WO2014064832A1 - 発光装置及び発光装置の製造方法 - Google Patents

発光装置及び発光装置の製造方法 Download PDF

Info

Publication number
WO2014064832A1
WO2014064832A1 PCT/JP2012/077724 JP2012077724W WO2014064832A1 WO 2014064832 A1 WO2014064832 A1 WO 2014064832A1 JP 2012077724 W JP2012077724 W JP 2012077724W WO 2014064832 A1 WO2014064832 A1 WO 2014064832A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting device
angle changing
changing unit
Prior art date
Application number
PCT/JP2012/077724
Other languages
English (en)
French (fr)
Inventor
黒田 和男
浩 大畑
敏治 内田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/077724 priority Critical patent/WO2014064832A1/ja
Publication of WO2014064832A1 publication Critical patent/WO2014064832A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines

Definitions

  • the present invention relates to a light emitting device having an organic light emitting layer and a method for manufacturing the light emitting device.
  • Patent Documents 1 and 2 As one of the techniques for improving the light extraction efficiency, there are techniques described in Patent Documents 1 and 2, for example.
  • Patent Document 1 in a display device, a metallic wedge-shaped member is embedded in a surface of a substrate on which a light emitting layer is provided, and light is reflected by the side surface of the wedge-shaped member, thereby improving light extraction efficiency. are listed.
  • Patent Document 2 describes that, in a display device, a low refractive index material layer is formed by embedding a material having a lower refractive index than that of the substrate on the surface of the substrate on which the light emitting layer is provided. If it does in this way, since light reflects in the side of a low refractive index material layer, light extraction efficiency will improve.
  • the light angle changing unit 350 is embedded in the first surface of the light transmitting substrate 340, and the light transmitting property is further formed on the first surface of the light transmitting substrate 340 and on the light angle changing unit 350.
  • the electrode 320, the organic functional layer 310, and the electrode 330 are laminated in this order.
  • irregularities may be formed on the surface of the light angle changing unit 350.
  • the film thickness of the portion of the organic functional layer 310 located on the concavo-convex structure becomes non-uniform.
  • the distance between the translucent electrode 320 and the electrode 330 is not constant, and there is a possibility that problems such as a decrease in the uniformity of the light emission intensity of the light emitting device and a leak may occur.
  • Examples of problems to be solved by the present invention include improving the light extraction efficiency of the light-emitting device and suppressing the non-uniform thickness of the organic functional layer.
  • the invention according to claim 1 includes an organic functional layer including at least a light emitting layer; A translucent electrode that is located on one surface side of the organic functional layer and transmits light emitted by the light emitting layer; The first surface of the translucent electrode is opposite to the surface opposite to the organic functional layer, and the light emitted from the light emitting layer is transmitted to the second surface opposite to the first surface.
  • An angle changer It is a light-emitting device provided with.
  • the invention according to claim 8 includes an organic functional layer including at least a light emitting layer; A translucent electrode that is located on one surface side of the organic functional layer and transmits light emitted by the light emitting layer; The first surface of the translucent electrode is opposite to the surface opposite to the organic functional layer, and the light emitted from the light emitting layer is transmitted to the second surface opposite to the first surface.
  • a light angle changing unit It is a light-emitting device provided with.
  • the invention according to claim 9 is a step of forming a recess in the first surface of the translucent substrate having a first surface and a second surface which is a surface opposite to the first surface; Forming a light angle changing unit that reduces an incident angle of light incident on the light-transmissive substrate from the first surface to the second surface by embedding a conductive material in the concave portion; Forming a translucent electrode on the first surface and the light angle changing unit; Forming a partition wall in a portion of the translucent electrode that overlaps the recess in plan view; Forming an organic functional layer including at least a light emitting layer in a region where the partition wall portion is not formed in the first surface; A method for manufacturing a light emitting device comprising:
  • the invention according to claim 10 is a step of forming a recess in the first surface of the translucent substrate having a first surface and a second surface that is a surface opposite to the first surface; Forming a translucent electrode on the first surface and along the inner surface of the recess; Forming a light angle changing portion that changes the angle of light incident on the light-transmissive substrate by embedding a conductive material in the concave portion; and Forming a partition wall in a portion of the translucent electrode that overlaps the recess in plan view; Forming an organic functional layer including at least a light emitting layer in a region where the partition wall portion is not formed in the translucent electrode; A method for manufacturing a light emitting device comprising:
  • FIG. 12 is a plan view showing a layout of a light angle changing unit of a light emitting device according to Example 3.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 4.
  • FIG. It is a top view of the light-emitting device shown in FIG.
  • FIG. 2 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the embodiment.
  • the light emitting device 10 can be used as a light source of a display, a lighting device, or an optical communication unit, for example.
  • the light emitting device 10 according to the embodiment includes an organic functional layer 110, a translucent electrode 120, a translucent substrate 140, a light angle changing unit 150, and a partition wall unit 160.
  • the translucent electrode 120 and the organic functional layer 110 are laminated on the first surface 141 of the translucent substrate 140 in this order. That is, the translucent electrode 120 faces one surface of the organic functional layer 110, and the translucent substrate 140 faces the surface of the translucent electrode 120 opposite to the organic functional layer 110. .
  • the organic functional layer 110 has at least a light emitting layer. Both the translucent electrode 120 and the translucent substrate 140 transmit at least part of the light emitted from the light emitting layer of the organic functional layer 110.
  • the partition wall 160 is provided on the first surface 141 of the translucent substrate 140 and divides the organic functional layer 110 into a plurality of regions.
  • the translucent substrate 140 has a second surface 142 opposite to the first surface 141 as a light emitting surface.
  • the light angle changing unit 150 is provided in the translucent substrate 140 and reduces the incident angle of the light incident on the translucent substrate 140 from the first surface 141 to the second surface 142.
  • the incident angle is defined as an angle from the normal line of the target surface.
  • the light incident on the translucent substrate 140 is reflected by the side surface of the light angle changing unit 150, thereby reducing the incident angle on the second surface 142 of the translucent substrate 140.
  • at least a part of the side surface of the light angle changing unit 150 is inclined in a direction facing the second surface 142 (a direction facing upward in FIG. 2).
  • the light angle changing unit 150 is provided at a position overlapping the partition wall 160.
  • the light angle changing unit 150 By providing the light angle changing unit 150, the light incident on the translucent substrate 140 from the light emitting layer of the organic functional layer 110 has a small incident angle on the second surface 142. For this reason, the light incident on the first surface 141 of the translucent substrate 140 has a component less than the critical angle on the second surface 142. As a result, the light extraction efficiency of the light emitting device 10 is improved.
  • FIG. 2 shows a case where light from the organic functional layer 110 is reflected once by the light angle changing unit 150. However, the light from the organic functional layer 110 may finally fall below the critical angle while being repeatedly reflected by the light angle changing unit 150.
  • the light angle changing unit 150 is provided at a position overlapping the partition wall 160 in plan view. For this reason, the part which overlaps with the light angle change part 150 in planar view among the organic functional layers 110 decreases, or disappears completely. For this reason, it can suppress that the film thickness of the organic functional layer 110 becomes non-uniform
  • each configuration of the light emitting device 10 will be described in detail.
  • the translucent substrate 140 is made of, for example, an inorganic material having translucency with respect to light emitted from the light emitting layer of the organic functional layer 110.
  • the translucent substrate 140 is, for example, a glass substrate, but may be a resin substrate or a resin film.
  • a concave portion 144 is formed on the first surface 141 of the translucent substrate 140 in order to form the light angle changing portion 150.
  • the depth of the recess 144 is preferably 0.5 times or less the thickness of the translucent substrate 140, for example. Further, when the distance from the bottom of the recess to the first surface 141 (that is, the height of the light angle changing unit 150) is h, the arrangement interval of the light angle changing units 150 is L, and the critical angle on the second surface 142 is ⁇ , It is preferable to satisfy the following formula (1). However, the depth of the recess 144 is not limited to this.
  • the light angle changing unit 150 is formed by embedding a material for forming the light angle changing unit 150 in the recess 144.
  • This material is a material that reflects light emitted from the light emitting layer of the organic functional layer 110. Moreover, it is preferable that this material has electroconductivity.
  • the light angle changing unit 150 is made of, for example, metal.
  • the metal may be formed of, for example, a metal paste (for example, Ag paste or Al paste) or a metal wire.
  • the light angle changing unit 150 may include a binder.
  • the material forming the light angle changing unit 150 may be a carbon material such as graphene.
  • the conductive material constituting the light angle changing unit 150 may be in contact with the translucent electrode 120.
  • the recess 144 may not be filled with a conductive material, but may be partially hollow.
  • the cross-sectional shape of the recess 144 that is, the cross-sectional shape of the light angle changing unit 150 suffices if a part of the side surface is inclined in a direction facing the second surface 142.
  • the side surface of the light angle changing part 150 it is preferable that none of the parts face the translucent electrode 120, that is, there is no part facing downward in FIG.
  • the light angle changing unit 150 has a substantially triangular cross section (for example, an equilateral triangle).
  • the cross-sectional shape of the light angle changing unit 150 is not limited to these.
  • the translucent electrode 120, the organic functional layer 110, and the electrode 130 are formed in this order.
  • the translucent electrode 120 is a transparent electrode formed of, for example, ITO (Indium Thin Oxide) or IZO (Indium Zinc Oxide). However, the translucent electrode 120 may be a metal thin film that is thin enough to transmit light. As described above, the translucent electrode 120 is continuously formed on the first surface 141 and the light angle changing unit 150 of the translucent substrate 140.
  • the light angle changing unit 150 is made of a conductive material. Moreover, as will be described later, the light angle changing unit 150 extends linearly in a plan view. For this reason, by providing the light angle changing unit 150, the apparent resistance of the translucent electrode 120 can be reduced.
  • This effect can be obtained if at least a portion of the light angle changing unit 150 that is in contact with the translucent electrode 120 has conductivity. However, when the entire light angle changing unit 150 is made of a conductive material, the resistance of the light angle changing unit 150 can be reduced, and this effect can be particularly increased.
  • the organic functional layer 110 has a configuration in which a plurality of organic layers are stacked. One of the organic layers is a light emitting layer. The layer structure of the organic functional layer 110 will be described later with reference to another drawing.
  • the electrode 130 is made of, for example, a metal such as Al, and reflects light that has traveled toward the electrode 130 out of light emitted from the light emitting layer of the organic functional layer 110 in a direction toward the translucent substrate 140.
  • the partition wall 160 is made of an insulating material, and partitions the organic functional layer 110 and the electrode 130 into a plurality of regions.
  • the partition wall 160 is made of a photosensitive resin such as a polyimide film.
  • the light angle changing unit 150 is located inside the partition wall 160 in a plan view. In this way, the organic functional layer 110 does not overlap with the light angle changing unit 150 in a plan view, so that the film thickness uniformity of the organic functional layer 110 can be achieved at a high level.
  • FIG. 3 is a diagram showing a planar layout of the light angle changing unit 150 when viewed in the X direction of FIG. FIG. 2 corresponds to a cross section AB in FIG. In this figure, the light angle changing part 150 is shown with the translucent electrode 120 for description.
  • the plurality of partition walls 160 and the plurality of light angle changing units 150 are all linear and parallel to each other.
  • the light angle changing unit 150 also functions as an auxiliary wiring (bus line) for reducing the resistance of the translucent electrode 120.
  • the light angle changing unit 150 and the partition wall 160 may be arranged at regular intervals, or at least some of them may be arranged at intervals different from others.
  • the light angle changing unit 150 is provided corresponding to all the partition walls 160. However, the light angle changing unit 150 may not be provided in any of the partition walls 160.
  • FIG. 4 is a diagram showing a first example of the layer structure of the organic functional layer 110.
  • the organic functional layer 110 has a structure in which a hole injection layer 111, a hole transport layer 112, a light emitting layer 113, an electron transport layer 114, and an electron injection layer 115 are stacked in this order. . That is, the organic functional layer 110 is an organic electroluminescence light emitting layer. Note that instead of the hole injection layer 111 and the hole transport layer 112, one layer having the functions of these two layers may be provided. Similarly, instead of the electron transport layer 114 and the electron injection layer 115, one layer having the function of these two layers may be provided.
  • the light emitting layer 113 is, for example, a layer emitting red light, a layer emitting blue light, a layer emitting yellow light, or a layer emitting green light.
  • the light emitting device 10 includes a region having a light emitting layer 113 that emits red light, a region having a light emitting layer 113 that emits green light, and a light emitting layer 113 that emits blue light in a plan view. The region may be provided repeatedly. In this case, when each region is caused to emit light simultaneously, the light emitting device 10 emits white light.
  • the light emitting layer 113 may be configured to emit white light by mixing materials for emitting a plurality of colors.
  • FIG. 5 is a diagram illustrating a second example of the configuration of the organic functional layer 110.
  • the organic functional layer 110 has a configuration in which light emitting layers 113a, 113b, and 113c are stacked between a hole transport layer 112 and an electron transport layer 114.
  • the light emitting layers 113a, 113b, and 113c are light of different colors (for example, red, green, and blue).
  • the light emitting layers 113a, 113b, and 113c emit light simultaneously, so that the light emitting device 10 emits white light.
  • FIG. 6 is a diagram for explaining a method of manufacturing the light emitting device 10 shown in FIG.
  • a translucent substrate 140 is prepared.
  • a mask pattern for example, a resist pattern
  • the first surface 141 is etched (for example, wet etching) using the mask pattern as a mask.
  • a recess 144 is formed in the translucent substrate 140.
  • the concave portion 144 may be formed by shot blasting (for example, sand blasting). Alternatively, the concave portion 144 may be formed by pressing the mold (for example, made of carbon) after heating the translucent substrate 140 to a deformable temperature.
  • the light angle changing unit 150 is formed in the recess 144.
  • the light angle changing unit 150 is formed by the following method, for example.
  • a conductive paste is filled in the recess 144 using, for example, a screen printing method.
  • the method of filling the conductive paste may be a method using a dispenser or an ink jet method.
  • the conductive paste is heated and dried. Thereby, the light angle changing part 150 is formed.
  • the translucent electrode 120 is formed on the first surface 141 of the translucent substrate 140 and the light angle changing unit 150.
  • the translucent electrode 120 is formed by, for example, a sputtering method.
  • the translucent electrode 120 and the electrode 130 are formed using, for example, a sputtering method.
  • the organic functional layer 110 is formed using a coating method or a vapor deposition method.
  • the light angle changing unit 150 is embedded in the translucent substrate 140.
  • the light incident on the translucent substrate 140 from the organic functional layer 110 is reflected by the side surface of the light angle changing unit 150, so that the component less than the critical angle on the second surface 142 increases. For this reason, the light extraction efficiency of the light emitting device 10 increases.
  • the light angle changing unit 150 is provided at a position overlapping the partition wall 160 in plan view. For this reason, the part which overlaps with the light angle change part 150 in planar view among the organic functional layers 110 decreases, or disappears completely. For this reason, it can suppress that the film thickness of the organic functional layer 110 becomes non-uniform
  • the light angle changing unit 150 when the light angle changing unit 150 is provided on the first surface 141 of the translucent substrate 140, the light incident area of the first surface 141 of the translucent substrate 140 is reduced.
  • the light angle changing unit 150 is overlapped with the partition wall 160 in plan view. For this reason, it can suppress that the area
  • the light angle changing unit 150 has conductivity at least at a portion in contact with the translucent electrode 120. For this reason, when the light angle changing unit 150 is connected to the translucent electrode 120, the light angle changing unit 150 functions as an auxiliary electrode of the translucent electrode 120. For this reason, it can suppress that the voltage applied to the translucent electrode 120 becomes non-uniform in the surface of the translucent electrode 120.
  • the concave portion 144 is formed on the first surface 141 of the translucent substrate 140, and the conductive light angle changing portion 150 is formed in the concave portion 144.
  • the translucent electrode 120 is formed on the light angle changing unit 150 and the first surface 141. For this reason, the light angle changing part 150 can be easily connected to the translucent electrode 120.
  • FIG. 7 is a cross-sectional view illustrating Example 1 of the light-emitting device 10 described in the embodiment.
  • the cross-sectional shape of the light angle changing unit 150 is different from that of the embodiment.
  • the light angle changing unit 150 has a configuration in which vertices in the height direction of a triangle are rounded. That is, the angle of at least the tip of the light angle changing unit 150 changes so as to approach a direction parallel to the second surface 142 as it approaches the second surface 142 of the translucent substrate 140.
  • the connection portion between the side surface of the recess 144 that is, the side surface of the light angle changing unit 150
  • the first surface 141 of the translucent substrate 140 is rounded.
  • Such a shape can be realized by adjusting the conditions (for example, etching conditions) when forming the recess 144.
  • the recessed part 144 may be a bowl type.
  • the same effect as that of the embodiment can be obtained.
  • a part of the light incident on the translucent substrate 140 from the organic functional layer 110 is repeatedly reflected by the light angle changing unit 150 and finally the critical angle on the second surface 142. Less than.
  • the light emitted from the organic functional layer 110 may directly hit the tip of the light angle changing unit 150.
  • the angle of the tip of the light angle changing unit 150 changes so as to approach a direction parallel to the second surface 142 as it approaches the second surface 142 of the translucent substrate 140. For this reason, even when the light emitted from the organic functional layer 110 directly hits the tip of the light angle changing unit 150, the incident angle of the light with respect to the second surface 142 is set to be less than the critical angle in the second surface 142. Can do.
  • FIG. 8 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the second embodiment.
  • the translucent electrode 120 is continuously formed on the first surface 141 of the translucent substrate 140 and along the inner wall of the recess 144.
  • the light angle changing unit 150 is formed on the translucent electrode 120 in the recess 144. That is, the light angle changing unit 150 is connected to the translucent electrode 120 on the side surface.
  • FIG. 9 is a cross-sectional view showing a method for manufacturing the light emitting device 10 shown in FIG.
  • the manufacturing method of the light emitting device 10 according to the present example is the same as the manufacturing method of the light emitting device 10 described in the embodiment until the recess 144 is formed.
  • the translucent electrode 120 is formed along the upper surface of the first surface 141 and the concave portion 144. .
  • the method for forming the translucent electrode 120 is as described in the embodiment.
  • the light angle changing unit 150 is formed on the translucent electrode 120 in the recess 144.
  • the method of forming the light angle changing unit 150 is also as described in the embodiment.
  • the same effect as in the embodiment can be obtained. Further, since the translucent electrode 120 is formed along the recess 144, the contact area between the translucent electrode 120 and the light angle changing unit 150 can be increased. Therefore, the connection resistance between the translucent electrode 120 and the light angle changing unit 150 can be reduced.
  • FIG. 10 is a plan view illustrating a layout of the light angle changing unit 150 of the light emitting device 10 according to Example 3, and corresponds to FIG. 3 in the embodiment.
  • the light angle changing unit 150 may be formed in a dot shape in addition to the one extending linearly.
  • the light angle changing portions 150 formed in a dot shape are arranged in a staggered manner between the adjacent linear light angle changing portions 150 and do not overlap the partition wall portion 160.
  • the layout of the dot-shaped light angle changing unit 150 is not limited to the example shown in this figure.
  • the dot-shaped light angle changing unit 150 may have a pyramid shape or a cone shape.
  • the same effect as in the embodiment can be obtained.
  • the dot-shaped light angle changing unit 150 is arranged between the linear light angle changing units 150, the light is incident in a direction parallel to the linear light angle changing unit 150. Also, the same operation as in the embodiment occurs. For this reason, the light extraction efficiency of the light emitting device 10 can be further increased. Even if the light angle changing unit 150 is dot-like, that is, not continuous, the electric resistance of that portion is reduced, so that the power transmission efficiency is improved as a whole.
  • FIG. 11 is a cross-sectional view illustrating the configuration of the light emitting device 10 according to the fourth embodiment.
  • 12 is a plan view of the light emitting device 10 shown in FIG.
  • the light emitting device 10 according to the present example has the same configuration as that of the light emitting device 10 according to the embodiment except that the light refractive index layer 170 is embedded in the first surface 141 of the translucent substrate 140.
  • the photorefractive index layer 170 is embedded in each of the plurality of concave portions provided on the first surface 141, and is formed with a refractive index higher than that of the translucent substrate 140 and lower than that of the translucent electrode 120. Yes.
  • the material constituting the light refractive index layer 170 is, for example, high refractive index glass whose refractive index is increased by nanoparticles containing BaTiO 3 .
  • the concave portion for embedding the photorefractive index layer 170 is provided, for example, on the entire surface of the first surface 141 of the translucent substrate 140 where the concave portion 144 is not provided.
  • the plurality of photorefractive index layers 170 do not extend linearly, but are formed in a dot shape and without a gap.
  • the same effect as in the embodiment can be obtained.
  • the critical angle on the first surface 141 can be increased.

Abstract

 透光性基板(140)は、第1面(141)とは逆側である第2面(142)が光出射面となっている。光角度変更部(150)は、透光性基板(140)の中に設けられており、第1面(141)から透光性基板(140)に入射した光の第2面(142)への入射角度を小さくする。例えば透光性基板(140)に入射した光は、光角度変更部(150)の側面で反射することにより、透光性基板(140)の第2面(142)への入射角度が小さくなる。この場合、光角度変更部(150)の側面の少なくとも一部は、第2面(142)に面する方向(図2において上を向く方向)に傾斜している。そして平面視において、光角度変更部(150)は、隔壁部(160)と重なる位置に設けられている。

Description

発光装置及び発光装置の製造方法
 本発明は、有機発光層を有する発光装置及び発光装置の製造方法に関する。
 近年は、有機発光層を有する発光装置を照明装置の光源として利用することが検討されている。このような発光装置を照明装置として利用するためには、有機発光層で発生した光のうち外部に放射される光の割合(光取り出し効率)を向上させる必要がある。
 光取り出し効率を向上させるための技術の一つとして、例えば特許文献1,2に記載の技術がある。特許文献1には、ディスプレイ装置において、基板のうち発光層が設けられた面に金属性の楔状部材を埋め込み、この楔状部材の側面で光を反射させることにより、光取り出し効率を向上させることが記載されている。
 また特許文献2には、表示装置において、基板のうち発光層が設けられた面に、基板よりも低屈折率の材料を埋め込んで低屈折率材料層を形成することが記載されている。このようにすると、低屈折率材料層の側面で光が反射するため、光取り出し効率が向上する。
特許第3573393号公報 特開2009-110873号公報
 本発明者は、特許文献1,2に記載の技術では、以下に説明する問題があると考えた。図1に示す発光装置は、透光性基板340の第1面に光角度変更部350を埋め込み、さらに透光性基板340の第1面の上及び光角度変更部350上に、透光性電極320、有機機能層310、及び電極330をこの順に積層したものである。このような構造において、光角度変更部350を形成するときに、光角度変更部350の表面に凹凸が形成されることがある。この場合、有機機能層310のうち凹凸構造の上に位置する部分の膜厚が不均一になってしまう。この場合、透光性電極320と電極330の距離が一定ではなくなり、発光装置の発光強度の均一性が低下したり、リークを起こしたりするなどの不具合が生じる可能性がある。
 本発明が解決しようとする課題としては、発光装置の光取り出し効率を向上させ、かつ、有機機能層の厚さが不均一になることを抑制することが一例として挙げられる。
 請求項1に記載の発明は、少なくとも発光層を含む有機機能層と、
 前記有機機能層の一面側に位置しており、前記発光層が発光した光を透過させる透光性電極と、
 前記透光性電極のうち前記有機機能層とは逆側の面に第1面が対向しており、前記発光層が発光した光を透過させて、前記第1面とは逆側の第2面から出射させる透光性基板と、
 前記透光性基板の前記第1面に設けられ、前記有機機能層を複数の領域に分割する隔壁部と、
 前記透光性基板の中かつ平面視で前記隔壁部と重なる位置に設けられており、前記第1面から前記透光性基板に入射した光の前記第2面への入射角度を小さくする光角度変更部と、
を備える発光装置である。
 請求項8に記載の発明は、少なくとも発光層を含む有機機能層と、
 前記有機機能層の一面側に位置しており、前記発光層が発光した光を透過させる透光性電極と、
 前記透光性電極のうち前記有機機能層とは逆側の面に第1面が対向しており、前記発光層が発光した光を透過させて、前記第1面とは逆側の第2面から出射させる透光性基板と、
 前記透光性基板の前記第1面に設けられ、前記有機機能層を複数の領域に分割する隔壁部と、
 前記透光性基板の中かつ平面視で前記隔壁部と重なる位置に設けられており、側面の少なくとも一部が前記第2面に面する方向に傾斜しており、前記側面で光を反射する光角度変更部と、
を備える発光装置である。
 請求項9に記載の発明は、第1面、及び前記第1面とは逆側の面である第2面を有する透光性基板の前記第1面に、凹部を形成する工程と、
 前記凹部内に導電性材料を埋め込むことにより、前記第1面から前記透光性基板に入射した光の前記第2面への入射角を小さくする光角度変更部を形成する工程と、
 前記第1面及び前記光角度変更部に、透光性電極を形成する工程と、
 前記透光性電極のうち平面視で前記凹部と重なる部分に、隔壁部を形成する工程と、
 前記第1面のうち前記隔壁部が形成されていない領域に、少なくとも発光層を含む有機機能層を形成する工程と、
を備える発光装置の製造方法である。
 請求項10に記載の発明は、第1面、及び前記第1面とは逆側の面である第2面を有する透光性基板の前記第1面に、凹部を形成する工程と、
 前記第1面上及び前記凹部の内面に沿って、透光性電極を形成する工程と、
 前記凹部内に導電性材料を埋め込むことにより、前記透光性基板に入射した光の角度を変更する光角度変更部を形成する工程と、
 前記透光性電極のうち平面視で前記凹部と重なる部分に、隔壁部を形成する工程と、
 前記透光性電極のうち前記隔壁部が形成されていない領域に、少なくとも発光層を含む有機機能層を形成する工程と、
を備える発光装置の製造方法である。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
課題を説明するための図である。 実施形態に係る発光装置の構成を示す断面図である。 光角度変更部の平面レイアウトを示す図である。 有機機能層の構成の第1例を示す図である。 有機機能層の構成の第2例を示す図である。 図2に示した発光装置の製造方法を説明するための図である。 発光装置の実施例1を示す断面図である。 実施例2に係る発光装置の構成を示す断面図である。 図8に示した発光装置の製造方法を示す断面図である。 実施例3に係る発光装置の光角度変更部のレイアウトを示す平面図である。 実施例4に係る発光装置の構成を示す断面図である。 図11に示した発光装置の平面図である。
 以下、実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また図によっては、光角度変更部150の表面に形成された凹凸などを省略していることもある。
(実施形態)
 図2は、実施形態に係る発光装置10の構成を示す断面図である。発光装置10は、例えばディスプレイ、照明装置、又は光通信手段の光源として用いることができる。実施形態に係る発光装置10は、有機機能層110、透光性電極120、透光性基板140、光角度変更部150、及び隔壁部160を有している。透光性電極120及び有機機能層110は、透光性基板140の第1面141の上に、この順に積層されている。すなわち、透光性電極120は、有機機能層110の一面に対向しており、透光性基板140は、透光性電極120のうち有機機能層110とは逆側の面に対向している。なお、第1面141と透光性電極120の間には他の層が存在していても良い。また、有機機能層110と透光性電極120の間にも他の層が位置していても良い。有機機能層110は、少なくとも発光層を有している。透光性電極120及び透光性基板140は、いずれも、有機機能層110の発光層が発光した光の少なくとも一部を透過する。隔壁部160は、透光性基板140の第1面141に設けられており、有機機能層110を複数の領域に分割している。
 透光性基板140は、第1面141とは逆側である第2面142が光出射面となっている。光角度変更部150は、透光性基板140の中に設けられており、第1面141から透光性基板140に入射した光の第2面142への入射角度を小さくする。ここで、入射角は、対象面の法線からの角度と定義する。例えば透光性基板140に入射した光は、光角度変更部150の側面で反射することにより、透光性基板140の第2面142への入射角度が小さくなる。この場合、光角度変更部150の側面の少なくとも一部は、第2面142に面する方向(図2において上を向く方向)に傾斜している。そして平面視において、光角度変更部150は、隔壁部160と重なる位置に設けられている。
 光角度変更部150が設けられることにより、有機機能層110の発光層から透光性基板140に入射した光は、第2面142への入射角度が小さくなる。このため、透光性基板140の第1面141に入射した光は、第2面142における臨界角未満の成分が増える。この結果、発光装置10の光取り出し効率は向上する。
 なお、図2では、有機機能層110からの光が光角度変更部150に一回反射される場合を示している。ただし、有機機能層110からの光は、光角度変更部150での反射を繰り返しながら、最後に臨界角を下回る場合もある。
 また、光角度変更部150は、平面視で隔壁部160と重なる位置に設けられている。このため、有機機能層110のうち平面視で光角度変更部150と重なる部分は少なくなるか、又は全くなくなる。このため、有機機能層110の膜厚が不均一になることを抑制できる。以下、発光装置10の各構成について、詳細に説明する。
 透光性基板140は、例えば、有機機能層110の発光層が発光する光に対して透光性を有する無機材料から形成されている。透光性基板140は、例えばガラス基板であるが、樹脂基板や樹脂フィルムであっても良い。
 透光性基板140の第1面141には、光角度変更部150を形成するために、凹部144が形成されている。透光性基板140の強度を考えると、凹部144の深さは、例えば透光性基板140の厚さの0.5倍以下であるのが好ましい。また、凹部の底部から第1面141までの距離(すなわち光角度変更部150の高さ)をh、光角度変更部150の配置間隔をL、第2面142における臨界角をθとすると、以下の式(1)を満たすのが好ましい。ただし、凹部144の深さはこれに限定されない。
 tan((90-θ)/2)≦h/L・・・(1)
 光角度変更部150は、凹部144内に、光角度変更部150を形成するための材料を埋め込むことにより、形成されている。この材料は、有機機能層110の発光層が発光した光を反射する材料である。またこの材料は、導電性を有しているのが好ましい。光角度変更部150は、例えば金属により形成されている。光角度変更部150が金属で形成されている場合、この金属は、例えば金属ペースト(例えばAgペースト又はAlペースト)により形成されてもよいし、金属線であっても良い。金属ペーストで形成される場合、光角度変更部150は、バインダーを含んでいることもある。なお、光角度変更部150を形成する材料は、グラフェンなどの炭素材料であってもよい。また、光角度変更部150を構成する導電性材料は、透光性電極120と接していればよい。例えば凹部144内は導電性材料で充填されていなくても、一部が中空でもよい。
 凹部144の断面形状、すなわち光角度変更部150の断面形状は、側面の一部が、第2面142に面する方向に傾斜していればよい。光角度変更部150の側面は、いずれの部分も、透光性電極120に面していない、すなわち図2において下側を向いている部分がないのが好ましい。本図に示す例では、光角度変更部150は、断面が略三角形(例えばに等辺三角形)である。ただし光角度変更部150の断面形状は、これらに限定されない。
 また、透光性基板140の第1面141上及び光角度変更部150上には、透光性電極120、有機機能層110、及び電極130がこの順に形成されている。
 透光性電極120は、例えばITO(Indium Thin Oxide)やIZO(インジウム亜鉛酸化物)などによって形成された透明電極である。ただし、透光性電極120は、光が透過する程度に薄い金属薄膜であっても良い。上記したように、透光性電極120は、透光性基板140の第1面141上及び光角度変更部150上に連続して形成されている。そして光角度変更部150は、導電性材料により形成されている。また、後述するように、光角度変更部150は、平面視で線状に延在している。このため、光角度変更部150を設けることにより、透光性電極120の見かけ上の抵抗を低くすることができる。
 なお、この効果は、光角度変更部150のうち少なくとも透光性電極120に接している部分が導電性を有していれば、得られる。ただし、光角度変更部150の全体が導電性材料により形成されている場合、光角度変更部150の抵抗を小さくすることができるため、この効果を特に大きくすることができる。
 有機機能層110は、複数の有機層を積層した構成を有している。この有機層の一つは、発光層である。有機機能層110の層構造については、別の図を用いて後述する。
 電極130は、例えばAlなどの金属から形成されており、有機機能層110の発光層が発光した光のうち電極130に向かってきた光を、透光性基板140に向かう方向に反射する。
 隔壁部160は、絶縁性の材料により形成されており、有機機能層110及び電極130を複数の領域に区画している。隔壁部160は、例えばポリイミド膜などの感光性樹脂によって形成されている。本実施形態では、光角度変更部150は、平面視で隔壁部160の内側に位置している。このようにすると、有機機能層110のうち平面視で光角度変更部150と重なる部分はなくなるため、有機機能層110の膜厚の均一性を高い水準で図ることができる。
 図3は、図2のX方向で見た場合の、光角度変更部150の平面レイアウトを示す図である。図2は、図3のA-B断面に対応している。この図において、説明のため、光角度変更部150は透光性電極120とともに示されている。
 本図に示す例において、複数の隔壁部160及び複数の光角度変更部150は、いずれも直線状であり、互いに平行である。上記したように、光角度変更部150は、透光性電極120の抵抗を下げるための補助配線(バスライン)としても機能する。なお、光角度変更部150及び隔壁部160は、一定間隔で配置されてもよいし、少なくとも一部が他とは異なる間隔で配置されていても良い。
 また、本図に示す例では、全ての隔壁部160に対応して光角度変更部150が設けられている。ただし、いずれかの隔壁部160には光角度変更部150が設けられていなくても良い。
 図4は、有機機能層110の層構造の第1例を示す図である。本図に示す例において、有機機能層110は、正孔注入層111、正孔輸送層112、発光層113、電子輸送層114、及び電子注入層115をこの順に積層した構造を有している。すなわち有機機能層110は、有機エレクトロルミネッセンス発光層である。なお、正孔注入層111及び正孔輸送層112の代わりに、これら2つの層の機能を有する一つの層を設けてもよい。同様に、電子輸送層114及び電子注入層115の代わりに、これら2つの層の機能を有する一つの層を設けてもよい。
 本図に示す例において、発光層113は、例えば赤色の光を発光する層、青色の光を発光する層、黄色の光を発光する層、又は緑色の光を発光する層である。この場合、発光装置10は、平面視において、赤色の光を発光する発光層113を有する領域、緑色の光を発光する発光層113を有する領域、及び青色の光を発光する発光層113を有する領域が繰り返し設けられていても良い。この場合、各領域を同時に発光させると、発光装置10は白色に発光する。
 なお、発光層113は、複数の色を発光するための材料を混ぜることにより、白色の光を発光するように構成されていても良い。
 図5は、有機機能層110の構成の第2例を示す図である。本図に示す例において、有機機能層110は、正孔輸送層112と電子輸送層114の間に、発光層113a,113b,113cを積層させた構成を有している。発光層113a,113b,113cは、互いに異なる色の光(例えば赤、緑、及び青)である。そして発光層113a,113b,113cが同時に発光することにより、発光装置10は白色に発光する。
 図6は、図2に示した発光装置10の製造方法を説明するための図である。まず、図6(a)に示すように、透光性基板140を準備する。次いで、透光性基板140の第1面141にマスクパターン(例えばレジストパターン)を形成し、このマスクパターンをマスクとして第1面141をエッチング(例えばウェットエッチング)する。これにより、透光性基板140には凹部144が形成される。なお、凹部144は、ショットブラスト(例えばサンドブラスト)により形成されても良い。また透光性基板140を変形可能な温度まで加熱した後に、型(例えばカーボン製)を押し付けることにより、凹部144を形成しても良い。
 次いで、凹部144内に光角度変更部150を形成する。光角度変更部150は、例えば以下の方法により形成される。
 まず、凹部144内に導電性ペーストを、例えばスクリーン印刷法を用いて充填する。導電性ペーストの充填方法は、ディスペンサーを用いた方法やインクジェット法であってもよい。次いで、導電性ペーストを加熱し、乾燥させる。これにより、光角度変更部150が形成される。
 次いで、図6(b)に示すように、透光性基板140の第1面141上及び光角度変更部150上に、透光性電極120を形成する。透光性電極120は、例えばスパッタリング法により形成される。
 次いで、透光性電極120上にポリイミド膜を形成した後、露光及び現像を行う。これにより、隔壁部160が形成される。
 その後、有機機能層110及び電極130を、この順に形成する。透光性電極120及び電極130は、例えばスパッタリング法を用いて形成される。また、有機機能層110は、塗布法又は蒸着法を用いて形成される。
 以上、実施形態によれば、透光性基板140には光角度変更部150が埋め込まれている。有機機能層110から透光性基板140に入射した光は、光角度変更部150の側面で反射されることにより、第2面142における臨界角未満の成分が増える。このため、発光装置10の光取り出し効率は上昇する。また、光角度変更部150は、平面視で隔壁部160と重なる位置に設けられている。このため、有機機能層110のうち平面視で光角度変更部150と重なる部分は少なくなるか、又は全くなくなる。このため、有機機能層110の膜厚が不均一になることを抑制できる。
 また、透光性基板140の第1面141に光角度変更部150を設けた場合、透光性基板140の第1面141のうち光が入射する領域が小さくなる。これに対して本実施形態では、光角度変更部150を平面視で隔壁部160と重ねている。このため、光角度変更部150を追加したことが原因で、透光性基板140の第1面141のうち光が入射する領域が小さくなることを、抑制できる。
 また実施形態では、光角度変更部150は、少なくとも透光性電極120と接触する部分が導電性を有している。このため、光角度変更部150を透光性電極120に接続すると、光角度変更部150は透光性電極120の補助電極として機能する。このため、透光性電極120に加わった電圧が透光性電極120の面内で不均一になることを抑制できる。さらに実施形態では、透光性基板140の第1面141に凹部144を形成し、凹部144内に導電性の光角度変更部150を形成している。そして、光角度変更部150及び第1面141上に、透光性電極120を形成している。このため、光角度変更部150を容易に透光性電極120に接続することができる。
(実施例1)
 図7は、実施形態で説明した発光装置10の実施例1を示す断面図である。本実施例では、光角度変更部150の断面形状が実施形態と異なる。具体的には、断面視において、光角度変更部150は、三角形の高さ方向の頂点を丸めた構成を有している。すなわち光角度変更部150の少なくとも先端部の角度は、透光性基板140の第2面142に近づくにつれて、第2面142に平行な方向に近づくように変化している。また、凹部144の側面(すなわち光角度変更部150の側面)と透光性基板140の第1面141との接続部は丸まっている。このような形状は、凹部144を形成するときの条件(例えばエッチング条件)を調節することにより、実現できる。なお、凹部144は、御椀型になっていてもよい。
 本実施例においても、実施形態と同様の効果を得ることができる。また、実施形態で説明したように、有機機能層110から透光性基板140に入射した光の一部は、光角度変更部150での反射を繰り返しながら、最後に第2面142における臨界角未満になる。一方、有機機能層110が発光した光が、光角度変更部150の先端部に直接あたる場合もある。本実施例では、光角度変更部150の先端部の角度は、透光性基板140の第2面142に近づくにつれて、第2面142に平行な方向に近づくように変化している。このため、有機機能層110が発光した光が直接光角度変更部150の先端部にあたった場合でも、その光の第2面142に対する入射角を、第2面142における臨界角未満にすることができる。
(実施例2)
 図8は、実施例2に係る発光装置10の構成を示す断面図である。実施例2に係る発光装置10は、透光性電極120が透光性基板140の第1面141上及び凹部144の内壁に沿って連続して形成されている。そして、光角度変更部150は、凹部144内の透光性電極120上に形成されている。すなわち、光角度変更部150は、側面で透光性電極120に接続している。
 図9は、図8に示した発光装置10の製造方法を示す断面図である。本実施例に係る発光装置10の製造方法は、凹部144を形成するまでの工程は、実施形態で説明した発光装置10の製造方法と同様である。
 図9(a)に示したように、透光性基板140の第1面141に凹部144を形成した後、第1面141の上面及び凹部144に沿って、透光性電極120を形成する。透光性電極120の形成方法は、実施形態で説明した通りである。
 次いで、図9(b)に示すように、凹部144内の透光性電極120上に、光角度変更部150を形成する。光角度変更部150の形成方法も、実施形態で説明した通りである。
 その後の工程は、実施形態と同様である。
 本実施例によっても、実施形態と同様の効果を得ることができる。また、透光性電極120を凹部144に沿って形成しているため、透光性電極120と光角度変更部150の接触面積を大きくすることができる。従って、透光性電極120と光角度変更部150の接続抵抗を小さくすることができる。
(実施例3)
 図10は、実施例3に係る発光装置10の光角度変更部150のレイアウトを示す平面図であり、実施形態における図3に対応している。本実施例において、光角度変更部150は、直線状に延在しているものの他に、ドット状に形成されているものもある。光角度変更部150のうちドット状に形成されたものは、隣り合う直線状の光角度変更部150の間に、千鳥状に配置されており、隔壁部160とは重なっていない。ただし、ドット状の光角度変更部150のレイアウトは、本図に示す例に限定されない。なお、ドット状の光角度変更部150は、角錐形状であっても良いし円錐形状であっても良い。
 本実施例によっても、実施形態と同様の効果を得ることができる。また、直線状の光角度変更部150の間に、ドット状の光角度変更部150を配置しているため、直線状の光角度変更部150と平行な方向に光が入射した場合であっても、実施形態と同様の作用が生じる。このため、さらに発光装置10の光取り出し効率を高めることができる。また、光角度変更部150がドット状すなわち連続していなくても、その部分の電気抵抗は小さくなるので、全体で見て電力伝送効率は向上する。
(実施例4)
 図11は、実施例4に係る発光装置10の構成を示す断面図である。図12は、図11に示した発光装置10の平面図である。本実施例に係る発光装置10は、透光性基板140の第1面141に光屈折率層170が埋め込まれている点を除いて、実施形態に係る発光装置10と同様の構成である。
 光屈折率層170は、第1面141に設けられた複数の凹部それぞれに埋め込まれており、透光性基板140以上の屈折率で、かつ透光性電極120以下の屈折率により形成されている。光屈折率層170を構成する材料は、例えばBaTiO3を含むナノパーティクルで屈折率を上げた高屈折率ガラスである。光屈折率層170を埋め込むための凹部は、例えば透光性基板140の第1面141のうち、凹部144が設けられていない領域の全面に設けられている。なお、複数の光屈折率層170は直線状には延在しておらず、ドット状かつ隙間なく形成されている。
 本実施例によっても、実施形態と同様の効果を得ることができる。また、透光性基板140の第1面141に光屈折率層170を設けているため、第1面141における臨界角を大きくすることができる。
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。

Claims (10)

  1.  少なくとも発光層を含む有機機能層と、
     前記有機機能層の一面側に位置しており、前記発光層が発光した光を透過させる透光性電極と、
     前記透光性電極のうち前記有機機能層とは逆側の面に第1面が対向しており、前記発光層が発光した光を透過させて、前記第1面とは逆側の第2面から出射させる透光性基板と、
     前記透光性基板の前記第1面に設けられ、前記有機機能層を複数の領域に分割する隔壁部と、
     前記透光性基板の中かつ平面視で前記隔壁部と重なる位置に設けられており、前記第1面から前記透光性基板に入射した光の前記第2面への入射角度を小さくする光角度変更部と、
    を備える発光装置。
  2.  請求項1に記載の発光装置において、
     平面視で、前記光角度変更部は前記隔壁部の内側に位置する発光装置。
  3.  請求項1又は2に記載の発光装置において、
     前記光角度変更部は、
      平面視で線状に延在しており、
      断面視で一部が前記透光性電極に接しており、
      少なくとも前記透光性電極に接している部分が導電性を有している発光装置。
  4.  請求項3に記載の発光装置において、
     前記透光性電極は、前記透光性基板の前記第1面上及び前記光角度変更部上に連続して形成されている発光装置。
  5.  請求項3に記載の発光装置において、
     前記透光性基板は、前記第1面に凹部を有しており、
     前記透光性電極は、前記凹部の内面を含めて前記透光性基板に沿って形成されており、
     前記光角度変更部は、前記凹部内の前記透光性電極上に設けられている発光装置。
  6.  請求項3に記載の発光装置において、
     前記光角度変更部は、導電性材料により形成されている発光装置。
  7.  請求項1又は2に記載の発光装置において、
     断面視で、前記光角度変更部の少なくとも先端部の角度は、前記第2面に近づくにつれて、前記第2面に平行な方向に近づくように変化している発光装置。
  8.  少なくとも発光層を含む有機機能層と、
     前記有機機能層の一面側に位置しており、前記発光層が発光した光を透過させる透光性電極と、
     前記透光性電極のうち前記有機機能層とは逆側の面に第1面が対向しており、前記発光層が発光した光を透過させて、前記第1面とは逆側の第2面から出射させる透光性基板と、
     前記透光性基板の前記第1面に設けられ、前記有機機能層を複数の領域に分割する隔壁部と、
     前記透光性基板の中かつ平面視で前記隔壁部と重なる位置に設けられており、側面の少なくとも一部が前記第2面に面する方向に傾斜しており、前記側面で光を反射する光角度変更部と、
    を備える発光装置。
  9.  第1面、及び前記第1面とは逆側の面である第2面を有する透光性基板の前記第1面に、凹部を形成する工程と、
     前記凹部内に導電性材料を埋め込むことにより、前記第1面から前記透光性基板に入射した光の前記第2面への入射角を小さくする光角度変更部を形成する工程と、
     前記第1面及び前記光角度変更部に、透光性電極を形成する工程と、
     前記透光性電極のうち平面視で前記凹部と重なる部分に、隔壁部を形成する工程と、
     前記第1面のうち前記隔壁部が形成されていない領域に、少なくとも発光層を含む有機機能層を形成する工程と、
    を備える発光装置の製造方法。
  10.  第1面、及び前記第1面とは逆側の面である第2面を有する透光性基板の前記第1面に、凹部を形成する工程と、
     前記第1面上及び前記凹部の内面に沿って、透光性電極を形成する工程と、
     前記凹部内に導電性材料を埋め込むことにより、前記透光性基板に入射した光の角度を変更する光角度変更部を形成する工程と、
     前記透光性電極のうち平面視で前記凹部と重なる部分に、隔壁部を形成する工程と、
     前記透光性電極のうち前記隔壁部が形成されていない領域に、少なくとも発光層を含む有機機能層を形成する工程と、
    を備える発光装置の製造方法。
PCT/JP2012/077724 2012-10-26 2012-10-26 発光装置及び発光装置の製造方法 WO2014064832A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/077724 WO2014064832A1 (ja) 2012-10-26 2012-10-26 発光装置及び発光装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/077724 WO2014064832A1 (ja) 2012-10-26 2012-10-26 発光装置及び発光装置の製造方法

Publications (1)

Publication Number Publication Date
WO2014064832A1 true WO2014064832A1 (ja) 2014-05-01

Family

ID=50544225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077724 WO2014064832A1 (ja) 2012-10-26 2012-10-26 発光装置及び発光装置の製造方法

Country Status (1)

Country Link
WO (1) WO2014064832A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073305A (ja) * 2005-09-06 2007-03-22 Harison Toshiba Lighting Corp 有機el発光装置およびその製造方法
JP2007080579A (ja) * 2005-09-12 2007-03-29 Toyota Industries Corp 面発光装置
JP2009004348A (ja) * 2006-09-28 2009-01-08 Fujifilm Corp 自発光表示装置、透明導電性フイルム、透明導電性フイルムの製造方法、エレクトロルミネッセンス素子、太陽電池用透明電極及び電子ペーパー用透明電極
WO2011016086A1 (ja) * 2009-08-05 2011-02-10 株式会社 東芝 有機電界発光素子およびその製造方法
JP2011071024A (ja) * 2009-09-28 2011-04-07 Harison Toshiba Lighting Corp 有機el素子およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073305A (ja) * 2005-09-06 2007-03-22 Harison Toshiba Lighting Corp 有機el発光装置およびその製造方法
JP2007080579A (ja) * 2005-09-12 2007-03-29 Toyota Industries Corp 面発光装置
JP2009004348A (ja) * 2006-09-28 2009-01-08 Fujifilm Corp 自発光表示装置、透明導電性フイルム、透明導電性フイルムの製造方法、エレクトロルミネッセンス素子、太陽電池用透明電極及び電子ペーパー用透明電極
WO2011016086A1 (ja) * 2009-08-05 2011-02-10 株式会社 東芝 有機電界発光素子およびその製造方法
JP2011071024A (ja) * 2009-09-28 2011-04-07 Harison Toshiba Lighting Corp 有機el素子およびその製造方法

Similar Documents

Publication Publication Date Title
CN102047464B (zh) 提高光输出的led器件结构
JP6186377B2 (ja) 発光装置
US20130234590A1 (en) Display device and method for manufacturing the same
JP2019110118A (ja) 有機発光表示装置
KR101579457B1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
WO2013190781A1 (ja) 発光パネル
WO2014064833A1 (ja) 発光装置及び発光装置の製造方法
JP6463354B2 (ja) 発光装置
WO2014064832A1 (ja) 発光装置及び発光装置の製造方法
US20160164045A1 (en) Light extraction substrate for organic light emitting device, fabrication method therefor and organic light emitting device including same
US10763456B2 (en) EL device use front plate and lighting device
JP2014135183A (ja) 有機el発光デバイス及びその製造方法
WO2014064834A1 (ja) 発光装置及び発光装置の製造方法
WO2014064835A1 (ja) 発光装置及び発光装置の製造方法
JP6479106B2 (ja) 発光装置
JP2016164898A (ja) 発光装置
JP2015179584A (ja) 発光素子
WO2013186919A1 (ja) 有機エレクトロルミネッセンスデバイス
JP6457065B2 (ja) 発光装置
JP2016021347A (ja) 有機エレクトロルミネッセンス素子、光学パネル、建材
WO2013186916A1 (ja) 有機エレクトロルミネッセンスデバイス
JP2015046263A (ja) 発光装置
WO2014196053A1 (ja) 光散乱フィルム、発光素子、光散乱フィルムの製造方法および発光素子の製造方法
WO2014162385A1 (ja) 発光装置
JP6511718B2 (ja) El素子用前面板及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887225

Country of ref document: EP

Kind code of ref document: A1