상기 연골세포 펠렛에 히알루론산을 첨가하여 연골 손상 부위에 투여한 경우에, 연골 재생 효과가 있음을 확인하였다(도 12).
본 발명은 또한, 상기 방법에 의해 제조된 연골세포 펠렛을 관절염 환자에 투여하는 단계를 포함하는 관절염 예방 또는 치료방법을 제공할 수 있다.
상기 연골세포 펠렛은 치료 유효량을 환자에게 투여할 수 있는데, 본 발명에서 용어 "치료 유효량"은 의학적인 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 최적의 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 그 범위가 다양하며, 상기 사항을 고려하여 본 기술분야의 통상의 전문가가 결정할 수 있다. 상기 환자는 인간을 포함한 포유류인 것이 바람직하며, 관절염을 앓고 있거나, 앓았거나, 앓을 가능성이 있는 잠재적인 관절염 환자군도 모두 제한 없이 포함할 수 있다.
상기 투여는 주사기를 이용하는 비경구 투여인 것이 바람직한데, 의약 분야에서 통상적으로 이용되는 경로를 통해 투여될 수 있으며, 예를 들어 정맥내, 복강내, 근육내, 동맥내, 구강, 심장내, 골수내, 경막내, 경피, 장관, 피하, 설하 또는 국소 투여용 경로를 통하여 투여할 수 있으며, 가장 바람직하게는 관절강 내(intra-articular)로 투여할 수 있다.
본 발명의 인간 유도 만능 줄기세포(human induced pluripotent stem cell)로부터 유래한 연골세포의 펠렛(pellet)은 연골세포로의 분화율이 현저하게 높으며, 크기가 균일하고 분화 정도가 균질하며, 이를 포함하는 관절염 치료용 약학적 조성물은 이를 연골 손상 부위에 투여한 경우에 연골 재생 효과가 뛰어나고, 수술이 요구되지 않는 주사가능 형태이므로 간단한 시술로 환자의 통증을 완화할 뿐만 아니라 시술 후에도 지속적인 관절염 치료 효과를 제공할 수 있다.
도 1은 본 발명의 유도만능줄기세포를 이용하여 시린지(syringe)를 통과할 수 있는 사이즈의 3D 연골세포 클러스터(cluster)를 제조하는 과정을 나타낸 모식도이다.
도 2는 왼쪽부터 오른쪽으로 순서대로 CBMC 유래 hiPSC의 이미지, 형성된 배아체(embryoid body)의 이미지, 젤라틴 코팅된 배양 플레이트에 부착된 배아체로부터 유래된 돌기세포(outgrowth cell)의 이미지 및 제조된 연골세포 펠렛의 이미지를 나타낸다.
도 3은 마이크로웰에서 생성된 돌기세포 1000개, 2000개 및 3000개로 만든 펠렛과 연골 분화 배지(chondrogenic differentiation medium)에서 배양한 연골세포 펠렛 및 이를 톨루이딘 블루(toluidine blue)로 염색한 이미지를 나타낸다.
도 4는 본 발명에 따라서 CBMC-hiPSC로부터 생성된 연골세포 펠렛의 유전학적 특성을 나타내는 것으로, 연골 분화 배지(Chondrogenic differentiation medium)에서 배양한지 10일, 20일 및 30일 째에 연골세포 펠렛에서 COL2A1(collagen type II gene), ACAN(aggrecan gene), COMP(cartilage oligomeric matrix protein gene) 및 SOX9(sex-determining region Y-box 9 gene)의 발현 수준을 측정한 결과를 나타내는 도면이다(*, + p<005, **, ++ p<001, ***, +++ p<0001)
도 5는 본 발명에 따라서 CBMC-hiPSC로부터 생성된 연골세포 펠렛의 조직학적 분석 결과를 나타낸 것으로, 연골 분화 배지에서 배양한지 10일, 20일 및 30일째에 사프라닌 O(safranin O), 알시안 블루(alcian blue) 및 톨루이딘 블루(toluidine blue)로 염색한 펠렛 이미지를 나타낸다.
도 6은 본 발명에 따라서 CBMC-hiPSC로부터 생성된 연골세포 펠렛의 면역조직학적 분석 결과를 나타낸 것으로, a는 연골 분화 배지에서 배양한지 10일, 20일 및 30일 째에 II 형 콜라겐 및 아그리칸(aggrecan)에 대한 항체로 염색된 연골세포 펠렛의 이미지를 나타내고, b는 I 형 콜라겐에 대한 항체로 염색된 연골세포 펠렛의 이미지를 나타낸다.
도 7은 본 발명에 따라서 CBMC-hiPSC 또는 중간엽 줄기세포(mesenchymal stem cell, MSC)로부터 생성된 연골세포 펠렛의 유전적 마커에 대한 추가 분석 결과를 나타낸 것으로, a는 hiPSC와 연골 분화 배지에서 배양한지 10일, 20일 및 30일 째에 연골세포 펠렛에서 섬유성 연골(fibrotic cartilage)의 대표적인 유전자인 COL1A1(collagen type I gene)과 비대성 마커(hypertrophic marker)인 COL10A1의 발현 수준을 측정한 결과를 나타내며, b는 연골 분화 배지에서 배양한지 10일, 20일 및 30일 째에 연골세포 펠렛에서 COL2A1과 COL1A1의 발현 비율을 측정한 결과를 나타내며, c는 연골 분화 배지에서 배양한지 30 일째에 MSC 또는 CBMC 유래 hiPSC로부터 생성된 연골세포 펠렛에서 ACAN, COMP, COL2A1, SOX9, COL1A1 및 COL10A1의 상대적인 발현 수준을 측정하여 비교한 결과를 나타낸다(*, + p<005, **, ++ p<001, ***, +++ p<0001).
도 8은 다양한 세포주 유래(DF는 피부 섬유아세포 유래, PBMC는 말초혈액단핵구 유래, FLS는 골관절염 섬유아세포 유사 세포 유래, CBMC는 제대혈 단핵구 세포 유래)의 hiPSC로 제조한 연골 펠렛에서 초기 연골 발생 마커(Early Chondrogenic Marker), 연골 기질 마커(Cartilage Matrix Marker) 및 비대성 또는 섬유성 연골 마커(Hypertrophy and Fibrotic Marker)의 발현을 확인한 결과를 나타낸다. 초기 연골 발생 마커로는 SOX9, SOX5 및 SOX6 을, 연골 기질 마커로는 ACAN, COL2A1 및 PRG4를, 비대성 또는 섬유성 연골 마커로는 COL1A1, COL10A1 및 RUNX2을 확인하였다.
도 9는 본 발명에 따라서 배아체 유래 돌기세포(EB-derived outgrowth cell)를 연골 분화 배지에서 단일층(Monolayer) 배양하여 생성된 연골세포와 펠렛 형태로 배양하여 생성된 연골세포(Macropellet)의 갯수(1×10^5, 3×10^5 및 5×10^5) 별로 SOX9, ACAN, COL2A1, COL1A1 및 COL10A1 의 발현 수준을 측정하여 비교한 결과를 나타낸다.
도 10은 본 발명에 따라서 배아체 단일 세포(EB Single cell)와 배아체 유래 돌기세포(EB-derived outgrowth cell)의 연골세포 펠렛 형성능을 비교한 결과를 나타낸 것이다. 배아체를 분해하여 배아체를 구성하는 단일 세포를 연골 분화 배지에서 펠렛 형태로 배양한 경우와 배아체 유래 돌기세포를 펠렛 형태로 배양한 경우에 형성되는 연골세포 펠렛의 이미지 및 형성되는 연골세포 펠렛의 비율을 나타낸다.
도 11은 골관절염 모델로서 전방 십자 인대 절단(anterior cruciate ligament transection; ACLT) 토끼 모델을 제조하고, 상기 토끼의 관절강 내에 연골세포 펠렛(MIU) 및/또는 히알루론산(HA)을 각각 주사 방법으로 투여한 결과를 나타낸다.
도 12는 본 발명에 따라서 CBMC-hiPSC로부터 생성된 연골세포 펠렛의 연골 재생 효과를 나타내는 것으로, 연골 손상 모델에 2000개의 돌기세포를 함유하는 연골세포 펠렛인 MIU(Minimal injectable unit) 및/또는 히알루론산(hyaluronic acid, HA)을 주사한지 4주 후 연골의 상태를 ICRS score 방법에 의하여 평가한 결과(Destruction score) 및 그 평가 과정을 나타낸다.
[실시예 1]
인간 유도 만능 줄기세포의 제조
제대혈 단핵구 세포(cord blood mononuclear cell, CBMC)로부터 인간 유도 만능 줄기세포(human induced pluripotent stem cell, hiPSC)를 제조하였다. CBMC는 대한민국 서울 성모병원의 제대혈 은행에서 획득한 것을 사용하였다. 제대혈을 인산 완충 식염수(phosphate buffered saline, PBS)로 희석하고 피콜농도구배(Ficoll gradient)를 통해 850 xg에서 30분 동안 원심분리하여 CBMC를 수집한 다음, 세척 및 동결하여 사용 전까지 보관하였다. CBMC는 사용 직전에 해동한 후, CC110 사이토카인 칵테일(Cytokine cocktail; STEMCELL)이 추가된 StemSpan 배지(STEMCELL Technological, Vancouver, British Columbia, Canada)에 재현탁하고, 37 ℃의 5% CO2 배양기에서 5일 동안 배양하였다.
배양한 CBMC를 3×105 농도로 24-웰 플레이트에 접종하고, CytoTuneTM-iPS 20 센다이 리프로그램 키트(sendai reprogram kit; A16518, Life Technologies)를 사용하여 제조사에서 제공하는 프로토콜에 따라 리프로그래밍을 유도하여 CBMC 유래의 hiPSC를 수득하였다.
수득한 hiPSC는 비트로넥틴(vitronectin)이 코팅된 용기(Thermo Fisher Scientific, Waltham, MA, USA)에서 배양하였으며, 배양 배지는 TeSR-E8 배지(STEMCELL Technologies)를 사용하여 매일 1회 주기로 교체하면서 배양하였다.
[실시예 2]
hiPSC로부터 배아체의 형성
상기 <실시예 1>에서 제조한 CBMC 유래의 hiPSC를 Aggrewell 배지(STEMCELL)에 재현탁하고, 2×106 세포/웰의 농도로 100-mm 배양 플레이트에 접종하였다. 접종한 hiPSC는 37 ℃ 배양기에서 24시간 동안 배양하고, 다음날 배양 배지를 TeSR-E8 배지(543 ㎕/㎖ 탄산수소나트륨(NaHCO3), 64 ㎍/㎖ L-아스코르브산 2-인산염 마그네슘(L-Ascorbic acid 2-phosphate magnesium), 14 ng/㎖ 아셀렌산나트륨(Sodium selenite), 107 ㎍/㎖ 트렌스페린(Transferrin), 20 ㎍/㎖ 인슐린, 100 ng/㎖ 섬유아세포 증식인자-2(FGF-2) 및 2 ng/㎖ 인간 형질전환 생장 인자 β 1(transforming growth factor beta 1, TGF-β1)를 포함하는 DMEM/F12 배지에 글루타민(glutamine)과 HEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)가 추가됨)로 교체한 다음, 6일 동안 추가로 부착배양하여 배아체(embryoid body)를 형성 및 수득하였다.
[실시예 3]
배아체로부터 돌기세포의 형성 및 분리
상기 <실시예 2>에서 형성 및 수득한 배아체(embryoid body, EB)를 20% 소태아혈청(Fetal Bovine Serum) 및 10% 페니실린/스트렙토마이신을 함유하는 DMEM 배지(Thermo Fisher Scientific)에 현탁하고, 젤라틴(gelatin)이 코팅된 플레이트 상에서 7일 동안 37 ℃에서 5% CO2로 배양하여 돌기세포(outgrowth cell, OG)의 형성을 유도하였다. 이를 위해 배양 플레이트는 0.1% 젤라틴으로 30분 동안 바닥 면을 코팅하고, 완전히 말린 것을 사용하였다.
형성한 OG 세포를 젤라틴 코팅 플레이트에서 분리하여, 40 ㎛ 크기의 세포 스트레이너(cell strainer; Thermo Fisher Scientific)에 통과시켜 EB 덩어리(EB clump)를 제거하고 단일 세포 단위의 OG 세포만을 분리 및 수득하였다.
[실시예 4]
돌기세포로부터 연골세포 펠렛의 제조 및 연골세포로의 분화
상기 <실시예 3>에서 분리 및 수득한 단일 세포 단위의 돌기세포(outgrowth cell, OG)를 계수하여 펠렛당 1×103, 2×103 또는 3×103 세포가 되도록 마이크로웰(microwell)에 준비하여 펠렛 형태로 세포의 응집이 용이하도록 1800 rpm으로 5분 동안 원심분리하여 세포를 침전시켜 연골세포 펠렛을 제조하였다. 제조된 펠렛의 직경을 측정한 결과 OG 세포 200개로 이루어진 펠렛의 직경은 152 ㎛이고, 500개로 이루어진 펠렛의 직경은 182 ㎛, 1000개로 이루어진 펠렛의 직경은 226 ㎛, 2000개로 이루어진 펠렛의 직경은 278 ㎛, 3000개로 이루어진 펠렛의 직경은 334㎛ 및 5000개로 이루어진 펠렛의 직경은 462 ㎛인 것을 확인하였다.
그 후, 상기 제조된 연골세포 펠렛을 연골 분화 배지(Chondrogenic differentiation medium)에 접종하고, 매일 1회 새로운 배지로 교체하면서 총 30일 동안 37 ℃에서 배양하여 최종적으로 분화된 연골세포를 수득하였다. 상기 연골 분화 배지는 50 ng/㎖ 인간 골형성 단백질 2(human bone morphogenetic protein 2, BMP2) 및 10 ng/㎖ 인간 형질전환 생장 인자 β3(human transforming growth factor beta 3, TGF-β3)가 추가된 DMEM 배지(20% 넉아웃 혈청 대체물(knockout serum replacement), 1× 비-필수 아미노산(1× non-essential amino acids), 1 mM L-글루타민(L-glutamine), 1% 소듐 피루브산(sodium pyruvate), 1% ITS+ 프리믹스(Premix), 10-7 M 덱사메타손(dexamethasone) 및 50 ㎛ 아스코르브산(ascorbic acid), 40 ㎍/㎖ L-프롤린(L-proline)을 사용하였다.
[실시예 5]
연골세포 펠렛의 유전학적 특성의 분석
상기 <실시예 4>에서 수득한 연골세포 펠렛의 유전학적 특성을 분석하기 위하여, 10일, 20일 및 30일 동안 연골의 세포외기질(extracellular matrix)을 구성하는 주요 단백질을 코딩하는 유전자인 연골세포 펠렛에서 COL2A1(collagen type II gene), ACAN(aggrecan gene), COMP(cartilage oligomeric matrix protein gene) 및 SOX9(sex-determining region Y-box 9 gene)의 발현 수준을 분석하였다.
그 결과, [도 4]에 나타난 바와 같이, hiPSC에 비하여 본 발명의 연골세포 펠렛에서 유의적으로 ACAN, COL2A1 및 COMP의 발현이 증가되는 것을 확인하였다. 이를 통해, 본 발명에 따라 제조된 연골세포 펠렛은 연골의 ECM 성분을 합성하고 연골 유사 특징을 나타내는 것을 확인하였다.
[실시예 6]
연골세포 펠렛의 조직학적 분석
상기 <실시예 4>에서 수득한 연골세포 펠렛의 조직학적 분석을 위해 4%의 파라포름알데하이드(paraformaldehyde)를 사용하여 실온에서 2시간 동안 고정시켰다. 한 층의 거즈를 카세트(cassette) 상에 놓고 연골세포 펠렛을 거즈로 이동하였다. 순차적으로 에탄올 용액으로 탈수를 수행하였다. 탈수 용액은 단계적인(graded) 에탄올과 자일렌(zylene) 혼합물 (Duksan Pure Chemicals, 안산, 대한민국)로 제거하고 파라핀(paraffin)은 밤새도록 침윤시켰다. 다음날, 연골세포 펠렛을 파라핀 블록에 고정시키고 마이크로톰(microtome)을 사용하여 7 ㎛의 절편을 수득하였다. 슬라이드를 60 ℃에서 10분 동안 건조하였다. 절편을 2회 사이클의 자일렌으로 탈파라핀화 하였다. 절편은 순차적으로 감소하는 에탄올 시리즈(series)로 재수화(rehydrate)하고 절편을 5분 동안 흐르는 수돗물로 헹구었다.
연골에서 세포외기질(extracellular matrix, ECM)를 검출하기 위해, 알시안 블루(alcian blue) 염색은, 절편을 1% 알시안 블루 용액에서 30분 동안 배양하였다. 그 후에, 슬라이드를 세척하고, 1분 동안 뉴클리어 패스트 레드(nuclear fast red)로 대조 염색하였다. 사프라닌 O(Safranin O) 염색은, 절편을 바이게르트 철 헤마톡실린(weigert's iron hematoxylin)에서 슬라이드를 10분 동안 배양하였다. 슬라이드를 세척하고 01% 사프라닌 용액에서 5분 동안 배양하였다. 톨루이딘(toluidine) 염색은, 절편을 톨루이딘 블루 용액에서 4분 동안 배양하였다.
염색 공정 후에, 절편을 세척하고 순차적으로 증가하는 에탄올 시리즈에 통과시켰다. 에탄올을 2회 사이클의 자일렌으로 제거하고 슬라이드를 VectaMount™ Permanent Mounting Medium (Vector Laboratories, Burlingame, CA, USA)을 사용하여 고정하였다. 명시야 현미경(bright field microscope)으로 연골세포 펠렛의 염색 상태를 확인하였다.
양성 대조군으로 골수 유래 중간엽 줄기세포(bone marrow-derived mesenchymal stem cell, BMSC)로부터 <실시예 2> 내지 <실시예 4>와 동일한 방법으로 제조한 연골세포 펠렛을 사용하였다.
그 결과, [도 5]에 나타난 바와 같이, 분화 초기 단계(10일 째)에서도 연골세포 펠렛의 안쪽 부분에서 ECM의 축적을 확인하였다. 골소강(Lacunae)은 관절 연골에 나타나는 주요 특징 중에 하나이다. 비어있는 골소강과 같은 틈(capacity)이 10일 후에 나타났다. 그러나 크기는 연골세포로 분화가 진행됨에 따라 감소하였다. 분화 30일 째, ECM이 비어있는 틈에 축적되면서, 관절 연골(articular cartilage)안의 골소강과 유사하게 나타났다.
[실시예 7]
연골세포 펠렛의 면역조직학적 분석
상기 <실시예 4>에서 수득한 연골세포 펠렛의 면역조직학적 분석을 위해 상기 <실시예 6>과 동일한 방법으로 수득한 절편을 60℃에서 2시간 동안 건조시키고, 2회 사이클의 자일렌으로 탈파라핀화 하였다. 절편은 순차적으로 감소하는 에탄올 시리즈(series)로 재수화(rehydrate)하고 절편을 5분 동안 흐르는 수돗물로 헹구었다.
항원 언마스킹(unmasking)은 끓는 시트르산염(citrate) 완충액 (Sigma-Aldrich)에서 15분 동안 배양한 후에 20분 동안 냉각시킴으로써 유도하였다. 그리고 나서 냉각된 절편을 탈이온수(DW)로 2회 세척하였다. 내인성 퍼옥시다아제(peroxidase)의 활성은 DW로 희석된 3% 과산화수소(Sigma-Aldrich) 에서 절편을 10분 동안 배양함으로써 차단하였다. 절편을 DW로 2회 세척한 후, 0.1% 트윈-20을 함유하는 트리스-완충 식염수(tris-buffered saline, TBS; TBST)을 사용하여 추가적으로 세척하였다. 절편은 1% 소 혈청 알부민(bovine serum albumin; Sigma-Aldrich, St Louis, MO, USA)를 함유하는 TBS로 실온에서 20분 동안 차단되었다.
차단 용액으로 희석한 1차 항체를 절편에 첨가하고 4 ℃ 에서 밤새도록 배양하였다. 1차 항체는 다음의 비율로 희석 하였다; I 형 콜라겐(collagen type I) (1/100; Abcam), II 형 콜라겐(collagen type II, 1/100; Abcam) 및 아그리칸(1/100; GeneTex, Irvine, CA, USA). 음성 대조군 슬라이드는 항체가 없는 동일한 양의 차단 용액으로 처리하였다. 다음날, 절편을 TBST에서 각각 3분 동안 3회 세척하고, 2차 항체(1/200; Vector Laboratories)를 실온에서 40분 동안 적용하였다. 절편을 TBST으로 세척하고 ABC 시약(Vector Laboratories) 내에서 30분 동안 배양하였다. 슬라이드를 TBST로 3회 세척하고, DAB 용액(Vector Laboratories)을 1분 동안 적용하였다. 절편은 색이 씻겨질 때까지 DW로 세척하였다. Mayer의 헤마톡실린(Mayer's hematoxylin)을 대조 염색을 위해 1분 동안 절편에 적용하였다. 절편을세척하고 순차적으로 증가하는 에탄올 시리즈에 통과시켰다. 에탄올을 2회 사이클의 자일렌으로 제거하고 슬라이드를 VectaMount™ Permanent Mounting Medium (Vector Laboratories, Burlingame, CA, USA)을 사용하여 고정하였다. 명시야 현미경(bright field microscope)으로 연골세포 펠렛의 염색 상태를 확인하였다.
연골의 품질은 ECM 단백질의 주요 타입에 따라 결정된다. 따라서, 특정 단백질을 확인하는 것이 중요하다. 아그리칸 및 II 형 콜라겐 단백질은 ECM을 구성하는 주요 성분으로 알려져있다. II 형 콜라겐은 유리질 연골(hyaline cartilage)을 나타내는 주요한 콜라겐 유형이다.
그 결과, [도 6]에 나타난 바와 같이, II 형 콜라겐의 염색 강도는 BMSC 대조군보다 CBMC-hiPSC 유래 연골세포 펠렛에서 더 높은 것으로 확인되었다. 염색 결과에 상응하여, 아그리칸 및 II 형 콜라겐은 30일 째에 연골세포 펠렛의 안쪽에서 대부분 검출되었다. 섬유성 연골(fibrotic cartilage)의 주요한 특징은 I 형 콜라겐의 높은 발현이다. 따라서 <실시예 4>에서 수득한 연골세포 펠렛이 섬유성 연골의 주요한 특징을 가지지 않음을 확인하였다(도 7b). I 형 콜라겐의 발현은 BMSC 대조군 펠렛 보다 상대적으로 높았으나, 발현은 일정한 수준을 유지 했으며, 연골세포로 분화하는 동안 크게 증가하지 않았다.
CBMC-hiPSC로부터 분화된 연골 세포는 ECM 성분 단백질을 생산할 수 있으며, I 형 콜라겐보다 II 형 콜라겐의 발현이 높았다. 결론적으로 CBMC-hiPSC가 유리질 연골의 특징과 유사한 연골세포를 생성 할 수 있음을 확인하였다.
[실시예 8]
CBMC-hiPSC 및 MSC로부터 생성한 연골세포 펠렛의 유전자 발현의 비교
콜라겐은 ECM을 구성하는 가장 풍부한 단백질이다. 콜라겐에는 여러 종류가 있으나 I, II, 및 X 형 콜라겐은 주로 연골과 관련이 있다. <실시예 7>에서, 면역조직학적 분석에 의해 I 형 콜라겐 및 II 형 콜라겐의 발현을 확인하였다(도 6a 및 도 6b). 이를 바탕으로 COL1A1 및 비대성(hypertrophic) 연골에서 발현되는 우성 유형으로 알려진 단백질인 COL10A1의 발현을 분석했다. COL1A1의 발현은 관찰 시점 마다 감소했으며, COL10A1의 발현은 연골세포로의 분화 과정에서 변하지 않았다(도 7a).
COL1A1에 대한 COL2A1 의 발현 비율을 측정하였는데, COL1A1에 대한 COL2A1의 발현 비율이 증가(도 7b)한 것을 확인할 수 있었으며, 이는 섬유성 연골 유전자에 대한 유리질 연골 유전자의 발현이 높다는 것을 나타낸다. CBMC-hiPSC로부터 생성된 연골세포 펠렛(Chondrogenic Pellet)을 중간엽 줄기세포로부터 생성된 연골세포 펠렛(MSC Control Pellet)과 실시간 PCR을 사용하여 비교하였다(도 7c). COL2A1 및 SOX9의 발현은 MSC Control Pellet에 비해 Chondrogenic Pellet에서 유의하게 높았다. 반면에, 섬유성 마커인 COL1A1 및 비후성 마커 COL10A1의 발현은 MSC Control Pellet에서 현저하게 높았다. 이를 통해 CBMC-hiPSC가 중간엽 줄기세포보다 유리질의 연골 재생을 위한 연골세포 생성에 더 적합한 것을 확인하였다.
[실시예 9]
다양한 hiPSC의 연골세포 분화능 비교
다양한 세포에서 유래한 hiPSC의 연골세포 분화능을 비교하기 위해, <실시예 1> 내지 <실시예 4>와 동일한 방법으로 피부 섬유아세포(DF) 유래, 말초혈액단핵구(PBMC) 유래, 골관절염 섬유아세포 유사 세포(FLS) 유래 또는 제대혈 단핵구 세포(CBMC) 유래 hiPSC로부터 연골세포 펠렛을 연골 분화 배지(실시예4)에서 21일동안 제조하였다. 각각의 연골세포 펠렛(D21 Pellet)에서 연골 형성에 관련된 초기 연골 발생 마커(Early Chondrogenic Marker), 연골 기질 마커(Cartilage Matrix Marker) 및 비대성 또는 섬유성 연골 마커(Hypertrophy and Fibrotic Marker)의 발현 수준을 비교하였는데, 구체적으로 초기 연골 발생 마커로는 SOX9, SOX5 및 SOX6을, 연골 기질 마커로는 ACAN, COL2A1 및 PRG4를, 비대성 또는 섬유성 연골 마커로는 COL1A1, COL10A1 및 RUNX2을 확인하였다.
그 결과, [도 8]에 나타난 바와 같이 CBMC-hiPSC에서는 초기 연골 발생 마커 및 연골 기질 마커인 SOX9, SOX5, SOX6, ACAN 및 COL2A1의 발현수준이 가장 높았으며, 비대성 또는 섬유성 연골 마커인 COL1A1, COL10A1 및 RUNX2의 발현수준은 다른 세 종류의 hiPSC 유래 연골세포 펠렛에 비하여 상대적으로 낮았다.
[실시예 10]
EB 유래 돌기세포 펠렛과 EB 유래 돌기세포의 연골세포 분화능 비교
배아체 유래 돌기세포(EB-derived outgrowth cell)를 단일층 배양한 경우와 펠렛 형태로 배양한 경우의 연골세포 분화능을 비교하기 위하여 상기 <실시예 3>에서 수득한 단일 세포 단위의 돌기세포 1×105, 3×105 또는 5×105개를 상기 <실시예 4>의 연골 분화 배지에서 21일 동안 단일층 배양(monolayer culture) 또는 펠렛 형태로 배양하였다. 단일층 배양 또는 펠렛 형태 배양을 통해 각각 수득한 연골세포에서 SOX9, ACAN, COL2A1, COL1A1 및 COL10A1의 발현 수준을 비교하였다.
그 결과, [도 9]에 나타난 바와 같이 1×105, 3×105 또는 5×105개의 돌기세포 모두 펠렛 형태로 배양한 경우에 SOX9, ACAN 및 COL2A1의 발현 수준이 높게 나타났다. 이를 통해 배아체 유래 돌기세포를 펠렛 형태로 배양한 경우에 연골세포 분화능이 높은 것을 확인할 수 있었다.
[실시예 11]
EB 단일 세포와 EB 유래 돌기세포의 연골세포 펠렛 형성능 비교
배아체 단일 세포(EB Single cell)와 배아체 유래 돌기세포(EB-derived outgrowth cell)의 연골세포 펠렛 형성능을 비교하기 위하여, 배아체를 분해하여 배아체를 구성하는 단일 세포를 연골 분화 배지에서 펠렛 형태로 배양한 경우와 배아체 유래 돌기세포를 펠렛 형태로 배양한 경우에 형성되는 연골세포 펠렛의 수를 비교하였다.
그 결과, [도 10]에 나타난 바와 같이 배아체를 구항하는 단일세포를 펠렛 형태로 배양한 경우에는 연골세포 펠렛의 형성 비율이 약 11%로 나타났고, 배아체 유래 돌기세포를 펠렛 형태로 배양한 경우에는 연골세포 펠렛 형성 비율이 약 98%로 나타났다. 이를 통해 배아체로부터 돌기세포를 유도하여 연골세포 펠렛을 제조하는 것이 효율적임을 확인할 수 있었다.
[실시예 12]
골관절염 모델에서 연골 재생 효과 분석
골관절염 동물 모델에서 상기 <실시예 4>에서 제조한 연골세포 펠렛의 연골 재생 효과를 평가하고자 하였다.
구체적으로, 수술 유도 모델은 측부지(collateral)나 십자인대(cruciate ligament)의 외과적 처치를 통해 관절(joint)의 손상을 유도하여 골관절염을 발생시키는 방법이다. 반월 상연골(meniscus) 절제술과 전방 십자인대 절개술(anterior cruciate ligament transection, ACLT)이 주로 사용된다. 본 발명자들은 전방 십자인대 절개술을 통하여 토끼에게 자연적으로 발생되는 골관절염과 유사한 연골 부위의 손상을 유도하였다. 전방 십자인대 절개술을 수행한지 3일 후에 관절강 내 주사 방법으로 2000개의 돌기세포를 함유하는 연골세포 펠렛인 MIU(Minimal injectable unit), 히알루론산(hyaluronic acid, HA), 또는 MIU와 HA를 동시에(HA+MIU) 주사하였다. Sham 대조군(Sham control)은 개복 후 연골 부위의 손상 없이 다시 봉합한 토끼이다. MIU 및/또는 HA를 투여한 후 30일 후에 사프라닌 O 및 톨루이딘 블루로 염색하여 연골재생 효과를 확인하였다.
그 결과, [도 11]에 나타난 바와 같이, MIU 단독 또는 MIU와 HA를 동시에 주사기로 투여하는 경우, 연골 손상 부위에 연골 특이적 기질이 많이 합성되어 정상 조직과 유사하게 연골 조직이 재생되는 것이 확인되었다. 재생된 연골은 붉은색 또는 파란색으로 염색되어 나타났다. 이를 통해 본 발명의 연골세포 펠렛은 연골 재생 효과가 뛰어나며 특히 HA 단독 투여군에 비하여 MIU 단독 또는 MIU 및 HA 동시 투여가 연골재생 효과가 더 뛰어난 것을 확인할 수 있었다.
[실시예 13]
골관절염 모델에서 연골 재생 효과 분석
상기 <실시예 12>와 동일한 방법으로 골관절염 토끼 모델을 제조하였다. MIU 및/또는 HA를 주사한지 4주 후에 토끼의 연골을 에반스 블루(Evans blue)를 이용하여 염색하고, 연골 상태 측정에서 일반적으로 사용하는 방법인 ICRS score 방법에 의하여 블라인드 테스트(Blind test)를 통하여 3명의 사람이 평가한 점수를 합산하여 평균을 계산하였다. 하기 [표 1]에 ICRS score 결과를 나타냈으며, 점수가 높을수록 골관절염의 유발 정도 즉, 연골의 손상 정도가 높은 것을 의미한다(0 = normal; 1 = superficial fissures and cracks; 2 = Lesions extending down to < 50% of cartilage depth; 3 = Cartilage defects extending down > 50% of cartilage depth; 4 = Severely Abnormal).
그 결과, [표 1] 및 [도 12]에 나타난 바와 같이, MIU를 단독으로 투여한 경우 평균적으로 HA 단독 투여군 내지 MIU 및 HA 동시투여군보다 연골 손상 정도가 유의적으로 낮은 것을 확인할 수 있었다.
동물 번호 | 대조군(Sham) | 골관절염 모델(VC) | HA | MIU | MIU+HA |
1 | 1 | 15 | 21 | 0 | 9 |
2 | 0 | 59 | 23 | 16 | 35 |
3 | 0 | 18 | 21 | 10 | 7 |
4 | 0 | 16 | 13 | 10 | 8 |
5 | 0 | 26 | 22 | 12 | 27 |
평균 | 0.2 | 26.8 | 20 | 8.8 | 17.2 |
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에서 제공하는 연골세포 펠렛은 크기가 균질하고 그 크기가 작아 주사를 통하여 외과적 수술 없이 연골재생이 필요한 환자에 투여할 수 있으며, 연골세포, 특히 유리질 연골세포로 분화할 확률이 높아 연골재생 효과가 우수하므로, 산업상 이용가능성이 크다.
Claims (20)
- (a) 인간 유도 만능 줄기세포(human induced pluripotent stem cell)를 배양하여 배아체(embryoid body)를 형성 및 수득하는 단계;(b) 상기 단계 (a)의 수득된 배아체를 돌기세포(outgrowth cell)로 유도 및 분리하는 단계; 및(c) 상기 단계 (b)의 분리된 돌기세포를 펠렛(pellet) 형태로 배양하는 단계;를 포함하는 연골세포 펠렛 제조 방법.
- 제1항에 있어서, 상기 단계 (a)의 인간 유도 만능 줄기세포는 제대혈단핵구세포(cord blood mononuclear cell) 유래인 것을 특징으로 하는 연골세포 펠렛 제조 방법.
- 제1항에 있어서, 상기 단계 (a)의 배양은 부착배양인 것을 특징으로 하는 연골세포 펠렛 제조 방법.
- 제1항에 있어서, 상기 단계 (b)의 유도는 젤라틴(gelatin) 코팅 플레이트에서 이루어지는 것을 특징으로 하는 연골세포 펠렛 제조 방법.
- 제1항에 있어서, 상기 단계 (c)는 분리된 돌기세포를 원심분리하여 펠렛 형태로 배양하는 것을 특징으로 하는 연골세포 펠렛 제조 방법.
- 제5항에 있어서, 상기 원심분리는 1100 ~ 2500 rpm의 속도에서 수행하는 것을 특징으로 하는 연골세포 펠렛 제조 방법.
- 제1항에 있어서, 상기 (c)단계의 분리된 돌기세포의 95% ~ 100%가 연골세포 펠렛으로 형성되는 것을 특징으로 하는 연골세포 펠렛 제조 방법.
- 제1항에 있어서, 상기 (c)단계의 배양은 BMP(human bone morphogenetic protein) 및 TGF-β(transforming growth factor-beta)를 포함하는 무혈청 배지에서 이루어지는 것을 특징으로 하는 연골세포 펠렛 제조 방법.
- 제1항에 있어서, 상기 연골세포 펠렛의 직경은 100 ~ 500 ㎛인 것을 특징으로 하는 연골세포 펠렛 제조 방법.
- 제1항에 있어서, 상기 연골세포 펠렛은 상기 단계 (b)의 돌기세포를 200 ~ 5000개 함유하는 것을 특징으로 하는 연골세포 펠렛 제조 방법.
- 제1항에 있어서, 상기 연골세포 펠렛은 유리질 연골세포로 분화되는 것을 특징으로 하는 연골세포 펠렛 제조 방법.
- 제1항의 제조 방법에 의해 제조된 연골세포 펠렛을 포함하는 관절염 치료에 사용하기 위한 약학적 조성물.
- 제12항에 있어서, 상기 연골세포 펠렛은 상기 단계 (b)의 돌기세포를 200 ~ 5000개 함유하는 것을 특징으로 하는 약학적 조성물.
- 제12항에 있어서, 상기 연골세포 펠렛의 직경은 100 ~ 500 ㎛인 것을 특징으로 하는 약학적 조성물.
- 제12항에 있어서, 상기 연골세포 펠렛은 유리질 연골세포로 분화되는 것을 특징으로 하는 약학적 조성물.
- 제12항에 있어서, 상기 관절염은 골관절염, 류마티스성 관절염, 건선성 관절염, 패혈성 관절염, 박리성 골연골염, 관절 인대 손상 및 반월상 연골판 손상으로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 약학적 조성물.
- 제12항에 있어서, 상기 약학적 조성물은 주사가능 형태인 것을 특징으로 하는 약학적 조성물.
- 제12항에 있어서, 상기 약학적 조성물은 히알루론산(hyaluronic acid)을 추가적으로 포함하는 것을 특징으로 하는 약학적 조성물.
- 제1항의 제조 방법에 의해 제조된 연골세포 펠렛을 관절염 환자에 투여하는 단계를 포함하는 관절염 예방 또는 치료방법.
- 제19항에 있어서, 상기 투여는 주사기를 사용하는 투여인 것을 특징으로 하는 관절염 예방 또는 치료방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020564724A JP7350344B2 (ja) | 2018-06-25 | 2019-06-25 | ヒト誘導万能幹細胞から軟骨細胞のペレットを製造する方法およびその用途 |
US17/253,742 US20210261920A1 (en) | 2018-06-25 | 2019-06-25 | Method for preparing pellets of chondrocytes from human induced pluripotent stem cells, and use thereof |
CN201980037927.3A CN112218942A (zh) | 2018-06-25 | 2019-06-25 | 从人诱导多能干细胞制备软骨细胞颗粒的方法及其用途 |
EP19825602.6A EP3812457A4 (en) | 2018-06-25 | 2019-06-25 | METHOD FOR PRODUCING CHONDROCYTE PELLETS FROM INDUCED HUMAN PLURIPOTENT STEM CELLS, AND USE THEREOF |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0072875 | 2018-06-25 | ||
KR20180072875 | 2018-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020004893A1 true WO2020004893A1 (ko) | 2020-01-02 |
Family
ID=68985143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/007633 WO2020004893A1 (ko) | 2018-06-25 | 2019-06-25 | 인간 유도 만능 줄기세포로부터 연골세포의 펠렛을 제조하는 방법 및 이의 용도 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210261920A1 (ko) |
EP (1) | EP3812457A4 (ko) |
JP (1) | JP7350344B2 (ko) |
KR (2) | KR20200000823A (ko) |
CN (1) | CN112218942A (ko) |
WO (1) | WO2020004893A1 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220017658A (ko) * | 2020-08-05 | 2022-02-14 | 가톨릭대학교 산학협력단 | 아쿠아포린 1 과발현을 이용한 유도만능줄기세포 유래 골관절염 모델 제조방법 |
KR102706805B1 (ko) * | 2020-08-25 | 2024-09-19 | 동국대학교 산학협력단 | 테라토마 유래 중간엽줄기세포 생산방법 및 이의 용도 |
KR20220164111A (ko) * | 2021-06-03 | 2022-12-13 | 셀로이드 주식회사 | 줄기세포 유래 스페로이드형 초자연골세포 분화방법 내지 이의 용도 |
CN118109397A (zh) * | 2022-11-30 | 2024-05-31 | 北赛泓升(北京)生物科技有限公司 | 人多能干细胞分化来源的软骨微组织的制备方法及用途 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100494265B1 (ko) | 2001-08-14 | 2005-06-13 | 메디포스트(주) | 관절연골손상 치료용 조성물 |
KR20160068982A (ko) | 2013-11-01 | 2016-06-15 | 고쿠리츠 다이가쿠 호진 교토 다이가쿠 | 신규 연골 세포 유도 방법 |
KR20180072875A (ko) | 2013-11-19 | 2018-06-29 | 나이키 이노베이트 씨.브이. | 신발류를 위한 조건부로 보이는 바이트 라인 |
KR20180085699A (ko) * | 2017-01-19 | 2018-07-27 | 가톨릭대학교 산학협력단 | 원심분리를 통한 세포 크기별 분리를 이용하여 분화 유도된 연골세포 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL206739A (en) * | 2010-06-30 | 2016-06-30 | David Segal | An injectable drug containing silitol as an active substance |
US20140271616A1 (en) * | 2013-03-15 | 2014-09-18 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions And Methods For Mesenchymal And/Or Chondrogenic Differentiation Of Stem Cells |
WO2018135902A1 (ko) * | 2017-01-19 | 2018-07-26 | 가톨릭대학교 산학협력단 | 줄기 세포로부터 분화 유도된 연골세포의 제조방법 |
-
2019
- 2019-06-25 WO PCT/KR2019/007633 patent/WO2020004893A1/ko unknown
- 2019-06-25 CN CN201980037927.3A patent/CN112218942A/zh active Pending
- 2019-06-25 EP EP19825602.6A patent/EP3812457A4/en active Pending
- 2019-06-25 JP JP2020564724A patent/JP7350344B2/ja active Active
- 2019-06-25 US US17/253,742 patent/US20210261920A1/en active Pending
- 2019-06-25 KR KR1020190075568A patent/KR20200000823A/ko not_active IP Right Cessation
-
2021
- 2021-04-01 KR KR1020210042928A patent/KR102479530B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100494265B1 (ko) | 2001-08-14 | 2005-06-13 | 메디포스트(주) | 관절연골손상 치료용 조성물 |
KR20160068982A (ko) | 2013-11-01 | 2016-06-15 | 고쿠리츠 다이가쿠 호진 교토 다이가쿠 | 신규 연골 세포 유도 방법 |
KR20180072875A (ko) | 2013-11-19 | 2018-06-29 | 나이키 이노베이트 씨.브이. | 신발류를 위한 조건부로 보이는 바이트 라인 |
KR20180085699A (ko) * | 2017-01-19 | 2018-07-27 | 가톨릭대학교 산학협력단 | 원심분리를 통한 세포 크기별 분리를 이용하여 분화 유도된 연골세포 |
Non-Patent Citations (5)
Title |
---|
LI, Y.: "Reprogramming of blood cells into induced pluripotent stem cell : as a new cell source for cartilage repair", STEM CELL RESEARCH & THERAPY, vol. 7, no. 1, 2016, pages 1 - 11, XP055505250, DOI: 10.1186/s13287-016-0290-7 * |
MESSANA, J. M.: "Size of the embryoid body influences chondrogenesis of mouse embryonic stem cells", JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, vol. 2, no. 8, 2008, pages 499 - 506, XP055674493, DOI: 10.1002/term.125 * |
NAM, Y.: "Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration", STEM CELL RESEARCH & THERAPY, vol. 8, no. 1, 2017, pages 1 - 13, XP055505267, DOI: 10.1186/s13287-017-0477-6 * |
RIM, Y. A.: "Different chondrogenic potential among human induced pluripotent stem cells from diverse origin primary cells", STEM CELLS INTERNATIONAL, vol. 2018, 21 January 2018 (2018-01-21), pages 1 - 13, XP055674505, DOI: 10.1155/2018/9432616 * |
SHEN, B.: "BMP-2 enhances TGF-beta3-mediated chondrogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in alginate beac culture", TISSUE ENGINEERING: PART A, 2009, pages 1311 - 1320, XP055674497, DOI: 10.1089=ten.tea.2008.0132 * |
Also Published As
Publication number | Publication date |
---|---|
EP3812457A4 (en) | 2022-04-27 |
US20210261920A1 (en) | 2021-08-26 |
KR102479530B1 (ko) | 2022-12-19 |
KR20210040908A (ko) | 2021-04-14 |
CN112218942A (zh) | 2021-01-12 |
JP2021530965A (ja) | 2021-11-18 |
JP7350344B2 (ja) | 2023-09-26 |
EP3812457A1 (en) | 2021-04-28 |
KR20200000823A (ko) | 2020-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020004893A1 (ko) | 인간 유도 만능 줄기세포로부터 연골세포의 펠렛을 제조하는 방법 및 이의 용도 | |
RU2306335C2 (ru) | Стволовые клетки и решетки, полученные из жировой ткани | |
CA2211120C (en) | Lineage-directed induction of human mesenchymal stem cell differentiation | |
KR100973453B1 (ko) | 인간 배아 줄기 세포에서 유래되는 연골세포 전구체 | |
WO2018026198A1 (ko) | 연골 재생용 조성물 및 이의 제조방법 | |
WO2011049414A2 (ko) | 지방조직 유래 성체 줄기세포 이동을 유도하는 방법 | |
WO2015105357A1 (ko) | 영양막 기저층으로부터 유래된 줄기세포 및 이를 포함하는 세포치료제 | |
WO2015012582A1 (ko) | 구슬형 연골세포 치료제의 제조방법 | |
WO2020067774A1 (ko) | 활액막 유래 중간엽 줄기세포 및 그의 용도 | |
WO2017026878A1 (ko) | 근골격계 전구세포 유도용 배지 조성물 및 근골격계 전구세포를 포함하는 근골격계 질환 예방 또는 치료용 약학적 조성물 | |
WO2018117569A1 (ko) | 심장줄기세포의 다층세포시트 및 이의 제조방법 | |
WO2019004792A9 (ko) | 인간 유래 심장 줄기세포 미세구의 제조 방법 및 용도 | |
WO2013165120A1 (ko) | 신경능선줄기세포의 배양방법 및 그 용도 | |
WO2015186906A1 (ko) | 건 또는 인대 손상 치유를 위한 자가 및 동종의 지방유래 중간엽줄기세포 조성물 및 이의 제조방법 | |
WO2011037416A9 (ko) | 세포이식술을 위한 혼합세포복합체인 세포스페로이드의 제조방법 및 이의 이용방법 | |
EP2732030A1 (en) | Preparation of parental cell bank from foetal tissue | |
WO2022075809A1 (ko) | 중간엽 줄기세포에서 분화된 골모세포 및 이를 포함하는 골질환 치료용 조성물 | |
WO2021054692A1 (ko) | 융모막판 인접 융모 유래 줄기세포 및 이를 포함하는 조직재생용 세포 치료제 | |
WO2020190094A1 (ko) | 중간엽줄기세포-하이드로겔을 함유하는 주사형 조성물 및 이의 제조, 동결 및 해동방법 | |
WO2019221477A1 (ko) | 전구세포 배양액 및 다층 그래핀 필름을 포함하는 줄기세포 분화 촉진용 조성물 및 이의 용도 | |
WO2013002553A2 (ko) | 반월상 연골 이식을 위한 연골세포의 증식방법 | |
WO2019078587A1 (ko) | 닭 골수 유래 골·연골전구세포 배양액을 유효성분으로 포함하는 골 생성 촉진 또는 연골 분화 유도용 조성물 | |
WO2022197160A1 (ko) | 탈락막 인접 융모간강 유래 줄기세포 및 이를 포함하는 조직재생용 세포 치료제 | |
WO2024053957A1 (ko) | 케미컬로 유도된 골형성세포와 이의 질병모델링에의 이용 및 골 이식용 스캐폴드 | |
WO2022255836A1 (ko) | 조직 내재성 uPAR+/Nestin+ 줄기세포 분리 배양 방법 및 이의 용도 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19825602 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020564724 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019825602 Country of ref document: EP Effective date: 20210125 |