WO2014010746A1 - 褐色脂肪細胞及びその調製方法 - Google Patents

褐色脂肪細胞及びその調製方法 Download PDF

Info

Publication number
WO2014010746A1
WO2014010746A1 PCT/JP2013/069226 JP2013069226W WO2014010746A1 WO 2014010746 A1 WO2014010746 A1 WO 2014010746A1 JP 2013069226 W JP2013069226 W JP 2013069226W WO 2014010746 A1 WO2014010746 A1 WO 2014010746A1
Authority
WO
WIPO (PCT)
Prior art keywords
oct3
lin
sox2
cells
myc
Prior art date
Application number
PCT/JP2013/069226
Other languages
English (en)
French (fr)
Inventor
岸田 綱郎
松田 修
Original Assignee
京都府公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京都府公立大学法人 filed Critical 京都府公立大学法人
Priority to US14/413,987 priority Critical patent/US20150166958A1/en
Priority to EP13816708.5A priority patent/EP2873727B1/en
Priority to JP2014524904A priority patent/JP6285861B2/ja
Publication of WO2014010746A1 publication Critical patent/WO2014010746A1/ja
Priority to US17/010,778 priority patent/US20200399603A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0653Adipocytes; Adipose tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/01Modulators of cAMP or cGMP, e.g. non-hydrolysable analogs, phosphodiesterase inhibitors, cholera toxin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/33Insulin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/395Thyroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/09Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from epidermal cells, from skin cells, from oral mucosa cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1307Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to brown adipocytes and a method for preparing the same.
  • the present invention also provides an agent for preventing or treating obesity, diabetes, impaired glucose tolerance, lipid metabolism, arteriosclerotic disease, hypertension, hyperuricemia, gout, nonalcoholic fatty liver disease, metabolic syndrome and use thereof About.
  • Obesity and related metabolic diseases such as diabetes, metabolic syndrome, etc. are extremely serious medical and social problems in industrialized countries.
  • white adipocytes not only store surplus energy derived from food as fatty acids, but also produce various hormones and cytokines, causing abnormal glucose tolerance and abnormal lipid metabolism, type II diabetes, arteriosclerosis Causes sexually transmitted diseases, hypertension, hyperuricemia / gout, non-alcoholic fatty liver disease, etc.
  • brown fat (BA) cells contrary to white fat cells, are cells that oxidatively degrade fatty acids and release their energy as heat. This is because UCP1 (Uncoupling protein 1), which is specifically expressed by BA cells, uncouples oxidative phosphorylation. In rodents such as mice, BA cells are present between the scapulae, posterior cervix, mediastinum, and renal pelvis. Moreover, BA cells are known to suppress obesity and impaired glucose tolerance from analysis of UCP1 knockout mice.
  • UCP1 Uncoupling protein 1
  • Brown adipocytes have important significance. Brown adipocytes are also believed to be extremely beneficial in the development of new therapeutics for these diseases. Furthermore, if patients with obesity, diabetes, hyperlipidemia, metabolic syndrome and the like can be supplemented with brown adipocytes, this may be a new therapeutic means for these diseases.
  • Non-patent Document 4 A method for obtaining mesenchymal stem cells, then brown adipocytes and white adipocytes from human iPS cells is known (Non-patent Document 4).
  • brown adipocytes and white adipocytes are induced from iPS cells, the final fat is obtained. It takes time to obtain cells, and because of being derived from iPS, there is a risk of canceration.
  • the present invention relates to a prophylactic or therapeutic agent for obesity, diabetes, glucose tolerance abnormality, lipid metabolism abnormality, arteriosclerotic disease, hypertension, hyperuricemia, gout, nonalcoholic fatty liver disease, metabolic syndrome, prevention or treatment method
  • An object of the present invention is to provide a transplant material effective for the prevention or treatment of the disease or condition and a method for preparing the same.
  • the present invention provides brown adipocytes and preparation methods thereof, transplant materials containing brown adipocytes, various diseases and conditions including brown adipocytes, and preventive or therapeutic agents for the use.
  • Item 1 A method for preparing brown adipocytes from somatic cells by introducing brown adipocyte-related genes or expression products thereof and reprogramming-related genes or expression products thereof into mammalian somatic cells, wherein The gene is at least one selected from the group consisting of PRDM16 (P) and C / EBP ⁇ (C), and the reprogramming-related genes are Myc family genes, GLIS family genes, Klf family genes, Oct family genes
  • a method for preparing brown adipocytes which is at least one selected from the group consisting of a Sox family gene, Lin-28.
  • Item 2. The method according to Item 1, wherein the somatic cells are fibroblasts or white adipocytes.
  • Item 3. Item 3. The method according to Item 1 or 2, wherein the brown adipocyte-related gene or an expression product thereof is C / EBP ⁇ .
  • Item 4. Item 3. The method according to Item 1 or 2, wherein the reprogramming-related gene or an expression product thereof includes c-Myc or L-Myc.
  • Item 5. The method according to Item 1 or 2, wherein the reprogramming-related gene or an expression product thereof includes c-Myc.
  • Brown adipocyte-related genes or their reproductive related genes or their expression products introduced into somatic cells are PCM, CM, PCL, CL, PCG, CG, PCML, CML, PCMOct3 / 4, CMOct3 / 4, PCMG, CMG, PCLOct3 / 4, CLOct3 / 4, PCLG, CLG, PCMLOct3 / 4, CMLOct3 / 4, PCMLG, CMLG, PCMOct3 / 4G, CMOct3 / 4G, PCLOct3 / 4G, CLOct3 / 4G, PCMLOct3 / 4G, CMLOct3 / 4G (where P is “PRDM16”, C is “C / EBP ⁇ ”, M is “c-Myc”, L is “L-Myc”, and G is “Glis1”.
  • Item 3 The method according to Item 1 or 2, which is any combination selected from the group consisting of: Item 7.
  • Brown adipocyte-related gene or its expression product and reprogramming-related gene or a combination of its expression products introduced into somatic cells are PCM, CM, PCL, CL, PCML, CML, PCMOct3 / 4, CMOct3 / 4, PCMG, From CMG, PCLOct3 / 4, CLOct3 / 4, PCLG, CLG, PCMLOct3 / 4, CMLOct3 / 4, PCMLG, CMLG, PCMOct3 / 4G, CMOct3 / 4G, PCLOct3 / 4G, CLOct3 / 4G, PCMLOct3 / 4G, CMLOct3 / 4G Item 7.
  • Items for preventing or treating obesity, diabetes, impaired glucose tolerance, lipid metabolism abnormality, arteriosclerotic disease, hypertension, hyperuricemia, gout, nonalcoholic fatty liver disease, metabolic syndrome The preventive or therapeutic agent which uses the brown fat cell prepared by the method in any one, or the brown fat cell of claim
  • Item 10. A transplant material comprising the brown adipocytes prepared by the method according to any one of Items 1 to 8, or the brown adipocytes according to Item 9.
  • brown adipocytes with higher UCP1 expression and better properties as brown adipocytes can be efficiently induced.
  • cells having excellent properties as brown adipocytes can be efficiently induced by using a reprogram-related gene in addition to C / EBP ⁇ even without PRDM16. it can.
  • Brown adipocytes can be transplanted into a living body to obesity, metabolic syndrome, or related diseases or conditions such as diabetes (particularly type II diabetes), glucose intolerance, lipid metabolism abnormality, arteriosclerotic disease, hypertension, It is effective for the prevention or treatment of hyperuricemia, gout, nonalcoholic fatty liver disease and the like, removal of visceral fat and the like.
  • Brown fat cells are also effective for removing visceral fat and / or subcutaneous fat by burning fat. By injecting brown fat cells, local fat removal, body fat percentage reduction, subcutaneous fat It is also effective for cosmetic procedures such as removal.
  • Example 1 The outline
  • the cell well No. obtained in Example 2 was used. 1 to 12 OilRedO staining results are shown. aHDF, Day14.
  • the cell well No. obtained in Example 2 was used. 13 to 24 OilRedO staining results are shown. aHDF, Day14.
  • the cell well No. obtained in Example 2 was used. 25-36 OilRedO staining results are shown. aHDF, Day14.
  • the cell well No. obtained in Example 2 was used. 37-48 OilRedO staining results are shown. aHDF, Day14.
  • the cell well No. obtained in Example 2 was used.
  • the results of 49-60 OilRedO staining are shown. aHDF, Day14.
  • Example 2 was used. 61-65 OilRedO staining results are shown.
  • aHDF Day14.
  • the cell well No. obtained in Example 3 was used. Fat content from 1 to 65 (vertical axis), OilRedO extracted OD (relative value).
  • aHDF Day14.
  • Well No. of the brown adipocyte obtained in Example 4 1 to 65 UCP1 mRNA levels (relative values).
  • aHDF The results of Phase contrast, mitochondrial staining, and OilRedO staining of 5 types of cells (Control, PRDM16, C / EBP ⁇ , PRDM16 + C / EBP ⁇ , PRDM16 + C / EBP ⁇ + cMyc) are shown.
  • aHDF The result of OilRedO staining of cells obtained by treating ADSC as shown in FIG. 1 is shown.
  • ADSC Day 22.
  • the vertical axis “RQ” represents the relative value of mRNA.
  • ADSC Day 22.
  • the OilRed stained image, body weight, and rectal temperature when mouse iPS-derived BA cells or non-induced cells as controls are transplanted subcutaneously into the abdomen of syngeneic mice are shown.
  • mouth iPS-derived ⁇ BA cell or a non-induction cell as a control is transplanted to the abdominal skin of a syngeneic mouse is shown.
  • Thermographic visualization shows thermogenesis at the induced BA graft.
  • the temperature on the body surface went up remarkably in transplanted BA group compared with control group.
  • the change of the body weight when a high-calorie diet and a normal diet were given to mice transplanted with iPS-derived BA cells and mice not transplanted are shown.
  • mice transplanted with iPS-derived BA cells and mice not transplanted and examining serum lipids after 4 weeks The result of having investigated about the form of the iPS cell established from the somatic cell of the type 2 diabetes mouse
  • diabetes progressed in KK-Ay mice not transplanted and in mice transplanted with cells that were not induced into brown adipocytes.
  • the measurement results of body weight, serum NEFA and triglyceride in KK-Ay mice, non-transplanted mice, and GFP-control mice transplanted with iPS-derived BA cells are shown.
  • the adiponectin amount and food intake of KK-Ay mice transplanted with iPS-derived BA cells, mice transplanted with non-induced cells, and non-transplanted Control mice are shown.
  • Properties of brown adipocytes derived from normal human skin fibroblasts and iPS cells Properties of brown adipocytes derived from normal human skin fibroblasts Properties of brown adipocytes derived from normal human skin fibroblasts Direct reprogramming of human normal skin fibroblasts into brown adipocytes using episomal vectors.
  • Brown adipocytes derived from mouse fetal fibroblasts (MEF). In vivo function of brown adipocytes derived from mouse fetal fibroblasts (MEF). In vivo function of brown adipocytes derived from mouse fetal fibroblasts (MEF).
  • Diseases to be treated using the brown adipocytes of the present invention as a transplant material include obesity, metabolic syndrome, or related diseases or conditions such as diabetes (particularly type II diabetes), impaired glucose tolerance, lipid metabolism Examples include abnormalities, arteriosclerotic diseases, hypertension, hyperuricemia, gout, non-alcoholic fatty liver disease. It can also be used for cosmetic purposes to remove fat such as around the abdomen, jaw, and thighs. Administration of brown adipocytes reduces fat mass, especially white fat cells such as visceral fat and subcutaneous fat, and also suppresses weight gain when a high-calorie diet is consumed, so obesity, metabolic syndrome, or these It is useful in both prevention and treatment of related diseases or conditions.
  • the present invention is not limited to prevention or treatment of diseases, but can also be used for purposes such as health promotion and beauty (for example, removal of visceral fat and subcutaneous fat such as abdomen, jaw, arm, and thigh).
  • treatment for humans is also referred to as treatment in this specification for convenience, and “patient” can be read as “healthy person” or “human”, and “disease” can be read as “health promotion” or “beauty”.
  • the present invention can also be used for treating diseases of domestic animals such as pets such as dogs and cats and cattle, horses, pigs, sheep and chickens as well as humans.
  • pets such as dogs and cats and cattle, horses, pigs, sheep and chickens
  • patient or “human” is read as “patient” or “animal”.
  • Transplant material refers to a material for introducing brown adipocytes into a living body. Brown adipocytes can also be used as a transplant material for cosmetic treatments introduced into the breast or the like.
  • the transplant material includes a material that is converted from somatic cells to brown adipocytes in vitro and then transplanted to the same or another individual.
  • the somatic cells that are the subject of the method of the present invention are not particularly limited, but for example, fibroblasts, epithelial cells (skin epidermal cells, oral mucosal epithelial cells, airway mucosal epithelial cells, intestinal mucosal epithelial cells, etc.), epidermal cells, Gingival cells (gingival fibroblasts, gingival epithelial cells), dental pulp cells, white fat cells, subcutaneous fat, visceral fat, muscle, blood cells, etc., preferably fibroblasts, epidermal cells (keratinocytes), etc. .
  • somatic stem cells such as mesenchymal stem cells (Mesenchymal stem cells: MSC), neural stem cells (Neural stem cells), hepatic stem cells (hepatic stem cells), intestinal stem cells, skin stem cells, hair follicle stem cells, pigment cell stem cells
  • MSC mesenchymal stem cells
  • neural stem cells Nesenchymal stem cells
  • Neuronal stem cells hepatic stem cells
  • intestinal stem cells skin stem cells
  • pigment cell stem cells examples include somatic cells created by induction, dedifferentiation, or reprogramming.
  • derived to another somatic cell is also mentioned.
  • somatic cells derived from germline cells by differentiation induction, dedifferentiation, or reprogramming are also included.
  • somatic cells derived from embryonic stem cells Embryonic stem cells: ES cells
  • Embryonic stem cells ES cells
  • iPS cells induced pluripotent stem cells
  • germline cells are also encompassed by the “somatic cells” of the present invention (in this case, “somatic cells” are referred to as “ES cells”, “IPS cells” or “germline cells”.
  • cultured cells are also included, and somatic cells derived from cultured cells by differentiation induction, dedifferentiation, or reprogramming are also included.
  • the somatic cell may be derived from an adult, a child, or a fetus.
  • the main embodiment of the method of the present invention includes a method of directly reprogramming a differentiated somatic cell by introducing a brown adipocyte-related gene or an expression product thereof and a reprogramming-related gene or an expression product thereof.
  • the method of the present invention similar to direct reprogramming by introducing brown adipocyte-related genes or expression products thereof and reprogramming-related genes or expression products thereof
  • brown adipocytes can be obtained.
  • the somatic cell is derived from a human.
  • genes or combinations of expression products thereof are introduced into somatic cells.
  • expression product examples include mRNA or protein of each gene.
  • brown adipocyte-related genes or their expression products and reprogramming-related genes or their expression products are introduced.
  • the brown adipocyte-related gene is at least one selected from the group consisting of PRDM16 (P) and C / EBP ⁇ (C), and the reprogramming-related gene is a gene of the Myc family (c-Myc (M), N-Myc , L-Myc (L), S-Myc, B-Myc), GLIS family genes (GLIS1 (G), GLIS 2, GLIS 3), Klf family genes (KLF1, KLF2, KLF3, KLF4 (K), KLF5, KLF6, KLF7, KLF8, KLF9, KLF10, KLF11, KLF12, KLF13, KLF14, KLF15, KLF16, KLF17), Oct family genes (Oct3 / 4 etc.), Sox family genes (Sox2 etc.), Lin-28 At least one selected from the group consisting of: preferably c
  • brown adipocyte-related genes or their expression products and reprogramming-related genes or their expression products introduced into somatic cells such as PCM, PM, CM, PCL, PL, CL, PCK, PK, CK, PCG, PG, CG, PCML, PML, CML, PCMK, PMK, CMK, PCMG, PMG, CMG, PCLK, PLK, CLK, PCLG, PLG, CLG, PCKG, PKG, CKG, PCMLK, PMLK, CMLK, PCMLG, PMLG, CMLG, PCMKG, PMKG, CMKG, PCLKG, PLKG, CLKG, PCMLKG, PMLKG, CMLKG, PCM Lin-28, PM Lin-28, CM Lin-28, PCL Lin-28, PL Lin-28, CL Lin-28, PCK Lin-28, PK Lin-28, CK Lin-28, PCG Lin-28, PG Lin-28, CG Lin-28, PCML
  • G represents “Glis1”).
  • PCM, CM, PCL, CL, PCG, CG PCML, CML, PCMOct3 / 4, CMOct3 / 4, PCMG, CMG, PCLOct3 / 4, CLOct3 / 4, PCLG, CLG, PCMLOct3 / 4, CMLOct3 / 4, PCMLG, CMLG, PCMOct3 / 4G, CMOct3 / 4G, PCLOct3 / 4G, CLOct3 / 4G, PCMLOct3 / 4G, CMLOct3 / 4G.
  • PCM, CM, PCML, CML, PCMG, CMG, PCLG, CLG, PCMLG, and CMLG are more desirable.
  • C-Myc can be replaced with other Myc family genes (N-Myc, L-Myc, S-Myc, B-Myc).
  • c-Myc and “L-Myc” are used as representatives of the Myc family.
  • other genes of the Myc family can be used in the same manner as c-Myc.
  • KLF-4 can be replaced with other Klf family genes (KLF1, KLF2, KLF3, KLF5, KLF6, KLF7, KLF8, KLF9, KLF10, KLF11, KLF12, KLF13, KLF14, KLF15, KLF16, KLF17) .
  • KLF-4 is used as a representative of the Klf family.
  • other genes of the Klf family can be used in the same manner as KLF-4.
  • GLIS1 GLIS family zinc finger 1
  • GLIS 2 GLIS family member genes
  • Oct3 / 4 can be replaced with another Oct family gene
  • Sox2 can be replaced with another Sox family gene.
  • the above genes are all highly conserved genes in vertebrates, and in this specification, unless the name of an animal is indicated, it means a gene including a homolog. Moreover, even if it is a gene which has a variation
  • the introduced gene is preferably a gene derived from the same mammal as the somatic cell. For example, a human gene is introduced into a human somatic cell.
  • the method of the present invention can be carried out according to a known direct reprogramming method except that a specific gene is selected, and can be carried out, for example, according to the methods of the following documents 1 to 6: Reference 1 Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors; Masaki Ieda, Ji-Dong Fu, Paul Delgado-Olguin, Vasanth Vedantham, Yohei Hayashi, Benoit G. Bruneau, and Deepak Srivastava Cell 142: 375-386, 2010. Reference 2 Direct conversion of fibroblasts to functional neurons by defined factors. Thomas Vierbuchen, Austin Ostermeier, Zhiping P. Pang, Yuko Kokubu, Thomas C. Sudhof & Marius Wernig.
  • Methods for introducing genes include infecting viral vectors such as retrovirus vectors, adenovirus vectors, lentivirus vectors, adeno-associated virus vectors, herpes virus vectors, Sendai virus vectors, and genes and their expression products.
  • viral vectors such as retrovirus vectors, adenovirus vectors, lentivirus vectors, adeno-associated virus vectors, herpes virus vectors, Sendai virus vectors, and genes and their expression products.
  • a plasmid vector, episomal vector, or gene expression product (RNA, protein) transfection method using non-viral vectors such as cationic liposomes, cationic polymers, electroporation, etc. it can.
  • RNA can also be introduced. All these means for gene transfer are comprehensively referred to as a vector in this specification.
  • genes that serve as drug selection markers are introduced together with the therapeutic target gene, and then converted to brown adipocytes by drug selection. Can be used after selecting a cell expressing a gene required for the treatment.
  • the transduction factor is a gene expression product (for example, protein)
  • a peptide called Protein-Transduction Domain (PTD) is bound to the protein, which is the expression product, and added to the medium to introduce it into the somatic cell. May be.
  • PTD Protein-Transduction Domain
  • the differentiation induction medium for differentiating brown adipocytes is not particularly limited, and a normal cell culture medium can be used.
  • the differentiation induction medium for differentiating brown adipocytes is not particularly limited, and a normal cell culture medium can be used.
  • a normal cell culture medium can be used.
  • the following known brown fat induction medium TypeI and brown fat induction medium TypeII can be used, but are not limited thereto.
  • Brown fat induction medium Type I 1% NEAA 10% FBS DMEM containing 100 U / mL Penicillin and 100 ⁇ g / ml Streptomycin, 850 nM human Insulin, 1 nM triiodothyronine (T3), 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 100 nM Dexametazone, 125nM domedomecin, 1 ⁇ g / ml Rosigritazone (both final concentrations)).
  • Brown fat induction medium TypeII 1% NEAA 10% FBS DMEM containing 100 U / mL Penicillin and 100 ⁇ g / ml Streptomycin was added with 850 nM human Insulin, 1 nM triiodothyronine (T3), and 1 gg / mL Rosigritazone (both final concentrations) thing).
  • brown adipocytes can be evaluated by measuring the expression of genes such as UCP1, CIDEA, PGC1, DIO2, Cox8b, and Otop. It can also be evaluated by analyzing a comprehensive gene expression profile.
  • the transplanted cells for prevention or treatment are preferably autologous cells established from the patient himself.
  • the gene of the present invention may be introduced using a plasmid, or a viral vector such as a retroviral vector may be used. From the viewpoint of introduction efficiency and stable retention of the transgene, a viral vector is preferable, and a plasmid is preferable in order to suppress the risk of canceration.
  • a gene introduced into a somatic cell can be transcribed by an LTR promoter, or can be expressed from another promoter in the vector.
  • a constitutive expression promoter such as CMV promoter, EF-1 ⁇ promoter, CAG promoter, or a desired inducible promoter can be used.
  • a chimeric promoter in which a part of the LTR is replaced with another promoter may be used.
  • Diseases to be treated using the brown adipocytes (transplant material) obtained by the present invention include obesity, visceral fat obesity, obesity, diabetes, type 1 diabetes, type 2 diabetes, diabetic retinopathy, diabetes Neuropathy, diabetic nephropathy, delayed wound healing, impaired glucose tolerance, insulin resistance, hyperglycemia, hyperinsulinemia, cataract, glaucoma, retinopathy, neuropathy, nephropathy, periodontal disease, skin disease, Gangrene, ulcer, dyslipidemia, hyperfattyemia, hypertriglyceridemia, hyperglycerolemia, hypercholesterolemia, hyperlipidemia, hypoHDLemia, X syndrome, microvascular disorder, arteriosclerotic disease, Obstructive arteriosclerosis, cerebrovascular disorder, coronary artery disease, atherosclerosis, arteriosclerosis, aneurysm, hyperglycemia (especially postprandial hyperglycemia), hypertension, hyperuricemia, gout, chronic systemic inflammation, non-alcohol Fatty liver disease F
  • treatment intends a treatment performed while a patient is suffering from a particular disease or disorder, whereby the severity of the disease or disorder, or one or It means that a plurality of its symptoms are alleviated or the progression of the disease or disorder is delayed or slowed down.
  • treatment includes “prevention”.
  • brown adipocytes obtained in the present invention can be used not only for treatment of diseases but also for cosmetic purposes.
  • brown adipocytes can be transplanted for the purpose of reducing adipose tissue.
  • treatment for humans is also referred to as treatment in this specification for convenience, and “patient” can be read as “healthy” or “human”, and “disease” can be read as “beauty”.
  • the present invention can also be used to treat not only humans but also mammals including pets such as dogs and cats and livestock such as cows, horses, pigs, sheep and chickens.
  • pets such as dogs and cats
  • livestock such as cows, horses, pigs, sheep and chickens.
  • “patient” is read as “patient” or “mammal”.
  • the transplant material refers to a material containing brown fat cells that is introduced into a living body for the treatment or cosmetic treatment of obesity, diabetes, impaired glucose tolerance, abnormal lipid metabolism, metabolic syndrome.
  • Transplant materials include materials that form tissue structures in vitro and are transplanted into the same or another individual.
  • the brown adipocytes obtained in the present invention can be used for production of a transplant material. Brown adipocytes themselves are also transplant material. Therefore, brown adipocytes can be transplanted to a patient or subject as a cell preparation, or can be transplanted with a base material (scaffold) made of an artificial material.
  • Somatic cells may be derived from mammals. When brown adipocytes are transplanted into a living body, it is preferable to use somatic cells (autologous cells) derived from the transplanted subject in order to reduce risks such as infection and rejection response.
  • brown adipocytes prepared in advance from somatic cells of another person or another animal can be used for transplantation instead of autologous cells.
  • brown adipocytes can be produced from somatic cells of other persons or other animals prepared in advance and used for transplantation. That is, a brown adipocyte bank or a brown adipocyte precursor cell bank can be prepared and used for transplantation purposes. In such a case, MHC can be typed in advance in order to reduce the risk of a rejection response or the like.
  • the brown adipocyte character and tumorigenicity can be confirmed in advance.
  • mammals include mice, rats, hamsters, humans, dogs, cats, monkeys, rabbits, cows, horses, pigs, and the like, and particularly humans.
  • the present invention can also be used for various researches and technical developments using brown adipocytes.
  • it is useful for basic research such as analysis of brown fat cell development and aging, metabolic regulation mechanisms, nutrition, immunity, nerves, hormones, and food effects.
  • brown adipocytes can be established easily, quickly and inexpensively from humans and animals with various diseases and genetic backgrounds. , Molecular biology, immunological methods, etc., and research on elucidation of the pathogenesis of various diseases such as obesity, diabetes, impaired glucose tolerance, lipid metabolism, metabolic syndrome, etc. And can be used to develop diagnostic methods. For example, in such diseases, tailor-made medical treatment is performed by determining or predicting differences in incidence due to genetic differences, differences in the degree of exacerbation of diseases, differences in responsiveness to treatment, and differences in therapeutic effects. It can be applied to. Using such brown adipocytes, drug development, drug toxicity tests, etc., can be used to develop new treatments for various diseases such as obesity, diabetes, impaired glucose tolerance, lipid metabolism disorders, and metabolic syndrome. Can be useful.
  • brown adipocytes can be provided from somatic cells in a short period of time by direct reprogramming or a method based thereon. Since these brown adipocytes can be easily derived from the somatic cells of the individual to be transplanted, problems such as immunological rejection response do not occur even when transplanted. Moreover, since brown adipocytes can be induced directly from somatic cells without going through iPS cells or ES cells, problems caused by pluripotent stem cells such as canceration can be avoided.
  • a mixed solution of 5 ⁇ g of transgene, 2.5 ⁇ g of pCMV.VSV, 500 ⁇ l of Opti-MEM, and 22.5 ⁇ l of X-tremeGENE 9 was added to a 10 cm dish containing 10 ml of medium (second day). After 24 hours, change to normal medium without antibiotics (Day-1). On the same day (Day 1), aHDF, a human normal skin fibroblast cell line, or ADSC, a human adipose-derived stem cell, is seeded in a culture dish or 12-well plate at 1.5 ⁇ 10 4 to 2 ⁇ 10 4 cells / mL did.
  • the Plat GP culture supernatant was passed through a syringe filter with a pore diameter of 0.45 ⁇ m, and then mixed with polybrene (final concentration 4 ⁇ g / mL) (virus solution). After removing the aHDF culture supernatant by aspiration, 1 mL of the above virus solution was quickly added and cultured for 24 hours (infection). As a control group, cells not infected with virus were also prepared.
  • Example 2 Conversion from human normal skin fibroblasts to brown adipocytes, OilRedO stained image (Fig. 2) AHDF, a human normal skin fibroblast, was cultured in a 12-well plate and experimented as shown in FIG. On day 14, the culture medium was aspirated and removed from each well, washed once with PBS, and fixed with 60% isopropanol. OilRedO staining solution was added and allowed to stand at 37 ° C. for 15 minutes (OilRedO staining solution was prepared as follows. 0.24 g of OilRedO powder was dissolved in 30 mL of 99.7% isopropanol, and then 20 mL of distilled water was added.
  • FIGS. 2A-F Images of the plates are shown in FIGS. 2A-F. Different gene combinations are introduced into each well of the plate, and which gene combination is introduced into which number of wells is shown in Fig. 3 (in the table below Fig. 3, No. It is the number of the plate well in common with No. 2.
  • “1” in each gene column indicates that a retroviral vector containing the gene was infected, and the blank column indicates that gene. Is not infected with a retroviral vector containing).
  • the No. 36 well in FIG. 2 is a cell infected with a retroviral vector containing C / EBP ⁇ , L-Myc, and c-Myc genes, as shown in No. 36 in FIG. It can be seen that brown adipocytes are contained.
  • Example 3 Conversion from human normal skin fibroblasts to brown adipocytes, semi-quantification and quantification of OilRedO staining (FIG. 3)
  • two evaluators independently observed the plate with a stereomicroscope and evaluated the staining property of OilRedO in four stages (OilRedO staining property). In order from the strongest, +++, ++, +,-). The results are shown in the lower table of FIG. In the table at the bottom of Fig. 3, each gene column with "1" indicates that a retroviral vector containing that gene has been infected, and the blank column indicates that a retroviral vector containing that gene has been infected. It means not letting.
  • Example 4 Conversion from normal human skin fibroblasts to brown adipocytes, measurement of mRNA expression of UCP1 gene (Fig. 4) AHDF, which is a human normal skin fibroblast, was cultured in a 12-well plate and experimented as shown in FIG. Twelve days after gene introduction, total RNA was collected from some wells using ISOGEN II, and cDNA was synthesized using Rever Tra Ace qPCR RT Master Mix.
  • Real-time PCR Master Mix, Taqman probe, Specific Primer and cDNA were mixed, and Real-time RT-PCR was performed using AB7300 Real-time PCR system. .
  • Example 5 Conversion from human normal skin fibroblasts to brown adipocytes, mRNA expression of UCP1 gene (FIG. 5) AHDF, which is a human normal skin fibroblast, was cultured in a 12-well plate and experimented as shown in FIG. 1 (FIG. 4 is an experiment conducted independently by changing the combination of genes). Twelve days after gene introduction, total RNA was collected from some wells using ISOGEN II, and cDNA was synthesized using Rever Tra Ace qPCR RT Master Mix.
  • the vertical axis of the graph is a relative value calculated by setting the value of a cell into which a gene has not been introduced (shown in the rightmost bar) as 1.
  • Cells transfected with three genes, PRDM16, C / EBP ⁇ , and c-Myc (7th bar from the right) are the most potent uncoupling protein-1 (UCP-1), a brown adipocyte-specific marker at the mRNA level. Expression was observed. It can be seen that the expression level is more than 100 times higher than the UCP1 mRNA level observed in cells transfected with two genes, PRDM16 and C / EBP ⁇ (8th bar from the left).
  • Example 6 Conversion from human normal skin fibroblasts to brown adipocytes, mitochondrial staining image (FIG. 6)
  • Human normal skin fibroblast aHDF was cultured in a 12-well plate and experimented as shown in FIG. Twelve days after gene introduction, the cells were observed with a phase contrast microscope (FIG. 6, left column).
  • Mito Tracker Red probe manufactured by Invitrogen was added to the culture solution to a final concentration of 200 nM, and the plate was allowed to stand at 37 ° C for 15 minutes at 5% CO 2 /95% air. Then, the sample was observed with an Olympus fluorescence microscope (center row in FIG. 6).
  • Example 7 Conversion from human adipose-derived stem cells to brown adipocytes, OilRedO stained image (FIG. 7)
  • Human adipose-derived stem cells (ADSC) were cultured in 12-well plates and experimented as shown in FIG. 22 days after gene transfer, OilRedO staining was performed in the same manner as in FIG. The results are shown in FIG. It is lipid that is stained red, indicating that adipocytes have been induced.
  • white adipocytes containing large single chamber lipid droplets were observed in cells into which a GFP (Green fluorescent protein) gene was introduced (lower right of FIG. 7).
  • GFP Green fluorescent protein
  • Example 8 Conversion from human adipose-derived stem cells to brown adipocytes, measurement of mRNA expression of UCP1 gene (FIG. 8) Human adipose-derived stem cells (ADSC) were cultured in 12-well plates and experimented as shown in FIG. Twenty-two days after gene introduction, total RNA was collected from the cells for the purpose of quantifying UCP1, CIDEA, and AdipoQ mRNA expression, and Real-time RT-PCR was performed as in FIG. The result is shown in FIG.
  • human adipose-derived stem cells are mostly white adipocytes without gene transfer, but brown adipocytes can be obtained by introducing three genes, PRDM16, C / EBP ⁇ , and c-Myc. It was shown that it can be induced. Therefore, it was shown that brown adipocytes can be directly converted from cells other than human normal skin fibroblasts.
  • FIG. 9-12 shows an experiment in which brown adipocytes were induced from mouse iPS (iPS-derived BA cells) and transplanted into C57BL / 6 mice. It was possible to correct obesity and lipid metabolism abnormalities associated with high-calorie diets with iPS-derived BA cells because heat production, suppression of weight gain, and suppression of body weight gain and improvement of serum lipid abnormalities were observed when a high-calorie diet was given. It turns out that there is sex.
  • FIG. Mouse iPS-derived BA cells or non-induced cells as controls were transplanted subcutaneously into the abdomen of syngeneic mice as shown in the upper left of the figure.
  • the graft of iPS-derived BA cells exhibited a tissue image of adipose tissue positive for OilRed staining (upper right).
  • weight gain was significantly suppressed (lower left) and body temperature was significantly increased (lower right).
  • FIG. Mouse iPS-derived BA cells or non-induced cells as controls were implanted subcutaneously in the abdomen of syngeneic mice. In each group, two thermographic imaging images are shown. The temperature increased at the graft site of iPS-derived BA cells (bottom). The grafts of cells that did not induce brown adipocytes were at the same temperature as the surrounding tissue (top).
  • FIG. After transplantation, a high-calorie diet (QF) was given, and serum lipids were examined 4 weeks later. Only mice transplanted with iPS-derived BA (iBA) cells did not develop hyperlipidemia. NF is a normal fed mouse.
  • FIG. 13-16 shows an experiment in which iPS cells were prepared from somatic cells of type 2 diabetic mice, brown adipocytes were induced from the iPS cells (iPS-derived BA cells), and transplanted into diabetic mice. Transplantation results in a decrease in blood glucose level, suppression of weight gain, and improvement in serum lipid abnormalities, and it can be seen that transplantation of brown adipocytes can control diabetes.
  • FIG. IPS cells were generated from somatic cells of KK-Ay mice that develop type 2 diabetes.
  • the obtained iPS cells showed typical ES cell-like morphology (center, phase contrast micrograph) and expressed stem cell markers (bottom: real time RT-PCR, right: immunofluorescence staining).
  • KK-AyiPS1 to 4 are four different iPS cell clones derived from KK-Ay somatic cells, and 201B7 is a normal mouse-derived iPS cell clone.
  • FIG. Brown adipocytes were induced from the iPS cells of FIG. 13 (iPS-derived BA cells) (top). When these cells were transplanted into KK-Ay mice, the blood glucose level gradually increased (lower left) and almost no urine sugar was detected (lower right). As a control, diabetes was observed in non-transplanted KK-Ay mice (Non-transplant) and mice transplanted with GFP (green fluorescent protein) genes without induction into brown adipocytes (GFP control). It was progressing.
  • GFP green fluorescent protein
  • FIG. 3 In KK-Ay mice transplanted with iPS-derived BA cells, weight gain was significantly suppressed (top), and serum NEFA (bottom left) and triglycerides (bottom right) were also low.
  • FIG. KK-Ay mice transplanted with iPS-derived BA cells had significantly higher serum adiponectin levels. Food intake was the same as in control mice.
  • Example 9 Properties of brown adipocytes derived from human normal skin fibroblasts and iPS cells (FIG. 17)
  • human normal skin fibroblasts aHDF is cultured in a 12-well plate, and the results of the group in which two genes C / EBP ⁇ and c-Myc are introduced by the method shown in FIG. 1 are shown. Twelve days after gene transfer, the cells were observed with a phase contrast microscope (left).
  • Mito Tracker Red probe manufactured by Invitrogen was added to the culture solution to a final concentration of 200 nM, and the plate was allowed to stand at 37 ° C for 15 minutes at 5% CO 2 /95% air.
  • Anti-UCP1 antibody (primary antibody), PE ⁇ Cy5-labeled anti-rabbit IgG antibody (secondary antibody), anti-CIDEA antibody (primary antibody), AlexaFluor488-labeled anti-rabbit IgG antibody (secondary antibody), anti-PGC-1 Cells stained with an antibody (primary antibody), PE Cy5-labeled anti-rabbit IgG antibody (secondary antibody), and anti-Dio2 antibody (primary antibody) and AlexaFluor488-labeled anti-rabbit IgG antibody (secondary antibody).
  • the left is a fluorescence image
  • the right is a differential interference image. It can be seen that all four proteins specific to brown adipocytes are expressed in large amounts.
  • RNA from human adipose fibroblasts aHDF brown adipocytes (dBA) induced by the method from aHDF to A
  • brown adipocytes (iBA) derived from human iPS cells specific for UCP1, CIDEA, and AdipoQ Real-time RT-PCR analysis was performed using typical primers and probes.
  • the relative mRNA expression level calculated by setting the mRNA expression level in aHDF to 1 after correcting the expression level of each mRNA with the mRNA expression level of ⁇ -actin is shown.
  • dBA and iBA express mRNAs of genes specific to brown adipocytes at a very high level compared to aHDF.
  • Example 10 Properties of brown adipocytes derived from human normal skin fibroblasts (FIG. 18) A, human normal dermal fibroblasts aHDF, brown adipocytes (dBA) induced by the method of FIG. 17A from aHDF, cells cultured for 24 hours after addition of 100 nM leptin to dBA (Lep), and 1 ⁇ M isopro in dbA RNA was recovered from cells (Iso) cultured for 2 hours after addition of telenol, and real-time RT-PCR analysis was performed using primers and probes specific for UCP1 and leptin receptor.
  • the relative mRNA expression level calculated by setting the mRNA expression level in aHDF to 1 after correcting the expression level of each mRNA with the mRNA expression level of ⁇ -actin is shown. It can be seen that dBA expresses UCP1 and leptin receptor mRNA at extremely high levels compared to aHDF, and that their expression is further enhanced by stimulation with leptin or isoproterenol.
  • brown adipocytes (dBA) derived from human normal skin fibroblasts aHDF and aHDF by the method of FIG. 17A, and cells (Iso) cultured for 2 hours after adding 1 ⁇ M isoproterenol to dBA were prepared.
  • the concentration of glucose in the medium before and after the 24-hour culture was measured by a glucose B test (Wako).
  • Wako glucose B test
  • As a control a medium in which cells were not cultured was incubated for 24 hours, and the decrease rate of each glucose concentration was calculated. It can be seen that dBA consumes more glucose than fibroblasts, and that its consumption is further increased by stimulation with isoproterenol.
  • DNA was collected from brown adipocytes (dBA) induced by the method of FIG. 17A from C, human normal skin fibroblasts aHDF and aHDF.
  • Methylation of CpG dinucleotides in the upstream region of the PPARg gene (-431 to -151 bp from the transcription start site) and upstream region of the UCP1 gene (-693 to -348 bp from the transcription start site) were analyzed by the bisulfide method. Methylation is shown in black and demethylation is shown in white. It can be seen that both areas are highly CpG methylated in fibroblasts, whereas dBA is hypomethylated.
  • Example 11 Properties of brown adipocytes derived from human normal skin fibroblasts (FIG. 19) A, Experiments for inducing brown adipocytes (dBA) from human normal skin fibroblasts aHDF by the method of FIG. 17A were performed, and RNA was collected from cells at 0, 3, 6, 9, and 12 days after gene introduction. Real-time RT-PCR analysis using primers and probes specific to MitoHD was performed. The relative mRNA expression level calculated after setting the mRNA expression level in aHDF to 1 after correcting the mRNA expression level with ⁇ -actin mRNA expression level is shown. It can be seen that the expression of MT-ND1 gene of mitochondrial DNA is enhanced with induction from fibroblasts to dBA.
  • dBA brown adipocytes
  • dBA brown adipocytes
  • Example 12 Brown adipocytes are induced from human iPS cells by the method of FIG. 17A. The resulting cells contain multilocular lipid droplets and significantly express UCP1. Further, brown adipocytes are induced from human white adipocytes by the method of FIG. 17A. The resulting cells contain multilocular lipid droplets and significantly express UCP1.
  • Example 13 Direct reprogramming of human normal skin fibroblasts into brown adipocytes using episomal vectors
  • Figure 20 shows the structures of episomal vectors and plasmid vectors.
  • Left Episomal vector.
  • pG.oriP9.E contains nothing
  • pG.oriP9.EP contains PRDM16
  • pG.oriP9.EC contains CEBPbeta
  • pG.oriP9 contains c-Myc. Called .EM.
  • Plasmid vector Plasmid vector.
  • CAG prom CAG promoter
  • polyA Poly A additional signal
  • oriP Epstein-Barr virus (EBV) origin of replication
  • EBNA1 EBV nuclear antigen 1.
  • the plasmids B and A were introduced into human skin-derived fibroblasts by electroporation and then cultured for 12 days to collect RNA.
  • Real-time RT-PCR was performed using UCP1 gene-specific primers and probes.
  • the relative mRNA expression level calculated by setting the mRNA expression level in fibroblasts to 1 after correcting the expression level of UCP1 gene mRNA with the mRNA expression level of ⁇ -actin is shown. It can be seen that UCP1 mRNA was most highly expressed by co-introduction of pG.oriP9.E.C and pG.oriP9.E.M, and was induced in brown adipocytes.
  • Example 14 Brown adipocytes derived from mouse fetal fibroblasts (MEF) (FIG. 21)
  • mouse PRDM16 (P), C / EBP ⁇ (C), L-Myc (L), and retroviral vectors having c-Myc (M) genes were combined with mouse fetal fibers in various combinations.
  • Blast cells (MEF) were infected and then cultured in brown fat induction medium. On the 20th day after infection, RNA was collected. The cells cultured in the same manner without infection with a retroviral vector were designated as Control. Real time RT-PCR was performed using UCP1 gene-specific primers and probes.
  • the relative mRNA expression level calculated by setting the mRNA expression level in fibroblasts to 1 after correcting the expression level of UCP1 gene mRNA with the mRNA expression level of ⁇ -actin is shown. It was found that UCP1 mRNA was expressed at the highest level by introducing three factors, PRDM16 (P), C / EBP ⁇ (C), and L-Myc (L), and was induced in brown adipocytes.
  • Example 15 In vivo function of brown adipocytes derived from mouse fetal fibroblasts (MEF) (FIG. 22)
  • PRDM16 (P) C / EBP ⁇ (C) and L-Myc (L) genes were introduced into MEFs of C57BL / 6 mice to induce brown adipocytes (dBA).
  • This cell or MEF introduced with the GFP gene (GFP-MEF) was transplanted subcutaneously into an 8-week-old syngeneic mouse. These mice, and mice that were not transplanted, were fed a high fat diet (QF). As a control, non-transplanted mice fed with a normal diet (NF) were also prepared.
  • QF high fat diet
  • NF normal diet
  • A shows the weight of the mouse after transplantation.
  • body weight was significantly increased with QF intake compared to NF-ingested mice, but this dietary obesity was significantly suppressed in the group transplanted with dbA.
  • GFP-MEF or dbA transplanted mice were anesthetized and exposed to low temperature for 2 hours. Thereafter, the body surface temperature was measured by thermography. In the GFP-MEF transplanted mice, the temperature of the transplanted part was not different from the peripheral body surface temperature, but in the dbA transplanted mice, an increase in the temperature of the transplanted part was observed.
  • Example 16 In vivo function of brown adipocytes derived from mouse fetal fibroblasts (MEF) (FIG. 23) Brown adipocytes (dBA) were induced from MEF of AAky mice, which is a diabetes model, by the method of Example 13 using PRDM16 (P), C / EBP ⁇ (C) and L-Myc (L) genes. This cell or MEF into which the GFP gene was introduced (GFP-MEF) was transplanted subcutaneously into a 6-week-old syngeneic mouse (10 cm dish confluentx2 / mouse). These mice, and mice that were not transplanted, were raised on a normal diet.
  • P PRDM16
  • C C / EBP ⁇
  • L L-Myc
  • A-C mouse body weight (A), blood glucose (B) as needed, fasting blood glucose (C). It can be seen that weight gain and blood glucose elevation were significantly suppressed in AAky mice transplanted with dBA.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Rheumatology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、哺乳動物の体細胞に褐色脂肪細胞関連遺伝子又はその発現産物とリプログラミング関連遺伝子又はその発現産物を導入することで、前記体細胞から褐色脂肪細胞を調製する方法であって、前記褐色脂肪細胞関連遺伝子がPRDM16(P)及びC/EBPβ(C)からなる群から選択される少なくとも1種であり、リプログラミング関連遺伝子がMycファミリーの遺伝子(c-Myc(M)、N-Myc、 L-Myc(L)、S-Myc, B-Myc)、GLIS ファミリーの遺伝子(GLIS1(G)、GLIS 2、GLIS 3)、 Klfファミリーの遺伝子(KLF1, KLF2, KLF3, KLF4(K), KLF5, KLF6, KLF7, KLF8, KLF9, KLF10, KLF11, KLF12, KLF13, KLF14, KLF15, KLF16, KLF17)、Octファミリーの遺伝子、Soxファミリーの遺伝子、Lin-28からなる群から選択される少なくとも1種である、褐色脂肪細胞を調製する方法を提供する。

Description

褐色脂肪細胞及びその調製方法
 本発明は、褐色脂肪細胞及びその調製方法に関する。また、本発明は、肥満、糖尿病、耐糖能異常、脂質代謝異常、動脈硬化性疾患、高血圧、高尿酸血症、痛風、非アルコール性脂肪性肝疾患、メタボリックシンドロームの予防又は治療剤およびその使用に関する。
 肥満とこれに関連する代謝疾患、例えば糖尿病、メタボリックシンドロームなどは、先進工業国において、極めて大きな医療、社会上の問題になっている。肥満症においては、白色脂肪細胞が、食物由来の余剰エネルギーを脂肪酸として貯蔵するのみならず、さまざまなホルモンやサイトカインを産生して耐糖能異常、脂質代謝異常を惹起し、II型糖尿病、動脈硬化性疾患、高血圧、高尿酸血症・痛風、非アルコール性脂肪性肝疾患等をもたらす。
 一方、褐色脂肪(BA)細胞は、白色脂肪細胞とは逆に、脂肪酸を酸化分解してそのエネルギーを熱として放出する細胞である。これは、BA細胞が特異的に発現するミトコンドリア内膜蛋白、UCP1(Uncoupling protein 1)が、酸化的リン酸化を脱共役させるためである。マウスなどげっ歯類では、BA細胞は肩甲骨間、後頚部、縦隔, 腎周囲等に存在する。また、UCP1ノックアウトマウスの解析等から、BA細胞は肥満と耐糖能異常を抑制することが知られている。
 褐色脂肪細胞は、ヒトでは乳児期にのみ存在し、成人では存在しないと、最近まで考えられてきたが、2009年になって、成人でも鎖骨上部の皮下組織、大動脈周囲等に褐色脂肪細胞が存在することが明らかにされた(非特許文献1~3)。褐色脂肪細胞の数と機能には大きな個人差があり、BMI(体格指数)と空腹時血糖に逆相関する。やせ型のヒトでは多く、肥満、糖尿病、高脂血症の患者では極端に低下している。したがって、肥満、糖尿病、高脂血症等の疾患の遺伝的素因を解析し、環境要因を探索し、病態を解明し、あるいは新しい診断法や治療効果の判定等の技術を開発する上で、褐色脂肪細胞は重要な意義を持つ。褐色脂肪細胞はまた、これら疾患に対する新しい治療薬の開発にも極めて有益であると考えられる。さらに肥満、糖尿病、高脂血症、メタボリック症候群等の患者に褐色脂肪細胞を補充することができれば、これら疾患に対する新しい治療手段となる可能性がある。
 ヒトiPS細胞から間葉系幹細胞、次いで褐色脂肪細胞と白色脂肪細胞を得る方法は知られているが(非特許文献4)、iPS細胞から褐色脂肪細胞と白色脂肪細胞を誘導すると、最終の脂肪細胞を得るまでに時間がかかり、iPS由来であることから癌化のリスクが生じる。
 体細胞のダイレクト・コンヴァージョンに関し、例えば以下の報告がある:
マウス線維芽細胞→軟骨細胞(SOX9 + Klf4 + c-Myc遺伝子を導入、特許文献1)
マウス線維芽細胞→心筋細胞(GATA4 + Mef2c + Tbx5遺伝子を導入)
マウス線維芽細胞→肝細胞(Hnf4α+(Foxa1またはFoxa2またはFoxa3)
遺伝子を導入)
マウス線維芽細胞→神経幹細胞(Sox2 + FoxG1遺伝子を導入など)、
マウス、ヒト細胞→造血幹細胞
 これまで、PRDM16とC/EBPβを筋芽細胞や線維芽細胞に遺伝子導入し、「褐色脂肪細胞様の細胞」に誘導することは知られている(特許文献2および非特許文献5)。しかし、PRDM16とC/EBPβで誘導した細胞は、UCP1の発現レベルが非常に低いなど、褐色脂肪細胞としての性質は不十分にしか有さない。
WO2010/071210 WO2010/080985A8
Saito M. et al., Diabetes 58:1526, 2009 Cypess A. M. et al., N Eng J Med 360: 1509, 2009 Van Merken Lichtenbelt W. D. et al., N Engl J Med 360: 1500, 2009 Tim Ahfeldt et al., Nature Cell Biology Vol.14, No.2, 2012 Kajimura S, et al. Nature 460: 1154, 2009
 本発明は、肥満、糖尿病、耐糖能異常、脂質代謝異常、動脈硬化性疾患、高血圧、高尿酸血症、痛風、非アルコール性脂肪性肝疾患、メタボリックシンドロームの予防又は治療剤、予防又は治療方法、該疾患又は状態の予防又は治療に有効な移植材料及びその調製方法を提供することを目的とする。
 本発明は、褐色脂肪細胞及びその調製方法、褐色脂肪細胞を含む移植材料、褐色脂肪細胞を含む各種疾患、状態の予防剤又は治療剤、使用を提供するものである。
項1. 哺乳動物の体細胞に褐色脂肪細胞関連遺伝子又はその発現産物とリプログラミング関連遺伝子又はその発現産物を導入することで、前記体細胞から褐色脂肪細胞を調製する方法であって、前記褐色脂肪細胞関連遺伝子がPRDM16(P)及びC/EBPβ(C)からなる群から選択される少なくとも1種であり、リプログラミング関連遺伝子がMycファミリーの遺伝子、GLIS ファミリーの遺伝子、 Klfファミリーの遺伝子、Octファミリーの遺伝子、Soxファミリーの遺伝子、Lin-28からなる群から選択される少なくとも1種である、褐色脂肪細胞を調製する方法。
項2. 前記体細胞が線維芽細胞または白色脂肪細胞である、項1に記載の方法。
項3. 褐色脂肪細胞関連遺伝子又はその発現産物がC/EBPβである、項1又は2に記載の方法。
項4. リプログラミング関連遺伝子又はその発現産物がc-MycまたはL-Mycを含む、項1又は2に記載の方法。
項5. リプログラミング関連遺伝子又はその発現産物がc-Mycを含む、項1又は2に記載の方法。
項6. 体細胞に導入される褐色脂肪細胞関連遺伝子又はその発現産物とリプログラミング関連遺伝子又はその発現産物の組み合わせが、PCM、CM、PCL、CL、PCG、CG、PCML、CML、PCMOct3/4、CMOct3/4、PCMG、CMG、PCLOct3/4、CLOct3/4、PCLG、CLG、PCMLOct3/4、CMLOct3/4、PCMLG、CMLG、PCMOct3/4G、CMOct3/4G、PCLOct3/4G、CLOct3/4G、PCMLOct3/4G、CMLOct3/4G(ここで、Pは「PRDM16」を示し、Cは「C/EBPβ」を示し、Mは「c-Myc」を示し、Lは「L-Myc」を示し、Gは「Glis1」を示す)からなる群から選ばれるいずれかの組み合わせである、項1又は2に記載の方法。
項7. 体細胞に導入される褐色脂肪細胞関連遺伝子又はその発現産物とリプログラミング関連遺伝子又はその発現産物の組み合わせが、PCM、CM、PCL、CL、PCML、CML、PCMOct3/4、CMOct3/4、PCMG、CMG、PCLOct3/4、CLOct3/4、PCLG、CLG、PCMLOct3/4、CMLOct3/4、PCMLG、CMLG、PCMOct3/4G、CMOct3/4G、PCLOct3/4G、CLOct3/4G、PCMLOct3/4G、CMLOct3/4Gからなる群から選ばれるいずれかの組み合わせである、項6に記載の方法。
項8. 体細胞に導入される褐色脂肪細胞関連遺伝子又はその発現産物とリプログラミング関連遺伝子又はその発現産物の組み合わせが、PCM、CM、PCML、CML、PCMG、CMG、PCLG、CLG、PCMLG、CMLGからなる群から選ばれるいずれかの組み合わせである、項6に記載の方法。
項9. 哺乳動物の体細胞に由来し、褐色脂肪細胞関連遺伝子又はその発現産物とリプログラミング関連遺伝子又はその発現産物を有する褐色脂肪細胞であって、前記褐色脂肪細胞関連遺伝子がPRDM16(P)及びC/EBPβ(C)からなる群から選択される少なくとも1種であり、リプログラミング関連遺伝子がMycファミリーの遺伝子、GLIS ファミリーの遺伝子、 Klfファミリーの遺伝子、Octファミリーの遺伝子、Soxファミリーの遺伝子、Lin-28からなる群から選択される少なくとも1種である、褐色脂肪細胞。
項10. 肥満、糖尿病、耐糖能異常、脂質代謝異常、動脈硬化性疾患、高血圧、高尿酸血症、痛風、非アルコール性脂肪性肝疾患、メタボリックシンドロームの予防又は治療剤であって、項1~8のいずれかに記載の方法により調製された褐色脂肪細胞、または、項9に記載の褐色脂肪細胞を有効成分とする、予防又は治療剤。
項11. 項1~8のいずれかに記載の方法により調製された褐色脂肪細胞、または、項9に記載の褐色脂肪細胞の肥満、糖尿病、耐糖能異常、脂質代謝異常、動脈硬化性疾患、高血圧、高尿酸血症、痛風、非アルコール性脂肪性肝疾患、メタボリックシンドロームの予防又は治療のための使用。
項12. 項1~8のいずれかに記載の方法により調製された褐色脂肪細胞、または、項9に記載の褐色脂肪細胞を含む、移植材料。
 本発明では、上記の先行技術と異なり、リプログラム関連遺伝子をPRDM16および/またはC/EBPβに加えて用いることで、UCP1の発現がより高く、褐色脂肪細胞としての性質がより優れた褐色脂肪細胞を、効率よく誘導することができる。
 本発明ではまた、上記の先行技術と異なり、PRDM16がなくても、C/EBPβに加えてリプログラム関連遺伝子を用いれば、褐色脂肪細胞としての性質が優れた細胞を、効率よく誘導することができる。
 褐色脂肪細胞は、生体に移植することで、肥満、メタボリックシンドローム、或いはこれらの関連する疾患又は状態、例えば糖尿病(特にII型糖尿病)、耐糖能異常、脂質代謝異常、動脈硬化性疾患、高血圧、高尿酸血症、痛風、非アルコール性脂肪性肝疾患などの予防又は治療、内臓脂肪の除去などに有効である。
 また、褐色脂肪細胞は、脂肪の燃焼により内臓脂肪及び/又は皮下脂肪の除去にも有効であるので、褐色脂肪細胞を注入することにより局所的な脂肪の除去、体脂肪率の低下、皮下脂肪の除去などの美容術にも有効である。
実施例1の概要を示す。 実施例2で得られた細胞のウェルNo.1~12のOilRedO染色結果を示す。aHDF,Day14。 実施例2で得られた細胞のウェルNo.13~24のOilRedO染色結果を示す。aHDF,Day14。 実施例2で得られた細胞のウェルNo.25~36のOilRedO染色結果を示す。aHDF,Day14。 実施例2で得られた細胞のウェルNo.37~48のOilRedO染色結果を示す。aHDF,Day14。 実施例2で得られた細胞のウェルNo.49~60のOilRedO染色結果を示す。aHDF,Day14。 実施例2で得られた細胞のウェルNo.61~65のOilRedO染色結果を示す。aHDF,Day14。 実施例3で得られた細胞のウェルNo.1~65の脂肪含量(縦軸)、OilRedO抽出OD(相対値)。aHDF,Day14。 実施例4で得られた褐色脂肪細胞のウェルNo.1~65のUCP1 mRNAレベル(相対値)。aHDF,Day12。 実施例5で得られた細胞のUCP1mRNAの相対レベルを示す。aHDF 5種の細胞(Control, PRDM16, C/EBPβ, PRDM16+ C/EBPβ, PRDM16+ C/EBPβ+cMyc)のPhase contrast, ミトコンドリア染色、OilRedO染色の結果を示す。aHDF ADSCを図1のように処理して得られた細胞のOilRedO染色の結果を示す。ADSC、Day22. ヒト脂肪由来幹細胞(ADSC)を図1のように処理して得られた細胞のUCP1、CIDEA、AdipoQのmRNA発現を定量した結果を示す。縦軸「RQ」はmRNAの相対値を示す。ADSC、Day22. マウスiPS-derived BA細胞、またはコントロールとして非誘導細胞を、同系マウスの腹部皮下に移植したときのOilRed染色像、体重及び直腸温を示す。 マウスiPS-derived BA細胞、またはコントロールとして非誘導細胞を、同系マウスの腹部皮下に移植したときのサーモグラフィーのイメージング結果を示す。Thermographic visualization shows thermogenesis at the induced BA graft.  The temperature on the body surface went up remarkably in transplanted BA group compared with control group. iPS-derived BA細胞を移植したマウス及び移植しないマウスについて、高カロリー食及び普通食を与えたときの体重の推移を示す。 iPS-derived BA細胞を移植したマウス及び移植しないマウスに高カロリー食を与え、4週間後に血清の脂質を調べた結果を示す。 2型糖尿病マウスの体細胞から樹立したiPS細胞の形態及び幹細胞マーカーの発現について調べた結果を示す。 iPS細胞から誘導した褐色脂肪細胞(図上)。この細胞をKK-Ayマウスに移植したところ、随時血糖の上昇が緩やかで(左下)、また尿糖は検出されなかった(右下, three weeks post-transplantation)。コントロールとして、移植していないKK-Ayマウスと、褐色脂肪細胞への誘導を行わなかった細胞を移植したマウスでは、糖尿病が進行していた。 iPS由来のBA細胞を移植したKK-Ayマウス、非移植マウス、GFP Controlマウスの、体重、血清中のNEFAと中性脂肪の測定結果を示す。 iPS由来のBA細胞を移植したKK-Ayマウス、非誘導細胞を移植したマウス、非移植Controlマウスの、血清中のアディポネクチン量、摂食量を示す。 ヒト正常皮膚線維芽細胞およびiPS細胞から誘導した褐色脂肪細胞の性状。 ヒト正常皮膚線維芽細胞から誘導した褐色脂肪細胞の性状 ヒト正常皮膚線維芽細胞から誘導した褐色脂肪細胞の性状 エピゾーマル・ベクターによ.るヒト正常皮膚線維芽細胞から褐色脂肪細胞へのダイレクト・リプログラミング。 マウス胎仔線維芽細胞(MEF)から誘導した褐色脂肪細胞。 マウス胎仔線維芽細胞(MEF)から誘導した褐色脂肪細胞の生体内機能。 マウス胎仔線維芽細胞(MEF)から誘導した褐色脂肪細胞の生体内機能。
 本発明の褐色脂肪細胞を移植材料として用いて治療する対象となる疾患としては、肥満、メタボリックシンドローム、或いはこれらの関連する疾患又は状態、例えば糖尿病(特にII型糖尿病)、耐糖能異常、脂質代謝異常、動脈硬化性疾患、高血圧、高尿酸血症、痛風、非アルコール性脂肪性肝疾患などが挙げられる。また、腹部や顎の周り、太ももなどの脂肪を除去する美容的な用途にも使用できる。褐色脂肪細胞を投与すると、脂肪量、特に内臓脂肪、皮下脂肪などの白色脂肪細胞が低減され、また高カロリー食を摂取した場合にも体重増加が抑制されるため、肥満、メタボリックシンドローム、或いはこれらの関連する疾患又は状態の予防と治療の両方に有用である。本発明はまた、疾患の予防又は治療に限らず、健康増進や美容(例えば腹部、顎、腕、太ももなどの内臓脂肪、皮下脂肪の除去)等の目的で用いることもできる。その際、ヒトに対する処置も、本明細書では便宜上治療と呼び、「患者」は「健常者」あるいは「ヒト」、「疾患」は「健康増進」や「美容」等と読み替えることができる。
 本発明はまた、ヒトだけでなく、イヌ、ネコ等の愛玩動物やウシ、ウマ、ブタ、ヒツジ、ニワトリ等の家畜の疾患の治療にも用いることが可能である。その場合、「患者」あるいは「ヒト」を「患畜」あるいは「動物」と読み替えることとする。
 移植材料とは、褐色脂肪細胞を生体内に導入する材料をいう。褐色脂肪細胞は、乳房などに導入する美容的処置の移植材料として使用することもできる。移植材料は、インビトロで体細胞から褐色脂肪細胞に変換した後、同一または別の個体に移植する材料を包含する。
 本発明の方法の対象となる体細胞としては、特に限定されないが、例えば線維芽細胞、上皮細胞(皮膚表皮細胞、口腔粘膜上皮細胞、気道粘膜上皮細胞、腸管粘膜上皮細胞など)、表皮細胞、歯肉細胞(歯肉線維芽細胞、歯肉上皮細胞)、歯髄細胞、白色脂肪細胞、皮下脂肪、内臓脂肪、筋肉、血液細胞などが挙げられ、好ましくは線維芽細胞、表皮細胞(ケラチノサイト)などが挙げられる。また、間葉系幹細胞(Mesenchymal stem cell: MSC)、神経幹細胞(Neural stem cell)、肝幹細胞(hepatic stem cell)、腸幹細胞、皮膚幹細胞、毛包幹細胞、色素細胞幹細胞などの体性幹細胞から分化誘導し、あるいは脱分化させ、あるいはリプログラミングさせて作成した体細胞も挙げられる。また、さまざまな体細胞から分化誘導し、あるいは脱分化させ、あるいはリプログラミングさせて別の体細胞に誘導した細胞も挙げられる。また、生殖系列の細胞から分化誘導し、あるいは脱分化させ、あるいはリプログラミングさせて誘導した体細胞も挙げられる。また、胎性幹細胞(Embryonic stem cell:ES細胞)や人工多能性幹細胞(induced pluripotent stem cell:iPS細胞)から分化誘導し、あるいはリプログラミングさせて誘導した体細胞も挙げられる。また、厳密には体細胞ではないが、ES細胞、iPS細胞、あるいは生殖系列の細胞も本発明の「体細胞」に包含される(その際には、「体細胞」を「ES細胞」、「iPS細胞」あるいは「生殖系列の細胞」と読み替えるものとする)。また、培養細胞も挙げられ、培養細胞から分化誘導し、あるいは脱分化させ、あるいはリプログラミングさせて誘導した体細胞も挙げられる。体細胞の由来は、成人であっても小児であっても胎児であってもよい。本発明の方法の主要な実施形態として、分化した体細胞に褐色脂肪細胞関連遺伝子又はその発現産物とリプログラミング関連遺伝子又はその発現産物を導入してダイレクト・リプログラミングする方法が挙げられるが、ES細胞、iPS細胞、あるいは他の幹細胞などの多能性細胞についても、褐色脂肪細胞関連遺伝子又はその発現産物とリプログラミング関連遺伝子又はその発現産物を導入してダイレクト・リプログラミングと同様の本発明方法により、褐色脂肪細胞を得ることができる。
 体細胞は、ヒト由来であることが特に好ましい。
 本発明の方法では、体細胞に以下の遺伝子またはその発現産物の組み合わせを導入する。ここで、「発現産物」としては、各遺伝子のmRNA又はタンパク質が挙げられる。
 褐色脂肪細胞に導くためには、褐色脂肪細胞関連遺伝子またはその発現産物とリプログラミング関連遺伝子またはその発現産物を導入する。褐色脂肪細胞関連遺伝子はPRDM16(P)及びC/EBPβ(C)からなる群から選択される少なくとも1種であり、リプログラミング関連遺伝子はMycファミリーの遺伝子(c-Myc(M)、N-Myc、 L-Myc(L)、S-Myc, B-Myc)、GLIS ファミリーの遺伝子(GLIS1(G)、GLIS 2、GLIS 3)、 Klfファミリーの遺伝子(KLF1, KLF2, KLF3, KLF4(K), KLF5, KLF6, KLF7, KLF8, KLF9, KLF10, KLF11, KLF12, KLF13, KLF14, KLF15, KLF16, KLF17)、Octファミリーの遺伝子(Oct3/4など)、Soxファミリーの遺伝子(Sox2など)、Lin-28からなる群から選択される少なくとも1種であり、好ましくはc-MycまたはL-Mycを含み、より好ましくはc-Mycを含む。
 具体的な組み合わせ例としては、体細胞に導入される褐色脂肪細胞関連遺伝子又はその発現産物とリプログラミング関連遺伝子又はその発現産物の組み合わせが、PCM、PM、CM、PCL、PL、CL、PCK、PK、CK、PCG、PG、CG、PCML、PML、CML、PCMK、PMK、CMK、PCMG、PMG、CMG、PCLK、PLK、CLK、PCLG、PLG、CLG、PCKG、PKG、CKG、PCMLK、PMLK、CMLK、PCMLG、PMLG、CMLG、PCMKG、PMKG、CMKG、PCLKG、PLKG、CLKG、PCMLKG、PMLKG、CMLKG、
PCM Lin-28、PM Lin-28、CM Lin-28、PCL Lin-28、PL Lin-28、CL Lin-28、PCK Lin-28、PK Lin-28、CK Lin-28、PCG Lin-28、PG Lin-28、CG Lin-28、PCML Lin-28、PML Lin-28、CML Lin-28、PCMK Lin-28、PMK Lin-28、CMK Lin-28、PCMG Lin-28、PMG Lin-28、CMG Lin-28、PCLK Lin-28、PLK Lin-28、CLK Lin-28、PCLG Lin-28、PLG Lin-28、CLG Lin-28、PCKG Lin-28、PKG Lin-28、CKG Lin-28、PCMLK Lin-28、PMLK Lin-28、CMLK Lin-28、PCMLG Lin-28、PMLG Lin-28、CMLG Lin-28、PCMKG Lin-28、PMKG Lin-28、CMKG Lin-28、PCLKG Lin-28、PLKG Lin-28、CLKG Lin-28、PCMLKG Lin-28、PMLKG Lin-28、CMLKG Lin-28、
PCM Oct3/4、PM Oct3/4、CM Oct3/4、PCL Oct3/4、PL Oct3/4、CL Oct3/4、PCK Oct3/4、PK Oct3/4、CK Oct3/4、PCG Oct3/4、PG Oct3/4、CG Oct3/4、PCML Oct3/4、PML Oct3/4、CML Oct3/4、PCMK Oct3/4、PMK Oct3/4、CMK Oct3/4、PCMG Oct3/4、PMG Oct3/4、CMG Oct3/4、PCLK Oct3/4、PLK Oct3/4、CLK Oct3/4、PCLG Oct3/4、PLG Oct3/4、CLG Oct3/4、PCKG Oct3/4、PKG Oct3/4、CKG Oct3/4、PCMLK Oct3/4、PMLK Oct3/4、CMLK Oct3/4、PCMLG Oct3/4、PMLG Oct3/4、CMLG Oct3/4、PCMKG Oct3/4、PMKG Oct3/4、CMKG Oct3/4、PCLKG Oct3/4、PLKG Oct3/4、CLKG Oct3/4、PCMLKG Oct3/4、PMLKG Oct3/4、CMLKG Oct3/4、
PCM Sox2、PM Sox2、CM Sox2、PCL Sox2、PL Sox2、CL Sox2、PCK Sox2、PK Sox2、CK Sox2、PCG Sox2、PG Sox2、CG Sox2、PCML Sox2、PML Sox2、CML Sox2、PCMK Sox2、PMK Sox2、CMK Sox2、PCMG Sox2、PMG Sox2、CMG Sox2、PCLK Sox2、PLK Sox2、CLK Sox2、PCLG Sox2、PLG Sox2、CLG Sox2、PCKG Sox2、PKG Sox2、CKG Sox2、PCMLK Sox2、PMLK Sox2、CMLK Sox2、PCMLG Sox2、PMLG Sox2、CMLG Sox2、PCMKG Sox2、PMKG Sox2、CMKG Sox2、PCLKG Sox2、PLKG Sox2、CLKG Sox2、PCMLKG Sox2、PMLKG Sox2、CMLKG Sox2、
PCM Lin-28 Oct3/4、PM Lin-28 Oct3/4、CM Lin-28 Oct3/4、PCL Lin-28 Oct3/4、PL Lin-28 Oct3/4、CL Lin-28 Oct3/4、PCK Lin-28 Oct3/4、PK Lin-28 Oct3/4、CK Lin-28 Oct3/4、PCG Lin-28 Oct3/4、PG Lin-28 Oct3/4、CG Lin-28 Oct3/4、PCML Lin-28 Oct3/4、PML Lin-28 Oct3/4、CML Lin-28 Oct3/4、PCMK Lin-28 Oct3/4、PMK Lin-28 Oct3/4、CMK Lin-28 Oct3/4、PCMG Lin-28 Oct3/4、PMG Lin-28 Oct3/4、CMG Lin-28 Oct3/4、PCLK Lin-28 Oct3/4、PLK Lin-28 Oct3/4、CLK Lin-28 Oct3/4、PCLG Lin-28 Oct3/4、PLG Lin-28 Oct3/4、CLG Lin-28 Oct3/4、PCKG Lin-28 Oct3/4、PKG Lin-28 Oct3/4、CKG Lin-28 Oct3/4、PCMLK Lin-28 Oct3/4、PMLK Lin-28 Oct3/4、CMLK Lin-28 Oct3/4、PCMLG Lin-28 Oct3/4、PMLG Lin-28 Oct3/4、CMLG Lin-28 Oct3/4、PCMKG Lin-28 Oct3/4、PMKG Lin-28 Oct3/4、CMKG Lin-28 Oct3/4、PCLKG Lin-28 Oct3/4、PLKG Lin-28 Oct3/4、CLKG Lin-28 Oct3/4、PCMLKG Lin-28 Oct3/4、PMLKG Lin-28 Oct3/4、CMLKG Lin-28 Oct3/4、
PCM Oct3/4 Sox2、PM Oct3/4 Sox2、CM Oct3/4 Sox2、PCL Oct3/4 Sox2、PL Oct3/4 Sox2、CL Oct3/4 Sox2、PCK Oct3/4 Sox2、PK Oct3/4 Sox2、CK Oct3/4 Sox2、PCG Oct3/4 Sox2、PG Oct3/4 Sox2、CG Oct3/4 Sox2、PCML Oct3/4 Sox2、PML Oct3/4 Sox2、CML Oct3/4 Sox2、PCMK Oct3/4 Sox2、PMK Oct3/4 Sox2、CMK Oct3/4 Sox2、PCMG Oct3/4 Sox2、PMG Oct3/4 Sox2、CMG Oct3/4 Sox2、PCLK Oct3/4 Sox2、PLK Oct3/4 Sox2、CLK Oct3/4 Sox2、PCLG Oct3/4 Sox2、PLG Oct3/4 Sox2、CLG Oct3/4 Sox2、PCKG Oct3/4 Sox2、PKG Oct3/4 Sox2、CKG Oct3/4 Sox2、PCMLK Oct3/4 Sox2、PMLK Oct3/4 Sox2、CMLK Oct3/4 Sox2、PCMLG Oct3/4 Sox2、PMLG Oct3/4 Sox2、CMLG Oct3/4 Sox2、PCMKG Oct3/4 Sox2、PMKG Oct3/4 Sox2、CMKG Oct3/4 Sox2、PCLKG Oct3/4 Sox2、PLKG Oct3/4 Sox2、CLKG Oct3/4 Sox2、PCMLKG Oct3/4 Sox2、PMLKG Oct3/4 Sox2、CMLKG Oct3/4 Sox2、
PCM Lin-28 Sox2、PM Lin-28 Sox2、CM Lin-28 Sox2、PCL Lin-28 Sox2、PL Lin-28 Sox2、CL Lin-28 Sox2、PCK Lin-28 Sox2、PK Lin-28 Sox2、CK Lin-28 Sox2、PCG Lin-28 Sox2、PG Lin-28 Sox2、CG Lin-28 Sox2、PCML Lin-28 Sox2、PML Lin-28 Sox2、CML Lin-28 Sox2、PCMK Lin-28 Sox2、PMK Lin-28 Sox2、CMK Lin-28 Sox2、PCMG Lin-28 Sox2、PMG Lin-28 Sox2、CMG Lin-28 Sox2、PCLK Lin-28 Sox2、PLK Lin-28 Sox2、CLK Lin-28 Sox2、PCLG Lin-28 Sox2、PLG Lin-28 Sox2、CLG Lin-28 Sox2、PCKG Lin-28 Sox2、PKG Lin-28 Sox2、CKG Lin-28 Sox2、PCMLK Lin-28 Sox2、PMLK Lin-28 Sox2、CMLK Lin-28 Sox2、PCMLG Lin-28 Sox2、PMLG Lin-28 Sox2、CMLG Lin-28 Sox2、PCMKG Lin-28 Sox2、PMKG Lin-28 Sox2、CMKG Lin-28 Sox2、PCLKG Lin-28 Sox2、PLKG Lin-28 Sox2、CLKG Lin-28 Sox2、PCMLKG Lin-28 Sox2、PMLKG Lin-28 Sox2、CMLKG Lin-28 Sox2、
PCM Lin-28 Oct3/4 Sox2、PM Lin-28 Oct3/4 Sox2、CM Lin-28 Oct3/4 Sox2、PCL Lin-28 Oct3/4 Sox2、PL Lin-28 Oct3/4 Sox2、CL Lin-28 Oct3/4 Sox2、PCK Lin-28 Oct3/4 Sox2、PK Lin-28 Oct3/4 Sox2、CK Lin-28 Oct3/4 Sox2、PCG Lin-28 Oct3/4 Sox2、PG Lin-28 Oct3/4 Sox2、CG Lin-28 Oct3/4 Sox2、PCML Lin-28 Oct3/4 Sox2、PML Lin-28 Oct3/4 Sox2、CML Lin-28 Oct3/4 Sox2、PCMK Lin-28 Oct3/4 Sox2、PMK Lin-28 Oct3/4 Sox2、CMK Lin-28 Oct3/4 Sox2、PCMG Lin-28 Oct3/4 Sox2、PMG Lin-28 Oct3/4 Sox2、CMG Lin-28 Oct3/4 Sox2、PCLK Lin-28 Oct3/4 Sox2、PLK Lin-28 Oct3/4 Sox2、CLK Lin-28 Oct3/4 Sox2、PCLG Lin-28 Oct3/4 Sox2、PLG Lin-28 Oct3/4 Sox2、CLG Lin-28 Oct3/4 Sox2、PCKG Lin-28 Oct3/4 Sox2、PKG Lin-28 Oct3/4 Sox2、CKG Lin-28 Oct3/4 Sox2、PCMLK Lin-28 Oct3/4 Sox2、PMLK Lin-28 Oct3/4 Sox2、CMLK Lin-28 Oct3/4 Sox2、PCMLG Lin-28 Oct3/4 Sox2、PMLG Lin-28 Oct3/4 Sox2、CMLG Lin-28 Oct3/4 Sox2、PCMKG Lin-28 Oct3/4 Sox2、PMKG Lin-28 Oct3/4 Sox2、CMKG Lin-28 Oct3/4 Sox2、PCLKG Lin-28 Oct3/4 Sox2、PLKG Lin-28 Oct3/4 Sox2、CLKG Lin-28 Oct3/4 Sox2、PCMLKG Lin-28 Oct3/4 Sox2、PMLKG Lin-28 Oct3/4 Sox2、CMLKG Lin-28 Oct3/4 Sox2、
PC LIN-28、P LIN-28、C LIN-28、PC OCT3/4、P OCT3/4、C OCT3/4、PC SOX2、P SOX2、C SOX2、PC LIN-28 OCT3/4、P LIN-28 OCT3/4、C LIN-28 OCT3/4、PC LIN-28 SOX2、P LIN-28 SOX2、C LIN-28 SOX2、PC OCT3/4 SOX2、P OCT3/4 SOX2、C OCT3/4SOX2、PC LIN-28 OCT3/4 SOX2、P LIN-28 OCT3/4 SOX2、C LIN-28 OCT3/4 SOX2、
 (ここで、Pは「PRDM16」を示し、Cは「C/EBPβ」を示し、Mは「c-Myc」を示し、Lは「L-Myc」を示し、Kは「KLF-4」を示し、Gは「Glis1」を示す)が挙げられる。このうち望ましいのは、PCM、CM、PCL、CL、PCG、CG、PCML、CML、PCMOct3/4、CMOct3/4、PCMG、CMG、PCLOct3/4、CLOct3/4、PCLG、CLG、PCMLOct3/4、CMLOct3/4、PCMLG、CMLG、PCMOct3/4G、CMOct3/4G、PCLOct3/4G、CLOct3/4G、PCMLOct3/4G、CMLOct3/4Gが挙げられる。このうち特に望ましいのはPCM、CM、PCL、CL、PCML、CML、PCMOct3/4、CMOct3/4、PCMG、CMG、PCLOct3/4、CLOct3/4、PCLG、CLG、PCMLOct3/4、CMLOct3/4、PCMLG、CMLG、PCMOct3/4G、CMOct3/4G、PCLOct3/4G、CLOct3/4G、PCMLOct3/4G、CMLOct3/4Gである。このうちさらに望ましいのは、PCM、CM、PCML、CML、PCMG、CMG、PCLG、CLG、PCMLG、CMLGである 。
 c-Mycは他のMycファミリーの遺伝子(N-Myc, L-Myc、S-Myc, B-Myc)と置き換えることも可能である。本明細書ではMycファミリーの代表として「c-Myc」と「L-Myc」を使用して説明しているが、Mycファミリーの他の遺伝子もc-Mycと同様に使用することができる。
 KLF-4は他のKlfファミリー(KLF1, KLF2, KLF3, KLF5, KLF6, KLF7, KLF8, KLF9, KLF10, KLF11, KLF12, KLF13, KLF14, KLF15, KLF16, KLF17)の遺伝子に置き換えることも可能である。本明細書ではKlfファミリーの代表として「KLF-4」を使用して説明しているが、Klfファミリーの他の遺伝子もKLF-4と同様に使用することができる。
 GLIS1(GLIS family zinc finger 1) は他のGLIS ファミリーのメンバーの遺伝子、例えばGLIS 2、GLIS 3に置き換えることも可能である。
 同様に、Oct3/4は他のOctファミリーの遺伝子に置き換えることが可能であり、Sox2は他のSoxファミリーの遺伝子に置き換えることが可能である。
 上記遺伝子は、いずれも、脊椎動物で高度に保存されている遺伝子であり、本明細書では、特に動物名を示さない限り、ホモログを含めた遺伝子を表すものとする。また、polymorphismを含め、変異を有する遺伝子であっても、野生型の遺伝子産物と同等の機能を有する遺伝子もまた、含まれるものとする。導入される遺伝子は体細胞と同じ哺乳動物由来の遺伝子が好ましく、例えばヒトの体細胞にはヒトの遺伝子を導入する。
 本発明の方法は、特定の遺伝子を選択する以外は、公知のダイレクト・リプログラミングの手法に準じて行うことができ、例えば以下の文献1~6の方法に準じて行うことができる:
文献1  Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes
by Defined Factors; Masaki Ieda, Ji-Dong Fu, Paul Delgado-Olguin, Vasanth Vedantham, Yohei Hayashi, Benoit G. Bruneau, and Deepak Srivastava Cell 142: 375-386, 2010.
文献2  Direct conversion of fibroblasts to functional neurons by defined factors. Thomas Vierbuchen, Austin Ostermeier, Zhiping P. Pang, Yuko Kokubu, Thomas C. Sudhof & Marius Wernig. Nature 463: 1035-1041, 2010
文献3  Induction of human neuronal cells by defined transcription factors. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Sudhof TC, Wernig M. Nature 476: 220-223, 2011.
文献4  Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors Kunihiko Hiramatsu, Satoru Sasagawa, Hidetatsu Outani, Kanako Nakagawa, Hideki Yoshikawa, and Noriyuki Tsumaki, Journal of Clinical Investigation, 121: 640-657, 2011.
文献5  Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Pengyu Huang, Zhiying He, Shuyi Ji, Huawang Sun, Dao Xiang, Changcheng Liu, Yiping Hu, XinWang & Lijian Hui, . Nature 475:386-389, 2011.
文献6 Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Sayaka Sekiya & Atsushi Suzuki. Nature 475:390-393, 2011.
 具体的には、褐色脂肪細胞に変換するための導入遺伝子を発現ベクターに組み込み、対象とする体細胞に発現ベクターを導入し、細胞内で発現させることが好ましい。
 遺伝子を導入する方法としては、レトロウイルスベクター、アデノウイルスベクター、レンチウイルスベクター、アデノ随伴ウイルスベクター、ヘルペスウイルスベクター、センダイウイルスベクターなどのウイルス性ベクターを感染させる方法のほか、遺伝子とその発現産物の導入の場合には、カチオニック・リポソーム、カチオニック・ポリマー、電気穿孔法等の非ウイルスベクターで、プラスミドベクターやエピゾーマルベクター、遺伝子の発現産物(RNA、タンパク質)をトランスフェクションする方法も用いることができる。また、RNAを導入することもできる。これら遺伝子導入に用いる手段をすべて包括して、本明細書ではベクターと呼ぶ。
 また、治療目的の遺伝子とともに薬剤選択マーカーとなる遺伝子(ピューロマイシン耐性、ブラストサイジンS耐性、ネオマイシン耐性、ハイグロマイシン耐性など)を導入し、その後薬剤選択を行うことによって、褐色脂肪細胞への変換に必要な遺伝子を発現する細胞を選択してから用いることができる。
 また、導入因子が遺伝子の発現産物(例えばタンパク質)の場合には、Protein Transduction Domain(PTD)と呼ばれるペプチドを発現産物である蛋白質に結合させ、培地に添加することにより、体細胞内に導入してもよい。褐色脂肪細胞の原料となる体細胞で、褐色脂肪細胞への変換に必要な遺伝子の一部が発現している場合は、その蛋白質に関しては外部から導入する必要がない。
 褐色脂肪細胞を分化させるための分化誘導培地としては、特に限定されず、通常の細胞培養培地を使用することができる。
 褐色脂肪細胞を分化させるための分化誘導培地としては、特に限定されず、通常の細胞培養培地を使用することができる。たとえば、以下の既知の褐色脂肪誘導培地TypeIと褐色脂肪誘導培地TypeIIを使用することができるがこれに限定されない。褐色脂肪誘導培地TypeI(100U/mL Penicillinと100μg/ml Streptomycinを含んだ1% NEAA 10% FBS DMEMに、850nM human Insulin、1nM triiodothyronine(T3)、0.5mM 3-isobutyl-1-methylxanthine(IBMX)、100 nM Dexametazone、125nM Indometacin、1μg/ml Rosigritazone(いずれも最終濃度)を加えたもの)。褐色脂肪誘導培地TypeII(100U/mL Penicillinと100μg/ml Streptomycinを含んだ1% NEAA 10% FBS DMEMに、850nM human Insulin、1nM triiodothyronine(T3)、1μg/mL Rosigritazone(いずれも最終濃度)を加えたもの)。
 褐色脂肪細胞が得られたことは、UCP1、CIDEA、PGC1、DIO2、Cox8b、Otopなどの遺伝子発現を測定することにより評価できる。また網羅的遺伝子発現プロファイルを解析しても評価できる。
 移植後に免疫応答が起きないようにする目的で、予防又は治療用の移植細胞は、患者自身から樹立した自家細胞であることが望ましい。
 本発明の遺伝子の導入は、プラスミドで行ってもよく、ウイルスベクター、たとえばレトロウイルスベクターを用いてもよい。導入効率と導入遺伝子の安定保持の観点からはウイルスベクターが好ましく、癌化のリスクを抑えるためにはプラスミドが好ましい。
 体細胞に導入される遺伝子はLTRプロモーターにより転写させることもできるし、ベクター内部の別のプロモーターから発現させてもよい。例えばCMVプロモーター、EF-1αプロモーター、CAGプロモーターなどの構成的発現プロモーター、または所望の誘導性プロモーターを利用することができる。また、LTRの一部を他のプロモーターに置換したキメラプロモーターを利用してもよい。
 本発明により得られる褐色脂肪細胞(移植材料)を用いて治療する対象となる疾患としては、肥満、内臓脂肪型肥満、肥満症、糖尿病、1型糖尿病、2型糖尿病、糖尿病性網膜症、糖尿病性神経障害、糖尿病性腎症、遅延創傷治癒、耐糖能異常、インスリン抵抗性、高血糖症、高インスリン血症、白内障、緑内障、網膜症、神経障害、腎症、歯周病、皮膚疾患、壊疽、潰瘍、脂質代謝異常、高脂肪酸血症、高トリグリセリド血症、高グリセロール血症、高コレステロール血症、高脂血症、低HDL血症、X症候群、細小血管障害、動脈硬化性疾患、閉塞性動脈硬化症、脳血管障害、冠動脈疾患、アテローム硬化症、動脈硬化症、動脈瘤、過血糖(特に食後の過血糖)、高血圧、高尿酸血症、痛風、慢性全身性炎症、非アルコール性脂肪性肝疾患、脂肪肝、肝硬変、肝性糖尿病、胆のう炎、胆石、尿失禁、尿閉、インポテンツ、膀胱炎、内皮機能不全、自律神経障害、湿疹、口腔炎、歯槽膿漏、骨粗しょう症、メタボリックシンドロームなどが挙げられる。
 本明細書において、特に明示のない限り、「治療」という用語は、患者が特定の疾患又は障害を患っている間に行う処置を意図し、これによって疾患若しくは障害の重症度、又は1つ若しくは複数のその症状が軽減されるか、又は疾患若しくは障害の進行が遅延又は減速することを意味する。本明細書において、「治療」には「予防」を含むものとする。
 本発明で得られる褐色脂肪細胞は、疾患の治療に限らず、美容目的で用いることもできる。たとえば脂肪組織を減らしやせる目的で褐色脂肪細胞を移植することができる。その際、ヒトに対する処置も、本明細書では便宜上治療と呼び、「患者」は「健常者」あるいは「ヒト」、「疾患」は「美容」と読み替えることができる。
 本発明はまた、ヒトだけでなく、イヌ、ネコ等の愛玩動物やウシ、ウマ、ブタ、ヒツジ、ニワトリ等の家畜を含む哺乳動物の疾患の治療にも用いることが可能である。その場合、「患者」を「患畜」あるいは「哺乳動物」と読み替えることとする。
 移植材料とは、肥満、糖尿病、耐糖能異常、脂質代謝異常、メタボリック症候群の治療又は美容的処置のために生体内に導入する、褐色脂肪細胞を含有する材料をいう。移植材料は、インビトロで組織構築を形成させて、同一または別の個体に移植する材料を包含する。本発明で得られた褐色脂肪細胞は、移植材料の作製に使用することができる。褐色脂肪細胞自体も移植材料になる。したがって、褐色脂肪細胞を細胞製剤として患者又は被験体に移植することもできるし、人工材料からなる基材(スキャホルド)とともに移植することができる。
 体細胞は、哺乳動物由来であればよい。褐色脂肪細胞を生体に移植する場合には、移植される被験体由来の体細胞(自家細胞)を用いることが、感染や拒絶応答等の危険を低減させるために好ましい。しかしながら、自家細胞でなく、他人や他の動物の体細胞からあらかじめ準備しておいた褐色脂肪細胞を移植に用いることができる。またはあらかじめ準備しておいた他人や他の動物の体細胞から褐色脂肪細胞を作り、移植に用いることができる。すなわち、褐色脂肪細胞バンク、または褐色脂肪細胞前駆細胞のバンクを作っておき移植目的に供することができる。このような場合、拒絶応答等の危険を低減させるために、あらかじめMHCをタイピングしておくことができる。また、あらかじめ褐色脂肪細胞のキャラクターや造腫瘍性などを確認しておくことができる。
 本明細書において、哺乳動物としては、マウス、ラット、ハムスター、ヒト、イヌ、ネコ、サル、ウサギ、ウシ、ウマ、ブタなどが挙げられ、特にヒトが挙げられる。
 本発明はまた、褐色脂肪細胞を用いたさまざまな研究や技術開発等に用いることができる。たとえば褐色脂肪細胞の発生と老化、代謝調節機構、これらに対する栄養、免疫、神経、ホルモン、食品の影響の解析などの基礎研究に有用である。
 本発明を用いれば、さまざまな疾患や遺伝的背景を有するヒトや動物から簡便、迅速、安価に褐色脂肪細胞を樹立できるので、疾患や遺伝的背景に関連した褐色脂肪細胞の異常を生化学的、分子生物学的、免疫学的等手法により解析することが可能であり、これにより肥満、糖尿病、耐糖能異常、脂質代謝異常、メタボリック症候群等の種々の疾患の発症機序の解明などの研究や診断法の開発に役立てることができる。たとえばこのような疾患において、遺伝的な差異に起因する発症率の違い、疾患の増悪の程度の違い、治療への応答性の違い、治療効果の違いなどを判定あるいは予測することで、テーラーメード医療に応用できる。またこのような褐色脂肪細胞を用いて、薬剤の開発、薬剤の毒性試験等を行えば、肥満、糖尿病、耐糖能異常、脂質代謝異常、メタボリック症候群等の種々の疾患に対する新規治療法の開発に役立てることができる。
 本発明の遺伝子の組み合わせに、さらに他の遺伝子を加えることも可能である。
 本発明では、ダイレクト・リプログラミングあるいはこれに準じた方法により体細胞から短期間で褐色脂肪細胞を提供できる。この褐色脂肪細胞は、移植する本人の体細胞から容易に誘導できるので、移植した場合にも免疫学的な拒絶応答などの問題は生じない。また、iPS細胞やES細胞を経由することなく直接体細胞から褐色脂肪細胞を誘導できるため、癌化などの多能性幹細胞に起因する問題を回避できる。
 以下に実施例を示すが、本発明はこの実施例だけに限定されるものではない。
 実施例1 実験の概略(図1 )
 レトロウイルスベクタープラスミドpMXs.puroに、C/EBPβ等の種々の遺伝子のcDNAコーディング配列をGene artシステム組み込んだ。パッケージング細胞 Plat GP細胞を、100U/mL Penicillinと100μg/ml Streptomycinを含んだ1% NEAA 10% FBS DMEM(通常培地)に縣濁し、ゼラチンコートした10cm培養ディシュにディシュあたり5×10個の濃度で播種した(第3日)。24時間培養後、種々の遺伝子を含むpMXsベクターを、種々の組み合わせで、pCMV VSVベクターと伴に、X-tremeGENE 9を用いて以下の比で導入した。すなわち導入遺伝子5μg、pCMV.VSV 2.5μg、Opti-MEM 500μl、X-tremeGENE 9 22.5μlの混和液を10mlの培地入りの10cmディシュに添加した(第2日)。24時間後、抗生剤を含まない通常培地に交換(第-1日)。同日(第1日)に、ヒト正常皮膚線維芽細胞株であるaHDF、またはヒト脂肪由来幹細胞であるADSCを、1.5×104~2×10cells/mLで培養ディッシュまたは12 wellプレートに播種した。24時間後(第 0日)、Plat GP培養上清を、ポアの直径が0.45μmのシリンジフィルターを通した後、ポリブレン(最終濃度4μg/mL)と混和した(ウイルス液)。aHDF の培養上清を吸引除去した後、すばやく上記のウイルス液を1mL加え24時間培養した(感染)。コントロール群として、ウイルス感染を行わない細胞も準備した。1日後(第 1日)、培養上清を吸引除去し、褐色脂肪誘導培地TypeI(通常培地に850nM human Insulin、1nM triiodothyronine(T3)、0.5mM 3-isobutyl-1-methylxanthine(IBMX)、100 nM Dexametazone、125nM Indometacin、1μg/ml Rosigritazone(いずれも最終濃度)を加えたもの)を加え2日間培養した。第3日に培地を吸引除去し、褐色脂肪誘導培地TypeII(通常培地に850nM human Insulin、1nM triiodothyronine(T3)、1μg/mL Rosigritazone(いずれも最終濃度)を加えたもの)を加え、その後2日おきに同じ組成の新しい培養液に交換した。第 12-22日に、OilRedO染色、Real-time RT-PCRを行った。レトロウイルスベクターを感染させずに、同じ培養を行った細胞をControlとした。
 実施例2 ヒト正常皮膚線維芽細胞から褐色脂肪細胞へのコンバージョン、OilRedO染色像(図2)
ヒト正常皮膚線維芽細胞であるaHDFを、12 wellプレートに培養し、図1のように実験した。第14日に各ウェルから培養液を吸引除去し、PBSで1回洗浄を行った後、60%イソプロパノールで固定。OilRedO染色液を加え、37℃で15分間静置した(OilRedO染色液は以下のように作成した。OilRedO粉末0.24gを99.7%イソプロパノール30mLに溶解したのち、20mLの蒸留水を添加。30分間室温放置したのち濾紙を用いて濾過し、OilRedO染色液とした)。60%イソプロパノールで1回洗浄したのち、純水で3回洗浄した。プレートの画像を図2A-Fに示す。プレートの各ウェルには異なる遺伝子の組み合わせが導入されており、どのナンバーのウェルにどの遺伝子の組み合わせが導入されたかは、図3に記載する(図3の下の表中で、No.は図2のNo.と共通でプレートのウェルの番号を指す。また各遺伝子の欄に「1」と記載があるものは、その遺伝子を含むレトロウイルスベクターを感染させたことを、空欄は、その遺伝子を含むレトロウイルスベクターを感染させていないことを表す)。赤く染まっているのは脂質であり、いくつかのウェルでは、小さな多房性の脂肪滴を含む褐色脂肪細胞が認められる。たとえば、図2のNo.36ウェルは、図3のNo. 36に示されるとおり、C/EBPβ、L-Myc、c-Mycの遺伝子を含むレトロウイルスベクターを感染させた細胞であり、多くの褐色脂肪細胞が含まれているのが分かる。
 実施例3 ヒト正常皮膚線維芽細胞から褐色脂肪細胞へのコンバージョン、OilRedO染色の半定量と定量(図3)
 図2と同じ実験において、OilRedOの染色性を半定量するために、2名の評価者がそれぞれ独立に、プレートを実体顕微鏡観察し、OilRedOの染色性を4段階で評価した(OilRedOの染色性が強いものから順に、+++、++、+、-)。その結果を図3の下の表中に示す。図3の下の表中で、各遺伝子の欄に「1」と記載があるものは、その遺伝子を含むレトロウイルスベクターを感染させたことを、空欄は、その遺伝子を含むレトロウイルスベクターを感染させていないことを表す。
 図2と同じ実験において、脂肪の含量を定量化する目的で、画像撮影の後、各ウェルから蒸留水を取り除き、100%イソプロパノール300μlを加えて抽出液を調整した。抽出液を250μlずつ、96 well plateに移した後、波長550nmの吸光度(OD550)をマイクロプレートリーダーを用いて測定した。結果を図3に示す。グラフの縦軸はOD550であり、各ウェルの脂肪の含量を示す。たとえばNo.4のPRDM16、C/EBPβ, L-Myc, c-Myc, Glis1の遺伝子を含むレトロウイルスベクターを感染させた細胞は、もっとも多くの褐色脂肪細胞を含むことが分かる。
 実施例4 ヒト正常皮膚線維芽細胞から褐色脂肪細胞へのコンバージョン、UCP1遺伝子のmRNA発現計測(図4)
 ヒト正常皮膚線維芽細胞であるaHDFを、12wellプレートに培養し、図1のように実験した。遺伝子導入12日後、一部のウェルからISOGEN IIにてtotal RNAを回収し、Rever Tra Ace qPCR RT Master Mixを用いてcDNAを合成した。UCP1とβアクチン遺伝子のmRNAレベルを定量する目的で、Real-time PCR Master Mix、Taqman probe、Specific PrimerおよびcDNAを混和し、AB7300 Real-time PCR systemを用いてReal-time RT-PCRを行った。各細胞のβアクチンmRNAレベルに対するUCP1 mRNAレベルの値を計算した。結果を図4に示す。図4の下の表中で、各遺伝子の欄に「1」と記載があるものは、その遺伝子を含むレトロウイルスベクターを感染させたことを、空欄は、その遺伝子を含むレトロウイルスベクターを感染させていないことを表す。グラフの縦軸は、No.64(遺伝子を導入していない細胞)の値を1として計算した相対値であり、バーに書かれた数値も同じである。ND(Not determined)と書かれたものはこの実験では測定していない。PRDM16、C/EBPβ, L-Myc, c-Mycの4つの遺伝子を導入した細胞(No.19)は、controlと比較し、遺伝子レベルにおいて褐色脂肪細胞特異的マーカーであるUncoupling protein-1(UCP-1)のもっとも強力な発現を認めた。また、C/EBPβ、L-Myc、c-Mycの3つの遺伝子を導入した細胞(No. 36)や、C/EBPβ、c-Myc、Glis1の3つの遺伝子を導入した細胞(No. 38)でも極めて高いUCP1の発現を認め、これらの遺伝子があればPRDM16がなくてもヒト線維芽細胞から褐色脂肪細胞へのダイレクト・リプログラミングが効率よく可能であることが分る。
 実施例5 ヒト正常皮膚線維芽細胞から褐色脂肪細胞へのコンバージョン、UCP1遺伝子のmRNA発現(図5)
 ヒト正常皮膚線維芽細胞であるaHDFを、12wellプレートに培養し、図1のように実験した(図4とは遺伝子を組み合わせを変えて独立に行った実験である)。遺伝子導入12日後、一部のウェルからISOGEN IIにてtotal RNAを回収し、Rever Tra Ace qPCR RT Master Mixを用いてcDNAを合成した。UCP1とβアクチン遺伝子のmRNAレベルを定量する目的で、Real-time PCR Master Mix、Taqman probe、Specific PrimerおよびcDNAを混和し、AB7300 Real-time PCR systemを用いてReal-time RT-PCRを行った。各細胞のβアクチンmRNAレベルに対するUCP1 mRNAレベルの値を計算した。結果を図5に示す。図5の下の表中で、各遺伝子の欄に「+」と記載があるものは、その遺伝子を含むレトロウイルスベクターを感染させたことを、空欄は、その遺伝子を含むレトロウイルスベクターを感染させていないことを表す。グラフの縦軸は、遺伝子を導入していない細胞(一番右のバーに示す)の値を1として計算した相対値である。PRDM16、C/EBPβ, c-Mycの3つの遺伝子を導入した細胞(右から7番目のバー)は、mRNAレベルにおいて褐色脂肪細胞特異的マーカーであるUncoupling protein-1(UCP-1)のもっとも強力な発現を認めた。その発現レベルは、PRDM16とC/EBPβの2つの遺伝子を導入した細胞(左から8番目のバー)で認められるUCP1のmRNAレベルと比較して、100倍以上高いことが分る。
 実施例6 ヒト正常皮膚線維芽細胞から褐色脂肪細胞へのコンバージョン、ミトコンドリア染色像(図6)
 ヒト正常皮膚線維芽細胞 aHDFを、12wellプレートに培養し、図1のように実験した。遺伝子導入から12日後、位相差顕微鏡で観察した(図6左列)。また一部のウェルではミトコンドリアを可視化する目的で、培養液に終濃度200nMになるようにInvitrogen 社製のMito Tracker Red probeを添加し、5%CO2 /95%大気、37℃で15分間静置した後オリンパス社製の蛍光顕微鏡で観察した(図6中央列)。別の一部のウェルでは、図2と同様の方法でOilRedOで染色した(図6右列)。PRDM16、C/EBPβ, c-Mycの3つの遺伝子を導入した群では、多数のミトコンドリアを細胞内に集積した細胞が多数観察された。またこの群ではOilRedO染色により小さな多房性脂肪滴を含む褐色脂肪細胞が確認された。これに比べて、PRDM16、C/EBPβの2つの遺伝子を導入した群では、ミトコンドリア、脂肪滴ともにはるかに少なかった。
 実施例7 ヒト脂肪由来幹細胞から褐色脂肪細胞へのコンバージョン、OilRedO染色像(図7)
 ヒト脂肪由来幹細胞(ADSC)を12wellプレートに培養し、図1のように実験した。遺伝子導入から22日後、図2と同様の方法でOilRedO染色を行った。結果を図7に示す。赤く染まっているのは脂質であり、脂肪細胞が誘導されたことを示す。PRDM16、C/EBPβ、cMycの遺伝子を含むレトロウイルスベクターを感染させた細胞では、小さな多房性の脂肪滴を含む褐色脂肪細胞が、数多く認められる(図7左上)。一方GFP(Green fluorescent protein)遺伝子を導入した細胞では、大きな単房性の脂肪滴を含む白色脂肪細胞が認められた(図7右下)。
 実施例8 ヒト脂肪由来幹細胞から褐色脂肪細胞へのコンバージョン、UCP1遺伝子のmRNA発現計測(図8)
 ヒト脂肪由来幹細胞(ADSC)を12wellプレートに培養し、図1のように実験した。遺伝子導入22日後、UCP1、CIDEA、AdipoQのmRNA発現を定量する目的で、細胞からtotal RNAを回収し、図4と同様にReal-time RT-PCRを行った。その結果を図8に示す。PRDM16、C/EBPβ、c-Mycの3つの遺伝子を導入した群では、PRDM16、C/EBPβ、L-Mycの3つの遺伝子を導入した群や、PRDM16、C/EBPβ、Glis1の3つの遺伝子を導入した群、GFP遺伝子を導入したControl群と比較して、褐色脂肪細胞特異的因子であるUCP1とCIDEAを有意に高発現していた。一方、褐色脂肪細胞と白色脂肪細胞の共通のマーカーである、Adiponectin(AdipoQ)は、PRDM16、C/EBPβ、c-Mycを導入した群およびControl群で有意に高発現していた。
 これらの結果より、ヒト脂肪由来幹細胞(ADSC)は遺伝子導入を行わないと多くが白色脂肪細胞になるが、PRDM16、C/EBPβ、c-Mycの3つの遺伝子を導入することにより、褐色脂肪細胞に誘導できることが示された。したがって、ヒト正常皮膚線維芽細胞以外の細胞からでもダイレクトに褐色脂肪細胞にコンバートできることが示された。
 試験例1
 図9-12に、マウスiPSから褐色脂肪細胞を誘導し(iPS-derived BA細胞)、C57BL/6マウスに移植した実験を示す。熱産生、体重増加抑制を認め、また高カロリー食を与えると体重増加抑制と血清脂質異常改善を認めたことから、高カロリー食に伴う肥満と脂質代謝異常をiPS-derived BA細胞が是正できる可能性があることが分る。
 (1)図9
マウスiPS-derived BA細胞、またはコントロールとして非誘導細胞を、同系マウスの腹部皮下に図左上のように移植した。iPS-derived BA細胞のグラフトは、OilRed染色陽性の脂肪組織の組織像を呈した(右上)。iPS-derived BA細胞を移植したマウスは、体重増加が有意に抑制され(左下)、体温が有意に上昇していた(右下)。
 (2)図10
マウスiPS-derived BA細胞、またはコントロールとして非誘導細胞を、同系マウスの腹部皮下に移植した。各群、2匹のサーモグラフィーのイメージング像を示す。iPS-derived BA細胞のグラフト局所で温度が上昇していた(下)。褐色脂肪細胞への誘導を行わなかった細胞のグラフトは周囲組織と同じ温度であった(上)。
 (3)図11
移植後、高カロリー食餌を与えたところiPS-derived BA細胞を移植したマウスのみ体重減少が有意に抑制された。
 (4)図12
移植後、高カロリー食餌(QF)を与え、4週間後に血清の脂質を調べたところ、iPS-derived BA(iBA)細胞を移植したマウスのみ高脂血症が進行していなかった。NFは通常食餌を与えたマウスである。
 試験例2
 図13-16では、2型糖尿病マウスの体細胞からiPS細胞を作り、そのiPS細胞から褐色脂肪細胞を誘導し(iPS-derived BA細胞)、糖尿病マウスに移植した実験を示す。移植によって随時血糖値低下、体重増加抑制、血清脂質異常改善が認められ、褐色脂肪細胞の移植が糖尿病を制御できることが分る。
 (1)図13
2型糖尿病を発症するKK-Ayマウスの体細胞からiPS細胞を作った。得られたiPS細胞は典型的なES細胞様の形態を示し(中央、位相差顕微鏡像)、幹細胞マーカーを発現していた(下:real time RT-PCR、右:免疫蛍光染色)。KK-AyiPS1~4は、KK-Ayの体細胞由来の4つの異なるiPS細胞クローンであり、201B7は正常マウス由来のiPS細胞クローンである。
 (2)図14
 図13のiPS細胞から褐色脂肪細胞を誘導した(iPS-derived BA細胞)(上)。この細胞をKK-Ayマウスに移植したところ、随時血糖値の上昇が緩やかで(左下)、また尿糖はほとんど検出されなかった(右下)。コントロールとして、移植していないKK-Ayマウス(Non-transplant)と、褐色脂肪細胞への誘導を行わずGFP(green fluorescent protein)遺伝子を導入した細胞を移植したマウス(GFPコントロール)では、糖尿病が進行していた。
 (3)図15
 iPS由来のBA細胞を移植したKK-Ayマウスは、体重増加が有意に抑制され(上)、血清中のNEFA(左下)と中性脂肪(右下)も低かった。
 (4)図16
iPS由来のBA細胞を移植したKK-Ayマウスは、血清中のアディポネクチンが有意に高値であった。摂食量はコントロールマウスと同じであった。
 実施例9
ヒト正常皮膚線維芽細胞およびiPS細胞から誘導した褐色脂肪細胞の性状(図17)
A,ヒト正常皮膚線維芽細胞 aHDFを、12wellプレートに培養し、図1に示す方法で、C/EBPβとc-Mycの2つの遺伝子を導入した群の結果を示す。遺伝子導入から12日後、位相差顕微鏡で観察した(左)。また一部のウェルではミトコンドリアを可視化する目的で、培養液に終濃度200nMになるようにInvitrogen 社製のMito Tracker Red probeを添加し、5%CO2 /95%大気、37℃で15分間静置した後オリンパス社製の蛍光顕微鏡で観察した(中央)。別の一部のウェルでは、図2と同様の方法でOilRedOで染色した(右)。多数のミトコンドリアが細胞内に集積し、また多房性脂肪滴を含む褐色脂肪細胞が、多数認められる。
 B、ヒト正常皮膚線維芽細胞 aHDFを、12wellプレートに培養し、図1のように実験した。C/EBPβ, c-Mycの2つの遺伝子を導入した群の結果を示す。遺伝子導入から12日後、免疫染色を行った。上段から順に抗UCP1抗体(1次抗体)とPE Cy5標識抗ウサギIgG抗体(2次抗体)、抗CIDEA抗体(1次抗体)とAlexaFluor488標識抗ウサギIgG抗体(2次抗体)、抗PGC-1抗体(1次抗体)とPE Cy5標識抗ウサギIgG抗体(2次抗体)、および抗Dio2抗体(1次抗体)とAlexaFluor488標識抗ウサギIgG抗体(2次抗体)で染色した細胞である。左は蛍光像、右は微分干渉像。褐色脂肪細胞に特異的な4つのたんぱくのすべてが多量に発現しているのが分かる。
 C、ヒト正常皮膚線維芽細胞 aHDF、aHDFからAの方法で誘導した褐色脂肪細胞(dBA)、ヒトiPS細胞から誘導した褐色脂肪細胞(iBA)からRNAを回収し、UCP1、CIDEA、AdipoQに特異的なプライマー・プローブを用いたreal time RT-PCR解析を行った。各mRNAの発現量を、βアクチンのmRNA発現量で補正した後、aHDFでのmRNA発現量を1として算出した相対的なmRNA発現量を示す。dBAとiBAは、aHDFと比べて極めて高いレベルで、褐色脂肪細胞に特異的な遺伝子のmRNAを発現している。
 実施例10
ヒト正常皮膚線維芽細胞から誘導した褐色脂肪細胞の性状(図18)
A, ヒト正常皮膚線維芽細胞 aHDF、aHDFから図17Aの方法で誘導した褐色脂肪細胞(dBA)、dBAに100 nMのレプチンを添加後24時間培養した細胞(Lep)、およびdBAに1μMのイソプロテレノールを添加後2時間培養した細胞(Iso)からRNAを回収し、UCP1、レプチンレセプターに特異的なプライマー・プローブを用いたreal time RT-PCR解析を行った。各mRNAの発現量を、βアクチンのmRNA発現量で補正した後、aHDFでのmRNA発現量を1として算出した相対的なmRNA発現量を示す。dBAは、aHDFと比べて極めて高いレベルでUCP1とレプチンレセプターのmRNAを発現し、これらの発現はレプチンあるいはイソプロテレノールの刺激でさらに増強することが分かる。
 B、ヒト正常皮膚線維芽細胞 aHDF、aHDFから図17Aの方法で誘導した褐色脂肪細胞(dBA)、およびdBAに1μMのイソプロテレノールを添加後2時間培養した細胞(Iso)を準備した。24時間培養前後の培地中のグルコースの濃度をグルコースBテスト(和光)で測定した。コントロールとして、細胞を培養しない培地を24時間インキュベートし、それぞれのグルコース濃度の減少率を算出した。dBAは線維芽細胞に比し、より多くのグルコースを消費すること、その消費量はイソプロテレノールの刺激でさらに増加することが分かる。
 C, ヒト正常皮膚線維芽細胞 aHDF、およびaHDFから図17Aの方法で誘導した褐色脂肪細胞(dBA)からDNAを採取した。PPARg遺伝子上流域(転写開始点の-431~-151 bp)、およびUCP1遺伝子上流域(転写開始点の-693~-348 bp)のCpGジヌクレオチドのメチル化を、バイサルファイド法で解析した。メチル化を黒で、脱メチル化を白で示す。線維芽細胞ではどちらの領域も高度にCpGメチル化されているのに対して、dBAでは低メチル化になっていることが分かる。
 実施例11
ヒト正常皮膚線維芽細胞から誘導した褐色脂肪細胞の性状(図19)
A, ヒト正常皮膚線維芽細胞 aHDFから、図17Aの方法で褐色脂肪細胞(dBA)を誘導する実験を行い、遺伝子導入後0、3、6、9、12日後の細胞からRNAを採取した。MitoHDに特異的なプライマー・プローブを用いたreal time RT-PCR解析を行った。mRNAの発現量を、βアクチンのmRNA発現量で補正した後、aHDFでのmRNA発現量を1として算出した相対的なmRNA発現量を示す。線維芽細胞からdBAへの誘導にともなって、ミトコンドリアDNAのMT-ND1遺伝子の発現が増強することが分かる。
 B、ヒト正常皮膚線維芽細胞 aHDF、およびaHDFから図17Aの方法で誘導した褐色脂肪細胞(dBA)を準備した。6ウェルプレートに播種後、図のようにインスリン、Phloretin、アンチマイシン、および/またはイソプロテレノールを添加し、2-デオキシグルコースの取り込みを測定した。dBAは線維芽細胞に比して高いグルコース取り込みを示すこと、その取り込みはインスリン刺激により増加すること、インスリン刺激によるグルコース取り込みの増加はPhloretin(グルコーストランスポーター阻害剤)によってキャンセルされることがわかる。また、dBAによるグルコース取り込みはイソプレテレノール刺激により増加すること、イソプロテレノール刺激によるグルコース取り込みの増加はアンチマイシン(ミトコンドリア電子伝達鎖阻害剤)によってキャンセルされることがわかる。
 C, ヒト正常皮膚線維芽細胞 aHDF、およびaHDFから図17Aの方法で誘導した褐色脂肪細胞(dBA)を準備した。FCCP、アンチマイシン、またはオリゴマイシンを添加し、経時的に細胞外酸素濃度を測定した。縦軸は発光強度であり、数字が高いと酸素濃度が低いことを示す。線維芽細胞と比べてdBAでは酸素消費量が高く、その酸素消費はアンチマイシンまたはオリゴマイシンの添加により抑制されることがわかる。
 実施例12
ヒトiPS細胞から図17Aの方法で褐色脂肪細胞を誘導する。得られた細胞は多房性脂肪滴を含み、UCP1を有意に発現する。また、ヒト白色脂肪細胞から図17Aの方法で褐色脂肪細胞を誘導する。得られた細胞は多房性脂肪滴を含み、UCP1を有意に発現する。
 実施例13
エピゾーマル・ベクターによるヒト正常皮膚線維芽細胞から褐色脂肪細胞へのダイレクト・リプログラミング(図20)
A、エピゾーマル・ベクターとプラスミド・ベクターの構造を示す。図左:エピゾーマル・ベクター。この中のcDNAとして、何も含まないものをpG.oriP9.E、PRDM16を含むものをpG.oriP9.E.P、CEBPbetaを含むものをpG.oriP9.E.C、c-Mycを含むものをpG.oriP9.E.Mと呼ぶ。図右:プラスミド・ベクター。この中のcDNAとして、何も含まないものをpG.4、PRDM16を含むものをpG.P、CEBPbetaを含むものをpG.C、c-Mycを含むものをpG.Mと呼ぶ。CAG prom:CAGプロモーター、polyA:Poly A additional signal,oriP: Epstein-Barr virus (EBV) origin of replication P,EBNA1: EBV nuclear antigen 1。
 B、Aのプラスミドを、ヒト皮膚由来線維芽細胞に電気穿孔法で導入後、12日間培養し、RNAを回収した。UCP1遺伝子特異的プライマー・プローブを用いてreal time RT-PCRを行った。UCP1遺伝子mRNAの発現量を、βアクチンのmRNA発現量で補正した後、線維芽細胞でのmRNA発現量を1として算出した相対的なmRNA発現量を示す。pG.oriP9.E.CおよびpG.oriP9.E.Mを共導入したもので最も高くUCP1 mRNAが発現し、褐色脂肪細胞に誘導されたことがわかる。
 C、ヒト線維芽細胞に記載のプラスミドを導入後、12日間培養した。OilRedO染色像を示す。CEBPbetaとc-Mycをそれぞれ含む2つのエピゾーマルベクター(pG.oriP9.E.CとpG.oriP9.E.M)の共導入により、効率よく褐色脂肪細胞に誘導できたことがわかる。CEBPbetaとc-Mycをそれぞれ含む2つのプラスミドベクター(pG.CとpG.M)の共導入でも、褐色脂肪細胞を誘導できるが、その効率はエピゾーマルベクターよりも劣る。
 実施例14
マウス胎仔線維芽細胞(MEF)から誘導した褐色脂肪細胞(図21)
実施例1と同様に、マウスのPRDM16(P)、C/EBPβ(C)、L-Myc(L)、およびc-Myc(M)遺伝子を有するレトロウイルスベクターを、種々の組み合わせでマウス胎仔線維芽細胞(MEF)に感染させ、その後褐色脂肪誘導培地で培養した。感染後第 20日目に、RNAを回収した。レトロウイルスベクターを感染させずに、同じ培養を行った細胞をControlとした。UCP1遺伝子特異的プライマー・プローブを用いてreal time RT-PCRを行った。UCP1遺伝子mRNAの発現量を、βアクチンのmRNA発現量で補正した後、線維芽細胞でのmRNA発現量を1として算出した相対的なmRNA発現量を示す。PRDM16(P),C/EBPβ(C),L-Myc(L)の3因子を導入したもので最も高くUCP1 mRNAが発現し、褐色脂肪細胞に誘導されたことがわかる。
 実施例15
マウス胎仔線維芽細胞(MEF)から誘導した褐色脂肪細胞の生体内機能(図22)
実施例13の方法で、C57BL/6マウスのMEFにPRDM16(P)、C/EBPβ(C)およびL-Myc(L)遺伝子を導入して、褐色脂肪細胞(dBA)を誘導した。この細胞、またはGFP遺伝子を導入したMEF(GFP-MEF)を、8週齢の同系マウスの皮下に移植した。これらのマウス、および移植しないマウスに、高脂肪食餌(QF)を与えた。コントロールとして、通常食餌(NF)を与えた非移植マウスも準備した。
 A、移植後のマウスの体重を示す。非移植およびGFP-MEF移植マウスでは、QF摂取にともないNF摂取マウスに比して体重が著しく増加したが、dBAを移植した群ではこの食餌性の肥満が顕著に抑制できた。
 B、移植後4週に血清を採取し、非エステル化脂肪酸(NEFA)と中性脂肪(TG)を測定した。非移植およびGFP-MEF移植マウスでは、QF摂取にともないNF摂取マウスに比して血清NEFAとTGが著しく増加したが、dBAを移植した群ではこの食餌性の脂質異常症が顕著に抑制できた。
 C、移植後7日目に、GFP-MEFまたはdBA移植マウスを麻酔し、低温に2時間暴露した。その後サーモグラフィーで体表温度を測定した。GFP-MEF移植マウスでは移植部の温度は周辺体表温度と変わらなかったが、dBA移植マウスでは移植部の温度上昇が認められた。
 実施例16
マウス胎仔線維芽細胞(MEF)から誘導した褐色脂肪細胞の生体内機能(図23)
糖尿病モデルであるAAkyマウスのMEFから、PRDM16(P)、C/EBPβ(C)およびL-Myc(L)遺伝子を用いた実施例13の方法で、褐色脂肪細胞(dBA)を誘導した。この細胞、またはGFP遺伝子を導入したMEF(GFP-MEF)を、6週齢の同系マウスの皮下に移植(10 cm Dish confluentx2/マウス)した。これらのマウス、および移植しないマウスを、通常食餌で飼育した。
 A―C、マウスの体重(A)、随時血中グルコース(B)、空腹時血中グルコース(C)を示す。dBAを移植したAAkyマウスでは体重増加と血中グルコース上昇が有意に抑制されたことが分かる。
 D、移植後4週目に、経口グルコース負荷試験を行った。50mg/mouseのグルコースをカテーテルでマウスの胃内に投与し、経時的に血中グルコースを測定した。dBAを移植したマウスでは耐糖能が改善していることが分かる。
 E、移植後4週目に、経口グルコース負荷試験を行った。0.0125U/mouseのインスリンをマウスの腹腔内に注射し、経時的に血中グルコースを測定した。dBAを移植したマウスではインスリン抵抗性が改善していることが分かる。
 F、移植後4週目にマウスの血清を採取し、非エステル化脂肪酸(NEFA)と中性脂肪(TG)を測定した。非移植およびGFP-MEF移植マウスでは、血清NEFAとTGが増加したが、dBAを移植した群ではこの脂質異常症が顕著に抑制できた。

Claims (12)

  1. 哺乳動物の体細胞に褐色脂肪細胞関連遺伝子又はその発現産物とリプログラミング関連遺伝子又はその発現産物を導入することで、前記体細胞から褐色脂肪細胞を調製する方法であって、前記褐色脂肪細胞関連遺伝子がPRDM16(P)及びC/EBPβ(C)からなる群から選択される少なくとも1種であり、リプログラミング関連遺伝子がMycファミリーの遺伝子、GLIS ファミリーの遺伝子、 Klfファミリーの遺伝子、Octファミリーの遺伝子、Soxファミリーの遺伝子、Lin-28からなる群から選択される少なくとも1種である、褐色脂肪細胞を調製する方法。
  2. 前記体細胞が線維芽細胞または白色脂肪細胞である、請求項1に記載の方法。
  3. 褐色脂肪細胞関連遺伝子又はその発現産物がC/EBPβである、請求項1又は2に記載の方法。
  4. リプログラミング関連遺伝子又はその発現産物がc-MycまたはL-Mycを含む、請求項1又は2に記載の方法。
  5. リプログラミング関連遺伝子又はその発現産物がc-Mycを含む、請求項1又は2に記載の方法。
  6. 体細胞に導入される褐色脂肪細胞関連遺伝子又はその発現産物とリプログラミング関連遺伝子又はその発現産物の組み合わせが、PCM、CM、PCL、CL、PCG、CG、PCML、CML、PCM Oct3/4、CM Oct3/4、PCMG、CMG、PCL Oct3/4、CL Oct3/4、PCLG、CLG、PCML Oct3/4、CML Oct3/4、PCMLG、CMLG、PCM Oct3/4 G、CM Oct3/4 G、PCL Oct3/4 G、CL Oct3/4 G、PCML Oct3/4 G、CML Oct3/4 G(ここで、Pは「PRDM16」を示し、Cは「C/EBPβ」を示し、Mは「c-Myc」を示し、Lは「L-Myc」を示し、Gは「Glis1」を示す)からなる群から選ばれるいずれかの組み合わせである、請求項1又は2に記載の方法。
  7. 体細胞に導入される褐色脂肪細胞関連遺伝子又はその発現産物とリプログラミング関連遺伝子又はその発現産物の組み合わせが、PCM、CM、PCL、CL、PCML、CML、PCM Oct3/4、CM Oct3/4、PCMG、CMG、PCL Oct3/4、CL Oct3/4、PCLG、CLG、PCML Oct3/4、CML Oct3/4、PCMLG、CMLG、PCM Oct3/4 G、CM Oct3/4 G、PCL Oct3/4 G、CL Oct3/4 G、PCML Oct3/4 G、CML Oct3/4 Gからなる群から選ばれるいずれかの組み合わせである、請求項6に記載の方法。
  8. 体細胞に導入される褐色脂肪細胞関連遺伝子又はその発現産物とリプログラミング関連遺伝子又はその発現産物の組み合わせが、PCM、CM、PCML、CML、PCMG、CMG、PCLG、CLG、PCMLG、CMLGからなる群から選ばれるいずれかの組み合わせである、請求項6に記載の方法。
  9. 哺乳動物の体細胞に由来し、褐色脂肪細胞関連遺伝子又はその発現産物とリプログラミング関連遺伝子又はその発現産物を有する褐色脂肪細胞であって、前記褐色脂肪細胞関連遺伝子がPRDM16(P)及びC/EBPβ(C)からなる群から選択される少なくとも1種であり、リプログラミング関連遺伝子がMycファミリーの遺伝子、GLIS ファミリーの遺伝子、 Klfファミリーの遺伝子、Octファミリーの遺伝子、Soxファミリーの遺伝子、Lin-28からなる群から選択される少なくとも1種である、褐色脂肪細胞。
  10. 肥満、糖尿病、耐糖能異常、脂質代謝異常、動脈硬化性疾患、高血圧、高尿酸血症、痛風、非アルコール性脂肪性肝疾患、メタボリックシンドロームの予防又は治療剤であって、請求項1~8のいずれかに記載の方法により調製された褐色脂肪細胞、または、請求項9に記載の褐色脂肪細胞を有効成分とする、予防又は治療剤。
  11. 請求項1~8のいずれかに記載の方法により調製された褐色脂肪細胞、または、請求項9に記載の褐色脂肪細胞の肥満、糖尿病、耐糖能異常、脂質代謝異常、動脈硬化性疾患、高血圧、高尿酸血症、痛風、非アルコール性脂肪性肝疾患、メタボリックシンドロームの予防又は治療のための使用。
  12. 請求項1~8のいずれかに記載の方法により調製された褐色脂肪細胞、または、請求項9に記載の褐色脂肪細胞を含む、移植材料。
PCT/JP2013/069226 2012-07-12 2013-07-12 褐色脂肪細胞及びその調製方法 WO2014010746A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/413,987 US20150166958A1 (en) 2012-07-12 2013-07-12 Brown fat cells and method for preparing same
EP13816708.5A EP2873727B1 (en) 2012-07-12 2013-07-12 Brown fat cells and method for preparing same
JP2014524904A JP6285861B2 (ja) 2012-07-12 2013-07-12 褐色脂肪細胞及びその調製方法
US17/010,778 US20200399603A1 (en) 2012-07-12 2020-09-02 Brown fat cells and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012156066 2012-07-12
JP2012-156066 2012-07-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/413,987 A-371-Of-International US20150166958A1 (en) 2012-07-12 2013-07-12 Brown fat cells and method for preparing same
US17/010,778 Continuation US20200399603A1 (en) 2012-07-12 2020-09-02 Brown fat cells and method for preparing same

Publications (1)

Publication Number Publication Date
WO2014010746A1 true WO2014010746A1 (ja) 2014-01-16

Family

ID=49916184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069226 WO2014010746A1 (ja) 2012-07-12 2013-07-12 褐色脂肪細胞及びその調製方法

Country Status (4)

Country Link
US (2) US20150166958A1 (ja)
EP (1) EP2873727B1 (ja)
JP (2) JP6285861B2 (ja)
WO (1) WO2014010746A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026462A1 (ja) * 2015-08-07 2017-02-16 京都府公立大学法人 褐色脂肪細胞の調製方法
WO2018124292A1 (ja) 2016-12-28 2018-07-05 京都府公立大学法人 骨格筋細胞及びその誘導方法
JP2018532806A (ja) * 2015-11-04 2018-11-08 キセラ バイオファーマシューティカルズ インコーポレイテッド デオキシコール酸およびその塩による蓄積脂肪の処置方法
US11179404B2 (en) 2009-03-03 2021-11-23 Allergan Sales, Llc Formulations of deoxycholic acid and salts thereof
KR20220054315A (ko) 2019-08-30 2022-05-02 세루아쿠시아 가부시키가이샤 요로 상피 세포로의 유도제 및 요로 상피 세포의 유도 방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9133438B2 (en) 2011-06-29 2015-09-15 Biorestorative Therapies, Inc. Brown fat cell compositions and methods
ES2957410T3 (es) * 2013-04-19 2024-01-18 Biorestorative Therapies Inc Células madre derivadas de tejido adiposo marrón humano y sus utilizaciones
CN107029237B (zh) * 2016-02-04 2021-06-25 康建胜 产热增强化合物增强去甲肾上腺素类化合物诱导褐色脂肪细胞产热的应用
JP7465506B2 (ja) * 2018-08-14 2024-04-11 国立研究開発法人国立国際医療研究センター 褐色脂肪細胞上清、その調製法、及び、使用
US20230220352A1 (en) * 2019-11-12 2023-07-13 Juntendo Educational Foundation Method for direct transdifferentiation of somatic cell
CN114729312A (zh) * 2019-11-25 2022-07-08 株式会社片冈制作所 培养基用组合物
CN113069470A (zh) * 2020-01-06 2021-07-06 江苏省中医院 棕色脂肪细胞来源的外泌体的应用
CN112662673B (zh) * 2021-01-08 2022-06-28 石河子大学 一种人klf7基因启动子及其构建方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071210A1 (ja) 2008-12-18 2010-06-24 財団法人新産業創造研究機構 軟骨細胞様細胞、及びその製造方法
WO2010080985A1 (en) 2009-01-08 2010-07-15 Dana-Farber Cancer Institute, Inc. Compositions and methods for induced brown fat differentiation
WO2011050334A1 (en) * 2009-10-22 2011-04-28 Yong Zhu Compositions and methods for re-programming cells without genetic modification for treatment of obesity and related diseases
WO2011102531A1 (en) * 2010-02-16 2011-08-25 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2012147853A1 (ja) * 2011-04-27 2012-11-01 独立行政法人国立国際医療研究センター 多能性幹細胞由来褐色脂肪細胞、多能性幹細胞由来細胞凝集物と、その製造方法及び細胞療法、内科療法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071210A1 (ja) 2008-12-18 2010-06-24 財団法人新産業創造研究機構 軟骨細胞様細胞、及びその製造方法
WO2010080985A1 (en) 2009-01-08 2010-07-15 Dana-Farber Cancer Institute, Inc. Compositions and methods for induced brown fat differentiation
WO2011050334A1 (en) * 2009-10-22 2011-04-28 Yong Zhu Compositions and methods for re-programming cells without genetic modification for treatment of obesity and related diseases
WO2011102531A1 (en) * 2010-02-16 2011-08-25 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2012147853A1 (ja) * 2011-04-27 2012-11-01 独立行政法人国立国際医療研究センター 多能性幹細胞由来褐色脂肪細胞、多能性幹細胞由来細胞凝集物と、その製造方法及び細胞療法、内科療法

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
AHFELDT TIM ET AL.: "Programming human pluripotent stem cells into white and brown adipocytes", NATURE CELL BIOLOGY, vol. 14, no. 2, February 2012 (2012-02-01), pages 209 - 219, XP055055708 *
CYPESS A.M. ET AL., N ENG J MED, vol. 360, 2009, pages 1509
JIMENEZ-PREITNER MARIA ET AL.: "Plac8 Is an Inducer of C/EBPbeta Required for Brown Fat Differentiation, Thermoregulation, and Control of Body Weight", CELL METABOLISM, vol. 14, 2011, pages 658 - 670, XP028334807 *
KAJIMURA S. ET AL., NATURE, vol. 460, 2009, pages 1154
KAJIMURA SHINGO ET AL.: "Initiation of myoblast to brown fat switch by a PRDM16-C/ EBP-beta transcriptional complex", NATURE, vol. 460, 2009, pages 1154 - 1159, XP055055707 *
KUNIHIKO HIRAMATSU; SATORU SASAGAWA; HIDETATSU OUTANI; KANAKO NAKAGAWA; HIDEKI YOSHIKAWA; NORIYUKI TSUMAKI, JOURNAL OF CLINICAL INVESTIGATION, vol. 121, 2011, pages 640 - 657
MASAKI IEDA; JI-DONG FU; PAUL DELGADO-OLGUIN; VASANTH VEDANTHAM; YOHEI HAYASHI; BENOIT G. BRUNEAU; DEEPAK SRIVASTAVA: "Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors", CELL, vol. 142, 2010, pages 375 - 386, XP055210905, DOI: doi:10.1016/j.cell.2010.07.002
PANG ZP; YANG N; VIERBUCHEN T; OSTERMEIER A; FUENTES DR; YANG TQ; CITRI A; SEBASTIANO V; MARRO S; SUDHOF TC: "Induction of human neuronal cells by defined transcription factors", NATURE, vol. 476, 2011, pages 220 - 223
PENGYU HUANG; ZHIYING HE; SHUYI JI; HUAWANG SUN; DAO XIANG; CHANGCHENG LIU; YIPING HU; XINWANG; LIJIAN HUI: "Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors", NATURE, vol. 475, 2011, pages 386 - 389, XP055086662, DOI: doi:10.1038/nature10116
SAITO M. ET AL., DIABETES, vol. 58, 2009, pages 1526
SAYAKA SEKIYA; ATSUSHI SUZUKI: "Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors", NATURE, vol. 475, 2011, pages 390 - 393, XP055086663, DOI: doi:10.1038/nature10263
THOMAS VIERBUCHEN; AUSTIN OSTERMEIER; ZHIPING P. PANG; YUKO KOKUBU; THOMAS C. SUDHOF; MARIUS WERNIG: "Direct conversion of fibroblasts to functional neurons by defined factors", NATURE, vol. 463, 2010, pages 1035 - 1041, XP055023150, DOI: doi:10.1038/nature08797
TIM AHFELDT ET AL., NATURE CELL BIOLOGY, vol. 14, no. 2, 2012
VAN MERKEN LICHTENBELT W.D. ET AL., N ENGL J MED, vol. 360, 2009, pages 1500

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179404B2 (en) 2009-03-03 2021-11-23 Allergan Sales, Llc Formulations of deoxycholic acid and salts thereof
WO2017026462A1 (ja) * 2015-08-07 2017-02-16 京都府公立大学法人 褐色脂肪細胞の調製方法
JPWO2017026462A1 (ja) * 2015-08-07 2018-05-24 京都府公立大学法人 褐色脂肪細胞の調製方法
CN108495930A (zh) * 2015-08-07 2018-09-04 京都府公立大学法人 棕色脂肪细胞的制备方法
US20180355319A1 (en) * 2015-08-07 2018-12-13 Kyoto Prefectural Public University Corporation Method for preparing brown adipocyte
JP2018532806A (ja) * 2015-11-04 2018-11-08 キセラ バイオファーマシューティカルズ インコーポレイテッド デオキシコール酸およびその塩による蓄積脂肪の処置方法
WO2018124292A1 (ja) 2016-12-28 2018-07-05 京都府公立大学法人 骨格筋細胞及びその誘導方法
KR20220054315A (ko) 2019-08-30 2022-05-02 세루아쿠시아 가부시키가이샤 요로 상피 세포로의 유도제 및 요로 상피 세포의 유도 방법

Also Published As

Publication number Publication date
EP2873727B1 (en) 2019-11-06
US20150166958A1 (en) 2015-06-18
EP2873727A4 (en) 2015-12-23
JP2018108080A (ja) 2018-07-12
JPWO2014010746A1 (ja) 2016-06-23
JP6285861B2 (ja) 2018-02-28
US20200399603A1 (en) 2020-12-24
JP6611836B2 (ja) 2019-11-27
EP2873727A1 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP6611836B2 (ja) 褐色脂肪細胞及びその調製方法
Quattrocelli et al. Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle
ES2647360T3 (es) Célula madre pluripotente que puede aislarse de tejido corporal
AU2019279909B2 (en) Compositions and methods for induced tissue regeneration in mammalian species
EP3196305B1 (en) Schwann cells and method for preparing same
US20210180013A1 (en) Improved methods for inducing tissue regeneration and senolysis in mammalian cells
JP2011522520A (ja) 細胞の脱分化を行う方法
KR102546749B1 (ko) 골격근 세포 및 이의 유도 방법
JP6198199B2 (ja) 平行線維性結合組織の製造方法
US20120183511A1 (en) Induction of neuronal differentiation in non-neuronal cells using a nucleic acid molecule
JPWO2017033863A1 (ja) 骨芽細胞及びその調製方法
Wang et al. Exosomes from human adipose–derived mesenchymal stem cells attenuate localized scleroderma fibrosis by the let-7a-5p/TGF-βR1/Smad axis
CA3212381A1 (en) Methods and compositions used to modify chromatin architecture to regulate phenotype in aging and cancer
Roque‐Ramírez et al. Expression pattern of mRNA A and mRNA B of alpha sarcoglycan gene during mouse embryonic development and regulation of their expression by myogenic and cardiogenic transcription factors
Céspedes Abstracts: Poster Presentations
Liu LIN28A PROMOTES THERMOGENESIS AND PREVENTS MITOCHONDRIAL CALCIUM OVERLOAD IN BROWN ADIPOSE TISSUE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816708

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014524904

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14413987

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013816708

Country of ref document: EP