WO2008038764A1 - Spontaneous emission display, spontaneous emission display manufacturing method, transparent conductive film, electroluminescence device, solar cell transparent electrode, and electronic paper transparent electrode - Google Patents

Spontaneous emission display, spontaneous emission display manufacturing method, transparent conductive film, electroluminescence device, solar cell transparent electrode, and electronic paper transparent electrode Download PDF

Info

Publication number
WO2008038764A1
WO2008038764A1 PCT/JP2007/068968 JP2007068968W WO2008038764A1 WO 2008038764 A1 WO2008038764 A1 WO 2008038764A1 JP 2007068968 W JP2007068968 W JP 2007068968W WO 2008038764 A1 WO2008038764 A1 WO 2008038764A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
transparent conductive
self
display device
silver
Prior art date
Application number
PCT/JP2007/068968
Other languages
English (en)
French (fr)
Inventor
Tsukasa Tokunaga
Makoto Kusuoka
Tadashi Kuriki
Akira Ichiki
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Priority to CN200780033191XA priority Critical patent/CN101512682B/zh
Priority to EP07828709.1A priority patent/EP2068328B1/en
Priority to US12/307,482 priority patent/US8513878B2/en
Publication of WO2008038764A1 publication Critical patent/WO2008038764A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80516Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Self-luminous display device method for producing self-luminous display device, transparent conductive film, electoluminescence device, transparent electrode for solar cell, and transparent electrode for electronic paper
  • a self-light-emitting display device having a highly flexible electrode portion with high light transmittance and low surface resistivity, and a method for manufacturing the same, and a light transmittance high and low surface resistivity
  • the present invention relates to a transparent conductive film excellent in flexibility, an electo-luminance element using the transparent conductive film, a transparent electrode for solar cells, and a transparent electrode for electronic paper.
  • the self-luminous display device includes a light-emitting device for illumination.
  • a film or a glass substrate having a transparent conductive layer is used as an electrode on the side from which light is extracted in a liquid crystal display, an organic or inorganic electoluminescence device, an electronic paper, etc. (for example, Patent Documents 1 to 4).
  • These transparent conductive layers are generally formed using indium and tin oxides, zinc oxides, tin oxides, etc.
  • indium and tin oxides zinc oxides, tin oxides, etc.
  • a thick and uniform film must be formed, and as a result, there are problems such as a decrease in light transmittance, an increase in cost, and a need for high-temperature processing in the formation process.
  • the improvement measures include a proposal to add a conductive component such as a metal wire to the transparent electrode layer (Patent Document 2) and a method of providing a conductive metal bus line on the transparent electrode layer (transparent anode substrate) ( Patent Documents 1 and 3), or a method (Patent Document 5) in which a mesh metal wire structure is provided on a transparent electrode layer (upper electrode) has been proposed!
  • Patent Document 6 includes an intrinsically conductive polymer and a non-uniformly distributed conductive metal, and supports a substantially transparent conductive layer that forms the conductor by itself.
  • a method of manufacturing on a body, wherein the non-uniformly distributed conductive metal is manufactured by photographic processing is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-180974
  • Patent Document 2 JP-A-9 147639
  • Patent Document 3 Japanese Patent Laid-Open No. 10-162961
  • Patent Document 4 JP-A-11 224782
  • Patent Document 5 Japanese Patent Laid-Open No. 2005-302508
  • Patent Document 6 Special Table 2006—501604
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to solve the above conventional problems and achieve the following objects.
  • an object of the present invention is to provide a self-luminous display device having an electrode portion with high light transmittance and low surface resistivity and excellent flexibility, and a method for manufacturing the same.
  • a transparent conductive film having high light transmittance and low surface resistivity, and further excellent flexibility, an electoluminescence device using the transparent conductive film, and a solar It is providing the transparent electrode for batteries and the transparent electrode for electronic paper.
  • a self-luminous display device includes a support, a fine line structure portion provided on the support, and made of a conductive metal, and a translucent conductive film.
  • Rl is the surface resistance of the electrode part before performing Rb
  • R2 is the surface resistance of the electrode part after performing the following bending test
  • the electrode part is hooked on a roller having a diameter of 4 mm that is rotatably attached to the base, and one end of the electrode part is 28.6 (kg) per lm width.
  • a step of bending the electrode portion by rotating the roller while pulling it with a tension of 10 mm, and rotating the roller while pulling the other end portion of the electrode portion with a tension of 28.6 (kg) per lm width. And bending the electrode part repeatedly to bend the electrode part 100 times.
  • the conductive film of the electrode part includes a conductive material.
  • the conductive material includes a transparent conductive organic polymer or conductive fine particles.
  • the conductive fine particles are conductive metal oxide, conductive metal fine particles, or carbon nanotubes.
  • the thickness (height) of the thin wire structure portion of the electrode portion is 10 m or less.
  • the thickness (height) of the thin wire structure portion of the electrode portion is 5 ⁇ 111 or less. It is characterized by that.
  • the thickness (height) of the thin wire structure portion is substantially the same as that of the conductive film.
  • the conductive film is provided on an upper surface or a lower surface of the thin wire structure portion.
  • the light transmittance power S of the electrode section is 70% or more with respect to 550 nm light.
  • the fine line structure portion of the electrode portion is formed by exposing and developing a photosensitive layer having at least a photosensitive silver salt-containing layer on the support. It is made of conductive metallic silver.
  • the fine line structure portion of the electrode portion is formed by exposing and developing a photosensitive material having a photosensitive silver salt-containing layer on the support, thereby forming a conductive metal silver portion. A light-transmitting part is formed.
  • the electrode part includes the conductive film, the fine wire structure part, and a light transmissive part, and the fine wire structure part and the light transmissive part include the support. That at least one of the photographic constituent layers including at least the photosensitive silver halide-containing layer provided on the body is formed by exposing and developing a photosensitive material which is a layer containing a conductive material. It is a feature.
  • the fine wire structure part of the electrode part contains silver and has an Ag / binder volume specific force of / 4 or more.
  • the fine line structure portion of the electrode portion is subjected to a compaction process at least once after exposure, development, and fixing of a photosensitive material having a photosensitive silver salt-containing layer on the support. It is obtained by performing.
  • the consolidation process is performed on the exposed photosensitive layer after development, water washing, drying, fixing, water washing, and drying.
  • the consolidation process is performed by a calendar roll device.
  • the consolidation treatment is performed at a line pressure of 1980 N / cm (200 kgf / cm) or more. It is characterized by performing.
  • the consolidation treatment is performed at a linear pressure of 2960 N / cm (300 kgf / cm) or more.
  • the consolidation treatment is performed at a linear pressure of 6860 N / cm (700 kgf / cm) or less.
  • the fine wire structure portion of the electrode portion is obtained by performing at least one of physical development, electrolytic plating and electroless plating between the development and drying. It is a feature.
  • the electrode portion is formed by bonding the fine wire structure portion and the conductive film after forming the fine wire structure portion.
  • the thickness of the support is 8 to 200 m.
  • the support is a polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate; a polyolefin such as polyethylene (PE), polypropylene (PP), polystyrene, EVA; Bull resin such as poly (vinyl chloride) and poly (vinylidene chloride); polyether ether ketone (PEEK), polysulfone (PSF), polyethersulfone (PES), polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose It is a resin film such as (TAC).
  • PET polyethylene terephthalate
  • a polyethylene naphthalate such as polyethylene (PE), polypropylene (PP), polystyrene, EVA
  • Bull resin such as poly (vinyl chloride) and poly (vinylidene chloride)
  • PEEK polyether ether ketone
  • PSF polysulfone
  • PES polyethersulfone
  • PC polycarbonate
  • a photosensitive material having a photographic constituent layer including at least a light-sensitive silver halide-containing layer on a support is exposed and developed.
  • a fine wire structure portion made of a conductive metal is formed on the support, and the fine wire structure portion and a transparent conductive film are combined.
  • the method further comprises a consolidation treatment step of consolidation treatment of the fine wire structure portion.
  • the method further includes a step of immersing in a reducing agent aqueous solution before the consolidation step.
  • the blackening treatment liquid may contain any of nickel, zinc, and tin. And features.
  • a method for manufacturing a self-luminous display device includes a step of providing a photographic constituent layer including at least a light-sensitive silver halide-containing layer on a support, By exposing and developing a photosensitive material in which at least one layer is a layer containing a conductive material, the fine wire structure portion provided on the support and made of a conductive metal and a light-transmitting conductive material are developed. And a step of producing an electrode portion having a film.
  • a transparent conductive film according to a fourth aspect of the present invention includes a support, a fine wire structure portion provided on the support and made of a conductive metal, and a translucent conductive film.
  • a volume resistivity of the conductive film is 0.05 O over M 'cm or more and / or surface resistance is 100 ohms / sq or more
  • the surface resistance of the transparent conductive film before the following bending test is Rl
  • the transparent conductive film after the following bending test is performed when the surface resistance of R2 is R2
  • the transparent conductive film is hooked on a roller having a diameter of 4 mm that is rotatably attached to the base, and one end of the transparent conductive film is 28.
  • the step of bending the transparent conductive film by rotating the roller while pulling with a tension of 6 (kg) and the other end of the transparent conductive film with a tension of 28.6 (kg) per lm width While rotating the roller and bending the transparent conductive film, the transparent conductive film is bent 100 times.
  • the fine line structure portion includes silver having a density of 8 ⁇ Og / cm 3 to 10 ⁇ 5 g / cm 3 .
  • the thin wire structure has a thickness of 0.5 ⁇ 10.
  • the fine line structure portion is a fine line pattern, and a line width thereof is 0 ⁇ 1 m to 25 H m.
  • the method for producing a transparent conductive film according to the fifth aspect of the present invention exposes and develops a photosensitive material having a photographic constituent layer including at least a photosensitive silver halide-containing layer on a support. By forming a fine wire structure portion made of a conductive metal on the support, the fine wire structure portion and a transparent conductive film are combined.
  • the thin wire structure portion of the electrode portion contains silver and has an Ag / binder volume specific force of / 4 or more.
  • the method includes a consolidation treatment step of performing consolidation treatment on the thin wire structure portion.
  • the consolidation treatment is performed at a line pressure of 1980 N / cm (200 kgf / cm) or more.
  • the consolidation process is performed at a line pressure of 2960 N / cm (300 kgf / cm) or more.
  • the consolidation treatment is performed at a linear pressure of 6860 N / cm (700 kgf / cm) or less.
  • An electoluminescence device is characterized by having the above-described transparent conductive film.
  • a transparent electrode for a solar cell according to a seventh aspect of the present invention is characterized by having the above-described transparent conductive film.
  • a transparent electrode for electronic paper according to an eighth aspect of the present invention is characterized by having the above-described transparent conductive film.
  • the transparent conductive film of the present invention since the light transmittance is high and the surface resistivity is low and the flexibility is low, the voltage of the large-area electoric luminescence element can be reduced. It can be used for high durability, uniform in-plane brightness, improvement of power extraction efficiency of solar cells, etc., and low voltage and low power consumption of flexible displays such as electronic paper.
  • the present invention characterized by having a fine wire structure portion having a conductive metal portion subjected to consolidation and a transparent conductive film is a transparent material having both high transmittance and low surface resistivity. It is possible to provide a conductive film. In addition, a transparent conductive film having such an effect can be produced in large quantities at a low cost. In the present invention, a transparent conductive film can be mass-produced by using a transparent conductive material or the like for the conductive film.
  • the transparent conductive film of the present invention has a low surface resistance due to the cooperation between the conductive film and the fine wire structure, and the coating film is inexpensive. Can be used for inorganic EL, solar cells, etc.
  • the surface resistance is lower than that in the case where the fine line structure is an ITO film, there is a feature that the luminance does not decrease when the size is increased. Another feature is that the electrode bus (bus bar) required for the ITO film is also unnecessary.
  • the transparent conductive film according to the present invention is excellent in flexibility, so that it is possible to produce roll-to-roll, and the production process cost of these products is greatly reduced. It ’s the power to do.
  • FIG. 1 is a cross-sectional view showing a partially omitted configuration of a transparent conductive film according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing a first modification of the transparent conductive film according to the present embodiment with a part thereof omitted.
  • FIG. 3 is a cross-sectional view showing a partially omitted second modification of the transparent conductive film according to the present embodiment.
  • FIG. 4 A third variation of the transparent conductive film according to the present embodiment is partially omitted. It is sectional drawing.
  • FIG. 5 is a cross-sectional view showing a partially omitted fourth modification of the transparent conductive film according to the present embodiment.
  • FIG. 6 is a cross-sectional view showing a partially omitted fifth modification of the transparent conductive film according to the present embodiment.
  • FIG. 7 is a perspective view showing a sixth variation of the transparent conductive film according to the present embodiment with a part thereof omitted.
  • FIG. 8 is a cross-sectional view showing a partially omitted configuration of the self-luminous display device according to the present embodiment.
  • FIG. 9A to FIG. 9E are process diagrams showing a production method for forming a fine wire structure on a support.
  • FIG. 10 is a characteristic diagram showing the relationship between linear pressure and surface resistivity in calendering after development and calendering after fixing.
  • FIG. 11 is a diagram for explaining a bending test.
  • FIG. 12A is a diagram showing a state in which only the vicinity of the fine line of the fine line structure portion emits light.
  • FIG. 13 is an explanatory view showing an experimental example for measuring a change in luminance according to a distance from the extraction electrode.
  • FIG. 14 is a characteristic diagram showing the results of measuring the change in luminance according to the distance from the extraction electrode in Example 23 and Comparative Examples 21, 24 and 25.
  • FIG. 15 is a graph showing the rate of increase in surface resistance for Samples 1-6.
  • a transparent conductive film 10 includes a transparent support 12 and a fine wire provided on the support 12 and made of a conductive metal.
  • the structure portion 14 and the translucent conductive film 16 are included.
  • the thickness (height) of the thin wire structure portion 14 is larger than the thickness (height) of the conductive film, and the force S is shown in FIG. 2 and FIG.
  • the thickness (height) of the thin wire structure 14 The thickness (height) of the 1S conductive film 16 may be substantially the same.
  • the upper surface of the fine line structure portion 14 may be exposed as shown in FIG. 2, or the upper surface of the fine line structure portion 14 may be covered with the conductive film 16 as shown in FIG. .
  • the conductive film 16 may be formed on the entire surface of the support 12, and the fine line structure portion 14 having a fine line pattern may be formed on the conductive film 16.
  • the thickness (height) is larger than the thickness (height) of the thin wire structure 14! /, Or a protective layer 18 or another conductive film may be formed. Les.
  • a high-resistance first conductive film 16a and a fine line-patterned fine wire structure portion 14 are formed on the support 12, and the first conductive film 16a and the fine wire structure portion 14 are formed.
  • a low-resistance second conductive film 16b or a protective layer may be formed on the entire surface including! /.
  • a plurality of conductive films 16 formed in a stripe shape are formed on the support 12, and along the longitudinal direction in the vicinity of the end in the width direction in the upper surface of each conductive film 16.
  • the fine wire structure 14 may be formed respectively.
  • the thin line structure 14 may be formed at the left end (or right end) of each conductive film 16, or the thin line structure 14 may be formed at both ends in the width direction. It may be.
  • the fine line pattern of the fine line structure portion 14 for example, as shown in FIGS. 12A and 12B, it may be a mesh shape, or a shape in which a large number of hexagonal shapes are arranged, a shape in which a large number of triangular shapes are arranged, Examples include a shape in which a large number of polygonal shapes are arranged, and a stripe shape (lattice shape).
  • each thin line may be a straight line or a wavy line (sine curve, etc.).
  • the transparent conductive film 10 is, for example, as shown in FIG. It can be configured by using as one electrode portion 22 (for example, an anode) and disposing the display portion 24 on the first electrode portion 22.
  • the display unit 24 includes, for example, a light emitting layer 26 (an inorganic material such as zinc sulfide or an organic material such as a diamine) laminated on the upper surface (the upper surface including the thin wire structure portion 14) of the first electrode unit 22, and the light emitting layer. 26 has a second electrode portion 28 (for example, a cathode) disposed on the electrode 26.
  • a light emitting layer 26 an inorganic material such as zinc sulfide or an organic material such as a diamine
  • the conductive material of the fine wire structure used in the present invention and the transparent conductive material applied to the opening is effective for the conductive material of the fine wire structure used in the present invention and the transparent conductive material applied to the opening.
  • the transparent conductive material used for the opening is preferably 1000 ohm / sq or more as a single surface resistance in order to suppress light loss due to this material. With a configuration in the above range, a transparent conductive film with high resistance and low power loss can be realized.
  • the volume resistivity of the wire structure portion 14 constituting the first electrode portion 22 is not more than 10 4 ohm 'cm, the conductive film 16 forming also a first electrode portion 22 The volume resistance of 0 ⁇ 05 ohm 'cm or more.
  • the surface resistance of the fine wire structure portion 14 constituting the first electrode portion 22 is 100 ohm / sq or less, and the surface resistance of the conductive film 16 constituting the first electrode portion 22 is also 1000 ohm / sq or less.
  • the surface resistance of the fine wire structure 14 and the conductive film 16 is a value measured according to the measurement method described in JIS K6911.
  • the sample 34 is bent 100 times by repeating the step of bending the sample 34 by rotating the roller 32 while pulling 4b with the same tension of 28.6 (kg / m).
  • the self-luminous display device 20 has a first electrode portion 22 having a high light transmittance, a low surface resistance, and an excellent flexibility. It can be easily applied to flexible displays that use inorganic EL, organic EL, electronic paper, etc., and promote mass production of these inorganic EL, organic EL, electronic paper, etc. be able to. [0080] Further, according to the transparent conductive film 10 according to the present invention, since the light transmittance is high, the surface resistance is low, and the flexibility is excellent, the voltage of the large-area electoric luminescence element can be reduced. It can be preferably used for high durability, uniform in-plane brightness, improvement of power extraction efficiency of solar cells and the like, and low voltage and low power consumption of flexible displays such as electronic paper.
  • the transparent conductive film 10 having both high transmittance and low surface resistance.
  • the transparent conductive film 10 having such an effect can be manufactured in large quantities at a low cost.
  • mass production of a transparent conductive film can be realized by using a transparent conductive material or the like for the conductive film.
  • the transparent conductive film of the present invention has a low surface resistance due to the cooperation between the conductive film and the fine wire structure, and the coating film is inexpensive. Can be used for inorganic EL, solar cells, etc.
  • the surface resistance is lower than that in the case where the thin line structure portion 14 is an ITO film, there is a feature that the luminance does not decrease when the size is increased. Another feature is that the electrode bus (bus bar) required for the ITO film is also unnecessary.
  • the transparent conductive film 10 according to the present embodiment is excellent in flexibility, and thus can produce roll-toe rolls. Can be greatly reduced.
  • the conductive film 16 of the transparent conductive film 10 (first electrode portion 22) preferably includes a conductive material.
  • the conductive material is preferably a transparent conductive organic polymer or conductive fine particles.
  • the conductive fine particles are preferably conductive metal oxides, conductive metal fine particles, or carbon nanotubes.
  • the fine wire structure 14 is made of conductive metal silver formed by exposing and developing a photosensitive layer having at least a photosensitive silver salt-containing layer on the support 12. You may make it do.
  • the fine wire structure portion 14 may be formed such that a conductive metal silver portion and a light transmissive portion are formed by exposing and developing a photosensitive material having a photosensitive silver salt-containing layer on the support 12. Good.
  • the light transmitting portion may be substantially free of physical development nuclei.
  • Ag: Binder 3.50:;! To 1: 1 is more preferable.
  • FIGS. 9A to 9E a manufacturing method for forming the thin wire structure portion 14 on the support 12 will be described with reference to FIGS. 9A to 9E.
  • a silver salt photosensitive layer 44 obtained by mixing silver halide grains 40 (for example, silver bromide grains, silver chlorobromide grains or silver iodobromide grains) with gelatin 42 is formed. Apply on second transparent support 28.
  • silver halide grains 40 for example, silver bromide grains, silver chlorobromide grains or silver iodobromide grains
  • second transparent support 28 Apply on second transparent support 28.
  • the power represented by “grains” of silver halide 40 is exaggerated to help understanding of the present invention, and the size, concentration, etc. are shown. It ’s not something.
  • the silver salt photosensitive layer 44 is subjected to exposure necessary for forming the fine line structure portion 14.
  • silver halide 40 receives light energy, it sensitizes and produces minute silver nuclei called “latent images” that cannot be observed with the naked eye.
  • development processing is performed as shown in FIG. 9C.
  • the silver salt photosensitive layer 44 on which the latent image has been formed is developed with a developer (both alkaline solutions and acidic solutions, but usually a lot of alkaline solutions!).
  • a developer both alkaline solutions and acidic solutions, but usually a lot of alkaline solutions!.
  • silver ions supplied from silver halide grains or a developing solution are reduced to metallic silver by using a latent image silver nucleus as a catalyst nucleus by a reducing agent called a developing agent in the developing solution.
  • the latent image silver nuclei are amplified to form a visualized silver image (developed silver 46).
  • silver halide 40 that can be exposed to light remains in the silver salt photosensitive layer 44, and in order to remove this, a fixing processing solution (acid solution and alkali solution is used as shown in FIG. 9D). Fixing is carried out using either a caustic solution, but usually an acidic solution.
  • a metallic silver portion 48 is formed in the exposed portion, and the exposed portion is exposed. Only the gelatin 42 remains in the part! /, NA! /, And becomes a light-transmitting part.
  • the development step is a step of causing the developing agent 46 to react with the latent image to precipitate the developed silver 46
  • the fixing step is to elute the silver halide 40 that did not become the developed silver 46 into water.
  • a stop solution such as an acetic acid (vinegar) solution after the development processing and before entering the fixing processing step.
  • the fine silver structure part 14 is formed on the second transparent support 28 with the metal silver part 48 and the metal layer 50 supported on the metal silver part 48. Will be.
  • the photopolymerization initiator absorbs light by the exposure process and the reaction starts, and the photoresist film (resin) itself undergoes a polymerization reaction to increase or decrease the solubility in the developer, and the exposure is performed by the development process.
  • the resin in the part or unexposed part is removed.
  • a solution called an image solution does not contain a reducing agent and is, for example, an alkaline solution that dissolves unreacted resin components.
  • latent images From the photoelectrons and silver ions generated in the silver halide 40 at the site of receiving light. Small silver nuclei called “latent images” are formed, and the latent image silver nuclei are amplified and visualized by a development process (in this case, the developer always contains a reducing agent called a developing agent). Become. In this way, the resist technology and silver salt photographic technology have completely different reactions from exposure processing to development processing.
  • the main reaction is silver halide
  • resist technology it is a photopolymerization initiator.
  • the binder gelatin 42
  • the binder disappears in the resist technology.
  • the silver salt photographic technique and the photoresist technique are greatly different.
  • the fine line structure portion 14 exposes a photosensitive material having a photosensitive silver salt-containing layer on the support 12, and after development, performs a compaction process at least once before fixing, and after completion of fixing. Further, it is preferably obtained by performing a consolidation treatment at least once.
  • the consolidation treatment is preferably performed after development, washing and drying of the exposed photosensitive layer, and further after fixing, washing and drying.
  • the consolidation process can be performed by a calendar roll device.
  • the fine wire structure 14 is preferably obtained by performing at least one of physical development, electrolytic plating, and electroless plating between development and drying.
  • the transparent conductive film 10 (first electrode portion 22) is formed after the fine wire structure portion 14 is formed.
  • the fine wire structure portion 14 and the conductive film 16 may be bonded together.
  • the support 12 is not particularly limited as long as it has translucency, but it is preferable that the support 12 has high translucency. Moreover, as long as it has translucency, it may be colored to such an extent that the object of the invention is not hindered.
  • the total visible light transmittance of the support 12 is preferably 70 to 100%, more preferably 85 to 100%, and particularly preferably 90 to 100%.
  • a plastic film can be used as the support 12.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate
  • polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene and EVA
  • Bull resin such as bulle and polyvinylidene chloride
  • PEEK polyetheretherketone
  • PSF polysulfone
  • PSS polyethersulfone
  • PC polycarbonate
  • polyamide polyimide
  • acrylic resin triacetyl cellulose (TAC) or the like
  • TAC triacetyl cellulose
  • the plastic film is preferably made of polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) in terms of transparency, heat resistance, ease of handling, and price. /.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the support 12 is preferably highly transparent.
  • the total visible light transmittance of the plastic film in this case is 70 to 100%, more preferably 85 to 100%, particularly preferably 90 to 100%.
  • the plastic film may be colored so as not to interfere with the object of the present invention.
  • the plastic film in this embodiment can be used as a single layer, but it can also be used as a multilayer film in which two or more layers are combined.
  • a base kneaded with an ultraviolet absorber, a barrier layer, or an antireflection layer or a hard coat layer may be used.
  • the type is particularly limited.
  • tempered glass having a tempered layer on the surface.
  • tempered glass can prevent damage compared to glass that has not been tempered.
  • the tempered glass obtained by the air cooling method is preferable from the viewpoint of safety because even if it is broken, the crushed pieces are small and the end face is not sharpened.
  • a uniform mesh-like, comb-shaped or darid-type metal and / or alloy fine wire structure 14 is disposed and subjected to consolidation treatment. Create a surface to improve the conductivity.
  • a material for a fine wire of metal or alloy (referred to as a fine metal wire), copper, silver, or aluminum is preferably used.
  • the above-described transparent conductive material may be used.
  • a material having high electrical conductivity and high thermal conductivity is preferable.
  • these metals may be plated to form plated metals.
  • the width of the fine metal wire is preferably between an arbitrary force of about 0.0 to 30 mm.
  • the metal wires are arranged at a pitch of 20 ⁇ m to 300 ⁇ m! /, And the power S is preferred! /.
  • the distance between the metal wires is too narrow, and the width and height of the metal wires are reduced. It is important to ensure a light transmittance of 70% or more without taking too much.
  • the light transmittance of the transparent conductive film 10 is preferably 70% or more, more preferably 80% with respect to light having a light transmittance of 550 nm. Furthermore, it is most preferable that it is 90% or more.
  • the transparent conductive film 10 of the present embodiment is used for an EL element, 70% or more of light in the wavelength region of 420 nm to 650 nm is used in order to improve luminance and achieve white light emission. More preferably, it is 80% or more. Furthermore, in order to achieve white light emission, it is preferable to transmit 80% or more of light in the wavelength region of 380 nm to 680 nm. Most preferably, it is 90% or more.
  • the light transmittance of the transparent conductive film 10 can be measured with a spectrophotometer.
  • the height (thickness) of the fine wire structure 14 of metal and / or alloy is 0.1 m or more and 10 m or less. Lower force is preferable. Particularly preferably, it is 0 ⁇ l ⁇ m or more and 2 111 or less. Further, it is most preferably from 0 ⁇ l ⁇ m to 1 ⁇ m. Either the metal and / or alloy fine wire structure 14 and the conductive film 16 may be exposed on the surface, but as a result, the height difference between the protrusion and the opening of the fine wire structure 14 is preferably 5 m or less. . Further, it is most preferable that there is substantially no difference in height.
  • the height of the conductive surface indicates the average amplitude of the uneven portion when measuring 5 mm square using a three-dimensional surface roughness meter (eg, Tokyo Seimitsu Co., Ltd .; SURFCO M575A-3DF). .
  • a surface roughness meter that does not reach the resolution, the height is obtained by measurement with an STM or electron microscope.
  • the blackened layer formed by the blackening treatment can impart antireflection properties in addition to the antifungal effect.
  • antireflection properties By imparting antireflection properties to the fine wire structure portion 14 by blackening treatment, it is possible to suppress light reflection in the fine wire structure portion 14 in which a metal having a high reflectance is formed into a fine wire pattern.
  • the blackening treatment is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-188576, and in general, conductive metal compounds such as nickel (Ni), zinc (Zn), copper (Cu), etc. It can be carried out by electrolytic plating using a compound or alloy, a plating method that gives a black film, or a method that uses an electrodepositable ionic polymer material such as an electrodeposition coating material.
  • a blackened layer formed by plating with a Co—Cu alloy can prevent reflection of the metal surface, and can be given antifouling properties by applying a chromate treatment.
  • the film is immersed in a solution containing chromic acid or dichromate as a main component and dried to form an anti-fouling film.
  • the electrolytic solution bath (black tanning bath) used in the blackening treatment can be a black tanning bath containing nickel sulfate as a main component.
  • the black tanning baths sold in the market can be used in the same way.
  • the black tanning bath manufactured by Shimizu Co., Ltd. (trade name, Nobroy SNC, Sn—Ni alloy system), Nippon Chemical Co., Ltd.
  • Black tanning bath manufactured by Sangyo Co., Ltd. trade name, Nitsuka black, Sn—Ni alloy
  • Black tanning bath manufactured by Metal Chemical Co., Ltd. trade name, ebony chromium 85 series, 85 series
  • various black tanning baths such as Zn-based, Cu-based, and others can be used as the black tanning bath.
  • a metal blackening treatment agent it can be easily produced using a sulfide compound, and there are also many types of treatment agents on the market, for example, the trade names' Copa Black CuO, CuS, Selenium-based Copa Black No. 65 (made by Isolate Chemical Research Laboratories), trade name “Ebonol C Special (made by Meltex Co., Ltd.), etc. can be used.
  • the method for producing the fine line structure portion 14 is not particularly limited, but a method of chemically developing silver halide grains so as to have a desired fine line pattern by silver salt photography is preferable.
  • the metal obtained by the silver salt photography method is called developed silver, and is an aggregate of filamentary metallic silver obtained by chemical development or metallic silver in which filamentary metallic silver is bonded and fused together. Is a collection of
  • the developed silver can be made sufficiently conductive to be used as a force sword for electroplating, it is possible to electrolyze the developed silver.
  • the developed silver can be used as an electroless plating catalyst, and the developed silver can be electrolessly plated.
  • the metal plate may be processed with other metal, for example, highly conductive copper, and may be composed of developed silver and plated metal (including inevitable impurities).
  • the developed silver can be subjected to a blackening process as described above, so that the blackening process can be easily performed.
  • the shape of the fine line pattern of the fine line structure part 14 is not particularly limited. Various patterns can be selected according to the purpose, and as described above, it may be a mesh or may have a number of hexagons. Examples include a shape in which a large number of triangular shapes are arranged, a shape in which a large number of polygonal shapes are arranged, and a stripe shape (lattice shape). Of course, each thin line may be a straight line or a wavy line (such as a sine curve).
  • the thickness of the fine metal wire can be appropriately changed depending on the application. In order to obtain high electrical conductivity, it is preferable to have a thickness of 0.2 m or more. As described above, the upper limit is preferably 1 O ⁇ m or less. More preferably, it is 2 111 or less, particularly preferably. [0130]
  • the line width of the fine line pattern can also be appropriately changed depending on the application. In order to obtain high conductivity, it is preferable to have a line width of 1 ⁇ m or more. Since it can be recognized when visually observed in the same manner as described above and is a problem for materials that transmit light, it is preferably a fine line pattern having a line width of 1 m or more and 30 m or less. More preferably, they are 2 Hm or more and 20 Hm or less, More preferably, they are 4 micrometers or more and 18 m or less.
  • the conductive film 16 is made of a transparent conductive organic polymer such as PEDOT / PSS 'polyaniline' polypyrrole 'polythiophene' polyisothianaphthene, metal oxide, metal on a transparent film such as polyethylene terephthalate or polyethylene naphthalate base.
  • Fine particles, metal nanorods Obtained by uniformly depositing and forming a conductive metal such as nanowires, conductive inorganic fine particles such as carbon nanotubes, or organic water-soluble salts by a method such as coating or printing. It is done.
  • These coating solutions may be used by blending with other non-conductive polymers or latexes in order to improve the coating suitability and the film physical properties.
  • a multilayer structure in which a silver thin film is sandwiched between high refractive index layers may be used.
  • These transparent conductive materials are described in “Current Status and Future of Electromagnetic Shielding Materials” published by Toray Research Center, JP-A-9 147639, and the like.
  • a coating coater such as a slide coater, a slot die coater, a curtain coater, a ronore coater, a no coater, or a gravure coater is used.
  • a conductive structure in which a fine mesh structure 14 of metal and / or alloy such as a uniform mesh shape, stripe shape, comb shape or grid shape is disposed. Create a surface to improve the electrical conductivity!
  • a fine metal structure 14 of a mesh-like metal and / or alloy and a transparent film on which a conductive film 16 is formed are separately formed and overlaid to produce a transparent conductive film 10 according to the present embodiment. It ’s the power to do.
  • a dispersion of a transparent conductive material is further deposited on the fine metal structure 14 of the network metal and / or alloy formed on the transparent film. Applying, coating, printing, etc., uniformly adheres and forms a film to form a transparent conductive film 10 You may make it produce. The unevenness of the fine metal structure 14 of the network-like metal and / or alloy is relaxed by the dispersion of the transparent conductive material, and a smooth structure with less unevenness is obtained as a whole. Moreover, a transparent conductive material may be formed on a transparent film, and the fine wire structure part 14 may be provided thereon.
  • the intermediate layer made of an organic polymer material is used to improve the adhesion between the fine wire structure 14 of the metal and / or alloy and the transparent film, or the conductive film 16 and the transparent film. It is possible to preferably carry out surface treatment.
  • the fine wire structure portion 14 of metal and / or alloy does not directly touch other layers and the unevenness of the surface of the transparent conductive film 10 can be kept low, for example, an electric field formed thereon It is easy to ensure the stability of the self-luminous display device 20 that easily obtains uniform bonding with the light emitting layer and the current injection layer.
  • a photosensitive material having at least a photosensitive silver halide-containing layer on the support 12 and at least one of the photographic constituent layers being a layer containing a conductive material is exposed. Then, development may be performed to form the fine wire structure portion 14 having a metal silver portion and a light transmission portion, and the conductive film 16 containing a conductive material! /.
  • the conductive film 16 may have a configuration in which a first film containing a conductive polymer and a second film containing an insulating polymer as a main component are stacked.
  • the conductive film 16 may include a mixture containing a conductive polymer and an insulating polymer. These configurations can reduce the amount of expensive conductive polymer used, and can reduce the price.
  • a form in which the conductive polymer is blended with 10% of a conductive polymer and 90% of another binder can be considered.
  • the content of the conductive polymer is preferably 50% by mass or more, preferably 70% by mass or more, and preferably 80% by mass or more.
  • the conductive film 16 contains a mixture of a conductive polymer and an insulating polymer
  • the conductive polymer may be distributed uniformly or spatially non-uniformly. In the case of uniform distribution, the closer to the surface of the conductive film 16, the higher the content of the conductive polymer.
  • the second film is The layer thickness is preferably larger than the layer thickness of the first film.
  • the conductive polymer electron-conductive conductive polymers such as polythiophenes, polypyrroles, and polyanilines, which are preferably highly light-transmitting and highly conductive, are preferable.
  • Examples of the electron conductive polymer include polymers known in the art, such as polyacetylene, polypyrrole, polyaniline, polythiophene, and the like.
  • polymers known in the art such as polyacetylene, polypyrrole, polyaniline, polythiophene, and the like.
  • Examples of the insulating polymer include acrylic resin, ester resin, urethane resin, bull resin, polybull alcohol, polybyl pyrrolidone, and gelatin. Acrylic resin and acrylic resin are particularly preferable. .
  • the conductive film 16 may contain conductive metal oxide particles, a binder, and the like.
  • conductive metal oxides include tin oxide, antimony-doped SnO, indium and tin oxide (ITO), zinc oxide, fluorine-doped tin oxide, and gallium-doped zinc oxide. Used.
  • Examples of the noder include acrylic resin, ester resin, urethane resin, bull resin, polyvinyl alcohol, polybylpyrrolidone, gelatin and the like. Acrylic resin and acrylic resin are particularly preferable.
  • the conductive film 16 is preferably crosslinked because it has improved water resistance and solvent resistance.
  • the binder 16 has crosslinking reactivity. It has a functional group that enables a crosslinking reaction to a crosslinking agent that preferably has Do it! /, You like the power S! The crosslinking agent will be described later.
  • acrylic resin any one of acrylic acid esters such as acrylic acid and alkyl acrylate, methacrylic acid esters such as acrylamide, acrylonitrile, methacrylic acid, and alkyl methacrylate, methacrylamide and methatalonitrile
  • acrylic acid esters such as acrylic acid and alkyl acrylate, methacrylic acid esters such as acrylamide, acrylonitrile, methacrylic acid, and alkyl methacrylate, methacrylamide and methatalonitrile
  • acrylic acid esters such as acrylic acid and alkyl acrylate, methacrylamide and methatalonitrile
  • homopolymers of monomers of acrylic acid esters such as alkyl acrylates and methacrylic acid esters such as methanolyl methacrylate, or copolymers obtained by polymerization of two or more of these monomers. Is preferred.
  • the acrylic resin preferably has a functional group capable of reacting with a cross-linking agent described later, having the above composition as a main component.
  • a cross-linking agent for example, a polymer obtained by partially using a monomer having any one of a methylol group, a hydroxyl group, a carboxyl group and an amino group is preferable.
  • binder examples an example of an embodiment capable of reacting with a cross-linking agent is shown for the case of using a carpositimide compound as the cross-linking agent, but when using other cross-linking agents, it has a functional group depending on the type of the cross-linking agent. It is preferable.
  • Examples of the bur resin include polybulu alcohol, acid-modified polybulu alcohol, polyvinyl vinole lemenore, poly vinole le butyranol, poly vinino methino reetenole, polyolefin, ethylene / butadiene copolymer, poly Butyl acetate, Butyl chloride / Butyl acetate copolymer, Butyl chloride / (Meth) acrylic ester copolymer and Ethylene / Butyl acetate copolymer (preferably ethylene / Butyl acetate / (Meth) acrylic ester copolymer) ).
  • polybulal alcohol acid-modified polybulal alcohol, polybulum formal, polyolefin, ethylene / butadiene copolymer and ethylene / acetic acid copolymer (preferably ethylene / butyric acid / acrylic acid ester copolymer) Coalescence) is preferred.
  • the above-mentioned bulle resin is an example of polybulualcohol, acid-modified polybulualcohol, polybuluformal, polybulubutyral, polybulumethylether, and polyacetate bur so that a crosslinking reaction with a carpositimide compound is possible.
  • a polymer having a hydroxyl group is obtained by leaving a butyl alcohol unit in the polymer.
  • a monomer having any group of a methylol group, a hydroxyl group, a carboxyl group, and an amino group is partially used. It is preferable to use a crosslinkable polymer.
  • urethane resin examples include polyhydroxy compounds (eg, ethylene glycol, propylene glycol, glycerin, trimethylolpropane), aliphatic polyester polyols and polyethers obtained by the reaction of polyhydroxy compounds and polybasic acids.
  • polyhydroxy compounds eg, ethylene glycol, propylene glycol, glycerin, trimethylolpropane
  • aliphatic polyester polyols and polyethers obtained by the reaction of polyhydroxy compounds and polybasic acids.
  • Polyols eg, poly (oxypropylene ether) polyols, poly (oxyethylene propylene etherol) polyols), polycarbonate-based polyols, and polyethylene terephthalate polyols, or one or a mixture thereof and polyisocyanate
  • polyurethane resin for example, the hydroxyl group remaining unreacted after the reaction between polyol and polyisocyanate can be used as a functional group capable of crosslinking reaction with a carpositimide compound.
  • ester resin generally used is a polymer obtained by reacting a polyhydroxy compound (eg, ethylene glycol, propylene glycol, glycerin, trimethylolpropane) with a polybasic acid.
  • a polyhydroxy compound eg, ethylene glycol, propylene glycol, glycerin, trimethylolpropane
  • the ester resin for example, after the reaction between the polyol and the polybasic acid is completed, the unreacted hydroxyl group and carboxyl group can be used as a functional group capable of crosslinking reaction with the carpositimide compound.
  • a third component having a functional group such as a hydroxyl group may be added! /.
  • the conductive film 16 is preferably crosslinked.
  • the conductive film 16 may be cross-linked by a cross-linking agent, or by using a photochemical reaction induced by light irradiation without adding a cross-linking agent by means that does not affect the photosensitivity.
  • the cross-linking agent include vinyl sulfones (for example, 1,3-bisvinylsulfonylpropane), aldehydes (for example, dalyoxal), chlorinated pyrimidines (for example, 2, 4, 6 trichloropyrimidine), and triazine chlorides (for example, chloride). Cyanur), epoxy compounds, carbodiimide compounds, and the like.
  • Epoxy compounds include 1,4 bis (2 ', 3'epoxypropyloxy) butane, 1,3,5-triglycidyl isocyanurate, 1,3-dicrisidyl 5- ( ⁇ -acetoxy) ⁇ -oxypropyl) isosinurate, sorbitol polyglycidyl ethers, polyglycerol polyglycidyl ethers, pentaerythritol polyglycidyl ethers, diglycerol polyglycidyl ether, 1,3,5-triglycidyl (2-hydroxyethynole) isocyanurate, glycerol poly Specific examples of commercially available products that are favored by epoxy compounds such as glycerol ethers and trimethylolpropane polyglycidyl ethers include Denacol ⁇ -521 and EX-614B (manufactured by Nagase Kasei Kogyo Co., Ltd.).
  • the force S can be
  • melamine urea resin mucochloric acid, mucobromic acid, mucofenoxycycloic acid, mucophenoxypromic acid, formaldehyde, glyoxal, monomethylglyoxal, 2,3 dihydroxy-1,4 dioxane, Aldehyde compounds such as 2,3-dihydroxy-5 methyl-1,4 dioxanesuccinaldehyde, 2,5 dimethoxytetrahydrofuran and dartalaldehyde and their derivatives; divinylsulfone 1 N, N, 1 ethylene bis (bululsulfonylacetamide) 1,3—Bis (Bulusulfonyl) 2 propanol , Methylene bismaleimide, 5 acetyl-1,5-diacryloyl hexahydro s triazine, 1,3,5-triatari leunoreth s-triazine and 1,3,5-trivinylsulfonyl-hexa
  • carbopositimide compound a compound having a plurality of carbopositimide structures in the molecule is preferably used.
  • Polycarposimide is usually synthesized by a condensation reaction of an organic diisocyanate.
  • the organic group of the organic diisocyanate used for the synthesis of a compound having a plurality of carposimide structures in the molecule is not particularly limited, and either aromatic or aliphatic, or a mixture thereof can be used.
  • an aliphatic type is particularly preferable from the viewpoint of reactivity.
  • organic isocyanate organic diisocyanate, organic triisocyanate, and the like are used.
  • organic isocyanates aromatic isocyanates, aliphatic isocyanates, and mixtures thereof can be used.
  • Carpolite V-02-L2 (trade name: manufactured by Nisshinbo Co., Ltd.) can be obtained.
  • a carpositimide compound as a crosslinking agent, it is preferably added in the range of 1 to 200% by mass, more preferably 5 to 100% by mass with respect to the binder.
  • the conductive film 16 can be formed by various physical methods such as sputtering, and generally well-known coating methods such as dip coating, air knife coating, curtain coating, wire bar coating, and gravure coating. Various coating methods such as the Etrusion Coating method can be used.
  • the concave portion of the fine line pattern is filled so that the surface of the fine line structure portion 14 and the surface of the conductive film 16 form a smooth surface, for example.
  • C) the fine wire structure 14 A method of forming the conductive film 16 after performing a surface treatment for preventing the material of the conductive film 16 from adhering to the surface is preferably used.
  • the coating liquid of the material of the conductive film 16 is generally highly polar or hydrophilic
  • the surface of the fine wire structure portion 14 is low polarity or hydrophobic. More specifically, it is preferable that the surface of the fine wire structure portion 14 is subjected to a surface treatment using a hydrophobic metal surface treatment agent represented by alkylthiols. More preferably, the treatment agent is removed by post-treatment.
  • the conductive film 16 may be provided with a functional layer having functionality as needed.
  • This functional layer can have various specifications for each application. For example, adjust the refractive index and film thickness
  • These functional layers may be provided on the surface of the conductive film 16 or on the back surface of the support 12.
  • the photosensitive material used in the production method of the present embodiment has an emulsion layer (silver salt-containing photosensitive layer) containing a silver salt as an optical sensor on the support 12.
  • the silver salt-containing photosensitive layer can contain additives such as a solvent and a dye in addition to the silver salt and the binder.
  • the emulsion layer is substantially disposed in the uppermost layer.
  • “the emulsion layer is substantially the uppermost layer” means not only the case where the emulsion layer is actually disposed on the uppermost layer, but also the total of the layers provided on the emulsion layer, that is, the protective layer. It means that the film thickness is 0.5 m or less. The total thickness of the layers provided on the emulsion layer is preferably 0.2 111 or less.
  • the light-sensitive material may contain a dye at least in the emulsion layer.
  • the dye is contained in the emulsion layer as a filter dye or for various purposes such as prevention of irradiation.
  • the above dye may contain a solid disperse dye.
  • the dye preferably used in the present invention include dyes represented by the general formula (FA), general formula (FA1), general formula (FA2), and general formula (FA3) described in JP-A-9-179243.
  • compounds F1 to F34 described in the publication are preferable.
  • (IV-2) to (IV-7) described in the publication are also preferably used.
  • examples of the dye that can be used in the present embodiment include a cyanine dye described in JP-A-3-138640. , Pyrylium dyes and aminium dyes. Further, as dyes that do not decolorize during processing, cyanine dyes having a carboxyl group described in JP-A-9-96891, cyanine dyes not containing an acid group described in JP-A-8-245902, and JP-A-8-333519 Lake type dyes, cyanine dyes described in JP-A-1-266536, holopolar cyanine dyes described in JP-A-3-36038, pyrylium dyes described in JP-A-62-299959, JP-A-7- Polymer type cyanine dye described in Japanese Patent No.
  • the dye may contain a water-soluble dye.
  • water-soluble dyes include oxonol dyes, benzylidene dyes, merocyanine dyes, cyanine dyes and azo dyes. Of these, oxonol dyes, hemioxonol dyes and benzylidene dyes are useful in the present invention.
  • Specific examples of water-soluble dyes that can be used in the present invention include British Patent Nos. 584, 609, 1, 177, 429, Japanese Patent Publication Nos. 48-85130 and 49-99620. 49-114420, 52-20822, 59-154439, 59-208548, US Pat. No.
  • the content of the dye in the emulsion layer is preferably 0.01 to 10% by mass with respect to the total solid content from the viewpoint of preventing irradiation and the like and reducing the sensitivity due to an increase in the amount of added calories. 0 to 5 mass% is more preferable.
  • Examples of the silver salt used in the present embodiment include inorganic silver salts such as silver halide and organic silver salts such as silver acetate. In the present embodiment, it is preferable to use silver halide having excellent characteristics as an optical sensor.
  • silver halide having excellent characteristics as an optical sensor.
  • Silver halide photographic film, photographic paper, printing plate-making film, photomask film, etc. relating to silver halide are preferred.
  • the technique used in the Marujon mask or the like is the force S used in the present invention.
  • the halogen element contained in the silver halide may be any of chlorine, bromine, iodine and fluorine, or a combination thereof.
  • silver halides mainly composed of silver chloride, silver bromide and silver iodide are preferably used, and silver halides mainly composed of silver bromide and silver chloride are preferably used.
  • Silver chlorobromide, silver iodochlorobromide and silver iodobromide are also preferably used.
  • silver chlorobromide silver bromide, silver iodochlorobromide, silver iodobromide, and most preferably silver chlorobromide, silver iodochlorobromide containing 50 mol% or more of silver chloride, Silver halide containing 50 mol% or more of silver bromide is used.
  • silver halide mainly composed of silver bromide means silver halide having a bromide ion mole fraction of 50% or more in the silver halide composition! / .
  • the silver halide grains mainly composed of silver bromide may contain iodide ions and chloride ions in addition to bromide ions.
  • the silver iodide content in the silver halide emulsion is as follows.
  • a range not exceeding 5 mol% is preferred.
  • a range not exceeding 1.5 mol% is preferred.
  • a more preferred silver iodide content is 1 mol% or less per mol of silver halide emulsion.
  • Silver halide is in the form of solid grains. From the viewpoint of image quality of the patterned metal silver layer formed after exposure and development, the average grain size of silver halide is 0 in terms of the equivalent sphere diameter. ; ⁇ LOOOnm d ⁇ m). Lnm is more preferred for the lower limit above 10 nm is more preferred. The upper limit is more preferably 800 nm, more preferably 500 nm, and even more preferably 50 nm. The direct range is preferably 0.1 to 1000 nm, more preferably force S, and more preferably 10 to 5000 nm.
  • the sphere equivalent diameter of silver halide grains is the diameter of grains having a spherical shape and the same volume.
  • the shape of the silver or silver halide grains is not particularly limited.
  • the shape can be various, and a cube and a tetrahedron are preferable.
  • the silver halide grains may have a uniform phase inside or on the surface layer or may be different.
  • the particles inside the particles have localized layers with different halogen compositions on the surface!
  • the silver halide emulsion that is the coating solution for the emulsion layer used in this embodiment is P. Glafk ides ⁇ -Chimieet Physique Photographique (Paul Montel Tll, 19 years 7 years), Photographic Emulsion Chemistry by GF Dufin. (The Forcal Press, U., 1966), VL Zelikman, and Making and Coating Photographic Emulsion (published by The Forcal Press, 1964).
  • a method for preparing the silver halide emulsion either an acidic method or a neutral method may be used, and as a method for reacting a soluble silver salt and a soluble halogen salt, a one-side mixing method is used. Any of a simultaneous mixing method, a combination thereof, and the like may be used.
  • a method for forming silver particles a method (so-called back mixing method) in which particles are formed in an excess of silver ions can be used. Further, as one form of the simultaneous mixing method, a method of keeping pAg constant in a liquid phase in which silver halide is generated, that is, a so-called controlled double jet method can be used.
  • silver halide solvent such as ammonia, thioether or tetrasubstituted thiourea.
  • tetrasubstituted thiourea compounds are more preferable, which are described in JP-A-53-82408 and JP-A-55-77737.
  • Preferred thiourea compounds include tetramethylthiourea and 1,3-dimethyl-2-imidazolidinethione.
  • the amount of silver halide solvent added depends on the type of compound used And particle size of interest, different mosquito by halogen composition, per mole of silver halide 10 5 ⁇ ; 10-2 Monore are preferred.
  • silver nitrate is used as described in British Patent No. 1,535,016, Japanese Patent Publication No. 48-36890, and Japanese Patent Publication No. 52-16364.
  • a method of changing the addition rate of alkali halide according to the particle growth rate, or the concentration of aqueous solution as described in British Patent No. 4,242,445 and JP-A-55-158124 It is preferable to grow the silver quickly in a range that does not exceed the critical saturation using the method of changing the temperature.
  • the silver halide emulsion used to form the emulsion layer in this embodiment is preferably a monodispersed emulsion ⁇ (standard deviation of grain size) / (average grain size) ⁇
  • the dynamic coefficient is preferably 20% or less, more preferably 15% or less, and most preferably 10% or less.
  • the silver halide emulsion used in this embodiment may be a mixture of a plurality of types of silver halide emulsions having different grain sizes.
  • the silver halide emulsion used in the present embodiment may contain a metal belonging to Group VIII or Group VIIB.
  • a metal belonging to Group VIII or Group VIIB it is preferable to contain a rhodium compound, an iridium compound, a ruthenium compound, an iron compound, an osmium compound, or the like.
  • These compounds may be compounds having various ligands, for example, cyanide ions, halogen ions, thiocyanate ions, nitrocinole ions, water, hydroxide ions, and such pseudohalogens,
  • cyanide ions for example, cyanide ions, halogen ions, thiocyanate ions, nitrocinole ions, water, hydroxide ions, and such pseudohalogens
  • organic molecules such as amines (methylamine, ethylenediamine, etc.), heterocyclic compounds (imidazole, thiazole, 5-methylthiazole, mercaptoimidazole, etc.), urea, and thiourea.
  • rhodium compound a water-soluble rhodium compound can be used.
  • the water-soluble rhodium compound include rhodium halide (III) compounds, hexachlororhodium (III) complex salts, pentachloroacorodium complex salts, tetrachlorodiacolodium complex salts, hexabromorhodium (III) complex salts, Xamin rhodium (III) complex salt, trizalatrdium (III) complex salt, K Rh Br and the like.
  • rhodium compounds are generally used in order to stabilize a solution of a power rhodium compound dissolved in water or a suitable solvent, that is, an aqueous hydrogen halide solution (for example, hydrochloric acid, odorous acid, etc.). , Hydrofluoric acid, etc.) or an alkali halide (eg, KC1, NaCl, KBr, NaBr, etc.) can be used.
  • an alkali halide eg, KC1, NaCl, KBr, NaBr, etc.
  • water-soluble rhodium it is also possible to add another silver halide grain previously doped with rhodium and dissolve it at the time of silver halide preparation.
  • iridium compound examples include hexachromic iridium complex salts such as K IrCl and K IrCl,
  • Hexabromoiridium complex salt Hexabromoiridium complex salt, hexaammineiridium complex salt, pentachloronitrosyl iridium complex salt and the like.
  • ruthenium compound examples include hexaclonal ruthenium, pentachloronitrosyl ruthenium, K [RuCN]] and the like.
  • iron compound examples include potassium hexanoate (II) and ferrous thiocyanate.
  • M represents Ru or Os
  • n 0, 1, 2, 3 or 4.
  • the counter ion is not important, and for example, ammonium or alkali metal ions are used.
  • Preferred ligands include halide ligands, cyanide ligands, cyanide oxide ligands, nitrosyl ligands, thionitrosyl ligands, and the like. The following is a force S showing examples of specific complexes used in the present invention, and the present invention is not limited thereto. Is not something
  • silver halides containing Pd (II) ions and / or Pd metals can also be preferably used.
  • Pd may be uniformly distributed in the silver halide grains, but is preferably contained in the vicinity of the surface layer of the silver halide grains.
  • Pd “contains in the vicinity of the surface layer of the silver halide grains” means that a layer having a higher palladium content than other layers within 50 nm in the depth direction from the surface of the silver halide grains. means.
  • Such silver halide grains can be prepared by adding Pd during the formation of silver halide grains, and silver ions and halogen ions are added in an amount of 50% or more of the total addition amount. It is preferable to add Pd later. It is also preferable to add Pd (II) ions to the surface of the silver halide layer by adding them during post-ripening! /.
  • the Pd-containing silver halide grains increase the speed of physical development and electroless plating, increase the production efficiency of the desired electromagnetic shielding material, and contribute to the reduction of production costs.
  • Pd is a well-known force used as an electroless plating catalyst
  • Pd can be unevenly distributed on the surface layer of silver halide grains, so that it is possible to save extremely expensive Pd. .
  • the force S is preferably 0.0;! To 0.3 mol / mol Ag.
  • Examples of the Pd compound to be used include PdCl, Na PdCl, and the like.
  • chemical sensitization may or may not be performed in the same manner as a general silver halide photographic light-sensitive material.
  • a method of chemical sensitization for example, a calco having a sensitivity sensitizing action of a photographic light-sensitive material cited from paragraph [0078] of JP-A-2000-275770. This is done by adding a chemical sensitizer comprising a genite compound or a noble metal compound to the silver halide emulsion.
  • a chemical sensitizer comprising a genite compound or a noble metal compound
  • an emulsion that does not undergo such chemical sensitization that is, an unchemically sensitized emulsion can be preferably used.
  • a preferred method for preparing an unchemically sensitized emulsion in the present embodiment is to add an amount of a chemical sensitizer composed of chalcogenite or a noble metal compound so that an increase in sensitivity due to the addition of these is within 0.1. It is preferable to keep the amount of Although there is no limitation on the specific amount of the rucogenite or noble metal compound added, as a preferred method for preparing the unchemically sensitized emulsion in the present embodiment, the total amount of these chemically sensitized compounds is set to 1 mol of silver halide. is preferably not more than around 5 X 10- 7 mol.
  • chemical sensitization performed with a photographic emulsion may be performed in order to further improve sensitivity as an optical sensor.
  • a chemical sensitization method sulfur sensitization, selenium sensitization, chalcogen sensitization such as tellurium sensitization, noble metal sensitization such as gold sensitization, reduction sensitization and the like can be used. These are used alone or in combination.
  • sulfur sensitization method and gold sensitization method sulfur sensitization method and selenium sensitization method and gold sensitization method
  • sulfur sensitization method and A combination of tellurium sensitization and gold sensitization is preferred.
  • the sulfur sensitization is usually performed by adding a sulfur sensitizer and stirring the emulsion at a high temperature of 40 ° C or higher for a predetermined time.
  • a sulfur sensitizer known compounds can be used.
  • various sulfur compounds such as thiosulfate, thioureas, thiazoles, rhodanine Can be used.
  • Preferred sulfur compounds are thiosulfate and thiourea compounds.
  • the selenium sensitizer used for the selenium sensitization a known selenium compound can be used. That is, the selenium sensitization is usually carried out by adding unstable and / or non-labile selenium compounds and stirring the emulsion at a high temperature of 40 ° C. or higher for a predetermined time.
  • the above unstable selenium compounds are disclosed in Japanese Patent Publication Nos. 44-15748 and 43-134. It is possible to use compounds described in JP-A No. 89, JP-A-4-109240, JP-A-4-324855 and the like. In particular, it is preferable to use compounds represented by the general formulas (VIII) and (IX) in JP-A-4-324855.
  • the tellurium sensitizer used in the tellurium sensitizer is a compound that produces silver telluride presumed to be a sensitization nucleus on the surface or inside of a silver halide grain.
  • the rate of formation of silver telluride in the silver halide emulsion can be tested by the method described in JP-A-5-313284. Specifically, U.S. Pat.Nos. 1,623,499, 3,320,069, 3,772,031, British Patent 235,211, No. 1, Nos. 121, 496, 1, 295, 462, 1, 396, 696, Nada No. 800, 958, JP-A-4-204640, 4-271341 , No. 4 333043, No.
  • the amount of selenium sensitizer and tellurium sensitizer that can be used in the present embodiment varies depending on the silver halide grains used, chemical ripening conditions, etc., but generally 10-per silver mole. 8 to 10-2 mol, preferably 10-7 to 10-3 moles is used.
  • the conditions for chemical sensitization in the present invention are not particularly limited, but the pH is 5 to 8, the pAg is 6 to 11, preferably 7 to 10 and the temperature is 40 to 95 ° C. Preferably it is 45-85 ° C
  • Examples of the noble metal sensitizer include gold, platinum, palladium, iridium and the like, and gold sensitization is particularly preferable.
  • Specific examples of gold sensitizers used for gold sensitization include chloroauric acid, potassium chromate orate, potassium thiothiocyanate, gold sulfide, Scan gold (I), include Chioman'nosu gold (I), etc., per mol of silver halide 10-7 ⁇ ; can be used 10 moles.
  • a cadmium salt, a sulfite salt, a lead salt, a thallium salt or the like may coexist in the process of silver halide grain formation or physical ripening.
  • reduction sensitization can be used.
  • reduction sensitizer stannous salts, amines, formamidinesulfinic acid, silane compounds, and the like can be used.
  • a thiosulfonic acid compound may be added according to the method disclosed in the official method of European Published Patent (EP) 293917.
  • the silver halide emulsion used in the preparation of the light-sensitive material used in the present invention may be only one type, or two or more types (for example, different average grain sizes, different halogen compositions, different crystal habits) , Those having different chemical sensitization conditions and those having different sensitivities) may be used in combination.
  • a binder is used for the purpose of uniformly dispersing silver salt grains and assisting the adhesion between the emulsion layer and the support.
  • a water-soluble binder that is removed by a treatment that is immersed in hot water or contacted with steam described later is used.
  • a water-soluble polymer is preferably used as the water-soluble binder.
  • binder examples include gelatin, carrageenan, polybulal alcohol (PVA), polybulurpyrrolidone (PVP), polysaccharides such as starch, cellulose and derivatives thereof, polyethylene oxide, polysaccharides, polybulamine, chitosan, Examples include polylysine, polyacrylic acid, polyalginic acid, polyhyaluronic acid, carboxycellulose, gum arabic, and sodium alginate. These have neutral, anionic, and cationic properties depending on the ionicity of the functional group.
  • PVA polybulal alcohol
  • PVP polybulurpyrrolidone
  • polysaccharides such as starch
  • cellulose and derivatives thereof polyethylene oxide
  • polysaccharides polybulamine
  • chitosan examples include polylysine, polyacrylic acid, polyalginic acid, polyhyaluronic acid, carboxycellulose, gum arabic, and sodium alginate. These have neutral, anionic, and cationic properties depending on the ionicity of
  • gelatin may also be hydrolyzed gelatin, enzymatic degradation of gelatin, gelatin with modified amino groups or carboxyl groups (phthalated gelatin). Acetylated gelatin) can be used.
  • the content of the binder contained in the emulsion layer is not particularly limited. It can be determined appropriately within a range where it can be exhibited.
  • the binder content in the emulsion layer is preferably an Ag / binder volume ratio of 1/4 or more, more preferably 1/1 or more.
  • the solvent used for forming the emulsion layer is not particularly limited.
  • water organic solvents (for example, alcohols such as methanol, ketones such as acetone, amides such as formamide, dimethyl sulfoxide, etc. ), Ionic liquids, and mixed solvents thereof.
  • the content of the solvent used in the emulsion layer of the present embodiment is in the range of 30 90% by mass with respect to the total mass of silver salt, binder, etc. contained in the emulsion layer, and 50 80% by mass. Preferred to be in the range! / ,.
  • the photosensitive material according to this embodiment is preferably coated on the support surface opposite to the emulsion layer which preferably contains an antistatic agent.
  • a conductive substance-containing layer having a surface resistivity of 10 12 ohm / sq or less in an atmosphere of 25 ° C and 25% RH can be preferably used.
  • the following conductive substances can be preferably used.
  • the conductive materials described in JP-A-2-18542, page 2, lower left column, line 13 to page 3, upper right column, line 7 can be used.
  • the acicular metal oxides described in Japanese Patent No. 5575957, paragraphs [0043 to [0045] of JP-A-10-142738, paragraphs [0 013] and [0019] of JP-A-11-223901, etc. Can be used.
  • the conductive metal oxide particles used in the present embodiment are ZnO TiO SnO Al O.
  • metal oxide particles further containing different atoms can be exemplified.
  • SnO ZnO AlOTiOInO and MgO are preferable, and SnOZnOInO and TiO are particularly preferable.
  • the material of the conductive metal oxide particles is preferably a material containing a small amount of different elements with respect to the metal oxide or the composite metal oxide. Also preferred are those containing an oxygen defect in the crystal structure.
  • SnO particles doped with antimony are preferred, and SnO particles doped with 0.2 to 20 mol% of antimony are particularly preferred.
  • the shape of the conductive metal oxide used in the present embodiment there are no particular limitations, such as a granular shape and a needle shape.
  • the average particle diameter in terms of sphere equivalent diameter is 0.5 to 25 ⁇ m.
  • soluble salts for example, chloride, nitrate, etc.
  • deposited metal layers ions as described in US Pat. Nos. 2861056 and 3206312
  • Insoluble inorganic salts such as those described in US Pat. No. 3,428,451 can also be used.
  • the antistatic layer containing such conductive metal oxide particles is preferably provided as an undercoat layer on the back surface, an undercoat layer of the emulsion layer, or the like.
  • the amount added is preferably 0.0;! To 1.0 g / m 2 in total on both sides.
  • the volume resistivity of the photosensitive material is preferably 1. OX 10 7 to; 1.0 X 10 12 ohm ⁇ cm in an atmosphere of 25 ° C and 25% RH! /.
  • the various additives used in the light-sensitive material in the present invention are not particularly limited. For example, those described in the following publications can be preferably used. However, in this embodiment, it is desirable not to use a hardener. This is because when a hardener is used, if it is immersed in warm water, which will be described later, or contacted with steam, the resistance increases and the conductivity decreases.
  • nucleation accelerator examples include compounds of general formulas (1), (11), (II 1), (IV), (V), (VI) described in JP-A-6-82943, The general formulas (II-m) to (II-p) and compound examples II II-22 in the upper right column, line 13 to page 10, upper left column, page 10 of the publication 2-103536, and JP-A 1-2 —The compounds described in Japanese Patent No. 179939 are listed.
  • JP-A-2-12236 page 8, lower left column, line 13 to the lower right column, fourth line, JP-A-2-103536, page 16, lower right column, third line, force 17
  • JP-A No. 1-112235, No. 2-124560, No. 3-7928, and No. 5 11389 the spectral sensitizing dyes described in JP-A No. 1-112235, No. 2-124560, No. 3-7928, and No. 5 11389.
  • JP-A-2-12236, page 9, upper right column, seventh line force also applies to the lower-right column, line 7 and JP-A-2-18542, page 2, lower-left column, line 13 to fourth.
  • the surfactants described in the lower right column of the page, line 18 can be mentioned.
  • anti-capri agent examples include JP-A-2-103536, page 17, lower right column, line 19 to page 18, upper right column, line 4 and lower right column, lines 1 to 5, and JP-A-1- And thiosulfinic acid compounds described in Japanese Patent No. 237538.
  • polymer latex examples include those described in JP-A-2-103536, page 18, lower left column, line 12 to line 20.
  • hardener examples include compounds described in JP-A-2-103536, page 18, upper right column, line 5 force and line 17 of the same line.
  • the black anti-fogging agent is a compound that suppresses the development of spot-like developed silver in the unexposed areas.
  • the compounds described in US Pat. No. 4,956,257 and JP-A-111882 Can be mentioned.
  • Examples of redox compounds include compounds represented by general formula (I) (particularly compound examples 1 to 50) of JP-A-2-301743, and compounds described in pages 3 to 20 of JP-A-3-174143. Examples include the compounds described in the formulas (R-1), (R-2), (R-3), Compound Examples 1 to 75, and JP-A-5-257239 and 4-278939.
  • Examples of the monomethine compound include compounds of the general formula (II) of JP-A-2-287532 (especially compound examples II 1 to II 26).
  • a protective layer may be provided on the emulsion layer.
  • the “protective layer” means a layer comprising gelatin, a high polymer, and a binder, and an emulsion layer having photosensitivity in order to exhibit an effect of preventing scratches and improving mechanical properties. Formed on top.
  • the thickness is preferably 0.2 ⁇ 111 or less.
  • the coating method and forming method of the protective layer are not particularly limited, and a known coating method can be appropriately selected.
  • the transparent conductive film 10 obtained by the present embodiment is a fine line by pattern exposure.
  • the structure portion 14 may be formed of metal by surface exposure in addition to the structure portion 14 formed on the support 12. Further, the transparent conductive film 10 is used as a printed circuit board, for example.
  • metal silver part and insulating part may be formed! / ,.
  • the method of forming the fine line structure portion 14 in the present embodiment includes the following three modes depending on the photosensitive material and the development processing mode.
  • a photosensitive silver halide black-and-white photosensitive material that does not contain physical development nuclei and an image-receiving sheet that has a non-photosensitive layer that contains physical development nuclei are overlaid and diffusion transfer developed to insensitivity the metallic silver portion. Form formed on a light-sensitive image receiving sheet.
  • the mode (1) is an integrated black-and-white development type, and a translucent conductive film is formed on a photosensitive material.
  • the resulting developed silver is chemically developed silver or heat developed and is highly active in the subsequent staking or physical development process in that it is a high specific surface filament.
  • the silver halide grains near the physical development nuclei are dissolved and deposited on the development nuclei, whereby a translucent electromagnetic wave shielding film or a light transmissive shield is formed on the photosensitive material.
  • a translucent conductive film such as a transient conductive film is formed.
  • the developing action is precipitation on the physical development nuclei, it is highly active, but developed silver is a sphere with a small specific surface.
  • the light-transmitting electromagnetic wave shielding film is formed on the image receiving sheet by dissolving and diffusing the silver halide grains in the unexposed area and depositing on the development nuclei on the image receiving sheet.
  • a light-transmitting conductive film such as a light-transmitting conductive film is formed.
  • V a so-called separate type, in which the image receiving sheet is peeled off from the photosensitive material.
  • V and misalignment can also be selected from negative development processing and reversal development processing! / Misalignment development (in the case of the diffusion transfer method, negatives can be obtained by using an auto positive photosensitive material as the photosensitive material. Mold development processing is possible). For development! / I prefer the negative type! / ...
  • the silver salt-containing photosensitive layer provided on the support 12 is exposed.
  • the exposure can be performed using electromagnetic waves. Examples of electromagnetic waves include visible light rays, light such as ultraviolet rays, and radiation such as X-rays. Further, for the exposure, a light source having a specific wavelength or a light source having a wavelength distribution may be used.
  • Examples of the light source include scanning exposure using a cathode ray (CRT).
  • CRT cathode ray
  • the cathode ray tube exposure apparatus is simpler, more compact, and lower in cost than an apparatus using a laser. Also, the adjustment of the optical axis and color is easy.
  • various light emitters that emit light in the spectral region are used as necessary.
  • the light emitter for example, one or more of a red light emitter, a green light emitter, and a blue light emitter are used in combination.
  • the spectral region is not limited to the above-mentioned red, green, and blue, and phosphors that emit light in the yellow, orange, purple, or infrared region are also used.
  • a cathode ray tube that emits white light by mixing these light emitters is often used.
  • mercury lamp g-line, mercury lamp i-line, etc. which are also preferred for ultraviolet lamps, are used.
  • the exposure in the present invention includes a gas laser, a light emitting diode, a semiconductor laser, a semiconductor laser, or a second harmonic light source (SHG) that combines a solid state laser using a semiconductor laser as a pumping light source and a nonlinear optical crystal.
  • a scanning exposure method using monochromatic high-density light can be preferably used, and a KrF excimer laser, ArF excimer laser, F2 laser, or the like can also be used.
  • exposure is preferably performed using a semiconductor laser, a semiconductor laser, or a second harmonic generation light source (SHG) that combines a solid-state laser and a nonlinear optical crystal! /.
  • SHG second harmonic generation light source
  • a blue semiconductor laser with a wavelength of 430 to 460 nm (announced by Nichia Chemical at the 48th Applied Physics Related Conference in March 2001), a semiconductor laser (oscillation wavelength) Approx. 530nm green laser, wavelength approx. 685nm red semiconductor laser (Hitachi type No. HL6738MG), wavelength approx. 650nm, approx. 1060nm) with LiNbO SHG crystal with waveguide inversion domain structure
  • a red semiconductor laser (Hitachi type No. HL6501MG) or the like is preferably used.
  • the method of exposing the silver salt-containing layer in a pattern may be performed by surface exposure using a photomask, or by scanning exposure using a laser beam.
  • an exposure method such as contact exposure, proximity exposure, reduction projection exposure, reflection projection exposure, or the like, which can be performed by refractive exposure using a lens or reflection exposure using a reflecting mirror, can be used.
  • development processing is further performed.
  • a conventional development processing technique used for silver salt photographic film, photographic paper, printing plate-making film, photomask emulsion mask and the like can be used.
  • the developer is not particularly limited, but a PQ developer, MQ developer, agate developer, etc. can also be used.
  • Commercially available products include, for example, CN-16, CR-56, CP45X, FD-3, ND-1, FT-803R, HS-1, HS-5, Nopitonore, Copinar, and Fine Doll manufactured by Fuji Film.
  • KODAK C-41, E-6, RA-4, Dsd-19, D-72, etc., or the developer included in the kit can be used (all Product name).
  • a lith developer can also be used.
  • KODAK D85 (trade name) or the like can be used as a lith developer.
  • a patterned metallic silver portion is formed in the exposed portion by performing the above exposure and development treatment, and the light described later in the unexposed portion.
  • a permeable part is formed.
  • the development temperature, the fixing temperature, and the washing temperature be 35 ° C. or lower.
  • the development process in the production method of the present embodiment can include a fixing process performed for the purpose of removing and stabilizing the unexposed silver salt.
  • Manufacturing method of the present embodiment In the fixing process, a fixing process technique used for silver salt photographic film, photographic paper, printing plate-making film, photomask emulsion mask and the like can be used.
  • the developer used in the development process can contain an image quality improver for the purpose of improving the image quality.
  • the image quality improver include nitrogen-containing heterocyclic compounds such as benzotriazole.
  • a lith developer it is particularly preferable to use polyethylene glycol.
  • the mass of the metallic silver contained in the exposed area after the development treatment is preferably 80% by mass or more with respect to the mass of silver contained in the exposed area before the exposure. It is even more preferable that it is at least%. If the mass of silver contained in the exposed area is 50% by mass or more based on the mass of V and silver contained in the exposed area before exposure, it is preferable because it is easy to obtain high! / Conductivity!
  • the gradation after development processing in the present embodiment is not particularly limited.
  • the conductivity of the conductive metal portion can be increased while keeping the transparency of the light transmissive portion high.
  • means for setting the gradation to 4.0 or higher include doping of rhodium ions and iridium ions described above.
  • the metallic silver portion after the development treatment is preferably subjected to an oxidation treatment.
  • an oxidation treatment for example, when the metal is slightly deposited on the light transmitting portion, the metal can be removed, and the light transmitting portion can be almost 100% transparent.
  • Examples of the oxidation treatment include known methods using various oxidizing agents, such as Fe (III) ion treatment.
  • the oxidation treatment can be performed after exposure and development processing of the silver salt-containing layer.
  • the metal silver portion after the exposure and development treatment can be further treated with a solution containing Pd.
  • Pd can be divalent palladium ion or metallic palladium! /.
  • a sodium sulfite aqueous solution a hydroquinone aqueous solution, a paraphenylene diamine aqueous solution, a oxalic acid aqueous solution or the like can be used, and the pH of the aqueous solution is more preferably 10 or more.
  • the manufacturing method of the present embodiment it is preferable to perform a consolidation (smoothing) process on the fine wire structure portion 14 that has been subjected to the development process.
  • a consolidation (smoothing) process on the fine wire structure portion 14 that has been subjected to the development process.
  • the conductivity of the fine wire structure 14 is remarkably increased.
  • the transparent conductive film 10 having high conductivity and high translucency can be obtained by suitably designing the areas of the metal silver portion and the light transmissive portion of the fine wire structure portion 14.
  • the consolidation treatment can be performed by, for example, a calendar roll.
  • a calendar roll usually consists of a pair of rolls.
  • the consolidation process using a calendar roll is referred to as a calendar process.
  • a plastic roll or a metal roll such as epoxy, polyimide, polyamide, polyimide amide or the like is used.
  • a metal roll such as epoxy, polyimide, polyamide, polyimide amide or the like.
  • a combination of a metal roll and a plastic roll can be used from the viewpoint of preventing wrinkles.
  • the lower limit of the linear pressure is preferably 1960 N / cm (200 kg / cm), more preferably 2940 N / cm (300 kg / cm).
  • the upper limit of the linear pressure is preferably 6860 N / cm (700 kgf / cm).
  • the line pressure is the force applied per lcm of the film sample to be consolidated.
  • the application temperature of the smoothing treatment represented by the calendar roll is preferably 10 ° C (no temperature control) to 100 ° C.
  • the more preferable temperature is the line density of the metal mesh pattern or metal wiring pattern.
  • the force is in the range of approximately 10 ° C (no temperature control) to 50 ° C.
  • V is a method for producing a transparent conductive film 10 using a silver salt (especially silver halide) photosensitive material, preferably a linear pressure of 1960 N / cm (200 kgf / cm) or more! /,
  • the surface resistance of the transparent conductive film 10 can be sufficiently reduced by performing the smoothing treatment with high pressure / linear pressure.
  • the object of the smoothing process is a silver salt (especially silver halide) photosensitive material
  • the smoothing treatment is preferably performed with a pair of metal rolls or a combination of a metal roll and a resin roll.
  • the surface pressure between the rolls is more preferable to set a more preferred instrument 900 kgf / cm 2 or more can be set to be preferred tool 800 kgf / cm 2 or more can be set to 600 kgf / cm 2 or more.
  • the upper limit at this time is preferably set to 2000 kgf / cm 2 or less! /.
  • the smoothing process may be performed, but the metal silver part may be subjected to a plating process.
  • the smoothing treatment may be performed either before or after the plating treatment, but when performed before the plating treatment, the plating treatment is made more efficient and a uniform plating layer is formed.
  • the plating treatment may be electrolytic plating or electroless plating.
  • the constituent material of the plating layer is preferably copper, which is preferably a metal having sufficient conductivity.
  • the support 12 on which the fine wire structure 14 is formed is immersed in warm water of 40 ° C. or higher or in water vapor. Make contact. Thereby, conductivity and transparency can be improved easily in a short time. As described above, the reason why the conductivity of the transparent conductive film 10 is improved is not yet clear, but in this embodiment, at least a part of the water-soluble binder is removed and the metal (conductive substance) is bonded to each other. It is thought that the site has increased.
  • the temperature of the hot water in which the support 12 is immersed is preferably 40 ° C or higher and 100 ° C or lower, more preferably 60 ° C to 100 ° C. Particularly preferred is about 80 ° C. to 100 ° C., and the improvement in conductivity is remarkable. Further, the temperature of the water vapor brought into contact with the support 12 is preferably 100 ° C. or more and 140 ° C. or less at 1 atmosphere.
  • the pH of the warm water is 2 to 13; 2 to 9 is preferable, 2 to 5 is preferable, and 2 to 5 S is more preferable.
  • the immersion time in hot water of 40 ° C or higher or in heated water or the contact time with steam varies depending on the type of water-soluble binder used.
  • the size of the support 12 is 60cmX lm, it is about About 1 minute to about 5 minutes is preferred, with 10 seconds to about 5 minutes being preferred.
  • a mesh-shaped metallic silver portion in which the line width, aperture ratio, and Ag content are specified is directly applied on the support 12 by exposure / development processing. Since it has a sufficient surface resistance, it does not need to be subjected to physical development and / or tacking treatment on the metallic silver part to re- add conductivity. For this reason, the transparent conductive film 10 can be manufactured by a simple process.
  • the transparent conductive film 10 produced by the method of the present embodiment has low resistance and high translucency, a liquid crystal display, a plasma display panel, an organic EL, an inorganic EL, a solar cell, a touch panel, a print It can be widely applied to circuit boards and the like.
  • the distributed type electroluminescent device is driven by alternating current. Typically 10 It is driven with an AC power supply of 50Hz to 400Hz at OV. When the area is small, the luminance increases almost in proportion to the applied voltage and frequency. However, in the case of a large-area element of 0.25 m 2 or more, the capacitance component of the element increases, the impedance matching between the element and the power supply shifts, and the time constant required for charge storage in the element increases. Therefore, even if the voltage is increased or particularly the frequency is increased, the power supply is not sufficiently performed. In particular, in an element of 0.25 m 2 or more, for AC drive of 500 Hz or more, the applied voltage is often lowered with an increase in the drive frequency, and the luminance is often lowered.
  • the electoluminescence device using the first electrode portion 22 of the present embodiment can be driven at a high frequency even with a large size of 0.25 m 2 or more, and can have high luminance. it can. In this case, driving at 500 Hz to 5 KHz is preferable, and driving at 800 KHz to 3 KHz is more preferable! /.
  • Hexaclo oral iridium (III) potassium (0.005% KC1 20% aqueous solution) and hexachloro oral rhodium acid ammonium (0.001% NaCl 20% aqueous solution) used in the three liquids were prepared respectively. It was prepared by dissolving in KC120% aqueous solution and NaC120% aqueous solution and heating at 40 ° C for 120 minutes.
  • the temperature was lowered to 35 ° C and the pH was lowered using sulfuric acid until the silver halide precipitated (pH 3.6 ⁇ 0.
  • Emulsion after washing and desalting was adjusted to ⁇ 6.4, P Ag7.5, and sodium benzenethiosulfonate 10 mg, sodium benzenethiosulfinate 3 mg, sodium thiosulfate 15 mg and chloroauric acid 10 mg
  • chemical sensitization was performed to obtain optimum sensitivity at 55 ° C, 1, 3, 3a, 7-tetraazaindene lOOmg as a stabilizer, and proxel as a preservative (trade name, manufactured by ICI Co., Ltd. ) Added lOOmg.
  • the emulsion A the sensitizing dye (sd 1) was subjected to spectral sensitization by adding 5. 7 X 10- 4 mol / mol Ag to the B. Further KBr3. 4 X 10- 4 Monore / Monore Ag, I ⁇ was (Cpd- 3) 8 ⁇ 0 X 10- 4 Monore / mol Ag was added and mixed well.
  • the coated sample A was coated on (PET) so as to have AglO. 5 g / m 2 and gelatin 0 ⁇ 94 g / m 2 , and then dried.
  • the dried sample was designated as coated sample B.
  • PET that had been subjected to surface hydrophilization in advance was used.
  • the obtained coated sample A has an Ag / binder volume ratio (silver / GEL ratio (vol)) of the emulsion layer of 1/7, and is preferably used for the photosensitive material for forming a conductive film of the present invention.
  • / Binder ratio corresponds to 1/1 or more (see Examples 1 and 2 and Comparative Examples 1 and 2).
  • the coated sample B has an Ag / binder volume ratio (silver / GEL ratio (vol)) of the emulsion layer of 4/1, and is more preferably used for the photosensitive material for forming a conductive film of the present invention.
  • the ratio corresponds to 2/1 or more (see Examples 3 and 4 and Comparative Example 3). Furthermore, samples with different amounts of gelatin were prepared, and Examples 5 to 11 were prepared.
  • a sample prepared for A! See Comparative Example 1 and Example 1), A_b (see Comparative Example 2 and Example 2), and B ( Comparative Example 3, Examples 3 and 4) and Bb (Example 5) were used. Samples for full exposure were also prepared (see Comparative Example 7, Examples 13 and 14).
  • the following compounds are contained in 1 liter of developer.
  • the sample developed as described above was calendered.
  • the calender roll is a metal roll (iron core + hard chrome plating, roll diameter 250 mm), force, linear pressure 1960 N / cm (200 kgf / cm, 700 kgf / cm 2 in terms of surface pressure) force, et al. 7840 N / cm ( The surface resistivity (ohm / sq) before and after the treatment was measured by passing the sample between the rollers by applying 800 kgf / cm, converted to surface pressure, 1850 kgf / cm 2 ).
  • Sample A—a before calendaring A—a—1 (Comparative Example 1), after processing A—a—2 (Example 1)
  • Sample A—b before calendaring A—b — 1 (Comparative Example 2)
  • After treatment A— b 2 (Example 2).
  • Sample B before calendering was B-a-1 (Comparative Example 3), and after processing was B-a-2 (Example 3).
  • the obtained sample B-a-2 (Example 3) has an Ag / non-conductive polymer volume ratio of 3 ⁇ 1/1 and a density of 8.5 ⁇ g / cm 3 in the metallic silver part.
  • the thickness ratio is 1.2 m
  • the Ag / non-conductive polymer volume ratio of the metallic silver part preferably used in the conductive film of the present invention is 3/1 or more
  • the thickness is 0.5-5. Applicable.
  • the transparent film on which the mesh-like silver image was formed was electroplated using carbon as an anode electrode in a blackening solution bath having the following composition.
  • the treatment solution for the blackening treatment is as follows.
  • JP 2000 As a representative of the “mesh printed with silver paste” in the above-mentioned prior art column, JP 2000
  • a metal mesh described in Japanese Patent No. 13088 was produced, and samples of Comparative Examples 5 and 6 having different aperture ratios were produced.
  • the aperture ratio was determined by measuring the line width of the conductive metal part of the sample of the present invention having the conductive metal part and the light-transmitting part thus obtained and the sample of the comparative example, and the surface resistance. The rate (ohm / sq) was measured. For each measurement, an optical microscope, a scanning electron microscope, and a low resistivity meter were used.
  • the etching copper mesh of Comparative Example 4 had a brown mesh color and a number of processes. Furthermore, the mesh on which the silver paste of Comparative Example 5 was printed had a low aperture ratio due to the large line width. In this case, as shown in Comparative Example 6, a new problem arises in that the force surface resistivity increases that can increase the aperture ratio by increasing the pitch.
  • Example 4 which is a more preferable form, the metal part of the mesh is black, so that adverse adverse effects on the display image can be avoided. In addition, the number of processes at the time of manufacture was short.
  • Examples 1 to 4 were found to be highly reliable in terms of quality, in which cracking and peeling of the mesh portion hardly occur even when handling with high film strength.
  • Comparative Example 7 of whole surface exposure had good low surface resistivity, but there was a problem in terms of reliability because of low film strength.
  • Examples 13 and 14 in which the entire surface exposure was performed had a lower surface resistivity than Comparative Example 7, and also had a sufficient film strength and sufficient reliability.
  • Example 14 the surface resistivity of Example 14 which was calendered after development and further calendered after fixing was 0.08 (Ohm / sq). The lowest value is shown.
  • the sample is the same as Sample B-a-2 described above (see Example 3). After exposure and development, the plate was washed with pure water for 1 minute and further dried at 40 ° C. Next, calendering after development is performed, followed by fixing using a fixing solution (trade name: N3X-R for CN16X: manufactured by Fuji Photo Film Co., Ltd.), followed by washing with pure water for 2 minutes. Further, a drying process was performed, and a calendar process after fixing was performed.
  • a fixing solution trade name: N3X-R for CN16X: manufactured by Fuji Photo Film Co., Ltd.
  • calendar rolls used for calendar processing.
  • One is a first calendar roll that is a combination of a metal roll with a surface embossed and a metal roll with a mirror finish.
  • a second calender roll with a combination of a metal roll with a mirror-finished surface and a resin roll.
  • the obtained coated sample has an Ag / binder volume ratio force of 0.7 / 0.7 of the emulsion layer, and corresponds to an Ag / binder volume ratio of 1/4 or more preferably used in the present invention.
  • Development was performed with the following developer, development was performed using a fixer (trade name: N3X-R for CN16X: manufactured by Fuji Film Co., Ltd.), and then rinsed with pure water.
  • the photosensitive material exposed and developed using the above-mentioned processing agent is developed at 25 ° C for 20 seconds, fixing at 25 ° C for 20 seconds, washed with water: flowing water (5 L / min) for 20 seconds, and Development, washing, drying, compaction, fixation, washing, drying, compaction were performed in this order.
  • a calender roll device equipped with a metal roll was used, and a linear pressure of 3920 N / cm (400 kgf / cm) was applied to pass the sample between the rollers.
  • a transparent conductive film 16 made of the following conductive polymer is applied on the fine wire structure portion 14 formed as described above with a bar coater, and the coating amount is changed as shown in Table 1 to obtain a transparent conductive film.
  • Film (Example 2;! To 23) was prepared. Further, the same thickness of coating was applied to a PET base without the thin-line structure portion 14 so as to have the same thickness as in Example 2;! To 23, and Comparative Example 2;!
  • As the conductive polymer a conductive polymer Baytron PEDOT (polyethylenedioxythiophene) manufactured by TA Chemical Co. was used. Drying was performed by natural drying at room temperature.
  • Comparative Example 24 a sample having only the fine wire structure portion 14 was designated as Comparative Example 24, and a sample using an ITO film was designated as Comparative Example 25.
  • the transparent conductive films (Examples 21 to 23, Comparative Example 2;! To 25) produced as described above were incorporated into an inorganic dispersion type EL (electrical mouth luminescence) element as follows, and a luminescence test was performed.
  • inorganic dispersion type EL electrical mouth luminescence
  • a reflection insulating layer containing a pigment having an average particle size of 0.03, 1 m and a light emitting layer having a phosphor particle of 50 to 60 ⁇ m were coated on an aluminum sheet serving as a back electrode, and a hot air dryer was used. Used and dried at 110 ° C for 1 hour.
  • the transparent conductive film 10 is overlaid on the phosphor layer and the dielectric layer surface of the back electrode, An EL element was produced by thermocompression bonding.
  • the EL device was sandwiched between two nylon 6 water-absorbent sheets and two moisture-proof films, and thermocompression bonded.
  • the size of the EL element was 3cmX5cm or A4 size.
  • Example 2 The surface resistance of Example 2;! To 23, Comparative Example 2;! To 25, and the transmittance for light having a wavelength of 550 nm were measured.
  • the rise rate K of the surface resistance of the sample (Example 2;! To 23, Comparative Example 2;! To 25) by the bending test described above was determined.
  • the rate of increase in surface resistance, K is R1 when the surface resistance of the sample before the bending test is R1, and R2 is the surface resistance of the sample after the bending test.
  • the bending test is performed with a diameter that is rotatably attached to the base 30.
  • the evaluation was evaluated as ⁇ when the rate of increase K of surface resistance was 1.2 or less, 1. ⁇ when 2-10, and X when 10 or more.
  • Table 21 shows the evaluation results of the transmittances of Examples 21 to 23 and Comparative Example 2;! To 25, the surface resistance of the fine wire structure 14, the surface resistance of the conductive film 16, strength, and flexibility.
  • A4 size samples (Example 23, Comparative Columns 21, 24, 25), with a peak voltage of 50 V and a frequency of 1.4 kHz.
  • the shortest distance from the bus bar was 10 mm, and the reference point was set to 50 mm, 100 mm, 150 mm, 200 mm, and 250 mm.
  • Sample 1 is an ITO film in which an ITO film is formed by sputtering and has a surface resistance of 300 ohm / sq.
  • Sample 2 produced a transparent conductive film using conductive film 16 made of PEDOT, and Sample 3 was formed by exposing and developing a photosensitive material having a photosensitive silver salt-containing layer on support 12. It is a transparent conductive film having only the fine wire structure portion 14 formed.
  • Sample 4 has a fine wire structure 14 and a conductive film 16, and in the manufacturing process, a calendar It is a transparent conductive film which has been treated and further immersed in warm water.
  • Sample 5 is a transparent conductive film having a conductive film 16 on the entire upper surface of the support 12, calendered in the manufacturing process, and further dipped in warm water.
  • Sample 6 is a transparent conductive film having a conductive film 16 on the entire upper surface of the support 12, subjected to a calendar process in the manufacturing process, and not immersed in warm water.
  • Sample 1 using an ITO film showed a very high rate of increase of 18480 ⁇ 33.
  • the increase rate of Sampu Nore 2-6 was 2 or less.
  • the resistance decreased, but the resistance decreased slightly.
  • the transparent conductive film using the capsule had insufficient flexibility.
  • the self-luminous display device, the self-luminous display device manufacturing method, the transparent conductive film, the electo-luminescence element, the solar cell transparent electrode, and the electronic paper transparent electrode according to the present invention are not limited to the above-described embodiments. Of course, various configurations can be adopted without departing from the gist of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Non-Insulated Conductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Photovoltaic Devices (AREA)

Description

明 細 書
自発光表示装置、自発光表示装置の製造方法、透明導電性フィルム、ェ レクト口ルミネッセンス素子、太陽電池用透明電極及び電子ペーパー用透明電 極
技術分野
[0001] 光透過性が高ぐ且つ、表面抵抗率が低い可撓性に優れた電極部を有する自発 光表示装置及びその製造方法と、光透過性が高ぐ且つ、表面抵抗率が低い可撓 性に優れた透明導電性フィルムと、該透明導電性フィルムを利用したエレクト口ルミ ネッセンス素子、太陽電池用透明電極及び電子ペーパー用透明電極に関する。な お、 自発光表示装置は照明用途の発光装置も含む。
背景技術
[0002] 近時、液晶ディスプレイや有機、無機のエレクト口ルミネッセンス素子、電子ぺーパ 一等には、光を取り出す側の電極として、透明導電性層を有するフィルムやガラス基 板が用いられる(例えば特許文献 1〜4参照)。
[0003] これらの透明導電性層は、インジウム及び錫の酸化物や亜鉛の酸化物、錫の酸化 物等を用いて形成されているものが一般的だ力 S、低抵抗を得るためには、厚く均一な 膜を形成しなければならず、その結果、光透過率の減少、コストの高価格化、形成プ ロセスにおいて高温処理が必要になる等の問題があり、特に、フィルム上での低抵 抗化には、限界があった。
[0004] その改善策としては、透明電極層に金属線等の導電性成分を付加する提案(特許 文献 2)や、透明電極層(透明陽極基板)に導電性金属のバスラインを設ける方法 (特 許文献 1及び 3)、あるいは透明電極層(上部電極)上に網目模様の金属線構造を設 ける方法(特許文献 5)が提案されて!/、る。
[0005] ITO (Indium Tin Oxide)膜等の導電性金属、透明電極層を蒸着したりスパッタ したりすることで導電性を付与すること(例えば特許文献 1及び 2参照)は、生産性が 低い点でも改善が求められている。また、バスラインを設けることはそれ自体の工程 が増えるためにコストが上がる。 [0006] そのほか、特許文献 5では ITO膜を蒸着して導電性を高めている力 S、材料としての I TO膜は、資源枯渴の懸念があるので代替が求められていることや、また、蒸着工程 ではロスが多くなることが弱点である。
[0007] さらに、特許文献 6には、真性伝導性重合体及びその中に不均一に分布した伝導 性金属を含んでおり、それ自身で伝導体を形成する実質的に透明な伝導層を支持 体上に製造する方法であって、該不均一に分布した伝導性金属を写真処理によつ て製造する方法が開示されている。し力もながら、高い光透過率と低い表面抵抗が 両立する透明導電性フィルムを抵コストで大量に製造する目的には、なお不十分で あった。
[0008] さらに、近年開発がさかんな有機 ELや電子ペーパー技術等を利用した、フレキシ ブルディスプレイには可撓性を有する透明導電性フィルムが必要であり、上記透明 導電膜では曲げによる微細なクラックによる導電性低下が避けられない。近年、可撓 性のある導電性素材として PEDOT/PSS等の透明導電性樹脂やナノテクノロジー を応用した、カーボンナノチューブや金属ナノワイヤ ·ナノロッド等の開発が盛んに行 われて!/、る力 それ単体では ITO膜と同等以上の低抵抗は出せて!/、なレ、。
[0009] 特許文献 1 :特開平 8— 180974号公報
特許文献 2:特開平 9 147639号公報
特許文献 3:特開平 10— 162961号公報
特許文献 4 :特開平 11 224782号公報
特許文献 5:特開 2005— 302508号公報
特許文献 6:特表 2006— 501604号公報
発明の開示
[0010] 本発明は上記事情に鑑みてなされたものであり、上記従来における問題を解決し、 以下の目的を達成することを課題とする。
[0011] すなわち、光透過性が高ぐ且つ、表面抵抗率が低ぐさらに可撓性に優れた電極 部を有する自発光表示装置及びその製造方法を提供することにある。
[0012] また、光透過性が高ぐ且つ、表面抵抗率が低ぐさらに可撓性に優れた透明導電 性フィルムと、該透明導電性フィルムを利用したエレクト口ルミネッセンス素子、太陽 電池用透明電極及び電子ペーパー用透明電極を提供することにある。
[0013] 本発明の課題は本発明を特定する下記の事項及びその好ましい態様により達成さ れ 。
[0014] [1] 第 1の本発明に係る自発光表示装置は、支持体と、該支持体上に設けられ、且 つ、導電性金属からなる細線構造部と透光性の導電膜とを有する電極部と、前記電 極部上に積層された発光層を有する表示部とを備えた自発光表示装置であって、前 記電極部の前記細線構造部の体積抵抗が 10— 4オーム ' cm以下及び/又は表面抵 抗が 100オーム/ sq以下であり、前記導電膜の体積抵抗が 0. 05オーム ' cm以上及 び/又は表面抵抗が 100オーム/ sq以上であり、下記屈曲試験を行う前の前記電 極部の表面抵抗を Rl、下記屈曲試験を行った後の前記電極部の表面抵抗を R2と したとさ、
R2/RK 18
を満足することを特徴とする。
[0015] ここで、屈曲試験は、基台に対して回転自在に取り付けられた直径 4mmのローラ に前記電極部を引っ掛け、前記電極部の一方の端部を幅 lm当たり 28. 6 (kg)のテ ンシヨンで引っ張りながら前記ローラを回転させて前記電極部を屈曲させる工程と、 前記電極部の他方の端部を幅 lm当たり 28. 6 (kg)のテンションで引っ張りながら前 記ローラを回転させて前記電極部を屈曲させる工程とを繰り返し行って、前記電極部 を 100回屈曲させる。
[0016] [2] [1]において、前記電極部の前記導電膜は、導電性材料を含むことを特徴とす
[0017] [3] [2]において、前記導電性材料が、透明導電性有機ポリマー、又は導電性微 粒子を含むことを特徴とする。
[0018] [4] [3]において、前記導電性微粒子が導電性金属酸化物、導電性金属微粒子 又はカーボンナノチューブであることを特徴とする。
[0019] [5] [1]において、前記電極部の前記細線構造部の厚み(高さ)が、 10 m以下で あることを特徴とする。
[0020] [6] [1]において、前記電極部の前記細線構造部の厚み(高さ)が、 5 ^ 111以下であ ることを特徴とする。
[0021] [7] [1]において、前記細線構造部の厚み(高さ)が、前記導電膜と実質的に同じ であることを特徴とする。
[0022] [8] [1]において、前記導電膜が前記細線構造部の上面又は下面に設けられてい ることを特徴とする。
[0023] [9] [1]において、前記電極部の光の透過率力 S、 550nmの光に対して 70%以上 であることを特徴とする。
[0024] [10] [1]において、前記電極部の前記細線構造部は、前記支持体上に少なくとも 感光性銀塩含有層を有する感光層を露光し、現像処理することにより形成された導 電性金属銀からなることを特徴とする。
[0025] [11 ] [10]において、前記電極部の前記細線構造部は、前記支持体上に感光性 銀塩含有層を有する感光材料を露光 ·現像することにより、導電性金属銀部と光透 過性部が形成されてなることを特徴とする。
[0026] [12] [11]において、前記電極部は、前記導電膜と、前記細線構造部と、光透過 性部とを有し、前記細線構造部と前記光透過性部は、前記支持体上に設けられた少 なくとも感光性ハロゲン化銀含有層を含む写真構成層の少なくとも 1層が導電性材料 を含有する層である感光材料を露光 ·現像することにより形成されていることを特徴と する。
[0027] [13] [10]において、前記電極部の前記細線構造部は、銀を含有し、且つ、 Ag/ バインダ体積比力 /4以上であることを特徴とする。
[0028] [14] [10]において、前記電極部の前記細線構造部は、前記支持体上に感光性 銀塩含有層を有する感光材料を露光、現像、定着終了後に少なくとも 1度圧密処理 を行って得られることを特徴とする。
[0029] [15] [14]において、前記圧密処理は、露光済み感光層に対して現像、水洗、乾 燥、定着、水洗、乾燥後に行われることを特徴とする。
[0030] [16] [14]において、前記圧密処理がカレンダーロール装置によって行われること を特徴とする。
[0031] [17] [14]において、前記圧密処理を線圧力 1980N/cm (200kgf/cm)以上で 行うことを特徴とする。
[0032] [18] [14]において、前記圧密処理を線圧力 2960N/cm (300kgf/cm)以上で 行うことを特徴とする。
[0033] [19] [14]において、前記圧密処理を線圧力 6860N/cm (700kgf/cm)以下で 行うことを特徴とする。
[0034] [20] [14]において、前記電極部の前記細線構造部は、前記現像と乾燥の間に物 理現像、電解めつき及び無電解めつきの少なくとも 1つを行って得られることを特徴と する。
[0035] [21] [1]において、前記電極部は、前記細線構造部を形成した後に、前記細線構 造部と前記導電膜とが貼り合わされてなることを特徴とする。
[0036] [22] [1]において、前記支持体の膜厚が 8〜200 mであることを特徴とする。
[0037] [23] [1]において、前記支持体がポリエチレンテレフタレート(PET)、及びポリエ チレンナフタレート等のポリエステル類;ポリエチレン(PE)、ポリプロピレン(PP)、ポリ スチレン、 EVA等のポリオレフイン類;ポリ塩化ビュル、ポリ塩化ビニリデン等のビュル 系樹脂;その他、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエ 一テルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、 トリァセチルセルロース (TAC)等の樹脂フィルムであることを特徴とする。
[0038] [24] 第 2の本発明に係る自発光表示装置の製造方法は、支持体上に少なくとも感 光性ハロゲン化銀含有層を含む写真構成層を有する感光材料を露光、現像すること により、前記支持体上に導電性金属からなる細線構造部を形成させて、該細線構造 部と透明性の導電膜とを組み合わせることを特徴とする。
[0039] [25] [24]において、前記細線構造部を圧密処理する圧密処理工程を有すること を特徴とする。
[0040] [26] [25]において、前記圧密処理工程の前段に、さらに還元剤水溶液に浸漬す る工程を有することを特徴とする。
[0041] [27] [25]において、前記圧密処理工程の後段に、さらに前記金属銀部の表面を 黒化処理液で黒化処理する黒化処理工程を有すること特徴とする。
[0042] [28] [27]において、前記黒化処理液が、ニッケル、亜鉛、錫のいずれかを含むこ とを特徴とする。
[0043] [29] 第 3の本発明に係る自発光表示装置の製造方法は、支持体上に少なくとも感 光性ハロゲン化銀含有層を含む写真構成層を設ける工程と、前記写真構成層の少 なくとも 1層が導電性材料を含有する層である感光材料を露光し、現像することにより 、前記支持体上に設けられ、且つ、導電性金属からなる細線構造部と透光性の導電 膜とを有する電極部を作製する工程とを有することを特徴とする。
[0044] [30] 第 4の本発明に係る透明導電性フィルムは、支持体と、該支持体上に設けら れ、且つ、導電性金属からなる細線構造部及び透光性の導電膜とを有する透明導 電性フィルムにおいて、前記細線構造部の体積抵抗が 10— 4オーム ' cm以下及び/ 又は表面抵抗が 100オーム/ sq以下であり、前記導電膜の体積抵抗が 0. 05ォー ム ' cm以上及び/又は表面抵抗が 100オーム/ sq以上であり、下記屈曲試験を行 う前の前記透明導電性フィルムの表面抵抗を Rl、下記屈曲試験を行った後の前記 透明導電性フィルムの表面抵抗を R2としたとき、
R2/RK 18
を満足することを特徴とする。
[0045] ここで、屈曲試験は、基台に対して回転自在に取り付けられた直径 4mmのローラ に前記透明導電性フィルムを引っ掛け、前記透明導電性フィルムの一方の端部を幅 lm当たり 28. 6 (kg)のテンションで引っ張りながら前記ローラを回転させて前記透明 導電性フィルムを屈曲させる工程と、前記透明導電性フィルムの他方の端部を幅 lm 当たり 28. 6 (kg)のテンションで引っ張りながら前記ローラを回転させて前記透明導 電性フィルムを屈曲させる工程とを繰り返し行って、前記透明導電性フィルムを 100 回屈曲させる。
[0046] [31 ] [30]において、前記細線構造部は、密度 8· Og/cm3〜; 10· 5g/cm3である 銀を含むことを特徴とする。
[0047] [32] [30]において、前記細線構造部の厚みが 0· 5 〜 10 であることを特徴 とする。
[0048] [33] [30]において、前記細線構造部が細線パターンであり、その線幅が 0· 1 m 〜25 H mであることを特徴とする。 [0049] [34] 第 5の本発明に係る透明導電性フィルムの製造方法は、支持体上に少なくと も感光性ハロゲン化銀含有層を含む写真構成層を有する感光材料を露光、現像す ることにより、前記支持体上に導電性金属からなる細線構造部を形成させて、該細線 構造部と透明性の導電膜とを組み合わせることを特徴とする。
[0050] [35] [34]において、前記電極部の前記細線構造部は、銀を含有し、且つ、 Ag/ バインダ体積比力 /4以上であることを特徴とする。
[0051] [36] [34]において、前記細線構造部を圧密処理する圧密処理工程を有すること を特徴とする。
[0052] [37] [36]において、前記圧密処理がカレンダーロール装置によって行われること を特徴とする。
[0053] [38] [36]において、前記圧密処理を線圧力 1980N/cm (200kgf/cm)以上で 行うことを特徴とする。
[0054] [39] [36]において、前記圧密処理を線圧力 2960N/cm (300kgf/cm)以上で 行うことを特徴とする。
[0055] [40] [36]において、前記圧密処理を線圧力 6860N/cm (700kgf/cm)以下で 行うことを特徴とする。
[0056] [41] 第 6の本発明に係るエレクト口ルミネッセンス素子は、上述した透明導電性フィ ルムを有することを特徴とする。
[0057] [42] 第 7の本発明に係る太陽電池用透明電極は、上述した透明導電性フィルムを 有することを特徴とする。
[0058] [43] 第 8の本発明に係る電子ペーパー用透明電極は、上述した透明導電性フィ ルムを有することを特徴とする。
[0059] 以上説明したように、本発明に係る自発光表示装置によれば、光透過性が高ぐ且 つ、表面抵抗率が低い可撓性に優れた電極部を有することから、無機 EL、有機 EL
、電子ペーパー等を利用したフレキシブルディスプレイに容易に適用させることがで き、これら無機 EL、有機 EL、電子ペーパー等の量産化を促進させることができる。
[0060] また、本発明に係る透明導電性フィルムによれば、光透過性が高ぐ且つ、表面抵 抗率が低い可撓性に優れるため、大面積のエレクト口ルミネッセンス素子の低電圧化 、高耐久化、面内輝度均一化や、太陽電池等の電力取り出し効率の改良、さらに電 子ペーパー等のフレキシブルディスプレイの低電圧.低消費電力化のために好ましく 用いること力 Sでさる。
[0061] また、圧密処理した導電性金属部を有する細線構造部と、透明性の導電膜とを有 することを特徴とする本発明は、高い透過率と低い表面抵抗率とが両立する透明導 電性フィルムを提供することが可能となる。しかも、このような効果を有する透明導電 性フィルムを低コストで大量に製造することができる。本発明では、透明導電性材料 等を導電膜に用いたことによって透明導電性フィルムの量産化を実現することができ
[0062] ITO膜の表面抵抗値も十分に低いものではないが、本発明の透明導電性フィルム は、導電膜と細線構造部との協働によって表面抵抗が低ぐ塗膜も安価であるので、 無機 EL、太陽電池等に利用することができる。
[0063] また、 EL素子に用いる場合、細線構造部が ITO膜の場合に比べて表面抵抗が低 いことから、大サイズにしたときに、輝度が下がらない等の特徴がある。 ITO膜の場合 に必要となる電極の母線 (バスバー)も不必要であることも特徴である。
[0064] また、電子ペーパー等のフレキシブルディスプレイにも低抵抗の電極として用いるこ とができ、この場合、低電圧、低消費電力化に貢献することができる。いずれの製品 に適用する場合でも、本発明に係る透明導電性フィルムは可撓性が優れているため 、ロールトウロールの生産が可能であり、これらの製品の生産プロセスコストを大幅に 肖 IJ減すること力でさる。
図面の簡単な説明
[0065] [図 1]本実施の形態に係る透明導電性フィルムの構成を一部省略して示す断面図で ある。
[図 2]本実施の形態に係る透明導電性フィルムの第 1の変形例を一部省略して示す 断面図である。
[図 3]本実施の形態に係る透明導電性フィルムの第 2の変形例を一部省略して示す 断面図である。
[図 4]本実施の形態に係る透明導電性フィルムの第 3の変形例を一部省略して示す 断面図である。
[図 5]本実施の形態に係る透明導電性フィルムの第 4の変形例を一部省略して示す 断面図である。
[図 6]本実施の形態に係る透明導電性フィルムの第 5の変形例を一部省略して示す 断面図である。
[図 7]本実施の形態に係る透明導電性フィルムの第 6の変形例を一部省略して示す 斜視図である。
[図 8]本実施の形態に係る自発光表示装置の構成を一部省略して示す断面図である
[図 9]図 9A〜図 9Eは支持体上に細線構造部を形成する製造方法を示す工程図で ある。
[図 10]現像後のカレンダー処理及び定着後のカレンダー処理における線圧力と表面 抵抗率との関係を示す特性図である。
[図 11]屈曲試験を説明するための図である。
[図 12]図 12Aは細線構造部の細線近傍のみが発光した状態を示す図であり、図 12 Bは全面発光を示す図である。
[図 13]取出し電極からの距離に応じた輝度の変化を測定するための実験例を示す 説明図である。
[図 14]実施例 23、比較例 21、 24及び 25において、取出し電極からの距離に応じた 輝度の変化を測定した結果を示す特性図である。
[図 15]サンプル 1〜6についての表面抵抗の上昇率を示す図である。
発明を実施するための最良の形態
[0066] 以下に本発明の好ましい態様を記載する。
[0067] 先ず、本実施の形態に係る透明導電性フィルム 10は、図 1に示すように、透明性の 支持体 12と、該支持体 12上に設けられ、且つ、導電性金属からなる細線構造部 14 及び透光性の導電膜 16とを有する。
[0068] 図 1の例では、細線構造部 14の厚み(高さ)が、導電膜の厚み(高さ)よりも大きい 例を示している力 S、その他、図 2及び図 3に示すように、細線構造部 14の厚み(高さ) 1S 導電膜 16の厚み(高さ)とほぼ同じでもよい。この場合、図 2に示すように、細線 構造部 14の上面を露出させるようにしてもよいし、図 3に示すように細線構造部 14の 上面を導電膜 16で被覆するようにしてもよい。
[0069] あるいは、図 4に示すように、支持体 12上の全面に導電膜 16を形成し、該導電膜 1 6上に細線パターン状の細線構造部 14を形成するようにしてもよい。この場合、図 5 に示すように、厚み(高さ)が細線構造部 14の厚み(高さ)よりも大き!/、保護層 18ある いは別の導電膜を形成するようにしてもょレ、。
[0070] また、図 6に示すように、支持体 12上に高抵抗の第 1導電膜 16aと細線パターン状 の細線構造部 14を形成し、これら第 1導電膜 16aと細線構造部 14を含む全面に低 抵抗の第 2導電膜 16bあるいは保護層を形成するようにしてもよ!/、。
[0071] その他、図 7に示すように、支持体 12上にストライプ状に形成した複数の導電膜 16 を形成し、各導電膜 16の上面中、幅方向端部の近傍に長手方向に沿って細線構造 部 14をそれぞれ形成するようにしてもよい。図 7に示すように、各導電膜 16の例えば 左側端部(又は右側端部)に細線構造部 14を形成するようにしてもよいし、幅方向両 端に細線構造部 14を形成するようにしてもよい。
[0072] 細線構造部 14の細線パターンとしては、例えば図 12A及び図 12Bに示すように、 メッシュ状にしてもよいし、あるいは六角形状を多数並べた形状、三角形状を多数並 ベた形状、多角形状を多数並べた形状、ストライプ状 (格子状)等が挙げられる。もち ろん、各細線を直線状のほか波線状(サイン曲線等)にしてもよい。
[0073] そして、この透明導電性フィルム 10を利用して自発光表示装置 20を構成する場合 は、例えば図 8に示すように、上述した本実施の形態に係る透明導電性フィルム 10 を例えば第 1電極部 22 (例えば陽極)として用い、該第 1電極部 22上に表示部 24を 配置することで構成することができる。表示部 24としては、第 1電極部 22の上面(細 線構造部 14を含む上面)上に積層された例えば発光層 26 (硫化亜鉛等の無機物や ジァミン類等の有機物)と、該発光層 26上に配置された第 2電極部 28 (例えば陰極) を有する。本実施の形態に係る自発光表示装置は、画像を表示する用途のほか、照 明用途にも使用することができることはもちろんである。
[0074] 本発明に用いる細線構造部の導電材料と開口部に付与する透明導電材料には効 果的な発光を可能にするために、抵抗の最適な範囲が存在する。細線構造部では 高導電性を活かすために体積抵抗として 10— 4オーム 'cm以下のものを利用すること が好ましい。また、開口部に用いる透明導電材料については、本材料による光損失 を抑えるために、単独での表面抵抗として 1000オーム/ sq以上であることが好まし い。以上の範囲での形態により低抵抗で電力損失が少なぐ透明性の高い透明導電 膜が実現可能となる。
[0075] 特に、本実施の形態においては、第 1電極部 22を構成する細線構造部 14の体積 抵抗が 10— 4オーム 'cm以下であり、同じく第 1電極部 22を構成する導電膜 16の体積 抵抗が 0· 05オーム 'cm以上である。
[0076] また、第 1電極部 22を構成する細線構造部 14の表面抵抗が 100オーム/ sq以下 であり、同じく第 1電極部 22を構成する導電膜 16の表面抵抗が 1000オーム/ sq以 上である。細線構造部 14及び導電膜 16の表面抵抗は、 JIS K6911に記載の測定 方法に準じて測定された値である。
[0077] さらに、後述する屈曲試験を行う前の第 1電極部 22の表面抵抗を Rl、屈曲試験を 行つた後の第 1電極部 22の表面抵抗を R2としたとき、
R2/RK 18
を満足する。
[0078] ここで、屈曲試験は、例えば図 11に示すように、基台 30に対して回転自在に取り 付けられた直径 Φ =4mmのローラ 32に長尺のサンプル 34 (第 1電極部 22)を引つ 掛け、サンプル 34の一方の端部 34aを 28. 6 (kg/m)のテンションで引っ張りながら ローラ 32を回転させてサンプル 34を屈曲させる工程と、サンプル 34の他方の端部 3 4bを同じく 28. 6 (kg/m)のテンションで引っ張りながらローラ 32を回転させてサン プル 34を屈曲させる工程とを繰り返し行って、サンプル 34を 100回屈曲させる。
[0079] 上述の条件を満足することによって、本実施の形態に係る自発光表示装置 20は、 光透過性が高ぐ且つ、表面抵抗が低ぐさらに可撓性に優れた第 1電極部 22を有 することになること力、ら、無機 EL、有機 EL、電子ペーパー等を利用したフレキシブル ディスプレイに容易に適用させることができ、これら無機 EL、有機 EL、電子ペーパー 等の量産化を促進させることができる。 [0080] また、本発明に係る透明導電性フィルム 10によれば、光透過性が高ぐ且つ、表面 抵抗が低ぐさらに可撓性に優れるため、大面積のエレクト口ルミネッセンス素子の低 電圧化、高耐久化、面内輝度均一化や、太陽電池等の電力取り出し効率の改良、さ らに電子ペーパー等のフレキシブルディスプレイの低電圧'低消費電力化のために 好ましく用いること力できる。
[0081] 特に、後述するが細線構造部 14を圧密処理することによって、高い透過率と低い 表面抵抗とが両立する透明導電性フィルム 10を提供することが可能となる。しかも、 このような効果を有する透明導電性フィルム 10を低コストで大量に製造することがで きる。本発明では、透明導電性材料等を導電膜に用いたことによって透明導電性フ イルムの量産化を実現することができる。
[0082] ITO膜の表面抵抗値も十分に低いものではないが、本発明の透明導電性フィルム は、導電膜と細線構造部との協働によって表面抵抗が低ぐ塗膜も安価であるので、 無機 EL、太陽電池等に利用することができる。
[0083] また、 EL素子に用いる場合、細線構造部 14が ITO膜の場合に比べて表面抵抗が 低いことから、大サイズにしたときに、輝度が下がらない等の特徴がある。 ITO膜の場 合に必要となる電極の母線 (バスバー)も不必要であることも特徴である。
[0084] また、電子ペーパー等のフレキシブルディスプレイにも低抵抗の電極として用いるこ とができ、この場合、低電圧、低消費電力化に貢献することができる。いずれの製品 に適用する場合でも、本実施の形態に係る透明導電性フィルム 10は、可撓性が優 れているため、ロールトウロールの生産が可能であり、これらの製品の生産プロセスコ ストを大幅に削減することができる。
[0085] その他の好ましい態様としては、以下のとおりである。
[0086] 先ず、本実施の形態に係る透明導電性フィルム 10 (第 1電極部 22)の導電膜 16は 、導電性材料を含むことが好ましい。この場合、導電性材料は、透明導電性有機ポリ マー又は導電性微粒子であることが好ましレ、。導電性微粒子は導電性金属酸化物、 導電性金属微粒子又はカーボンナノチューブであることが好ましい。
[0087] 本実施の形態では、細線構造部 14は、支持体 12上に少なくとも感光性銀塩含有 層を有する感光層を露光し、現像処理することにより形成された導電性金属銀からな るようにしてもよい。この場合、細線構造部 14は、支持体 12上に感光性銀塩含有層 を有する感光材料を露光 ·現像することにより、導電性金属銀部と光透過性部が形成 されるようにしてもよい。なお、光透過性部は、実質的に物理現像核を有しないように してもよい。また、細線構造部 14は、銀を含有し、且つ、 Ag/バインダ体積比が 1/ 4以上であることが好ましい。上記 Ag/バインダ体積比は、 Ag :バインダ = 10 :;!〜 0 • 1 : 1が好ましぐ 4 :;!〜 0. 25 : 1がより好ましぐ 4 :;!〜 0. 7: 1がさらに好ましい Ag: バインダ = 3.50 :;!〜 1: 1がさらに好ましい。
[0088] ここで、支持体 12上に細線構造部 14を形成する製造方法について図 9A〜図 9E を参照しながら説明する。
[0089] 先ず、図 9Aに示すように、ハロゲン化銀粒子 40 (例えば臭化銀粒子、塩臭化銀粒 子や沃臭化銀粒子)をゼラチン 42に混ぜてなる銀塩感光層 44を第 2透明支持体 28 上に塗布する。なお、図 9A〜図 9Cでは、ハロゲン化銀 40を「粒々」として表記してあ る力 あくまでも本発明の理解を助けるために誇張して示したものであって、大きさや 濃度等を示したものではなレ、。
[0090] その後、図 9Bに示すように、銀塩感光層 44に対して細線構造部 14の形成に必要 な露光を行う。ハロゲン化銀 40は、光エネルギーを受けると感光して「潜像」と称され る肉眼では観察できない微小な銀核を生成する。
[0091] その後、潜像を肉眼で観察できる可視化された画像に増幅するために、図 9Cに示 すように、現像処理を行う。具体的には、潜像が形成された銀塩感光層 44を現像液( アルカリ性溶液と酸性溶液のどちらもあるが通常はアルカリ性溶液が多!/、)で現像処 理する。この現像処理とは、ハロゲン化銀粒子ないし現像液から供給された銀イオン が現像液中の現像主薬と呼ばれる還元剤により潜像銀核を触媒核として金属銀に還 元されて、その結果として潜像銀核が増幅されて可視化された銀画像 (現像銀 46)を 形成する。
[0092] 現像処理を終えたあとに銀塩感光層 44中には光に感光できるハロゲン化銀 40が 残存するのでこれを除去するために図 9Dに示すように定着処理液(酸性溶液とアル カリ性溶液のどちらもあるが通常は酸性溶液が多い)により定着を行う。
[0093] この定着処理を行うことによって、露光された部位には金属銀部 48が形成され、露 光されて!/、な!/、部位にはゼラチン 42のみが残存し、光透過性部となる。
[0094] ハロゲン化銀 40として臭化銀を用い、チォ硫酸塩で定着処理した場合の定着処理 の反応式を以下に示す。
[0095] AgBr (固体) + 2個の S Oイオン
2 3 → Ag (S O )
2 3 2
(易水溶性錯体)
すなわち、 2個のチォ硫酸イオン S Oとゼラチン 42中の銀イオン (AgBrからの銀ィ
2 3
オン)が、チォ硫酸銀錯体を生成する。チォ硫酸銀錯体は水溶性が高いのでゼラチ ン 42中力も溶出される。その結果、現像銀 46が金属銀部 48として定着されて残る。
[0096] 従って、現像工程は、潜像に対し還元剤を反応させて現像銀 46を析出させる工程 であり、定着工程は、現像銀 46にならなかったハロゲン化銀 40を水に溶出させるェ 禾呈 e¾?o。 羊糸田は、 Τ. H. James, The Theory oi the Photograpnic Proc ess, 4th ed. , Macmillian Publishing Co. , Inc, NY, Chapterl 5, p p. 438 -442. 1977を参照されたい。
[0097] なお、現像処理後で、定着処理工程に入る前に、酢酸 (酢)溶液等の停止液で銀 塩感光層 44を中和もしくは酸性化することが好ましい。
[0098] そして、図 9Eに示すように、例えば熱処理を行って残存するゼラチンを除去した後 、例えばめつき処理(無電解めつきや電気めつきを単独ないし組み合わせる)を行つ て、金属銀部 48の表面のみに金属層 50を担持させることによって、第 2透明支持体 28上に金属銀部 48と、該金属銀部 48に担持された金属層 50にて細線構造部 14が 形成されることになる。
[0099] ここで、上述した銀塩感光層 44を用いた方法 (銀塩写真技術)と、フォトレジストを 用いた方法 (レジスト技術)との違!/、を説明する。
[0100] レジスト技術では、露光処理により光重合開始剤が光を吸収して反応が始まりフォト レジスト膜 (樹脂)自体が重合反応して現像液に対する溶解性の増大又は減少させ、 現像処理により露光部分又は未露光部分の樹脂を除去する。なおレジスト技術で現 像液とよばれる液は還元剤を含まず、未反応の樹脂成分を溶解する例えばアルカリ 性溶液である。一方、本発明の銀塩写真技術の露光処理では上記に記載したように
、光を受けた部位のハロゲン化銀 40内において発生した光電子と銀イオンからいわ ゆる「潜像」と呼ばれる微小な銀核が形成され、その潜像銀核が現像処理 (この場合 の現像液は必ず現像主薬と呼ばれる還元剤を含む)により増幅されて可視化された 銀画像になる。このように、レジスト技術と銀塩写真技術とでは、露光処理から現像処 理での反応が全く異なる。
[0101] レジスト技術の現像処理では露光部分又は未露光部分の重合反応しなかった樹 脂部分が除去される。一方、銀塩写真技術の現像処理では、潜像を触媒核にして現 像液に含まれる現像主薬と呼ばれる還元剤により還元反応がおこり、 目に見える大き さまで現像銀 46が成長するものであって、未露光部分のゼラチン 42の除去は行わ れない。このように、レジスト技術と銀塩写真技術とでは、現像処理での反応も全く異 なる。
[0102] なお、未露光部分のゼラチン 42に含まれるハロゲン化銀 40は、その後の定着処理 によって溶出されるものであって、ゼラチン 42自体の除去は行われな!/、(図 9D参照)
[0103] このように、銀塩写真技術では反応 (感光)主体がハロゲン化銀であるのに対し、レ ジスト技術では光重合開始剤である。また、現像処理では、銀塩写真技術ではバイ ンダ (ゼラチン 42)は残存するが(図 9D参照)、レジスト技術ではバインダがなくなる。 このような点で、銀塩写真技術とフォトレジスト技術は大きく相違する。
[0104] そして、細線構造部 14は、支持体 12上に感光性銀塩含有層を有する感光材料を 露光し、現像した後で、定着する前に少なくとも 1度圧密処理を行い、定着終了後に さらに少なくとも 1度圧密処理を行って得られることが好ましい。この場合、圧密処理 は、露光済み感光層に対して現像、水洗、乾燥後に行い、さらに、定着、水洗、乾燥 後に行うことが好ましい。圧密処理はカレンダーロール装置によって行うことができる
[0105] さらに、細線構造部 14は、現像と乾燥の間に物理現像、電解めつき及び無電解め つきの少なくとも 1つを行って得ることが好ましい。
[0106] そして、透明導電性フィルム 10 (第 1電極部 22)は、細線構造部 14を形成した後に
、細線構造部 14と導電膜 16とを貼り合わせて構成してもよい。
[0107] 次に、本実施の形態に係る透明導電性フィルム 10 (第 1電極部 22)の具体的構成 例について説明する。
[0108] なお、本明細書において「〜」は、その前後に記載される数値を下限値及び上限値 として含む意味として使用される。
[0109] [支持体 12]
支持体 12は、透光性を有していれば特に制限されないが、透光性が高いことが望 ましい。また、透光性を有していれば、発明の目的を妨げない程度に着色していても よい。本実施の形態において、支持体 12の全可視光透過率は 70〜; 100%が好まし く、さらに好ましくは 85〜; 100%であり、特に好ましくは 90〜; 100%である。
[0110] 従って、支持体 12としては、プラスチックフィルムを用いることができる。
[0111] 上記プラスチックフィルムの原料としては、例えば、ポリエチレンテレフタレート(PE T)、及びポリエチレンナフタレート等のポリエステル類;ポリエチレン(PE)、ポリプロピ レン(PP)、ポリスチレン、 EVA等のポリオレフイン類;ポリ塩化ビュル、ポリ塩化ビニリ デン等のビュル系樹脂;その他、ポリエーテルエーテルケトン(PEEK)、ポリサルホン (PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド 、アクリル樹脂、トリァセチルセルロース(TAC)等を用いることができる。
[0112] 本実施の形態においては、透明性、耐熱性、取り扱い易さ及び価格の点から、上 記プラスチックフィルムはポリエチレンテレフタレート(PET)又はポリエチレンナフタ レート(PEN)であること力 S好まし!/、。
[0113] 透明導電性フィルム 10は、透明性が要求されるため、支持体 12の透明性は高いこ とが望ましい。この場合におけるプラスチックフィルムの全可視光透過率は 70〜; 100 %が好ましぐさらに好ましくは 85〜; 100%であり、特に好ましくは 90〜; 100%である 。また、本実施の形態では、前記プラスチックフィルムとして、本発明の目的を妨げな い程度に着色したものを用いることもできる。
[0114] 本実施の形態におけるプラスチックフィルムは、単層で用いることもできるが、 2層 以上を組み合わせた多層フィルムとして用いることも可能である。
[0115] また、耐光性の向上のために紫外線吸収剤を練り込んだベースや、バリア層を付 与したり、反射防止層やハードコート層を付与したものを用いてもよい。
[0116] 本実施の形態における支持体 12としてガラス板を用いる場合、その種類は特に限 定されないが、ディスプレイ用導電性フィルムの用途として用いる場合、表面に強化 層を設けた強化ガラスを用いることが好ましい。強化ガラスは、強化処理していない ガラスに比べて破損を防止できる可能性が高い。さらに、風冷法により得られる強化 ガラスは、万一破損してもその破砕破片が小さぐ且つ、端面も鋭利になることはない ため、安全上好ましい。
[0117] [細線構造部 14]
本実施の形態は、透明性の導電膜 16に加えて、一様な網目状、櫛型あるいはダリ ッド型等の金属及び/又は合金の細線構造部 14を配置し、圧密処理した導電性面 を作成して通電性を改善する。
[0118] 金属や合金の細線 (金属細線と記す)の材料としては、銅や銀、アルミニウムが好ま しく用いられる力 目的によっては、前述の透明導電性材料を用いてもよい。電気伝 導性と熱伝導性が高い材料であることが好ましい。また、これらの金属にめっき処理 を施してめっき金属としてもよい。金属細線の幅は、任意である力 0. 程度か ら 30〃 mの間が好ましい。金属細線は、 20〃mから 300〃 mの間隔のピッチで配置 されて!/、ること力 S好まし!/、。 金属及び/又は合金の細線構造部を配置することで光 の透過率が減少するが、減少はできるだけ小さいことが重要で、金属細線の間隔を 狭くしすぎたり、金属細線の幅や高さを大きく取りすぎたりすることなぐ好ましくは 70 %以上の光の透過率を確保することが重要である。本実施の形態においては、透明 導電性フィルム 10の光の透過率力 550nmの光に対して 70%以上であることが好 ましぐ 80%であることがより好ましい。さらには、 90%以上であることが最も好ましい
[0119] 本実施の形態の透明導電性フィルム 10を EL素子に用いる場合に、輝度を向上さ せるため、また、白色発光を実現する上で、波長 420nm〜650nmの領域の光を 70 %以上透過することが好ましぐより好ましくは 80%以上透過することが好ましい。さら には白色発光を実現する上では、波長 380nm〜680nmの領域の光を 80%以上透 過すること力 り好ましい。 90%以上であることが最も好ましい。透明導電性フィルム 10の光の透過率は、分光光度計によって測定することができる。
[0120] 金属及び/又は合金の細線構造部 14の高さ(厚み)は、 0· 1 m以上 10 m以 下力、好ましい。特に好ましくは、 0· l ^ m以上 2 111以下である。さらには 0· l ^ m 以上 1 μ m以下が最も好ましい。金属及び/又は合金の細線構造部 14と導電膜 16 は、どちらが表面に出ていもよいが、結果として細線構造部 14の突起部と開口部の 高低差が、 5 m以下であることが好ましい。さらには実質的に高低差がないのが最 も好ましい。
[0121] ここで、導電性面の高さは、 3次元表面粗さ計 (例えば、東京精密社製; SURFCO M575A—3DF)を用いて 5mm四方を測定したときの凹凸部の平均振幅を示す。表 面粗さ計の分解能の及ばないものについては、 STMや電子顕微鏡による測定によ つて、高さを求める。
[0122] 細線構造部 14は、少なくとも一部が黒化処理を施されたものであることが好ましい。
黒化処理により形成された黒化層は、防鯖効果に加え、反射防止性を付与すること カできる。細線構造部 14に黒化処理により反射防止性を付与することにより、反射率 の高い金属が細線パターン化した細線構造部 14における光の反射を抑制すること ができる。
[0123] 黒化処理については、例えば特開 2003— 188576号公報に開示されており、一 般に、導電性金属化合物、例えば、ニッケル (Ni)、亜鉛 (Zn)、銅(Cu)等の化合物 や合金を使用した電解めつき処理、黒色系の被膜を与えるめっき法、あるいは、電着 塗装材料等の電着性イオン性高分子材料を使用する方法により実施することができ る。例えば、 Co— Cu合金めつきによって形成された黒化層は、金属表面の反射を防 止すること力 Sでき、さらにクロメート処理を施すことにより防鯖性を付与することができ る。クロメート処理は、クロム酸もしくは重クロム酸塩を主成分とする溶液中に浸漬し、 乾燥させて防鯖被膜を形成するものである。
[0124] 本実施の形態において、上記の黒化処理の際に用いる電解液の浴 (黒色めつき浴 )は、硫酸ニッケル塩を主成分とする黒色めつき浴を使用することができ、さらに、巿 販の黒色めつき浴も同様に使用することができ、具体的には、例えば、株式会社シミ ズ製の黒色めつき浴(商品名、ノーブロイ SNC、 Sn— Ni合金系)、 日本化学産業株 式会社製の黒色めつき浴(商品名、ニツカブラック、 Sn— Ni合金系)、株式会社金属 化学工業製の黒色めつき浴(商品名、ェボ二—クロム 85シリ— 85シリ—ズ、 Cr系)等 を使用すること力できる。また、本実施の形態においては、上記の黒色めつき浴として は、 Zn系、 Cu系、その他等の種々の黒色めつき浴を使用することができる。また、金 属の黒化処理剤として、硫化物系化合物を用いて容易に製造でき、さらにまた、市販 品も多種類の処理剤があり、例えば、商品名'コパ—ブラック CuO、同 CuS、セレン 系のコパ一ブラック No. 65等(アイソレート化学研究所製)、商品名'ェボノール Cス ぺシャル (メルテックス株式会社製)等を使用することができる。
[0125] 細線構造部 14の製造方法は特に制限されないが、銀塩写真法によって、ハロゲン 化銀粒子を所望の細線パターンとなるように化学現像する方法が好ましい。銀塩写 真法により得られる金属は、現像銀とよばれるものであり、化学現像によって得られる フィラメント状の金属銀の集合体、又は、フィラメント状の金属銀が互いに結合 ·融着 した金属銀の集合体である。
[0126] 現像銀を得る方法は、一般によく知られている銀塩写真の原理 ·手法を利用できる 。例えば、特開 2004-221564号公報に記載の方法等を利用することができる。
[0127] また、現像銀は、電解めつきの力ソードとして用いるのに十分な導電性とすることが 可能であるため、現像銀を電解めつきすることが可能である。また、現像銀は無電解 めっき触媒として利用することも可能であり、現像銀に無電解めつきを施すことも可能 である。従って、他の金属、例えば導電性の高い銅等によりめつき処理を施し、現像 銀とめっき金属からなる(不可避不純物を含む)構成としてもよい。また、現像銀は上 記のようにめつき処理が可能であるため、黒化処理を容易に施すことができる。
[0128] 細線構造部 14の細線パターンの形状は特に制限なぐ 目的に応じて様々なパター ンを選択することができ、上述したように、メッシュ状にしてもよいし、あるいは六角形 状を多数並べた形状、三角形状を多数並べた形状、多角形状を多数並べた形状、 ストライプ状 (格子状)等が挙げられる。もちろん、各細線を直線状のほか波線状(サ イン曲線等)にしてもよい。
[0129] 金属細線の厚みは、用途によって適宜変更することができる力 高い導電性を得る ためには、 0. 2 m以上の厚みを有することが好ましい。上限は、上述したように、 1 O ^ m以下であることが好ましい。さらに好ましくは 2 111以下、特に好ましくは 以下である。 [0130] 細線パターンの線幅もまた、用途によって適宜変更することができる力 高い導電 性を得るためには、 1 μ m以上の線幅を有することが好ましぐ線幅が太すぎるものは 、上記と同様目視した場合に認識できてしまい、光を透過する材料にとっては問題で あるので、 1 m以上 30 m以下の線幅の細線パターンであることが好ましい。より 好ましくは、 2 H m以上 20 H m以下であり、さらに好ましくは 4 μ m以上 18 m以下で ある。
[0131] [導電膜 16]
一方、導電膜 16は、ポリエチレンテレフタレートやポリエチレンナフタレートベース 等の透明フィルム上に、 PEDOT/PSS 'ポリア二リン'ポリピロール 'ポリチォフェン' ポリイソチアナフテン等の透明導電性有機ポリマー、金属酸化物、金属微粒子、金属 ナノロッド 'ナノワイヤ等の導電性金属、カーボンナノチューブ等の導電性無機微粒 子、又は有機水溶性塩のいずれかを、塗布、印刷等の方法で一様に付着、成膜する ことで得られる。これらの塗布液は塗布適性向上や膜物性調整のために他の非導電 性ポリマーやラテックス等をブレンドして用いてもよい。また、銀の薄膜を高屈折率層 で挟んだ多層構造を用いてもよい。これら透明導電性材料に関しては、東レリサーチ センター発行「電磁波シールド材料の現状と将来」、特開平 9 147639号公報等に 記載されている。塗布及び印刷の方法としては、スライドコータ、スロットダイコータ、 カーテンコータ、ローノレコータ、ノ ーコータ、グラビアコータ等の塗布コータゃスクリー ン印刷等が用いられる。
[0132] 本実施の形態は、このような導電膜 16に加えて、一様な網目状、ストライプ状、櫛 型あるいはグリッド型等の金属及び/又は合金の細線構造部 14を配置した導電性 面を作成して通電性を改善して!/、る。
[0133] 網目状の金属及び/又は合金の細線構造部 14と、導電膜 16を形成した透明フィ ルムとを別々に形成して重ねあわせ、本実施の形態に係る透明導電性フィルム 10を 作製すること力でさる。
[0134] 細線構造部 14と導電膜 16を貼り合わせる以外に、透明フィルム上に形成した網目 状の金属及び/又は合金の細線構造部 14の上から、さらに透明導電性材料の分散 物を蒸着、塗布、印刷等の方法で一様に付着、成膜して、透明導電性フィルム 10を 作製するようにしてもよい。網目状の金属及び/又は合金の細線構造部 14の凸凹 、透明導電性材料の分散物によって緩和され、全体に凹凸の少ない滑らかな構造 が得られる。また、透明導電性材料を透明フィルム上に形成し、その上に細線構造 部 14を設けてもよい。
[0135] いずれの場合にも、金属及び/又は合金の細線構造部 14と透明フィルム、又は導 電膜 16と透明フィルムとの密着性等を向上させるために、有機高分子材料からなる 中間層を用いたり、表面処理をしたりすることを好ましく行うことができる。
[0136] 金属及び/又は合金の細線構造部 14が直接他の層に触れることがなぐ且つ、透 明導電性フィルム 10の表面の凹凸も低く抑えられるため、例えば、その上に形成さ れる電界発光層や電流注入層との均一な接合を得易ぐ自発光表示装置 20の安定 性を確保し易い。
[0137] また、支持体 12上に少なくとも感光性ハロゲン化銀含有層を含む写真構成層を有 し、該写真構成層の少なくとも 1層が導電性材料を含有する層である感光材料を露 光し、現像することにより、金属銀部と光透過部を有する細線構造部 14と、導電性材 料を含有する導電膜 16とを形成するようにしてもよ!/、。
[0138] 導電膜 16は、導電性ポリマーを含有する第 1膜と絶縁性ポリマーを主成分とする第 2膜とを積層した構成とすることも可能である。導電膜 16を導電性ポリマーと絶縁性 ポリマーの混合物を含有するものとした構成でもよい。これらの構成は、高価な導電 性ポリマーの使用量を削減することができ、低価格化を実現することができる。ここで 、導電性ポリマーと絶縁性ポリマーの混合物を含有する場合、例えば、導電性ポリマ 一 10%その他のバインダ 90%でブレンドして使用する形態等が考えられる。導電性 ポリマーの含有量は、好ましくは 50質量%以上であり、好ましくは 70質量%以上であ り、好ましくは 80質量%以上である。
[0139] 導電膜 16を導電性ポリマーと絶縁性ポリマーの混合物を含有する場合は、導電性 ポリマーは均一に分布していても、空間的に不均一な分布をしていてもよいが、不均 一な分布の場合には導電膜 16の表面に近いほど導電性ポリマーの含有率が高くな ること力 S好ましい。なお、上述した第 1膜 (導電性ポリマーを主成分)と第 2膜 (絶縁性 ポリマーを主成分)の積層構造の場合、より低価格な構成とするためには、第 2膜の 層厚が、第 1膜の層厚よりも大きレ、構成とすることが好ましレ、。
[0140] 導電性ポリマーとしては、透光性及び導電性の高いものが好ましぐポリチォフェン 類、ポリピロール類、ポリア二リン類等の電子伝導性導電性ポリマーが好ましい。
[0141] 電子伝導性ポリマーとしては、当該技術分野で既知のポリマー、例えばポリアセチ レン、ポリピロール、ポリア二リン、ポリチォフェン等である。その詳細は、例えば" Adv ances in synthetic Metals , ed. P. Bernier, ¾ . Lefrant, and G. Bidan, Elsevier, 1999 ; "Intrinsically Conducting Polymers: An Emerging Tec hnology , Kluwer (1993); 'Conducting Polymer Fundamentals and Ap plications, A Practical Approach" , P. Chandrasekhar, Kluwer, 1999 ;及 び" Handbook of Organic Conducting Molecules and Polymers , Ed. Walwa, Vol. 1 -4, Marcel Dekker Inc. (1997)のような教本に見ることができ る。なお、今後開発される新規な電子伝導性ポリマーも、電子伝導性ポリマーである 限り同様に用いることができるということは、当業者なら容易に想到し得る。また、これ らの電子伝導性ポリマーは単独で用いてもよいし、ポリマーブレンドのように複数種の ポリマーを混合して用いてもよい。
[0142] 絶縁性ポリマーとしては、アクリル樹脂、エステル樹脂、ウレタン樹脂、ビュル樹脂、 ポリビュルアルコール、ポリビュルピロリドン、ゼラチン等が挙げられ、アクリル樹脂及 びポリウレタン樹脂が好ましぐアクリル樹脂が特に好ましい。
[0143] また、導電膜 16は、導電性金属酸化物粒子やバインダ等を含んでいてもよい。導 電性金属酸化物としては、酸化スズ、アンチモンがドープされた SnO、インジウムと スズの酸化物(ITO)、酸化亜鉛、フッ素がドープされた酸化スズ、ガリウムがドープさ れた酸化亜鉛等が用いられる。
[0144] ノ インダとしては、アクリル樹脂、エステル樹脂、ウレタン樹脂、ビュル樹脂、ポリビ ニルアルコール、ポリビュルピロリドン、ゼラチン等が挙げられ、アクリル樹脂及びポリ ウレタン樹脂が好ましぐアクリル樹脂が特に好ましい。
[0145] 導電膜 16は、耐水性ゃ耐溶剤性等が向上されることから、架橋されていることが好 ましぐ導電性ポリマー自体に架橋反応性を有しない場合は、バインダに架橋反応性 を有していることが好ましぐ架橋剤に対して架橋反応が可能であるような官能基を有 して!/、ること力 S好まし!/、。架橋剤にっレ、ては後記する。
[0146] アクリル樹脂としては、アクリル酸、アクリル酸アルキル等のアクリル酸エステル類、 アクリルアミド、アクリロニトリル、メタクリル酸、メタクリル酸アルキル等のメタクリル酸ェ ステル類、メタクリルアミド及びメタタリロニトリルのいずれかのモノマーの単独重合体 又はこれらのモノマー 2種以上の重合により得られる共重合体を挙げることができる。 これらの中では、アクリル酸アルキル等のアクリル酸エステル類、及びメタクリル酸ァ ノレキル等のメタクリル酸エステル類のいずれかのモノマーの単独重合体又はこれらの モノマー 2種以上の重合により得られる共重合体が好ましい。例えば、炭素原子数 1 〜6のアルキル基を有するアクリル酸エステル類及びメタクリル酸エステル類のいず れかのモノマーの単独重合体又はこれらのモノマー 2種以上の重合により得られる共 重合体を挙げること力できる。上記アクリル樹脂は、上記組成を主成分とし、後記する 架橋剤と反応可能な官能基を有することが好ましい。架橋剤としてカルポジイミド化 合物を使用する場合は、例えば、メチロール基、水酸基、カルボキシル基及びアミノ 基のいずれかの基を有するモノマーを一部使用して得られるポリマーであることが好 ましい。以下のバインダの例においては、架橋剤と反応可能な態様の例示は、架橋 剤としてカルポジイミド化合物を使用する場合について示すが他の架橋剤を用いる 場合は架橋剤の種類に応じた官能基を有することが好ましい。
[0147] ビュル樹脂としては、ポリビュルアルコール、酸変性ポリビュルアルコール、ポリビニ ノレホノレマーノレ、ポリビニノレブチラ一ノレ、ポリビニノレメチノレエーテノレ、ポリオレフイン、ェ チレン/ブタジエン共重合体、ポリ酢酸ビュル、塩化ビュル/酢酸ビュル共重合体、 塩化ビュル/ (メタ)アクリル酸エステル共重合体及びエチレン/酢酸ビュル系共重 合体 (好ましくはエチレン/酢酸ビュル/ (メタ)アクリル酸エステル共重合体)を挙げ ることカできる。これらの中で、ポリビュルアルコール、酸変性ポリビュルアルコール、 ポリビュルホルマール、ポリオレフイン、エチレン/ブタジエン共重合体及びエチレン /酢酸ビュル系共重合体(好ましくは、エチレン/酢酸ビュル/アクリル酸エステル 共重合体)が好ましい。上記ビュル樹脂は、カルポジイミド化合物との架橋反応が可 能なように、ポリビュルアルコール、酸変性ポリビュルアルコール、ポリビュルホルマ ール、ポリビュルブチラール、ポリビュルメチルエーテル及びポリ酢酸ビュルでは、例 えば、ビュルアルコール単位をポリマー中に残すことにより水酸基を有するポリマーと し、他のポリマーについては、例えば、メチロール基、水酸基、カルボキシル基及び ァミノ基のいずれかの基を有するモノマーを一部使用することにより架橋可能なポリ マーとすることが好ましい。
[0148] ウレタン樹脂としては、ポリヒドロキシ化合物(例、エチレングリコール、プロピレンダリ コール、グリセリン、トリメチロールプロパン)、ポリヒドロキシ化合物と多塩基酸との反 応により得られる脂肪族ポリエステル系ポリオール、ポリエーテルポリオール (例、ポリ (ォキシプロピレンエーテル)ポリオール、ポリ(ォキシエチレン プロピレンエーテノレ) ポリオール)、ポリカーボネート系ポリオール、及びポリエチレンテレフタレートポリオ一 ルの!/、ずれか一種、あるいはこれらの混合物とポリイソシァネートから誘導されるポリ ウレタンを挙げること力 Sできる。上記ポリウレタン樹脂では、例えば、ポリオールとポリイ ソシァネートとの反応後、未反応として残った水酸基をカルポジイミド化合物との架橋 反応が可能な官能基として利用することができる。
[0149] エステル樹脂としては、一般にポリヒドロキシ化合物(例、エチレングリコール、プロ ピレンダリコール、グリセリン、トリメチロールプロパン)と多塩基酸との反応により得ら れるポリマーが使用される。上記エステル樹脂では、例えば、ポリオールと多塩基酸 との反応終了後、未反応として残った水酸基、カルボキシル基をカルポジイミド化合 物との架橋反応が可能な官能基として利用することができる。もちろん、水酸基等の 官能基を有する第三成分を添加してもよ!/、。
[0150] 上記したように、導電膜 16は架橋されていることが好ましい。その場合、導電膜 16 は、架橋剤により架橋されていてもよいし、感光性に影響のない手段によって架橋剤 の添加なしに、単に、光照射により誘起される光化学反応を利用して架橋されていて もよい。架橋剤としては、ビニルスルホン類(例えば 1 , 3—ビスビニルスルホニルプロ パン)、アルデヒド類(例えばダリオキサール)、塩化ピリミジン類(例えば 2, 4, 6 トリ クロ口ピリミジン)、塩化トリアジン類(例えば塩化シァヌル)、エポキシ化合物、カルボ ジイミド化合物等が挙げられる。
[0151] エポキシ化合物としては、 1 , 4 ビス(2' , 3' エポキシプロピルォキシ)ブタン、 1 , 3, 5—トリグリシジルイソシァヌレート、 1 , 3—ジクリシジルー 5—(γ—ァセトキシー β ォキシプロピル)イソシヌレート、ソルビトールポリグリシジルエーテル類、ポリグリ セロールポリグリシジルエーテル類、ペンタエリスリトールポリグリシジルエーテル類、 ジグリセロールポリグルシジルエーテル、 1 , 3, 5—トリグリシジル(2—ヒドロキシェチ ノレ)イソシァヌレート、グリセロールポリグリセロールエーテル類及びトリメチロールプロ パンポリグリシジルエーテル類等のエポキシ化合物が好ましぐその具体的な市販品 としては、例えばデナコール ΕΧ - 521や EX - 614B (ナガセ化成工業 (株)製)等を 挙げることができる力 S、これらに限定されるものではない。
[0152] また、感光特性に影響を与えな!/、添加量の範囲では、他の架橋性化合物との併用 も可能であり、例えば C. E. K. Meers及び Τ· H. James著「The Theory of th e Photographic Process」第 3版(1966年)、米国特許第 3316095号、同第 32 32764号、同第 3288775号、同第 2732303号、同第 3635718号、同第 323276 3号、同第 2732316号、同第 2586168号、同第 3103437号、同第 3017280号、 同第 2983611号、同第 2725294号、同第 2725295号、同第 3100704号、同第 3 091537号、同第 3321313号、同第 3543292号及び同第 3125449号、並びに英 国特許第 994869号及び同第 1167207号の各明細書等に記載されている硬化剤 等があげられる。
[0153] これらの硬化剤の代表的な例としては、 2個以上 (好ましくは 3個以上)のメチロール 基及びアルコキシメチル基の少なくとも一方を含有するメラミン化合物又はそれらの 縮重合体であるメラミン樹脂あるいはメラミン 'ユリア樹脂、さらにはムコクロル酸、ムコ ブロム酸、ムコフエノキシクロル酸、ムコフエノキシプロム酸、ホルムアルデヒド、グリオ キザール、モノメチルギリォキザール、 2, 3 ジヒドロキシー 1 , 4 ジォキサン、 2, 3 ージヒドロキシー5 メチルー 1 , 4 ジォキサンサクシンアルデヒド、 2, 5 ジメトキシ テトラヒドロフラン及びダルタルアルデヒド等のアルデヒド系化合物及びその誘導体; ジビニルスルホン一 N, N,一エチレンビス(ビュルスルホニルァセトアミド)、 1 , 3—ビ ス(ビュルスルホニル) 2 プロパノール、メチレンビスマレイミド、 5 ァセチル一 1 , 3—ジァクリロイル一へキサヒドロ一 s トリァジン、 1 , 3, 5—トリアタリロイノレ一へサヒ ドロー s—トリァジン及び 1 , 3, 5—トリビニルスルホニルーへキサヒドロー s—トリァジン 等の活性ビュル系化合物; 2, 4 ジクロロ一 6 ヒドロキシ一 s トリァジンナトリウム 塩、 2, 4 ジクロロー 6—(4ースルホア二リノ)—s—トリァジンナトリウム塩、 2, 4 ジ クロ口一 6— (2 スルホェチルァミノ) s トリァジン及び N, N,一ビス(2 クロロェ チルカルバミル)ピぺラジン等の活性ハロゲン系化合物;ビス(2, 3 エポキシプロピ ル)メチルプロピルアンモニゥム ·ρ—トルエンスルホン酸塩、 2, 4, 6 トリエチレン s トリァジン、 1 , 6—へキサメチレン一 Ν, Ν,一ビスエチレン尿素及びビス一 β —ェ チレンイミノエチルチオエーテル等のエチレンイミン系化合物; 1 , 2—ジ(メタンスル ホンォキシ)ェタン、 1 , 4ージ(メタンスルホンォキシ)ブタン及び 1 , 5—ジ(メタンスル ホンォキシ)ペンタン等のメタンスルホン酸エステル系化合物;ジシクロへキシルカル ポジイミド及び 1—ジシクロへキシル 3— (3—トリメチルァミノプロピル)カルポジイミ ド塩酸塩等のカルポジイミド化合物; 2, 5 ジメチルイソォキサゾール等のイソォキサ ゾール系化合物;クロム明ばん及び酢酸クロム等の無機系化合物; Ν カルボエトキ シー2—イソプロポキシ 1 , 2—ジヒドロキノリン及び Ν— (1—モルホリノカルボキシ) —4—メチルピリジゥムクロリド等の脱水縮合型ペプチド試薬; Ν, N'—アジボイルジ ォキシジサクシンイミド及び Ν, N'—テレフタロイルジォキシジサクシンイミド等の活 性エステル系化合物:トルエン 2, 4—ジイソシァネート及び 1 , 6—へキサメチレン ジイソシァネート等のイソシァネート類;及びポリアミド ポリアミンーェピクロノレヒドリン 反応物等のェピクロルヒドリン系化合物を挙げることができる力 S、これらに限定される ものではない。
[0154] カルポジイミド化合物としては、分子内にカルポジイミド構造を複数有する化合物を 使用することが好ましい。
[0155] ポリカルポジイミドは、通常、有機ジイソシァネートの縮合反応により合成される。こ こで分子内にカルポジイミド構造を複数有する化合物の合成に用いられる有機ジイソ シァネートの有機基は特に限定されず、芳香族系、脂肪族系のいずれか、あるいは それらの混合系も使用可能であるが、反応性の観点から脂肪族系が特に好ましい。
[0156] 合成原料としては、有機イソシァネート、有機ジイソシァネート、有機トリイソシァネ ート等が使用される。有機イソシァネートの例としては、芳香族イソシァネート、脂肪 族イソシァネート、及び、それらの混合物が使用可能である。
[0157] 具体的には、 4, 4'ージフエニルメタンジイソシァネート、 4, 4ージフエニルジメチル メタンジイソシァネート、 1 , 4 フエ二レンジイソシァネート、 2, 4—トリレンジイソシァ ネート、 2, 6 トリレンジイソシァネート、へキサメチレンジイソシァネート、シクロへキ サンジイソシァネート、キシリレンジイソシァネート、 2, 2, 4 トリメチノレへキサメチレン ジイソシァネート、 4, 4'ージシクロへキシノレメタンジイソシァネート、 1 , 3—フエ二レン ジイソシァネート等が用いられ、また、有機モノイソシァネートとしては、イソホロンイソ シァネート、フエニノレイソシァネート、シクロへキシノレイソシァネート、ブチルイソシァネ ート、ナフチルイソシァネート等が使用される。
[0158] また、カルポジイミド系化合物の具体的な市販品としては、例えば、カルポジライト V — 02— L2 (商品名:日清紡社製)等が入手可能である。
[0159] 架橋剤としてカルポジイミド系化合物を用いる場合は、バインダに対して 1〜200質 量%、より好ましくは 5〜; 100質量%の範囲で添加することが好ましい。
[0160] 導電膜 16の形成方法としては、スパッタリング等の各種物理的方法、一般によく知 られた塗布方法、例えばディップコート法、エアーナイフコート法、カーテンコート法、 ワイヤーバーコート法、グラビアコート法、エタストルージョンコート法等の各種の塗布 法等を利用することができる。
[0161] これらの方法により導電膜 16を形成する場合は、(A)細線パターンの凹部を埋め て、細線構造部 14の表面と導電膜 16の表面とが例えば平滑な表面を形成するよう に導電膜 16の設置量を調整する方法、(B)研磨によって細線構造部 14の表面と導 電膜 16の表面とが平滑な表面を形成するように調整する方法、(C)細線構造部 14 の表面に、導電膜 16の材料が付着することを防止する表面処理を施した後に導電 膜 16を形成する方法が好ましく用いられる。
[0162] (C)の方法では、導電膜 16の材料の塗布液が一般的に高極性である力、、あるいは 親水的であるために、細線構造部 14の表面は低極性あるいは疎水的であることが望 ましぐ具体的には細線構造部 14の表面にアルキルチオール類に代表される疎水 性金属表面処理剤を用いて表面処理を施されることが好ましい。この処理剤は後処 理にて除去することがさらに好ましい。
[0163] 導電膜 16は、必要に応じて、別途、機能性を有する機能層を設けていてもよい。こ の機能層は、用途ごとに種々の仕様とすることができる。例えば屈折率や膜厚を調整 した反射防止機能を付与した反射防止層や、ノングレアー層又はアンチグレア層(共 にぎらつき防止機能を有する)、近赤外線を吸収する化合物や金属からなる近赤外 線吸収層、特定の波長域の可視光を吸収する色調調節機能をもった層、指紋等の 汚れを除去し易い機能を有した防汚層、傷のつき難いハードコート層、衝撃吸収機 能を有する層、ガラス破損時のガラス飛散防止機能を有する層等を設けることができ る。これらの機能層は、導電膜 16の表面に設けてもよいし、支持体 12の裏面に設け てもよい。
[0164] 次に、支持体 12上に感光性銀塩含有層を有する感光材料を露光'現像することに より、導電性金属銀部と光透過性部を形成することによって、細線構造部 14を構成 する場合につ!/、て説明する。
[0165] [乳剤層 (銀塩含有感光層)]
本実施の形態の製造方法に用いられる感光材料は、支持体 12上に、光センサとし て銀塩を含む乳剤層(銀塩含有感光層)を有する。銀塩含有感光層は、銀塩とバイ ンダのほか、溶媒や染料等の添加剤を含有することができる。
[0166] また好ましくは、乳剤層は、実質的に最上層に配置されている。ここで、「乳剤層が 実質的に最上層である」とは、乳剤層が実際に最上層に配置されている場合のみな らず、乳剤層の上に設けられた層すなわち保護層の総膜厚が 0. 5 m以下であるこ とを意味する。乳剤層の上に設けられた層の総膜厚は、好ましくは 0. 2 111以下であ
[0167] 以下、乳剤層に含まれる各成分について説明する。
[0168] <染料〉
感光材料には、少なくとも乳剤層に染料が含まれていてもよい。該染料は、フィルタ 染料として若しくはィラジェーシヨン防止その他種々の目的で乳剤層に含まれる。上 記染料としては、固体分散染料を含有してよい。本発明に好ましく用いられる染料と しては、特開平 9— 179243号公報記載の一般式 (FA)、一般式 (FA1)、一般式 (F A2)、一般式 (FA3)で表される染料が挙げられ、具体的には同公報記載の化合物 F1〜F34が好ましい。また、特開平 7— 152112号公報記載の(II— 2)〜(II— 24) 、特開平 7— 152112号公報記載の(III _ 5)〜(III _ 18)、特開平 7— 152112号 公報記載の(IV— 2)〜(IV— 7)等も好ましく用いられる。
[0169] このほか、本実施の形態に使用することができる染料としては、現像又は定着の処 理時に脱色させる固体微粒子分散状の染料としては、特開平 3— 138640号公報記 載のシァニン染料、ピリリウム染料及びアミニゥム染料が挙げられる。また、処理時に 脱色しない染料として、特開平 9— 96891号公報記載のカルボキシル基を有するシ ァニン染料、特開平 8— 245902号公報記載の酸性基を含まないシァニン染料及び 同 8— 333519号公報記載のレーキ型シァユン染料、特開平 1— 266536号公報記 載のシァニン染料、特開平 3— 136038号公報記載のホロポーラ型シァニン染料、 特開昭 62— 299959号公報記載のピリリウム染料、特開平 7— 253639号公報記載 のポリマー型シァニン染料、特開平 2— 282244号公報記載のォキソノール染料の 固体微粒子分散物、特開昭 63— 131135号公報記載の光散乱粒子、特開平 9 5 913号公報記載の Yb3 +化合物及び特開平 7— 113072号公報記載の ITO粉末 等が挙げられる。また、特開平 9— 179243号公報記載の一般式 (F1)、一般式 (F2 )で表される染料で、具体的には同公報記載の化合物 F35〜F112も用いることがで きる。
[0170] また、上記染料としては、水溶性染料を含有することができる。このような水溶性染 料としては、ォキソノール染料、ベンジリデン染料、メロシアニン染料、シァニン染料 及びァゾ染料が挙げられる。中でも本発明においては、ォキソノール染料、へミオキ ソノール染料及びべンジリデン染料が有用である。本発明に用い得る水溶性染料の 具体例としては、英国特許第 584, 609号明細書、同第 1 , 177, 429号明細書、特 開昭 48— 85130号公報、同 49— 99620号公報、同 49— 114420号公報、同 52— 20822号公報、同 59— 154439号公報、同 59— 208548号公報、米国特許第 2, 2 74, 782 明糸田 »、 2, 533, 472 明糸田 »、 ψ 2, 956, 879 明糸田 »、同 W3, 148, 187 明糸田 »、 177, 078 明糸田 »、同 f 3, 247, 127 明糸田
¾、同 540, 887 明糸田 ·、同 575, 704 明糸田 ¾、同 f 3, 653, 905 号明細書、同第 3, 718, 427号明細書に記載されたものが挙げられる。
[0171] 上記乳剤層中における染料の含有量は、ィラジェーシヨン防止等の効果と、添カロ 量増加による感度低下の観点から、全固形分に対して 0. 01〜; 10質量%が好ましく 、0. ;!〜 5質量%がさらに好ましい。
[0172] <銀塩〉
本実施の形態で用いられる銀塩としては、ハロゲン化銀等の無機銀塩及び酢酸銀 等の有機銀塩が挙げられる。本実施の形態においては、光センサとしての特性に優 れるハロゲン化銀を用いることが好ましレ、。
[0173] 本実施の形態で好ましく用いられるハロゲン化銀について説明する。
[0174] 本実施の形態においては、光センサとしての特性に優れるハロゲン化銀を用いるこ とが好ましぐハロゲン化銀に関する銀塩写真フィルムや印画紙、印刷製版用フィル ム、フォトマスク用ェマルジヨンマスク等で用いられる技術は、本発明においても用い ること力 Sでさる。
[0175] 上記ハロゲン化銀に含有されるハロゲン元素は、塩素、臭素、ヨウ素及びフッ素の いずれであってもよぐこれらを組み合わせでもよい。例えば、塩化銀、臭化銀、ヨウ 化銀を主体としたハロゲン化銀が好ましく用いられ、さらに臭化銀や塩化銀を主体と したハロゲン化銀が好ましく用いられる。塩臭化銀、沃塩臭化銀、沃臭化銀もまた好 ましく用いられる。より好ましくは、塩臭化銀、臭化銀、沃塩臭化銀、沃臭化銀であり、 最も好ましくは、塩化銀 50モル%以上を含有する塩臭化銀、沃塩臭化銀、臭化銀 5 0モル%以上を含有するハロゲン化銀が用いられる。
[0176] なお、ここで、「臭化銀を主体としたハロゲン化銀」とは、ハロゲン化銀組成中に占め る臭化物イオンのモル分率が 50%以上のハロゲン化銀を!/、う。この臭化銀を主体と したハロゲン化銀粒子は、臭化物イオンのほかに沃化物イオン、塩化物イオンを含有 していてもよい。
[0177] なお、ハロゲン化銀乳剤における沃化銀含有率は、ハロゲン化銀乳剤 1モルあたり
1. 5モル%を超えない範囲であることが好ましい。沃化銀含有率を 1 · 5モル%を超 えない範囲とすることにより、カプリを防止し、圧力性を改善することができる。より好ま しい沃化銀含有率は、ハロゲン化銀乳剤 1モルあたり 1モル%以下である。
[0178] ハロゲン化銀は固体粒子状であり、露光、現像処理後に形成されるパターン状金 属銀層の画像品質の観点からは、ハロゲン化銀の平均粒子サイズは、球相当径で 0 . ;!〜 lOOOnm d ^ m)であること力 S好ましい。上記下限値は lnmがより好ましぐ 10 nmがより好ましい。上記上限値は 800nmがより好ましぐ 500nmがさらに好ましぐ lOOnmカよりさらに好ましく、 50nmカ特に好ましい。上記数ィ直範囲は 0. l ~ 1000n mであること力 Sより好ましく、 10〜5000nmであること力 Sさらに好ましい。
[0179] なお、ハロゲン化銀粒子の球相当径とは、粒子形状が球形の同じ体積を有する粒 子の直径である。
[0180] ノ、ロゲン化銀粒子の形状は特に限定されず、例えば、球状、立方体状、平板状(六 角平板状、三角形平板状、四角形平板状等)、八面体状、 14面体状等、様々な形 状であることができ、立方体、 14面体が好ましい。
[0181] ノ、ロゲン化銀粒子は内部と表層が均一な相からなっていても異なっていてもよい。
また、粒子内部あるレ、は表面にハロゲン組成の異なる局在層を有して!/、てもよレ、。
[0182] 本実施の形態に用いられる乳剤層用塗布液であるハロゲン化銀乳剤は、 P. Glafk ides^- Chimieet Physique Photographique (Paul Montel社 Tll、 19り 7年) 、 G. F. Dufin著 Photographic Emulsion Chemistry (The Forcal Press 干 U、 1966年)、 V. L. Zelikmanほ力、著 Making and Coating Photographic Emulsion (The Forcal Press刊、 1964年)等に記載された方法を用いて調製 すること力 Sでさる。
[0183] すなわち、上記ハロゲン化銀乳剤の調製方法としては、酸性法、中性法等のいず れでもよく、また、可溶性銀塩と可溶性ハロゲン塩とを反応させる方法としては、片側 混合法、同時混合法、それらの組み合わせ等のいずれを用いてもよい。
[0184] また、銀粒子の形成方法としては、粒子を銀イオン過剰の下にお!/、て形成させる方 法(いわゆる逆混合法)を用いることもできる。さらに、同時混合法の一つの形式とし てハロゲン化銀の生成される液相中の pAgを一定に保つ方法、すなわち、いわゆる コントロールド '·ダブルジェット法を用いることもできる。
[0185] また、アンモニア、チォエーテル、四置換チォ尿素等のいわゆるハロゲン化銀溶剤 を使用して粒子形成させることも好ましい。これらの方法としてより好ましくは四置換チ ォ尿素化合物であり、特開昭 53— 82408号、同 55— 77737号各公報に記載され ている。好ましいチォ尿素化合物はテトラメチルチオ尿素、 1 , 3—ジメチルー 2—イミ ダゾリジンチオンが挙げられる。ハロゲン化銀溶剤の添加量は用いる化合物の種類 及び目的とする粒子サイズ、ハロゲン組成により異なるカ、ハロゲン化銀 1モルあたり 10— 5〜; 10— 2モノレが好ましい。
[0186] 上記コントロールド ·ダブルジェット法及びハロゲン化銀溶剤を使用した粒子形成方 法では、結晶型が規則的で粒子サイズ分布の狭!/、ハロゲン化銀乳剤を作るのが容 易であり、本発明に好ましく用いることができる。
[0187] また、粒子サイズを均一にするためには、英国特許第 1 , 535, 016号公報、特公 昭 48— 36890号公報、同 52— 16364号公報に記載されているように、硝酸銀ゃハ ロゲン化アルカリの添加速度を粒子成長速度に応じて変化させる方法や、英国特許 第 4, 242, 445号公報、特開昭 55— 158124号公報に記載されているように水溶 液の濃度を変化させる方法を用いて、臨界飽和度を越えな!、範囲にお!/、て早く銀を 成長させることが好ましい。
[0188] 本実施の形態における乳剤層の形成に用いられるハロゲン化銀乳剤は単分散乳 剤が好ましぐ { (粒子サイズの標準偏差) / (平均粒子サイズ) } X 100で表される変 動係数が 20%以下、より好ましくは 15%以下、最も好ましくは 10%以下であることが 好ましい。
[0189] 本実施の形態に用いられるハロゲン化銀乳剤は、粒子サイズの異なる複数種類の ノ、ロゲン化銀乳剤を混合してもよい。
[0190] 本実施の形態に用いられるハロゲン化銀乳剤は、 VIII族、 VIIB族に属する金属を 含有してもよい。特に、高コントラスト及び低カプリを達成するために、ロジウム化合物 、イリジウム化合物、ルテニウム化合物、鉄化合物、オスミウム化合物等を含有するこ とが好ましい。これら化合物は、各種の配位子を有する化合物であってよぐ配位子 として例えば、シアン化物イオンやハロゲンイオン、チオシアナ一トイオン、ニトロシノレ イオン、水、水酸化物イオン等や、こうした擬ハロゲン、アンモニアのほか、アミン類( メチルァミン、エチレンジァミン等)、ヘテロ環化合物(イミダゾール、チアゾール、 5— メチルチアゾール、メルカプトイミダゾール等)、尿素、チォ尿素等の、有機分子を挙 げること力 Sでさる。
[0191] また、高感度化のためには K [Fe (CN)〕ゃ [Ru (CN)〕、 K [Cr (CN)〕のごと
4 6 4 6 3 6 き六シァノ化金属錯体のドープが有利に行われる。 [0192] 上記ロジウム化合物としては、水溶性ロジウム化合物を用いることができる。水溶性 ロジウム化合物としては、例えば、ハロゲン化ロジウム(III)化合物、へキサクロロロジ ゥム(III)錯塩、ペンタクロロアコロジウム錯塩、テトラクロロジアコロジウム錯塩、へキ サブロモロジウム(III)錯塩、へキサァミンロジウム(III)錯塩、トリザラトロジウム(III)錯 塩、 K Rh Br等が挙げられる。
3 2 9
[0193] これらのロジウム化合物は、水あるいは適当な溶媒に溶解して用いられる力 ロジゥ ム化合物の溶液を安定化させるために一般によく行われる方法、すなわち、ハロゲン 化水素水溶液 (例えば塩酸、臭酸、フッ酸等)、あるいはハロゲン化アルカリ(例えば KC1、 NaCl、 KBr、 NaBr等)を添加する方法を用いることができる。水溶性ロジウム を用いる代わりにハロゲン化銀調製時に、あらかじめロジウムをドープしてある別のハ ロゲン化銀粒子を添加して溶解させることも可能である。
[0194] 上記イリジウム化合物としては、 K IrCl、 K IrCl等のへキサクロ口イリジウム錯塩、
2 6 3 6
へキサブロモイリジウム錯塩、へキサアンミンイリジウム錯塩、ペンタクロロニトロシルイ リジゥム錯塩等が挙げられる。
[0195] 上記ルテニウム化合物としては、へキサクロ口ルテニウム、ペンタクロロニトロシルル テニゥム、 K [RuCN]〕等が挙げられる。
4 6
[0196] 上記鉄化合物としては、へキサシァノ鉄 (II)酸カリウム、チォシアン酸第一鉄が挙 げられる。
[0197] 上記ルテニウム、ォスミニゥムは特開昭 63— 2042号公報、特開平 1— 285941号 公報、同 2— 20852号公報、同 2— 20855号公報等に記載された水溶性錯塩の形 で添加され、特に好ましいものとして、以下の式で示される六配位錯体が挙げられる
[0198] 〔ML〕— n
6
ここで、 Mは Ru、又は Osを表し、 nは 0、 1、 2、 3又は 4を表す。
[0199] この場合、対イオンは重要性を持たず、例えば、アンモニゥム若しくはアルカリ金属 イオンが用いられる。また、好ましい配位子としてはハロゲン化物配位子、シアン化物 配位子、シアン酸化物配位子、ニトロシル配位子、チォニトロシル配位子等が挙げら れる。以下に本発明に用いられる具体的錯体の例を示す力 S、本発明はこれに限定さ れるものではない。
[0200] [RuCl〕— 3、 [RuCl (H O) Y [RuCl (NO)〕— 2、 [RuBr (NS)〕— 2、 [Ru (CO) CI
〕—2、〔Ru (CO) Cl〕— 2、〔Ru (CO) Br〕— 2、 [OsCl Y [OsCl (NO)〕— 2、 [Os (NO) (
CN)〕—2、〔Os (NS) Br〕— 2、 [Os (CN)〕— 4、〔Os (0) (CN)〕— 4
[0201] これらの化合物の添加量はハロゲン化銀 1モル当り 10— 1()〜10— 2モル/モル Agであ ること力好ましく、 10— 9〜; 10— 3モル/モル Agであることがさらに好ましい。
[0202] その他、本実施の形態では、 Pd (II)イオン及び/又は Pd金属を含有するハロゲン 化銀も好ましく用いることができる。 Pdはハロゲン化銀粒子内に均一に分布していて もよいが、ハロゲン化銀粒子の表層近傍に含有させることが好ましい。ここで、 Pdが「 ハロゲン化銀粒子の表層近傍に含有する」とは、ハロゲン化銀粒子の表面から深さ 方向に 50nm以内において、他層よりもパラジウムの含有率が高い層を有することを 意味する。
[0203] このようなハロゲン化銀粒子は、ハロゲン化銀粒子を形成する途中で Pdを添加する ことにより作製することができ、銀イオンとハロゲンイオンとをそれぞれ総添加量の 50 %以上添加した後に、 Pdを添加することが好ましい。また Pd (II)イオンを後熟時に添 加する等の方法でハロゲン化銀表層に存在させることも好まし!/、。
[0204] この Pd含有ハロゲン化銀粒子は、物理現像や無電解めつきの速度を速め、所望の 電磁波シールド材の生産効率を上げ、生産コストの低減に寄与する。 Pdは、無電解 めっき触媒としてよく知られて用いられている力 本発明では、ハロゲン化銀粒子の 表層に Pdを偏在させることが可能なため、極めて高価な Pdを節約することが可能で ある。
[0205] 本実施の形態において、ハロゲン化銀に含まれる Pdイオン及び/又は Pd金属の 含有率は、ハロゲン化銀の、銀のモル数に対して 10— 4〜0. 5モル/モル Agであるこ と力 S好ましく、 0. 0;!〜 0. 3モル/モル Agであることがさらに好ましい。
[0206] 使用する Pd化合物の例としては、 PdClや、 Na PdCl等が挙げられる。
[0207] 本実施の形態では、一般のハロゲン化銀写真感光材料と同様に化学増感を施して も、施さなくてもよい。化学増感の方法としては、例えば特開 2000— 275770号公報 の段落 [0078]以降に引用されている、写真感光材料の感度増感作用のあるカルコ ゲナイト化合物あるいは貴金属化合物からなる化学増感剤をハロゲン化銀乳剤に添 加することによって行われる。本実施の形態の感光材料に用いる銀塩乳剤としては、 このような化学増感を行わない乳剤、すなわち、未化学増感乳剤を好ましく用いるこ とができる。本実施の形態において好ましい未化学増感乳剤の調製方法としては、 カルコゲナイトあるいは貴金属化合物からなる化学増感剤の添加量を、これらが添加 されたことによる感度上昇が 0. 1以内になる量以下の量にとどめることが好ましい。力 ルコゲナイトあるいは貴金属化合物の添加量の具体的な量に制限はないが、本実施 の形態における未化学増感乳剤の好ましい調製方法として、これら化学増感化合物 の総添加量をハロゲン化銀 1モルあたり 5 X 10— 7モル以下にすることが好ましい。
[0208] 本実施の形態では、さらに光センサとしての感度を向上させるため、写真乳剤で行 われる化学増感を施すこともできる。化学増感の方法としては、硫黄増感、セレン増 感、テルル増感等カルコゲン増感、金増感等の貴金属増感、還元増感等を用いるこ とができる。これらは、単独又は組み合わせて用いられる。上記化学増感の方法を組 み合わせて使用する場合には、例えば、硫黄増感法と金増感法、硫黄増感法とセレ ン増感法と金増感法、硫黄増感法とテルル増感法と金増感法等の組み合わせが好 ましい。
[0209] 上記硫黄増感は、通常、硫黄増感剤を添加して、 40°C以上の高温で乳剤を一定 時間攪拌することにより行われる。上記硫黄増感剤としては公知の化合物を使用す ること力 Sでき、例えば、ゼラチン中に含まれる硫黄化合物のほか、種々の硫黄化合物 、例えば、チォ硫酸塩、チォ尿素類、チアゾール類、ローダニン類等を用いることが できる。好ましい硫黄化合物は、チォ硫酸塩、チォ尿素化合物である。硫黄増感剤 の添加量は、化学熟成時の pH、温度、ハロゲン化銀粒子の大きさ等の種々の条件 の下で変化し、ハロゲン化銀 1モル当り 10— 7〜; 10— 2モルが好ましぐより好ましくは 10— 5〜; 10— 3モノレである。
[0210] 上記セレン増感に用いられるセレン増感剤としては、公知のセレン化合物を用いる こと力 Sできる。すなわち、上記セレン増感は、通常、不安定型及び/又は非不安定型 セレン化合物を添加して 40°C以上の高温で乳剤を一定時間攪拌することにより行わ れる。上記不安定型セレン化合物としては特公昭 44— 15748号公報、同 43— 134 89号公報、特開平 4— 109240号公報、同 4— 324855号公報等に記載の化合物 を用いること力 Sできる。特に特開平 4— 324855号公報中の一般式 (VIII)及び (IX) で示される化合物を用いることが好ましレ、。
[0211] 上記テルル増感剤に用いられるテルル増感剤は、ハロゲン化銀粒子表面又は内 部に、増感核になると推定されるテルル化銀を生成せしめる化合物である。ハロゲン 化銀乳剤中のテルル化銀生成速度については特開平 5— 313284号公報に記載の 方法で試験すること力 Sできる。具体的には、米国特許 US第 1 , 623, 499号公報、同 第 3, 320, 069号公報、同第 3, 772, 031号公報、英国特許第 235, 211号公報、 同第 1 , 121 , 496号公報、同第 1 , 295, 462号公報、同第 1 , 396, 696号公報、力 ナダ特許第 800, 958号公報、特開平 4— 204640号公報、同 4— 271341号公報、 同 4 333043号公幸 、同 5— 303157号公幸 、ジャーナノレ'才フ、、 *ゲミカノレ *ソサイ ティー 'ケミカノレ'コミュニケーション(J. Chem. Soc. Chem. Commun. ) 635頁 (1 980)、同 1102頁(1979)、同 645頁(1979)、ジャーナノレ'才フ、、 -ケミカノレ-ソサイァ ティー.パーキン.トランザクション (J. Chem. Soc. Perkin. Trans. 1巻, 2191頁( 1980)、 S.パタイ(S . Patai)編、ザ ·ケミストリー ·ォブ ·オーガニック'セレニウム 'ァ ンド · 7 "ノレリウム ·カンノ ゥンズ (The Chemistry of Organic Selenium and T ellunium Compounds)、 1巻(1986)、同 2巻(1987)に記載の化合物を用いるこ とができる。特に、特開平 5— 313284号公報中の一般式 (11)、 (111)、 (IV)で示され る化合物が好ましい。
[0212] 本実施の形態で用いることのできるセレン増感剤及びテルル増感剤の使用量は、 使用するハロゲン化銀粒子、化学熟成条件等によって変わるが、一般にハロゲン化 銀 1モル当たり 10— 8〜10— 2モル、好ましくは 10— 7〜10— 3モル程度を用いる。本発明に おける化学増感の条件としては特に制限はないが、 pHとしては 5〜8、 pAgとしては 6— 1 1 ,好ましくは 7〜; 10であり、温度としては 40〜95°C、好ましくは 45〜85°Cであ
[0213] また、上記貴金属増感剤としては、金、白金、パラジウム、イリジウム等が挙げられ、 特に金増感が好ましい。金増感に用いられる金増感剤としては、具体的には、塩化 金酸、カリウムクロ口オーレート、カリウムォーリチオシァネート、硫化金、チォダルコ一 ス金 (I)、チォマンノース金 (I)等が挙げられ、ハロゲン化銀 1モル当たり 10— 7〜; 10 モル程度を用いることができる。本発明に用いるハロゲン化銀乳剤にはハロゲン化銀 粒子の形成又は物理熟成の過程においてカドミウム塩、亜硫酸塩、鉛塩、タリウム塩 等を共存させてもよい。
[0214] また、本実施の形態においては、還元増感を用いることができる。還元増感剤とし ては第一スズ塩、アミン類、ホルムアミジンスルフィン酸、シラン化合物等を用いること 力できる。上記ハロゲン化銀乳剤は、欧州公開特許 (EP) 293917号公法に示される 方法により、チォスルホン酸化合物を添加してもよい。本発明に用いられる感光材料 の作製に用いられるハロゲン化銀乳剤は、 1種だけでもよいし、 2種以上 (例えば、平 均粒子サイズの異なるもの、ハロゲン組成の異なるもの、晶癖の異なるもの、化学増 感の条件の異なるもの、感度の異なるもの)の併用であってもよい。中でも高コントラ ストを得るためには、特開平 6— 324426号公報に記載されているように、支持体に 近!/、ほど高感度な乳剤を塗布することが好ましレ、。
[0215] <水溶性バインダ〉
乳剤層には、銀塩粒子を均一に分散させ、且つ、乳剤層と支持体との密着を補助 する目的でバインダが用いられる。本実施の形態において上記バインダとしては、後 述の温水に浸漬又は蒸気に接触させる処理により除去される水溶性バインダが用い られる。力、かる水溶性バインダとしては、水溶性ポリマーを用いることが好ましい。
[0216] 上記バインダとしては、例えば、ゼラチン、カラギナン、ポリビュルアルコール(PVA )、ポリビュルピロリドン(PVP)、澱粉等の多糖類、セルロース及びその誘導体、ポリ エチレンオキサイド、ポリサッカライド、ポリビュルァミン、キトサン、ポリリジン、ポリアク リル酸、ポリアルギン酸、ポリヒアルロン酸、カルボキシセルロース、アラビアゴム、アル ギン酸ナトリウム等が挙げられる。これらは、官能基のイオン性によって中性、陰ィォ ン性、陽イオン性の性質を有する。
[0217] また、ゼラチンとしては石灰処理ゼラチンの他、酸処理ゼラチンを用いてもよぐゼラ チンの加水分解物、ゼラチン酵素分解物、その他アミノ基、カルボキシル基を修飾し たゼラチン (フタル化ゼラチン、ァセチル化ゼラチン)を使用することができる。
[0218] 乳剤層中に含有されるバインダの含有量は、特に限定されず、分散性と密着性を 発揮し得る範囲で適宜決定することができる。乳剤層中のバインダの含有量は、 Ag /バインダ体積比率が 1/4以上であることが好ましぐ 1/1以上であることがより好 ましい。
[0219] <溶媒〉
上記乳剤層の形成に用いられる溶媒は、特に限定されるものではないが、例えば、 水、有機溶媒(例えば、メタノール等のアルコール類、アセトン等のケトン類、ホルムァ ミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、酢酸ェチル等のエステ ノレ類、エーテル類等) イオン性液体、及びこれらの混合溶媒を挙げることができる。
[0220] 本実施の形態の乳剤層に用いられる溶媒の含有量は、前記乳剤層に含まれる銀 塩、バインダ等の合計の質量に対して 30 90質量%の範囲であり、 50 80質量% の範囲であることが好まし!/、。
[0221] <帯電防止剤〉
本実施の形態に係る感光材料は帯電防止剤を含有することが好ましぐ乳剤層と 反対側の支持体面上にコーティングするのが望ましい。
[0222] 帯電防止層としては、表面抵抗率が 25°C25%RHの雰囲気下で 1012オーム/ sq 以下の導電性物質含有層を好ましく用いることができる。本実施の形態に好ましい帯 電防止剤として、下記の導電性物質を好ましく用いることができる。
[0223] 例えば特開平 2— 18542号公報の第 2頁左下欄第 13行から同公報第 3頁右上欄 第 7行に記載の導電性物質を用いることができる。具体的には、同公報第 2頁右下欄 第 2行から同頁右下欄第 10行に記載の金属酸化物、及び同公報に記載の化合物 P P— 7の導電性高分子化合物、米国特許第 5575957号明細書、特開平 10— 142738号公報の段落 [0043コ〜 [0045]、特開平 11— 223901号公報の段落 [0 013] [0019]に記載の針状の金属酸化物等を用いることができる。
[0224] 本実施の形態で用いられる導電性金属酸化物粒子は、 ZnO TiO SnO Al O
In O MgO BaO及び MoO並びにこれらの複合酸化物、そして、これらの金属 酸化物に、さらに異種原子を含む金属酸化物の粒子を挙げることができる。金属酸 化物としては、 SnO ZnO Al O TiO In O、及び MgOが好ましぐさらに、 Sn O ZnO In O及び TiOが好ましぐ SnOが特に好ましい。異種原子を少量含む 例としては、 ZnOに対して A1あるいは In、 T ^に対して Nbあるいは Ta、 Ιϋ23に対し て Sn、及び SnOに対して Sb、 Nbあるいはハロゲン元素等の異種元素を 0· 0;!〜 3 0モル% (好ましくは 0· ;!〜 10モル%)ドープしたものを挙げることができる。異種元 素の添加量が、 0. 01モル%未満の場合は酸化物又は複合酸化物に充分な導電性 を付与することができに《なり、 30モル%を超えると粒子の黒化度が増し、帯電防 止層が黒ずむため適さない。従って、本実施の形態では、導電性金属酸化物粒子 の材料としては、金属酸化物又は複合金属酸化物に対し異種元素を少量含むもの が好ましい。また結晶構造中に酸素欠陥を含むものも好ましい。
[0225] 上記異種原子を少量含む導電性金属酸化物微粒子としては、アンチモンがドープ された SnO粒子が好ましぐ特にアンチモンが 0. 2〜2· 0モル%ドープされた SnO 粒子が好ましい。
[0226] 本実施の形態に用いる導電性金属酸化物の形状については特に制限はなぐ粒 状、針状等が挙げられる。また、その大きさは、球換算径で表した平均粒径が 0. 5〜 25 μ mである。
[0227] また、導電性を得るためには、例えば、可溶性塩 (例えば塩化物、硝酸塩等)、蒸着 金属層、米国特許第 2861056号明細書及び同第 3206312号明細書に記載のよう なイオン性ポリマー又は米国特許第 3428451号明細書に記載のような不溶性無機 塩を使用することもできる。
[0228] このような導電性金属酸化物粒子を含有する帯電防止層は、バック面の下塗り層、 乳剤層の下塗り層等として設けることが好ましい。その添加量は両面合計で 0. 0;!〜 1. 0g/m2であることが好ましい。
[0229] また、感光材料の体積抵抗率は 25°C25%RHの雰囲気下で 1. O X 107〜; 1. 0 X 1 012オーム · cmであることが好まし!/、。
[0230] 本実施の形態において、前記導電性物質のほかに、特開平 2— 18542号公報第 4 頁右上欄第 2行から第 4頁右下欄第下から 3行、特開平 3— 39948号公報第 12頁左 下欄第 6行から同公報第 13頁右下欄第 5行に記載の含フッ素界面活性剤を併用す ることによって、さらに良好な帯電防止性を得ることができる。
[0231] <その他の添加剤〉 本発明における感光材料に用いられる各種添加剤に関しては、特に制限はなぐ 例えば下記公報等に記載されたものを好ましく用いることができる。ただし、本実施の 形態では、硬膜剤を使用しないことが望ましい。硬膜剤を使用した場合、後述の温水 に浸漬又は蒸気に接触させる処理を行うと、抵抗が上がり、導電率が下がってしまう ためである。
[0232] (1)造核促進剤
上記造核促進剤としては、特開平 6— 82943号公報に記載の一般式 (1)、 (11)、 (II 1)、 (IV) , (V)、 (VI)の化合物や、特開平 2— 103536号公報第 9頁右上欄第 13行 から同第 16頁左上欄第 10行の一般式 (II— m)〜(II— p)及び化合物例 II II — 22、並びに、特開平 1—179939号公報に記載の化合物が挙げられる。
[0233] (2)分光増感色素
上記分光増感色素としては、特開平 2— 12236号公報第 8頁左下欄第 13行から 同右下欄第 4行、同 2— 103536号公報第 16頁右下欄第 3行力も同第 17頁左下欄 第 20行、さらに特開平; 1— 112235号、同 2— 124560号、同 3— 7928号、及び同 5 11389号各公報に記載の分光増感色素が挙げられる。
[0234] (3)界面活性剤
上記界面活性剤としては、特開平 2— 12236号公報第 9頁右上欄第 7行力も同右 下欄第 7行、及び特開平 2— 18542号公報第 2頁左下欄第 13行から同第 4頁右下 欄第 18行に記載の界面活性剤が挙げられる。
[0235] (4)カプリ防止剤
上記カプリ防止剤としては、特開平 2— 103536号公報第 17頁右下欄第 19行から 同第 18頁右上欄第 4行及び同右下欄第 1行から第 5行、さらに特開平 1— 237538 号公報に記載のチォスルフィン酸化合物が挙げられる。
[0236] (5)ポリマーラテックス
上記ポリマーラテックスとしては、特開平 2— 103536号公報第 18頁左下欄第 12行 から同第 20行に記載のものが挙げられる。
[0237] (6)酸基を有する化合物
上記酸基を有する化合物としては、特開平 2— 103536号公報第 18頁右下欄第 6 行から同第 19頁左上欄第 1行に記載の化合物が挙げられる。
[0238] (7)硬膜剤
上記硬膜剤としては、特開平 2— 103536号公報第 18頁右上欄 5行目力も同第 17 行目に記載の化合物が挙げられる。
[0239] (8)黒ポッ防止剤
上記黒ポッ防止剤とは、未露光部に点状の現像銀が発生することを抑制する化合 物であり、例えば、米国特許第 4956257号明細書及び特開平 1 118832号公報 に記載の化合物が挙げられる。
[0240] (9)レドックス化合物
レドックス化合物としては、特開平 2— 301743号公報の一般式 (I)で表される化合 物(特に化合物例 1ないし 50)、同 3— 174143号公報第 3頁ないし第 20頁に記載の 一般式 (R— 1)、(R— 2)、(R— 3)、化合物例 1ないし 75、さらに特開平 5— 25723 9号、同 4— 278939号各公報に記載の化合物が挙げられる。
[0241] (10)モノメチン化合物
上記モノメチン化合物としては、特開平 2— 287532号公報の一般式 (II)の化合物 (特に化合物例 II 1ないし II 26)が挙げられる。
[0242] (11)ジヒドロキシベンゼン類
特開平 3— 39948号公報第 11頁左上欄から第 12頁左下欄の記載、及び欧州特 許出願公開第 452772A号明細書に記載の化合物が挙げられる。
[0243] [その他の層構成]
乳剤層の上に保護層を設けてもよい。本実施の形態において「保護層」とは、ゼラ チンや高分子ポリマーとレ、つたバインダからなる層を意味し、擦り傷防止や力学特性 を改良する効果を発現するために感光性を有する乳剤層上に形成される。その厚み は 0. 2 ^ 111以下が好ましい。上記保護層の塗布方法及び形成方法は特に限定され ず、公知の塗布方法を適宜選択することができる。
[0244] (細線構造部の形成方法)
上記の感光材料を用いて細線構造部を形成する方法について説明する。なお、本 実施の形態によって得られる透明導電性フィルム 10は、パターン露光によって細線 構造部 14が支持体 12上に形成されたものだけでなぐ面露光によって金属が形成さ れたものであってもよい。また、透明導電性フィルム 10を例えばプリント基板として用
V、る場合には、金属銀部と絶縁性部を形成してもよ!/、。
[0245] 本実施の形態における細線構造部 14の形成方法には、感光材料と現像処理の形 態によって、次の 3通りの態様が含まれる。
[0246] (1)物理現像核を含まない感光性ハロゲン化銀黒白感光材料を化学現像又は熱現 像して金属銀部を該感光材料上に形成させる態様。
[0247] (2)物理現像核をハロゲン化銀乳剤層中に含む感光性ハロゲン化銀黒白感光材料 を溶解物理現像して金属銀部を該感光材料上に形成させる態様。
[0248] (3)物理現像核を含まない感光性ハロゲン化銀黒白感光材料と、物理現像核を含む 非感光性層を有する受像シートを重ね合わせて拡散転写現像して金属銀部を非感 光性受像シート上に形成させる態様。
[0249] 上記(1)の態様は、一体型黒白現像タイプであり、感光材料上に透光性導電性膜 が形成される。得られる現像銀は化学現像銀又は熱現像であり、高比表面のフィラメ ントである点で後続するめつき又は物理現像過程で活性が高い。
[0250] 上記(2)の態様は、露光部では、物理現像核近縁のハロゲン化銀粒子が溶解され て現像核上に沈積することによって感光材料上に透光性電磁波シールド膜や光透 過性導電膜等の透光性導電性膜が形成される。これも一体型黒白現像タイプである
。現像作用が、物理現像核上への析出であるので高活性であるが、現像銀は比表面 が小さい球形である。
[0251] 上記(3)の態様は、未露光部においてハロゲン化銀粒子が溶解されて拡散して受 像シート上の現像核上に沈積することによって受像シート上に透光性電磁波シール ド膜ゃ光透過性導電膜等の透光性導電性膜が形成される。 V、わゆるセパレートタイ プであって、受像シートを感光材料から剥離して用いる態様である。
[0252] V、ずれの態様もネガ型現像処理及び反転現像処理の!/、ずれの現像を選択するこ ともできる(拡散転写方式の場合は、感光材料としてオートポジ型感光材料を用いる ことによってネガ型現像処理が可能となる)。現像につ!/、てはネガ型がより好まし!/、。
[0253] ここで!/、う化学現像、熱現像、溶解物理現像、及び拡散転写現像は、当業界で通 常用いられている用語どおりの意味であり、写真化学の一般教科書、例えば菊地真 一著「写真化学」(共立出版社刊行)、 C. E. K. Mees編「The Theory of Phot ographic Process, 4th ed.」(Mcmillan社、 1977年干 亍)に角早説されている。 また、例えば、特開 2004— 184693号公報、同 2004— 334077号公報、同 2005 - 010752^¾,牛寺原買2004— 244080 明糸田 ¾、同 2004— 085655 明糸田 ¾ 等に記載の技術を参照することもできる。
[0254] [露光]
本実施の形態の製造方法では、支持体 12上に設けられた銀塩含有感光層の露光 を行う。露光は、電磁波を用いて行うことができる。電磁波としては、例えば、可視光 線、紫外線等の光、 X線等の放射線等が挙げられる。さらに露光には波長分布を有 する光源を利用してもよぐ特定の波長の光源を用いてもよい。
[0255] 上記光源としては、例えば、陰極線 (CRT)を用いた走査露光を挙げることができる 。陰極線管露光装置は、レーザを用いた装置に比べて、簡便で、且つ、コンパクトで あり、低コストになる。また、光軸や色の調整も容易である。画像露光に用いる陰極線 管には、必要に応じてスペクトル領域に発光を示す各種発光体が用いられる。発光 体としては、例えば、赤色発光体、緑色発光体、青色発光体のいずれか 1種又は 2種 以上が混合されて用いられる。スペクトル領域は、上記の赤色、緑色及び青色に限 定されず、黄色、橙色、紫色あるいは赤外領域に発光する蛍光体も用いられる。特に 、これらの発光体を混合して白色に発光する陰極線管がしばしば用いられる。また、 紫外線ランプも好ましぐ水銀ランプの g線、水銀ランプの i線等も利用される。
[0256] また、本実施の形態の製造方法では、露光を種々のレーザービームを用いて行うこ とができる。例えば、本発明における露光は、ガスレーザ、発光ダイオード、半導体レ 一ザ、半導体レーザ又は半導体レーザを励起光源に用いた固体レーザと非線形光 学結晶とを組み合わせた第二高調波発光光源(SHG)等の単色高密度光を用いた 走査露光方式を好ましく用いることができ、さらに KrFエキシマレーザ、 ArFエキシマ レーザ、 F2レーザ等も用いることができる。システムをコンパクトで、安価なものにする ために、露光は、半導体レーザ、半導体レーザあるいは固体レーザと非線形光学結 晶を組み合わせた第二高調波発生光源(SHG)を用いて行うことが好まし!/、。特に、 コンパクトで、安価、さらに寿命が長ぐ安定性が高い装置を設計するためには、露光 は半導体レーザを用いて行うことが好ましレ、。
[0257] レーザ光源としては、具体的には、波長 430〜460nmの青色半導体レーザ(200 1年 3月 第 48回応用物理学関係連合講演会で日亜化学発表)、半導体レーザ (発 振波長約 1060nm)を導波路状の反転ドメイン構造を有する LiNbOの SHG結晶に より波長変換して取り出した約 530nmの緑色レーザ、波長約 685nmの赤色半導体 レーザ(日立タイプ No. HL6738MG)、波長約 650nmの赤色半導体レーザ(日立 タイプ No. HL6501MG)等が好ましく用いられる。
[0258] 銀塩含有層をパターン状に露光する方法は、フォトマスクを利用した面露光で行つ てもよいし、レーザービームによる走査露光で行ってもよい。この際、レンズを用いた 屈折式露光でも反射鏡を用いた反射式露光でもよぐコンタクト露光、プロキシミティ 露光、縮小投影露光、反射投影露光等の露光方式を用いることができる。
[0259] 本実施の形態の製造方法では、銀塩含有層を露光した後、さらに現像処理が施さ れる。上記現像処理は、銀塩写真フィルムや印画紙、印刷製版用フィルム、フォトマ スク用ェマルジヨンマスク等に用いられる通常の現像処理の技術を用いることができ る。現像液については特に限定はしないが、 PQ現像液、 MQ現像液、 ΜΑΑ現像液 等を用いることもできる。市販品としては、例えば、富士フィルム社製の CN— 16、 C R— 56、 CP45X, FD— 3、 ND— 1、 FT— 803R、 HS— 1、 HS— 5、 ノ ピトーノレ、 コ ピナール、ファインドール、ミクロファインや、 KODAK社製の C— 41、 E— 6、 RA— 4 、 Dsd- 19, D— 72等の現像液、又はそのキットに含まれる現像液を用いることがで きる(いずれも商品名)。また、リス現像液を用いることもできる。リス現像液としては、 KODAK社製の D85 (商品名)等を用いることができる。
[0260] 本実施の形態の透明導電性フィルムの製造方法では、上記の露光及び現像処理 を行うことにより露光部にパターン状の金属銀部が形成されると共に、未露光部に後 述する光透過性部が形成される。なお、本実施の形態では、現像温度、定着温度及 び水洗温度は 35°C以下で行うことが好ましい。
[0261] 本実施の形態の製造方法における現像処理は、未露光部分の銀塩を除去して安 定化させる目的で行われる定着処理を含むことができる。本実施の形態の製造方法 において定着処理は、銀塩写真フィルムや印画紙、印刷製版用フィルム、フォトマス ク用ェマルジヨンマスク等に用いられる定着処理の技術を用いることができる。
[0262] 現像処理で用いられる現像液には、画質を向上させる目的で、画質向上剤を含有 させること力 Sできる。上記画質向上剤としては、例えば、ベンゾトリアゾール等の含窒 素へテロ環化合物を挙げることができる。また、リス現像液を利用する場合は、特にポ リエチレングリコールを使用することも好ましい。
[0263] 現像処理後の露光部に含まれる金属銀の質量は、露光前の露光部に含まれてい た銀の質量に対して 50質量%以上の含有率であることが好ましぐ 80質量%以上で あることがさらに好ましレ、。露光部に含まれる銀の質量が露光前の露光部に含まれて V、た銀の質量に対して 50質量%以上であれば、高!/、導電性を得易いため好まし!/ヽ
[0264] 本実施の形態における現像処理後の階調は、特に限定されるものではないが、 4.
0を超えることが好ましい。現像処理後の階調が 4. 0を超えると、光透過性部の透明 性を高く保ったまま、導電性金属部の導電性を高めることができる。階調を 4. 0以上 にする手段としては、例えば、前述のロジウムイオン、イリジウムイオンのドープが挙げ られる。
[0265] [酸化処理]
本実施の形態の製造方法では、現像処理後の金属銀部は、好ましくは酸化処理が 行われる。酸化処理を行うことにより、例えば、光透過性部に金属が僅かに沈着して いた場合に、該金属を除去し、光透過性部の透過性をほぼ 100%にすることができ
[0266] 上記酸化処理としては、例えば、 Fe (III)イオン処理等、種々の酸化剤を用いた公 知の方法が挙げられる。酸化処理は、銀塩含有層の露光及び現像処理後に行うこと ができる。
[0267] 本実施の形態では、さらに露光及び現像処理後の金属銀部を、 Pdを含有する溶 液で処理することもできる。 Pdは、 2価のパラジウムイオンであっても金属パラジウム であってもよ!/、。この処理により金属銀部の黒色が経時変化することを抑制できる。
[0268] [還元処理] 現像処理後に還元水溶液に浸漬することで、好ましレ、導電性の高!/、フィルムを得 ること力 Sでさる。
[0269] 還元水溶液としては、亜硫酸ナトリム水溶液、ハイドロキノン水溶液、パラフエ二レン ジァミン水溶液、シユウ酸水溶液等を用いることができ、水溶液の pHは 10以上とする ことがさらに好ましい。
[0270] [圧密処理]
本実施の形態の製造方法では、現像処理済みの細線構造部 14に圧密(平滑化) 処理を施すことが好ましい。これによつて細線構造部 14の導電性が顕著に増大する 。さらに、細線構造部 14の金属銀部と光透過性部の面積を好適に設計することで、 高い導電性と高い透光性とを同時に有する透明導電性フィルム 10が得られる。
[0271] また、細線構造部 14が形成された支持体 12を温水に浸漬させるか又は水蒸気に 接触させる前に、圧密処理をすることが好ましい。
[0272] 圧密処理は、例えばカレンダーロールにより行うことができる。カレンダーロールは、 通常、一対のロールからなる。以下、カレンダーロールを用いた圧密処理をカレンダ 一処理と記す。
[0273] カレンダー処理に用いられるロールとしては、エポキシ、ポリイミド、ポリアミド、ポリイ ミドアミド等のプラスチックロール又は金属ロールが用いられる。特に、両面に乳剤層 を有する場合は、金属ロール同士で処理することが好ましい。片面に乳剤層を有す る場合は、シヮ防止の点から金属ロールとプラスチックロールの組み合わせとすること もできる。線圧力の下限値は、好ましくは 1960N/cm (200kg/cm)、さらに好まし くは 2940N/cm (300kg/cm)である。線圧力の上限値は、好ましくは 6860N/c m (700kgf/cm)である。ここで、線圧力とは、圧密処理されるフィルム試料 lcmあ たりにかかる力とする。
[0274] カレンダーロールに代表される平滑化処理の適用温度は、 10°C (温調なし)〜 100 °Cが好ましぐより好ましい温度は、金属メッシュ状パターンや金属配線パターンの画 線密度や形状、ノ インダ種によって異なる力 おおよそ 10°C (温調なし)〜 50°Cの範 囲である。
[0275] 以上に述べたように、本実施の形態の製造方法によって、高い導電性を有する透 明導電性フィルム 10を簡便で低コストで製造することができる。本実施の形態では、 銀塩 (特にハロゲン化銀)感光材料を用いた透明導電性フィルム 10の製造方法にお V、て、好ましくは線圧力 1960N/cm (200kgf/cm)以上と!/、う高!/、線圧で平滑化 処理を行うことで、透明導電性フィルム 10の表面抵抗を十分に低減できる。このよう な高い線圧で平滑化処理を行う場合、金属銀部が細線状(特に、線幅が 25 111以 下)に形成されていると、その金属銀部の線幅が広がり所望のパターンを形成するこ とが難しくなると考えられる。しかし、平滑化処理の対象が銀塩 (特にハロゲン化銀) 感光材料である場合には、線幅の広がりが小さぐ所望のパターンの金属銀部を形 成すること力 Sできる。すなわち、所望のパターンで、均一な形状の金属銀部を形成す ることができることから不良品の発生を抑制でき、透明導電性フィルム 10の生産性を さらに向上させることができる。上記線圧力で平滑化処理を行う場合、前記平滑化処 理をカレンダーロールで行うことが好ましぐ一対の金属ロール、又は、金属ロールと 樹脂ロールとの組み合わせで行われる。このとき、ロール間の面圧力は 600kgf/c m2以上に設定することが好ましぐ 800kgf /cm2以上に設定することがより好ましぐ 900kgf/cm2以上に設定することがさらに好ましい。またこのときの上限値は、 2000 kgf/cm2以下に設定することが好まし!/、。
[0276] [めっき処理]
本実施の形態においては、上記平滑化処理を行えばよいが、金属銀部に対してめ つき処理を行ってもよい。めっき処理により、さらに表面抵抗を低減でき、導電性を高 めること力 Sできる。平滑化処理は、めっき処理の前段又は後段のいずれで行ってもよ いが、めっき処理の前段で行うことで、めっき処理が効率化され均一なめっき層が形 成される。めっき処理としては、電解めつきでも無電解めつきでもよい。また、めっき層 の構成材料は十分な導電性を有する金属が好ましぐ銅が好ましい。
[0277] なお、本発明の趣旨を逸脱しない範囲で、本発明と下記公報に開示の技術とを組 み合わせて使用することができる。
[0278] 特開 2004— 221564号公報、特開 2004— 221565号公報、特開 2006— 0129 35号公報、特開 2006— 010795号公報、特開 2006— 228469号公報、特開 200 6— 228473号公報、特開 2006— 228478号公報、特開 2006— 228480号公報、 特開 2006— 228836号公報、特開 2006— 267627号公報、特開 2006— 269795 号公報、特開 2006— 267635号公報、特開 2006— 286410号公報、特開 2006— 283133号公報、特開 2006— 283137号公報。
[0279] (温水に浸漬又は蒸気に接触させる処理)
本実施の形態の製造方法では、支持体 12上に細線構造部 14を形成した後、該細 線構造部 14が形成された支持体 12を 40°C以上の温水に浸漬させるか又は水蒸気 に接触させる。これにより短時間で簡便に導電性及び透明性を向上させることができ る。上述のとおり、透明導電性フィルム 10の導電性が向上する理由についてはまだ 定かではないが、本実施の形態では、少なくとも一部の水溶性バインダが除去されて 金属(導電性物質)同士の結合部位が増加しているものと考えられる。
[0280] 支持体 12を浸漬させる温水の温度は好ましくは 40°C以上 100°C以下であり、より 好ましくは 60°C〜; 100°Cである。特に好ましくは約 80°C〜; 100°Cであり、導電性の向 上が顕著である。また、支持体 12に接触させる水蒸気の温度は、 1気圧で 100°C以 上 140°C以下が好ましい。温水の pHは 2〜; 13が好ましぐ 2〜9力 り好ましく、 2〜5 力 Sさらに好ましい。 40°C以上の温水ないしはそれ以上の温度の加熱水への浸漬時 間又は蒸気への接触時間は、使用する水溶性バインダの種類によって異なる力 支 持体 12のサイズが 60cmX lmの場合、約 10秒〜約 5分程度が好ましぐ約 1分〜約 5分がさらに好ましい。
[0281] 本実施の形態の製造方法にお!/、ては、線幅、開口率、 Ag含有量を特定したメッシ ュ状の金属銀部を、露光 ·現像処理によって直接支持体 12上に形成するため、十分 な表面抵抗を有することから、さらに金属銀部に物理現像及び/又はめつき処理を 施してあらためて導電性を付与する必要がない。このため、簡易な工程で透明導電 性フィルム 10を製造することができる。
[0282] 本実施の形態の方法によって製造された透明導電性フィルム 10は、低抵抗で、透 光性も高いため、液晶ディスプレイ、プラズマディスプレイパネル、有機 EL、無機 EL 、太陽電池、タツチパネル、プリント回路基板等に広く応用することができる。
[0283] <電圧と周波数〉
通常、分散型エレクト口ルミネッセンス素子は、交流で駆動される。典型的には、 10 OVで 50Hzから 400Hzの交流電源を用いて駆動される。輝度は面積が小さい場合 には、印加電圧並びに周波数にほぼ比例して増加する。し力もながら、 0. 25m2以 上の大面積素子の場合、素子の容量成分が増大し、素子と電源のインピーダンスマ ツチングがずれたり、素子への蓄電荷に必要な時定数が大きくなつたりするため、高 電圧化や特に高周波化しても電力供給が十分に行われない状態になり易い。特に、 0. 25m2以上の素子では、 500Hz以上の交流駆動に対しては、しばしば駆動周波 数の増大に対して印加電圧の低下がおこり、低輝度化が起こることがしばしば起こる
[0284] これに対し、本実施の形態の第 1電極部 22を用いたエレクト口ルミネッセンス素子 は、 0. 25m2以上の大サイズでも高い周波数の駆動が、可能で、高輝度化することが できる。この場合、 500Hz以上 5KHz以下での駆動が好ましぐより好ましくは、 800 KHz以上 3KHz以下の駆動が好まし!/、。
[0285] 以下に本発明の実施例を挙げて本発明をさらに具体的に説明する。なお、以下の 実施例に示される材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を 逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体 例により限定的に解釈されるべきものではない。
[0286] [第 1実施例]
先ず、支持体 12上に形成される細線構造部 14の特性 (表面抵抗、膜強度等)につ いて評価した第 1実施例を以下に示す。
[0287] <実施例;!〜 14及び比較例;!〜 7〉
(乳剤 Aの調製)
750ml
Figure imgf000051_0001
塩化ナトリウム
Figure imgf000051_0002
ベンゼンチォスルホン酸ナトリウム 10mg
クェン酸 0. 7g •2液
水 300ml
硝酸銀 150g
•3液
水 300ml
塩化ナトリウム 38g
臭化カリウム 32g
へキサクロ口イリジウム(ΠΙ)酸カリウム
(0. 005%KC1 20%水溶液) 5ml
へキサクロ口ロジウム酸アンモニゥム
(0. 001 %NaCl 20%水溶液) 7ml
3液に用いるへキサクロ口イリジウム(III)酸カリウム(0· 005%KC1 20%水溶液) 及びへキサクロ口ロジウム酸アンモニゥム(0· 001 %NaCl 20%水溶液)は、それぞ れの錯体粉末をそれぞれ KC120%水溶液、 NaC120%水溶液に溶解し、 40°Cで 12 0分間加熱して調製した。
[0288] 38°C、 ρΗ4· 5に保たれた 1液に、 2液と 3液の各々 90%に相当する量を攪拌しな 力 ¾同時に 20分間にわたって加え、 0. 16 mの核粒子を形成した。続いて下記 4 液、 5液を 8分間にわたって加え、さらに、 2液と 3液の残りの 10%の量を 2分間にわ たって加え、 0. 21 mまで成長させた。さらに、ヨウ化カリウム 0. 15gを加え 5分間熟 成し粒子形成を終了した。
[0289] ·4液
水 100ml
硝酸銀 50g
•5液
水 100ml
塩化ナトリウム 13g
臭化カリウム l lg
黄 Jill塩 5mg その後、常法に従ってフロキユレーシヨン法によって水洗した。具体的には、温度を
35°Cに下げ、硫酸を用いてハロゲン化銀が沈降するまで pHを下げた(pH3. 6 ± 0.
2の範囲であった)。
[0290] 次に、上澄み液を約 3リットル除去した(第一水洗)。さらに 3リットルの蒸留水を加え てから、ハロゲン化銀が沈降するまで硫酸を加えた。再度、上澄み液を 3リットル除去 した(第二水洗)。第二水洗と同じ操作をさらに 1回繰り返して(第三水洗)、水洗 '脱 塩行程を終了した。
[0291] 水洗'脱塩後の乳剤を ρΗ6 · 4、 PAg7. 5に調整し、ベンゼンチォスルホン酸ナトリ ゥム 10mg、ベンゼンチォスルフィン酸ナトリウム 3mg、チォ硫酸ナトリウム 15mgと塩 化金酸 10mgを加え 55°Cにて最適感度を得るように化学増感を施し、安定剤として 1 , 3, 3a, 7—テトラァザインデン lOOmg、防腐剤としてプロキセル(商品名、 ICI Co . , Ltd.製) lOOmgを加えた。最終的に塩化銀を 70モル%、沃化銀を 0. 08モル0 /0 含む平均粒子径 0. 22 ^ m,変動係数 9%のヨウ塩臭化銀立方体粒子乳剤を得た。 最終的に乳剤として、 pH = 6. 4、pAg = 7. 5、電導度 =40 3/111、密度 = 1. 2 X 103kg/m3、粘度 = 60mPa ' sとなった。
[0292] (乳剤 Bの調製)
乳剤 Aの調製にて、 1液のゼラチン量を 8gとした他は、同じ条件で調製した乳剤を ? L斉 IJBとした。
[0293] (塗布試料の作製)
上記乳剤 A、 Bに増感色素(sd— 1) 5. 7 X 10— 4モル/モル Agを加えて分光増感を 施した。さらに KBr3. 4 X 10— 4モノレ/モノレ Ag、ィ匕合物(Cpd— 3) 8· 0 X 10— 4モノレ/ モル Agを加え、よく混合した。
[0294] 次いで 1 , 3, 3a, 7—テトラァザインデン 1 · 2 X 10— 4モル/モノレ Ag、ハイドロキノン 1. 2 X 10— 2モル/モノレ Ag、クェン酸 3 · 0 X 10— 4モル/モノレ Ag、 2, 4—ジクロロ一 6 —ヒドロキシ一 1 , 3, 5—トリァジンナトリウム塩を 90mg/m2、ゼラチンに対して 15wt %の粒径 10 μ mのコロイダルシリカ、水性ラテックス(aqL— 6)を 50mg/m2、ポリエ チルアタリレートラテックスを 100mg/m2、メチルアタリレートと 2—アクリルアミドー 2 —メチルプロパンスルホン酸ナトリウム塩と 2—ァセトキシェチルメタタリレートのラテツ タス共重合体(重量比 88 : 5 : 7)を 100mg/m2、コアシェル型ラテックスコア:スチレ ン/ブタジエン共重合体重量比 37/63)、シェル:スチレン /2—ァセトキシェチル アタリレート(重量匕 84/16、コア/シェノレ匕 = 50/50)を 100mg/m2、ゼラチン に対し 4wt%の化合物(Cpd— 7)を添加し、クェン酸を用いて塗布液 pHを 5. 6に調 整した。
[0295] 乳剤 Aを用いて、上記のように調製した乳剤層塗布液をポリエチレンテレフタレート
(PET)上に AglO. 5g/m2、ゼラチン 0· 94g/m2になるように塗布し、その後、乾 燥させたものを塗布試料 Aとした。
[0296] また、乳剤 Bを用いて、上記のように調製した乳剤層塗布液をポリエチレンテレフタ レート(PET)上に AglO. 5g/m2、ゼラチン 0· 33g/m2になるように塗布し、その後
、乾燥させたものを塗布試料 Bとした。
[0297] PETにはあらかじめ表面親水化処理したものを用いた。
[0298] [化 1]
SD-1
Figure imgf000055_0001
Cpd-3
Figure imgf000055_0002
Figure imgf000055_0003
Cpd-7 CH2-CHS ¾CH2CO H~i
CH2= CHSO2CH2CO hH (n = 2) : <n = 3) = 3: 1
[0299] 得られた塗布試料 Aは、乳剤層の Ag/バインダ体積比率 (銀/ GEL比 (vol) )が 1 / . 7であり、本発明の導電膜形成用感光材料に好ましく用いられる Ag/バインダ 比率 1/1以上に該当している(実施例 1、 2、比較例 1及び 2参照)。
[0300] 塗布試料 Bは、乳剤層の Ag/バインダ体積比率 (銀/ GEL比 (vol) )が 4/1であ り、本発明の導電膜形成用感光材料にさらに好ましく用いられる Ag/バインダ比率 2 /1以上に該当している(実施例 3、 4及び比較例 3参照)。さらに、ゼラチン量を変え たサンプルを作成し、実施例 5〜; 11を作成した。
[0301] (露光'現像処理)
次いで、乾燥させた塗布膜にライン/スペース = 5 m/195 mの現像銀像を与 えうる格子状のフォトマスクライン/スペース = 195 n /δ m (ピッチ 200 m)の 、スペースが格子状であるフォトマスクを介して高圧水銀ランプを光源とした平行光を 用いて露光し、下記の現像液で現像し、さらに定着液(商品名: CN16X用 N3X— R :富士写真フィルム社製)を用いて現像処理を行った後、純水でリンスし、線幅及び 開口率の異なるサンプル a及び bを得た。
[0302] 塗布試料 Aにつ!/、て作成したものを A-a (比較例 1及び実施例 1参照)、 A_b (比較 例 2及び実施例 2参照)、塗布試料 Bについて作成したものを B-a (比較例 3、実施例 3及び 4参照)、 B-b (実施例 5)とした。また、全面露光のサンプルも作成した(比較例 7、実施例 13及び 14参照)。
[0303] [現像液の組成]
現像液 1リットル中に、以下の化合物が含まれる。
[0304] ハイドロキノン 0· 037mol/L
N—メチルァミノフエノール 0. 016mol/L
メタホウ酸ナトリウム 0. 140mol/L
水酸化ナトリウム 0. 360mol/L
臭化ナトリウム 0. 031mol/L
メタ重亜硫酸カリウム 0. 187mol/L
(カレンダー処理)
上記のように現像処理したサンプルをカレンダー処理した。カレンダーロールは金 属ロール(鉄芯 +ハードクロムメツキ、ロール直径 250mm)力、らなり、線圧力 1960N /cm (200kgf/cm、面圧に換算すると 700kgf/cm2)力、ら 7840N/cm (800kgf /cm、面圧に換算すると 1850kgf/cm2)をかけてローラー間にサンプルを通し、処 理前後の表面抵抗率 (オーム/ sq)を測定した。本実施例の場合には、線圧力 100k gf /cmは面圧に換算すると 417kgf /cm2となり、線圧力 200kgf /cmは面圧に換 算すると 700kgf/cm2となり、線圧力 300kgf/cmは面圧に換算すると 936kgf/c m2となり、線圧力 600kgf /cmは面圧に換算すると 1519kgf /cm2となる。
[0305] サンプル A— aのカレンダー処理前を A— a— 1 (比較例 1)、処理後を A— a— 2 (実 施例 1)、サンプル A— bのカレンダー処理前を A— b— 1 (比較例 2)、処理後を A— b 2 (実施例 2)とした。
[0306] サンプル Bのカレンダー処理前を B— a— 1 (比較例 3)、処理後を B— a— 2 (実施例 3)とした。
[0307] 得られたサンプル B— a— 2 (実施例 3)は、金属銀部の Ag/非導電性高分子の体 積比が 3· 1/1、また、密度 8· 5g/cm3、厚みが 1 · 2 mであり、本発明の導電膜 に好ましく用いられる金属銀部の Ag/非導電性高分子の体積比が 3/1以上、厚み が 0· 5 〜 5 であることに該当している。
[0308] (黒化処理)
次に、メッシュ状の銀画像が形成された透明フィルムに対して、下記組成の黒化メッ キ液浴中で、カーボンを陽極電極として電気メツキを行った。
[0309] 黒化メツキ処理におけるメツキ処理液は以下の通りである。
[黒化液組成]
硫酸ニッケル 6水塩 120g
チ才シアン酸アンモニゥム 17g
硫酸亜鉛 7水塩 28g
硫酸ナトリウム 16g
純水を加えて 1L
pH5. 0硫酸と水酸化ナトリウムで(pH調整)
[メツキ条件]
浴温:約 30°C
時間: 20秒
陰極電流密度: 0. ;!〜 0. 2A/dm2
陰極(35mm X 12cm)全体に対し、電流 0. 03A
サンプル B— a— 2 (実施例 3)の上記黒化処理サンプルを B— a— 3 (実施例 4)とし た。
(比較例 4〜6)
従来知られている中で最も導電性が高ぐ且つ、光透過性の高い技術と比較すべく 、前述の従来技術欄の「フォトグラフィー法を利用したエッチング加工銅メッシュ」の代 表として、特開平 10— 41682号公報に記載の金属メッシュを作製し、比較例 4のサ ンプルとした。
[0312] このサンプル (比較例 4)は、特開平 10— 41682号公報の実施例と同様の実験を 行って作製した。
[0313] なお、本発明のサンプルとメッシュ形状線幅、ピッチを一致させるために、上記と同 じピッチ 200 μ mのフォトマスクを利用した。
[0314] また、前述の従来技術欄の「銀ペーストを印刷したメッシュ」の代表として特開 2000
13088号公報記載の金属メッシュの作製を行い、開口率の異なる比較例 5及び 6 のサンプルを作製した。
[0315] [評価]
このようにして得られた、導電性金属部と光透過性部とを有する本発明のサンプノレ 及び比較例のサンプルの導電性金属部の線幅を測定して開口率を求め、さらに表 面抵抗率 (オーム/ sq)を測定した。なお、各測定には、光学顕微鏡、走査型電子顕 微鏡及び低抵抗率計を用いた。
[0316] また、メッシュの金属部の色を目視評価し、黒色のものを「〇」、褐色ないしグレーの ものを「X」とした。さらに、製造方法における工程数について、 5以下の工程を有す るものを「〇」とし、 5を超える工程を要するものを「 X」と評価した。
[0317] また、膜強度の評価は以下のように行った。
[0318] メッシュ金属部が形成されている面側を 0. 1mm φのサフアイャ金十を用いて lcm/ 秒の速さで引つかく。サフアイャ針の荷重を 0〜; 100gに変化させ、傷がベースに到す る時の荷重を以つて膜強度の尺度にした。
[0319] ◎: 引つ力、き傷が生じ始める荷重が 80g以上
〇: 引つ力、き傷が生じ始める荷重が 50g以上 80g未満
X: 引つ力、き傷が生じ始める荷重が 20g以上 50g未満
評価結果を、各サンプルのデータと共に表 1に示す。
[0320] [表 1]
Figure imgf000059_0001
[0321] 表 1からわ力、るように、比較例 4のエッチング銅メッシュは、メッシュの色が褐色であり 、工程数も多工程であった。さらに、比較例 5の銀ペーストを印刷したメッシュは、線 幅が太いため開口率が低かった。この場合、比較例 6に示すように、ピッチを広げて 開口率を高めることは可能である力 表面抵抗率が大きくなるという新たな問題が生 じた。
[0322] これに対し、実施例 1及び 2は、上記比較例に見られる問題点がなぐ線幅が細ぐ もとの線幅からの広力^もほとんどなぐ開口率が大きぐさらに、表面抵抗率が低く電 磁波シールド能が高い。
[0323] さらに好ましい形態である実施例 4は、メッシュの金属部が黒色であることから、ディ スプレイの画像への悪影響コントラスト低下が避けられる。また、製造時の工程数が 短工程であった。
[0324] しかも、実施例 1〜4は、膜強度が大きぐ取扱いの際にもメッシュ部の欠け、剥がれ が起きにくぐ品質上、信頼性の高いことがわかった。
[0325] ゼラチン量を変えた実施例 5〜8については、線幅が実施例 1〜4よりも僅かに太い
。しかし、ピッチを広げて開口率を高めても表面抵抗率が低いことから、実施例;!〜 4 よりも開口率を大きくとること力 Sできた。また、膜強度が大きぐ信頼性が高い。
[0326] 全面露光の比較例 7は、表面抵抗率が低く良好であつたが、膜強度が小さぐ信頼 性の点で問題がある。一方、全面露光の実施例 13及び 14は、比較例 7よりも表面抵 抗率が低ぐしかも、膜強度が大きぐ信頼性の点でも十分であった。
[0327] なお、実施例 9〜; 11については、表面抵抗率が 2. 5 (オーム/ sq)よりも高ぐ導電 性の点では不十分であつたが、膜強度が大きぐ信頼性の点で十分であった。
[0328] [第 2実施例]
上述した表 1に示す実施例 1〜; 14のうち、現像後にカレンダー処理を行い、さらに、 定着後にもカレンダー処理を行った実施例 14の表面抵抗率が 0. 08 (オーム/ sq) で、最も低い値を示している。
[0329] そこで、現像後のカレンダー処理及び定着後のカレンダー処理における線圧力と 表面抵抗率との関係を調べた。その結果を図 10に示す。
[0330] サンプルは、上述したサンプル B— a— 2 (実施例 3参照)と同様とし、上述と同様に 、露光、現像を行った後、純水で 1分間の水洗を行い、さらに、 40°Cの乾燥処理を行 つた。次いで、現像後のカレンダー処理を行い、その後、定着液(商品名: CN16X 用 N3X— R:富士写真フィルム社製)を用いて定着処理を行い、次いで、純水で 2分 間の水洗を行い、さらに、乾燥処理を行って、定着後のカレンダー処理を行った。
[0331] カレンダー処理に用いたカレンダーロールとして 2種類用意し、 1つは表面がェンボ ス加工された金属ロールと鏡面加工された金属ロールの組み合わせによる第 1カレ ンダーロールであり、他の iつは、表面が鏡面加工された金属ロールと樹脂製のロー ルの組み合わせによる第 2カレンダーロールである。
[0332] 第 1カレンダーロールで線圧力を違えてカレンダー処理(現像後及び定着後)した 際の表面抵抗率の変化をひし形のプロットで示し、第 2カレンダーロールで線圧力を 違えてカレンダー処理 (現像後及び定着後)した際の表面抵抗率の変化を四角形の プロットで示す。
[0333] 図 10から、現像後及び定着後にそれぞれカレンダー処理する場合は、カレンダー ロールの種類にほとんど依存せず、線圧力として 200 (kgf /cm)以上であれば、 1. 8 (オーム /sq)以下の表面抵抗率を得ることができることがわかった。また、線圧力 力 S700 (kgf /cm)以降は表面抵抗率のわずかな上昇が見られることから、上限とし て 700 (kgf/cm)以下であることが好まし!/、ことがわかる。
[0334] [第 3実施例]
次に、透明導電性フィルム 10の特性 (透過率、体積抵抗、表面抵抗、可撓性等)に つ!/、て評価した第 3実施例を以下に示す。
[0335] 1.細線構造部 14を担持した支持体 12の作製
(乳剤の調製)
第 1実施例の乳剤 Aと同様であるため、ここではその重複説明を終了する。
[0336] (塗布試料の作製)
第 1実施例にぉレ、て説明した事項と同様に、乳剤 Aを用いた塗布試料 Aと同様であ るため、ここではその重複説明を終了する。
[0337] 得られた塗布試料は、乳剤層の Ag/バインダ体積比率力 /0. 7であり、本発明 に好ましく用いられる Ag/バインダ体積比率 1/4以上に該当して!/、る。 [0338] (露光'現像処理)
次レ、で、乾燥させた塗布膜にライン/スペース = 10 m/30011 mの現像銀像を 与え得る格子状のフォトマスクを介して高圧水銀ランプを光源とした平行光を用いて 露光し、下記の現像液で現像し、さらに定着液(商品名: CN16X用 N3X—R:富士 フィルム社製)を用いて現像処理を行った後、純水でリンスした。
[0339] 上記処理剤を用いて露光、現像済み感材を、現像 25°C、 20秒、定着 25°Cで 20秒 、水洗:流水(5L/min)の 20秒で処理し、且つ、現像、水洗、乾燥、圧密処理、定 着、水洗、乾燥、圧密処理の順に行った。圧密処理は金属ロールを装備したカレン ダーロール装置を用い、線圧 3920N/cm (400kgf/cm)をかけてローラ間に試料 を通して fiつた。
[0340] 2.導電膜 16の塗設
上記のようにして形成された細線構造部 14の上に下記導電性ポリマーからなる透 明性の導電膜 16をバーコータによって、塗布量を変更し、表 1に示すように塗布して 、透明導電性フィルム(実施例 2;!〜 23)を作製した。さらに同様の膜厚の塗布を、細 線構造部 14のない PETベースに実施例 2;!〜 23と同様の膜厚になるように塗布し、 比較例 2;!〜 23を作製した。導電性ポリマーは、ティーエーケミカル株式会社 (TA Chemical Co. )の導電性ポリマー Baytron PEDOT (ポリエチレンジォキシチ ォフェン)を用いた。乾燥は室温にて自然乾燥で行った。
[0341] 同様に、細線構造部 14のみのサンプルを比較例 24、 ITOフィルムを用いたサンプ ルを比較例 25とした。
[0342] 3.エレクトロルミネセンス素子の作製
上記のように作製された透明導電性フィルム(実施例 21〜23、比較例 2;!〜 25)を 下記のように無機分散型 EL (エレクト口ルミネッセンス)素子に組み込み、発光テスト を fiつた。
[0343] 平均粒子サイズが 0. 03 ,1 mの顔料を含む反射絶縁層と蛍光体粒子が 50〜60 μ mの発光層を背面電極となるアルミシート上に塗布し、温風乾燥機を用いて 110°Cで 1時間乾燥した。
[0344] その後、透明導電性フィルム 10を蛍光体層、背面電極の誘電体層面上に重ね、 熱圧着して、 EL素子を作製した。 EL素子を 2枚のナイロン 6からなる吸水性シートと 2枚の防湿フィルムと挟んで熱圧着した。 EL素子のサイズは、 3cmX 5cm又は A4 サイズであった。
[0345] 4.評価
(試料の表面抵抗/透過率)
実施例 2;!〜 23、比較例 2;!〜 25の表面抵抗、並びに波長 550nmの光に対する透 過率を測定した。
[0346] (試料の輝度)
3cm X 5cmの試料を用いて、ピーク電圧 100V、周波数 1kHzの駆動を行った際 の初期輝度を評価した。
[0347] (可撓性の評価)
上述した屈曲試験によるサンプル (実施例 2;!〜 23、比較例 2;!〜 25)の表面抵抗 の上昇率 Kを求めた。表面抵抗の上昇率 Kは、屈曲試験を行う前のサンプルの表面 抵抗を Rl、屈曲試験を行った後のサンプルの表面抵抗を R2としたとき、
K = R2/R1
で求めた。
[0348] 屈曲試験は、図 11に示すように、基台 30に対して回転自在に取り付けられた直径
4mmのローラ 32にサンプノレ 34 (実施例 2;!〜 23、比較例 2;!〜 25)を引っ掛け、サン プノレ 34の一方の端部 34aを幅 lm当たり 28. 6 (kg)のテンションで引っ張りながら口 ーラ 32を回転させてサンプル 34を屈曲させる工程と、サンプル 34の他方の端部 34 bを幅 lm当たり 28. 6 (kg)のテンションで引っ張りながらローラ 32を回転させてサン プル 34を屈曲させる工程とを繰り返し行って、サンプル 34を 100回屈曲させた。
[0349] 評価は、表面抵抗の上昇率 Kが 1. 2以下の場合に〇、 1. 2〜10の場合に△、 10 以上の場合に Xとした。
[0350] (結果 1)
実施例 21〜23、比較例 2;!〜 25の透過率、細線構造部 14の表面抵抗、導電膜 1 6の表面抵抗、強度及び可撓性の評価結果を表 2に示す。
[0351] [表 2]
Figure imgf000064_0001
この評価結果から、比較例 24 (細線構造部のみ)の表面抵抗は、比較例 25 (ITO 膜のみ)よりも低いが、図 12Aに示すように、細線の近傍し力、発光せず、開口部は発 光しないため、輝度が著しく低くなる。これに対し、実施例 2;! 23のように、細線構 造部 14に導電膜 16をつけた場合では、図 12Bに示すように、全面発光が確認され た。また、表面抵抗が 105オーム /sqの導電膜 16を用いた場合、比較例 23では発 光しな力、つた力 実施例 23では、全面発光することが確認された。
[0353] [第 4実施例]
上述のようにして作製したサンプルのうち、 A4サイズのサンプル(実施例 23、比較 列 21、 24、 25) ίこつレヽて、ピーク電圧 50V、周波数 1. 4kHz(こて馬区動し、図 13ίこ示 すように、 Agペーストによるバスバーに取出し電極を設け、取出し電極からの距離を 変化させて輝度の測定を行い、取出し電極近傍(基準点)の輝度を基準(= 1)とした 場合の輝度比を求めた。基準点は、バスバーからの最短距離が 10mmであり、測定 ま、ノ スノ 一力、らの最短 £巨離カ 50mm、 100mm, 150mm, 200mm, 250mmと した。
[0354] 測定結果を図 14に示す。この結果から、導電膜のみの比較例 21は、取出し電極か らの距離が大きくなるにつれて輝度が減少している。比較例 24 (細線構造部のみ)は 、取出し電極からの距離による輝度の減少がほとんどなぐほぼ一定であるが、上述 したように、比較例 24では、図 12Aに示すように、面発光しないという問題がある。 IT O膜を用いた比較例 25は、 200mmの測定点までは輝度の減少がほとんどな力 た 1S 250mmの測定点において急激に輝度が低下していることがわ力、つた。これに対 して、実施例 23は、取出し電極からの距離による輝度の減少がほとんどなぐほぼ一 定であり、し力、も、図 12Bに示すように、全面発光を実現している。
[0355] [第 5実施例]
次に、以下に示すサンプル;!〜 6について、上述した屈曲試験を行い、上述と同様 の評価基準 (表面抵抗の上昇率 K)にて可撓性を評価した。
[0356] サンプル 1は ITO膜がスパッタにより形成され、表面抵抗 300オーム/ sqの ITOフ イルムである。
[0357] サンプル 2は PEDOTによる導電膜 16を用いて透明導電性フィルムを作製し、サン プル 3は、支持体 12上に感光性銀塩含有層を有する感光材料を露光 ·現像すること によって形成された細線構造部 14のみ有する透明導電性フィルムである。
[0358] サンプル 4は、細線構造部 14と導電膜 16とを有し、製造過程において、カレンダー 処理を行い、さらに温水に浸漬処理した透明導電性フィルムである。サンプル 5は、 支持体 12の上面全面に導電膜 16を有し、製造過程において、カレンダー処理を行 い、さらに温水に浸漬処理した透明導電性フィルムである。サンプル 6は、支持体 12 の上面全面に導電膜 16を有し、製造過程において、カレンダー処理を行い、温水に 浸漬処理をしなかった透明導電性フィルムである。
[0359] 評価結果を表 3及び図 15に示す。
[0360] [表 3]
Figure imgf000067_0001
[0361] ITO膜を用いたサンプル 1は、上昇率が 18480· 33という非常に高い上昇率を示 した。これに対して、サンプノレ 2〜6は、上昇率が 2以下であった。なお、サンプル 2は 抵抗値の上昇はなぐ反対に僅かではあるが抵抗が下がっていた。
[0362] このように、 ΙΤΟ膜を使用した透明導電性フィルムは、サンプル 1からも明らかなよう に、可撓性が不十分であることがわかった。 なお、本発明に係る自発光表示装置、自発光表示装置の製造方法、透明導電性 フィルム、エレクト口ルミネッセンス素子、太陽電池用透明電極、電子ペーパー用透 明電極は、上述の実施の形態に限らず、本発明の要旨を逸脱することなぐ種々の 構成を採り得ることはもちろんである。

Claims

請求の範囲
[1] 支持体(12)と、該支持体(12)上に設けられ、且つ、導電性金属からなる細線構造 部(14)と透光性の導電膜(16)とを有する電極部(22)と、
前記電極部(22)上に積層された発光層(26)を有する表示部(24)とを備えた自 発光表示装置であって、
前記電極部(22)の前記細線構造部(14)の体積抵抗が 10— 4オーム ' cm以下及び /又は表面抵抗が 100オーム/ sq以下であり、前記導電膜(16)の体積抵抗が 0. 0 5オーム ' cm以上及び/又は表面抵抗が 100オーム/ sq以上であり、
下記屈曲試験を行う前の前記電極部(22)の表面抵抗を R1、下記屈曲試験を行つ た後の前記電極部(22)の表面抵抗を R2としたとき、
R2/RK 18
を満足することを特徴とする自発光表示装置。
[屈曲試験は、基台(30)に対して回転自在に取り付けられた直径 4mmのローラ(32 )に前記電極部(22)を引っ掛け、前記電極部(22)の一方の端部(34a)を幅 lm当 たり 28. 6 (kg)のテンションで引っ張りながら前記ローラ(32)を回転させて前記電極 部(22)を屈曲させる工程と、前記電極部(22)の他方の端部(34b)を幅 lm当たり 2 8. 6 (kg)のテンションで引っ張りながら前記ローラ(32)を回転させて前記電極部(2 2)を屈曲させる工程とを繰り返し行って、前記電極部(22)を 100回屈曲させる。 ]
[2] 請求項 1記載の自発光表示装置において、
前記電極部(22)の前記細線構造部(14)の体積抵抗が 5 X 10— 5オーム ' cm以下、 及び/又は表面抵抗が 50オーム/ sq以下であり、前記導電膜(16)の体積抵抗が 0 . 5オーム ' cm以上及び/又は表面抵抗が 1000オーム/ sq以上であることを特徴と する自発光表示装置。
[3] 請求項 1記載の自発光表示装置において、
前記電極部(22)の前記細線構造部(14)の体積抵抗が 2 X 10— 5オーム ' cm以下、 及び/又は表面抵抗が 10オーム/ sq以下であり、前記導電膜(16)の体積抵抗が 1 オーム ' cm以上及び/又は表面抵抗が 10000オーム/ sq以上であることを特徴と する自発光表示装置。 [4] 請求項 1記載の自発光表示装置において、
前記電極部(22)の前記導電膜(16)は、導電性材料を含むことを特徴とする自発 光表示装置。
[5] 請求項 4記載の自発光表示装置において、
前記導電性材料が、透明導電性有機ポリマー、又は導電性微粒子を含むことを特 徴とする自発光表示装置。
[6] 請求項 5記載の自発光表示装置において、
前記導電性微粒子が導電性金属酸化物、導電性金属微粒子又はカーボンナノチ ユーブであることを特徴とする自発光表示装置。
[7] 請求項 1記載の自発光表示装置において、
前記電極部(22)の前記細線構造部(14)の厚み(高さ)力 S、 10 m以下であること を特徴とする自発光表示装置。
[8] 請求項 1記載の自発光表示装置において、
前記細線構造部(14)の厚み(高さ)が、前記導電膜(16)と実質的に同じであるこ とを特徴とする自発光表示装置。
[9] 請求項 1記載の自発光表示装置において、
前記導電膜(16)が前記細線構造部(14)の上面又は下面に設けられていることを 特徴とする自発光表示装置。
[10] 請求項 1記載の自発光表示装置において、
前記電極部(22)の光の透過率が、 550nmの光に対して 70%以上であることを特 徴とする自発光表示装置。
[11] 請求項 1記載の自発光表示装置において、
前記電極部(22)の前記細線構造部(14)は、前記支持体(12)上に少なくとも感光 性銀塩含有層(44)を有する感光層を露光し、現像処理することにより形成された導 電性金属銀力 なることを特徴とする自発光表示装置。
[12] 請求項 11記載の自発光表示装置において、
前記電極部(22)の前記細線構造部(14)は、銀を含有し、且つ、 Ag/バインダ体 積比が 1/4以上であることを特徴とする自発光表示装置。 [13] 請求項 11記載の自発光表示装置において、
前記電極部(22)の前記細線構造部(14)は、前記支持体(12)上に感光性銀塩含 有層(44)を有する感光材料を露光し、現像処理して形成された導電性金属銀を圧 密処理して得られることを特徴とする自発光表示装置。
[14] 請求項 13記載の自発光表示装置において、
前記圧密処理がカレンダーロール装置によって行われることを特徴とする自発光表 示装置。
[15] 支持体(12)と、該支持体(12)上に設けられ、且つ、導電性金属からなる細線構造 部(14)及び透光性の導電膜(16)とを有する透明導電性フィルムにおいて、 前記細線構造部(14)の体積抵抗が 10— 4オーム ' cm以下及び/又は表面抵抗が 1 00オーム/ sq以下であり、前記導電膜(16)の体積抵抗が 0. 05オーム ' cm以上及 び/又は表面抵抗が 100オーム/ sq以上であり、
下記屈曲試験を行う前の前記透明導電性フィルムの表面抵抗を R1、下記屈曲試 験を行った後の前記透明導電性フィルムの表面抵抗を R2としたとき、
R2/RK 18
を満足することを特徴とする透明導電性フィルム。
[屈曲試験は、基台(30)に対して回転自在に取り付けられた直径 4mmのローラ(32 )に前記透明導電性フィルムを引っ掛け、前記透明導電性フィルムの一方の端部(3 4a)を幅 lm当たり 28. 6 (kg)のテンションで引っ張りながら前記ローラ(32)を回転さ せて前記透明導電性フィルムを屈曲させる工程と、前記透明導電性フィルムの他方 の端部(34b)を幅 lm当たり 28. 6 (kg)のテンションで引っ張りながら前記ローラ(32 )を回転させて前記透明導電性フィルムを屈曲させる工程とを繰り返し行って、前記 透明導電性フィルムを 100回屈曲させる。 ]
[16] 請求項 15記載の透明導電性フィルムにおいて、
前記細線構造部(14)は、密度 8. 0g/cm3〜10. 5g/cm3である銀を含むことを 特徴とする透明導電性フィルム。
[17] 請求項 15記載の導電膜において、
前記細線構造部(14)の厚みが 0· 5 〜10 mであることを特徴とする透明導電 十生フイノレム。
[18] 請求項 15記載の透明導電性フィルムにおいて、
前記細線構造部(14)が細線パターンであり、その線幅が 0. 1 μ m〜25 μ mである ことを特徴とする透明導電性フィルム。
[19] (透明導電性フィルムの製法クレーム)
支持体上に少なくとも感光性ハロゲン化銀含有層を含む写真構成層を有する感光 材料を露光、現像することにより、前記支持体上に導電性金属からなる細線構造部 を形成させて、該細線構造部と透明性の導電膜とを組み合わせることを特徴とする透 明導電性フィルムの製造方法。
[20] 請求項 19記載の透明導電性フィルムの製造方法において、
前記電極部の前記細線構造部は、銀を含有し、且つ、 Ag/バインダ体積比が 1/ 4以上であることを特徴とする透明導電性フィルムの製造方法。
[21] 請求項 19記載の透明導電性フィルムの製造方法において、
前記細線構造部を圧密処理する圧密処理工程を有することを特徴とする透明導電 性フィルムの製造方法。
[22] 請求項 21記載の透明導電性フィルムの製造方法において、
前記圧密処理がカレンダーロール装置によって行われることを特徴とする透明導電 性フィルムの製造方法。
[23] 請求項 21記載の透明導電性フィルムの製造方法において、
前記圧密処理を線圧力 1980N/cm (200kgf/cm)以上で行うことを特徴とする 透明導電性フィルムの製造方法。
[24] 請求項 21記載の透明導電性フィルムの製造方法において、
前記圧密処理を線圧力 2960N/cm (300kgf/cm)以上で行うことを特徴とする 透明導電性フィルムの製造方法。
[25] 請求項 21記載の透明導電性フィルムの製造方法において、
前記圧密処理を線圧力 6860N/cm (700kgf/cm)以下で行うことを特徴とする 透明導電性フィルムの製造方法。
[26] 請求項 15記載の透明導電性フィルムを有することを特徴とするエレクト口ルミネッセ ンス素子。
[27] 請求項 15記載の透明導電性フィルムを有することを特徴とする太陽電池用透明電 極。
[28] 請求項 15記載の透明導電性フィルムを有することを特徴とする電子ペーパー用透 明電極。
PCT/JP2007/068968 2006-09-28 2007-09-28 Spontaneous emission display, spontaneous emission display manufacturing method, transparent conductive film, electroluminescence device, solar cell transparent electrode, and electronic paper transparent electrode WO2008038764A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780033191XA CN101512682B (zh) 2006-09-28 2007-09-28 自发光显示装置、透明导电性薄膜及其制造方法、电致发光元件、透明电极
EP07828709.1A EP2068328B1 (en) 2006-09-28 2007-09-28 Spontaneous emission display and transparent conductive film
US12/307,482 US8513878B2 (en) 2006-09-28 2007-09-28 Spontaneous emission display, spontaneous emission display manufacturing method, transparent conductive film, electroluminescence device, solar cell transparent electrode, and electronic paper transparent electrode

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006265001 2006-09-28
JP2006-265001 2006-09-28
JP2007084868 2007-03-28
JP2007-084868 2007-03-28
JP2007-133286 2007-05-18
JP2007133286 2007-05-18

Publications (1)

Publication Number Publication Date
WO2008038764A1 true WO2008038764A1 (en) 2008-04-03

Family

ID=39230196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068968 WO2008038764A1 (en) 2006-09-28 2007-09-28 Spontaneous emission display, spontaneous emission display manufacturing method, transparent conductive film, electroluminescence device, solar cell transparent electrode, and electronic paper transparent electrode

Country Status (6)

Country Link
US (1) US8513878B2 (ja)
EP (1) EP2068328B1 (ja)
JP (2) JP5009116B2 (ja)
KR (1) KR101039543B1 (ja)
CN (1) CN101512682B (ja)
WO (1) WO2008038764A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259479A (ja) * 2008-04-14 2009-11-05 Fujifilm Corp 発光システム
WO2010050318A1 (ja) * 2008-10-31 2010-05-06 コニカミノルタホールディングス株式会社 透明導電性基板、透明導電性基板の製造方法、及び電気化学表示素子
JP2010165659A (ja) * 2008-06-25 2010-07-29 Fujifilm Corp 導電膜形成用感光材料及び導電性材料
JP2010244747A (ja) * 2009-04-02 2010-10-28 Konica Minolta Holdings Inc 透明電極、透明電極の製造方法、および有機エレクトロルミネッセンス素子
US20110032196A1 (en) * 2009-08-07 2011-02-10 Tsinghua University Touch panel and display device using the same
JP2011060653A (ja) * 2009-09-11 2011-03-24 Toyobo Co Ltd 金属薄膜製造方法および金属薄膜
CN102129320A (zh) * 2010-12-31 2011-07-20 友达光电股份有限公司 触控面板的制造方法以及触控面板
US8071271B2 (en) 2007-03-30 2011-12-06 Fujifilm Corporation Conductive film and method for producing the same
JPWO2010018734A1 (ja) * 2008-08-11 2012-01-26 コニカミノルタホールディングス株式会社 透明電極、有機エレクトロルミネッセンス素子及び透明電極の製造方法
JPWO2010018733A1 (ja) * 2008-08-11 2012-01-26 コニカミノルタホールディングス株式会社 透明電極、有機エレクトロルミネッセンス素子及び透明電極の製造方法
CN102751413A (zh) * 2008-11-14 2012-10-24 Lg伊诺特有限公司 半导体发光器件
JP2014089750A (ja) * 2010-12-06 2014-05-15 Sakamoto Jun タッチパネル、及びタッチパネルの製造方法
JP2015038837A (ja) * 2013-08-19 2015-02-26 凸版印刷株式会社 透明電極の製造方法、透明電極、及びそれを備えた有機エレクトロルミネッセンス素子
JP5720680B2 (ja) * 2010-05-28 2015-05-20 コニカミノルタ株式会社 有機電子デバイス用電極
CN102057349B (zh) * 2008-06-06 2016-05-04 苹果公司 高电阻率金属扇出端
US20180004032A1 (en) * 2008-06-30 2018-01-04 Kolon Industries, Inc. Plastic substrate and device including the same
CN111180293A (zh) * 2020-02-14 2020-05-19 福建工程学院 一种柔性ZnO@TiN核壳结构阵列阴极及其制备方法
CN111292984A (zh) * 2018-12-07 2020-06-16 现代自动车株式会社 用于车辆的符号按钮及其制造方法

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5207728B2 (ja) * 2006-12-21 2013-06-12 富士フイルム株式会社 導電膜およびその製造方法
JP5245111B2 (ja) * 2007-12-06 2013-07-24 コニカミノルタ株式会社 透明導電フィルム
JP5245113B2 (ja) * 2007-12-14 2013-07-24 コニカミノルタ株式会社 透明補助電極フィルム及び透明補助電極フィルムの製造方法と、透明導電性フィルム及び透明導電性フィルムの製造方法
KR100927421B1 (ko) * 2007-12-17 2009-11-19 삼성전기주식회사 구형 표면을 갖는 태양전지 및 그 제조방법
JP2009193797A (ja) * 2008-02-14 2009-08-27 Hitachi Displays Ltd 表示装置およびその製造方法
JP2010192557A (ja) * 2009-02-17 2010-09-02 Toppan Printing Co Ltd 電磁波シールドフィルム
JP5396916B2 (ja) * 2009-03-03 2014-01-22 コニカミノルタ株式会社 透明電極の製造方法、透明電極および有機エレクトロルミネッセンス素子
JP5255532B2 (ja) 2009-03-26 2013-08-07 富士フイルム株式会社 El素子、導電膜形成用感光材料および導電膜
JP5155231B2 (ja) * 2009-03-30 2013-03-06 富士フイルム株式会社 El素子、導電膜形成用感光材料および導電膜
JP2010251611A (ja) * 2009-04-17 2010-11-04 Fujifilm Corp 太陽電池及びその製造方法
WO2011021470A1 (ja) * 2009-08-17 2011-02-24 コニカミノルタホールディングス株式会社 透明導電性基板の製造方法、透明導電性基板、及び電気化学表示素子
JP5629077B2 (ja) * 2009-09-29 2014-11-19 富士フイルム株式会社 導電膜の製造方法
US20120211739A1 (en) * 2009-10-28 2012-08-23 Konica Minolta Holdings, Inc. Organic electronic device
JP5363953B2 (ja) * 2009-11-20 2013-12-11 日東電工株式会社 長尺電極基板およびその製造方法
JP5554971B2 (ja) * 2009-11-25 2014-07-23 パナソニック株式会社 導体パターンの形成方法、導体パターン、導体パターン形成基材
US8664518B2 (en) * 2009-12-11 2014-03-04 Konica Minolta Holdngs, Inc. Organic photoelectric conversion element and producing method of the same
JP2011175890A (ja) * 2010-02-25 2011-09-08 Toray Ind Inc 導電性フィルム
JP5866765B2 (ja) 2010-04-28 2016-02-17 ソニー株式会社 導電性素子およびその製造方法、配線素子、情報入力装置、表示装置、ならびに電子機器
US8802479B2 (en) * 2010-06-03 2014-08-12 NuvoSun, Inc. Solar cell interconnection method using a flat metallic mesh
JP2012004042A (ja) * 2010-06-18 2012-01-05 Fujifilm Corp 透明導電性フイルム及び透明導電性フイルムの製造方法
JP5609307B2 (ja) * 2010-06-22 2014-10-22 コニカミノルタ株式会社 透明導電性支持体
JP5495982B2 (ja) * 2010-06-29 2014-05-21 富士フイルム株式会社 導電性フイルムの製造方法および発光デバイス
WO2012014621A1 (ja) * 2010-07-29 2012-02-02 コニカミノルタホールディングス株式会社 透明導電膜、および有機エレクトロルミネッセンス素子
JP2012059417A (ja) * 2010-09-06 2012-03-22 Fujifilm Corp 透明導電フィルム、その製造方法、電子デバイス、及び、有機薄膜太陽電池
JP2012080091A (ja) * 2010-09-07 2012-04-19 Fujifilm Corp 透明導電フィルム、その製造方法、それを用いた有機薄膜太陽電池
JP5983408B2 (ja) * 2010-09-24 2016-08-31 コニカミノルタ株式会社 透明電極の製造方法
JP5664119B2 (ja) 2010-10-25 2015-02-04 ソニー株式会社 透明導電膜、透明導電膜の製造方法、光電変換装置および電子機器
CN102063951B (zh) * 2010-11-05 2013-07-03 苏州苏大维格光电科技股份有限公司 一种透明导电膜及其制作方法
US9240500B2 (en) 2010-12-02 2016-01-19 Nissan Chemical Industries, Ltd. Film-forming material
WO2012074058A1 (ja) * 2010-12-02 2012-06-07 日産化学工業株式会社 膜形成材料
JP6077194B2 (ja) * 2010-12-07 2017-02-08 ソニー株式会社 導電性光学素子ならびに情報入力装置および表示装置
JP5913809B2 (ja) * 2011-01-05 2016-04-27 リンテック株式会社 透明電極基板、その製造方法、該透明電極基板を有する電子デバイス及び太陽電池
US8932898B2 (en) 2011-01-14 2015-01-13 The Board Of Trustees Of The Leland Stanford Junior Univerity Deposition and post-processing techniques for transparent conductive films
GB2505292B (en) * 2011-01-28 2015-06-10 Novalia Ltd Printed article
JP5720278B2 (ja) * 2011-02-07 2015-05-20 ソニー株式会社 導電性素子およびその製造方法、情報入力装置、表示装置、ならびに電子機器
CN102655031A (zh) * 2011-03-01 2012-09-05 新科实业有限公司 用于光电子器件的透明导电膜
CN102222538B (zh) * 2011-03-11 2012-12-05 苏州纳格光电科技有限公司 图形化的柔性透明导电薄膜及其制法
JP5782855B2 (ja) * 2011-06-17 2015-09-24 コニカミノルタ株式会社 透明電極及び有機エレクトロルミネッセンス素子
US8628840B2 (en) * 2011-06-29 2014-01-14 Eastman Kodak Company Electronically conductive laminate donor element
JP6212050B2 (ja) 2011-12-22 2017-10-11 スリーエム イノベイティブ プロパティズ カンパニー 高い光透過を備えた導電性物品
EP2794262A4 (en) 2011-12-22 2015-08-19 3M Innovative Properties Co CARBON-COATED ARTICLES AND MANUFACTURING METHOD THEREFOR
WO2013118599A1 (ja) 2012-02-10 2013-08-15 コニカミノルタ株式会社 透明電極形成用組成物、透明電極、有機電子素子および透明電極の製造方法
CN109390495A (zh) * 2012-05-31 2019-02-26 乐金显示有限公司 有机发光器件及其制备方法
JP6044823B2 (ja) * 2012-08-24 2016-12-14 国立大学法人 東京大学 透明電極、導電性透明薄膜の製造方法ならびに導電性透明薄膜
US20150280173A1 (en) * 2012-10-26 2015-10-01 Pioneer Corporation Light emitting device and manufacturing method of light emitting device
WO2014064832A1 (ja) * 2012-10-26 2014-05-01 パイオニア株式会社 発光装置及び発光装置の製造方法
WO2014064833A1 (ja) * 2012-10-26 2014-05-01 パイオニア株式会社 発光装置及び発光装置の製造方法
WO2014064834A1 (ja) * 2012-10-26 2014-05-01 パイオニア株式会社 発光装置及び発光装置の製造方法
CN103857172A (zh) * 2012-12-06 2014-06-11 富葵精密组件(深圳)有限公司 透明印刷电路板
CN103902115B (zh) * 2012-12-28 2018-04-06 深圳欧菲光科技股份有限公司 触摸屏用透明导电体及其制备方法和应用
KR20140105640A (ko) * 2013-02-22 2014-09-02 (주)엘지하우시스 복사열을 이용한 자동차용 면상 발열체
CN103176650B (zh) * 2013-03-01 2016-09-28 南昌欧菲光科技有限公司 导电玻璃基板及其制作方法
CN107571572B (zh) * 2013-03-28 2019-10-18 株式会社神户制钢所 金属基板、使用其的衬底型薄膜太阳能电池及顶部发光型有机el元件
JP6129769B2 (ja) 2013-05-24 2017-05-17 富士フイルム株式会社 タッチパネル用透明導電膜、透明導電膜の製造方法、タッチパネル及び表示装置
CN105122381B (zh) 2013-08-01 2018-02-02 Lg化学株式会社 透明导电层压板、包含透明导电层压板的透明电极及透明导电层压板的制造方法
CN105519249B (zh) 2013-08-30 2018-07-13 富士胶片株式会社 导电性膜、触摸屏、显示装置、以及导电性膜的评价方法
JP2015195341A (ja) * 2014-03-24 2015-11-05 三菱電機株式会社 光電変換素子および光電変換素子の製造方法
JP6196180B2 (ja) * 2014-03-26 2017-09-13 日東電工株式会社 透光性導電フィルム
US10158096B2 (en) 2014-05-15 2018-12-18 Lg Display Co., Ltd. Organic light emitting device
CN104037359B (zh) * 2014-06-20 2017-01-25 上海和辉光电有限公司 一种oled阴极结构及其制造方法
CN105280840B (zh) * 2014-07-09 2018-05-08 Tcl集团股份有限公司 一种柔性透明电极及其制备方法
WO2016027620A1 (ja) 2014-08-21 2016-02-25 コニカミノルタ株式会社 透明電極、透明電極の製造方法、及び、電子デバイス
US9869918B2 (en) * 2015-01-16 2018-01-16 Ricoh Company, Ltd. Electrochromic apparatus, electrochromic element, and method of manufacturing electrochromic element
CN104600207B (zh) * 2015-01-27 2017-02-01 中国科学院长春应用化学研究所 透明电极及其制备方法与应用
JP2016212250A (ja) * 2015-05-08 2016-12-15 富士フイルム株式会社 めっき処理用積層体、導電性積層体の製造方法、タッチパネルセンサー、タッチパネル
DE102015212477A1 (de) * 2015-07-03 2017-01-05 Osram Oled Gmbh Organisches lichtemittierendes Bauelement und Verfahren zur Herstellung eines organischen lichtemittierenden Bauelements
WO2017046987A1 (ja) * 2015-09-18 2017-03-23 ソニー株式会社 導電性素子およびその製造方法、入力装置ならびに電子機器
CN108027688B (zh) * 2015-09-30 2021-04-13 住友金属矿山株式会社 导电性基板
JP6588852B2 (ja) * 2016-03-28 2019-10-09 株式会社ジャパンディスプレイ センサ及びセンサ付き表示装置
CN106400072B (zh) * 2016-11-07 2018-11-30 深圳市博耀新材料有限公司 一种耐腐蚀铝基复合材料及其制备工艺
JP6945307B2 (ja) * 2017-03-09 2021-10-06 株式会社カネカ 配線フィルムおよび光電変換素子モジュール
JP6645574B2 (ja) * 2017-03-17 2020-02-14 東レ株式会社 配線電極付き基板の製造方法
JP6809499B2 (ja) * 2017-04-04 2021-01-06 株式会社Soken 光透過型アンテナ、窓部貼付型通信モジュール、及び、周辺監視ユニット
EP3690945A4 (en) * 2017-09-26 2020-10-28 LG Chem, Ltd. ELECTRODE SUBSTRATE FOR TRANSPARENT LUMINESCENT DIODE DISPLAY UNIT AND ITS MANUFACTURING PROCESS
JP7028737B2 (ja) 2017-11-15 2022-03-02 株式会社神戸製鋼所 造形物の製造方法、製造装置及び造形物
KR102341557B1 (ko) * 2018-01-09 2021-12-20 도요 알루미늄 가부시키가이샤 유기 디바이스용 전극 기판 재료
CN108446430B (zh) * 2018-02-05 2021-08-06 西安电子科技大学 基于投影法的高频电磁遮挡判断方法
CN112088410B (zh) * 2018-03-09 2023-08-08 大日本印刷株式会社 导电性膜、传感器、触控面板和图像显示装置
CN109061978A (zh) * 2018-09-25 2018-12-21 无锡威峰科技股份有限公司 一种显示电浆模组及其制造方法
JP2020194653A (ja) * 2019-05-27 2020-12-03 株式会社アルバック 透明電極シート及び発光デバイス
CN111312064A (zh) * 2019-11-25 2020-06-19 深圳市华星光电半导体显示技术有限公司 透明显示屏及其制作方法
CN115053302A (zh) * 2020-03-17 2022-09-13 韩国机械研究院 包括纳米结构的透明导体及其制造方法

Citations (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB235211A (ja) 1900-01-01
US1623499A (en) 1925-06-16 1927-04-05 A corpora
US2274782A (en) 1937-11-24 1942-03-03 Chromogen Inc Light-sensitive photographic material
GB584609A (en) 1944-12-30 1947-01-20 Harry Derek Edwards Improvements in or relating to photographic light-sensitive materials
US2533472A (en) 1947-01-17 1950-12-12 Eastman Kodak Co Unsymmetrical oxonol filter and antihalation dyes
US2586168A (en) 1947-07-11 1952-02-19 Gen Aniline & Film Corp Process of hardening gelatin and photographic gelatin emulsions
US2725294A (en) 1952-07-17 1955-11-29 Eastman Kodak Co Hardening of gelatin with polyanhydrides
US2725295A (en) 1952-07-17 1955-11-29 Eastman Kodak Co Hardening of gelatin with organic acid chlorides
US2732303A (en) 1953-09-16 1956-01-24 Antifoggevg and hardening agents for
US2732316A (en) 1952-12-03 1956-01-24 Hardening of gelatin
US2861056A (en) 1953-11-12 1958-11-18 Eastman Kodak Co Resinous carboxy ester-lactones and process for preparing them
US2956879A (en) 1958-01-07 1960-10-18 Eastman Kodak Co Filter and absorbing dyes for use in photographic emulsions
US2983611A (en) 1957-09-16 1961-05-09 Eastman Kodak Co Gelatin compositions containing hardeners
US3017280A (en) 1959-04-20 1962-01-16 Eastman Kodak Co Hardening of coatings of polymers containing carboxyl groups
US3091537A (en) 1959-05-04 1963-05-28 Eastman Kodak Co Hardening of photographic layers
US3100704A (en) 1958-07-24 1963-08-13 Gen Aniline & Film Corp Photographic materials containing carbodhmides
US3103437A (en) 1959-04-10 1963-09-10 Hardening
US3125449A (en) 1962-07-25 1964-03-17 Amino-phosphorylchloride hardeners
US3148187A (en) 1962-01-22 1964-09-08 Eastman Kodak Co Sulfonated cyanine and merocyanine dyes
US3177078A (en) 1962-02-03 1965-04-06 Agfa Ag Filter and absorbing dyes for photographic emulsions
GB994869A (en) 1960-08-03 1965-06-10 Kodak Ltd Improvements in photographic silver halide emulsions
US3206312A (en) 1962-06-12 1965-09-14 Eastman Kodak Co Photographic film having antistatic agent therein
US3232764A (en) 1965-05-25 1966-02-01 Eastman Kodak Co Gelatin compositions adapted for the preparation of hardened coatings
US3232763A (en) 1963-03-14 1966-02-01 Eastman Kodak Co Gelatin compositions containing a bisisomaleimide hardener
US3247127A (en) 1960-04-14 1966-04-19 Eastman Kodak Co Light-absorbing water-permeable colloid layer containing an oxonol dye
US3288775A (en) 1961-04-07 1966-11-29 Ciba Ltd Method of hardening gelatin by reacting with conjugated heterocyclic compounds containing halogen atoms and water-solubilizing acid groups
US3316095A (en) 1965-10-13 1967-04-25 Eastman Kodak Co Hardeners for incorporated coupler emulsions
US3320069A (en) 1966-03-18 1967-05-16 Eastman Kodak Co Sulfur group sensitized emulsions
US3321313A (en) 1962-12-31 1967-05-23 Eastman Kodak Co Oxazolium salts as hardeners for gelatin
GB1121496A (en) 1964-11-16 1968-07-31 Eastman Kodak Co Silver halide emulsions
CA800958A (en) 1965-06-17 1968-12-10 Eastman Kodak Company Sensitization of photographic systems
US3428451A (en) 1960-09-19 1969-02-18 Eastman Kodak Co Supports for radiation-sensitive elements and improved elements comprising such supports
GB1167207A (en) 1966-05-13 1969-10-15 Agfa Gevaert Ag Process for Hardening Photographic Gelatin Layers
GB1177429A (en) 1967-09-27 1970-01-14 Ilford Ltd Filter Dyes
US3540887A (en) 1967-06-16 1970-11-17 Agfa Gevaert Nv Light-sensitive element containing filter dye
US3543292A (en) 1967-06-20 1970-11-24 Eastman Kodak Co Photographic gelatin hardened with bis isoxazole compounds and their quaternary salts
US3575704A (en) 1968-07-09 1971-04-20 Eastman Kodak Co High contrast light sensitive materials
US3635718A (en) 1967-03-06 1972-01-18 Ciba Geigy Ag Process for hardening water-soluble polymers
US3653905A (en) 1968-05-21 1972-04-04 Agfa Gevaert Nv Oxonol dyes in filter and anti-halation layers
GB1295462A (ja) 1969-03-12 1972-11-08
US3718427A (en) 1971-02-02 1973-02-27 Kuesters E Maschf Method and apparatus for treating a moving web of material
JPS4836890A (ja) 1971-09-12 1973-05-31
JPS4885130A (ja) 1972-02-10 1973-11-12
US3772031A (en) 1971-12-02 1973-11-13 Eastman Kodak Co Silver halide grains and photographic emulsions
JPS4999620A (ja) 1973-01-29 1974-09-20
JPS49114420A (ja) 1973-02-28 1974-10-31
GB1396696A (en) 1971-05-27 1975-06-04 Kodak Ltd Sensitive silver halide photographic materials
JPS5216364A (en) 1975-07-18 1977-02-07 Tadao Tatsumi Process for producing caffee cake fertilizer
JPS5220822A (en) 1975-08-09 1977-02-17 Konishiroku Photo Ind Co Ltd Direct reversal silver halide photographic light sensitive material
JPS5382408A (en) 1976-12-28 1978-07-20 Fuji Photo Film Co Ltd Silver halide photographic emulsion
GB1535016A (en) 1977-10-17 1978-12-06 Ilford Ltd Monodispersed emulsions
JPS5577737A (en) 1978-12-07 1980-06-11 Fuji Photo Film Co Ltd Silver halide photographic emulsion
JPS55158124A (en) 1979-05-25 1980-12-09 Agfa Gevaert Ag Manufacture of metal salt* its use for making photographic material and photographic image
US4242445A (en) 1978-02-02 1980-12-30 Fuji Photo Film Co., Ltd. Method for preparing light-sensitive silver halide grains
JPS59154439A (ja) 1983-02-21 1984-09-03 Fuji Photo Film Co Ltd 直接反転ハロゲン化銀写真感光材料
JPS59208548A (ja) 1983-05-12 1984-11-26 Konishiroku Photo Ind Co Ltd ハロゲン化銀写真感光材料
JPS62299959A (ja) 1986-06-20 1987-12-26 Konica Corp 放射線用ハロゲン化銀写真感光材料
JPS632042A (ja) 1986-04-15 1988-01-07 ミネソタ マイニング アンド マニユフアクチユアリング カンパニ− シアン化ロジウムド−パント含有ハロゲン化銀写真材料
JPS63131135A (ja) 1986-11-20 1988-06-03 Konica Corp 放射線用ハロゲン化銀写真感光材料
EP0293917A2 (en) 1987-06-05 1988-12-07 Fuji Photo Film Co., Ltd. Color photographic light-sensitive material and method of developing the same
JPH01112235A (ja) 1987-10-26 1989-04-28 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH01118832A (ja) 1987-11-02 1989-05-11 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH01179939A (ja) 1988-01-11 1989-07-18 Fuji Photo Film Co Ltd 超硬調なネガ画像形成方法
JPH01237538A (ja) 1988-03-17 1989-09-22 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH01266536A (ja) 1988-04-18 1989-10-24 Fuji Photo Film Co Ltd 赤外感光性ハロゲン化銀感光材料
JPH01285941A (ja) 1988-05-13 1989-11-16 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料の製造方法
JPH0212236A (ja) 1988-06-30 1990-01-17 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH0218542A (ja) 1988-07-07 1990-01-22 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH0220855A (ja) 1988-04-08 1990-01-24 Eastman Kodak Co ハロゲン化銀写真乳剤
JPH0220852A (ja) 1988-04-08 1990-01-24 Eastman Kodak Co ハロゲン化銀写真乳剤
JPH02103536A (ja) 1988-10-13 1990-04-16 Fuji Photo Film Co Ltd 画像形成方法
JPH02124560A (ja) 1988-11-02 1990-05-11 Fuji Photo Film Co Ltd ネガ型ハロゲン化銀写真感光材料
US4956257A (en) 1987-09-01 1990-09-11 Fuji Photo Film Co., Ltd. Silver halide photographic material and method for forming an image
JPH02282244A (ja) 1989-04-24 1990-11-19 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH02287532A (ja) 1989-04-28 1990-11-27 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH02301743A (ja) 1989-05-16 1990-12-13 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH037928A (ja) 1989-03-27 1991-01-16 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH0339948A (ja) 1989-04-20 1991-02-20 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH03136038A (ja) 1989-10-23 1991-06-10 Fuji Photo Film Co Ltd 赤外感光性ハロゲン化銀感光材料
JPH03138640A (ja) 1989-10-25 1991-06-13 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料及びその位置検出方法
JPH03174143A (ja) 1989-09-18 1991-07-29 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
EP0452772A1 (en) 1990-04-10 1991-10-23 Fuji Photo Film Co., Ltd. Silver halide photographic materials
JPH04109240A (ja) 1990-08-30 1992-04-10 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH04204640A (ja) 1990-11-30 1992-07-27 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH04271341A (ja) 1991-02-27 1992-09-28 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH04278939A (ja) 1991-01-17 1992-10-05 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH04324855A (ja) 1991-04-25 1992-11-13 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料およびその処理方法
JPH04333043A (ja) 1991-05-08 1992-11-20 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH0511389A (ja) 1991-07-04 1993-01-22 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料及びその処理方法
JPH05257239A (ja) 1991-03-11 1993-10-08 Fuji Photo Film Co Ltd 画像形成方法
JPH05303157A (ja) 1992-04-24 1993-11-16 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH05313284A (ja) 1992-05-14 1993-11-26 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH0682943A (ja) 1992-09-04 1994-03-25 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料およびそれを用いた写真画像形成方法
JPH06324426A (ja) 1993-05-17 1994-11-25 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料およびその処理方法
JPH07113072A (ja) 1993-10-18 1995-05-02 Hitachi Maxell Ltd 赤外吸収材料およびこれを用いた赤外吸収性塗料、熱転写印字用インクリボン、印刷物ならびに赤外吸収材料の製造法
JPH07152112A (ja) 1993-11-30 1995-06-16 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH07253639A (ja) 1994-03-16 1995-10-03 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH08201791A (ja) * 1995-01-31 1996-08-09 Teijin Ltd 透明電極基板
JPH08245902A (ja) 1995-03-14 1996-09-24 Fuji Photo Film Co Ltd シアニン化合物の固体微粒子分散物
JPH08249929A (ja) * 1995-03-10 1996-09-27 Idemitsu Kosan Co Ltd 座標データ入力装置の入力パネル用透明電極膜
US5575957A (en) 1994-12-27 1996-11-19 Ishihara Sangyo Kaisha, Ltd. Acicular electroconductive tin oxide fine particles and process for producing same
JPH08333519A (ja) 1995-04-07 1996-12-17 Fuji Photo Film Co Ltd 固体微粒子分散状のシアニン染料
JPH095913A (ja) 1995-06-19 1997-01-10 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料およびそれを用いた検知方法
JPH0996891A (ja) 1994-09-22 1997-04-08 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料および画像形成方法
JPH09179243A (ja) 1995-12-26 1997-07-11 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH1041682A (ja) 1996-05-23 1998-02-13 Hitachi Chem Co Ltd 電磁波シールド性と透明性を有する接着フィルム及び該フィルムを用いたディスプレイ、電磁波遮蔽構成体
JPH10142738A (ja) 1996-11-12 1998-05-29 Eastman Kodak Co 画像形成要素
JPH11223901A (ja) 1998-02-06 1999-08-17 Fuji Photo Film Co Ltd 熱現像記録材料
JP2000013088A (ja) 1998-06-26 2000-01-14 Hitachi Chem Co Ltd 電磁波シールドフィルムの製造方法および該電磁波シールドフィルムを用いた電磁波遮蔽体、ディスプレイ
JP2000275770A (ja) 1999-03-29 2000-10-06 Fuji Photo Film Co Ltd ハロゲン化銀写真乳剤およびそれを用いたハロゲン化銀写真感光材料
JP2003188576A (ja) 2001-12-19 2003-07-04 Dainippon Printing Co Ltd 電磁波遮蔽用シート
JP2004085655A (ja) 2002-08-23 2004-03-18 Asahi Kasei Aimii Kk 耐汚染性の含水ソフトコンタクトレンズ
JP2004184693A (ja) 2002-12-03 2004-07-02 Fuji Photo Film Co Ltd 熱現像感光材料
JP2004221564A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 透光性電磁波シールド膜の製造方法及び透光性電磁波シールド膜
JP2004221565A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 透光性電磁波シールド膜およびその製造方法
JP2004244080A (ja) 2003-02-17 2004-09-02 Maruha Corp 冷凍ころも付きえび用収納トレー
JP2004253329A (ja) * 2003-02-21 2004-09-09 Mitsubishi Paper Mills Ltd 透明導電性フィルムの製造方法
JP2004334077A (ja) 2003-05-12 2004-11-25 Fuji Photo Film Co Ltd 熱現像感光材料
JP2005010752A (ja) 2003-05-22 2005-01-13 Fuji Photo Film Co Ltd 熱現像感光材料及び画像形成方法
JP2005302508A (ja) 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd 透明導電性シートおよびそれを用いたエレクトロルミネッセンス素子
JP2006010795A (ja) 2004-06-23 2006-01-12 Fuji Photo Film Co Ltd 感光性ハロゲン化銀乳剤、これを用いた導電性銀薄膜、導電性銀材料
JP2006012935A (ja) 2004-06-23 2006-01-12 Fuji Photo Film Co Ltd 透光性電磁波シールド膜の製造方法および透光性電磁波シールド膜
JP2006501604A (ja) 2002-08-22 2006-01-12 アグフア−ゲヴエルト 実質的に透明な伝導層の製造方法
JP2006202738A (ja) * 2004-12-21 2006-08-03 Sumitomo Metal Mining Co Ltd 分散型エレクトロルミネッセンス素子及びその製造方法
JP2006228473A (ja) 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd 透光性導電性膜及びその製造方法並びに透光性導電性膜の製造に用いられる現像液
JP2006228478A (ja) 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd 電性膜及びその製造方法、並びに導電性膜を用いた光学フィルター
JP2006228836A (ja) 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd 透光性導電性膜及びその製造方法並びに透光性導電性膜を用いた光学フィルター
JP2006228469A (ja) 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd 導電性膜形成用感光材料、導電性膜、透光性電磁波シールド膜、及びそれらの製造方法
JP2006228480A (ja) 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd 透光性導電性膜及びその製造方法並びに透光性導電性膜を用いたプラズマディスプレー用光学フィルター
JP2006267635A (ja) 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd 透光性導電性膜形成用定着液並びに透光性導電性膜、透光性電磁波シールド膜及びそれらの製造方法
JP2006269795A (ja) 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd 透光性導電性膜形成用現像液並びに透光性導電性膜、透光性電磁波シールド膜及びそれらの製造方法
JP2006267627A (ja) 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd 透光性導電性膜形成用定着液並びに透光性導電性膜、透光性電磁波シールド膜及びそれらの製造方法
JP2006283137A (ja) 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd めっき被膜付きフィルムの製造方法及び装置
JP2006286410A (ja) 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd 光透過性導電性材料の製造装置及び製造方法
JP2006283133A (ja) 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd 光透過性導電性材料の製造装置及び製造方法、並びに、電解めっき装置及び電解めっき方法
JP2007086771A (ja) * 2005-08-26 2007-04-05 Mitsui Chemicals Inc フレキシブルディスプレイ用電極基板

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180974A (ja) 1994-12-26 1996-07-12 Nippondenso Co Ltd El素子およびその製造方法
JPH09147639A (ja) 1995-11-27 1997-06-06 Nippon Paint Co Ltd 透明電極材料
JPH10162961A (ja) 1996-10-02 1998-06-19 Toppan Printing Co Ltd El表示装置
JPH11224782A (ja) 1998-02-06 1999-08-17 Kawaguchiko Seimitsu Kk エレクトロルミネッセンス
JP2000269682A (ja) * 1999-03-18 2000-09-29 Sumitomo Rubber Ind Ltd 透光性電磁波シールド部材の製造方法
JP2002283462A (ja) * 2001-01-22 2002-10-03 Tdk Corp 導電層及び機能性層により表面が被覆された物体を製造する方法及び表面被覆物体
JP4479161B2 (ja) * 2002-03-25 2010-06-09 住友金属鉱山株式会社 透明導電膜とこの透明導電膜形成用塗布液および透明導電性積層構造体と表示装置
US7026079B2 (en) * 2002-08-22 2006-04-11 Agfa Gevaert Process for preparing a substantially transparent conductive layer configuration
JP4666961B2 (ja) * 2004-06-29 2011-04-06 Tdk株式会社 透明導電層が付与された物体、及び転写用導電性フィルム
JP2006024485A (ja) * 2004-07-09 2006-01-26 Mitsubishi Paper Mills Ltd 導電性膜または導電性画像作製方法
JP4719739B2 (ja) * 2005-03-15 2011-07-06 富士フイルム株式会社 透光性導電性膜及び透光性導電性膜の製造方法
US20070015094A1 (en) * 2005-07-13 2007-01-18 Konica Minolta Medical & Graphic, Inc. Electromagnetic wave shielding material, method for manufacturing the same and electromagnetic wave shielding material for plasma display panel
WO2007069495A1 (ja) * 2005-12-16 2007-06-21 Konica Minolta Medical & Graphic, Inc. 電磁波遮蔽材料、電磁波遮蔽材料の製造方法及びプラズマディスプレイパネル用電磁波遮蔽材料
DE112007001519B4 (de) * 2006-06-22 2022-03-10 Mitsubishi Paper Mills Limited Verfahren zum Herstellen eines leitfähigen Materials
JP5207728B2 (ja) * 2006-12-21 2013-06-12 富士フイルム株式会社 導電膜およびその製造方法

Patent Citations (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB235211A (ja) 1900-01-01
US1623499A (en) 1925-06-16 1927-04-05 A corpora
US2274782A (en) 1937-11-24 1942-03-03 Chromogen Inc Light-sensitive photographic material
GB584609A (en) 1944-12-30 1947-01-20 Harry Derek Edwards Improvements in or relating to photographic light-sensitive materials
US2533472A (en) 1947-01-17 1950-12-12 Eastman Kodak Co Unsymmetrical oxonol filter and antihalation dyes
US2586168A (en) 1947-07-11 1952-02-19 Gen Aniline & Film Corp Process of hardening gelatin and photographic gelatin emulsions
US2725294A (en) 1952-07-17 1955-11-29 Eastman Kodak Co Hardening of gelatin with polyanhydrides
US2725295A (en) 1952-07-17 1955-11-29 Eastman Kodak Co Hardening of gelatin with organic acid chlorides
US2732316A (en) 1952-12-03 1956-01-24 Hardening of gelatin
US2732303A (en) 1953-09-16 1956-01-24 Antifoggevg and hardening agents for
US2861056A (en) 1953-11-12 1958-11-18 Eastman Kodak Co Resinous carboxy ester-lactones and process for preparing them
US2983611A (en) 1957-09-16 1961-05-09 Eastman Kodak Co Gelatin compositions containing hardeners
US2956879A (en) 1958-01-07 1960-10-18 Eastman Kodak Co Filter and absorbing dyes for use in photographic emulsions
US3100704A (en) 1958-07-24 1963-08-13 Gen Aniline & Film Corp Photographic materials containing carbodhmides
US3103437A (en) 1959-04-10 1963-09-10 Hardening
US3017280A (en) 1959-04-20 1962-01-16 Eastman Kodak Co Hardening of coatings of polymers containing carboxyl groups
US3091537A (en) 1959-05-04 1963-05-28 Eastman Kodak Co Hardening of photographic layers
US3247127A (en) 1960-04-14 1966-04-19 Eastman Kodak Co Light-absorbing water-permeable colloid layer containing an oxonol dye
GB994869A (en) 1960-08-03 1965-06-10 Kodak Ltd Improvements in photographic silver halide emulsions
US3428451A (en) 1960-09-19 1969-02-18 Eastman Kodak Co Supports for radiation-sensitive elements and improved elements comprising such supports
US3288775A (en) 1961-04-07 1966-11-29 Ciba Ltd Method of hardening gelatin by reacting with conjugated heterocyclic compounds containing halogen atoms and water-solubilizing acid groups
US3148187A (en) 1962-01-22 1964-09-08 Eastman Kodak Co Sulfonated cyanine and merocyanine dyes
US3177078A (en) 1962-02-03 1965-04-06 Agfa Ag Filter and absorbing dyes for photographic emulsions
US3206312A (en) 1962-06-12 1965-09-14 Eastman Kodak Co Photographic film having antistatic agent therein
US3125449A (en) 1962-07-25 1964-03-17 Amino-phosphorylchloride hardeners
US3321313A (en) 1962-12-31 1967-05-23 Eastman Kodak Co Oxazolium salts as hardeners for gelatin
US3232763A (en) 1963-03-14 1966-02-01 Eastman Kodak Co Gelatin compositions containing a bisisomaleimide hardener
GB1121496A (en) 1964-11-16 1968-07-31 Eastman Kodak Co Silver halide emulsions
US3232764A (en) 1965-05-25 1966-02-01 Eastman Kodak Co Gelatin compositions adapted for the preparation of hardened coatings
CA800958A (en) 1965-06-17 1968-12-10 Eastman Kodak Company Sensitization of photographic systems
US3316095A (en) 1965-10-13 1967-04-25 Eastman Kodak Co Hardeners for incorporated coupler emulsions
US3320069A (en) 1966-03-18 1967-05-16 Eastman Kodak Co Sulfur group sensitized emulsions
GB1167207A (en) 1966-05-13 1969-10-15 Agfa Gevaert Ag Process for Hardening Photographic Gelatin Layers
US3635718A (en) 1967-03-06 1972-01-18 Ciba Geigy Ag Process for hardening water-soluble polymers
US3540887A (en) 1967-06-16 1970-11-17 Agfa Gevaert Nv Light-sensitive element containing filter dye
US3543292A (en) 1967-06-20 1970-11-24 Eastman Kodak Co Photographic gelatin hardened with bis isoxazole compounds and their quaternary salts
GB1177429A (en) 1967-09-27 1970-01-14 Ilford Ltd Filter Dyes
US3653905A (en) 1968-05-21 1972-04-04 Agfa Gevaert Nv Oxonol dyes in filter and anti-halation layers
US3575704A (en) 1968-07-09 1971-04-20 Eastman Kodak Co High contrast light sensitive materials
GB1295462A (ja) 1969-03-12 1972-11-08
US3718427A (en) 1971-02-02 1973-02-27 Kuesters E Maschf Method and apparatus for treating a moving web of material
GB1396696A (en) 1971-05-27 1975-06-04 Kodak Ltd Sensitive silver halide photographic materials
JPS4836890A (ja) 1971-09-12 1973-05-31
US3772031A (en) 1971-12-02 1973-11-13 Eastman Kodak Co Silver halide grains and photographic emulsions
JPS4885130A (ja) 1972-02-10 1973-11-12
JPS4999620A (ja) 1973-01-29 1974-09-20
JPS49114420A (ja) 1973-02-28 1974-10-31
JPS5216364A (en) 1975-07-18 1977-02-07 Tadao Tatsumi Process for producing caffee cake fertilizer
JPS5220822A (en) 1975-08-09 1977-02-17 Konishiroku Photo Ind Co Ltd Direct reversal silver halide photographic light sensitive material
JPS5382408A (en) 1976-12-28 1978-07-20 Fuji Photo Film Co Ltd Silver halide photographic emulsion
GB1535016A (en) 1977-10-17 1978-12-06 Ilford Ltd Monodispersed emulsions
US4242445A (en) 1978-02-02 1980-12-30 Fuji Photo Film Co., Ltd. Method for preparing light-sensitive silver halide grains
JPS5577737A (en) 1978-12-07 1980-06-11 Fuji Photo Film Co Ltd Silver halide photographic emulsion
JPS55158124A (en) 1979-05-25 1980-12-09 Agfa Gevaert Ag Manufacture of metal salt* its use for making photographic material and photographic image
JPS59154439A (ja) 1983-02-21 1984-09-03 Fuji Photo Film Co Ltd 直接反転ハロゲン化銀写真感光材料
JPS59208548A (ja) 1983-05-12 1984-11-26 Konishiroku Photo Ind Co Ltd ハロゲン化銀写真感光材料
JPS632042A (ja) 1986-04-15 1988-01-07 ミネソタ マイニング アンド マニユフアクチユアリング カンパニ− シアン化ロジウムド−パント含有ハロゲン化銀写真材料
JPS62299959A (ja) 1986-06-20 1987-12-26 Konica Corp 放射線用ハロゲン化銀写真感光材料
JPS63131135A (ja) 1986-11-20 1988-06-03 Konica Corp 放射線用ハロゲン化銀写真感光材料
EP0293917A2 (en) 1987-06-05 1988-12-07 Fuji Photo Film Co., Ltd. Color photographic light-sensitive material and method of developing the same
US4956257A (en) 1987-09-01 1990-09-11 Fuji Photo Film Co., Ltd. Silver halide photographic material and method for forming an image
JPH01112235A (ja) 1987-10-26 1989-04-28 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH01118832A (ja) 1987-11-02 1989-05-11 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH01179939A (ja) 1988-01-11 1989-07-18 Fuji Photo Film Co Ltd 超硬調なネガ画像形成方法
JPH01237538A (ja) 1988-03-17 1989-09-22 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH0220852A (ja) 1988-04-08 1990-01-24 Eastman Kodak Co ハロゲン化銀写真乳剤
JPH0220855A (ja) 1988-04-08 1990-01-24 Eastman Kodak Co ハロゲン化銀写真乳剤
JPH01266536A (ja) 1988-04-18 1989-10-24 Fuji Photo Film Co Ltd 赤外感光性ハロゲン化銀感光材料
JPH01285941A (ja) 1988-05-13 1989-11-16 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料の製造方法
JPH0212236A (ja) 1988-06-30 1990-01-17 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH0218542A (ja) 1988-07-07 1990-01-22 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH02103536A (ja) 1988-10-13 1990-04-16 Fuji Photo Film Co Ltd 画像形成方法
JPH02124560A (ja) 1988-11-02 1990-05-11 Fuji Photo Film Co Ltd ネガ型ハロゲン化銀写真感光材料
JPH037928A (ja) 1989-03-27 1991-01-16 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH0339948A (ja) 1989-04-20 1991-02-20 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH02282244A (ja) 1989-04-24 1990-11-19 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH02287532A (ja) 1989-04-28 1990-11-27 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH02301743A (ja) 1989-05-16 1990-12-13 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH03174143A (ja) 1989-09-18 1991-07-29 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH03136038A (ja) 1989-10-23 1991-06-10 Fuji Photo Film Co Ltd 赤外感光性ハロゲン化銀感光材料
JPH03138640A (ja) 1989-10-25 1991-06-13 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料及びその位置検出方法
EP0452772A1 (en) 1990-04-10 1991-10-23 Fuji Photo Film Co., Ltd. Silver halide photographic materials
JPH04109240A (ja) 1990-08-30 1992-04-10 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH04204640A (ja) 1990-11-30 1992-07-27 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH04278939A (ja) 1991-01-17 1992-10-05 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH04271341A (ja) 1991-02-27 1992-09-28 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH05257239A (ja) 1991-03-11 1993-10-08 Fuji Photo Film Co Ltd 画像形成方法
JPH04324855A (ja) 1991-04-25 1992-11-13 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料およびその処理方法
JPH04333043A (ja) 1991-05-08 1992-11-20 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH0511389A (ja) 1991-07-04 1993-01-22 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料及びその処理方法
JPH05303157A (ja) 1992-04-24 1993-11-16 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH05313284A (ja) 1992-05-14 1993-11-26 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH0682943A (ja) 1992-09-04 1994-03-25 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料およびそれを用いた写真画像形成方法
JPH06324426A (ja) 1993-05-17 1994-11-25 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料およびその処理方法
JPH07113072A (ja) 1993-10-18 1995-05-02 Hitachi Maxell Ltd 赤外吸収材料およびこれを用いた赤外吸収性塗料、熱転写印字用インクリボン、印刷物ならびに赤外吸収材料の製造法
JPH07152112A (ja) 1993-11-30 1995-06-16 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH07253639A (ja) 1994-03-16 1995-10-03 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH0996891A (ja) 1994-09-22 1997-04-08 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料および画像形成方法
US5575957A (en) 1994-12-27 1996-11-19 Ishihara Sangyo Kaisha, Ltd. Acicular electroconductive tin oxide fine particles and process for producing same
JPH08201791A (ja) * 1995-01-31 1996-08-09 Teijin Ltd 透明電極基板
JPH08249929A (ja) * 1995-03-10 1996-09-27 Idemitsu Kosan Co Ltd 座標データ入力装置の入力パネル用透明電極膜
JPH08245902A (ja) 1995-03-14 1996-09-24 Fuji Photo Film Co Ltd シアニン化合物の固体微粒子分散物
JPH08333519A (ja) 1995-04-07 1996-12-17 Fuji Photo Film Co Ltd 固体微粒子分散状のシアニン染料
JPH095913A (ja) 1995-06-19 1997-01-10 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料およびそれを用いた検知方法
JPH09179243A (ja) 1995-12-26 1997-07-11 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH1041682A (ja) 1996-05-23 1998-02-13 Hitachi Chem Co Ltd 電磁波シールド性と透明性を有する接着フィルム及び該フィルムを用いたディスプレイ、電磁波遮蔽構成体
JPH10142738A (ja) 1996-11-12 1998-05-29 Eastman Kodak Co 画像形成要素
JPH11223901A (ja) 1998-02-06 1999-08-17 Fuji Photo Film Co Ltd 熱現像記録材料
JP2000013088A (ja) 1998-06-26 2000-01-14 Hitachi Chem Co Ltd 電磁波シールドフィルムの製造方法および該電磁波シールドフィルムを用いた電磁波遮蔽体、ディスプレイ
JP2000275770A (ja) 1999-03-29 2000-10-06 Fuji Photo Film Co Ltd ハロゲン化銀写真乳剤およびそれを用いたハロゲン化銀写真感光材料
JP2003188576A (ja) 2001-12-19 2003-07-04 Dainippon Printing Co Ltd 電磁波遮蔽用シート
JP2006501604A (ja) 2002-08-22 2006-01-12 アグフア−ゲヴエルト 実質的に透明な伝導層の製造方法
JP2004085655A (ja) 2002-08-23 2004-03-18 Asahi Kasei Aimii Kk 耐汚染性の含水ソフトコンタクトレンズ
JP2004184693A (ja) 2002-12-03 2004-07-02 Fuji Photo Film Co Ltd 熱現像感光材料
JP2004221564A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 透光性電磁波シールド膜の製造方法及び透光性電磁波シールド膜
JP2004221565A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 透光性電磁波シールド膜およびその製造方法
JP2004244080A (ja) 2003-02-17 2004-09-02 Maruha Corp 冷凍ころも付きえび用収納トレー
JP2004253329A (ja) * 2003-02-21 2004-09-09 Mitsubishi Paper Mills Ltd 透明導電性フィルムの製造方法
JP2004334077A (ja) 2003-05-12 2004-11-25 Fuji Photo Film Co Ltd 熱現像感光材料
JP2005010752A (ja) 2003-05-22 2005-01-13 Fuji Photo Film Co Ltd 熱現像感光材料及び画像形成方法
JP2005302508A (ja) 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd 透明導電性シートおよびそれを用いたエレクトロルミネッセンス素子
JP2006010795A (ja) 2004-06-23 2006-01-12 Fuji Photo Film Co Ltd 感光性ハロゲン化銀乳剤、これを用いた導電性銀薄膜、導電性銀材料
JP2006012935A (ja) 2004-06-23 2006-01-12 Fuji Photo Film Co Ltd 透光性電磁波シールド膜の製造方法および透光性電磁波シールド膜
JP2006202738A (ja) * 2004-12-21 2006-08-03 Sumitomo Metal Mining Co Ltd 分散型エレクトロルミネッセンス素子及びその製造方法
JP2006228469A (ja) 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd 導電性膜形成用感光材料、導電性膜、透光性電磁波シールド膜、及びそれらの製造方法
JP2006228478A (ja) 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd 電性膜及びその製造方法、並びに導電性膜を用いた光学フィルター
JP2006228836A (ja) 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd 透光性導電性膜及びその製造方法並びに透光性導電性膜を用いた光学フィルター
JP2006228473A (ja) 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd 透光性導電性膜及びその製造方法並びに透光性導電性膜の製造に用いられる現像液
JP2006228480A (ja) 2005-02-15 2006-08-31 Fuji Photo Film Co Ltd 透光性導電性膜及びその製造方法並びに透光性導電性膜を用いたプラズマディスプレー用光学フィルター
JP2006267635A (ja) 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd 透光性導電性膜形成用定着液並びに透光性導電性膜、透光性電磁波シールド膜及びそれらの製造方法
JP2006269795A (ja) 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd 透光性導電性膜形成用現像液並びに透光性導電性膜、透光性電磁波シールド膜及びそれらの製造方法
JP2006267627A (ja) 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd 透光性導電性膜形成用定着液並びに透光性導電性膜、透光性電磁波シールド膜及びそれらの製造方法
JP2006283137A (ja) 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd めっき被膜付きフィルムの製造方法及び装置
JP2006286410A (ja) 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd 光透過性導電性材料の製造装置及び製造方法
JP2006283133A (ja) 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd 光透過性導電性材料の製造装置及び製造方法、並びに、電解めっき装置及び電解めっき方法
JP2007086771A (ja) * 2005-08-26 2007-04-05 Mitsui Chemicals Inc フレキシブルディスプレイ用電極基板

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Advances in Synthetic Metals", 1999, ELSEVIER
"Handbook of Organic Conducting Molecules and Polymers", vol. 1-4, 1997, MARCEL DEKKER INC.
"Intrinsically Conducting Polymers: An Emerging Technology", 1993, KLUWER
C. E. K. MEERS; T. H. JAMES: "The Theory of the Photographic Process", 1966
G. F. DUFIN: "Photographic Emulsion Chemistry", 1966, THE FORCAL PRESS
J. CHEM. SOC., CHEM. COMMUN., 1979, pages 635
J. CHEM. SOC., PERKIN. TRANS., vol. 1, 1980, pages 2191
P. CHANDRASEKHAR: "Conducting Polymer Fundamentals and Applications, A Practical Approach", 1999, KLUWER
P. GLAFKIDES, CHIMIE ET PHYSIQUE PHOTOGRAPHIQUE, 1967
P. GLAFKIDES: "Chimie et Physique Photographique", 1967, PAUL MONTEL
S. PATAI, THE CHEMISTRY OF ORGANIC SELENIUM AND TELLURIUM COMPOUNDS, vol. 1, 2, 1986
See also references of EP2068328A4
T. H. JAMES: "The Theory of the Photographic Process", 1977, MACMILLIAN PUBLISHING CO., INC., pages: 438 - 442
T. H. JAMES: "The Theory of the Photographic Process", vol. 15, 1977, MACMILLIAN PUBLISHING CO., INC., pages: 438 - 442
THE 48TH MEETING OF THE JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, March 2001 (2001-03-01)
V. L. ZELIKMAN ET AL.: "Making and Coating Photographic Emulsion", 1964, THE FORCAL PRESS

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071271B2 (en) 2007-03-30 2011-12-06 Fujifilm Corporation Conductive film and method for producing the same
JP2009259479A (ja) * 2008-04-14 2009-11-05 Fujifilm Corp 発光システム
CN102057349B (zh) * 2008-06-06 2016-05-04 苹果公司 高电阻率金属扇出端
JP2010165659A (ja) * 2008-06-25 2010-07-29 Fujifilm Corp 導電膜形成用感光材料及び導電性材料
US10884274B2 (en) * 2008-06-30 2021-01-05 Kolon Industries, Inc. Plastic substrate and device including the same
US20180004032A1 (en) * 2008-06-30 2018-01-04 Kolon Industries, Inc. Plastic substrate and device including the same
JP5397376B2 (ja) * 2008-08-11 2014-01-22 コニカミノルタ株式会社 透明電極、有機エレクトロルミネッセンス素子及び透明電極の製造方法
JPWO2010018734A1 (ja) * 2008-08-11 2012-01-26 コニカミノルタホールディングス株式会社 透明電極、有機エレクトロルミネッセンス素子及び透明電極の製造方法
JPWO2010018733A1 (ja) * 2008-08-11 2012-01-26 コニカミノルタホールディングス株式会社 透明電極、有機エレクトロルミネッセンス素子及び透明電極の製造方法
JP5397377B2 (ja) * 2008-08-11 2014-01-22 コニカミノルタ株式会社 透明電極、有機エレクトロルミネッセンス素子及び透明電極の製造方法
WO2010050318A1 (ja) * 2008-10-31 2010-05-06 コニカミノルタホールディングス株式会社 透明導電性基板、透明導電性基板の製造方法、及び電気化学表示素子
CN102751413A (zh) * 2008-11-14 2012-10-24 Lg伊诺特有限公司 半导体发光器件
US8796726B2 (en) 2008-11-14 2014-08-05 Lg Innotek Co., Ltd. Semiconductor light emitting device
US9257625B2 (en) 2008-11-14 2016-02-09 Lg Innotek Co., Ltd. Semiconductor light emitting device
US9029906B2 (en) 2008-11-14 2015-05-12 Lg Innotek Co., Ltd. Semiconductor light emitting device
JP2010244747A (ja) * 2009-04-02 2010-10-28 Konica Minolta Holdings Inc 透明電極、透明電極の製造方法、および有機エレクトロルミネッセンス素子
US20110032196A1 (en) * 2009-08-07 2011-02-10 Tsinghua University Touch panel and display device using the same
JP2011060653A (ja) * 2009-09-11 2011-03-24 Toyobo Co Ltd 金属薄膜製造方法および金属薄膜
JP5720680B2 (ja) * 2010-05-28 2015-05-20 コニカミノルタ株式会社 有機電子デバイス用電極
JP2014089750A (ja) * 2010-12-06 2014-05-15 Sakamoto Jun タッチパネル、及びタッチパネルの製造方法
CN102129320A (zh) * 2010-12-31 2011-07-20 友达光电股份有限公司 触控面板的制造方法以及触控面板
WO2015025474A1 (ja) * 2013-08-19 2015-02-26 凸版印刷株式会社 透明電極の製造方法、透明電極、及びそれを備えた有機エレクトロルミネッセンス素子
JP2015038837A (ja) * 2013-08-19 2015-02-26 凸版印刷株式会社 透明電極の製造方法、透明電極、及びそれを備えた有機エレクトロルミネッセンス素子
US9923164B2 (en) 2013-08-19 2018-03-20 Toppan Printing Co., Ltd. Method for manufacturing transparent electrode, transparent electrode, and organic electroluminescence device provided with the same
CN111292984A (zh) * 2018-12-07 2020-06-16 现代自动车株式会社 用于车辆的符号按钮及其制造方法
CN111180293A (zh) * 2020-02-14 2020-05-19 福建工程学院 一种柔性ZnO@TiN核壳结构阵列阴极及其制备方法

Also Published As

Publication number Publication date
JP2009004348A (ja) 2009-01-08
CN101512682A (zh) 2009-08-19
EP2068328A4 (en) 2012-06-20
KR20090057060A (ko) 2009-06-03
US20090295285A1 (en) 2009-12-03
KR101039543B1 (ko) 2011-06-09
JP5009116B2 (ja) 2012-08-22
JP5192767B2 (ja) 2013-05-08
EP2068328A1 (en) 2009-06-10
CN101512682B (zh) 2012-11-28
EP2068328B1 (en) 2014-10-22
US8513878B2 (en) 2013-08-20
JP2009004726A (ja) 2009-01-08

Similar Documents

Publication Publication Date Title
WO2008038764A1 (en) Spontaneous emission display, spontaneous emission display manufacturing method, transparent conductive film, electroluminescence device, solar cell transparent electrode, and electronic paper transparent electrode
JP5207728B2 (ja) 導電膜およびその製造方法
JP5201815B2 (ja) 導電性膜の製造方法及び導電性膜製造用感光材料
JP4719512B2 (ja) めっき処理方法、透光性導電性膜、及び透光性電磁波シールド膜
US7943291B2 (en) Conductive film-forming photosensitive material and conductive material
KR101340119B1 (ko) 도전성 필름 및 그 제조 방법
WO2006088026A1 (ja) 導電性膜形成用感光材料、導電性膜、透光性電磁波シールド膜、及びそれらの製造方法
JP2006332459A (ja) 導電性金属膜形成用感光材料、導電性金属膜の製造方法、導電性金属膜、及びプラズマディスプレイパネル用透光性電磁波シールド膜
JP2009188360A (ja) 電子回路およびその製造方法
JP2007162118A (ja) めっき処理装置、めっき処理方法、透光性導電性膜、及び透光性電磁波シールド膜
JP2009259479A (ja) 発光システム
JP5329802B2 (ja) 導電膜およびその製造方法
JP5192711B2 (ja) 導電膜の製造方法及び導電膜
WO2007077898A1 (ja) 導電性膜、その製造方法、電磁波シールド膜、その製造方法及びプラズマディスプレイパネル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780033191.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828709

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007828709

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097006254

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12307482

Country of ref document: US