WO2014196053A1 - 光散乱フィルム、発光素子、光散乱フィルムの製造方法および発光素子の製造方法 - Google Patents

光散乱フィルム、発光素子、光散乱フィルムの製造方法および発光素子の製造方法 Download PDF

Info

Publication number
WO2014196053A1
WO2014196053A1 PCT/JP2013/065693 JP2013065693W WO2014196053A1 WO 2014196053 A1 WO2014196053 A1 WO 2014196053A1 JP 2013065693 W JP2013065693 W JP 2013065693W WO 2014196053 A1 WO2014196053 A1 WO 2014196053A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
film
light scattering
scattering
light extraction
Prior art date
Application number
PCT/JP2013/065693
Other languages
English (en)
French (fr)
Inventor
黒田 和男
吉田 綾子
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2013/065693 priority Critical patent/WO2014196053A1/ja
Publication of WO2014196053A1 publication Critical patent/WO2014196053A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/123Optical louvre elements, e.g. for directional light blocking

Definitions

  • the present invention relates to a light scattering film, a light emitting element, a method for manufacturing a light scattering film, and a method for manufacturing a light emitting element.
  • FIG. 1 is a cross-sectional view for explaining the technique of Patent Document 1.
  • a plurality of light scattering portions 1002 that scatter light are provided in a light-transmitting substrate 1001. .
  • the length L of the light scattering part 1002 in the thickness direction of the light transmissive substrate 1001 and the interval W between the adjacent light scattering parts 1002 are W / L ⁇ tan (arcsin (n1 / n2)) is satisfied.
  • n1 is the refractive index of air
  • n2 is the refractive index of the translucent substrate 1001.
  • An anode 1004, an organic layer 1005, and a cathode 1006 are stacked in this order on the surface of the light-transmitting substrate 1001 on which the light-scattering portion 1002 is provided.
  • Patent Document 2 describes a display device having a plurality of pixels formed of light emitting elements.
  • the light emitting element of this display device is formed in a sheet shape and has a structure in which the refractive index is distributed in the thickness direction.
  • the light extraction efficiency is improved by adopting such a structure of the light emitting element.
  • An example of a problem to be solved by the present invention is to improve the light extraction efficiency of a light emitting element by a structure different from the techniques of Patent Documents 1 and 2 and the like.
  • the invention described in claim 1 includes a translucent film, A plurality of light scattering walls disposed in the translucent film; With The plurality of light scattering walls are respectively arranged so as to intersect with the light extraction side surface of the translucent film, and are repeatedly arranged in a direction parallel to the light extraction side surface. It is a scattering film.
  • the invention described in claim 7 A light scattering film according to any one of claims 1 to 6; A light emitting layer; It is a light emitting element provided with.
  • the invention according to claim 8 provides: A light-emitting element having a light extraction surface from which light is extracted, A translucent substrate; A translucent film disposed over the translucent substrate; A plurality of light scattering walls disposed in the translucent film; With Each of the plurality of light scattering walls is a light emitting element that is arranged so as to intersect with the light extraction surface and is repeatedly arranged in a direction parallel to the light extraction surface.
  • the invention according to claim 9 is: Comprising a step of forming a plurality of light scattering walls in the translucent film, In the step of forming the light scattering wall, the plurality of light scattering walls are respectively arranged so as to intersect the light extraction side surface of the translucent film, and the plurality of light scattering walls are the light extraction wall. It is a manufacturing method of the light-scattering film which forms the said several light-scattering wall so that it may arrange
  • the invention according to claim 10 is: A method of manufacturing a light emitting device having a light extraction surface from which light is extracted, A step of superposing the light-transmitting film on the light-transmitting substrate; Forming a plurality of light scattering walls in the translucent film; With In the step of forming the light scattering wall, the plurality of light scattering walls are respectively arranged so as to intersect the light extraction surface, and the plurality of light scattering walls are parallel to the light extraction surface.
  • FIG. FIG. 2A is a cross-sectional view of the light-emitting element according to the embodiment
  • FIG. 2B is a plan view of the light-emitting element according to the embodiment. It is a figure which shows the light output characteristic of the light emitting element which concerns on the comparative form 1, and the light output characteristic of the light emitting element which concerns on the comparative form 2. It is a figure for demonstrating operation
  • FIG. 10A is a cross-sectional view of the light emitting device according to Example 1
  • FIG. 10B is a cross-sectional view of the light scattering film according to Example 1.
  • 6 is a cross-sectional view of a light emitting device according to Example 2.
  • FIG. 7 is a cross-sectional view of a light emitting device according to Example 3.
  • FIG. 6 is a cross-sectional view of a light-emitting element according to Example 4.
  • FIG. 14A to 14D are cross-sectional views showing a series of steps of the method for manufacturing the light emitting device according to Example 5.
  • 15A to 15E are cross-sectional views showing a series of steps in the method for manufacturing a light-emitting device according to Example 6.
  • 16A to 16F are cross-sectional views illustrating a series of steps in the method for manufacturing the light emitting device according to Example 7.
  • 17A and 17B are cross-sectional views illustrating a series of steps in the method for manufacturing the light-emitting element according to Example 8.
  • 18A and 18B are cross-sectional views illustrating a series of steps in the method for manufacturing the light-emitting device according to Example 9.
  • FIG. 19A is a plan view of the light-emitting element according to Example 10
  • FIG. 19B is a cross-sectional view taken along the line BB in FIG. 19A.
  • 12 is a plan view of a light emitting device according to Example 11.
  • FIG. 21A and FIG. 21B are cross-sectional views of the light emitting device according to Example 12.
  • FIG. 2A is a cross-sectional view of the light emitting device 100 according to the embodiment.
  • the light emitting element 100 includes an organic EL element.
  • the light emitting element 100 can be used as a light source of a display, a lighting device, or an optical communication device, for example.
  • the light emitting element 100 includes the light scattering film 200 according to the present embodiment.
  • the light scattering film 200 includes a light transmissive film 120 and a plurality of light scattering walls 123 arranged in the light transmissive film 120.
  • the plurality of light scattering walls 123 are respectively arranged so as to intersect the light extraction side surface (surface 120a) of the translucent film 120.
  • the plurality of light scattering walls 123 are repeatedly arranged in a direction parallel to the light extraction side surface (surface 120a).
  • the light extraction side means the light extraction surface 1 side described later.
  • the light emitting element 100 includes the light scattering film 200 and a light emitting layer.
  • the light emitting element 100 has a light extraction surface 1 from which light is extracted.
  • the light emitting element 100 includes a translucent substrate 110, a translucent film 120 disposed so as to overlap the translucent substrate 110, a plurality of light scattering walls 123 disposed in the translucent film 120, Is provided.
  • the plurality of light scattering walls 123 are arranged so as to intersect the light extraction surface 1.
  • the plurality of light scattering walls 123 are repeatedly arranged in a direction parallel to the light extraction surface 1.
  • the light emitting device 100 includes a light transmissive substrate 110, a light transmissive film 120, a light extraction film 160, a first electrode 130, an organic functional layer 140, and a second electrode. 150.
  • the translucent substrate 110 is a plate-like member made of a translucent material such as glass or resin.
  • the translucent film 120 is disposed on one surface side (the upper surface side in FIG. 2A) of the translucent substrate 110, and is disposed directly or indirectly on the translucent substrate 110. Yes. In the case of this embodiment, the translucent film 120 is provided directly on the upper surface of the translucent substrate 110, for example.
  • the translucent film 120 is made of, for example, a translucent dielectric.
  • the material of the translucent film 120 can be the same as the material of the organic functional layer 140, for example.
  • the refractive index of the translucent film 120 is larger than the refractive index of the translucent substrate 110, for example.
  • the light extraction film 160 is disposed on one surface side of the translucent film 120 (upper surface side in FIG. 2A). In the case of this embodiment, the light extraction film 160 is directly provided on the upper surface of the translucent film 120, for example. In the present embodiment, the upper surface of the light extraction film 160 is the light extraction surface 1.
  • the light extraction surface 1 is in contact with air (refractive index 1) filling the light emission space. In order to improve the light extraction efficiency of the light extraction film 160, the light extraction surface 1 is formed, for example, in an uneven shape. Because of this uneven portion, even when light reaches the air interface at the same angle from the light emitting surface, the angle of the optical path changed by the uneven portion differs depending on the location.
  • the ratio of the light extracted to the air layer out of the light reaching the air interface at the same angle from the light emitting surface varies depending on the uneven shape, and as a result, the extraction efficiency varies. That is, the cause of hindering the light extraction efficiency in the light extraction side layer of the translucent film 120 due to the relationship between the refractive index of the translucent film 120 and the refractive index of the light extraction side layer of the translucent film 120.
  • the refractive index of the translucent film 120 is n2
  • the refractive index of the layer adjacent to the light extraction side of the translucent film 120 is n1.
  • the layer adjacent to the light extraction side is the light extraction film 160.
  • n2 When the relationship between the refractive index n2 of the translucent film 120 and the refractive index n1 of the light extraction film 160 is n2 ⁇ n1, the angle dependency of the light extraction efficiency due to the shape of the unevenness at the interface between the light extraction film 160 and the light emission space Sex is an issue.
  • n2> n1 it is necessary to consider the influence of total reflection at the interface between the translucent film 120 and the light extraction film 160. In this case, it is not necessary to consider only total reflection. This is because light having an angle not exceeding the critical angle and having an angle close to the critical angle enters the light extraction film 160, but the angle toward the air interface becomes shallow due to refraction.
  • the light scattering film 200 according to the present embodiment and the light emitting device 100 according to the present embodiment further include a light extraction structure (light extraction film 160) disposed on the light extraction side of the translucent film 120, This light extraction structure has an uneven structure on the light extraction side.
  • a plurality of light scattering walls 123 are arranged inside the translucent film 120. These light scattering walls 123 are arranged so as to intersect the light extraction surface 1. That is, the center plane of the light scattering wall 123 (a plane formed by a set of center points in the thickness direction) intersects the light extraction plane 1.
  • the light extraction surface 1 has a shape such as an uneven shape. Therefore, intersecting with the light extraction surface 1 means intersecting with a plane where the light extraction surface 1 exists, or a surface opposite to the light extraction surface 1 in the light extraction film 160 (FIG. 2A). ) To the lower surface).
  • crossing with respect to the light extraction surface 1 means intersecting with the light extraction side surface 120 a of the translucent film 120, and further intersecting with the translucent substrate 110.
  • the light scattering wall 123 is arranged such that the center plane (a plane formed by a set of center points in the thickness direction) is orthogonal to the light extraction surface 1.
  • These light scattering walls 123 are arranged periodically (for example, at regular intervals) in a direction parallel to the light extraction surface 1 (left-right direction in FIG. 2A).
  • the light scattering wall 123 may be disposed from the upper end to the lower end of the translucent film 120, or may be disposed on the upper part of the translucent film 120 (region excluding the lower end part). You may arrange
  • the light scattering wall 123 has a function of scattering light incident on the light scattering wall 123 out of the light incident on the translucent film 120.
  • the light scattering wall 123 is configured, for example, by filling a resin containing light-scattering particles into a light-transmitting film 120 in a wall shape.
  • the light-scattering particles constituting the light-scattering wall 123 are, for example, silica, hollow nano-titanium oxide particles, or transparent beads having a refractive index different from that of the light-transmitting film 120.
  • the first electrode 130, the organic functional layer 140, and the second electrode 150 are disposed on the other surface side (the lower surface side in FIG. 2A) of the translucent substrate 110.
  • the organic functional layer 140 is disposed between the first electrode 130 and the second electrode 150.
  • the 1st electrode 130, the organic functional layer 140, and the 2nd electrode 150 are arrange
  • the first electrode 130 may be a transparent electrode made of a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). However, the first electrode 130 may be a metal thin film that is thin enough to transmit light.
  • a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • the first electrode 130 may be a metal thin film that is thin enough to transmit light.
  • the second electrode 150 is a reflective electrode made of a metal film such as Ag, Au, or Al.
  • the second electrode 150 reflects light traveling from the organic functional layer 140 toward the second electrode 150 toward the light extraction surface 1 side. That is, the second electrode 150 also serves as a light reflecting layer.
  • a light reflection layer (not shown) is provided below the second electrode 150, and the second electrode 150 is formed of a transparent electrode made of a metal oxide conductor such as ITO or IZO, or the second electrode 150 may be formed of a thin metal film that is thin enough to transmit light.
  • the organic functional layer 140 includes at least a light emitting layer.
  • the first electrode 130 constitutes an anode and the second electrode 150 constitutes a cathode.
  • the light emitting layer of the organic functional layer 140 emits light.
  • the translucent substrate 110, the translucent film 120, the first electrode 130, the organic functional layer 140, and the light extraction film 160 all transmit at least part of the light emitted from the light emitting layer of the organic functional layer 140. Part of the light emitted from the light emitting layer is emitted (extracted) from the light extraction surface 1 of the light extraction film 160 to the outside of the light emitting element 100 (that is, the light emission space).
  • the lower surface of the light extraction film 160 and the upper surface of the translucent film 120 are in contact with each other.
  • the lower surface of the translucent film 120 and the upper surface of the translucent substrate 110 are in contact with each other.
  • the lower surface of the translucent substrate 110 and the upper surface of the first electrode 130 are in contact with each other.
  • the lower surface of the first electrode 130 and the upper surface of the organic functional layer 140 are in contact with each other.
  • the lower surface of the organic functional layer 140 and the upper surface of the second electrode 150 are in contact with each other.
  • another layer may exist between the light extraction film 160 and the translucent film 120.
  • another layer may exist between the translucent film 120 and the translucent substrate 110.
  • another layer may exist between the translucent substrate 110 and the first electrode 130.
  • another layer may exist between the first electrode 130 and the organic functional layer 140.
  • another layer may exist between the organic functional layer 140 and the second electrode 150.
  • An interval can be defined. As shown in FIG. 2A, the interval between adjacent light scattering walls 123 among the plurality of light scattering walls 123 is m.
  • the length of the light scattering wall 123 in the light extraction direction is d.
  • the light extraction direction is a direction orthogonal to the light extraction surface 1 or a direction orthogonal to the light extraction side surface 120 a of the translucent film 120.
  • the refractive index of the layer adjacent to the light extraction side with respect to the light transmissive film 120 is n1
  • the refractive index of the light transmissive film 120 is n2 (n1 ⁇ n2).
  • n2 is the refractive index of the light extraction film 160.
  • the interval m can be set so as to satisfy the following formula (1). m ⁇ 2d ⁇ tan (arcsin (n1 / n2)) (1)
  • the light reflected toward the translucent film 120 at the interface between the translucent film 120 and the light extraction film 160 can be incident on the light scattering wall 123 and scattered by the light scattering wall 123.
  • a part of the scattered light is incident on the light extraction film 160 from the translucent film 120 when reflected from the second electrode 150 toward the light extraction film 160 side.
  • You can A part of the light incident on the light extraction film 160 in this way can be extracted from the light extraction film 160 to the light emission space. Therefore, part of the light reflected toward the translucent film 120 at the interface between the translucent film 120 and the light extraction film 160 can be extracted outside the light emitting element 100. Therefore, the light extraction efficiency is improved.
  • FIG. 2B is a plan view of the light emitting device according to the embodiment, and shows two scattering walls 123 adjacent to each other.
  • the above formula (1) assumes that light travels at the shortest distance in plan view between two adjacent light scattering walls 123 as in the optical path L31 shown in FIG.
  • the optical path L32 shown in FIG. 2 (b) when light travels at an angle of 45 ° with respect to the light scattering wall 123 in plan view, the above equation is used as the path between the adjacent light scattering walls 123.
  • the lower limit value of the interval m can be defined. That is, the interval m can be set so as to satisfy the following formula (2). ⁇ ( ⁇ 2) / 2 ⁇ ⁇ 2d ⁇ tan (arcsin (n1 / n2)) ⁇ m (2)
  • the interval m is shorter than the lower limit value, the proportion of light that can be directly extracted outside without being scattered by the light scattering wall 123 is decreased, and the light extraction efficiency is decreased. That is, by setting such a lower limit value, it is possible to suppress a decrease in light extraction efficiency.
  • the interval m is, for example, an interval between adjacent surfaces of adjacent light scattering walls 123 as shown in FIG. That is, for example, the interval between adjacent light scattering walls 123 is the interval m.
  • interval of the light-scattering wall 123 can also be prescribed
  • damps as follows.
  • m be the interval between adjacent light scattering walls 123 among the plurality of light scattering walls 123.
  • the length of the light scattering wall 123 in the light extraction direction is d.
  • An angle with respect to the normal line N of the light extraction side surface 120a of the translucent film 120 when the light extraction effect of the light extraction film (light extraction structure) 160 is attenuated is ⁇ .
  • the interval m satisfies the following formula (3). m ⁇ 2d ⁇ tan ⁇ (3)
  • FIG. 3 is a diagram showing measured values of the light output characteristics (curve L1) of the light emitting element according to Comparative Embodiment 1 and the light output characteristics (curve L2) of the light emitting element according to Comparative Embodiment 2.
  • the light emitting element according to the comparative form 1 is different from the light emitting element 100 according to the present embodiment in that it does not have the translucent film 120 and the light scattering wall 123, and in other points, the light emitting element according to the present embodiment.
  • the configuration is the same as that of the element 100. That is, the light emitting element according to the comparative example 1 has a structure in which the light extraction film 160 is disposed adjacent to the light extraction side of the translucent substrate 110.
  • the light-emitting element according to Comparative Embodiment 2 is different from the light-emitting element according to Comparative Embodiment 1 in that it does not have the light extraction film 160, and is otherwise configured in the same manner as the light-emitting element according to Comparative Embodiment 1.
  • the light extraction surface of the light emitting element is a surface opposite to the first electrode 130 side of the light transmitting substrate 110.
  • the angle (unit: degree) of the emitted light is represented by an angle with respect to the normal line of the light extraction surface (the same as the angle with respect to the normal line N of the surface 120a on the light extraction side of the translucent film 120).
  • the vertical axis in FIG. 3 represents the relative luminance of the emitted light (the unit is an arbitrary unit (au)).
  • This relative luminance is a relative value based on the luminance of outgoing light (that is, outgoing light whose direction coincides with the normal to the light extraction surface) emitted at an angle of 0 degrees in the light emitting element according to Comparative Example 2. expressed.
  • the measured values indicated by the curves L1 and L2 were measured while the luminance measuring device was placed at a fixed point and the direction of the luminance measuring device was gradually changed. For this reason, as the angle with respect to the normal line of the light extraction surface 1 increases, the luminance measuring device detects a wider range of light.
  • FIG. 3 shows actually measured values that are not corrected accordingly. . For this reason, the actual brightness of the emitted light at each angle (the brightness when the surface area of the measurement target is normalized) is further greater than the actually measured value shown in FIG. 3 as the angle with respect to the normal of the light extraction surface 1 increases. Decrease significantly.
  • the angle ⁇ is, for example, 60 degrees.
  • the angle ⁇ is, for example, an angle (for example, 60) at which the luminance of the output light is 85% or less of the reference luminance (for example, the luminance of the emitted light emitted at an angle of 0 degree in the light emitting element 100 according to the comparative embodiment 1). °). Since the specification here is a specification based on the actual measurement values in FIG. 3, when the surface area of the measurement target is normalized, the value is different from the specification here.
  • FIG. 4 is a diagram for explaining the operation of the light emitting device 100 according to the embodiment, and schematically shows how light is scattered by the light scattering wall 123.
  • the interval m is set so as to satisfy the above formula (3) so that light having an angle greater than or equal to the angle ⁇ can be incident on the light scattering wall 123. That is, light having an angle that is difficult to be effectively extracted to the outside effectively by the action of the light extraction film 160 can be incident on the light scattering wall 123 and scattered by the light scattering wall 123.
  • part of the scattered light (for example, light in the angle range R1 shown in FIG. 4) can be emitted from the light extraction surface 1 of the light extraction film 160 to the outside.
  • the scattered light for example, light in the angle range R2 shown in FIG. 4
  • the angle ranges R1 and R2 are each about 120 degrees (range of 60 degrees on both sides with the normal N as the center).
  • Patent Document 1 the technique of Patent Document 1 will be described with reference to FIG.
  • the technique of Patent Document 1 satisfies W / L ⁇ tan (arcsin (n1 / n2)).
  • arcsin (n1 / n2) means a critical angle at the interface between the light emitting element and the air layer. Therefore, W / L ⁇ tan (arcsin (n1 / n2)) indicates that the angle indicated by arctan (W / L) in FIG. 1 is smaller than the critical angle.
  • the light scattering portion 1002 is disposed in the translucent substrate 1001 and disposed on the anode 1004 side.
  • the light that reaches the light extraction surface 1000a without entering the light scattering portion 1002 among the light from one light emitting point is the light in the range between the optical path L11 and the optical path L12, that is, the angular range. It is only the light of R11, and most of the light enters the light scattering portion 1002 as in the optical paths L21 and L22.
  • the light having an angle larger than the angle ⁇ that is, the light in the angle range R3 shown in FIG. 5, including the light reflected by the light extraction surface 1, all enters the light scattering wall 123, and the light scattering wall 123 Scatter at Therefore, the light extraction efficiency of light having such an angle can be improved.
  • the refractive index of a translucent substrate is about 1.5.
  • the critical angle at the interface between the translucent substrate and the air layer is 41 degrees.
  • the technique of Patent Document 1 aims to scatter light of 41 degrees or more and further extract light of less than 41 degrees in the scattered light.
  • light having an angle of 60 degrees or more which is an angle at which the light extraction efficiency of the light extraction film 160 on the light extraction side of the translucent substrate 110 is extracted, is scattered and scattered.
  • the purpose is to extract light of less than 60 degrees out of light. That is, in the technique of Patent Document 1, the light extraction efficiency is ⁇ 41/90 ⁇ + ⁇ 1- (41/90) ⁇ ⁇ (41/90) +.
  • the light extraction efficiency is ⁇ 60/90 ⁇ + ⁇ 1 ⁇ (60/90) ⁇ ⁇ (60/90) +.
  • the sum up to the second term in the above formula is 0.7, and in this embodiment, the sum up to the second term in the formula is 0.88. Therefore, the light extraction efficiency is higher in the present embodiment than in the technique of Patent Document 1. Note that the calculation here is only for a part of the light incident on the translucent substrate (the translucent substrate 110). 140) and the reflection electrode (second electrode 150) cause the light extraction efficiency to be smaller than the calculation here.
  • the light-transmitting film 120 having the light scattering wall 123 is disposed on the light extraction side of the light-transmitting substrate 110, planarization is performed between the light-transmitting substrate 110 and the first electrode 130. There is no need for a layer.
  • Patent Document 1 since the technique of Patent Document 1 does not include an extraction structure at the air interface (a structure corresponding to the light extraction film 160 in this embodiment), it is greatly affected by the critical angle at the air interface, and has a small range. Only light at an angle can be emitted without being scattered by the light scattering portion 1002.
  • the light emitting element 100 since the light emitting element 100 includes the light extraction film 160, as much light as possible can be extracted using the light extraction film 160. In other words, more angles of light can be directly extracted without being scattered by the light scattering wall 123.
  • the structure of this embodiment is effective. It is.
  • FIG. 6 is a cross-sectional view of the light scattering film 200 according to the embodiment.
  • the light scattering film 200 includes the above-described translucent film 120 and the light extraction film 160. By sticking such a light scattering film 200 to one surface of the translucent substrate 110, the light emitting element 100 as shown in FIG. 2A can be manufactured.
  • FIG. 7 is a perspective view of the light emitting device 100 according to the embodiment.
  • the planar arrangement (layout) of the light scattering walls 123 is arbitrary, but as an example, a plurality of light scattering walls 123 can be arranged in a lattice pattern as shown in FIG.
  • FIG. 7 shows an example in which four light scattering walls 123 are arranged in a lattice shape, it goes without saying that more light scattering walls 123 may be arranged.
  • the plurality of light scattering walls 123 are arranged in a lattice shape in plan view
  • a plurality of light scattering walls 123 parallel to each other and a plurality of light scattering walls 123 orthogonal to each other are included.
  • the light scattering walls 123 that are orthogonal to each other in plan view may be arranged so as to be shifted in the vertical direction so that they do not intersect directly.
  • FIG. 8 is a cross-sectional view showing a first example of the layer structure of the organic functional layer 140.
  • the organic functional layer 140 according to the first example has a structure in which a hole injection layer 141, a hole transport layer 142, a light emitting layer 143, an electron transport layer 144, and an electron injection layer 145 are stacked in this order. That is, the organic functional layer 140 is an organic electroluminescence light emitting layer. Note that instead of the hole injection layer 141 and the hole transport layer 142, one layer having the functions of these two layers may be provided. Similarly, instead of the electron transport layer 144 and the electron injection layer 145, one layer having the functions of these two layers may be provided.
  • the light emitting layer 143 is, for example, a layer that emits red light, a layer that emits blue light, or a layer that emits green light.
  • a region having a light emitting layer 143 that emits red light, a region having a light emitting layer 143 that emits green light, and a region having a light emitting layer 143 that emits blue light are repeatedly provided. May be.
  • the light emitting element 100 emits light in a single light emission color such as white.
  • the light emitting layer 143 may be configured to emit light in a single light emission color such as white by mixing materials for emitting a plurality of colors.
  • FIG. 9 is a cross-sectional view showing a second example of the layer structure of the organic functional layer 140.
  • the light emitting layer 143 of the organic functional layer 140 has a configuration in which light emitting layers 143a, 143b, and 143c are stacked in this order.
  • the light emitting layers 143a, 143b, and 143c emit light of different colors (for example, red, green, and blue).
  • the light emitting element 100 emits light in a single light emission color such as white.
  • This manufacturing method is a method for manufacturing a light emitting element having a light extraction surface 1 from which light is extracted, and includes the following steps (1) and (2).
  • the plurality of light scattering walls 123 are respectively arranged so as to intersect with the light extraction surface 1, and the plurality of light scattering walls 123 are repeatedly arranged in a direction parallel to the light extraction surface 1.
  • a plurality of light scattering walls 123 are formed.
  • the manufacturing method of the light emitting element which concerns on this embodiment includes the manufacturing method of the light-scattering film which concerns on this embodiment.
  • the method for manufacturing a light scattering film according to the present embodiment includes a step of forming a plurality of light scattering walls 123 in the translucent film 120. In this step, the plurality of light scattering walls 123 are respectively arranged so as to intersect the light extraction side surface 120a of the translucent film 120, and the plurality of light scattering walls 123 with respect to the light extraction side surface 120a. A plurality of light scattering walls 123 are formed so as to be repeatedly arranged in parallel directions.
  • a light-transmitting conductive film made of a metal oxide conductor such as ITO or IZO is formed on the lower surface of the light-transmitting substrate 110 in FIG. 2A by sputtering or the like, and this is patterned by etching.
  • the first electrode 130 is formed.
  • the organic functional layer 140 is formed by applying an organic material to the lower surface of the first electrode 130.
  • a second electrode 150 is formed by depositing a metal material such as Ag, Au, or Al by a vapor deposition method or the like on the lower surface of the organic functional layer 140.
  • a sealing layer may be formed on the lower surface of the second electrode 150 as necessary.
  • a plurality of light scattering walls 123 are formed in the translucent film 120, and the light extraction film 160 is provided on the translucent film 120, whereby the light scattering film 200 is produced.
  • the plurality of light scattering walls 123 are respectively arranged so as to intersect the light extraction side surface 120a of the translucent film 120, and the plurality of light scattering walls 123 are arranged with respect to the light extraction side surface 120a.
  • a plurality of light scattering walls 123 are formed so as to be repeatedly arranged in parallel directions. A specific example of a method for forming the light scattering wall 123 on the light transmissive film 120 will be described later in Examples.
  • the light scattering film 200 is attached to the upper surface of the translucent substrate 110.
  • the light emitting device 100 having the structure shown in FIG. 2A is obtained.
  • the light scattering film 200 includes the translucent film 120 and the plurality of light scattering walls 123 arranged in the translucent film 120.
  • the plurality of light scattering walls 123 are respectively arranged so as to intersect the light extraction side surface 120a of the translucent film 120 and are repeatedly arranged in a direction parallel to the light extraction side surface 120a. Yes. Therefore, even light having an angle that cannot be extracted in the absence of the light scattering wall 123 can be scattered by the light scattering wall 123 and a part of the light can be extracted. Therefore, by providing the light scattering film 200 in the light emitting element 100, the light extraction efficiency of the light emitting element 100 can be improved.
  • the interval between the adjacent light scattering walls 123 is m
  • the length of the light scattering walls 123 in the light extraction direction is d
  • the light transmissive film 120 is adjacent to the light extraction side.
  • the light scattering film 200 further includes a light extraction film 160 disposed on the light extraction side of the translucent film 120, and the light extraction film 160 has an uneven structure on the light extraction side. Therefore, more angles of light can be extracted without being scattered by the light scattering wall 123.
  • the interval between the adjacent light scattering walls 123 is m
  • the length of the light scattering wall 123 in the light extraction direction is d
  • the light transmission effect when the light extraction effect by the light extraction film 160 is attenuated is attenuated.
  • the angle with respect to the normal line N of the light extraction side surface 120a of the light-sensitive film 120 is ⁇
  • m ⁇ 2d ⁇ tan ⁇ is satisfied. Accordingly, light having an angle that is difficult to be effectively extracted to the outside effectively by the action of the light extraction film 160 can be incident on the light scattering wall 123 and scattered by the light scattering wall 123.
  • part of the scattered light for example, light in the angle range R1 shown in FIG.
  • the light extraction surface 1 of the light extraction film 160 can be emitted from the light extraction surface 1 of the light extraction film 160 to the outside. Further, other part of the scattered light (for example, light in the angle range R2 shown in FIG. 4) is directed toward the second electrode 150 and reflected by the second electrode 150, and then the light. The light can be emitted from the light extraction surface 1 of the extraction film 160 to the outside. Therefore, the light extraction efficiency is improved.
  • the light emitting device 100 includes the light scattering film 200 and the light emitting layer. Therefore, the same effect as that obtained by the light scattering film 200 can be obtained.
  • the light emitting element 100 has a light extraction surface 1 from which light is extracted.
  • the light emitting element 100 includes a translucent substrate 110, a translucent film 120 disposed so as to overlap the translucent substrate 110, a plurality of light scattering walls 123 disposed in the translucent film 120, Is provided.
  • the plurality of light scattering walls 123 are arranged so as to intersect the light extraction surface 1 and are repeatedly arranged in a direction parallel to the light extraction surface 1. Therefore, even light having an angle that cannot be extracted in the absence of the light scattering wall 123 can be scattered by the light scattering wall 123 and a part of the light can be extracted. Therefore, the light extraction efficiency of the light emitting element 100 can be improved.
  • the method for manufacturing a light scattering film according to the present embodiment includes a step of forming a plurality of light scattering walls 123 in the translucent film 120.
  • the plurality of light scattering walls 123 are respectively arranged so as to intersect the light extraction side surface 120a of the translucent film 120, and the plurality of light scattering walls 123 with respect to the light extraction side surface 120a.
  • a plurality of light scattering walls 123 are formed so as to be repeatedly arranged in parallel directions. Therefore, the light extraction efficiency of the light emitting device 100 can be improved by providing the light scattering film 200 manufactured by this manufacturing method in the light emitting device 100.
  • the method for manufacturing a light emitting device is a method for manufacturing the light emitting device 100 having the light extraction surface 1 from which light is extracted, and the light transmissive film 120 is stacked on the light transmissive substrate 110. And a step of forming a plurality of light scattering walls 123 in the translucent film 120.
  • the plurality of light scattering walls 123 are respectively arranged so as to intersect the light extraction surface 1, and the plurality of light scattering walls 123 are parallel to the light extraction surface 1.
  • a plurality of light scattering walls 123 are formed so as to be repeatedly arranged in various directions. Therefore, the light extraction efficiency of the light emitting element 100 can be improved.
  • Example 1 is a cross-sectional view of the light emitting device 100 according to Example 1
  • FIG. 10B is a cross-sectional view of the light scattering film 200 according to Example 1.
  • the light emitting device 100 according to the present example is different from the light emitting device 100 according to the above embodiment in that the light extraction film 160 is not provided, and the others are the same as the light emitting device 100 according to the above embodiment. It is configured.
  • the light scattering film 200 according to the present example is different from the light scattering film 200 according to the above-described embodiment in that the light-scattering film 160 does not include the light extraction film 160. It is comprised similarly to the scattering film 200.
  • the surface 120a constitutes a light extraction surface.
  • FIG. 11 is a cross-sectional view of the light emitting device 100 according to the second embodiment.
  • the light emitting device 100 according to this example is different from the light emitting device 100 according to the above embodiment in the points described below, and is otherwise configured in the same manner as the light emitting device 100 according to the above embodiment. Yes.
  • the translucent substrate 110 is disposed between the light extraction film 160 and the translucent film 120, and the translucent substrate 110 is disposed between the translucent film 120 and the first electrode 130. Is not placed.
  • the thickness of the translucent film 120 can be set to about 10 ⁇ m, for example.
  • the interval m may satisfy the above formula (3), or the above formula (3) may not be satisfied and the above formulas (1) and (2) may be satisfied. good.
  • FIG. 12 is a cross-sectional view of the light emitting device 100 according to the third embodiment.
  • the light emitting device 100 according to this example is different from the light emitting device 100 according to the above embodiment in the points described below, and is otherwise configured in the same manner as the light emitting device 100 according to the above embodiment. Yes.
  • a second light transmissive film 190 is provided between the light transmissive substrate 110 and the first electrode 130.
  • the second translucent film 190 is made of, for example, a high refractive index material (for example, a refractive index of about 1.7).
  • the concavo-convex structure 230 includes, for example, pyramid-shaped concavo-convex portions arranged in a matrix in a plan view.
  • the concavo-convex structure 230 may be a microlens structure in which hemispherical concavo-convex portions are arranged in a matrix or the like in plan view.
  • the occurrence of total reflection between the first electrode 130 and the light-transmitting substrate 110 is suppressed, and the first electrode 130 is transferred to the light-transmitting substrate 110. Light can enter smoothly.
  • the refractive index of the translucent film 120 may be equal to or higher than the refractive index of the translucent substrate 110 or may be less than the refractive index of the translucent substrate 110.
  • the concavo-convex structure similar to the concavo-convex structure 230 is not necessary at the interface between the translucent film 120 and the translucent substrate 110. is there.
  • it is preferable that a concavo-convex structure similar to the concavo-convex structure 230 is provided at the interface between the translucent film 120 and the translucent substrate 110.
  • an uneven structure similar to the uneven structure 230 is also formed at the interface between the translucent film 120 and the translucent substrate 110. It is preferable to be provided.
  • the refractive index of the first electrode 130 is, for example, about 2.0
  • an uneven structure similar to the uneven structure 230 is also formed at the interface between the first electrode 130 and the second translucent film 190. Some are preferred. By providing such a concavo-convex structure, light can be incident more smoothly from the first electrode 130 to the second translucent film 190. For example, about 80% of the light generated in the light emitting layer can be incident on the second light transmissive film 190.
  • the light emitting device 100 since the light emitting device 100 includes the second light transmissive film 190, the light extraction efficiency is further improved.
  • FIG. 13 is a cross-sectional view of the light emitting device 100 according to Example 4.
  • the light emitting device 100 according to this example is different from the light emitting device 100 according to the above embodiment in the points described below, and is otherwise configured in the same manner as the light emitting device 100 according to the above embodiment. Yes.
  • the light scattering film 200 has a sandwich structure in which the translucent film 120 is sandwiched between the first film 310 and the second film 320.
  • the 1st film 310 is corresponded to said light extraction film 160, for example, and the upper surface of the 1st film 310 is formed in uneven
  • the light emitting element 100 does not have the translucent substrate 110, and the first electrode 130 is formed on the lower surface of the light scattering film 200.
  • the light-transmitting substrate 110 is provided, and the light scattering film 200 may be attached to the light-transmitting substrate 110.
  • a heat resistant film is used as the second film 320 close to the light emitting layer.
  • a heat resistant film is hard and inferior in workability. Therefore, as the translucent film 120 on which the light scattering wall 123 is formed, a soft film having high workability is used, and the translucent film 120 is made of a heat resistant film so that the translucent film 120 does not lose its shape when heated.
  • the translucent film 120 is preferably sandwiched between the first film 310 and the second film 320.
  • the 1st film 310 and the 2nd film 320 may be comprised with the mutually same material, and may be comprised with the mutually different material.
  • a material having lower heat resistance than the first film 310 may be used as the material of the second film 320 positioned on the first electrode 130 side.
  • Example 5 14A to 14D are cross-sectional views showing a series of steps of the method for manufacturing the light emitting device according to Example 5.
  • FIG. In the present embodiment, an example of a process of forming the light scattering wall 123 on the translucent film 120 will be described.
  • the translucent film 120 is prepared.
  • the translucent film 120 is based on, for example, an organic material such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate), and by mixing a nanocomposite or nanoparticle material using TiBO 2 or the like with the organic material,
  • the refractive index is increased.
  • the refractive index of the translucent film 120 can be about 1.8, for example.
  • membrane 120 can be about 10 micrometers or more and 100 micrometers or less, for example.
  • the translucent film 120 is heated in advance so that imprinting can be easily performed.
  • the mold 410 includes, for example, a flat plate-like main body portion 411 and a plurality of flat plate-like standing pieces 412 that stand vertically from one surface of the main body portion 411.
  • the standing piece 412 bites into the translucent film 120, so that a groove 121 is formed on one surface of the translucent film 120.
  • the depth of the groove 121 may be shallower than the thickness of the translucent film 120 or may be the same as the thickness of the translucent film 120.
  • the translucent film 120 is cooled.
  • the standing piece 412 of the mold 410 is pulled out from the translucent film 120.
  • light scattering particles constituting the light scattering wall 123 are embedded in the groove 121.
  • a resin containing light scattering particles is embedded in the groove 121.
  • the light scattering wall 123 can be formed in the translucent film 120.
  • the thickness of the light scattering wall 123 is preferably equal to or longer than the emission wavelength from the light emitting layer, and can be, for example, about 1 ⁇ m.
  • the light scattering wall 123 can be easily formed in the translucent film 120 by the method of this embodiment.
  • Example 6 15A to 15E are cross-sectional views showing a series of steps in the method for manufacturing a light-emitting device according to Example 6. Also in this embodiment, an example of a process of forming the light scattering wall 123 on the translucent film 120 will be described.
  • a mask 420 made of a resist is formed on one surface of the translucent film 120 by a coating method or the like.
  • the mask 420 is patterned so that an opening 421 is formed at a position corresponding to the location of the light scattering wall 123 in the mask 420.
  • the groove 121 is formed in the translucent film 120 by performing dry etching or the like on the translucent film 120 through the mask 420.
  • the mask 420 is removed.
  • a resin containing light scattering particles is embedded in the groove 121.
  • the light scattering wall 123 can be formed in the translucent film 120.
  • Example 7 16A to 16F are cross-sectional views illustrating a series of steps in the method for manufacturing the light emitting device according to Example 7. Also in this embodiment, an example of a process of forming the light scattering wall 123 on the translucent film 120 will be described.
  • an inorganic film 430 is formed on one surface of the translucent film 120.
  • a mask 440 made of a resist is formed on the inorganic film 430 by a coating method or the like.
  • the mask 440 is patterned so that an opening 441 is formed at a position corresponding to the location where the light scattering wall 123 is formed in the mask 440.
  • an opening 431 is formed in the inorganic film 430 by etching (dry etching or wet etching) the inorganic film 430 through a mask 440.
  • the light transmissive film 120 is etched through the mask 440 and the inorganic film 430 to form grooves 121 in the light transmissive film 120.
  • the inorganic film 430 is left on the translucent film 120 as a barrier film, for example.
  • Example 8 17A and 17B are cross-sectional views illustrating a series of steps in the method for manufacturing the light-emitting element according to Example 8. Also in this embodiment, an example of a process of forming the light scattering wall 123 on the translucent film 120 will be described.
  • the light-transmitting film 120 is irradiated with a light beam 450 such as a laser beam from one surface side of the light-transmitting film 120.
  • a light beam 450 such as a laser beam from one surface side of the light-transmitting film 120.
  • a groove 121 is formed in the groove.
  • a resin containing light scattering particles is embedded in the groove 121.
  • the light scattering wall 123 can be formed in the translucent film 120.
  • Example 9 18A and 18B are cross-sectional views illustrating a series of steps in the method for manufacturing the light-emitting device according to Example 9. Also in this embodiment, an example of a process of forming the light scattering wall 123 on the translucent film 120 will be described.
  • a first translucent film 125 similar to the translucent film 120 of Example 5 is prepared.
  • a light scattering wall 123 is ejected onto one surface of the first light transmissive film 125 by discharging a resin containing light scattering particles from the inkjet head 460. Form.
  • a second light transmissive film 126 is formed on the first light transmissive film 125 by coating so as to cover the light scattering wall 123.
  • the light scattering wall 123 can be embedded in the second light transmissive film 126. That is, the light scattering wall 123 can be embedded in the translucent film 120 including the first translucent film 125 and the second translucent film 126.
  • FIG. 19A is a plan view of the light emitting device 100 according to Example 10, and FIG. 19B is a cross-sectional view taken along the line BB of FIG. 19A.
  • FIG. 19B and FIG. 2A the top and bottom are inverted.
  • a light scattering film 200 is provided on one surface of the translucent substrate 110.
  • a first electrode 130 is formed on the other surface of the translucent substrate 110.
  • the first electrode 130 constitutes an anode.
  • the plurality of first electrodes 130 each extend in the Y direction in a strip shape. Adjacent first electrodes 130 are spaced apart from each other at a constant interval in the X direction orthogonal to the Y direction.
  • Each of the first electrodes 130 is made of a metal oxide conductor such as ITO or IZO, for example.
  • the refractive index of the first electrode 130 is approximately the same as that of the translucent film 120 (for example, the refractive index is approximately 1.8).
  • a bus line (bus electrode) 170 for supplying a power supply voltage to the first electrode 130 is formed on each surface of the first electrode 130.
  • An insulating film is formed on the translucent substrate 110 and the first electrode 130. In this insulating film, a plurality of stripe-shaped openings each extending in the Y direction are formed. Thereby, a plurality of partition walls 180 made of an insulating film are formed. Each of the openings formed in the insulating film reaches the first electrode 130, and the surface of each first electrode 130 is exposed at the bottom of the opening.
  • An organic functional layer 140 is formed on the first electrode 130 in each opening of the insulating film.
  • the organic functional layer 140 is configured by stacking a hole injection layer 141, a hole transport layer 142, a light emitting layer 143 (light emitting layers 143R, 143G, 143B), and an electron transport layer 144 in this order.
  • Materials for the hole injection layer 141 and the hole transport layer 142 include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by fluorene groups, hydrazones.
  • the light emitting layers 143R, 143G, and 143B are made of a fluorescent organometallic compound that emits red light, green light, and blue light, respectively.
  • the light emitting layers 143R, 143G, and 143B are arranged side by side in a state of being separated from each other by the partition wall portion 180.
  • the organic functional layer 140 is partitioned into a plurality of regions by the partition wall portion 180.
  • An electron transport layer 144 is formed so as to cover the surfaces of the light emitting layers 143R, 143G, and 143B and the partition wall portion 180.
  • a second electrode 150 is formed so as to cover the surface of the electron transport layer 144.
  • the second electrode 150 constitutes a cathode.
  • the second electrode 150 is formed in a band shape.
  • the second electrode 150 is made of a metal or alloy such as Ag, Au, or Al having a low work function and high reflectivity.
  • the refractive index of the organic functional layer 140 is approximately the same as that of the first electrode 130 and the translucent film 120 (for example, a refractive index of approximately 1.8).
  • the light emitting layers 143R, 143G, and 143B that emit red, green, and blue light are repeatedly arranged in stripes, and the red, green, and green light is emitted from the surface of the translucent substrate 110 that serves as a light extraction surface.
  • Blue light is mixed at an arbitrary ratio to emit light that is recognized as a single emission color (for example, white).
  • FIG. 20 is a plan view of the light emitting device according to Example 11.
  • FIG. 20 only the light scattering wall 123 and the partition wall portion 180 are shown for easy viewing of the drawing.
  • the light-emitting element according to this example is different from the light-emitting element 100 according to the above-described embodiment in the points described below, and other configurations are configured in the same manner as the light-emitting element 100 according to the above-described embodiment. .
  • the light-scattering film according to the present example is different from the light-scattering film 200 according to the above-described embodiment in the points described below, and other configurations are the same as the light-scattering film 200 according to the above-described embodiment. It is constituted similarly.
  • a plurality of light scattering walls 123 are arranged in a square (for example, rectangular) lattice shape in a plan view.
  • the arrangement of the plurality of light scattering walls 123 in plan view is not limited to a square lattice shape.
  • a plurality of hexagons may be arranged in a lattice shape (honeycomb shape) configured by arranging them without gaps.
  • they may be arranged in a triangular or other polygonal lattice shape.
  • a plurality of types of polygonal lattice arrangements such as a quadrangle, a triangle, and a hexagon may be mixed.
  • yen may be sufficient and these may be mixed.
  • the probability that light in various directions in a plan view enters one of the light scattering walls 123 is increased.
  • the light extraction efficiency can be increased as compared with the above embodiment.
  • FIG. 21A and FIG. 21B are cross-sectional views of the light emitting device 100 according to Example 12.
  • FIG. The light emitting device 100 according to this example is different from the light emitting device 100 according to the above-described embodiment in the points described below, and other configurations are configured similarly to the light-emitting device 100 according to the above-described embodiment. Yes.
  • the light scattering film 200 according to the present example is different from the light scattering film 200 according to the above-described embodiment in the points described below, and the other configurations are the light-scattering film 200 according to the above-described embodiment. It is configured in the same way.
  • the light scattering wall 123 is thicker toward the light extraction side (upper side in FIG. 21A).
  • the light scattering wall 123 can be easily thickened toward the light extraction side (upper side in FIG. 21A). It can be made into the taper shape (wedge shape etc.) which becomes.
  • More light is applied to the light scattering wall 123 when the light scattering wall 123 is thicker toward the light extraction side than when the light scattering wall 123 is thin toward the light extraction side. It can be incident and scattered.
  • the light scattering wall 123 is disposed on the upper part of the translucent film 120 (the region excluding the lower end part), so that the translucent film 120 is formed as shown in FIG. Even when it is disposed between the translucent substrate 110 and the first electrode 130, there is an advantage that a planarizing layer is unnecessary between the translucent film 120 and the first electrode 130.
  • the interval m is, for example, the facing interval between the thickest portions (upper end portions) of the adjacent light scattering walls 123 as shown in FIG.
  • the side surface of the light-scattering wall 123 is not necessarily formed flat.
  • the shape of the extremely shallow portion (upper end portion) in the direction (vertical direction) is dull, and that the thickness of the light scattering wall 123 increases as the portion is closer to the upper end (for example, increases in a quadratic function).
  • the thickness of the light scattering wall 123 increases as the portion is closer to the upper end (for example, increases in a quadratic function).
  • an extremely shallow portion in the depth direction of the light scattering wall 123 has a small effect of scattering light.
  • the surfaces S51 and S52 (or lines) that are in contact with the flat portions (or the portions that are closest to flatness) on the side surface of the light scattering wall 123, the translucent film 120, and the light
  • the interval between the portions where the interface with the take-out film 160 intersects can be set as the interval m.
  • the light scattering wall 123 is thicker toward the light extraction side, more light can enter the light scattering wall 123 and be scattered.
  • the light extraction film 160 and the translucent film 120 may be constituted by one film made of the same material.
  • the surface of the film constituting the light extraction film 160 and the translucent film 120 is subjected to pressing or the like to form an uneven structure on the surface of the film, and the film has a function as a light extraction structure. Can be added.
  • the lower surface of the barrier film is preferably formed to be flatter than the lower surface of the translucent film 120.
  • the barrier film is formed of, for example, a SiO 2 thin film or graphene. The barrier film has a function of suppressing the influence on the organic material.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 光散乱フィルム(200)は、透光性膜(120)と、透光性膜(120)内に配置された複数の光散乱壁(123)と、を備える。複数の光散乱壁(123)は、それぞれ透光性膜(120)の光取り出し側の面(120a)に対して交差して配置されている。複数の光散乱壁(123)は、光取り出し側の面(120a)に対して平行な方向において繰り返し配置されている。発光素子(100)は、光が取り出される光取り出し面(1)を有する。発光素子(100)は、透光性基板(110)と、透光性基板(110)に対して重ねて配置された透光性膜(120)と、透光性膜(120)内に配置された複数の光散乱壁(123)と、を備える。複数の光散乱壁(123)は、それぞれ光取り出し面(1)に対して交差して配置されている。複数の光散乱壁(123)は、光取り出し面(1)に対して平行な方向において繰り返し配置されている。

Description

光散乱フィルム、発光素子、光散乱フィルムの製造方法および発光素子の製造方法
 本発明は、光散乱フィルム、発光素子、光散乱フィルムの製造方法および発光素子の製造方法に関する。
 図1は特許文献1の技術を説明するための断面図である。図1に示すように、特許文献1の技術では、有機EL素子の光取り出し効率を向上するために、透光性基板1001内に、光を散乱する光散乱性部1002が複数設けられている。同文献の技術では、透光性基板1001の厚み方向における光散乱性部1002の長さLと、隣り合う光散乱性部1002どうしの間隔Wとが、W/L≦tan(arcsin(n1/n2))を満たす。ここで、n1は空気の屈折率であり、n2は透光性基板1001の屈折率である。透光性基板1001において光散乱性部1002が設けられた側の面上には、陽極1004、有機層1005および陰極1006がこの順に積層されている。
 特許文献2には、発光素子で構成された複数の画素を有する表示装置が記載されている。この表示装置の発光素子は、シート状に形成され、厚み方向に屈折率が分布した構造となっている。同文献には、発光素子をこのような構成とすることにより、光取り出し効率が向上する旨の記載がある。
特開2005-50708号公報 特開2003-234178号公報
 本発明が解決しようとする課題としては、特許文献1、2等の技術とは異なる構造により発光素子の光取り出し効率を向上することが一例として挙げられる。
 請求項1に記載の発明は、透光性膜と、
 前記透光性膜内に配置された複数の光散乱壁と、
 を備え、
 前記複数の光散乱壁は、それぞれ前記透光性膜の光取り出し側の面に対して交差して配置され、且つ、前記光取り出し側の面に対して平行な方向において繰り返し配置されている光散乱フィルムである。
 請求項7に記載の発明は、
 請求項1~6の何れか一項に記載の光散乱フィルムと、
 発光層と、
 を備える発光素子である。
 請求項8に記載の発明は、
 光が取り出される光取り出し面を有する発光素子であって、
 透光性基板と、
 前記透光性基板に対して重ねて配置された透光性膜と、
 前記透光性膜内に配置された複数の光散乱壁と、
 を備え、
 前記複数の光散乱壁は、それぞれ前記光取り出し面に対して交差して配置され、且つ、前記光取り出し面に対して平行な方向において繰り返し配置されている発光素子である。
 請求項9に記載の発明は、
 透光性膜内に複数の光散乱壁を形成する工程を備え、
 前記光散乱壁を形成する工程では、前記複数の光散乱壁がそれぞれ前記透光性膜の光取り出し側の面に対して交差して配置され、且つ、前記複数の光散乱壁が前記光取り出し側の面に対して平行な方向において繰り返し配置されるように、前記複数の光散乱壁を形成する光散乱フィルムの製造方法である。
 請求項10に記載の発明は、
 光が取り出される光取り出し面を有する発光素子を製造する方法であって、
 透光性膜を透光性基板に対して重ねて配置する工程と、
 前記透光性膜内に複数の光散乱壁を形成する工程と、
 を備え、
 前記光散乱壁を形成する工程では、前記複数の光散乱壁がそれぞれ前記光取り出し面に対して交差して配置され、且つ、前記複数の光散乱壁が前記光取り出し面に対して平行な方向において繰り返し配置されるように、前記複数の光散乱壁を形成する発光素子の製造方法である。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
特許文献1の技術を説明するための断面図である。 図2(a)は実施形態に係る発光素子の断面図であり、図2(b)は実施形態に係る発光素子の平面図である。 比較形態1に係る発光素子の光出力特性と比較形態2に係る発光素子の光出力特性とを示す図である。 実施形態に係る発光素子の動作を説明するための図である。 実施形態に係る発光素子の動作を説明するための断面図である。 実施形態に係る光散乱フィルムの断面図である。 実施形態に係る発光素子の斜視図である。 有機機能層の層構造の第1例を示す断面図である。 有機機能層の層構造の第2例を示す断面図である。 図10(a)は実施例1に係る発光素子の断面図、図10(b)は実施例1に係る光散乱フィルムの断面図である。 実施例2に係る発光素子の断面図である。 実施例3に係る発光素子の断面図である。 実施例4に係る発光素子の断面図である。 図14(a)~(d)は実施例5に係る発光素子の製造方法の一連の工程を示す断面図である。 図15(a)~(e)は実施例6に係る発光素子の製造方法の一連の工程を示す断面図である。 図16(a)~(f)は実施例7に係る発光素子の製造方法の一連の工程を示す断面図である。 図17(a)、(b)は実施例8に係る発光素子の製造方法の一連の工程を示す断面図である。 図18(a)、(b)は実施例9に係る発光素子の製造方法の一連の工程を示す断面図である。 図19(a)は実施例10に係る発光素子の平面図、図19(b)は図19(a)のB-B線に沿った断面図である。 実施例11に係る発光素子の平面図である。 図21(a)および図21(b)は実施例12に係る発光素子の断面図である。
 以下、実施の形態について、図面を用いて説明する。尚、すべての図面において、同様の構成要素には同一の符号を付し、適宜説明を省略する。
 図2(a)は実施形態に係る発光素子100の断面図である。発光素子100は、有機EL素子を含んで構成されている。発光素子100は、例えばディスプレイ、照明装置、又は光通信装置の光源として用いることができる。発光素子100は、本実施形態に係る光散乱フィルム200を含んで構成されている。
 本実施形態に係る光散乱フィルム200は、透光性膜120と、透光性膜120内に配置された複数の光散乱壁123と、を備える。複数の光散乱壁123は、それぞれ透光性膜120の光取り出し側の面(面120a)に対して交差して配置されている。複数の光散乱壁123は、光取り出し側の面(面120a)に対して平行な方向において繰り返し配置されている。ここで、光取り出し側とは、後述する光取り出し面1側を意味する。
 本実施形態に係る発光素子100は、上記の光散乱フィルム200と、発光層と、を備えて構成されている。
 また、本実施形態に係る発光素子100は、光が取り出される光取り出し面1を有する。発光素子100は、透光性基板110と、透光性基板110に対して重ねて配置された透光性膜120と、透光性膜120内に配置された複数の光散乱壁123と、を備える。複数の光散乱壁123は、それぞれ光取り出し面1に対して交差して配置されている。複数の光散乱壁123は、光取り出し面1に対して平行な方向において繰り返し配置されている。
 以下においては、説明を簡単にするため、発光素子100の各構成要素の位置関係(上下関係等)が各図に示す関係であるものとして説明を行う。ただし、この説明における位置関係は、発光素子100の使用時や製造時の位置関係とは無関係である。
 図2(a)に示すように、発光素子100は、透光性基板110と、透光性膜120と、光取り出しフィルム160と、第1電極130と、有機機能層140と、第2電極150と、を備えている。
 透光性基板110は、ガラスや樹脂などの透光性を有する材料からなる板状部材である。
 透光性膜120は、透光性基板110の一方の面側(図2(a)の上面側)に配置され、透光性基板110に対して直接的又は間接的に重ねて配置されている。本実施形態の場合、透光性膜120は、例えば、透光性基板110の上面に直接設けられている。
 透光性膜120は、例えば、透光性の誘電体などにより構成されている。透光性膜120の材料は、例えば、有機機能層140の材料と同じとすることができる。透光性膜120の屈折率は、例えば、透光性基板110の屈折率よりも大きい。
 光取り出しフィルム160は、透光性膜120の一方の面側(図2(a)の上面側)に配置されている。本実施形態の場合、光取り出しフィルム160は、例えば、透光性膜120の上面に直接設けられている。本実施形態の場合、光取り出しフィルム160の上面が、光取り出し面1となっている。光取り出し面1は、光放出空間を充たす空気(屈折率1)と接している。光取り出しフィルム160の光取り出し効率を向上するために、光取り出し面1は、例えば、凹凸形状に形成されている。この凹凸部分があるために、発光面から同じ角度で空気界面に到達した光でも、凹凸部分により変更される光路の角度が場所により異なる。つまり、凹凸の形状により、発光面から同じ角度で空気界面に到達した光のうち、空気層に取り出される光の割合が異なり、その結果、取り出し効率が異なる。
 すなわち、透光性膜120の屈折率と、透光性膜120の光取り出し側の層の屈折率との関係により、透光性膜120の光取り出し側の層における光取り出し効率を阻害する原因が2つ混在する。ここで、透光性膜120の屈折率をn2、透光性膜120の光取り出し側に隣接する層の屈折率をn1とする。
 本実施形態の場合、光取り出し側に隣接する層は、光取り出しフィルム160である。
 透光性膜120の屈折率n2と光取り出しフィルム160の屈折率n1の関係が、n2≦n1の場合、光取り出しフィルム160と光放出空間との界面の凹凸の形状による光取り出し効率の角度依存性が課題となる。
 また、n2>n1の場合、透光性膜120と光取り出しフィルム160界面における全反射による影響も考慮する必要がある。この場合、全反射だけ考えればよいわけではない。なぜなら、臨界角を越えない角度の光で、且つ、臨界角近傍の角度の光は、光取り出しフィルム160に入るが、屈折により空気界面へ向かう角度が浅くなるためである。 
 このように、本実施形態に係る光散乱フィルム200および本実施形態に係る発光素子100は、透光性膜120の光取り出し側に配置された光取り出し構造(光取り出しフィルム160)を更に備え、この光取り出し構造は、光取り出し側に凹凸構造を有する。
 透光性膜120の内部には、複数の光散乱壁123が配置されている。これら光散乱壁123は、それぞれ光取り出し面1に対して交差して配置されている。つまり、光散乱壁123の中心面(厚み方向における中心点の集合からなる面)が、光取り出し面1に対して交差している。ここで、上記のように、光取り出し面1は、凹凸形状などの形状となっている。そこで、光取り出し面1に対して交差するとは、光取り出し面1が存在する平面に対して交差すること、或いは、光取り出しフィルム160における光取り出し面1とは反対側の面(図2(a)の下面)に対して交差すること、であるものとする。また、本明細書において、光取り出し面1に対して交差するとは、透光性膜120における光取り出し側の面120aに対して交差すること、更には、透光性基板110に対して交差することとも同義である。より具体的には、例えば、光散乱壁123は、その中心面(厚み方向における中心点の集合からなる面)が、光取り出し面1に対して直交するように配置されている。
 これら光散乱壁123は、光取り出し面1に対して平行な方向(図2(a)の左右方向)において周期的に(例えば一定間隔で)配置されている。
 光散乱壁123は、透光性膜120の上端から下端に亘って配置されていても良いし、透光性膜120の上部(下端部を除く領域)に配置されていても良いし、透光性膜120の下部(上端部を除く領域)に配置されていても良い。
 光散乱壁123は、透光性膜120内に入射した光のうち、当該光散乱壁123に入射した光を散乱させる機能を有する。光散乱壁123は、例えば、光散乱性の粒子を含有する樹脂を透光性膜120内に壁状の形状に充填することにより構成されている。光散乱壁123を構成する光散乱性の粒子は、例えば、シリカ、中空ナノ酸化チタン粒子、又は透光性膜120とは屈折率が異なる透明ビーズなどである。
 第1電極130、有機機能層140および第2電極150は、透光性基板110の他方の面側(図2(a)の下面側)に配置されている。有機機能層140は、第1電極130と第2電極150との間に配置されている。例えば、透光性基板110に近い側から順に、第1電極130、有機機能層140および第2電極150が配置されている。
 第1電極130は、例えばITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの金属酸化物導電体からなる透明電極とすることができる。ただし、第1電極130は、光が透過する程度に薄い金属薄膜であっても良い。
 第2電極150は、例えば、Ag、Au、Alなどの金属膜からなる反射電極である。第2電極150は、有機機能層140から第2電極150側に向かう光を、光取り出し面1側に向けて反射する。つまり、第2電極150は光反射層を兼ねる。
 ただし、第2電極150よりも下層に光反射層(図示略)を設けるとともに、第2電極150をITOやIZOなどの金属酸化物導電体からなる透明電極により形成するか、又は、第2電極150を光が透過する程度に薄い金属薄膜により形成しても良い。
 有機機能層140は、少なくとも発光層を含んで構成されている。
 例えば、第1電極130が陽極を構成し、第2電極150が陰極を構成する。第1電極130と第2電極150との間に電圧が印加されることにより、有機機能層140の発光層が発光する。透光性基板110、透光性膜120、第1電極130、有機機能層140および光取り出しフィルム160は、いずれも、有機機能層140の発光層が発光した光の少なくとも一部を透過する。発光層が発光した光の一部は、光取り出しフィルム160の光取り出し面1から、発光素子100の外部(つまり上記光放出空間)に放射される(取り出される)。
 例えば、光取り出しフィルム160の下面と透光性膜120の上面とが相互に接している。また、透光性膜120の下面と透光性基板110の上面とが相互に接している。また、透光性基板110の下面と第1電極130の上面とが相互に接している。また、第1電極130の下面と有機機能層140の上面とが相互に接している。また、有機機能層140の下面と第2電極150の上面とが相互に接している。ただし、光取り出しフィルム160と透光性膜120との間には他の層が存在していても良い。同様に、透光性膜120と透光性基板110との間には他の層が存在していても良い。同様に、透光性基板110と第1電極130との間には他の層が存在していても良い。同様に、第1電極130と有機機能層140との間には他の層が存在していても良い。同様に、有機機能層140と第2電極150との間には他の層が存在していても良い。
 ここで、光散乱壁123の配置間隔について説明する。
 一例として、透光性膜120と、透光性膜120の光取り出し側に隣接する層(例えば光取り出しフィルム160)と、の屈折率差で決まる臨界角に基づいて、光散乱壁123の配置間隔を規定することができる。
 図2(a)に示すように、複数の光散乱壁123のうち隣り合う光散乱壁123の間隔をmとする。また、光散乱壁123の光取り出し方向における長さをdとする。ここで、光取り出し方向とは、光取り出し面1に対して直交する方向、又は透光性膜120における光取り出し側の面120aに対して直交する方向である。また、透光性膜120に対して光取り出し側に隣接する層の屈折率をn1、透光性膜120の屈折率をn2とする(n1<n2)。本実施形態の場合、n2は光取り出しフィルム160の屈折率である。間隔mは、以下の数式(1)を満たすように設定することができる。
 m≦2d×tan(arcsin(n1/n2))・・・・・・(1)
 これにより、透光性膜120と光取り出しフィルム160との界面にて透光性膜120側に反射する光を光散乱壁123に入射させて、該光散乱壁123により散乱させることができる。その結果、散乱後の光のうちの一部の光については、第2電極150から反射して光取り出しフィルム160側に向かったときに、透光性膜120から光取り出しフィルム160内に入射するようにできる。そして、このように光取り出しフィルム160に入射した光の一部は、光取り出しフィルム160から光放出空間に取り出すことができる。よって、透光性膜120と光取り出しフィルム160との界面にて透光性膜120側に反射する光の一部を発光素子100の外部に取り出すことができる。よって、光取り出し効率が向上する。
 上記数式(1)は、間隔mの上限値を規定するためのものであるが、間隔mの下限値は、例えば、以下のように規定することができる。
 図2(b)は実施形態に係る発光素子の平面図であり、互いに隣り合う2つの散乱壁123を示している。上記数式(1)は、図2(b)に示す光路L31のように、互いに隣り合う2つの光散乱壁123間を平面視において最短距離で光が進む場合を想定したものである。
 一方、図2(b)に示す光路L32のように、平面視において、光散乱壁123に対して45°の角度で光が進む場合の、隣り合う光散乱壁123間の経路として、上記数式(1)中の2d×tan(arcsin(n1/n2))を当てはめることにより、間隔mの下限値を規定することができる。すなわち、間隔mは、以下の数式(2)を満たすように設定することができる。
{(√2)/2}×2d×tan(arcsin(n1/n2))≦m・・・・・・(2)
 このような下限値よりも、間隔mを短くすると、光散乱壁123による散乱を経ずに直接外部に取り出せる光の割合が低下し、光取り出し効率が低下する。つまり、このような下限値を設定することにより、光取り出し効率の低下を抑制できる。
 ここで、間隔mは、例えば、図2(a)に示すように、隣り合う光散乱壁123の互いに対向する面どうしの間隔である。すなわち、例えば、隣り合う光散乱壁123の対向間隔が間隔mである。
 或いは、光散乱壁123の配置間隔は、以下のように、光取り出しフィルム(光取り出し構造)160の効果が減衰するような光の角度に基づいて規定することもできる。
 複数の光散乱壁123のうち隣り合う光散乱壁123の間隔をmとする。また、光散乱壁123の光取り出し方向における長さをdとする。そして、光取り出しフィルム(光取り出し構造)160による光取り出し効果が減衰する時の透光性膜120の光取り出し側の面120aの法線Nに対する角度をαとする。間隔mは、以下の数式(3)を満たす。
 m≦2d×tanα・・・・・・(3)
 光取り出しフィルム160の屈折率をn1、透光性膜120の屈折率n2とすると、n1≧n2の場合は透光性膜120からの光は界面で全反射することなく光取り出しフィルム160に入り、空気界面での凹凸の形状により、取り出し効率の減衰する角度が存在する。空気への光で取り出し効率が減衰する時の透光性膜120の光取り出し側の面120aの法線に対する角度αと透光性膜120内の散乱壁123の間隔mの式(3)で効率の良い間隔が規定できる。
 n1<n2の場合、透光性膜120と光取り出しフィルム160との界面で全反射がおきるが、その臨界角に至る前の角度の光は光取り出しフィルム160内に入る。しかし屈折により角度が浅くなるので、光取り出しフィルム160の効果の少ない角度になる。
 この場合も、光取り出しフィルム160の効果の少なくなる時の、透光性膜120の光取り出し側の面120aの法線に対する角度αと透光性膜120内の散乱壁123の間隔mの式(3)で効率の良い間隔が規定できる。
 ここで、角度αについてより詳しく説明する。
 図3は比較形態1に係る発光素子の光出力特性(曲線L1)と比較形態2に係る発光素子の光出力特性(曲線L2)との実測値を示す図である。
 比較形態1に係る発光素子は、透光性膜120および光散乱壁123を有していない点で、本実施形態に係る発光素子100と相違し、その他の点では、本実施形態に係る発光素子100と同様に構成されている。つまり、比較形態1に係る発光素子は、光取り出しフィルム160が、透光性基板110の光取り出し側に隣接して配置された構造をなしている。
 一方、比較形態2に係る発光素子は、光取り出しフィルム160を有していない点で、比較形態1に係る発光素子と相違し、その他の点では、比較形態1に係る発光素子と同様に構成されている。この発光素子の光取り出し面は、透光性基板110における第1電極130側とは反対側の面である。
 図3の横軸は、出射光の角度(単位:度)である。出射光の角度は、光取り出し面の法線に対する角度(透光性膜120の光取り出し側の面120aの法線Nに対する角度と同じ)で表される。図3の縦軸は、出射光の相対輝度(単位は任意単位(a.u.))である。この相対輝度は、比較形態2に係る発光素子において角度0度で出射する出射光(つまり向きが光取り出し面に対する法線と一致する出射光)の輝度を基準(つまり1)とした相対値で表される。
 ここで、曲線L1および曲線L2で示される実測値の計測は、輝度測定装置を定点に配置し、輝度測定装置の向きを徐々に変更しながら行った。このため、光取り出し面1の法線に対する角度が大きくなるほど、輝度測定装置はより広範囲の光を検出することとなってしまうが、それによる補正を行っていない実測値を図3に示している。このため、各角度の出射光の実際の輝度(測定対象の表面積を正規化した場合の輝度)は、光取り出し面1の法線に対する角度が大きくなるほど、図3に示される実測値よりも更に大きく低下する。
 図3に示す曲線L1から分かるように、比較形態1に係る発光素子の場合、出射光の角度が約60度以上になると、出力される光の輝度が低下する。つまり、角度αは、例えば60度である。
 ここで、角度αの別の規定の仕方について、説明する。
 角度αは、例えば、出力される光の輝度が、基準の輝度(例えば、比較形態1に係る発光素子100において角度0度で出射する出射光の輝度)の85%以下となる角度(例えば60°)とすることができる。なお、ここでの規定は、図3の実測値に基づく規定であるため、測定対象の表面積を正規化した場合は、ここでの規定とは異なる値となる。
 図4は実施形態に係る発光素子100の動作を説明するための図であり、光散乱壁123により光が散乱する様子を模式的に示している。
 本実施形態に係る発光素子100では、角度α以上の大きさの角度の光を光散乱壁123に入射させることが可能なように、上記数式(3)を満たすように間隔mを設定する。つまり、光取り出しフィルム160の作用では効果的に外部に取り出すことが困難な角度の光を、光散乱壁123に入射させて、該光散乱壁123により散乱させることができる。その結果、散乱後の光のうちの一部の光(例えば図4に示す角度範囲R1の光)については、光取り出しフィルム160の光取り出し面1から外部に出射させることができる。また、散乱後の光のうちの他の一部の光(例えば図4に示す角度範囲R2の光)については、一旦第2電極150側に向かい、第2電極150にて反射した後に、光取り出しフィルム160の光取り出し面1から外部に出射させることができる。よって、光取り出し効率が向上する。なお、上記角度αが60度の場合、角度範囲R1、R2は、それぞれ約120度(法線Nを中心として両側60度ずつの範囲)である。
 ここで、図1を参照して、特許文献1の技術を説明する。
 上記のように、特許文献1の技術では、W/L≦tan(arcsin(n1/n2))を満たす。arcsin(n1/n2)は発光素子と空気層との界面における臨界角を意味している。よって、W/L≦tan(arcsin(n1/n2))は、図1におけるarctan(W/L)で示される角度が臨界角よりも小さいということを示している。
 特許文献1の技術の場合、光散乱性部1002が透光性基板1001内に配置され、且つ、陽極1004側に配置されている。このため、ある1つの発光点からの光のうち、光散乱性部1002に入射せずに光取り出し面1000aに到達する光は、光路L11と光路L12との間の範囲の光、すなわち角度範囲R11の光だけであり、光路L21、L22等のようにほとんどの光が光散乱性部1002に入射してしまう。
 一方、本実施形態の場合、m≦2d×tanαである。このため、図5に示す断面図のように、ある発光点からの光のうち、(角度θ1+角度θ2+角度θ3+角度θ4)以上の角度範囲の光が、光散乱壁123に入射せずに光取り出し面1に到達する。なお、図5において、中点Cは、透光性膜120と透光性基板110との界面において、隣り合う光散乱壁123の中間に位置する点である。
 図5と図1の比較から、本実施形態の方が、光散乱壁123に入射せずに光取り出し面1に到達する光の割合が明らかに多いことが分かる。よって、光散乱壁123が存在しない場合にも光取り出し面1から取り出されるような角度の光の取り出し効率を、光散乱壁123の存在によって低下させてしまう可能性を低減することができる。
 また、上記角度αよりも角度が大きい光、すなわち図5に示す角度範囲R3の光については、光取り出し面1で反射する光も含め、すべて光散乱壁123に入射し、該光散乱壁123にて散乱する。よって、このような角度の光の光取り出し効率を向上することができる。
 一般に透光性基板の屈折率は1.5程度である。この場合、透光性基板と空気層との界面における臨界角は41度である。特許文献1の技術では、41度以上の光を散乱させて、散乱させた光の中で41度未満の光をさらに取り出すことを目的としている。
 これに対し、本実施形態の場合、透光性基板110の光取り出し側にある光取り出しフィルム160で取り出せる光の取り出し効率が落ちる角度である60度以上の角度の光を散乱させ、散乱させた光のうち60度未満の光を取り出すことを目的としている。
 すなわち特許文献1の技術では、光取り出し効率は、{41/90}+{1-(41/90)}×(41/90)+・・・・・となる。これに対し、本実施形態では、光取り出し効率は、{60/90}+{1-(60/90)}×(60/90)+・・・・・となる。特許文献1の技術では、上記計算式における第二項までの総和は0.7であり、本実施形態では、上記計算式における第二項までの総和は0.88となる。よって、本実施形態の方が、特許文献1の技術よりも光取り出し効率が高くなる。なお、ここでの計算は、透光性基板(透光性基板110)内に入射した光の一部について計算しただけであり、実際は発光層側へ向かった光は有機機能層(有機機能層140)における減衰や反射電極(第2電極150)による減衰が生じているので、ここでの計算よりも光取り出し効率が小さくなる。
 また、本実施形態では透光性基板110の光取り出し側に光散乱壁123を有する透光性膜120を配置しているため、透光性基板110と第1電極130との間に平坦化層は必要がない。
 また、特許文献1の技術では、空気界面での取り出し構造(本実施形態における光取り出しフィルム160に相当する構造)を備えていないため、空気界面での臨界角の影響を大きく受け、小さい範囲の角度の光しか、光散乱性部1002による散乱を経ずに出射させることが出来ない。
 これに対し、本実施形態では、発光素子100は光取り出しフィルム160を有するので、なるべく多くの光を光取り出しフィルム160を利用して取り出すことができる。すなわち、より多くの角度の光を、光散乱壁123による散乱を経ずに直接取り出すことができる。
 とくに発光層における消衰係数や反射陰極(第2電極150)での反射率が影響する場合、反射や散乱の回数をなるべく少なくして光を取り出す必要があるため、本実施形態の構造が有効である。
 図6は実施形態に係る光散乱フィルム200の断面図である。この光散乱フィルム200は、上述の透光性膜120と光取り出しフィルム160とを備えて構成されている。このような光散乱フィルム200を透光性基板110の一方の面に貼り付けることにより、図2(a)に示すような発光素子100を作製することができる。
 図7は実施形態に係る発光素子100の斜視図である。光散乱壁123の平面的な配置(レイアウト)は任意であるが、一例として、図7に示すように平面視格子状に複数の光散乱壁123を配置することができる。なお、図7には4つの光散乱壁123を格子状に配置した例を示しているが、より多くの光散乱壁123を配置しても良いのは言うまでもない。複数の光散乱壁123を平面視において格子状に配置する場合、互いに平行な複数の光散乱壁123と、互いに直交する複数の光散乱壁123と、が含まれる。
 また、平面視において互いに直交する光散乱壁123を、互いに上下方向においてずらして配置することにより、これらが直接交わらないようにしてもよい。
 次に、有機機能層140の層構造の例を説明する。
 図8は有機機能層140の層構造の第1例を示す断面図である。第1例に係る有機機能層140は、正孔注入層141、正孔輸送層142、発光層143、電子輸送層144、及び電子注入層145をこの順に積層した構造を有している。すなわち有機機能層140は、有機エレクトロルミネッセンス発光層である。なお、正孔注入層141及び正孔輸送層142の代わりに、これら2つの層の機能を有する一つの層を設けてもよい。同様に、電子輸送層144及び電子注入層145の代わりに、これら2つの層の機能を有する一つの層を設けてもよい。
 有機機能層140の第1例において、発光層143は、例えば赤色の光を発光する層、青色の光を発光する層、又は緑色の光を発光する層である。この場合、平面視において、赤色の光を発光する発光層143を有する領域、緑色の光を発光する発光層143を有する領域、及び青色の光を発光する発光層143を有する領域が繰り返し設けられていても良い。この場合、各領域を同時に発光させると、発光素子100は白色等の単一の発光色で発光する。
 なお、発光層143は、複数の色を発光するための材料を混ぜることにより、白色等の単一の発光色で発光するように構成されていても良い。
 図9は有機機能層140の層構造の第2例を示す断面図である。この例では、有機機能層140の発光層143は、発光層143a,143b,143cをこの順に積層した構成を有している。発光層143a,143b,143cは、互いに異なる色の光(例えば赤、緑、及び青)を発光する。そして発光層143a,143b,143cが同時に発光することにより、発光素子100は白色等の単一の発光色で発光する。
 次に、本実施形態に係る発光素子の製造方法の一例を説明する。この製造方法は、光が取り出される光取り出し面1を有する発光素子を製造する方法であって、以下の(1)、(2)の工程を備える。
 (1)透光性膜120を透光性基板110に対して重ねて配置する工程
 (2)透光性膜120内に複数の光散乱壁123を形成する工程
 光散乱壁123を形成する工程では、複数の光散乱壁123がそれぞれ光取り出し面1に対して交差して配置され、且つ、複数の光散乱壁123が光取り出し面1に対して平行な方向において繰り返し配置されるように、複数の光散乱壁123を形成する。
 なお、本実施形態に係る発光素子の製造方法は、本実施形態に係る光散乱フィルムの製造方法を含んでいる。本実施形態に係る光散乱フィルムの製造方法は、透光性膜120内に複数の光散乱壁123を形成する工程を備える。この工程では、複数の光散乱壁123がそれぞれ透光性膜120の光取り出し側の面120aに対して交差して配置され、且つ、複数の光散乱壁123が光取り出し側の面120aに対して平行な方向において繰り返し配置されるように、複数の光散乱壁123を形成する。
 以下、発光素子の製造方法を工程順に説明する。
 先ず、図2(a)における透光性基板110の下面にスパッタ法などによりITOやIZOなどの金属酸化物導電体からなる透光性の導電膜を成膜し、エッチングによりこれをパターニングして第1電極130を形成する。
 次に、第1電極130の下面に有機材料を塗布することにより有機機能層140を形成する。
 次に、有機機能層140の下面に、蒸着法などによりAg、Au、Alなどの金属材料を堆積させて、第2電極150を形成する。
 なお、必要に応じてバスライン170や隔壁部180(図19参照)をそれぞれ適切なタイミングで形成しても良い。また、第2電極150の下面には必要に応じて封止層を形成しても良い。
 一方、透光性膜120内に複数の光散乱壁123を形成し、透光性膜120に光取り出しフィルム160を設けることにより、光散乱フィルム200を作製する。ここで、複数の光散乱壁123がそれぞれ透光性膜120の光取り出し側の面120aに対して交差して配置され、且つ、複数の光散乱壁123が光取り出し側の面120aに対して平行な方向において繰り返し配置されるように、複数の光散乱壁123を形成する。なお、透光性膜120に光散乱壁123を形成する方法の具体例については、実施例にて後述する。
 次に、光散乱フィルム200を透光性基板110の上面に貼り付ける。
 こうして、図2(a)に示す構造の発光素子100が得られる。
 以上、実施形態によれば、光散乱フィルム200は、透光性膜120と、透光性膜120内に配置された複数の光散乱壁123と、を備える。複数の光散乱壁123は、それぞれ透光性膜120の光取り出し側の面120aに対して交差して配置されているとともに、光取り出し側の面120aに対して平行な方向において繰り返し配置されている。よって、光散乱壁123が存在しない場合には取り出されないような角度の光についても、光散乱壁123によって散乱させて、その一部を取り出すことが可能となる。よって、この光散乱フィルム200を発光素子100に設けることにより、発光素子100の光取り出し効率を向上させることができる。
 また、複数の光散乱壁123のうち隣り合う光散乱壁123どうしの間隔をm、光散乱壁123の光取り出し方向における長さをd、透光性膜120に対して光取り出し側に隣接する層の屈折率をn1、透光性膜120の屈折率をn2とすると、m≦2d×tan(arcsin(n1/n2))を満たす。これにより、透光性膜120と光取り出しフィルム160との界面にて透光性膜120側に反射する光を光散乱壁123に入射させて、該光散乱壁123により散乱させることができる。その結果、散乱後の光のうちの一部の光については、第2電極150から反射して光取り出しフィルム160側に向かったときに、透光性膜120から光取り出しフィルム160内に入射するようにできる。そして、このように光取り出しフィルム160に入射した光の一部は、光取り出しフィルム160から光放出空間に取り出すことができる。よって、透光性膜120と光取り出しフィルム160との界面にて透光性膜120側に反射する光の一部を発光素子100の外部に取り出すことができる。よって、光取り出し効率が向上する。
 更に、{(√2)/2}×2d×tan(arcsin(n1/n2))≦mを満たす。これにより、光散乱壁123による散乱を経ずに直接外部に取り出せる光の割合の低下を抑制できるので、光取り出し効率の低下を抑制することができる。
 また、光散乱フィルム200は、透光性膜120の光取り出し側に配置された光取り出しフィルム160を更に備え、この光取り出しフィルム160は、光取り出し側に凹凸構造を有する。よって、より多くの角度の光を、光散乱壁123による散乱を経ずに、取り出すことができる。
 また、複数の光散乱壁123のうち隣り合う光散乱壁123どうしの間隔をm、光散乱壁123の光取り出し方向における長さをd、光取り出しフィルム160による光取り出し効果が減衰する時の透光性膜120の光取り出し側の面120aの法線Nに対する角度をαとすると、m≦2d×tanαを満たす。これにより、光取り出しフィルム160の作用では効果的に外部に取り出すことが困難な角度の光を、光散乱壁123に入射させて、該光散乱壁123により散乱させることができる。その結果、散乱後の光のうちの一部の光(例えば図4に示す角度範囲R1の光)については、光取り出しフィルム160の光取り出し面1から外部に出射させることができる。また、散乱後の光のうちの他の一部の光(例えば図4に示す角度範囲R2の光)については、一旦第2電極150側に向かい、第2電極150にて反射した後に、光取り出しフィルム160の光取り出し面1から外部に出射させることができる。よって、光取り出し効率が向上する。
 また、本実施形態に係る発光素子100は、光散乱フィルム200と、発光層と、を備えて構成されている。よって、光散乱フィルム200により得られる効果と同様の効果が得られる。
 また、本実施形態に係る発光素子100は、光が取り出される光取り出し面1を有する。発光素子100は、透光性基板110と、透光性基板110に対して重ねて配置された透光性膜120と、透光性膜120内に配置された複数の光散乱壁123と、を備える。複数の光散乱壁123は、それぞれ光取り出し面1に対して交差して配置されているとともに、光取り出し面1に対して平行な方向において繰り返し配置されている。よって、光散乱壁123が存在しない場合には取り出されないような角度の光についても、光散乱壁123によって散乱させて、その一部を取り出すことが可能となる。よって、この発光素子100の光取り出し効率を向上させることができる。
 また、本実施形態に係る光散乱フィルムの製造方法は、透光性膜120内に複数の光散乱壁123を形成する工程を備える。この工程では、複数の光散乱壁123がそれぞれ透光性膜120の光取り出し側の面120aに対して交差して配置され、且つ、複数の光散乱壁123が光取り出し側の面120aに対して平行な方向において繰り返し配置されるように、複数の光散乱壁123を形成する。よって、この製造方法により製造された光散乱フィルム200を発光素子100に設けることにより、発光素子100の光取り出し効率を向上させることができる。
 また、本実施形態に係る発光素子の製造方法は、光が取り出される光取り出し面1を有する発光素子100を製造する方法であって、透光性膜120を透光性基板110に対して重ねて配置する工程と、透光性膜120内に複数の光散乱壁123を形成する工程と、を備える。そして、光散乱壁123を形成する工程では、複数の光散乱壁123がそれぞれ光取り出し面1に対して交差して配置され、且つ、複数の光散乱壁123が光取り出し面1に対して平行な方向において繰り返し配置されるように、複数の光散乱壁123を形成する。よって、発光素子100の光取り出し効率を向上させることができる。
 (実施例1)
 図10(a)は実施例1に係る発光素子100の断面図、図10(b)は実施例1に係る光散乱フィルム200の断面図である。
 本実施例に係る発光素子100は、光取り出しフィルム160を有していない点で、上記の実施形態に係る発光素子100と相違し、その他については上記の実施形態に係る発光素子100と同様に構成されている。
 同様に、本実施例に係る光散乱フィルム200は、光取り出しフィルム160を有していない点で、上記の実施形態に係る光散乱フィルム200と相違し、その他については上記の実施形態に係る光散乱フィルム200と同様に構成されている。
 本実施例に係る発光素子100の場合、面120aが光取り出し面を構成する。
 なお、本実施例に係る発光素子100および光散乱フィルム200の透光性膜120における光散乱壁123の間隔mは、上記の数式(1)を満たすが、上記の数式(3)を満たす訳ではない。
 本実施例によっても、上記の実施形態と同様の効果(ただし、上記の数式(3)を満たすことにより得られる効果を除く)が得られる。
 (実施例2)
 図11は実施例2に係る発光素子100の断面図である。本実施例に係る発光素子100は、以下に説明する点で、上記の実施形態に係る発光素子100と相違し、その他の点では、上記の実施形態に係る発光素子100と同様に構成されている。
 本実施例の場合、透光性基板110は、光取り出しフィルム160と透光性膜120との間に配置され、透光性膜120と第1電極130との間には透光性基板110が配置されていない。
 本実施例の場合、透光性膜120の厚さは、例えば、10μm程度とすることができる。
 本実施例の場合、間隔mは、上記の数式(3)を満たすようにしても良いし、上記の数式(3)は満たさず上記の数式(1)および(2)を満たすようにしても良い。
 本実施例によっても、上記の実施形態と同様の効果(ただし、透光性膜120と第1電極130との間に透光性基板110が配置されていることにより得られる効果を除く)が得られる。
 (実施例3)
 図12は実施例3に係る発光素子100の断面図である。本実施例に係る発光素子100は、以下に説明する点で、上記の実施形態に係る発光素子100と相違し、その他の点では、上記の実施形態に係る発光素子100と同様に構成されている。
 本実施例の場合、上記の実施形態に係る発光素子100の構造に加えて、透光性基板110と第1電極130との間に第2透光性膜190を備えている。第2透光性膜190は、例えば、高屈折率材料(例えば屈折率1.7程度)からなる。
 透光性基板110と第2透光性膜190との界面には、凹凸構造230が形成されている。この凹凸構造230は、例えば、ピラミッド形の凹凸が平面視においてマトリクス状に配置されてなる。或いは、この凹凸構造230は、半球状の凹凸が平面視においてマトリクス状などの配置で配置されてなるマイクロレンズ構造であっても良い。
 このような第2透光性膜190を設けることにより、第1電極130と透光性基板110との間での全反射の発生を抑制し、第1電極130から透光性基板110へとスムーズに光を入射させることが可能となる。
 ここで、透光性膜120の屈折率は、透光性基板110の屈折率以上であっても良いし、透光性基板110の屈折率未満であっても良い。
 透光性膜120の屈折率が透光性基板110の屈折率以上の場合、透光性膜120と透光性基板110との界面には、上記凹凸構造230と同様の凹凸構造は不要である。ただし、この場合においても、透光性膜120と透光性基板110との界面に、上記凹凸構造230と同様の凹凸構造が設けられていることが好ましい。
 また、透光性膜120の屈折率が透光性基板110の屈折率未満の場合、透光性膜120と透光性基板110との界面にも、上記凹凸構造230と同様の凹凸構造が設けられていることが好ましい。
 なお、第1電極130の屈折率は、例えば2.0程度であるため、第1電極130と第2透光性膜190との界面にも凹凸構造230と同様の凹凸構造(図示略)がある方が好ましい。このような凹凸構造を設けることにより、第1電極130から第2透光性膜190へとよりスムーズに光を入射させることができる。例えば、発光層で発生した光の80%程度を第2透光性膜190へ入射させることが可能となる。
 本実施例によれば、発光素子100は、第2透光性膜190を備えているので、光取り出し効率が更に向上する。
 (実施例4)
 図13は実施例4に係る発光素子100の断面図である。本実施例に係る発光素子100は、以下に説明する点で、上記の実施形態に係る発光素子100と相違し、その他の点では、上記の実施形態に係る発光素子100と同様に構成されている。
 本実施例の場合、図13に示すように、光散乱フィルム200は、透光性膜120が第1フィルム310と第2フィルム320とにより挟まれたサンドイッチ構造となっている。なお、第1フィルム310は、例えば、上記の光取り出しフィルム160に相当するものであり、第1フィルム310の上面は、凹凸形状に形成されている。本実施例の場合、例えば、図13に示すように、発光素子100は透光性基板110を有しておらず、光散乱フィルム200の下面に第1電極130が形成されている。ただし、本実施例の場合も、透光性基板110を有しており、透光性基板110上に光散乱フィルム200が貼り付けられていても良い。
 第1電極130や有機機能層140を形成する際には、加熱が必要である。そのため、発光層に近い第2フィルム320としては耐熱性のフィルムを用いる。一般的に、耐熱性のフィルムは、硬く、加工性に劣る。そこで、光散乱壁123が形成される透光性膜120としては、加工性に富んだ柔らかいフィルムを使用し、該透光性膜120が加熱時に型崩れしないように、耐熱性フィルムからなる第1フィルム310と第2フィルム320とにより透光性膜120を挟み込むことが好ましい。
 なお、第1フィルム310と第2フィルム320とは、互いに同じ材料により構成されていても良いし、互いに異なる材料により構成されていても良い。例えば、第1電極130側に位置する第2フィルム320の材料としては、第1フィルム310よりも耐熱性に劣る材料を用いても良い。
 (実施例5)
 図14(a)~(d)は実施例5に係る発光素子の製造方法の一連の工程を示す断面図である。本実施例では、透光性膜120に光散乱壁123を形成する工程の一例を説明する。
 先ず、透光性膜120を準備する。透光性膜120は、例えば、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)等の有機材料をベースとし、当該有機材料にTiBOなどを用いたナノコンポジットやナノパーティクル材料を混ぜることによって、高屈折率化したものである。透光性膜120の屈折率は、例えば、1.8程度とすることができる。透光性膜120の膜厚は、例えば、10μm以上100μm以下程度とすることができる。
 ここで、インプリントを容易に行うことができるように、この透光性膜120を予め加熱する。
 次に、図14(a)に示すように、透光性膜120の一方の面に対し、金属等の材料により構成された型410を押し付けることによりインプリントを行う。この型410は、例えば、平板状の本体部411と、本体部411の一方の面より垂直に起立する平板状の複数の起立片412と、を備えている。
 図14(b)に示すように、起立片412が透光性膜120内に食い込むことにより、透光性膜120の一方の面に溝121が形成される。なお、溝121の深さは、透光性膜120の厚さよりも浅くても良いし、透光性膜120の厚さと同じであっても良い。次に、透光性膜120を冷却する。
 次に、図14(c)に示すように、型410の起立片412を透光性膜120から引き抜く。
 次に、図14(d)に示すように、光散乱壁123を構成する光散乱性の粒子を溝121内に埋め込む。具体的には、例えば、光散乱性の粒子を含有する樹脂を溝121内に埋め込む。これにより、透光性膜120内に光散乱壁123を形成することができる。光散乱壁123の厚さは、発光層からの発光波長以上であることが好ましく、例えば、1μm程度とすることができる。
 本実施例の方法により、透光性膜120内に容易に光散乱壁123を形成することができる。
 (実施例6)
 図15(a)~(e)は実施例6に係る発光素子の製造方法の一連の工程を示す断面図である。本実施例でも、透光性膜120に光散乱壁123を形成する工程の一例を説明する。
 先ず、実施例5と同様の透光性膜120を準備する。
 次に、図15(a)に示すように、透光性膜120の一方の面上にレジストからなるマスク420を塗布法などにより形成する。
 次に、図15(b)に示すように、マスク420において光散乱壁123の形成箇所と対応する位置に開口421が形成されるように、マスク420をパターニングする。
 次に、図15(c)に示すように、マスク420を介して透光性膜120に対してドライエッチング等を行うことにより、透光性膜120に溝121を形成する。
 次に、図15(d)に示すように、マスク420を除去する。
 次に、図15(e)に示すように、光散乱性の粒子を含有する樹脂を溝121内に埋め込む。これにより、透光性膜120内に光散乱壁123を形成することができる。
 (実施例7)
 図16(a)~(f)は実施例7に係る発光素子の製造方法の一連の工程を示す断面図である。本実施例でも、透光性膜120に光散乱壁123を形成する工程の一例を説明する。
 先ず、実施例5と同様の透光性膜120を準備する。
 次に、図16(a)に示すように、透光性膜120の一方の面上に無機膜430を形成する。
 更に、図16(b)に示すように、無機膜430上にレジストからなるマスク440を塗布法などにより形成する。
 次に、図16(c)に示すように、マスク440において光散乱壁123の形成箇所と対応する位置に開口441が形成されるように、マスク440をパターニングする。
 次に、図16(d)に示すように、マスク440を介して無機膜430をエッチング(ドライエッチング又はウェットエッチング)することにより、無機膜430に開口431を形成する。
 次に、図16(e)に示すように、マスク440および無機膜430を介して透光性膜120をエッチングすることにより、透光性膜120に溝121を形成する。
 次に、図16(f)に示すように、マスク440を除去した後、光散乱性の粒子を含有する樹脂を溝121内に埋め込む。これにより、透光性膜120内に光散乱壁123を形成することができる。なお、無機膜430は、例えば、バリア膜として透光性膜120上に残留させる。
 (実施例8)
 図17(a)、(b)は実施例8に係る発光素子の製造方法の一連の工程を示す断面図である。本実施例でも、透光性膜120に光散乱壁123を形成する工程の一例を説明する。
 先ず、実施例5と同様の透光性膜120を準備する。
 次に、図17(a)に示すように、透光性膜120の一方の面側から、透光性膜120に対してレーザー光等の光線450を照射することにより、透光性膜120に溝121を形成する。
 次に、図17(b)に示すように、光散乱性の粒子を含有する樹脂を溝121内に埋め込む。これにより、透光性膜120内に光散乱壁123を形成することができる。
 (実施例9)
 図18(a)、(b)は実施例9に係る発光素子の製造方法の一連の工程を示す断面図である。本実施例でも、透光性膜120に光散乱壁123を形成する工程の一例を説明する。
 先ず、実施例5の透光性膜120と同様の第1透光性膜125を準備する。
 次に、図18(a)に示すように、第1透光性膜125の一方の面上に、インクジェットヘッド460から光散乱性の粒子を含有する樹脂を吐出することにより、光散乱壁123を形成する。
 次に、図18(b)に示すように、光散乱壁123を覆うように、第1透光性膜125の上に第2透光性膜126を塗布により形成する。これにより、第2透光性膜126内に光散乱壁123を埋め込み形成することができる。すなわち、第1透光性膜125と第2透光性膜126とからなる透光性膜120内に、光散乱壁123を埋め込み形成することができる。
 (実施例10)
 図19(a)は実施例10に係る発光素子100の平面図、図19(b)は図19(a)のB-B線に沿った断面図である。本実施例では、上記の実施形態に係る発光素子100のより具体的な構成の例を説明する。なお、図19(b)と図2(a)とでは、互いに上下が反転している。
 透光性基板110の一方の面には、光散乱フィルム200が設けられている。透光性基板110の他方の面には、第1電極130が形成されている。第1電極130は、陽極を構成する。複数の第1電極130が、それぞれ帯状にY方向に延在している。隣り合う第1電極130同士は、Y方向に対して直交するX方向において一定間隔ずつ離間している。第1電極130の各々は、例えばITOやIZO等の金属酸化物導電体等からなる。第1電極130の屈折率は透光性膜120と同程度(例えば屈折率1.8程度)とされる。第1電極130の各々の表面には、第1電極130に電源電圧を供給するためのバスライン(バス電極)170が形成されている。透光性基板110及び第1電極130上には絶縁膜が形成されている。この絶縁膜には、それぞれY方向に延在するストライプ状の開口部が複数形成されている。これにより、絶縁膜からなる複数の隔壁部180が形成されている。また、この絶縁膜に形成された開口部の各々は、第1電極130に達しており、開口部の底部において各第1電極130の表面が露出している。絶縁膜の各開口部内において、第1電極130上には、有機機能層140が形成されている。有機機能層140は、正孔注入層141、正孔輸送層142、発光層143(発光層143R、143G、143B)、電子輸送層144がこの順序で積層されることにより構成されている。正孔注入層141及び正孔輸送層142の材料としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。発光層143R、143G、143Bは、それぞれ、赤色発光、緑色発光、青色発光を行う蛍光性有機金属化合物等からなる。発光層143R、143G、143Bは、隔壁部180によって互いに隔てられた状態で並んで配置されている。すなわち、有機機能層140は、隔壁部180によって複数の領域に仕切られている。発光層143R、143G、143Bおよび隔壁部180の表面を覆うように電子輸送層144が形成されている。電子輸送層144の表面を覆うように第2電極150が形成されている。第2電極150は、陰極を構成する。第2電極150は、帯状に形成されている。第2電極150は、仕事関数が低く且つ高反射率を有するAg、Au、Alなどの金属または合金等からなる。尚、有機機能層140の屈折率は、第1電極130および透光性膜120と同程度(例えば屈折率1.8程度)とされる。
 このように、赤、緑、青の光をそれぞれ発する発光層143R、143G、143Bは、ストライプ状に繰り返し配置されており、光取り出し面となる透光性基板110の表面からは、赤、緑、青の光が任意の割合で混色されて単一の発光色(例えば白色)として認識される光が放出される。
 本実施例によっても、上記の実施形態と同様の効果が得られる。
 (実施例11)
 図20は実施例11に係る発光素子の平面図である。なお、図20においては、図面を見やすくするために、光散乱壁123と隔壁部180のみを示している。本実施例に係る発光素子は、以下に説明する点で、上記の実施形態に係る発光素子100と相違し、その他の構成については上記の実施形態に係る発光素子100と同様に構成されている。同様に、本実施例に係る光散乱フィルムは、以下に説明する点で、上記の実施形態に係る光散乱フィルム200と相違し、その他の構成については上記の実施形態に係る光散乱フィルム200と同様に構成されている。
 上記の実施形態では、平面視において四角形(例えば矩形)の格子状に複数の光散乱壁123が配置されている例を説明した。ただし、複数の光散乱壁123の、平面視における配置は、四角形の格子状に限らない。例えば、図20に示すように、複数の六角形を隙間無く配置することにより構成された格子状(ハニカム状)に配置しても良い。或いは、三角形やその他の多角形の格子状に配置しても良い。また、四角形、三角形、六角形など複数種類の多角形の格子状の配置が混在していても良い。また円などの曲線を含む形状でもよいし、これらが混在してもよい。
 本実施例の場合、上記の実施形態と比べて、平面視においてより様々な向きの光について、何れかの光散乱壁123に入射する確率が高まる。その結果、上記の実施形態よりも光取り出し効率を高めることができる。
 (実施例12)
 図21(a)および図21(b)は実施例12に係る発光素子100の断面図である。本実施例に係る発光素子100は、以下に説明する点で、上記の実施形態に係る発光素子100と相違し、その他の構成については上記の実施形態に係る発光素子100と同様に構成されている。同様に、本実施例に係る光散乱フィルム200は、以下に説明する点で、上記の実施形態に係る光散乱フィルム200と相違し、その他の構成については上記の実施形態に係る光散乱フィルム200と同様に構成されている。
 本実施例に係る発光素子100においては、光散乱壁123は、光取り出し側(図21(a)において上側)に向けて厚くなっている。
 例えば、上記の実施例5~9の何れかの方法により光散乱壁123を形成することにより、光散乱壁123は、容易に、光取り出し側(図21(a)において上側)に向けて厚くなるテーパー形状(楔形等)にすることができる。
 光散乱壁123が光取り出し側に向けて厚くなっている場合の方が、光散乱壁123が光取り出し側に向けて薄くなっている場合と比べて、より多くの光が光散乱壁123に入射して散乱するようにできる。
 なお、図21(a)に示すように、光散乱壁123を、透光性膜120の上部(下端部を除く領域)に配置することにより、図11に示すように透光性膜120を透光性基板110と第1電極130との間に配置する場合でも透光性膜120と第1電極130との間に平坦化層が不要になるという利点がある。
 ここで、本実施例の場合、間隔mは、例えば、図21(b)に示すように、隣り合う光散乱壁123において最も厚い部分(上端部)どうしの対向間隔である。
 ここで、テーパー形状の光散乱壁123を実際に形成した場合、光散乱壁123の側面は必ずしも平坦に形成されず、例えば、図21(b)に示すように、光散乱壁123の深さ方向(上下方向)における極浅い部分(上端部)の形状が鈍り、上端に近い部分ほど、光散乱壁123の厚みの広がり具合が大きくなる(例えば二次関数的に大きくなる)ことが想定される。ただし光散乱壁123の深さ方向における極浅い部分は、光を散乱させる効果が小さいと考えられる。そこで、このような場合には、例えば、光散乱壁123の側面においてそれぞれ平坦な部分(或いはそれぞれ最も平坦に近い部分)に接する面S51、S52(或いは線)と、透光性膜120と光取り出しフィルム160との界面と、が交わる部分(それぞれ図21(b)に示す交点P1、P2を含む部分)どうしの間隔を上記の間隔mとすることができる。
 本実施例によれば、光散乱壁123は、光取り出し側に向けて厚くなっているので、より多くの光が光散乱壁123に入射して散乱するようにできる。
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 例えば、光取り出しフィルム160と透光性膜120とは、互いに同じ材料からなる1つの膜により構成されていても良い。この場合、光取り出しフィルム160と透光性膜120とを構成する膜の表面にプレス加工などを施すことにより、この膜の表面に凹凸構造を形成し、当該膜に光取り出し構造としての機能を付加することができる。
 また、透光性膜120と第1電極130との間には、バリア膜を設けることも好ましい。このバリア膜の下面は、透光性膜120の下面よりも平坦に形成されていることが好ましい。バリア膜は、例えば、SiO薄膜、又はグラフェンなどにより形成されている。バリア膜は、有機材料への影響を抑制する機能を持つ。

Claims (10)

  1.  透光性膜と、
     前記透光性膜内に配置された複数の光散乱壁と、
     を備え、
     前記複数の光散乱壁は、それぞれ前記透光性膜の光取り出し側の面に対して交差して配置され、且つ、前記光取り出し側の面に対して平行な方向において繰り返し配置されている光散乱フィルム。
  2.  前記複数の光散乱壁は、前記光取り出し側の面に対して平行な方向において周期的に配置されている請求項1に記載の光散乱フィルム。
  3.  前記複数の光散乱壁のうち隣り合う前記光散乱壁の間隔をm、前記光散乱壁の光取り出し方向における長さをd、前記透光性膜に対して前記光取り出し側に隣接する層の屈折率をn1、前記透光性膜の屈折率をn2とすると、
     {(√2)/2}×2d×tan(arcsin(n1/n2))≦m≦2d×tan(arcsin(n1/n2))を満たす請求項1又は2に記載の光散乱フィルム。
  4.  前記透光性膜の前記光取り出し側に配置された光取り出し構造を更に備え、
     前記光取り出し構造は、前記光取り出し側に凹凸構造を有する請求項1~3の何れか一項に記載の光散乱フィルム。
  5.  前記複数の光散乱壁のうち隣り合う前記光散乱壁の間隔をm、前記光散乱壁の光取り出し方向における長さをd、前記光取り出し構造による光取り出し効果が減衰する時の前記透光性膜の光取り出し側の面の法線に対する角度をαとすると、
     m≦2d×tanαを満たす請求項4に記載の光散乱フィルム。
  6.  前記光散乱壁は、前記光取り出し側に向けて厚くなっている請求項1~5の何れか一項に記載の光散乱フィルム。
  7.  請求項1~6の何れか一項に記載の光散乱フィルムと、
     発光層と、
     を備える発光素子。
  8.  光が取り出される光取り出し面を有する発光素子であって、
     透光性基板と、
     前記透光性基板に対して重ねて配置された透光性膜と、
     前記透光性膜内に配置された複数の光散乱壁と、
     を備え、
     前記複数の光散乱壁は、それぞれ前記光取り出し面に対して交差して配置され、且つ、前記光取り出し面に対して平行な方向において繰り返し配置されている発光素子。
  9.  透光性膜内に複数の光散乱壁を形成する工程を備え、
     前記光散乱壁を形成する工程では、前記複数の光散乱壁がそれぞれ前記透光性膜の光取り出し側の面に対して交差して配置され、且つ、前記複数の光散乱壁が前記光取り出し側の面に対して平行な方向において繰り返し配置されるように、前記複数の光散乱壁を形成する光散乱フィルムの製造方法。
  10.  光が取り出される光取り出し面を有する発光素子を製造する方法であって、
     透光性膜を透光性基板に対して重ねて配置する工程と、
     前記透光性膜内に複数の光散乱壁を形成する工程と、
     を備え、
     前記光散乱壁を形成する工程では、前記複数の光散乱壁がそれぞれ前記光取り出し面に対して交差して配置され、且つ、前記複数の光散乱壁が前記光取り出し面に対して平行な方向において繰り返し配置されるように、前記複数の光散乱壁を形成する発光素子の製造方法。
PCT/JP2013/065693 2013-06-06 2013-06-06 光散乱フィルム、発光素子、光散乱フィルムの製造方法および発光素子の製造方法 WO2014196053A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065693 WO2014196053A1 (ja) 2013-06-06 2013-06-06 光散乱フィルム、発光素子、光散乱フィルムの製造方法および発光素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065693 WO2014196053A1 (ja) 2013-06-06 2013-06-06 光散乱フィルム、発光素子、光散乱フィルムの製造方法および発光素子の製造方法

Publications (1)

Publication Number Publication Date
WO2014196053A1 true WO2014196053A1 (ja) 2014-12-11

Family

ID=52007729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065693 WO2014196053A1 (ja) 2013-06-06 2013-06-06 光散乱フィルム、発光素子、光散乱フィルムの製造方法および発光素子の製造方法

Country Status (1)

Country Link
WO (1) WO2014196053A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303677A (ja) * 2002-04-09 2003-10-24 Dainippon Printing Co Ltd 自発光素子
JP2004146121A (ja) * 2002-10-22 2004-05-20 Matsushita Electric Works Ltd 有機エレクトロルミネッセンス素子
JP2005050708A (ja) * 2003-07-29 2005-02-24 Samsung Sdi Co Ltd 光学素子用基板及び有機エレクトロルミネッセンス素子並びに有機エレクトロルミネッセンス表示装置
JP2007272065A (ja) * 2006-03-31 2007-10-18 Mitsubishi Rayon Co Ltd 光学フィルムおよびその製造方法
JP2008541368A (ja) * 2005-05-12 2008-11-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エレクトロルミネッセンス光源
JP2011501219A (ja) * 2007-10-16 2011-01-06 スリーエム イノベイティブ プロパティズ カンパニー より高い透過率の光制御フィルム
JP2013025900A (ja) * 2011-07-15 2013-02-04 Asahi Glass Co Ltd 電子デバイス用基板、及び、これを用いた有機led素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303677A (ja) * 2002-04-09 2003-10-24 Dainippon Printing Co Ltd 自発光素子
JP2004146121A (ja) * 2002-10-22 2004-05-20 Matsushita Electric Works Ltd 有機エレクトロルミネッセンス素子
JP2005050708A (ja) * 2003-07-29 2005-02-24 Samsung Sdi Co Ltd 光学素子用基板及び有機エレクトロルミネッセンス素子並びに有機エレクトロルミネッセンス表示装置
JP2008541368A (ja) * 2005-05-12 2008-11-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エレクトロルミネッセンス光源
JP2007272065A (ja) * 2006-03-31 2007-10-18 Mitsubishi Rayon Co Ltd 光学フィルムおよびその製造方法
JP2011501219A (ja) * 2007-10-16 2011-01-06 スリーエム イノベイティブ プロパティズ カンパニー より高い透過率の光制御フィルム
JP2013025900A (ja) * 2011-07-15 2013-02-04 Asahi Glass Co Ltd 電子デバイス用基板、及び、これを用いた有機led素子

Similar Documents

Publication Publication Date Title
US9595648B2 (en) Light-emitting device
US9502691B2 (en) Organic light-emitting diode display panel and manufacturing method thereof
US20210366993A1 (en) Oled display panel and manufaturing method thereof
WO2016082341A1 (zh) 有机电致发光器件、其制备方法以及显示装置
US8987767B2 (en) Light emitting device having improved light extraction efficiency
CN103137897A (zh) 发光器件
US20210011340A1 (en) Display substrate and method for manufacturing the same, and display apparatus
KR101268543B1 (ko) 유기 발광 소자
KR102645606B1 (ko) 유기발광장치 및 그 제조방법
KR101268534B1 (ko) 유기 발광 소자 및 유기 발광 소자 제조 방법
WO2013065177A1 (ja) 発光装置
JP2010146955A (ja) 有機el発光装置
KR101608332B1 (ko) 전면 발광형 유기발광소자용 기판, 그 제조방법 및 이를 포함하는 전면 발광형 유기발광소자
KR102608318B1 (ko) 유기발광장치
WO2014196053A1 (ja) 光散乱フィルム、発光素子、光散乱フィルムの製造方法および発光素子の製造方法
US20160164045A1 (en) Light extraction substrate for organic light emitting device, fabrication method therefor and organic light emitting device including same
US10763456B2 (en) EL device use front plate and lighting device
KR102231631B1 (ko) 유기 발광 표시 장치
WO2014196054A1 (ja) 光拡散フィルム、発光素子、光拡散フィルムの製造方法および発光素子の製造方法
JP2014503966A (ja) オプトエレクトロニクス素子を作製する方法およびオプトエレクトロニクス素子
WO2016084472A1 (ja) 面発光モジュール
WO2014118936A1 (ja) 発光素子および発光素子の製造方法
WO2013065172A1 (ja) 発光装置および発光装置の製造方法
WO2013065170A1 (ja) 発光装置
WO2013065178A1 (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP