WO2010071210A1 - 軟骨細胞様細胞、及びその製造方法 - Google Patents

軟骨細胞様細胞、及びその製造方法 Download PDF

Info

Publication number
WO2010071210A1
WO2010071210A1 PCT/JP2009/071184 JP2009071184W WO2010071210A1 WO 2010071210 A1 WO2010071210 A1 WO 2010071210A1 JP 2009071184 W JP2009071184 W JP 2009071184W WO 2010071210 A1 WO2010071210 A1 WO 2010071210A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
chondrocyte
cell
gene
cartilage tissue
Prior art date
Application number
PCT/JP2009/071184
Other languages
English (en)
French (fr)
Inventor
範行 妻木
Original Assignee
財団法人新産業創造研究機構
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人新産業創造研究機構, 国立大学法人大阪大学 filed Critical 財団法人新産業創造研究機構
Priority to CN2009801514688A priority Critical patent/CN102257133A/zh
Priority to US13/140,164 priority patent/US20110252486A1/en
Priority to JP2010543020A priority patent/JP5591119B2/ja
Priority to EP09833512A priority patent/EP2377926A4/en
Publication of WO2010071210A1 publication Critical patent/WO2010071210A1/ja
Priority to US13/926,183 priority patent/US9725737B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/32Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3817Cartilage-forming cells, e.g. pre-chondrocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3852Cartilage, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to a proliferative chondrocyte-like cell derived from somatic cells and having the same properties as chondrocytes, and a method for producing the chondrocyte-like cells.
  • the present invention also relates to a cell preparation for cartilage tissue regeneration, an implant, a method for producing an implant, a method for treating a cartilage disease, and a method for determining the efficacy of a test substance against cartilage disease using the chondrocyte-like cells.
  • the present invention relates to a composition for preparing chondrocyte-like cells for induction from somatic cells into the chondrocyte-like cells.
  • chondrocyte extracellular matrix constructed by collagen fibrils such as type II and XI collagen and proteoglycan, and chondrocyte extracellular matrix is determined by chondrocytes resident in cartilage. I know it will be created.
  • Osteoarthritis is a typical disease of cartilage tissue. Osteoarthritis is caused by deteriorating, wearing, or damaging articular cartilage due to mechanical stress (repetitive load, excessive movement, trauma, etc.), aging, etc. Osteoarthritis has symptoms such as pain (motion pain) and limited range of motion (range of motion limit) when the joint is operated, and is a cause of reducing the quality of daily life. Osteoarthritis is recognized in about 20% of Japanese people over the age of 50, and it is predicted that the number of affected people will increase as life expectancy increases due to future medical development and improvement of lifestyle. It has become a big issue for an aging society.
  • Non-Patent Documents 5-7 bone marrow-derived mesenchymal stem (MS) cells or embryonic stem (ES) cells.
  • MS cells can only grow to a limited extent, and more recent studies suggest that cartilage made from MS cells is unstable and cannot have sufficient cartilage properties.
  • Non-Patent Documents 8 and 9 Further, differentiated cells derived from ES cells are a heterogeneous population, and there is a concern that the function of cartilage tissue becomes insufficient (see Non-Patent Documents 10 and 11) or teratoma formation occurs. (Refer nonpatent literature 12).
  • an object of the present invention is to solve the above-described problems of the prior art. More specifically, the present invention develops a cell that can regenerate cartilage tissue and has a proliferative ability, and establishes a technique for providing a cell source that can also be used for the fundamental treatment of osteochondrosis. The purpose is to do.
  • the inventors of the present invention have made extensive studies to solve the above-mentioned problems.
  • the Myc family gene and / or the Klf family gene and the SOX9 gene It has been found that proliferating chondrocyte-like cells having characteristics equivalent to chondrocytes can be produced by selecting combinations and introducing them into somatic cells.
  • the chondrocyte-like cells thus obtained can be grown in monolayer culture and express a cartilage-specific marker.
  • the chondrocyte-like cells can form a cartilage tissue when cultured using collagen gel as a scaffold or when administered in vivo without using a scaffold.
  • the present invention has been completed by further studies based on these findings.
  • Item 1 A method for producing a chondrocyte-like cell, comprising a step of introducing at least one gene selected from the group consisting of a Myc family gene and a Klf family gene and a SOX9 gene into a somatic cell.
  • Item 2. The production method according to Item 1, wherein the Myc family gene is a c-Myc gene.
  • Item 3. The production method according to Item 1 or 2, wherein the Klf family gene is a Klf4 gene.
  • Item 4. Item 4. The production method according to any one of Items 1 to 3, wherein the somatic cell is derived from a human.
  • Item 5. Item 3.
  • Item 6. A chondrocyte-like cell obtained by introducing into a somatic cell at least one gene selected from the group consisting of a Myc family gene and a Klf family gene and a SOX9 gene.
  • Item 7. Item 7. The chondrocyte-like cell according to Item 6, wherein the Myc family gene is a c-Myc gene.
  • Item 10. Item 10. The chondrocyte-like cell according to any one of Items 6 to 9, wherein the somatic cell is a dermal fibroblast or an adipose tissue-derived stromal cell.
  • Item 11. Item 10. A cell preparation for cartilage tissue regeneration comprising the chondrocyte-like cell according to any one of Items 6 to 9.
  • Item 13. Item 13.
  • Item 14. Item 9.
  • An implant comprising a cartilage tissue constructed using the chondrocyte-like cell according to any one of Items 6 to 8.
  • Item 15. A method for producing an implant for cartilage tissue comprising the following steps: Item 9. A step of administering a chondrocyte-like cell according to any one of Items 6 to 8 into the body of a mammal, and a step of extracting a cartilage tissue formed from the chondrocyte-like cell in the body of the mammal.
  • a method for treating cartilage disease comprising the following steps: Item 9.
  • Item 17. Item 10. Use of the chondrocyte-like cell according to any one of Items 6 to 9 for producing a cell preparation for cartilage tissue regeneration.
  • Use of a composition comprising a chondrocyte-like cell according to any one of Items 6 to 9 and a scaffold material for producing a cell preparation for cartilage tissue regeneration.
  • Item 20 Item 20.
  • Item 20 The use according to Item 19, wherein the scaffold material is collagen.
  • Item 21. A cartilage tissue produced by administering a chondrocyte-like cell according to any one of Items 6 to 9 to a non-human mammal and forming a cartilage tissue from the chondrocyte-like cell in the body of the mammal. A formed non-human mammal.
  • Item 22. Item 22.
  • a method for determining the efficacy of a test substance against cartilage tissue comprising the step of administering the test substance to the non-human mammal according to Item 21, and determining the efficacy of the test substance against cartilage tissue.
  • a composition for preparing chondrocyte-like cells comprising at least one gene selected from the group consisting of a Myc family gene and a Klf family gene, and a SOX9 gene.
  • Item 24. The composition for chondrocyte-like cell preparation according to Item 23, wherein at least one gene selected from the group consisting of a Myc family gene and a Klf family gene and the SOX9 gene are contained in a form that can be introduced into somatic cells. .
  • proliferative chondrocyte-like cells having characteristics equivalent to those of chondrocytes can be provided, and thus a medical means effective for the treatment of cartilage diseases involving cartilage damage such as osteochondrosis is provided.
  • chondrocyte-like cells can be prepared from somatic cells of patients with a wide range of cartilage diseases including not only osteoarthritis but also growth cartilage diseases such as cartilage dysplasia, and various analyzes are performed. This can contribute to the elucidation of the disease state.
  • chondrocyte-like cells prepared from humans are suitable as materials for drug discovery and drug development.
  • chondrocyte-like cells can be obtained from somatic cells derived from skin tissues such as dermal fibroblasts and subcutaneous adipose tissue-derived stromal cells, the burden on patients and cell providers is reduced. From this point, it can be said that the clinical usefulness is high.
  • FIG. 1 It is a figure which shows the result evaluated about the characteristic of the Col11a2- ⁇ geo transgenic mouse and primary chondrocytes, MES and MDF isolated from the mouse.
  • A indicates the structure of the transgene introduced into the transgenic mouse.
  • the left figure of b shows the image of the Col11a2- ⁇ geo transgenic mouse stained with X-gal, and the right figure of b shows the result of tissue analysis of the cartilage of the X11-gal stained Col11a2- ⁇ geo transgenic mouse.
  • the left figure of c shows the results of observation of primary chondrocytes prepared from ⁇ geo transgenic mice with a phase contrast microscope, and the right figure of c shows the results of X-gal staining of primary chondrocytes prepared from ⁇ geo transgenic mice. Indicates.
  • d shows the result of incubation of primary chondrocytes prepared from ⁇ geo transgenic mice, MES and MDF, and primary chondrocytes prepared from wild-type F1 hybrid mice in the presence of 0 to 900 ⁇ g / ml G418. .
  • Tg indicates that it is derived from a ⁇ geo transgenic mouse
  • WT indicates that it is derived from a wild type liter mate mouse.
  • the notations “Tg” and “WT” are used in the same way in other figures. It is a figure which shows the result analyzed about the cell which introduce
  • “4R” indicates four reprogramming factors (Oct3 / 4, Sox2, c-Myc, and Klf-4). The notation “4R” is used in the same way in other figures as well.
  • b shows the result of Alcian blue staining and crystal violet staining of cells obtained by simultaneously transducing MEF with 4 reprogramming factors (Oct3 / 4, Sox2, c-Myc and Klf-4) and human SOX9.
  • Show. c shows the result of observing the shape of cells contained in colonies obtained by simultaneously transducing MEF with four reprogramming factors (Oct3 / 4, Sox2, c-Myc and Klf-4) and human SOX9.
  • D shows the result of observing the MEF shape.
  • E represents the number of stained colonies measured by performing Alcian blue staining and crystal violet staining for colonies obtained by introducing three reprogramming factors and Sox9.
  • “4R-c-Myc” does not contain c-Myc among the four reprogramming factors (Oct3 / 4, Sox2, c-Myc and Klf-4); “4R-c-Klf4 "Means that four reprogramming factors (Oct3 / 4, Sox2, c-Myc and Klf-4) do not contain Klf-4;” 4R-Oct3 / 4 "means four reprogramming factors ( Oct3 / 4, Sox2, c-Myc, and Klf-4) must not contain Oct3 / 4; and “4R-Sox2” is composed of four reprogramming factors (Oct3 / 4, Sox2, c-Myc) And Klf-4) that Sox2 is not included.
  • F shows the result of observing the shape of cells contained in a colony obtained by transducing MEF with c-Myc, Klf4, and Sox9 into MEF. It is a figure which shows the result of having analyzed about the cell which introduce
  • a to C show the number of stained colonies measured by Alcian blue staining and crystal violet staining, and the number of colonies composed of polygonal cells, for colonies obtained by introducing various combinations of each factor into MEF. Indicates.
  • D shows the result of observing the morphology of cells contained in colonies obtained by introducing each factor into MDF.
  • E is a diagram showing the results of culturing cells contained in a colony obtained by introducing each factor into MDF and observing the shape of each cell. It is a figure which shows the result of having evaluated the characteristic of the cell (cloned cell) obtained by introduce
  • A shows cells obtained by introducing each factor into MDF and the result of MDF stained with Alcian blue.
  • B shows the result of analyzing the expression of the transgene (transduction factor) by Western blot analysis for the cells, MDF, and primary chondrocytes obtained by introducing each factor into MDF.
  • “Pr chond.” Indicates primary chondrocytes. The notation “Pr chond.” Is used in the same way in other figures.
  • C shows the result of analyzing the expression of a transgene (transduction factor) by RT-PCR for cells, MDF, and primary chondrocytes obtained by introducing each factor into MDF. It is a figure which shows the result of having evaluated the characteristic of the cell (cloned cell) obtained by introduce
  • A shows the result of analyzing the expression of chondrocyte marker gene for cells, MDF and primary chondrocytes obtained by introducing each factor into MDF.
  • B shows the result of analyzing the expression of the MDF marker gene for cells, MDF, and primary chondrocytes obtained by introducing each factor into MDF.
  • C shows the result of analyzing the karyotype of cells (MK-4, MKO-2) obtained by introducing each factor into MDF. It is a figure which shows the result of having evaluated the characteristic of the cell (cloned cell) obtained by introduce
  • A is a graph comparing gene expression patterns of primary chondrocytes and MDF.
  • B is a diagram comparing gene expression patterns for MK-3 and primary chondrocytes.
  • C is a diagram comparing gene expression patterns for MK-3 and MDF.
  • D is the result of cluster analysis of cells, MDF and primary chondrocytes obtained by introducing each factor into MDF.
  • E is the result of analyzing the methylation status of dinucleotides by bisulfite genome sequencing analysis for MK-3, MK-4 and MDF.
  • black circles indicate methylated CpG dinucleotides in each gene, and white circles indicate non-methylated CpG dinucleotides in each gene.
  • A is a diagram showing the results of analyzing the proliferation characteristics of cells obtained by introducing each factor into MDF, and MDF.
  • B is a diagram showing the cells obtained by introducing each factor into MDF, and the results of Alcian blue staining after culturing MDF.
  • (C) is a diagram showing the result of analyzing the gel-cell complex formed by performing collagen gel culture using MK-3 and MDF. It is a figure which shows the result of having injected the cell (MK-5) obtained by introduce
  • A shows the result of observing the whole body of a nude mouse (the observation result of fluorescent color development is shown on the right).
  • B shows the result of observing a state where the skin on the back of a nude mouse was peeled off (the observation result of fluorescence development is shown on the right).
  • C shows the result of staining with Safranin O a continuous tissue section obtained from the subcutaneous part of the mouse injected with the cell suspension.
  • D is an enlarged view of the part surrounded by a square of C. It is a figure which shows the result of having injected the cell (chondrocyte-like cell) obtained by introduce
  • A shows safranin O, first green, and tissue of the injection site 16 weeks after the injection of cells (MK-7) obtained by introducing c-Myc, Klf-4, and Sox9 into MDF.
  • stained with iron hematoxylin is shown.
  • B shows safranin O, first green, and tissue of the injection site 8 weeks after the injection of cells (MK-7) obtained by introducing c-Myc, Klf-4, and Sox9 into MDF.
  • stained with iron hematoxylin is shown.
  • the result of performing Southern hybridization using the Klf4 cDNA probe on the genomic DNA of each chondrocyte-like cell prepared in Examples 1 and 2 is shown.
  • the colony obtained by introducing c-Myc, Klf-4, and Sox9 into adipose tissue-derived stromal cells is composed of the number of colonies stained by Alcian blue staining and crystal violet staining, and polygonal cells Shows the number of colonies to be played. It is a figure which shows the result of having analyzed about the cell which introduce
  • MKO Alcian blue staining of NHDF culture dish
  • EGFP NHDF culture dish
  • B shows the result of observing the shape of cells contained in colonies obtained by introducing OCT3 / 4, C-MYC, KLF-4, and SOX9 into NHDF.
  • C shows the result of observing the shape of cells in a culture dish of NHDF introduced with EGFP.
  • chondrocyte-like cells have the ability to proliferate and have the same characteristics as chondrocytes, and form cartilage tissue or It means cells that have the ability to regenerate (in other words, cartilage stem cells).
  • “same characteristics as chondrocytes” means positive for specific staining for chondrocytes and expressing a chondrocyte marker gene.
  • the method for producing chondrocyte-like cells of the present invention comprises a step of introducing into a somatic cell at least one gene selected from the group consisting of a Myc family gene and a Klf family gene and a SOX9 gene. To do.
  • a somatic cell at least one gene selected from the group consisting of a Myc family gene and a Klf family gene and a SOX9 gene.
  • somatic cells induced by chondrocyte-like cells is not particularly limited, and those derived from any tissue or site can be used.
  • somatic cells used in the present invention include those derived from tissues such as skin, subcutaneous fat, muscle, placenta, bone, cartilage, and more specifically, dermal fibroblasts, derived from subcutaneous fat tissue.
  • tissues such as skin, subcutaneous fat, muscle, placenta, bone, cartilage, and more specifically, dermal fibroblasts, derived from subcutaneous fat tissue.
  • examples include stromal cells (subcutaneous fat cells), embryonic fibroblasts, fat cells, muscle cells, osteoblasts, chondrocytes and the like.
  • skin-derived cells and subcutaneous fat-derived cells are preferable from the viewpoint of minimally invasive to the living body and more efficiently producing chondrocyte-like cells, and particularly skin fibroblasts and subcutaneous fat tissue.
  • Derived stromal cells are preferred.
  • materials can be selected from various cells, and in particular, easily available cells such as skin-derived cells and subcutaneous fat-derived cells can be used to reduce the burden on patients and ensure stable cell acquisition.
  • easily available cells such as skin-derived cells and subcutaneous fat-derived cells can be used to reduce the burden on patients and ensure stable cell acquisition.
  • a commercial item may be used as said somatic cell, and the somatic cell differentiated from ES cell, a mesenchymal stem cell, etc. can also be used.
  • the somatic cells are appropriately selected from those derived from mammals such as humans, mice, rats, hamsters, rabbits, cats, dogs, sheep, pigs, cows, goats and monkeys, depending on the purpose of use of chondrocyte-like cells. Although selected, those derived from humans are preferred when used for human therapeutic purposes. Moreover, when using human-derived somatic cells, they may be derived from any of fetuses, infants, children, and adults. When chondrocyte-like cells are used for human therapeutic purposes, it is desirable to use somatic cells collected from patients.
  • At least one selected from the group consisting of Myc family gene and Klf family gene as reprogramming factor (reprogramming factor) and SOX9 gene as cartilage-inducible transcription factor are combined, By introducing into cells, somatic cells are induced into chondrocyte-like cells.
  • Myc family genes include c-Myc, N-Myc, and L-Myc. These Myc family genes may be used alone or in combination of two or more. Among these Myc family genes, in the present invention, the c-Myc gene and the L-Myc gene are preferably used, and the c-Myc gene is more preferably used.
  • c-Myc gene is known as a transcriptional regulatory factor involved in cell differentiation and proliferation (S. Adhikary, M. Elilers, Nat. Rav. Mol. Cell Biol., 6, pp635-645, 2005), Its base sequence is known (NCBI accession Number NM_010849 (human), NM_002467 (Mouse)).
  • NCBI accession Number NM_005378 human
  • NM_008709 human
  • nucleotide sequence of L-Myc gene NCBI accession Number NM_005376 (human), NM_008506 (Mouse)
  • NCBI accession Number NM_005376 human
  • NM_008506 human
  • Klf family gene examples include Klf1, Klf2, Klf4, and Klf5. These Klf family genes may be used alone or in combination of two or more. Among these Klf family genes, in the present invention, the Klf2 gene, the Klf4 gene and the Klf5 gene are preferable, the Klf2 gene and the Klf4 gene are more preferable, and the Klf4 gene is particularly preferable.
  • Klf4 gene is known as a tumor suppressor (AMGhaleb et al., Cell Res., 15, pp92-96, 2005), and its nucleotide sequence is known (NCBI accession Number NM_010637 (human), NM_004235 (Mouse) ).
  • nucleotide sequence of the Klf1 gene (NCBI accession Number NM_006563 (human), NM_010635 (Mouse)
  • nucleotide sequence of the Klf2 gene NCBI accession Number NM_016270 (human), NM_008452 (Mouse)
  • nucleotide sequence of the Klf5 gene NCBI accession Number NM_001730 (human), NM_009769 (Mouse)
  • the SOX9 gene is known as a transcription factor that regulates the expression of type II collagen and the like (V. Lefebvre el al., Mol. Cell. Biol. 17, pp2336-2346, 1997), and its nucleotide sequence is known. (NCBI accession Number NM_000346 (human), NM_011448 (Mouse)).
  • NM_000346 human
  • NM_011448 Mouse
  • the origins of these three genes are common in mammals including humans, and those derived from any mammal can be used, but can be appropriately selected according to the origin of the somatic cells to be introduced. desirable.
  • the above three genes are human-derived.
  • the above three types of genes have several amino acid sequences (for example, 1 to 10, preferably 1 to 6, more preferably 1 to 4, more preferably 1).
  • the above three genes can be prepared according to a conventional method based on known sequence information.
  • cDNA of a target gene can be prepared by extracting RNA from a mammal-derived cell and cloning according to a conventional method.
  • the gene introduced into the somatic cell may be a combination of at least one of the Myc family gene and the Klf4 family gene as a reprogramming factor and the SOX9 gene.
  • the gene introduced into the somatic cell may be a combination of at least one of the Myc family gene and the Klf4 family gene as a reprogramming factor and the SOX9 gene.
  • a combination of at least one Myc family gene, at least one Klf family gene, and SOX9 gene more preferably a c-Myc gene or N-Myc gene and a Klf2 gene or A combination of Klf4 gene and SOX9 gene; a combination of three genes of c-Myc gene, Klf4 gene and SOX9 is particularly preferred.
  • the introduction of two or more kinds of genes into somatic cells can be performed by a method usually used in transfection of animal cells.
  • a method for introducing the above two or three kinds of genes into somatic cells a method using a vector; a calcium phosphate method; a lipofection method; an electroporation method; a microinjection method and the like are exemplified.
  • the method using a vector is preferable from the viewpoint of introduction efficiency.
  • a viral vector, a non-viral vector, an artificial virus, or the like can be used as the vector. It is preferably used from the viewpoint of safety.
  • the two or more genes may be incorporated into different vectors, or two or more genes may be incorporated into one vector.
  • somatic cells into which two or more genes have been introduced are induced into proliferative chondrocyte-like cells having the same characteristics as chondrocytes at the same time that the somatic cells are initialized.
  • Selection of cells induced by chondrocyte-like cells from somatic cells into which two or more genes have been introduced indicates whether or not the cells have the ability to proliferate and have the same characteristics as chondrocytes As can be done.
  • chondrocyte-like cells are selected from among cells having proliferative ability, such as cell shape, presence or absence of specific staining for chondrocytes, presence or absence of expression of chondrocyte marker gene of cells, etc. It can be done as an indicator.
  • chondrocyte-like cells are monolayer cultured in a liquid medium, they exhibit a circular or polygonal shape, and such a shape can be used as the index.
  • chondrocyte-like cells have glucosaminoglycans that are specifically expressed in chondrocytes, use Alcian Blue, which can stain glucosaminoglycans, and the presence or absence of the staining is used as the index. You can also Furthermore, since chondrocyte-like cells express chondrocyte marker genes (Col2a1, Acan, SOX5, etc.), the presence or absence of the expression of the marker gene can also be used as the index.
  • chondrocyte marker genes Cold2a1, Acan, SOX5, etc.
  • the chondrocyte-like cells thus obtained can proliferate when cultured in a monolayer in a liquid medium, and can normally proliferate stably while maintaining the characteristics of chondrocytes up to about 9 to 21 passages.
  • cultivation of an animal cell can be used for culture
  • An example of a suitable medium used for culturing chondrocyte-like cells is a DMEM medium containing about 1 to 25% by volume of FBS.
  • cartilage tissue having a three-dimensional structure can be formed using the cartilage tissue as a scaffold, and the presence of the scaffold material in vitro.
  • cartilage tissue with a three-dimensional structure can be formed.
  • the chondrocyte-like cells obtained in the present invention have a proliferative ability and can regenerate cartilage tissue in vivo, osteochondrosis, dysplasia arthritis (for example, Rheumatoid arthritis, etc.), is effective in the treatment of cartilage diseases such as trauma and osteonecrosis, and can be used as a cell preparation (pharmaceutical composition) for cartilage tissue regeneration.
  • the chondrocyte-like cells may be applied to a cartilage disease site alone as they are, or may be applied to a cartilage disease site together with a scaffold material.
  • the chondrocyte-like cells when the chondrocyte-like cells are applied to the cartilage disease site together with the scaffold material, the chondrocyte-like cells and the scaffold material may be applied individually to the cartilage disease site. By using cell preparations containing cell-like cells and scaffold material, it is desirable to apply these simultaneously to the site of cartilage disease.
  • a pharmaceutically acceptable diluent carrier may be included together with the chondrocyte-like cells as necessary.
  • the pharmaceutically acceptable diluent carrier include physiological saline, buffer solution and the like.
  • the cell preparation may contain a pharmacologically active component or a component that serves as a nutrient source for chondrocyte-like cells, if necessary.
  • the chondrocyte-like cells contain a scaffold material.
  • the chondrocyte-like cells are desirably contained in a state of being supported on the scaffold material.
  • the scaffold material that can be used is not particularly limited as long as it is pharmaceutically acceptable, and is appropriately selected depending on the site of the cartilage tissue to be applied.
  • Examples include biodegradable or bioresorbable materials.
  • Examples of usable scaffold materials include collagen, hydroxyapatite, ⁇ -TCP (tricalcium phosphate), ⁇ -TCP (tricalcium phosphate), polylactic acid, polyglycolic acid, and complexes thereof. Is done. These scaffold materials may be used individually by 1 type, and may be used in combination of 2 or more type.
  • collagen is preferable from the viewpoint of efficient regeneration of cartilage tissue.
  • the shape of the scaffold material is not particularly limited, and may be appropriately designed according to the shape of the damaged site of the cartilage tissue to which the cell preparation is applied.
  • the chondrocyte-like cells may be seeded or mixed with the scaffold material and cultured.
  • the ratio of the chondrocyte-like cells used for the scaffold material is as follows.
  • the chondrocyte-like cells are 1 ⁇ 10 6 to 1 ⁇ 10 8 cells per 1 cm 3 of the scaffold material.
  • the chondrocyte-like cells are 1 ⁇ 10 6 to 1 ⁇ 10 8 cells per 1 cm 3 of the scaffold material. The ratio which becomes is illustrated.
  • the method for applying the cell preparation to the diseased site of the cartilage tissue is appropriately set according to the type of the cell preparation, the site of the cartilage tissue to be applied, etc. Examples thereof include a method of directly injecting the cell preparation into a diseased site, a method of injecting the cell preparation into a diseased site of cartilage tissue for treatment using an arthroscope, and the like.
  • the dosage of the cell preparation applied to the diseased part of the cartilage tissue is effective for cartilage tissue regeneration based on the type of cell preparation, the part of the cartilage tissue, the degree of symptoms, the age and sex of the patient, etc. An appropriate amount may be set as appropriate.
  • cartilage tissue implant for the treatment of cartilage diseases with cartilage defects such as osteochondrosis. You can also
  • the chondrocyte-like cells are seeded on a scaffold material, and the three-dimensional structure cartilage is grown in a medium in which the chondrocyte-like cells can grow. Culture may be performed until the tissue is constructed. More specifically, 1 ⁇ 10 6 to 1 ⁇ 10 8 cells of the above chondrocyte-like cells are seeded per 1 cm 3 of the scaffold material and cultured at 37 ° C. under 5% CO 2 for about 1 to 4 weeks. That's fine.
  • the scaffold material used for the construction of the three-dimensional structure cartilage tissue is the same as that usable for the cell preparation.
  • the shape of the scaffold material may be appropriately set according to the shape of the target implant.
  • the medium used for constructing the three-dimensional structure of the cartilage tissue is not particularly limited as long as the chondrocyte-like cells can grow, and as an example, about 1 to 25% by volume of FBS is used. Examples include DMEM medium, but from the viewpoint of clinical application, it is desirable to use a serum-free medium having a clear composition (defined serum-free medium).
  • the cartilage tissue having a three-dimensional structure thus prepared is used as an implant for cartilage tissue with the scaffold material included or with the scaffold material removed.
  • the method applied to the diseased site of the cartilage tissue of the implant is appropriately set according to the shape of the implant, the site of the cartilage tissue to be applied, and the like. And a method of directly incorporating the implant into the body.
  • the chondrocyte-like cells can form a cartilage tissue even when administered to an in vivo site other than the cartilage tissue. Accordingly, the chondrocyte-like cell is administered to a living body of a mammal, and after the cartilage tissue is formed from the chondrocyte-like cell in the mammal's living body, the cartilage tissue is removed, whereby an implant for cartilage tissue is obtained. You can also get
  • the mammal used may be a human, mouse, rat, hamster, rabbit, cat, dog, sheep, pig, cow, goat, monkey, etc. Or a non-human mammal.
  • the site to which the chondrocyte-like cells are administered is not particularly limited, but from the viewpoint of ease of extraction of the formed cartilage tissue, subcutaneous, particularly subcutaneous in the back is preferable. It is.
  • the chondrocyte-like cells may be administered together with a scaffold material, but the chondrocyte-like cells may be administered alone without including a scaffold. Thus, even if the scaffold is not administered, the chondrocyte-like cells can form a sufficiently large cartilage tissue in vivo.
  • the dose of the chondrocyte-like cells to a mammal is not particularly limited, but is usually about 10 4 to 10 8 cells, preferably about 10 5 to 10 7 cells.
  • cartilage tissue formation is observed after 14 to 35 days, preferably 21 to 28 days after administration of the chondrocyte-like cells to the mammal.
  • the above-described cartilage tissue implant may be manufactured in a living body of a cartilage disease patient, and the manufactured cartilage tissue may be transplanted to the cartilage disease site of the patient. That is, the chondrocyte-like cells are administered to a site other than the cartilage tissue of a patient with cartilage disease, and after the cartilage tissue is formed from the chondrocyte-like cells in the living body of the patient, the cartilage tissue is removed and the patient is removed. By administering to the site of cartilage disease, cartilage disease transplantation treatment can also be performed.
  • a non-human mammal having a cartilage tissue formed from the chondrocyte-like cells to which the chondrocyte-like cells are administered can be used as a tool for evaluating the medicinal effect of a test substance on the cartilage tissue. That is, the test substance is evaluated on the cartilage tissue by administering the test substance to a non-human mammal having a cartilage tissue formed from the chondrocyte-like cells and determining the medicinal effect of the test substance on the cartilage tissue. be able to.
  • the test substance is a substance to be evaluated for drug efficacy against cartilage tissue, and specifically includes candidate substances for therapeutic agents for cartilage diseases.
  • the chondrocyte-like cells can be used as a tool for elucidating the pathology of various cartilage diseases. Furthermore, chondrocyte-like cells derived from human somatic cells can be used for drug discovery and drug development related to cartilage diseases. It is also useful as a tool.
  • Chondrocyte-like cell preparation composition As described above, chondrocytes are introduced into somatic cells in combination with at least one gene selected from the group consisting of Myc family gene and Klf family gene and SOX9 gene. Like cells can be prepared. Therefore, the present invention further provides a composition for preparing chondrocyte-like cells, comprising at least one gene selected from the group consisting of Myc family gene and Klf family gene and SOX9 gene.
  • the chondrocyte-like cell preparation composition comprises a set of reprogramming factor and cartilage-inducing transcription factor used for inducing chondrocyte-like cells from somatic cells, and the two or more genes described above Is preferably included in a form that can be introduced into somatic cells.
  • the form in which the two or more genes can be introduced into a somatic cell include a vector in which the two or more genes are incorporated.
  • the two or more kinds of genes may be incorporated into different vectors, or two or more kinds of genes may be incorporated into one vector at the same time.
  • the gene, vector type, etc. used in the chondrocyte-like cell preparation composition are as described above.
  • Example 1 Production of chondrocyte-like cells from skin fibroblasts and embryonic fibroblasts 1.
  • a transgenic mouse expressing ⁇ -geo (a fusion gene of a ⁇ -galactosidase gene and a neomycin resistance gene) under the control of the Col11a2 promoter / enhancer sequence shown in FIG. 1a was prepared according to the procedure shown below.
  • the ⁇ 2 (XI) collagen gene-based expression vector, 742LacZInt is a mouse Col11a2 promoter (-742 to +380), SV40 RNA splice site, ⁇ -galactosidase reporter gene, SV40 polyadenylation signal, and 2.34- of Col11a2 as an enhancer. Contains the first intron sequence of kb (Reference 1). To make the ⁇ geo transgene, a 0.8-kb neomycin resistance gene fragment was ligated to the 3 'end of a 3.1-kb cDNA fragment encoding LacZ. The ⁇ geo fragment was replaced with the LacZ gene and incorporated into the NotI site of the 742LacZInt expression vector to prepare the Col11a2- ⁇ geo plasmid.
  • the Col11a2- ⁇ geo plasmid was digested with EcoRI and PstI to release inserts in the plasmid.
  • a transgenic mouse was prepared by microinjecting the insert into the pronucleus of a fertilized egg derived from an F1 hybrid mouse (C57BL / 6 x DBA) in the same manner as in Reference 1.
  • Transgenic mice were identified by PCR assay of genomic DNA extracted from the tail.
  • the transgene Genomic DNA was amplified by specific PCR, 135-bp product specifically contained in ⁇ geo transgenic mice was amplified, and transgenic mice were identified.
  • the transgenic mice identified above were bred with C57BL / 6 mice for at least 4 generations.
  • transgenic mice were subjected to X-gal staining of mouse bodies and sections according to the method described in Reference 2.
  • ⁇ 2 (XI) collagen chain is a cartilage-specific matrix protein that supports cartilage tissue structure, and plays an important role in the cartilage function of shock absorption.
  • the Col11a2 promoter / enhancer sequence is known to be specifically expressed in cartilage (Reference 1).
  • the Col11a2 promoter contains insulator activity and is thought to contribute to stable transgene expression in transgenic mice.
  • the transgenic mouse was stained with X-gal, it showed LacZ activity specifically in chondrocytes, but not in other tissues (see the left figure in FIG. 1b). Further, histological analysis confirmed that all chondrocytes expressed ⁇ geo (see the right diagram in FIG. 1b).
  • mouse embryonic fibroblasts Using the transgenic mouse obtained above, mouse embryonic fibroblast (MEF), adult mouse dermal fibroblast (MDF), and primary chondrocytes are as follows: Isolated according to the procedure.
  • MEFs were separated in the same manner as in Reference 3. Specifically, first, the head and visceral tissues were removed from the 13.5 dpc embryo. The remaining body was then minced and trypsinized before being transferred to a tube. Cells were harvested by centrifugation and suspended in DMEM medium containing 10% FBS. Subsequently, MEF (first passage) was obtained by culturing the obtained cells 1 ⁇ 10 6 cells in a 100 mm dish.
  • MDF was prepared from 3-6 months old transgenic mice. Specifically, after shaving off the hair of the transgenic mouse, the skin was cut into small pieces and then trypsinized at 37 ° C. for 4 hours. Cells released by trypsin treatment are filtered through a nylon mesh (pore size, 40 ⁇ m; Tokyo Screen, Tokyo, Japan) to prepare a single cell suspension, which is then cultured in a 100 mm dish to obtain MDF ( 1st passage) was obtained.
  • a nylon mesh pore size, 40 ⁇ m; Tokyo Screen, Tokyo, Japan
  • chondrocytes were separated by the same method as in Reference 4. Specifically, transgenic mice were dissected and the humeral and femoral epiphyseal cartilage separated and collected in DMEM medium containing 2% FBS and streptomycin / penicillin. Epiphyseal cartilage adherent tissue and perichondrium were physically removed after collagenase (type II, Sigma) digestion (2 mg / ml in DMEM / 2% FBS) for 30 minutes at 37 ° C. The epiphyseal cartilage from which the attached tissue and perichondrium had been removed was then treated in a collagenase solution for 2-4 hours to release primary chondrocytes.
  • collagenase type II, Sigma
  • the first-passage MEF and MDF obtained above were trypsinized and stored frozen in liquid nitrogen for use in the tests described below.
  • the primary chondrocytes obtained above were subjected to X-gal staining to evaluate LacZ activity.
  • the primary chondrocytes, MEF, and MDF obtained above were added to a medium containing 0 to 900 ⁇ g / ml G418 (Geneticin), incubated at 37 ° C. under 5% CO 2 , Growth was evaluated.
  • a DMEM medium containing 2% FBS was used for the culture of primary chondrocytes
  • a DMEM medium containing 10% FBS was used for the culture of MEF and MDF.
  • primary chondrocytes prepared from wild-type liter mate mice were also incubated in the presence of G418 in the same manner as described above, and their growth was evaluated.
  • FIG. MEF and MDF were completely killed in the presence of 300 ⁇ g / ml G418, whereas primary chondrocytes prepared from transgenic mice grew in the presence of 900 ⁇ g / ml G418.
  • human SOX9 cDNA was incorporated into the Gateway pENTR-1A vector (Invitrogen) and the resulting plasmid was inserted into pMXs-gw by LR reaction (Invitrogen). .
  • Cryopreserved MEF was inoculated into 100 mm dishes. One day before transduction, trypsinization of MEF or MDF was performed, and 5 ⁇ 10 5 cells were placed in a 100 mm dish and statically cultured in DMEM medium containing 10% FBS for 24 hours (third passage).
  • Each virus-containing supernatant obtained above is filtered through a 0.45 ⁇ m cellulose acetate filter (Schleicher & Schuell), and polybrene (Nacalai Tesque, Inc.) is added to the obtained filtrate to a final concentration of 4 mg / ml.
  • a virus solution was prepared.
  • each virus solution was mixed to prepare a mixed virus solution.
  • each virus solution to be mixed was set so that each of the contained retroviral vectors was equivalent.
  • the virus solution or virus mixture was added to the MEF dish cultured above and incubated at 37 ° C. for 16 hours to transduce a retrovirus vector. After incubation, the cells in the dish were trypsinized, then the cells were divided into three 10 cm dishes containing fresh 10% FBS-containing DMEM medium, and cultured statically for 2 days. Next, the medium was replaced with a DMEM medium containing 10% FBS containing 500 ⁇ g / ml G418, and the medium was replaced with a medium having the same composition every other day, followed by stationary culture for 2 weeks.
  • the cells thus cultured were stained with Alcian blue and then subjected to crystal violet staining, and the number of stained colonies in each dish was counted.
  • the number of colonies stained was counted by counting the total number of colonies stained in the three dishes.
  • the crystal violet staining all cells are stained, and in the Alcian blue staining, glucosaminoglycan specifically expressed in chondrocytes is stained, so that only cells differentiated into chondrocytes are stained.
  • FIG. 2 shows the results of analysis of cells in which each factor was introduced into MEF.
  • FIG. 2a shows the number of stained colonies measured by Alcian blue staining and crystal violet staining for cells in which each factor was introduced into MEF.
  • FIG. 2b cells obtained by simultaneously transducing MEF with 4 reprogramming factors (Oct3 / 4, Sox2, c-Myc and Klf-4) and human SOX9 were stained with Alcian blue. The results when stained with crystal violet are shown. Transduction of MEF with human SOX9 alone did not induce colony formation in the presence of G418 (Fig. 2a).
  • FIG. 2e shows the number of stained colonies measured by performing Alcian blue staining and crystal violet staining for cells into which three reprogramming factors and Sox9 were introduced.
  • FIG. 3 shows the results of analysis of the cells into which each factor was introduced into MDF.
  • 3A to 3C show the number of colonies stained by Alcian blue staining or crystal violet staining, and the number of colonies composed of polygonal cells, for cells into which each factor has been introduced into MEF.
  • SOX5 and SOX6 were used instead of SOX9 and introduced into MDF together with c-Myc and Klf-4 by the same method as described above, formation of G418-resistant colonies was not observed.
  • SOX5 and SOX6 are known to have an effect of supporting SOX9, but SOX9 does not have a transactivation domain that exists. Considering this point, it is presumed that the transactivation domain present in SOX9 is involved in the induction of chondrocyte-like morphology into cells.
  • Cloning ⁇ Method> The following 11 colonies were selected from the G418-resistant colonies derived from MDF, and clones were prepared. ⁇ One colony created by transduction of c-Myc, Klf-4, Sox2, Oct3 / 4 and Sox9 (hereinafter this clone is referred to as MKSO-1) ⁇ Two colonies prepared by transduction of c-Myc, Klf4, Sox2 and Sox9 (hereinafter these clones are referred to as MKS-1 or -2) ⁇ Four colonies prepared by transduction of c-Myc, Klf4, Oct3 / 4 and Sox9 (hereinafter these clones are referred to as MKO-1 to -4) ⁇ Four colonies created by transduction of c-Myc, Klf4 and Sox9 (hereinafter these clones are referred to as MK-1 to -4) Cells were collected by trypsinization for each target colony, and then in a 96-well plate in
  • the obtained results are shown in FIG.
  • the cultured cells were strongly stained with Alcian blue, confirming the presence of glycosaminoglycan.
  • the staining intensity was different between clones.
  • RNA in the cells was extracted using RNeasy Mini Kits (Qiagen, Santa Clarita, CA). The extracted total RNA was then digested with DNase to remove contaminating genomic DNA. Total RNA (1 ⁇ g obtained using QuantiTect Reverse Transcription (Qiagen) ) was reverse transcribed into first-strand cDNA.
  • the resulting cDNA (2 ⁇ l) was subjected to PCR amplification in a mixed solution (20 ⁇ l) containing ExTaq (Takara Bio Inc.) and a primer specific to each gene (4 pmol) to express individual RNAs Level was measured.
  • the primers used are listed in Table 1.
  • primary chondrocytes prepared from the above cloned cells (passage 6) and MDF (passage 3) in DMEM containing 10% FBS containing 500 ⁇ g / ml G418 and from ⁇ geo transgenic mice. (1st passage) was cultured in a 60 mm dish in DMEM medium containing 2% FBS. After reaching confluence, the cells were lysed. The obtained cell lysate was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), electroblotted, and then immunostained.
  • SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
  • Antibodies include anti-Sox9 antibody (Santa-Cruz Biotechnology, Inc., 1: 200 dilution), anti-c-Myc antibody (Santa-Cruz Biotechnology, Inc., 1: 200 dilution), anti-Klf4 antibody (Santa-Cruz Cruz Biotechnology, Inc., 1: 200 dilution), anti-Oct3 / 4 antibody (Santa-Cruz Biotechnology, Inc., 1: 600 dilution), anti-Sox2 antibody (Santa-Cruz Biotechnology, Inc., 1: 200 dilution) ), Anti- ⁇ -actin antibody (Cell Signaling Technology, 1: 5000 dilution) was used.
  • FIG. 4B The results of RT-PCR analysis are shown in FIG. 4B, and the results of Western blot analysis are shown in FIG. 4C. From the analysis results by RT-PCR, it was confirmed that the cloned cells expressed the transgene. Western blot analysis also confirmed that the cloned cells expressed transgenes at the protein level, but MDF did not express these genes.
  • the primers used are listed in Table 2.
  • Fig. 5a shows the analysis result of chondrocyte marker gene expression
  • Fig. 5b shows the analysis result of MDF marker gene expression. From this result, it was shown that the cells cloned above express chondrocyte marker genes at various levels. MKS-1, MKO-2, MK-1, MK-3 and MK-4 expressed the chondrocyte marker gene, but MKS-2 and MK-2 did not express the chondrocyte marker gene. It was also confirmed that MKS-1 expresses fibroblast-specific type I collagen genes (Col1a1 and Col1a2).
  • fibroblasts derived from surrounding fibrous tissue attached to cartilage may have been contaminated, as shown in the presence of LacZ-negative cells in primary chondrocytes prepared from ⁇ geo transgenic mice. (See c in FIG. 1). Therefore, it is presumed that type I collagen genes (Col1a1 and Col1a2) mRNA, which is considered to be expressed in fibroblasts but not in pure chondrocytes, was detected from RNA derived from primary chondrocytes.
  • FIG. MKS-2, MKO-2 and MK-4 showed a normal karyotype of 40XY, and MK-3 showed a mixture of normal 40XY and 41XY + 4.
  • biotin-labeled cRNA was obtained using MessageAmp-III-RNA-Amplification-Kit (Ambion). Next, 10 ⁇ g of the fragmented cRNA was hybridized to an Affymetrix 430 2.0 GeneChip array at 45 ° C for 16 hours. Thereafter, the DNA chip was washed and further stained. The resulting DNA chip was then scanned using Affymetrix Fluidics station 450 and a scanner, and the resulting images were analyzed using GCOS software. Standardization was calculated using the MAS 5.0 algorithm. Cluster analysis was performed using Cluster 3.0 (University of Tokyo).
  • results of Scatter plot of DNA microarray analysis are shown in FIGS.
  • the number of genes overexpressed in MDF was small compared to primary chondrocytes, but the number of genes overexpressed in primary chondrocytes was large compared to MDF (see FIG. 6a). This is consistent with the speculation that primary chondrocytes were contaminated with fibroblasts.
  • the number of genes overexpressed in MK-3 compared to primary chondrocytes is the number of genes overexpressed in MK-3 compared to MDF (FIG. 6c). Less than reference).
  • the number of genes overexpressed in primary chondrocytes compared to MK-3 is the number of genes overexpressed in MDF compared to MK-3 (see c in FIG. 6). ). This is probably because the primary chondrocytes were contaminated with fibroblasts. These results indicate that MK-3 is similar to pure chondrocytes at the overall transcription level. In both MK-3 and primary chondrocytes, the expression levels of the cartilage matrix genes including Col2al, aggrecan gene (Acan), and Col9a1 were extremely high compared to the expression levels of other genes (Fig. 6). b).
  • the PCR primers used are as shown in Table 3.
  • the amplification product was cloned into pMD20-T vector using Mighty TA-cloning Kit (Takara). Ten clones randomly selected for each gene were sequenced using T7 and T3 primers.
  • the obtained result is shown in e of FIG.
  • the cytosine nin (CpG) dinucleotide in the promoter of Col1a2 was highly methylated in MK-3 and MK-4 but not in MDF. Further, the methylation state of CpG dinucleotides in the promoters of Col2a1 and Acan was hardly methylated in both the cells (MK-3, MK-4) and MDF cloned above.
  • MKO-2, MK-1, MK-3, and MK-4 proliferated exponentially for at least 48 days, but after 40 days of culture, spindle-shaped or flat cells gradually appeared.
  • MDF stopped growing on the 15th day from the start of culture.
  • MKS-1 showed a rapid increase in growth rate and a morphological change to a spindle shape after 24 days of culture. This suggests that MKS-1 has been dedifferentiated and may be related to the abnormal number of chromosomes in the cell.
  • Cartilage Tissue Cartilage tissue was produced using cloned cells (MK-3) and MDF by the following method.
  • Collagen gel culture was performed using a collagen gel culture kit (Nitta Gelatin Co., Ltd.) according to the protocol indicated in the kit.
  • chondrocyte-like cells (MK-3) and MDF were digested with trypsin / EDTA.
  • the cells were added to 2 ⁇ 10 7 cells / ml and suspended in a 0.25% type I acid-dissolved collagen solution prepared at 4 ° C.
  • Cell suspension 500 ⁇ l droplet was added to the center of each well of a 6-well plate and allowed to gel at 37 ° C.
  • the obtained gel-cell complex was covered with 3 ml of DMEM medium containing 10% FBS, and cultured at 37 ° C. under 5% CO 2 .
  • the medium was replaced with fresh medium.
  • the gel-cell complex was fixed with 10% formaldehyde and then embedded in paraffin. A portion of the thus treated gel-cell complex was stained with Alcian Blue and Nuclea Fast Red. Further, a part of the gel-cell complex was treated with a primary antibody against type II collagen (a goat-derived polyclonal antibody) (Santa-Cruz Biotechnology, Inc., 1: 200 dilution), washed, and then further treated with a secondary antibody Alexa. Treated with Fluor 488 Rabbit Anti-goat IgG (Invitorgen).
  • FIG. Histological analysis of a three-dimensional culture of MK-3 in a type I collagen gel confirmed the histological structure of a small space surrounded by a substance stained with Alcian blue. It was revealed that a cartilage-like tissue was formed.
  • the gel-cell complex containing MK-3 showed immunological activity against anti-type II collagen antibody, but this activity was not observed in the gel-cell complex containing MDF.
  • Chondrocyte-like cells (MK-5) were digested with trypsin / EDTA. Next, cells were added and suspended in DMEM medium containing 10% by volume of FBS so as to be 1 ⁇ 10 7 cells / ml to prepare a cell suspension. 0.1 mL of this cell suspension was injected subcutaneously into the back of nude mice (6 weeks old, female, BALB / cA Jc1-nu / nu).
  • FIG. 8D shows an enlargement of the part surrounded by the square C in FIG. From this result, it was confirmed that chondrocyte-like cells have the ability to form cartilage tissue even in the absence of a scaffold and can be put to practical use for regeneration of cartilage tissue.
  • chondrocyte-like cell having proliferative ability and similar characteristics to chondrocytes. It became clear that it was possible. It was actually confirmed that the chondrocyte-like cells thus obtained can form a three-dimensional structure of cartilage tissue by culturing with collagen gel or by administering it in vivo.
  • Example 2 Formation of Cartilage Tissue from Chondrocyte-like Cells ⁇ Method> Eleven chondrocyte-like cells (MK-5 to MK-15) were obtained by transducing c-Myc, Klf4 and Sox9 genes into MDF in the same manner as in Example 1 above. Of these chondrocyte-like cells, 2 strains (MK-7 and MK-10) are digested with trypsin / EDTA, and then 10% by volume of FBS is suspended in DMEM medium that excites cancer, and 1 ⁇ 10 7 cells / A cell suspension of ml was prepared.
  • mice female, 6 weeks old, BALB / cA Jcl-nu / nu.
  • mice injected with MK-7 cells were 16 weeks after injection, mice injected with MK-10 cells were removed 8 weeks after injection, and the injection site was removed and fixed in 4% paraformaldehyde, then embedded in paraffin did.
  • Tissue sections were then prepared and stained with safranin O, first green, and iron hematoxylin. ⁇ Result> The obtained results are shown in FIG.
  • Example 3 Analysis of genomic DNA of chondrocyte-like cells ⁇ Results> About chondrocyte-like cells (MK-1, -3 and -4) obtained in Example 1 and chondrocyte-like cells (MK-5, -7, -10 and -15) obtained in Example 2 In order to evaluate the identity of cells, the following experiment was conducted.
  • genomic DNA was obtained from chondrocyte-like cells according to a conventional method, and the obtained genomic DNA was digested with EcoRI and BamHI and fragmented. The fragmented genomic DNA was developed on an agarose gel by electrophoresis and transferred to a nylon membrane, and then Southern hybridization was performed using a Klf4 cDNA probe.
  • Example 1-2 show different band patterns for each cell line, indicating that each is established as an independent cell line. It was.
  • Adipose tissue-derived stromal cells were separated from subcutaneous adipose tissue in the same manner as in Reference 5. Specifically, first, from a 3-6 month old Col11a2- ⁇ geo transgenic mouse similar to that prepared in Example 1 above, a subcutaneous fat slice was taken out and minced, and then at 37 ° C. for 2 to 4 hours. Treated with 0.2% collagenase. Cells released by the collagenase treatment were filtered through a nylon mesh (pore size, 70 ⁇ m; Tokyo Screen, Tokyo, Japan).
  • the separated cells were collected by centrifugation (200 ⁇ g, 4 ° C., 10 minutes). Next, the cells were suspended in fresh DMEM medium containing 5% FBS, and then the cells were collected again by centrifugation (200 ⁇ g, 4 ° C., 10 minutes). Next, ADSC (first passage) was obtained by culturing the obtained cells in a 60 mm or 100 mm dish.
  • c-Myc, Klf-4, and Sox9 were introduced into subcutaneous adipocytes by the same method as in Example 1, and cultured in 10 ml of 5% FBS-containing DMEM medium containing 500 ⁇ g / ml G418. went.
  • the cells thus treated were subjected to Alcian blue staining and crystal violet staining in the same manner as in Example 1 above, and shape observation was also performed.
  • Example 5 Production of chondrocyte-like cells from human-derived skin fibroblasts ⁇ Method> 1.
  • Preparation of plasmid Lentiviral vector system was used for gene transfer into human-derived dermal fibroblasts.
  • Lentiviral vector incorporating human c-MYC pLe6-CMVp-hc-MYC
  • lentiviral vector incorporating human KLF4 pLe6-CMVp-hKLF4
  • lentiviral vector incorporating human OCT3 / 4 pLe6-CMVp -hOCT3 / 4
  • lentiviral vectors pLe6-CMVp-F (-) hSOX9) incorporating human SOX9 were prepared by LR clonase II plus reaction (Invitrogen), respectively.
  • NHDF Cell preparation Normal skin fibroblasts
  • Each virus solution is mixed so as to contain equal amounts of Le6-CMVp-hc-MYC, pLe6-CMVp-hKLF4, pLe6-CMVp-hOCT3 / 4, and pLe6-CMVp-F (-) hSOX9, and a mixed virus solution was prepared.
  • transformation to NHDF and evaluation of transformed cells were performed using a lentiviral vector incorporating EGFP cDNA in the same manner as described above.
  • the surviving cells formed colonies by introducing 3 reprogramming factors (OCT3 / 4, C-MYC and KLF-4) and SOX9 into NHDF. Some of these colonies were strongly stained with Alcian blue. On the other hand, the cells grew without dying in the culture dish of NHDF introduced with EGFP. NHDF into which EGFP was introduced was not stained with Alcian blue (see a in FIG. 12).
  • the morphology of cells contained in colonies obtained by introducing and culturing three reprogramming factors (OCT3 / 4, C-MYC, and KLF-4) and SOX9 see b in FIG. 12 It was confirmed that the cells were similar to human primary chondrocytes (see d in FIG. 12) compared to cells into which EGFP was introduced (see c in FIG. 12).
  • chondrocyte-like cells having proliferative ability and capable of forming cartilage tissue can also be induced from human NHDF.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Rheumatology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Diabetes (AREA)
  • Pathology (AREA)

Abstract

 本発明の目的は、軟骨組織を再生可能であり、且つ増殖能を有する細胞を開発し、変形性軟骨症の根本治療にも使用できる細胞供給源を提供するための技術を確立することである。 Mycファミリー遺伝子及び/又はKlfファミリー遺伝子と、SOX9遺伝子との組み合わせを選択し、これらを体細胞に導入することによって、軟骨細胞と同等の特性を有する増殖可能な軟骨細胞様細胞を製造し、該軟骨細胞様細胞を軟骨再生の医薬用途に使用する。

Description

軟骨細胞様細胞、及びその製造方法
 本発明は、体細胞から誘導され、軟骨細胞と同等の特性を有する増殖可能な軟骨細胞様細胞、及び該軟骨細胞様細胞の製造方法に関する。また、本発明は、該軟骨細胞様細胞を利用した、軟骨組織再生用の細胞製剤、インプラント、インプラントの製造方法、軟骨疾患の治療方法、及び軟骨疾患に対する被験物質の薬効判定方法に関する。更に、本発明は、体細胞から該軟骨細胞様細胞に誘導するための軟骨細胞様細胞調製用組成物に関する。
 関節軟骨は、関節運動の際に、可動関節において衝撃を吸収し、関節の潤滑剤としての役割を担っている。軟骨の機械的な機能は、II型及びXI型コラーゲン、並びにプロテオグリカン等の膠原原線維で構築された軟骨細胞外基質によって付与されており、軟骨細胞外基質は軟骨に内在している軟骨細胞によって作り出されることが分かっている。
 軟骨組織の代表的な疾患として、変形性関節症がある。変形性関節症は、機械的ストレス(反復荷重、過剰な運動、外傷等)や加齢等によって、関節軟骨が変性、摩耗、損傷され、これが深刻化することによって引き起こされる。変形性関節症は、関節を作動させた際の疼痛(動作時痛)や可動域の制限(可動域制限)等の症状が現れ、日常生活の質を低下させる原因となっている。変形性関節症は、50歳以上の日本人の約20%に認められ、今後の医学の発達や生活習慣の改善により平均寿命の伸びると共に、その罹患者は益々増加すると予測されており、高年齢化社会の大きな課題となっている。
 従来、変形性関節症の治療には、安静により症状の悪化を防ぐ方法、或いは、消炎鎮痛剤やサプリメントの投与、関節潤滑剤の関節腔内投与等により疼痛をコントロールする方法が採用されている。しかしながら、軟骨細胞は修復について弱い能力しか有しておらず(非特許文献1参照)、軟骨組織を再生させることができないため、これらの方法では、あくまで対症療法でしかなく、根本的な治療にはならないという欠点がある。また、軟骨変性が進行した変形性関節症に対しては、金属製の人工関節に置換する施術も行われているが、人工関節では、施術時の患者に対する負担が大きい、更に人工関節の摩耗による劣化が生じる、人工関節では脱臼し易くなる、人工関節のゆるみにより再置換手術が必要となる等の欠点がある。
 そこで、近年、軟骨組織を再生させることにより、従来の治療では困難であった変形性軟骨症の根本治療を可能ならしめる技術が注目されている。かかる技術を実現するには、容易に得られ、且つ分化して軟骨組織を形成する能力を保持しつつ多数の細胞数を生じることができる細胞供給源を開発することが急務である(非特許文献2及び3参照)。軟骨組織の再生に使用される細胞供給源としては軟骨細胞が有力な候補として考えられるが、軟骨細胞は数が限られており、また単層拡張(monolayer expansion)によって軟骨細胞の脱分化が引き起こされるため(非特許文献4参照)、最近の研究では、骨髄由来間葉幹(MS)細胞又は胚性幹(ES)細胞を用いて軟骨組織の形成を誘導する技術の開発に注力されている(非特許文献5-7参照)。しかしながら、MS細胞は、限られた程度までしか増殖することができず、更に最近の研究によって、MS細胞から作製された軟骨は不安定であり十分な軟骨の特性を備えることができないことが示唆されている(非特許文献8及び9参照)。また、ES細胞由来の分化細胞では、不均一な集団であり、軟骨組織の機能が不十分になったり(非特許文献10及び11参照)、奇形腫形成を引き起こしたりすることが懸念されている(非特許文献12参照)。
 また、近年、Oct3/4、Klf4、c-Myc及びSox2をコードする各々の遺伝子を体細胞に導入することにより、体細胞を初期化して誘導多能性幹(iPS)細胞に誘導する技術が報告され、再生医薬の分野で革新的な技術が提供されている(特許文献1、非特許文献13-24参照)。しかしながら、iPS細胞は、多能性幹細胞として機能するため、軟骨組織の再生に使用するには、均一な軟骨細胞集団に分化させる技術の確立が不可欠であり、軟骨組織の再生への実用化には、更なる技術的課題を解決する必要がある。
 このような従来技術を背景として、軟骨細胞のみに直接誘導でき、軟骨組織を再生可能且つ増殖能を有する細胞を開発し、変形性軟骨症の根本治療にも使用できる細胞供給源の提供を実現させることが切望されている。
国際公開第2007/069666号パンフレット
W. Hunter, Philos Trans Lond 42, 514 (1743). C. Chung and J. A. Burdick, Adv Drug Deliv Rev 60 (2), 243 (2008). J. Gao, J. Q. Yao, and A. I. Caplan, Proc. Inst. Mech. Eng. [H]. 221 (5), 441 (2007). U. R. Goessler, P. Bugert, K. Bieback et al., Int. J. Mol. Med. 14 (6), 1015 (2004). J. Kramer, C. Hegert, K. Guan et al., Mech. Dev. 92 (2), 193 (2000). N. S. Hwang, M. S. Kim, S. Sampattavanich et al., Stem Cells 24 (2), 284 (2006). N. S. Hwang, S. Varghese, and J. Elisseeff, PLoS ONE 3 (6), e2498 (2008). V. Vacanti, E. Kong, G. Suzuki et al., J. Cell. Physiol. 205(2), 194 (2005). A. Nagai, W. K. Kim, H. J. Lee et al., PLoS ONE 2 (12), e1272 (2007). M. Amit and J. Itskovitz-Eldor, Journal of anatomy 200 (Pt3), 225 (2002). E. J. Koay, G. M. Hoben, and K. A. Athanasiou, Stem Cells 25 (9), 2183 (2007). S. Wakitani, K. Takaoka, T. Hattori et al., Rheumatology (Oxford). 42 (1), 162 (2003). T. Aoi, K. Yae, M. Nakagawa et al., Science 321 (5889), 699 (2008). M. Nakagawa, M. Koyanagi, K. Tanabe et al., Nat. Biotechnol. 26 (1), 101 (2008). K. Takahashi, K. Okita, M. Nakagawa et al., Nature protocols 2 (12), 3081 (2007). K. Takahashi, K. Tanabe, M. Ohnuki et al., Cell 131 (5), 861 (2007). K. Takahashi and S. Yamanaka, Cell 126 (4), 663 (2006). K. Okita, T. Ichisaka, and S. Yamanaka, Nature 448 (7151), 313 (2007). M. Wernig, A. Meissner, R. Foreman et al., Nature 448 (7151), 318 (2007). N. Maherali, R. Sridharan, W. Xie et al., Cell stem cell 1(1), 55 (2007). A. Meissner, M. Wernig, and R. Jaenisch, Nat. Biotechnol. 25 (10), 1177 (2007). M. Wernig, A. Meissner, J. P. Cassady et al., Cell stem cell 2 (1), 10 (2008). J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., Science 318 (5858), 1917 (2007). I. H. Park, R. Zhao, J. A. West et al., Nature 451 (7175), 141 (2008).
 そこで、本発明は、上記従来技術の課題を解決することを目的とする。より具体的には、本発明は、軟骨組織を再生可能であり、且つ増殖能を有する細胞を開発し、変形性軟骨症の根本治療にも使用できる細胞供給源を提供するための技術を確立することを目的とする。
 本発明者らは、前記課題を解決するために鋭意検討したところ、多数存在する分化細胞の初期化因子と軟骨関連遺伝子の中から、Mycファミリー遺伝子及び/又はKlfファミリー遺伝子と、SOX9遺伝子との組み合わせを選択し、これらを体細胞に導入することによって、軟骨細胞と同等の特性を有する増殖可能な軟骨細胞様細胞を製造できることを見出した。実際、斯くして得られた軟骨細胞様細胞は、単層培養(monolayer culture)にて増殖可能であり、軟骨特異的マーカーを発現することを確認した。更に、上記軟骨細胞様細胞は、コラーゲンゲルを足場として用いて培養した場合、或いは足場を使用せずに生体内に投与した場合に軟骨組織を形成できることを確認した。本発明は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 体細胞に、Mycファミリー遺伝子及びKlfファミリー遺伝子よりなる群から選択される少なくとも1種の遺伝子と、SOX9遺伝子とを導入する工程を含む、軟骨細胞様細胞の製造方法。
項2. Mycファミリー遺伝子が、c-Myc遺伝子である、項1に記載の製造方法。
項3. Klfファミリー遺伝子が、Klf4遺伝子である、項1又は2に記載の製造方法。
項4. 体細胞が、ヒト由来である、項1乃至3のいずれかに記載の製造方法。
項5. 体細胞が、皮膚線維芽細胞又は脂肪組織由来間質細胞である、項1又は2に記載の製造方法。
項6. 体細胞に、Mycファミリー遺伝子及びKlfファミリー遺伝子よりなる群から選択される少なくとも1種の遺伝子と、SOX9遺伝子とを導入することにより得られる、軟骨細胞様細胞。
項7. Mycファミリー遺伝子が、c-Myc遺伝子である、項6に記載の軟骨細胞様細胞。
項8. Klfファミリー遺伝子が、Klf4遺伝子である、項6又は7に記載の軟骨細胞様細胞。
項9. 体細胞が、ヒト由来である、項6乃至8のいずれかに記載の軟骨細胞様細胞。
項10. 体細胞が、皮膚線維芽細胞又は脂肪組織由来間質細胞である、項6乃至9のいずれかに記載の軟骨細胞様細胞。
項11. 項6乃至9のいずれかに記載の軟骨細胞様細胞を含む、軟骨組織再生用の細胞製剤。
項12. 更に、足場材料を含む、項11に記載の軟骨組織再生用の細胞製剤。
項13. 足場材料が、コラーゲンである、項12に記載の軟骨組織再生用の細胞製剤。
項14. 項6乃至8のいずれかに記載の軟骨細胞様細胞を用いて構築させた軟骨組織を含む、インプラント。
項15. 下記工程を含む、軟骨組織用のインプラントの製造方法:
 項6乃至8のいずれかに記載の軟骨細胞様細胞を哺乳動物の体内に投与する工程、及び哺乳動物の体内で上記軟骨細胞様細胞から形成された軟骨組織を摘出する工程。
項16. 下記工程を含む、軟骨疾患の治療方法:
 項6乃至8のいずれかに記載の軟骨細胞様細胞を軟骨疾患の患者の軟骨組織以外の部位に投与する工程、及び
 上記軟骨細胞様細胞から形成された軟骨組織を摘出し、これを前記患者の軟骨疾患部位に移植する工程。
項17. 項6乃至9のいずれかに記載の軟骨細胞様細胞の、軟骨組織再生用の細胞製剤の製造のための使用。
項18. 軟骨組織再生用の細胞製剤が、軟骨疾患の治療剤である、項17に記載の使用。
項19. 項6乃至9のいずれかに記載の軟骨細胞様細胞、及び足場材料を含む組成物の、軟骨組織再生用の細胞製剤の製造のための使用。
項20. 足場材料が、コラーゲンである、項19に記載の使用。
項21. 項6乃至9のいずれかに記載の軟骨細胞様細胞を非ヒト哺乳動物に投与して、上記哺乳動物の体内で上記軟骨細胞様細胞から軟骨組織を形成させることにより製造される、軟骨組織を形成させた非ヒト哺乳動物。
項22. 項21に記載の非ヒト哺乳動物に被験物質を投与し、軟骨組織に対する被験物質の薬効を判定する工程を含む、軟骨組織に対する被験物質の薬効を判定する方法。
項23. Mycファミリー遺伝子及びKlfファミリー遺伝子よりなる群から選択される少なくとも1種の遺伝子と、SOX9遺伝子とを含む、軟骨細胞様細胞調製用組成物。
項24. Mycファミリー遺伝子及びKlfファミリー遺伝子よりなる群から選択される少なくとも1種の遺伝子と、SOX9遺伝子とが、体細胞に導入可能な形態で含まれる、項23に記載の軟骨細胞様細胞調製用組成物。
 本発明によれば、軟骨細胞と同等の特性を有する増殖可能な軟骨細胞様細胞を提供できるので、変形性軟骨症等の軟骨の損傷を伴う軟骨疾患の治療に有効な医療手段を提供することができる。また、本発明によれば、変形性関節症のみならず軟骨形成異常症等の成長軟骨疾患も含めた広範な軟骨疾患の患者の体細胞から軟骨細胞様細胞を作製でき、様々な解析を行うことで疾患の病態解明に寄与できる。特に、ヒトから作製した軟骨細胞様細胞は、創薬や薬品開発の材料としても適している。
 更に、本発明によれば、皮膚繊維芽細胞や皮下脂肪組織由来間質細胞等の皮膚組織由来の体細胞から軟骨細胞様細胞を得ることができるので、患者や細胞提供者の負担が軽減される点からも、臨床上の有用性が高いといえる。
Col11a2-βgeoトランスジェニックマウス及び該マウスから単離した初代軟骨細胞、MES、及びMDFの特性について評価した結果を示す図である。 aは、トランスジェニックマウスに導入した導入遺伝子の構成を示す。 bの左図はX-gal染色したCol11a2-βgeoトランスジェニックマウスの像を示し、bの右図はX-gal染色Col11a2-βgeoトランスジェニックマウスの軟骨について組織分析した結果を示す。 cの左図はβgeoトランスジェニックマウスから調製された初代軟骨細胞の位相差顕微鏡で観察した結果を示し、cの右図はβgeoトランスジェニックマウスから調製された初代軟骨細胞をX-gal染色した結果を示す。 dは、βgeoトランスジェニックマウスから調製した初代軟骨細胞、MES、及びMDF、並びに野生型のF1ハイブリッドマウスから調製した初代軟骨細胞を、0~900μg/mlのG418の存在下でインキュベートした結果を示す。d中、「Tg」はβgeoトランスジェニックマウス由来であることを示し、「WT」は野生型のリッターメイトマウス由来であることを示す。「Tg」及び「WT」の表記は、他図でも、同様の意味で使用する。 MEFに各因子を導入した細胞について分析した結果を示す図である。 aは、MEFに各因子を導入して得られたコロニーについて、アルシアンブルー染色及びクリスタルバイオレット染色により計測された染色コロニー数を示す。a中、「4R」は、4つの初期化因子(Oct3/4、Sox2、c-Myc及びKlf-4)を示す。「4R」の表記は、他図でも、同様の意味で使用する。 bは、MEFに4つの初期化因子(Oct3/4、Sox2、c-Myc及びKlf-4)とヒトSOX9を同時に形質導入して得られた細胞をアルシアンブルー染色及びクリスタルバイオレット染色した結果を示す。 cは、MEFに4つの初期化因子(Oct3/4、Sox2、c-Myc及びKlf-4)とヒトSOX9を同時に形質導入して得られたコロニーに含まれる細胞の形状を観察した結果を示す。 dは、MEF形状を観察した結果を示す。 eは、3つの初期化因子とSox9を導入して得られたコロニーについて、アルシアンブルー染色及びクリスタルバイオレット染色を行って計測された染色コロニー数を示す。e中、「4R - c-Myc」は、4つの初期化因子(Oct3/4、Sox2、c-Myc及びKlf-4)の内、c-Mycが含まれないこと;「4R - c-Klf4」は、4つの初期化因子(Oct3/4、Sox2、c-Myc及びKlf-4)の内、Klf-4が含まれないこと;「4R - Oct3/4」は、4つの初期化因子(Oct3/4、Sox2、c-Myc及びKlf-4)の内、Oct3/4が含まれないこと;並びに、「4R - Sox2」は、4つの初期化因子(Oct3/4、Sox2、c-Myc及びKlf-4)の内、Sox2が含まれないことを、それぞれ示す。これらの表記は、他図でも、同様の意味で使用する。 fは、MEFにc-Myc、Klf4及びSox9をMEFに形質導入して得られたコロニーに含まれる細胞の形状を観察した結果を示す。 MDFに各因子を導入した細胞について分析した結果を示す図である。 A~Cは、MEFに各因子を種々組み合わせて導入して得られたコロニーについて、アルシアンブルー染色及びクリスタルバイオレット染色により計測された染色コロニー数、並びに多角形状の細胞から構成されるコロニーの数を示す。 Dは、MDFに各因子を導入して得られたコロニーに含まれる細胞の形態を観察した結果を示す。 Eは、MDFに各因子を導入して得られたコロニーに含まれる細胞を培養し、各細胞の形状を観察した結果を示す図である。 MDFに各因子を導入して得られた細胞(クローン化細胞)の特性を評価した結果を示す図である。 Aは、MDFに各因子を導入して得られた細胞及びMDFにアルシアンブルー染色した結果を示す。 Bは、MDFに各因子を導入して得られた細胞、MDF、及び初代軟骨細胞について、ウエスタンブロット分析により導入遺伝子(導入因子)の発現を分析した結果を示す。B中、「Pr chond.」は初代軟骨細胞を示す。「Pr chond.」の表記は、他図でも、同様の意味で使用する。 Cは、MDFに各因子を導入して得られた細胞、MDF、及び初代軟骨細胞について、RT-PCRにより導入遺伝子(導入因子)の発現を分析した結果を示す。 MDFに各因子を導入して得られた細胞(クローン化細胞)の特性を評価した結果を示す図である。 aは、MDFに各因子を導入して得られた細胞、MDF、及び初代軟骨細胞について、軟骨細胞マーカー遺伝子の発現を分析した結果を示す。 bは、MDFに各因子を導入して得られた細胞、MDF、及び初代軟骨細胞について、MDFマーカー遺伝子の発現を分析した結果を示す。 cは、MDFに各因子を導入して得られた細胞(MK-4、MKO-2)の核型を分析した結果を示す。 MDFに各因子を導入して得られた細胞(クローン化細胞)の特性を評価した結果を示す図である。 aは、初代軟骨細胞及びMDFについて、遺伝子発現パターンを比較した図である。 bは、MK-3及び初代軟骨細胞について、遺伝子発現パターンを比較した図である。 cは、MK-3及びMDFについて、遺伝子発現パターンを比較した図である。 dは、MDFに各因子を導入して得られた細胞、MDF、及び初代軟骨細胞についてクラスター分析した結果である。 eは、MK-3、MK-4及びMDFについて、ジヌクレオチドのメチル化状態を、バイスルファイトゲノム配列決定分析によって分析した結果である。e中、黒丸は各遺伝子におけるCpGジヌクレオチドの内、メチル化されているものを示し、白丸は各遺伝子におけるCpGジヌクレオチドの内、メチル化されていないものを示す。 MDFに各因子を導入して得られた細胞(クローン化細胞)の特性を評価した結果を示す図である。 aは、MDFに各因子を導入して得られた細胞、及びMDFの増殖特性を分析した結果を示す図である。 bは、MDFに各因子を導入して得られた細胞、及びMDFを培養した後に、アルシアンブルー染色を行った結果を示す図である。 cは、MK-3及びMDFを用いてコラーゲンゲル培養を行い、形成されたゲル-細胞複合物を分析した結果を示す図である。 MDFに、c-Myc、Klf-4、及びSox9と共にGFPを導入して得られた細胞(MK-5)をヌードマウスの皮下に注入した結果を示す図である。 Aは、ヌードマウスの全身を観察した結果を示す(右に蛍光発色の観察結果を示す)。 Bは、ヌードマウスの背部の皮膚を剥ぎ取った状態を観察した結果を示す(右に蛍光発色の観察結果を示す)。 Cは、細胞懸濁液を注入したマウスの皮下部位から得られた連続組織切片をサフラニンOで染色した結果を示す。 Dは、Cの四角で囲んで部分の拡大図を示す。 MDFに対してc-Myc、Klf-4、及びSox9を導入して得られた細胞(軟骨細胞様細胞)をヌードマウスの皮下に注入し、注入部の組織を観察した結果を示す図である。 Aには、MDFに対してc-Myc、Klf-4、及びSox9を導入して得られた細胞(MK-7)の注入後16週における注入部の組織について、サフラニンO、ファーストグリーン、及びアイアンヘマトキシリンで染色した結果を示す。 Bには、MDFに対してc-Myc、Klf-4、及びSox9を導入して得られた細胞(MK-7)の注入後8週における注入部の組織について、サフラニンO、ファーストグリーン、及びアイアンヘマトキシリンで染色した結果を示す。 実施例1及び2で作製した各軟骨細胞様細胞のゲノムDNAに対して、Klf4 cDNAプローブを用いてサザンハイブリダイゼーションを行った結果を示す。 脂肪組織由来間質細胞にc-Myc、Klf-4、及びSox9を導入して得られたコロニーについて、アルシアンブルー染色及びクリスタルバイオレット染色により計測された染色コロニー数、並びに多角形状の細胞から構成されるコロニーの数を示す。 NHDFに、OCT3/4、C-MYC、KLF-4 SOX9を導入した細胞について分析した結果を示す図である。 aは、OCT3/4、C-MYC、KLF-4、及びSOX9を導入したNHDFの培養ディッシュ (MKO)、並びにEGFPを導入したNHDFの培養ディッシュ(EGFP)について、アルシアンブルー染色した結果を示す図である。 bは、OCT3/4、C-MYC、KLF-4、及びSOX9をNHDFに導入して得られたコロニーに含まれる細胞の形状を観察した結果を示す。 cは、EGFPを導入したNHDFの培養ディッシュの細胞の形状を観察した結果を示す。 dは、ヒト初代軟骨細胞の形態を示す図である。本図は、Cell Applications, INC.のホームページ(http://www.cellapplications.com/product_desc.php?id=33&category_id=51&subcategory_id=68)からコピーしたものである。
1.軟骨細胞様細胞の製造方法、及び軟骨細胞様細胞の用途
 本発明において、「軟骨細胞様細胞」とは、増殖能を有し、且つ軟骨細胞と同特性を備えており、軟骨組織を形成又は再生する能力を備えている細胞(換言すれば、軟骨幹細胞)のことを意味する。ここで、「軟骨細胞と同特性」とは、軟骨細胞に対する特異的染色に対して陽性を示し、軟骨細胞マーカー遺伝子を発現していることを意味する。
 本発明の軟骨細胞様細胞の製造方法は、体細胞に、Mycファミリー遺伝子及びKlfファミリー遺伝子よりなる群から選択される少なくとも1種の遺伝子と、SOX9遺伝子とを導入する工程を含むことを特徴とする。以下、本発明の製造方法について詳述する。
 本発明において、軟骨細胞様細胞に誘導される体細胞としては、その種類については特に制限されず、あらゆる組織又は部位由来のものが使用できる。本発明で使用される体細胞としては、例えば、皮膚、皮下脂肪、筋肉、胎盤、骨、軟骨等の組織由来のものが挙げられ、より具体的には、皮膚線維芽細胞、皮下脂肪組織由来間質細胞(皮下脂肪細胞)、胚性線維芽細胞、脂肪細胞、筋肉細胞、骨芽細胞、軟骨細胞等が例示される。これらの中でも、生体に対して侵襲が軽微であり、且つより効率的に軟骨細胞様細胞を作製するという観点から、皮膚由来細胞及び皮下脂肪由来細胞が好ましく、特に皮膚線維芽細胞及び皮下脂肪組織由来間質細胞が好ましい。このように、様々な細胞から材料を選択でき、とりわけ皮膚由来細胞や皮下脂肪由来細胞等の入手容易な細胞をも使用できることは、患者の負担を軽減し、細胞の安定な入手の点でも、臨床上の利点がある。また、上記体細胞として、市販品を使用してもよく、またES細胞や間葉系幹細胞等から分化させた体細胞を使用することもできる。
 また、上記体細胞は、軟骨細胞様細胞の使用目的に応じて、ヒト、マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ヒツジ、ブタ、ウシ、ヤギ、サル等の哺乳動物由来のものから適宜選択されるが、ヒトの治療目的で使用する場合にはヒト由来のものが好適である。また、ヒト由来の体細胞を使用する場合、胎児、幼児、小児、及び成人のいずれに由来するものであってもよい。軟骨細胞様細胞をヒトの治療目的で使用する場合には、患者から採取した体細胞を使用することが望ましい。
 本発明では、初期化因子(再プログラミング因子)としてMycファミリー遺伝子及びKlfファミリー遺伝子よりなる群から選択される少なくとも1種と、軟骨誘導性の転写因子としてSOX9遺伝子とを組み合わせて、これらを上記体細胞に導入することにより、体細胞を軟骨細胞様細胞に誘導する。
 Mycファミリー遺伝子としては、c-Myc、N-Myc、及びL-Myc等が挙げられる。これらのMycファミリー遺伝子は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらのMycファミリー遺伝子の中でも、本発明では、好ましくはc-Myc遺伝子及びL-Myc遺伝子、更に好ましくはc-Myc遺伝子が使用される。c-Myc遺伝子は、細胞の分化及び増殖に関与する転写制御因子として知られており(S. Adhikary, M. Elilers, Nat. Rav. Mol. Cell Biol., 6, pp635-645, 2005)、その塩基配列は公知(NCBI accession Number NM_010849(human)、NM_002467(Mouse))である。また、N-Myc遺伝子の塩基配列(NCBI accession Number NM_005378(human)、NM_008709(Mouse))及びL-Myc遺伝子の塩基配列(NCBI accession Number NM_005376(human)、NM_008506(Mouse))についても公知である。なお、本明細書において、NCBIとは、米国立生物工学情報センター(National Center for Biotechnology Information)の略である。
 また、Klfファミリー遺伝子としては、Klf1、Klf2、Klf4、及びKlf5等が挙げられる。これらのKlfファミリー遺伝子は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらのKlfファミリー遺伝子の中でも、本発明では、好ましくはKlf2遺伝子、Klf4遺伝子及びKlf5遺伝子が挙げられ、更に好ましくはKlf2遺伝子及びKlf4遺伝子が挙げられ、特に好ましくはKlf4遺伝子が挙げられる。Klf4遺伝子は、腫瘍抑制因子として知られており(A.M.Ghaleb et al., Cell Res., 15, pp92-96, 2005)、その塩基配列は公知(NCBI accession Number NM_010637(human)、NM_004235(Mouse))である。また、Klf1遺伝子の塩基配列(NCBI accession Number NM_006563(human)、NM_010635(Mouse))、Klf2遺伝子の塩基配列(NCBI accession Number NM_016270(human)、NM_008452(Mouse))、及びKlf5遺伝子の塩基配列(NCBI accession Number NM_001730(human)、NM_009769(Mouse))についても公知である。
 また、SOX9遺伝子は、II型コラーゲン等の発現調節をする転写因子として知られており(V. Lefebvre el al., Mol. Cell. Biol. 17, pp2336-2346, 1997)、その塩基配列は公知(NCBI accession Number NM_000346(human)、NM_011448(Mouse))である。SOX9遺伝子は、他のSOXファミリー遺伝子に置換すると、軟骨細胞様細胞への誘導ができなくなる。即ち、本発明では、Mycファミリー遺伝子及び/又はKlfファミリー遺伝子と、SOX9遺伝子を組み合わせることによって、初めて軟骨細胞様細胞への誘導になり、これらの遺伝子が一体不可分の関係で使用されることが重要である。
 これらの3種の遺伝子の由来は、ヒトを含む哺乳動物において共通して存在しており、任意の哺乳動物由来のものを使用できるが、導入する体細胞の由来に応じて適宜選択することが望ましい。例えば、体細胞としてヒト由来のものを使用する場合であれば、上記3種の遺伝子はヒト由来であることが望ましい。また、上記3種の遺伝子は、野生型遺伝子以外に、その遺伝子産物のアミノ酸配列における数個(例えば1~10個、好ましくは1~6個、更に好ましくは1~4個、より好ましくは1~3個、特に好ましくは1又は2個)のアミノ酸が置換、欠失、及び/又は挿入されており、且つ、野生型の遺伝子産物と同等の機能を有する変異遺伝子産物をコードしている変異遺伝子であってもよい。 
 本発明において、上記3種の遺伝子は、公知の配列情報に基づいて、常法に従って調製することができる。例えば、哺乳動物由来の細胞からRNAを抽出し、常法に従ってクローニングすることにより、目的とする遺伝子のcDNAを調製することができる。
 本発明において、体細胞に導入される遺伝子は、初期化因子としてMycファミリー遺伝子及びKlf4ファミリー遺伝子のいずれか少なくとも1つの遺伝子と、SOX9遺伝子との組み合わせであればよいが、軟骨細胞様細胞への誘導効率を高めるという観点から、好ましくはMycファミリー遺伝子の少なくとも1種と、Klfファミリー遺伝子の少なくとも1種と、SOX9遺伝子の組み合わせ;更に好ましくはc-Myc遺伝子又はN-Myc遺伝子と、Klf2遺伝子又はKlf4遺伝子とSOX9遺伝子の組み合わせ;特に好ましくはc-Myc遺伝子と、Klf4遺伝子と、SOX9の3つの遺伝子の組み合わせが例示される。
 上記2種以上の遺伝子の体細胞への導入は、動物細胞のトランスフェクションにおいて通常使用される方法で行うことができる。具体的には、上記2種又は3種の遺伝子を体細胞へ導入する方法として、ベクターを使用する方法;リン酸カルシウム法;リポフェクション法;エレクトロポレーション法;マイクロインジェクション法等が例示される。これらの中でも、導入効率の点から、ベクターを使用する方法が好ましい。ベクターを使用して上記2以上の遺伝子を体細胞に導入する場合には、ベクターとして、ウイルスベクター、非ウイルスベクター、人工ウイルス等を用いることができるが、アデノウイルス及びレトロウイルス等のウイルスベクターが、安全性の観点から好適に使用される。なお、ベクターを使用する場合、上記2種以上の遺伝子は、各々別のベクターに組み込まれていてもよく、1つのベクターに2種以上の遺伝子が組み込まれていてもよい。
 斯くして上記2種以上の遺伝子が導入された体細胞は、体細胞が初期化されると同時に、軟骨細胞と同等の特性を有する増殖可能な軟骨細胞様細胞に誘導される。上記2種以上の遺伝子が導入された体細胞の中から、軟骨細胞様細胞に誘導された細胞の選択は、細胞の増殖能の有無、及び軟骨細胞と同等の特性を有するか否かを指標として行うことができる。このような軟骨細胞様細胞の選択は、具体的には、増殖能を有する細胞の中から、細胞の形状、軟骨細胞に対する特異的染色の有無、細胞の軟骨細胞マーカー遺伝子の発現の有無等を指標として行うことができる。体細胞に、予め軟骨細胞マーカー遺伝子のプロモーターに薬剤耐性遺伝子を結合して作ったレポーター遺伝子コンストラクトを導入しておいた場合には、軟骨の特性を獲得した細胞は薬剤存在下で生育可能になるので、薬剤存在下での生育を指標として、軟骨の特性を獲得した細胞を選択することもできる。また、軟骨細胞様細胞は、液体培地で単層培養すると、円形又は多角形状の形状を呈するので、かかる形状を上記指標とすることができる。更に、軟骨細胞様細胞は、軟骨細胞に特異的に発現するグルコサミノグリカンを有しているので、グルコサミノグリカンを染色できるアルシアンブルーを使用し、その染色の有無を上記指標とすることもできる。更に、軟骨細胞様細胞は、軟骨細胞マーカー遺伝子(Col2a1、Acan、SOX5等)を発現しているので、当該マーカー遺伝子の発現の有無を上記指標とすることもできる。
 斯くして得られた軟骨細胞様細胞は、液体培地中で単層培養すると増殖可能であり、通常9~21継代程度まで、軟骨細胞の特性を維持したまま安定に増殖することができる。また、軟骨細胞様細胞の培養には、動物細胞の培養に通常使用される培地を用いることができる。軟骨細胞様細胞の培養に使用される好適な培地の一例として、1~25容量%程度のFBSを含むDMEM培地が例示される。
 また、斯くして得られた軟骨細胞様細胞は、in vivoで軟骨組織に適用されると該軟骨組織を足場として三次元構造の新たな軟骨組織を形成でき、またin vitroで足場材料の存在下で培養すると、三次元構造の軟骨組織を形成することができる。
 このように、本発明で得られる軟骨細胞様細胞は、増殖能を有しており、且つ生体内で軟骨組織の再生が可能であるので、変形性軟骨症、軟骨形成異常症関節炎(例えば、関節リウマチ等)、外傷、骨壊死等の軟骨疾患の治療に有効であり、軟骨組織再生用の細胞製剤(医薬組成物)として使用できる。上記軟骨細胞様細胞は、そのまま単独で軟骨疾患部位に適用してもよく、或いは足場材料と共に軟骨疾患部位に適用してもよい。また、上記軟骨細胞様細胞を足場材料と共に軟骨疾患部位に適用する場合には、上記軟骨細胞様細胞と足場材料とを個別に軟骨疾患部位に適用してもよいが、後述するように上記軟骨細胞様細胞と足場材料とを含む細胞製剤を使用することにより、これらを同時に軟骨疾患部位に適用することが望ましい。
 上記軟骨細胞様細胞を軟骨組織再生用の細胞製剤として調製する場合、上記軟骨細胞様細胞と共に、必要に応じて、薬学的に許容される希釈用担体を含んでいてもよい。ここで、薬学的に許容される希釈用担体としては、例えば、生理食塩水、緩衝液等が例示される。更に、当該細胞製剤は、必要に応じて、薬理活性成分や軟骨細胞様細胞の栄養源となる成分が含まれていてもよい。
 また、当該細胞製剤は、上記軟骨細胞様細胞が足場(スキャフォールド)材料を含んでいることが望ましい。当該細胞製剤が足場材料を含む場合には、上記軟骨細胞様細胞は、当該足場材料に担持されている状態で含まれていることが望ましい。このように足場材料を使用することによって、上記軟骨細胞様細胞の軟骨組織の疾患部位での生着率を高めて、軟骨組織再生を一層促進することが可能になる。
 使用可能な足場材料としては、薬学的に許容される限り、特に制限されず、適用する軟骨組織の部位に応じて適宜選択されるが、例えば、ゲル状体又は多孔体で、生体分解性(biodegradable)又は生体吸収性(bioresorbable)の材料が挙げられる。使用可能な足場材料として、好ましくはコラーゲン、ヒドロシキアパタイト、α-TCP(リン酸三カルシウム)、β-TCP(リン酸三カルシウム)、ポリ乳酸、ポリグリコール酸、及びこれらの複合体等が例示される。これらの足場材料は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。これらの足場材料の中でも、軟骨組織の再生の効率化の観点からコラーゲンが好ましい。なお、足場材料として、コラーゲンを使用する場合には、ゲル状にして三次元構造に調製しておくことが望ましい。
 また、上記足場材料の形状についても特に制限されず、当該細胞製剤の適用対象となる軟骨組織の損傷部位の形状に応じて適宜設計すればよい。
 足場材料に上記軟骨細胞様細胞を担持させるには、例えば、上記軟骨細胞様細胞を足場材料に播種又は混合して培養すればよい。
 当該細胞製剤において、足場材料に上記軟骨細胞様細胞を担持又は上記軟骨細胞様細胞により三次元構造の軟骨組織を構築させる場合、足場材料に対して使用される上記軟骨細胞様細胞の割合については、適用対象となる軟骨組織の部位、足場材料の種類等に応じて適宜設定すればよいが、一例として、足場材料1cm3当たり、上記軟骨細胞様細胞が1×106~1×108cellsとなる割合が例示される。
 当該細胞製剤を軟骨組織の疾患部位に適用する方法については、当該細胞製剤のタイプ、適用される軟骨組織の部位等に応じて適宜設定されるが、例えば、切開して治療目的の軟骨組織の疾患部位に当該細胞製剤を直接注入する方法、或いは治療目的の軟骨組織の疾患部位に関節鏡を利用して当該細胞製剤を注入する方法等が挙げられる。
 また、軟骨組織の疾患部位に適用される当該細胞製剤の投与量については、細胞製剤のタイプ、軟骨組織の部位、症状の程度、患者の年齢や性別等に基づいて、軟骨組織の再生に有効な量を適宜設定すればよい。
 更に、上記軟骨細胞様細胞を利用して三次元構造の軟骨組織をin vitroで構築させて、これを軟骨組織用のインプラントとして、変形性軟骨症等の軟骨欠損を伴う軟骨疾患の治療に使用することもできる。
 上記軟骨細胞様細胞により三次元構造の軟骨組織を構築させるには、例えば、上記軟骨細胞様細胞を足場材料に播種して、上記軟骨細胞様細胞が生育可能な培地中で三次元構造の軟骨組織が構築されるまで培養すればよい。より具体的には、足場材料1cm3当たり、上記軟骨細胞様細胞を1×106~1×108cells程度播種して、5%CO2条件下37℃で、1~4週間程度培養すればよい。上記三次元構造の軟骨組織の構築に使用される足場材料は、上記細胞製剤に使用可能なものと同様である。また、足場材料の形状については、目的とするインプラントの形状に応じて適宜設定すればよい。また、三次元構造の軟骨組織を構築させる際に使用される培地については、上記軟骨細胞様細胞が生育可能であるものであれば特に制限されず、一例として1~25容量%程度のFBSを含むDMEM培地が挙げられるが、臨床応用の観点からは、無血清で組成が明確である培地(defined serum-free medium)を使用することが望ましい。
 斯くして調製される三次元構造の軟骨組織は、足場材料を含んだ状態で、或いは足場材料を取り除いた状態で、軟骨組織用のインプラントとして使用される。
 上記インプラントの軟骨組織の疾患部位に適用する方法については、当該インプラントの形状や適用される軟骨組織の部位等に応じて適宜設定されるが、例えば、切開して治療目的の軟骨組織の疾患部位に当該インプラントを直接組み込む方法が挙げられる。
 また、上記軟骨細胞様細胞は、軟骨組織以外の生体内部位に投与しても、軟骨組織を形成することができる。従って、上記軟骨細胞様細胞を哺乳動物の生体内に投与し、哺乳動物の生体内で上記軟骨細胞様細胞から軟骨組織を形成させた後に、軟骨組織を摘出することによって、軟骨組織用のインプラントを得ることもできる。
 このような、軟骨組織用のインプラントの製造において、使用される哺乳動物は、ヒトであってもよく、またマウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ヒツジ、ブタ、ウシ、ヤギ、サル等の非ヒト哺乳動物であってもよい。また、軟骨組織用のインプラントの製造において、上記軟骨細胞様細胞が投与される部位については、特に制限されないが、形成された軟骨組織の摘出容易性の観点から、皮下、特に背部の皮下が好適である。また、軟骨組織用のインプラントの製造において、上記軟骨細胞様細胞を足場(スキャフォールド)材料と共に投与してもよいが、足場を含むことなく上記軟骨細胞様細胞を単独で投与してもよい。このように足場を投与しなくても、上記軟骨細胞様細胞は、生体内で十分な大きさの軟骨組織を形成することができる。
 軟骨組織用のインプラントの製造において、哺乳動物に対する上記軟骨細胞様細胞の投与量については、特に制限されないが、通常104~108cells程度、好ましくは105~107cells程度が挙げられる。また、上記軟骨細胞様細胞を哺乳動物に投与した後に、14~35日間後、好ましくは21~28日間後に、軟骨組織の形成が認められる。
 また、上記軟骨組織用のインプラントの製造を軟骨疾患の患者の生体内で行って、製造された軟骨組織を当該患者の軟骨疾患部位に移植してもよい。即ち、上記軟骨細胞様細胞を、軟骨疾患の患者の軟骨組織以外の部位に投与し、患者の生体内で上記軟骨細胞様細胞から軟骨組織を形成させた後に、軟骨組織を摘出して当該患者の軟骨疾患部位に投与することによって、軟骨疾患の移植治療をすることもできる。
 また、上記軟骨細胞様細胞が投与されて、上記軟骨細胞様細胞から形成された軟骨組織を有する非ヒト哺乳動物は、軟骨組織に対する被験物質の薬効を評価するためのツールとして使用できる。即ち、上記軟骨細胞様細胞から形成された軟骨組織を有する非ヒト哺乳動物に被験物質を投与し、当該軟骨組織に対する被験物質の薬効を判定することによって、軟骨組織に対する被験物質の薬効を評価することができる。ここで、被験物質とは、軟骨組織に対する薬効の評価対象となる物質であり、具体的には、軟骨疾患の治療薬の候補物質が挙げられる。
 また、上記軟骨細胞様細胞は、様々な軟骨疾患の病態を解明するためのツールとして使用でき、更にはヒト体細胞から誘導した軟骨細胞様細胞は、軟骨疾患に関する創薬や薬品開発のためのツールとしても有用である。
2.軟骨細胞様細胞調製用組成物
 前述するように、Mycファミリー遺伝子及びKlfファミリー遺伝子よりなる群から選択される少なくとも1種の遺伝子と、SOX9遺伝子とを組み合わせて体細胞に導入することにより、軟骨細胞様細胞を調製できる。従って、本発明は、更に、Mycファミリー遺伝子及びKlfファミリー遺伝子よりなる群から選択される少なくとも1種の遺伝子と、SOX9遺伝子とを含む、軟骨細胞様細胞調製用組成物を提供する。当該軟骨細胞様細胞調製用組成物は、体細胞から軟骨細胞様細胞を誘導するために使用される初期化因子と軟骨誘導性の転写因子のセットを含むものであり、上記2種以上の遺伝子が体細胞に導入可能な形態で含まれていることが望ましい。上記2種以上の遺伝子が体細胞に導入可能な形態として、具体的には、上記2種以上の遺伝子が組み込まれたベクターが例示される。ここで、上記2種以上の遺伝子は、各々別のベクターに組み込まれていてもよく、1つのベクターに2種以上の遺伝子が同時に組み込まれていてもよい。
 当該軟骨細胞様細胞調製用組成物に使用される遺伝子、ベクターの種類等については、前述の通りである。
 以下に、実施例等に基づいて本発明を詳細に説明するが、本発明はこれらによって限定されるものではない。
実施例1 皮膚線維芽細胞及び胚性線維芽細胞からの軟骨細胞様細胞の製造
1.Col11a2-βgeoトランスジェニックマウスの作製
<方法>
 まず、図1aに示すCol11a2プロモーター/エンハンサー配列の制御下でβ-geo(β-ガラクトシダーゼ遺伝子とネオマイシン耐性遺伝子との融合遺伝子)を発現するトランスジェニックマウスを、以下に示す手順で作製した。
 α2(XI)コラーゲン遺伝子ベースの発現ベクターである742LacZIntは、マウスCol11a2プロモーター(-742~+380)、SV40 RNAスプライス部位、β-ガラクトシダーゼレポーター遺伝子、SV40ポリアデニル化シグナル、及びエンハンサーとしてのCol11a2の2.34-kbの第1イントロン配列を含む(参考文献1)。βgeo導入遺伝子を作製するために、0.8-kbネオマイシン耐性遺伝子フラグメントを、LacZをコードする3.1-kb cDNAフラグメントの3’末端へ連結した。βgeoフラグメントをLacZ遺伝子と置換して742LacZInt発現ベクターのNot I部位に組み込み、Col11a2-βgeoプラスミドを作製した。
 Col11a2-βgeoプラスミドを、EcoRI及びPstIで消化し、当該プラスミド内の挿入物(inserts)を放出させた。参考文献1と同様の方法で、F1ハイブリッドマウス(C57BL/6 x DBA)由来の受精卵の前核へ前記挿入物をマイクロインジェクトすることによって、トランスジェニックマウスを作製した。尾から抽出されたゲノムDNAのPCRアッセイによって、トランスジェニックマウスを同定した。具体的には、LacZ遺伝子を認識するプライマー(CGC TAC CAT TAC CAG TTG:配列番号1)とネオマイシン耐性遺伝子を認識するプライマー(CCA GTC ATA GCC GAA TAG:配列番号2)を使用して、導入遺伝子特異的PCRによってゲノムDNAを増幅し、βgeoトランスジェニックマウスに特異的に含まれる135-bp産物を増幅させ、トランスジェニックマウスの同定を行った。上記で同定されたトランスジェニックマウスを、少なくとも4世代の間、C57BL/6系マウスと交配させた。
 斯くして作成されたトランスジェニックマウスについて、参考文献2に記載の方法に従って、マウス身体及び切片のX-gal染色を行った。
<結果>
 α2(XI)コラーゲン鎖は、軟骨組織構造を支持する軟骨特異的基質タンパク質であり、衝撃吸収の軟骨機能において重要な役割を果たす。Col11a2プロモーター/エンハンサー配列は、特異的に軟骨で発現することが分かっている(参考文献1)。Col11a2プロモーターは、インシュレーター活性を含み、トランスジェニックマウスにおける安定な導入遺伝子発現に寄与すると考えられる。上記トランスジェニックマウスをX-gal染色したところ、軟骨細胞において特異的にLacZ活性を示したが、他の組織においては示さなかった(図1のbの左図参照)。また、組織学的分析によって、全ての軟骨細胞がβgeoを発現していることが確認された(図1のbの右図参照)。
2.Col11a2-βgeoトランスジェニックマウスからのマウス胚性線維芽細胞、成体マウス皮膚線維芽細胞、及び初代軟骨細胞の分離及び分析
<方法>
 上記で得られたトランスジェニックマウスを用いて、マウス胚性線維芽細胞(mouse embryonic fibroblast)(MEF)、成体マウス皮膚線維芽細胞(adult mouse dermal fibroblast)(MDF)、及び初代軟骨細胞を、以下の手順に従って単離した。
 MEFは、参考文献3と同様の方法で分離した。具体的には、先ず、13.5 dpc胚から頭部および内臓組織を除去した。次いで、残りの身体を細かく刻み、トリプシン処理した後に、チューブに移した。細胞を遠心分離によって回収し、これを10%FBSを含有するDMEM培地に懸濁させた。次いで、得られた細胞1×106cellsを100 mmディッシュで培養することにより、MEF(第1継代)を得た。
 MDFは、3~6月齢のトランスジェニックマウスから調製した。具体的には、トランスジェニックマウスの体毛を剃り落とした後、皮膚を細切した後に、37℃で4時間トリプシン処理した。トリプシン処理により遊離した細胞を、ナイロンメッシュ(細孔サイズ、40μm;Tokyo Screen, Tokyo, Japan)で濾過し、単細胞の懸濁液を作製し、これを100 mmディッシュで培養することにより、MDF(第1継代)を得た。
 初代軟骨細胞は、参考文献4と同様の方法で分離した。具体的には、トランスジェニックマウスを解剖し、その上腕骨及び大腿骨の骨端軟骨を、2%FBS及びストレプトマイシン/ペニシリンを含むDMEM培地中で分離して採取した。骨端軟骨の付着組織及び軟骨膜を、37℃で30分間コラーゲナーゼ(II型、Sigma)消化(DMEM/2%FBS中2mg/ml)後、物理的に除去した。次いで、付着組織及び軟骨膜が除去された骨端軟骨を、コラーゲナーゼ溶液中で2~4時間処理して、初代軟骨細胞を遊離させた。遊離した細胞を遠心分離(4℃で5分間200×g)により回収し、そして新鮮な培地に懸濁させた。細胞を60 mm又は100 mmディッシュに接種し、2% FBS含有DMEM培地で培養し、初代軟骨細胞を得た。
 なお、上記で得られた第1継代のMEF及びMDFは、トリプシン処理した後に、液体窒素中で凍結保存しておき、後述する試験に使用した。
 また、上記で得られた初代軟骨細胞については、X-gal染色を行って、LacZ活性を評価した。
 更に、上記で得られた初代軟骨細胞、MEF、及びMDFを、0~900μg/mlのG418(ジェネティシン)を含む培地に添加して、5%CO2条件下37℃でインキュベートし、各細胞の生育を評価した。なお、初代軟骨細胞の培養では2%FBS含有DMEM培地を使用し、MEF及びMDFの培養では10%FBS含有DMEM培地を用いた。また、比較のために、上記と同様の手法で、野生型のリッターメイトマウスから調製した初代軟骨細胞についても、同様にG418の存在下でインキュベートし、その生育を評価した。
<結果>
 βgeoトランスジェニックマウスから調製された初代軟骨細胞をX-gal染色したところ、約50%の細胞で染色が認められた(図1のc参照)。この結果は、軟骨細胞が脱分化したこと、又は調製時に軟骨に付着していた線維組織中の線維芽細胞がコンタミしていたことを示唆している。
 また、βgeoトランスジェニックマウスから調製した初代軟骨細胞、MEF、及びMDFをG418の存在下でインキュベートした結果を図1のdに示す。MEF及びMDFは、300μg/mlのG418の存在下で完全に死滅したのに対して、トランスジェニックマウスから調製した初代軟骨細胞は、900μg/mlのG418の存在下でも生育していた。また、野生型のF1ハイブリッドマウス(C57BL/6 x DBA)から調製した初代軟骨細胞では、その大部分が300μg/mlのG418の存在下で死滅していた。
3.MEFを軟骨細胞に誘導する因子の検討
<方法>
 体細胞を軟骨細胞に誘導する因子を同定するために、4つの初期化因子(Oct3/4、Sox2、c-Myc及びKlf-4)と軟骨誘導性の転写因子(Sox9)を用いて上記で得られたMEFの形質転換を行い、軟骨細胞への誘導の有無を評価した。軟骨細胞表現型を示す細胞はG418に対する耐性を示すので、本試験において、G418耐性を指標として軟骨細胞への誘導の有無を確認した。具体的には、以下の手順に従って、試験を行った。
 本試験では、上記初期化因子と軟骨誘導性の転写因子の体細胞の導入は、参考文献3と同様の方法で、レトロウイルスpMXs/Plat-Eベクターシステムを使用して実施した。即ち、マウスc-Mycを組み込んだレトロウイルスベクター(pMXs-c-Myc)、マウスKlf4を組み込んだレトロウイルスベクター(pMXs-Klf4)、マウスSox2を組み込んだレトロウイルスベクター(pMXs-Sox2)、及びマウスOct3/4を組み込んだレトロウイルスベクター(pMXs-Oct3/4)を使用した。また、ヒトSOX9を組み込んだレトロウイルスベクターについては、ヒトSOX9 cDNAを、Gateway pENTR-1Aベクター(Invitrogen)に組み込み、得られたプラスミドをLR反応(Invitrogen)によってpMXs-gwに挿入したものを使用した。
 転写因子の体細胞への導入は、以下の手順で実施した。まず、100 mmディッシュに8×10cellsのPlat-E細胞を10mlの10%FBS含有DMEM培地(1μg/ml puromycin、10μg/ml brastcidine、penicillin、及びstreptomycin含有)中に接種し、その1日後に、Fugene 6トランスフェクション試薬(Roche)を使用して、Plat-E細胞に各pMXsベースのレトロウイルスベクターをトランスフェクトした。トランスフェクションの24時間後、培地を交換した。培地交換の24時間後、Plat-E培養物からウイルス含有上澄みとして培地を回収した。
 凍結保存されたMEFを100 mmディッシュに接種した。形質導入の1日前に、MEF又はMDFをトリプシン処理した後に、100 mmディッシュに5×105cells入れて10%FBS含有DMEM培地にて24時間静置培養した(第3継代)。
 上記で得られた各ウイルス含有上澄みを0.45μm酢酸セルロースフィルター(Schleicher & Schuell)で濾過し、得られたろ液に対してポリブレン(ナカライテスク株式会社)を終濃度4 mg/mlとなるように添加し、ウイルス溶液を調製した。形質導入させる遺伝子の組合せに応じて、各ウイルス溶液を混合し、混合ウイルス溶液を調製した。なお、混合ウイルス溶液の調製の際、混合させる各ウイルス溶液は、含有するレトロウイルスベクターの各々が等量となるように設定した。
 上記ウイルス液又はウイルス混合液を、上記で培養したMEFのディッシュに添加し、37℃で16時間インキュベートし、レトロウイルスベクターを形質導入した。インキュベート後、ディッシュ中の細胞をトリプシン処理し、次いで新鮮な10%FBS含有DMEM培地を入れた3つの10 cmディッシュに細胞を分けて、2日間静置培養した。次いで、培地を500μg/mlのG418を含む10%FBS含有DMEM培地に交換して、1日おきに同組成の培地で培地交換を行いながら2週間静置培養した。
 斯くして培養された細胞は、アルシアンブルー染色を行った後にてクリスタルバイオレット染色に供し、各ディッシュ中の染色されたコロニー数を計測した。ここで、染色されたコロニー数は、3つのディッシュの染色されたコロニー数の合計数をカウントすることにより計測した。なお、クリスタルバイオレット染色では全ての細胞が染色され、アルシアンブルー染色では、軟骨細胞に特異的に発現するグルコサミノグリカンが染色されるので、軟骨細胞に分化した細胞のみが染色される。
 また、比較のために、GFP cDNAを組み込んだレトロウイルスベクター(pMXs-EGFP)を用いて、上記と同様の手法でMEFへの形質転換、形質転換細胞の評価を行った。
<結果>
 MEFに各因子を導入した細胞について分析した結果を図2に示す。図2のaには、MEFに各因子を導入した細胞について、アルシアンブルー染色及びクリスタルバイオレット染色により計測された染色コロニー数を示す。また、図2のbには、MEFに4つの初期化因子(Oct3/4、Sox2、c-Myc及びKlf-4)とヒトSOX9を同時に形質導入して得られた細胞をアルシアンブルー染色及びクリスタルバイオレット染色した際の結果を示す。MEFへのヒトSOX9のみの形質導入では、G418の存在下においてコロニー形成を誘導しなかった(図2のa)。また、MEFに4つの初期化因子(Oct3/4、Sox2、c-Myc及びKlf-4)のみを形質導入した場合では、紡錘形状の非軟骨細胞様形態を有する細胞からなる少量のコロニーを形成させたが、これらのコロニーはアルシアンブルーで染色されなかったことから、軟骨細胞に分化していないことが分かった。他方、MEFに4つの初期化因子とSOX9を同時に形質導入した場合には、10cmディッシュ当たり約110個のG418耐性コロニーが認められ、その内の約30%のコロニーが、アルシアンブルーで染色された(図2のa及びb参照)。MEFに4つの初期化因子とSOX9を同時に形質導入した細胞の形状は、コロニー間で異なっており、あるコロニーは、多角形状の細胞(図2のc左)から構成されており、これらは初代軟骨細胞の形状(図1のc)と類似していたが、他のコロニーではMEF(図2のd)のように、紡錘形状の細胞(図2のc右)から構成されていた。
 次に、どの因子がG418耐性コロニーの形成に重要であるかを同定するために、上記4つの初期化因子の中の3つの初期化因子とSox9をMEFに形質導入し、得られた細胞について分析した。図2のeに、3つの初期化因子とSox9を導入した細胞について、アルシアンブルー染色及びクリスタルバイオレット染色を行って計測された染色コロニー数を示す。その結果、コロニーの平均数は、c-Myc又はKlf4を導入しなかった場合に減少することが明らかとなった。一方、Oct3/4又はSox2を導入しなくても、形成されるコロニーの数は減少していなかった。これらの結果は、MEFから軟骨細胞を誘導する上で、c-Myc、Klf4及びSox9の形質導入が重要であることを示している。また、c-Myc、Klf4及びSox9をMEFに形質導入し場合、約250個できたG418耐性コロニーのおよそ50%が多角形状を有する軟骨細胞様形態を有する細胞から構成されていた(図2のf参照)。
4.MDFを軟骨細胞に誘導する因子の検討
<方法>
 上記と同じ手法で、MDFに対して4つの初期化因子(Oct3/4、Sox2、c-Myc及びKlf-4)と軟骨誘導性の転写因子(SOX9)を種々組み合わせて形質導入し、得られた細胞の特性を分析した。
<結果>
 MDFに各因子を導入した細胞について分析した結果を図3に示す。図3のA~Cには、MEFに各因子を導入した細胞について、アルシアンブルー染色又はクリスタルバイオレット染色により計測された染色コロニー数、並びに多角形の細胞から構成されるコロニー数を示す。MDFへのSOX9のみの形質導入は、G418の存在下でコロニー形成を誘導しなかった(図3のA参照)。MDFへの4種の初期化因子(Oct3/4、Sox2、c-Myc及びKlf-4)のみの形質導入でも、僅かなコロニーしか形成しなかった。一方で、MDFに、4種の初期化因子(Oct3/4、Sox2、c-Myc及びKlf-4)とSOX9を同時に形質導入した場合には、約120個のG418耐性コロニーの形成が認められ、これらのコロニーのおよそ30%が、多角形状の軟骨細胞様形態を有する細胞から構成されていた。MDFを使用することにより得られたこれらの結果は、MEFで得られたもの(図2のa参照)と同じ傾向を示している。
 また、SOX9の存在下で、4種の初期化因子(Oct3/4、Sox2、c-Myc及びKlf-4)からc-Myc、Klf4及びOct3/4のいずれかを欠く場合には形成されるコロニーの数は僅かに減少したが、Sox2を欠く場合には形成されるコロニーの数は増加した(図3のB参照)。形成されたコロニーの中で、円形又は多角形状の細胞から構成されるコロニーは、SOX9の存在下で上記4種の初期化因子からc-Myc及びKlf4のいずれかを欠く場合には認められず(図3のB)、SOX9の存在下で上記4種の初期化因子からOct3/4を欠く場合には、およそ5分の1のコロニーが、円形又は多角形状の細胞から構成されていた(図3のB参照)。これらの結果は、c-Myc、Klf4及びSOX9が、MDFからG418耐性でありかつ軟骨細胞様形状である細胞を含むコロニー形成において重要であったことを示している。即ち、c-Myc、Klf4及びSOX9の組み合わせは、MDFから約200個のG418耐性コロニーを作製し、そのコロニーの内のおよそ40%が、円形又は多角形状の細胞から構成されるものであることが明らかとなった(図3のC参照)。一方、c-MycとSOX9との組み合わせも、約200個のG418耐性コロニーを形成され、それらのコロニーの殆どは紡錘形の又はより平坦な形状の非軟骨細胞様形態を有する細胞から構成されていが、円形又は多角形状の軟骨細胞様形態の細胞から構成されるコロニーも僅かではあるが認められた(図3のC参照)。また、SOX9とKlf4のみを組み合わせた場合でも、約350個のG418耐性コロニーが形成され、それらのコロニーの内、僅かではあったが、円形又は多角形状の軟骨細胞様形態の細胞から構成されるものが存在していた(図3のC参照)。
 以上の結果から、c-Myc、Klf-4、及びSOX9の導入によって、5×105cellsのMDSから、G418耐性であって軟骨細胞様形態の細胞から構成されるコロニーを約50個作成できた。これらの3種の因子の組合せにOct3/4を加えても、G418耐性であって軟骨細胞様形態の細胞から構成されるコロニーの数には影響しなかった。また、Sox2を加えると、コロニーの形成が妨げられた。また、c-Myc及びSOX9の組合せ、或いはKlf-4及びSOX9の組合せであっても、軟骨細胞様形態の細胞から構成されるG418耐性コロニーの形成が確認できた。更に、本結果から、Sox2の導入は、軟骨細胞様形態の細胞への誘導を阻害することも示唆された。
 一方、SOX9に代えて、SOX5及びSOX6を用いて、上記と同様の手法でc-Myc及びKlf-4と共にMDFに導入したところ、G418耐性コロニーの形成は認められなかった。SOX5及びSOX6は、SOX9をサポートする作用があるが、SOX9には存在するトランスアクティベーションドメイン(transactivation domain)を有していないことが知られている。かかる点を考慮すると、軟骨細胞様形態の細胞への誘導には、SOX9に存在するトランスアクティベーションドメインが関与していると推定される。
 Mycファミリー遺伝子に属する各遺伝子及びKlfファミリー遺伝子に属する各遺伝子は、基本的には、それぞれ同じ生物学的活性を有していることから、Mycファミリー遺伝子に属する遺伝子、Klfファミリー遺伝子に属する遺伝子及びSOX9を組み合わせて使用することによって、体細胞の軟骨細胞様形態の細胞への誘導が可能になることも、上記実験結果から把握される。
5.クローンの作製
<方法>
 MDFから誘導されたG418耐性コロニーの中から、以下の11個のコロニーを選び、クローンを作製した。
・ c-Myc、Klf-4、Sox2、Oct3/4及びSox9の形質導入によって作製されたコロニーから1個(以下、このクローンをMKSO-1と表記する)
・ c-Myc、Klf4、Sox2及びSox9の形質導入によって作製されたコロニーから2個(以下、これらのクローンをMKS-1又は-2と表記する)
・ c-Myc、Klf4、Oct3/4及びSox9の形質導入によって作製されたコロニーから4個(以下、これらのクローンをMKO-1~-4と表記する)
・ c-Myc、Klf4及びSox9の形質導入によって作製されたコロニーから4個(以下、これらのクローンをMK-1~-4と表記する)
 標的とする各コロニーに対してトリプシン処理を行って細胞を回収した後に、96ウエルプレートにて、500μg/mlのG418を含む10%FBS含有DMEM培地中で5%CO2条件下37℃にて6~10日間培養を行った。その後、96ウエルプレートで増殖した細胞を24ウエルプレートに移して、5%CO2条件下37℃で24~31日間培養を行った。次いで、24ウエルプレートで増殖した細胞を6ウエルプレートに移して、5%CO2条件下37℃で18~31日間培養を行った。この細胞を10cm ディッシュに移し、この段階の細胞を第4継代と規定した。斯くして増殖させた細胞を500μg/mlのG418及び10%のFBSを含有するDMEM培地で培養し、6日毎に継代した。
<結果>
 上記方法で11個のコロニーに含まれる細胞を、G-418を含む培地を使用して培養を行ったところ、MKO-4のコロニー由来の細胞は、第7継代後に増殖を停止した。上記培養によって、MKO-4を除く、10個のクローン(MKSO-1, MKS-1, -2, MKO-1~-3,及びMK-1~-4)を作製することができた。作製された各クローンは、多角形状を有しており、軟骨細胞と同形態を示した(図3のE参照)。
6.クローン化された細胞の特性の評価
 上記でクローン化された細胞について、アルシアンブルー染色による分析、導入遺伝子の発現分析、軟骨細胞マーカー遺伝子の発現分析、核型分析、遺伝子発現パターンの分析、Col1a2のプロモーター領域におけるメチル化CpGジヌクレオチドの分析、増殖特性の分析を行った。
6-1.アルシアンブルー染色による分析
 上記でクローン化された細胞(第6継代)、及びMDF(第3継代)を、60 mmディッシュにて500μg/mlのG418を含む10%FBS含有DMEM培地中で培養し、コンフルエントになった後、さらに14日間培養を行った。斯くして培養された細胞に対してアルシアンブルー染色を行った。
 得られた結果を図4のAに示す。培養後の細胞は、アルシアンブルーで強く染色され、グリコサミノグリカンが存在していることが確認された。なお、染色強度は、クローン間で異なっていた。
6-2.導入遺伝子の発現分析
 レトロウイルス導入遺伝子由来の転写物を増幅するが内在性遺伝子の転写物を増幅しないプライマーを使用して、RT-PCR及びウエスタンブロット分析を行って、上記でクローン化された細胞の導入遺伝子の発現を分析した。具体的には、以下の手順に従って実施した。
 上記でクローン化された細胞(第6継代)及びMDF(第3継代)を500μg/mlのG418を含む10%FBS含有DMEM中で、またβgeoトランスジェニックマウスから調製した初代軟骨細胞(第1継代)を2%FBS含有DMEM培地中で、60 mmディッシュにて培養した。コンフルエントに達した後、RNeasy Mini Kits(Qiagen, Santa Clarita, CA)を使用して細胞中全RNAを抽出した。次いで、抽出した全RNAをDNアーゼで消化し、コンタミしているゲノムDNAを除去した。QuantiTect Reverse Transcription(Qiagen)を使用して、得られた全RNA(1μg
)を一本鎖(first-strand)cDNAへ逆転写した。得られたcDNA(2μl)、をExTaq(タカラバイオ株式会社)、及び各遺伝子に対して特異的なプライマー(4 pmol)を含有する混合液(20μl)中においてPCR増幅を行い、個々のRNA発現レベルを測定した。使用したプライマーを表1に列挙する。
Figure JPOXMLDOC01-appb-T000001
 また、上記でクローン化された細胞(第6継代)及びMDF(第3継代)を500μg/mlのG418を含む10%FBS含有DMEM中で、またβgeoトランスジェニックマウスから調製した初代軟骨細胞(第1継代)を2%FBS含有DMEM培地中で、60 mmディッシュにて培養した。コンフルエントに達した後、細胞を溶解した。得られた細胞溶解液をドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動(SDS-PAGE)に供し、エレクトロブロットし、次いで免疫染色を行った。抗体は、抗-Sox9抗体(Santa-Cruz Biotechnology, Inc., 1:200希釈)、抗-c-Myc抗体(Santa-Cruz Biotechnology, Inc., 1:200希釈)、抗-Klf4抗体(Santa-Cruz Biotechnology, Inc., 1:200希釈)、抗-Oct3/4抗体(Santa-Cruz Biotechnology, Inc., 1:600希釈)、抗-Sox2抗体(Santa-Cruz Biotechnology, Inc., 1:200希釈)、抗-β-アクチン抗体(Cell Signaling Technology, 1:5000希釈)を使用した。
 RT-PCRによる分析結果を図4のBに示し、ウエスタンブロット分析の結果を図4のCに示す。RT-PCRによる分析結果から、クローン化された細胞は、導入遺伝子を発現させていることが確認された。また、ウエスタンブロット分析から、クローン化された細胞はタンパク質レベルで導入遺伝子を発現しているが、MDFではこれらの遺伝子を発現しなかったことが確認された。
6-3.軟骨細胞マーカー遺伝子の発現分析
 RT-PCRを用いて、上記でクローン化された細胞の軟骨細胞マーカー遺伝子の発現を分析した。具体的には、上記と同様の手法で、クローン化された細胞(第6継代)、MDF(第3継代)、及びβgeoトランスジェニックマウスから調製した初代軟骨細胞(第1継代)から全RNAを得て、RT-PCR分析により、軟骨細胞マーカー遺伝子(Col2a1、Acan、Hapln1、Sox5、Sox6、Col9a1、Col9a2、Col9a3、Col11a1、Col11a2)及びMDFマーカー遺伝子(Col1a1、Col1a2、Gapdh、RT-)の発現を分析した。使用したプライマーについては、表2に列挙する。
Figure JPOXMLDOC01-appb-T000002
 軟骨細胞マーカー遺伝子の発現の分析結果を図5のaに示し、MDFマーカー遺伝子の発現の分析結果を図5のbに示す。この結果から、上記でクローン化された細胞は、種々のレベルで軟骨細胞マーカー遺伝子を発現することが示された。MKS-1、MKO-2、MK-1、MK-3及びMK-4は軟骨細胞マーカー遺伝子を発現していたが、MKS-2及びMK-2は軟骨細胞マーカー遺伝子を発現していなかった。また、MKS-1は線維芽細胞特異的I型コラーゲン遺伝子(Col1a1およびCol1a2)を発現していることも確認された。
 また、βgeoトランスジェニックマウスから調製した初代軟骨細胞の中にはLacZ陰性細胞が存在することが示されているように、軟骨へ付着した周囲線維性組織由来の線維芽細胞がコンタミしていた可能性がある(図1のc参照)。そのため、初代軟骨細胞由来のRNAから、線維芽細胞において発現されるが純粋な軟骨細胞においては発現されないと考えられるI型コラーゲン遺伝子(Col1a1およびCol1a2)mRNAが検出されたと推測される。
6-4.核型分析
 上記でクローン化された細胞の核型を、キナクリン-ヘキスト染色で分析した。なお、本分析は、財団法人実験動物中央研究所(International Council for Laboratory Animal Science (ICLAS) Monitoring Center (Japan))にて実施された。
 得られた結果の一部を図5のcに示す。MKS-2、MKO-2及びMK-4は40XYの正常な核型を示しており、MK-3は正常な40XY及び41XY+4の混合物を示していた。
6-5.遺伝子発現パターンの分析
 以下に示す手法で、DNAマイクロアレイ分析のScatterプロットによって、上記でクローン化された細胞(MKS-1、MKO-2、MKI-1、MK-3、MK-4)、MDF、及びβgeoトランスジェニックマウスから調製した初代軟骨細胞における全体的な遺伝子発現パターンを分析した。
 250 ngの全RNAから、MessageAmp III RNA Amplification Kit(Ambion)を用いて、ビオチン標識したcRNAを得た。次いで、10μgのフラグメント化cRNAをAffymetrix 430 2.0 GeneChipアレイに対して、45℃で16時間の条件でハイブリダイズさせた。その後、DNAチップを洗浄して、更に染色した。次いで、得られたDNAチップを、Affymetrix Fluidics station 450及びスキャナーを使用してスキャンし、得られた画像をGCOSソフトウエアを使用して分析した。標準化は、MAS 5.0 アルゴリズムを用いて算出した。クラスター分析は、Cluster 3.0(東京大学)を用いて実施した。
 DNAマイクロアレイ分析のScatterプロットの結果を図6のa~cに示す。初代軟骨細胞と比較してMDFにおいて過剰発現された遺伝子の数は少なかったが、MDFと比較して初代軟骨細胞において過剰発現された遺伝子の数は多かった(図6のa参照)。このことは、初代軟骨細胞は線維芽細胞でコンタミされたという推測と一致している。また、初代軟骨細胞と比較してMK-3において過剰発現された遺伝子の数(図6のb参照)は、MDFと比較してMK-3において過剰発現された遺伝子の数(図6のc参照)よりも少なかった。また、MK-3と比較して初代軟骨細胞において過剰発現された遺伝子の数(図のb参照)は、MK-3と比較してMDFにおいて過剰発現された遺伝子の数(図6のc参照)と同程度であった。このことは、初代軟骨細胞が線維芽細胞でコンタミされていたことに起因すると考えられる。これらの結果は、MK-3は、全体的な転写レベルで、純粋な軟骨細胞と類似していることを示している。また、MK-3及び初代軟骨細胞の双方において、Col2al、アグリカン遺伝子(Acan)、及びCol9a1を含む軟骨マトリックス遺伝子の発現レベルは、他の遺伝子の発現レベルに比較して極めて高かった(図6のb参照)。
 また、クラスター分析の結果を図6のdに示す。クラスター分析の結果から、MKS-1以外のクローン化された細胞は、MDF、初代軟骨細胞、及びMKS-1とは異なるクラスターに分類されることが明らかとなった。このことは、MKS-1が軟骨細胞マーカー遺伝子とMDFマーカー遺伝子の双方を発現しているというRT-PCRの知見や、初代軟骨細胞は線維芽細胞でコンタミされているという推測と一致している。
6-6.軟骨細胞マーカー遺伝子のプロモーター領域及びMDFマーカー遺伝子のプロモーター領域におけるメチル化CpGジヌクレオチドの分析
 上記でクローン化された細胞(MK-3、MK-4)及びMDFについて、軟骨細胞マーカー遺伝子(Col2a1及びAcan)のプロモーター及びMDFマーカー遺伝子(Col1a2)のプロモーター中のシトシングアニン(CpG)ジヌクレオチドのメチル化状態を、バイスルファイトゲノム配列決定分析(bisulfite genomic sequencing analyses)によって評価した。バイスルファイトゲノム配列決定分析は、具体的には、次の手法に従って実施した。EpiTect Bisulfite kit (Qiagen)を用いて、該キットに添付の指示書に記載の手法に従ってバイスルファイト処理を行った。使用したPCRプライマーは表3に示す通りである。Mighty TA-cloning Kit (Takara)を用いて、pMD20-Tベクターに増幅産物をクローン化した。各遺伝子に対してランダムに選択した10個のクローンを、T7及びT3プライマーを用いて配列決定した。
Figure JPOXMLDOC01-appb-T000003
 得られた結果を図6のeに示す。Col1a2のプロモーター中のシトシングアニン(CpG)ジヌクレオチドは、MK-3及びMK-4において高度にメチル化されていたが、MDFではメチル化されていなかった。また、Col2a1及びAcanのプロモーター中のCpGジヌクレオチドのメチル化状態は、上記でクローン化された細胞(MK-3、MK-4)及びMDFの双方において、殆どメチル化されていなかった。
6-7.増殖特性の分析
 クローン化された細胞(第6継代)及びMDF(第6継代)を、60 mmディッシュにて10%FBS含有DMEM培地中で培養し、増殖特性について評価した。
 得られた結果を図7のaに示す。MKO-2、MK-1、MK-3、及びMK-4は少なくとも48日間、指数関数的に増殖したが、培養40日以降は、紡錘形状又は平坦な形態の細胞が徐々に出現した。一方、MDFは培養開始から15日に増殖を停止した。また、MKS-1は、増殖速度の急激な上昇、及び培養24日以降に紡錘形状への形態変化を示した。これは、MKS-1が脱分化したことを示唆しており、該細胞の染色体数が異常であることと関連している可能性がある。
 また、細胞数が1×1010cellsを越えた時点で、各々の細胞の一部を分離し、これを10cmディッシュに接種して培養を行い、コンフルエントになった後に更に14日間培養を継続した。その後、各細胞をアルシアンブルーで染色した。アルシアンブルーで染色した結果を図7のbに示す。この結果から、MDFに比べて軟骨細胞様細胞は、アルシアンブルーで強く染色されることが明らかとなり、軟骨細胞様細胞は、ある程度の細胞数の増加の後でも、軟骨細胞としての特徴を保持していることが分かった。
7.軟骨組織の作製
 以下に示す手法で、クローン化された細胞(MK-3)とMDFを使用して、軟骨組織の作製を行った。
 コラーゲンゲル培養キット(新田ゼラチン社製)を用いて、該キットに示されているプロトコールに従って、コラーゲンゲル培養を行った。先ず、軟骨細胞様細胞(MK-3)及びMDFをトリプシン/EDTAで消化した。次いで、4℃で調製された0.25%のI型酸溶解コラーゲン液中に、細胞を2×107cells/mlになるように添加して懸濁した。細胞懸濁液(500μlの液滴)を6ウェルプレートの各ウエルの中央に添加し、37℃でゲル化させた。得られたゲル-細胞複合物を10%FBSを含有するDMEM培地3mlで覆って、5%CO2条件下37℃で培養した。1日おきに、培地を新鮮な培地に交換した。3週間の培養後、ゲル-細胞複合物を10%ホルムアルデヒドで固定した後に、パラフィン中で包埋した。斯くして処理したゲル-細胞複合物の一部をアルシアンブルー及びヌクレアファストレッドで染色した。また、ゲル-細胞複合物の一部をII型コラーゲンに対する一次抗体(ヤギ由来ポリクローナル抗体)(Santa-Cruz Biotechnology, Inc., 1:200 dilution)で処理し、洗浄した後に、更に二次抗体Alexa Fluor 488 Rabbit Anti-goat IgG(Invitorgen)で処理した。
 結果を図7のcに示す。I型コラーゲンゲル中でMK-3の三次元培養物の組織学的分析によって、アルシアンブルーで染色された物質で囲まれた小腔構成の組織構造が確認され、上記のゲル-細胞複合物には軟骨様組織が形成されていることが明らかとなった。また、MK-3を含むゲル-細胞複合物には、抗II型コラーゲン抗体に対する免疫活性を示したが、MDFを含むゲル-細胞複合物では該活性は認められなかった。
8.In vivoにおける軟骨組織の作製
 上記と同じ手法を用いて、MDFに、c-Myc、Klf4、及びSOX9を導入して誘導した、軟骨細胞様形態を有する細胞(MK-5;軟骨細胞様細胞)をクローン化した。なお、このMK-5には、GFP cDNAを組み込んだレトロウイルスベクターを用いて、GFPも導入されている。
 軟骨細胞様細胞(MK-5)をトリプシン/EDTAで消化した。次いで、10容量%のFBSを含有するDMEM培地に、細胞を1×107cells/mlになるように添加して懸濁して、細胞懸濁液を調製した。この細胞懸濁液0.1mLをヌードマウス(6週齢、雌、BALB/cA Jc1-nu/nu)の背部の皮下に注入した。
 細胞懸濁液の投与から4週間後に、マウスの背部の蛍光発色を観察したところ、MK-5の細胞懸濁液を注入した皮下にGFPを発現している塊が認められた(図8のA及びB)。次いで、細胞懸濁液を注入した部位を摘出し、4%ホルムアルデヒドで固定した後に、パラフィン中で包埋した。斯くして処理された連続組織切片をサフラニンO染色と、抗GFP抗体で免疫染色した。結果を図8のCに示す。MK-5を注入したマウスの皮下脂肪組織内では、サフラニンOで赤く染色された基質に細胞が散在する組織が確認され、ヌードマウスの皮下に軟骨組織が形成されたことが分かった。また、GFP陽性細胞は、注入した軟骨細胞様細胞を示すと考えられ、この範囲は、サフラニンOで染色される軟骨組織の領域と完全に一致していた。このことは、注入して生き残ったMK-5細胞は全てが軟骨細胞に分化し、軟骨組織を形成したことを示す。図8のDに、図8のCの四角で囲んで部分の拡大を示す。この結果から、軟骨細胞様細胞は、スキャホールドが存在しなくても、軟骨組織を形成する能力を有しており、軟骨組織の再生に実用化できることが確認された。
9.総合考察
 以上の結果から、c-Myc、Klf-4、及びSox9を組み合わせて導入することによって、増殖能を有し、且つ軟骨細胞と同様の特性を備える細胞(軟骨細胞様細胞)を得ることができることが明らかとなった。斯くして得られた軟骨細胞様細胞は、コラーゲンゲルと共に培養することによって、或いはそのまま生体内に投与することによって、3次元構造の軟骨組織を形成できることも、実際に確認された。
実施例2 軟骨細胞様細胞から軟骨組織の形成
<方法>
 上記実施例1と同様の方法で、MDFにc-Myc、Klf4及びSox9の遺伝子を形質導入することによって、11個の軟骨細胞様細胞(MK-5~MK-15)を取得した。これらの軟骨細胞様細胞の内、2株(MK-7及びMK-10)をトリプシン/EDTAで消化し、次いで10容量%のFBSを癌揺するDMEM培地に懸濁して、1×107cells/mlの細胞懸濁液を用意した。この細胞懸濁液0.1mlをヌードマウス(雌、6週齢、BALB/cA Jcl-nu/nu)の背部の皮下に注射した。MK-7細胞を注射したマウスは注射後16週に、MK-10細胞を注射したマウスは注射後8週に、注射部を摘出し、4%パラホルムアルデヒドで固定した後に、パラフィン中で包埋した。次いで、組織切片を作製し、サフラニンO、ファーストグリーン、及びアイアンヘマトキシリンで染色した。
<結果>
 得られた結果を図9に示す。この結果から、MK-7又はMK-10細胞をそれぞれ注入したマウスの皮下脂肪組織内に、サフラニンOで赤く染色される基質に細胞が散在する組織が確認され、ヌードマウスの皮下に軟骨組織が形成されていることが確認された。また、MK-7又はMK-10細胞の注入部位において、腫瘍の形成は認められなかった。
 以上の結果から、本発明の方法によって、少なくとも16週間は腫瘍を形成させない、軟骨細胞様細胞の取得が可能であることが確認された。
実施例3 軟骨細胞様細胞のゲノムDNAの分析
<結果>
 上記実施例1で取得した軟骨細胞様細胞(MK-1、-3及び-4)、及び上記実施例2で取得した軟骨細胞様細胞(MK-5、-7、-10及び-15)について、細胞の同一性を評価するために、以下の実験を行った。
 まず、軟骨細胞様細胞から、常法に従って、ゲノムDNAを取得し、得られたゲノムDNAをEcoRIとBamHIで消化して、断片化した。断片化されたゲノムDNAを、アガロースゲルに電気泳動にて展開して、ナイロンメンブランにトランスファーした後に、Klf4 cDNAプローブを用いてサザンハイブリダイゼーションを行った。
 得られた結果を図10に示す。図10から明らかなように、実施例1-2で得られた軟骨細胞様細胞は、細胞株毎に異なるバンドのパターンを示しており、各々独立した細胞株として樹立されていることが示された。
実施例4 脂肪組織由来間質細胞からの軟骨細胞様細胞の製造
<方法>
 脂肪組織由来間質細胞(ADSC)は、参考文献5と同様の方法で皮下脂肪組織から分離した。具体的には、先ず、上記実施例1で作成したものと同様の3-6月齢のCol11a2-βgeoトランスジェニックマウスから、皮下脂肪片を取り出し、細切した後に、37℃で2~4時間、0.2%コラーゲナーゼで処理した。コラーゲナーゼ処理により遊離した細胞を、ナイロンメッシュ(細孔サイズ、70μm;Tokyo Screen, Tokyo, Japan)で濾過した。分離された細胞は、遠心分離(200×g、4℃、10分間)により回収した。次いで、細胞を新鮮な5%FBS含有DMEM培地に懸濁させ、その後再度遠心分離(200×g、4℃、10分間)により細胞を回収した。次いで、得られた細胞を60mm又は100 mmディッシュで培養することにより、ADSC(第1継代)を得た。
 次いで、上記実施例1と同様の手法で、皮下脂肪細胞に、c-Myc、Klf-4、及びSox9を導入して、500μg/mlのG418を含む5%FBS含有DMEM培地10ml中で培養を行った。
 斯くして処理された細胞に対して、上記実施例1と同様の方法で、アルシアンブルー染色及びクリスタルバイオレット染色を行い、また形状観察も行った。
 また、比較のために、pMXsベクターにGFP cDNAを組み込んだレトロウイルスベクターを用いて、上記と同様の手法で皮下脂肪への形質転換、形質転換細胞の評価を行った。
<結果>
 結果を図11に示す。ADSCにc-Myc、Klf-4、及びSox9を導入すると、10cmディッシュ当たり約380個のG418耐性コロニーが認められた。また、これらのコロニーの約60%は、アルシアンブルーで染色された。更に、このコロニーの約20%は、円形又は多角形状の軟骨細胞様の形態の細胞から構成されていた。一方、GFPを導入した脂肪組織由来間質細胞では、コロニーの形成は認められなかった。
 以上の結果から、皮下脂肪由来の細胞に対してc-Myc、Klf-4、及びSox9を導入した場合でも、実施例1のMEF及びMDFの場合と同様に、増殖能を有し、且つ軟骨細胞と同様の特性を備える軟骨細胞様細胞が得られることが強く示唆された。
実施例5 ヒト由来皮膚線維芽細胞からの軟骨細胞様細胞の製造
<方法>
1.プラスミドの調製
 ヒト由来皮膚線維芽細胞への遺伝子導入は、レンチウイルスベクターシステムを使用した。ヒトc-MYCを組み込んだレンチウイルスベクター(pLe6-CMVp-hc-MYC)、ヒトKLF4を組み込んだレンチウイルスベクター(pLe6-CMVp-hKLF4)、ヒトOCT3/4を組み込んだレンチウイルスベクター(pLe6-CMVp-hOCT3/4)、及びヒトSOX9を組み込んだレンチウイルスベクター(pLe6-CMVp-F(-)hSOX9)を、それぞれLRクロナーゼIIプラス反応(Invitrogen)によって調製した。
2.細胞の調製
 ヒト成人由来の正常皮膚線維芽細胞(NHDF)は、Lonza社から購入した(製品コード CC-2511)。10%FBS含有DMEM培地中で維持させたNHDFを使用した。
3.ウイルス感染
 6×10cellsの293FT細胞(Invitrogen)に対して、Lipofectamine 2000 (Invitrogen)を用いて、3 μgの上記各レンチウイルスベクターと9 μgのVirapower packaging mix(invitrogen)をトランスフェクトさせた。トランスフェクションの48時間後、transfectantの上清を回収し、0.45μm酢酸セルロースフィルター(Whatman)で濾過した。得られたろ液に対してポリブレン(ナカライテスク株式会社)を終濃度4 mg/mlとなるように添加し、ウイルス溶液を調製した。Le6-CMVp-hc-MYC、pLe6-CMVp-hKLF4、pLe6-CMVp-hOCT3/4、及びpLe6-CMVp-F(-)hSOX9をそれぞれ等量含むように、各ウイルス溶液を混合し、混合ウイルス溶液を調製した。
 形質導入の1日前に、100 mmディッシュ中で、10%FBS含有DMEM培地に5×105cellsのNHDFを接種した。次いで、100 mmディッシュの中から培地を取り除き、上記混合ウイルス溶液を添加して、37℃で16時間インキュベートし、レンチウイルスベクターを形質導入した。インキュベート後、ディッシュ中の細胞をトリプシン処理し、次いで新鮮な10%FBS含有DMEM培地を入れた4つの10 cmディッシュに細胞を分けて、静置培養した。形質導入後は、1日おきに同組成の培地で培地交換しながら10日間静置培養を行った。斯くして培養された細胞に対して、アルシアンブルー染色を行った。
 また、比較のために、EGFP cDNAを組み込んだレンチウイルスベクターを用いて、上記と同様の手法でNHDFへの形質転換、形質転換細胞の評価を行った。
<結果>
 結果を図12に示す。3つの初期化因子(OCT3/4、C-MYC及びKLF-4)とSOX9のNHDFへの導入において、多くのNHDFにおいて細胞死が認められた。これは、NHDFに上記初期化因子が導入されると多くの細胞で細胞死が誘導されることを示唆している。
 3つの初期化因子(OCT3/4、C-MYC及びKLF-4)とSOX9のNHDFへの導入によって、生存した細胞がコロニーを形成した。これらのコロニーの幾つかは、アルシアンブルーで強く染色された。一方、EGFPが導入されたNHDFの培養ディッシュでは、細胞は死ぬことなく増殖した。EGFPが導入されたNHDFはアルシアンブルーで染色されなかった(図12のa参照)。また、また、3つの初期化因子(OCT3/4、C-MYC及びKLF-4)とSOX9を導入して培養することにより得られたコロニーに含まれる細胞の形態(図12のb参照)は、EGFPが導入された細胞(図12のc参照)に比べて、ヒト初代軟骨細胞(図12のd参照)に近似していることが確認された。
 以上の結果から、本発明の技術を使用することによって、ヒトNHDFからも、増殖能を有し、且つ軟骨組織を形成できる軟骨細胞様細胞を誘導できることが強く示唆された。
参考文献のリスト
・参考文献1:N. Tsumaki, T. Kimura, Y. Matsui et al., J. Cell Biol. 134 (6), 1573 (1996).
・参考文献2:A Nagy, M Gertsenstein, K Vintersten et al., Manipulating the Mouse Embryo., 3rd ed. (Cold Spring Harbor Laboratory Press, New York, 2003). 
・参考文献3:K. Takahashi and S. Yamanaka, Cell 126 (4), 663 (2006).
・参考文献4:A. Aszodi, E. B. Hunziker, C. Brakebusch et al., Genes Dev. 17 (19), 2465 (2003).
・参考文献5:Bjorntorp, P. et al. Isolation and characterization of cells from rat adipose tissue developing into adipocytes. J. Lipid Res. 19, 316-324 (1978).

Claims (19)

  1.  体細胞に、Mycファミリー遺伝子及びKlfファミリー遺伝子よりなる群から選択される少なくとも1種の遺伝子と、SOX9遺伝子とを導入する工程を含む、軟骨細胞様細胞の製造方法。
  2.  Mycファミリー遺伝子が、c-Myc遺伝子である、請求項1に記載の製造方法。
  3.  Klfファミリー遺伝子が、Klf4遺伝子である、請求項1に記載の製造方法。
  4.  体細胞が、ヒト由来である、請求項1に記載の製造方法。
  5.  体細胞が、皮膚線維芽細胞又は脂肪組織由来間質細胞である、請求項1に記載の製造方法。
  6.  体細胞に、Mycファミリー遺伝子及びKlfファミリー遺伝子よりなる群から選択される少なくとも1種の遺伝子と、SOX9遺伝子とを導入することにより得られる、軟骨細胞様細胞。
  7.  請求項6に記載の軟骨細胞様細胞を含む、軟骨組織再生用の細胞製剤。
  8.  更に、足場材料を含む、請求項7に記載の軟骨組織再生用の細胞製剤。
  9.  足場材料が、コラーゲンである、請求項7に記載の軟骨組織再生用の細胞製剤。
  10.  請求項6に記載の軟骨細胞様細胞を用いて構築させた軟骨組織を含む、インプラント。
  11.  下記工程を含む、軟骨組織用のインプラントの製造方法:
     請求項6に記載の軟骨細胞様細胞を哺乳動物の体内に投与する工程、及び
     哺乳動物の体内で上記軟骨細胞様細胞から形成された軟骨組織を摘出する工程。
  12.  下記工程を含む、軟骨疾患の治療方法:
     請求項6に記載の軟骨細胞様細胞を軟骨疾患の患者の軟骨組織以外の部位に投与する工程、及び
     上記軟骨細胞様細胞から形成された軟骨組織を摘出し、これを前記患者の軟骨疾患部位に移植する工程。
  13.  請求項6に記載の軟骨細胞様細胞の、軟骨組織再生用の細胞製剤の製造のための使用。
  14.  軟骨組織再生用の細胞製剤が、軟骨疾患の治療剤である、請求項13に記載の使用。
  15.  請求項6に記載の軟骨細胞様細胞、及び足場材料を含む組成物の、軟骨組織再生用の細胞製剤の製造のための使用。
  16.  足場材料が、コラーゲンである、請求項15に記載の使用。
  17.  請求項6に記載の軟骨細胞様細胞を非ヒト哺乳動物に投与して、上記哺乳動物の体内で上記軟骨細胞様細胞から軟骨組織を形成させることにより製造される、軟骨組織を形成させた非ヒト哺乳動物。
  18.  請求項13に記載の非ヒト哺乳動物に被験物質を投与し、軟骨組織に対する被験物質の薬効を判定する工程を含む、軟骨組織に対する被験物質の薬効を判定する方法。
  19.  Mycファミリー遺伝子及びKlfファミリー遺伝子よりなる群から選択される少なくとも1種の遺伝子と、SOX9遺伝子とを含む、軟骨細胞様細胞調製用組成物。
PCT/JP2009/071184 2008-12-18 2009-12-18 軟骨細胞様細胞、及びその製造方法 WO2010071210A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801514688A CN102257133A (zh) 2008-12-18 2009-12-18 软骨细胞样细胞及其制造方法
US13/140,164 US20110252486A1 (en) 2008-12-18 2009-12-18 Chondrocyte-like cell, and method for producing same
JP2010543020A JP5591119B2 (ja) 2008-12-18 2009-12-18 軟骨細胞様細胞、及びその製造方法
EP09833512A EP2377926A4 (en) 2008-12-18 2009-12-18 CHONDROCYTE TYPE CELL, AND PROCESS FOR PRODUCING THE SAME
US13/926,183 US9725737B2 (en) 2008-12-18 2013-06-25 Chondrocyte-like cell, and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008322754 2008-12-18
JP2008-322754 2008-12-18
JP2009-118790 2009-05-15
JP2009118790 2009-05-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/140,164 A-371-Of-International US20110252486A1 (en) 2008-12-18 2009-12-18 Chondrocyte-like cell, and method for producing same
US13/926,183 Division US9725737B2 (en) 2008-12-18 2013-06-25 Chondrocyte-like cell, and method for producing same

Publications (1)

Publication Number Publication Date
WO2010071210A1 true WO2010071210A1 (ja) 2010-06-24

Family

ID=42268877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071184 WO2010071210A1 (ja) 2008-12-18 2009-12-18 軟骨細胞様細胞、及びその製造方法

Country Status (5)

Country Link
US (2) US20110252486A1 (ja)
EP (1) EP2377926A4 (ja)
JP (1) JP5591119B2 (ja)
CN (1) CN102257133A (ja)
WO (1) WO2010071210A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010746A1 (ja) 2012-07-12 2014-01-16 京都府公立大学法人 褐色脂肪細胞及びその調製方法
JP2014525743A (ja) * 2011-07-19 2014-10-02 ヴィヴォスクリプト,インコーポレイテッド 軟骨損傷を修復するために遺伝子改変を伴わずに細胞を再プログラミングするための組成物および方法
JP2015008701A (ja) * 2013-07-01 2015-01-19 独立行政法人理化学研究所 分化転換制御方法および基板
JP2015524343A (ja) * 2012-08-10 2015-08-24 アドヴァンスド メディカル テクノロジーズ エルエルシーAdvanced Medical Technologies Llc 線維芽細胞からのエクスビボ軟骨生成
KR20190091798A (ko) * 2018-01-29 2019-08-07 공주대학교 산학협력단 Klf-4를 이용하는 연골세포 분화 촉진 방법
JP2019531053A (ja) * 2016-07-26 2019-10-31 テテック ティシュー エンジニアリング テクノロジーズ アクチェンゲゼルシャフト 細胞培養の組成または純度を定量し軟骨細胞または滑膜細胞の同一性を生体外で定量するためのマーカーと方法
JP2020184965A (ja) * 2019-05-17 2020-11-19 国立大学法人 筑波大学 軟骨細胞様細胞の分化誘導方法
EP3642329A4 (en) * 2017-06-21 2021-07-14 Mogrify Limited CELL REPROGRAMMING PROCEDURES FOR THE PRODUCTION OF CHONDROCYTE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103638558B (zh) * 2013-09-30 2015-04-29 中国人民解放军第三军医大学第二附属医院 仿生化韧带-骨组织工程连接体的体外构建方法
CN110172444B (zh) * 2019-06-28 2023-05-23 领航干细胞再生医学工程有限公司 一种人软骨干细胞的制备方法
CN112877364B (zh) * 2019-11-29 2023-07-28 中国医学科学院药物研究所 软骨下骨细胞向关节软骨细胞直接转化的重编程诱导方案

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
JP2009292787A (ja) * 2008-06-06 2009-12-17 Ab Size:Kk 軟骨再生促進剤

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197586B1 (en) * 1997-12-12 2001-03-06 The Regents Of The University Of California Chondrocyte-like cells useful for tissue engineering and methods
JP2003059692A (ja) * 2001-08-21 2003-02-28 Kenwood Corp 操作パネル構造
JP2004016109A (ja) * 2002-06-17 2004-01-22 Nagoya Industrial Science Research Inst 軟骨細胞様細胞、及びその作製方法
JP2004267052A (ja) * 2003-03-06 2004-09-30 Yuichi Tei 軟骨様細胞およびその製造方法ならびに軟骨様細胞誘導用組成物
US8278104B2 (en) 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
US8129187B2 (en) 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
US20090227032A1 (en) 2005-12-13 2009-09-10 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
JP2009292787A (ja) * 2008-06-06 2009-12-17 Ab Size:Kk 軟骨再生促進剤

Non-Patent Citations (36)

* Cited by examiner, † Cited by third party
Title
A NAGY, M GERTSENSTEIN, K VINTERSTEN ET AL.: "Manipulating the Mouse Embryo.", 2003, COLD SPRING HARBOR LABORATORY PRESS
A. ASZODI, E. B. HUNZIKER, C. BRAKEBUSCH ET AL., GENES DEV., vol. 17, no. 19, 2003, pages 2465
A. MEISSNER, M. WERNIG, R. JAENISCH, NAT. BIOTECHNOL., vol. 25, no. 10, 2007, pages 1177
A. NAGAI, W. K. KIM, H. J. LEE ET AL., PLOS ONE, vol. 2, no. 12, 2007, pages E1272
A.M.GHALEB ET AL., CELL RES., vol. 15, 2005, pages 92 - 96
BJORNTORP, P. ET AL.: "Isolation and characterization of cells from rat adipose tissue developing into adipocytes", J. LIPID RES., vol. 19, 1978, pages 316 - 324
C. CHUNG, J. A. BURDICK, ADV DRUG DELIV REV, vol. 60, no. 2, 2008, pages 243
DAISUKE IKEGAMI ET AL.: "Sox9 wa Nankotsu no Iji to Nankotsu Saibo no Seizon ni Hissu de aru", DAI 22 KAI JAPANESE SOCIETY OF CARTILAGE METABOLISM PROGRAM?SHOROKUSHU, 6 March 2009 (2009-03-06), pages 78, XP008142256 *
E. J. KOAY, G. M. HOBEN, K. A. ATHANASIOU, STEM CELLS, vol. 25, no. 9, 2007, pages 2183
I. H. PARK, R. ZHAO, J. A. WEST ET AL., NATURE, vol. 451, no. 7175, 2008, pages 141
J. GAO, J. Q. YAO, A. I. CAPLAN, PROC. INST. MECH. ENG. [H, vol. 221, no. 5, 2007, pages 441
J. KRAMER, C. HEGERT, K. GUAN ET AL., MECH. DEV., vol. 92, no. 2, 2000, pages 193
J. YU, M. A. VODYANIK, K. SMUGA-OTTO ET AL., SCIENCE, vol. 318, no. 5858, 2007, pages 1917
K. OKITA, T. ICHISAKA, S. YAMANAKA, NATURE, vol. 448, no. 7151, 2007, pages 313
K. TAKAHASHI, K. OKITA, M. NAKAGAWA ET AL., NATURE PROTOCOLS, vol. 2, no. 12, 2007, pages 3081
K. TAKAHASHI, K. TANABE, M. OHNUKI ET AL., CELL, vol. 131, no. 5, 2007, pages 861
K. TAKAHASHI, S. YAMANAKA, CELL, vol. 126, no. 4, 2006, pages 663
M. AMIT, J. ITSKOVITZ-ELDOR, JOURNAL OF ANATOMY, vol. 200, 2002, pages 225
M. NAKAGAWA, M. KOYANAGI, K. TANABE ET AL., NAT. BIOTECHNOL., vol. 26, no. 1, 2008, pages 101
M. WERNIG, A. MEISSNER, J. P. CASSADY ET AL., CELL STEM CELL, vol. 2, no. 1, 2008, pages 10
M. WERNIG, A. MEISSNER, R. FOREMAN ET AL., NATURE, vol. 448, no. 7151, 2007, pages 318
N. MAHERALI, R. SRIDHARAN, W. XIE ET AL., CELL STEM CELL, vol. 1, no. 1, 2007, pages 55
N. S. HWANG, M. S. KIM, S. SAMPATTAVANICH ET AL., STEM CELLS, vol. 24, no. 2, 2006, pages 284
N. S. HWANG, S. VARGHESE, J. ELISSEEFF, PLOS ONE, vol. 3, no. 6, 2008, pages E2498
N. TSUMAKI, T. KIMURA, Y. MATSUI ET AL., J. CELL BIOL., vol. 134, no. 6, 1996, pages 1573
NORIYUKI TSUMAKI: "Kosei Rodo Kagaku Kenkyu Hojokin (Men'eki Allergy Shikkan Yobo?Chiryo Kenkyu Jigyo)", BUNTAN KENKYU HOKOKUSHO, KANSETSU RHEUMATISM OYOBI SEN'I KINNIKUSHO NO KANKAI DONYU O MOKUTEKI TO SHITA SHINKI IYAKUHIN NO DONYU ? KAIHATSU OYOBI HYOKA NI KANSURU HOKATSUTEKI KENKYU HEISEI 18 NENDO KENKYU HOKOKUSHO, April 2007 (2007-04-01), pages 8 - 11, XP008142253 *
RIE KATAYAMA ET AL.: "Kotsuzui Saibo Yurai Kan'yo-kei Kan Saibo ni Taisuru CDMP1 Idenshi Donyu to Nankotsu Bunka Yudo no Sokushin", DAI 16 KAI ANNUAL RESEARCH MEETING OF THE JAPANESE ORTHOPAEDIC ASSOCIATION, pages S850, XP008140512 *
S. ADHIKARY, M. ELILERS, NAT. RAV. MOL. CELL BIOL., vol. 6, 2005, pages 635 - 645
S. WAKITANI, K. TAKAOKA, T. HATTORI ET AL., RHEUMATOLOGY (OXFORD, vol. 42, no. 1, 2003, pages 162
See also references of EP2377926A4
T. AOI, K. YAE, M. NAKAGAWA ET AL., SCIENCE, vol. 321, no. 5889, 2008, pages 699
TAKAO IWAI ET AL.: "Nankotsu Keisei ni Okeru Smad7 no Yakuwari no Kaiseki", DAI 20 KAI JAPANESE SOCIETY OF CARTILAGE METABOLISM PROGRAM-SHOROKUSHU, 2 March 2007 (2007-03-02), pages 76, XP008142254 *
U. R. GOESSLER, P. BUGERT, K. BIEBACK ET AL., INT. J. MOL. MED., vol. 14, no. 6, 2004, pages 1015
V. LEFEBVRE, MOL. CELL. BIOL., vol. 17, 1997, pages 2336 - 2346
V. VACANTI, E. KONG, G. SUZUKI ET AL., J. CELL. PHYSIOL., vol. 205, no. 2, 2005, pages 194
W. HUNTER, PHILOS TRANS LOND, vol. 42, pages 514

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525743A (ja) * 2011-07-19 2014-10-02 ヴィヴォスクリプト,インコーポレイテッド 軟骨損傷を修復するために遺伝子改変を伴わずに細胞を再プログラミングするための組成物および方法
WO2014010746A1 (ja) 2012-07-12 2014-01-16 京都府公立大学法人 褐色脂肪細胞及びその調製方法
JP2015524343A (ja) * 2012-08-10 2015-08-24 アドヴァンスド メディカル テクノロジーズ エルエルシーAdvanced Medical Technologies Llc 線維芽細胞からのエクスビボ軟骨生成
JP2018108421A (ja) * 2012-08-10 2018-07-12 アドヴァンスド メディカル テクノロジーズ エルエルシーAdvanced Medical Technologies Llc 線維芽細胞からのエクスビボ軟骨生成
JP2020000891A (ja) * 2012-08-10 2020-01-09 アドヴァンスド メディカル テクノロジーズ エルエルシーAdvanced Medical Technologies Llc 線維芽細胞からのエクスビボ軟骨生成
JP2015008701A (ja) * 2013-07-01 2015-01-19 独立行政法人理化学研究所 分化転換制御方法および基板
JP7001674B2 (ja) 2016-07-26 2022-02-04 テテック ティシュー エンジニアリング テクノロジーズ アクチェンゲゼルシャフト 細胞培養の組成または純度を定量し軟骨細胞または滑膜細胞の同一性を生体外で定量するためのマーカーと方法
JP2019531053A (ja) * 2016-07-26 2019-10-31 テテック ティシュー エンジニアリング テクノロジーズ アクチェンゲゼルシャフト 細胞培養の組成または純度を定量し軟骨細胞または滑膜細胞の同一性を生体外で定量するためのマーカーと方法
EP3642329A4 (en) * 2017-06-21 2021-07-14 Mogrify Limited CELL REPROGRAMMING PROCEDURES FOR THE PRODUCTION OF CHONDROCYTE
KR102013060B1 (ko) * 2018-01-29 2019-08-21 공주대학교 산학협력단 Klf-4를 이용하는 연골세포 분화 촉진 방법
KR20190091798A (ko) * 2018-01-29 2019-08-07 공주대학교 산학협력단 Klf-4를 이용하는 연골세포 분화 촉진 방법
JP2020184965A (ja) * 2019-05-17 2020-11-19 国立大学法人 筑波大学 軟骨細胞様細胞の分化誘導方法
JP7265763B2 (ja) 2019-05-17 2023-04-27 国立大学法人 筑波大学 軟骨細胞様細胞の分化誘導方法

Also Published As

Publication number Publication date
US20130287695A1 (en) 2013-10-31
JPWO2010071210A1 (ja) 2012-05-31
US9725737B2 (en) 2017-08-08
EP2377926A9 (en) 2011-11-23
EP2377926A1 (en) 2011-10-19
CN102257133A (zh) 2011-11-23
US20110252486A1 (en) 2011-10-13
EP2377926A4 (en) 2011-12-14
JP5591119B2 (ja) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5591119B2 (ja) 軟骨細胞様細胞、及びその製造方法
AU2022200207B2 (en) Compositions and methods for induced tissue regeneration in mammalian species
CN112955141A (zh) 用于在哺乳动物细胞中诱导组织再生和衰老细胞裂解的改善方法
EP1541674B1 (en) Primary cultured adipocytes for gene therapy
JP6198199B2 (ja) 平行線維性結合組織の製造方法
US20240066070A1 (en) Methods for the ex vivo induction of tissue regeneration in microbiopsies
US20220154146A1 (en) Method of improving the in vivo survival of mesenchymal stem cells
WO2023064572A2 (en) Methods for the temporal regulation of reprogramming factors in mammalian cells
Yao Construction and application of bi-functional adenoviral vectors for engineered articular chondrogenesis
Zhang Construction and application of adenoviral and lentiviral vectors to deliver transforming growth factor β3 and type I collagen-targeting SHRNA for engineered articular chondrogenesis

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151468.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010543020

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13140164

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009833512

Country of ref document: EP