WO2014081507A1 - Terminally modified rna - Google Patents
Terminally modified rna Download PDFInfo
- Publication number
- WO2014081507A1 WO2014081507A1 PCT/US2013/062943 US2013062943W WO2014081507A1 WO 2014081507 A1 WO2014081507 A1 WO 2014081507A1 US 2013062943 W US2013062943 W US 2013062943W WO 2014081507 A1 WO2014081507 A1 WO 2014081507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mir
- utr
- mrna
- region
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/67—General methods for enhancing the expression
Definitions
- the invention relates to compositions and methods for the manufacture and use of modified and/or optimized mRNA and their use in combination with one or more modified or wild type mRNA encoding an RNA binding protein.
- RNAs are synthesized from four basic ribonucleotides: ATP, CTP, UTP and GTP, but may contain post-transcriptionally modified nucleotides. Further, approximately one hundred different nucleoside modifications have been identified in RNA (Rozenski, J, Crain, P, and McCloskey, J. (1999). The RNA
- heterologous deoxyribonucleic acid (DNA) introduced into a cell can be inherited by daughter cells (whether or not the heterologous DNA has integrated into the chromosome) or by offspring. Introduced DNA can integrate into host cell genomic DNA at some frequency, resulting in alterations and/or damage to the host cell genomic DNA.
- multiple steps must occur before a protein is made. Once inside the cell, DNA must be transported into the nucleus where it is transcribed into RNA. The RNA transcribed from DNA must then enter the cytoplasm where it is translated into protein. This need for multiple processing steps creates lag times before the generation of a protein of interest.
- DNA expression in cells it is difficult to obtain DNA expression in cells; frequently DNA enters cells but is not expressed or not expressed at reasonable rates or concentrations. This can be a particular problem when DNA is introduced into cells such as primary cells or modified cell lines.
- the role of nucleoside modifications on the immuno-stimulatory potential, stability, and on the translation efficiency of RNA, and the consequent benefits to this for enhancing protein expression and producing therapeutics have been previously explored.
- PCT/US2013/030064 entitled Modified Polynucleotides for the Production of Secreted Proteins; US Patent Application No 13/791,921, filed March 9, 2013, entitled Modified Polynucleotides for the Production of Secreted Proteins; International Application No PCT/US2013/030059, filed March 9, 2013, entitled Modified Polynucleotides for the Production of Membrane Proteins; International Application No. PCT/US2013/030066, filed March 9, 2013, entitled Modified Polynucleotides for the Production of Cytoplasmic and Cytoskeletal Proteins; International Application No. PCT/US2013/030067, filed March 9, 2013, entitled Modified Polynucleotides for the Production of Nuclear Proteins; International Application No. PCT/US2013/030060, filed March 9, 2013, entitled Modified Polynucleotides for the Production of Proteins; International Application No.
- PCT/US2013/030070 filed March 9, 2013, entitled Modified Polynucleotides for the Production of Oncology-Related Proteins and Peptides; International Patent Application No. PCT/US2013/031821, filed March 15, 2013, entitled In Vivo Production of Proteins; the contents of each of which are herein incorporated by reference in their entireties.
- RNA binding proteins [0009] Disclosed herein are methods of stabilizing or inducing increased protein expression from a modified mRNA.
- a cell is contacted with a modified mRNA encoding a polypeptide of interest in combination with a modified mRNA encoding one or more RNA binding proteins.
- terminally optimized mRNA comprising first region of linked nucleosides encoding a polypeptide of interest which is located 5 ' relative to the first region, a second terminal region located 3 ' relative to the first terminal region and a 3 'tailing region.
- the first terminal region may comprise at least one translation enhancer element (TEE) such as, but not limited to, the TEEs described in Table 28 such as, but not limited to, TEE-001 - TEE-705.
- TEE translation enhancer element
- the first terminal region may comprise a 5 'untranslated region (UTR) which may behte native 5 'UTR of the encoded polypeptide of interest or may be heterologous to the encoded polypeptide of interest.
- the 5 'UTR may comprise at least one translation initiation sequence such as a kozak sequence, an internal ribosome entry site (IRES) and/or a fragment thereof.
- the 5 'UTR may comprise at least one fragment of an IRES.
- the 5 'UTR may comprise at least 5 fragments of an IRES.
- the 5 'UTR may comprise a structured UTR.
- the second terminal region may comprise at least one microRNA binding site, seed sequence or microRNA binding site without a seed sequence.
- the microRNA is an immune cell specific microRNA such as, but not limited to, mir-122, miR-142-3p, miR-142-5p, miR-146a and miR-146b.
- the 3 'tailing region may comprise a chain terminating nucleoside such as, but not limited to, 3'-deoxyadenosine (cordycepin), 3'-deoxyuridine, 3'-deoxycytosine, 3'-deoxyguanosine, 3'-deoxythymine, 2',3'-dideoxynucleosides, 2', 3'- dideoxyadenosine, 2',3'-dideoxyuridine, 2',3'-dideoxycytosine, 2',3'- dideoxyguanosine, 2',3'-dideoxythymine, a 2'-deoxynucleoside, and -O- methylnucleoside.
- the 3' tailing region is a stem loop sequence or a polyA tail.
- terminally optimized mRNA comprising first region of linked nucleosides encoding a polypeptide of interest which is located 5 ' relative to the first region, a second terminal region located 3 ' relative to the first terminal region and a 3 'tailing region of linked nucleosides and at least one chain terminating nucleoside located 3' relative to the terminally optimized mRNA.
- the second terminal region may comprise at least one microRNA binding site, seed sequence or microRNA binding site without a seed sequence.
- the microRNA is an immune cell specific microRNA such as, but not limited to, mir-122, miR-142-3p, miR-142-5p, miR-146a and miR-146b.
- the terminally optimized mRNA described herein may comprise at least one modified nucleoside.
- the terminally optimized mRNA comprises a pseudouridine analog such as, but not limited to, 1-carboxymethyl-pseudouridine, 1- propynyl-pseudouridine, 1 -taurinomethyl-pseudouridine, 1 -taurinomethyl-4-thio- pseudouridine, 1-methyl-pseudouridine (m ⁇ ), l-methyl-4-thio-pseudouridine (mVxi/), 4- thio-l-methyl-pseudouridine, 3-methyl-pseudouridine (m 3 ⁇
- the terminally optimized mRNA comprises the pseudouridine analog 1-methylpseudouridine. In yet another embodiment, the terminally optimized mRNA comprises the pseudouridine analog 1- methylpseudouridine and comprises the modified nucleoside 5-methylcytidine.
- the terminally optimized mRNA described herein may comprise at least one 5' cap structure such as, but not limited to, CapO, Capl, ARCA, inosine, Nl-methyl- guanosine, 2'fluoro-guanosine, 7-deaza-guanosine, 8-oxo-guanosine, 2-amino-guanosine, LNA-guanosine, 2-azido-guanosine, Cap2, Cap4, and CAP-003 - CAP-225.
- 5' cap structure such as, but not limited to, CapO, Capl, ARCA, inosine, Nl-methyl- guanosine, 2'fluoro-guanosine, 7-deaza-guanosine, 8-oxo-guanosine, 2-amino-guanosine, LNA-guanosine, 2-azido-guanosine, Cap2, Cap4, and CAP-003 - CAP-225.
- At least one region of the terminally optimized mRNA may be codon optimized.
- the first region of linked nucleosides may be codon optimized.
- a method of reducing antigen-mediated immune response in an organism by contacting the organism with a terminally optimized mRNA.
- the terminally optimized mRNA may comprise a first region of linked nucleosides encoding a polypeptide of interest which is located 5 ' relative to the first region, a second terminal region located 3 ' relative to the first terminal region and a 3 'tailing region.
- the second terminal region may comprise at least one microRNA binding site, seed sequence or microRNA binding site without a seed sequence.
- the microRNA is an immune cell specific microRNA such as, but not limited to, mir-122, miR-142-3p, miR-142-5p, miR-146a and miR-146b.
- terminally optimized mRNA which reduces the antigen-mediated immune response may comprise at least one translation enhancer element (TEE) sequence such as, but not limited to, TEE-001 - TEE 705, a chain terminating nucleoside and/or a stem loop sequence.
- TEE translation enhancer element
- terminally optimized mRNA which reduces the antigen-mediated immune response may comprise at least one region which is codon optimized.
- the first region of linked nucleosides may be codon optimized.
- FIG. 1 is a schematic of a primary construct of the present invention.
- FIG. 2 is an expanded schematic of the second flanking region of a primary construct of the present invention illustrating the sensor elements of the polynucleotide.
- FIG. 3 is a clone map useful in the present invention.
- FIG. 4 is a histogram showing the improved protein production from modified mRNAs of the present invention having increasingly longer poly-A tails at two concentrations.
- compositions and methods for the manufacture and optimization of modified mRNA molecules via alteration of the terminal architecture of the molecules are Described herein. Specifically disclosed are methods for increasing protein production by altering the terminal regions of the mRNA. Such terminal regions include at least the 5 'untranslated region (UTR), and 3'UTR. Other features which may be modified and found to the 5' or 3' of the coding region include the 5 'cap and poly-A tail of the modified mRNAs (modified RNAs).
- exogenous nucleic acids particularly viral nucleic acids
- IFN interferon
- a nucleic acid e.g., a ribonucleic acid (RNA) inside a cell, either in vivo or ex vivo, such as to cause intracellular translation of the nucleic acid and production of the encoded protein.
- RNA ribonucleic acid
- nucleic acids characterized by integration into a target cell are generally imprecise in their expression levels, deleteriously transferable to progeny and neighbor cells, and suffer from the substantial risk of mutation.
- the terminal modification described herein may be used in the modified nucleic acids encoding polypeptides of interest, such as, but not limited to, the polypeptides of interest described in, U.S. Provisional Patent Application No 61/618,862, filed April 2, 2012, entitled Modified Polynucleotides for the Production of Biologies, U.S. Provisional Patent Application No 61/681,645, filed August 10, 2012, entitled Modified Polynucleotides for the Production of Biologies, U.S. Provisional Patent Application No 61/737,130, filed December 14, 2012, entitled Modified Polynucleotides for the Production of Biologies, U.S.
- nucleic acid molecules encoding polypeptides capable of modulating a cell's status, function and/or activity, and methods of making and using these nucleic acids and polypeptides.
- these modified nucleic acid molecules are capable of reducing the innate immune activity of a population of cells into which they are introduced, thus increasing the efficiency of protein production in that cell population.
- modified RNAs of the present invention In addition to utilization of non-natural nucleosides and nucleotides, such as those described in US Patent Publication No US20130115272, filed October 3, 2012 (the contents of which are herein incorporated by reference in its entirety), in the modified RNAs of the present invention, it has now been discovered that concomitant use of altered terminal architecture may also serve to increase protein production from a cell population.
- RNAs such as mRNAs, which may be synthetic, that contain one or more modified nucleosides (termed “modified nucleic acids” or “modified nucleic acid molecules”) and polynucleotides, primary constructs and modified mRNA (mmRNA), which have useful properties including the lack of a substantial induction of the innate immune response of a cell into which the mRNA is introduced.
- modified nucleic acids enhance the efficiency of protein production, intracellular retention of nucleic acids, and viability of contacted cells, as well as possess reduced immunogenicity, these nucleic acids having these properties are termed “enhanced" nucleic acids or modified RNAs herein.
- the polynucleotides are nucleic acid transcripts which encode one or more polypeptides of interest that, when translated, deliver a signal to the cell which results in the therapeutic benefit to the organism.
- the signal polynucleotides may optionally further comprise a sequence (translatable or not) which sense the microenvironement of the polynucleotide and alters (a) the function or phenotype outcome associated with the peptide or protein which is translated, (b) the expression level of the signal polynucleotide, and/or both.
- nucleic acid in its broadest sense, includes any compound and/or substance that comprise a polymer of nucleotides. These polymers are often referred to as polynucleotides.
- exemplary nucleic acids include ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs) or hybrids thereof.
- the modified nucleic acid molecule is one or more messenger RNAs (mRNAs).
- mRNAs messenger RNAs
- the polynucleotide or nucleic acid molecule is a messenger RNA (mRNA).
- mRNA messenger RNA
- the term "messenger RNA" (mRNA) refers to any polynucleotide which encodes a polypeptide of interest and which is capable of being translated to produce the encoded polypeptide of interest in vitro, in vivo, in situ or ex vivo.
- Polynucleotides of the invention may be mRNA or any nucleic acid molecule and may or may not be chemically modified.
- the basic components of an mRNA molecule include at least a coding region, a 5'UTR, a 3'UTR, a 5' cap and a poly-A tail.
- the present invention expands the scope of functionality of traditional mRNA molecules by providing polynucleotides or primary RNA constructs which maintain a modular organization, but which comprise one or more structural and/or chemical modifications or alterations which impart useful properties to the
- modified mRNA molecules of the present invention which may be synthetic, are termed "mmRNA.”
- mmRNA a "structural" feature or modification is one in which two or more linked nucleotides are inserted, deleted, duplicated, inverted or randomized in a polynucleotide polynucleotide, primary construct or mmRNA without significant chemical modification to the nucleotides themselves. Because chemical bonds will necessarily be broken and reformed to effect a structural modification, structural modifications are of a chemical nature and hence are chemical modifications.
- the polynucleotide "ATCG” may be chemically modified to "AT-5meC-G".
- the same polynucleotide may be structurally modified from “ATCG” to "ATCCCG”.
- the dinucleotide "CC” has been inserted, resulting in a structural modification to the polynucleotide.
- modified nucleic acids containing a translatable region and one, two, or more than two different nucleoside modifications.
- the modified nucleic acid exhibits reduced degradation in a cell into which the nucleic acid is introduced, relative to a corresponding unmodified nucleic acid.
- the chemical modifications can be located on the sugar moiety of the nucleotide
- the chemical modifications can be located on the phosphate backbone of the nucleotide
- the invention provides a modified nucleic acid containing a degradation domain, which is capable of being acted on in a directed manner within a cell.
- polynucleotides of the present invention are distinguished from wild type mR A in their functional and/or structural design features which serve to, as evidenced herein, overcome existing problems of effective polypeptide production using nucleic acid-based therapeutics.
- Figure 1 shows a representative primary construct 100 of the present invention.
- primary construct or “primary mRNA construct” refers to polynucleotide transcript which encodes one or more polypeptides of interest and which retains sufficient structural and/or chemical features to allow the polypeptide of interest encoded therein to be translated.
- Primary constructs may be polynucleotides of the invention. When structurally or chemically modified, the primary construct may be referred to as a mmRNA.
- the primary construct 100 here contains a first region of linked nucleotides 102 that is flanked by a first flanking region 104 and a second flaking region 106.
- the "first region” may be referred to as a "coding region” or “region encoding” or simply the “first region.”
- This first region may include, but is not limited to, the encoded polypeptide of interest.
- the polypeptide of interest may comprise at its 5 ' terminus one or more signal peptide sequences encoded by a signal peptide sequence region 103.
- the flanking region 104 may comprise a region of linked nucleotides comprising one or more complete or incomplete 5' UTRs sequences.
- the flanking region 104 may also comprise a 5' terminal cap 108.
- the second flanking region 106 may comprise a region of linked nucleotides comprising one or more complete or incomplete 3' UTRs.
- the flanking region 106 may also comprise a 3' tailing sequence 110 and a 3'UTR 120.
- first operational region 105 Bridging the 5' terminus of the first region 102 and the first flanking region 104 is a first operational region 105.
- this operational region comprises a start codon.
- the operational region may alternatively comprise any translation initiation sequence or signal including a start codon.
- this operational region comprises a stop codon.
- the operational region may alternatively comprise any translation initiation sequence or signal including a stop codon. According to the present invention, multiple serial stop codons may also be used.
- the operation region of the present invention may comprise two stop codons.
- the first stop codon may be "TGA” and the second stop codon may be selected from the group consisting of "TAA,” “TGA” and “TAG.”
- the operation region may further comprise three stop codons.
- the third stop codon may be selected from the group consisting of "TAA,” “TGA” and "TAG.”
- the 3'UTR 120 of the second flanking region 106 may comprise one or more sensor sequences 130.
- These sensor sequences as discussed herein operate as pseudo-receptors (or binding sites) for ligands of the local microenvironment of the primary construct or polynucleotide.
- microRNA bindng sites or miRNA seeds may be used as sensors such that they function as pseudoreceptors for any microRNAs present in the environment of the polynucleotide.
- the shortest length of the first region of the primary construct of the present invention can be the length of a nucleic acid sequence that is sufficient to encode for a dipeptide, a tripeptide, a tetrapeptide, a pentapeptide, a hexapeptide, a heptapeptide, an octapeptide, a nonapeptide, or a decapeptide.
- the length may be sufficient to encode a peptide of 2-30 amino acids, e.g. 5-30, 10-30, 2-25, 5-25, 10-25, or 10-20 amino acids.
- the length may be sufficient to encode for a peptide of at least 11, 12, 13, 14, 15, 17, 20, 25 or 30 amino acids, or a peptide that is no longer than 40 amino acids, e.g. no longer than 35, 30, 25, 20, 17, 15, 14, 13, 12, 11 or 10 amino acids.
- the length of the first region encoding the polypeptide of interest of the present invention is greater than about 30 nucleotides in length (e.g., at least or greater than about 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,500, and 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000, 90,000 or up to and including 100,000 nucleotides).
- the "first region” may be referred to as a "coding region” or "region encoding” or simply the "first region.”
- the polynucleotide polynucleotide, primary construct, or mmR A includes from about 30 to about 100,000 nucleotides (e.g., from 30 to 50, from 30 to 100, from 30 to 250, from 30 to 500, from 30 to 1,000, from 30 to 1,500, from 30 to 3,000, from 30 to 5,000, from 30 to 7,000, from 30 to 10,000, from 30 to 25,000, from 30 to 50,000, from 30 to 70,000, from 100 to 250, from 100 to 500, from 100 to 1,000, from 100 to 1,500, from 100 to 3,000, from 100 to 5,000, from 100 to 7,000, from 100 to 10,000, from 100 to 25,000, from 100 to 50,000, from 100 to 70,000, from 100 to 100,000, from 500 to 1,000, from 500 to 1,500, from 500 to 2,000, from 500 to 3,000, from 500 to 5,000, from 500 to 7,000, from 500 to 10,000, from 500 to 25,000, from 500 to 50,000, from 500 to 70,000, from 500 to 100,000, from 1,000, from 500 to 1,500, from
- the first and second flanking regions may range independently from 15-1,000 nucleotides in length (e.g., greater than 30, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, and 900 nucleotides or at least 30, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, and 1,000 nucleotides).
- 15-1,000 nucleotides in length e.g., greater than 30, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, and 1,000 nucleotides.
- the tailing sequence may range from absent to 500 nucleotides in length (e.g., at least 60, 70, 80, 90, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, or 500 nucleotides).
- the length may be determined in units of or as a function of polyA binding protein binding.
- the polyA tail is long enough to bind at least 4 monomers of polyA binding protein.
- PolyA binding protein monomers bind to stretches of approximately 38 nucleotides. As such, it has been observed that polyA tails of about 80 nucleotides and 160 nucleotides are functional.
- the capping region may comprise a single cap or a series of nucleotides forming the cap.
- the capping region may be from 1 to 10, e.g. 2-9, 3-8, 4-7, 1-5, 5-10, or at least 2, or 10 or fewer nucleotides in length.
- the cap is absent.
- the first and second operational regions may range from 3 to 40, e.g., 5-30, 10-20, 15, or at least 4, or 30 or fewer nucleotides in length and may comprise, in addition to a start and/or stop codon, one or more signal and/or restriction sequences.
- a nucleic acid, modified RNA or primary construct may be cyclized, or concatemerized, to generate a translation competent molecule to assist interactions between poly- A binding proteins and 5 '-end binding proteins.
- the mechanism of cyclization or concatemerization may occur through at least 3 different routes: 1) chemical, 2) enzymatic, and 3) ribozyme catalyzed.
- the newly formed 5'-/3'-linkage may be intramolecular or intermolecular.
- the 5 '-end and the 3 '-end of the nucleic acid contain chemically reactive groups that, when close together, form a new covalent linkage between the 5 '-end and the 3 '-end of the molecule.
- the 5 '-end may contain an NHS-ester reactive group and the 3 '-end may contain a 3'-amino-terminated nucleotide such that in an organic solvent the 3'-amino-terminated nucleotide on the 3 '-end of a synthetic mRNA molecule will undergo a nucleophilic attack on the 5'-NHS-ester moiety forming a new 5 '-/3 '-amide bond.
- T4 RNA ligase may be used to enzymatically link a 5'- phosphorylated nucleic acid molecule to the 3'-hydroxyl group of a nucleic acid forming a new phosphorodiester linkage.
- ⁇ g of a nucleic acid molecule is incubated at 37°C for 1 hour with 1-10 units of T4 RNA ligase (New England Biolabs, Ipswich, MA) according to the manufacturer's protocol.
- the ligation reaction may occur in the presence of a split oligonucleotide capable of base-pairing with both the 5'- and 3'- region in juxtaposition to assist the enzymatic ligation reaction.
- either the 5 '-or 3 '-end of the cDNA template encodes a ligase ribozyme sequence such that during in vitro transcription, the resultant nucleic acid molecule can contain an active ribozyme sequence capable of ligating the 5 '-end of a nucleic acid molecule to the 3 '-end of a nucleic acid molecule.
- the ligase ribozyme may be derived from the Group I Intron, Group I Intron, Hepatitis Delta Virus, Hairpin ribozyme or may be selected by SELEX (systematic evolution of ligands by exponential enrichment).
- the ribozyme ligase reaction may take 1 to 24 hours at temperatures between 0 and 37°C.
- nucleic acids modified RNA or primary constructs may be linked together through the 3 '-end using nucleotides which are modified at the 3 '-terminus.
- Chemical conjugation may be used to control the stoichiometry of delivery into cells.
- the glyoxylate cycle enzymes isocitrate lyase and malate synthase, may be supplied into HepG2 cells at a 1 : 1 ratio to alter cellular fatty acid metabolism.
- This ratio may be controlled by chemically linking nucleic acids or modified RNA using a 3'-azido terminated nucleotide on one nucleic acids or modified RNA species and a C5-ethynyl or alkynyl-containing nucleotide on the opposite nucleic acids or modified RNA species.
- the modified nucleotide is added post- transcriptionally using terminal transferase (New England Biolabs, Ipswich, MA) according to the manufacturer's protocol.
- the two nucleic acids or modified R A species may be combined in an aqueous solution, in the presence or absence of copper, to form a new covalent linkage via a click chemistry mechanism as described in the literature.
- more than two polynucleotides may be linked together using a functionalized linker molecule.
- a functionalized saccharide molecule may be chemically modified to contain multiple chemical reactive groups (SH-, NH 2 -, N 3 , etc%) to react with the cognate moiety on a 3 '-functionalized mR A molecule (i.e., a 3'-maleimide ester, 3'-NHS-ester, alkynyl).
- the number of reactive groups on the modified saccharide can be controlled in a stoichiometric fashion to directly control the stoichiometric ratio of conjugated nucleic acid or mRNA.
- nucleic acids, modified RNA, polynucleotides or primary constructs of the present invention can be designed to be conjugated to other polynucleotides, dyes, intercalating agents (e.g. acridines), cross- linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), poly cyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g.
- intercalating agents e.g. acridines
- cross- linkers e.g. psoralene, mitomycin C
- porphyrins TPPC4, texaphyrin, Sapphyrin
- poly cyclic aromatic hydrocarbons e.g., phenazine, dihydrophenazine
- artificial endonucleases e.g.
- alkylating agents phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG] 2 , polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g.
- biotin e.g., aspirin, vitamin E, folic acid
- transport/absorption facilitators e.g., aspirin, vitamin E, folic acid
- synthetic ribonucleases proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell, hormones and hormone receptors, non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, or a drug.
- a specified cell type such as a cancer cell, endothelial cell, or bone cell
- hormones and hormone receptors non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, or a drug.
- Conjugation may result in increased stability and/or half life and may be particularly useful in targeting the nucleic acids,modified RNA, polynucleotides or primary constructs to specific sites in the cell, tissue or organism.
- the nucleic acids, modified RNA or primary construct may be administered with, or further encode one or more of RNAi agents, siRNAs, shRNAs, miRNAs, miRNA binding sites, antisense RNAs, ribozymes, catalytic DNA, tRNA, RNAs that induce triple helix formation, aptamers or vectors, and the like.
- RNAi agents siRNAs, shRNAs, miRNAs, miRNA binding sites, antisense RNAs, ribozymes, catalytic DNA, tRNA, RNAs that induce triple helix formation, aptamers or vectors, and the like.
- bifunctional polynucleotides e.g., bifunctional nucleic acids, bifunctional modified RNA or bifunctional primary constructs.
- bifunctional polynucleotides are those having or capable of at least two functions. These molecules may also by convention be referred to as multi-functional.
- the multiple functionalities of bifunctional polynucleotides may be encoded by the RNA (the function may not manifest until the encoded product is translated) or may be a property of the polynucleotide itself. It may be structural or chemical.
- Bifunctional modified polynucleotides may comprise a function that is covalently or electrostatically associated with the polynucleotides. Further, the two functions may be provided in the context of a complex of a modified RNA and another molecule.
- Bifunctional polynucleotides may encode peptides which are antiproliferative. These peptides may be linear, cyclic, constrained or random coil. They may function as aptamers, signaling molecules, ligands or mimics or mimetics thereof. Anti-pro liferative peptides may, as translated, be from 3 to 50 amino acids in length. They may be 5-40, 10-30, or approximately 15 amino acids long. They may be single chain, multichain or branched and may form complexes, aggregates or any multi-unit structure once translated.
- nucleic acids As described herein, provided are nucleic acids, modified RNA,
- polynucleotides and primary constructs having sequences that are partially or substantially not translatable, e.g., having a noncoding region.
- Such molecules are generally not translated, but can exert an effect on protein production by one or more of binding to and sequestering one or more translational machinery components such as a ribosomal protein or a transfer RNA (tRNA), thereby effectively reducing protein expression in the cell or modulating one or more pathways or cascades in a cell which in turn alters protein levels.
- translational machinery components such as a ribosomal protein or a transfer RNA (tRNA)
- the nucleic acids, polynucleotides, primary constructs or mRNA may contain or encode one or more long noncoding RNA (IncRNA, or lincRNA) or portion thereof, a small nucleolar R A (sno-R A), micro R A (miRNA), small interfering RNA (siRNA) or Piwi-interacting RNA (piRNA).
- RNA long noncoding RNA
- mRNA small nucleolar R A
- miRNA micro R A
- siRNA small interfering RNA
- piRNA Piwi-interacting RNA
- the primary construct is designed to encode one or more polypeptides of interest or fragments thereof.
- a polypeptide of interest may include, but is not limited to, whole polypeptides, a plurality of polypeptides or fragments of polypeptides, which independently may be encoded by one or more nucleic acids, a plurality of nucleic acids, fragments of nucleic acids or variants of any of the aforementioned.
- the term "polypeptides of interest” refers to any polypeptide which is selected to be encoded in the primary construct of the present invention.
- polypeptide means a polymer of amino acid residues (natural or unnatural) linked together most often by peptide bonds.
- polypeptides refers to proteins, polypeptides, and peptides of any size, structure, or function. In some instances the polypeptide encoded is smaller than about 50 amino acids and the polypeptide is then termed a peptide. If the polypeptide is a peptide, it will be at least about 2, 3, 4, or at least 5 amino acid residues long. Thus, polypeptides include gene products, naturally occurring polypeptides, synthetic polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing. A polypeptide may be a single molecule or may be a multi-molecular complex such as a dimer, trimer or tetramer. They may also comprise single chain or multichain
- polypeptides such as antibodies or insulin and may be associated or linked. Most commonly disulfide linkages are found in multichain polypeptides.
- polypeptide may also apply to amino acid polymers in which one or more amino acid residues are an artificial chemical analogue of a corresponding naturally occurring amino acid.
- polypeptide variant refers to molecules which differ in their amino acid sequence from a native or reference sequence.
- the amino acid sequence variants may possess substitutions, deletions, and/or insertions at certain positions within the amino acid sequence, as compared to a native or reference sequence.
- variants will possess at least about 50% identity (homology) to a native or reference sequence, and preferably, they will be at least about 80%, more preferably at least about 90% identical (homologous) to a native or reference sequence.
- variant mimics are provided. As used herein, the term “variant mimic” is one which contains one or more amino acids which would mimic an activated sequence.
- glutamate may serve as a mimic for phosphoro- threonine and/or phosphoro-serine.
- variant mimics may result in deactivation or in an inactivated product containing the mimic, e.g., phenylalanine may act as an inactivating substitution for tyrosine; or alanine may act as an inactivating substitution for serine.
- homology as it applies to amino acid sequences is defined as the percentage of residues in the candidate amino acid sequence that are identical with the residues in the amino acid sequence of a second sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology. Methods and computer programs for the alignment are well known in the art. It is understood that homology depends on a calculation of percent identity but may differ in value due to gaps and penalties introduced in the calculation.
- Analogs is meant to include polypeptide variants which differ by one or more amino acid alterations, e.g., substitutions, additions or deletions of amino acid residues that still maintain one or more of the properties of the parent or starting polypeptide.
- compositions which are polypeptide based including variants and derivatives. These include substitutional, insertional, deletion and covalent variants and derivatives.
- derivative is used synonymously with the term “variant” but generally refers to a molecule that has been modified and/or changed in any way relative to a reference molecule or starting molecule.
- sequence tags or amino acids such as one or more lysines
- Sequence tags can be used for peptide purification or localization.
- Lysines can be used to increase peptide solubility or to allow for biotinylation.
- amino acid residues located at the carboxy and amino terminal regions of the amino acid sequence of a peptide or protein may optionally be deleted providing for truncated sequences.
- Certain amino acids e.g., C-terminal or N-terminal residues
- substitutional variants when referring to polypeptides are those that have at least one amino acid residue in a native or starting sequence removed and a different amino acid inserted in its place at the same position.
- the substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more amino acids have been substituted in the same molecule.
- conservative amino acid substitution refers to the substitution of an amino acid that is normally present in the sequence with a different amino acid of similar size, charge, or polarity.
- conservative substitutions include the substitution of a non-polar (hydrophobic) residue such as isoleucine, valine and leucine for another non-polar residue.
- conservative substitutions include the substitution of one polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, and between glycine and serine.
- substitution of a basic residue such as lysine, arginine or histidine for another, or the substitution of one acidic residue such as aspartic acid or glutamic acid for another acidic residue are additional examples of conservative substitutions.
- non-conservative substitutions include the substitution of a non-polar (hydrophobic) amino acid residue such as isoleucine, valine, leucine, alanine, methionine for a polar (hydrophilic) residue such as cysteine, glutamine, glutamic acid or lysine and/or a polar residue for a non-polar residue.
- “Insertional variants” when referring to polypeptides are those with one or more amino acids inserted immediately adjacent to an amino acid at a particular position in a native or starting sequence. "Immediately adjacent" to an amino acid means connected to either the alpha-carboxy or alpha-amino functional group of the amino acid.
- "Deletional variants” when referring to polypeptides are those with one or more amino acids in the native or starting amino acid sequence removed. Ordinarily, deletional variants will have one or more amino acids deleted in a particular region of the molecule.
- Covalent derivatives when referring to polypeptides include modifications of a native or starting protein with an organic proteinaceous or non-proteinaceous derivatizing agent, and/or post-translational modifications. Covalent modifications are traditionally introduced by reacting targeted amino acid residues of the protein with an organic derivatizing agent that is capable of reacting with selected side-chains or terminal residues, or by harnessing mechanisms of post-translational modifications that function in selected recombinant host cells. The resultant covalent derivatives are useful in programs directed at identifying residues important for biological activity, for immunoassays, or for the preparation of anti-protein antibodies for immunoaffinity purification of the recombinant glycoprotein. Such modifications are within the ordinary skill in the art and are performed without undue experimentation.
- polypeptides when referring to polypeptides are defined as distinct amino acid sequence-based components of a molecule.
- Features of the polypeptides encoded by the mmRNA of the present invention include surface manifestations, local conformational shape, folds, loops, half-loops, domains, half-domains, sites, termini or any combination thereof.
- surface manifestations As used herein when referring to polypeptides the term "surface
- manifestation refers to a polypeptide based component of a protein appearing on an outermost surface.
- local conformational shape means a polypeptide based structural manifestation of a protein which is located within a definable space of the protein.
- fold refers to the resultant conformation of an amino acid sequence upon energy minimization.
- a fold may occur at the secondary or tertiary level of the folding process.
- secondary level folds include beta sheets and alpha helices.
- tertiary folds include domains and regions formed due to aggregation or separation of energetic forces.
- Regions formed in this way include hydrophobic and hydrophilic pockets, and the like.
- the term "turn” as it relates to protein conformation means a bend which alters the direction of the backbone of a peptide or polypeptide and may involve one, two, three or more amino acid residues.
- loop refers to a structural feature of a polypeptide which may serve to reverse the direction of the backbone of a peptide or polypeptide. Where the loop is found in a polypeptide and only alters the direction of the backbone, it may comprise four or more amino acid residues. Oliva et al. have identified at least 5 classes of protein loops (J. Mol Biol 266 (4): 814- 830; 1997). Loops may be open or closed. Closed loops or "cyclic" loops may comprise 2, 3, 4, 5, 6, 7, 8, 9, 10 or more amino acids between the bridging moieties.
- Such bridging moieties may comprise a cysteine-cysteine bridge (Cys-Cys) typical in polypeptides having disulfide bridges or alternatively bridging moieties may be non-protein based such as the dibromozylyl agents used herein.
- Cys-Cys cysteine-cysteine bridge
- bridging moieties may be non-protein based such as the dibromozylyl agents used herein.
- domain refers to a motif of a polypeptide having one or more identifiable structural or functional characteristics or properties (e.g., binding capacity, serving as a site for protein-protein interactions).
- sub- domains may be identified within domains or half-domains, these subdomains possessing less than all of the structural or functional properties identified in the domains or half domains from which they were derived. It is also understood that the amino acids that comprise any of the domain types herein need not be contiguous along the backbone of the polypeptide (i.e., nonadjacent amino acids may fold structurally to produce a domain, half-domain or subdomain).
- site as it pertains to amino acid based embodiments is used synonymously with "amino acid residue” and "amino acid side chain.”
- a site represents a position within a peptide or polypeptide that may be modified, manipulated, altered, derivatized or varied within the polypeptide based molecules of the present invention.
- terminal refers to an extremity of a peptide or polypeptide. Such extremity is not limited only to the first or final site of the peptide or polypeptide but may include additional amino acids in the terminal regions.
- the polypeptide based molecules of the present invention may be characterized as having both an N-terminus (terminated by an amino acid with a free amino group (NH2)) and a C -terminus (terminated by an amino acid with a free carboxyl group (COOH)).
- Proteins of the invention are in some cases made up of multiple polypeptide chains brought together by disulfide bonds or by non- covalent forces (multimers, oligomers). These sorts of proteins will have multiple N- and C-termini.
- the termini of the polypeptides may be modified such that they begin or end, as the case may be, with a non-polypeptide based moiety such as an organic conjugate.
- any of the features have been identified or defined as a desired component of a polypeptide to be encoded by the primary construct or mmR A of the invention, any of several manipulations and/or modifications of these features may be performed by moving, swapping, inverting, deleting, randomizing or duplicating.
- manipulation of features may result in the same outcome as a modification to the molecules of the invention.
- a manipulation which involved deleting a domain would result in the alteration of the length of a molecule just as modification of a nucleic acid to encode less than a full length molecule would.
- Modifications and manipulations can be accomplished by methods known in the art such as, but not limited to, site directed mutagenesis.
- the resulting modified molecules may then be tested for activity using in vitro or in vivo assays such as those described herein or any other suitable screening assay known in the art.
- the polypeptides may comprise a consensus sequence which is discovered through rounds of experimentation.
- a "consensus" sequence is a single sequence which represents a collective population of sequences allowing for variability at one or more sites.
- protein fragments, functional protein domains, and homologous proteins are also considered to be within the scope of polypeptides of interest of this invention.
- any protein fragment meaning an polypeptide sequence at least one amino acid residue shorter than a reference polypeptide sequence but otherwise identical
- a reference protein 10 20, 30, 40, 50, 60, 70, 80, 90, 100 or greater than 100 amino acids in length.
- any protein that includes a stretch of about 20, about 30, about 40, about 50, or about 100 amino acids which are about 40%, about 50%>, about 60%>, about 70%>, about 80%>, about 90%), about 95%o, or about 100% identical to any of the sequences described herein can be utilized in accordance with the invention.
- a polypeptide to be utilized in accordance with the invention includes 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mutations as shown in any of the sequences provided or referenced herein.
- the primary constructs, modified nucleic acids or mmRNA of the present invention may be designed to encode polypeptides of interest such as peptides and proteins.
- primary constructs, modified nucleic acids or mmRNA of the present invention may encode variant polypeptides which have a certain identity with a reference polypeptide sequence.
- a "reference polypeptide sequence” refers to a starting polypeptide sequence. Reference sequences may be wild type sequences or any sequence to which reference is made in the design of another sequence.
- a "reference polypeptide sequence” may, e.g., be any one of the protein sequence listed in U.S. Provisional Patent Application No 61/618,862, filed April 2, 2012, entitled Modified Polynucleotides for the Production of Biologies, U.S.
- identity refers to a relationship between the sequences of two or more peptides, as determined by comparing the sequences. In the art, identity also means the degree of sequence relatedness between peptides, as determined by the number of matches between strings of two or more amino acid residues. Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., "algorithms"). Identity of related peptides can be readily calculated by known methods. Such methods include, but are not limited to, those described in
- the polypeptide variant may have the same or a similar activity as the reference polypeptide.
- the variant may have an altered activity (e.g., increased or decreased) relative to a reference polypeptide.
- variants of a particular polynucleotide or polypeptide of the invention will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% but less than 100% sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art.
- Such tools for alignment include those of the BLAST suite (Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.)
- Other tools are described herein, specifically in the definition of "identity.”
- Default parameters in the BLAST algorithm include, for example, an expect threshold of 10, Word size of 28, Match/Mismatch Scores 1, -2, Gap costs Linear. Any filter can be applied as well as a selection for species specific repeats, e.g., Homo sapiens.
- the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA may be used to treat a disease, disorder and/or condition in a subject.
- the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA may be used to reduce, eliminate or prevent tumor growth in a subject.
- the polynucleotides, primary constructs and/or mmRNA may be used to reduce and/or ameliorate at least one symptom of cancer in a subject.
- a symptom of cancer may include, but is not limited to, weakness, aches and pains, fever, fatigue, weight loss, blood clots, increased blood calcium levels, low white blood cell count, short of breath, dizziness, headaches, hyperpigmentation, jaundice, erthema, pruritis, excessive hair growth, change in bowel habits, change in bladder function, long- lasting sores, white patches inside the mouth, white spots on the tongue, unusual bleeding or discharge, thickening or lump on parts of the body, indigestion, trouble swallowing, changes in warts or moles, change in new skin and nagging cough or hoarseness.
- polynucleotides, primary constructs, modified nucleic acid and/or mmRNA may reduce a side-effect associated with cancer such as, but not limited to, chemo brain, peripheral neuropathy, fatigue, depression, nausea, vomiting, pain, anemia, lymphedema, infections, sexual side effects, reduced fertility or infertility, ostomies, insomnia and hair loss.
- a side-effect associated with cancer such as, but not limited to, chemo brain, peripheral neuropathy, fatigue, depression, nausea, vomiting, pain, anemia, lymphedema, infections, sexual side effects, reduced fertility or infertility, ostomies, insomnia and hair loss.
- UTRs Untranslated Regions
- Untranslated regions (UTRs) of a gene are transcribed but not translated.
- the 5'UTR starts at the transcription start site and continues to the start codon but does not include the start codon; whereas, the 3'UTR starts immediately following the stop codon and continues until the transcriptional termination signal.
- the regulatory features of a UTR can be incorporated into the nucleic acids or modified RNA of the present invention to enhance the stability of the molecule.
- the specific features can also be incorporated to ensure controlled down-regulation of the transcript in case they are misdirected to undesired organs sites.
- the untranslated regions may be incorporated into a vector system which can produce mRNA and/or be delivered to a cell, tissue and/or organism to produce a polypeptide of interest.
- Natural 5 'UTRs bear features which play roles in for translation initiation. They harbor signatures like Kozak sequences which are commonly known to be involved in the process by which the ribosome initiates translation of many genes. Kozak sequences have the consensus CCR(A/G)CCAUGG, where R is a purine (adenine or guanine) three bases upstream of the start codon (AUG), which is followed by another 'G'. 5'UTR also have been known to form secondary structures which are involved in elongation factor binding.
- 5 'UTR secondary structures involved in elongation factor binding can interact with other RNA binding molecules in the 5'UTR or 3'UTR to regulate gene expression.
- the elongation factor EIF4A2 binding to a secondarily structured element in the 5 'UTR is necessary for microRNA mediated repression (Meijer HA et al., Science, 2013, 340, 82-85, herein incorporated by reference in its entirety).
- the different secondary structures in the 5 'UTR can be incorporated into the flanking region to either stabilize or selectively destalized mRNAs in specific tissues or cells.
- nucleic acids or mRNA of the invention By engineering the features typically found in abundantly expressed genes of specific target organs, one can enhance the stability and protein production of the nucleic acids or mRNA of the invention.
- introduction of 5' UTR of liver-expressed mRNA, such as albumin, serum amyloid A, Apolipoprotein A/B/E, transferrin, alpha fetoprotein, erythropoietin, or Factor VIII could be used to enhance expression of a nucleic acid molecule, such as a mrnRNA, in hepatic cell lines or liver.
- tissue-specific mRNA to improve expression in that tissue is possible - for muscle (MyoD, Myosin, Myoglobin, Myogenin, Herculin), for endothelial cells (Tie-1, CD36), for myeloid cells (C/EBP, AML1, G-CSF, GM-CSF, CDl lb, MSR, Fr-1, i-NOS), for leukocytes (CD45, CD18), for adipose tissue (CD36, GLUT4, ACRP30, adiponectin) and for lung epithelial cells (SP-A/B/C/D).
- non-UTR sequences may be incorporated into the 5' (or 3' UTR) UTRs.
- introns or portions of introns sequences may be incorporated into the flanking regions of the nucleic acids or mRNA of the invention. Incorporation of intronic sequences may increase protein production as well as mRNA levels.
- At least one fragment of IRES sequences from a GTX gene may be included in the 5 'UTR.
- the fragment may be an 18 nucleotide sequence from the IRES of the GTX gene.
- an 18 nucleotide sequence fragment from the IRES sequence of a GTX gene may be tandemly repeated in the 5 'UTR of a polynucleotide described herein.
- the 18 nucleotide sequence may be repeated in the 5 'UTR at least one, at least twice, at least three times, at least four times, at least five times, at least six times, at least seven times, at least eight times, at least nine times or more than ten times
- a 5 'UTR may include at least five 18 nucleotide fragments of IRES sequences from a GTX gene may be included in the 5 'UTR (see e.g., the 18 nucleotide fragment described in Table 62).
- Nucleotides may be mutated, replaced and/or removed from the 5 ' (or 3 ') UTRs. For example, one or more nucleotides upstream of the start codon may be replaced with another nucleotide.
- the nucleotide or nucletides to be replaced may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60 or more than 60 nucleotides upstream of the start codon.
- one or more nucleotides upstream of the start codon may be removed from the UTR.
- At least one purine upstream of the start codon may be replaced with a pyrimidine.
- the purine to be replaced may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60 or more than 60 nucleotides upstream of the start codon.
- an adenine which is three nucleotides upstream of the start codon may be replaced with a thymine.
- an adenine which is nine nucleotides upstream of the start codon may be replaced with a thymine.
- At least one nucleotide upstream of the start codon may be removed from the UTR.
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60 or more than 60 nucleotides upstream of the start codon may be removed from the UTR of the polynucleotides described herein.
- the nine nucleotides upstream of the start codon may be removed from the UTR (See e.g., the G-CSF 9del5' construct described in Table 60).
- the 5 'UTR of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA may include at least one translational enhancer polynucleotide, translation enhancer element, translational enhancer elements
- TEE may be located between the transcription promoter and the start codon.
- the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA with at least one TEE in the 5 'UTR may include a cap at the 5 'UTR. Further, at least one TEE may be located in the 5 'UTR of polynucleotides, primary constructs, modified nucleic acids and/or mmRNA undergoing cap-dependent or cap-independent translation.
- the term "translational enhancer element” or “translation enhancer element” refers to sequences that increase the amount of polypeptide or protein produced from an mRNA.
- TEEs are conserved elements in the UTR which can promote translational activity of a nucleic acid such as, but not limited to, cap-dependent or cap- independent translation.
- a nucleic acid such as, but not limited to, cap-dependent or cap- independent translation.
- the TEE may be any of the TEEs listed in Table 32 in Example 45, including portion and/or fragments thereof.
- the TEE sequence may include at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more than 99% of the TEE sequences disclosed in Table 32 and/or the TEE sequence may include a 5-30 nucleotide fragment, a 5-25 nucleotide fragment, a 5-20 nucleotide fragment, a 5-15 nucleotide fragment, a 5-10 nucleotide fragment of the TEE sequences disclosed in Table 32.
- the TEEs known may be in the 5 '-leader of the Gtx homeodomain protein (Chappell et al, Proc. Natl. Acad. Sci. USA 101 :9590-9594, 2004, herein incorporated by reference in their entirety).
- TEEs are disclosed as SEQ ID NOs: 1-35 in US Patent Publication No. US20090226470, SEQ ID NOs: 1-35 in US Patent Publication US20130177581, SEQ ID NOs: 1-35 in International Patent Publication No.
- the TEE may be an internal ribosome entry site (IRES), HCV-IRES or an IRES element such as, but not limited to, those described in US Patent No. US7468275, US Patent Publication Nos. US20070048776 and US20110124100 and International Patent Publication Nos. WO2007025008 and WO2001055369, each of which is herein incorporated by reference in its entirety.
- the IRES elements may include, but are not limited to, the Gtx sequences (e.g., Gtx9-nt, Gtx8-nt, Gtx7-nt) described by Chappell et al. (Proc. Natl. Acad. Sci.
- polynucleotide sequences are polynucleotides which include one or more of the specific TEE exemplified herein and/or disclosed in the art (see e.g., US6310197, US6849405, US7456273, US7183395, US20090226470, US20070048776, US20110124100,
- TEEs in the translational enhancer polynucleotides can be organized in one or more sequence segments.
- a sequence segment can harbor one or more of the specific TEEs exemplified herein, with each TEE being present in one or more copies.
- multiple sequence segments When multiple sequence segments are present in a translational enhancer polynucleotide, they can be homogenous or heterogeneous. Thus, the multiple sequence segments in a translational enhancer polynucleotide can harbor identical or different types of the specific TEEs exemplified herein, identical or different number of copies of each of the specific TEEs, and/or identical or different organization of the TEEs within each sequence segment.
- the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA may include at least one TEE that is described in International Patent Publication No. WO1999024595, WO2012009644, WO2009075886,
- WO2007025008 WO1999024595, European Patent Publication No. EP2610341A1 and EP2610340A1, US Patent No. US6310197, US6849405, US7456273, US7183395, US Patent Publication No. US20090226470, US20110124100, US20070048776,
- the TEE may be located in the 5 'UTR of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA.
- the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA may include at least one TEE that has at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 99% identity with the TEEs described in US Patent Publication Nos. US20090226470, US20070048776, US20130177581 and
- the 5 'UTR of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA may include at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18 at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55 or more than 60 TEE sequences.
- the TEE sequences in the 5'UTR of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA of the present invention may be the same or different TEE sequences.
- the TEE sequences may be in a pattern such as ABABAB or
- each letter, A, B, or C represent a different TEE sequence at the nucleotide level.
- the 5'UTR may include a spacer to separate two TEE sequences.
- the spacer may be a 15 nucleotide spacer and/or other spacers known in the art.
- the 5'UTR may include a TEE sequence-spacer module repeated at least once, at least twice, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times and at least 9 times or more than 9 times in the 5'UTR.
- the spacer separating two TEE sequences may include other sequences known in the art which may regulate the translation of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA of the present invention such as, but not limited to, miR sequences described herein (e.g., miR binding sites and miR seeds).
- miR sequences described herein e.g., miR binding sites and miR seeds.
- each spacer used to separate two TEE sequences may include a different miR sequence or component of a miR sequence (e.g., miR seed sequence).
- the TEE in the 5 'UTR of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA of the present invention may include at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more than 99% of the TEE sequences disclosed in US Patent Publication Nos. US20090226470, US20070048776, US20130177581 and US201 10124100, International Patent Publication No. WO1999024595, WO2012009644, WO2009075886 and
- the TEE in the 5 'UTR of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA of the present invention may include a 5-30 nucleotide fragment, a 5-25 nucleotide fragment, a 5-20 nucleotide fragment, a 5-15 nucleotide fragment, a 5-10 nucleotide fragment of the TEE sequences disclosed in US Patent Publication Nos. US20090226470, US20070048776, US20130177581 and
- the TEE in the 5 'UTR of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA of the present invention may include at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% or more than 99% of the TEE sequences disclosed in Chappell et al. (Proc. Natl. Acad. Sci. USA 101 :9590-9594, 2004) and Zhou et al.
- the TEE in the 5'UTR of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA of the present invention may include a 5-30 nucleotide fragment, a 5-25 nucleotide fragment, a 5-20 nucleotide fragment, a 5-15 nucleotide fragment, a 5-10 nucleotide fragment of the TEE sequences disclosed in Chappell et al. (Proc. Natl. Acad. Sci. USA 101 :9590-9594, 2004) and Zhou et al. (PNAS 102:6273-6278, 2005), in Supplemental Table 1 and in Supplemental Table 2 disclosed by Wellensiek et al (Genome-wide profiling of human cap-independent translation-enhancing elements, Nature Methods, 2013;
- the TEE used in the 5 'UTR of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA of the present invention is an IRES sequence such as, but not limited to, those described in US Patent No. US7468275 and International Patent Publication No. WO2001055369, each of which is herein incorporated by reference in its entirety.
- the TEEs used in the 5 'UTR of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA of the present invention may be identified by the methods described in US Patent Publication No. US20070048776 and US20110124100 and International Patent Publication Nos. WO2007025008 and WO2012009644, each of which is herein incorporated by reference in its entirety.
- the TEEs used in the 5 'UTR of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA of the present invention may be a transcription regulatory element described in US Patent No. US7456273 and US7183395, US Patent Publication No. US20090093049, and International Publication No. WO2001055371, each of which is herein incorporated by reference in their entirety.
- the transcription regulatory elements may be identified by methods known in the art, such as, but not limited to, the methods described in US Patent No. US7456273 and US7183395, US Patent Publication No. US20090093049, and International Publication No. WO2001055371, each of which is herein incorporated by reference in their entirety.
- polynucleotides, primary constructs, modified nucleic acids and/or mmRNA of the present invention is an oligonucleotide or portion thereof as described in US Patent No. US7456273 and US7183395, US Patent Publication No. US20090093049, and
- the 5' UTR comprising at least one TEE described herein may be
- a monocistronic sequence such as, but not limited to, a vector system or a nucleic acid vector.
- the vector systems and nucleic acid vectors may include those described in US Patent Nos. 7456273 and US7183395, US Patent Publication No. US20070048776, US20090093049 and US20110124100 and International Patent Publication Nos. WO2007025008 and WO2001055371, each of which is herein incorporated by reference in its entirety.
- the TEEs described herein may be located in the 5 'UTR and/or the 3'UTR of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA.
- the TEEs located in the 3'UTR may be the same and/or different than the TEEs located in and/or described for incorporation in the 5 'UTR.
- the 3 'UTR of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA may include at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18 at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55 or more than 60 TEE sequences.
- the TEE sequences in the 3'UTR of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA of the present invention may be the same or different TEE sequences.
- the TEE sequences may be in a pattern such as ABABAB or
- the 3'UTR may include a spacer to separate two TEE sequences.
- the spacer may be a 15 nucleotide spacer and/or other spacers known in the art.
- the 3'UTR may include a TEE sequence-spacer module repeated at least once, at least twice, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times and at least 9 times or more than 9 times in the 3'UTR.
- the spacer separating two TEE sequences may include other sequences known in the art which may regulate the translation of the polynucleotides, primary constructs, modified nucleic acids and/or mmRNA of the present invention such as, but not limited to, miR sequences described herein (e.g., miR binding sites and miR seeds).
- miR sequences described herein e.g., miR binding sites and miR seeds.
- each spacer used to separate two TEE sequences may include a different miR sequence or component of a miR sequence (e.g., miR seed sequence).
- the incorporation of a miR sequence and/or a TEE sequence changes the shape of the stem loop region which may increase and/or descrease translation, (see e.g, Kedde et al. A Pumilio-induced RNA structure switch in p27-3'UTR controls miR-221 and miR-22 accessibility. Nature Cell Biology. 2010, herein incorporated by reference in its entirety).
- a 5' UTR may be provided as a flanking region to the modified nucleic acids (mRNA), enhanced modified RNA or ribonucleic acids of the invention.
- 5 'UTR may be homologous or heterologous to the coding region found in the modified nucleic acids (mRNA), enhanced modified RNA or ribonucleic acids of the invention.
- Multiple 5' UTRs may be included in the flanking region and may be the same or of different sequences. Any portion of the flanking regions, including none, may be codon optimized and any may independently contain one or more different structural or chemical modifications, before and/or after codon optimization.
- 5 'UTRs which are heterologous to the coding region of the modified nucleic acids (mRNA), enhanced modified RNA or ribonucleic acids of the invention are engineered into compounds of the invention.
- the modified nucleic acids (mRNA), enhanced modified RNA or ribonucleic acids are then administered to cells, tissue or organisms and outcomes such as protein level, localization and/or half life are measured to evaluate the beneficial effects the heterologous 5'UTR may have on the modified nucleic acids (mRNA), enhanced modified RNA or ribonucleic acids of the invention.
- Variants of the 5 ' UTRs may be utilized wherein one or more nucleotides are added or removed to the termini, including A, T, C or G.
- 5 'UTRs may also be codon- optimized or modified in any manner described herein.
- modified nucleic acids mRNA
- enhanced modified RNA or ribonucleic acids of the invention would not only encode a polypeptide but also a sensor sequence.
- Sensor sequences include, for example, microRNA binding sites, transcription factor binding sites, structured mRNA sequences and/or motifs, artificial binding sites engineered to act as pseudo-receptors for endogenous nucleic acid binding molecules.
- Non-limiting examples, of polynucleotides comprising at least one sensor sequence are described in co-pending and co-owned U.S. Provisional Patent Application No. US 61/753,661, filed January 17, 2013, entitled Signal-Sensor Polynucleotide for the Alteration of Cellular Phenotypes and Microenvironments, U.S. Provisional Patent Application No. US 61/754,159, filed January 18, 2013, entitled Signal-Sensor
- microRNA profiling of the target cells or tissues is conducted to determine the presence or absence of miRNA in the cells or tissues.
- microRNAs are 19-25 nucleotide long noncoding RNAs that bind to the 3'UTR of nucleic acid molecules and down-regulate gene expression either by reducing nucleic acid molecule stability or by inhibiting translation.
- the modified nucleic acids (mRNA), enhanced modified RNA or ribonucleic acids of the invention may comprise one or more microRNA target sequences, microRNA sequences, or microRNA seeds.
- Such sequences may correspond to any known microRNA such as those taught in US Publication US2005/0261218 and US Publication US2005/0059005, the contents of which are incorporated herein by reference in their entirety.
- known microRNAs, their sequences and seed sequences in human genome are listed below in Table 11.
- a microRNA sequence comprises a "seed" region, i.e., a sequence in the region of positions 2-8 of the mature microRNA, which sequence has perfect Watson- Crick complementarity to the miRNA target sequence.
- a microRNA seed may comprise positions 2-8 or 2-7 of the mature microRNA.
- a microRNA seed may comprise 7 nucleotides (e.g., nucleotides 2-8 of the mature microRNA), wherein the seed-complementary site in the corresponding miRNA target is flanked by an adenine (A) opposed to microRNA position 1.
- a microRNA seed may comprise 6 nucleotides (e.g., nucleotides 2-7 of the mature microRNA), wherein the seed-complementary site in the corresponding miRNA target is flanked by an adenine (A) opposed to microRNA position 1.
- A adenine
- the bases of the microRNA seed have complete complementarity with the target sequence.
- miR-122 a microRNA abundant in liver, can inhibit the expression of the gene of interest if one or multiple target sites of miR-122 are engineered into the 3'UTR of the modified nucleic acids, enhanced modified RNA or ribonucleic acids.
- Introduction of one or multiple binding sites for different microRNA can be engineered to further decrease the longevity, stability, and protein translation of a modified nucleic acids, enhanced modified RNA or ribonucleic acids.
- the term "microRNA site” refers to a microRNA target site or a microRNA recognition site, or any nucleotide sequence to which a microRNA binds or associates. It should be understood that
- binding may follow traditional Watson-Crick hybridization rules or may reflect any stable association of the microRNA with the target sequence at or adjacent to the microRNA site.
- microRNA binding sites can be engineered out of (i.e. removed from) sequences in which they naturally occur in order to increase protein expression in specific tissues.
- miR-122 binding sites may be removed to improve protein expression in the liver.
- the modified nucleic acids, enhanced modified RNA or ribonucleic acids of the present invention may include at least one miRNA-binding site in the 3 'UTR in order to direct cytotoxic or cytoprotective mRNA therapeutics to specific cells such as, but not limited to, normal and/or cancerous cells (e.g., HEP3B or SNU449).
- specific cells such as, but not limited to, normal and/or cancerous cells (e.g., HEP3B or SNU449).
- the modified nucleic acids, enhanced modified RNA or ribonucleic acids of the present invention may include three miRNA-binding sites in the 3 'UTR in order to direct cytotoxic or cytoprotective mRNA therapeutics to specific cells such as, but not limited to, normal and/or cancerous cells (e.g., HEP3B or SNU449).
- specific cells such as, but not limited to, normal and/or cancerous cells (e.g., HEP3B or SNU449).
- microRNA binding sites Shown below in Table 12, microRNAs which are differentially expressed in different tissues and cells, and often associated with different types of dieases (e.g. cancer cells). The decision of removal or insertion of microRNA binding sites, or any combination, is dependent on microRNA expression patterns and their profilings in diseases.
- tissues where microRNA are known to regulate mRNA, and thereby protein expression include, but are not limited to, liver (miR-122), muscle (miR- 133, miR-206, miR-208), endothelial cells (miR-17-92, miR-126), myeloid cells (miR- 142-3p, miR-142-5p, miR-16, miR-21, miR-223, miR-24, miR-27), adipose tissue (let-7, miR-30c), heart (miR-ld, miR-149), kidney (miR-192, miR-194, miR-204), and lung epithelial cells (let-7, miR-133, miR-126).
- liver miR-122
- muscle miR- 133, miR-206, miR-208
- endothelial cells miR-17-92, miR-126
- myeloid cells miR- 142-3p, miR-142-5p, miR-16, miR-21, mi
- microRNAs are known to be differentially expressed in immune cells (also called hematopoietic cells), such as antigen presenting cells (APCs) (e.g.
- immune cells also called hematopoietic cells
- APCs antigen presenting cells
- dendritic cells and macrophages dendritic cells and macrophages
- macrophages macrophages
- monocytes monocytes
- B lymphocytes T
- Immune cell specific microRNAs are involved in immunogenicity, autoimmunity, the immune -response to infection, inflammation, as well as unwanted immune response after gene therapy and tissue/organ transplantation. Immune cells specific microRNAs also regulate many aspects of development, proliferation, differentiation and apoptosis of hematopoietic cells (immune cells). For example, miR-142 and miR-146 are exclusively expressed in the immune cells, particularly abundant in myeloid dendritic cells. It was demonstrated in the art that the immune response to exogenous nucleic acid molecules was shut-off by adding miR- 142 binding sites to the 3'UTR of the delivered gene construct, enabling more stable gene transfer in tissues and cells.
- miR-142 efficiently degrades the exogenous mRNA in antigen presenting cells and suppresses cytotoxic elimination of transuced cells (Annoni A et al, blood, 2009, 114, 5152-5161; Brown BD, et al, Nat med. 2006, 12(5), 585-591; Brown BD, et al, blood, 2007, 110(13): 4144-4152, each of which is herein incorporated by reference in its entirety).
- An antigen-mediated immune response can refer to an immune response triggered by foreign antigens, which, when entering an organism, are processed by the antigen presenting cells and displayed on the surface of the antigen presenting cells. T cells can recognize the presented antigen and induce a cytotoxic elimination of cells that express the antigen.
- Introducing the miR-142 binding site into the 3'-UTR of a polypeptide of the present invention can selectively repress the gene expression in the antigen presenting cells through miR-142 mediated mRNA degradation, limiting antigen presentation in APCs (e.g. dendritic cells) and thereby preventing antigen-mediated immune response after the delivery of the polynucleotides.
- the polynucleotides are therefore stably expressed in target tisseus or cells without triggering cytotoxic elimination.
- microRNAs binding sites that are known to be expressed in immune cells can be engineered into the polynucleotide to suppress the expression of the sensor-signal polynucleotide in APCs through microRNA mediated RNA degradation, subduing the antigen-mediated immune response, while the expression of the polynucleotide is maintained in non-immune cells where the immune cell specific microRNAs are not expressed.
- the miR-122 binding site can be removed and the miR-142 (and/or mirR-146) binding sites can be engineered into the 3-UTR of the polynucleotide.
- the polynucleotide may include another negative regulatory element in the 3-UTR, either alone or in combination with mir-142 and/or mir-146 binding sites.
- one regulatory element is the Constitutive Decay Elements (CDEs).
- Immune cells specific microRNAs include, but are not limited to, hsa-let-7a- 2-3p, hsa-let-7a-3p, hsa-7a-5p, hsa-let-7c, hsa-let-7e-3p, hsa-let-7e-5p, hsa-let-7g-3p, hsa-let-7g-5p, hsa-let-7i-3p, hsa-let-7i-5p, miR-10a-3p, miR-10a-5p, miR-1184, hsa-let- 7f-l-3p, hsa-let-7f-2--5p, hsa-let-7f-5p, miR-125b-l-3p, miR-125b-2-3p, miR-125b-5p, miR-1279, miR-130a-3p, miR-130a-5p, miR-132-3p, miR-132-5p, miR-142-3p, miR-
- MicroRNAs that are known to be expressed in the liver include, but are not limited to, miR- 107, miR-122-3p, miR-122-5p, miR-1228-3p, miR-1228-5p, miR- 1249, miR-129-5p, miR-1303, miR-151a-3p, miR-151a-5p, miR-152, miR-194-3p, miR-194- 5p, miR-199a-3p, miR-199a-5p, miR-199b-3p, miR-199b-5p, miR-296-5p, miR-557, miR-581, miR-939-3p, miR-939-5p.
- MicroRNA binding sites from any liver specific microRNA can be introduced to or removed from the polynucleotides to regulate the expression of the polynucleotides in the liver.
- Liver specific microRNAs binding sites can be engineered alone or further in combination with immune cells (e.g. APCs) microRNA binding sites in order to prevent immune reaction against protein expression in the liver.
- immune cells e.g. APCs
- MicroRNAs that are known to be expressed in the lung include, but are not limited to, let-7a-2-3p, let-7a-3p, let-7a-5p, miR-126-3p, miR-126-5p, miR-127-3p, miR- 127-5p, miR-130a-3p, miR-130a-5p, miR-130b-3p, miR-130b-5p, miR-133a, miR-133b, miR- 134, miR-18a-3p, miR-18a-5p, miR-18b-3p, miR-18b-5p, miR-24-l-5p, miR-24-2- 5p, miR-24-3p, miR-296-3p, miR-296-5p, miR-32-3p, miR-337-3p, miR-337-5p, miR- 381-3p, miR-381-5p.
- MicroRNA binding sites from any lung specific microRNA can be introduced to or removed from the polynucleotide to regulate the expression of the polynucleotide in the lung.
- Lung specific microRNAs binding sites can be engineered alone or further in combination with immune cells (e.g. APCs) microRNA binding sites in order to prevent an immune reaction against protein expression in the lung.
- immune cells e.g. APCs
- MicroRNAs that are known to be expressed in the heart include, but are not limited to, miR-1, miR-133a, miR-133b, miR-149-3p, miR-149-5p, miR-186-3p, miR- 186-5p, miR-208a, miR-208b, miR-210, miR-296-3p, miR-320, miR-451a, miR-451b, miR-499a-3p, miR-499a-5p, miR-499b-3p, miR-499b-5p, miR-744-3p, miR-744-5p, miR-92b-3p and miR-92b-5p.
- MicroRNA binding sites from any heart specific microRNA can be introduced to or removed from the polynucleotides to regulate the expression of the polynucleotides in the heart.
- Heart specific microRNAs binding sites can be engineered alone or further in combination with immune cells (e.g. APCs) microRNA binding sites to prevent an immune reaction against protein expression in the heart.
- immune cells e.g. APCs
- MicroRNAs that are known to be expressed in the nervous system include, but are not limited to, miR-124-5p, miR-125a-3p, miR-125a-5p, miR-125b- l-3p, miR-125b- 2-3p, miR-125b-5p,miR-1271-3p, miR-1271-5p, miR-128, miR-132-5p, miR-135a-3p, miR-135a-5p, miR-135b-3p, miR-135b-5p, miR-137, miR-139-5p, miR-139-3p, miR- 149-3p, miR-149-5p, miR-153, miR-181c-3p, miR-181c-5p, miR-183-3p, miR-183-5p, miR- 190a, miR- 190b, miR-212-3p, miR-212-5p, miR-219-l-3p, miR-219-2-3p, miR- 23a-3p, miR-
- MicroRNAs enriched in the nervous system further include those specifically expressed in neurons, including, but not limited to, miR-132-3p, miR-132-3p, miR-148b-3p, miR- 148b-5p, miR-151a-3p, miR-151a-5p, miR-212-3p, miR-212-5p, miR-320b, miR-320e, miR-323a-3p, miR-323a-5p, miR-324-5p, miR-325, miR-326, miR-328, miR-922 and those specifically expressed in glial cells, including, but not limited to, miR-1250, miR- 219-l-3p, miR-219-2-3p, miR-219-5p, miR-23a-3p, miR-23a-5p, miR-3065-3p, miR- 3065-5p, miR-30e-3p, miR-30e-5p, miR-32-5p, miR-338-5p, miR-657.
- MicroRNA binding sites from any CNS specific microRNA can be introduced to or removed from the polynucleotides to regulate the expression of the polynucleotide in the nervous system.
- Nervous system specific microRNAs binding sites can be engineered alone or further in combination with immune cells (e.g. APCs) microRNA binding sites in order to prevent immune reaction against protein expression in the nervous system.
- immune cells e.g. APCs
- MicroRNAs that are known to be expressed in the pancreas include, but are not limited to, miR-105-3p, miR-105-5p, miR-184, miR-195-3p, miR-195-5p, miR- 196a-3p, miR-196a-5p, miR-214-3p, miR-214-5p, miR-216a-3p, miR-216a-5p, miR-30a- 3p, miR-33a-3p, miR-33a-5p, miR-375, miR-7-l-3p, miR-7-2-3p, miR-493-3p, miR-493- 5p and miR-944.
- MicroRNA binding sites from any pancreas specific microRNA can be introduced to or removed from the polynucleotide to regulate the expression of the polynucleotide in the pancreas.
- Pancreas specific microRNAs binding sites can be engineered alone or further in combination with immune cells (e.g. APCs) microRNA binding sites in order to prevent an immune reaction against protein expression in the pancreas.
- immune cells e.g. APCs
- MicroRNAs that are known to be expressed in the kidney further include, but are not limited to, miR-122-3p, miR-145-5p, miR-17-5p, miR-192-3p, miR-192-5p, miR- 194-3p, miR-194-5p, miR-20a-3p, miR-20a-5p, miR-204-3p, miR-204-5p, miR-210, miR-216a-3p, miR-216a-5p, miR-296-3p, miR-30a-3p, miR-30a-5p, miR-30b-3p, miR- 30b-5p, miR-30c-l-3p, miR-30c-2-3p, miR30c-5p, miR-324-3p, miR-335-3p, miR-335- 5p, miR-363-3p, miR-363-5p and miR-562.
- MicroRNA binding sites from any kidney specific microRNA can be introduced to or removed from the polynucleotide to regulate the expression of the polynucleotide in the kidney.
- Kidney specific microRNAs binding sites can be engineered alone or further in combination with immune cells (e.g. APCs) microRNA binding sites to prevent an immune reaction against protein expression in the kidney.
- immune cells e.g. APCs
- MicroRNAs that are known to be expressed in the muscle further include, but are not limited to, let-7g-3p, let-7g-5p, miR-1, miR-1286, miR-133a, miR-133b, miR- 140-3p, miR-143-3p, miR-143-5p, miR-145-3p, miR-145-5p, miR-188-3p, miR-188-5p, miR-206, miR-208a, miR-208b, miR-25-3p and miR-25-5p.
- MicroRNA binding sites from any muscle specific microRNA can be introduced to or removed from the polynucleotide to regulate the expression of the polynucleotide in the muscle.
- Muscle specific microRNAs binding sites can be engineered alone or further in combination with immune cells (e.g. APCs) microRNA binding sites to prevent an immune reaction against protein expression in the muscle.
- MicroRNAs are differentially expressed in different types of cells, such as endothelial cells, epithelial cells and adipocytes.
- microRNAs that are expressed in endothelial cells include, but are not limited to, let-7b-3p, let-7b-5p, miR- 100-3p, miR-100-5p, miR-101-3p, miR-101-5p, miR-126-3p, miR-126-5p, miR-1236-3p, miR-1236-5p, miR-130a-3p, miR-130a-5p, miR-17-5p, miR-17-3p, miR-18a-3p, miR- 18a-5p, , miR-19a-3p, miR-19a-5p, miR-19b- l-5p, miR-19b-2-5p, miR-19b-3p, miR- 20a-3p, miR-20a-5p, miR-217, miR-210, miR-21-3p, miR-21-5p, miR-221-3p,
- microRNA binding sites from any endothelial cell specific microRNA can be introduced to or removed from the polynucleotide to modulate the expression of the polynucleotide in the endothelial cells in various conditions.
- microRNAs that are expressed in epithelial cells include, but are not limited to, let-7b-3p, let-7b-5p, miR- 1246, miR-200a-3p, miR-200a-5p, miR- 200b-3p, miR-200b-5p, miR-200c-3p, miR-200c-5p, miR-338-3p, miR-429, miR-451a, miR-451b, miR-494, miR-802 and miR-34a, miR-34b-5p , miR-34c-5p, miR-449a, miR- 449b-3p, miR-449b-5p specific in respiratory ciliated epithelial cells; let-7 family, miR- 133a, miR-133b, miR-126 specific in lung epithelial cells; miR-382-3p, miR-382-5p specific in renal epithelial cells and miR-762 specific in corneal epithelial cells.
- MicroRNA binding sites from any epithelial cell specific MicroRNA can be introduced to or removed from the polynucleotide to modulate the expression of the polynucleotide in the epithelial cells in various conditions.
- a large group of microRNAs are enriched in embryonic stem cells, controlling stem cell self-renewal as well as the development and/or differentiation of various cell lineages, such as neural cells, cardiac, hematopoietic cells, skin cells, osteogenic cells and muscle cells (Kuppusamy KT et al, Curr. Mol Med, 2013, 13(5), 757-764; Vidigal JA and Ventura A, Semin Cancer Biol. 2012, 22(5-6), 428-436; Goff LA et al, PLoS One, 2009, 4:e7192; Morin RD et al, Genome Res,2008,18, 610-621; Yoo JK et al, Stem Cells Dev.
- MicroRNAs abundant in embryonic stem cells include, but are not limited to, let-7a-2-3p, let-a-3p, let-7a-5p, let7d-3p, let-7d-5p, miR- 103a-2-3p, miR-103a-5p, miR-106b-3p, miR-106b-5p, miR-1246, miR-1275, miR-138- l-3p, miR-138-2-3p, miR-138-5p, miR-154-3p, miR-154-5p, miR-200c-3p, miR-200c- 5p, miR-290, miR-301a-3p, miR-301a-5p, miR-302a-3p, miR-302a-5p, miR-302b-3p, miR-302b-5p, miR-302c-3p, miR-302c-5p, miR-302d-3p, miR-302d-5
- the binding sites of embryonic stem cell specific microRNAs can be included in or removed from the 3-UTR of the polynucleotide to modulate the development and/or differentiation of embryonic stem cells, to inhibit the senescence of stem cells in a degenerative condition (e.g. degenerative diseases), or to stimulate the senescence and apoptosis of stem cells in a disease condition (e.g. cancer stem cells).
- a degenerative condition e.g. degenerative diseases
- apoptosis of stem cells e.g. cancer stem cells
- microRNA expression studies are conducted in the art to profile the differential expression of microRNAs in various cancer cells /tissues and other diseases. Some microRNAs are abnormally over-expressed in certain cancer cells and others are under-expressed. For example, microRNAs are differentially expressed in cancer cells (WO2008/154098, US2013/0059015, US2013/0042333, WO2011/157294); cancer stem cells (US2012/0053224); pancreatic cancers and diseases (US2009/0131348,
- WO2011/076142 cancer positive lympho nodes (WO2009/100430, US2009/0263803); nasopharyngeal carcinoma (EP2112235); chronic obstructive pulmonary disease
- microRNA sites that are over-expressed in certain cancer and/or tumor cells can be removed from the 3-UTR of the polynucleotide encoding the polypeptide of interest, restoring the expression suppressed by the over- expressed microRNAs in cancer cells, thus ameliorating the corresponsive biological function, for instance, transcription stimulation and/or repression, cell cycle arrest, apoptosis and cell death. Normal cells and tissues, wherein microRNAs expression is not up-regulated, will remain unaffected.
- MicroRNA can also regulate complex biological processes such as
- angiogenesis (miR-132) (Anand and Cheresh Curr Opin Hematol 2011 18: 171-176).
- binding sites for microRNAs that are involved in such processes may be removed or introduced, in order to tailor the expression of the modified nucleic acids, enhanced modified RNA or ribonucleic acids expression to biologically relevant cell types or to the context of relevant biological processes.
- the mRNA are defined as auxotrophic mRNA.
- MicroRNA gene regulation may be influenced by the sequence surrounding the microRNA such as, but not limited to, the species of the surrounding sequence, the type of sequence (e.g., heterologous, homologous and artificial), regulatory elements in the surrounding sequence and/or structural elements in the surrounding sequence.
- the microRNA may be influenced by the 5 'UTR and/or the 3 'UTR.
- a non-human 3 'UTR may increase the regulatory effect of the microRNA sequence on the expression of a polypeptide of interest compared to a human 3 'UTR of the same sequence type.
- regulatory elements and/or structural elements of the 5' -UTR can influence microRNA mediated gene regulation.
- a regulatory element and/or structural element is a structured IRES (Internal Ribosome Entry Site) in the 5 'UTR, which is necessary for the binding of translational elongation factors to initiate protein translation. EIF4A2 binding to this secondarily structured element in the 5 'UTR is necessary for microRNA mediated gene expression (Meijer HA et al, Science, 2013, 340, 82-85, herein incorporated by reference in its entirety).
- the modified nucleic acids, enhanced modified RNA or ribonucleic acids of the invention can further be modified to include this structured 5' -UTR in order to enhance microRNA mediated gene regulation.
- At least one microRNA site can be engineered into the 3' UTR of the modified nucleic acids, enhanced modified RNA or ribonucleic acids of the present invention.
- at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten or more microRNA sites may be engineered into the 3 ' UTR of the ribonucleic acids of the present invention.
- the microRNA sites incorporated into the modified nucleic acids, enhanced modified RNA or ribonucleic acids may be the same or may be different microRNA sites.
- the microRNA sites incorporated into the modified nucleic acids, enhanced modified RNA or ribonucleic acids may target the same or different tissues in the body.
- tissue-, cell-type-, or disease-specific microRNA binding sites in the 3 ' UTR of a modified nucleic acid mRNA through the introduction of tissue-, cell-type-, or disease-specific microRNA binding sites in the 3 ' UTR of a modified nucleic acid mRNA, the degree of expression in specific cell types (e.g. hepatocytes, myeloid cells, endothelial cells, cancer cells, etc.) can be reduced.
- a microRNA site can be engineered near the 5' terminus of the 3 'UTR, about halfway between the 5' terminus and 3 'terminus of the 3 'UTR and/or near the 3 'terminus of the 3 'UTR.
- a microRNA site may be engineered near the 5' terminus of the 3 'UTR and about halfway between the 5' terminus and 3 'terminus of the 3 'UTR.
- a microRNA site may be engineered near the 3 'terminus of the 3 'UTR and about halfway between the 5' terminus and 3 'terminus of the 3 'UTR.
- a microRNA site may be engineered near the 5' terminus of the 3 'UTR and near the 3' terminus of the 3 'UTR.
- a 3 'UTR can comprise 4 microRNA sites.
- the microRNA sites may be complete microRNA binding sites, microRNA seed sequences and/or microRNA binding site sequences without the seed sequence.
- a nucleic acid of the invention may be engineered to include at least one microRNA in order to dampen the antigen presentation by antigen presenting cells.
- the microRNA may be the complete microRNA sequence, the microRNA seed sequence, the microRNA sequence without the seed or a combination thereof.
- the microRNA incorporated into the nucleic acid may be specific to the hematopoietic system.
- the microRNA incorporated into the nucleic acid of the invention to dampen antigen presentation is miR-142-3p.
- a nucleic acid may be engineered to include microRNA sites which are expressed in different tissues of a subject.
- a modified nucleic acid, enhanced modified RNA or ribonucleic acid of the present invention may be engineered to include miR-192 and miR-122 to regulate expression of the modified nucleic acid, enhanced modified RNA or ribonucleic acid in the liver and kidneys of a subject.
- a modified nucleic acid, enhanced modified RNA or ribonucleic acid may be engineered to include more than one microRNA sites for the same tissue.
- a modified nucleic acid, enhanced modified RNA or ribonucleic acid of the present invention may be engineered to include miR- 17-92 and miR-126 to regulate expression of the modified nucleic acid, enhanced modified RNA or ribonucleic acid in endothelial cells of a subject.
- the therapeutic window and or differential expression associated with the target polypeptide encoded by the modified nucleic acid, enhanced modified RNA or ribonucleic acid encoding a signal (also referred to herein as a polynucleotide) of the invention may be altered.
- polynucleotides may be designed whereby a death signal is more highly expressed in cancer cells (or a survival signal in a normal cell) by virtue of the miRNA signature of those cells. Where a cancer cell expresses a lower level of a particular miRNA, the polynucleotide encoding the binding site for that miRNA (or miRNAs) would be more highly expressed.
- the target polypeptide encoded by the polynucleotide is selected as a protein which triggers or induces cell death.
- Neigboring noncancer cells, harboring a higher expression of the same miRNA would be less affected by the encoded death signal as the polynucleotide would be expressed at a lower level due to the affects of the miRNA binding to the binding site or "sensor" encoded in the 3'UTR.
- cytoprotective signals may be delivered to tissues containing cancer and non cancerous cells where a miRNA has a higher expression in the cancer cells— the result being a lower survival signal to the cancer cell and a larger survival signature to the normal cell.
- Multiple polynucleotides may be designed and administered having different signals according to the previous paradigm.
- the expression of a nucleic acid may be controlled by incorporating at least one sensor sequence in the nucleic acid and formulating the nucleic acid.
- a nucleic acid may be targeted to an orthotopic tumor by having a nucleic acid incorporating a miR-122 binding site and formulated in a lipid nanoparticle comprising the cationic lipid DLin-KC2-DMA (see e.g., the experiments described in Example 49 A and 49B).
- the polynucleotides may be modified as to avoid the deficiencies of other polypeptide-encoding molecules of the art. Hence, in this embodiment the polynucleotides are referred to as modified polynucleotides.
- modified nucleic acids, enhanced modified RNA or ribonucleic acids such as polynucleotides can be engineered for more targeted expression in specific cell types or only under specific biological conditions.
- modified nucleic acids, enhanced modified RNA or ribonucleic acids could be designed that would be optimal for protein expression in a tissue or in the context of a biological condition.
- Transfection experiments can be conducted in relevant cell lines, using engineered modified nucleic acids, enhanced modified RNA or ribonucleic acids and protein production can be assayed at various time points post-transfection.
- cells can be transfected with different microRNA binding site-engineering nucleic acids or mRNA and by using an ELISA kit to the relevant protein and assaying protein produced at 6 hr, 12 hr, 24 hr, 48 hr, 72 hr and 7 days post-transfection.
- In vivo experiments can also be conducted using microRNA-binding site-engineered molecules to examine changes in tissue-specific expression of formulated modified nucleic acids, enhanced modified RNA or ribonucleic acids.
- Non- limiting examples of cell lines which may be useful in these investigations include those from ATCC (Manassas, VA) including MRC-5, A549, T84, NCI-H2126 [H2126], NCI-H1688 [H1688], WI-38, WI-38 VA-13 subline 2RA, WI-26 VA4, C3A [HepG2/C3A, derivative of Hep G2 (ATCC HB-8065)], THLE-3, H69AR, NCI-H292 [H292], CFPAC-1, NTERA-2 cl.Dl [NT2/D1], DMS 79, DMS 53, DMS 153, DMS 114, MSTO-211H, SW 1573 [SW-1573, SW1573], SW 1271 [SW-1271, SW1271], SHP-77, SNU-398, SNU-449, SNU-182, SNU-475, SNU-387, SNU-423, NL20, NL20-TA [NL20T-A],
- modified messenger R A can be designed to incorporate microRNA binding region sites that either have 100% identity to known seed sequences or have less than 100% identity to seed sequences.
- the seed sequence can be partially mutated to decrease microRNA binding affinity and as such result in reduced downmodulation of that mRNA transcript.
- the degree of match or mis-match between the target mRNA and the microRNA seed can act as a rheostat to more finely tune the ability of the microRNA to modulate protein expression.
- mutation in the non-seed region of a microRNA binding site may also impact the ability of a microRNA to modulate protein expression.
- a miR sequence may be incorporated into the loop of a stem loop.
- a miR seed sequence may be incorporated in the loop of a stem loop and a miR binding site may be incorporated into the 5 ' or 3 ' stem of the stem loop.
- a TEE may be incorporated on the 5 'end of the stem of a stem loop and a miR seed may be incorporated into the stem of the stem loop.
- a TEE may be incorporated on the 5 'end of the stem of a stem loop, a miR seed may be incorporated into the stem of the stem loop and a miR binding site may be incorporated into the 3 'end of the stem or the sequence after the stem loop.
- the miR seed and the miR binding site may be for the same and/or different miR sequences.
- the incorporation of a miR sequence and/or a TEE sequence changes the shape of the stem loop region which may increase and/or descrease translation, (see e.g, Kedde et al. A Pumilio-induced RNA structure switch in p27-3 'UTR controls miR-221 and miR-22 accessibility. Nature Cell Biology. 2010, herein incorporated by reference in its entirety).
- the incorporation of a miR sequence and/or a TEE sequence changes the shape of the stem loop region which may increase and/or descrease translation, (see e.g, Kedde et al. A Pumilio-induced RNA structure switch in p27-3 'UTR controls miR-221 and miR-22 accessibility. Nature Cell Biology. 2010, herein incorporated by reference in its entirety).
- the 5'UTR may comprise at least one microRNA sequence.
- the microRNA sequence may be, but is not limited to, a 19 or 22 nucleotide sequence and/or a microRNA sequence without the seed.
- microRNA sequence in the 5 'UTR may be used to stabilize the nucleic acid and/or mRNA described herein.
- a microRNA sequence in the 5 'UTR may be used to decrease the accessibility of the site of translation initiation such as, but not limited to a start codon.
- Matsuda et al (PLoS One. 2010 1 l(5):e 15057; herein incorporated by reference in its entirety) used antisense locked nucleic acid (LNA) oligonucleotides and exon-junctino complexes (EJCs) around a start codon (-4 to +37 where the A of the AUG codons is +1) in order to decrease the accessibility to the first start codon (AUG).
- LNA antisense locked nucleic acid
- EJCs exon-junctino complexes
- the nucleic acids or mRNA of the present invention may comprise a microRNA sequence, instead of the LNA or EJC sequence described by Matsuda et al, near the site of translation initiation in order to decrease the accessibility to the site of translation initiation.
- the site of translation initiation may be prior to, after or within the microRNA sequence.
- the site of translation initiation may be located within a microRNA sequence such as a seed sequence or binding site.
- the site of translation initiation may be located within a miR-122 sequence such as the seed sequence or the mir-122 binding site.
- the nucleic acids or mRNA of the present invention may include at least one microRNA in order to dampen the antigen presentation by antigen presenting cells.
- the microRNA may be the complete microRNA sequence, the microRNA seed sequence, the microRNA sequence without the seed or a combination thereof.
- the microRNA incorporated into the nucleic acids or mRNA of the present invention may be specific to the hematopoietic system.
- the microRNA incorporated into the nucleic acids or mRNA of the present invention to dampen antigen presentation is miR-142-3p.
- the nucleic acids or mRNA of the present invention may include at least one microRNA in order to dampen expression of the encoded polypeptide in a cell of interest.
- the nucleic acids or mRNA of the present invention may include at least one miR-122 binding site in order to dampen expression of an encoded polypeptide of interest in the liver.
- the nucleic acids or mRNA of the present invention may include at least one miR-142-3p binding site, miR-142-3p seed sequence, miR-142-3p binding site without the seed, miR- 142-5p binding site, miR-142-5p seed sequence, miR-142-5p binding site without the seed, miR-146 binding site, miR-146 seed sequence and/or miR-146 binding site without the seed sequence (see e.g., the experiment outlined in Example 24, 25, 26, 26, 36 and 48).
- the nucleic acids or mRNA of the present invention may comprise at least one microRNA binding site in the 3'UTR in order to selectively degrade mRNA therapeutics in the immune cells to subdue unwanted immunogenic reactions caused by therapeutic delivery.
- the microRNA binding site may be the modified nucleic acids more unstable in antigen presenting cells.
- Non- limiting examples of these microRNA include mir-142-5p, mir-142-3p, mir-146a-5p and mir-146-3p.
- the nucleic acids or mRNA of the present invention comprises at least one microRNA sequence in a region of the nucleic acid or mRNA which may interact with a RNA binding protein.
- RNA Motifs for RNA Binding Proteins (RBPs)
- RNA binding proteins can regulate numerous aspects of co- and post- transcription gene expression such as, but not limited to, RNA splicing, localization, translation, turnover, polyadenylation, capping, modification, export and localization.
- RNA-binding domains such as, but not limited to, RNA recognition motif (RR) and hnRNP K-homology (KH) domains, typically regulate the sequence association between RBPs and their RNA targets (Ray et al. Nature 2013. 499: 172-177; herein incorporated by reference in its entirety).
- the canonical RBDs can bind short RNA sequences.
- the canonical RBDs can recognize structure RNAs.
- Non limiting examples of R A binding proteins and related nucleic acid and protein sequences are shown in Table 26 in Example 23.
- an mRNA encoding HuR can be co-transfected or co-injected along with the mRNA of interest into the cells or into the tissue.
- These proteins can also be tethered to the mRNA of interest in vitro and then aministered to the cells togethger.
- Poly A tail binding protein, PABP interacts with eukaryotic translation initiation factor eIF4G to stimulate translational initiation.
- Co-administration of mRNAs encoding these RBPs along with the mRNA drug and/or tethering these proteins to the mRNA drug in vitro and administering the protein-bound mRNA into the cells can increase the translational efficiency of the mRNA.
- the same concept can be extended to co-administration of mRNA along with mRNAs encoding various translation factors and facilitators as well as with the proteins themselves to influence RNA stability and/or translational efficiency.
- the nucleic acids and/or mRNA may comprise at least one RNA-binding motif such as, but not limited to a RNA-binding domain (RBD).
- RBD RNA-binding domain
- the RBD may be any of the RBDs, fragments or variants thereof descried by Ray et al. (Nature 2013. 499: 172-177; herein incorporated by reference in its entirety).
- the nucleic acids or mRNA of the present invention may comprise a sequence for at least one RNA-binding domain (RBDs).
- RBDs RNA-binding domains
- At least one flanking region may comprise at least one RBD.
- the first flanking region and the second flanking region may both comprise at least one RBD.
- the RBD may be the same or each of the RBDs may have at least 60% sequence identity to the other RBD.
- at least on RBD may be located before, after and/or within the 3 'UTR of the nucleic acid or mRNA of the present invention.
- at least one RBD may be located before or within the first 300 nucleosides of the 3'UTR.
- the nucleic acids and/or mRNA of the present invention may comprise at least one RBD in the first region of linked nucleosides.
- the RBD may be located before, after or within a coding region (e.g., the ORF).
- the first region of linked nucleosides and/or at least one flanking region may comprise at least on RBD.
- the first region of linked nucleosides may comprise a RBD related to splicing factors and at least one flanking region may comprise a RBD for stability and/or translation factors.
- the nucleic acids and/or mRNA of the present invention may comprise at least one RBD located in a coding and/or non-coding region of the nucleic acids and/or mRNA.
- At least one RBD may be incorporated into at least one flanking region to increase the stability of the nucleic acid and/or mRNA of the present invention.
- a microRNA sequence in a RNA binding protein motif may be used to decrease the accessibility of the site of translation initiation such as, but not limited to a start codon.
- the nucleic acids or mRNA of the present invention may comprise a microRNA sequence, instead of the LNA or EJC sequence described by Matsuda et al, near the site of translation initiation in order to decrease the accessibility to the site of translation initiation.
- the site of translation initiation may be prior to, after or within the microRNA sequence.
- the site of translation initiation may be located within a microRNA sequence such as a seed sequence or binding site.
- the site of translation initiation may be located within a miR-122 sequence such as the seed sequence or the mir-122 binding site.
- an antisense locked nucleic acid LNA
- oligonucleotides and exon-junctino complexes may be used in the RNA binding protein motif.
- the LNA and EJCs may be used around a start codon (-4 to +37 where the A of the AUG codons is +1) in order to decrease the accessibility to the first start codon (AUG).
- cis- regulatory elements may include, but are not limited to, Cis- R P
- CDEs are a class of regulatory motifs that mediate mRNA degradation through their interaction with Roquin proteins.
- CDEs are found in many mRNAs that encode regulators of development and inflammation to limit cytokine production in macrophage (Leppek K et al, 2013, Cell, 153, 869-881, which is herein incorporated by reference in its entirety).
- a particular CDE can be introduced to the nucleic acids or mRNA when the degradation of polypeptides in a cell or tissue is desired.
- a particular CDE can also be removed from the nucleic acids or mRNA to maintain a more stable mRNA in a cell or tissue for sustaining protein expression.
- the nucleic acids or mRNA of the present invention may be auxotrophic.
- auxotrophic refers to mRNA that comprises at least one feature that triggers, facilitates or induces the degradation or inactivation of the mRNA in response to spatial or temporal cues such that protein expression is substantially prevented or reduced.
- spatial or temporal cues include the location of the mRNA to be translated such as a particular tissue or organ or cellular environment. Also contemplated are cues involving temperature, pH, ionic strength, moisture content and the like.
- the feature is located in a terminal region of the nucleic acids or mRNA of the present invention.
- the auxotrophic mRNA may contain a miR binding site in the terminal region which binds to a miR expressed in a selected tissue so that the expression of the auxotrophic mRNA is substantially prevented or reduced in the selected tissue.
- an auxotrophic mRNA containing a miR- 122 binding site will not produce protein if localized to the liver since miR- 122 is expressed in the liver and binding of the miR would effectuate destruction of the auxotrophic mRNA.
- HEK293 cells do not express miR-122 so there would be little to no downregulation of a nucleic acid or mRNA of the present invention having a miR-122 sequence in HEK293 but for hepatocytes which do expression miR-122 there would be a downregulation of a nucleic acid or mRNA of the present invention having a miR-122 sequence in
- the miR-122 level can be measured in HeLa cells, primary human hepatocytes and primary rat hepatocytes prior to administration with a nucleic acid or mRNA of the present invention encoding at least one miR-122 binding site, miR-122 binding site without the seed sequence or a miR-122 binding site After administration the expression of the modified nucleic acid with a microRNA sequence can be measured to determine the dampening effect of the miR-122 in the modified nucleic acid (see e.g., the studies outlined in Examples 28, 29, 30, 35, 45, 46 and 47).
- the effectiveness of the miR-122 binding site, miR-122 seed or the miR-122 binding site without the seed in different 3'UTRs may be evaluated in order to determine the proper UTR for the desired outcome such as, but not limited to, the highest dampening effect (see e.g., the study outlined in Example 35 and 46).
- the degradation or inactivation of auxotrophic mRNA may comprise a feature responsive to a change in pH.
- the auxotrophic mRNA may be triggered in an environment having a pH of between pH 4.5 to 8.0 such as at a pH of 5.0 to 6.0 or a pH of 6.0 to 6.5.
- the change in pH may be a change of 0.1 unit, 0.2 units, 0.3 units, 0.4 units, 0.5 units, 0.6 units, 0.7 units, 0.8 units, 0.9 units, 1.0 units, 1.1 units, 1.2 units, 1.3 units, 1.4 units, 1.5 units, 1.6 units, 1.7 units, 1.8 units, 1.9 units, 2.0 units, 2.1 units, 2.2 units, 2.3 units, 2.4 units, 2.5 units, 2.6 units, 2.7 units, 2.8 units, 2.9 units, 3.0 units, 3.1 units, 3.2 units, 3.3 units, 3.4 units, 3.5 units, 3.6 units, 3.7 units, 3.8 units, 3.9 units, 4.0 units or more.
- the degradation or inactivation of auxotrophic mRNA may be triggered or induced by changes in temperature.
- a change of temperature from room temperature to body temperature may be less than 1°C, less than 5°C, less than 10°C, less than 15°C, less than 20°C, less than 25°C or more than 25°C.
- the degradation or inactivation of auxotrophic mRNA may be triggered or induced by a change in the levels of ions in the subject.
- the ions may be cations or anions such as, but not limited to, sodium ions, potassium ions, chloride ions, calcium ions, magnesium ions and/or phosphate ions.
- 3'UTRs are known to have stretches of Adenosines and Uridines embedded in them. These AU rich signatures are particularly prevalent in genes with high rates of turnover. Based on their sequence features and functional properties, the AU rich elements (AREs) can be separated into three classes (Chen et al, 1995): Class I AREs contain several dispersed copies of an AUUUA motif within U-rich regions. C-Myc and MyoD contain class I AREs. Class II AREs possess two or more overlapping
- AREs containing this type of AREs include GM-CSF and TNF-a. Class III ARES are less well defined. These U rich regions do not contain an AUUUA motif. c-Jun and Myogenin are two well-studied examples of this class. Most proteins binding to the AREs are known to destabilize the messenger, whereas members of the ELAV family, most notably HuR, have been documented to increase the stability of mRNA. HuR binds to AREs of all the three classes. Engineering the HuR specific binding sites into the 3' UTR of nucleic acid molecules will lead to HuR binding and thus, stabilization of the message in vivo.
- AREs 3' UTR AU rich elements
- AREs 3' UTR AU rich elements
- one or more copies of an ARE can be introduced to make nucleic acids or mRNA of the invention less stable and thereby curtail translation and decrease production of the resultant protein.
- AREs can be identified and removed or mutated to increase the intracellular stability and thus increase translation and production of the resultant protein. Transfection experiments can be conducted in relevant cell lines, using nucleic acids or mRNA of the invention and protein production can be assayed at various time points post-transfection.
- cells can be transfected with different ARE-engineering molecules and by using an ELISA kit to the relevant protein and assaying protein produced at 6 hr, 12 hr, 24 hr, 48 hr, and 7 days post-transfection.
- ELISA kit to the relevant protein and assaying protein produced at 6 hr, 12 hr, 24 hr, 48 hr, and 7 days post-transfection.
- nucleic acids of the present invention may include a triple helix on the 3 ' end of the modified nucleic acid, enhanced modified RNA or ribonucleic acid.
- the 3 ' end of the nucleic acids of the present invention may include a triple helix alone or in combination with a Poly-A tail.
- the nucleic acid of the present invention may comprise at least a first and a second U-rich region, a conserved stem loop region between the first and second region and an A-rich region.
- the first and second U-rich region and the A- rich region may associate to form a triple helix on the 3 ' end of the nucleic acid. This triple helix may stabilize the nucleic acid, enhance the translational efficiency of the nucleic acid and/or protect the 3' end from degradation.
- triple helices include, but are not limited to, the triple helix sequence of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), ⁇ - ⁇ and polyadenylated nuclear (PAN) RNA (See Wilusz et al, Genes & Development 2012 26:2392-2407; herein incorporated by reference in its entirety).
- MALAT1 metastasis-associated lung adenocarcinoma transcript 1
- PAN polyadenylated nuclear
- the 3' end of the modified nucleic acids, enhanced modified RNA or ribonucleic acids of the present invention comprises a first U-rich region comprising TTTTTCTTTT (SEQ ID NO: 1), a second U-rich region comprising TTTTGCTTTTT (SEQ ID NO: 2) or TTTTGCTTTT (SEQ ID NO: 3), an A- rich region comprising AAAAAGCAAAA (SEQ ID NO: 4).
- the 3 ' end of the nucleic acids of the present invention comprises a triple helix formation structure comprising a first U-rich region, a conserved region, a second U-rich region and an A-rich region.
- the triple helix may be formed from the cleavage of a MALAT1 sequence prior to the cloverleaf structure.
- MALAT1 is a long non-coding RNA which, when cleaved, forms a triple helix and a tRNA-like cloverleaf structure.
- the MALAT1 transcript then localizes to nuclear speckles and the tRNA-like cloverleaf localizes to the cytoplasm (Wilusz et al. Cell 2008 135(5): 919-932; herein incorporated by reference in its entirety).
- the terminal end of the nucleic acid of the present invention comprising the MALAT1 sequence can then form a triple helix structure, after RNaseP cleavage from the cloverleaf structure, which stabilizes the nucleic acid (Peart et al. Non-mRNA 3 ' end formation: how the other half lives; WIREs RNA 2013; herein incorporated by reference in its entirety).
- the nucleic acids or mRNA described herein comprise a MALATl sequence.
- the nucleic acids or mRNA may be polyadenylated.
- the nucleic acids or mRNA is not polyadenylated but has an increased resistance to degradation compared to unmodified nucleic acids or mRNA.
- the nucleic acids of the present invention may comprise a MALATl sequence in the second flanking region (e.g., the 3'UTR).
- the MALATl sequence may be human or mouse (see e.g., the polynucleotides described in Table 37 in Example 38).
- the cloverleaf structure of the MALATl sequence may also undergo processing by RNaseZ and CCA adding enzyme to form a tRNA-like structure called mascRNA (MALATl -associated small cytoplasmic RNA).
- mascRNA MALATl -associated small cytoplasmic RNA
- the mascRNA may encode a protein or a fragment thereof and/or may comprise a microRNA sequence.
- the mascRNA may comprise at least one chemical modification described herein.
- the nucleic acids of the present invention may include a stem loop such as, but not limited to, a histone stem loop.
- the stem loop may be a nucleotide sequence that is about 25 or about 26 nucleotides in length such as, but not limited to, SEQ ID NOs: 7-17 as described in International Patent Publication No.
- the histone stem loop may be located 3' relative to the coding region (e.g., at the 3' terminus of the coding region). As a non- limiting example, the stem loop may be located at the 3' end of a nucleic acid described herein.
- the stem loop may be located in the second terminal region.
- the stem loop may be located within an untranslated region (e.g., 3'UTR) in the second terminal region.
- the nucleic acid such as, but not limited to mRNA, which comprises the histone stem loop may be stabilized by the addition of at least one chain terminating nucleoside.
- the addition of at least one chain terminating nucleoside may slow the degradation of a nucleic acid and thus can increase the half-life of the nucleic acid.
- the chain terminating nucleoside may be, but is not limited to, those described in International Patent Publication No. WO2013103659, herein incorporated by reference in its entirety.
- the chain terminating nucleosides which may be used with the present invention includes, but is not limited to, 3'-deoxyadenosine (cordycepin), 3'-deoxyuridine, 3'-deoxycytosine, 3'- deoxyguanosine, 3'-deoxythymine, 2',3'-dideoxynucleosides, such as 2', 3'- dideoxyadenosine, 2',3'-dideoxyuridine, 2',3'-dideoxycytosine, 2',3'- dideoxyguanosine, 2',3'-dideoxythymine, a 2'-deoxynucleoside, or a -O- methylnucleoside.
- the nucleic acid such as, but not limited to mRNA, which comprises the histone stem loop may be stabilized by a modification to the 3 'region of the nucleic acid that can prevent and/or inhibit the addition of oligio(U) (see e.g., International Patent Publication No. WO2013103659, herein incorporated by reference in its entirety).
- the nucleic acid such as, but not limited to mRNA, which comprises the histone stem loop may be stabilized by the addition of an oligonucleotide that terminates in a 3'-deoxynucleoside, 2',3'-dideoxynucleoside 3 ⁇ -0- methylnucleosides, 3' ⁇ 0 ⁇ ethylnucleosides, 3 -arabinosides, and other modified nucleosides known in the art and/or described herein.
- an oligonucleotide that terminates in a 3'-deoxynucleoside, 2',3'-dideoxynucleoside 3 ⁇ -0- methylnucleosides, 3' ⁇ 0 ⁇ ethylnucleosides, 3 -arabinosides, and other modified nucleosides known in the art and/or described herein.
- the nucleic acids of the present invention may include a histone stem loop, a polyA tail sequence and/or a 5 'cap structure.
- the histone stem loop may be before and/or after the polyA tail sequence.
- the nucleic acids comprising the histone stem loop and a polyA tail sequence may include a chain terminating nucleoside described herein.
- the nucleic acids of the present invention may include a histone stem loop and a 5 'cap structure.
- the 5 'cap structure may include, but is not limited to, those described herein and/or known in the art.
- the conserved stem loop region may comprise a miR sequence described herein.
- the stem loop region may comprise the seed sequence of a miR sequence described herein.
- the stem loop region may comprise a miR- 122 seed sequence.
- the conserved stem loop region may comprise a miR sequence described herein and may also include a TEE sequence.
- the incorporation of a miR sequence and/or a TEE sequence changes the shape of the stem loop region which may increase and/or descrease translation, (see e.g, Kedde et al. A Pumilio-induced RNA structure switch in p27-3'UTR controls miR-221 and miR-22 accessibility. Nature Cell Biology. 2010, herein incorporated by reference in its entirety).
- the modified nucleic acids described herein may comprise at least one histone stem-loop and a polyA sequence or polyadenylation signal.
- Non-limiting examples of nucleic acid sequences encoding for at least one histone stem- loop and a polyA sequence or a polyadenylation signal are described in International Patent Publication No. WO2013120497, WO2013120629, WO2013120500,
- the nucleic acid encoding for a histone stem loop and a polyA sequence or a polyadenylation signal may code for a pathogen antigen or fragment thereof such as the nucleic acid sequences described in International Patent Publication No WO2013120499 and WO2013120628, the contents of which is herein incorporated by reference in its entirety.
- the nucleic acid encoding for a histone stem loop and a polyA sequence or a polyadenylation signal may code for a therapeutic protein such as the nucleic acid sequences described in
- the nucleic acid encoding for a histone stem loop and a polyA sequence or a polyadenylation signal may code for a tumor antigen or fragment thereof such as the nucleic acid sequences described in International Patent Publication No WO2013120500 and
- nucleic acid encoding for a histone stem loop and a polyA sequence or a polyadenylation signal may code for a allergenic antigen or an autoimmune self-antigen such as the nucleic acid sequences described in International Patent
- the 5' cap structure of an mRNA is involved in nuclear export, increasing mRNA stability and binds the mRNA Cap Binding Protein (CBP), which is responsibile for mRNA stability in the cell and translation competency through the association of CBP with poly(A) binding protein to form the mature cyclic mRNA species.
- CBP mRNA Cap Binding Protein
- the cap further assists the removal of 5' proximal introns removal during mRNA splicing.
- Endogenous mRNA molecules may be 5 '-end capped generating a 5'-ppp-5'- triphosphate linkage between a terminal guanosine cap residue and the 5 '-terminal transcribed sense nucleotide of the mRNA. This 5'-guanylate cap may then be methylated to generate an N7-methyl-guanylate residue.
- the ribose sugars of the terminal and/or anteterminal transcribed nucleotides of the 5' end of the mRNA may optionally also be 2'-0-methylated.
- 5'-decapping through hydrolysis and cleavage of the guanylate cap structure may target a nucleic acid molecule, such as an mRNA molecule, for degradation.
- Modifications to the nucleic acids of the present invention may generate a non-hydrolyzable cap structure preventing decapping and thus increasing mRNA half- life. Because cap structure hydrolysis requires cleavage of 5'-ppp-5' phosphorodiester linkages, modified nucleotides may be used during the capping reaction. For example, a Vaccinia Capping Enzyme from New England Biolabs (Ipswich, MA) may be used with a-thio-guanosine nucleotides according to the manufacturer's instructions to create a phosphorothioate linkage in the 5'-ppp-5' cap. Additional modified guanosine nucleotides may be used such as a-methyl-phosphonate and seleno-phosphate nucleotides.
- Cap analogs which herein are also referred to as synthetic cap analogs, chemical caps, chemical cap analogs, or structural or functional cap analogs, differ from natural (i.e. endogenous, wild-type or physiological) 5'-caps in their chemical structure, while retaining cap function. Cap analogs may be chemically (i.e. non-enzymatically) or enzymatically synthesized and/linked to a nucleic acid molecule.
- the Anti-Reverse Cap Analog (ARCA) cap contains two guanines linked by a 5 '-5 '-triphosphate group, wherein one guanine contains an N7 methyl group as well as a 3'-0-methyl group (i.e., N7,3'-0-dimethyl-guanosine-5'- triphosphate-5'-guanosine (m 7 G-3'mppp-G; which may equivaliently be designated 3' O- Me-m7G(5')ppp(5')G).
- the 3'-0 atom of the other, unmodified, guanine becomes linked to the 5 '-terminal nucleotide of the capped nucleic acid molecule (e.g. an mRNA or mmRNA).
- the N7- and 3'-0-methlyated guanine provides the terminal moiety of the capped nucleic acid molecule (e.g. mRNA or mmRNA).
- mCAP which is similar to ARCA but has a 2'-0- methyl group on guanosine (i.e., N7,2'-0-dimethyl-guanosine-5'-triphosphate-5'- guanosine, m 7 Gm-ppp-G).
- the cap is a dinucleotide cap analog.
- the dinucleotide cap analog may be modified at different phosphate positions with a boranophosphate group or a phophoroselenoate group such as the dinucleotide cap analogs described in US Patent No. US 8,519, 110, the contents of which are herein incorporated by reference in its entirety.
- the cap is a cap analog is a N7-(4- chlorophenoxyethyl) substituted dicucleotide form of a cap analog known in the art and/or described herein.
- Non-limiting examples of a N7-(4-chlorophenoxyethyl) substituted dicucleotide form of a cap analog include a N7-(4-chlorophenoxyethyl)- G(5')ppp(5')G and a N7-(4-chlorophenoxyethyl)-m 3'" °G(5')ppp(5')G cap analog (See e.g., the various cap analogs and the methods of synthesizing cap analogs described in Kore et al.
- a cap analog of the present invention is a 4-chloro/bromophenoxyethyl analog.
- cap analogs allow for the concomitant capping of a nucleic acid molecule in an in vitro transcription reaction, up to 20% of transcripts remain uncapped. This, as well as the structural differences of a cap analog from an endogenous 5 '-cap structures of nucleic acids produced by the endogenous, cellular transcription machinery, may lead to reduced translational competency and reduced cellular stability.
- Modified nucleic acids of the invention may also be capped post- transcriptionally, using enzymes, in order to generate more authentic 5 '-cap structures.
- the phrase "more authentic” refers to a feature that closely mirrors or mimics, either structurally or functionally, an endogenous or wild type feature. That is, a "more authentic" feature is better representative of an endogenous, wild-type, natural or physiological cellular function and/or structure as compared to synthetic features or analogs, etc., of the prior art, or which outperforms the corresponding endogenous, wild- type, natural or physiological feature in one or more respects.
- Non- limiting examples of more authentic 5 'cap structures of the present invention are those which, among other things, have enhanced binding of cap binding proteins, increased half life, reduced susceptibility to 5' endonuc leases and/or reduced 5'decapping, as compared to synthetic 5 'cap structures known in the art (or to a wild-type, natural or physiological 5 'cap structure).
- recombinant Vaccinia Virus Capping Enzyme and recombinant 2'-0-methyltransferase enzyme can create a canonical 5 '-5 '-triphosphate linkage between the 5 '-terminal nucleotide of an mRNA and a guanine cap nucleotide wherein the cap guanine contains an N7 methylation and the 5 '-terminal nucleotide of the mRNA contains a 2 '-0 -methyl.
- Capl structure Such a structure is termed the Capl structure.
- Cap structures include 7mG(5')ppp(5')N,pN2p (cap 0), 7mG(5')ppp(5')NlmpNp (cap 1), 7mG(5')-ppp(5')NlmpN2mp (cap 2) and
- 5' terminal caps may include endogenous caps or cap analogs.
- a 5' terminal cap may comprise a guanine analog.
- Useful guanine analogs include inosine, Nl-methyl-guanosine, 2'fluoro-guanosine, 7-deaza-guanosine, 8-oxo-guanosine, 2-amino-guanosine, LNA- guanosine, and 2-azido-guanosine.
- the nucleic acids described herein may contain a modified 5 'cap.
- a modification on the 5 'cap may increase the stability of mRNA, increase the half-life of the mRNA, and could increase the mRNA translational efficiency.
- the modified 5 'cap may include, but is not limited to, one or more of the following modifications: modification at the 2' and/or 3' position of a capped guanosine triphosphate (GTP), a replacement of the sugar ring oxygen (that produced the carbocyclic ring) with a methylene moiety (C3 ⁇ 4), a modification at the triphosphate bridge moiety of the cap structure, or a modification at the nucleobase (G) moiety.
- GTP capped guanosine triphosphate
- C3 ⁇ 4 methylene moiety
- C3 ⁇ 4 methylene moiety
- G nucleobase
- the 5 'cap structure that may be modified includes, but is not limited to, the caps described herein such as CapO having the substrate structure for cap dependent translation of :
- the modified 5 'cap may have the substrate structure for cap dependent translation of: 014/081507
- PNCPr (OCH 2 CH 2 CN)
- PNCPr (OCH 2 CH 2 CN)
- the modified 5 'cap may have the substrate structure for vaccinia mRNA capping enzyme of:
- MTM methoxyethoxymethyl
- BOM benzyloxymethyl
- MP monophosphonate
- F fluorine
- CI chlorine
- Br bromine
- I iodine
- modified capping structure substrates CAP- 112 - CAP-225 could be added in the presence of vaccinia capping enzyme with a component to create enzymatic activity such as, but not limited to, S-adenosylmethionine (AdoMet), to form a modified cap for mR A.
- AdoMet S-adenosylmethionine
- the replacement of the sugar ring oxygen (that produced the carbocyclic ring) with a methylene moiety (CH 2 ) could create greater stability to the C-N bond against phosphorylases as the C-N bond is resitant to acid or enzymatic hydrolysis.
- the methylene moiety may also increase the stability of the triphosphate bridge moiety and thus increasing the stability of the mRNA.
- the cap substrate structure for cap dependent translation may have the structure such as, but not limited to, CAP-014 and CAP-015 and/or the cap substrate structure for vaccinia mRNA capping enzyme such as, but not limited to, CAP-123 and CAP-124.
- CAP- 112 - CAP- 122 and/or CAP- 125 - CAP-225 can be modified by replacing the sugar ring oxygen (that produced the carbocyclic ring) with a methylene moiety (CH 2 ).
- the triphophosphate bridge may be modified by the replacement of at least one oxygen with sulfur (thio), a borane (BH 3 ) moiety, a methyl group, an ethyl group, a methoxy group and/or combinations thereof. This modification could increase the stability of the m NA towards decapping enzymes.
- the cap substrate structure for cap dependent translation may have the structure such as, but not limited to, CAP-016 - CAP-021 and/or the cap substrate structure for vaccinia mRNA capping enzyme such as, but not limited to, CAP-125 - CAP-130.
- CAP-003 - CAP-015, CAP-022 - CAP-124 and/or CAP-131 - CAP- 225 can be modified on the triphosphate bridge by replacing at least one of the triphosphate bridge oxygens with sulfur (thio), a borane (BH 3 ) moiety, a methyl group, an ethyl group, a methoxy group and/or combinations thereof.
- CAP-001 - 134 and/or CAP-136 - CAP-225 may be modified to be a thioguanosine analog similar to CAP- 135.
- the thioguanosine analog may comprise additional modifications such as, but not limited to, a modification at the triphosphate moiety (e.g., thio, BH 3 , CH 3 , C 2 H 5 , OCH 3 , S and S with OCH 3 ), a modification at the 2' and/or 3' positions of 6-thio guanosine as described herein and/or a replacement of the sugar ring oxygen (that produced the carbocyclic ring) as described herein.
- a modification at the triphosphate moiety e.g., thio, BH 3 , CH 3 , C 2 H 5 , OCH 3 , S and S with OCH 3
- a modification at the 2' and/or 3' positions of 6-thio guanosine as described herein and/or a replacement of the
- CAP-001 - 121 and/or CAP- 123 - CAP-225 may be modified to be a modified 5 'cap similar to CAP-122.
- the modified 5 'cap may comprise additional modifications such as, but not limited to, a modification at the triphosphate moiety (e.g., thio, BH 3 , CH 3 , C 2 H 5 , OCH 3 , S and S with OCH 3 ), a modification at the 2' and/or 3' positions of 6-thio guanosine as described herein and/or a replacement of the sugar ring oxygen (that produced the carbocyclic ring) as described herein.
- a modification at the triphosphate moiety e.g., thio, BH 3 , CH 3 , C 2 H 5 , OCH 3 , S and S with OCH 3
- a modification at the 2' and/or 3' positions of 6-thio guanosine as described herein and/or a replacement of the sugar ring oxygen (
- the 5 'cap modification may be the attachment of biotin or conjufation at the 2' or 3' position of a GTP.
- the 5 ' cap modification may include a CF 2 modified triphosphate moiety.
- Additional viral sequences such as, but not limited to, the translation enhancer sequence of the barley yellow dwarf virus (BYDV-PAV) can be engineered and inserted in the 3' UTR of the nucleic acids or mRNA of the invention and can stimulate the translation of the construct in vitro and in vivo.
- Transfection experiments can be conducted in relevant cell lines at and protein production can be assayed by ELISA at 12hr, 24hr, 48hr, 72 hr and day 7 post-transfection.
- nucleic acids containing an internal ribosome entry site IRES plays an important role in initiating protein synthesis in absence of the 5' cap structure.
- An IRES may act as the sole ribosome binding site, or may serve as one of multiple ribosome binding sites of an mRNA.
- Nucleic acids or mRNA containing more than one functional ribosome binding site may encode several peptides or polypeptides that are translated independently by the ribosomes ("multicistronic nucleic acid molecules").
- a second translatable region is optionally provided.
- IRES sequences that can be used according to the invention include without limitation, those from picornaviruses (e.g. FMDV), pest viruses (CFFV), polio viruses (PV), encephalomyocarditis viruses (ECMV), foot-and-mouth disease viruses (FMDV), hepatitis C viruses (HCV), classical swine fever viruses (CSFV), murine leukemia virus (MLV), simian immune deficiency viruses (SIV) or cricket paralysis viruses (CrPV). Terminal Architecture Modifications: Poly-A tails (e.g. FMDV), pest viruses (CFFV), polio viruses (PV), encephalomyocarditis viruses (ECMV), foot-and-mouth disease viruses (FMDV), hepatitis C viruses (HCV), classical swine fever viruses (CSFV), murine leukemia virus (MLV), simian immune deficiency viruses (SIV) or cricket paralysis viruses (CrPV). Terminal Architecture Modifications: Poly
- poly-A tail a long chain of adenine nucleotides
- mRNA messenger RNA
- poly-A polymerase adds a chain of adenine nucleotides to the RNA.
- the process called polyadenylation, adds a poly-A tail that is between 100 and 250 residues long.
- the length of a poly-A tail of the present invention is greater than 30 nucleotides in length. In another embodiment, the poly-A tail is greater than 35 nucleotides in length. In another embodiment, the length is at least 40 nucleotides. In another embodiment, the length is at least 45 nucleotides. In another embodiment, the length is at least 55 nucleotides. In another embodiment, the length is at least 60 nucleotides. In another embodiment, the length is at least 60 nucleotides. In another embodiment, the length is at least 80 nucleotides. In another embodiment, the length is at least 90 nucleotides. In another embodiment, the length is at least 100 nucleotides.
- the length is at least 120 nucleotides. In another embodiment, the length is at least 140 nucleotides. In another embodiment, the length is at least 160 nucleotides. In another embodiment, the length is at least 180 nucleotides. In another embodiment, the length is at least 200 nucleotides. In another embodiment, the length is at least 250 nucleotides. In another embodiment, the length is at least 300 nucleotides. In another embodiment, the length is at least 350 nucleotides. In another embodiment, the length is at least 400 nucleotides. In another embodiment, the length is at least 450 nucleotides. In another embodiment, the length is at least 500 nucleotides.
- the length is at least 600 nucleotides. In another embodiment, the length is at least 700 nucleotides. In another embodiment, the length is at least 800 nucleotides. In another embodiment, the length is at least 900 nucleotides. In another embodiment, the length is at least 1000 nucleotides. In another embodiment, the length is at least 1100 nucleotides. In another embodiment, the length is at least 1200 nucleotides. In another embodiment, the length is at least 1300 nucleotides. In another embodiment, the length is at least 1400 nucleotides. In another embodiment, the length is at least 1500 nucleotides. In another embodiment, the length is at least 1600 nucleotides.
- the length is at least 1700 nucleotides. In another embodiment, the length is at least 1800 nucleotides. In another embodiment, the length is at least 1900 nucleotides. In another embodiment, the length is at least 2000 nucleotides. In another embodiment, the length is at least 2500 nucleotides. In another embodiment, the length is at least 3000 nucleotides.
- the nucleic acid or mR A includes from about 30 to about 3,000 nucleotides (e.g., from 30 to 50, from 30 to 100, from 30 to 250, from 30 to 500, from 30 to 750, from 30 to 1,000, from 30 to 1,500, from 30 to 2,000, from 30 to 2,500, from 50 to 100, from 50 to 250, from 50 to 500, from 50 to 750, from 50 to 1,000, from 50 to 1,500, from 50 to 2,000, from 50 to 2,500, from 50 to 3,000, from 100 to 500, from 100 to 750, from 100 to 1,000, from 100 to 1,500, from 100 to 2,000, from 100 to 2,500, from 100 to 3,000, from 500 to 750, from 500 to 1,000, from 500 to 1,500, from 500 to 2,000, from 500 to 2,500, from 500 to 3,000, from 1,000 to 1,500, from 1,000 to 2,000, from 1,000 to 2,500, from 1,000 to 3,000, from 1,500 to 2,000, from 1,500 to 2,500, from 1,500 to 1,500 to 1,500 to 1,500 to
- the poly-A tail may be 80 nucleotides, 120 nucleotides, 160 nucleotides in length on a modified RNA molecule described herein such as, but not limited to, the polyA tail length on the modified RNA described in Example 13.
- the poly-A tail may be 20, 40, 80, 100, 120, 140 or 160 nucleotides in length on a modified RNA molecule described herein such as, but not limited to, the polyA tail length on the modified RNA described in Example 44.
- the poly-A tail is designed relative to the length of the overall modified RNA molecule. This design may be based on the length of the coding region of the modified RNA, the length of a particular feature or region of the modified RNA (such as the mRNA), or based on the length of the ultimate product expressed from the modified RNA.
- the poly-A tail may be 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100% greater in length than the additional feature.
- the poly-A tail may also be designed as a fraction of the modified RNA to which it belongs. In this context, the poly-A tail may be 10, 20, 30, 40, 50, 60, 70, 80, or 90% or more of the total length of the construct or the total length of the construct minus the poly-A tail.
- engineered binding sites and/or the conjugation of nucleic acids or mRNA for Poly-A binding protein may be used to enhance expression.
- the engineered binding sites may be sensor sequences which can operate as binding sites for ligands of the local microenvironment of the nucleic acids and/or mRNA.
- the nucleic acids and/or mRNA may comprise at least one engineered binding site to alter the binding affinity of Poly-A binding protein (PABP) and analogs thereof.
- PABP Poly-A binding protein
- the incorporation of at least one engineered binding site may increase the binding affinity of the PABP and analogs thereof.
- multiple distinct nucleic acids or mRNA may be linked together to the PABP (Poly-A binding protein) through the 3 '-end using modified nucleotides at the 3 '-terminus of the poly-A tail.
- Transfection experiments can be conducted in relevant cell lines at and protein production can be assayed by ELISA at 12hr, 24hr, 48hr, 72 hr and day 7 post-transfection.
- the transfection experiments may be used to evaluate the effect on PABP or analogs thereof binding affinity as a result of the addition of at least one engineered binding site.
- a polyA tail may be used to modulate translation initiation. While not wishing to be bound by theory, the polyA til recruits PABP which in turn can interact with translation initiation complex and thus may be essential for protein synthesis.
- a polyA tail may also be used in the present invention to protect against 3 '-5' exonuclease digestion.
- the nucleic acids or mRNA of the present invention are designed to include a polyA-G quartet.
- the G-quartet is a cyclic hydrogen bonded array of four guanine nucleotides that can be formed by G-rich sequences in both DNA and RNA.
- the G-quartet is incorporated at the end of the poly-A tail.
- the resultant nucleic acid or mRNA may be assayed for stability, protein production and other parameters including half- life at various time points. It has been discovered that the polyA-G quartet results in protein production equivalent to at least 75% of that seen using a poly-A tail of 120 nucleotides alone.
- the nucleic acids or mRNA of the present invention may comprise a polyA tail and may be stabilized by the addition of a chain terminating nucleoside.
- the nucleic acids and/or mRNA with a polyA tail may further comprise a 5 'cap structure.
- the nucleic acids or mRNA of the present invention may comprise a polyA-G quartet.
- the nucleic acids and/or mRNA with a polyA-G quartet may further comprise a 5 'cap structure.
- the chain terminating nucleoside which may be used to stabilize the nucleic acid or mRNA comprising a polyA tail or polyA-G quartet may be, but is not limited to, those described in International Patent Publication No.
- the chain terminating nucleosides which may be used with the present invention includes, but is not limited to, 3'-deoxyadenosine (cordycepin), 3'- deoxyuridine, 3'-deoxycytosine, 3'-deoxyguanosine, 3'-deoxythymine, 2',3'- dideoxynucleosides, such as 2',3'- dideoxyadenosine, 2',3'-dideoxyuridine, 2',3'- dideoxycytosine, 2',3'- dideoxyguanosine, 2',3'-dideoxythymine, a 2'-deoxynucleoside, or a -O- methylnucleoside.
- 3'-deoxyadenosine cordycepin
- 3'- deoxyuridine 3'-deoxycytosine
- 3'-deoxyguanosine 3'-deoxythymine
- the nucleic acid such as, but not limited to mRNA, which comprise a polyA tail or a polyA-G quartet may be stabilized by a modification to the 3 'region of the nucleic acid that can prevent and/or inhibit the addition of oligio(U) (see e.g., International Patent Publication No. WO2013103659, herein incorporated by reference in its entirety).
- the nucleic acid such as, but not limited to mRNA, which comprise a polyA tail or a polyA-G quartet may be stabilized by the addition of an oligonucleotide that terminates in a 3'-deoxynucleoside, 2', 3'- dideoxynucleoside 3 -0- methylnucleosid.es, S'-O-ethylnueleosides, S'-arabinosides, and other modified nucleosides known in the art and/or described herein.
- the polynucleotides, primary constructs, modified nucleic acids or mmRNA of the present invention may be quantified in exosomes derived from one or more bodily fluid.
- bodily fluids include peripheral blood, serum, plasma, ascites, urine, cerebrospinal fluid (CSF), sputum, saliva, bone marrow, synovial fluid, aqueous humor, amniotic fluid, cerumen, breast milk, broncheoalveolar lavage fluid, semen, prostatic fluid, cowper's fluid or pre-ejaculatory fluid, sweat, fecal matter, hair, tears, cyst fluid, pleural and peritoneal fluid, pericardial fluid, lymph, chyme, chyle, bile, interstitial fluid, menses, pus, sebum, vomit, vaginal secretions, mucosal secretion, stool water, pancreatic juice, lavage fluids from sinus cavities, bronchopulmonary aspirates
- exosomes may be retrieved from an organ selected from the group consisting of lung, heart, pancreas, stomach, intestine, bladder, kidney, ovary, testis, skin, colon, breast, prostate, brain, esophagus, liver, and placenta.
- the level or concentration of the polynucleotides, primary construct, modified nucleic acid or mmR A may be an expression level, presence, absence, truncation or alteration of the administered construct. It is advantageous to correlate the level with one or more clinical phenotypes or with an assay for a human disease biomarker.
- the assay may be performed using construct specific probes, cytometry, qRT-PCR, real-time PCR, PCR, flow cytometry, electrophoresis, mass spectrometry, or combinations thereof while the exosomes may be isolated using immunohistochemical methods such as enzyme linked immunosorbent assay (ELISA) methods. Exosomes may also be isolated by size exclusion chromatography, density gradient centrifugation, differential centrifugation, nanomembrane ultrafiltration, immunoabsorbent capture, affinity purification, microfiuidic separation, or combinations thereof.
- immunohistochemical methods such as enzyme linked immunosorbent assay (ELISA) methods.
- Exosomes may also be isolated by size exclusion chromatography, density gradient centrifugation, differential centrifugation, nanomembrane ultrafiltration, immunoabsorbent capture, affinity purification, microfiuidic separation, or combinations thereof.
- Polynucleotides, primary constructs modified nucleic acids or mmRNA for use in accordance with the invention may be prepared according to any available technique including, but not limited to chemical synthesis, enzymatic synthesis, which is generally termed in vitro transcription (IVT) or enzymatic or chemical cleavage of a longer precursor, etc.
- IVT in vitro transcription
- Methods of synthesizing RNAs are known in the art (see, e.g. , Gait, M.J. (ed.) Oligonucleotide synthesis: a practical approach, Oxford [Oxfordshire], Washington, DC: IRL Press, 1984; and Herdewijn, P.
- the process of design and synthesis of the primary constructs of the invention generally includes the steps of gene construction, mRNA production (either with or without modifications) and purification.
- a target polynucleotide sequence encoding the polypeptide of interest is first selected for incorporation into a vector which will be amplified to produce a cDNA template.
- the target polynucleotide sequence and/or any flanking sequences may be codon optimized.
- the cDNA template is then used to produce mRNA through in vitro transcription (IVT). After production, the mRNA may undergo purification and clean-up processes. The steps of which are provided in more detail below.
- the step of gene construction may include, but is not limited to gene synthesis, vector amplification, plasmid purification, plasmid linearization and clean-up, and cDNA template synthesis and clean-up.
- a primary construct is designed.
- a first region of linked nucleosides encoding the polypeptide of interest may be constructed using an open reading frame (ORF) of a selected nucleic acid (DNA or RNA) transcript.
- the ORF may comprise the wild type ORF, an isoform, variant or a fragment thereof.
- an "open reading frame” or “ORF” is meant to refer to a nucleic acid sequence (DNA or RNA) which is capable of encoding a polypeptide of interest. ORFs often begin with the start codon, ATG and end with a nonsense or termination codon or signal.
- the nucleotide sequence of the first region may be codon optimized. Codon optimization methods are known in the art and may be useful in efforts to achieve one or more of several goals. These goals include to match codon frequencies in target and host organisms to ensure proper folding, bias GC content to increase mRNA stability or reduce secondary structures, minimize tandem repeat codons or base runs that may impair gene construction or expression, customize transcriptional and translational control regions, insert or remove protein trafficking sequences, remove/add post translation modification sites in encoded protein (e.g.
- Codon optimization tools, algorithms and services are known in the art, non- limiting examples include services from GeneArt (Life Technologies) and/or DNA2.0 (Menlo Park CA).
- the ORF sequence is optimized using optimization algorithms. Codon options for each amino acid are given in Table 5.
- nucleotide sequence after a nucleotide sequence has been codon optimized it may be further evaluated for regions containing restriction sites. At least one nucleotide within the restriction site regions may be replaced with another nucleotide in order to remove the restriction site from the sequence but the replacement of nucleotides does alter the amino acid sequence which is encoded by the codon optimized nucleotide sequence.
- flanking regions may be incorporated into the primary construct before and/or after optimization of the ORF. It is not required that a primary construct contain both a 5' and 3' flanking region. Examples of such features include, but are not limited to, untranslated regions (UTRs), Kozak sequences, an oligo(dT) sequence, and detectable tags and may include multiple cloning sites which may have Xbal recognition.
- a 5' UTR and/or a 3' UTR may be provided as flanking regions. Multiple 5 Or 3' UTRs may be included in the flanking regions and may be the same or of different sequences. Any portion of the flanking regions, including none, may be codon optimized and any may independently contain one or more different structural or chemical modifications, before and/or after codon optimization. Combinations of features may be included in the first and second flanking regions and may be contained within other features.
- the ORF may be flanked by a 5' UTR which may contain a strong Kozak translational initiation signal and/or a 3' UTR which may include an oligo(dT) sequence for templated addition of a poly-A tail.
- Tables 2 and 3 provide a listing of exemplary UTRs which may be utilized in the primary construct of the present invention as flanking regions. Shown in Table 6 is a representative listing of a 5 '-untranslated region of the invention. Variants of 5' UTRs may be utilized wherein one or more nucleotides are added or removed to the termini, including A, T, C or G.
- the 5 ' UTR may comprise a first polynucleotide fragment and a second polynucleotide fragment where the first and second fragments may be from the same or different gene.
- the first polynucleotide may be a fragment of the canine, human or mouse SERCA2 gene and/or the second polynucleotide fragment is a fragment of the bovine, mouse, rat or sheep beta-casein gene.
- the first polynucleotide fragment may be located on the 5' end of the second polynucleotide fragment.
- the first polynucleotide fragment may comprise the second intron of a sarcoplasmic/endoplasmic reticulum calcium ATPase gene and/or the second polynucleotide fragment comprises at least a portion of the 5 ' UTR of a eukaryotic casein gene.
- the first polynucleotide fragment may also comprise at least a portion of exon 2 and/or exon 3 of the sarcoplasmic/endoplasmic reticulum calcium ATPase gene. (See e.g., US20100293625 and US20110247090, each of which is herein incorporated by reference in its entirety).
- Table 7 Shown in Table 7 is a representative listing of 3 '-untranslated regions of the invention. Variants of 3 ' UTRs may be utilized wherein one or more nucleotides are added or removed to the termini, including A, T, C or G.
- TTCCAAAGGTTTAAACTACCTCAAAACACTTTC collagen CCATGAGTGTGATCCACATTGTTAGGTGCTGACUTR-007 15 type I, CTAGACAGAGATGAACTGAGGTCCTTGTTTTGT alpha 2 TTTGTTCATAATACAAAGGTGCTAATTAATAGT
- Col6a2 TGAGCCCACCCCGTCCATGGTGCTAAGCGGGC collagen, CCGGGTCCCACACGGCCAGCACCGCTGCTCACUTR-008 16 type VI, TCGGACGACGCCCTGGGCCTGCACCTCTCCAG alpha 2 CTCCTCCCACGGGGTCCCCGTAGCCCCGGCCC
- Col6al AAGCCAGGACACAACGCTGCTGCCTGCTTTGT collagen, GCAGGGTCCTCCGGGGCTCAGCCCTGAGTTGGUTR-012 20 type VI, CATCACCTGCGCAGGGCCCTCTGGGGCTCAGC alpha 1 CCTGAGCTAGTGTCACCTGCACAGGGCCCTCT
- any UTR from any gene may be incorporated into the respective first or second flanking region of the primary construct.
- multiple wild-type UTRs of any known gene may be utilized. It is also within the scope of the present invention to provide artificial UTRs which are not variants of wild type genes. These UTRs or portions thereof may be placed in the same orientation as in the transcript from which they were selected or may be altered in orientation or location. Hence a 5 ' or 3' UTR may be inverted, shortened, lengthened, made chimeric with one or more other 5' UTRs or 3' UTRs.
- the term "altered" as it relates to a UTR sequence means that the UTR has been changed in some way in relation to a reference sequence.
- a 3' or 5' UTR may be altered relative to a wild type or native UTR by the change in orientation or location as taught above or may be altered by the inclusion of additional nucleotides, deletion of nucleotides, swapping or transposition of nucleotides. Any of these changes producing an "altered" UTR (whether 3' or 5') comprise a variant UTR.
- a double, triple or quadruple UTR such as a 5' or 3' UTR may be used.
- a "double" UTR is one in which two copies of the same UTR are encoded either in series or substantially in series.
- a double beta- globin 3' UTR may be used as described in US Patent publication 20100129877, the contents of which are incorporated herein by reference in its entirety.
- flanking regions are selected from a family of transcripts whose proteins share a common function, structure, feature of property.
- polypeptides of interest may belong to a family of proteins which are expressed in a particular cell, tissue or at some time during development.
- UTRs from any of these genes may be swapped for any other UTR of the same or different family of proteins to create a new chimeric primary transcript.
- a "family of proteins" is used in the broadest sense to refer to a group of two or more polypeptides of interest which share at least one function, structure, feature, localization, origin, or expression pattern.
- the primary construct components are reconstituted and transformed into a vector such as, but not limited to, plasmids, viruses, cosmids, and artificial chromosomes.
- a vector such as, but not limited to, plasmids, viruses, cosmids, and artificial chromosomes.
- the optimized construct may be reconstituted and transformed into chemically competent E. coli, yeast, neurospora, maize, drosophila, etc. where high copy plasmid-like or chromosome structures occur by methods described herein. Stop Codons
- the primary constructs of the present invention may include at least two stop codons before the 3' untranslated region (UTR).
- the stop codon may be selected from TGA, TAA and TAG.
- the primary constructs of the present invention include the stop codon TGA and one additional stop codon.
- the addition stop codon may be TAA.
- the vector containing the primary construct is then amplified and the plasmid isolated and purified using methods known in the art such as, but not limited to, a maxi prep using the Invitrogen PURELINKTM HiPure Maxiprep Kit (Carlsbad, CA).
- the plasmid may then be linearized using methods known in the art such as, but not limited to, the use of restriction enzymes and buffers.
- the linearization reaction may be purified using methods including, for example Invitrogen' s PURELINKTM PCR Micro Kit (Carlsbad, CA), and HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP- HPLC), and hydrophobic interaction HPLC (HIC-HPLC) and Invitrogen' s standard PURELINKTM PCR Kit (Carlsbad, CA).
- the purification method may be modified depending on the size of the linearization reaction which was conducted.
- the linearized plasmid is then used to generate cDNA for in vitro transcription (IVT) reactions.
- a cDNA template may be synthesized by having a linearized plasmid undergo polymerase chain reaction (PCR).
- Table 8 is a listing of primers and probes that may be useful in the PCR reactions of the present invention. It should be understood that the listing is not exhaustive and that primer-probe design for any amplification is within the skill of those in the art. Probes may also contain chemically modified bases to increase base-pairing fidelity to the target molecule and base-pairing strength. Such modifications may include 5-methyl-Cytidine, 2, 6-di-amino-purine, 2'-fluoro, phosphoro-thioate, or locked nucleic acids.
- URP universal reverse primer
- the cDNA may be submitted for sequencing analysis before undergoing transcription.
- the process of polynucleotide production may include, but is not limited to, in vitro transcription, cDNA template removal and RNA clean-up, and capping and/or tailing reactions.
- the cDNA produced in the previous step may be transcribed using an in vitro transcription (IVT) system.
- the system typically comprises a transcription buffer, nucleotide triphosphates (NTPs), an RNase inhibitor and a polymerase.
- NTPs may be manufactured in house, may be selected from a supplier, or may be synthesized as described herein.
- the NTPs may be selected from, but are not limited to, those described herein including natural and unnatural (modified) NTPs.
- the polymerase may be selected from, but is not limited to, T7 RNA polymerase, T3 RNA polymerase and mutant polymerases such as, but not limited to, polymerases able to be incorporated into modified nucleic acids.
- RNA polymerases or variants may be used in the design of the primary constructs of the present invention.
- RNA polymerases may be modified by inserting or deleting amino acids of the RNA polymerase sequence.
- the RNA polymerase may be modified to exhibit an increased ability to incorporate a 2 '-modified nucleotide triphosphate compared to an unmodified RNA polymerase (see International Publication WO2008078180 and U.S. Patent 8,101,385; herein incorporated by reference in their entireties).
- Variants may be obtained by evolving an RNA polymerase, optimizing the RNA polymerase amino acid and/or nucleic acid sequence and/or by using other methods known in the art.
- T7 RNA polymerase variants may be evolved using the continuous directed evolution system set out by Esvelt et al.
- T7 RNA polymerase may encode at least one mutation such as, but not limited to, lysine at position 93 substituted for threonine (K93T), I4M, A7T, E63V, V64D, A65E, D66Y, T76N, C125R, S128R, A136T, N165S, G175R, H176L, Y178H, F182L, L196F, G198V, D208Y, E222K, S228A, Q239R, T243N, G259D, M267I, G280C, H300R, D351A, A354S, E356D, L360P, A383V, Y385C, D388Y, S397R, M401T, N410S, K450R, P451T, G452V, E484A, H5
- T7 RNA polymerase variants may encode at least mutation as described in U.S. Pub. Nos. 20100120024 and 20070117112; herein incorporated by reference in their entireties.
- Variants of R A polymerase may also include, but are not limited to, substitutional variants, conservative amino acid substitution, insertional variants, deletional variants and/or covalent derivatives.
- the primary construct may be designed to be recognized by the wild type or variant RNA polymerases. In doing so, primary construct may be modified to contain sites or regions of sequence changes from the wild type or parent primary construct.
- the primary construct may be designed to include at least one substitution and/or insertion upstream of an RNA polymerase binding or recognition site, downstream of the RNA polymerase binding or recognition site, upstream of the TATA box sequence, downstream of the TATA box sequence of the primary construct but upstream of the coding region of the primary construct, within the 5'UTR, before the 5'UTR and/or after the 5'UTR.
- the 5 'UTR of the primary construct may be replaced by the insertion of at least one region and/or string of nucleotides of the same base.
- the region and/or string of nucleotides may include, but is not limited to, at least 3, at least 4, at least 5, at least 6, at least 7 or at least 8 nucleotides and the nucleotides may be natural and/or unnatural.
- the group of nucleotides may include 5-8 adenine, cytosine, thymine, a string of any of the other nucleotides disclosed herein and/or combinations thereof.
- the 5 'UTR of the primary construct may be replaced by the insertion of at least two regions and/or strings of nucleotides of two different bases such as, but not limited to, adenine, cytosine, thymine, any of the other nucleotides disclosed herein and/or combinations thereof.
- the 5'UTR may be replaced by inserting 5-8 adenine bases followed by the insertion of 5-8 cytosine bases.
- the 5'UTR may be replaced by inserting 5-8 cytosine bases followed by the insertion of 5-8 adenine bases.
- the primary construct may include at least one substitution and/or insertion downstream of the transcription start site which may be recognized by an RNA polymerase.
- at least one substitution and/or insertion may occur downstream the transcription start site by substituting at least one nucleic acid in the region just downstream of the transcription start site (such as, but not limited to, +1 to +6). Changes to region of nucleotides just downstream of the transcription start site may affect initiation rates, increase apparent nucleotide
- NTP triphosphate
- the primary construct may include the substitution of at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12 or at least 13 guanine bases downstream of the transcription start site.
- the primary construct may include the substitution of at least 1, at least 2, at least 3, at least 4, at least 5 or at least 6 guanine bases in the region just downstream of the transcription start site.
- the guanine bases may be substituted by at least 1, at least 2, at least 3 or at least 4 adenine nucleotides.
- the nucleotides in the region are GGGAGA the guanine bases may be substituted by at least 1, at least 2, at least 3 or at least 4 cytosine bases.
- the guanine bases in the region are GGGAGA the guanine bases may be substituted by at least 1, at least 2, at least 3 or at least 4 thymine, and/or any of the nucleotides described herein.
- the primary construct may include at least one substitution and/or insertion upstream of the start codon.
- the start codon is the first codon of the protein coding region whereas the transcription start site is the site where transcription begins.
- the primary construct may include, but is not limited to, at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7 or at least 8 substitutions and/or insertions of nucleotide bases.
- the nucleotide bases may be inserted or substituted at 1, at least 1, at least 2, at least 3, at least 4 or at least 5 locations upstream of the start codon.
- the nucleotides inserted and/or substituted may be the same base (e.g., all A or all C or all T or all G), two different bases (e.g., A and C, A and T, or C and T), three different bases (e.g., A, C and T or A, C and T) or at least four different bases.
- the guanine base upstream of the coding region in the primary construct may be substituted with adenine, cytosine, thymine, or any of the nucleotides described herein.
- the substitution of guanine bases in the primary construct may be designed so as to leave one guanine base in the region downstream of the transcription start site and before the start codon (see Esvelt et al. Nature (2011) 472(7344):499-503; herein incorporated by reference in its entirety).
- at least 5 nucleotides may be inserted at 1 location downstream of the transcription start site but upstream of the start codon and the at least 5 nucleotides may be the same base type.
- RNA clean-up may also include a purification method such as, but not limited to, AGENCOURT®
- CLEANSEQ® system from Beckman Coulter (Danvers, MA), HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC- HPLC) .
- the primary construct or mmRNA may also undergo capping and/or tailing reactions.
- a capping reaction may be performed by methods known in the art to add a 5' cap to the 5' end of the primary construct. Methods for capping include, but are not limited to, using a Vaccinia Capping enzyme (New England Biolabs, Ipswich, MA).
- a poly-A tailing reaction may be performed by methods known in the art, such as, but not limited to, 2' O-methyltransferase and by methods as described herein. If the primary construct generated from cDNA does not include a poly-T, it may be beneficial to perform the poly-A -tailing reaction before the primary construct is cleaned. Purification [00329] The primary construct or mmRNA purification may include, but is not limited to, mRNA or mmRNA clean-up, quality assurance and quality control.
- mRNA or mmRNA clean-up may be performed by methods known in the arts such as, but not limited to, AGENCOURT® beads (Beckman Coulter Genomics, Danvers, MA), poly-T beads, LNATM oligo-T capture probes (EXIQON® Inc, Vedbaek, Denmark) or HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC).
- HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC).
- purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC).
- purification methods such as, but not limited to
- a "contaminant” is any substance which makes another unfit, impure or inferior.
- a purified polynucleotide e.g., DNA and RNA
- a quality assurance and/or quality control check may be conducted using methods such as, but not limited to, gel electrophoresis, UV absorbance, or analytical HPLC.
- the mRNA or mmRNA may be sequenced by methods including, but not limited to reverse-transcriptase-PCR.
- the mRNA or mmRNA may be quantified using methods such as, but not limited to, ultraviolet visible spectroscopy (UV/Vis).
- UV/Vis ultraviolet visible spectroscopy
- a non-limiting example of a UV/Vis spectrometer is a NANODROP® spectrometer (ThermoFisher, Waltham, MA).
- the quantified mRNA or mmRNA may be analyzed in order to determine if the mRNA or mmRNA may be of proper size, check that no degradation of the mRNA or mmRNA has occurred.
- Degradation of the mRNA and/or mmRNA may be checked by methods such as, but not limited to, agarose gel electrophoresis, HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC), liquid chromatography-mass spectrometry (LCMS), capillary electrophoresis (CE) and capillary gel electrophoresis (CGE).
- HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC), liquid chromatography-mass spectrometry (LCMS), capillary electrophoresis (CE) and capillary gel electrophoresis (CGE).
- the primary constructs or mmRNA may also encode additional features which facilitate trafficking of the polypeptides to therapeutically relevant sites.
- One such feature which aids in protein trafficking is the signal peptide sequence.
- a "signal sequence” or “signal peptide” is a polynucleotide or polypeptide, respectively, which is from about 9 to 200 nucleotides (3-60 amino acids) in length which is incorporated at the 5' (or N-terminus) of the coding region or polypeptide encoded, respectively. Addition of these sequences result in trafficking of the encoded polypeptide to the endoplasmic reticulum through one or more secretory pathways. Some signal peptides are cleaved from the protein by signal peptidase after the proteins are transported.
- Table 9 is a representative listing of signal proteins or peptides which may be incorporated for encoding by the polynucleotides, primary constructs or mmRNA of the invention.
- subunit 8A TCCGCTAGACGCCTGCCGGTA LPVPRAKIH
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Transplantation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
- Saccharide Compounds (AREA)
Priority Applications (17)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| HRP20220607TT HRP20220607T1 (hr) | 2012-11-26 | 2013-10-02 | Terminalno modificirana rna |
| DK13779667.8T DK2922554T3 (en) | 2012-11-26 | 2013-10-02 | Terminalt modificeret rna |
| EP13779667.8A EP2922554B1 (en) | 2012-11-26 | 2013-10-02 | Terminally modified rna |
| CA2892529A CA2892529C (en) | 2012-11-26 | 2013-10-02 | Terminally modified rna |
| PL13779667T PL2922554T3 (pl) | 2012-11-26 | 2013-10-02 | Na zmodyfikowany na końcach |
| JP2015544065A JP6144355B2 (ja) | 2012-11-26 | 2013-10-02 | 化学修飾mRNA |
| EP22157965.9A EP4074834A1 (en) | 2012-11-26 | 2013-10-02 | Terminally modified rna |
| SM20220337T SMT202200337T1 (it) | 2012-11-26 | 2013-10-02 | Rna modificato al livello del terminale |
| RS20220477A RS63237B1 (sr) | 2012-11-26 | 2013-10-02 | Terminalno modifikovana rnk |
| LTEPPCT/US2013/062943T LT2922554T (lt) | 2012-11-26 | 2013-10-02 | Terminaliai modifikuota rnr |
| SI201331984T SI2922554T1 (sl) | 2012-11-26 | 2013-10-02 | Terminalno modificirana RNA |
| AU2013348363A AU2013348363B2 (en) | 2012-11-26 | 2013-10-02 | Terminally modified RNA |
| HK16102487.8A HK1214515B (en) | 2012-11-26 | 2013-10-02 | Terminally modified rna |
| ES13779667T ES2921623T3 (es) | 2012-11-26 | 2013-10-02 | ARN modificado terminalmente |
| AU2017202228A AU2017202228B2 (en) | 2012-11-26 | 2017-04-04 | Terminally modified RNA |
| AU2019203876A AU2019203876A1 (en) | 2012-11-26 | 2019-06-03 | Terminally modified RNA |
| AU2021202758A AU2021202758A1 (en) | 2012-11-26 | 2021-05-03 | Terminally modified RNA |
Applications Claiming Priority (20)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261729933P | 2012-11-26 | 2012-11-26 | |
| US61/729,933 | 2012-11-26 | ||
| US201261737224P | 2012-12-14 | 2012-12-14 | |
| US61/737,224 | 2012-12-14 | ||
| US201361758921P | 2013-01-31 | 2013-01-31 | |
| US61/758,921 | 2013-01-31 | ||
| US201361775509P | 2013-03-09 | 2013-03-09 | |
| US61/775,509 | 2013-03-09 | ||
| US201361781139P | 2013-03-14 | 2013-03-14 | |
| US61/781,139 | 2013-03-14 | ||
| US201361829359P | 2013-05-31 | 2013-05-31 | |
| US201361829372P | 2013-05-31 | 2013-05-31 | |
| US61/829,359 | 2013-05-31 | ||
| US61/829,372 | 2013-05-31 | ||
| US201361839903P | 2013-06-27 | 2013-06-27 | |
| US61/839,903 | 2013-06-27 | ||
| US201361842709P | 2013-07-03 | 2013-07-03 | |
| US61/842,709 | 2013-07-03 | ||
| US201361857436P | 2013-07-23 | 2013-07-23 | |
| US61/857,436 | 2013-07-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014081507A1 true WO2014081507A1 (en) | 2014-05-30 |
Family
ID=49447811
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2013/062943 Ceased WO2014081507A1 (en) | 2012-11-26 | 2013-10-02 | Terminally modified rna |
Country Status (16)
| Country | Link |
|---|---|
| US (5) | US9597380B2 (enExample) |
| EP (2) | EP4074834A1 (enExample) |
| JP (5) | JP6144355B2 (enExample) |
| AU (3) | AU2017202228B2 (enExample) |
| CA (1) | CA2892529C (enExample) |
| CY (1) | CY1125236T1 (enExample) |
| DK (1) | DK2922554T3 (enExample) |
| ES (1) | ES2921623T3 (enExample) |
| HR (1) | HRP20220607T1 (enExample) |
| LT (1) | LT2922554T (enExample) |
| PL (1) | PL2922554T3 (enExample) |
| PT (1) | PT2922554T (enExample) |
| RS (1) | RS63237B1 (enExample) |
| SI (1) | SI2922554T1 (enExample) |
| SM (1) | SMT202200337T1 (enExample) |
| WO (1) | WO2014081507A1 (enExample) |
Cited By (118)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015034925A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Circular polynucleotides |
| US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
| US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
| WO2015051214A1 (en) | 2013-10-03 | 2015-04-09 | Moderna Therapeutics, Inc. | Polynucleotides encoding low density lipoprotein receptor |
| US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
| US9181319B2 (en) | 2010-08-06 | 2015-11-10 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US9186372B2 (en) | 2011-12-16 | 2015-11-17 | Moderna Therapeutics, Inc. | Split dose administration |
| WO2016011226A1 (en) * | 2014-07-16 | 2016-01-21 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
| JP2016011272A (ja) * | 2014-06-27 | 2016-01-21 | 国立大学法人北海道大学 | 免疫応答制御剤 |
| WO2016014846A1 (en) | 2014-07-23 | 2016-01-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of intrabodies |
| WO2016023077A1 (en) * | 2014-08-15 | 2016-02-18 | Griffith University | Biological markers |
| US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
| US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| CN106139164A (zh) * | 2016-08-04 | 2016-11-23 | 北京信生元生物医学科技有限公司 | miR‑5001在制备治疗白血病的药物中的应用 |
| US9533047B2 (en) | 2011-03-31 | 2017-01-03 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
| US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
| WO2017100551A1 (en) * | 2015-12-09 | 2017-06-15 | Alexion Pharmaceuticals, Inc. | HETEROLOGOUS UTR SEQUENCES FOR ENHANCED mRNA EXPRESSION |
| WO2017100562A1 (en) | 2015-12-09 | 2017-06-15 | Alexion Pharmaceuticals, Inc, | Modified mrna encoding a uridine diphopsphate glucuronosyl transferase and uses thereof |
| WO2017127750A1 (en) | 2016-01-22 | 2017-07-27 | Modernatx, Inc. | Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof |
| JP2017523777A (ja) * | 2014-07-17 | 2017-08-24 | モデルナティエックス インコーポレイテッドModernaTX,Inc. | ポリヌクレオチドの末端修飾 |
| WO2017201342A1 (en) * | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Polynucleotides encoding jagged1 for the treatment of alagille syndrome |
| WO2017201347A1 (en) * | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis |
| WO2018009838A1 (en) | 2016-07-07 | 2018-01-11 | Rubius Therapeutics, Inc. | Compositions and methods related to therapeutic cell systems expressing exogenous rna |
| EP3157572A4 (en) * | 2014-06-19 | 2018-02-14 | Moderna Therapeutics, Inc. | Alternative nucleic acid molecules and uses thereof |
| EP3157573A4 (en) * | 2014-06-19 | 2018-02-21 | Moderna Therapeutics, Inc. | Alternative nucleic acid molecules and uses thereof |
| EP3156498A4 (en) * | 2014-06-13 | 2018-05-02 | Toray Industries, Inc. | Breast cancer detection kit or device, and method for detecting breast cancer |
| WO2018081459A1 (en) | 2016-10-26 | 2018-05-03 | Modernatx, Inc. | Messenger ribonucleic acids for enhancing immune responses and methods of use thereof |
| WO2018144775A1 (en) | 2017-02-01 | 2018-08-09 | Modernatx, Inc. | Immunomodulatory therapeutic mrna compositions encoding activating oncogene mutation peptides |
| US10077439B2 (en) | 2013-03-15 | 2018-09-18 | Modernatx, Inc. | Removal of DNA fragments in mRNA production process |
| JP2018529738A (ja) * | 2015-10-05 | 2018-10-11 | モデルナティーエックス, インコーポレイテッド | メッセンジャーリボ核酸薬物の治療投与のための方法 |
| WO2018213789A1 (en) | 2017-05-18 | 2018-11-22 | Modernatx, Inc. | Modified messenger rna comprising functional rna elements |
| US10138507B2 (en) | 2013-03-15 | 2018-11-27 | Modernatx, Inc. | Manufacturing methods for production of RNA transcripts |
| CN109195621A (zh) * | 2016-05-18 | 2019-01-11 | 莫得纳特斯公司 | 编码白细胞介素12(il12)的多核苷酸及其用途 |
| WO2019018765A1 (en) | 2017-07-21 | 2019-01-24 | Modernatx, Inc. | MODIFIED mRNA ENCODING PROPIONYL-COA-CARBOXYLASE AND USES THEREOF |
| EP3434774A1 (en) * | 2013-01-17 | 2019-01-30 | ModernaTX, Inc. | Signal-sensor polynucleotides for the alteration of cellular phenotypes |
| WO2019023179A1 (en) | 2017-07-24 | 2019-01-31 | Modernatx, Inc. | MODIFIED mRNA ENCODING GLUCOSE-6-PHOSPHATASE AND USES THEREOF |
| US10207010B2 (en) | 2015-12-10 | 2019-02-19 | Modernatx, Inc. | Compositions and methods for delivery of agents |
| WO2018231034A3 (ko) * | 2017-06-16 | 2019-04-11 | (주)프로스테믹스 | 암의 예방 또는 치료용 약학적 조성물 |
| US10258698B2 (en) | 2013-03-14 | 2019-04-16 | Modernatx, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
| WO2019152557A1 (en) | 2018-01-30 | 2019-08-08 | Modernatx, Inc. | Compositions and methods for delivery of agents to immune cells |
| US10385088B2 (en) | 2013-10-02 | 2019-08-20 | Modernatx, Inc. | Polynucleotide molecules and uses thereof |
| US10407683B2 (en) | 2014-07-16 | 2019-09-10 | Modernatx, Inc. | Circular polynucleotides |
| WO2019200171A1 (en) | 2018-04-11 | 2019-10-17 | Modernatx, Inc. | Messenger rna comprising functional rna elements |
| WO2019204743A1 (en) | 2018-04-19 | 2019-10-24 | Checkmate Pharmaceuticals, Inc. | Synthetic rig-i-like receptor agonists |
| US10590161B2 (en) | 2013-03-15 | 2020-03-17 | Modernatx, Inc. | Ion exchange purification of mRNA |
| WO2020056304A1 (en) | 2018-09-14 | 2020-03-19 | Modernatx, Inc. | Methods and compositions for treating cancer using mrna therapeutics |
| WO2020097409A2 (en) | 2018-11-08 | 2020-05-14 | Modernatx, Inc. | Use of mrna encoding ox40l to treat cancer in human patients |
| KR20200085801A (ko) * | 2017-11-09 | 2020-07-15 | 고쿠리츠다이가쿠호진 히로시마다이가쿠 | miRNA를 포함하는 암 치료용 의약 조성물 |
| KR20200117975A (ko) * | 2017-09-20 | 2020-10-14 | 폰다치오네 이스티튜토 이탈리아노 디 테크놀로지아 | 기능성 핵산 분자 및 그의 용도 |
| WO2020227537A1 (en) | 2019-05-07 | 2020-11-12 | Modernatx, Inc | Differentially expressed immune cell micrornas for regulation of protein expression |
| WO2020227510A1 (en) | 2019-05-07 | 2020-11-12 | Modernatx, Inc. | Polynucleotides for disrupting immune cell activity and methods of use thereof |
| WO2020263985A1 (en) | 2019-06-24 | 2020-12-30 | Modernatx, Inc. | Messenger rna comprising functional rna elements and uses thereof |
| WO2020263883A1 (en) | 2019-06-24 | 2020-12-30 | Modernatx, Inc. | Endonuclease-resistant messenger rna and uses thereof |
| WO2021007515A1 (en) | 2019-07-11 | 2021-01-14 | Tenaya Therapeutics, Inc. | Cardiac cell reprogramming with micrornas and other factors |
| WO2021050986A1 (en) | 2019-09-11 | 2021-03-18 | Modernatx, Inc. | Lnp-formulated mrna therapeutics and use thereof for treating human subjects |
| WO2021081353A1 (en) | 2019-10-23 | 2021-04-29 | Checkmate Pharmaceuticals, Inc. | Synthetic rig-i-like receptor agonists |
| US11015211B2 (en) | 2018-08-30 | 2021-05-25 | Tenaya Therapeutics, Inc. | Cardiac cell reprogramming with myocardin and ASCL1 |
| US11027025B2 (en) | 2013-07-11 | 2021-06-08 | Modernatx, Inc. | Compositions comprising synthetic polynucleotides encoding CRISPR related proteins and synthetic sgRNAs and methods of use |
| JP2021091689A (ja) * | 2014-04-23 | 2021-06-17 | モデルナティーエックス, インコーポレイテッド | 核酸ワクチン |
| WO2021178246A1 (en) | 2020-03-02 | 2021-09-10 | Tenaya Therapeutics, Inc. | Gene vector control by cardiomyocyte-expressed micrornas |
| WO2021243207A1 (en) | 2020-05-28 | 2021-12-02 | Modernatx, Inc. | Use of mrnas encoding ox40l, il-23 and il-36gamma for treating cancer |
| US11219634B2 (en) | 2015-01-21 | 2022-01-11 | Genevant Sciences Gmbh | Methods, compositions, and systems for delivering therapeutic and diagnostic agents into cells |
| WO2022032154A2 (en) | 2020-08-06 | 2022-02-10 | Modernatx, Inc. | Compositions for the delivery of payload molecules to airway epithelium |
| EP3718565B1 (en) | 2015-10-22 | 2022-04-27 | ModernaTX, Inc. | Respiratory virus vaccines |
| US20220125723A1 (en) | 2010-07-06 | 2022-04-28 | Glaxosmithkline Biologicals Sa | Lipid formulations with viral immunogens |
| US11377470B2 (en) | 2013-03-15 | 2022-07-05 | Modernatx, Inc. | Ribonucleic acid purification |
| US11434486B2 (en) | 2015-09-17 | 2022-09-06 | Modernatx, Inc. | Polynucleotides containing a morpholino linker |
| US11524023B2 (en) | 2021-02-19 | 2022-12-13 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
| WO2023009421A1 (en) | 2021-07-26 | 2023-02-02 | Modernatx, Inc. | Processes for preparing lipid nanoparticle compositions |
| WO2023009422A1 (en) | 2021-07-26 | 2023-02-02 | Modernatx, Inc. | Processes for preparing lipid nanoparticle compositions for the delivery of payload molecules to airway epithelium |
| US11596645B2 (en) | 2010-07-06 | 2023-03-07 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
| WO2023031394A1 (en) | 2021-09-03 | 2023-03-09 | CureVac SE | Novel lipid nanoparticles for delivery of nucleic acids |
| WO2023064469A1 (en) | 2021-10-13 | 2023-04-20 | Modernatx, Inc. | Compositions of mrna-encoded il15 fusion proteins and methods of use thereof |
| US11639370B2 (en) | 2010-10-11 | 2023-05-02 | Glaxosmithkline Biologicals Sa | Antigen delivery platforms |
| WO2023073228A1 (en) | 2021-10-29 | 2023-05-04 | CureVac SE | Improved circular rna for expressing therapeutic proteins |
| WO2023086465A1 (en) | 2021-11-12 | 2023-05-19 | Modernatx, Inc. | Compositions for the delivery of payload molecules to airway epithelium |
| US11655475B2 (en) | 2010-07-06 | 2023-05-23 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
| WO2023144330A1 (en) | 2022-01-28 | 2023-08-03 | CureVac SE | Nucleic acid encoded transcription factor inhibitors |
| WO2023154818A1 (en) | 2022-02-09 | 2023-08-17 | Modernatx, Inc. | Mucosal administration methods and formulations |
| US11759422B2 (en) | 2010-08-31 | 2023-09-19 | Glaxosmithkline Biologicals Sa | Pegylated liposomes for delivery of immunogen-encoding RNA |
| EP4243878A1 (en) | 2020-11-16 | 2023-09-20 | Surrozen Operating, Inc. | Liver-specific wnt signal enhancing molecules and uses thereof |
| WO2023196988A1 (en) | 2022-04-07 | 2023-10-12 | Modernatx, Inc. | Methods of use of mrnas encoding il-12 |
| WO2023199113A1 (en) | 2022-04-15 | 2023-10-19 | Smartcella Solutions Ab | COMPOSITIONS AND METHODS FOR EXOSOME-MEDIATED DELIVERY OF mRNA AGENTS |
| WO2023215498A2 (en) | 2022-05-05 | 2023-11-09 | Modernatx, Inc. | Compositions and methods for cd28 antagonism |
| WO2023227608A1 (en) | 2022-05-25 | 2023-11-30 | Glaxosmithkline Biologicals Sa | Nucleic acid based vaccine encoding an escherichia coli fimh antigenic polypeptide |
| US11896636B2 (en) | 2011-07-06 | 2024-02-13 | Glaxosmithkline Biologicals Sa | Immunogenic combination compositions and uses thereof |
| DE202023106198U1 (de) | 2022-10-28 | 2024-03-21 | CureVac SE | Impfstoff auf Nukleinsäurebasis |
| US11958891B2 (en) | 2017-01-26 | 2024-04-16 | Surrozen Operating, Inc. | Tissue-specific Wnt signal enhancing molecules and uses thereof |
| WO2024097639A1 (en) | 2022-10-31 | 2024-05-10 | Modernatx, Inc. | Hsa-binding antibodies and binding proteins and uses thereof |
| WO2024107827A1 (en) | 2022-11-16 | 2024-05-23 | The Broad Institute, Inc. | Therapeutic exploitation of sting channel activity |
| US11993645B2 (en) | 2017-01-11 | 2024-05-28 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions comprising R-Spondin (RSPO) surrogate molecules |
| WO2024118866A1 (en) | 2022-12-01 | 2024-06-06 | Modernatx, Inc. | Gpc3-specific antibodies, binding domains, and related proteins and uses thereof |
| WO2024164823A1 (zh) * | 2023-02-07 | 2024-08-15 | 深圳赛陆医疗科技有限公司 | 核苷酸类似物及其在测序中的应用 |
| KR20240125999A (ko) * | 2023-02-12 | 2024-08-20 | 주식회사 래디안 | miRNA를 포함하는 발모 촉진 또는 탈모 방지용 조성물 |
| WO2024178305A1 (en) | 2023-02-24 | 2024-08-29 | Modernatx, Inc. | Compositions of mrna-encoded il-15 fusion proteins and methods of use thereof for treating cancer |
| WO2024184500A1 (en) | 2023-03-08 | 2024-09-12 | CureVac SE | Novel lipid nanoparticle formulations for delivery of nucleic acids |
| WO2024189583A1 (en) | 2023-03-15 | 2024-09-19 | Kyoto Prefectural Public University Corporation | Peptide expression constructs and uses thereof |
| WO2024197310A1 (en) | 2023-03-23 | 2024-09-26 | Modernatx, Inc. | Peg targeting compounds for delivery of therapeutics |
| WO2024197309A1 (en) | 2023-03-23 | 2024-09-26 | Modernatx, Inc. | Peg targeting compounds for delivery of therapeutics |
| WO2024197307A1 (en) | 2023-03-23 | 2024-09-26 | Modernatx, Inc. | Peg targeting compounds for delivery of therapeutics |
| WO2024206126A1 (en) | 2023-03-27 | 2024-10-03 | Modernatx, Inc. | Cd16-binding antibodies and uses thereof |
| US12109274B2 (en) | 2015-09-17 | 2024-10-08 | Modernatx, Inc. | Polynucleotides containing a stabilizing tail region |
| WO2024230934A1 (en) | 2023-05-11 | 2024-11-14 | CureVac SE | Therapeutic nucleic acid for the treatment of ophthalmic diseases |
| US12151029B2 (en) | 2018-09-19 | 2024-11-26 | Modernatx, Inc. | PEG lipids and uses thereof |
| EP3374504B1 (en) * | 2015-11-09 | 2025-03-19 | CureVac SE | Optimized nucleic acid molecules |
| WO2025059215A1 (en) | 2023-09-12 | 2025-03-20 | Aadigen, Llc | Methods and compositions for treating or preventing cancer |
| EP4208549A4 (en) * | 2020-09-04 | 2025-04-16 | Verve Therapeutics, Inc. | Compositions and methods for capping RNAs |
| EP4361270A4 (en) * | 2021-06-24 | 2025-05-21 | Hanmi Pharm. Co., Ltd. | Non-natural 5'-untranslated region and 3'-untranslated region and use thereof |
| US12318443B2 (en) | 2016-11-11 | 2025-06-03 | Modernatx, Inc. | Influenza vaccine |
| US12383508B2 (en) | 2018-09-19 | 2025-08-12 | Modernatx, Inc. | High-purity peg lipids and uses thereof |
| US12385034B2 (en) | 2016-06-24 | 2025-08-12 | Modernatx, Inc. | Methods and apparatus for filtration |
| WO2025194138A1 (en) | 2024-03-14 | 2025-09-18 | Tessera Therapeutics, Inc. | St1cas9 compositions and methods for modulating a genome |
| WO2025226842A1 (en) * | 2024-04-24 | 2025-10-30 | Kate Therapeutics, Inc. | Expression control by drg-expressed mirnas |
| US12466884B2 (en) | 2018-07-09 | 2025-11-11 | Surrozen Operating, Inc. | Tissue-specific WNT signal enhancing molecules and uses |
| US12508278B2 (en) | 2023-06-02 | 2025-12-30 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
Families Citing this family (204)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3312494B2 (ja) | 1994-08-31 | 2002-08-05 | 富士ゼロックス株式会社 | データ処理装置 |
| DE10347710B4 (de) | 2003-10-14 | 2006-03-30 | Johannes-Gutenberg-Universität Mainz | Rekombinante Impfstoffe und deren Verwendung |
| DE102005046490A1 (de) | 2005-09-28 | 2007-03-29 | Johannes-Gutenberg-Universität Mainz | Modifikationen von RNA, die zu einer erhöhten Transkriptstabilität und Translationseffizienz führen |
| DK3338765T3 (en) | 2009-12-01 | 2019-03-04 | Translate Bio Inc | STEROID DERIVATIVE FOR THE SUPPLY OF MRNA IN HUMANGENETIC DISEASES |
| WO2012019630A1 (en) | 2010-08-13 | 2012-02-16 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
| US8853377B2 (en) | 2010-11-30 | 2014-10-07 | Shire Human Genetic Therapies, Inc. | mRNA for use in treatment of human genetic diseases |
| LT3892295T (lt) | 2011-05-24 | 2023-07-10 | BioNTech SE | Individualizuotos vakcinos nuo vėžio |
| JP6184945B2 (ja) | 2011-06-08 | 2017-08-23 | シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド | mRNA送達のための脂質ナノ粒子組成物および方法 |
| WO2013120498A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen |
| WO2013120497A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein |
| WO2013120500A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen |
| WO2013120499A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly (a) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen |
| US10967298B2 (en) | 2012-03-15 | 2021-04-06 | Flodesign Sonics, Inc. | Driver and control for variable impedence load |
| US9745548B2 (en) | 2012-03-15 | 2017-08-29 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
| US10322949B2 (en) | 2012-03-15 | 2019-06-18 | Flodesign Sonics, Inc. | Transducer and reflector configurations for an acoustophoretic device |
| US10704021B2 (en) | 2012-03-15 | 2020-07-07 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
| US9950282B2 (en) | 2012-03-15 | 2018-04-24 | Flodesign Sonics, Inc. | Electronic configuration and control for acoustic standing wave generation |
| US10689609B2 (en) | 2012-03-15 | 2020-06-23 | Flodesign Sonics, Inc. | Acoustic bioreactor processes |
| US9752113B2 (en) | 2012-03-15 | 2017-09-05 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
| US9458450B2 (en) | 2012-03-15 | 2016-10-04 | Flodesign Sonics, Inc. | Acoustophoretic separation technology using multi-dimensional standing waves |
| WO2013143555A1 (en) | 2012-03-26 | 2013-10-03 | Biontech Ag | Rna formulation for immunotherapy |
| RU2660565C2 (ru) | 2012-03-27 | 2018-07-06 | Кьюрвак Аг | Молекулы искусственной нуклеиновой кислоты, содержащие 5'utr гена top |
| RU2658490C2 (ru) | 2012-03-27 | 2018-06-21 | Кьюрвак Аг | Искусственные молекулы нуклеиновых кислот для улучшенной экспрессии белков или пептидов |
| US10737953B2 (en) | 2012-04-20 | 2020-08-11 | Flodesign Sonics, Inc. | Acoustophoretic method for use in bioreactors |
| US10245229B2 (en) | 2012-06-08 | 2019-04-02 | Translate Bio, Inc. | Pulmonary delivery of mRNA to non-lung target cells |
| EP3536787A1 (en) | 2012-06-08 | 2019-09-11 | Translate Bio, Inc. | Nuclease resistant polynucleotides and uses thereof |
| US9512456B2 (en) | 2012-08-14 | 2016-12-06 | Modernatx, Inc. | Enzymes and polymerases for the synthesis of RNA |
| JP6484558B2 (ja) | 2012-11-28 | 2019-03-13 | バイオエヌテック エールエヌアー ファーマシューティカルズ ゲーエムベーハーBiontech Rna Pharmaceuticals Gmbh | 癌ワクチンの組み合せ物 |
| EP2968391A1 (en) | 2013-03-13 | 2016-01-20 | Moderna Therapeutics, Inc. | Long-lived polynucleotide molecules |
| JP6586075B2 (ja) | 2013-03-14 | 2019-10-02 | トランスレイト バイオ, インコーポレイテッド | メッセンジャーrnaの精製方法 |
| EA201591293A1 (ru) | 2013-03-14 | 2016-02-29 | Шир Хьюман Дженетик Терапис, Инк. | Способы и композиции для доставки антител, кодируемых мрнк |
| IL305374A (en) | 2013-03-14 | 2023-10-01 | Ethris Gmbh | Cftr mrna compositions and related methods and uses |
| ES3032013T3 (en) | 2013-03-15 | 2025-07-14 | Translate Bio Inc | Synergistic enhancement of the delivery of nucleic acids via blended formulations |
| WO2014180490A1 (en) | 2013-05-10 | 2014-11-13 | Biontech Ag | Predicting immunogenicity of t cell epitopes |
| US9867885B2 (en) | 2013-07-30 | 2018-01-16 | Phaserx, Inc. | Block copolymers |
| US9745569B2 (en) | 2013-09-13 | 2017-08-29 | Flodesign Sonics, Inc. | System for generating high concentration factors for low cell density suspensions |
| US10023626B2 (en) | 2013-09-30 | 2018-07-17 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
| AU2014340155B2 (en) | 2013-10-22 | 2018-11-01 | Massachusetts Institute Of Technology | Lipid formulations for delivery of messenger RNA |
| EA034103B1 (ru) | 2013-10-22 | 2019-12-27 | Транслейт Био, Инк. | СПОСОБ ЛЕЧЕНИЯ ФЕНИЛКЕТОНУРИИ С ПРИМЕНЕНИЕМ мРНК |
| WO2015061461A1 (en) | 2013-10-22 | 2015-04-30 | Shire Human Genetic Therapies, Inc. | Cns delivery of mrna and uses thereof |
| BR112016009014B1 (pt) | 2013-10-22 | 2024-02-06 | Translate Bio, Inc | USO DE COMPOSIÇÃO COMPREENDENDO mRNA PARA DEFICIÊNCIA DE ARGININOSSUCINATO SINTETASE |
| US10428368B2 (en) * | 2013-12-05 | 2019-10-01 | New England Biolabs, Inc. | Methods for enriching for a population of RNA molecules |
| US11225658B2 (en) * | 2013-12-05 | 2022-01-18 | New England Biolabs, Inc. | Enrichment and sequencing of RNA species |
| US11254951B2 (en) | 2014-12-30 | 2022-02-22 | Curevac Ag | Artificial nucleic acid molecules |
| CA2927254C (en) | 2013-12-30 | 2023-10-24 | Curevac Ag | Artificial nucleic acid molecules |
| SG10201903381TA (en) | 2013-12-30 | 2019-05-30 | Curevac Ag | Artificial nucleic acid molecules |
| WO2015105955A1 (en) | 2014-01-08 | 2015-07-16 | Flodesign Sonics, Inc. | Acoustophoresis device with dual acoustophoretic chamber |
| MX373952B (es) | 2014-04-25 | 2020-07-13 | Shire Human Genetic Therapies | Métodos de purificación de arn mensajero. |
| MA48050A (fr) | 2014-05-30 | 2020-02-12 | Translate Bio Inc | Lipides biodégradables pour l'administration d'acides nucléiques |
| KR20250030013A (ko) * | 2014-06-13 | 2025-03-05 | 도레이 카부시키가이샤 | 대장암의 검출 키트 또는 디바이스 및 검출 방법 |
| EA033966B1 (ru) | 2014-06-24 | 2019-12-13 | Транслейт Био, Инк. | Стереохимически обогащенные композиции для доставки нуклеиновых кислот |
| AU2015283954B2 (en) | 2014-07-02 | 2020-11-12 | Translate Bio, Inc. | Encapsulation of messenger RNA |
| US9744483B2 (en) | 2014-07-02 | 2017-08-29 | Flodesign Sonics, Inc. | Large scale acoustic separation device |
| WO2016014478A1 (en) * | 2014-07-21 | 2016-01-28 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | USE OF AN miRNA TO REDUCE PROLIFERATION OF A CANCER CELL |
| US20170275703A1 (en) * | 2014-08-25 | 2017-09-28 | The Council Of The Queensland Institute Of Medical Research | Treatment and detection of melanoma |
| WO2016045732A1 (en) | 2014-09-25 | 2016-03-31 | Biontech Rna Pharmaceuticals Gmbh | Stable formulations of lipids and liposomes |
| EP3218508A4 (en) * | 2014-11-10 | 2018-04-18 | Modernatx, Inc. | Multiparametric nucleic acid optimization |
| ES2861597T3 (es) | 2014-12-05 | 2021-10-06 | Translate Bio Inc | Terapia de ARN mensajero para el tratamiento de enfermedad articular |
| US11149278B2 (en) * | 2014-12-12 | 2021-10-19 | Curevac Ag | Artificial nucleic acid molecules for improved protein expression |
| US20180000953A1 (en) * | 2015-01-21 | 2018-01-04 | Moderna Therapeutics, Inc. | Lipid nanoparticle compositions |
| WO2016128060A1 (en) | 2015-02-12 | 2016-08-18 | Biontech Ag | Predicting t cell epitopes useful for vaccination |
| EP3900702A1 (en) | 2015-03-19 | 2021-10-27 | Translate Bio, Inc. | Mrna therapy for pompe disease |
| US11708572B2 (en) | 2015-04-29 | 2023-07-25 | Flodesign Sonics, Inc. | Acoustic cell separation techniques and processes |
| US11021699B2 (en) | 2015-04-29 | 2021-06-01 | FioDesign Sonics, Inc. | Separation using angled acoustic waves |
| US11377651B2 (en) | 2016-10-19 | 2022-07-05 | Flodesign Sonics, Inc. | Cell therapy processes utilizing acoustophoresis |
| TW201718638A (zh) | 2015-07-21 | 2017-06-01 | 現代治療公司 | 傳染病疫苗 |
| US11364292B2 (en) | 2015-07-21 | 2022-06-21 | Modernatx, Inc. | CHIKV RNA vaccines |
| US11474085B2 (en) | 2015-07-28 | 2022-10-18 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
| US11459540B2 (en) | 2015-07-28 | 2022-10-04 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
| EP3328394A4 (en) | 2015-07-30 | 2019-03-13 | ModernaTX, Inc. | CONCATEMEE peptide epitope RNAs |
| US11564893B2 (en) | 2015-08-17 | 2023-01-31 | Modernatx, Inc. | Methods for preparing particles and related compositions |
| WO2017044650A1 (en) * | 2015-09-08 | 2017-03-16 | The Translational Genomics Research Institute | Biomarkers and methods of diagnosing and prognosing mild traumatic brain injuries |
| WO2017059902A1 (en) | 2015-10-07 | 2017-04-13 | Biontech Rna Pharmaceuticals Gmbh | 3' utr sequences for stabilization of rna |
| AU2016338559B2 (en) | 2015-10-14 | 2022-11-24 | Translate Bio, Inc. | Modification of RNA-related enzymes for enhanced production |
| WO2017066793A1 (en) * | 2015-10-16 | 2017-04-20 | Modernatx, Inc. | Mrna cap analogs and methods of mrna capping |
| EP3362461B1 (en) | 2015-10-16 | 2022-03-16 | Modernatx, Inc. | Mrna cap analogs with modified phosphate linkage |
| US11866754B2 (en) | 2015-10-16 | 2024-01-09 | Modernatx, Inc. | Trinucleotide mRNA cap analogs |
| US11643441B1 (en) | 2015-10-22 | 2023-05-09 | Modernatx, Inc. | Nucleic acid vaccines for varicella zoster virus (VZV) |
| WO2017070624A1 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Tropical disease vaccines |
| JP6921833B2 (ja) | 2015-10-22 | 2021-08-18 | モデルナティーエックス, インコーポレイテッド | ヒトサイトメガロウイルスワクチン |
| MA45209A (fr) | 2015-10-22 | 2019-04-17 | Modernatx Inc | Vaccins contre les maladies sexuellement transmissibles |
| KR101737706B1 (ko) | 2015-12-15 | 2017-05-18 | 한국원자력의학원 | miR-5582-5p를 포함하는 항암제 |
| US10465190B1 (en) | 2015-12-23 | 2019-11-05 | Modernatx, Inc. | In vitro transcription methods and constructs |
| CN105483233B (zh) * | 2015-12-24 | 2018-07-20 | 北京大学第一医院 | 检测miR-3158-5p表达量的系统在预测阿司匹林对心血管疾病患者疗效中的应用 |
| CN105663023B (zh) * | 2016-01-22 | 2018-08-10 | 江汉大学 | 一种光控药物释放的微针制备方法 |
| US11293065B2 (en) * | 2016-03-14 | 2022-04-05 | Aelan Cell Technologies, Inc. | Compositions and methods for the quality control of stem cell preparations |
| KR102475301B1 (ko) | 2016-04-08 | 2022-12-09 | 트랜슬레이트 바이오 인코포레이티드 | 다량체 코딩 핵산 및 그 용도 |
| US11085035B2 (en) | 2016-05-03 | 2021-08-10 | Flodesign Sonics, Inc. | Therapeutic cell washing, concentration, and separation utilizing acoustophoresis |
| US11214789B2 (en) | 2016-05-03 | 2022-01-04 | Flodesign Sonics, Inc. | Concentration and washing of particles with acoustics |
| JP2019514401A (ja) * | 2016-05-05 | 2019-06-06 | ベニテック バイオファーマ リミテッド | B型肝炎ウイルス(hbv)感染を治療するための試薬およびその使用 |
| EP3241905A1 (en) * | 2016-05-06 | 2017-11-08 | Miltenyi Biotec GmbH | Method for introducing nucleic acids into a cell |
| IL263079B2 (en) | 2016-05-18 | 2024-05-01 | Modernatx Inc | Polynucleotides encoding relaxin |
| CN109562192B (zh) | 2016-05-27 | 2023-08-15 | 创思瑞普泰克斯公司 | 用合成信使rna治疗原发性纤毛运动障碍 |
| CN109312313A (zh) | 2016-06-13 | 2019-02-05 | 川斯勒佰尔公司 | 用于治疗鸟氨酸转氨甲酰酶缺乏症的信使rna疗法 |
| US12016884B2 (en) | 2016-08-30 | 2024-06-25 | University Of South Florida | Adipose derived stem cell exosomes and uses thereof |
| CA3036831A1 (en) | 2016-09-14 | 2018-03-22 | Modernatx, Inc. | High purity rna compositions and methods for preparation thereof |
| JP2020513248A (ja) | 2016-10-19 | 2020-05-14 | フロデザイン ソニックス, インク.Flodesign Sonics, Inc. | 音響による親和性細胞抽出 |
| AU2017345766A1 (en) | 2016-10-21 | 2019-05-16 | Modernatx, Inc. | Human cytomegalovirus vaccine |
| EP3973955B1 (en) | 2016-11-23 | 2025-05-21 | Mayo Foundation for Medical Education and Research | Particle-mediated delivery of inhibitory rna |
| WO2018102317A1 (en) * | 2016-11-29 | 2018-06-07 | The Regents Of The University Of California | Modulation of p53 for the treatment of cancer |
| US11103578B2 (en) | 2016-12-08 | 2021-08-31 | Modernatx, Inc. | Respiratory virus nucleic acid vaccines |
| US11384352B2 (en) | 2016-12-13 | 2022-07-12 | Modernatx, Inc. | RNA affinity purification |
| US11684584B2 (en) | 2016-12-30 | 2023-06-27 | Genevant Sciences Gmbh | Branched peg molecules and related compositions and methods |
| CN108310381A (zh) * | 2017-01-16 | 2018-07-24 | 昆山彭济凯丰生物科技有限公司 | 通过miR-6511b-3p进行抗癌的方法和药物及其应用 |
| MA47515A (fr) | 2017-02-16 | 2019-12-25 | Modernatx Inc | Compositions immunogènes très puissantes |
| CN106591487A (zh) * | 2017-02-22 | 2017-04-26 | 西北工业大学 | 老年骨质疏松性骨折的血清microRNA诊断标志物及其诊断试剂盒 |
| EP3585417B1 (en) | 2017-02-27 | 2023-02-22 | Translate Bio, Inc. | Method of making a codon-optimized cftr mrna |
| WO2018160592A1 (en) | 2017-02-28 | 2018-09-07 | Arcturus Therapeutics, Inc. | Translatable molecules and synthesis thereof |
| WO2018170245A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Broad spectrum influenza virus vaccine |
| US11464848B2 (en) | 2017-03-15 | 2022-10-11 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
| WO2018170270A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Varicella zoster virus (vzv) vaccine |
| WO2018170256A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Herpes simplex virus vaccine |
| WO2018170347A1 (en) | 2017-03-17 | 2018-09-20 | Modernatx, Inc. | Zoonotic disease rna vaccines |
| MA48047A (fr) | 2017-04-05 | 2020-02-12 | Modernatx Inc | Réduction ou élimination de réponses immunitaires à des protéines thérapeutiques administrées par voie non intraveineuse, par exemple par voie sous-cutanée |
| US11976330B2 (en) * | 2017-04-06 | 2024-05-07 | The University Of Vermont And State Agricultural College | MiRNA signature expression in cancer |
| WO2018195338A1 (en) | 2017-04-20 | 2018-10-25 | Atyr Pharma, Inc. | Compositions and methods for treating lung inflammation |
| US10975444B2 (en) * | 2017-04-28 | 2021-04-13 | Toray Industries, Inc. | Kit, device, and method for detecting ovarian tumor |
| EP3624824B1 (en) | 2017-05-16 | 2024-07-10 | Translate Bio, Inc. | Codon-optimized mrna encoding cftr for use in treating cystic fibrosis |
| WO2018224166A1 (en) | 2017-06-09 | 2018-12-13 | Biontech Rna Pharmaceuticals Gmbh | Methods for predicting the usefulness of disease specific amino acid modifications for immunotherapy |
| EP3638215A4 (en) | 2017-06-15 | 2021-03-24 | Modernatx, Inc. | RNA FORMULATIONS |
| EP3653710A4 (en) * | 2017-07-12 | 2021-04-14 | Kyoto University | HIGH-EXPRESSION mRNA SWITCH |
| US11912982B2 (en) | 2017-08-18 | 2024-02-27 | Modernatx, Inc. | Methods for HPLC analysis |
| WO2019036682A1 (en) | 2017-08-18 | 2019-02-21 | Modernatx, Inc. | RNA VARIANTS POLYMERASE |
| MA49914A (fr) | 2017-08-18 | 2021-04-21 | Modernatx Inc | Procédés analytiques par hplc |
| CN111315359A (zh) | 2017-08-31 | 2020-06-19 | 摩登纳特斯有限公司 | 制备脂质纳米颗粒的方法 |
| GB201714430D0 (en) * | 2017-09-07 | 2017-10-25 | Micol Romain | Compositions and processes for targeted delivery and expression and modulation of therapeutic components in tissue |
| US10653767B2 (en) | 2017-09-14 | 2020-05-19 | Modernatx, Inc. | Zika virus MRNA vaccines |
| CA3077057A1 (en) * | 2017-10-02 | 2019-04-11 | Research Institute At Nationwide Children's Hospital | Mirna detargeting system for tissue specific interference |
| BR112020009889A2 (pt) | 2017-12-14 | 2020-11-03 | Flodesign Sonics, Inc. | acionador e controlador de transdutor acústico |
| WO2019126593A1 (en) | 2017-12-20 | 2019-06-27 | Translate Bio, Inc. | Improved composition and methods for treatment of ornithine transcarbamylase deficiency |
| WO2019148101A1 (en) | 2018-01-29 | 2019-08-01 | Modernatx, Inc. | Rsv rna vaccines |
| KR102141124B1 (ko) * | 2018-01-30 | 2020-08-04 | (주)바이오니아 | 이중 가닥 miRNA를 포함하는 이중나선 올리고뉴클레오타이드 구조체 및 이의 용도 |
| CN108531586B (zh) * | 2018-03-19 | 2022-03-29 | 朱伟 | 一种与乳腺癌辅助诊断相关的位于X染色体上的循环miRNA标志物及其应用 |
| EP3833760B1 (en) * | 2018-08-08 | 2024-07-17 | Theramir Ltd | Microrna-based therapy targeted against lcp-1 positive cancers |
| CA3108544A1 (en) | 2018-08-24 | 2020-02-27 | Translate Bio, Inc. | Methods for purification of messenger rna |
| WO2020061457A1 (en) | 2018-09-20 | 2020-03-26 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
| US12331320B2 (en) | 2018-10-10 | 2025-06-17 | The Research Foundation For The State University Of New York | Genome edited cancer cell vaccines |
| AU2019384557B2 (en) | 2018-11-21 | 2025-07-17 | Translate Bio, Inc. | Treatment of cystic fibrosis by delivery of nebulized mRNA encoding CFTR |
| CN109402262B (zh) * | 2018-12-18 | 2022-01-25 | 上海交通大学医学院附属上海儿童医学中心 | 辅助诊断神经母细胞瘤的PCR检测试剂盒及检测miR-199a-3p表达水平的方法 |
| US11351242B1 (en) | 2019-02-12 | 2022-06-07 | Modernatx, Inc. | HMPV/hPIV3 mRNA vaccine composition |
| US11851694B1 (en) | 2019-02-20 | 2023-12-26 | Modernatx, Inc. | High fidelity in vitro transcription |
| MX2021010075A (es) | 2019-02-20 | 2021-12-10 | Modernatx Inc | Variantes de arn polimerasa para la formacion de casquetes cotranscripcionales. |
| CN113874502A (zh) | 2019-03-11 | 2021-12-31 | 摩登纳特斯有限公司 | 补料分批体外转录方法 |
| WO2020190750A1 (en) | 2019-03-15 | 2020-09-24 | Modernatx, Inc. | Hiv rna vaccines |
| JP7529284B2 (ja) * | 2019-04-05 | 2024-08-06 | 国立大学法人京都大学 | Rnaのキャッピング方法、修飾rnaの製造方法、及び修飾rna |
| EP3969027B1 (en) * | 2019-05-16 | 2024-02-28 | Saint Joseph's University | Polypeptides for treatment of cancer |
| CA3150308A1 (en) | 2019-09-18 | 2021-03-25 | Eric S. FISCHER | Protein tag to induce ligand dependent degradation of protein/protein-fusions |
| WO2021062096A1 (en) * | 2019-09-26 | 2021-04-01 | Massachusetts Institute Of Technology | Microrna-based logic gates and uses thereof |
| CN110724688A (zh) * | 2019-10-09 | 2020-01-24 | 新乡医学院 | miRNA138及其在调节TERT基因表达中的应用 |
| WO2021076645A1 (en) * | 2019-10-15 | 2021-04-22 | The Regents Of The University Of California | Treatment of airway conditions by modulation of mir200 family micrornas |
| CN111041025B (zh) | 2019-12-17 | 2021-06-18 | 深圳市瑞吉生物科技有限公司 | 基于结合N-乙酰半乳糖胺多肽的mRNA靶向分子及其制备方法 |
| CN110938687B (zh) * | 2019-12-26 | 2023-06-27 | 广州医科大学附属第三医院(广州重症孕产妇救治中心、广州柔济医院) | 胎盘植入性疾病标志物 |
| KR20220150276A (ko) * | 2020-01-11 | 2022-11-10 | 시벡 바이오테크놀로지스, 엘엘씨 | 진핵생물로의 진핵생물-번역가능한 mRNA의 생산 및 전달을 위한 미생물 시스템 |
| CN113134010B (zh) * | 2020-01-20 | 2023-09-01 | 上海市生物医药技术研究院 | 一种靶向雌激素受体α的微小RNA及其抗肿瘤用途 |
| KR102462990B1 (ko) * | 2020-03-17 | 2022-11-07 | 에이비온 주식회사 | 인비트로 트랜스크립트 mRNA 및 이를 함유하는 약학조성물 |
| CN113930505B (zh) * | 2020-03-30 | 2022-04-19 | 中国医学科学院肿瘤医院 | 用于肺癌诊断的试剂盒及装置 |
| US11419847B2 (en) * | 2020-04-10 | 2022-08-23 | Matthias W. Rath | Pharmaceutical micronutrient composition and its use to simultaneously inhibit multiple cellular mechanisms of infectivity caused by coronavirus, its variants and mutants |
| CA3174215A1 (en) | 2020-04-22 | 2021-10-28 | Ugur Sahin | Coronavirus vaccine |
| EP4150079A1 (en) | 2020-05-15 | 2023-03-22 | Crispr Therapeutics AG | Messenger rna encoding cas9 for use in genome-editing systems |
| CN111744019B (zh) | 2020-07-01 | 2023-08-04 | 深圳瑞吉生物科技有限公司 | 基于甘露糖的mRNA靶向递送系统及其应用 |
| JP2023535225A (ja) | 2020-07-24 | 2023-08-16 | ストランド セラピューティクス インコーポレイテッド | 改変ヌクレオチドを含む脂質ナノ粒子 |
| US11406703B2 (en) | 2020-08-25 | 2022-08-09 | Modernatx, Inc. | Human cytomegalovirus vaccine |
| CN111904974B (zh) * | 2020-08-28 | 2021-12-28 | 中国人民解放军北部战区总医院 | miR-574-5p在糖尿病及其相关疾病中的医药用途 |
| AU2021347807A1 (en) * | 2020-09-23 | 2023-05-04 | Myeloid Therapeutics, Inc. | Improved methods and compositions for expression of nucleic acids in cells |
| JP2024503000A (ja) | 2021-01-08 | 2024-01-24 | ストランド セラピューティクス インコーポレイテッド | 発現構築物およびその使用 |
| US12329811B2 (en) | 2021-01-11 | 2025-06-17 | Modernatx, Inc. | Seasonal RNA influenza virus vaccines |
| EP4277654A1 (en) | 2021-01-18 | 2023-11-22 | Conserv Bioscience Limited | Coronavirus immunogenic compositions, methods and uses thereof |
| CN112961914B (zh) * | 2021-02-07 | 2022-08-30 | 安徽省立医院(中国科学技术大学附属第一医院) | miR-3074-5p作为类风湿关节炎标志物的应用及其试剂盒 |
| CN115245521B (zh) * | 2021-04-28 | 2024-07-26 | 时比曼生物科技(上海)有限公司 | 含有干细胞胞外囊泡的滴鼻剂及其在治疗脑神经血管疾病中的应用 |
| US20220363937A1 (en) | 2021-05-14 | 2022-11-17 | Armstrong World Industries, Inc. | Stabilization of antimicrobial coatings |
| CN113249488A (zh) * | 2021-06-29 | 2021-08-13 | 中国人民解放军空军军医大学 | 基于外泌体miRNA-4433-5p表达水平的胃癌恶液质早期诊断试剂盒 |
| TW202313967A (zh) * | 2021-07-30 | 2023-04-01 | 美商亞克圖羅斯醫療公司 | Rna疫苗 |
| EP4380579A4 (en) * | 2021-08-06 | 2025-06-11 | Leadermed Champion Limited | Mirna-based compositions and methods of use thereof |
| WO2023034809A1 (en) | 2021-08-30 | 2023-03-09 | Lassen Therapeutics 1, Inc. | Anti-il-11rα antibodies |
| EP4426725A2 (en) * | 2021-11-01 | 2024-09-11 | Shattuck Labs, Inc. | Chimeric proteins for treating cutaneous inflammation |
| US12186387B2 (en) | 2021-11-29 | 2025-01-07 | BioNTech SE | Coronavirus vaccine |
| CN114015769A (zh) * | 2021-12-14 | 2022-02-08 | 上海市生物医药技术研究院 | 银屑病关节炎的诊断标记物及其用途 |
| CN118974071A (zh) * | 2022-03-31 | 2024-11-15 | 韩美精密化学株式会社 | mRNA帽类似物及其用途 |
| WO2023191342A1 (ko) * | 2022-03-31 | 2023-10-05 | 한미정밀화학 주식회사 | mRNA 캡 유사체 및 이의 용도 |
| CN114657182B (zh) * | 2022-04-18 | 2023-09-19 | 中国农业科学院北京畜牧兽医研究所 | 一种miRNA及其特异性检测方法和应用 |
| KR20250004731A (ko) | 2022-04-26 | 2025-01-08 | 스트랜드 세러퓨틱스 인코포레이티드 | 베네수엘라 말 뇌염 (vee) 레플리콘을 포함하는 지질 나노입자 및 이의 용도 |
| JPWO2023219114A1 (enExample) * | 2022-05-10 | 2023-11-16 | ||
| WO2023230533A1 (en) * | 2022-05-25 | 2023-11-30 | Jasper Therapeutics, Inc. | Modified stem cell compositions and methods for use |
| EP4539171A4 (en) | 2022-06-08 | 2025-10-08 | Sumitomo Electric Industries | ELECTRODE, BATTERY CELL AND REDOX FLOW BATTERY |
| WO2024002985A1 (en) | 2022-06-26 | 2024-01-04 | BioNTech SE | Coronavirus vaccine |
| CN119866224A (zh) | 2022-07-28 | 2025-04-22 | 加拿大干细胞技术公司 | 编码连接抗原的多核苷酸以及其用途 |
| CN115261482B (zh) * | 2022-10-08 | 2022-12-09 | 暨南大学 | miR-4256在胃癌治疗、诊断以及预后评估中的应用 |
| EP4612300A1 (en) * | 2022-11-04 | 2025-09-10 | Sanofi Pasteur Inc. | Methods for messenger rna tailing |
| WO2024124143A2 (en) * | 2022-12-09 | 2024-06-13 | The Trustees Of The University Of Pennsylvania | Hsc targeted lnp for delivery of pro-apoptotic mrna and methods of use thereof |
| IL321948A (en) | 2023-01-06 | 2025-09-01 | Lassen Therapeutics Inc | Anti-IL-18 BP antibodies |
| WO2024148241A1 (en) | 2023-01-06 | 2024-07-11 | Lassen Therapeutics 1, Inc. | Anti-il-18bp antibodies |
| KR20250171271A (ko) * | 2023-02-01 | 2025-12-08 | 젠스크립트 유에스에이 인크. | 시험관 내 전사 방법 및 이에 사용되는 화합물 |
| AU2024254989A1 (en) | 2023-04-12 | 2025-08-21 | Strand Therapeutics Inc. | Synthetic circuits and uses thereof |
| WO2025024559A1 (en) | 2023-07-24 | 2025-01-30 | Strand Therapeutics Inc. | Rna-based synthetic circuit for producing engineered immune cells for an extracorporeal cell therapy |
| WO2025024704A1 (en) | 2023-07-25 | 2025-01-30 | Strand Therapeutics Inc. | Polynucleotides comprising a micro rna detargeting sensor and uses thereof |
| KR20250047488A (ko) * | 2023-09-27 | 2025-04-04 | 한미약품 주식회사 | 변형된 폴리아데닐 서열을 포함하는 핵산 분자 |
| KR20250047490A (ko) * | 2023-09-27 | 2025-04-04 | 한미약품 주식회사 | 변형된 폴리아데닐 서열 및 ox40l 단백질 코딩서열을 포함하는 핵산 분자 |
| WO2025071359A1 (ko) * | 2023-09-27 | 2025-04-03 | 한미정밀화학 주식회사 | mRNA 캡 유사체 및 이의 용도 |
| KR20250047489A (ko) * | 2023-09-27 | 2025-04-04 | 한미약품 주식회사 | 변형된 폴리아데닐 서열 및 p53 단백질 코딩서열을 포함하는 핵산 분자 |
| WO2025111280A1 (en) | 2023-11-20 | 2025-05-30 | Strand Therapeutics Inc. | Circular rna synthesis |
| WO2025122609A1 (en) | 2023-12-04 | 2025-06-12 | Strand Therapeutics Inc. | Circular rna synthesis |
| CN120665128A (zh) * | 2023-12-29 | 2025-09-19 | 财团法人工业技术研究院 | 化合物、药物组合物、用于加帽rna转录物的试剂盒、以及体外转录的方法 |
| WO2025188755A1 (en) * | 2024-03-04 | 2025-09-12 | Kate Therapeutics, Inc. | Adeno-associated virus compositions for the treatment of duchenne muscular dystrophy |
| WO2025217591A1 (en) | 2024-04-12 | 2025-10-16 | Strand Therapeutics Inc. | Human-derived synthetic regulators and uses thereof |
Citations (63)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5208020A (en) | 1989-10-25 | 1993-05-04 | Immunogen Inc. | Cytotoxic agents comprising maytansinoids and their therapeutic use |
| US5475092A (en) | 1992-03-25 | 1995-12-12 | Immunogen Inc. | Cell binding agent conjugates of analogues and derivatives of CC-1065 |
| WO1999024595A1 (en) | 1997-11-12 | 1999-05-20 | The Brigham And Women's Hospital, Inc. | The translation enhancer element of the human amyloid precursor protein gene |
| WO2001055371A1 (en) | 2000-01-28 | 2001-08-02 | The Scripps Research Institute | Methods of identifying synthetic transcriptional and translational regulatory elements, and compositions relating to same |
| US20050059005A1 (en) | 2001-09-28 | 2005-03-17 | Thomas Tuschl | Microrna molecules |
| US20050261218A1 (en) | 2003-07-31 | 2005-11-24 | Christine Esau | Oligomeric compounds and compositions for use in modulation small non-coding RNAs |
| WO2007025008A2 (en) | 2005-08-24 | 2007-03-01 | The Scripps Research Institute | Translation enhancer-element dependent vector systems |
| US20070117112A1 (en) | 2005-06-30 | 2007-05-24 | Diener John L | Materials and methods for the generation of fully 2'-modified nucleic acid transcripts |
| WO2007081740A2 (en) | 2006-01-05 | 2007-07-19 | The Ohio State University Research Foundation | Micrornarna-based methods and compositions for the diagnosis and treatment of solid cancers |
| WO2008054828A2 (en) | 2006-11-01 | 2008-05-08 | The Ohio State University Research Foundation | Microrna expression signature for predicting survival and metastases in hepatocellular carcinoma |
| US7374930B2 (en) | 2002-05-21 | 2008-05-20 | Expression Genetics, Inc. | GLP-1 gene delivery for the treatment of type 2 diabetes |
| US7385034B2 (en) | 1998-12-22 | 2008-06-10 | Serono Genetics Institute S.A. | Complementary DNAs encoding proteins with signal peptides |
| WO2008073915A2 (en) | 2006-12-08 | 2008-06-19 | Asuragen, Inc. | Micrornas differentially expressed in leukemia and uses thereof |
| WO2008078180A2 (en) | 2006-12-22 | 2008-07-03 | Archemix Corp. | Materials and methods for the generation of transcripts comprising modified nucleotides |
| US7413875B2 (en) | 1999-08-05 | 2008-08-19 | Serono Genetics Institute S.A. | ESTs and encoded human proteins |
| WO2008154098A2 (en) | 2007-06-07 | 2008-12-18 | Wisconsin Alumni Research Foundation | Reagents and methods for mirna expression analysis and identification of cancer biomarkers |
| US7468275B2 (en) | 2000-01-28 | 2008-12-23 | The Scripps Research Institute | Synthetic internal ribosome entry sites and methods of identifying same |
| US20090131348A1 (en) | 2006-09-19 | 2009-05-21 | Emmanuel Labourier | Micrornas differentially expressed in pancreatic diseases and uses thereof |
| WO2009070653A1 (en) | 2007-11-30 | 2009-06-04 | The Ohio State University Research Foundation | Microrna expression profiling and targeting in peripheral blood in lung cancer |
| WO2009075886A1 (en) | 2007-12-11 | 2009-06-18 | The Scripps Research Institute | Compositions and methods related to mrna translational enhancer elements |
| WO2009100430A2 (en) | 2008-02-08 | 2009-08-13 | Asuragen, Inc | miRNAs DIFFERENTIALLY EXPRESSED IN LYMPH NODES FROM CANCER PATIENTS |
| EP2112235A1 (en) | 2008-04-24 | 2009-10-28 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Compositions and methods for microRNA expression profiling of nasopharyngeal carcinoma |
| WO2010018563A2 (en) | 2008-08-12 | 2010-02-18 | Rosetta Genomics Ltd. | Compositions and methods for the prognosis of lymphoma |
| US20100120024A1 (en) | 2005-06-30 | 2010-05-13 | Sharon Cload | Materials and methods for the generation of transcripts comprising modified nucleotides |
| US20100129877A1 (en) | 2005-09-28 | 2010-05-27 | Ugur Sahin | Modification of RNA, Producing an Increased Transcript Stability and Translation Efficiency |
| US20100286232A1 (en) | 2006-03-02 | 2010-11-11 | The Ohio State University | Microrna expression profile associated with pancreatic cancer |
| US20100293625A1 (en) | 2007-09-26 | 2010-11-18 | Interexon Corporation | Synthetic 5'UTRs, Expression Vectors, and Methods for Increasing Transgene Expression |
| WO2011012316A2 (de) * | 2009-07-31 | 2011-02-03 | Ludwig-Maximilians-Universität | Rna mit einer kombination aus unmodifizierten und modifizierten nucleotiden zur proteinexpression |
| WO2011028175A1 (en) | 2009-09-01 | 2011-03-10 | Agency For Science, Technology And Research | Terminal device and method for processing an encrypted bit stream |
| WO2011068810A1 (en) | 2009-12-01 | 2011-06-09 | Shire Human Genetic Therapies | Delivery of mrna for the augmentation of proteins and enzymes in human genetic diseases |
| WO2011076143A1 (en) | 2009-12-24 | 2011-06-30 | Fudan University | Compositions and methods for microrna expression profiling of lung cancer |
| WO2011076142A1 (en) | 2009-12-24 | 2011-06-30 | Fudan University | Compositions and methods for microrna expession profiling in plasma of colorectal cancer |
| WO2011095623A2 (en) | 2010-02-05 | 2011-08-11 | Febit Holding Gmbh | miRNA IN THE DIAGNOSIS OF OVARIAN CANCER |
| US20110247090A1 (en) | 2010-04-02 | 2011-10-06 | Intrexon Corporation | Synthetic 5'UTRs, Expression Vectors, and Methods for Increasing Transgene Expression |
| WO2011157294A1 (en) | 2010-06-16 | 2011-12-22 | Universita' Degli Studi Di Padova | Compositions for use in treating or preventing cancer, breast cancer, lung cancer, ovarian cancer, metastasis, heart failure, cardiac remodelling, dilated cardiomyopathy, autoimmune diseases, or diseases or disorders related thereto |
| WO2012009644A2 (en) | 2010-07-16 | 2012-01-19 | Arizona Board Of Regents | Methods to identify synthetic and natural rna elements that enhance protein translation |
| WO2012019168A2 (en) | 2010-08-06 | 2012-02-09 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| WO2012019630A1 (en) * | 2010-08-13 | 2012-02-16 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
| US8124379B2 (en) | 2004-06-14 | 2012-02-28 | Novozymes A/S | Signal peptide for producing a polypeptide |
| US20120053224A1 (en) | 2008-12-10 | 2012-03-01 | Universitat Regensburg | Compositions and methods for micro-rna expression profiling of cancer stem cells |
| WO2012045082A2 (en) | 2010-10-01 | 2012-04-05 | Jason Schrum | Engineered nucleic acids and methods of use thereof |
| US20120251618A1 (en) * | 2011-03-31 | 2012-10-04 | modeRNA Therapeutics | Delivery and formulation of engineered nucleic acids |
| US20120264626A1 (en) | 2009-05-08 | 2012-10-18 | The Ohio State University Research Foundation | MicroRNA Expression Profiling and Targeting in Chronic Obstructive Pulmonary Disease (COPD) Lung Tissue and Methods of Use Thereof |
| WO2012151212A1 (en) | 2011-05-01 | 2012-11-08 | University Of Rochester | Multifocal hepatocellular carcinoma microrna expression patterns and uses thereof |
| US20120283310A1 (en) | 2008-02-28 | 2012-11-08 | Croce Carlo M | MicroRNA Signatures Associated with Human Chronic Lymphocytic Leukemia (CLL) and Uses Thereof |
| US20120316081A1 (en) | 2010-01-29 | 2012-12-13 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Method of Identifying Myelodysplastic Syndromes |
| WO2013011378A1 (en) | 2011-07-15 | 2013-01-24 | Leo Pharma A/S | Diagnostic microrna profiling in cutaneous t-cell lymphoma (ctcl) |
| US20130042333A1 (en) | 2011-05-06 | 2013-02-14 | Jean-Gabriel JUDDE | Markers for cancer prognosis and therapy and methods of use |
| US20130053263A1 (en) | 2009-12-30 | 2013-02-28 | Febit Holding Gmbh | miRNA FINGERPRINT IN THE DIAGNOSIS OF COPD |
| US8389210B2 (en) | 2006-01-05 | 2013-03-05 | The Ohio State University Research Foundation | MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors |
| WO2013033640A1 (en) | 2011-09-01 | 2013-03-07 | Allegro Diagnostics Corp. | Methods and compositions for detecting cancer based on mirna expression profiles |
| US20130059015A1 (en) | 2010-03-11 | 2013-03-07 | H. Lee Moffitt Cancer Center & Research Institute | Human Cancer micro-RNA Expression Profiles Predictive of Chemo-Response |
| US8415096B2 (en) | 2007-05-23 | 2013-04-09 | University Of South Florida | Micro-RNAs modulating immunity and inflammation |
| WO2013052523A1 (en) | 2011-10-03 | 2013-04-11 | modeRNA Therapeutics | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| WO2013066678A1 (en) | 2011-10-26 | 2013-05-10 | Georgetown University | Microrna expression profiling of thyroid cancer |
| WO2013090648A1 (en) | 2011-12-16 | 2013-06-20 | modeRNA Therapeutics | Modified nucleoside, nucleotide, and nucleic acid compositions |
| WO2013103659A1 (en) | 2012-01-04 | 2013-07-11 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Stabilizing rna by incorporating chain-terminating nucleosides at the 3'-terminus |
| WO2013109713A1 (en) | 2012-01-18 | 2013-07-25 | The General Hospital Corporation | Targeting rnas to microvesicles |
| WO2013120498A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen |
| WO2013120497A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein |
| WO2013120627A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen |
| WO2013120628A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen |
| US8519110B2 (en) | 2008-06-06 | 2013-08-27 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | mRNA cap analogs |
Family Cites Families (1319)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2008526A (en) | 1932-11-03 | 1935-07-16 | Wappler Frederick Charles | Method and means for treating living tissue |
| US2588623A (en) | 1948-05-10 | 1952-03-11 | Eliscu Frank | Surgical instrument for intradermal injection of fluids |
| US3467096A (en) | 1966-04-12 | 1969-09-16 | Ferrell S Horn | Multiple hypodermic syringe arrangement |
| US3572336A (en) | 1968-04-30 | 1971-03-23 | Daniel R Hershberg | Syringe |
| BE757653A (fr) | 1969-10-21 | 1971-04-16 | Ugine Kuhlmann | Nouveaux medicaments derives d'acides nucleiques et procedes pour leur preparation |
| BE786542A (fr) | 1971-07-22 | 1973-01-22 | Dow Corning | Dispositif d'aspiration permettant d'obtenir des echantillons de cellules |
| US3906092A (en) | 1971-11-26 | 1975-09-16 | Merck & Co Inc | Stimulation of antibody response |
| US4270537A (en) | 1979-11-19 | 1981-06-02 | Romaine Richard A | Automatic hypodermic syringe |
| US4399216A (en) | 1980-02-25 | 1983-08-16 | The Trustees Of Columbia University | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
| US5132418A (en) | 1980-02-29 | 1992-07-21 | University Patents, Inc. | Process for preparing polynucleotides |
| US4458066A (en) | 1980-02-29 | 1984-07-03 | University Patents, Inc. | Process for preparing polynucleotides |
| US4500707A (en) | 1980-02-29 | 1985-02-19 | University Patents, Inc. | Nucleosides useful in the preparation of polynucleotides |
| US4411657A (en) | 1980-05-19 | 1983-10-25 | Anibal Galindo | Hypodermic needle |
| US4415732A (en) | 1981-03-27 | 1983-11-15 | University Patents, Inc. | Phosphoramidite compounds and processes |
| US4668777A (en) | 1981-03-27 | 1987-05-26 | University Patents, Inc. | Phosphoramidite nucleoside compounds |
| US4973679A (en) | 1981-03-27 | 1990-11-27 | University Patents, Inc. | Process for oligonucleo tide synthesis using phosphormidite intermediates |
| US4373071A (en) | 1981-04-30 | 1983-02-08 | City Of Hope Research Institute | Solid-phase synthesis of polynucleotides |
| US4401796A (en) | 1981-04-30 | 1983-08-30 | City Of Hope Research Institute | Solid-phase synthesis of polynucleotides |
| US4474569A (en) | 1982-06-28 | 1984-10-02 | Denver Surgical Developments, Inc. | Antenatal shunt |
| JPS5927900A (ja) | 1982-08-09 | 1984-02-14 | Wakunaga Seiyaku Kk | 固定化オリゴヌクレオチド |
| US4588585A (en) | 1982-10-19 | 1986-05-13 | Cetus Corporation | Human recombinant cysteine depleted interferon-β muteins |
| US4737462A (en) | 1982-10-19 | 1988-04-12 | Cetus Corporation | Structural genes, plasmids and transformed cells for producing cysteine depleted muteins of interferon-β |
| FR2540122B1 (fr) | 1983-01-27 | 1985-11-29 | Centre Nat Rech Scient | Nouveaux composes comportant une sequence d'oligonucleotide liee a un agent d'intercalation, leur procede de synthese et leur application |
| US4605735A (en) | 1983-02-14 | 1986-08-12 | Wakunaga Seiyaku Kabushiki Kaisha | Oligonucleotide derivatives |
| US4948882A (en) | 1983-02-22 | 1990-08-14 | Syngene, Inc. | Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis |
| US4824941A (en) | 1983-03-10 | 1989-04-25 | Julian Gordon | Specific antibody to the native form of 2'5'-oligonucleotides, the method of preparation and the use as reagents in immunoassays or for binding 2'5'-oligonucleotides in biological systems |
| US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
| US4587044A (en) | 1983-09-01 | 1986-05-06 | The Johns Hopkins University | Linkage of proteins to nucleic acids |
| US5118800A (en) | 1983-12-20 | 1992-06-02 | California Institute Of Technology | Oligonucleotides possessing a primary amino group in the terminal nucleotide |
| US5118802A (en) | 1983-12-20 | 1992-06-02 | California Institute Of Technology | DNA-reporter conjugates linked via the 2' or 5'-primary amino group of the 5'-terminal nucleoside |
| US4579849A (en) | 1984-04-06 | 1986-04-01 | Merck & Co., Inc. | N-alkylguanine acyclonucleosides as antiviral agents |
| US4957735A (en) | 1984-06-12 | 1990-09-18 | The University Of Tennessee Research Corporation | Target-sensitive immunoliposomes- preparation and characterization |
| FR2567892B1 (fr) | 1984-07-19 | 1989-02-17 | Centre Nat Rech Scient | Nouveaux oligonucleotides, leur procede de preparation et leurs applications comme mediateurs dans le developpement des effets des interferons |
| US5430136A (en) | 1984-10-16 | 1995-07-04 | Chiron Corporation | Oligonucleotides having selectably cleavable and/or abasic sites |
| US5258506A (en) | 1984-10-16 | 1993-11-02 | Chiron Corporation | Photolabile reagents for incorporation into oligonucleotide chains |
| US4828979A (en) | 1984-11-08 | 1989-05-09 | Life Technologies, Inc. | Nucleotide analogs for nucleic acid labeling and detection |
| US4959314A (en) | 1984-11-09 | 1990-09-25 | Cetus Corporation | Cysteine-depleted muteins of biologically active proteins |
| US5036006A (en) | 1984-11-13 | 1991-07-30 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
| US5116943A (en) | 1985-01-18 | 1992-05-26 | Cetus Corporation | Oxidation-resistant muteins of Il-2 and other protein |
| CA1288073C (en) | 1985-03-07 | 1991-08-27 | Paul G. Ahlquist | Rna transformation vector |
| US5034506A (en) | 1985-03-15 | 1991-07-23 | Anti-Gene Development Group | Uncharged morpholino-based polymers having achiral intersubunit linkages |
| US4596556A (en) | 1985-03-25 | 1986-06-24 | Bioject, Inc. | Hypodermic injection apparatus |
| EP0204401A1 (en) | 1985-04-09 | 1986-12-10 | Biogen, Inc. | Method of improving the yield of polypeptides produced in a host cell by stabilizing mRNA |
| US4762779A (en) | 1985-06-13 | 1988-08-09 | Amgen Inc. | Compositions and methods for functionalizing nucleic acids |
| US5017691A (en) | 1986-07-03 | 1991-05-21 | Schering Corporation | Mammalian interleukin-4 |
| US5317098A (en) | 1986-03-17 | 1994-05-31 | Hiroaki Shizuya | Non-radioisotope tagging of fragments |
| US5153319A (en) | 1986-03-31 | 1992-10-06 | University Patents, Inc. | Process for preparing polynucleotides |
| US4695273A (en) | 1986-04-08 | 1987-09-22 | I-Flow Corporation | Multiple needle holder and subcutaneous multiple channel infusion port |
| US4879111A (en) | 1986-04-17 | 1989-11-07 | Cetus Corporation | Treatment of infections with lymphokines |
| JPS638396A (ja) | 1986-06-30 | 1988-01-14 | Wakunaga Pharmaceut Co Ltd | ポリ標識化オリゴヌクレオチド誘導体 |
| CA1283827C (en) | 1986-12-18 | 1991-05-07 | Giorgio Cirelli | Appliance for injection of liquid formulations |
| GB8704027D0 (en) | 1987-02-20 | 1987-03-25 | Owen Mumford Ltd | Syringe needle combination |
| US4904582A (en) | 1987-06-11 | 1990-02-27 | Synthetic Genetics | Novel amphiphilic nucleic acid conjugates |
| US4940460A (en) | 1987-06-19 | 1990-07-10 | Bioject, Inc. | Patient-fillable and non-invasive hypodermic injection device assembly |
| US4790824A (en) | 1987-06-19 | 1988-12-13 | Bioject, Inc. | Non-invasive hypodermic injection device |
| US4941880A (en) | 1987-06-19 | 1990-07-17 | Bioject, Inc. | Pre-filled ampule and non-invasive hypodermic injection device assembly |
| US6090591A (en) | 1987-07-31 | 2000-07-18 | The Board Of Trustees Of The Leland Stanford Junior University | Selective amplification of target polynucleotide sequences |
| WO1989001050A1 (en) | 1987-07-31 | 1989-02-09 | The Board Of Trustees Of The Leland Stanford Junior University | Selective amplification of target polynucleotide sequences |
| US5585481A (en) | 1987-09-21 | 1996-12-17 | Gen-Probe Incorporated | Linking reagents for nucleotide probes |
| US5525465A (en) | 1987-10-28 | 1996-06-11 | Howard Florey Institute Of Experimental Physiology And Medicine | Oligonucleotide-polyamide conjugates and methods of production and applications of the same |
| DE3738460A1 (de) | 1987-11-12 | 1989-05-24 | Max Planck Gesellschaft | Modifizierte oligonukleotide |
| ATE92538T1 (de) | 1988-01-21 | 1993-08-15 | Genentech Inc | Verstaerkung und nachweis von nukleinsaeuresequenzen. |
| CA1340807C (en) | 1988-02-24 | 1999-11-02 | Lawrence T. Malek | Nucleic acid amplification process |
| JP2650159B2 (ja) | 1988-02-24 | 1997-09-03 | アクゾ・ノベル・エヌ・ベー | 核酸増幅方法 |
| US5082830A (en) | 1988-02-26 | 1992-01-21 | Enzo Biochem, Inc. | End labeled nucleotide probe |
| WO1989007947A1 (en) | 1988-03-04 | 1989-09-08 | Cancer Research Campaign Technology Limited | Improvements relating to antigens |
| US5339163A (en) | 1988-03-16 | 1994-08-16 | Canon Kabushiki Kaisha | Automatic exposure control device using plural image plane detection areas |
| JPH02503867A (ja) | 1988-04-15 | 1990-11-15 | プロテイン デザイン ラブズ インコーポレーテッド | Il‐2レセプター特異的キメラ抗体 |
| US5109124A (en) | 1988-06-01 | 1992-04-28 | Biogen, Inc. | Nucleic acid probe linked to a label having a terminal cysteine |
| US5168038A (en) | 1988-06-17 | 1992-12-01 | The Board Of Trustees Of The Leland Stanford Junior University | In situ transcription in cells and tissues |
| US5021335A (en) | 1988-06-17 | 1991-06-04 | The Board Of Trustees Of The Leland Stanford Junior University | In situ transcription in cells and tissues |
| US5130238A (en) | 1988-06-24 | 1992-07-14 | Cangene Corporation | Enhanced nucleic acid amplification process |
| US5262536A (en) | 1988-09-15 | 1993-11-16 | E. I. Du Pont De Nemours And Company | Reagents for the preparation of 5'-tagged oligonucleotides |
| US5759802A (en) | 1988-10-26 | 1998-06-02 | Tonen Corporation | Production of human serum alubumin A |
| FR2638359A1 (fr) | 1988-11-03 | 1990-05-04 | Tino Dalto | Guide de seringue avec reglage de la profondeur de penetration de l'aiguille dans la peau |
| US5512439A (en) | 1988-11-21 | 1996-04-30 | Dynal As | Oligonucleotide-linked magnetic particles and uses thereof |
| US5047524A (en) | 1988-12-21 | 1991-09-10 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
| US5262530A (en) | 1988-12-21 | 1993-11-16 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
| US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
| US5457183A (en) | 1989-03-06 | 1995-10-10 | Board Of Regents, The University Of Texas System | Hydroxylated texaphyrins |
| US5599923A (en) | 1989-03-06 | 1997-02-04 | Board Of Regents, University Of Tx | Texaphyrin metal complexes having improved functionalization |
| US5703055A (en) | 1989-03-21 | 1997-12-30 | Wisconsin Alumni Research Foundation | Generation of antibodies through lipid mediated DNA delivery |
| DE69034168T3 (de) | 1989-03-21 | 2013-04-11 | Vical, Inc. | Expression von exogenen Polynukleotidsequenzen in Wirbeltieren |
| US6673776B1 (en) | 1989-03-21 | 2004-01-06 | Vical Incorporated | Expression of exogenous polynucleotide sequences in a vertebrate, mammal, fish, bird or human |
| US6214804B1 (en) | 1989-03-21 | 2001-04-10 | Vical Incorporated | Induction of a protective immune response in a mammal by injecting a DNA sequence |
| US5693622A (en) | 1989-03-21 | 1997-12-02 | Vical Incorporated | Expression of exogenous polynucleotide sequences cardiac muscle of a mammal |
| US6867195B1 (en) | 1989-03-21 | 2005-03-15 | Vical Incorporated | Lipid-mediated polynucleotide administration to reduce likelihood of subject's becoming infected |
| US5012818A (en) | 1989-05-04 | 1991-05-07 | Joishy Suresh K | Two in one bone marrow surgical needle |
| IE66597B1 (en) | 1989-05-10 | 1996-01-24 | Akzo Nv | Method for the synthesis of ribonucleic acid (RNA) |
| US5240855A (en) | 1989-05-12 | 1993-08-31 | Pioneer Hi-Bred International, Inc. | Particle gun |
| US5332671A (en) | 1989-05-12 | 1994-07-26 | Genetech, Inc. | Production of vascular endothelial cell growth factor and DNA encoding same |
| US5391723A (en) | 1989-05-31 | 1995-02-21 | Neorx Corporation | Oligonucleotide conjugates |
| US4958013A (en) | 1989-06-06 | 1990-09-18 | Northwestern University | Cholesteryl modified oligonucleotides |
| CA2020958C (en) | 1989-07-11 | 2005-01-11 | Daniel L. Kacian | Nucleic acid sequence amplification methods |
| US5451463A (en) | 1989-08-28 | 1995-09-19 | Clontech Laboratories, Inc. | Non-nucleoside 1,3-diol reagents for labeling synthetic oligonucleotides |
| US5254469A (en) | 1989-09-12 | 1993-10-19 | Eastman Kodak Company | Oligonucleotide-enzyme conjugate that can be used as a probe in hybridization assays and polymerase chain reaction procedures |
| US5591722A (en) | 1989-09-15 | 1997-01-07 | Southern Research Institute | 2'-deoxy-4'-thioribonucleosides and their antiviral activity |
| US5545522A (en) | 1989-09-22 | 1996-08-13 | Van Gelder; Russell N. | Process for amplifying a target polynucleotide sequence using a single primer-promoter complex |
| ATE190981T1 (de) | 1989-10-24 | 2000-04-15 | Isis Pharmaceuticals Inc | 2'-modifizierte nukleotide |
| US5064413A (en) | 1989-11-09 | 1991-11-12 | Bioject, Inc. | Needleless hypodermic injection device |
| NO904633L (no) | 1989-11-09 | 1991-05-10 | Molecular Diagnostics Inc | Amplifikasjon av nukleinsyrer ved transkriberbar haarnaalsprobe. |
| US5312335A (en) | 1989-11-09 | 1994-05-17 | Bioject Inc. | Needleless hypodermic injection device |
| US5215899A (en) | 1989-11-09 | 1993-06-01 | Miles Inc. | Nucleic acid amplification employing ligatable hairpin probe and transcription |
| US5292873A (en) | 1989-11-29 | 1994-03-08 | The Research Foundation Of State University Of New York | Nucleic acids labeled with naphthoquinone probe |
| US5633076A (en) | 1989-12-01 | 1997-05-27 | Pharming Bv | Method of producing a transgenic bovine or transgenic bovine embryo |
| US5697901A (en) | 1989-12-14 | 1997-12-16 | Elof Eriksson | Gene delivery by microneedle injection |
| US5486603A (en) | 1990-01-08 | 1996-01-23 | Gilead Sciences, Inc. | Oligonucleotide having enhanced binding affinity |
| US5646265A (en) | 1990-01-11 | 1997-07-08 | Isis Pharmceuticals, Inc. | Process for the preparation of 2'-O-alkyl purine phosphoramidites |
| US7037646B1 (en) | 1990-01-11 | 2006-05-02 | Isis Pharmaceuticals, Inc. | Amine-derivatized nucleosides and oligonucleosides |
| US5578718A (en) | 1990-01-11 | 1996-11-26 | Isis Pharmaceuticals, Inc. | Thiol-derivatized nucleosides |
| US5670633A (en) | 1990-01-11 | 1997-09-23 | Isis Pharmaceuticals, Inc. | Sugar modified oligonucleotides that detect and modulate gene expression |
| US6783931B1 (en) | 1990-01-11 | 2004-08-31 | Isis Pharmaceuticals, Inc. | Amine-derivatized nucleosides and oligonucleosides |
| AU7579991A (en) | 1990-02-20 | 1991-09-18 | Gilead Sciences, Inc. | Pseudonucleosides and pseudonucleotides and their polymers |
| US5214136A (en) | 1990-02-20 | 1993-05-25 | Gilead Sciences, Inc. | Anthraquinone-derivatives oligonucleotides |
| GB9009980D0 (en) | 1990-05-03 | 1990-06-27 | Amersham Int Plc | Phosphoramidite derivatives,their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides |
| DE69032425T2 (de) | 1990-05-11 | 1998-11-26 | Microprobe Corp., Bothell, Wash. | Teststreifen zum Eintauchen für Nukleinsäure-Hybridisierungsassays und Verfahren zur kovalenten Immobilisierung von Oligonucleotiden |
| US5194370A (en) | 1990-05-16 | 1993-03-16 | Life Technologies, Inc. | Promoter ligation activated transcription amplification of nucleic acid sequences |
| JPH06500014A (ja) | 1990-07-25 | 1994-01-06 | シンジーン,インコーポレイテッド | 多数の核酸相補体を生成させる環状伸長法 |
| US5608046A (en) | 1990-07-27 | 1997-03-04 | Isis Pharmaceuticals, Inc. | Conjugated 4'-desmethyl nucleoside analog compounds |
| US5688941A (en) | 1990-07-27 | 1997-11-18 | Isis Pharmaceuticals, Inc. | Methods of making conjugated 4' desmethyl nucleoside analog compounds |
| US5138045A (en) | 1990-07-27 | 1992-08-11 | Isis Pharmaceuticals | Polyamine conjugated oligonucleotides |
| US5489677A (en) | 1990-07-27 | 1996-02-06 | Isis Pharmaceuticals, Inc. | Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms |
| US5218105A (en) | 1990-07-27 | 1993-06-08 | Isis Pharmaceuticals | Polyamine conjugated oligonucleotides |
| US5602240A (en) | 1990-07-27 | 1997-02-11 | Ciba Geigy Ag. | Backbone modified oligonucleotide analogs |
| US5245022A (en) | 1990-08-03 | 1993-09-14 | Sterling Drug, Inc. | Exonuclease resistant terminally substituted oligonucleotides |
| US5190521A (en) | 1990-08-22 | 1993-03-02 | Tecnol Medical Products, Inc. | Apparatus and method for raising a skin wheal and anesthetizing skin |
| US5512667A (en) | 1990-08-28 | 1996-04-30 | Reed; Michael W. | Trifunctional intermediates for preparing 3'-tailed oligonucleotides |
| US6140496A (en) | 1990-10-09 | 2000-10-31 | Benner; Steven Albert | Precursors for deoxyribonucleotides containing non-standard nucleosides |
| EP0556301B1 (en) | 1990-11-08 | 2001-01-10 | Hybridon, Inc. | Incorporation of multiple reporter groups on synthetic oligonucleotides |
| US5527288A (en) | 1990-12-13 | 1996-06-18 | Elan Medical Technologies Limited | Intradermal drug delivery device and method for intradermal delivery of drugs |
| US6100024A (en) | 1991-02-08 | 2000-08-08 | Promega Corporation | Methods and compositions for nucleic acid detection by target extension and probe amplification |
| EP1857554A1 (en) | 1991-03-18 | 2007-11-21 | New York University | Monoclonal and chimeric antibodies specific for human tumor necrosis factor |
| US5426180A (en) | 1991-03-27 | 1995-06-20 | Research Corporation Technologies, Inc. | Methods of making single-stranded circular oligonucleotides |
| DE122009000019I1 (de) | 1991-04-25 | 2009-07-16 | Chugai Seiyaku K K 5 1 | Rekombinierte humane antikörper gegen den humanen interleukin-6 rezeptor |
| US5719262A (en) | 1993-11-22 | 1998-02-17 | Buchardt, Deceased; Ole | Peptide nucleic acids having amino acid side chains |
| US5539082A (en) | 1993-04-26 | 1996-07-23 | Nielsen; Peter E. | Peptide nucleic acids |
| US5714331A (en) | 1991-05-24 | 1998-02-03 | Buchardt, Deceased; Ole | Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility |
| US5169766A (en) | 1991-06-14 | 1992-12-08 | Life Technologies, Inc. | Amplification of nucleic acid molecules |
| US5371241A (en) | 1991-07-19 | 1994-12-06 | Pharmacia P-L Biochemicals Inc. | Fluorescein labelled phosphoramidites |
| US5199441A (en) | 1991-08-20 | 1993-04-06 | Hogle Hugh H | Fine needle aspiration biopsy apparatus and method |
| GB9118204D0 (en) | 1991-08-23 | 1991-10-09 | Weston Terence E | Needle-less injector |
| SE9102652D0 (sv) | 1991-09-13 | 1991-09-13 | Kabi Pharmacia Ab | Injection needle arrangement |
| ES2103918T3 (es) | 1991-10-17 | 1997-10-01 | Ciba Geigy Ag | Nucleosidos biciclicos, oligonucleotidos, procedimiento para su obtencion y productos intermedios. |
| US5298422A (en) | 1991-11-06 | 1994-03-29 | Baylor College Of Medicine | Myogenic vector systems |
| US5359044A (en) | 1991-12-13 | 1994-10-25 | Isis Pharmaceuticals | Cyclobutyl oligonucleotide surrogates |
| US5824307A (en) | 1991-12-23 | 1998-10-20 | Medimmune, Inc. | Human-murine chimeric antibodies against respiratory syncytial virus |
| US5595726A (en) | 1992-01-21 | 1997-01-21 | Pharmacyclics, Inc. | Chromophore probe for detection of nucleic acid |
| US5565552A (en) | 1992-01-21 | 1996-10-15 | Pharmacyclics, Inc. | Method of expanded porphyrin-oligonucleotide conjugate synthesis |
| JPH07503372A (ja) | 1992-01-23 | 1995-04-13 | バイカル・インコーポレイテッド | 生体外遺伝子導入 |
| FR2687679B1 (fr) | 1992-02-05 | 1994-10-28 | Centre Nat Rech Scient | Oligothionucleotides. |
| US5328483A (en) | 1992-02-27 | 1994-07-12 | Jacoby Richard M | Intradermal injection device with medication and needle guard |
| JP3368603B2 (ja) | 1992-02-28 | 2003-01-20 | オリンパス光学工業株式会社 | 遺伝子治療用処置具 |
| US6174666B1 (en) | 1992-03-27 | 2001-01-16 | The United States Of America As Represented By The Department Of Health And Human Services | Method of eliminating inhibitory/instability regions from mRNA |
| US6132419A (en) | 1992-05-22 | 2000-10-17 | Genetronics, Inc. | Electroporetic gene and drug therapy |
| US5514545A (en) | 1992-06-11 | 1996-05-07 | Trustees Of The University Of Pennsylvania | Method for characterizing single cells based on RNA amplification for diagnostics and therapeutics |
| EP0577558A2 (de) | 1992-07-01 | 1994-01-05 | Ciba-Geigy Ag | Carbocyclische Nukleoside mit bicyclischen Ringen, Oligonukleotide daraus, Verfahren zu deren Herstellung, deren Verwendung und Zwischenproduckte |
| US6670178B1 (en) | 1992-07-10 | 2003-12-30 | Transkaryotic Therapies, Inc. | In Vivo production and delivery of insulinotropin for gene therapy |
| US5272250A (en) | 1992-07-10 | 1993-12-21 | Spielvogel Bernard F | Boronated phosphoramidate compounds |
| US5383851A (en) | 1992-07-24 | 1995-01-24 | Bioject Inc. | Needleless hypodermic injection device |
| ATE152180T1 (de) | 1992-07-31 | 1997-05-15 | Behringwerke Ag | Verfahren zur einführung von definierten sequenzen am 3' ende von polynukleotiden |
| US5273525A (en) | 1992-08-13 | 1993-12-28 | Btx Inc. | Injection and electroporation apparatus for drug and gene delivery |
| US5240885A (en) | 1992-09-21 | 1993-08-31 | Corning Incorporated | Rare earth-doped, stabilized cadmium halide glasses |
| US5569189A (en) | 1992-09-28 | 1996-10-29 | Equidyne Systems, Inc. | hypodermic jet injector |
| US5334144A (en) | 1992-10-30 | 1994-08-02 | Becton, Dickinson And Company | Single use disposable needleless injector |
| WO1994009838A1 (en) | 1992-11-04 | 1994-05-11 | Denver Biomaterials, Inc. | Apparatus for removal of pleural effusion fluid |
| EP1005870B1 (en) | 1992-11-13 | 2009-01-21 | Biogen Idec Inc. | Therapeutic application of chimeric antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
| US5736137A (en) | 1992-11-13 | 1998-04-07 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
| US5574142A (en) | 1992-12-15 | 1996-11-12 | Microprobe Corporation | Peptide linkers for improved oligonucleotide delivery |
| CA2153692C (en) | 1993-01-12 | 2011-11-08 | Roy R. Lobb | Recombinant anti-vla4 antibody molecules |
| FR2703253B1 (fr) | 1993-03-30 | 1995-06-23 | Centre Nat Rech Scient | Applicateur d'impulsions electriques pour traitement de tissus biologiques. |
| DE69404289T2 (de) | 1993-03-30 | 1998-02-19 | Sanofi Sa | Acyclische nucleosid analoge und sie enthaltende oligonucleotidsequenzen |
| DE4311944A1 (de) | 1993-04-10 | 1994-10-13 | Degussa | Umhüllte Natriumpercarbonatpartikel, Verfahren zu deren Herstellung und sie enthaltende Wasch-, Reinigungs- und Bleichmittelzusammensetzungen |
| US7135312B2 (en) | 1993-04-15 | 2006-11-14 | University Of Rochester | Circular DNA vectors for synthesis of RNA and DNA |
| US5773244A (en) | 1993-05-19 | 1998-06-30 | Regents Of The University Of California | Methods of making circular RNA |
| US6541498B2 (en) | 1993-05-20 | 2003-04-01 | Texas Biotechnology | Benzenesulfonamides and the use thereof to modulate the activity of endothelin |
| US5851829A (en) | 1993-07-16 | 1998-12-22 | Dana-Farber Cancer Institute | Method of intracellular binding of target molecules |
| US6294664B1 (en) | 1993-07-29 | 2001-09-25 | Isis Pharmaceuticals, Inc. | Synthesis of oligonucleotides |
| US5672491A (en) | 1993-09-20 | 1997-09-30 | The Leland Stanford Junior University | Recombinant production of novel polyketides |
| US6432711B1 (en) | 1993-11-03 | 2002-08-13 | Diacrin, Inc. | Embryonic stem cells capable of differentiating into desired cell lines |
| US6096503A (en) | 1993-11-12 | 2000-08-01 | The Scripps Research Institute | Method for simultaneous identification of differentially expresses mRNAs and measurement of relative concentrations |
| US5446137B1 (en) | 1993-12-09 | 1998-10-06 | Behringwerke Ag | Oligonucleotides containing 4'-substituted nucleotides |
| US5519134A (en) | 1994-01-11 | 1996-05-21 | Isis Pharmaceuticals, Inc. | Pyrrolidine-containing monomers and oligomers |
| US7435802B2 (en) | 1994-01-25 | 2008-10-14 | Elan Pharaceuticals, Inc. | Humanized anti-VLA4 immunoglobulins |
| US5840299A (en) | 1994-01-25 | 1998-11-24 | Athena Neurosciences, Inc. | Humanized antibodies against leukocyte adhesion molecule VLA-4 |
| DE69533295T3 (de) | 1994-02-16 | 2009-07-16 | The Government Of The United States Of America, As Represented By The Secretary, The Department Of Health And Human Services | Melanoma-assoziierte Antigene, Epitope davon und Impstoffe gegen Melanoma |
| WO1995024176A1 (en) | 1994-03-07 | 1995-09-14 | Bioject, Inc. | Ampule filling device |
| IL112820A0 (en) | 1994-03-07 | 1995-05-26 | Merck & Co Inc | Coordinate in vivo gene expression |
| US5466220A (en) | 1994-03-08 | 1995-11-14 | Bioject, Inc. | Drug vial mixing and transfer device |
| WO1995025814A1 (en) | 1994-03-18 | 1995-09-28 | Lynx Therapeutics, Inc. | Oligonucleotide n3'→p5' phosphoramidates: synthesis and compounds; hybridization and nuclease resistance properties |
| WO1995026204A1 (en) | 1994-03-25 | 1995-10-05 | Isis Pharmaceuticals, Inc. | Immune stimulation by phosphorothioate oligonucleotide analogs |
| US5457041A (en) | 1994-03-25 | 1995-10-10 | Science Applications International Corporation | Needle array and method of introducing biological substances into living cells using the needle array |
| US5627053A (en) | 1994-03-29 | 1997-05-06 | Ribozyme Pharmaceuticals, Inc. | 2'deoxy-2'-alkylnucleotide containing nucleic acid |
| US5464395A (en) | 1994-04-05 | 1995-11-07 | Faxon; David P. | Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway |
| US6074642A (en) | 1994-05-02 | 2000-06-13 | Alexion Pharmaceuticals, Inc. | Use of antibodies specific to human complement component C5 for the treatment of glomerulonephritis |
| PT759993E (pt) | 1994-05-18 | 2007-08-10 | Bayer Bioscience Gmbh | ''sequências de dna que codificam para enzimas capazes de facilitar a síntese de alfa-1,4-glucanos lineares em plantas, fungos e microrganismos'' |
| AU2656295A (en) | 1994-06-02 | 1996-01-04 | Chiron Corporation | Nucleic acid immunization using a virus-based infection/transfection system |
| GB9412230D0 (en) | 1994-06-17 | 1994-08-10 | Celltech Ltd | Interleukin-5 specific recombiant antibodies |
| US6239116B1 (en) | 1994-07-15 | 2001-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
| US5597696A (en) | 1994-07-18 | 1997-01-28 | Becton Dickinson And Company | Covalent cyanine dye oligonucleotide conjugates |
| IL114909A (en) | 1994-08-12 | 1999-10-28 | Immunomedics Inc | Immunoconjugates and humanized antibodies specific for b-cell lymphoma and leukemia cells |
| US5597909A (en) | 1994-08-25 | 1997-01-28 | Chiron Corporation | Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use |
| US5580731A (en) | 1994-08-25 | 1996-12-03 | Chiron Corporation | N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith |
| US5641665A (en) | 1994-11-28 | 1997-06-24 | Vical Incorporated | Plasmids suitable for IL-2 expression |
| US5665545A (en) | 1994-11-28 | 1997-09-09 | Akzo Nobel N.V. | Terminal repeat amplification method |
| US5588960A (en) | 1994-12-01 | 1996-12-31 | Vidamed, Inc. | Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence |
| US5807718A (en) | 1994-12-02 | 1998-09-15 | The Scripps Research Institute | Enzymatic DNA molecules |
| US6057494A (en) | 1995-01-06 | 2000-05-02 | Centrum Voor Plantenveredelings-En Reproduktieonderzoek | DNA sequences encoding carbohydrate polymer synthesizing enzymes and method for producing transgenic plants |
| US5599302A (en) | 1995-01-09 | 1997-02-04 | Medi-Ject Corporation | Medical injection system and method, gas spring thereof and launching device using gas spring |
| US5795587A (en) | 1995-01-23 | 1998-08-18 | University Of Pittsburgh | Stable lipid-comprising drug delivery complexes and methods for their production |
| US5824497A (en) | 1995-02-10 | 1998-10-20 | Mcmaster University | High efficiency translation of mRNA molecules |
| EP0727187B1 (en) | 1995-02-15 | 2003-08-06 | Joseph Eldor | Multiple hole spinal needle |
| US5707807A (en) | 1995-03-28 | 1998-01-13 | Research Development Corporation Of Japan | Molecular indexing for expressed gene analysis |
| US5869230A (en) | 1995-03-30 | 1999-02-09 | Beth Israel Hospital Association | Gene transfer into the kidney |
| US5986054A (en) | 1995-04-28 | 1999-11-16 | The Hospital For Sick Children, Hsc Research And Development Limited Partnership | Genetic sequences and proteins related to alzheimer's disease |
| FR2733762B1 (fr) | 1995-05-02 | 1997-08-01 | Genset Sa | Methode de couplage specifique de la coiffe de l'extremite 5' d'un fragment d'arnm et preparation d'arnm et d'adnc complet |
| US5700642A (en) | 1995-05-22 | 1997-12-23 | Sri International | Oligonucleotide sizing using immobilized cleavable primers |
| US5730723A (en) | 1995-10-10 | 1998-03-24 | Visionary Medical Products Corporation, Inc. | Gas pressured needle-less injection device and method |
| US6051429A (en) | 1995-06-07 | 2000-04-18 | Life Technologies, Inc. | Peptide-enhanced cationic lipid transfections |
| US6111095A (en) | 1995-06-07 | 2000-08-29 | Merck & Co., Inc. | Capped synthetic RNA, analogs, and aptamers |
| US5889136A (en) | 1995-06-09 | 1999-03-30 | The Regents Of The University Of Colorado | Orthoester protecting groups in RNA synthesis |
| US5713863A (en) | 1996-01-11 | 1998-02-03 | Interventional Technologies Inc. | Catheter with fluid medication injectors |
| US5766903A (en) | 1995-08-23 | 1998-06-16 | University Technology Corporation | Circular RNA and uses thereof |
| US6265389B1 (en) | 1995-08-31 | 2001-07-24 | Alkermes Controlled Therapeutics, Inc. | Microencapsulation and sustained release of oligonucleotides |
| WO1997011085A1 (en) | 1995-09-19 | 1997-03-27 | University Of Massachusetts | Inhibited biological degradation of oligodeoxynucleotides |
| US5830879A (en) | 1995-10-02 | 1998-11-03 | St. Elizabeth's Medical Center Of Boston, Inc. | Treatment of vascular injury using vascular endothelial growth factor |
| US6265387B1 (en) | 1995-10-11 | 2001-07-24 | Mirus, Inc. | Process of delivering naked DNA into a hepatocyte via bile duct |
| EP0771873A3 (en) | 1995-10-27 | 1998-03-04 | Takeda Chemical Industries, Ltd. | Neuronal cell-specific receptor protein |
| CU22584A1 (es) | 1995-11-17 | 1999-11-03 | Centro Inmunologia Molecular | Composiciones farmacéuticas que contienen un anticuerpo monoclonal que reconoce el antígeno de diferenciación leucocitario humano cd6 y sus usos para el diagnóstico y tratamiento de la psoriasis |
| US6090382A (en) | 1996-02-09 | 2000-07-18 | Basf Aktiengesellschaft | Human antibodies that bind human TNFα |
| US5962271A (en) | 1996-01-03 | 1999-10-05 | Cloutech Laboratories, Inc. | Methods and compositions for generating full-length cDNA having arbitrary nucleotide sequence at the 3'-end |
| US5893397A (en) | 1996-01-12 | 1999-04-13 | Bioject Inc. | Medication vial/syringe liquid-transfer apparatus |
| US6261584B1 (en) | 1996-02-02 | 2001-07-17 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
| US6395292B2 (en) | 1996-02-02 | 2002-05-28 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
| AU1874397A (en) | 1996-02-16 | 1997-09-02 | Stichting Rega Vzw | Hexitol containing oligonucleotides and their use in antisense strategies |
| US6534312B1 (en) | 1996-02-22 | 2003-03-18 | Merck & Co., Inc. | Vaccines comprising synthetic genes |
| US6090391A (en) | 1996-02-23 | 2000-07-18 | Aviron | Recombinant tryptophan mutants of influenza |
| US6300487B1 (en) | 1996-03-19 | 2001-10-09 | Cell Therapuetics, Inc. | Mammalian lysophosphatidic acid acyltransferase |
| TW517061B (en) | 1996-03-29 | 2003-01-11 | Pharmacia & Amp Upjohn Ab | Modified/chimeric superantigens and their use |
| GB9607549D0 (en) | 1996-04-11 | 1996-06-12 | Weston Medical Ltd | Spring-powered dispensing device |
| US20030073908A1 (en) | 1996-04-26 | 2003-04-17 | 2000 Injectx, Inc. | Method and apparatus for delivery of genes, enzymes and biological agents to tissue cells |
| US5712127A (en) | 1996-04-29 | 1998-01-27 | Genescape Inc. | Subtractive amplification |
| US5853719A (en) | 1996-04-30 | 1998-12-29 | Duke University | Methods for treating cancers and pathogen infections using antigen-presenting cells loaded with RNA |
| US6300484B1 (en) | 1996-06-05 | 2001-10-09 | Chiron Corporation | DNA encoding DP. 75 and a process for its use |
| US7329741B2 (en) | 1996-06-05 | 2008-02-12 | Chiron Corporation | Polynucleotides that hybridize to DP-75 and their use |
| JP2000516445A (ja) | 1996-06-21 | 2000-12-12 | メルク エンド カンパニー インコーポレーテッド | 合成遺伝子を含むワクチン |
| JP2002515786A (ja) | 1996-06-28 | 2002-05-28 | ソントラ メディカル,エル.ピー. | 経皮輸送の超音波増強 |
| US5939262A (en) | 1996-07-03 | 1999-08-17 | Ambion, Inc. | Ribonuclease resistant RNA preparation and utilization |
| US5677124A (en) | 1996-07-03 | 1997-10-14 | Ambion, Inc. | Ribonuclease resistant viral RNA standards |
| US7288266B2 (en) | 1996-08-19 | 2007-10-30 | United States Of America As Represented By The Secretary, Department Of Health And Human Services | Liposome complexes for increased systemic delivery |
| US5849546A (en) | 1996-09-13 | 1998-12-15 | Epicentre Technologies Corporation | Methods for using mutant RNA polymerases with reduced discrimination between non-canonical and canonical nucleoside triphosphates |
| US6114148C1 (en) | 1996-09-20 | 2012-05-01 | Gen Hospital Corp | High level expression of proteins |
| EP0932678B2 (en) | 1996-09-24 | 2010-03-10 | Genentech, Inc. | A family of genes encoding apoptosis-related peptides, peptides encoded thereby and methods of use thereof |
| US6214966B1 (en) | 1996-09-26 | 2001-04-10 | Shearwater Corporation | Soluble, degradable poly(ethylene glycol) derivatives for controllable release of bound molecules into solution |
| ES2241042T3 (es) | 1996-10-11 | 2005-10-16 | The Regents Of The University Of California | Conjugados de polinucleotido inmunoestimulador/ molecula inmunomoduladora. |
| EP0839912A1 (en) | 1996-10-30 | 1998-05-06 | Instituut Voor Dierhouderij En Diergezondheid (Id-Dlo) | Infectious clones of RNA viruses and vaccines and diagnostic assays derived thereof |
| GB9623051D0 (en) | 1996-11-06 | 1997-01-08 | Schacht Etienne H | Delivery of DNA to target cells in biological systems |
| US5980887A (en) | 1996-11-08 | 1999-11-09 | St. Elizabeth's Medical Center Of Boston | Methods for enhancing angiogenesis with endothelial progenitor cells |
| US5759179A (en) | 1996-12-31 | 1998-06-02 | Johnson & Johnson Medical, Inc. | Needle and valve assembly for use with a catheter |
| CA2278786C (en) | 1997-01-21 | 2010-07-20 | The General Hospital Corporation | Selection of proteins using rna-protein fusions |
| EP0855184A1 (en) | 1997-01-23 | 1998-07-29 | Grayson B. Dr. Lipford | Pharmaceutical composition comprising a polynucleotide and an antigen especially for vaccination |
| US6228640B1 (en) | 1997-02-07 | 2001-05-08 | Cem Cezayirli | Programmable antigen presenting cell of CD34 lineage |
| DE69836206T2 (de) | 1997-02-07 | 2007-08-23 | Merck & Co., Inc. | Synthetische hiv gag gene |
| US6696291B2 (en) | 1997-02-07 | 2004-02-24 | Merck & Co., Inc. | Synthetic HIV gag genes |
| US6251665B1 (en) | 1997-02-07 | 2001-06-26 | Cem Cezayirli | Directed maturation of stem cells and production of programmable antigen presenting dentritic cells therefrom |
| US6576752B1 (en) | 1997-02-14 | 2003-06-10 | Isis Pharmaceuticals, Inc. | Aminooxy functionalized oligomers |
| JP3756313B2 (ja) | 1997-03-07 | 2006-03-15 | 武 今西 | 新規ビシクロヌクレオシド及びオリゴヌクレオチド類縁体 |
| US6406705B1 (en) | 1997-03-10 | 2002-06-18 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
| US6306393B1 (en) | 1997-03-24 | 2001-10-23 | Immunomedics, Inc. | Immunotherapy of B-cell malignancies using anti-CD22 antibodies |
| US6261281B1 (en) | 1997-04-03 | 2001-07-17 | Electrofect As | Method for genetic immunization and introduction of molecules into skeletal muscle and immune cells |
| US5914269A (en) | 1997-04-04 | 1999-06-22 | Isis Pharmaceuticals, Inc. | Oligonucleotide inhibition of epidermal growth factor receptor expression |
| AU6972798A (en) | 1997-04-18 | 1998-11-13 | University Of Medicine And Dentistry Of New Jersey | Inhibition of hiv-1 replication by a tat rna-binding domain peptide analog |
| US5958688A (en) | 1997-04-28 | 1999-09-28 | The Trustees Of The University Of Pennsylvania | Characterization of mRNA patterns in neurites and single cells for medical diagnosis and therapeutics |
| US6235883B1 (en) | 1997-05-05 | 2001-05-22 | Abgenix, Inc. | Human monoclonal antibodies to epidermal growth factor receptor |
| US5989911A (en) | 1997-05-09 | 1999-11-23 | University Of Massachusetts | Site-specific synthesis of pseudouridine in RNA |
| US6761726B1 (en) | 1998-05-15 | 2004-07-13 | Pyng Medical Corp. | Method and apparatus for the intraosseous introduction of a device such as an infusion tube |
| US5993412A (en) | 1997-05-19 | 1999-11-30 | Bioject, Inc. | Injection apparatus |
| US6124091A (en) | 1997-05-30 | 2000-09-26 | Research Corporation Technologies, Inc. | Cell growth-controlling oligonucleotides |
| US6589940B1 (en) | 1997-06-06 | 2003-07-08 | Dynavax Technologies Corporation | Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof |
| ATE432348T1 (de) | 1997-06-06 | 2009-06-15 | Univ California | Inhibitoren von immunstimulatorischen dna sequenz aktivität |
| FI105309B (fi) | 1997-06-24 | 2000-07-14 | Nokia Mobile Phones Ltd | Matkaviestinjärjestelmät |
| AU731909B2 (en) | 1997-07-01 | 2001-04-05 | Isis Pharmaceuticals, Inc. | Compositions and methods for the delivery of oligonucleotides via the alimentary canal |
| US5994511A (en) | 1997-07-02 | 1999-11-30 | Genentech, Inc. | Anti-IgE antibodies and methods of improving polypeptides |
| BR9815493A (pt) | 1997-07-21 | 2000-10-31 | Pharmacia & Upjohn Ab | Citólise dirigida de células-alvo, agentes e composições que causam citólise, e compostos que podem ser usados para produzir os agentes |
| US20030073640A1 (en) | 1997-07-23 | 2003-04-17 | Ribozyme Pharmaceuticals, Inc. | Novel compositions for the delivery of negatively charged molecules |
| JP2001511462A (ja) | 1997-07-31 | 2001-08-14 | セント エリザベス メディカル センター オブ ボストン インク. | 移植片処置法 |
| US6794499B2 (en) | 1997-09-12 | 2004-09-21 | Exiqon A/S | Oligonucleotide analogues |
| US7151172B1 (en) | 1997-09-18 | 2006-12-19 | The Trustees Of The University Of Pennsylvania | Attenuated vif DNA immunization cassettes for genetic vaccines |
| AU9319398A (en) | 1997-09-19 | 1999-04-05 | Sequitur, Inc. | Sense mrna therapy |
| US6004573A (en) | 1997-10-03 | 1999-12-21 | Macromed, Inc. | Biodegradable low molecular weight triblock poly(lactide-co-glycolide) polyethylene glycol copolymers having reverse thermal gelation properties |
| EP1021548A1 (en) | 1997-10-07 | 2000-07-26 | University Of Maryland Biotechnology Institute | Method for introducing and expressing rna in animal cells |
| AP1219A (en) | 1997-10-20 | 2003-10-22 | Gtc Biotherapeutics Inc | Novel modified MSP-1 nucleic acid sequences and methods for increasing mRNA levels and protein expression in cell systems. |
| US6019747A (en) | 1997-10-21 | 2000-02-01 | I-Flow Corporation | Spring-actuated infusion syringe |
| WO1999022009A1 (en) | 1997-10-24 | 1999-05-06 | Megabios Corporation | Methods for preparing polynucleotide transfection complexes |
| US6077251A (en) | 1997-10-30 | 2000-06-20 | Ting; Windsor | Medicinal agent administration system |
| CA2309766C (en) | 1997-11-20 | 2008-09-30 | Vical Incorporated | Treatment of cancer using cytokine-expressing polynucleotides and compositions therefor |
| US7655777B2 (en) | 1997-11-24 | 2010-02-02 | Monsanto Technology Llc | Nucleic acid molecules associated with the tocopherol pathway |
| WO1999029758A1 (en) | 1997-12-12 | 1999-06-17 | Samyang Corporation | Positively-charged poly[alpha-(omega-aminoalkyl)glycolic acid] for the delivery of a bioactive agent via tissue and cellular uptake |
| US6517869B1 (en) | 1997-12-12 | 2003-02-11 | Expression Genetics, Inc. | Positively charged poly(alpha-(omega-aminoalkyl)lycolic acid) for the delivery of a bioactive agent via tissue and cellular uptake |
| JP2002500010A (ja) | 1997-12-23 | 2002-01-08 | カイロン コーポレイション | ヒト遺伝子および遺伝子発現産物i |
| US6320017B1 (en) | 1997-12-23 | 2001-11-20 | Inex Pharmaceuticals Corp. | Polyamide oligomers |
| US6383811B2 (en) | 1997-12-30 | 2002-05-07 | Mirus Corporation | Polyampholytes for delivering polyions to a cell |
| EP2138191A1 (en) | 1998-01-05 | 2009-12-30 | University Of Washington | Enhanced transport using membrane disruptive agents |
| CA2317777C (en) | 1998-01-08 | 2005-05-03 | Sontra Medical, Inc. | Sonophoretic enhanced transdermal transport |
| US8287483B2 (en) | 1998-01-08 | 2012-10-16 | Echo Therapeutics, Inc. | Method and apparatus for enhancement of transdermal transport |
| IT1298087B1 (it) | 1998-01-08 | 1999-12-20 | Fiderm S R L | Dispositivo per il controllo della profondita' di penetrazione di un ago, in particolare applicabile ad una siringa per iniezioni |
| US6365346B1 (en) | 1998-02-18 | 2002-04-02 | Dade Behring Inc. | Quantitative determination of nucleic acid amplification products |
| US5955310A (en) | 1998-02-26 | 1999-09-21 | Novo Nordisk Biotech, Inc. | Methods for producing a polypeptide in a bacillus cell |
| US6432925B1 (en) | 1998-04-16 | 2002-08-13 | John Wayne Cancer Institute | RNA cancer vaccine and methods for its use |
| US6429301B1 (en) | 1998-04-17 | 2002-08-06 | Whitehead Institute For Biomedical Research | Use of a ribozyme to join nucleic acids and peptides |
| GB9808327D0 (en) | 1998-04-20 | 1998-06-17 | Chiron Spa | Antidiotypic compounds |
| WO1999054455A1 (fr) | 1998-04-23 | 1999-10-28 | Takara Shuzo Co., Ltd. | Procede de synthese de l'adn |
| US6395253B2 (en) | 1998-04-23 | 2002-05-28 | The Regents Of The University Of Michigan | Microspheres containing condensed polyanionic bioactive agents and methods for their production |
| US20020064517A1 (en) | 1998-04-30 | 2002-05-30 | Stewart A. Cederholm-Williams | Fibrin sealant as a transfection/transformation vehicle for gene therapy |
| US20090208418A1 (en) | 2005-04-29 | 2009-08-20 | Innexus Biotechnology Internaltional Ltd. | Superantibody synthesis and use in detection, prevention and treatment of disease |
| AU4193199A (en) | 1998-05-20 | 1999-12-06 | Expression Genetics, Inc. | A hepatocyte targeting polyethylene glyco-grafted poly-l-lysine polymeric gene carrier |
| US6503231B1 (en) | 1998-06-10 | 2003-01-07 | Georgia Tech Research Corporation | Microneedle device for transport of molecules across tissue |
| US7091192B1 (en) | 1998-07-01 | 2006-08-15 | California Institute Of Technology | Linear cyclodextrin copolymers |
| CN1313873A (zh) | 1998-07-13 | 2001-09-19 | 表达遗传学公司 | 作为可溶性,生物可降解基因送递载体的聚-l-赖氨酸的聚酯类似物 |
| US6222030B1 (en) | 1998-08-03 | 2001-04-24 | Agilent Technologies, Inc. | Solid phase synthesis of oligonucleotides using carbonate protecting groups and alpha-effect nucleophile deprotection |
| HK1041221A1 (zh) | 1998-08-11 | 2002-07-05 | Idec药物公司 | 包括施用抗-cd20抗体的b-细胞淋巴瘤联合疗法 |
| GB9817662D0 (en) | 1998-08-13 | 1998-10-07 | Crocker Peter J | Substance delivery |
| US20090148906A1 (en) | 1998-09-29 | 2009-06-11 | Shire Human Genetic Therapies, Inc. A Delaware Corporation | Optimized messenger rna |
| US6924365B1 (en) | 1998-09-29 | 2005-08-02 | Transkaryotic Therapies, Inc. | Optimized messenger RNA |
| WO2000026226A1 (en) | 1998-11-03 | 2000-05-11 | Yale University | Multidomain polynucleotide molecular sensors |
| ES2338287T3 (es) | 1998-11-09 | 2010-05-05 | Biogen Idec Inc. | Tratamiento de anticuerpos anti-cd20 de pacientes que reciben trasplantes de injertos de medula osea o celulas madre de sangre periferica. |
| EP2289543A1 (en) | 1998-11-09 | 2011-03-02 | Biogen Idec Inc. | Treatment of hematologic malignancies associated with circulating tumor cells using chimeric anti-cd20 antibody |
| AU2023400A (en) | 1998-11-12 | 2000-05-29 | Children's Medical Center Corporation | Compositions and methods for inhibiting angiogenesis using trna and fragments thereof |
| US6210931B1 (en) | 1998-11-30 | 2001-04-03 | The United States Of America As Represented By The Secretary Of Agriculture | Ribozyme-mediated synthesis of circular RNA |
| US20040171980A1 (en) | 1998-12-18 | 2004-09-02 | Sontra Medical, Inc. | Method and apparatus for enhancement of transdermal transport |
| CA2356542A1 (en) | 1998-12-23 | 2000-07-06 | Human Genome Sciences, Inc. | Peptidoglycan recognition proteins |
| US6255476B1 (en) | 1999-02-22 | 2001-07-03 | Pe Corporation (Ny) | Methods and compositions for synthesis of labelled oligonucleotides and analogs on solid-supports |
| EP1155124A2 (en) | 1999-02-22 | 2001-11-21 | European Molecular Biology Laboratory | In vitro translation system |
| US7629311B2 (en) | 1999-02-24 | 2009-12-08 | Edward Lewis Tobinick | Methods to facilitate transmission of large molecules across the blood-brain, blood-eye, and blood-nerve barriers |
| EP1574210B1 (en) | 1999-02-26 | 2016-04-06 | Novartis Vaccines and Diagnostics, Inc. | Microemulsions with adsorbed macromolecules |
| ES2288846T3 (es) | 1999-03-01 | 2008-02-01 | Cytyc Corporation | Aparato, procedimientos y kits para suministro simultaneo de una sustancia a multiples conductos galactoforos mamarios. |
| US7084125B2 (en) | 1999-03-18 | 2006-08-01 | Exiqon A/S | Xylo-LNA analogues |
| CA2369119A1 (en) | 1999-03-29 | 2000-05-25 | Statens Serum Institut | Nucleotide construct with optimised codons for an hiv genetic vaccine based on a primary, early hiv isolate and synthetic envelope |
| CN1311005C (zh) | 1999-04-09 | 2007-04-18 | 迪纳尔生物技术公司 | 用于制备单分散聚合物颗粒的方法 |
| CN102180924A (zh) | 1999-05-04 | 2011-09-14 | 桑塔里斯制药公司 | L-核糖-lna类似物 |
| US8663692B1 (en) | 1999-05-07 | 2014-03-04 | Pharmasol Gmbh | Lipid particles on the basis of mixtures of liquid and solid lipids and method for producing same |
| AU777970C (en) | 1999-05-07 | 2006-08-17 | F. Hoffman-La Roche Ag | Treatment of autoimmune diseases with antagonists which bind to B cell surface markers |
| US7171264B1 (en) | 1999-05-10 | 2007-01-30 | Genetronics, Inc. | Intradermal delivery of active agents by needle-free injection and electroporation |
| US6346382B1 (en) | 1999-06-01 | 2002-02-12 | Vanderbilt University | Human carbamyl phosphate synthetase I polymorphism and diagnostic methods related thereto |
| WO2000075356A1 (en) | 1999-06-04 | 2000-12-14 | Lin Shi Lung | Rna polymerase chain reaction |
| US6611707B1 (en) | 1999-06-04 | 2003-08-26 | Georgia Tech Research Corporation | Microneedle drug delivery device |
| US6743211B1 (en) | 1999-11-23 | 2004-06-01 | Georgia Tech Research Corporation | Devices and methods for enhanced microneedle penetration of biological barriers |
| US6303573B1 (en) | 1999-06-07 | 2001-10-16 | The Burnham Institute | Heart homing peptides and methods of using same |
| NZ515957A (en) | 1999-06-08 | 2003-08-29 | Aventis Pasteur | Immunostimulant oligonucleotide |
| HK1046635B (en) | 1999-06-09 | 2009-10-09 | Immunomedics, Inc. | Immunotherapy of autoimmune disorders using antibodies which target b-cells |
| US6949245B1 (en) | 1999-06-25 | 2005-09-27 | Genentech, Inc. | Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies |
| IL147179A0 (en) | 1999-06-30 | 2002-08-14 | Advanced Cell Tech Inc | Cytoplasmic transfer to de-differentiate recipient cells |
| US6514948B1 (en) | 1999-07-02 | 2003-02-04 | The Regents Of The University Of California | Method for enhancing an immune response |
| AU783681B2 (en) | 1999-07-09 | 2005-11-24 | Wyeth | Methods and compositions for preventing the formation of aberrant RNA during transcription of a plasmid sequence |
| US8557244B1 (en) | 1999-08-11 | 2013-10-15 | Biogen Idec Inc. | Treatment of aggressive non-Hodgkins lymphoma with anti-CD20 antibody |
| WO2001014424A2 (en) | 1999-08-24 | 2001-03-01 | Medarex, Inc. | Human ctla-4 antibodies and their uses |
| US20050112141A1 (en) | 2000-08-30 | 2005-05-26 | Terman David S. | Compositions and methods for treatment of neoplastic disease |
| US6551338B1 (en) | 1999-09-01 | 2003-04-22 | Mcgill University | Method and device for myogenesis and angiogenesis of the heart |
| US20040106567A1 (en) | 1999-09-07 | 2004-06-03 | Hagstrom James E. | Intravascular delivery of non-viral nucleic acid |
| EP1619254B1 (en) | 1999-09-09 | 2010-12-22 | CureVac GmbH | Transfer of mRNA using polycationic compounds |
| WO2001021810A1 (en) | 1999-09-17 | 2001-03-29 | Aventis Pasteur Limited | Chlamydia antigens and corresponding dna fragments and uses thereof |
| US6623457B1 (en) | 1999-09-22 | 2003-09-23 | Becton, Dickinson And Company | Method and apparatus for the transdermal administration of a substance |
| WO2002064799A2 (en) | 1999-09-28 | 2002-08-22 | Transkaryotic Therapies, Inc. | Optimized messenger rna |
| AU7863200A (en) | 1999-10-06 | 2001-05-10 | Quark Biotech, Inc. | Method for enrichment of natural antisense messenger rna |
| US7060291B1 (en) | 1999-11-24 | 2006-06-13 | Transave, Inc. | Modular targeted liposomal delivery system |
| US6613026B1 (en) | 1999-12-08 | 2003-09-02 | Scimed Life Systems, Inc. | Lateral needle-less injection apparatus and method |
| US6277974B1 (en) | 1999-12-14 | 2001-08-21 | Cogent Neuroscience, Inc. | Compositions and methods for diagnosing and treating conditions, disorders, or diseases involving cell death |
| US6245929B1 (en) | 1999-12-20 | 2001-06-12 | General Electric Company | Catalyst composition and method for producing diaryl carbonates, using bisphosphines |
| ES2230173T3 (es) | 1999-12-22 | 2005-05-01 | Basell Poliolefine Italia S.P.A. | Sistema catalizador para la polimerizacion de alfa olefinas el cual contiene un compuesto aromatico de silano. |
| SE515932C2 (sv) | 1999-12-23 | 2001-10-29 | Prostalund Operations Ab | Sätt och anordning vid behandling av prostata |
| WO2001051092A2 (en) | 2000-01-07 | 2001-07-19 | University Of Washington | Enhanced transport of agents using membrane disruptive agents |
| AU2001232485A1 (en) | 2000-01-13 | 2001-07-24 | Amsterdam Support Diagnostics B.V. | A universal nucleic acid amplification system for nucleic acids in a sample |
| US6552006B2 (en) | 2000-01-31 | 2003-04-22 | The Regents Of The University Of California | Immunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen |
| CA2395811A1 (en) | 2000-01-31 | 2001-08-02 | Human Genome Sciences, Inc. | Nucleic acids, proteins, and antibodies |
| US7491805B2 (en) | 2001-05-18 | 2009-02-17 | Sirna Therapeutics, Inc. | Conjugates and compositions for cellular delivery |
| US7833992B2 (en) | 2001-05-18 | 2010-11-16 | Merck Sharpe & Dohme | Conjugates and compositions for cellular delivery |
| US6602498B2 (en) | 2000-02-22 | 2003-08-05 | Shearwater Corporation | N-maleimidyl polymer derivatives |
| SI1257584T2 (sl) | 2000-02-24 | 2013-07-31 | Washington University St. Louis | Humanizirana protitelesa, ki veĹľejo amiloidni peptid beta |
| WO2001066149A2 (en) | 2000-03-03 | 2001-09-13 | Valentis, Inc. | Nucleic acid formulations for gene delivery and methods of use |
| US20020081597A1 (en) | 2000-03-31 | 2002-06-27 | Genentech, Inc. | Compositions and methods for detecting and quantifying gene expression |
| KR20020091170A (ko) | 2000-03-31 | 2002-12-05 | 아이덱 파마슈티칼즈 코포레이션 | B 세포 림프종의 치료를 위한 항-사이토카인 항체 또는길항제 및 항-cd20의 조합된 사용 |
| US6565572B2 (en) | 2000-04-10 | 2003-05-20 | Sdgi Holdings, Inc. | Fenestrated surgical screw and method |
| US6368801B1 (en) | 2000-04-12 | 2002-04-09 | Molecular Staging, Inc. | Detection and amplification of RNA using target-mediated ligation of DNA by RNA ligase |
| AU2001266557A1 (en) | 2000-04-12 | 2001-10-23 | Human Genome Sciences, Inc. | Albumin fusion proteins |
| US20010046496A1 (en) | 2000-04-14 | 2001-11-29 | Brettman Lee R. | Method of administering an antibody |
| US6468247B1 (en) | 2000-04-21 | 2002-10-22 | Mark Zamoyski | Perfusion device for localized drug delivery |
| US6375972B1 (en) | 2000-04-26 | 2002-04-23 | Control Delivery Systems, Inc. | Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof |
| US7871598B1 (en) | 2000-05-10 | 2011-01-18 | Novartis Ag | Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery and methods of use |
| US20040229271A1 (en) | 2000-05-19 | 2004-11-18 | Williams Richard B. | Compositions and methods for the identification and selection of nucleic acids and polypeptides |
| WO2001092523A2 (en) | 2000-05-30 | 2001-12-06 | Curagen Corporation | Human polynucleotides and polypeptides encoded thereby |
| US6537242B1 (en) | 2000-06-06 | 2003-03-25 | Becton, Dickinson And Company | Method and apparatus for enhancing penetration of a member for the intradermal sampling or administration of a substance |
| JP2004530629A (ja) | 2000-06-07 | 2004-10-07 | バイオシネクサス インコーポレーテッド | 免疫刺激rna/dnaハイブリッド分子 |
| US6607513B1 (en) | 2000-06-08 | 2003-08-19 | Becton, Dickinson And Company | Device for withdrawing or administering a substance and method of manufacturing a device |
| US6664066B2 (en) | 2000-06-23 | 2003-12-16 | Wyeth Holdings Corporation | Modified Morbillivirus V proteins |
| US20050181033A1 (en) | 2000-06-29 | 2005-08-18 | Dekker John P.Iii | Method for delivering interferons to the intradermal compartment |
| WO2002002606A2 (en) | 2000-07-03 | 2002-01-10 | Chiron S.P.A. | Immunisation against chlamydia pneumoniae |
| US6440096B1 (en) | 2000-07-14 | 2002-08-27 | Becton, Dickinson And Co. | Microdevice and method of manufacturing a microdevice |
| WO2002008435A1 (en) | 2000-07-21 | 2002-01-31 | Glaxo Group Limited | Codon-optimized papilloma virus sequences |
| US6902734B2 (en) | 2000-08-07 | 2005-06-07 | Centocor, Inc. | Anti-IL-12 antibodies and compositions thereof |
| US20040142474A1 (en) | 2000-09-14 | 2004-07-22 | Expression Genetics, Inc. | Novel cationic lipopolymer as a biocompatible gene delivery agent |
| US6696038B1 (en) | 2000-09-14 | 2004-02-24 | Expression Genetics, Inc. | Cationic lipopolymer as biocompatible gene delivery agent |
| WO2002024873A1 (en) | 2000-09-20 | 2002-03-28 | Christopher Ralph Franks | Stem cell therapy |
| AU2002211490A1 (en) | 2000-10-04 | 2002-04-15 | The Trustees Of The University Of Pennsylvania | Compositions and methods of using capsid protein from flaviviruses and pestiviruses |
| JP4413493B2 (ja) | 2000-10-04 | 2010-02-10 | サンタリス ファーマ アー/エス | プリンlna類似体の改善された合成方法 |
| US6998115B2 (en) | 2000-10-10 | 2006-02-14 | Massachusetts Institute Of Technology | Biodegradable poly(β-amino esters) and uses thereof |
| US7202226B2 (en) | 2000-10-23 | 2007-04-10 | Detroit R & D | Augmentation of wound healing by elF-4E mRNA and EGF mRNA |
| US20030077604A1 (en) | 2000-10-27 | 2003-04-24 | Yongming Sun | Compositions and methods relating to breast specific genes and proteins |
| US20020132788A1 (en) | 2000-11-06 | 2002-09-19 | David Lewis | Inhibition of gene expression by delivery of small interfering RNA to post-embryonic animal cells in vivo |
| AU2002226930A1 (en) | 2000-11-17 | 2002-05-27 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Reduction of the nonspecific animal toxicity of immunotoxins by mutating the framework regions of the fv to lower the isoelectric point |
| EP2336368A1 (en) | 2000-12-07 | 2011-06-22 | Novartis Vaccines and Diagnostics, Inc. | Endogenous retroviruses up-regulated in prostate cancer |
| US7708915B2 (en) | 2004-05-06 | 2010-05-04 | Castor Trevor P | Polymer microspheres/nanospheres and encapsulating therapeutic proteins therein |
| US20020130430A1 (en) | 2000-12-29 | 2002-09-19 | Castor Trevor Percival | Methods for making polymer microspheres/nanospheres and encapsulating therapeutic proteins and other products |
| US7628780B2 (en) | 2001-01-13 | 2009-12-08 | Medtronic, Inc. | Devices and methods for interstitial injection of biologic agents into tissue |
| EP1224943A1 (en) | 2001-01-19 | 2002-07-24 | Crucell Holland B.V. | Fibronectin as a tumor marker detected by phage antibodies |
| WO2002057302A2 (en) | 2001-01-19 | 2002-07-25 | Vironovative B.V. | A virus causing respiratory tract illness in susceptible mammals |
| US20040110191A1 (en) | 2001-01-31 | 2004-06-10 | Winkler Matthew M. | Comparative analysis of nucleic acids using population tagging |
| CA2437737A1 (en) | 2001-02-14 | 2002-08-22 | Stephen D. Ginsberg | Methods and compositions of amplifying rna |
| US6652886B2 (en) | 2001-02-16 | 2003-11-25 | Expression Genetics | Biodegradable cationic copolymers of poly (alkylenimine) and poly (ethylene glycol) for the delivery of bioactive agents |
| DE10109897A1 (de) | 2001-02-21 | 2002-11-07 | Novosom Ag | Fakultativ kationische Liposomen und Verwendung dieser |
| US7232425B2 (en) | 2001-03-02 | 2007-06-19 | Sorenson Development, Inc. | Apparatus and method for specific interstitial or subcutaneous diffusion and dispersion of medication |
| AU2002242474B2 (en) | 2001-03-09 | 2004-05-20 | Gene Stream Pty Ltd | Novel expression vectors |
| JP2002262882A (ja) | 2001-03-12 | 2002-09-17 | Nisshinbo Ind Inc | Rnaの増幅法 |
| FR2822164B1 (fr) | 2001-03-19 | 2004-06-18 | Centre Nat Rech Scient | Polypeptides derives des arn polymerases, et leurs utilisations |
| US6520949B2 (en) | 2001-04-02 | 2003-02-18 | Martin St. Germain | Method and apparatus for administering fluid to animals subcutaneously |
| US6625486B2 (en) | 2001-04-11 | 2003-09-23 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for intracellular delivery of an agent |
| DE10119005A1 (de) | 2001-04-18 | 2002-10-24 | Roche Diagnostics Gmbh | Verfahren zur Proteinexpression ausgehend von stabilisierter linearer kurzer DNA in zellfreien in vitro-Transkription/Translations-Systemen mit Exonuklease-haltigen Lysaten oder in einem zellulären System enthaltend Exonukleasen |
| US20030171253A1 (en) | 2001-04-19 | 2003-09-11 | Averil Ma | Methods and compositions relating to modulation of A20 |
| DE10291734D2 (de) | 2001-04-23 | 2004-05-27 | Lorbach Elke | Pufferlösung für die Elektroporation und Verfahren umfassend die Verwendung derselben |
| US7560424B2 (en) | 2001-04-30 | 2009-07-14 | Zystor Therapeutics, Inc. | Targeted therapeutic proteins |
| US6777187B2 (en) | 2001-05-02 | 2004-08-17 | Rubicon Genomics, Inc. | Genome walking by selective amplification of nick-translate DNA library and amplification from complex mixtures of templates |
| AU2002308623A1 (en) | 2001-05-08 | 2002-11-18 | Magnatech International, L.P. | Electronic length control wire pay-off system and method |
| US20050137155A1 (en) | 2001-05-18 | 2005-06-23 | Sirna Therapeutics, Inc. | RNA interference mediated treatment of Parkinson disease using short interfering nucleic acid (siNA) |
| US8137911B2 (en) | 2001-05-22 | 2012-03-20 | Cellscript, Inc. | Preparation and use of single-stranded transcription substrates for synthesis of transcription products corresponding to target sequences |
| AU2002314855B2 (en) | 2001-05-30 | 2007-08-09 | Board Of Trustees Of The Leland Stanford, Jr., University | Delivery system for nucleic acids |
| DE50214379D1 (de) | 2001-06-05 | 2010-05-27 | Curevac Gmbh | Stabilisierte mRNA mit erhöhtem G/C-Gehalt für die Gentherapie |
| EP1402035A2 (en) | 2001-06-18 | 2004-03-31 | Novartis AG | G-protein coupled receptors and dna sequences thereof |
| US7547551B2 (en) | 2001-06-21 | 2009-06-16 | University Of Antwerp. | Transfection of eukaryontic cells with linear polynucleotides by electroporation |
| US7785610B2 (en) | 2001-06-21 | 2010-08-31 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same—III |
| JP2005503137A (ja) | 2001-06-26 | 2005-02-03 | ノバルティス アクチエンゲゼルシャフト | Gタンパク質共役レセプターおよびそのdna配列 |
| SE0102327D0 (sv) | 2001-06-28 | 2001-06-28 | Active Biotech Ab | A novel engineered superantigen for human therapy |
| CA2451816A1 (en) | 2001-06-29 | 2003-01-09 | Becton, Dickinson And Company | Intradermal delivery of vaccines and gene therapeutic agents via microcannula |
| US20040236092A1 (en) | 2001-07-13 | 2004-11-25 | Roman Dziarski | Peptidologlycan recognition protein encoding nucleic acids and methods of use thereof |
| US6586524B2 (en) | 2001-07-19 | 2003-07-01 | Expression Genetics, Inc. | Cellular targeting poly(ethylene glycol)-grafted polymeric gene carrier |
| ATE481497T1 (de) | 2001-08-01 | 2010-10-15 | Univ Utah | Am n-terminus trunkierte isoformen von zyklischen phosphodiesterasen pde3a |
| JP2005502344A (ja) | 2001-08-27 | 2005-01-27 | ノバルティス アクチエンゲゼルシャフト | 新規gタンパク質共役受容体およびそのdna配列 |
| US20040142325A1 (en) | 2001-09-14 | 2004-07-22 | Liat Mintz | Methods and systems for annotating biomolecular sequences |
| AR045702A1 (es) | 2001-10-03 | 2005-11-09 | Chiron Corp | Composiciones de adyuvantes. |
| DE10148886A1 (de) | 2001-10-04 | 2003-04-30 | Avontec Gmbh | Inhibition von STAT-1 |
| US7276489B2 (en) | 2002-10-24 | 2007-10-02 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
| US7429258B2 (en) | 2001-10-26 | 2008-09-30 | Massachusetts Institute Of Technology | Microneedle transport device |
| US7384739B2 (en) | 2001-11-14 | 2008-06-10 | Toyo Boseki Kabushiki Kaisha | Compositions for enhancing DNA synthesis, DNA polymerase-related factors and utilization thereof |
| US20030138419A1 (en) | 2001-11-16 | 2003-07-24 | The University Of Tennessee Research Corporation | Recombinant antibody fusion proteins and methods for detection of apoptotic cells |
| EP1454145A2 (en) | 2001-11-29 | 2004-09-08 | Novartis AG | Method for the assessment and prognosis of sarcoidosis |
| CA2409775C (en) | 2001-12-03 | 2010-07-13 | F. Hoffmann-La Roche Ag | Reversibly modified thermostable enzymes for dna synthesis and amplification in vitro |
| JP4822490B2 (ja) | 2001-12-07 | 2011-11-24 | ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド | 腫瘍形成形質転換に関連する内因性レトロウイルスポリペプチド |
| US20060275747A1 (en) | 2001-12-07 | 2006-12-07 | Hardy Stephen F | Endogenous retrovirus up-regulated in prostate cancer |
| JP4646315B2 (ja) | 2001-12-07 | 2011-03-09 | ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド | 前立腺癌においてアップレギュレートされた内因性レトロウイルス |
| US20050107589A1 (en) | 2001-12-17 | 2005-05-19 | Gung-Wei Chirn | Novel g-protein coupled receptors and dna sequences thereof |
| DE10162480A1 (de) | 2001-12-19 | 2003-08-07 | Ingmar Hoerr | Die Applikation von mRNA für den Einsatz als Therapeutikum gegen Tumorerkrankungen |
| DE60237475D1 (de) | 2001-12-21 | 2010-10-07 | Alcon Inc | Verwendung von synthetischen anorganischen nanoteilchen als träger für augenmedikamente |
| AU2003235707A1 (en) | 2002-01-18 | 2003-07-30 | Curevac Gmbh | Immunogenic preparations and vaccines on the basis of mrna |
| CA2474709A1 (en) | 2002-02-04 | 2003-08-14 | Biomira, Inc. | Immunostimulatory, covalently lipidated oligonucleotides |
| WO2003066662A2 (en) | 2002-02-05 | 2003-08-14 | Genentech, Inc. | Protein purification |
| FR2835749B1 (fr) | 2002-02-08 | 2006-04-14 | Inst Nat Sante Rech Med | Composition pharmaceutique ameliorant le transfert de gene in vivo |
| DE10207178A1 (de) | 2002-02-19 | 2003-09-04 | Novosom Ag | Komponenten für die Herstellung amphoterer Liposomen |
| US20050222064A1 (en) | 2002-02-20 | 2005-10-06 | Sirna Therapeutics, Inc. | Polycationic compositions for cellular delivery of polynucleotides |
| AR038568A1 (es) | 2002-02-20 | 2005-01-19 | Hoffmann La Roche | Anticuerpos anti-a beta y su uso |
| US7354742B2 (en) | 2002-02-22 | 2008-04-08 | Ortho-Mcneil Pharmaceutical, Inc. | Method for generating amplified RNA |
| NZ535690A (en) | 2002-02-26 | 2009-04-30 | Maxygen Inc | Novel flavivirus antigens |
| DK1487856T3 (da) | 2002-03-04 | 2010-10-18 | Imclone Llc | KDR-specifikke humane antistoffer og deres anvendelse |
| AU2003221497A1 (en) | 2002-03-13 | 2003-09-22 | Novartis Ag | Pharmaceutical microparticles |
| US7074596B2 (en) | 2002-03-25 | 2006-07-11 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Synthesis and use of anti-reverse mRNA cap analogues |
| EP1499187B1 (en) | 2002-04-04 | 2015-06-17 | Zoetis Belgium S.A. | Immunostimulatory g,u-containing oligoribonucleotides |
| EP1497327A2 (en) | 2002-04-17 | 2005-01-19 | Novartis AG | Method for the identification of inhibitors of the binding of are-containing mrna and an hur protein |
| GB0209539D0 (en) | 2002-04-26 | 2002-06-05 | Avecia Ltd | Monomer Polymer and process |
| EP1361277A1 (en) | 2002-04-30 | 2003-11-12 | Centre National De La Recherche Scientifique (Cnrs) | Optimization of transgene expression in mammalian cells |
| HUE057124T2 (hu) | 2002-05-02 | 2022-04-28 | Wyeth Holdings Llc | Calicheamicin származék - hordozó konjugátumok |
| BR0311443A (pt) | 2002-05-06 | 2005-03-22 | Becton Dickinson Co | Método e dispositivo para controlar farmacocinética de droga |
| JP2005538945A (ja) | 2002-05-08 | 2005-12-22 | ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア | 心不整脈を線維芽細胞で治療するためのシステム及び方法 |
| US20040018525A1 (en) | 2002-05-21 | 2004-01-29 | Bayer Aktiengesellschaft | Methods and compositions for the prediction, diagnosis, prognosis, prevention and treatment of malignant neoplasma |
| DE10224200C1 (de) | 2002-05-31 | 2003-08-21 | Artus Ges Fuer Molekularbiolog | Vermehrung von Ribonukleinsäuren |
| WO2003101401A2 (en) | 2002-06-03 | 2003-12-11 | Chiron Corporation | Use of nrg4, or inhibitors thereof, in the treatment of colon and pancreatic cancer |
| SE0201907D0 (sv) | 2002-06-19 | 2002-06-19 | Atos Medical Ab | Plaster for tracheostoma valves |
| ATE485031T1 (de) | 2002-06-28 | 2010-11-15 | Protiva Biotherapeutics Inc | Verfahren und vorrichtung zur herstellung von liposomen |
| MXPA05000063A (es) | 2002-07-01 | 2005-04-08 | Kenneth S Warren Inst Inc | Citocinas recombinantes protectoras de tejido y acidos nucleicos que las codifican para la proteccion, restauracion y mejora de celulas, tejidos y organos respondedores. |
| DE10229872A1 (de) | 2002-07-03 | 2004-01-29 | Curevac Gmbh | Immunstimulation durch chemisch modifizierte RNA |
| GB0215509D0 (en) | 2002-07-04 | 2002-08-14 | Novartis Ag | Marker genes |
| US20040009180A1 (en) | 2002-07-11 | 2004-01-15 | Allergan, Inc. | Transdermal botulinum toxin compositions |
| US7316925B2 (en) | 2002-07-16 | 2008-01-08 | Vgx Pharmaceuticals, Inc. | Codon optimized synthetic plasmids |
| AU2003252136A1 (en) | 2002-07-24 | 2004-02-09 | Ptc Therapeutics, Inc. | METHODS FOR IDENTIFYING SMALL MOLEDULES THAT MODULATE PREMATURE TRANSLATION TERMINATION AND NONSENSE MEDIATED mRNA DECAY |
| EP1393745A1 (en) | 2002-07-29 | 2004-03-03 | Hybridon, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5'ends |
| US6653468B1 (en) | 2002-07-31 | 2003-11-25 | Isis Pharmaceuticals, Inc. | Universal support media for synthesis of oligomeric compounds |
| EP1386925A1 (en) | 2002-07-31 | 2004-02-04 | Girindus AG | Method for preparing oligonucleotides |
| CA2492639C (en) | 2002-08-01 | 2013-06-18 | Abbott Laboratories Vascular Enterprises, Limited | Apparatus for sealing a puncture by causing a reduction in the circumference of the puncture |
| EP1873180B1 (en) | 2002-08-14 | 2014-05-07 | Novartis AG | Ophthalmic device made from a radiation-curable prepolymer |
| CA2497086A1 (en) | 2002-08-30 | 2004-03-11 | Becton, Dickinson And Company | Method of controlling pharmacokinetics of immunomodulatory compounds |
| KR20120104412A (ko) | 2002-09-06 | 2012-09-20 | 인설트 테라페틱스, 인코퍼레이티드 | 공유결합된 치료제 전달을 위한 사이클로덱스트린-기초 중합체 |
| WO2004022629A2 (en) | 2002-09-09 | 2004-03-18 | Nektar Therapeutics Al, Corporation | Method for preparing water-soluble polymer derivatives bearing a terminal carboxylic acid |
| US7534872B2 (en) | 2002-09-27 | 2009-05-19 | Syngen, Inc. | Compositions and methods for the use of FMOC derivatives in DNA/RNA synthesis |
| ES2744275T3 (es) | 2002-10-17 | 2020-02-24 | Genmab As | Anticuerpos monoclonales humanos contra CD20 para su uso en el tratamiento de esclerosis múltiple |
| WO2004038018A1 (ja) | 2002-10-22 | 2004-05-06 | Eisai Co., Ltd. | 分裂停止後のドーパミン産生ニューロン前駆細胞に特異的に発現している遺伝子 |
| US6896666B2 (en) | 2002-11-08 | 2005-05-24 | Kochamba Family Trust | Cutaneous injection delivery under suction |
| WO2004048594A2 (en) | 2002-11-21 | 2004-06-10 | Epicentre Technologies | Preparation and use of single-stranded transcription substrates for synthesis of transcription products corresponding to target sequences |
| US7491234B2 (en) | 2002-12-03 | 2009-02-17 | Boston Scientific Scimed, Inc. | Medical devices for delivery of therapeutic agents |
| AU2003288467A1 (en) | 2002-12-13 | 2004-07-09 | Immunomedics, Inc. | Immunoconjugates with an intracellularly-cleavable linkage |
| DE60332957D1 (de) | 2002-12-16 | 2010-07-22 | Genentech Inc | Immunoglobulinvarianten und deren verwendungen |
| CA2508985A1 (en) | 2002-12-23 | 2004-07-15 | Dynavax Technologies Corporation | Branched immunomodulatory compounds and methods of using the same |
| US7169892B2 (en) | 2003-01-10 | 2007-01-30 | Astellas Pharma Inc. | Lipid-peptide-polymer conjugates for long blood circulation and tumor specific drug delivery systems |
| US20080227085A1 (en) | 2003-01-17 | 2008-09-18 | Pellegrini Matthew C | Methods and Systems for the Identification of Rna Regulatory Sequences and Compounds that Modulate their Function |
| CA2514184C (en) | 2003-01-21 | 2016-04-12 | Ptc Therapeutics, Inc. | Methods for identifying compounds that modulate untranslated region-dependent gene expression and methods of using same |
| US9068234B2 (en) | 2003-01-21 | 2015-06-30 | Ptc Therapeutics, Inc. | Methods and agents for screening for compounds capable of modulating gene expression |
| US8426194B2 (en) | 2003-01-21 | 2013-04-23 | Ptc Therapeutics, Inc. | Methods and agents for screening for compounds capable of modulating VEGF expression |
| US20040147027A1 (en) | 2003-01-28 | 2004-07-29 | Troy Carol M. | Complex for facilitating delivery of dsRNA into a cell and uses thereof |
| CN1768139A (zh) | 2003-02-10 | 2006-05-03 | 独立行政法人产业技术总合研究所 | 通过dna干扰调控基因的表达 |
| WO2004071439A2 (en) | 2003-02-10 | 2004-08-26 | Elan Pharmaceuticals, Inc. | Immunoglobulin formulation and method of preparation thereof |
| US20040167090A1 (en) | 2003-02-21 | 2004-08-26 | Monahan Sean D. | Covalent modification of RNA for in vitro and in vivo delivery |
| CA2450289A1 (en) | 2003-03-20 | 2005-05-19 | Imclone Systems Incorporated | Method of producing an antibody to epidermal growth factor receptor |
| US7320961B2 (en) | 2003-03-24 | 2008-01-22 | Abbott Laboratories | Method for treating a disease, disorder or adverse effect caused by an elevated serum concentration of an UGT1A1 substrate |
| US7704712B2 (en) | 2003-03-25 | 2010-04-27 | Stratagene California | DNA polymerase fusions and uses thereof |
| US20040242502A1 (en) | 2003-04-08 | 2004-12-02 | Galenica Pharmaceuticals, Inc. | Semi-synthetic saponin analogs with carrier and immune stimulatory activities for DNA and RNA vaccines |
| NZ587776A (en) | 2003-04-09 | 2012-03-30 | Genentech Inc | Therapy of autoimmune disease in a patient with an inadequate response to a TNF-alpha inhibitor using anti-CD20 antibody |
| EP1620140B1 (en) | 2003-05-05 | 2013-10-09 | Ben-Gurion University Of The Negev Research And Development Authority | Injectable cross-linked polymeric preparations and uses thereof |
| TWI353991B (en) | 2003-05-06 | 2011-12-11 | Syntonix Pharmaceuticals Inc | Immunoglobulin chimeric monomer-dimer hybrids |
| US7348004B2 (en) | 2003-05-06 | 2008-03-25 | Syntonix Pharmaceuticals, Inc. | Immunoglobulin chimeric monomer-dimer hybrids |
| ATE497783T1 (de) | 2003-05-06 | 2011-02-15 | Syntonix Pharmaceuticals Inc | Gerinnungsfaktor vii-fc chimäre proteine zur behandlung von hämostatischen krankheiten |
| US20040226556A1 (en) | 2003-05-13 | 2004-11-18 | Deem Mark E. | Apparatus for treating asthma using neurotoxin |
| US9567591B2 (en) | 2003-05-15 | 2017-02-14 | Mello Biotechnology, Inc. | Generation of human embryonic stem-like cells using intronic RNA |
| GB0313132D0 (en) | 2003-06-06 | 2003-07-09 | Ich Productions Ltd | Peptide ligands |
| EP1636385A4 (en) | 2003-06-24 | 2010-06-02 | Mirus Bio Corp | INHIBITION OF GENE FUNCTION BY IN VIVO DISTRIBUTION OF GENE EXPRESSION INHIBITORS BASED ON POLYNUCLEOTIDES IN MAMMALIAN CELLS |
| GB0316089D0 (en) | 2003-07-09 | 2003-08-13 | Xo Bioscience Ltd | Differentiation method |
| US8592197B2 (en) | 2003-07-11 | 2013-11-26 | Novavax, Inc. | Functional influenza virus-like particles (VLPs) |
| US7575572B2 (en) | 2003-07-15 | 2009-08-18 | Spinal Generations, Llc | Method and device for delivering medicine to bone |
| US20050013870A1 (en) | 2003-07-17 | 2005-01-20 | Toby Freyman | Decellularized extracellular matrix of conditioned body tissues and uses thereof |
| KR101254371B1 (ko) | 2003-07-18 | 2013-05-02 | 암젠 프레몬트 인코포레이티드 | 간세포 성장인자에 결합하는 분리된 항체 |
| DE10335833A1 (de) | 2003-08-05 | 2005-03-03 | Curevac Gmbh | Transfektion von Blutzellen mit mRNA zur Immunstimulation und Gentherapie |
| US8668926B1 (en) | 2003-09-15 | 2014-03-11 | Shaker A. Mousa | Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations thereof |
| US7135010B2 (en) | 2003-09-30 | 2006-11-14 | Damage Control Surgical Technologies, Inc. | Method and apparatus for rapid deployment chest drainage |
| CA2541138A1 (en) | 2003-10-06 | 2005-05-06 | Novartis Ag | Use of genetic polymorphisms that associate with efficacy of treatment of inflammatory disease |
| US20050130201A1 (en) | 2003-10-14 | 2005-06-16 | Dharmacon, Inc. | Splint-assisted enzymatic synthesis of polyribounucleotides |
| DE10347710B4 (de) | 2003-10-14 | 2006-03-30 | Johannes-Gutenberg-Universität Mainz | Rekombinante Impfstoffe und deren Verwendung |
| JP4653109B2 (ja) | 2003-11-05 | 2011-03-16 | ロシュ グリクアート アクチェンゲゼルシャフト | 高められたFcレセプター結合親和性及びエフェクター機能をもつCD20抗体 |
| WO2005047536A2 (en) | 2003-11-13 | 2005-05-26 | Novartis Ag | Detection of genomic amplification and deletion in cancer |
| US20070054278A1 (en) | 2003-11-18 | 2007-03-08 | Applera Corporation | Polymorphisms in nucleic acid molecules encoding human enzyme proteins, methods of detection and uses thereof |
| US7998119B2 (en) | 2003-11-18 | 2011-08-16 | Nano Pass Technologies Ltd. | System and method for delivering fluid into flexible biological barrier |
| US7699852B2 (en) | 2003-11-19 | 2010-04-20 | Zimmer Spine, Inc. | Fenestrated bone tap and method |
| US20050153333A1 (en) | 2003-12-02 | 2005-07-14 | Sooknanan Roy R. | Selective terminal tagging of nucleic acids |
| WO2005055945A2 (en) | 2003-12-08 | 2005-06-23 | Gel-Del Technologies, Inc. | Mucoadhesive drug delivery devices and methods of making and using thereof |
| US7674884B2 (en) | 2003-12-10 | 2010-03-09 | Novimmune S.A. | Neutralizing antibodies and methods of use thereof |
| WO2005084180A2 (en) | 2003-12-19 | 2005-09-15 | University Of Cincinnati | Polyamides and polyamide complexes for delivery of oligonucleotide decoys |
| EP3718564B1 (en) | 2003-12-23 | 2023-10-11 | Genentech, Inc. | Novel anti-il 13 antibodies and uses thereof |
| US7150726B2 (en) | 2004-01-23 | 2006-12-19 | Norfolk Medical | Device for subcutaneous infusion of fluids |
| EP1713514B1 (en) | 2004-01-28 | 2021-11-24 | Johns Hopkins University | Drugs and gene carrier particles that rapidly move through mucous barriers |
| DK1716233T3 (da) | 2004-01-30 | 2009-10-26 | Maxygen Holdings Ltd | Reguleret stopkodongennemlæsning |
| US7309487B2 (en) | 2004-02-09 | 2007-12-18 | George Inana | Methods and compositions for detecting and treating retinal diseases |
| US20050232919A1 (en) | 2004-02-12 | 2005-10-20 | Morphotek, Inc. | Monoclonal antibodies that specifically block biological activity of a tumor antigen |
| US20070265220A1 (en) | 2004-03-15 | 2007-11-15 | City Of Hope | Methods and compositions for the specific inhibition of gene expression by double-stranded RNA |
| WO2005090405A1 (ja) | 2004-03-24 | 2005-09-29 | Chugai Seiyaku Kabushiki Kaisha | インターロイキン-6受容体に対するヒト型化抗体のサブタイプ |
| WO2005098433A2 (en) | 2004-04-01 | 2005-10-20 | Novartis Ag | Diagnostic assays for alzheimer’s disease |
| JP4981660B2 (ja) | 2004-04-12 | 2012-07-25 | アラーガン、インコーポレイテッド | マルチサイト注射システム |
| JP5848861B2 (ja) | 2004-04-20 | 2016-01-27 | ジェンマブ エー/エスGenmab A/S | Cd20に対するヒトモノクローナル抗体 |
| ES2246694B1 (es) | 2004-04-29 | 2007-05-01 | Instituto Cientifico Y Tecnologico De Navarra, S.A. | Nanoparticulas pegiladas. |
| US20080119645A1 (en) | 2004-05-05 | 2008-05-22 | Isis Pharmaceuticals, Inc. | Amidites and Methods of Rna Synthesis |
| EP2072040B1 (en) | 2004-05-12 | 2013-05-01 | Baxter International Inc. | Therapeutic use of nucleic acid micropheres |
| US20080103053A1 (en) | 2005-11-22 | 2008-05-01 | Helicos Biosciences Corporation | Methods and compositions for sequencing a nucleic acid |
| US8012747B2 (en) | 2004-06-01 | 2011-09-06 | San Diego State University Foundation | Expression system |
| EP1781593B1 (en) | 2004-06-07 | 2011-12-14 | Protiva Biotherapeutics Inc. | Cationic lipids and methods of use |
| EP1766035B1 (en) | 2004-06-07 | 2011-12-07 | Protiva Biotherapeutics Inc. | Lipid encapsulated interfering rna |
| WO2005123114A2 (en) | 2004-06-11 | 2005-12-29 | Trustees Of Tufts College | Silk-based drug delivery system |
| US8338648B2 (en) | 2004-06-12 | 2012-12-25 | Signum Biosciences, Inc. | Topical compositions and methods for epithelial-related conditions |
| WO2006046978A2 (en) | 2004-06-28 | 2006-05-04 | Argos Therapeutics, Inc. | Cationic peptide-mediated transformation |
| ES2390082T5 (es) | 2004-06-30 | 2018-01-19 | Nektar Therapeutics | Conjugados de resto de Factor IX y polímeros |
| US20070292445A1 (en) | 2004-07-06 | 2007-12-20 | Transpharma Medical Ltd. | Delivery system for transdermal immunization |
| DE102004035227A1 (de) | 2004-07-21 | 2006-02-16 | Curevac Gmbh | mRNA-Gemisch zur Vakzinierung gegen Tumorerkrankungen |
| CA2574088C (en) | 2004-07-21 | 2013-09-17 | Alnylam Pharmaceuticals, Inc. | Oligonucleotides comprising a modified or non-natural nucleobase |
| US7603349B1 (en) | 2004-07-29 | 2009-10-13 | Yahoo! Inc. | User interfaces for search systems using in-line contextual queries |
| GB0417487D0 (en) | 2004-08-05 | 2004-09-08 | Novartis Ag | Organic compound |
| JP5192234B2 (ja) | 2004-08-10 | 2013-05-08 | アルナイラム ファーマシューティカルズ, インコーポレイテッド | 化学修飾オリゴヌクレオチド |
| SE0402025D0 (sv) | 2004-08-13 | 2004-08-13 | Active Biotech Ab | Treatment of hyperproliferative disease with superantigens in combination with another anticancer agent |
| CA2478458A1 (en) | 2004-08-20 | 2006-02-20 | Michael Panzara | Treatment of pediatric multiple sclerosis |
| MX2007002294A (es) | 2004-08-26 | 2007-10-19 | Engeneic Molecular Delivery Pty Ltd | Suministro de acidos nucleicos funcionales a celulas mamiferas via minicelulas intactas, derivadas bacterialmente. |
| DE102004042546A1 (de) | 2004-09-02 | 2006-03-09 | Curevac Gmbh | Kombinationstherapie zur Immunstimulation |
| US7501486B2 (en) | 2004-09-07 | 2009-03-10 | Burnham Institute For Medical Research | Peptides that selectively home to heart vasculature and related conjugates and methods |
| US8663599B1 (en) | 2004-10-05 | 2014-03-04 | Gp Medical, Inc. | Pharmaceutical composition of nanoparticles |
| WO2006041088A1 (ja) | 2004-10-12 | 2006-04-20 | Tissue Targeting Japan Inc. | 脳移行性骨髄前駆細胞 |
| MX2007004479A (es) | 2004-10-13 | 2007-06-18 | Ptc Therapeutics Inc | Compuestoss para supresion sin sentido y metodos para su uso. |
| US8057821B2 (en) | 2004-11-03 | 2011-11-15 | Egen, Inc. | Biodegradable cross-linked cationic multi-block copolymers for gene delivery and methods of making thereof |
| WO2006047842A2 (en) | 2004-11-08 | 2006-05-11 | K.U. Leuven Research And Development | Modified nucleosides for rna interference |
| CA2587216C (en) | 2004-11-18 | 2014-11-18 | Nanopass Technologies Ltd. | System and method for delivering fluid into flexible biological barrier |
| US8946444B2 (en) | 2004-11-23 | 2015-02-03 | Ptc Therapeutics, Inc. | Tetrahydrocarbazoles as active agents for inhibiting VEGF production by translational control |
| US7964571B2 (en) | 2004-12-09 | 2011-06-21 | Egen, Inc. | Combination of immuno gene therapy and chemotherapy for treatment of cancer and hyperproliferative diseases |
| EP1856179B1 (en) | 2004-12-10 | 2013-05-15 | Kala Pharmaceuticals, Inc. | Functionalized poly (ether-anhydride) block copolymers |
| US9068969B2 (en) | 2004-12-28 | 2015-06-30 | Ptc Therapeutics, Inc. | Cell based methods and systems for the identification of RNA regulatory sequences and compounds that modulate their functions |
| US8535702B2 (en) | 2005-02-01 | 2013-09-17 | Boston Scientific Scimed, Inc. | Medical devices having porous polymeric regions for controlled drug delivery and regulated biocompatibility |
| WO2007086883A2 (en) | 2005-02-14 | 2007-08-02 | Sirna Therapeutics, Inc. | Cationic lipids and formulated molecular compositions containing them |
| US7404969B2 (en) | 2005-02-14 | 2008-07-29 | Sirna Therapeutics, Inc. | Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules |
| US20060263338A1 (en) | 2005-03-04 | 2006-11-23 | Jacoby Douglas B | Catheter-based delivery of Skeletal Myoblasts to the Myocardium of Damaged Hearts |
| EP2290363B1 (en) | 2005-03-11 | 2014-01-08 | Firalis SAS | Biomarkers for cardiovascular side-effects induced by cox-2 inhibitory compounds |
| JP4793806B2 (ja) | 2005-03-22 | 2011-10-12 | Tti・エルビュー株式会社 | イオントフォレーシス装置 |
| US8415325B2 (en) | 2005-03-31 | 2013-04-09 | University Of Delaware | Cell-mediated delivery and targeted erosion of noncovalently crosslinked hydrogels |
| EP2083088A3 (en) | 2005-04-07 | 2009-10-14 | Novartis Vaccines and Diagnostics, Inc. | Cancer-related genes |
| AU2006235276A1 (en) | 2005-04-07 | 2006-10-19 | Novartis Vaccines And Diagnostics Inc. | CACNA1E in cancer diagnosis, detection and treatment |
| US8273339B2 (en) | 2005-04-12 | 2012-09-25 | Nektar Therapeutics | Polymer-based compositions and conjugates of antimicrobial agents |
| CN101203611B (zh) | 2005-04-19 | 2013-08-14 | 巴斯福植物科学有限公司 | 控制基因表达的改良方法 |
| WO2006116458A2 (en) | 2005-04-26 | 2006-11-02 | Coley Pharmaceutical Gmbh | Modified oligoribonucleotide analogs with enhances immunostimulatory activity |
| US7850656B2 (en) | 2005-04-29 | 2010-12-14 | Warsaw Orthopedic, Inc. | Devices and methods for delivering medical agents |
| DK2161336T4 (en) | 2005-05-09 | 2017-04-24 | Ono Pharmaceutical Co | Human monoclonal antibodies for programmed death 1 (PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapies |
| US20070072175A1 (en) | 2005-05-13 | 2007-03-29 | Biogen Idec Ma Inc. | Nucleotide array containing polynucleotide probes complementary to, or fragments of, cynomolgus monkey genes and the use thereof |
| US20060265771A1 (en) | 2005-05-17 | 2006-11-23 | Lewis David L | Monitoring microrna expression and function |
| DE102005023170A1 (de) | 2005-05-19 | 2006-11-23 | Curevac Gmbh | Optimierte Formulierung für mRNA |
| HUE027013T2 (en) | 2005-05-27 | 2016-10-28 | Ospedale San Raffaele Srl | A gene vector containing MI-RNA |
| US20090208500A1 (en) | 2005-06-03 | 2009-08-20 | Genentech, Inc. | Method of producing antibodies with improved function |
| JP2008541737A (ja) | 2005-06-03 | 2008-11-27 | サウザーン アデレード ヘルス サービス−ファインダーズ メディカル センター | マイクロrna発現の変化した細胞を標的とすること |
| US7550264B2 (en) | 2005-06-10 | 2009-06-23 | Datascope Investment Corporation | Methods and kits for sense RNA synthesis |
| US7691086B2 (en) | 2005-06-14 | 2010-04-06 | Tengiz Tkebuchava | Catheter for introduction of medications to the tissues of a heart or other organ |
| BRPI0611872B8 (pt) | 2005-06-16 | 2021-05-25 | Nektar Therapeutics | reagente polimérico, conjugado, método para preparação de um conjugado e composição farmacêutica |
| US20110182805A1 (en) | 2005-06-17 | 2011-07-28 | Desimone Joseph M | Nanoparticle fabrication methods, systems, and materials |
| US8202835B2 (en) | 2005-06-17 | 2012-06-19 | Yitzchak Hillman | Disease treatment via antimicrobial peptides or their inhibitors |
| WO2007014363A2 (en) | 2005-07-27 | 2007-02-01 | Genentech, Inc. | Vectors for inducible expression of hairpin rna and use thereof |
| US9012219B2 (en) | 2005-08-23 | 2015-04-21 | The Trustees Of The University Of Pennsylvania | RNA preparations comprising purified modified RNA for reprogramming cells |
| HUE043492T2 (hu) | 2005-08-23 | 2019-08-28 | Univ Pennsylvania | Módosított nukleozidokat tartalmazó RNS és eljárások az alkalmazására |
| US20070048741A1 (en) | 2005-08-24 | 2007-03-01 | Getts Robert C | Methods and kits for sense RNA synthesis |
| ES2443529T3 (es) | 2005-09-01 | 2014-02-19 | Novartis Vaccines And Diagnostics Gmbh | Vacunación múltiple incluyendo meningococo del serogrupo C |
| ATE499112T1 (de) | 2005-09-01 | 2011-03-15 | Celgene Corp | Immunologische verwendungen von immunmodulatorischen verbindungen für einen impfstoff und therapie gegen infektionskrankheiten |
| US8420605B2 (en) | 2005-09-07 | 2013-04-16 | The University Of Strathclyde | Hydrogel compositions |
| US20120021042A1 (en) | 2005-09-15 | 2012-01-26 | Steffen Panzner | Efficient Method For Loading Amphoteric Liposomes With Nucleic Acid Active Substances |
| US20070185432A1 (en) | 2005-09-19 | 2007-08-09 | Transport Pharmaceuticals, Inc. | Electrokinetic system and method for delivering methotrexate |
| US20070087437A1 (en) | 2005-10-14 | 2007-04-19 | Jifan Hu | Methods for rejuvenating cells in vitro and in vivo |
| US8012096B2 (en) | 2005-10-17 | 2011-09-06 | Cardiogenesis Corporation | Surgical device and method for performing combination revascularization and therapeutic substance delivery to tissue |
| ATE539765T1 (de) | 2005-11-04 | 2012-01-15 | Novartis Vaccines & Diagnostic | Grippeimpfstoffe mit kombinationen aus teilchenförmigen adjuvantien und immunverstärkern |
| US20070105124A1 (en) | 2005-11-08 | 2007-05-10 | Getts Robert C | Methods and kits for nucleic acid amplification |
| AU2006314757A1 (en) | 2005-11-18 | 2007-05-24 | Bioline Limited | A method for enhancing enzymatic DNA polymerase reactions |
| KR101866623B1 (ko) | 2005-11-28 | 2018-07-04 | 젠맵 에이/에스 | 재조합 1가 항체 및 그의 제조 방법 |
| AU2005338632B2 (en) | 2005-11-30 | 2010-05-20 | Epicentre Technologies Corporation | Selective terminal tagging of nucleic acids |
| TWI389709B (zh) | 2005-12-01 | 2013-03-21 | Novartis Ag | 經皮治療系統 |
| US8603457B2 (en) | 2005-12-02 | 2013-12-10 | University Of Rochester | Nonsense suppression and genetic codon alteration by targeted modification |
| EP1954252B1 (en) | 2005-12-02 | 2016-02-03 | GlaxoSmithKline Biologicals SA | Nanoparticles for use in immunogenic compositions |
| EP1969000A2 (en) | 2005-12-06 | 2008-09-17 | Centre National de la Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| US7579318B2 (en) | 2005-12-06 | 2009-08-25 | Centre De La Recherche De La Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| RU2008127252A (ru) | 2005-12-08 | 2010-01-20 | Новартис АГ (CH) | Эффекты ингибиторов fgfr3 на транскрипцию генов |
| EP4223769A3 (en) | 2005-12-13 | 2023-11-01 | Kyoto University | Nuclear reprogramming factor |
| JP2009519033A (ja) | 2005-12-16 | 2009-05-14 | ディアト | 核酸を細胞に送達するための細胞貫通ペプチド結合体 |
| CA2636867C (en) | 2006-01-13 | 2015-12-01 | The Trustees Of The University Of Pennsylvania | Vaccines and immunotherapeutics using codon optimized il-15 and methods for using the same |
| JP5342881B2 (ja) | 2006-01-27 | 2013-11-13 | アイシス ファーマシューティカルズ, インコーポレーテッド | 6−修飾された二環式核酸類似体 |
| US20070178103A1 (en) | 2006-01-30 | 2007-08-02 | Fey Georg H | CD19-specific immunotoxin and treatment method |
| US8476234B2 (en) | 2006-02-03 | 2013-07-02 | Prolor Biotech Inc. | Long-acting coagulation factors and methods of producing same |
| US9458444B2 (en) | 2006-02-03 | 2016-10-04 | Opko Biologics Ltd. | Long-acting coagulation factors and methods of producing same |
| US8946155B2 (en) | 2006-02-03 | 2015-02-03 | Opko Biologics Ltd. | Long-acting polypeptides and methods of producing and administering same |
| DE102006007433A1 (de) | 2006-02-17 | 2007-08-23 | Curevac Gmbh | Adjuvanz in Form einer Lipid-modifizierten Nukleinsäure |
| EP1991560B1 (en) | 2006-02-20 | 2018-04-04 | Ewha University-Industry Collaboration Foundation | Peptide having cell membrane penetrating activity |
| KR101513732B1 (ko) | 2006-02-21 | 2015-04-21 | 넥타르 테라퓨틱스 | 분할된 분해가능한 폴리머 및 이로부터 제조된 컨주게이트 |
| US20080038278A1 (en) | 2006-02-24 | 2008-02-14 | Jingsong Cao | GPAT3 encodes a mammalian, microsomal acyl-coa:glycerol 3- phosphate acyltransferase |
| JP2009527572A (ja) | 2006-02-24 | 2009-07-30 | ノバルティス アーゲー | 免疫原性組成物に使用するための生分解性ポリマーおよびカチオン性多糖を含むミクロ粒子 |
| US7910152B2 (en) | 2006-02-28 | 2011-03-22 | Advanced Cardiovascular Systems, Inc. | Poly(ester amide)-based drug delivery systems with controlled release rate and morphology |
| CA3127202A1 (en) | 2006-02-28 | 2007-09-07 | Biogen Ma Inc. | Methods of treating inflammatory and autoimmune diseases with natalizumab |
| GB0605217D0 (en) | 2006-03-15 | 2006-04-26 | Novartis Ag | Method and compositions for assessing acute rejection |
| WO2007109244A2 (en) | 2006-03-21 | 2007-09-27 | Morehouse School Of Medicine | Novel nanoparticles for delivery of active agents |
| JP2009534309A (ja) | 2006-03-31 | 2009-09-24 | マサチューセッツ インスティテュート オブ テクノロジー | 治療剤の標的化送達のためのシステム |
| CN101415405A (zh) | 2006-04-04 | 2009-04-22 | Stc.Unm公司 | 用于药物递送的可溶胀颗粒 |
| WO2007120863A2 (en) | 2006-04-14 | 2007-10-25 | Epicentre Technologies | Kits and methods for generating 5' capped rna |
| EP1852127A1 (en) | 2006-05-02 | 2007-11-07 | Charité - Universitätsmedizin Berlin | Use of a B-cell-depleting antibody for treatment of polyoma virus infections |
| EP2019691B1 (en) | 2006-05-15 | 2020-08-12 | Massachusetts Institute of Technology | Polymers for functional particles |
| CA2649810A1 (en) | 2006-05-24 | 2007-11-29 | Laboratoires Serono S.A. | Cladribine regimen for treating multiple sclerosis |
| EP3045532A1 (en) | 2006-06-02 | 2016-07-20 | President and Fellows of Harvard College | Protein surface remodeling |
| US20090018566A1 (en) | 2006-06-30 | 2009-01-15 | Artheromed, Inc. | Atherectomy devices, systems, and methods |
| EP2046383B1 (en) | 2006-07-04 | 2014-11-19 | Genmab A/S | Cd20 binding molecules for the treatment of copd |
| ES2362376T3 (es) | 2006-07-07 | 2011-07-04 | Aarhus Universitet | Nanopartículas para la administración de ácido nucleico. |
| DK2038310T3 (da) | 2006-07-12 | 2010-09-27 | Novartis Ag | Aktinisk tværbindelige copolymerer til fremstilling af kontaktlinser |
| WO2008011519A2 (en) | 2006-07-20 | 2008-01-24 | Novartis Ag | Amigo-2 inhibitors for treating, diagnosing or detecting cancer |
| EP2054036B1 (en) | 2006-07-24 | 2019-12-18 | Singh-Broemer and Company, Inc. | Solid nanoparticle formulation of water insoluble pharmaceutical substances with reduced ostwald ripening |
| JP2009544754A (ja) | 2006-07-28 | 2009-12-17 | アプライド バイオシステムズ, エルエルシー | ジヌクレオチドmrnaキャップアナログ |
| EP2046954A2 (en) | 2006-07-31 | 2009-04-15 | Curevac GmbH | NUCLEIC ACID OF FORMULA (I): GIXmGn, OR (II): CIXmCn, IN PARTICULAR AS AN IMMUNE-STIMULATING AGENT/ADJUVANT |
| DE102006035618A1 (de) | 2006-07-31 | 2008-02-07 | Curevac Gmbh | Nukleinsäure der Formel (I): GlXmGn, insbesondere als immunstimulierendes Adjuvanz |
| CA2659337A1 (en) | 2006-08-07 | 2008-02-14 | Genzyme Corporation | Combination therapy |
| US8658211B2 (en) | 2006-08-18 | 2014-02-25 | Arrowhead Madison Inc. | Polyconjugates for in vivo delivery of polynucleotides |
| AU2007286059A1 (en) | 2006-08-18 | 2008-02-21 | Mdrna, Inc. | Dicer substrate RNA peptide conjugates and methods for RNA therapeutics |
| WO2008030988A2 (en) | 2006-09-06 | 2008-03-13 | The Regents Of The University Of California | Selectively targeted antimicrobial peptides and the use thereof |
| MY170607A (en) | 2006-09-07 | 2019-08-20 | Crucell Holland Bv | Human binding molecules capable of neutralizing influenza virus h5n1 and uses thereof |
| DE602007012559D1 (de) | 2006-09-08 | 2011-03-31 | Univ Johns Hopkins | H die schleimhaut |
| DE602007010807D1 (de) | 2006-09-08 | 2011-01-05 | Arbel Medical Ltd | Vorrichtung für kombinierte behandlung |
| US8454948B2 (en) | 2006-09-14 | 2013-06-04 | Medgenics Medical Israel Ltd. | Long lasting drug formulations |
| GB0619182D0 (en) | 2006-09-29 | 2006-11-08 | Leuven K U Res & Dev | Oligonucleotide arrays |
| MX2009003548A (es) | 2006-10-03 | 2009-04-15 | Alnylam Pharmaceuticals Inc | Formulaciones que contienen lipidos. |
| RU2492872C2 (ru) | 2006-10-05 | 2013-09-20 | Дзе Джонс Хопкинс Юниверсити | Вододиспергируемые пероральные, парентеральные и местные композиции для плохо растворимых в воде лекарственных препаратов, включающие улучшающие их свойства полимерные наночастицы |
| DE102006051516A1 (de) | 2006-10-31 | 2008-05-08 | Curevac Gmbh | (Basen-)modifizierte RNA zur Expressionssteigerung eines Proteins |
| US8414927B2 (en) | 2006-11-03 | 2013-04-09 | Boston Scientific Scimed, Inc. | Cross-linked polymer particles |
| US7999087B2 (en) | 2006-11-15 | 2011-08-16 | Agilent Technologies, Inc. | 2′-silyl containing thiocarbonate protecting groups for RNA synthesis |
| US8242258B2 (en) | 2006-12-03 | 2012-08-14 | Agilent Technologies, Inc. | Protecting groups for RNA synthesis |
| US8399007B2 (en) | 2006-12-05 | 2013-03-19 | Landec Corporation | Method for formulating a controlled-release pharmaceutical formulation |
| CN101553252A (zh) | 2006-12-06 | 2009-10-07 | 诺华有限公司 | 包含来自于四株流感病毒的抗原的疫苗 |
| US9034348B2 (en) | 2006-12-11 | 2015-05-19 | Chi2Gel Ltd. | Injectable chitosan mixtures forming hydrogels |
| EP2124999B1 (en) | 2006-12-18 | 2012-10-03 | Acceleron Pharma, Inc. | Activin-actrii antagonists and uses for treating anemia |
| EP2120859B1 (en) | 2006-12-21 | 2013-11-20 | Stryker Corporation | Sustained-release formulations comprising bmp-7 crystals |
| DK2104739T3 (da) | 2006-12-21 | 2013-10-07 | Novozymes Inc | Modificerede messenger-RNA-stabiliseringssekvenser til ekspression af gener i bakterieceller |
| DE102006061015A1 (de) | 2006-12-22 | 2008-06-26 | Curevac Gmbh | Verfahren zur Reinigung von RNA im präparativen Maßstab mittels HPLC |
| US7699803B2 (en) | 2007-01-03 | 2010-04-20 | Medtronic Vascular, Inc. | Devices and methods for injection of multiple-component therapies |
| US8338166B2 (en) | 2007-01-04 | 2012-12-25 | Lawrence Livermore National Security, Llc | Sorting, amplification, detection, and identification of nucleic acid subsequences in a complex mixture |
| DE102007001370A1 (de) | 2007-01-09 | 2008-07-10 | Curevac Gmbh | RNA-kodierte Antikörper |
| WO2008091799A2 (en) | 2007-01-22 | 2008-07-31 | The Trustees Of Columbia University In The City Of New York | Cell-based methods for identifying inhibitors of parkinson's disease-associated lrrk2 mutants |
| JP4866467B2 (ja) | 2007-01-30 | 2012-02-01 | エピバックス インコーポレーテッド | 調節性t細胞エピトープ、組成物およびその使用 |
| TWI432449B (zh) | 2007-02-02 | 2014-04-01 | Acceleron Pharma Inc | 衍生自ActRIIB的變體與其用途 |
| US8859229B2 (en) | 2007-02-02 | 2014-10-14 | Yale University | Transient transfection with RNA |
| WO2008096370A2 (en) | 2007-02-05 | 2008-08-14 | Natco Pharma Limited | An efficient and novel purification method of recombinant hg-csf |
| US8333799B2 (en) | 2007-02-12 | 2012-12-18 | C. R. Bard, Inc. | Highly flexible stent and method of manufacture |
| EP2131848A4 (en) | 2007-02-16 | 2012-06-27 | Merck Sharp & Dohme | COMPOSITIONS AND METHODS FOR REINFORCED ACTIVITY OF BIOLOGICAL ACTIVE MOLECULES |
| US8242087B2 (en) | 2007-02-27 | 2012-08-14 | K.U.Leuven Research & Development | Phosphate modified nucleosides useful as substrates for polymerases and as antiviral agents |
| JP5467415B2 (ja) | 2007-03-02 | 2014-04-09 | ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト | タンパク質製造の改良 |
| EP1964922A1 (en) | 2007-03-02 | 2008-09-03 | Boehringer Ingelheim Pharma GmbH & Co. KG | Improvement of protein production |
| US8029496B2 (en) | 2007-03-05 | 2011-10-04 | Ebrahim Versi | Method and device for delivering drug to the trigone of the bladder |
| JP5249248B2 (ja) | 2007-03-05 | 2013-07-31 | ワシントン ユニバーシティー | 膜組み込みペプチドのためのナノ粒子輸送システム |
| JP2010521966A (ja) | 2007-03-20 | 2010-07-01 | ミレニアム・ファーマシューティカルズ・インコーポレイテッド | α4β7インテグリンに結合するヒト化免疫グロブリンをコードする核酸 |
| EP2152358B1 (en) | 2007-04-27 | 2011-03-02 | Echo Therapeutics, Inc. | Skin permeation device for analyte sensing or transdermal drug delivery |
| US20100086554A1 (en) | 2007-04-30 | 2010-04-08 | Smithkline Beecham Corporation | Methods for administering anti-il-5 antibodies |
| WO2008135855A2 (en) | 2007-05-03 | 2008-11-13 | Pfizer Products Inc. | Nanoparticles comprising a cholesteryl ester transfer protein inhibitor and a nonionizable polymer |
| NZ580707A (en) | 2007-05-04 | 2011-11-25 | Marina Biotech Inc | Acylated cationic amino acids and uses thereof |
| US7682789B2 (en) | 2007-05-04 | 2010-03-23 | Ventana Medical Systems, Inc. | Method for quantifying biomolecules conjugated to a nanoparticle |
| WO2009023311A2 (en) | 2007-05-07 | 2009-02-19 | Alba Therapeutics Corporation | Transcutaneous delivery of therapeutic agents |
| JP5296328B2 (ja) | 2007-05-09 | 2013-09-25 | 独立行政法人理化学研究所 | 1本鎖環状rnaおよびその製造方法 |
| EP2476689B1 (en) | 2007-05-10 | 2015-10-21 | Agilent Technologies, Inc. | Thiocarbon-protecting groups for RNA synthesis |
| WO2008144365A2 (en) | 2007-05-17 | 2008-11-27 | Novartis Ag | Method for making dry powder compositions containing ds-rna based on supercritical fluid technology |
| JP2010529954A (ja) | 2007-05-22 | 2010-09-02 | ノバルティス アーゲー | Fgf21関連障害を処置、診断および検出する方法 |
| EP2160464B1 (en) | 2007-05-30 | 2014-05-21 | Northwestern University | Nucleic acid functionalized nanoparticles for therapeutic applications |
| WO2008151058A2 (en) | 2007-05-30 | 2008-12-11 | The General Hospital Corporation | Methods of generating pluripotent cells from somatic cells |
| SI2167523T1 (sl) | 2007-06-19 | 2014-09-30 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Sinteza in uporaba anti-reverznih fosforotioatnih analogov kape obveščevalne RNA |
| US8039214B2 (en) | 2007-06-29 | 2011-10-18 | Cellscript, Inc. | Synthesis of tagged nucleic acids |
| US8367318B2 (en) | 2007-07-23 | 2013-02-05 | Dharmacon, Inc. | Screening of micro-RNA cluster inhibitor pools |
| US20090042825A1 (en) | 2007-08-06 | 2009-02-12 | Majed Matar | Composition, method of preparation & application of concentrated formulations of condensed nucleic acids with a cationic lipopolymer |
| US9144546B2 (en) | 2007-08-06 | 2015-09-29 | Clsn Laboratories, Inc. | Nucleic acid-lipopolymer compositions |
| ES2868136T3 (es) | 2007-08-14 | 2021-10-21 | Hutchinson Fred Cancer Res | Disposición de matriz de agujas y método para administrar agentes terapéuticos |
| WO2009024599A1 (en) | 2007-08-23 | 2009-02-26 | Novartis Ag | Methods for detecting oligonucleotides |
| WO2009030254A1 (en) | 2007-09-04 | 2009-03-12 | Curevac Gmbh | Complexes of rna and cationic peptides for transfection and for immunostimulation |
| ES2449070T3 (es) | 2007-09-05 | 2014-03-18 | F. Hoffmann-La Roche Ag | Terapia de combinación con anticuerpos anti-CD20 de tipo I y tipo II |
| US8506928B2 (en) | 2007-09-07 | 2013-08-13 | The Regents Of The University Of California | Methods and compounds for targeting tissues |
| US20130108663A1 (en) | 2007-09-14 | 2013-05-02 | Vrije Universiteit Brussel | Enhancing the t-cell stimulatory capacity of human antigen presenting cells in vitro and in vivo and their use in vaccination |
| WO2009039198A2 (en) | 2007-09-17 | 2009-03-26 | The Trustees Of The University Of Pennsylvania | Generation of hyperstable mrnas |
| AU2008304313B2 (en) | 2007-09-26 | 2013-01-10 | Oregon Health & Science University | Cyclic undecapeptides and derivatives as multiple sclerosis therapies |
| JP5410434B2 (ja) | 2007-09-28 | 2014-02-05 | バインド セラピューティックス インコーポレイテッド | ナノ粒子を用いた癌細胞の標的化 |
| EP2042193A1 (en) | 2007-09-28 | 2009-04-01 | Biomay AG | RNA Vaccines |
| US8470560B2 (en) | 2007-10-03 | 2013-06-25 | The United States Of America As Represented By The Secretary Of The Army | CR-2 binding peptide P28 as molecular adjuvant for DNA vaccines |
| WO2009046738A1 (en) | 2007-10-09 | 2009-04-16 | Curevac Gmbh | Composition for treating lung cancer, particularly of non-small lung cancers (nsclc) |
| WO2009046739A1 (en) | 2007-10-09 | 2009-04-16 | Curevac Gmbh | Composition for treating prostate cancer (pca) |
| EP2620157A3 (en) | 2007-10-12 | 2013-10-16 | Massachusetts Institute of Technology | Vaccine nanotechnology |
| US20090098118A1 (en) | 2007-10-15 | 2009-04-16 | Thomas Friess | Combination therapy of a type ii anti-cd20 antibody with an anti-bcl-2 active agent |
| EP2205277B1 (en) | 2007-10-22 | 2017-07-26 | Genmab A/S | Novel antibody therapies |
| KR20100113478A (ko) | 2007-11-01 | 2010-10-21 | 유니버시티 오브 로체스터 | 증가된 안정성을 갖는 재조합 인자 ⅴⅰⅰⅰ |
| KR20100088621A (ko) | 2007-11-09 | 2010-08-09 | 노파르티스 아게 | 항-cd40 항체의 용도 |
| WO2009062348A1 (en) | 2007-11-14 | 2009-05-22 | Institute Of Microbiology, Chinese Academy Of Sciences | Methods for inhibiting influenza virus infection and their drugs |
| US20090137945A1 (en) | 2007-11-28 | 2009-05-28 | Claire Marquez | Electro Collagen Induction Therapy Device |
| DE112008003232T5 (de) | 2007-11-30 | 2011-02-24 | Glaxo Group Limited, Greenford | Antigen-Bindungskonstrukte |
| EP2617828B1 (en) | 2007-12-10 | 2014-09-24 | Alnylam Pharmaceuticals Inc. | Compositions and methods for inhibiting expression of factor VII gene |
| AU2008334948B2 (en) | 2007-12-13 | 2014-11-20 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for prevention or treatment of RSV infection |
| EP2072618A1 (en) | 2007-12-14 | 2009-06-24 | Johannes Gutenberg-Universität Mainz | Use of RNA for reprogramming somatic cells |
| JP2011507897A (ja) | 2007-12-21 | 2011-03-10 | ジェネンテック, インコーポレイテッド | リツキシマブ抵抗性関節リウマチ患者の治療 |
| JP5645044B2 (ja) * | 2008-01-22 | 2014-12-24 | 独立行政法人医薬基盤研究所 | 遺伝子発現制御機構を含む新規Adベクター |
| EP2248906A4 (en) | 2008-01-23 | 2012-07-11 | Ajinomoto Kk | PROCESS FOR THE PREPARATION OF L-AMINO ACID |
| US20100297750A1 (en) | 2008-01-24 | 2010-11-25 | Toru Natsume | Polynucleotide or analogue thereof, and gene expression regulation method using the polynucleotide or the analogue thereof |
| KR101483715B1 (ko) | 2008-01-31 | 2015-01-19 | 큐어백 게엠바하 | 면역증강제/애주번트인 화학식(NuGlXmGnNv)a를 포함하는 핵산 및 이의 유도체 |
| WO2009101407A2 (en) | 2008-02-11 | 2009-08-20 | Cambridge Enterprise Limited | Improved reprogramming of mammalian cells, and the cells obtained |
| DK2240155T3 (da) | 2008-02-13 | 2012-09-17 | Intarcia Therapeutics Inc | Indretninger, formuleringer og fremgangsmåder til levering af flere gavnlige midler |
| DE102008009920A1 (de) | 2008-02-15 | 2009-08-20 | Aj Innuscreen Gmbh | Mobiles Gerät für die Nukleinsäureisolierung |
| US8506966B2 (en) | 2008-02-22 | 2013-08-13 | Novartis Ag | Adjuvanted influenza vaccines for pediatric use |
| US20120027813A1 (en) | 2008-02-22 | 2012-02-02 | Novartis Vaccines And Diagnostics Srl | Adjuvanted influenza vaccines for pediatric use |
| US20100004313A1 (en) | 2008-02-29 | 2010-01-07 | Tbd | Modified Poloxamers for Gene Expression and Associated Methods |
| JP2011514423A (ja) | 2008-03-14 | 2011-05-06 | エーゲン、インコーポレイテッド | 生分解性架橋分枝状ポリ(アルキレンイミン) |
| EA201001467A1 (ru) | 2008-03-14 | 2011-06-30 | Биокон Лимитед | Моноклональное антитело и способ его использования |
| CA2719786A1 (en) | 2008-03-28 | 2009-10-01 | Glaxosmithkline Llc | Methods of treatment |
| ES2638448T3 (es) | 2008-04-15 | 2017-10-20 | Protiva Biotherapeutics Inc. | Novedosas formulaciones de lípidos para la administración de ácidos nucleicos |
| WO2009127230A1 (en) | 2008-04-16 | 2009-10-22 | Curevac Gmbh | MODIFIED (m)RNA FOR SUPPRESSING OR AVOIDING AN IMMUNOSTIMULATORY RESPONSE AND IMMUNOSUPPRESSIVE COMPOSITION |
| CN102036652B (zh) | 2008-04-25 | 2016-04-13 | 西北大学 | 适于螯合胆甾醇的纳米结构 |
| EP2297182A4 (en) | 2008-04-28 | 2012-08-15 | Harvard College | HIGHLY CHARGED PROTEINS USED FOR CELL PENETRATION |
| WO2009134717A1 (en) | 2008-04-30 | 2009-11-05 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention | Chimeric west nile/dengue viruses |
| US9394538B2 (en) | 2008-05-07 | 2016-07-19 | Shi-Lung Lin | Development of universal cancer drugs and vaccines |
| EP2323716B1 (en) | 2008-05-08 | 2015-03-04 | MiniPumps, LLC | Drug-delivery pumps |
| US8697098B2 (en) | 2011-02-25 | 2014-04-15 | South Dakota State University | Polymer conjugated protein micelles |
| EP2620161A1 (en) | 2008-05-13 | 2013-07-31 | University of Washington | Diblock copolymers and polynucleotide complexes thereof for delivery into cells |
| US9738680B2 (en) | 2008-05-21 | 2017-08-22 | Rheinische Friedrich-Wilhelms-Universität Bonn | 5′ triphosphate oligonucleotide with blunt end and uses thereof |
| FR2931824B1 (fr) | 2008-05-29 | 2014-11-28 | Centre Nat Rech Scient | Procede de synthese d'arn par voie chimique. |
| EP2297197B1 (en) | 2008-05-29 | 2012-03-07 | HanAll Biopharma Co., Ltd. | Modified erythropoietin (epo)polypeptides that exhibit increased protease resistance and pharmaceutical compositions thereof |
| WO2009148528A2 (en) | 2008-05-30 | 2009-12-10 | Millennium Pharmaceuticals, Inc. | Assessment of chromosomal alterations to predict clinical outcome of bortezomib treatment |
| US8540678B2 (en) | 2008-06-06 | 2013-09-24 | Wockhardt Ltd. | Device and a system for delivery of biological material |
| TWI451876B (zh) | 2008-06-13 | 2014-09-11 | Lilly Co Eli | 聚乙二醇化之離脯胰島素化合物 |
| WO2010005726A2 (en) | 2008-06-16 | 2010-01-14 | Bind Biosciences Inc. | Therapeutic polymeric nanoparticles with mtor inhibitors and methods of making and using same |
| JP2012501966A (ja) | 2008-06-16 | 2012-01-26 | バインド バイオサイエンシズ インコーポレイテッド | ビンカアルカロイド含有治療用ポリマーナノ粒子並びにその製造方法及び使用方法 |
| PT2285350T (pt) | 2008-06-16 | 2018-01-04 | Pfizer | Métodos para a preparação de copolímeros em dibloco funcionalizados com agente de direcionamento para utilização no fabrico de nanopartículas terapêuticas |
| EA020954B1 (ru) | 2008-06-16 | 2015-03-31 | Бинд Терапьютикс, Инк. | Загруженные лекарственным средством полимерные наночастицы, фармацевтическая композиция и способ лечения рака |
| US7799016B2 (en) | 2008-06-20 | 2010-09-21 | Pharmaco-Kinesis Corporation | Magnetic breather pump and a method for treating a brain tumor using the same |
| CN105902482A (zh) | 2008-06-25 | 2016-08-31 | Fe3医学有限公司 | 用于经皮递送治疗有效量的铁的贴片和方法 |
| US20100009424A1 (en) | 2008-07-14 | 2010-01-14 | Natasha Forde | Sonoporation systems and methods |
| WO2010009065A2 (en) | 2008-07-15 | 2010-01-21 | Novartis Ag | Amphipathic peptide compositions |
| WO2010009277A2 (en) | 2008-07-15 | 2010-01-21 | Novartis Ag | Immunogenic amphipathic peptide compositions |
| EP2326331A4 (en) | 2008-08-18 | 2013-05-15 | Merck Sharp & Dohme | NEW LIPID NANOPARTICLES AND NEW COMPONENTS FOR THE RELEASE OF NUCLEIC ACIDS |
| WO2010024871A1 (en) | 2008-08-26 | 2010-03-04 | Med Institute, Inc. | Balloon catheters having a plurality of needles for the injection of one or more therapeutic agents |
| WO2010025510A1 (en) | 2008-09-03 | 2010-03-11 | Xenome Ltd | Libraries of peptide conjugates and methods for making them |
| US8309707B2 (en) | 2008-09-06 | 2012-11-13 | Chemgenes Corporation | RNA synthesis-phosphoramidites for synthetic RNA in the reverse direction, and application in convenient introduction of ligands, chromophores and modifications of synthetic RNA at the 3′-end |
| WO2010027903A2 (en) | 2008-09-08 | 2010-03-11 | Fred Hutchinson Cancer Research Center | Lung cancer diagnosis |
| US20100087337A1 (en) | 2008-09-10 | 2010-04-08 | Bind Biosciences, Inc. | High Throughput Fabrication of Nanoparticles |
| TW201438738A (zh) | 2008-09-16 | 2014-10-16 | 建南德克公司 | 治療進展型多發性硬化症之方法 |
| WO2010033906A2 (en) | 2008-09-19 | 2010-03-25 | President And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
| WO2010037408A1 (en) | 2008-09-30 | 2010-04-08 | Curevac Gmbh | Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof |
| WO2010042490A1 (en) | 2008-10-06 | 2010-04-15 | Boston Medical Center Corporation | A single lentiviral vector system for induced pluripotent (ips) stem cells derivation |
| EP2743265B1 (en) | 2008-10-09 | 2017-03-15 | Arbutus Biopharma Corporation | Improved amino lipids and methods for the delivery of nucleic acids |
| EP2349100B1 (en) | 2008-10-10 | 2014-07-16 | Kirk Promotion LTD. | Infusion of drugs |
| US8535655B2 (en) | 2008-10-10 | 2013-09-17 | Polyactiva Pty Ltd. | Biodegradable polymer—bioactive moiety conjugates |
| US8343498B2 (en) | 2008-10-12 | 2013-01-01 | Massachusetts Institute Of Technology | Adjuvant incorporation in immunonanotherapeutics |
| ITVI20080239A1 (it) | 2008-10-14 | 2010-04-15 | Antoine Assaf | Apparato medicale per iniezioni multiple. |
| PT2937418T (pt) | 2008-10-20 | 2018-01-23 | Alnylam Pharmaceuticals Inc | Composições e métodos de inibição da expressão de transtirretina |
| US8603532B2 (en) | 2008-10-20 | 2013-12-10 | Massachusetts Institute Of Technology | Nanostructures for drug delivery |
| US20120015899A1 (en) | 2008-10-25 | 2012-01-19 | Plant Bioscience, Limited | Modified plant virus particles and uses therefor |
| US8969353B2 (en) | 2008-11-07 | 2015-03-03 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
| EA037404B1 (ru) | 2008-11-10 | 2021-03-24 | Арбутус Биофарма Корпорэйшн | Липиды и композиции для доставки лекарственных средств |
| EP2364362B1 (en) | 2008-11-12 | 2015-10-21 | Ospedale San Raffaele S.r.l. | Gene vector for inducing transgene-specific immune tolerance |
| US9074206B2 (en) | 2008-11-13 | 2015-07-07 | Fudan University | Compositions and methods for micro-RNA expression profiling of colorectal cancer |
| WO2010057203A2 (en) | 2008-11-17 | 2010-05-20 | The Board Of Regents Of The University Of Texas System | Hdl particles for delivery of nucleic acids |
| EP2191840A1 (en) | 2008-11-28 | 2010-06-02 | Sanofi-Aventis | Antitumor combinations containing antibodies recognizing specifically CD38 and melphalan |
| EP2196476A1 (en) | 2008-12-10 | 2010-06-16 | Novartis Ag | Antibody formulation |
| US8512964B2 (en) | 2008-12-12 | 2013-08-20 | The Regents Of The University Of California | Targets for treatment of hypercholesterolemia |
| US8563041B2 (en) | 2008-12-12 | 2013-10-22 | Bind Therapeutics, Inc. | Therapeutic particles suitable for parenteral administration and methods of making and using same |
| ES2776126T3 (es) | 2008-12-15 | 2020-07-29 | Pfizer | Nanopartículas de circulación prolongada para la liberación sostenida de agentes terapéuticos |
| WO2010080724A1 (en) | 2009-01-12 | 2010-07-15 | Merck Sharp & Dohme Corp. | Novel lipid nanoparticles and novel components for delivery of nucleic acids |
| JP2012515217A (ja) | 2009-01-16 | 2012-07-05 | グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー | ベンダムスチンおよび抗−cd20抗体の組合せを用いた癌治療 |
| WO2010084371A1 (en) | 2009-01-26 | 2010-07-29 | Mitoprod | Novel circular interfering rna molecules |
| EP2391343B1 (en) | 2009-01-29 | 2017-03-01 | Arbutus Biopharma Corporation | Improved lipid formulation for the delivery of nucleic acids |
| US8669085B2 (en) | 2009-02-05 | 2014-03-11 | Ut-Battelle, Llc | Transformation of gram positive bacteria by sonoporation |
| WO2010088927A1 (en) | 2009-02-09 | 2010-08-12 | Curevac Gmbh | Use of pei for the improvement of endosomal release and expression of transfected nucleic acids, complexed with cationic or polycationic compounds |
| US20140141089A1 (en) | 2009-02-11 | 2014-05-22 | Colorado School Of Mines | Nanoparticles, Compositions Thereof, and Methods of Use, and Methods of Making the Same |
| KR20110126717A (ko) | 2009-02-24 | 2011-11-23 | 더 스크립스 리서치 인스티튜트 | 단백질 생성 증강을 위한 mrna 1차 구조의 재구조화 |
| WO2010141135A2 (en) | 2009-03-05 | 2010-12-09 | Trustees Of Boston University | Bacteriophages expressing antimicrobial peptides and uses thereof |
| WO2010102066A1 (en) | 2009-03-05 | 2010-09-10 | Bend Research, Inc. | Dextran polymer powder for inhalation administration of pharmaceuticals |
| KR20110128345A (ko) | 2009-03-13 | 2011-11-29 | 에젠, 인코포레이티드 | 생물학적 활성 rna의 전달을 위한 조성물 및 방법 |
| AU2010226434A1 (en) | 2009-03-20 | 2011-10-13 | Egen, Inc. | Polyamine derivatives |
| US20120095077A1 (en) | 2009-03-23 | 2012-04-19 | University Of Utah Research Foundation | Methods and compositions related to modified guanine bases for controlling off-target effects in rna interference |
| JP5622254B2 (ja) | 2009-03-31 | 2014-11-12 | 国立大学法人東京大学 | 二本鎖リボ核酸ポリイオンコンプレックス |
| HUE026855T2 (en) | 2009-04-03 | 2016-07-28 | Univ Chicago | Compositions and methods related to protein a (spa) variants |
| US9724404B2 (en) | 2009-04-13 | 2017-08-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | HPV particles and uses thereof |
| EP2419137A4 (en) | 2009-04-17 | 2013-01-09 | Biogen Idec Inc | COMPOSITIONS AND METHOD FOR TREATING ACUTE MYELOGENIC LEUKEMIA |
| KR20120022984A (ko) | 2009-04-21 | 2012-03-12 | 셀렉타 바이오사이언시즈, 인크. | Th1 편향 반응을 제공하는 면역나노치료법 |
| US10837020B2 (en) * | 2009-04-22 | 2020-11-17 | Massachusetts Institute Of Technology | Innate immune suppression enables repeated delivery of long RNA molecules |
| WO2010123501A1 (en) | 2009-04-22 | 2010-10-28 | Massachusetts Institute Of Technology | Innate immune suppression enables repeated delivery of long rna molecules |
| EP3275900A1 (en) | 2009-04-27 | 2018-01-31 | Novartis AG | Compositions and methods for increasing muscle growth |
| US8715736B2 (en) | 2009-04-30 | 2014-05-06 | Florida Agricultural And Mechanical University | Nanoparticle formulations for skin delivery |
| US8287910B2 (en) | 2009-04-30 | 2012-10-16 | Intezyne Technologies, Inc. | Polymeric micelles for polynucleotide encapsulation |
| CA3042927C (en) | 2009-05-05 | 2022-05-17 | Arbutus Biopharma Corporation | Lipid compositions for the delivery of therapeutic agents |
| DE202009007116U1 (de) | 2009-05-18 | 2010-10-14 | Amoena Medizin-Orthopädie-Technik GmbH | Antidekubituskissen |
| JP6282395B2 (ja) | 2009-05-27 | 2018-02-21 | セレクタ バイオサイエンシーズ インコーポレーテッドSelecta Biosciences,Inc. | 異なる放出速度の構成要素を有するナノキャリア |
| US8574835B2 (en) | 2009-05-29 | 2013-11-05 | Life Technologies Corporation | Scaffolded nucleic acid polymer particles and methods of making and using |
| EP2440556A1 (en) | 2009-06-10 | 2012-04-18 | Vertex Pharmaceuticals Incorporated | Inhibitors of phosphatidylinositol 3-kinase |
| HRP20211619T1 (hr) | 2009-06-10 | 2022-02-04 | Arbutus Biopharma Corporation | Poboljšana formulacija lipida |
| NZ597504A (en) | 2009-06-15 | 2013-10-25 | Alnylam Pharmaceuticals Inc | Lipid formulated dsrna targeting the pcsk9 gene |
| US20110097329A1 (en) | 2009-06-26 | 2011-04-28 | Massachusetts Institute Of Technology | Compositions and methods for treating cancer and modulating stress granule formation |
| JP5766188B2 (ja) | 2009-07-01 | 2015-08-19 | プロチバ バイオセラピューティクス インコーポレイティッド | 固形腫瘍に治療剤を送達するための脂質製剤 |
| WO2011000106A1 (en) | 2009-07-01 | 2011-01-06 | Protiva Biotherapeutics, Inc. | Improved cationic lipids and methods for the delivery of therapeutic agents |
| CA2767225A1 (en) * | 2009-07-06 | 2011-01-13 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for enhancing production of a biological product |
| WO2011005799A2 (en) | 2009-07-06 | 2011-01-13 | Novartis Ag | Self replicating rna molecules and uses thereof |
| EP2281579A1 (en) | 2009-08-05 | 2011-02-09 | BioNTech AG | Vaccine composition comprising 5'-Cap modified RNA |
| US9181295B2 (en) | 2009-08-20 | 2015-11-10 | Sirna Therapeutics, Inc. | Cationic lipids with various head groups for oligonucleotide delivery |
| US20110053829A1 (en) | 2009-09-03 | 2011-03-03 | Curevac Gmbh | Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids |
| US20110070227A1 (en) | 2009-09-18 | 2011-03-24 | Anna-Marie Novotney-Barry | Treatment of Autoimmune and Inflammatory Diseases |
| EP2485770A4 (en) | 2009-10-08 | 2013-04-10 | Merck Sharp & Dohme | Novel cationic lipids with short lipid chains for oligonucleotide delivery |
| US8859284B2 (en) | 2009-10-22 | 2014-10-14 | The United States Of America, As Represented By The Secretary Of The Navy | Delivery of nanoparticles to neurons |
| US8449916B1 (en) | 2009-11-06 | 2013-05-28 | Iowa State University Research Foundation, Inc. | Antimicrobial compositions and methods |
| WO2011060250A1 (en) | 2009-11-13 | 2011-05-19 | Bend Research, Inc. | Cationic dextran polymer derivatives |
| WO2011062965A2 (en) | 2009-11-18 | 2011-05-26 | University Of Washington Through Its Center For Commercialization | Targeting monomers and polymers having targeting blocks |
| US8530429B2 (en) | 2009-11-24 | 2013-09-10 | Arch Cancer Therapeutics, Inc. | Brain tumor targeting peptides and methods |
| DE102009056884B4 (de) | 2009-12-03 | 2021-03-18 | Novartis Ag | Impfstoff-Adjuvantien und verbesserte Verfahren zur Herstellung derselben |
| US20110245756A1 (en) | 2009-12-03 | 2011-10-06 | Rishi Arora | Devices for material delivery, electroporation, sonoporation, and/or monitoring electrophysiological activity |
| ME02964B (me) | 2009-12-06 | 2018-07-20 | Himerni i hibridni polipeptidi faktora viii-fc, i postupci za njihovu upotrebu | |
| US20130189741A1 (en) | 2009-12-07 | 2013-07-25 | Cellscript, Inc. | Compositions and methods for reprogramming mammalian cells |
| LT3112467T (lt) | 2009-12-07 | 2018-06-25 | The Trustees Of The University Of Pennsylvania | Išgrynintą modifikuotą rnr apimantys rnr preparatai, skirti ląstelių perprogramavimui |
| WO2011071860A2 (en) | 2009-12-07 | 2011-06-16 | Alnylam Pharmaceuticals, Inc. | Compositions for nucleic acid delivery |
| WO2011069528A1 (en) | 2009-12-09 | 2011-06-16 | Curevac Gmbh | Lyophilization of nucleic acids in lactate-containing solutions |
| WO2011069529A1 (en) | 2009-12-09 | 2011-06-16 | Curevac Gmbh | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
| CN102811743B (zh) | 2009-12-11 | 2015-11-25 | 佰恩德治疗股份有限公司 | 冻干治疗颗粒的稳定制剂 |
| WO2011084521A2 (en) | 2009-12-15 | 2011-07-14 | Bind Biosciences, Inc. | Therapeutic polymeric nanoparticles comprising epothilone and methods of making and using same |
| WO2011084518A2 (en) | 2009-12-15 | 2011-07-14 | Bind Biosciences, Inc. | Therapeutic polymeric nanoparticles comprising corticosteroids and methods of making and using same |
| EA201290499A1 (ru) | 2009-12-15 | 2013-01-30 | Байнд Байосайенсиз, Инк. | Композиции терапевтических полимерных наночастиц с высокой температурой стеклования и высокомолекулярными сополимерами |
| IN2012DN05099A (enExample) | 2009-12-16 | 2015-10-09 | Brigham & Womens Hospital | |
| DE102009058769A1 (de) | 2009-12-16 | 2011-06-22 | MagForce Nanotechnologies AG, 10589 | Temperaturabhängige Aktivierung von katalytischen Nukleinsäuren zur kontrollierten Wirkstofffreisetzung |
| EP3494963A1 (en) | 2009-12-18 | 2019-06-12 | The University of British Columbia | Methods and compositions for delivery of nucleic acids |
| EP2338520A1 (de) | 2009-12-21 | 2011-06-29 | Ludwig Maximilians Universität | Konjugat mit Zielfindungsligand und dessen Verwendung |
| SG181904A1 (en) | 2009-12-23 | 2012-07-30 | Novartis Ag | Lipids, lipid compositions, and methods of using them |
| US20110171248A1 (en) | 2010-01-08 | 2011-07-14 | Selecta Biosciences, Inc. | Synthetic virus-like particles conjugated to human papillomavirus capsid peptides for use as vaccines |
| WO2011088309A1 (en) | 2010-01-14 | 2011-07-21 | Regulus Therapeutics Inc. | Microrna compositions and methods |
| EP2525781A1 (en) | 2010-01-22 | 2012-11-28 | Schering Corporation | Novel cationic lipids for oligonucleotide delivery |
| NZ601737A (en) | 2010-02-24 | 2013-06-28 | Arrowhead Res Corp | Compositions for targeted delivery of sirna |
| WO2011106702A2 (en) | 2010-02-25 | 2011-09-01 | The Johns Hopkins University | Sustained delivery of therapeutic agents to an eye compartment |
| WO2011112608A1 (en) | 2010-03-08 | 2011-09-15 | University Of Rochester | Synthesis of nanoparticles using reducing gases |
| WO2011116072A1 (en) | 2010-03-16 | 2011-09-22 | Escape Therapeutics, Inc. | Hybrid hydrogel scaffold compositions and methods of use |
| KR20130006663A (ko) | 2010-03-16 | 2013-01-17 | 유니버시티 오브 유타 리서치 파운데이션 | 뉴클레오티드 전달을 높이기 위한 환원가능한 폴리(아미도 에틸렌이민)으로의 절단성 변형법 |
| US20110230816A1 (en) | 2010-03-18 | 2011-09-22 | Tyco Healthcare Group Lp | Gels for Transdermal Delivery |
| WO2011115862A1 (en) | 2010-03-18 | 2011-09-22 | Merck Sharp & Dohme Corp. | Endosomolytic poly(amidoamine) disulfide polymers for the delivery of oligonucleotides |
| US9149432B2 (en) | 2010-03-19 | 2015-10-06 | Massachusetts Institute Of Technology | Lipid vesicle compositions and methods of use |
| GB201005005D0 (en) | 2010-03-25 | 2010-05-12 | Angeletti P Ist Richerche Bio | New vaccine |
| US8349308B2 (en) | 2010-03-26 | 2013-01-08 | Mersana Therapeutics, Inc. | Modified polymers for delivery of polynucleotides, method of manufacture, and methods of use thereof |
| US8207290B2 (en) | 2010-03-26 | 2012-06-26 | Cerulean Pharma Inc. | Methods and systems for generating nanoparticles |
| EP2555794A4 (en) | 2010-04-05 | 2014-01-15 | Univ Chicago | COMPOSITIONS AND METHODS RELATING TO PROTEIN A (SPA) ANTIBODIES AS IMMUNE REACTION AMPLIFIERS |
| WO2011127316A1 (en) | 2010-04-07 | 2011-10-13 | Novartis Ag | Method for generating a parvovirus b19 virus-like particle |
| US20130037977A1 (en) | 2010-04-08 | 2013-02-14 | Paul A. Burke | Preparation of Lipid Nanoparticles |
| JP6043278B2 (ja) | 2010-04-09 | 2016-12-14 | パシラ ファーマシューティカルズ インコーポレーテッド | 多小胞リポソームを作製するための方法、大直径合成膜小胞を調製するための方法、および蒸発装置 |
| JP5652830B2 (ja) | 2010-04-09 | 2015-01-14 | 国立大学法人 東京大学 | マイクロrna制御組換えワクシニアウイルス及びその使用 |
| US20110262491A1 (en) | 2010-04-12 | 2011-10-27 | Selecta Biosciences, Inc. | Emulsions and methods of making nanocarriers |
| KR101196667B1 (ko) | 2010-04-15 | 2012-11-02 | 포항공과대학교 산학협력단 | 피에이치 민감성 금속 나노 입자를 이용한 항암제 전달 시스템 |
| CA2796464C (en) | 2010-04-16 | 2021-08-03 | Immune Disease Institute, Inc. | Sustained polypeptide expression from synthetic, modified rnas and uses thereof |
| EP2558577B1 (en) | 2010-04-16 | 2018-12-12 | Nuevolution A/S | Bi-functional complexes and methods for making and using such complexes |
| EP2377938A1 (en) | 2010-04-16 | 2011-10-19 | Eukarys | Capping-prone RNA polymerase enzymes and their applications |
| WO2011133868A2 (en) | 2010-04-22 | 2011-10-27 | Alnylam Pharmaceuticals, Inc. | Conformationally restricted dinucleotide monomers and oligonucleotides |
| DK2826860T3 (en) * | 2010-04-23 | 2018-12-03 | Univ Massachusetts | CNS targeting AAV vectors and methods for their use |
| US9629979B2 (en) | 2010-04-28 | 2017-04-25 | Sanovas, Inc. | Pressure/Vacuum actuated catheter drug delivery probe |
| EP2563455A4 (en) | 2010-04-28 | 2014-02-19 | Kimberly Clark Co | METHOD FOR INCREASING THE PERMEABILITY OF AN EPITHELIAL BARRIER |
| US20130156845A1 (en) | 2010-04-29 | 2013-06-20 | Alnylam Pharmaceuticals, Inc. | Lipid formulated single stranded rna |
| MX2012012615A (es) | 2010-04-30 | 2012-12-17 | Novartis Ag | Marcadores predictivos utiles en el tratamiento del sindrome fragil x (fxs). |
| WO2011143230A1 (en) | 2010-05-10 | 2011-11-17 | Alnylam Pharmaceuticals | Methods and compositions for delivery of active agents |
| US10077232B2 (en) | 2010-05-12 | 2018-09-18 | Arbutus Biopharma Corporation | Cyclic cationic lipids and methods of use |
| EP2569276B1 (en) | 2010-05-12 | 2021-02-24 | Arbutus Biopharma Corporation | Novel cationic lipids and methods of use thereof |
| EP2387999A1 (en) | 2010-05-21 | 2011-11-23 | CureVac GmbH | Histidine-containing solution for transfection and/or injection of nucleic acids and uses thereof |
| JP2013531634A (ja) | 2010-05-24 | 2013-08-08 | メルク・シャープ・エンド・ドーム・コーポレイション | オリゴヌクレオチド送達のための新規なアミノアルコールカチオン性脂質 |
| NO2575876T3 (enExample) | 2010-05-26 | 2018-05-05 | ||
| DK2575767T3 (en) | 2010-06-04 | 2017-03-13 | Sirna Therapeutics Inc | HOWEVER UNKNOWN LOW MOLECULAR CATIONIC LIPIDS TO PROCESS OIGONUCLEOTIDES |
| AU2011267078B2 (en) | 2010-06-14 | 2014-09-25 | F. Hoffmann-La Roche Ag | Cell-penetrating peptides and uses therof |
| US20130236968A1 (en) | 2010-06-21 | 2013-09-12 | Alnylam Pharmaceuticals, Inc. | Multifunctional copolymers for nucleic acid delivery |
| WO2011163264A2 (en) | 2010-06-21 | 2011-12-29 | Candela Corporation | Driving microneedle arrays into skin and delivering rf energy |
| EP2585106A1 (en) | 2010-06-25 | 2013-05-01 | Novartis AG | Combinations of meningococcal factor h binding proteins |
| WO2012002760A2 (ko) | 2010-07-01 | 2012-01-05 | 포항공과대학교 산학협력단 | 세균유래 마이크로베시클을 이용한 암치료 및 암진단 방법 |
| KR101130137B1 (ko) | 2010-07-02 | 2012-03-28 | 연세대학교 산학협력단 | 발광다이오드 모듈 |
| SG186290A1 (en) | 2010-07-02 | 2013-01-30 | Univ Chicago | Compositions and methods related to protein a (spa) variants |
| US8353871B2 (en) | 2010-07-05 | 2013-01-15 | Roller Jet Ltd. | Drug delivery device with needles and roller |
| WO2012006380A2 (en) | 2010-07-06 | 2012-01-12 | Novartis Ag | Cationic oil-in-water emulsions |
| PL2591114T3 (pl) | 2010-07-06 | 2017-08-31 | Glaxosmithkline Biologicals Sa | Immunizacja dużych ssaków małymi dawkami rna |
| ES2557382T3 (es) | 2010-07-06 | 2016-01-25 | Glaxosmithkline Biologicals Sa | Liposomas con lípidos que tienen un valor de pKa ventajoso para el suministro de ARN |
| FI4005592T3 (fi) | 2010-07-06 | 2023-01-13 | Virionin kaltaisia kuljetuspartikkeleita itsereplikoituville rna-molekyyleille | |
| US9192661B2 (en) | 2010-07-06 | 2015-11-24 | Novartis Ag | Delivery of self-replicating RNA using biodegradable polymer particles |
| PL3243526T3 (pl) | 2010-07-06 | 2020-05-18 | Glaxosmithkline Biologicals S.A. | Dostarczanie rna w celu wyzwolenia wielu szlaków immunologicznych |
| US9770463B2 (en) | 2010-07-06 | 2017-09-26 | Glaxosmithkline Biologicals Sa | Delivery of RNA to different cell types |
| EP2591101B1 (en) | 2010-07-09 | 2018-11-07 | Bioverativ Therapeutics Inc. | Systems for factor viii processing and methods thereof |
| AU2011274414B2 (en) | 2010-07-09 | 2016-10-06 | Bioverativ Therapeutics Inc. | Factor IX polypeptides and methods of use thereof |
| US20130177523A1 (en) | 2010-07-13 | 2013-07-11 | University Of Utah Research Foundation | Gold particles and methods of making and using the same in cancer treatment |
| GB201012410D0 (en) | 2010-07-23 | 2010-09-08 | Medical Res Council | Intracellular immunity |
| BR112013002298A2 (pt) | 2010-07-30 | 2016-05-24 | Curevac Gmbh | complexação de ácidos nucleicos com componentes catiônicos reticulados com dissulfeto para transfecção e estimulação imunológica. |
| WO2012021516A2 (en) | 2010-08-09 | 2012-02-16 | The Trustees Of The University Of Pennsylvania | Nanoparticle-oligonucletide hybrid structures and methods of use thereof |
| CA2808965C (en) | 2010-08-20 | 2020-01-07 | Novartis Ag | Soluble needle arrays for delivery of influenza vaccines |
| MX2013002048A (es) | 2010-08-20 | 2013-07-03 | Cerulean Pharma Inc | Conjugados, particulas, composiciones y metodos relacionados. |
| US20130142868A1 (en) | 2010-08-20 | 2013-06-06 | University Of Washington | Circumferential Aerosol Device for Delivering Drugs to Olfactory Epithelium and Brain |
| WO2012024621A2 (en) | 2010-08-20 | 2012-02-23 | Selecta Biosciences, Inc. | Synthetic nanocarrier vaccines comprising peptides obtained or derived from human influenza a virus hemagglutinin |
| EP3406730B1 (en) | 2010-08-31 | 2022-02-23 | Sirna Therapeutics, Inc. | Novel single chemical entities and methods for delivery of oligonucleotides |
| HUE061068T2 (hu) | 2010-08-31 | 2023-05-28 | Glaxosmithkline Biologicals Sa | Pegilált liposzómák immunogént kódoló RNS szállítására |
| EP2611465A4 (en) | 2010-08-31 | 2014-06-04 | Theraclone Sciences Inc | ANTIBODIES FOR NEUTRALIZING THE HUMAN IMMUNODICITY VIRUS (HIV) |
| MX341989B (es) | 2010-08-31 | 2016-09-09 | Novartis Ag * | Liposomas pequeños para el suministro de arn que codifica el inmunogeno. |
| EP3542789A3 (en) | 2010-08-31 | 2020-01-01 | GlaxoSmithKline Biologicals SA | Lipids suitable for liposomal delivery of protein-coding rna |
| US9549901B2 (en) | 2010-09-03 | 2017-01-24 | The Brigham And Women's Hospital, Inc. | Lipid-polymer hybrid particles |
| EP2614074A1 (en) | 2010-09-09 | 2013-07-17 | The University of Chicago | Methods and compositions involving protective staphylococcal antigens |
| US20130236419A1 (en) | 2010-09-09 | 2013-09-12 | The University Of Chicago | Compositions and methods related to attenuated staphylococcal strains |
| WO2012039979A2 (en) | 2010-09-10 | 2012-03-29 | The Johns Hopkins University | Rapid diffusion of large polymeric nanoparticles in the mammalian brain |
| US8466122B2 (en) | 2010-09-17 | 2013-06-18 | Protiva Biotherapeutics, Inc. | Trialkyl cationic lipids and methods of use thereof |
| BR112013004585B1 (pt) | 2010-09-20 | 2021-09-08 | Merck Sharp & Dohme Corp | Lipídeo catiônico, composição de lnp, e, uso de um lipídeo catiônico |
| WO2012038448A1 (en) | 2010-09-21 | 2012-03-29 | Riboxx Gmbh | Method for synthesizing rna using dna template |
| JP2013540757A (ja) | 2010-09-24 | 2013-11-07 | ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッド | カプセル化された作用物質の放出を制御する能力を有するナノ構造ゲル |
| WO2012050975A2 (en) | 2010-09-29 | 2012-04-19 | The University Of North Carolina At Chapel Hill | Novel circular mammalian rna molecules and uses thereof |
| JP2013545723A (ja) | 2010-09-30 | 2013-12-26 | メルク・シャープ・エンド・ドーム・コーポレイション | オリゴヌクレオチドの送達のための低分子量カチオン性脂質 |
| US10078075B2 (en) | 2011-12-09 | 2018-09-18 | Vanderbilt University | Integrated organ-on-chip systems and applications of the same |
| EP4098324A1 (en) | 2010-10-11 | 2022-12-07 | GlaxoSmithKline Biologicals S.A. | Antigen delivery platforms |
| EP2629802B1 (en) | 2010-10-21 | 2019-12-04 | Sirna Therapeutics, Inc. | Low molecular weight cationic lipids for oligonucleotide delivery |
| JP2013543844A (ja) | 2010-10-22 | 2013-12-09 | バインド セラピューティックス インコーポレイテッド | 高分子コポリマーを含む治療用ナノ粒子 |
| SG10201801947YA (en) | 2010-10-29 | 2018-04-27 | Merck Sharp & Dohme | Recombinant subunit dengue virus vaccine |
| CA3054532C (en) | 2010-11-05 | 2022-07-12 | The Johns Hopkins University | Compositions and methods relating to reduced mucoadhesion |
| WO2012061259A2 (en) | 2010-11-05 | 2012-05-10 | Merck Sharp & Dohme Corp. | Novel low molecular weight cyclic amine containing cationic lipids for oligonucleotide delivery |
| AU2011326732B2 (en) | 2010-11-09 | 2016-07-21 | The Regents Of The University Of California | Skin permeating and cell entering (space) peptides and methods of use thereof |
| KR101939150B1 (ko) | 2010-11-12 | 2019-01-17 | 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 | 공통 전립선 항원, 이것을 암호화하는 핵산 분자, 그리고 이것을 포함하는 백신 및 용도 |
| BR112013012195A2 (pt) | 2010-11-16 | 2018-07-10 | Selecta Biosciences Inc | oligonucleotídeo imunoestimulatórios |
| SI2640842T1 (sl) | 2010-11-17 | 2018-09-28 | Aduro Biotech, Inc. | Postopki in sestavki za induciranje imunskega odziva na EGFRvIII |
| EP3213770B1 (en) | 2010-11-19 | 2021-02-24 | Idera Pharmaceuticals, Inc. | Immune regulatory oligonucleotide (iro) compounds to modulate toll-like receptor based immune response |
| WO2012068187A1 (en) | 2010-11-19 | 2012-05-24 | Merck Sharp & Dohme Corp. | Poly(amide) polymers for the delivery of oligonucleotides |
| US8853377B2 (en) | 2010-11-30 | 2014-10-07 | Shire Human Genetic Therapies, Inc. | mRNA for use in treatment of human genetic diseases |
| WO2012072096A1 (en) | 2010-12-03 | 2012-06-07 | Biontech Ag | Method for cellular rna expression |
| AU2011358150B2 (en) | 2010-12-16 | 2016-11-03 | Sprna Gmbh | Pharmaceutical composition consisting of RNA having alkali metal as counter ion and formulated with dications |
| WO2012082574A1 (en) | 2010-12-17 | 2012-06-21 | Merck Sharp & Dohme Corp. | Membrane lytic poly(amido amine) polymers for the delivery of oligonucleotides |
| US8501930B2 (en) | 2010-12-17 | 2013-08-06 | Arrowhead Madison Inc. | Peptide-based in vivo siRNA delivery system |
| AU2011348204B2 (en) | 2010-12-22 | 2017-03-02 | President And Fellows Of Harvard College | Continuous directed evolution |
| BR122020024394B1 (pt) | 2010-12-29 | 2021-05-11 | F. Hoffmann-La Roche Ag | conjugado e composição farmacêutica |
| WO2012089225A1 (en) | 2010-12-29 | 2012-07-05 | Curevac Gmbh | Combination of vaccination and inhibition of mhc class i restricted antigen presentation |
| US20120171229A1 (en) | 2010-12-30 | 2012-07-05 | Selecta Biosciences, Inc. | Synthetic nanocarriers with reactive groups that release biologically active agents |
| EP2661255B1 (en) | 2011-01-04 | 2021-03-10 | Brown University | Nanotubes as carriers of nucleic acids into cells |
| WO2012094574A2 (en) | 2011-01-06 | 2012-07-12 | The Johns Hopkins University | Stabilized polyribonucleotide nanoparticles |
| WO2012094653A2 (en) | 2011-01-07 | 2012-07-12 | Massachusetts Institute Of Technology | Compositions and methods for macromolecular drug delivery |
| DK3202760T3 (da) | 2011-01-11 | 2019-11-25 | Alnylam Pharmaceuticals Inc | Pegylerede lipider og deres anvendelse til lægemiddelfremføring |
| DE102011082231A1 (de) | 2011-01-12 | 2012-07-12 | Robert Bosch Gmbh | Zündspule, insbesondere für kleinbauende Motoren |
| US20120189700A1 (en) | 2011-01-19 | 2012-07-26 | Zoraida Aguilar | Nanoparticle Based Immunological Stimulation |
| JP2014505064A (ja) | 2011-01-26 | 2014-02-27 | セニックス バイオサイエンス ゲーエムベーハー | 自然に存在する細胞内輸送経路を介して化合物を送達するための送達システム及びコンジュゲート |
| US10363309B2 (en) | 2011-02-04 | 2019-07-30 | Case Western Reserve University | Targeted nanoparticle conjugates |
| WO2012109121A1 (en) | 2011-02-07 | 2012-08-16 | Purdue Research Foundation | Carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide |
| WO2012116715A1 (en) | 2011-03-02 | 2012-09-07 | Curevac Gmbh | Vaccination in newborns and infants |
| US20120207840A1 (en) | 2011-02-10 | 2012-08-16 | Aura Biosciences, Inc. | Virion Derived Protein Nanoparticles For Delivering Diagnostic Or Therapeutic Agents For The Treatment Of Non-Melanoma Skin Cancer |
| JP2014507149A (ja) | 2011-02-14 | 2014-03-27 | スウィフト バイオサイエンシーズ, インコーポレイテッド | ポリヌクレオチドプライマーおよびプローブ |
| WO2012112689A1 (en) | 2011-02-15 | 2012-08-23 | The University Of North Carolina At Chapel Hill | Nanoparticle, liposomes, polymers, agents and proteins modified with reversible linkers |
| CA2827118A1 (en) | 2011-02-15 | 2012-08-23 | Merrimack Pharmaceuticals, Inc. | Compositions and methods for delivering nucleic acid to a cell |
| EP2489371A1 (en) | 2011-02-18 | 2012-08-22 | Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria | Carrier peptides for drug delivery |
| WO2012113413A1 (en) | 2011-02-21 | 2012-08-30 | Curevac Gmbh | Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates |
| EP2678433B1 (en) | 2011-02-22 | 2017-05-03 | California Institute of Technology | Delivery of proteins using adeno-associated virus (aav) vectors |
| US8696637B2 (en) | 2011-02-28 | 2014-04-15 | Kimberly-Clark Worldwide | Transdermal patch containing microneedles |
| WO2012116714A1 (en) | 2011-03-02 | 2012-09-07 | Curevac Gmbh | Vaccination in elderly patients |
| WO2012117377A1 (en) | 2011-03-02 | 2012-09-07 | Novartis Ag | Combination vaccines with lower doses of antigen and/or adjuvant |
| CA2832807A1 (en) | 2011-03-07 | 2012-09-13 | Massachusetts Institute Of Technology | Methods for transfecting cells with nucleic acids |
| WO2012125680A1 (en) | 2011-03-16 | 2012-09-20 | Novartis Ag | Methods of treating vasculitis using an il-17 binding molecule |
| US20140212503A1 (en) | 2011-03-17 | 2014-07-31 | Hyukjin Lee | Delivery system |
| AU2012229107A1 (en) | 2011-03-17 | 2013-09-19 | Novartis Ag | FGFR and ligands thereof as biomarkers for breast cancer in HR positive subjects |
| EP2688590B1 (en) | 2011-03-24 | 2020-02-12 | GlaxoSmithKline Biologicals SA | Adjuvant nanoemulsions with phospholipids |
| US20140005070A1 (en) | 2011-03-28 | 2014-01-02 | Novartis Ag | Markers associated with cyclin-dependent kinase inhibitors |
| US9238716B2 (en) | 2011-03-28 | 2016-01-19 | Massachusetts Institute Of Technology | Conjugated lipomers and uses thereof |
| US10086043B2 (en) * | 2011-04-03 | 2018-10-02 | The General Hospital Corporation | Efficient protein expression in vivo using modified RNA (MOD-RNA) |
| ES2587512T3 (es) | 2011-04-04 | 2016-10-25 | The U.S.A. As Represented By The Secretary, Department Of Health And Human Services | Derivados de 2'-O-aminooximetil nucleósido para su uso en la síntesis y modificación de nucleósidos, nucleótidos y oligonucleótidos |
| WO2012142132A1 (en) | 2011-04-11 | 2012-10-18 | Life Technologies Corporation | Polymer particles and methods of making and using same |
| WO2012142240A1 (en) | 2011-04-13 | 2012-10-18 | The Trustees Of The University Of Pennsylvania | Coated mesoporous nanoparticles |
| WO2013158127A1 (en) | 2012-04-16 | 2013-10-24 | Molecular Transfer, Inc. | Agents for improved delivery of nucleic acids to eukaryotic cells |
| US20140178894A1 (en) | 2011-04-20 | 2014-06-26 | Novartis Forschungsstiftung, Zweigniederlassung | Culture medium suitable for the culture of undifferentiated cells |
| WO2012149045A2 (en) | 2011-04-26 | 2012-11-01 | Molecular Express, Inc. | Liposomal formulations |
| JP2014512409A (ja) | 2011-04-28 | 2014-05-22 | エスティーシー. ユーエヌエム | 標的送達用の多孔性ナノ粒子に担持された脂質二重層(プロトセル)及びその使用方法 |
| US20160272697A2 (en) | 2011-04-28 | 2016-09-22 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Neutralizing Antibodies to Nipah and Hendra Virus |
| US20140056912A1 (en) | 2011-04-29 | 2014-02-27 | Novartis Ag | Methods of treating squamous cell carcinoma |
| CN103501812A (zh) | 2011-04-29 | 2014-01-08 | 西莱克塔生物科技公司 | 用于过敏症治疗的致耐受性合成纳米载体 |
| EP3777538B1 (en) | 2011-05-02 | 2023-06-28 | Wayne State University | A protein-induced pluripotent cell technology and uses thereof |
| UA116189C2 (uk) | 2011-05-02 | 2018-02-26 | Мілленніум Фармасьютікалз, Інк. | КОМПОЗИЦІЯ АНТИ-α4β7 АНТИТІЛА |
| US8945588B2 (en) | 2011-05-06 | 2015-02-03 | The University Of Chicago | Methods and compositions involving protective staphylococcal antigens, such as EBH polypeptides |
| CN103547350A (zh) | 2011-05-10 | 2014-01-29 | 巴斯夫欧洲公司 | 水包油乳液 |
| CN103687624B (zh) | 2011-05-11 | 2018-02-02 | 雷蒙特亚特特拉维夫大学有限公司 | 靶向的聚合缀合物和其用途 |
| WO2012152910A1 (en) | 2011-05-12 | 2012-11-15 | Helmut Vockner | Novel pharmaceutical formulation |
| JP2014519493A (ja) | 2011-05-12 | 2014-08-14 | イッサム・リサーチ・ディベロップメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシティ・オブ・エルサレム・リミテッド | ポリマー共役脂質を含むリポソームおよび関連用途 |
| BR112013029169B1 (pt) | 2011-05-13 | 2021-09-28 | Novartis Ag | Polipeptídeo f pré-fusão do vírus sincicial respiratório (rsv), composição imunogênica e uso da mesma |
| JP2014520084A (ja) | 2011-05-17 | 2014-08-21 | モデルナ セラピューティクス インコーポレイテッド | 非ヒト脊椎動物用の改変核酸及びその使用方法 |
| US8691750B2 (en) | 2011-05-17 | 2014-04-08 | Axolabs Gmbh | Lipids and compositions for intracellular delivery of biologically active compounds |
| US8978170B2 (en) | 2011-05-20 | 2015-03-17 | Kohler Co. | Toilet installation system and method |
| LT3892295T (lt) | 2011-05-24 | 2023-07-10 | BioNTech SE | Individualizuotos vakcinos nuo vėžio |
| WO2012160177A1 (en) | 2011-05-25 | 2012-11-29 | Novartis Ag | Biomarkers for lung cancer |
| US20140308363A1 (en) | 2011-05-31 | 2014-10-16 | Bind Therapeutics, Inc. | Drug loaded polymeric nanoparticles and methods of making and using same |
| EP3412282B1 (en) | 2011-06-02 | 2024-10-09 | The Regents of the University of California | Membrane encapsulated nanoparticles and method of use |
| WO2012166241A1 (en) | 2011-06-02 | 2012-12-06 | Novartis Ag | Biomarkers for hedgehog inhibitor therapy |
| EP2717911A1 (en) | 2011-06-06 | 2014-04-16 | Novartis Forschungsstiftung, Zweigniederlassung | Protein tyrosine phosphatase, non-receptor type 11 (ptpn11) and triple-negative breast cancer |
| JP6184945B2 (ja) | 2011-06-08 | 2017-08-23 | シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド | mRNA送達のための脂質ナノ粒子組成物および方法 |
| ES2987057T3 (es) | 2011-06-08 | 2024-11-13 | Translate Bio Inc | Lípidos escindibles |
| US8636696B2 (en) | 2011-06-10 | 2014-01-28 | Kimberly-Clark Worldwide, Inc. | Transdermal device containing microneedles |
| WO2012170607A2 (en) | 2011-06-10 | 2012-12-13 | Novartis Ag | Use of pcsk9 antagonists |
| CA2836805C (en) | 2011-06-10 | 2023-03-07 | Novartis Ag | Bovine vaccines and methods |
| WO2012168491A1 (en) | 2011-06-10 | 2012-12-13 | Novartis Ag | Pharmaceutical formulations of pcsk9 antagonists |
| US8916696B2 (en) | 2011-06-12 | 2014-12-23 | City Of Hope | Aptamer-mRNA conjugates for targeted protein or peptide expression and methods for their use |
| WO2012172495A1 (en) | 2011-06-14 | 2012-12-20 | Novartis Ag | Compositions and methods for antibodies targeting tem8 |
| EP2720740A1 (en) | 2011-06-15 | 2014-04-23 | ChronTech Pharma AB | Injection needle and device |
| US20140193408A1 (en) | 2011-06-16 | 2014-07-10 | Novartis Ag | Soluble proteins for use as therapeutics |
| RU2612900C2 (ru) | 2011-06-20 | 2017-03-13 | Юниверсити Оф Питтсбург - Оф Зе Коммонвэлс Систем Оф Хайе Эдьюкейшн | Антигены вируса гриппа h1n1 с широким спектром активности, оптимизированные с применением вычислительных средств |
| US9862926B2 (en) | 2011-06-27 | 2018-01-09 | Cellscript, Llc. | Inhibition of innate immune response |
| CN103687644B (zh) | 2011-06-28 | 2016-11-09 | 艾诺奥医药品有限公司 | 微创性皮肤电穿孔装置 |
| DK2726099T3 (en) | 2011-07-01 | 2018-11-05 | Novartis Ag | Method of treating metabolic disorders |
| EP2729182A4 (en) | 2011-07-04 | 2014-12-24 | Commw Scient Ind Res Org | NUCLEIC COMPLEX |
| CA2840989A1 (en) | 2011-07-06 | 2013-01-10 | Novartis Ag | Immunogenic combination compositions and uses thereof |
| EP4115875A1 (en) | 2011-07-06 | 2023-01-11 | GlaxoSmithKline Biologicals S.A. | Liposomes having useful n:p ratio for delivery of rna molecules |
| CA2841047A1 (en) | 2011-07-06 | 2013-01-10 | Novartis Ag | Immunogenic compositions and uses thereof |
| SG10201605512WA (en) | 2011-07-06 | 2016-09-29 | Novartis Ag | Oil-in-water emulsions that contain nucleic acids |
| BR112014000235A8 (pt) | 2011-07-06 | 2018-03-06 | Novartis Ag | emulsões de óleo em água catiônicas |
| WO2013006824A2 (en) | 2011-07-07 | 2013-01-10 | Life Technologies Corporation | Polymer particles, nucleic acid polymer particles and methods of making and using the same |
| EP2758458A4 (en) | 2011-07-10 | 2015-10-21 | Harvard College | COMPOSITIONS AND METHODS FOR SELF-ASSEMBLING POLYMERS WITH COMPLEMENTARY MACROSCOPIC AND MICROSCOPIC SCALE UNITS |
| WO2013009717A1 (en) | 2011-07-10 | 2013-01-17 | Elisabet De Los Pinos | Virion derived protein nanoparticles for delivering diagnostic or therapeutic agents for the treatment of skin-related diseases |
| US20130012566A1 (en) | 2011-07-10 | 2013-01-10 | Aura Biosciences, Inc. | Virion Derived Protein Nanoparticles For Delivering Diagnostic Or Therapeutic Agents For The Treatment of Alopecia |
| GB2492999A (en) | 2011-07-20 | 2013-01-23 | Univ Central Lancashire | Neutron detector |
| US20140148503A1 (en) | 2011-07-20 | 2014-05-29 | University Of Iowa Research Foundation | Nucleic acid aptamers |
| ES2670944T3 (es) | 2011-07-21 | 2018-06-04 | Croda International Plc | Copolímeros de bloques de poliéter-poliamida ramificados y métodos de preparación y uso de los mismos |
| WO2013016460A1 (en) | 2011-07-25 | 2013-01-31 | Novartis Ag | Compositions and methods for assessing functional immunogenicity of parvovirus vaccines |
| US9493549B2 (en) | 2011-07-25 | 2016-11-15 | The Rockefeller University | Antibodies directed toward the HIV-1 GP120 CD4 binding site with increased potency and breadth |
| US20130039954A1 (en) | 2011-07-29 | 2013-02-14 | Selecta Biosciences, Inc. | Control of antibody responses to synthetic nanocarriers |
| BR112014003315A2 (pt) | 2011-08-15 | 2017-03-01 | Univ Chicago | composições e métodos relacionados a anticorpos para a proteína a estafilocócica |
| JP2014531476A (ja) | 2011-08-26 | 2014-11-27 | アローヘッド リサーチ コーポレイション | インビボ核酸送達のためのポリ(ビニルエステル)ポリマー |
| EP2750707B1 (en) | 2011-08-31 | 2018-10-24 | GlaxoSmithKline Biologicals SA | Pegylated liposomes for delivery of immunogen-encoding rna |
| US9126966B2 (en) | 2011-08-31 | 2015-09-08 | Protiva Biotherapeutics, Inc. | Cationic lipids and methods of use thereof |
| KR20140067070A (ko) | 2011-08-31 | 2014-06-03 | 말린크로트 엘엘씨 | H-포스포네이트에 의한 나노입자 peg 개질 |
| CN104039783A (zh) | 2011-09-01 | 2014-09-10 | Irm责任有限公司 | 作为pdgfr激酶抑制剂的化合物和组合物 |
| CN103930547A (zh) | 2011-09-02 | 2014-07-16 | 诺华股份有限公司 | 用于治疗hsf1相关疾病的有机组合物 |
| WO2013039857A1 (en) | 2011-09-12 | 2013-03-21 | modeRNA Therapeutics | Engineered nucleic acids and methods of use thereof |
| US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| EP2755693A4 (en) | 2011-09-12 | 2015-05-20 | Moderna Therapeutics Inc | MANIPULATED NUCLEIC ACIDS AND METHOD OF APPLICATION THEREFOR |
| US9358284B2 (en) | 2011-09-14 | 2016-06-07 | Glaxosmithkline Biologicals Sa | Methods for making saccharide-protein glycoconjugates |
| WO2013040557A2 (en) | 2011-09-16 | 2013-03-21 | The Trustees Of The University Of Pennsylvania | Rna engineered t cells for the treatment of cancer |
| US20150017245A1 (en) | 2011-09-22 | 2015-01-15 | Bind Therapeutics, Inc. | Methods of treating cancers with therapeutic nanoparticles |
| US9375388B2 (en) | 2011-09-23 | 2016-06-28 | Indian Institute Of Technology, Bombay | Nanoparticle based cosmetic composition |
| UY34347A (es) | 2011-09-26 | 2013-04-30 | Novartis Ag | Proteínas de función dual para tratar trastornos metabólicos |
| US9006400B2 (en) | 2011-09-26 | 2015-04-14 | Novartis Ag | Fibroblast growth factor-21-Fc fusion proteins |
| AU2012315965A1 (en) | 2011-09-27 | 2014-04-03 | Alnylam Pharmaceuticals, Inc. | Di-aliphatic substituted PEGylated lipids |
| WO2013045505A1 (en) | 2011-09-28 | 2013-04-04 | Novartis Ag | Biomarkers for raas combination therapy |
| WO2013055971A1 (en) | 2011-10-11 | 2013-04-18 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Polymers for delivering a substance into a cell |
| MX2014004214A (es) | 2011-10-11 | 2014-05-07 | Novartis Ag | Moleculas de acido ribonucleico policistronicas auto-replicantes recombinantes. |
| WO2013055331A1 (en) | 2011-10-12 | 2013-04-18 | The Curators Of The University Of Missouri | Pentablock polymers |
| WO2014066811A1 (en) | 2012-10-25 | 2014-05-01 | The Johns Hopkins University | Bioreducible poly (b-amino ester)s for sirna delivery |
| WO2013056132A2 (en) | 2011-10-14 | 2013-04-18 | Stc.Unm | Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery including transdermal delivery of cargo and methods thereof |
| EP3653222A1 (en) | 2011-10-14 | 2020-05-20 | Novartis AG | Antibodies and methods for wnt pathway-related diseases |
| US20140371717A1 (en) | 2011-10-18 | 2014-12-18 | Micell Technologies, Inc. | Drug delivery medical device |
| EP2768958B1 (en) | 2011-10-18 | 2019-08-14 | Dicerna Pharmaceuticals, Inc. | Amine cationic lipids and uses thereof |
| AU2012324458B2 (en) | 2011-10-20 | 2016-05-19 | Novartis Ag | Biomarkers predictive of responsiveness to alpha 7 nicotinic acetylcholine receptor activator treatment |
| US20140248320A1 (en) | 2011-10-20 | 2014-09-04 | Novartis Ag | Adjuvanted influenza b virus vaccines for pediatric priming |
| EP2770980A4 (en) | 2011-10-25 | 2015-11-04 | Univ British Columbia | LOW SIZE LIPID NANOPARTICLES AND METHODS THEREOF |
| US20130110043A1 (en) | 2011-10-26 | 2013-05-02 | Nanopass Technologies Ltd. | Microneedle Intradermal Drug Delivery Device with Auto-Disable Functionality |
| EP3574950B1 (en) | 2011-10-27 | 2021-02-17 | Sorrento Therapeutics, Inc. | Transdermal delivery of high viscosity bioactive agents |
| EA032088B1 (ru) | 2011-10-27 | 2019-04-30 | Массачусетс Инститьют Оф Текнолоджи | Аминокислотные производные, функционализованные на n-конце, способные образовывать микросферы, инкапсулирующие лекарственное средство |
| WO2013062140A1 (en) | 2011-10-28 | 2013-05-02 | Kyoto University | Method for efficiently inducing differentiation of pluripotent stem cells into hepatic lineage cells |
| AU2012328457A1 (en) | 2011-10-28 | 2014-04-24 | Presage Biosciences, Inc. | Methods for drug delivery |
| WO2013063510A1 (en) | 2011-10-28 | 2013-05-02 | Integritybio Inc. | Protein formulations containing amino acids |
| WO2013066903A1 (en) | 2011-10-31 | 2013-05-10 | Mallinckrodt Llc | Combinational liposome compositions for cancer therapy |
| EP2773662A4 (en) | 2011-10-31 | 2015-07-01 | Hoffmann La Roche | ANTIBODY FORMULATIONS |
| CN103906503B (zh) | 2011-11-04 | 2016-12-14 | 日东电工株式会社 | 用于无菌制备脂质-核酸颗粒的单次使用系统 |
| US9579338B2 (en) | 2011-11-04 | 2017-02-28 | Nitto Denko Corporation | Method of producing lipid nanoparticles for drug delivery |
| EP3290442A1 (en) | 2011-11-04 | 2018-03-07 | Novartis AG | Low density lipoprotein-related protein 6 (lrp6) half-life extender constructs |
| WO2013067537A1 (en) | 2011-11-04 | 2013-05-10 | Univertiy Of Notre Dame Du Lac | Nanoparticle-based drug delivery |
| WO2013066274A1 (en) | 2011-11-04 | 2013-05-10 | Agency For Science, Technology And Research | Self-assembled composite ultrasmall peptide-polymer hydrogels |
| US20130115247A1 (en) | 2011-11-05 | 2013-05-09 | Aura Biosciences, Inc. | Virion Derived Protein Nanoparticles For Delivering Radioisotopes For The Diagnosis And Treatment Of Malignant And Systemic Disease And The Monitoring Of Therapy |
| US20130116408A1 (en) | 2011-11-05 | 2013-05-09 | Aura Biosciences, Inc. | Virion Derived Protein Nanoparticles For Delivering Radioisotopes For The Diagnosis And Treatment Of Malignant And Systemic Disease And The Monitoring Of Therapy |
| US20140287510A1 (en) | 2011-11-08 | 2014-09-25 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute | Rod cell-specific promoter |
| EP2776013B8 (en) | 2011-11-08 | 2023-08-30 | The Board of Trustees of the University of Arkansas | Methods and compositions for x-ray induced release from ph sensitive liposomes |
| EP2776022A1 (en) | 2011-11-08 | 2014-09-17 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | New treatment for neurodegenerative diseases |
| WO2013068432A1 (en) | 2011-11-08 | 2013-05-16 | Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research | Early diagnostic of neurodegenerative diseases |
| US9581590B2 (en) | 2011-11-09 | 2017-02-28 | Board Of Trustees Of Michigan State University | Metallic nanoparticle synthesis with carbohydrate capping agent |
| DK2776567T3 (da) | 2011-11-11 | 2021-04-26 | Variation Biotechnologies Inc | Sammensætninger og fremgangsmåder til behandling af cytomegalovirus. |
| WO2013071047A1 (en) | 2011-11-11 | 2013-05-16 | Children's Medical Center Corporation | Compositions and methods for in vitro transcription of rna |
| RU2014124154A (ru) | 2011-11-14 | 2015-12-27 | Новартис Аг | Иммуногенные комплексы полианионных карбомеров и полипептидов env и способы их получения и применения |
| WO2013072392A1 (en) | 2011-11-15 | 2013-05-23 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Combination of a phosphoinositide 3-kinase inhibitor and a modulator of the janus kinase 2-signal transducer and activator of transcription 5 pathway |
| RU2768492C2 (ru) | 2011-11-18 | 2022-03-24 | Ридженерон Фармасьютикалз, Инк. | Полимерные белковые микрочастицы |
| KR20140097178A (ko) | 2011-11-21 | 2014-08-06 | 노파르티스 아게 | IL-17 길항제 및 건선성 관절염 (PsA) 반응 또는 비-반응 대립유전자를 이용하여 PsA를 치료하는 방법 |
| WO2013078199A2 (en) | 2011-11-23 | 2013-05-30 | Children's Medical Center Corporation | Methods for enhanced in vivo delivery of synthetic, modified rnas |
| TR201111743A2 (tr) | 2011-11-28 | 2012-04-24 | Nesl�Han G�Rsoy Reyhan | Kanser tedavisinde kullanılmak üzere yağ bazlı nanotaşıyıcı sistemler. |
| EP2785326A2 (en) | 2011-11-29 | 2014-10-08 | The University of North Carolina at Chapel Hill | Geometrically engineered particles and methods for modulating macrophage or immune responses |
| BR112014013151B1 (pt) | 2011-11-30 | 2022-02-08 | 3M Innovative Properties Company | Dispositivo médico compreendendo microagulhas incluindo um agente terapêutico peptídeo e um aminoácido, métodos para produzir o dispositivo e método para estabilizar um agente terapêutico peptídeo |
| US9364549B2 (en) | 2011-11-30 | 2016-06-14 | Andreas Voigt | Hydrophobic drug-delivery material, method for manufacturing thereof and methods for delivery of a drug-delivery composition |
| WO2013082590A1 (en) | 2011-12-02 | 2013-06-06 | Invivo Therapeutics Corporation | Peg based hydrogel for peripheral nerve injury applications and compositions and method of use of synthetic hydrogel sealants |
| BR112014013175B1 (pt) | 2011-12-02 | 2022-08-09 | Pegasus Laboratories, Inc | Processo para preparar comprimidos de composição de liberação prolongada |
| WO2013082529A1 (en) | 2011-12-02 | 2013-06-06 | Yale University | Enzymatic synthesis of poly(amine-co-esters) and methods of use thereof for gene delivery |
| US8497124B2 (en) | 2011-12-05 | 2013-07-30 | Factor Bioscience Inc. | Methods and products for reprogramming cells to a less differentiated state |
| US9814867B2 (en) | 2011-12-05 | 2017-11-14 | Nano Precision Medical, Inc. | Device having titania nanotube membrane for drug delivery |
| BR112014013664A2 (pt) | 2011-12-05 | 2020-11-03 | Factor Bioscience Inc. | métodos e produtos para transfectar células |
| GB201121070D0 (en) | 2011-12-07 | 2012-01-18 | Isis Innovation | composition for delivery of biotherapeutics |
| US9061063B2 (en) | 2011-12-07 | 2015-06-23 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
| AU2012347605B2 (en) | 2011-12-07 | 2017-09-21 | Alnylam Pharmaceuticals, Inc. | Branched alkyl and cycloalkyl terminated biodegradable lipids for the delivery of active agents |
| US20140308304A1 (en) | 2011-12-07 | 2014-10-16 | Alnylam Pharmaceuticals, Inc. | Lipids for the delivery of active agents |
| WO2013086502A1 (en) | 2011-12-09 | 2013-06-13 | President And Fellows Of Harvard College | Organ chips and uses thereof |
| EP2787977A4 (en) | 2011-12-09 | 2015-05-06 | Univ California | LIPOSOMAL ACTIVE INVERTING |
| US9725687B2 (en) | 2011-12-09 | 2017-08-08 | President And Fellows Of Harvard College | Integrated human organ-on-chip microphysiological systems |
| AU2012352455B2 (en) | 2011-12-12 | 2016-01-21 | The Trustees Of The University Of Pennsylvania | Proteins comprising MRSA PBP2a and fragments thereof, nucleic acids encoding the same, and compositions and their use to prevent and treat MRSA infections |
| JP6182458B2 (ja) | 2011-12-12 | 2017-08-16 | 協和発酵キリン株式会社 | カチオン性脂質の組み合わせを含有する脂質ナノ粒子 |
| WO2013089151A1 (ja) | 2011-12-12 | 2013-06-20 | 協和発酵キリン株式会社 | カチオン性脂質を含有するドラッグデリバリーシステムのための脂質ナノ粒子 |
| HUE052136T2 (hu) | 2011-12-13 | 2021-04-28 | Engeneic Molecular Delivery Pty Ltd | Bakteriális eredetû intakt minisejtek terápiás szerek agydaganatokba történõ bejuttatására |
| EP2604253A1 (en) | 2011-12-13 | 2013-06-19 | Otto Glatter | Water-in-oil emulsions and methods for their preparation |
| US20150000936A1 (en) | 2011-12-13 | 2015-01-01 | Schlumberger Technology Corporation | Energization of an element with a thermally expandable material |
| US20140378538A1 (en) | 2011-12-14 | 2014-12-25 | Moderma Therapeutics, Inc. | Methods of responding to a biothreat |
| US20140343129A1 (en) | 2011-12-14 | 2014-11-20 | Moderna Therapeutics, Inc. | Modified nucleic acids, and acute care uses thereof |
| EP2790674B1 (en) | 2011-12-15 | 2017-11-01 | BioNTech AG | Particles comprising single stranded rna and double stranded rna for immunomodulation |
| WO2013090897A1 (en) | 2011-12-15 | 2013-06-20 | The Trustees Of The University Of Pennsylvania | Using adaptive immunity to detect drug resistance |
| EP2791169B1 (en) | 2011-12-16 | 2017-07-19 | Synthon Biopharmaceuticals B.V. | Compounds and methods for treating inflammatory diseases |
| CA2859583C (en) | 2011-12-16 | 2020-02-18 | Allergan, Inc. | Ophthalmic compositions comprising polyvinyl capralactam-polyvinyl acetate-polyethylene glycol graft copolymer |
| JP2015500712A (ja) | 2011-12-16 | 2015-01-08 | ノバルティス アーゲー | 吸入プロファイルに依存しない薬剤送達のためのエアロゾル投与装置 |
| WO2013090601A2 (en) | 2011-12-16 | 2013-06-20 | Massachusetts Institute Of Technology | Compact nanoparticles for biological applications |
| CA2859205A1 (en) | 2011-12-16 | 2013-06-20 | Massachusetts Institute Of Technology | Alpha-aminoamidine polymers and uses thereof |
| WO2013091001A1 (en) | 2011-12-19 | 2013-06-27 | The University Of Sydney | A peptide-hydrogel composite |
| US9241829B2 (en) | 2011-12-20 | 2016-01-26 | Abbott Medical Optics Inc. | Implantable intraocular drug delivery apparatus, system and method |
| CA2859691A1 (en) | 2011-12-21 | 2013-06-27 | Moderna Therapeutics, Inc. | Methods of increasing the viability or longevity of an organ or organ explant |
| EP2793941A1 (en) | 2011-12-23 | 2014-10-29 | F.Hoffmann-La Roche Ag | Articles of manufacture and methods for co-administration of antibodies |
| US10814115B2 (en) | 2011-12-27 | 2020-10-27 | Massachusetts Institute Of Technology | Microneedle devices and uses thereof |
| US10596246B2 (en) | 2011-12-29 | 2020-03-24 | Glaxosmithkline Biological Sa | Adjuvanted combinations of meningococcal factor H binding proteins |
| US20140371302A1 (en) | 2011-12-29 | 2014-12-18 | Modema Therapeutics, Inc. | Modified mrnas encoding cell-penetrating polypeptides |
| LT3144389T (lt) | 2011-12-30 | 2018-08-10 | Cellscript, Llc | In vitro susintetintos viengrandės rnr gavimas ir panaudojimas įvedimui į žinduolio ląsteles, siekiant sužadinti biologinį arba biocheminį poveikį |
| WO2013103842A1 (en) | 2012-01-06 | 2013-07-11 | Michigan Life Therapeutics, Llc | Methods of reducing risk of cardiovascular disease |
| US20150030576A1 (en) | 2012-01-10 | 2015-01-29 | Moderna Therapeutics, Inc. | Methods and compositions for targeting agents into and across the blood-brain barrier |
| SG11201404014PA (en) | 2012-01-26 | 2014-08-28 | Life Technologies Corp | Methods for increasing the infectivity of viruses |
| EP2807252B1 (en) | 2012-01-26 | 2017-05-10 | Life Technologies Corporation | Methods for increasing the infectivity of viruses |
| WO2013113325A1 (en) | 2012-01-31 | 2013-08-08 | Curevac Gmbh | Negatively charged nucleic acid comprising complexes for immunostimulation |
| EP2623121A1 (en) | 2012-01-31 | 2013-08-07 | Bayer Innovation GmbH | Pharmaceutical composition comprising a polymeric carrier cargo complex and an antigen |
| WO2013113326A1 (en) | 2012-01-31 | 2013-08-08 | Curevac Gmbh | Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen |
| JP6170074B2 (ja) | 2012-02-09 | 2017-07-26 | ライフ テクノロジーズ コーポレーション | 親水性ポリマー粒子およびその製造方法 |
| EP3597209A1 (en) | 2012-02-22 | 2020-01-22 | Northwestern University | Nanostructures for treating cancers and other conditions |
| US20140037573A1 (en) | 2012-02-22 | 2014-02-06 | Cerulean Pharma Inc. | Conjugates, particles, compositions, and related methods |
| US20130243867A1 (en) | 2012-02-23 | 2013-09-19 | University Of South Florida (A Florida Non-Profit Corporation) | Micelle compositions and methods for their use |
| EP2819651A1 (en) | 2012-02-27 | 2015-01-07 | Epitarget AS | Use of an antibody and a particulate immunomodulator in therapy |
| EP2819652A1 (en) | 2012-02-27 | 2015-01-07 | Epitarget As | Use of a particulate immunomodulator in cancer therapy |
| US20130224268A1 (en) | 2012-02-27 | 2013-08-29 | Newgen Biopharma Corp. | Topical delivery of hormonal and non hormonal nano formulations, methods of making and using the same |
| US20150037334A1 (en) | 2012-03-01 | 2015-02-05 | Amgen Research (Munich) Gmbh | Long life polypeptide binding molecules |
| US20130236504A1 (en) | 2012-03-06 | 2013-09-12 | Medical University Of South Carolina | Delivery System for Enhancing Drug Efficacy |
| WO2013136234A1 (en) | 2012-03-13 | 2013-09-19 | University Of Kwazulu-Natal | Transdermal delivery devices |
| US10322089B2 (en) | 2012-03-14 | 2019-06-18 | The Board Of Trustees Of The Leland Stanford Junior University | Nanoparticles, nanoparticle delivery methods, and systems of delivery |
| US10159743B2 (en) | 2012-03-16 | 2018-12-25 | The Johns Hopkins University | Non-linear multiblock copolymer-drug conjugates for the delivery of active agents |
| HK1206270A1 (en) | 2012-03-16 | 2016-01-08 | The Johns Hopkins University | Controlled release formulations for the delivery of hif-1 inhibitors |
| SG11201405552VA (en) | 2012-03-16 | 2014-10-30 | Merck Patent Gmbh | Targeting aminoacid lipids |
| WO2013142349A1 (en) | 2012-03-23 | 2013-09-26 | University Of Chicago | Compositions and methods related to staphylococcal sbi |
| US9610346B2 (en) | 2012-03-23 | 2017-04-04 | International Aids Vaccine Initiative | Recombinant viral vectors |
| WO2013143555A1 (en) | 2012-03-26 | 2013-10-03 | Biontech Ag | Rna formulation for immunotherapy |
| EP2830991A1 (en) | 2012-03-26 | 2015-02-04 | President and Fellows of Harvard College | Lipid-coated nucleic acid nanostructures of defined shape |
| RU2660565C2 (ru) | 2012-03-27 | 2018-07-06 | Кьюрвак Аг | Молекулы искусственной нуклеиновой кислоты, содержащие 5'utr гена top |
| DK2830594T3 (en) | 2012-03-27 | 2018-08-13 | Sirna Therapeutics Inc | DIETHER-BASED BIOLOGICALLY DEGRADABLE CATIONIC LIPIDS FOR siRNA RELEASE |
| MX357803B (es) | 2012-03-27 | 2018-07-24 | Curevac Ag | Moléculas de ácido nucleico artificiales. |
| RU2658490C2 (ru) | 2012-03-27 | 2018-06-21 | Кьюрвак Аг | Искусственные молекулы нуклеиновых кислот для улучшенной экспрессии белков или пептидов |
| CA2868030C (en) | 2012-03-29 | 2021-05-25 | Shire Human Genetic Therapies, Inc. | Lipid-derived neutral nanoparticles |
| AU2013243949A1 (en) | 2012-04-02 | 2014-10-30 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
| AU2013243954A1 (en) | 2012-04-02 | 2014-10-30 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
| US9254311B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
| US20140275229A1 (en) | 2012-04-02 | 2014-09-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding udp glucuronosyltransferase 1 family, polypeptide a1 |
| US20150050354A1 (en) | 2012-04-02 | 2015-02-19 | Moderna Therapeutics, Inc. | Modified polynucleotides for the treatment of otic diseases and conditions |
| US20150064115A1 (en) | 2012-04-05 | 2015-03-05 | University Of Florida Research Foundation, Inc. | Neurophilic nanoparticles |
| WO2013151771A1 (en) | 2012-04-05 | 2013-10-10 | Massachusetts Institute Of Technology | Immunostimulatory compositions and methods of use thereof |
| WO2013152351A2 (en) | 2012-04-06 | 2013-10-10 | The Trustees Of Columbia University In The City Of New York | Fusion polypeptides and methods of use thereof |
| WO2013153550A2 (en) | 2012-04-08 | 2013-10-17 | Theracoat Ltd | Reverse thermal hydrogel preparations for use in the treatment of disorders of the urothelium |
| EP3000833B1 (en) | 2012-04-11 | 2019-09-04 | Intezyne Technologies Inc. | Micelles comprising a triblock copolymer and a therapeutic agent |
| US9603800B2 (en) | 2012-04-12 | 2017-03-28 | Yale University | Methods of treating inflammatory and autoimmune diseases and disorders using nanolipogels |
| WO2013155513A1 (en) | 2012-04-13 | 2013-10-17 | President And Fellows Of Harvard College | Devices and methods for in vitro aerosol delivery |
| WO2013154766A1 (en) | 2012-04-13 | 2013-10-17 | New York University | Microrna control of ldl receptor pathway |
| CA2842041A1 (en) | 2012-04-18 | 2013-10-24 | Arrowhead Research Corporation | Poly(acrylate) polymers for in vivo nucleic acid delivery |
| EP2838877B1 (en) | 2012-04-19 | 2018-09-12 | Sirna Therapeutics, Inc. | Novel diester and triester based low molecular weight, biodegradable cationic lipids for oligonucleotide delivery |
| EP2841056A4 (en) | 2012-04-23 | 2015-09-16 | Massachusetts Inst Technology | STABLE LAYER COATED PARTICLES |
| BR112014026639A8 (pt) | 2012-04-25 | 2018-01-16 | Regulus Therapeutics Inc | compostos , métodos de inibição da atividade de mir-21 , método para diminuir a expressão de colágeno , método para tratar , prevenir ou atrasar o início de uma doença , método de tratamento de um distúrbio fibroproliferativo e usos de um composto. |
| JP6360039B2 (ja) | 2012-05-03 | 2018-07-18 | カラ ファーマシューティカルズ インコーポレイテッド | 複数の被覆された粒子を含む組成物、医薬組成物、医薬製剤、及び当該粒子の形成方法 |
| WO2013166498A1 (en) | 2012-05-04 | 2013-11-07 | The Johns Hopkins University | Lipid-based drug carriers for rapid penetration through mucus linings |
| US20150087671A1 (en) | 2012-05-16 | 2015-03-26 | Micell Technologies, Inc. | Low burst sustained release lipophilic and biologic agent compositions |
| US9399672B2 (en) | 2012-05-17 | 2016-07-26 | The United States Of America, As Represented By The Secretary Department Of Health And Human Services | Hepatitis C virus neutralizing antibody |
| WO2013173693A1 (en) | 2012-05-18 | 2013-11-21 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Nanoparticles with enhanced entry into cancer cells |
| US10307490B2 (en) | 2012-05-23 | 2019-06-04 | The Ohio State University | Lipid nanoparticle compositions for antisense oligonucleotides delivery |
| US20150306249A1 (en) | 2012-05-25 | 2015-10-29 | Curevac Gmbh | Reversible immobilization and/or controlled release of nucleic acid containing nanoparticles by (biodegradable) polymer coatings |
| JP6335886B2 (ja) | 2012-06-06 | 2018-05-30 | ロマ ヴィスタ メディカル、インコーポレイテッド | 膨張可能な医療デバイス |
| US10245229B2 (en) | 2012-06-08 | 2019-04-02 | Translate Bio, Inc. | Pulmonary delivery of mRNA to non-lung target cells |
| DK2858677T3 (da) | 2012-06-08 | 2020-08-31 | Ethris Gmbh | Pulmonær levering af messenger rna |
| BR112014030714B1 (pt) | 2012-06-08 | 2020-12-22 | Nitto Denko Corporation | composto de lipídeo ionizável, composição, veículo de fármaco e formulação farmacêutica |
| US20150218252A1 (en) | 2012-06-20 | 2015-08-06 | President And Fellows Of Harvard College | Self-assembling peptides, peptide nanostructures and uses thereof |
| CN104507458B (zh) | 2012-06-20 | 2018-05-22 | 滑铁卢大学 | 粘膜粘合剂纳米颗粒递送系统 |
| WO2014004436A2 (en) | 2012-06-27 | 2014-01-03 | Merck Sharp & Dohme Corp. | Crystalline anti-human il-23 antibodies |
| US9150841B2 (en) | 2012-06-29 | 2015-10-06 | Shire Human Genetic Therapies, Inc. | Cells for producing recombinant iduronate-2-sulfatase |
| US9956291B2 (en) | 2012-07-10 | 2018-05-01 | Shaker A. Mousa | Nanoformulation and methods of use of thyroid receptor beta1 agonists for liver targeting |
| WO2014014890A1 (en) | 2012-07-16 | 2014-01-23 | Nanoderm Sciences, Inc. | Targeted therapeutic nanoparticles |
| EP2687252A1 (en) | 2012-07-17 | 2014-01-22 | Sanofi-Aventis Deutschland GmbH | Drug delivery device |
| EP2687251A1 (en) | 2012-07-17 | 2014-01-22 | Sanofi-Aventis Deutschland GmbH | Drug delivery device |
| CN112587658A (zh) | 2012-07-18 | 2021-04-02 | 博笛生物科技有限公司 | 癌症的靶向免疫治疗 |
| WO2014015334A1 (en) | 2012-07-20 | 2014-01-23 | Brown University | System and methods for nanostructure protected delivery of treatment agent and selective release thereof |
| WO2014018675A1 (en) | 2012-07-24 | 2014-01-30 | President And Fellows Of Harvard College | Self-assembly of nucleic acid nanostructures |
| GB201213624D0 (en) | 2012-07-27 | 2012-09-12 | Univ Ulster The | Method and system for production of conjugated nanoparticles |
| WO2014015422A1 (en) | 2012-07-27 | 2014-01-30 | Ontario Institute For Cancer Research | Cellulose-based nanoparticles for drug delivery |
| WO2014024193A1 (en) | 2012-08-07 | 2014-02-13 | Prodel Pharma Ltd. | Compositions and methods for rapid transmucosal delivery of pharmaceutical ingredients |
| US9931418B2 (en) | 2012-08-07 | 2018-04-03 | Northeastern University | Compositions for the delivery of RNA and drugs into cells |
| CN104582747B (zh) | 2012-08-08 | 2016-12-21 | 南洋理工大学 | 用于制造具有活细胞的水凝胶微粒的方法和用于制造组织工程支架的组合物 |
| EP2882474A4 (en) | 2012-08-08 | 2016-05-11 | Presage Biosciences Inc | EXTRUSION METHODS AND DEVICES FOR ACTIVE INGREDIENT RELIEF |
| AU2013299641A1 (en) | 2012-08-10 | 2015-03-19 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Drug delivery vehicle comprising conjugates between targeting polyamino acids and fatty acids |
| EP2882706A1 (en) | 2012-08-13 | 2015-06-17 | Massachusetts Institute of Technology | Amine-containing lipidoids and uses thereof |
| WO2014027006A1 (en) | 2012-08-13 | 2014-02-20 | Edko Pazarlama Tanitim Ticaret Limited Sirketi | Bioadhesive formulations for use in drug delivery |
| US9512456B2 (en) | 2012-08-14 | 2016-12-06 | Modernatx, Inc. | Enzymes and polymerases for the synthesis of RNA |
| WO2014026284A1 (en) | 2012-08-14 | 2014-02-20 | Froese Aaron | Internal structured self assembling liposomes |
| US9827321B2 (en) | 2012-08-14 | 2017-11-28 | The Trustees Of The University Of Pennsylvania | Stabilizing shear-thinning hydrogels |
| WO2014028763A1 (en) | 2012-08-15 | 2014-02-20 | The University Of Chicago | Exosome-based therapeutics against neurodegenerative disorders |
| US10179134B2 (en) | 2012-09-05 | 2019-01-15 | Creighton University | Polymeric nanoparticles in a thermosensitive gel for coital-independent vaginal prophylaxis of HIV |
| US8703197B2 (en) | 2012-09-13 | 2014-04-22 | International Business Machines Corporation | Branched polyamines for delivery of biologically active materials |
| EP2895156B1 (en) | 2012-09-17 | 2019-05-08 | Pfizer Inc. | Process for preparing therapeutic nanoparticles |
| WO2014047649A1 (en) | 2012-09-24 | 2014-03-27 | The Regents Of The University Of California | Methods for arranging and packing nucleic acids for unusual resistance to nucleases and targeted delivery for gene therapy |
| WO2014052634A1 (en) | 2012-09-27 | 2014-04-03 | The University Of North Carolina At Chapel Hill | Lipid coated nanoparticles containing agents having low aqueous and lipid solubilities and methods thereof |
| US20150307542A1 (en) | 2012-10-03 | 2015-10-29 | Moderna Therapeutics, Inc. | Modified nucleic acid molecules and uses thereof |
| US20140100178A1 (en) | 2012-10-04 | 2014-04-10 | Aslam Ansari | Composition and methods for site-specific drug delivery to treat malaria and other liver diseases |
| WO2014053882A1 (en) | 2012-10-04 | 2014-04-10 | Centre National De La Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| WO2014053881A1 (en) | 2012-10-04 | 2014-04-10 | Centre National De La Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| EP2716655A1 (en) | 2012-10-04 | 2014-04-09 | Institut Pasteur | Neutralizing antibodies directed against Hepatitis C virus ectodomain glycoprotein E2 |
| WO2014053879A1 (en) | 2012-10-04 | 2014-04-10 | Centre National De La Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| WO2014053880A1 (en) | 2012-10-04 | 2014-04-10 | Centre National De La Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| WO2014054026A1 (en) | 2012-10-04 | 2014-04-10 | University Of The Witwatersrand, Johannesburg | Liposomal drug delivery system |
| WO2014064534A2 (en) | 2012-10-05 | 2014-05-01 | Chrontech Pharma Ab | Injection needle, device, immunogenic compositions and method of use |
| EP2716689A1 (en) | 2012-10-05 | 2014-04-09 | National University of Ireland, Galway | Polymer comprising a plurality of branches having at least one disulfide group and/or at least one vinyl group |
| US9931410B2 (en) | 2012-10-09 | 2018-04-03 | The Brigham And Women's Hospital, Inc. | Nanoparticles for targeted delivery of multiple therapeutic agents and methods of use |
| US20140106260A1 (en) | 2012-10-11 | 2014-04-17 | The Trustees Of The University Of Pennsylvania | Core-shell nanoparticulate compositions and methods |
| EP2908818A4 (en) | 2012-10-16 | 2016-07-13 | Endocyte Inc | CONJUGATES OF DRUG DELIVERY CONTAINING ARTIFICIAL AMINO ACIDS AND METHODS OF USE |
| EA201992107A1 (ru) | 2012-10-18 | 2020-04-30 | Рокфеллер Юниверсити (Дзе) | Нейтрализующие анти-вич-антитела широкого спектра действия |
| CN104918639B (zh) | 2012-10-22 | 2018-01-26 | 萨拜格Rfa公司 | 用于将治疗剂递送到活细胞和细胞核中的系统 |
| US10172956B2 (en) | 2012-10-26 | 2019-01-08 | Vanderbilt University | Polymeric nanoparticles |
| JP2016503394A (ja) | 2012-10-26 | 2016-02-04 | エヌライフ、セラピューティックス、ソシエダッド、リミターダNlife Therapeutics, S.L. | 細胞型へのオリゴヌクレオチド分子の選択的送達のための組成物および方法 |
| WO2014066898A1 (en) | 2012-10-26 | 2014-05-01 | The Johns Hopkins University | A layer-by-layer approach to co-deliver dna and sirna via aunps: a potential platform for modifying release kinetics |
| WO2014067551A1 (en) | 2012-10-29 | 2014-05-08 | Technische Universität Dortmund | T7 rna polymerase variants and methods of using the same |
| BR122019025681B1 (pt) | 2012-11-01 | 2023-04-18 | Factor Bioscience Inc | Método para inserir uma sequência de ácido nucleico em uma localização segura de um genoma de uma célula |
| WO2014071072A2 (en) | 2012-11-02 | 2014-05-08 | Pungente Michael D | Novel cationic carotenoid-based lipids for cellular nucleic acid uptake |
| US10017767B2 (en) | 2012-11-05 | 2018-07-10 | Fondazione Centro San Raffaele | Targets in multiple myeloma and other disorders |
| US9975916B2 (en) | 2012-11-06 | 2018-05-22 | President And Fellows Of Harvard College | Compositions and methods relating to complex nucleic acid nanostructures |
| ES2962574T3 (es) | 2012-11-06 | 2024-03-19 | Rochal Tech Llc | Administración de agentes biológicamente activos utilizando disolventes volátiles hidrófobos |
| EP2916873B1 (en) | 2012-11-07 | 2017-07-26 | Council of Scientific & Industrial Research | Nanocomplex containing amphipathic peptide useful for efficient transfection of biomolecules |
| EP2916874B1 (en) | 2012-11-07 | 2018-08-29 | Council of Scientific and Industrial Research | Nanocomplex containing cationic peptide for biomolecule delivery |
| TW201428101A (zh) | 2012-11-08 | 2014-07-16 | Inviragen Inc | 登革熱病毒血清型4型之建構物的組成物、方法及用途 |
| EP3721872B1 (en) | 2012-11-08 | 2025-01-22 | Clearside Biomedical Inc. | Methods for the treatment of ocular disease in human subjects |
| JP6487328B2 (ja) | 2012-11-08 | 2019-03-20 | アルブミディクス リミティド | アルブミン変異体 |
| CN104903349B (zh) | 2012-11-08 | 2018-10-19 | 十一生物治疗股份有限公司 | Il-6拮抗剂及其应用 |
| WO2014072468A1 (en) | 2012-11-09 | 2014-05-15 | Velin-Pharma A/S | Compositions for pulmonary delivery |
| US9200119B2 (en) | 2012-11-09 | 2015-12-01 | Momentive Performance Materials Inc. | Silicon-containing zwitterionic linear copolymer composition |
| WO2014071963A1 (en) | 2012-11-09 | 2014-05-15 | Biontech Ag | Method for cellular rna expression |
| TR201809547T4 (tr) | 2012-11-09 | 2018-07-23 | Biontech Rna Pharmaceuticals Gmbh | Hücresel RNA ifadesine yönelik yöntem. |
| US9833502B2 (en) | 2012-11-12 | 2017-12-05 | Genvec, Inc. | Malaria antigens and methods of use |
| GB201220354D0 (en) | 2012-11-12 | 2012-12-26 | Medpharm Ltd | Dermal compositions |
| JP2016500058A (ja) | 2012-11-12 | 2016-01-07 | レッドウッド バイオサイエンス, インコーポレイテッド | 化合物および抱合体を生成するための方法 |
| WO2014078399A1 (en) | 2012-11-13 | 2014-05-22 | Baylor College Of Medicine | Multi-arm biodegradable polymers for nucleic acid delivery |
| US9310374B2 (en) | 2012-11-16 | 2016-04-12 | Redwood Bioscience, Inc. | Hydrazinyl-indole compounds and methods for producing a conjugate |
| WO2014078636A1 (en) | 2012-11-16 | 2014-05-22 | President And Fellows Of Harvard College | Nucleic acid hydrogel self-assembly |
| EP2732825B1 (en) | 2012-11-19 | 2015-07-01 | Invivogen | Conjugates of a TLR7 and/or TLR8 agonist and a TLR2 agonist |
| WO2014076709A1 (en) | 2012-11-19 | 2014-05-22 | Technion Research And Development Foundation Ltd. | Liposomes for in-vivo delivery |
| WO2014081849A1 (en) | 2012-11-20 | 2014-05-30 | Phasebio Pharmaceuticals, Inc. | Formulations of active agents for sustained release |
| US20140141037A1 (en) | 2012-11-20 | 2014-05-22 | Novartis Ag | Rsv f prefusion trimers |
| WO2014081300A1 (en) | 2012-11-22 | 2014-05-30 | Tagworks Pharmaceuticals B.V. | Channel protein activatable liposomes |
| FI2922574T3 (fi) | 2012-11-22 | 2023-08-11 | Tagworks Pharmaceuticals B V | Kemiallisesti pilkkoutuva ryhmä |
| WO2014081299A1 (en) | 2012-11-22 | 2014-05-30 | Tagworks Pharmaceuticals B.V. | Activatable liposomes |
| DK2922554T3 (en) * | 2012-11-26 | 2022-05-23 | Modernatx Inc | Terminalt modificeret rna |
| US20150315541A1 (en) | 2012-12-13 | 2015-11-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for altering cell phenotype |
| JP2016506416A (ja) | 2013-01-10 | 2016-03-03 | ノバルティス アーゲー | インフルエンザウイルス免疫原性組成物およびその使用 |
| JP2016504050A (ja) | 2013-01-17 | 2016-02-12 | モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. | 細胞表現型の改変のためのシグナルセンサーポリヌクレオチド |
| EP2964234A4 (en) | 2013-03-09 | 2016-12-07 | Moderna Therapeutics Inc | Heterologous untranslated regions for mrna |
| WO2014158795A1 (en) | 2013-03-12 | 2014-10-02 | Moderna Therapeutics, Inc. | Diagnosis and treatment of fibrosis |
| EP2968391A1 (en) | 2013-03-13 | 2016-01-20 | Moderna Therapeutics, Inc. | Long-lived polynucleotide molecules |
| EP2971010B1 (en) | 2013-03-14 | 2020-06-10 | ModernaTX, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
| EP2983804A4 (en) | 2013-03-15 | 2017-03-01 | Moderna Therapeutics, Inc. | Ion exchange purification of mrna |
| WO2014144711A1 (en) | 2013-03-15 | 2014-09-18 | Moderna Therapeutics, Inc. | Analysis of mrna heterogeneity and stability |
| WO2014152030A1 (en) | 2013-03-15 | 2014-09-25 | Moderna Therapeutics, Inc. | Removal of dna fragments in mrna production process |
| EP3578652B1 (en) | 2013-03-15 | 2023-07-12 | ModernaTX, Inc. | Ribonucleic acid purification |
| US20160032273A1 (en) | 2013-03-15 | 2016-02-04 | Moderna Therapeutics, Inc. | Characterization of mrna molecules |
| US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
| WO2014152027A1 (en) | 2013-03-15 | 2014-09-25 | Moderna Therapeutics, Inc. | Manufacturing methods for production of rna transcripts |
| DK3019619T3 (da) | 2013-07-11 | 2021-10-11 | Modernatx Inc | Sammensætninger, der omfatter syntetiske polynukleotider, som koder for crispr-beslægtede proteiner, og syntetiske sgrna'er, og anvendelsesfremgangsmåder |
| WO2015007871A2 (en) | 2013-07-17 | 2015-01-22 | Ospedale San Raffaele S.R.L. | Micrornas and autoimmune-immune mediated inflammatory disease |
| US20160194368A1 (en) | 2013-09-03 | 2016-07-07 | Moderna Therapeutics, Inc. | Circular polynucleotides |
| AU2014315287A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
| WO2015038892A1 (en) | 2013-09-13 | 2015-03-19 | Moderna Therapeutics, Inc. | Polynucleotide compositions containing amino acids |
| US10023626B2 (en) | 2013-09-30 | 2018-07-17 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
| BR112016007255A2 (pt) | 2013-10-03 | 2017-09-12 | Moderna Therapeutics Inc | polinucleotídeos que codificam receptor de lipoproteína de baixa densidade |
| CA2927393A1 (en) | 2013-10-18 | 2015-04-23 | Moderna Therapeutics, Inc. | Compositions and methods for tolerizing cellular systems |
| US20170202979A1 (en) | 2014-07-17 | 2017-07-20 | Modernatx, Inc. | Terminal modifications of polynucleotides |
| EP3041948B1 (en) * | 2014-11-10 | 2019-01-09 | Modernatx, Inc. | Alternative nucleic acid molecules containing reduced uracil content and uses thereof |
| RU2749113C2 (ru) | 2015-04-22 | 2021-06-04 | Куревак Аг | Содержащая рнк композиция для лечения опухолевых заболеваний |
| SI3394093T1 (sl) | 2015-12-23 | 2022-05-31 | Modernatx, Inc. | Metode uporabe liganda OX40, ki kodira polinukleotid |
-
2013
- 2013-10-02 DK DK13779667.8T patent/DK2922554T3/da active
- 2013-10-02 RS RS20220477A patent/RS63237B1/sr unknown
- 2013-10-02 LT LTEPPCT/US2013/062943T patent/LT2922554T/lt unknown
- 2013-10-02 SM SM20220337T patent/SMT202200337T1/it unknown
- 2013-10-02 PT PT137796678T patent/PT2922554T/pt unknown
- 2013-10-02 WO PCT/US2013/062943 patent/WO2014081507A1/en not_active Ceased
- 2013-10-02 ES ES13779667T patent/ES2921623T3/es active Active
- 2013-10-02 JP JP2015544065A patent/JP6144355B2/ja active Active
- 2013-10-02 SI SI201331984T patent/SI2922554T1/sl unknown
- 2013-10-02 US US14/043,927 patent/US9597380B2/en active Active
- 2013-10-02 PL PL13779667T patent/PL2922554T3/pl unknown
- 2013-10-02 EP EP22157965.9A patent/EP4074834A1/en not_active Withdrawn
- 2013-10-02 EP EP13779667.8A patent/EP2922554B1/en not_active Revoked
- 2013-10-02 CA CA2892529A patent/CA2892529C/en active Active
- 2013-10-02 HR HRP20220607TT patent/HRP20220607T1/hr unknown
-
2017
- 2017-02-10 US US15/429,532 patent/US10155029B2/en active Active
- 2017-04-04 AU AU2017202228A patent/AU2017202228B2/en not_active Ceased
- 2017-05-10 JP JP2017093692A patent/JP6377804B2/ja active Active
-
2018
- 2018-07-25 JP JP2018138949A patent/JP6666391B2/ja active Active
- 2018-10-05 US US16/152,945 patent/US10925935B2/en active Active
-
2019
- 2019-06-03 AU AU2019203876A patent/AU2019203876A1/en not_active Abandoned
-
2020
- 2020-02-20 JP JP2020026728A patent/JP7047002B2/ja active Active
- 2020-12-18 US US17/127,435 patent/US12023371B2/en active Active
-
2021
- 2021-05-03 AU AU2021202758A patent/AU2021202758A1/en not_active Abandoned
-
2022
- 2022-03-23 JP JP2022046812A patent/JP2022093332A/ja active Pending
- 2022-05-23 CY CY20221100356T patent/CY1125236T1/el unknown
-
2024
- 2024-05-23 US US18/672,502 patent/US20250170228A1/en active Pending
Patent Citations (95)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5208020A (en) | 1989-10-25 | 1993-05-04 | Immunogen Inc. | Cytotoxic agents comprising maytansinoids and their therapeutic use |
| US5475092A (en) | 1992-03-25 | 1995-12-12 | Immunogen Inc. | Cell binding agent conjugates of analogues and derivatives of CC-1065 |
| US5585499A (en) | 1992-03-25 | 1996-12-17 | Immunogen Inc. | Cyclopropylbenzindole-containing cytotoxic drugs |
| US5846545A (en) | 1992-03-25 | 1998-12-08 | Immunogen, Inc. | Targeted delivery of cyclopropylbenzindole-containing cytotoxic drugs |
| WO1999024595A1 (en) | 1997-11-12 | 1999-05-20 | The Brigham And Women's Hospital, Inc. | The translation enhancer element of the human amyloid precursor protein gene |
| US6310197B1 (en) | 1997-11-12 | 2001-10-30 | The Brigham And Women's Hospital, Inc. | Translation enhancer element of the human amyloid precursor protein gene |
| US6849405B2 (en) | 1997-11-12 | 2005-02-01 | The Brigham And Women's Hospital, Inc. | Translation enhancer element of the human amyloid precursor protein gene |
| US7385034B2 (en) | 1998-12-22 | 2008-06-10 | Serono Genetics Institute S.A. | Complementary DNAs encoding proteins with signal peptides |
| US7413875B2 (en) | 1999-08-05 | 2008-08-19 | Serono Genetics Institute S.A. | ESTs and encoded human proteins |
| US7456273B2 (en) | 2000-01-28 | 2008-11-25 | The Scripps Research Institute | Methods of identifying synthetic transcriptional and translational regulatory elements, and compositions relating to same |
| WO2001055369A1 (en) | 2000-01-28 | 2001-08-02 | The Scripps Research Institute | Synthetic internal ribosome entry sites and methods of identifying same |
| US7183395B2 (en) | 2000-01-28 | 2007-02-27 | The Scripps Research Institute | Methods of identifying synthetic transcriptional and translational regulatory elements, and compositions relating to same |
| US20090093049A1 (en) | 2000-01-28 | 2009-04-09 | The Scripps Research Institute | Methods of Identifying Synthetic Transcriptional and Translational Regulatory Elements, and Compositions Related to Same |
| US7468275B2 (en) | 2000-01-28 | 2008-12-23 | The Scripps Research Institute | Synthetic internal ribosome entry sites and methods of identifying same |
| WO2001055371A1 (en) | 2000-01-28 | 2001-08-02 | The Scripps Research Institute | Methods of identifying synthetic transcriptional and translational regulatory elements, and compositions relating to same |
| US20050059005A1 (en) | 2001-09-28 | 2005-03-17 | Thomas Tuschl | Microrna molecules |
| US7374930B2 (en) | 2002-05-21 | 2008-05-20 | Expression Genetics, Inc. | GLP-1 gene delivery for the treatment of type 2 diabetes |
| US20090227660A1 (en) | 2002-05-21 | 2009-09-10 | Seungjoon Oh | GLP-1 gene delivery for the treatment of type 2 diabetes |
| US20050261218A1 (en) | 2003-07-31 | 2005-11-24 | Christine Esau | Oligomeric compounds and compositions for use in modulation small non-coding RNAs |
| US8124379B2 (en) | 2004-06-14 | 2012-02-28 | Novozymes A/S | Signal peptide for producing a polypeptide |
| US20100120024A1 (en) | 2005-06-30 | 2010-05-13 | Sharon Cload | Materials and methods for the generation of transcripts comprising modified nucleotides |
| US8101385B2 (en) | 2005-06-30 | 2012-01-24 | Archemix Corp. | Materials and methods for the generation of transcripts comprising modified nucleotides |
| US20070117112A1 (en) | 2005-06-30 | 2007-05-24 | Diener John L | Materials and methods for the generation of fully 2'-modified nucleic acid transcripts |
| US20110124100A1 (en) | 2005-08-24 | 2011-05-26 | The Scripps Research Institute | Translation enhancer-element dependent vector systems |
| US20070048776A1 (en) | 2005-08-24 | 2007-03-01 | The Scripps Research Institute | Translation enhancer-element dependent vector systems |
| WO2007025008A2 (en) | 2005-08-24 | 2007-03-01 | The Scripps Research Institute | Translation enhancer-element dependent vector systems |
| US20100129877A1 (en) | 2005-09-28 | 2010-05-27 | Ugur Sahin | Modification of RNA, Producing an Increased Transcript Stability and Translation Efficiency |
| US8389210B2 (en) | 2006-01-05 | 2013-03-05 | The Ohio State University Research Foundation | MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors |
| US20120214699A1 (en) | 2006-01-05 | 2012-08-23 | The Ohio State University | Methods for Diagnosing Breast Cancer Using MicroRNA Signatures |
| WO2007081740A2 (en) | 2006-01-05 | 2007-07-19 | The Ohio State University Research Foundation | Micrornarna-based methods and compositions for the diagnosis and treatment of solid cancers |
| US20110171646A1 (en) | 2006-03-02 | 2011-07-14 | The Ohio State University Research Foundation | Microrna expression profile associated with pancreatic cancer |
| US20100286232A1 (en) | 2006-03-02 | 2010-11-11 | The Ohio State University | Microrna expression profile associated with pancreatic cancer |
| US20090131348A1 (en) | 2006-09-19 | 2009-05-21 | Emmanuel Labourier | Micrornas differentially expressed in pancreatic diseases and uses thereof |
| WO2008054828A2 (en) | 2006-11-01 | 2008-05-08 | The Ohio State University Research Foundation | Microrna expression signature for predicting survival and metastases in hepatocellular carcinoma |
| US8252538B2 (en) | 2006-11-01 | 2012-08-28 | The Ohio State University | MicroRNA expression signature for predicting survival and metastases in hepatocellular carcinoma |
| US20120329672A1 (en) | 2006-11-01 | 2012-12-27 | Croce Carlo M | MicroRNA Expression Signature for Predicting Survival and Metastases in Hepatocellular Carcinoma |
| WO2008073915A2 (en) | 2006-12-08 | 2008-06-19 | Asuragen, Inc. | Micrornas differentially expressed in leukemia and uses thereof |
| US20090092974A1 (en) | 2006-12-08 | 2009-04-09 | Asuragen, Inc. | Micrornas differentially expressed in leukemia and uses thereof |
| WO2008078180A2 (en) | 2006-12-22 | 2008-07-03 | Archemix Corp. | Materials and methods for the generation of transcripts comprising modified nucleotides |
| US8415096B2 (en) | 2007-05-23 | 2013-04-09 | University Of South Florida | Micro-RNAs modulating immunity and inflammation |
| WO2008154098A2 (en) | 2007-06-07 | 2008-12-18 | Wisconsin Alumni Research Foundation | Reagents and methods for mirna expression analysis and identification of cancer biomarkers |
| US20100293625A1 (en) | 2007-09-26 | 2010-11-18 | Interexon Corporation | Synthetic 5'UTRs, Expression Vectors, and Methods for Increasing Transgene Expression |
| WO2009070653A1 (en) | 2007-11-30 | 2009-06-04 | The Ohio State University Research Foundation | Microrna expression profiling and targeting in peripheral blood in lung cancer |
| US20100323357A1 (en) | 2007-11-30 | 2010-12-23 | The Ohio State University Research Foundation | MicroRNA Expression Profiling and Targeting in Peripheral Blood in Lung Cancer |
| WO2009075886A1 (en) | 2007-12-11 | 2009-06-18 | The Scripps Research Institute | Compositions and methods related to mrna translational enhancer elements |
| EP2610340A1 (en) | 2007-12-11 | 2013-07-03 | The Scripps Research Institute | Compositions and methods related to mRNA translational enhancer elements |
| US20090226470A1 (en) | 2007-12-11 | 2009-09-10 | Mauro Vincent P | Compositions and methods related to mRNA translational enhancer elements |
| EP2610341A1 (en) | 2007-12-11 | 2013-07-03 | The Scripps Research Institute | Compositions and methods related to mRNA translational enhancer elements |
| US20130177581A1 (en) | 2007-12-11 | 2013-07-11 | The Scripps Research Institute | Compositions and Methods Related to mRNA Translational Enhancer Elements |
| US20090263803A1 (en) | 2008-02-08 | 2009-10-22 | Sylvie Beaudenon | Mirnas differentially expressed in lymph nodes from cancer patients |
| WO2009100430A2 (en) | 2008-02-08 | 2009-08-13 | Asuragen, Inc | miRNAs DIFFERENTIALLY EXPRESSED IN LYMPH NODES FROM CANCER PATIENTS |
| US20120283310A1 (en) | 2008-02-28 | 2012-11-08 | Croce Carlo M | MicroRNA Signatures Associated with Human Chronic Lymphocytic Leukemia (CLL) and Uses Thereof |
| EP2112235A1 (en) | 2008-04-24 | 2009-10-28 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Compositions and methods for microRNA expression profiling of nasopharyngeal carcinoma |
| US8519110B2 (en) | 2008-06-06 | 2013-08-27 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | mRNA cap analogs |
| WO2010018563A2 (en) | 2008-08-12 | 2010-02-18 | Rosetta Genomics Ltd. | Compositions and methods for the prognosis of lymphoma |
| US20120053224A1 (en) | 2008-12-10 | 2012-03-01 | Universitat Regensburg | Compositions and methods for micro-rna expression profiling of cancer stem cells |
| US20120264626A1 (en) | 2009-05-08 | 2012-10-18 | The Ohio State University Research Foundation | MicroRNA Expression Profiling and Targeting in Chronic Obstructive Pulmonary Disease (COPD) Lung Tissue and Methods of Use Thereof |
| WO2011012316A2 (de) * | 2009-07-31 | 2011-02-03 | Ludwig-Maximilians-Universität | Rna mit einer kombination aus unmodifizierten und modifizierten nucleotiden zur proteinexpression |
| WO2011028175A1 (en) | 2009-09-01 | 2011-03-10 | Agency For Science, Technology And Research | Terminal device and method for processing an encrypted bit stream |
| WO2011068810A1 (en) | 2009-12-01 | 2011-06-09 | Shire Human Genetic Therapies | Delivery of mrna for the augmentation of proteins and enzymes in human genetic diseases |
| WO2011076143A1 (en) | 2009-12-24 | 2011-06-30 | Fudan University | Compositions and methods for microrna expression profiling of lung cancer |
| WO2011076142A1 (en) | 2009-12-24 | 2011-06-30 | Fudan University | Compositions and methods for microrna expession profiling in plasma of colorectal cancer |
| US20130053264A1 (en) | 2009-12-30 | 2013-02-28 | Febit Holding Gmbh | Mirna fingerprint in the diagnosis of prostate cancer |
| US20130053263A1 (en) | 2009-12-30 | 2013-02-28 | Febit Holding Gmbh | miRNA FINGERPRINT IN THE DIAGNOSIS OF COPD |
| US20120316081A1 (en) | 2010-01-29 | 2012-12-13 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Method of Identifying Myelodysplastic Syndromes |
| WO2011095623A2 (en) | 2010-02-05 | 2011-08-11 | Febit Holding Gmbh | miRNA IN THE DIAGNOSIS OF OVARIAN CANCER |
| US20120309645A1 (en) | 2010-02-05 | 2012-12-06 | Febit Holding Gmbh | miRNA IN THE DIAGNOSIS OF OVARIAN CANCER |
| US20130059015A1 (en) | 2010-03-11 | 2013-03-07 | H. Lee Moffitt Cancer Center & Research Institute | Human Cancer micro-RNA Expression Profiles Predictive of Chemo-Response |
| US20110247090A1 (en) | 2010-04-02 | 2011-10-06 | Intrexon Corporation | Synthetic 5'UTRs, Expression Vectors, and Methods for Increasing Transgene Expression |
| WO2011157294A1 (en) | 2010-06-16 | 2011-12-22 | Universita' Degli Studi Di Padova | Compositions for use in treating or preventing cancer, breast cancer, lung cancer, ovarian cancer, metastasis, heart failure, cardiac remodelling, dilated cardiomyopathy, autoimmune diseases, or diseases or disorders related thereto |
| WO2012009644A2 (en) | 2010-07-16 | 2012-01-19 | Arizona Board Of Regents | Methods to identify synthetic and natural rna elements that enhance protein translation |
| WO2012019168A2 (en) | 2010-08-06 | 2012-02-09 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| WO2012019630A1 (en) * | 2010-08-13 | 2012-02-16 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
| WO2012045082A2 (en) | 2010-10-01 | 2012-04-05 | Jason Schrum | Engineered nucleic acids and methods of use thereof |
| WO2012045075A1 (en) | 2010-10-01 | 2012-04-05 | Jason Schrum | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US20120251618A1 (en) * | 2011-03-31 | 2012-10-04 | modeRNA Therapeutics | Delivery and formulation of engineered nucleic acids |
| WO2012151212A1 (en) | 2011-05-01 | 2012-11-08 | University Of Rochester | Multifocal hepatocellular carcinoma microrna expression patterns and uses thereof |
| US20130042333A1 (en) | 2011-05-06 | 2013-02-14 | Jean-Gabriel JUDDE | Markers for cancer prognosis and therapy and methods of use |
| WO2013011378A1 (en) | 2011-07-15 | 2013-01-24 | Leo Pharma A/S | Diagnostic microrna profiling in cutaneous t-cell lymphoma (ctcl) |
| WO2013033640A1 (en) | 2011-09-01 | 2013-03-07 | Allegro Diagnostics Corp. | Methods and compositions for detecting cancer based on mirna expression profiles |
| US20130115272A1 (en) | 2011-10-03 | 2013-05-09 | modeRNA Therapeutics | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| WO2013052523A1 (en) | 2011-10-03 | 2013-04-11 | modeRNA Therapeutics | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| WO2013066678A1 (en) | 2011-10-26 | 2013-05-10 | Georgetown University | Microrna expression profiling of thyroid cancer |
| US20130156849A1 (en) | 2011-12-16 | 2013-06-20 | modeRNA Therapeutics | Modified nucleoside, nucleotide, and nucleic acid compositions |
| WO2013090648A1 (en) | 2011-12-16 | 2013-06-20 | modeRNA Therapeutics | Modified nucleoside, nucleotide, and nucleic acid compositions |
| WO2013103659A1 (en) | 2012-01-04 | 2013-07-11 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Stabilizing rna by incorporating chain-terminating nucleosides at the 3'-terminus |
| WO2013109713A1 (en) | 2012-01-18 | 2013-07-25 | The General Hospital Corporation | Targeting rnas to microvesicles |
| WO2013120497A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein |
| WO2013120629A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein |
| WO2013120627A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen |
| WO2013120628A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen |
| WO2013120500A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen |
| WO2013120626A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen |
| WO2013120499A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly (a) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen |
| WO2013120498A1 (en) | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen |
Non-Patent Citations (65)
| Title |
|---|
| ALBRECHT, IMMUNOTHERAPY, vol. 2, no. 6, 2010, pages 795 - 8 |
| ANAND; CHERESH, CURR OPIN HEMATOL, vol. 18, 2011, pages 171 - 176 |
| ANDALOUSSI ET AL., CURR PHARM DES., vol. 11, no. 28, 2005, pages 3597 - 611 |
| ANNONI A ET AL., BLOOD, vol. 114, 2009, pages 5152 - 5161 |
| B. R. ANDERSON ET AL: "Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation", NUCLEIC ACIDS RESEARCH, vol. 38, no. 17, 1 September 2010 (2010-09-01), pages 5884 - 5892, XP055041208, ISSN: 0305-1048, DOI: 10.1093/nar/gkq347 * |
| BAR M ET AL., STEM CELLS, vol. 26, 2008, pages 2496 - 2505 |
| BARTEL, CELL, vol. 136, 2009, pages 215 - 233 |
| BONAUER ET AL., CURR DRUG TARGETS, vol. 11, 2010, pages 943 - 949 |
| BRIEBA ET AL., BIOCHEMISTRY, vol. 41, 2002, pages 5144 - 5149 |
| BROWN B.D., NALDINI L.: "Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications", NATURE, vol. 10, no. 8, August 2009 (2009-08-01), pages 578 - 584, XP002607892 |
| BROWN BD ET AL., BLOOD, vol. 110, no. 13, 2007, pages 4144 - 4152 |
| BROWN BD ET AL., NAT MED., vol. 12, no. 5, 2006, pages 585 - 591 |
| CARILLO ET AL., SIAM J. APPLIED MATH., vol. 48, 1988, pages 1073 |
| CARON ET AL., MOL THER., vol. 3, no. 3, 2001, pages 310 - 8 |
| CHAPPELL ET AL., PROC. NATL. ACAD. SCI. USA, vol. 101, 2004, pages 9590 - 9594 |
| CLANCY JENNIFER L. ET AL.: "METHODS IN ENZYMOLOGY", vol. 431, 2007, ELSEVIER, article "Methods to Analyze MicroRNA‐Mediated Control of mRNA Translation", pages: 83 - 111, XP055743484 |
| CONTRERAS; RAO, LEUKEMIA, vol. 26, 20 December 2011 (2011-12-20), pages 404 - 413 |
| DESHAYES ET AL., CELL MOL LIFE SCI., vol. 62, no. 16, 2005, pages 1839 - 49 |
| ESVELT ET AL., NATURE, vol. 472, no. 7344, 2011, pages 499 - 503 |
| FAN, X.C. ET AL.: "Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs", EMBO J., vol. 17, no. 12, 15 June 1998 (1998-06-15), pages 3448 - 60 |
| FUKUHARA ET AL., BIOCHEMISTRY, vol. 1, no. 4, 1962, pages 563 - 568 |
| GAIT, M.J.: "Oligonucleotide synthesis: a practical approach, Oxford", 1984, IRL PRESS |
| GENTNER; NALDINI, TISSUE ANTIGENS, vol. 80, 2012, pages 393 - 403 |
| GOFF LA ET AL., PLOS ONE, vol. 4, 2009, pages E7192 |
| GREENE ET AL.: "Protective Groups in Organic Synthesis, 2d. Ed.,", 1991, WILEY & SONS |
| GRIBSKOV, M. AND DEVEREUX, J.,: "Sequence Analysis Primer", 1991, M. STOCKTON PRESS |
| GRIFFIN, A. M., AND GRIFFIN, H. G.,: "Computer Analysis of Sequence Data", 1994, HUMANA PRESS |
| GRIMSON A; FARH KK; JOHNSTON WK; GARRETT-ENGELE P; LIM LP; BARTEL DP, MOL CELL, vol. 27, no. 1, 6 July 2007 (2007-07-06), pages 91 - 105 |
| HEINJE, G.: "Sequence Analysis in Molecular Biology", 1987, ACADEMIC PRESS |
| HERDEWIJN, P.: "Methods in Molecular Biology", vol. 288, 2005, HUMANA PRESS, article "Oligonucleotide synthesis: methods and applications" |
| J. MOL BIOL, vol. 266, no. 4, 1997, pages 814 - 830 |
| JIMA DD ET AL., BLOOD, vol. 116, 2010, pages E118 - E127 |
| KARIKÓ KATALIN ET AL: "Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability", MOLECULAR THERAPY, NATURE PUBLISHING GROUP, GB, vol. 16, no. 11, 1 November 2008 (2008-11-01), pages 1833 - 1840, XP002614742, ISSN: 1525-0024, DOI: 10.1038/MT.2008.200 * |
| KATALIN KARIKÓ ET AL: "Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA", NUCLEIC ACIDS RESEARCH, OXFORD UNIVERSITY PRESS, GB, vol. 39, no. 21, 1 November 2011 (2011-11-01), pages e142 - 1, XP002696190, ISSN: 1362-4962, [retrieved on 20110902], DOI: 10.1093/NAR/GKR695 * |
| KEDDE ET AL.: "A Pumilio-induced RNA structure switch in p27-3 'UTR controls miR-221 and miR-22 accessibility", NATURE CELL BIOLOGY, 2010 |
| KEDDE ET AL.: "A Pumilio-induced RNA structure switch in p27-3'UTR controls miR-221 and miR-22 accessibility", NATURE CELL BIOLOGY, 2010 |
| KORE ET AL., BIOORGANIC & MEDICINAL CHEMISTRY, vol. 21, 2013, pages 4570 - 4574 |
| KUPPUSAMY KT ET AL., CURR. MOL MED, vol. 13, no. 5, 2013, pages 757 - 764 |
| LANDGRAF ET AL., CELL, vol. 129, 2007, pages 1401 - 1414 |
| LANGEL: "Cell-Penetrating Peptides: Processes and Applications", 2002, CRC PRESS |
| LEPPEK K ET AL., CELL, vol. 153, 2013, pages 869 - 881 |
| LESK, A. M.,: "Computational Molecular Biology", 1988, OXFORD UNIVERSITY PRESS |
| LYTLE ET AL.: "Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR", PNAS, vol. 104, no. 23, 5 June 2007 (2007-06-05), pages 9667 - 9672, XP055743530 |
| MATSUDA ET AL., PLOS ONE, vol. 11, no. 5, 2010, pages E15057 |
| MEIJER HA ET AL., SCIENCE, vol. 340, 2013, pages 82 - 85 |
| MORIN RD ET AL., GENOME RES, vol. 18, 2008, pages 610 - 621 |
| MUSUNURU K ET AL.: "From noncoding variant to phenotype via SORTI at the 1p13 cholesterol locus", NATURE, vol. 466, 2010, pages 714 - 721 |
| OGATA ET AL., J. ORG. CHEM., vol. 74, 2009, pages 2585 - 2588 |
| PARKER BJ ET AL., GENOME RESEARCH, vol. 21, 2011, pages 1929 - 1943 |
| PEART ET AL.: "Non-mRNA 3' end formation: how the other half lives", WIRES RNA, 2013 |
| PURMAL ET AL., NUCL. ACIDS RES., vol. 22, no. 1, 1994, pages 72 - 78 |
| RAY ET AL., NATURE, vol. 499, 2013, pages 172 - 177 |
| ROZENSKI, J; CRAIN, P; MCCLOSKEY, J.: "The RNA Modification Database: 1999 update", NUCL ACIDS RES, vol. 27, 1999, pages 196 - 197 |
| SMITH, D. W.,: "Biocomputing: Informatics and Genome Projects", 1993, ACADEMIC PRESS |
| STEPHEN F.; ALTSCHUL, THOMAS L. MADDEN; ALEJANDRO A. SCHAFFER; JINGHUI ZHANG; ZHENG ZHANG; WEBB MILLER; DAVID J. LIPMAN: "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402, XP002905950, DOI: doi:10.1093/nar/25.17.3389 |
| T. E. CREIGHTON: "Proteins: Structure and Molecular Properties", 1983, W.H. FREEMAN & CO., pages: 79 - 86 |
| VAZ C ET AL., BMC GENOMICS, vol. 11, 2010, pages 288 |
| VIDIGAL JA; VENTURA A, SEMIN CANCER BIOL., vol. 22, no. 5-6, 2012, pages 428 - 436 |
| VOELLENKLE C ET AL., RNA, vol. 18, 2012, pages 472 - 484 |
| WELLENSIEK ET AL.: "Genome-wide profiling of human cap-independent translation-enhancing elements", NATURE METHODS, 2013 |
| WILUSZ ET AL., CELL, vol. 135, no. 5, 2008, pages 919 - 932 |
| WILUSZ ET AL., GENES & DEVELOPMENT, vol. 26, 2012, pages 2392 - 2407 |
| XU ET AL., TETRAHEDRON, vol. 48, no. 9, 1992, pages 1729 - 1740 |
| YOO JK ET AL., STEM CELLS DEV., vol. 21, no. 11, 2012, pages 2049 - 2057 |
| ZHOU ET AL., PNAS, vol. 102, 2005, pages 6273 - 6278 |
Cited By (239)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12186333B2 (en) | 2010-07-06 | 2025-01-07 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
| US11786467B2 (en) | 2010-07-06 | 2023-10-17 | Glaxosmithkline Biologicals Sa | Lipid formulations with immunogens |
| US11905514B2 (en) | 2010-07-06 | 2024-02-20 | Glaxosmithkline Biological Sa | Immunisation of large mammals with low doses of RNA |
| US11596645B2 (en) | 2010-07-06 | 2023-03-07 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
| US11638693B2 (en) | 2010-07-06 | 2023-05-02 | Glaxosmithkline Biologicals Sa | Vaccine for eliciting immune response comprising RNA encoding an immunogen and lipid formulations comprising mole percentage of lipids |
| US11891608B2 (en) | 2010-07-06 | 2024-02-06 | Glaxosmithkline Biologicals Sa | Immunization of large mammals with low doses of RNA |
| US11638694B2 (en) | 2010-07-06 | 2023-05-02 | Glaxosmithkline Biologicals Sa | Vaccine for eliciting immune response comprising lipid formulations and RNA encoding multiple immunogens |
| US11655475B2 (en) | 2010-07-06 | 2023-05-23 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
| US11913001B2 (en) | 2010-07-06 | 2024-02-27 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
| US11666534B2 (en) | 2010-07-06 | 2023-06-06 | Glaxosmithkline Biologicals Sa | Methods of administering lipid formulations with viral immunogens |
| US11690865B2 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
| US11883534B2 (en) | 2010-07-06 | 2024-01-30 | Glaxosmithkline Biologicals Sa | Immunisation with lipid formulations with RNA encoding immunogens |
| US11865080B2 (en) | 2010-07-06 | 2024-01-09 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
| US11690861B2 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
| US11690863B2 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
| US11690864B2 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
| US11690862B1 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
| US11696923B2 (en) | 2010-07-06 | 2023-07-11 | Glaxosmithkline Biologicals, Sa | Delivery of RNA to trigger multiple immune pathways |
| US11857562B2 (en) | 2010-07-06 | 2024-01-02 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
| US11857681B2 (en) | 2010-07-06 | 2024-01-02 | Glaxosmithkline Biologicals Sa | Lipid formulations with RNA encoding immunogens |
| US11850305B2 (en) | 2010-07-06 | 2023-12-26 | Glaxosmithkline Biologicals Sa | Method of making lipid formulations with RNA encoding immunogens |
| US11851660B2 (en) | 2010-07-06 | 2023-12-26 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
| US11707482B2 (en) | 2010-07-06 | 2023-07-25 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
| US11717529B2 (en) | 2010-07-06 | 2023-08-08 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
| US11845925B2 (en) | 2010-07-06 | 2023-12-19 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
| US11839686B2 (en) | 2010-07-06 | 2023-12-12 | Glaxosmithkline Biologicals Sa | Lipid formulations with viral immunogens |
| US11730754B2 (en) | 2010-07-06 | 2023-08-22 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
| US11739334B2 (en) | 2010-07-06 | 2023-08-29 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
| US20220125723A1 (en) | 2010-07-06 | 2022-04-28 | Glaxosmithkline Biologicals Sa | Lipid formulations with viral immunogens |
| US11773395B1 (en) | 2010-07-06 | 2023-10-03 | Glaxosmithkline Biologicals Sa | Immunization of large mammals with low doses of RNA |
| US11766401B2 (en) | 2010-07-06 | 2023-09-26 | Glaxosmithkline Biologicals Sa | Methods of administering lipid formulations with immunogens |
| US11759475B2 (en) | 2010-07-06 | 2023-09-19 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
| US9447164B2 (en) | 2010-08-06 | 2016-09-20 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US9937233B2 (en) | 2010-08-06 | 2018-04-10 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
| US9181319B2 (en) | 2010-08-06 | 2015-11-10 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US11759422B2 (en) | 2010-08-31 | 2023-09-19 | Glaxosmithkline Biologicals Sa | Pegylated liposomes for delivery of immunogen-encoding RNA |
| US10064959B2 (en) | 2010-10-01 | 2018-09-04 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US9701965B2 (en) | 2010-10-01 | 2017-07-11 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
| US9657295B2 (en) | 2010-10-01 | 2017-05-23 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US11639370B2 (en) | 2010-10-11 | 2023-05-02 | Glaxosmithkline Biologicals Sa | Antigen delivery platforms |
| US11911474B2 (en) | 2011-03-31 | 2024-02-27 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US12364763B2 (en) | 2011-03-31 | 2025-07-22 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US9950068B2 (en) | 2011-03-31 | 2018-04-24 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US12409226B2 (en) | 2011-03-31 | 2025-09-09 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US9533047B2 (en) | 2011-03-31 | 2017-01-03 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US12419957B2 (en) | 2011-03-31 | 2025-09-23 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US12502431B2 (en) | 2011-03-31 | 2025-12-23 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US10898574B2 (en) | 2011-03-31 | 2021-01-26 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US11896636B2 (en) | 2011-07-06 | 2024-02-13 | Glaxosmithkline Biologicals Sa | Immunogenic combination compositions and uses thereof |
| US10751386B2 (en) | 2011-09-12 | 2020-08-25 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
| US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US10022425B2 (en) | 2011-09-12 | 2018-07-17 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
| US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| EP3682905B1 (en) | 2011-10-03 | 2021-12-01 | ModernaTX, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US9186372B2 (en) | 2011-12-16 | 2015-11-17 | Moderna Therapeutics, Inc. | Split dose administration |
| EP2791160B1 (en) | 2011-12-16 | 2022-03-02 | ModernaTX, Inc. | Modified mrna compositions |
| US9295689B2 (en) | 2011-12-16 | 2016-03-29 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
| US9271996B2 (en) | 2011-12-16 | 2016-03-01 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
| US9301993B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding apoptosis inducing factor 1 |
| US9114113B2 (en) | 2012-04-02 | 2015-08-25 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding citeD4 |
| US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
| US9828416B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
| US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
| US9827332B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of proteins |
| US9050297B2 (en) | 2012-04-02 | 2015-06-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aryl hydrocarbon receptor nuclear translocator |
| US9061059B2 (en) | 2012-04-02 | 2015-06-23 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating protein deficiency |
| US9089604B2 (en) | 2012-04-02 | 2015-07-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating galactosylceramidase protein deficiency |
| US9095552B2 (en) | 2012-04-02 | 2015-08-04 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding copper metabolism (MURR1) domain containing 1 |
| US9814760B2 (en) | 2012-04-02 | 2017-11-14 | Modernatx, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
| US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
| US9782462B2 (en) | 2012-04-02 | 2017-10-10 | Modernatx, Inc. | Modified polynucleotides for the production of proteins associated with human disease |
| US9149506B2 (en) | 2012-04-02 | 2015-10-06 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding septin-4 |
| US9192651B2 (en) | 2012-04-02 | 2015-11-24 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of secreted proteins |
| US9216205B2 (en) | 2012-04-02 | 2015-12-22 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding granulysin |
| US9220792B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aquaporin-5 |
| US9220755B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
| US9221891B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | In vivo production of proteins |
| US10385106B2 (en) | 2012-04-02 | 2019-08-20 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
| US9233141B2 (en) | 2012-04-02 | 2016-01-12 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
| US9675668B2 (en) | 2012-04-02 | 2017-06-13 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding hepatitis A virus cellular receptor 2 |
| US9254311B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
| US9587003B2 (en) | 2012-04-02 | 2017-03-07 | Modernatx, Inc. | Modified polynucleotides for the production of oncology-related proteins and peptides |
| US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
| US10501512B2 (en) | 2012-04-02 | 2019-12-10 | Modernatx, Inc. | Modified polynucleotides |
| US10703789B2 (en) | 2012-04-02 | 2020-07-07 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
| US9303079B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
| US10577403B2 (en) | 2012-04-02 | 2020-03-03 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
| US9255129B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding SIAH E3 ubiquitin protein ligase 1 |
| US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
| US10925935B2 (en) | 2012-11-26 | 2021-02-23 | Modernatx, Inc. | Terminally Modified RNA |
| US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
| US10155029B2 (en) | 2012-11-26 | 2018-12-18 | Modernatx, Inc. | Terminally modified RNA |
| US12023371B2 (en) | 2012-11-26 | 2024-07-02 | Modernatx, Inc. | Terminally modified RNA |
| US11708396B2 (en) | 2013-01-17 | 2023-07-25 | Modernatx, Inc. | Signal-sensor polynucleotides for the alteration of cellular phenotypes |
| EP3434774A1 (en) * | 2013-01-17 | 2019-01-30 | ModernaTX, Inc. | Signal-sensor polynucleotides for the alteration of cellular phenotypes |
| US10258698B2 (en) | 2013-03-14 | 2019-04-16 | Modernatx, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
| US10858647B2 (en) | 2013-03-15 | 2020-12-08 | Modernatx, Inc. | Removal of DNA fragments in mRNA production process |
| US10138507B2 (en) | 2013-03-15 | 2018-11-27 | Modernatx, Inc. | Manufacturing methods for production of RNA transcripts |
| US11845772B2 (en) | 2013-03-15 | 2023-12-19 | Modernatx, Inc. | Ribonucleic acid purification |
| US10077439B2 (en) | 2013-03-15 | 2018-09-18 | Modernatx, Inc. | Removal of DNA fragments in mRNA production process |
| US10590161B2 (en) | 2013-03-15 | 2020-03-17 | Modernatx, Inc. | Ion exchange purification of mRNA |
| US11377470B2 (en) | 2013-03-15 | 2022-07-05 | Modernatx, Inc. | Ribonucleic acid purification |
| US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
| US11027025B2 (en) | 2013-07-11 | 2021-06-08 | Modernatx, Inc. | Compositions comprising synthetic polynucleotides encoding CRISPR related proteins and synthetic sgRNAs and methods of use |
| WO2015034925A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Circular polynucleotides |
| US10385088B2 (en) | 2013-10-02 | 2019-08-20 | Modernatx, Inc. | Polynucleotide molecules and uses thereof |
| US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
| WO2015051214A1 (en) | 2013-10-03 | 2015-04-09 | Moderna Therapeutics, Inc. | Polynucleotides encoding low density lipoprotein receptor |
| EP4023249B1 (en) | 2014-04-23 | 2024-10-09 | ModernaTX, Inc. | Nucleic acid vaccines |
| EP3981437B1 (en) | 2014-04-23 | 2024-10-09 | ModernaTX, Inc. | Nucleic acid vaccines |
| JP2021091689A (ja) * | 2014-04-23 | 2021-06-17 | モデルナティーエックス, インコーポレイテッド | 核酸ワクチン |
| JP7504464B2 (ja) | 2014-04-23 | 2024-06-24 | モデルナティエックス インコーポレイテッド | 核酸ワクチン |
| US12274743B2 (en) | 2014-04-23 | 2025-04-15 | Modernatx, Inc. | Nucleic acid vaccines |
| EP3134131B1 (en) | 2014-04-23 | 2021-12-22 | ModernaTX, Inc. | Nucleic acid vaccines |
| US12329812B2 (en) | 2014-04-23 | 2025-06-17 | Modernatx, Inc. | Nucleic acid vaccines |
| EP3156498A4 (en) * | 2014-06-13 | 2018-05-02 | Toray Industries, Inc. | Breast cancer detection kit or device, and method for detecting breast cancer |
| US11479822B2 (en) | 2014-06-13 | 2022-10-25 | Toray Industries, Inc. | Breast cancer detection kit or device, and detection method |
| US11859255B2 (en) | 2014-06-13 | 2024-01-02 | Toray Industries, Inc. | Breast cancer detection kit or device, and detection method |
| US10597726B2 (en) | 2014-06-13 | 2020-03-24 | Toray Industries, Inc. | Breast cancer detection kit or device, and detection method |
| US12398430B2 (en) | 2014-06-13 | 2025-08-26 | Toray Industries, Inc. | Breast cancer detection kit or device, and detection method |
| EP3157573A4 (en) * | 2014-06-19 | 2018-02-21 | Moderna Therapeutics, Inc. | Alternative nucleic acid molecules and uses thereof |
| US10286086B2 (en) | 2014-06-19 | 2019-05-14 | Modernatx, Inc. | Alternative nucleic acid molecules and uses thereof |
| EP3157572A4 (en) * | 2014-06-19 | 2018-02-14 | Moderna Therapeutics, Inc. | Alternative nucleic acid molecules and uses thereof |
| JP2016011272A (ja) * | 2014-06-27 | 2016-01-21 | 国立大学法人北海道大学 | 免疫応答制御剤 |
| WO2016011226A1 (en) * | 2014-07-16 | 2016-01-21 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
| US10407683B2 (en) | 2014-07-16 | 2019-09-10 | Modernatx, Inc. | Circular polynucleotides |
| JP2017523777A (ja) * | 2014-07-17 | 2017-08-24 | モデルナティエックス インコーポレイテッドModernaTX,Inc. | ポリヌクレオチドの末端修飾 |
| WO2016014846A1 (en) | 2014-07-23 | 2016-01-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of intrabodies |
| WO2016023077A1 (en) * | 2014-08-15 | 2016-02-18 | Griffith University | Biological markers |
| US11219634B2 (en) | 2015-01-21 | 2022-01-11 | Genevant Sciences Gmbh | Methods, compositions, and systems for delivering therapeutic and diagnostic agents into cells |
| US12109274B2 (en) | 2015-09-17 | 2024-10-08 | Modernatx, Inc. | Polynucleotides containing a stabilizing tail region |
| US11434486B2 (en) | 2015-09-17 | 2022-09-06 | Modernatx, Inc. | Polynucleotides containing a morpholino linker |
| US12071620B2 (en) | 2015-09-17 | 2024-08-27 | Modernatx, Inc. | Polynucleotides containing a morpholino linker |
| JP6990176B2 (ja) | 2015-10-05 | 2022-02-03 | モデルナティエックス インコーポレイテッド | メッセンジャーリボ核酸薬物の治療投与のための方法 |
| JP2021175750A (ja) * | 2015-10-05 | 2021-11-04 | モデルナティーエックス, インコーポレイテッド | メッセンジャーリボ核酸薬物の治療投与のための方法 |
| US12246030B2 (en) | 2015-10-05 | 2025-03-11 | Modernatx, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
| US11590157B2 (en) | 2015-10-05 | 2023-02-28 | Modernatx, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
| US10849920B2 (en) | 2015-10-05 | 2020-12-01 | Modernatx, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
| JP2018529738A (ja) * | 2015-10-05 | 2018-10-11 | モデルナティーエックス, インコーポレイテッド | メッセンジャーリボ核酸薬物の治療投与のための方法 |
| EP3718565B1 (en) | 2015-10-22 | 2022-04-27 | ModernaTX, Inc. | Respiratory virus vaccines |
| EP3374504B1 (en) * | 2015-11-09 | 2025-03-19 | CureVac SE | Optimized nucleic acid molecules |
| EP4582098A3 (en) * | 2015-11-09 | 2025-12-24 | CureVac SE | Optimized nucleic acid molecules |
| WO2017100551A1 (en) * | 2015-12-09 | 2017-06-15 | Alexion Pharmaceuticals, Inc. | HETEROLOGOUS UTR SEQUENCES FOR ENHANCED mRNA EXPRESSION |
| US11980672B2 (en) | 2015-12-09 | 2024-05-14 | Modernatx, Inc. | Heterologous UTR sequences for enhanced mRNA expression |
| WO2017100562A1 (en) | 2015-12-09 | 2017-06-15 | Alexion Pharmaceuticals, Inc, | Modified mrna encoding a uridine diphopsphate glucuronosyl transferase and uses thereof |
| US11389546B2 (en) | 2015-12-09 | 2022-07-19 | Modernatx, Inc. | Heterologous UTR sequences for enhanced mRNA expression |
| US11285222B2 (en) | 2015-12-10 | 2022-03-29 | Modernatx, Inc. | Compositions and methods for delivery of agents |
| US12491260B2 (en) | 2015-12-10 | 2025-12-09 | Modernatx, Inc. | Compositions and methods for delivery of agents |
| US10207010B2 (en) | 2015-12-10 | 2019-02-19 | Modernatx, Inc. | Compositions and methods for delivery of agents |
| US10485885B2 (en) | 2015-12-10 | 2019-11-26 | Modernatx, Inc. | Compositions and methods for delivery of agents |
| US10556018B2 (en) | 2015-12-10 | 2020-02-11 | Modernatx, Inc. | Compositions and methods for delivery of agents |
| WO2017127750A1 (en) | 2016-01-22 | 2017-07-27 | Modernatx, Inc. | Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof |
| CN109195621A (zh) * | 2016-05-18 | 2019-01-11 | 莫得纳特斯公司 | 编码白细胞介素12(il12)的多核苷酸及其用途 |
| US11801227B2 (en) | 2016-05-18 | 2023-10-31 | Modernatx, Inc. | Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis |
| WO2017201342A1 (en) * | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Polynucleotides encoding jagged1 for the treatment of alagille syndrome |
| WO2017201347A1 (en) * | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis |
| US11311602B2 (en) | 2016-05-18 | 2022-04-26 | Modernatx, Inc. | Polynucleotides encoding interleukin-12 (IL12) and uses thereof |
| US11571463B2 (en) | 2016-05-18 | 2023-02-07 | Modernatx, Inc. | Polynucleotides encoding interleukin-12 (IL12) and uses thereof |
| US12128113B2 (en) | 2016-05-18 | 2024-10-29 | Modernatx, Inc. | Polynucleotides encoding JAGGED1 for the treatment of Alagille syndrome |
| US12385034B2 (en) | 2016-06-24 | 2025-08-12 | Modernatx, Inc. | Methods and apparatus for filtration |
| WO2018009838A1 (en) | 2016-07-07 | 2018-01-11 | Rubius Therapeutics, Inc. | Compositions and methods related to therapeutic cell systems expressing exogenous rna |
| CN106139164B (zh) * | 2016-08-04 | 2020-02-21 | 北京信生元生物医学科技有限公司 | miR-5001在制备治疗白血病的药物中的应用 |
| CN106139164A (zh) * | 2016-08-04 | 2016-11-23 | 北京信生元生物医学科技有限公司 | miR‑5001在制备治疗白血病的药物中的应用 |
| WO2018081459A1 (en) | 2016-10-26 | 2018-05-03 | Modernatx, Inc. | Messenger ribonucleic acids for enhancing immune responses and methods of use thereof |
| US12409218B2 (en) | 2016-11-11 | 2025-09-09 | Modernatx, Inc. | Influenza vaccine |
| US12318443B2 (en) | 2016-11-11 | 2025-06-03 | Modernatx, Inc. | Influenza vaccine |
| US11993645B2 (en) | 2017-01-11 | 2024-05-28 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions comprising R-Spondin (RSPO) surrogate molecules |
| US11958891B2 (en) | 2017-01-26 | 2024-04-16 | Surrozen Operating, Inc. | Tissue-specific Wnt signal enhancing molecules and uses thereof |
| WO2018144775A1 (en) | 2017-02-01 | 2018-08-09 | Modernatx, Inc. | Immunomodulatory therapeutic mrna compositions encoding activating oncogene mutation peptides |
| EP4253544A2 (en) | 2017-05-18 | 2023-10-04 | ModernaTX, Inc. | Modified messenger rna comprising functional rna elements |
| WO2018213789A1 (en) | 2017-05-18 | 2018-11-22 | Modernatx, Inc. | Modified messenger rna comprising functional rna elements |
| WO2018231034A3 (ko) * | 2017-06-16 | 2019-04-11 | (주)프로스테믹스 | 암의 예방 또는 치료용 약학적 조성물 |
| WO2019018765A1 (en) | 2017-07-21 | 2019-01-24 | Modernatx, Inc. | MODIFIED mRNA ENCODING PROPIONYL-COA-CARBOXYLASE AND USES THEREOF |
| WO2019023179A1 (en) | 2017-07-24 | 2019-01-31 | Modernatx, Inc. | MODIFIED mRNA ENCODING GLUCOSE-6-PHOSPHATASE AND USES THEREOF |
| KR20200117975A (ko) * | 2017-09-20 | 2020-10-14 | 폰다치오네 이스티튜토 이탈리아노 디 테크놀로지아 | 기능성 핵산 분자 및 그의 용도 |
| US11649456B2 (en) | 2017-09-20 | 2023-05-16 | Fondazione Istituto Italiano Di Tecnologia | Functional nucleic acid molecule and use thereof |
| KR102677300B1 (ko) | 2017-09-20 | 2024-06-24 | 폰다치오네 이스티튜토 이탈리아노 디 테크놀로지아 | 기능성 핵산 분자 및 그의 용도 |
| KR102751025B1 (ko) | 2017-11-09 | 2025-01-09 | 가부시키가이샤 팜엑스 테라퓨틱스 | miRNA를 포함하는 암 치료용 의약 조성물 |
| KR20200085801A (ko) * | 2017-11-09 | 2020-07-15 | 고쿠리츠다이가쿠호진 히로시마다이가쿠 | miRNA를 포함하는 암 치료용 의약 조성물 |
| WO2019152557A1 (en) | 2018-01-30 | 2019-08-08 | Modernatx, Inc. | Compositions and methods for delivery of agents to immune cells |
| WO2019200171A1 (en) | 2018-04-11 | 2019-10-17 | Modernatx, Inc. | Messenger rna comprising functional rna elements |
| US12123003B2 (en) | 2018-04-19 | 2024-10-22 | Checkmate Pharmaceuticals, Inc. | Synthetic RIG-I-like receptor agonists |
| WO2019204743A1 (en) | 2018-04-19 | 2019-10-24 | Checkmate Pharmaceuticals, Inc. | Synthetic rig-i-like receptor agonists |
| US12466884B2 (en) | 2018-07-09 | 2025-11-11 | Surrozen Operating, Inc. | Tissue-specific WNT signal enhancing molecules and uses |
| US11913012B2 (en) | 2018-08-30 | 2024-02-27 | Tenaya Therapeutics, Inc. | Cardiac cell reprogramming with myocardin and ASCL1 |
| US11015211B2 (en) | 2018-08-30 | 2021-05-25 | Tenaya Therapeutics, Inc. | Cardiac cell reprogramming with myocardin and ASCL1 |
| US12168778B2 (en) | 2018-08-30 | 2024-12-17 | Tenaya Therapeutics, Inc. | Cardiac cell reprogramming with myocardin and ASCL1 |
| WO2020056304A1 (en) | 2018-09-14 | 2020-03-19 | Modernatx, Inc. | Methods and compositions for treating cancer using mrna therapeutics |
| US12383508B2 (en) | 2018-09-19 | 2025-08-12 | Modernatx, Inc. | High-purity peg lipids and uses thereof |
| US12151029B2 (en) | 2018-09-19 | 2024-11-26 | Modernatx, Inc. | PEG lipids and uses thereof |
| WO2020097409A2 (en) | 2018-11-08 | 2020-05-14 | Modernatx, Inc. | Use of mrna encoding ox40l to treat cancer in human patients |
| WO2020227510A1 (en) | 2019-05-07 | 2020-11-12 | Modernatx, Inc. | Polynucleotides for disrupting immune cell activity and methods of use thereof |
| WO2020227537A1 (en) | 2019-05-07 | 2020-11-12 | Modernatx, Inc | Differentially expressed immune cell micrornas for regulation of protein expression |
| WO2020263883A1 (en) | 2019-06-24 | 2020-12-30 | Modernatx, Inc. | Endonuclease-resistant messenger rna and uses thereof |
| WO2020263985A1 (en) | 2019-06-24 | 2020-12-30 | Modernatx, Inc. | Messenger rna comprising functional rna elements and uses thereof |
| WO2021007515A1 (en) | 2019-07-11 | 2021-01-14 | Tenaya Therapeutics, Inc. | Cardiac cell reprogramming with micrornas and other factors |
| WO2021050986A1 (en) | 2019-09-11 | 2021-03-18 | Modernatx, Inc. | Lnp-formulated mrna therapeutics and use thereof for treating human subjects |
| WO2021081353A1 (en) | 2019-10-23 | 2021-04-29 | Checkmate Pharmaceuticals, Inc. | Synthetic rig-i-like receptor agonists |
| WO2021178246A1 (en) | 2020-03-02 | 2021-09-10 | Tenaya Therapeutics, Inc. | Gene vector control by cardiomyocyte-expressed micrornas |
| WO2021243207A1 (en) | 2020-05-28 | 2021-12-02 | Modernatx, Inc. | Use of mrnas encoding ox40l, il-23 and il-36gamma for treating cancer |
| WO2022032154A2 (en) | 2020-08-06 | 2022-02-10 | Modernatx, Inc. | Compositions for the delivery of payload molecules to airway epithelium |
| EP4208549A4 (en) * | 2020-09-04 | 2025-04-16 | Verve Therapeutics, Inc. | Compositions and methods for capping RNAs |
| US12240876B2 (en) | 2020-11-16 | 2025-03-04 | Surrozen Operating, Inc. | Liver-specific Wnt signal enhancing molecules and uses thereof |
| EP4243878A1 (en) | 2020-11-16 | 2023-09-20 | Surrozen Operating, Inc. | Liver-specific wnt signal enhancing molecules and uses thereof |
| US11622972B2 (en) | 2021-02-19 | 2023-04-11 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
| US11524023B2 (en) | 2021-02-19 | 2022-12-13 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
| EP4361270A4 (en) * | 2021-06-24 | 2025-05-21 | Hanmi Pharm. Co., Ltd. | Non-natural 5'-untranslated region and 3'-untranslated region and use thereof |
| WO2023009421A1 (en) | 2021-07-26 | 2023-02-02 | Modernatx, Inc. | Processes for preparing lipid nanoparticle compositions |
| WO2023009422A1 (en) | 2021-07-26 | 2023-02-02 | Modernatx, Inc. | Processes for preparing lipid nanoparticle compositions for the delivery of payload molecules to airway epithelium |
| WO2023031394A1 (en) | 2021-09-03 | 2023-03-09 | CureVac SE | Novel lipid nanoparticles for delivery of nucleic acids |
| WO2023064469A1 (en) | 2021-10-13 | 2023-04-20 | Modernatx, Inc. | Compositions of mrna-encoded il15 fusion proteins and methods of use thereof |
| WO2023073228A1 (en) | 2021-10-29 | 2023-05-04 | CureVac SE | Improved circular rna for expressing therapeutic proteins |
| WO2023086465A1 (en) | 2021-11-12 | 2023-05-19 | Modernatx, Inc. | Compositions for the delivery of payload molecules to airway epithelium |
| WO2023144330A1 (en) | 2022-01-28 | 2023-08-03 | CureVac SE | Nucleic acid encoded transcription factor inhibitors |
| WO2023154818A1 (en) | 2022-02-09 | 2023-08-17 | Modernatx, Inc. | Mucosal administration methods and formulations |
| WO2023196988A1 (en) | 2022-04-07 | 2023-10-12 | Modernatx, Inc. | Methods of use of mrnas encoding il-12 |
| WO2023199113A1 (en) | 2022-04-15 | 2023-10-19 | Smartcella Solutions Ab | COMPOSITIONS AND METHODS FOR EXOSOME-MEDIATED DELIVERY OF mRNA AGENTS |
| WO2023215498A2 (en) | 2022-05-05 | 2023-11-09 | Modernatx, Inc. | Compositions and methods for cd28 antagonism |
| WO2023227608A1 (en) | 2022-05-25 | 2023-11-30 | Glaxosmithkline Biologicals Sa | Nucleic acid based vaccine encoding an escherichia coli fimh antigenic polypeptide |
| DE202023106198U1 (de) | 2022-10-28 | 2024-03-21 | CureVac SE | Impfstoff auf Nukleinsäurebasis |
| WO2024097639A1 (en) | 2022-10-31 | 2024-05-10 | Modernatx, Inc. | Hsa-binding antibodies and binding proteins and uses thereof |
| WO2024107827A1 (en) | 2022-11-16 | 2024-05-23 | The Broad Institute, Inc. | Therapeutic exploitation of sting channel activity |
| WO2024118866A1 (en) | 2022-12-01 | 2024-06-06 | Modernatx, Inc. | Gpc3-specific antibodies, binding domains, and related proteins and uses thereof |
| WO2024164823A1 (zh) * | 2023-02-07 | 2024-08-15 | 深圳赛陆医疗科技有限公司 | 核苷酸类似物及其在测序中的应用 |
| KR20240125999A (ko) * | 2023-02-12 | 2024-08-20 | 주식회사 래디안 | miRNA를 포함하는 발모 촉진 또는 탈모 방지용 조성물 |
| KR102864195B1 (ko) | 2023-02-12 | 2025-09-24 | 주식회사 래디안 | miRNA를 포함하는 발모 촉진 또는 탈모 방지용 조성물 |
| WO2024178305A1 (en) | 2023-02-24 | 2024-08-29 | Modernatx, Inc. | Compositions of mrna-encoded il-15 fusion proteins and methods of use thereof for treating cancer |
| WO2024184500A1 (en) | 2023-03-08 | 2024-09-12 | CureVac SE | Novel lipid nanoparticle formulations for delivery of nucleic acids |
| WO2024189583A1 (en) | 2023-03-15 | 2024-09-19 | Kyoto Prefectural Public University Corporation | Peptide expression constructs and uses thereof |
| WO2024197310A1 (en) | 2023-03-23 | 2024-09-26 | Modernatx, Inc. | Peg targeting compounds for delivery of therapeutics |
| WO2024197309A1 (en) | 2023-03-23 | 2024-09-26 | Modernatx, Inc. | Peg targeting compounds for delivery of therapeutics |
| WO2024197307A1 (en) | 2023-03-23 | 2024-09-26 | Modernatx, Inc. | Peg targeting compounds for delivery of therapeutics |
| WO2024206126A1 (en) | 2023-03-27 | 2024-10-03 | Modernatx, Inc. | Cd16-binding antibodies and uses thereof |
| WO2024230934A1 (en) | 2023-05-11 | 2024-11-14 | CureVac SE | Therapeutic nucleic acid for the treatment of ophthalmic diseases |
| US12508278B2 (en) | 2023-06-02 | 2025-12-30 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
| WO2025059215A1 (en) | 2023-09-12 | 2025-03-20 | Aadigen, Llc | Methods and compositions for treating or preventing cancer |
| WO2025194138A1 (en) | 2024-03-14 | 2025-09-18 | Tessera Therapeutics, Inc. | St1cas9 compositions and methods for modulating a genome |
| WO2025226842A1 (en) * | 2024-04-24 | 2025-10-30 | Kate Therapeutics, Inc. | Expression control by drg-expressed mirnas |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20250170228A1 (en) | Terminally modified rna | |
| US11708396B2 (en) | Signal-sensor polynucleotides for the alteration of cellular phenotypes | |
| US20170252461A1 (en) | Heterologous untranslated regions for mrna | |
| WO2013090186A1 (en) | Modified nucleic acids, and acute care uses thereof | |
| WO2013130161A1 (en) | Methods of responding to a biothreat | |
| EP3169783A2 (en) | Terminal modifications of polynucleotides | |
| HK40080438A (en) | Terminally modified rna | |
| HK40005169A (en) | Signal-sensor polynucleotides for the alteration of cellular phenotypes | |
| HK1214515B (en) | Terminally modified rna |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13779667 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2892529 Country of ref document: CA Ref document number: 2015544065 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2013779667 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2013348363 Country of ref document: AU Date of ref document: 20131002 Kind code of ref document: A |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 2013779667 Country of ref document: EP |