EP0754225A1 - Animaux transgeniques capables de produire des anticorps heterologues - Google Patents

Animaux transgeniques capables de produire des anticorps heterologues

Info

Publication number
EP0754225A1
EP0754225A1 EP94916581A EP94916581A EP0754225A1 EP 0754225 A1 EP0754225 A1 EP 0754225A1 EP 94916581 A EP94916581 A EP 94916581A EP 94916581 A EP94916581 A EP 94916581A EP 0754225 A1 EP0754225 A1 EP 0754225A1
Authority
EP
European Patent Office
Prior art keywords
human
heavy chain
transgene
gene
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94916581A
Other languages
German (de)
English (en)
Other versions
EP0754225A4 (fr
Inventor
Nils Lonberg
Robert M. Kay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genpharm International Inc
Original Assignee
Genpharm International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/053,131 external-priority patent/US5661016A/en
Priority claimed from US08/096,762 external-priority patent/US5814318A/en
Application filed by Genpharm International Inc filed Critical Genpharm International Inc
Publication of EP0754225A1 publication Critical patent/EP0754225A1/fr
Publication of EP0754225A4 publication Critical patent/EP0754225A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2812Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3007Carcino-embryonic Antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • C07K16/4291Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig against IgE
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/461Igs containing Ig-regions, -domains or -residues form different species
    • C07K16/462Igs containing a variable region (Fv) from one specie and a constant region (Fc) from another
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/30Animal model comprising expression system for selective cell killing, e.g. toxins, enzyme dependent prodrug therapy using ganciclovir
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered

Definitions

  • the invention relates to transgenic non-human animals capable of producing heterologous antibodies
  • transgenic animals used to produce such transgenic animals
  • transgenes capable of functionally rearranging a heterologous D gene in V-D-J recombination, immortalized B-cells capable of producing heterologous antibodies, methods and transgenes for producing heterologous antibodies of multiple isotypes, methods and transgenes for producing heterologous antibodies wherein a variable region sequence comprises somatic mutation as compared to germline rearranged variable region sequences, transgenic nonhuman animals which produce antibodies having a human primary sequence and which bind to human antigens, hybridomas made from B cells of such transgenic animals, and monclonal antibodies expressed by such hybridomas.
  • HAMA human anti-mouse antibodies
  • immunoglobulins that bind specifically with human antigens is problematic.
  • the present technology for generating monoclonal antibodies involves pre-exposing, or priming, an animal
  • idiotype and also screening for immunoglobulin class (isotype), it is possible to select hybridoma clones that secrete the desired antibody.
  • transgenic animals harboring a functional heterologous immunoglobulin transgene are a method by which antibodies reactive with self antigens may be produced.
  • antibodies reactive with self antigens may be produced.
  • transgenic animal must produce transgenic B cells that are capable of maturing through the B lymphocyte development pathway. Such maturation requires the presence of surface IgM on the transgenic B cells, however isotypes other than IgM are desired for therapeutic uses.
  • transgenes and animals harboring such transgenes that are able to undergo functional V-D-J rearrangement to generate recombinational diversity and junctional diversity.
  • transgenes and transgenic animals preferably include cis-acting sequences that are able to undergo functional V-D-J rearrangement to generate recombinational diversity and junctional diversity.
  • transgenes and transgenic animals preferably include cis-acting sequences that
  • sequences for V(D)J joining are reportedly a highly conserved, near-palindromic heptamer and a less well conserved AT-rich nanomer separated by a spacer of either 12 or 23 bp (Tonegawa (1983), Nature, 302, 575-581; Hesse, et al. (1989), Genes in Dev., 3, 1053-1061). Efficient recombination reportedly occurs only between sites containing recombination signal sequences with different length spacer regions.
  • mice [Buchini, et al. (1987), Nature, 326, 409-411 (unrearranged chicken ⁇ transgene); Goodhart, et al. (1987) , Proc. Natl. Acad. Sci. USA, 84, 4229-4233) (unrearranged rabbit ⁇ gene); and Bruggemann, et al. (1989), Proc. Natl. Acad. Sci. USA, 86, 6709-6713 (hybrid mouse-human heavy chain)].
  • the results of such experiments have been variable, in some cases, producing incomplete or minimal rearrangement of the
  • transgene a variety of biological functions of antibody molecules are exerted by the Fc portion of molecules, such as the interaction with mast cells or basophils through Fee, and binding of complement by Fc ⁇ or Fc ⁇ , it further is desirable to generate a functional diversity of antibodies of a given specificity by variation of isotype.
  • transgenic animals have been generated that incorporate transgenes encoding one or more chains of a heterologous antibody, there have been no reports of
  • heterologous transgenes that undergo successful isotype switching.
  • Transgenic animals that cannot switch isotypes are limited to producing heterologous antibodies of a single isotype, and more specifically are limited to producing an isotype that is essential for B cell maturation, such as IgM and possibly IgD, which may be of limited therapeutic utility.
  • IgM immunoglobulin
  • transgenes and transgenic animals that are capable of
  • heterologous antibodies e.g. antibodies encoded by genetic sequences of a first species that are produced in a second species. More particularly, there is a need in the art for heterologous immunoglobulin transgenes and transgenic animals that are capable of undergoing functional V-D-J gene rearrangement that incorporates all or a portion of a D gene segment which contributes to recombinational diversity. Further, there is a need in the art for transgenes and transgenic animals that can support V-D-J recombination and isotype switching so that (l) functional B cell development may occur, and (2)
  • therapeutically useful heterologous antibodies may be any therapeutically useful heterologous antibodies.
  • immunoglobulin transgene capable of functional V-D-J recombination and/or capable of isotype switching could fulfill these needs.
  • transgenic nonhuman animals which are capable of producing a heterologous antibody, such as a human antibody.
  • B-cells from such transgenic animals which are capable of expressing heterologous antibodies wherein such B-cells are immortalized to provide a source of a monoclonal antibody specific for a particular antigen.
  • a further object of the invention is to provide methods to generate an immunoglobulin variable region gene segment repertoire that is used to construct one or more transgenes of the invention.
  • Transgenic nonhuman animals are provided which are capable of producing a heterologous antibody, such as a human antibody.
  • heterologous antibodies may be of various isotypes, including: IgG1, IgG2, lgG3, IgG4, IgM, IgA1, IgA2, IgA sec , IgD, of IgE.
  • IgG1, IgG2, lgG3, IgG4, IgM, IgA1, IgA2, IgA sec , IgD, of IgE In order for such transgenic nonhuman animals to make an immune response, it is necessary for the transgenic B cells and pre-B cells to produce surface-bound immunoglobulin, particularly of the IgM (or possibly IgD) isotype, in order to effectuate B cell development and
  • a cell of the B-cell lineage will produce only a single isotype at a time, although cis or trans
  • RNA splicing such as occurs naturally with the ⁇ s (secreted ⁇ ) and ⁇ M (membrane-bound ⁇ ) forms, and the ⁇ and ⁇ immunoglobulin chains, may lead to the contemporaneous
  • isotype switching may be classical classswitching or may result from one or more non-classical isotype switching mechanisms.
  • the invention provides heterologous immunoglobulin transgenes and transgenic nonhuman animals harboring such transgenes, wherein the transgenic animal is capable of producing heterologous antibodies of multiple isotypes by undergoing isotype switching.
  • Classical isotype switching occurs by recombination events which involve at least one switch sequence region in the transgene.
  • Non-classical isotype switching may occur by, for example, homologous recombination between human ⁇ and human ⁇ sequences ( ⁇ -associated deletion).
  • Alternative non-classical switching mechanisms such as intertransgene and/or interchromosomal recombination, among others, may occur and effectuate isotype switching.
  • transgenic nonhuman animals produce a first immunoglobulin isotype that is necessary for antigen-stimulated B cell maturation and can switch to encode and produce one or more subsequent heterologous isotypes that have therapeutic and/or diagnostic utility.
  • Transgenic nonhuman animals of the invention are thus able to produce, in one embodiment, IgG, IgA, and/or IgE antibodies that are encoded by human immunoglobulin genetic sequences and which also bind specific human antigens with high affinity.
  • the invention also encompasses B-cells from such transgenic animals that are capable of expressing heterologous antibodies of various isotypes, wherein such B-cells are immortalized to provide a source of a monoclonal antibody specific for a particular antigen.
  • Hybridoma cells that are derived from such B-cells can serve as one source of such heterologous monoclonal antibodies.
  • the invention provides heterologous unrearranged and rearranged immunoglobulin heavy and light chain transgenes capable of undergoing isotype switching in vivo in the
  • isotype switching may occur spontaneously or be induced by treatment of the transgenic animal or explanted B-lineage lymphocytes with agents that promote isotype
  • T-cell-derived lymphokines e.g., IL-4 and IFN ⁇
  • the invention includes methods to induce heterologous antibody production in the aforementioned transgenic non-human animal, wherein such antibodies may be of various isotypes.
  • These methods include producing an antigen-stimulated immune response in a transgenic nonhuman animal for the generation of heterologous antibodies, particularly heterologous antibodies of a switched isotype (i.e., IgG, IgA, and IgE).
  • heterologous immunoglobulins produced in the transgenic animal and monoclonal antibody clones derived from the B-cells of said animal may be of various isotypes.
  • Switch regions may be grafted from various C H genes and ligated to other C H genes in a transgene construct; such grafted switch sequences will typically function independently of the
  • ⁇ -associated deletion sequences may be linked to various C H genes to effect non-classical switching by deletion of sequences between two ⁇ -associated deletion sequences.
  • a transgene may be constructed so that a particular C H gene is linked to a different switch sequence and thereby is switched to more frequently than occurs when the naturally associated switch region is used.
  • This invention also provides methods to determine whether isotype switching of transgene sequences has occurred in a transgenic animal containing an immunoglobulin transgene.
  • the invention provides immunoglobulin transgene constructs and methods for producing immunoglobulin transgene constructs, some of which contain a subset of germline
  • immunoglobulin loci sequences (which may include deletions).
  • the invention includes a specific method for facilitated cloning and construction of immunoglobulin transgenes,
  • restriction sites flanked by two unique NotI sites. This method exploits the complementary termini of XhoI and SalI restrictions sites and is useful for creating large constructs by ordered concatemerization of restriction fragments in a vector.
  • the transgenes of the invention include a heavy chain transgene comprising DNA encoding at least one variable gene segment, one diversity gene segment, one joining gene segment and one constant region gene segment.
  • immunoglobulin light chain transgene comprises DNA encoding at least one variable gene segment, one joining gene segment and one constant region gene segment.
  • the gene segments encoding the light and heavy chain gene segments are heterologous to the transgenic non-human animal in that they are derived from, or correspond to, DNA encoding immunoglobulin heavy and light chain gene segments from a species not consisting of the transgenic non-human animal.
  • the transgene is constructed such that the individual gene segments are unrearranged, i.e., not rearranged so as to encode a functional immunoglobulin light or heavy chain.
  • Such unrearranged transgenes permit recombination of the gene segments (functional rearrangement) and expression of the resultant rearranged immunoglobulin heavy and/or light chains within the transgenic non-human animal when said animal is exposed to antigen.
  • heterologous heavy and light immunoglobulin transgenes comprise relatively large fragments of unrearranged heterologous DNA. Such fragments typically comprise a substantial portion of the C, J (and in the case of heavy chain, D) segments from a heterologous immunoglobulin locus. In addition, such fragments also comprise a substantial portion of the variable gene segments.
  • regulatory sequences e.g. promoters, enhancers, class switch regions, recombination signals and the like, corresponding to sequences derived from the heterologous DNA.
  • regulatory sequences may be incorporated into the transgene from the same or a related species of the non-human animal used in the invention.
  • human immunoglobulin gene segments may be combined in a transgene with a rodent immunoglobulin enhancer sequence for use in a transgenic mouse.
  • a transgenic non-human animal containing germline unrearranged light and heavy immunoglobulin transgenes - that undergo VDJ joining during D-cell differentiation - is contacted with an antigen to induce production of a heterologous antibody in a secondary repertoire B-cell.
  • vectors and methods to disrupt the endogenous immunoglobulin loci in the non-human animal to be used in the invention utilize a transgene, preferably positive-negative selection vector, which is constructed such that it targets the functional disruption of a class of gene segments encoding a heavy and/or light immunoglobulin chain endogenous to the non-human animal used in the invention.
  • Such endogenous gene segments include diversity, joining and constant region gene segments.
  • positive-negative selection vector is contacted with at least one embryonic stem cell of a non-human animal after which cells are selected wherein the positive-negative selection vector has integrated into the genome of the non-human animal by way of homologous recombination.
  • the resultant transgenic non-human animal is substantially incapable of mounting an immunoglobulin-mediated immune response as a result of homologous integration of the vector into chromosomal DNA.
  • immune deficient non-human animals may thereafter be used for study of immune deficiencies or used as the recipient of heterologous immunoglobulin heavy and light chain transgenes.
  • the invention also provides vectors, methods, and compositions useful for suppressing the expression of one or more species of immunoglobulin chain(s), without disrupting an endogenous immunoglobulin locus. Such methods are useful for suppressing expression of one or more endogenous immunoglobulin chain(s), without disrupting an endogenous immunoglobulin locus. Such methods are useful for suppressing expression of one or more endogenous immunoglobulin chain(s), without disrupting an endogenous immunoglobulin locus. Such methods are useful for suppressing expression of one or more endogenous
  • immunoglobulin chains while permitting the expression of one or more transgene-encoded immunoglobulin chains.
  • suppression of immunoglobulin chain expression does not require the time-consuming breeding that is needed to
  • Ig chain suppression may be accomplished with: (1) transgenes encoding and expressing antisense RNA that specifically hybridizes to an endogenous Ig chain gene sequence, (2) antisense oligonucleotides that specifically hybridize to an endogenous Ig chain gene
  • immunoglobulins that bind specifically to an endogenous Ig chain polypeptide.
  • the invention provides transgenic non-human animals comprising: a homozygous pair of functionally disrupted endogenous heavy chain alleles, a homozygous pair of
  • immunoglobulin heavy chain transgene wherein said animal makes an antibody response following immunization with an antigen, such as a human antigen (e.g., CD4).
  • an antigen such as a human antigen (e.g., CD4).
  • the invention also provides such a transgenic non-human animal wherein said functionally disrupted endogenous heavy chain allele is a J H region homologous recombination knockout, said functionally disrupted endogenous light chain allele is a J ⁇ region
  • immunoglobulin heavy chain transgene is the HC1 or HC2 human minigene transgene
  • said heterologous light chain transgene is the KC2 or KC1e human ⁇ transgene
  • said antigen is a human antigen
  • the invention also provides various embodiments for suppressing, ablating, and/or functionally disrupting the endogenous nonhuman immunoglobulin loci.
  • the invention also provides transgenic mice expressing both human sequence heavy chains and chimeric heavy chains comprising a human sequence heavy chain variable region and a murine sequence heavy chain constant region.
  • Such chimeric heavy chains are generally produced by transswitching between a functionally rearranged human transgene and an endogenous murine heavy chain constant region (e.g., ⁇ 1, ⁇ 2a, ⁇ 2b, ⁇ 3).
  • Antibodies comprising such chimeric heavy chains typically in combination with a transgene-encoded human sequence light chain or endogenous murine light chain, are formed in response to immunization with a predetermined antigen.
  • the transgenic mice of these embodiments can comprise B cells which produce (express) a human sequence heavy chain at a first timepoint and trans-switch to produce (express) a chimeric heavy chain composed of a human variable region and a murine constant region (e.g., ⁇ 1, ⁇ 2a, ⁇ 2b, ⁇ 3) at a second (subsequent) timepoint; such human sequence and chimeric heavy chains are incorporated into functional
  • the transgenic mice of these embodiments can comprise B cells which express a human sequence heavy chain and subsequently switch (via trans-switching or cis-switching) to express a chimeric or isotype-switched heavy chain composed of a human variable region and a alternative constant region (e.g., murine ⁇ 1, ⁇ 2a, ⁇ 2b, ⁇ 3; human ⁇ , ⁇ , ⁇ ); such human sequence and chimeric or isotype-switched heavy chains are incorporated into functional antibodies with light chains (human or mouse); such antibodies are present in the serum of such transgenic mice.
  • a human sequence heavy chain and subsequently switch (via trans-switching or cis-switching) to express a chimeric or isotype-switched heavy chain composed of a human variable region and a alternative constant region (e.g., murine ⁇ 1, ⁇ 2a, ⁇ 2b, ⁇ 3; human ⁇ , ⁇ , ⁇ ); such human sequence and chimeric or isotype-
  • Fig. 1 depicts the complementarity determining regions CDR1, CDR2 and CDR3 and framework regions FR1, FR2, FR3 and FR4 in unrearranged genomic DNA and mRNA expressed from a rearranged immunoglobulin heavy chain gene
  • Fig. 2 depicts the human ⁇ chain locus.
  • Fig. 3 depicts the human ⁇ chain locus
  • Fig. 4 depicts the human heavy chain locus
  • Fig. 5 depicts a transgene construct containing a rearranged IgM gene ligated to a 25 kb fragment that contains human ⁇ 3 and ⁇ 1 constant regions followed by a 700 bp fragment containing the rat chain 3' enhancer sequence.
  • Fig. 6 is a restriction map of the human ⁇ chain locus depicting the fragments to be used to form a light chain transgene by way of in vivo homologous recombination.
  • Fig. 7 depicts the construction of pGP1.
  • Fig. 8 depicts the construction of the polylinker contained in pGP1.
  • Fig. 9 depicts the fragments used to construct a human heavy chain transgene of the invention.
  • Fig. 10 depicts the construction of pHIG1 and pCON1.
  • Fig. 11 depicts the human C ⁇ 1 fragments which are inserted into pRE3 (rat enhancer 3') to form pREG2.
  • Fig. 12 depicts the construction of pHIG3' and PCON.
  • Fig. 13 depicts the fragment containing human D region segments used in construction of the transgenes of the invention.
  • Fig. 14 depicts the construction of pHIG2 (D segment containing plasmid).
  • Fig. 15 depicts the fragments covering the human J ⁇ and human C ⁇ gene segments used in constructing a transgene of the invention.
  • Fig. 16 depicts the structure of pE ⁇ .
  • Fig. 17 depicts the construction of pKapH.
  • Figs. 18A through 18D depict the construction of a positive-negative selection vector for functionally disrupting the endogenous heavy chain immunoglobulin locus of mouse.
  • Figs. 19A through 19C depict the construction of a positive-negative selection vector for functionally disrupting the endogenous immunoglobulin light chain loci in mouse.
  • Figs. 20A through 20E depict the structure of a kappa light chain targeting vector.
  • Figs. 21A through 21F depict the structure of a mouse heavy chain targeting vector.
  • Fig. 22 depicts the map of vector pGPe.
  • Fig. 23 depicts the structure of vector pJM2.
  • Fig. 24 depicts the structure of vector pCOR1.
  • Fig. 25 depicts the transgene constructs for pIGM1, pHC1 and pHC2.
  • Fig. 26 depicts the structure of P ⁇ e2.
  • Fig. 27 depicts the structure of pVGE1.
  • Fig. 28 depicts the assay results of human Ig expression in a pHC1 transgenic mouse.
  • Fig. 29 depicts the structure of pJCK1.
  • Fig. 30 depicts the construction of a synthetic heavy chain variable region.
  • Fig. 31 is a schematic representation of the heavy chain minilocus constructs pIGM 1 , pHC1, and pHC2.
  • Fig. 32 is a schematic representation of the heavy chain minilocus construct pIGG1 and the ⁇ light chain
  • Fig. 33 depicts a scheme to reconstruct functionally rearranged light chain genes.
  • Fig. 34 depicts serum ELISA results
  • Fig. 35 depicts the results of an ELISA assay of serum from 8 transgenic mice.
  • Fig. 36 is a schematic representation of plasmid pBCE1.
  • Figs. 37A-37C depict the immune response of transgenic mice of the present invention against KLH-DNP, by measuring IgG and IgM levels specific for KLH-DNP (37A), KLH (37B) and BSA-DNP (37C).
  • Fig. 38 shows ELISA data demonstrating the presence of antibodies that bind human carcinoembryonic antigen (CEA) and comprise human ⁇ chains; each panel shows reciprocal serial dilutions from pooled serum samples obtained from mice on the indicated day following immunization.
  • CEA carcinoembryonic antigen
  • Fig. 39 shows ELISA data demonstrating the presence of antibodies that bind human carcinoembryonic antigen (CEA) and comprise human ⁇ chains; each panel shows reciprocal serial dilutions from pooled serum samples obtained from mice on the indicated day following immunization.
  • CEA carcinoembryonic antigen
  • Fig. 40 shows aligned variable region sequences of 23 randomly-chosen cDNAs generated from mRNA obtained from lymphoid tissue of HC1 transgenic mice immunized with human carcinoembryonic antigen (CEA) as compared to the germline transgene sequence (top line); on each line nucleotide changes relative to germline sequence are shown above the alteration in deduced amino acid sequence (if any); the regions
  • Non-germline encoded nucleotides are shown in capital letters.
  • Germline V H 251 and J H are shown in lower case letters.
  • Deduced amino acid changes are given beneath
  • Fig. 41 show the nucleotide sequence of a human DNA fragment, designated vk65.3, containing a V ⁇ gene segment; the deduced amino acid sequences of the V ⁇ coding regions are also shown; splicing and recombination signal sequences
  • Fig. 42 show the nucleotide sequence of a human DNA fragment, designated vk65.5, containing a V ⁇ gene segment; the deduced amino acid sequences of the V ⁇ coding regions are also shown; splicing and recombination signal sequences
  • Fig. 43 show the nucleotide sequence of a human DNA fragment, designated vk65.8, containing a V ⁇ gene segment; the deduced amino acid sequences of the V ⁇ coding regions are also shown; splicing and recombination signal sequences
  • Fig. 44 show the nucleotide sequence of a human DNA fragment, designated vk65.15, containing a V ⁇ gene segment; the deduced amino acid sequences of the V ⁇ coding regions are also shown; splicing and recombination signal sequences
  • Fig. 45 shows formation of a light chain minilocus by homologous recombination between two overlapping fragments which were co-injected.
  • Fig. 46 shows ELISA results for monoclonal antibodies reactive with CEA and non-CEA antigens showing the specificity of antigen binding.
  • Fig. 47 shows the DNA sequences of 10 cDNAs amplified by PCR to amplify transcripts having a human VDJ and a murine constant region sequence.
  • Fig. 48 shows ELISA results for various dilutions of serum obtained from mice bearing both a human heavy chain minilocus transgene and a human ⁇ minilocus transgene; the mouse was immunized with human CD4 and the data shown
  • Fig. 49 shows relative distribution of lymphocytes staining for human ⁇ or mouse ⁇ as determined by FACS for three mouse genotypes.
  • Fig. 50 shows relative distribution of lymphocytes staining for human ⁇ or mouse ⁇ as determined by FACS for three mouse genotypes.
  • Fig. 51 shows relative distribution of lymphocytes staining for mouse ⁇ as determined by FACS for three mouse genotypes.
  • Fig. 52 shows relative distribution of lymphocytes staining for mouse ⁇ or human ⁇ as determined by FACS for four mouse genotypes.
  • Fig. 53 shows the amounts of human ⁇ , human ⁇ , human ⁇ , mouse ⁇ , mouse ⁇ , mouse ⁇ , and mouse ⁇ chains in the serum of unimmunized 0011 mice.
  • Fig. 54 shows a scatter plot showing the amounts of human ⁇ , human ⁇ , human ⁇ , mouse ⁇ , mouse y, mouse ⁇ , and mouse ⁇ chains in the serum of unimmunized 0011 mice of various genotypes.
  • Fig. 55 shows the titres of antibodies comprising human ⁇ , human ⁇ , or human ⁇ chains in anti-CD4 antibodies in the serum taken at three weeks or seven weeks post-immunization following immunization of a 0011 mouse with human CD4.
  • Fig. 56 shows a schematic representation of the human heavy chain minilocus transgenes pHC1 and pHC2, and the light chain minilocus transgenes pKC1, pKC1e, and the light chain minilocus transgene created by homologous recombination between pKC2 and Co4 at the site indicated.
  • Fig. 57 shows a linkage map of the murine lambda light chain locus as taken from Storb et al. (1989) op.cit.; the stippled boxes represent a pseudogene.
  • Fig. 58 shows a schematic representation of
  • Fig. 59 schematically shows the structure of a homologous recombination targeting transgene for deleting genes, such as heavy chain constant region genes.
  • Fig. 60 shows a map of the BALB/c murine heavy chain locus as taken from Immunoglobulin Genes, Honjo, T, Alt, FW, and Rabbits TH (eds.) Academic Press, NY (1989) p. 129.
  • Structural genes are shown by closed boxes in the top line; second and third lines show restriction sites with symbols indicated.
  • Fig. 61 shows a nucleotide sequence of mouse heavy chain locus ⁇ constant region gene.
  • Fig. 62 shows the construction of a frameshift vector (plasmid B) for introducing a two bp frameshift into the murine heavy chain locus J 4 gene.
  • Fig. 63 shows isotype specific response of transgenic animals during hyperimmunization. The relative levels of reactive human ⁇ and ⁇ 1 are indicated by a
  • Fig. 64A and 64B show expression of transgene encoded ⁇ 1 isotype mediated by class switch recombination.
  • FIG. 64A shows a Southern blot of PacI/SfiI digested DNA isolated from three transgene expressing hybridomas. From left to right: clone 92-09A-5H1-5, human ⁇ 1 + / ⁇ -; clone 92-90A-4G2-2, human ⁇ 1 + / ⁇ -; clone 92-09A-4F7-A5-2, human ⁇ 1-, ⁇ + . All three hybridomas are derived from a ⁇ month old male mouse
  • Fig. 64B is a diagram of two possible deletional mechanisms by which a class switch from ⁇ to ⁇ 1 can occur.
  • the human ⁇ gene is flanked by 400 bp direct repeats ( ⁇ and ⁇ ) which can recombine to delete ⁇ . Class switching by this mechanism will always generate a 6.4 kb PacI/SfiI fragment, while class switching by recombination between the ⁇ and the ⁇ 1 switch regions will generate a PacI/Sfil fragment between 4 and ⁇ kb, with size variation between individual switch events.
  • the two ⁇ 1 expressing hybridomas examined in Fig. 64A appear to have undergone recombination between the ⁇ and ⁇ 1 switch regions.
  • Fig. 65 shows chimeric human/mouse immunoglobulin heavy chains generated by trans-switching.
  • cDNA clones of trans-switch products were generated by reverse transcription and PCR amplification of a mixture of spleen and lymph node RNA isolated from a hyperimmunized HC1 transgenic-JHD mouse (#2357; see legend to Fig. 63 for description of animal and immunization schedule).
  • the partial nucleotide sequence of 10 randomly picked clones is shown. Lower case letters indicate germline encoded, capital letters indicate nucleotides that cannot be assigned to known germline sequences; these may be somatic mutations, N nucleotides, or truncated D segments. Both face type indicates mouse ⁇ sequences.
  • Figs. 66A and 66B show that the rearranged VH251 transgene undergoes somatic mutation in a hyperimmunized.
  • sequence is shown at the top; nucleotide changes from germline are given for each clone. A period indicates identity with germline sequence, capital letters indicate no identified germline origin. The sequences are grouped according to J segment usage. The germline sequence of each of the J segments if shown. Lower case letters within CDR3 sequences indicate identity to known D segment included in the HC1 transgene. The assigned D segments are indicated at the end of each sequence. Unassigned sequences could be derived from N region addition or somatic mutation; or in some cases they are simply too short to distinguish random N nucleotides from known D segments.
  • Fig. 66A primary response 13 randomly picked VH251- ⁇ 1 cDNA clones.
  • a 4 week old female HC1 line 26-JHD mouse (#2599) was given a single injection of KLH and complete Freunds adjuvant; spleen cell RNA was isolated 5 days later.
  • the overall frequency of somatic mutations within the V segment is 0.06% (2/3,198 bp).
  • Fig. 66B secondary response 13 randomly picked VH251- ⁇ 1 cDNA clones.
  • a 2 month old female HC1 line 26-JHD mouse (#3204) was given 3 injections of HEL and Freunds adjuvant over one month (a primary injection with complete adjuvant and boosts with incomplete at one week and 3 weeks); spleen and lymph node RNA was isolated 4 months later.
  • the overall frequency of somatic mutations within the V segment is 1.6% (52/3,198 bp).
  • Figs. 67A and 67B show that extensive somatic mutation is confined to ⁇ 1 sequences: somatic mutation and class switching occur within the same population of B cells.
  • Fig. 67A IgM: 23 randomly picked VH251- ⁇ cDNA clones. Nucleotide sequence of 156 bp segment including CDRs 1 and 2 surrounding residues. The overall level of somatic mutation is 0.1% (5/3,744 bp).
  • Fig 67B IgG: 23 randomly picked VH251- ⁇ I cDNA clones. Nucleotide sequence of segment including CDRs 1 through 3 and surrounding
  • Fig. 68 indicates that VH51P1 and VH56P1 show extensive somatic mutation of in an unimmunized mouse.
  • the overall frequency of somatic mutation with the 19 VH56p1 segments is 2.2%
  • Double transgenic mice with disrupted endogenous Ig loci contain human IgM/c positive B cells. FACS of cells isolated from spleens of 4 mice with different genotypes.
  • Left column control mouse (#9944, 6 wk old female JH+/-, JC ⁇ +/- ; heterozygous wild-type mouse heavy and ⁇ -light chain loci, non-transgenic).
  • Second column human heavy chain transgenic (#9877, 6 wk old female JH-/-, JC ⁇ -/-, HC2 line 2550 +; homozygous for disrupted mouse heavy and ⁇ -light chain loci, hemizygous for HC2 transgene).
  • Third column human ⁇ -light chain transgenic (#9878, 6 wk old female JH-/-, JC ⁇ -/-, KCo4 line 4437 +; homozygous for
  • Second row spleen cells stained for expression of human ⁇ heavy chain (x-axis) and human ⁇ light chain (y-axis).
  • Third row spleen cells stained for expression of mouse ⁇ heavy chain (x-axis) and mouse ⁇ light chain (y-axis).
  • Bottom row histogram of spleen cells stained for expression of mouse B220 antigen (log fluorescence: x-axis; cell number: y-axis).
  • Fig. 70 Secreted immunoglobulin levels in the serum of double transgenic mice. Human ⁇ , ⁇ , and ⁇ , and mouse ⁇ and ⁇ from 18 individual HC2/KCo4 double transgenic mice homozygous for endogenous heavy and ⁇ -light chain locus disruption. Mice: (+) HC2 line 2550 (-5 copies of HC2 per integration), KCo4 line 4436 (1-2 copies of KCo4 per
  • HC2 line 2550, KCo4 line 4437 (-10 copies of KCo4 per integration);
  • HC2 line 2550, KCo4 line 4583 (-5 copies of KCo4 per integration);
  • D HC2 line 2572 (30-50 copies of HC2 per integration, KCo4 line 4437;
  • HC2 line 5467 (20-30 copies of HC2 per integration, KCo4 line 4437.
  • Figs. 71A and 71B show human antibody responses to human antigens.
  • Fig. 71A Primary response to recombinant human soluble CD4. Levels of human IgM and human ⁇ light chain are reported for prebleed (0) and post-immunization (•) serum from four double transgenic mice.
  • Fig. 71B Switching to human IgG occurs in vivo . Human IgG (circles) was detected with peroxidase conjugated polyclonal anti-human IgG used in the presence of 1.5 ⁇ /ml excess IgE, ⁇ and 1% normal mouse serum to inhibit non-specific cross-reactivity.
  • Fig. 72 shows FACS analysis of human PBL with a hybridoma supernatant that discriminates human CD4+
  • lymphocytes from human CD8+ lymphocytes from human CD8+ lymphocytes.
  • Fig. 73 shows human ⁇ -CD4 IgM anf IgG in transgenic mouse serum.
  • Fig. 74 shows competition binding experiments comparing a transgenic mouse ⁇ -human CD4 hybridoma monoclonal, 2C11-8, to the RPA-TA and Leu-3A monoclonals.
  • Fig. 75 shows production data for Ig expression of cultured 2C11-8 hybridoma.
  • Table 1 depicts the sequence of vector pGPe.
  • Table 2 depicts the sequence of gene V H 49.8.
  • Table 3 depicts the detection of human IgM and IgG in the serum of transgenic mice of this invention.
  • Table 4 depicts sequences of VDJ joints.
  • Table 5 depicts the distribution of J segments incorporated into pHC1 transgene encoded transcripts to J segments found in adult human peripheral blood lymphocytes (PBL).
  • Table 6 depicts the distribution of D segments incorporated into pHC1 transgene encoded transcripts to D segments found in adult human peripheral blood lymphocytes (PBL).
  • Table 7 depicts the length of the CDR3 peptides from transcripts with in-frame VDJ joints in the pHC1 transgenic mouse and in human PBL.
  • Table 8 depicts the predicted amino acid sequences of the VDJ regions from 30 clones analyzed from a pHC1
  • Table 9 shows transgenic mice of line 112 that were used in the indicated experiments; (+) indicates the presence of the respective transgene, (++) indicates that the animal is homozygous for the J H D knockout transgene.
  • Table 10 shows the genotypes of several 0011 mice.
  • Table 11 shows transgene V and J segment usage.
  • Table 12 shows the occurrence of somatic mutation in the HC2 heavy chain transgene in transgenic mice.
  • the immunized animal that serves as the source of B cells must make an immune response against the presented antigen.
  • the antigen presented In order for an animal to make an immune response, the antigen presented must be foreign and the animal must not be tolerant to the antigen.
  • self-tolerance will prevent an immunized human from making a substantial immune response to the human protein, since the only epitopes of the antigen that may be immunogenic will be those that result from polymorphism of the protein within the human population
  • One methodology that can be used to obtain human antibodies that are specifically reactive with human antigens is the production of a transgenic mouse harboring the human immunoglobulin transgene constructs of this invention.
  • transgenes containing all or portions of the human immunoglobulin heavy and light chain loci or transgenes containing synthetic "miniloci" (described infra , and in copending applications U.S.S.N. 07/990,860, filed 16 December 1992, U.S.S.N. 07/810,279 filed 17 December 1991, U.S.S.N. 07/904,068 filed 23 June 1992; U.S.S.N. 0 ⁇ /853,408, filed 18 March 1992, U.S.S.N. 0 ⁇ /5 ⁇ 4, ⁇ 48 filed August 29, 1990,
  • transgenic nonhuman animal Such a transgenic nonhuman animal will have the capacity to produce immunoglobulin chains that are encoded by human immunoglobulin genes, and additionally will be capable of making an immune response against human antigens.
  • transgenic animals can serve as a source of immune sera reactive with specified human antigens, and B-cells from such transgenic animals can be fused with myeloma cells to produce hybridomas that secrete monoclonal antibodies that are encoded by human immunoglobulin genes and which are specifically reactive with human antigens.
  • transgenic mice containing various forms of immunoglobulin genes has been reported previously.
  • Rearranged mouse immunoglobulin heavy or light chain genes have been used to produce transgenic mice.
  • functionally rearranged human Ig genes including the ⁇ or ⁇ 1 constant region have been expressed in transgenic mice.
  • V-D-J or V-J not rearranged immunoglobulin genes have been variable, in some cases, producing incomplete or minimal rearrangement of the transgene.
  • immunoglobulin transgenes which undergo successful isotype switching between C H genes within a transgene.
  • the invention also provides a method for identifying candidate hybridomas which secrete a monoclonal antibody comprising a human immunoglobulin chain consisting essentially of a human VDJ sequence in polypeptide linkage to a human constant region sequence.
  • candidate hybridomas are identified from a pool of hybridoma clones comprising: (1) hybridoma clones that express immunoglobulin chains consisting essentially of a human VDJ region and a human constant region, and (2) trans-switched hybridomas that express heterohybrid immunoglobulin chains consisting essentially of a human VDJ region and a murine constant region.
  • the supernatant(s) of individual or pooled hybridoma clones is contacted with a predetermined antigen, typically an antigen which is
  • a solid substrate e.g., a microtitre well
  • An antibody that specifically binds to human constant regions is also contacted with the hybridoma supernatant and predetermined antigen under binding conditions so that the antibody selectively binds to at least one human constant region epitope but substantially does not bind to murine constant region epitopes; thus forming complexes consisting essentially of hybridoma supernatant (transgenic monoclonal antibody) bound to a predetermined antigen and to an antibody that specifically binds human constant regions (and which may be labeled with a detectable label or
  • antibody refers to a glycoprotein comprising at least two light polypeptide chains and two heavy polypeptide chains. Each of the heavy and light polypeptide chains contains a variable region (generally the amino terminal portion of the polypeptide chain) which
  • Each of the heavy and light polypeptide chains also comprises a constant region of the polypeptide chains (generally the carboxyl terminal portion) which may mediate the binding of the immunoglobulin to host tissues or factors including various cells of the immune system, some phagocytic cells and the first component (C1q) of the classical complement system.
  • a heterologous antibody is defined in relation to the transgenic non-human organism producing such an antibody. It is defined as an antibody having an amino acid sequence or an encoding DNA sequence corresponding to that found in an organism not consisting of the transgenic non-human animal, and generally from a species other than that of the transgenic non-human animal.
  • hybrid antibody refers to an antibody having a light and heavy chains of different organismal origins.
  • an antibody having a human heavy chain associated with a murine light chain is a
  • heterohybrid antibody refers to the antibody class (e.g., IgM or IgG 1 ) that is encoded by heavy chain constant region genes.
  • isotype switching refers to the phenomenon by which the class, or isotype, of an antibody changes from one Ig class to one of the other Ig classes.
  • nonswitched isotype refers to the isotypic class of heavy chain that is produced when no isotype switching has taken place; the C H gene encoding the
  • nonswitched isotype is typically the first C H gene immediately downstream from the functionally rearranged VDJ gene.
  • switch sequence refers to those DNA sequences responsible for switch recombination.
  • a "switch donor” sequence typically a ⁇ switch region, will be 5' (i.e., upstream) of the construct region to be deleted during the switch recombination.
  • the "switch acceptor” region will be between the construct region to be deleted and the replacement constant region (e.g., ⁇ , e, etc.). As there is no specific site where recombination always occurs, the final gene sequence will typically not be predictable from the construct.
  • glycosylation pattern is defined as the pattern of carbohydrate units that are covalently attached to a protein, more specifically to an immunoglobulin protein.
  • a glycosylation pattern of a heterologous antibody can be characterized as being substantially similar to
  • glycosylation patterns which occur naturally on antibodies produced by the species of the nonhuman transgenic animal, when one of ordinary skill in the art would recognize the glycosylation pattern of the heterologous antibody as being more similar to said pattern of glycosylation in the species of the nonhuman transgenic animal than to the species from which the C H genes of the transgene were derived.
  • telomere binding refers to the property of the antibody: (1) to bind to a predetermined antigen with an affinity of at least 1 ⁇ 10 7 M -1 , and (2) to preferentially bind to the predetermined antigen with an affinity that is at least two-fold greater than its affinity for binding to a non-specific antigen (e.g., BSA, casein) other than the predetermined antigen or a closely-related antigen.
  • a non-specific antigen e.g., BSA, casein
  • naturally-occurring refers to the fact that an object can be found in nature.
  • a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory is naturally-occurring.
  • rearranged refers to a configuration of a heavy chain or light chain immunoglobulin locus wherein a V segment is positioned immediately adjacent to a D-J or J segment in a conformation encoding essentially a complete V H or V L domain, respectively.
  • immunoglobulin gene locus can be identified by comparison to germline DNA; a rearranged locus will have at least one recombined heptamer/nonamer homology element.
  • V segment configuration refers to the configuration wherein the V segment is not recombined so as to be immediately adjacent to a D or J segment.
  • nucleic acids For nucleic acids, the term "substantial homology" indicates that two nucleic acids, or designated sequences thereof, when optimally aligned and compared, are identical, with appropriate nucleotide insertions or deletions, in at least about 80% of the nucleotides, usually at least about 90% to 95%, and more preferably at least about 98 to 99.5% of the nucleotides. Alternatively, substantial homology exists when the segments will hybridize under selective hybridization conditions, to the complement of the strand.
  • the nucleic acids may be present in whole cells, in a cell lysate, or in a partially purified or substantially pure form.
  • a nucleic acid is "isolated” or “rendered substantially pure” when purified away from other cellular components or other contaminants, e.g. , other cellular nucleic acids or proteins, by standard techniques, including alkaline/SDS treatment, CsCl banding, column chromatography, agarose gel electrophoresis and others well known in the art. See. F. Ausubel, et al., ed. Current Protocols in Molecular Biology, Greene Publishing and Wiley-Interscience, New York (198 ⁇ ).
  • nucleic acid compositions of the present invention while often in a native sequence (except for modified restriction sites and the like), from either cDNA, genomic or mixtures may be mutated, thereof in accordance with standard techniques to provide gene sequences. For coding sequences, these mutations, may affect amino acid sequence as desired.
  • DNA sequences substantially
  • a nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence.
  • a promoter or enhancer is operably linked to a coding sequence if it affects the
  • operably linked means that the DNA sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in reading frame.
  • operably linked indicates that the sequences are capable of effecting switch recombination.
  • the transgenes of the invention are constructed so as to produce isotype switching and one or more of the following: (1) high level and cell-type specific expression,
  • the transgene need not activate allelic exclusion.
  • the transgene comprises a
  • transgenic non-human animals contain rearranged, unrearranged or a combination of rearranged and unrearranged heterologous immunoglobulin heavy and light chain transgenes in the
  • Each of the heavy chain transgenes comprises at least one C H gene.
  • the heavy chain transgene may contain functional isotype switch sequences, which are capable of supporting isotype switching of a heterologous transgene encoding multiple C H genes in B-cells of the transgenic animal.
  • Such switch sequences may be those which occur naturally in the germline immunoglobulin locus from the species that serves as the source of the transgene C H genes, or such switch sequences may be derived from those which occur in the species that is to receive the transgene construct (the transgenic animal) .
  • a human transgene construct that is used to produce a transgenic mouse may produce a higher frequency of isotype switching events if it incorporates switch sequences similar to those that occur naturally in the mouse heavy chain locus, as presumably the mouse switch sequences are optimized to function with the mouse switch recombinase enzyme system, whereas the human switch sequences are not.
  • Switch sequences made be isolated and cloned by conventional cloning methods, or may be synthesized de novo from overlapping synthetic oligonucleotides designed on the basis of published sequence information relating to immunoglobulin switch region sequences (Mills et al., Nucl. Acids Res. 18: ⁇ 305- ⁇ 316 (1991);
  • heterologous heavy and light chain immunoglobulin transgenes are found in a significant fraction of the B-cells of the transgenic animal (at least 10 percent).
  • the transgenes of the invention include a heavy chain transgene comprising DNA encoding at least one variable gene segment, one diversity gene segment, one joining gene segment and at least one constant region gene segment.
  • the immunoglobulin light chain transgene comprises DNA encoding at least one variable gene segment, one joining gene segment and at least one constant region gene segment.
  • the gene segments encoding the light and heavy chain gene segments are
  • the transgene is constructed such that the individual gene segments are unrearranged, i.e., not rearranged so as to encode a functional immunoglobulin light or heavy chain.
  • unrearranged transgenes support
  • V, D, and J gene segments preferably support incorporation of all or a portion of a D region gene segment in the resultant
  • the transgenes comprise an unrearranged "mini-locus".
  • Such transgenes typically comprise a substantial portion of the C, D, and J segments as well as a subset of the V gene segments.
  • the various regulatory sequences e.g. promoters, enhancers, class switch regions, splice-donor and splice- acceptor sequences for RNA processing, recombination signals and the like, comprise corresponding sequences derived from the heterologous DNA.
  • Such regulatory sequences may be incorporated into the transgene from the same or a related species of the non-human animal used in the invention.
  • human immunoglobulin gene segments may be combined in a transgene with a rodent immunoglobulin enhancer sequence for use in a transgenic mouse.
  • synthetic regulatory sequences may be incorporated into the transgene, wherein such synthetic regulatory sequences are not homologous to a
  • a minilocus comprises a portion of the genomic immunoglobulin locus having at least one internal (i.e., not at a terminus of the portion) deletion of a non-essential DNA portion (e.g., intervening sequence; intron or portion thereof) as compared to the naturally-occurring germline Ig locus.
  • the invention also includes transgenic animals containing germ line cells having a heavy and light transgene wherein one of the said transgenes contains rearranged gene segments with the other containing unrearranged gene segments.
  • the rearranged transgene is a light chain immunoglobulin transgene and the unrearranged transgene is a heavy chain immunoglobulin transgene.
  • the basic structure of all immunoglobulins is based upon a unit consisting of two light polypeptide chains and two heavy polypeptide chains. Each light chain comprises two regions known as the variable light chain region and the constant light chain region. Similarly, the immunoglobulin heavy chain comprises two regions designated the variable heavy chain region and the constant heavy chain region.
  • the constant region for the heavy or light chain is encoded by genomic sequences referred to as heavy or light constant region gene (C H ) segments.
  • C H heavy or light constant region gene
  • the use of a particular heavy chain gene segment defines the class of immunoglobulin.
  • the ⁇ constant region gene segments define the IgM class of antibody whereas the use of a ⁇ , ⁇ 2, ⁇ 3 or ⁇ 4 constant region gene segment defines the IgG class of antibodies as well as the IgG subclasses IgG1 through IgG4.
  • the use of a ⁇ 1 or ⁇ 2 constant region gene segment defines the IgA class of antibodies as well as the subclasses IgA1 and lgA2.
  • the ⁇ and ⁇ constant region gene segments define the IgD and IgE antibody classes, respectively.
  • variable regions of the heavy and light immunoglobulin chains together contain the antigen binding domain of the antibody. Because of the need for diversity in this region of the antibody to permit binding to a wide range of antigens, the DNA encoding the initial or primary
  • repertoire variable region comprises a number of different DNA segments derived from families of specific variable region gene segments.
  • families comprise variable (V) gene segments and joining (J) gene segments.
  • V variable
  • J joining
  • the initial variable region of the light chain is encoded by one V gene segment and one J gene segment each selected from the family of V and J gene segments contained in the genomic DNA of the organism.
  • the DNA encoding the initial or primary repertoire variable region of the heavy chain comprises one heavy chain V gene segment, one heavy chain diversity (D) gene segment and one J gene segment, each selected from the appropriate V, D and J families of
  • a heavy chain transgene include cis-acting sequences that support functional V-D-J rearrangement that can incorporate all or part of a D region gene sequence in a rearranged V-D-J gene sequence. Typically, at least about 1 percent of
  • transgene-encoded heavy chains include recognizable D region sequences in the V region.
  • at least about 10 percent of transgene-encoded V regions include recognizable D region sequences, more preferably at least about 30 percent, and most preferably more than 50 percent include recognizable D region sequences.
  • a recognizable D region sequence is generally at least about eight consecutive nucleotides corresponding to a sequence present in a D region gene segment of a heavy chain transgene and/or the amino acid sequence encoded by such D region nucleotide sequence.
  • a transgene includes the D region gene DHQ52
  • a transgene sequence is recognizable as containing a D region sequence, specifically a DHQ52 sequence.
  • a transgene includes the D region gene DHQ52
  • a transgene-encoded heavy chain polypeptide containing the amino acid sequence -DAF- located in the V region between a V gene segment amino acid sequence and a J gene segment amino acid sequence may be recognizable as containing a D region
  • D region segments may be incorporated in VDJ joining to various extents and in various reading frames, a comparison of the D region area of a heavy chain variable region to the D region segments present in the transgene is necessary to determine the incorporation of particular D segments.
  • potential exonuclease digestion during recombination may lead to imprecise V-D and D-J joints during V-D-J recombination.
  • D region sequences may be recognizable but may not correspond identically to a consecutive D region sequence in the transgene.
  • a nucleotide sequence 5'- CTAAXTGGGG-3', where X is A, T, or G, and which is located in a heavy chain V region and flanked by a V region gene sequence and a J region gene sequence can be recognized as
  • polypeptide sequences -DAFDI-, -DYFDY-, or -GAFDI- located in a V region and flanked on the amino-terminal side by an amino acid sequence encoded by a transgene V gene sequence and flanked on the carboxyterminal side by an amino acid sequence encoded by a transgene J gene sequence is recognizable as a D region sequence.
  • amino acid sequence or nucleotide sequence is recognizable as a D region sequence if: (1) the sequence is located in a V region and is flanked on one side by a V gene sequence (nucleotide sequence or deduced amino acid sequence) and on the other side by a J gene sequence (nucleotide
  • sequence or deduced amino acid sequence and (2) the sequence is substantially identical or substantially similar to a known D gene sequence (nucleotide sequence or encoded amino acid sequence).
  • substantially identical denotes a characteristic of a polypeptide sequence or nucleic acid sequence, wherein the polypeptide sequence has at least 50 percent sequence identity compared to a reference sequence, and the nucleic acid sequence has at least ⁇ 0 percent sequence identity compared to a reference sequence.
  • the percentage of sequence identity is calculated excluding small deletions or additions which total less than 35 percent of the reference sequence.
  • the reference sequence may be a subset of a larger sequence, such as an entire D gene; however, the reference sequence is at least 8 nucleotides long in the case of
  • the reference sequence is at least 8 to 12 nucleotides or at least 3 to 4 amino acids, and preferably the reference sequence is 12 to 15 nucleotides or more, or at least 5 amino acids.
  • substantially similarity denotes a characteristic of an polypeptide sequence, wherein the
  • polypeptide sequence has at least 80 percent similarity to a reference sequence.
  • the percentage of sequence similarity is calculated by scoring identical amino acids or positional conservative amino acid substitutions as similar.
  • positional conservative amino acid substitution is one that can result from a single nucleotide substitution; a first amino acid is replaced by a second amino acid where a codon for the first amino acid and a codon for the second amino acid can differ by a single nucleotide substitution.
  • sequence -Lys-Glu-Arg-Val- is substantially similar to the sequence -Asn-Asp-Ser-Val-, since the codon sequence -AAA-GAA-AGA-GUU- can be mutated to -AAC-GAC-AGC-GUU-by introducing only 3 substitution mutations, single
  • the reference sequence may be a subset of a larger sequence, such as an entire D gene; however, the reference sequence is at least 4 amino residues long. Typically, the reference sequence is at least 5 amino acids, and preferably the
  • reference sequence is 6 amino acids or more.
  • immunoglobulin gene segments the V, D, J and constant (C) gene segments are found, for the most part, in clusters of V, D, J and C gene segments in the precursors of primary
  • RSS's recombination signal sequences
  • V, D and J segments flank recombinationally competent V, D and J segments.
  • RSS's necessary and sufficient to direct recombination comprise a dyad-symmetric heptamer, an AT-rich nonamer and an intervening spacer region of either 12 or 23 base pairs.
  • each V and D gene segment comprises the sequence CACAGTG or its analogue followed by a spacer of unconserved sequence and then a nonamer having the sequence ACAAAAACC or its analogue. These sequences are found on the J, or downstream side, of each V and D gene segment. Immediately preceding the germline D and J segments are again two recombination signal sequences, first the nonamer and then the heptamer again separated by an unconserved sequence. The heptameric and nonameric sequences following a V L , V H or D segment are complementary to those preceding the J L , D or J H segments with which they recombine. The spacers between the heptameric and nonameric sequences are either 12 base pairs long or between 22 and 24 base pairs long.
  • variable recombination between the V and J segments in the light chain and between the D and J segments of the heavy chain.
  • Such variable recombination is generated by variation in the exact place at which such segments are joined.
  • variation in the light chain typically occurs within the last codon of the V gene segment and the first codon of the J segment.
  • Similar imprecision in joining occurs on the heavy chain chromosome between the D and J H segments and may extend over as many as 10 nucleotides.
  • nucleotides may be inserted between the D and J H and between the V H and D gene segments which are not encoded by genomic DNA.
  • the addition of these nucleotides is known as N-region diversity.
  • RNA transcript After VJ and/or VDJ rearrangement, transcription of the rearranged variable region and one or more constant region gene segments located downstream from the rearranged variable region produces a primary RNA transcript which upon
  • RNA splicing results in an mRNA which encodes a full length heavy or light immunoglobulin chain.
  • heavy and light chains include a leader signal sequence to effect secretion through and/or insertion of the immunoglobulin into the transmembrane region of the B-cell.
  • the DNA encoding this signal sequence is contained within the first exon of the V segment used to form the variable region of the heavy or light immunoglobulin chain.
  • Appropriate regulatory sequences are also present in the mRNA to control translation of the mRNA to produce the encoded heavy and light immunoglobulin
  • polypeptides which upon proper association with each other form an antibody molecule.
  • variable region gene segments and the variable recombination which may occur during such joining is the production of a primary antibody repertoire.
  • each B-cell which has differentiated to this stage produces a single primary repertoire antibody.
  • cellular events occur which suppress the functional
  • allelic exclusion The process by which diploid B-cells maintain such mono-specificity is termed allelic exclusion.
  • B-cell clones expressing immunoglobulins from within the set of sequences comprising the primary repertoire are immediately available to respond to foreign antigens. Because of the limited diversity generated by simple VJ and VDJ joining, the antibodies produced by the so-called primary response are of relatively low affinity.
  • Two different types of B-cells make up this initial response: precursors of primary antibody-forming cells and precursors of secondary repertoire B-cells (Linton et al., Cell 59:1049-1059 (1989)).
  • the first type of B-cell matures into IgM-secreting plasma cells in response to certain antigens.
  • the other B-cells respond to initial exposure to antigen by entering a T-cell dependent maturation pathway.
  • the structure of the antibody molecule on the cell surface changes in two ways: the constant region switches to a non-IgM subtype and the sequence of the variable region can be modified by multiple single amino acid substitutions to produce a higher affinity antibody molecule.
  • variable region of a heavy or light Ig chain contains an antigen binding domain. It has been determined by amino acid and nucleic acid
  • CDR1, CDR2 and CDR3 also referred to as hypervariable regions 1, 2 and 3
  • the CDR1 and CDR2 are located within the variable gene segment whereas the CDR3 is largely the result of recombination between V and J gene segments or V, D and J gene segments.
  • Those portions of the variable region which do not consist of CDR1, 2 or 3 are commonly referred to as framework regions designated FR1, FR2, FR3 and FR4. See Fig. 1.
  • framework regions designated FR1, FR2, FR3 and FR4
  • rearranged DNA is mutated to give rise to new clones with altered Ig molecules.
  • Those clones with higher affinities for the foreign antigen are selectively expanded by helper
  • T-cells giving rise to affinity maturation of the expressed antibody.
  • Clonal selection typically results in expression of clones containing new mutation within the CDR1, 2 and/or 3 regions. However, mutations outside these regions also occur which influence the specificity and affinity of the antigen binding domain.
  • Transgenic non-human animals in one aspect of the invention are produced by introducing at least one of the immunoglobulin transgenes of the invention (discussed
  • non-human animals which are used in the invention generally comprise any mammal which is capable of rearranging immunoglobulin gene segments to produce a primary antibody response.
  • nonhuman transgenic animals may include, for example, transgenic pigs, transgenic rats, transgenic rabbits, transgenic cattle, and other transgenic animal species, particularly mammalian species, known in the art.
  • particularly preferred non-human animal is the mouse or other members of the rodent family.
  • mice any non-human mammal which is capable of mounting a primary and secondary antibody response may be used.
  • Such animals include non-human primates, such as chimpanzee, bovine, ovine, and porcine species, other members of the rodent family, e.g. rat, as well as rabbit and guinea pig.
  • Particular preferred animals are mouse, rat, rabbit and guinea pig, most preferably mouse.
  • various gene segments from the human genome are used in heavy and light chain transgenes in an unrearranged form.
  • such transgenes are introduced into mice.
  • the unrearranged gene segments of the light and/or heavy chain transgene have DNA sequences unique to the human species which are
  • the transgenes comprise rearranged heavy and/or light
  • transgenes corresponding to functionally rearranged VDJ or VJ segments contain immunoglobulin DNA sequences which are also clearly distinguishable from the endogenous immunoglobulin gene segments in the mouse.
  • sequences may be detected in the transgenic non-human animals of the invention with antibodies specific for immunoglobulin epitopes encoded by human immunoglobulin gene segments.
  • Transgenic B-cells containing unrearranged transgenes from human or other species functionally recombine the appropriate gene segments to form functionally rearranged light and heavy chain variable regions. It will be readily apparent that the antibody encoded by such rearranged
  • transgenes has a DNA and/or amino acid sequence which is heterologous to that normally encountered in the nonhuman animal used to practice the invention.
  • an "unrearranged immunoglobulin heavy chain transgene” comprises DNA encoding at least one variable gene segment, one diversity gene segment, one joining gene segment and one constant region gene segment.
  • Each of the gene segments of said heavy chain transgene are derived from, or has a sequence corresponding to, DNA encoding
  • an "unrearranged immunoglobulin light chain transgene” comprises DNA encoding at least one variable gene segment, one joining gene segment and at least one constant region gene segment wherein each gene segment of said light chain transgene is derived from, or has a sequence corresponding to, DNA encoding immunoglobulin light chain gene segments from a species not consisting of the non-human animal into which said light chain transgene is introduced.
  • Such heavy and light chain transgenes in this aspect of the invention contain the above-identified gene segments in an unrearranged form.
  • interposed between the V, D and J segments in the heavy chain transgene and between the V and J segments on the light chain transgene are appropriate.
  • transgenes also include appropriate RNA splicing signals to join a constant region gene segment with the VJ or VDJ
  • switch regions are incorporated upstream from each of the constant region gene segments and downstream from the variable region gene segments to permit recombination between such constant regions to allow for immunoglobulin class switching, e.g. from IgM to IgG.
  • switch regions are incorporated upstream from each of the constant region gene segments and downstream from the variable region gene segments to permit recombination between such constant regions to allow for immunoglobulin class switching, e.g. from IgM to IgG.
  • immunoglobulin transgenes also contain transcription control sequences including promoter regions situated upstream from the variable region gene segments which typically contain TATA motifs.
  • a promoter region can be defined approximately as a DNA sequence that, when operably linked to a downstream sequence, can produce transcription of the downstream
  • Promoters may require the presence of additional linked cis-acting sequences in order to produce efficient transcription.
  • other sequences that participate in the transcription of sterile transcripts are preferably included. Examples of sequences that participate in
  • sequences typically include about at least 50 bp immediately upstream of a switch region, preferably about at least 200 bp upstream of a switch region; and more preferably about at least 200-1000 bp or more upstream of a switch region. Suitable sequences occur immediately upstream of the human S ⁇ 1 , S ⁇ 2 , S ⁇ 3 , S ⁇ 4 , S ⁇ 1 , S ⁇ 2 , and S ⁇ switch
  • IFN interferon inducible transcriptional regulatory elements, such as IFN-inducible enhancers, are preferably included immediately upstream of transgene switch sequences.
  • promoters In addition to promoters, other regulatory sequences which function primarily in B-lineage cells are used. Thus, for example, a light chain enhancer sequence situated
  • regulatory enhancers are used to maximize the transcription and translation of the transgene so as to induce allelic exclusion and to provide relatively high levels of transgene expression.
  • regulatory control sequences have been generically described, such regulatory sequences may be heterologous to the nonhuman animal being derived from the genomic DNA from which the heterologous transgene immunoglobulin gene segments are obtained. Alternately, such regulatory gene segments are derived from the corresponding regulatory sequences in the genome of the non-human animal, or closely related species, which contains the heavy and light transgene.
  • gene segments are derived from human beings.
  • the transgenic non-human animals harboring such heavy and light transgenes are capable of mounting an Ig-mediated immune response to a specific antigen administered to such an animal.
  • B-cells are produced within such an animal which are capable of producing heterologous human antibody.
  • an appropriate monoclonal antibody e.g. a hybridoma
  • a source of therapeutic human monoclonal antibody is provided.
  • Such human Mabs have significantly reduced immunogenicity when therapeutically administered to humans.
  • transgenic nonhuman animals contain functionally at least one rearranged
  • heterologous heavy chain immunoglobulin transgene in the germline of the transgenic animal.
  • Such animals contain primary repertoire B-cells that express such rearranged heavy transgenes.
  • B-cells preferably are capable of undergoing somatic mutation when contacted with an antigen to form a heterologous antibody having high affinity and specificity for the antigen.
  • Said rearranged transgenes will contain at least two C H genes and the associated sequences required for isotype switching.
  • the invention also includes transgenic animals containing germ line cells having heavy and light transgenes wherein one of the said transgenes contains rearranged gene segments with the other containing unrearranged gene segments.
  • the heavy chain transgenes shall have at least two C H genes and the associated sequences required for isotype switching.
  • the invention further includes methods for
  • the method comprises generating a population of immunoglobulin V segment DNAs wherein each of the V segment DNAs encodes an
  • immunoglobulin V segment contains at each end a cleavage recognition site of a restriction endonuclease.
  • transgenes shall have at least two C H genes and the associated sequences required for isotype switching.
  • the cell In the development of a B lymphocyte, the cell initially produces IgM with a binding specificity determined by the productively rearranged V H and V L regions.
  • each B cell and its progeny cells synthesize antibodies with the same L and H chain V regions, but they may switch the isotype of the H chain.
  • This gene rearrangement process typically occurs by recombination between so called switch segments located immediately upstream of each heavy chain gene (except ⁇ ).
  • the individual switch segments are between 2 and 10 kb in length, and consist primarily of short repeated sequences.
  • the switch (S) region of the ⁇ gene, S ⁇ is located about 1 to 2 kb 5' to the coding sequence and is composed of numerous tandem repeats of sequences of the form (GAGCT) n (GGGGT), where n is usually 2 to 5 but can range as high as 17. (See T. Nikaido et al. Nature 292:845-848 (1981))
  • All the sequenced S regions include numerous occurrences of the pentamers GAGCT and GGGGT that are the basic repeated elements of the S ⁇ gene (T. Nikaido et al., J. Biol. Chem. 257:7322-7329 (1982) which is incorporated herein by reference); in the other S regions these pentamers are not precisely tandemly repeated as in S ⁇ , but instead are embedded in larger repeat units.
  • the S ⁇ 1 region has an additional higher-order structure: two direct repeat sequences flank each of two clusters of 49-bp tandem repeats. (See M. R.
  • Switch regions of human H chain genes have been found to be very similar to their mouse homologs. Indeed, similarity between pairs of human and mouse clones 5' to the C H genes has been found to be confined to the S regions, a fact that confirms the biological significance of these regions.
  • a switch recombination between ⁇ and ⁇ genes produces a composite S ⁇ -S ⁇ sequence.
  • the switch machinery can apparently accommodate different alignments of the repeated homologous regions of germline S precursors and then join the sequences at different positions within the alignment.
  • the switch machinery can apparently accommodate different alignments of the repeated homologous regions of germline S precursors and then join the sequences at different positions within the alignment.
  • cytokines might upregulate isotype-specific recombinases, it is also possible that the same enzymatic machinery catalyzes switches to all isotypes and that specificity lies in
  • T-cell-derived lymphokines IL-4 and IFN ⁇ have been shown to specifically promote the expression of certain isotypes: in the mouse, IL-4 decreases IgM, IgG2a, IgG2b, and IgG3 expression and increases IgE and IgG1 expression; while IFN ⁇ selectively stimulates IgG2a expression and antagonizes the IL-4-induced increase in IgE and IgG1 expression (Coffraan et al., J. Immunol. 136: 949 (1986) and Snapper et al.,
  • lymphokines actually promote switch recombination.
  • the observed induction of the ⁇ 1 sterile transcript by IL-4 and inhibition by IFN- ⁇ correlates with the observation that IL-4 promotes class switching to ⁇ 1 in B-cells in culture, while IFN- ⁇ inhibits ⁇ 1 expression. Therefore, the inclusion of regulatory sequences that affect the transcription of sterile transcripts may also affect the rate of isotype switching. For example, increasing the transcription of a particular sterile transcript typically can be expected to enhance the frequency of isotype switch
  • transgenes incorporate transcriptional regulatory sequences within about 1-2 kb upstream of each switch region that is to be utilized for isotype switching.
  • These transcriptional regulatory sequences preferably include a promoter and an enhancer element, and more preferably include the 5' flanking (i.e., upstream) region that is naturally associated (i.e., occurs in germline configuration) with a switch region. This 5' flanking (i.e., upstream) region that is naturally associated (i.e., occurs in germline configuration) with a switch region. This 5'
  • flanking region is typically about at least 50 nucleotides in length, preferably about at least 200 nucleotides in length, and more preferably at least 500-1000 nucleotides.
  • a 5' flanking sequence from one switch region can be operably linked to a different switch region for transgene construction (e.g., a 5' flanking sequence from the human S ⁇ 1 switch can be grafted immediately upstream of the S ⁇ 1 switch; a murine S ⁇ 1 flanking region can be grafted adjacent to a human ⁇ 1 switch sequence; or the murine S ⁇ 1 switch can be grafted onto the human ⁇ 1 coding region), in some embodiments it is preferred that each switch region incorporated in the transgene construct have the 5' flanking region that occurs immediately upstream in the naturally occurring germline configuration.
  • Monoclonal antibodies can be obtained by various techniques familiar to those skilled in the art. Briefly, spleen cells from an animal immunized with a desired antigen are immortalized, commonly by fusion with a myeloma cell (see. Kohler and Milstein, Eur. J. Immunol., 6:511-519 (1976)).
  • the rearranged heavy chain gene consists of a signal peptide exon, a variable region exon and a tandem array of multi-domain constant region regions, each of which is encoded by several exons.
  • Each of the constant region genes encode the constant portion of a different class of immunoglobulins.
  • RNA splicing For each heavy chain class, alternative patterns of RNA splicing give rise to both transmembrane and secreted immunoglobulins.
  • the human heavy chain locus is estimated to consist of approximately 200 V gene segments (current data supports the existence of about 50-100 V gene segments) spanning 2 Mb, approximately 30 D gene segments spanning about 40 kb, six J segments clustered within a 3 kb span, and nine constant region gene segments spread out over approximately 300 kb.
  • the entire locus spans approximately 2.5 Mb of the distal portion of the long arm of chromosome 14.
  • immunoglobulin heavy and light chain transgenes comprise unrearranged genomic DNA from humans.
  • a preferred transgene comprises a NotI fragment having a length between 670 to 830 kb. The length of this fragment is ambiguous because the 3' restriction site has not been accurately mapped. It is known, however, to reside between the ⁇ l and ⁇ pa gene segments. This fragment contains members of all .six of the known V H families, the D and J gene segments, as well as the ⁇ , ⁇ , ⁇ 3, ⁇ 1 and ⁇ 1 constant regions (Berman et al., EMBO J. 2:727-738 (1988), which is incorporated herein by reference).
  • IgM B-cell development
  • IgG 1 switched heavy chain class
  • a genomic fragment containing all of the necessary gene segments and regulatory sequences from a human light chain locus may be similarly constructed.
  • Such transgenes are constructed as described in the Examples and in copending application, entitled “Transgenic Non-Human Animals Capable of Producing Heterologous Antibodies,” filed August 29, 1990, under U.S.S.N. 07/574,748.
  • immunoglobulin heavy chain locus may be formed in vivo in the non-human animal during transgenesis.
  • Such in vivo transgene construction is produced by introducing two or more
  • fragments have DNA sequences which are substantially identical
  • Such in vivo transgene construction may be used to introduce into a non-human animal substantially the entire immunoglobulin loci from a species not consisting of the transgenic non-human animal.
  • in vivo homologous recombination may also be utilized to form "mini-locus" transgenes as described in the Examples.
  • portions of the DNA fragments preferably comprise about 500 bp to about 2000 bp, most preferably 1.0 kb to 2.0 kb. Homologous recombination of overlapping DNA fragments to form transgenes in vivo is further described in commonly assigned U.S. Patent Application entitled "Intracellular Generation of DNA by
  • immunoglobulin minilocus refers to a DNA sequence (which may be within a longer
  • DNA sequence usually of less than about 150 kb, typically between about 25 and 100 kb, containing at least one each of the following: a functional variable (V) gene segment, a functional joining (J) region segment, at least one functional constant (C) region gene segment, and ⁇ if it is a heavy chain minilocus ⁇ a functional diversity (D) region segment, such that said DNA sequence contains at least one substantial discontinuity (e.g., a deletion, usually of at least about 2 to 5 kb, preferably 10-25 kb or more, relative to the
  • a light chain minilocus transgene will be at least 25 kb in length, typically 50 to 60 kb.
  • a heavy chain transgene will typically be about 70 to 80 kb in length, preferably at least about 60 kb with two
  • the individual elements of the minilocus are preferably in the germline configuration and capable of undergoing gene rearrangement in the pre-B cell of a
  • transgenic animal so as to express functional antibody
  • a heavy chain minilocus comprising at least two C H genes and the requisite switching sequences is typically capable of undergoing isotype switching, so that functional antibody molecules of different immunoglobulin classes will be generated.
  • switching may occur in vivo in B-cells residing within the transgenic nonhuman animal, or may occur in cultured cells of the B-cell lineage which have been explanted from the
  • immunoglobulin heavy chain transgenes comprise one or more of each of the V H , D, and J H gene segments and two or more of the C H genes. At least one of each appropriate type gene segment is
  • the transgene contain at least one ⁇ gene segment and at least one other constant region gene segment, more preferably a ⁇ gene segment, and most preferably ⁇ 3 or ⁇ 1.
  • constant region gene segments may also be used such as those which encode for the production of IgD, IgA and IgE.
  • transgenes wherein the order of occurrence of heavy chain C H genes will be different from the naturally-occurring spatial order found in the germline of the species serving as the donor of the C H genes.
  • C H genes from more than one individual of a species (e.g., allogeneic C H genes) and incorporate said genes in the
  • the resultant transgenic nonhuman animal may then, in some embodiments, make antibodies of various classes including all of the allotypes represented in the species from which the transgene C H genes were obtained.
  • C H gene combinations will produce a transgenic nonhuman animal which may produce antibodies of various classes corresponding to C H genes from various
  • Transgenic nonhuman animals containing interspecies C H transgenes may serve as the source of B-cells for
  • the heavy chain J region segments in the human comprise six functional J segments and three pseudo genes clustered in a 3 kb stretch of DNA. Given its relatively compact size and the ability to isolate these segments
  • J region gene segments be used in the mini-locus construct. Since this fragment spans the region between the ⁇ and ⁇ genes, it is likely to contain all of the 3 ' cis-linked regulatory elements required for ⁇ expression. Furthermore, because this fragment includes the entire J region, it contains the heavy chain enhancer and the ⁇ switch region (Mills et al.. Nature 306:809 (1983); Yancopoulos and Alt, Ann. Rev. Immunol. 4:339-368 (1986), which are incorporated herein by reference).
  • the human D region consists of 4 homologous 9 kb subregions, linked in tandem (Siebenlist, et al . ( 1981) ,
  • Each subregion contains up to 10 individual D segments. Some of these segments have been mapped and are shown in Fig. 4.
  • Two different strategies are used to generate a mini-locus D region. The first strategy involves using only those D segments located in a short contiguous stretch of DNA that includes one or two of the repeated D subregions.
  • a candidate is a single 15 kb fragment that contains 12 individual D segments. This piece of DNA consists of 2 contiguous EcoRI fragments and has been
  • D segments should be sufficient for a primary repertoire.
  • an alternative strategy is to ligate together several non-contiguous D-segment containing fragments, to produce a smaller piece of DNA with a greater number of segments. Additional D-segment genes can be identified, for example, by the presence of characteristic flanking nonamer and heptamer sequences, supra. and by reference to the literature.
  • At least one, and preferably more than one V gene segment is used to construct the heavy chain minilocus transgene.
  • Rearranged or unrearranged V segments with or without flanking sequences can be isolated as described in copending applications, U.S.S.N. 07/574,748 filed August 29, 1990, PCT/US91/06185 filed August 28, 1991, and U.S.S.N.
  • V segments, D segments, J segments, and C genes can be isolated as described in copending applications U.S.S.N. 07/574,748 filed August 29, 1990 and PCT/US91/06185 filed August 28, 1991.
  • a minilocus light chain transgene may be similarly constructed from the human ⁇ or ⁇ immunoglobulin locus.
  • an immunoglobulin heavy chain minilocus transgene construct e.g., of about ⁇ 5 kb, encoding V, D, J and constant region sequences can be formed from a plurality of DNA fragments, with each sequence being substantially homologous to human gene sequences.
  • the sequences are operably linked to transcription regulatory sequences and are capable of undergoing rearrangement.
  • constant region sequences e.g., ⁇ and ⁇
  • switch recombination also occurs.
  • An exemplary light chain transgene construct can be formed similarly from a plurality of DNA fragments, substantially homologous to human DNA and capable of undergoing
  • transgene constructs that are intended to undergo class switching should include all of the cis-acting sequences necessary to regulate sterile transcripts.
  • Switch regions and upstream promoters and regulatory sequences are preferred cis-acting sequences that are included in transgene constructs capable of isotype switching.
  • switch regions can be linked upstream of (and adjacent to) C H genes that do not naturally occur next to the particular switch region.
  • a human ⁇ 1 switch region may be linked upstream from a human ⁇ 2 C H gene, or a murine ⁇ 1 switch may be linked to a human C H gene.
  • Heavy chain transgenes can be
  • V H is a heavy chain variable region gene segment
  • D is a heavy chain D (diversity) region gene segment
  • J H is a heavy chain J (joining) region gene segment
  • S D is a donor region segment capable of participating in a recombination event with the S a acceptor region
  • C 1 is a heavy chain constant region gene segment encoding an isotype utilized in for B cell development (e.g., ⁇ or ⁇ ) ,
  • T is a cis-acting transcriptional regulatory region
  • S A is an acceptor region segment capable of participating in a recombination event with selected S D donor region segments, such that isotype switching occurs
  • C 2 is a heavy chain constant region gene segment encoding an isotype other than ⁇ (e.g., ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 1 , ⁇ 2 , ⁇ ).
  • x, y, z, m, n, p, and q are integers, x is 1-100, n is 0-10, y is 1-50, p is 1-10, z is 1-50, q is 0-50, m is 0-10.
  • q must be at least 1, m is at least 1, n is at least 1, and m is greater than or equal to n.
  • V H , D, J H , S D , C 1 , T, S A , and C z segments may be selected from various species, preferably mammalian species, and more preferably from human and murine germline DNA.
  • V H segments may be selected from various species, but are preferably selected from V H segments that occur naturally in the human germline, such as V H251 . Typically about.2 V H gene segments are included, preferably about 4 V H segments are included, and most preferably at least about 10 V H segments are included.
  • At least one D segment is typically included, although at least 10 D segments are preferably included, and some embodiments include more than ten D segments. Some preferred embodiments include human D segments.
  • At least one J H segment is incorporated in the transgene, although it is preferable to include about six J H segments, and some preferred embodiments include more than about six J H segments. Some preferred embodiments include human J H segments, and further preferred embodiments include six human J H segments and no nonhuman J H segments.
  • S D segments are donor regions capable of
  • S D and S A are switch regions such as S ⁇ , S ⁇ 1 , S y2 . S y3 , S ⁇ 4 , S ⁇ , S a2 . and S ⁇ .
  • the switch regions are murine or human, more preferably S D is a human or murine S and S A is a human or murine S ⁇ 1 .
  • S D and S A are preferably the 400 basepair direct repeat sequences that flank the human ⁇ gene.
  • C 1 segments are typically ⁇ or ⁇ genes, preferably a ⁇ gene, and more preferably a human or murine ⁇ gene.
  • T segments typically include S' flanking sequences that are adjacent to naturally occurring (i.e., germline) switch regions. T segments typically at least about at least 50 nucleotides in length, preferably about at least 200 nucleotides in length, and more preferably at least 500-1000 nucleotides in length. Preferably T segments are 5' flanking sequences that occur immediately upstream of human or murine switch regions in a germline configuration. It is also evident to those of skill in the art that T segments may comprise cis-acting transcriptional regulatory sequences that do not occur naturally in an animal germline (e.g., viral enhancers and promoters such as those found in SV40,
  • adenovirus and other viruses that infect eukaryotic cells.
  • C 2 segments are typically a ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , a 1 , ⁇ 2 , or e C H gene, preferably a human C H gene of these isotypes, and more preferably a human ⁇ 1 or ⁇ 3 gene.
  • Murine ⁇ 2a and ⁇ 2b may also be used, as may downstream (i.e., switched) isotype genes form various species.
  • the total length of the transgene will be typically 150 kilo basepairs or less.
  • the transgene will be other than a native heavy chain Ig locus.
  • deletion of unnecessary regions or substitutions with corresponding regions from other species will be present.
  • transgenic nonhuman animal The occurrence of isotype switching in a transgenic nonhuman animal may be identified by any method known to those in the art. Preferred embodiments include the following, employed either singly or in combination:
  • detection of mRNA transcripts that contain a sequence homologous to at least one transgene downstream C H gene other than ⁇ and an adjacent sequence homologous to a transgene V H -D H -J H rearranged gene; such detection may be by Northern hybridization, S 1 nuclease protection assays, PCR
  • detection in DNA from B-cells of the transgenic animal or in genomic DNA from hybridoma cells, of DNA rearrangements consistent with the occurrence of isotype switching in the transgene, such detection may be accomplished by Southern blot hybridization, PCR amplification, genomic cloning, or other method; or
  • each transgenic line may represent a
  • transgenes are typically integrated into host chromosomal DNA, most usually into germline DNA and propagated by subsequent breeding of germline transgenic breeding stock animals. However, other vectors and transgenic methods known in the present art or subsequently developed may be substituted as appropriate and as desired by a
  • Trans-switching to endogenous nonhuman heavy chain constant region genes can occur and produce chimeric heavy chains and antibodies comprising such chimeric human/mouse heavy chains.
  • Such chimeric antibodies may be desired for certain uses described herein or may be undesirable.
  • the expression of successfully rearranged immunoglobulin heavy and light transgenes is expected to have a dominant effect by suppressing the rearrangement of the endogenous immunoglobulin genes in the transgenic nonhuman animal.
  • another way to generate a nonhuman that is devoid of endogenous antibodies is by mutating the endogenous immunoglobulin loci. Using embryonic stem cell technology and homologous recombination, the endogenous immunoglobulin repertoire can be readily eliminated. The following describes the functional description of the mouse immunoglobulin loci.
  • the vectors and methods disclosed, however, can be readily adapted for use in other non-human animals.
  • this technology involves the inactivation of a gene, by homologous recombination, in a pluripotent cell line that is capable of differentiating into germ cell tissue.
  • a DNA construct that contains an altered, copy of a mouse immunoglobulin gene is introduced into the nuclei of embryonic stem cells. In a portion of the cells, the introduced DNA recombines with the endogenous copy of the mouse gene,
  • the mouse ⁇ locus contributes to only 5% of the immunoglobulins, inactivation of the heavy chain and/or ⁇ -light chain loci is sufficient. There are three ways to disrupt each of these loci, deletion of the J region, deletion of the J-C intron enhancer, and disruption of constant region coding sequences by the introduction of a stop codon. The last option is the most straightforward, in terms of DNA construct design. Elimination of the ⁇ gene disrupts B-cell maturation thereby preventing class switching to any of the functional heavy chain segments. The strategy for knocking out these loci is outlined below.
  • targeting vectors are used based on the design employed by Jaenisch and co-workers (Zijlstra, et al. (1989), Nature, 342, 435-438) for the successful disruption of the mouse 02-microglobulin gene.
  • the neomycin resistance gene (neo) from the plasmid pMCIneo is inserted into the coding region of the target gene.
  • the pMCIneo insert uses a hybrid viral promoter/enhancer seguence to drive neo expression. This promoter is active in embryonic stem cells. Therefore, neo can be used as a selectable marker for integration of the knock-out construct.
  • the HSV thymidine kinase (tk) gene is added to the end of the construct as a negative selection marker against random insertion events (Zijlstra, et al., supra.).
  • a preferred strategy for disrupting the heavy chain locus is the elimination of the J region. This region is fairly compact in the mouse, spanning only 1.3 kb.
  • the heavy-chain locus is knocked out by disrupting the coding region of the ⁇ gene.
  • This approach involves the same 15 kb KpnI fragment used in the previous approach.
  • the 1.1 kb insert from pMCIneo is inserted at a unique BamHI site in exon II, and the HSV tk gene added to the 3' Kpnl end. Double crossover events on either side of the neo insert, that eliminate the tk gene, are then selected for. These are detected from pools of selected clones by PCR amplification.
  • One of the PCR primers is derived from neo sequences and the other from mouse sequences outside of the targeting vector. The functional disruption of the mouse immunoglobulin loci is presented in the Examples.
  • an alternative method for preventing the expression of an endogenous Ig locus is suppression.
  • Suppression of endogenous Ig genes may be accomplished with antisense RNA produced from one or more integrated transgenes, by antisense oligonucleotides, and/or by administration of antisera
  • Antisense RNA transgenes can be employed to partially or totally knock-out expression of specific genes (Pepin et al. (1991) Nature 355: 725; Helene., C. and Toulme, J. (1990) Biochimica Biophys. Acta 1049: 99; Stout, J. and Caskey, T. (1990) Somat. Cell Mol. Genet. 16: 369; Munir et al. (1990) Somat. Cell Mol. Genet. 16: 383, each of which is incorporated herein by reference).
  • Antisense polynucleotides are polynucleotides that: (1) are complementary to all or part of a reference sequence, such as a sequence of an endogenous Ig C H or C L region, and (2) which specifically hybridize to a
  • complementary target sequence such as a chromosomal gene locus or a Ig mRNA.
  • polynucleotides may include nucleotide substitutions,
  • Complementary antisense polynucleotides include soluble antisense RNA or DNA oligonucleotides which can hybridize specifically to
  • An antisense sequence is a polynucleotide
  • antisense sequences may have substitutions, additions, or deletions as compared to the complementary immunoglobulin gene sequence, so long as
  • an antisense sequence is complementary to an endogenous immunoglobulin gene sequence that encodes, or has the potential to encode after DNA
  • sense sequences corresponding to an immunoglobulin gene sequence may function to suppress expression, particularly by interfering with transcription.
  • antisense polynucleotides therefore inhibit production of the encoded polypeptide(s).
  • antisense polynucleotides that inhibit transcription and/or translation of one or more endogenous Ig loci can alter the capacity and/or specificity of a non-human animal to produce immunoglobulin chains encoded by endogenous Ig loci.
  • Antisense polynucleotides may be produced from a heterologous expression cassette in a transfectant cell or transgenic cell, such as a transgenic pluripotent
  • the antisense polynucleotides may comprise soluble oligonucleotides that are administered to the external milieu, either in culture medium in vitro or in the circulatory system or interstitial fluid in vivo. Soluble antisense polynucleotides present in the external milieu have been shown to gain access to the
  • the antisense polynucleotides comprise methylphosphonate moieties, alternatively phosphorothiolates or O-methylribonucleotides may be used, and chimeric
  • oligonucleotides may also be used (Dagle et al. (1990) Nucleic Acids Res. 18: 4751). For some applications, antisense
  • oligonucleotides may comprise polyamide nucleic acids (Nielsen et al. (1991) Science 254: 1497). For general methods
  • Antisense polynucleotides complementary to one or more sequences are employed to inhibit transcription, RNA processing, and/or translation of the cognate mRNA species and thereby effect a reduction in the amount of the respective encoded polypeptide.
  • Such antisense polynucleotides can provide a therapeutic function by inhibiting the formation of one or more endogenous Ig chains in vivo.
  • the antisense polynucleotides of this invention are selected so as to hybridize preferentially to endogenous Ig sequences at physiological conditions in vivo. Most typically, the
  • selected antisense polynucleotides will not appreciably hybridize to heterologous Ig sequences encoded by a heavy or light chain transgene of the invention (i.e., the antisense oligonucleotides will not inhibit transgene Ig expression by more than about 25 to 35 percent).
  • Partial or complete suppression of endogenous Ig chain expression can be produced by injecting mice with antisera against one or more endogenous Ig chains (Weiss et al. (1984) Proc. Natl. Acad. Sci. (U.S.A.) 81 211, which is incorporated herein by reference).
  • Antisera are selected so as to react specifically with one or more endogenous (e.g., murine) Ig chains but to have minimal or no cross-reactivity with heterologous Ig chains encoded by an Ig transgene of the invention.
  • administration of selected antisera are selected so as to react specifically with one or more endogenous (e.g., murine) Ig chains but to have minimal or no cross-reactivity with heterologous Ig chains encoded by an Ig transgene of the invention.
  • Suitable antibody sources for antibody comprise:
  • monoclonal antibodies such as a monoclonal antibody that specifically binds to a murine ⁇ , ⁇ , ⁇ , or ⁇ chains but does not react with the human immunoglobulin chain (s) encoded by a human Ig transgene of the invention;
  • polyclonal antiserum or mixtures thereof typically such antiserum/antisera is monospecific for binding to a single species of endogenous Ig chain (e.g., murine ⁇ , murine ⁇ , murine ⁇ , murine ⁇ ) or to multiple species of endogenous Ig chain, and most preferably such antisera
  • polyclonal antibodies are preferred, and such substantially monospecific polyclonal antibodies can be advantageously produced from an antiserum raised against human immunoglobulin (s) by pre-adsorption with antibodies derived from the nonhuman animal species (e.g., murine) and/or, for example, by affinity chromatography of the antiserum or purified fraction thereof on an affinity resin containing immobilized human Ig (wherein the bound fraction is enriched for the desired anti-human Ig in the antiserum; the bound fraction is typically eluted with conditions of low pH or a chaotropic salt solution).
  • Cell separation and/or complement fixation can be employed to provide the enhancement of antibody-directed cell depletion of lymphocytes expressing endogenous (e.g., murine) immunoglobulin chains.
  • endogenous (e.g., murine) immunoglobulin chains e.g., murine
  • antibodies are employed for ex vivo depletion of murine Ig-expressing explanted hematopoietic cells and/or B-lineage lymphocytes obtained from a transgenic mouse harboring a human Ig transgene.
  • hematopoietic cells and/or B-lineage lymphocytes are explanted from a transgenic nonhuman animal harboring a human Ig transgene (preferably harboring both a human heavy chain transgene and a human light chain transgene) and the explanted cells are incubated with an antibody (or antibodies) which (1) binds to an endogenous immunoglobulin (e.g., murine ⁇ and/or ⁇ ) and (2) lacks substantial binding to human immunoglobulin chains encoded by the transgene(s).
  • an antibody or antibodies
  • Such antibodies are referred to as "suppression antibodies” for clarity.
  • the explanted cell population is selectively
  • suppression antibody e.g., by ADCC,.by complement fixation, or by a toxin linked to the suppression antibody
  • clonal anergy induced by the suppression antibody and the like.
  • antibodies used for antibody suppression of endogenous Ig chain production will be capable of fixing complement. It is frequently preferable that such antibodies may be selected so as to react well with a convenient
  • complement source for ex vivo/in vitro depletion such as rabbit or guinea pig complement.
  • the suppressor antibodies possess effector functions in the nonhuman transgenic animal species; thus, a suppression antibody comprising murine effector functions (e.g., ADCC and complement fixation) generally would be preferred for use in transgenic mice.
  • a suppression antibody that specifically binds to a predetermined endogenous
  • immunoglobulin chain is used for ex vivo/in vitro depletion of lymphocytes expressing an endogenous immunoglobulin.
  • a cellular explant e.g., lymphocyte sample
  • a suppression antibody e.g., by immobilization, complement fixation, and the like
  • cells specifically binding to the suppression antibody are depleted (e.g., by immobilization, complement fixation, and the like), thus generating a cell subpopulation depleted in cells expressing endogenous (nonhuman) immunoglobulins (e.g., lymphocytes expressing murine Ig).
  • the resultant depleted lymphocyte population (T cells, human Ig-positive B-cells, etc.) can be transferred into a immunocompatible (i.e., MHC-compatible) nonhuman animal of the same species and which is substantially incapable of producing endogenous antibody (e.g., SCID mice, RAG-1 or RAG-2 knockout mice).
  • a immunocompatible nonhuman animal of the same species e.g., SCID mice, RAG-1 or RAG-2 knockout mice.
  • endogenous antibody e.g., SCID mice, RAG-1 or RAG-2 knockout mice.
  • B-cells producing such antibodies.
  • B-cells may be used to generate hybridomas by
  • Antibody suppression can be used in combination with other endogenous Ig
  • inactivation/suppression methods e.g., J H knockout, C H knockout, D-region ablation, antisense suppression,
  • VDJ human variable region
  • endogenous heavy chain locus by any of various methods, including but not limited to the following: (1) functionally disrupting and/or deleting by homologous recombination at least one and preferably all of the endogenous heavy chain constant region genes, (2) mutating at least one and
  • endogenous heavy chain constant region genes to encode a termination codon (or frameshift) to produce a truncated or frameshifted product (if trans-switched), and other methods and strategies apparent to those of skill in the art.
  • Deletion of a substantial portion or all of the heavy chain constant region genes and/or D-region genes may be accomplished by various methods, including sequential deletion by homologous recombination targeting vectors, especially of the "hit-and-run” type and the like.
  • functional disruption and/or deletion of at least one endogenous light chain locus e.g., ⁇
  • constant region genes is often preferable.
  • the heterologous transgene comprises a frameshift in the J segment(s) and a compensating frameshift (i.e., to regenerate the original reading frame) in the initial region (i.e., amino-terminal coding portion) of one or more (preferably all) of the transgene constant region genes.
  • Antisense suppression and antibody suppression may also be used to effect a substantially complete functional inactivation of endogenous Ig gene product expression (e.g., murine heavy and light chain sequences) and/or trans-switched antibodies (e.g., human variable/murine constant chimeric antibodies).
  • endogenous Ig gene product expression e.g., murine heavy and light chain sequences
  • trans-switched antibodies e.g., human variable/murine constant chimeric antibodies
  • suppression strategies may be used to effect essentially total suppression of endogenous (e.g., murine) Ig chain expression.
  • trans-switched immunoglobulin it may be desirable to produce a trans-switched immunoglobulin.
  • trans-switched heavy chains can be chimeric (i.e., a non-murine (human) variable region and a murine constant region).
  • Antibodies comprising such chimeric trans-switched
  • immunoglobulins can be used for a variety of applications where it is desirable to have a non-human (e.g., murine) constant region (e.g., for retention of effector functions in the host, for the presence of murine immunological
  • a non-human (e.g., murine) constant region e.g., for retention of effector functions in the host, for the presence of murine immunological
  • a human variable region repertoire may possess advantages as compared to the murine variable region repertoire with respect to certain antigens.
  • the human V H , D, J H , V L , and J L genes have been selected for during evolution for their ability to encode immunoglobulins that bind certain
  • antigens which provided evolutionary selective pressure for the murine repertoire can be distinct from those antigens which provided evolutionary pressure to shape the human repertoire.
  • Other repertoire advantages may exist, making the human variable region repertoire advantageous when combined with a murine constant region (e.g., a trans-switched murine) isotype.
  • a murine constant region e.g., a trans-switched murine
  • the presence of a murine constant region can afford advantages over a human constant region.
  • a murine y constant region linked to a human variable region by trans-switching may provide an antibody which possesses murine effector functions (e.g., ADCC, murine complement fixation) so that such a chimeric antibody (preferably monoclonal) which is reactive with a predetermined antigen (e.g., human IL-2 receptor) may be tested in a mouse disease model, such as a mouse model of graft-versus-host disease wherein the T lymphocytes in the mouse express a functional human IL-2 receptor.
  • murine effector functions e.g., ADCC, murine complement fixation
  • a chimeric antibody preferably monoclonal
  • a predetermined antigen e.g., human IL-2 receptor
  • the human variable region encoding sequence may be isolated (e.g., by PCR amplification or cDNA cloning from the source (hybridoma clone)) and spliced to a sequence encoding a desired human constant region to encode a human sequence antibody more suitable for human therapeutic uses where immunogenicity is preferably minimized.
  • the polynucleotide(s) having the resultant fully human encoding sequence(s) can be expressed in a host cell (e.g., from an expression vector in a mammalian cell) and purified for pharmaceutical formulation.
  • the chimeric antibodies may be used directly without replacing the murine constant region with a human constant region.
  • Other variations and uses of trans-switched chimeric antibodies will be evident to those of skill in the art.
  • the present invention provides transgenic nonhuman animals containing B lymphocytes which express chimeric antibodies, generally resulting from trans-switching between a human heavy chain transgene and an endogenous murine heavy chain constant region gene.
  • Such chimeric antibodies comprise a human sequence variable region and a murine constant region, generally a murine switched (i.e., non- ⁇ , non- ⁇ ) isotype.
  • the transgenic nonhuman animals capable of making chimeric
  • antibodies to a predetermined antigen are usually also.
  • the animal is homozygous for a functionally disrupted heavy chain locus and/or light chain locus but retains one or more endogenous heavy chain constant region gene(s) capable of trans-switching (e.g., ⁇ , ⁇ , e) and
  • Such a mouse is immunized with a predetermined antigen, usually in combination with an adjuvant, and an immune response comprising a
  • the serum of such an immunized animal can comprise such chimeric antibodies at concentrations of about at least 1 ⁇ g/ml, often about at least 10 ⁇ g/ml, frequently at least 30 ⁇ g/ml, and up to 50 to 100 ⁇ g/ml or more.
  • antibodies comprising chimeric human variable/mouse constant region heavy chains typically also comprises antibodies which comprise human variable/human constant region (complete human sequence) heavy chains.
  • Chimeric trans-switched antibodies usually comprise (1) a chimeric heavy chain composed of a human variable region and a murine constant region (typically a murine gamma) and (2) a human transgene-encoded light chain (typically kappa) or a murine light chain (typically lambda in a kappa knockout background).
  • Such chimeric trans-switched antibodies generally bind to a predetermined antigen (e.g., the immunogen) with an affinity of about at least 1 ⁇ 10 7 M -1 , preferably with an affinity of about at least 5 ⁇ 10 7 M -1 , more preferably with an affinity of at least 1 ⁇ 10 8 M -1 to 1 ⁇ 10 9 M -1 or more.
  • a predetermined antigen e.g., the immunogen
  • the predetermined antigen is a human protein, such as for example a human cell surface antigen (e.g., CD4, CD8, IL-2 receptor, EGF receptor, PDGF receptor), other human biological macromolecule (e.g., thrombomodulin, protein C, carbohydrate antigen, sialyl Lewis antigen, L-selectin), or nonhuman disease associated macromolecule (e.g., bacterial LPS, virion capsid protein or envelope glycoprotein) and the like.
  • a human cell surface antigen e.g., CD4, CD8, IL-2 receptor, EGF receptor, PDGF receptor
  • other human biological macromolecule e.g., thrombomodulin, protein C, carbohydrate antigen, sialyl Lewis antigen, L-selectin
  • nonhuman disease associated macromolecule e.g., bacterial LPS, virion capsid protein or envelope glycoprotein
  • the invention provides transgenic nonhuman animals comprising a genome comprising: (1) a homozygous functionally disrupted endogenous heavy chain locus comprising at least one murine constant region gene capable of trans-switching (e.g., in cis linkage to a functional switch recombination sequence and typically to a functional enhancer), (2) a human heavy chain transgene capable of rearranging to encode end express a functional human heavy chain variable region and capable of trans-switching (e.g., having a cis-linked RSS); optionally further comprising (3) a human light chain (e.g., kappa) transgene capable of rearranging to encode a functional human light chain variable region and expressing a human sequence light chain; optionally further comprising (4) a homozygous functionally disrupted endogenous light chain locus ( ⁇ , preferably ⁇ and ⁇ ); and optionally further comprising (5) a serum comprising an antibody comprising a chimeric heavy chain composed of a human sequence variable region
  • Such transgenic mice may further comprise a serum comprising chimeric antibodies which bind a predetermined human antigen (e.g., CD4, CD8, CEA) with an affinity of about at least 1 ⁇ 10 4 M -1 , preferably with an affinity of about at least 5 ⁇ 10 4 M -1 , more preferably with an affinity of at least 1 ⁇ 10 7 M -1 to 1 ⁇ 10 9 M -1 or more.
  • a predetermined human antigen e.g., CD4, CD8, CEA
  • hybridomas can be made wherein the monoclonal antibodies produced thereby have an affinity of at least 8 ⁇ 10 7 M -1 .
  • Chimeric antibodies comprising a heavy chain composed of a murine constant region and a .human variable region, often capable of binding to a nonhuman antigen, may also be present in the serum or as an antibody secreted from a hybridoma.
  • such chimeric antibodies can be generated by trans-switching, wherein a human transgene encoding a human variable region (encoded by productive V-D-J rearrangement in vivo) and a human constant region, typically human ⁇ ,
  • immunoglobulin constant gene switch sequence thereby operably linking the transgene-encoded human variable region with a heavy chain constant region which is not encoded by said transgene, typically an endogenous murine immunoglobulin heavy chain constant region or a heterologous (e.g., human) heavy chain constant region encoded on a second transgene.
  • cis-switching refers to isotype-switching by
  • trans-switching involves recombination between a transgene RSS and an RSS element outside the transgene, often on a different chromosome than the chromosome which harbors the transgene.
  • Trans-switching generally occurs between an RSS of an expressed transgene heavy chain constant region gene and either an RSS of an endogenous murine constant region gene (of a non- ⁇ isotype, typically ⁇ ) or an RSS of a human constant region gene contained on a second transgene, often integrated on a separate chromosome.
  • a non-chimeric antibody having a substantially fully human sequence is produced.
  • a polynucleotide encoding a human heavy chain constant region (e.g., ⁇ 1) and an operably linked RSS (e.g., a ⁇ 1 RSS) can be introduced (e.g., transfected) into a population of hybridoma cells generated from a
  • transgenic mouse B-cell (or B cell population) expressing an antibody comprising a transgene-encoded human ⁇ chain.
  • the resultant hybridoma cells can be selected for the presence of the introduced polynucleotide and/or for the expression of trans-switched antibody comprising a heavy chain having the variable region (idiotype/antigen reactivity) of the human ⁇ chain and having the constant region encoded by the introduced polynucleotide sequence (human ⁇ 1).
  • Trans-switch comprising a heavy chain having the variable region (idiotype/antigen reactivity) of the human ⁇ chain and having the constant region encoded by the introduced polynucleotide sequence (human ⁇ 1).
  • the invention also provides a method for producing such chimeric trans-switched antibodies comprising the step of immunizing with a predetermined antigen a transgenic mouse comprising a genome comprising: (1) a homozygous functionally disrupted endogenous heavy chain locus comprising at least one murine constant region gene capable of trans-switching (e.g., ⁇ 2a, ⁇ 2b, ⁇ 1, ⁇ 3), (2) a human heavy chain transgene capable of rearranging to encode a functional human heavy chain variable region and expressing a human sequence heavy chain and capable of undergoing isotype switching (and/or trans-switching), and optionally further comprising (3) a human light chain (e.g., kappa) transgene capable of rearranging to encode a functional human light (e.g., kappa) chain variable region and expressing a human sequence light chain, and optionally further comprising (4) a homozygous functionally disrupted endogenous light chain locus (typically ⁇ ,
  • a serum comprising an antibody comprising a chimeric heavy chain composed of a human sequence variable region encoded by a human transgene and a murine constant region sequence encoded by an endogenous murine heavy chain constant region gene (e.g., ⁇ 1, ⁇ 2a, ⁇ 2b, ⁇ 3).
  • trans-switching and cis-switching is associated with the process of somatic mutation.
  • Somatic mutation expands the range of antibody affinities encoded by clonal progeny of a B-cell.
  • hybridoma cell population which expresses a first antibody comprising a heavy chain comprising a first human heavy chain variable region in polypeptide linkage to a first human heavy chain constant region (e.g., ⁇ )
  • a hybridoma cell clonal variant which express an antibody comprising a heavy chain containing said first human heavy chain variable region in polypeptide linkage to a second heavy chain constant region (e.g., a human ⁇ , ⁇ , or e constant region).
  • a hybridoma cell population which expresses a first antibody comprising a heavy chain comprising a first human heavy chain variable region in polypeptide linkage to a first human heavy chain constant region (e.g., ⁇ )
  • hybridoma cell clonal variants which express an antibody comprising a heavy chain containing said first human heavy chain variable region in polypeptide linkage to a second heavy chain constant region (e.g., a human ⁇ , ⁇ , or e constant region).
  • trans- or cis- as through the administration of agents that promote isotype switching, such as T-cell-derived lymphokines (e.g., IL-4 and IFN ⁇ ), by introduction of a polynucleotide comprising a functional RSS and a heterologous (e.g. human) heavy chain constant region gene to serve as a substrate for trans-switching, or by a combination of the above, and the like.
  • agents that promote isotype switching such as T-cell-derived lymphokines (e.g., IL-4 and IFN ⁇ )
  • a polynucleotide comprising a functional RSS and a heterologous (e.g. human) heavy chain constant region gene to serve as a substrate for trans-switching, or by a combination of the above, and the like.
  • Class switching and affinity maturation take place within the same population of B cells derived from transgenic animals of the present invention. Therefore, identification of class-switched B cells (or hybridomas derived therefrom) can be used as a screening step for obtaining high affinity monoclonal antibodies.
  • a variety of approaches can be
  • a single continuous human genomic fragment comprising both ⁇ and ⁇ constant region genes with the associated RSS elements and switch regulatory elements (e.g., sterile transcript promoter) can be used as a transgene.
  • some portions of the desired single contiguous human genomic fragment can be difficult to clone efficiently, such as due to instability problems when replicated in a cloning host or the like; in particular, the region between ⁇ and ⁇ 3 can prove difficult to clone efficiently, especially as a contiguous fragment comprising the ⁇ gene, ⁇ 3 gene, a V gene, D gene segments, and J gene segments.
  • a discontinuous human transgene composed of a human ⁇ gene, human ⁇ 3 gene, a human V gene(s), human D gene segments, and human J gene segments, with one or more deletions of an intervening (intronic) or otherwise nonessential sequence (e.g., one or more V, D, and/or J segment and/or one or more non- ⁇ constant region gene(s)).
  • minigenes have several advantages as compared to isolating a single contiguous segment of genomic DNA spanning all of the essential elements for efficient
  • Such a minigene avoids the necessity of isolating large pieces of DNA which may contain sequences which are difficult to clone
  • miniloci comprising elements necessary for isotype switching (e.g., human ⁇ sterile transcript promoter) for producing cis- or trans-switching, can advantageously undergo somatic mutation and class switching in vivo.
  • isotype switching e.g., human ⁇ sterile transcript promoter
  • hybridoma clones producing antibodies having high binding affinity are obtained by selecting, from a pool of hybridoma cells derived from B cells of transgenic mice harboring a human heavy chain transgene capable of isotype switching (see, supra) and substantially lacking endogenous murine heavy chain loci capable of undergoing productive (in-frame) V-D-J rearrangement, hybridomas which express an antibody comprising a heavy chain comprising a human sequence heavy chain variable region in polypeptide linkage to a human (or mouse) non- ⁇ heavy chain constant region; said antibodys are termed "switched antibodies” as they comprise a "switched heavy chain” which is produced as a consequence of cis-switching and/or trans-switching in vivo or in cell culture.
  • Hybridomas producing switched antibodies generally have undergone
  • hybridomas secreting a human sequence antibody having substantial binding affinity greater than 1 ⁇ 10 7 M -1 to 1 ⁇ 10 8 M -1 ) for a predetermined antigen and wherein said human sequence antibody comprises human immunoglobulin
  • variable region (s) can be selected by a method comprising a two-step process. One step is to identify and isolate
  • hybridoma cells which secrete immunoglobulins which comprise a switched heavy chain e.g., by binding hybridoma cells to an immobilized immunoglobulin which specifically binds a switched heavy chain and does not substantially bind to an unswitched isotype, e.g., ⁇ ).
  • the other step is to identify hybridoma cells which bind to the predetermined antigen with substantial binding affinity (e.g., by ELISA of hybridoma clone
  • hybridoma cells which bind predetermined antigen which bind predetermined antigen.
  • Hybridoma cells which express switched antibodies that have substantial binding affinity for the predetermined antigen are isolated and cultured under suitable growth conditions known in the art, typically as individual selected clones.
  • the method comprises the step of culturing said selected clones under conditions suitable for expression of monocloanl antibodies; said monoclonal antibodies are collected and can be administered for therapeutic, prophylactic, and/or
  • the selected hybridoma clones can serve as a source of DNA or RNA for isolating immunoglobulin sequences which encode immunoglobulins (e.g. a variable region) that bind to (or confer binding to) the predetermined antigen.
  • immunoglobulins e.g. a variable region
  • the human variable region encoding sequence may be isolated (e.g., by PCR amplification or cDNA cloning from the source (hybridoma clone)) and spliced to a sequence encoding a desired human constant region to encode a human sequence antibody more suitable for human therapeutic uses where immunogenicity is preferably minimized.
  • polynucleotide (s) having the resultant fully human encoding sequence(s) can be expressed in a host cell (e.g., from an expression vector in a mammalian cell) and purified for pharmaceutical formulation.
  • a heterologous transgene capable of encoding a human immunoglobulin advantageously comprises a cis-linked enhancer which is not derived from the mouse genome, and/or which is not naturally associated in cis with the exons of the heterologous transgene.
  • a human ⁇ transgene e.g., a ⁇ minilocus
  • a human V ⁇ gene can advantageously comprise a human V ⁇ gene, a human J ⁇ gene, a human C ⁇ gene, and a xenoenhancer
  • said xenoenhancer comprises a human heavy chain intronic enhancer and/or a murine heavy chain intronic enhancer, typically located between a J ⁇ gene and the C ⁇ gene, or located downstream of the C ⁇ gene.
  • the mouse heavy chain J- ⁇ intronic enhancer (Banerji et al. (1983) Cell 33: 729) can be isolated on a 0.9 kb Xbal fragment of the plasmid pKVe2 (see, infra).
  • the human heavy chain J- ⁇ intronic enhancer (Hayday et al. (1984) Nature 307: 334) can be isolated as a 1.4 kb Mlul/HindIII fragment (see, infra).
  • Addition of a transcriptionally active xenoenhancer to a transgene such as a combined xenoenhancer consisting essentially of a human J- ⁇ intronic enhancer linked in cis to a mouse J- ⁇ intronic enhancer, can confer high levels of expression of the transgene, especially where said transgene encodes a light chain, such as human ⁇ .
  • a rat 3' enhancer can be advantageously included in a minilocus construct capable of encoding a human heavy chain.
  • a preferred embodiment of the invention is an animal containing at least one, typically 2-10, and sometimes 25-50 or more copies of the transgene described in Example 12 (e.g., pHC1 or pHC2) bred with an animal containing a single copy of a light chain transgene described in Examples 5, 6, 8, or 14, and the offspring bred with the J H deleted animal described in Example 10. Animals are bred to homozygosity for each of these three traits.
  • Such animals have the following genotype: a single copy (per haploid set of chromosomes) of a human heavy chain unrearranged mini-locus (described in Example 12), a single copy (per haploid set of chromosomes) of a rearranged human ⁇ light chain construct (described in Example 14), and a deletion at each endogenous mouse heavy chain locus that removes all of the functional J H segments (described in
  • Example 10 Such animals are bred with mice that are
  • B cells will be monospecific with regards to human or mouse heavy chains because both endogenous mouse heavy chain gene copies are nonfunctional by virtue of the deletion spanning the J H region introduced as described in Example 9 and 12. Furthermore, a substantial fraction of the B cells will be monospecific with regards to the human or mouse light chains because expression of the single copy of the rearranged human ⁇ light chain gene will allelically and isotypically exclude the rearrangement of the endogenous mouse ⁇ and ⁇ chain genes in a significant fraction of B-cells.
  • the transgenic mouse of the preferred embodiment will exhibit immunoglobulin production with a significant repertoire, ideally substantially similar to that of a native mouse.
  • the total immunoglobulin levels will range from about 0.1 to 10 mg/ml of serum,
  • the adult mouse ratio of serum IgG to IgM is preferably about 10:1.
  • the IgG to IgM ratio will be much lower in the
  • spleen and lymph node B cells express exclusively human IgG protein.
  • the repertoire will ideally approximate that shown in a non-transgenic mouse, usually at least about 10% as high, preferably 25 to 50% or more.
  • immunoglobulins ideally IgG
  • 10 4 to 10 6 or more will be produced, depending primarily on the number of different V, J and D regions introduced into the mouse genome.
  • These immunoglobulins will typically recognize about one-half or more of highly antigenic proteins,
  • immunoglobulins will exhibit an affinity for preselected antigens of at least about 10 7 M -1 , preferably 10 8 M -1 to 10 9 M -1 or greater.
  • a heavy chain transgene having a predetermined repertoire may comprise, for example, human V H genes which are preferentially used in antibody responses to the predetermined antigen type in humans.
  • some V H genes may be excluded from a defined repertoire for various reasons (e.g., have a low likelihood of encoding high affinity V regions for the predetermined antigen; have a low propensity to undergo somatic mutation and affinity sharpening; or are immunogenic to certain humans).
  • gene segments may be readily identified, e.g. by hybridization or DNA sequencing, as being from a species of organism other than the transgenic animal.
  • transgenic animal of the invention other embodiments are defined by the disclosure herein and more particularly by the transgenes described in the Examples.
  • transgenic animal Four categories of transgenic animal may be defined:
  • Transgenic animals containing an unrearranged heavy and unrearranged light immunoglobulin transgene III Transgenic animal containing rearranged heavy and an unrearranged light immunoglobulin transgene, and IV. Transgenic animals containing rearranged heavy and rearranged light immunoglobulin transgenes.
  • transgenic animal Of these categories of transgenic animal, the preferred order of preference is as follows II > I > III > IV where the endogenous light chain genes (or at least the ⁇ gene) have been knocked out by homologous recombination (or other method) and I > II > III >IV where the endogenous light chain genes have not been knocked out and must be dominated by allelic exclusion.
  • mice are derived according to Hogan, et al., "Manipulating the Mouse Embryo: A Laboratory Manual",
  • Embryonic stem cells are manipulated according to published procedures (Teratocarcinomas and embryonic stem cells: a practical approach, E.J. Robertson, ed., IRL Press, Washington, D.C., 1987; Zjilstra et al.. Nature 342:435-438 (1989); and Schwartzberg et al.. Science 246:799-803 (1989), each of which is incorporated herein by reference).
  • DNA cloning procedures are carried out according to J. Sambrook, et al. in Molecular Cloning: A Laboratory
  • Oligonucleotides are synthesized on an Applied Bio Systems oligonucleotide synthesizer according to
  • Hybridoma cells and antibodies are manipulated according to "Antibodies: A Laboratory Manual”, Ed Harlow and David Lane, Cold Spring Harbor Laboratory (1988), which is incorporated herein by reference.
  • Nuclei are isolated from fresh human placental tissue as described by Marzluff et al., "Transcription and Translation: A Practical Approach", B.D. Hammes and
  • the isolated nuclei (or PBS washed human spermatocytes) are embedded in a low melting point agarose matrix and lysed with EDTA and proteinase ⁇ to expose high molecular weight DNA, which is then digested in the agarose with the restriction enzyme NotI as described by M. Finney in Current Protocols in Molecular Biology (F. Ausubel, et al., eds. John Wiley & Sons, Supp. 4, 1988, Section 2.5.1).
  • the NotI digested DNA is then fractionated by pulsed field gel electrophoresis as described by Anand et al.,
  • Plasmid pYACNN is prepared by digestion of pYAC-4 Neo (Cook et al., Nucleic Acids Res. 16: 11817 (1988)) with EcoRI and ligation in the presence of the oligonucleotide 5' - AAT TGC GGC CGC - 3'.
  • the cloned NotI insert is isolated from high molecular weight yeast DNA by pulse field gel electrophoresis as described by M. Finney, op cit. The DNA is condensed by the addition of 1 mM spermine and microinjected directly into the nucleus of single cell embryos previously described.
  • the 450 kb XhoI to NotI fragment plus the approximately 400 kb Mlul to BssHII fragment have sequence overlap defined by the BssHII and XhoI restriction sites. Homologous recombination of these two fragments upon
  • microinjection of a mouse zygote results in a transgene containing at least an additional 15-20 V segments over that found in the 450 kb XhoI/NotI fragment (Example 2).
  • pBR322 is digested with EcoRI and StyI and ligated with the following oligonucleotides to generate pGP1 which contains a 147 base pair insert containing the restriction sites shown in Fig. 8. The general overlapping of these oligos is also shown in Fig. 9.
  • oligonucleotides are:
  • AAA AGC CCG CTC ATT AGG CGG GCT - 3'
  • This plasmid contains a large polylinker flanked by rare cutting NotI sites for building large inserts that can be isolated from vector sequences for microinjection.
  • the plasmid is based on pBR322 which is relatively low copy compared to the pUC based plasmids (pGP1 retains the pBR322 copy number control region near the origin of replication). Low copy number reduces the potential toxicity of insert sequences.
  • pGP1 contains a strong transcription terminator sequence derived from trpA (Christie et al., Proc. Natl. Acad. Sci. USA 78:4180 (1981)) inserted between the ampicillin resistance gene and the polylinker. This further reduces the toxicity associated with certain inserts by preventing readthrough transcription coming from the
  • ampicillin promoters are ampicillin promoters.
  • Plasmid pGP2 is derived from pGP1 to introduce an additional restriction site (SfiI) in the polylinker.
  • pGP1 is digested with Mlul and Spel to cut the recognition sequences in the polylinker portion of the plasmid.
  • a 3' pGP2 is identical to pGP1 except that it contains an additional Sfi I site located between the Mlul and SpeI sites. This allows inserts to be completely excised with SfiI as well as with NotI.
  • rat IGH 3' enhancer sequence is PCR amplified by using the following oligonucleotides:
  • pGP1 is digested with BamHI and BglII followed by treatment with calf intestinal alkaline phosphatase.
  • Fragments (a) and (b) from Fig. 9 are cloned in the digested pGP1.
  • a clone is then isolated which is oriented such that 5' BamHI site is destroyed by BamHI/Bgl fusion. It is identified as pMU (see Fig. 10).
  • pMU is digested with BamHI and fragment (c) from Fig. 9 is inserted.
  • the resultant plasmid pHIG1 (Fig. 10) contains an 18 kb insert encoding J and C ⁇ segments. D. Cloning of Cu Region
  • pGP1 is digested with BamHI and HindIII is followed by treatment with calf intestinal alkaline phosphatase (Fig. 14) .
  • the so treated fragment (b) of Fig. 14 and fragment (c) of Fig. 14 are cloned into the BamHI/HindIII cut pGP1.
  • Proper orientation of fragment (c) is checked by HindIII digestion to form pCON1 containing a 12 kb insert encoding the C ⁇ region.
  • pHIG1 contains J segments, switch and ⁇ sequences in its 18 kb insert with an SfiI 3' site and a Spel 5' site in a polylinker flanked by NotI sites, will be used for rearranged VDJ segments.
  • pCONl is identical except that it lacks the J region and contains only a 12 kb insert. The use of pCONl in the construction of fragment containing rearranged VDJ segments will be described hereinafter.
  • An intronic sequence is a nucleotide sequence of at least 15 contiguous nucleotides that occurs in an intron of a specified gene.
  • Phage clones containing the ⁇ -1 region are identified and isolated using the following oligonucleotide which is specific for the third exon of ⁇ -I (CH3).
  • a 7.7 kb HindIII to BglII fragment (fragment (a) in Fig. 11) is cloned into HindIII/BglII cut pRE3 to form pREG1.
  • the upstream 5.3 kb HindIII fragment (fragment (b) in Fig. 11) is cloned into HindIII digested pREG1 to form pREG2. Correct orientation is confirmed by BamHI/Spel digestion.
  • the previously described plasmid pHIG1 contains human J segments and the C ⁇ constant region exons.
  • pHIG1 was digested with SfiI (Fig. 10).
  • the plasmid pREG2 was also digested with SfiI to produce a 13.5 kb insert containing human C ⁇ exons and the rat 3' enhancer sequence. These sequences were combined to produce the plasmid pHIG3' (Fig. 12) containing the human J segments, the human C ⁇ constant region, the human C ⁇ 1 constant region and the rat 3' enhancer contained on a 31.5 kb insert.
  • a second plasmid encoding human C ⁇ and human C ⁇ 1 without J segments is constructed by digesting pCONl with SfiI and combining that with the SfiI fragment containing the human C ⁇ region and the rat 3' enhancer by digesting pREG2 with SfiI.
  • the resultant plasmid, pCON (Fig. 12) contains a 26 kb NotI/Spel insert containing human C ⁇ , human ⁇ 1 and the rat 3' enhancer sequence.
  • Fig. 13 Phage clones from the human genomic library containing D segments are identified and isolated using probes specific for diversity region sequences (Ichihara et al., EMBO J. 7:4141-4150 (1988)). The following
  • oligonucleotides are used:
  • DXP1 5' - TGG TAT TAC TAT GGT TCG GGG AGT TAT TAT
  • AAC CAC AGT GTC - 3' DXP4 5' - GCC TGA AAT GGA GCC TCA GGG CAC AGT GGG
  • DN4 5' - GCA GGG AGG ACA TGT TTA GGA TCT GAG GCC GCA CCT GAC ACC - 3'
  • a 5.2 kb XhoI fragment (fragment (b) in Fig. 13) containing DLR1, DXP1 , DXP'1, and DA1 is isolated from a phage clone identified with oligo DXP1.
  • a 3.2 kb Xbal fragment (fragment (c) in Fig. 13) containing DXP4, DA4 and DK4 is isolated from a phage clone identified with oligo DXP4.
  • This plasmid contains diversity segments cloned into the polylinker with a unique 5' SfiI site and unique 3' Spel site. The entire polylinker is flanked by NotI sites.
  • a restriction map of the unrearranged V segment is determined to identify unique restriction sites which provide upon digestion a DNA fragment having a length approximately 2 kb containing the unrearranged V segment together with 5' and 3' flanking sequences.
  • the 5' prime sequences will include promoter and other regulatory sequences whereas the 3' flanking sequence provides recombination sequences necessary for V-DJ joining.
  • This approximately 3.0 kb V segment insert is cloned into the polylinker of pGB2 to form pVH1.
  • pVH1 is digested with SfiI and the resultant
  • pHIG5' Since pHIG2 contains D segments only, the resultant pHIG5' plasmid contains a single V segment together with D segments.
  • the size of the insert contained in pHIG5 is 10.6 kb plus the size of the V segment insert.
  • pHIG5 The insert from pHIG5 is excised by digestion with NotI and Spel and isolated.
  • pHIG3' which contains J, C ⁇ and C ⁇ 1 segments is digested with SpeI and NotI and the 3' kb fragment containing such sequences and the rat 3' enhancer sequence is isolated. These two fragments are combined and ligated into NotI digested pGP1 to produce pHIG which contains insert encoding a V segment, nine D segments, six functional J segments, C ⁇ , C ⁇ and the rat 3' enhancer.
  • the size of this insert is approximately 43 kb plus the size of the V segment insert.
  • the insert of pHIG is approximately 43 to 45 kb when a single V segment is employed. This insert size is at or near the limit of that which may be readily cloned into plasmid vectors.
  • the following describes in vivo homologous recombination of overlapping DNA fragments which upon homologous recombination within a zygote or ES cell form a transgene containing the rat 3' enhancer sequence, the human C ⁇ , the human C ⁇ 1, human J segments, human D segments and a multiplicity of human V segments.
  • the resultant is plasmid designated pHIG5'0 (overlap) .
  • the insert contained in this plasmid contains human V, D and J segments. When the single V segment from pVHl is used, the size of this insert is approximately 17 kb plus 2 kb.
  • This insert is isolated and combined with the insert from pHIG3' which contains the human J, C ⁇ , ⁇ 1 and rat 3' enhancer sequences. Both inserts contain human J segments which provide for approximately 6.3 kb of overlap between the two DNA fragments.
  • pHIG5'0 overlap
  • This approach provides for the addition of a
  • multiplicity of V segments into the transgene formed in vivo For example, instead of incorporating a single V segment into pHIG5', a multiplicity of V segments contained on (1) isolated genomic DNA, (2) ligated DNA derived from genomic DNA, or (3) DNA encoding a synthetic V segment repertoire is cloned into pHIG2 at the SfiI site to generate pHIGS' V N . The J segments fragment (a) of Fig. 9 is then cloned into pHIG5' V N and the insert isolated. This insert now contains a multiplicity of V segments and J segments which overlap with the J segments contained on the insert isolated from pHIG3'.
  • pEu1 The construction of pEu1 is depicted in Fig. 16.
  • the mouse heavy chain enhancer is isolated on the Xbal to
  • This E ⁇ fragment is cloned into EcoRV/Xbal digested pGP1 by blunt end filling in EcoRI site.
  • the resultant plasmid is designated pEmul.
  • the ⁇ construct contains at least one human V ⁇ segment, all five human J ⁇ segments, the human J-C ⁇ enhancer, human ⁇ constant region exon, and, ideally, the human 3' ⁇ enhancer (Meyer et al., EMBO J. 8:1959-1964 (1989)).
  • the ⁇ enhancer in mouse is 9 kb downstream from C ⁇ . However, it is as yet unidentified in the human.
  • the construct contains a copy of the mouse heavy chain J-C ⁇ enhancers.
  • the minilocus is constructed from four component fragments:
  • the 16 kb fraction is isolated from the SmaI digested gel and the 11 kb region is similarly isolated from the gel containing DNA digested with BamHI.
  • the 16 kb SmaI fraction is cloned into Lambda FIX II (Stratagene, La Jolla, California) which has been digested with XhoI, treated with klenow fragment DNA polymerase to fill in the XhoI restriction digest product. Ligation of the 16 kb SmaI fraction destroys the SmaI sites and lases XhoI sites intact.
  • the 11 kb BamHI fraction is cloned into ⁇ EMBL3 (Strategene, La Jolla, California) which is digested with BamHI prior to cloning.
  • the above C ⁇ specific oligonucleotide is used to probe the ⁇ EMBL3/BamHI library to identify an 11 kb clone.
  • a 5 kb SmaI fragment fragment (b) in Fig. 20) is subcloned and subsequently inserted into pKapl digested with SmaI.
  • Those plasmids containing the correct orientation of J segments, C ⁇ and the E ⁇ enhancer are designated pKap2.
  • V ⁇ segments are thereafter subcloned into the Mlul site of pKap2 to yield the plasmid pKapH which encodes the human V ⁇ segments, the human J ⁇ segments, the human C ⁇ segments and the human E ⁇ enhancer.
  • This insert is excised by digesting pKapH with NotI and purified by agarose gel electrophoresis. The thus purified insert is
  • the 11 kb BamHI fragment is cloned into BamHI digested pGP1 such that the 3' end is toward the SfiI site.
  • the resultant plasmid is designated pKAPint.
  • One or more V ⁇ segments is inserted into the polylinker between the BamHI and Spel sites in pKAPint to form pKapHV.
  • the insert of pKapHV is excised by digestion with NotI and purified.
  • the insert from pKap2 is excised by digestion with NotI and purified.
  • Each of these fragments contain regions of homology in that the fragment from pKapHV contains a 5 kb sequence of DNA that include the J ⁇ segments which is substantially homologous to the 5 kb SmaI fragment contained in the insert obtained from pKap2.
  • these inserts are capable of homologously recombining when microinjected into a mouse zygote to form a transgene encoding V ⁇ , J ⁇ and C ⁇ .
  • Immunoglobulin ⁇ Light Chain Genes This example describes the cloning of immunoglobulin ⁇ light chain genes from cultured cells that express an immunoglobulin of interest. Such cells may contain multiple alleles of a given immunoglobulin gene. For example, a hybridoma might contain four copies of the ⁇ light chain gene, two copies from the fusion partner cell line and two copies from the original B-cell expressing the immunoglobulin of interest. Of these four copies, only one encodes the
  • immunoglobulin of interest despite the fact that several of them may be rearranged.
  • the procedure described in this example allows for the selective cloning of the expressed copy of the ⁇ light chain.
  • RNA is then used for the synthesis of oligo dT primed cDNA using the enzyme reverse transcriptase (for general methods see. Goodspeed et al.
  • the single stranded cDNA is then isolated and G residues are added to the 3' end using the enzyme
  • single-stranded cDNA is then purified and used as template for second strand synthesis (catalyzed by the enzyme DNA
  • the double stranded cDNA is isolated and used for determining the nucleotide sequence of the 5' end of the mRNAs encoding the heavy and light chains of the expressed
  • the double stranded cDNA described in part A is denatured and used as a template for a third round of DNA synthesis using the following oligonucleotide primer:
  • This primer contains sequences specific for the constant portion of the ⁇ light chain message (TCA TCA GAT GGC
  • GGG AAG ATG AAG ACA GAT GGT GCA GGG AAG ATG AAG ACA GAT GGT GCA
  • unique sequences that can be used as a primer for the PCR amplification of the newly synthesized DNA strand
  • AAG AAG
  • the sequence is amplified by PCR using the following two oligonucleotide primers:
  • the first 42 nucleotides of sequence will then be used to synthesize a unique probe for isolating the gene from which immunoglobulin message was transcribed.
  • This synthetic 42 nucleotide segment of DNA will be referred to below as o-kappa.
  • a unique restriction endonuclease site is identified upstream of the rearranged V segment.
  • DNA from the Ig expressing cell line is then cut with SmaI and second enzyme (or BamHI or Kpnl if there is SmaI site inside V segment). Any resulting non-blunted ends are treated with the enzyme T4 DNA polymerase to give blunt ended DNA molecules. Then add restriction site encoding linkers (BamHI, EcoRI or XhoI depending on what site does not exist in fragment) and cut with the corresponding linker enzyme to give DNA fragments with BamHI, EcoRI or XhoI ends.
  • SmaI and second enzyme or BamHI or Kpnl if there is SmaI site inside V segment. Any resulting non-blunted ends are treated with the enzyme T4 DNA polymerase to give blunt ended DNA molecules. Then add restriction site encoding linkers (BamHI, EcoRI or XhoI depending on what site does not exist in fragment) and cut with the corresponding linker enzyme to give DNA fragments with BamHI, EcoRI or XhoI ends.
  • V segment containing clones are isolated using the unique probe o-kappa. DNA is isolated from positive clones and subcloned into the polylinker of pKapl. The resulting clone is called pRKL.
  • This example describes the cloning of immunoglobulin heavy chain ⁇ genes from cultured cells of expressed and immunoglobulin of interest. The procedure described in this example allows for the selective cloning of the expressed copy of a ⁇ heavy chain gene.
  • Double-stranded cDNA is prepared and isolated as described herein before.
  • the double-stranded cDNA is
  • This primer contains sequences specific for the constant portion of the ⁇ heavy chain message (ACA GGA GAC GAG GGG GAA AAG GGT TGG GGC GGA TGC) as well as unique sequences that can be used as a primer for the PCR amplification of the newly synthesized DNA strand (GTA CGC CAT ATC AGC TGG ATG AAG) .
  • the sequence is amplified by PCR using the following two oligonucleotide primers: 5' - GAG GTA CAC TGA CAT ACT GGC ATG - 3'
  • PCR amplified sequence is then purified by gel electrophoresis and used as template for dideoxy sequencing reactions using the following oligonucleotide as a primer:
  • the first 42 nucleotides of sequence are then used to synthesize a unique probe for isolating the gene from which immunoglobulin message was transcribed.
  • This synthetic 42 nucleotide segment of DNA will be referred to below as o-mu.
  • Mlul is a rare cutting enzyme that cleaves between the J segment and mu CH1
  • restriction endonuclease site is identified upstream of the rearranged V segment.
  • DNA from the Ig expressing cell line is then cut with Mlul and second enzyme.
  • Mlul or Spel adapter linkers are then ligated onto the ends and cut to convert the upstream site to Mlul or Spel.
  • the DNA is then size fractionated by agarose gel electrophoresis, and the fraction including the DNA fragment covering the expressed V segment is cloned directly into the plasmid pGPI.
  • V segment containing clones are isolated using the unique probe o-mu, and the insert is subcloned into MluI or MluI/Spel cut plasmid pCON2. The resulting plasmid is called pRMGH.
  • a human genomic DNA phage library was screened with kappa light chain specific oligonucleotide probes and isolated clones spanning the J ⁇ -C region.
  • a 5.7 kb ClaI/XhoI fragment containing J ⁇ 1 together with a 13 kb XhoI fragment containing J ⁇ 2-5 and C ⁇ into pGP1d was cloned and used to create the plasmid pKcor. This plasmid contains J ⁇ 1-5, the kappa
  • a human genomic DNA phage library was screened with
  • V ⁇ light chain specific oligonucleotide probes and isolated clones containing human V ⁇ segments. Functional V segments were identified by DNA sequence analysis. These clones contain TATA boxes, open reading frames encoding leader and variable peptides (including 2 cysteine residues), splice sequences, and recombination heptamer-12 bp spacer-nonamer sequences. Three of the clones were mapped and sequenced.
  • Two of the clones, 65.5 and 65.8 appear to be functional, they contain TATA boxes, open reading frames encoding leader and variable peptides (including 2 cysteine residues), splice sequences, and recombination heptamer-12 bp spacer-nonamer sequences.
  • the third clone, 65.4 appears to encode a V ⁇ I pseudogene as it contains a non-canonical recombination heptamer.
  • Vk 65-8 which encodes a VkIII family gene, was used to build a light chain minilocus construct.
  • the kappa light chain minilocus transgene pKC1 (Fig. 32) was generated by inserting a 7.5 kb XhoI/SalI fragment containing V ⁇ 65.8 into the 5' XhoI site of pKcor.
  • the transgene insert was isolated by digestion with NotI prior to injection.
  • the purified insert was microinjected into the pronuclei of fertilized (C57BL/6 ⁇ CBA)F2 mouse embryos and transferred the surviving embryos into pseudopregnant females as described by Hogan et al. (in Methods of Manipulating the Mouse Embryo, 1986, Cold Spring Harbor Laboratory, New York). Mice that developed from injected embryos were analyzed for the presence of transgene sequences by Southern blot analysis of tail DNA. Transgene copy number was estimated by band intensity relative to control standards containing known quantities of cloned DNA.
  • Serum was isolated from these animals and assayed for the presence of transgene encoded human Ig kappa protein by ELISA as described by Harlow and Lane (in Antibodies: A Laboratory Manual, 1988, Cold Spring Harbor Laboratory, New York) .
  • Microtiter plate wells were coated with mouse monoclonal antibodies specific for human Ig kappa (clone 6E1, #0173, AMAC, Inc., Westbrook, ME), human IgM (Clone AF6, #0285, AMAC, Inc., Westbrook, ME) and human IgG1 (clone JL512, #0280, AMAC, Inc., Westbrook, ME).
  • Serum samples were serially diluted into the wells and the presence of specific immunoglobulins detected with affinity isolated alkaline phosphatase conjugated goat anti-human Ig (polyvalent) that had been pre-adsorbed to minimize cross-reactivity with mouse immunoglobulins.
  • Fig. 35 shows the results of an ELISA assay of serum from 8 mice (I.D. #676, 674, 673, 670, 666, 665, 664, and 496). The first seven of these mice developed from embryos that were injected with the pKC1 transgene insert and the eighth mouse is derived from a mouse generated by
  • mice from KC1 injected embryos Two of the seven mice from KC1 injected embryos (I.D.#'s 666 and 664) did not contain the transgene insert as assayed by DAN Southern blot analysis, and five of the mice (I.D.#'s 676, 674, 673, 670, and 665) contained the transgene. All but one of the KC1 transgene positive animals express detectable levels of human Ig kappa protein, and the single non-expressing animal appears to be a genetic mosaic on the basis of DNA Southern blot analysis. The pHC1 positive transgenic mouse expresses human IgM and IgG1 but not Ig kappa,
  • the kappa light chain minilocus transgene pKC2 was generated by inserting an 8 kb XhoI/SalI fragment containing V ⁇ 65.5 into the 5' XhoI site of pKC1. The resulting
  • transgene insert which contains two V ⁇ segments, was isolated prior to microinjection by digestion with NotI.
  • This construct is identical to pKC1 except that it includes 1.2 kb of additional sequence 5' of J ⁇ and is missing 4.5 kb of sequence 3' of V ⁇ 65.8. In additional it contains a 0.9 kb Xbal fragment containing the mouse heavy chain J- ⁇ intronic enhancer (Banerji et al., Cell 33:729-740 (1983)) together with a 1.4 kb MluI/HindIII fragment containing the human heavy chain J- ⁇ intronic enhancer (Hayday et al., Nature 307:334-340 (1984)) inserted downstream.
  • This construct tests the feasibility of initiating early rearrangement of the light chain minilocus to effect allelic and isotypic exclusion. Analogous constructs can be generated with different
  • enhancers i.e., the mouse or rat 3' kappa or heavy chain enhancer (Meyer and Neuberger, EMBO J. 8:1959-1964 (1989);
  • a kappa light chain expression cassette was designed to reconstruct functionally rearranged light chain genes that have been amplified by PCR from human B-cell DNA.
  • the scheme is outlined in Fig. 33.
  • PCR amplified light chain genes are cloned into the vector pK5nx that includes 3.7 kb of 5' flanking sequences isolated from the kappa light chain gene 65.5.
  • the VJ segment fused to the 5' transcriptional
  • sequences are then cloned into the unique XhoI site of the vector pK31s that includes J ⁇ 2-4, the J ⁇ intronic enhancer, C ⁇ , and 9 kb of downstream sequences.
  • the resulting plasmid contains a reconstructed functionally rearranged kappa light chain transgene that can be excised with NotI for
  • the plasmids also contain unique SalI sites at the 3' end for the insertion of additional cis-acting regulatory sequences.
  • Oligonucleotide o-131 (gga ccc aga
  • Oligonucleotide o-130 (gtg caa tea att etc gag ttt gac tac aga c) is complementary to a sequence approximately 150 bp 3' of J ⁇ 1 and includes an XhoI site. These two oligonucleotides amplify a 0.7 kb DNA
  • the PCR amplified DNA was digested with NcoI and XhoI and cloned individual PCR products into the plasmid pNN03.
  • the DNA sequence of 5 clones was determined and identified two with functional VJ joints (open reading frames). Additional functionally rearranged light chain clones are collected. The functionally rearranged clones can be individually cloned into light chain expression
  • Transgenic mice generated with the rearranged light chain constructs can be bred with heavy chain minilocus transgenics to produce a strain of mice that express a spectrum of fully human antibodies in which all of the diversity of the primary repertoire is contributed by the heavy chain.
  • One source of light chain diversity can be from somatic mutation. Because not all light chains will be equivalent with respect to their ability to combine with a variety of different heavy chains, different strains of mice, each containing different light chain constructs can be generated and tested.
  • the advantage of this scheme, as opposed to the use of unrearranged light chain miniloci is the increased light chain allelic and isotypic exclusion that comes from having the light chain ready to pair with a heavy chain as soon as heavy chain VDJ joining occurs. This
  • combination can result in an increased frequency of B-cells expressing fully human antibodies, and thus it can facilitate the isolation of human Ig expressing hybridomas.
  • NotI inserts of plasmids pIGM1, pHC1, pIGG1, pKC1, and pKC2 were isolated away from vector sequences by agarose gel electrophoresis. The purified inserts were microinjected into the pronuclei of fertilized (C57BL/6 ⁇ CBA)F2 mouse embryos and transferred the surviving embryos into
  • pseudopregnant females as described by Hogan et al. (Hogan et al.. Methods of Manipulating the Mouse Embryo. Cold Spring Harbor Laboratory, New York (1986)).
  • This example describes the inactivation of the mouse endogenous kappa locus by homologous recombination in
  • ES embryonic stem
  • blastocysts early mouse embryos
  • the plasmid pGEM7 contains the neomycin resistance gene (neo), used for drug selection of transfected ES cells, under the transcriptional control of the mouse phosphoglycerate kinase (pgk) promoter (XbaI/TaqI fragment; Adra et al. (1987) Gene 60: 65) in the cloning vector pGEM-7Zf(+).
  • the plasmid also includes a heterologous
  • Fig. 20a Mouse kappa chain sequences (Fig. 20a) were isolated from a genomic phage library derived from liver DNA using oligonucleotide probes specific for the C ⁇ locus: 5'- GGC TGA TGC TGC ACC AAC TGT ATC CAT CTT CCC ACC ATC CAG -3' and for the J ⁇ 5 gene segment: 5'- CTC ACG TTC GGT GCT GGG ACC AAG CTG GAG CTG AAA CGT AAG -3 ' .
  • a 1.2 kb EcoRI/SphI fragment extending 5' of the J ⁇ region was also isolated from a positive phage clone.
  • An SphI/Xbal/BglII/EcoRI adaptor was ligated to the SphI site of this fragment, and the resulting EcoRI fragment was ligated into EcoRI digested pNEO-K3', in the same 5' to 3' orientation as the neo gene and the downstream 3' kappa sequences, to generate pNEO-K5'3' (Fig. 20c).
  • HSV Herpes Simplex Virus
  • TK thymidine kinase gene
  • the HSV TK cassette was obtained from the plasmid pGEM7 (TK), which contains the structural sequences for the HSV TK gene bracketed by the mouse pgk promoter and polyadenylation sequences as described above for pGEM7 (KJ1).
  • telomere sequence was modified to a BamHI site and the TK cassette was then excised as a BamHI/HindIII fragment and subcloned into pGP1b to generate pGP1b-TK.
  • This plasmid was linearized at the XhoI site and the XhoI fragment from pNEO-K5'3', containing the neo gene flanked by genomic sequences from 5' of J ⁇ and 3' of C ⁇ , was inserted into pGP1b-TK to generate the targeting vector J/C KI (Fig. 20d).
  • the putative structure of the genomic kappa locus following homologous recombination with J/C K1 is shown in Fig. 20e. Generation and analysis of ES cells with targeted inactivation of a kappa allele
  • ES cells used were the AB-1 line grown on mitotically inactive SNL76/7 cell feeder layers (McMahon and Bradley, Cell 62:1073-1085 (1990)) essentially as described (Robertson, E.J. (1987) in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach. E.J. Robertson, ed. (Oxford: IRL Press), p. 71-112).
  • Other suitable ES lines include, but are not limited to, the E14 line (Hooper et al. (1987) Nature 326: 292-295), the D3 line (Doetschman et al. (1985) J. Embryol. EXP. Morph. 87: 27-45), and the CCE line (Robertson et al.
  • the pluripotence of any given ES cell line can vary with time in culture and the care with which it has been handled.
  • the only definitive assay for pluripotence is to determine whether the specific population of ES cells to be used for targeting can give rise to chimeras capable of germline transmission of the ES genome. For this reason, prior to gene targeting, a portion of the parental population of AB-1 cells is injected into C57B1/6J blastocysts to
  • the kappa chain inactivation vector J/C K1 was digested with NotI and electroporated into AB-1 cells by the methods described (Hasty et al., Nature, 350:243-246 (1991)). Electroporated cells were plated onto 100 mm dishes at a density of 1-2 ⁇ 10 6 cells/dish. After 24 hours, G418
  • DNA analysis was carried out by Southern blot hybridization. DNA was isolated from the clones as described (Laird et al., Nucl. Acids Res. 19:4293 (1991)) digested with Xbal and probed with the 800 bp EcoRI/Xbal fragment indicated in Fig. 20e as probe A. This probe detects a 3.7 kb Xbal fragment in the wild type locus, and a diagnostic 1.8 kb band in a locus which has homologously recombined with the
  • displayed the 1.8 kb Xbal band indicative of a homologous recombination into one of the kappa genes.
  • These ⁇ clones were further digested with the enzymes BglII, Sacl, and Pstl to verify that the vector integrated homologously into one of the kappa genes.
  • the AB1 ES cells are an XY cell line and a majority of these high percentage chimeras were male due to sex conversion of female embryos colonized by male ES cells.
  • Male chimeras derived from 4 of the 5 targeted clones were bred with C57BL/6J females and the offspring monitored for the presence of the dominant agouti coat color indicative of germline transmission of the ES genome.
  • heterozygotes were bred together and the kappa genotype of the offspring determined as described above.
  • three genotypes were derived from the heterozygote matings: wild-type mice bearing two copies of a normal kappa locus, heterozygotes carrying one targeted copy of the kappa gene and one NT kappa gene, and mice homozygous for the kappa mutation.
  • the deletion of kappa sequences from these latter mice was verified by hybridization of the Southern blots with a probe specific for J ⁇ (probe C, Fig. 20a).
  • This example describes the inactivation of the endogenous murine immunoglobulin heavy chain locus by
  • homologous recombination in embryonic stem (ES) cells The strategy is to delete the endogenous heavy chain J segments by homologous recombination with a vector containing heavy chain seguences from which the J H region has been deleted and replaced by the gene for the selectable marker neo.
  • the neomycin resistance gene (neo) used for drug selection of transfected ES cells, was derived from a repaired version of the plasmid pGEM7 (KJ1).
  • KJ1 neomycin resistance gene
  • restriction fragment encompassing the mutation with the corresponding sequence from a wild-type neo clone.
  • HindIII site in the prepared pGEM7 (KJ1) was converted to a SalI site by addition of a synthetic adaptor, and the neo expression cassette excised by digestion with Xbal/SalI. The ends of the neo fragment were then blunted by treatment with the Klenow form of DNA polI, and the neo fragment was
  • pGP1b was digested with the restriction enzyme NotI and ligated with the following oligonucleotide as an adaptor: 5'- GGC CGC TCG ACG ATA GCC TCG AGG CTA TAA ATC TAG AAG AAT TCC AGC AAA GCT TTG GC -3'
  • pGMT mouse immunoglobulin heavy chain targeting
  • the Herpes Simplex Virus (HSV) thymidine kinase (TK) gene was included in the construct in order to allow for enrichment of ES clones bearing homologous recombinants, as described by Mansour et al. (Nature 336, 348-352 (1988)).
  • the HSV TK gene was obtained from the plasmid pGEM7 (TK) by digestion with EcoRI and HindIII. The TK DNA fragment was subcloned between the EcoRI and HindIII sites of pGMT, creating the plasmid pGMT-TK (Fig. 21c).
  • a 5.9 kb genomic Xbal/XhoI fragment situated 5' of the J H region, was derived from a positive genomic phage clone by limit digestion of the DNA with XhoI, and partial digestion with Xbal.
  • this XbaI site is not present in genomic DNA, but is rather derived from phage sequences immediately flanking the cloned genomic heavy chain insert in the positive phage clone.
  • the fragment was
  • the final step in the construction involved the excision from pUC18 J H -neo of the 2.8 kb EcoRI fragment which contained the neo gene and flanking genomic sequences 3' of J H . This fragment was blunted by Klenow polymerase and subcloned into the similarly blunted XhoI site of
  • J H KO1 (Fig. 21e) contains 6.9 kb of genomic sequences flanking the J H locus, with a 2.3 kb deletion spanning the J H region into which has been inserted the neo gene.
  • Fig. 2If shows the structure of an endogenous heavy chain gene after homologous recombination with the targeting construct.
  • the heavy chain inactivation vector J H KO1 was digested with NotI and electroporated into AB-1 cells by the methods described (Hasty et al., Nature 350:243-246 (1991)). Electroporated cells were plated into 100 mm dishes at a density of 1-2 ⁇ 10 6 cells/dish. After 24 hours, G418
  • DNA analysis was carried out by Southern blot hybridization. DNA was isolated from the clones as described (Laird et al. (1991) Nucleic Acids Res. 19: 4293), digested with Stul and probed with the 500 bp EcoRI/StuI fragment designated as probe A in Fig. 2If. This probe detects a Stul fragment of 4.7 kb in the wild-type locus, whereas a 3 kb band is diagnostic of homologous recombination of endogenous sequences with the targeting vector (see Fig. 21a and f).
  • agouti offspring Since only one copy of the heavy chain locus was targeted in the injected ES clones, each agouti pup had a 50 percent chance of inheriting the mutated locus. Screening for the targeted gene was carried out by Southern blot analysis of Stul-digested DNA from tail
  • heterozygotes were bred together and the heavy chain genotype of the offspring determined as described above.
  • three genotypes were derived from the heterozygote matings: wild-type mice bearing two copies of the normal J H locus, heterozygotes carrying one targeted copy of the gene and one normal copy, and mice homozygous for the J H mutation. The absence of J H sequences from these latter mice was
  • the plasmid pBR322 was digested with EcoRI and StyI and ligated with the following oligonucleotides: oligo-42 5'- caa gag ccc gcc taa tga gcg ggc ttt ttt ttg cat act gcg gcc get -3'
  • oligo-43 5'- aat tag egg ccg cag tat gca aaa aaa age ccg etc att agg egg get -3'
  • the resulting plasmid, pGP1a is designed for
  • This termination signal reduces the potential toxicity of coding sequences inserted into the NotI site by eliminating readthrough transcription from the AmpR gene.
  • this plasmid is low copy relative to the pUC plasmids because it retains the pBR322 copy number control region. The low copy number further
  • the vectors pGP1b, pGP1c, pGP1d, and pGP1f are derived from pGP1a and contain different polylinker cloning sites.
  • the polylinker sequences are given below pGP1a
  • pGP1a was digested with NotI and ligated with the following oligonucleotides: oligo-47 5'- ggc cgc aag ctt act get gga tec tta att aat cga tag tga tct cga ggc -3'
  • oligo-48 5'- ggc cgc etc gag ate act ate gat taa tta agg ate cag cag taa get tgc -3'
  • the resulting plasmid, pGP1b contains a short polylinker region flanked by NotI sites. This facilitates the construction of large inserts that can be excised by NotI digestion.
  • oligonucleotides oligo-44 5'- etc cag gat cca gat ate agt ace tga aac agg get tgc -3'
  • oligo-45 5'- etc gag cat gca cag gac ctg gag cac aca cag cct tec -3' were used to amplify the immunoglobulin heavy chain 3'
  • pNN03 is a pUC derived plasmid that contains a polylinker with the following restriction sites, listed in order: NotI, BamHI, NcoI, ClaI, EcoRV, Xbal, Sacl, XhoI, SphI, Pstl, BglII, EcoRI, SmaI, KpnI, HindIII, and NotI).
  • the resulting plasmid, pRE3 was digested with BamHI and HindIII, and the insert containing the rat Ig heavy chain 3' enhancer cloned into BamHI/HindIII digested pGP1b.
  • the resulting plasmid, pGPe (Fig. 22 and Table 1), contains several unique restriction sites into which sequences can be cloned and subsequently excised together with the 3' enhancer by NotI digestion.
  • a 4 kb XhoI fragment was isolated from phage clone ⁇ 2.1 that contains sequences immediately downstream of the sequences in pJMl, including the so called ⁇ element involved in ⁇ -associated deleteon of the ⁇ in certain IgD expressing B-cells (Yasui et al., Eur. J. Immunol. 19:1399 (1989), which is incorporated herein by reference).
  • This fragment was treated with the Klenow fragment of DNA polymerase I and ligated to XhoI cut, Klenow treated, pJM1.
  • the resulting plasmid, pJM2 (Fig.
  • pJM2 contains the entire human J region, the heavy chain J- ⁇ intronic enhancer, the ⁇ switch region and all of the ⁇ constant region exons, as well as the two 0.4 kb direct repeats, ⁇ and ⁇ , involved in ⁇ -associated deletion of the ⁇ gene. 3. Isolation of D region clones and construction of pDH1
  • oligonucleotide oligo-4 5'- tgg tat tac tat ggt teg ggg agt tat tat aac cac agt gtc -3' was used to screen the human placenta genomic library for D region clones. Phage clones ⁇ 4.1 and ⁇ 4.3 were isolated. A 5.5 kb XhoI fragment, that includes the D elements D ⁇ 1 , D N1 , and D M2 (Ichihara et al., EMBO J. 7:4141 (1988)), was isolated from phage clone ⁇ 4.1.
  • pDH1 contains a 10.6 kb insert that includes at least ⁇ D segments and can be excised with XhoI (5') and EcoRV (3'). 4.
  • the plasmid pJM2 was digested with Asp718 (an isoschizomer of Kpnl) and the overhang filled in with the Klenow fragment of DNA polymerase I. The resulting DNA was then digested with ClaI and the insert isolated. This insert was ligated to the XhoI/EcoRV insert of pDH1 and XhoI/ClaI digested pGPe to generate pCOR1 (Fig. 24).
  • plasmid pCOR1 was partially digested with XhoI and the isolated XhoI/SalI insert of pVH251 cloned into the upstream XhoI site to generate the plasmid pIGM1 (Fig. 25).
  • pIGM1 contains 2 functional human variable region segments, at least 8 human D segments all 6 human J H segments, the human
  • J- ⁇ enhancer the human ⁇ element, the human ⁇ switch region, all of the human ⁇ coding exons, and the human ⁇ element, together with the rat heavy chain 3' enhancer, such that all of these sequence elements can be isolated on a single
  • oligonucleotide specific for human Ig g constant region genes: oligo-29 5'- cag cag gtg cac ace caa tgc cca tga gcc cag aca ctg gac -3' was used to screen the human genomic library. Phage clones 129.4 and ⁇ 29.5 were isolated. A 4 kb HindIII fragment of phage clone ⁇ 29.4, containing a ⁇ switch region, was used to probe a human placenta genomic DNA library cloned into the phage vector lambda FIXTM II (Stratagene, La Jolla, CA). Phage clone ⁇ Sg1.13 was isolated.
  • dideoxy sequencing reactions were carried out using subclones of each of the three phage clones as templates and the following oligonucleotide as a primer: oligo-67 5'- tga gcc cag aca ctg gac -3' Phage clones ⁇ 29.5 and ⁇ S ⁇ 1.13 were both determined to be of the ⁇ 1 subclass.
  • a 7.8 kb HindIII fragment of phage clone ⁇ 29.5, containing the ⁇ 1 coding region was cloned into pUC18.
  • the resulting plasmid, pLT1 was digested with XhoI, Klenow treated, and religated to destroy the internal XhoI site.
  • the resulting clone, pLT1xk was digested with HindIII and the insert isolated and cloned into pSP72 to generate the plasmid clone pLTlxks.
  • p ⁇ el contains all of the ⁇ 1 constant region coding exons, together with 5 kb of downstream sequences, linked to the rat heavy chain 3' enhancer.
  • a 5.3 kb HindIII fragment containing the ⁇ 1 switch region and the first exon of the pre-switch sterile transcript (P. Sideras et al. (1989) International Immunol. 1, 631) was isolated from phage clone ⁇ S ⁇ 1.13 and cloned into pSP72 with the polylinker XhoI site adjacent to the 5' end of the insert, to generate the plasmid clone PS ⁇ 1S.
  • the XhoI/SalI insert of PS ⁇ 1S was cloned into XhoI digested P ⁇ el to generate the plasmid clone P ⁇ e2 (Fig. 26).
  • P ⁇ e2 contains all of the ⁇ 1 constant region coding exons, and the upstream switch region and sterile transcript exons, together with 5 kb of downstream sequences, linked to the rat heavy chain 3' enhancer.
  • This clone contains a unique XhoI site at the 5' end of the insert. The entire insert, together with the XhoI site and the 3' rat enhancer can be excised from vector sequences by digestion with NotI. 4 .
  • pHC1 contains 2
  • constant region including the associated switch region and sterile transcript associated exons, together with the rat heavy chain 3' enhancer, such that all of these sequence elements can be isolated on a single fragment, away from vector sequences, by digestion with NotI and microinjected into mouse embryo pronuclei to generate transgenic animals.
  • Phage clone ⁇ 49.8 was isolated and a 6.1 kb Xbal fragment containing the variable segment VH49.8 subcloned into pNN03 (such that the polylinker ClaI site is downstream of VH49.8 and the polylinker XhoI site is upstream) to generate the plasmid pVH49.8.
  • An 800 bp region of this insert was sequenced, and VH49.8 found to have an open reading frame and intact splicing and recombination signals, thus indicating that the gene is functional (Table 2).
  • a 4 kb Xbal genomic fragment containing the human V H IV family gene V H 4-21 (Sanz et al., EMBO J., 8:3741 (1989)), subcloned into the plasmid pUC12, was excised with SmaI and HindIII, and treated with the Klenow fragment of polymerase I. The blunt ended fragment was then cloned into ClaI digested, Klenow treated, pVH49.8. The resulting plasmid, pV2, contains the human heavy chain gene VH49.8 linked upstream of VH4-21 in the same orientation, with a unique SalI site at the 3' end of the insert and a unique XhoI site at the 5' end.
  • sequences immediately upstream of, and adjacent to, the 5.3 kb ⁇ 1 switch region containing fragment in the plasmid P ⁇ e2) together with the neighboring upstream 3.1 kb Xbal fragment were isolated from the phage clone ⁇ Sg1.13 and cloned into HindIII/Xbal digested pUC18 vector.
  • the resulting plasmid, PS ⁇ 1-5' contains a 3.8 kb insert representing sequences upstream of the initiation site of the sterile transcript found in B-cells prior to switching to the ⁇ 1 isotype (P.
  • transgene constructs to promote correct expression of the sterile transcript and the associated switch
  • the PS ⁇ 1-5' insert was excised with SmaI and
  • the ligation product was digested with SalI and ligated to SalI digested pV2.
  • the resulting plasmid, pVP contains 3.8 kb of ⁇ 1 switch 5' flanking sequences linked downstream of the two human variable gene segments VH49.8 and VH4-21 (see Table 2).
  • the pVP insert is isolated by partial digestion with SalI and complete digestion with XhoI, followed by purification of the 15 kb fragment on an agarose gel. The insert is then cloned into the XhoI site of P ⁇ e2 to generate the plasmid clone.
  • pVGE1 (Fig. 27).
  • pVGE1 contains two human heavy chain variable gene segments upstream of the human ⁇ 1 constant gene and associated switch region.
  • a unique SalI site between the variable and constant regions can be used to clone in D, J, and ⁇ gene segments.
  • the rat heavy chain 3' enhancer is linked to the 3' end of the ⁇ 1 gene and the entire insert is flanked by NotI sites. 5.
  • the plasmid clone pVGE1 is digested with SalI and the XhoI insert of pIGM1 is cloned into it.
  • the resulting clone, pHC2 contains 4 functional human variable region segments, at least 8 human D segments all 6 human J H segments, the human J-m enhancer, the human ⁇ element, the human ⁇ switch region, all of the human ⁇ coding exons, the human ⁇ element, and the human ⁇ 1 constant region, including the associated switch region and sterile transcript associated exons, together with 4 kb flanking sequences upstream of the sterile transcript initiation site.
  • These human sequences are linked to the rat heavy chain 3* enhancer, such that all of the sequence elements can be isolated on a single fragment, away from vector sequences, by digestion with NotI and
  • transgenic mice A unique XhoI site at the 5' end of the insert can be used to clone in additional human variable gene segments to further expand the recombinational diversity of this heavy chain minilocus.
  • E. Transgenic mice A unique XhoI site at the 5' end of the insert can be used to clone in additional human variable gene segments to further expand the recombinational diversity of this heavy chain minilocus.
  • the NotI inserts of plasmids pIGM1 and pHC1 were isolated from vector sequences by agarose gel electrophoresis. The purified inserts were microinjected into the pronuclei of fertilized (C57BL/6 ⁇ CBA) F2 mouse embryos and transferred the surviving embryos into pseudopregnant females as described by Hogan et al. (B. Hogan, F. Costantini, and E. Lacy, Methods of Manipulating the Mouse Embryo, 1986, Cold Spring Harbor

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Cell Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

L'invention concerne des animaux transgéniques capables de produire des anticorps hétérologues, ainsi que des procédés de production d'anticorps à séquences humaines se fixant à des antigènes humains avec une affinité sensible.
EP94916581A 1993-04-26 1994-04-25 Animaux transgeniques capables de produire des anticorps heterologues Withdrawn EP0754225A4 (fr)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US53131 1993-04-26
US08/053,131 US5661016A (en) 1990-08-29 1993-04-26 Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US96762 1993-07-22
US08/096,762 US5814318A (en) 1990-08-29 1993-07-22 Transgenic non-human animals for producing heterologous antibodies
US15530193A 1993-11-18 1993-11-18
US155301 1993-11-18
US16173993A 1993-12-03 1993-12-03
US16569993A 1993-12-10 1993-12-10
US165699 1993-12-10
US161739 1993-12-10
US20974194A 1994-03-09 1994-03-09
US209741 1994-03-09
PCT/US1994/004580 WO1994025585A1 (fr) 1993-04-26 1994-04-25 Animaux transgeniques capables de produire des anticorps heterologues

Publications (2)

Publication Number Publication Date
EP0754225A1 true EP0754225A1 (fr) 1997-01-22
EP0754225A4 EP0754225A4 (fr) 2001-01-31

Family

ID=27556670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94916581A Withdrawn EP0754225A4 (fr) 1993-04-26 1994-04-25 Animaux transgeniques capables de produire des anticorps heterologues

Country Status (5)

Country Link
EP (1) EP0754225A4 (fr)
JP (3) JPH08509612A (fr)
AU (1) AU6819494A (fr)
CA (1) CA2161351C (fr)
WO (1) WO1994025585A1 (fr)

Families Citing this family (724)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713610B1 (en) 1990-01-12 2004-03-30 Raju Kucherlapati Human antibodies derived from immunized xenomice
US7041871B1 (en) 1995-10-10 2006-05-09 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US7084260B1 (en) 1996-10-10 2006-08-01 Genpharm International, Inc. High affinity human antibodies and human antibodies against human antigens
US5770429A (en) * 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US6300129B1 (en) * 1990-08-29 2001-10-09 Genpharm International Transgenic non-human animals for producing heterologous antibodies
AU2008202860B9 (en) * 1995-04-27 2012-03-29 Amgen Fremont Inc. Human Antibodies Derived From Immunized Xenomice
EP1978033A3 (fr) * 1995-04-27 2008-12-24 Amgen Fremont Inc. Anticorps humains dérivés à partir de xénosouris immunisée
AU4376400A (en) * 1995-04-27 2000-11-30 Abgenix, Inc. Human antibodies derived from immunized xenomice
CA2219486A1 (fr) * 1995-04-28 1996-10-31 Abgenix, Inc. Anticorps humains derives de xeno-souris immunisees
ATE274594T1 (de) * 1995-06-07 2004-09-15 Jacob N Wohlstadter Methode zur erhöhung der enzymdiversität
US5919681A (en) * 1995-06-07 1999-07-06 Wohlstadter Jacob N Method for promoting enzyme diversity
US5914256A (en) * 1995-06-07 1999-06-22 Wohlstadter Jacob N Method for promoting enzyme diversity
JPH11510047A (ja) * 1995-07-21 1999-09-07 ユニバーシティ・オブ・ネブラスカ・ボード・オブ・リージェンツ HIV gp120の加水分解を触媒する組成物および方法
US6537776B1 (en) 1999-06-14 2003-03-25 Diversa Corporation Synthetic ligation reassembly in directed evolution
EP0966971A1 (fr) 1996-04-23 1999-12-29 Chugai Seiyaku Kabushiki Kaisha Medicament pour le traitement ou la prevention des accidents vasculaires cerebraux/de l' deme cerebral, contenant comme principe actif un inhibiteur de la fixation de l'il-8
JP2000510692A (ja) 1996-05-04 2000-08-22 ゼネカ リミテッド Ceaに対するモノクローナル抗体、その抗体を含む結合体、およびadeptシステムにおけるそれらの治療的使用
CA2616914C (fr) 1996-12-03 2012-05-29 Abgenix, Inc. Anticorps de liaison de recepteur d'egf
AU2008200005B2 (en) * 1996-12-03 2012-05-17 Amgen Fremont Inc. Transgenic Mammals Having Human Ig Loci Including Plural Vh and Vk Regions and Antibodies Produced Therefrom
US6080910A (en) * 1997-02-20 2000-06-27 Case Western Reserve University Transgenic knockout animals lacking IgG3
ES2312184T3 (es) 1997-03-21 2009-02-16 Chugai Seiyaku Kabushiki Kaisha Agentes preventivos terapeuticos para el tratamiento de esclerosis multiple, que contienen anticuerpos anti-receptores de il-6 antagonistas.
US8173127B2 (en) 1997-04-09 2012-05-08 Intellect Neurosciences, Inc. Specific antibodies to amyloid beta peptide, pharmaceutical compositions and methods of use thereof
US20020173629A1 (en) 1997-05-05 2002-11-21 Aya Jakobovits Human monoclonal antibodies to epidermal growth factor receptor
US6235883B1 (en) 1997-05-05 2001-05-22 Abgenix, Inc. Human monoclonal antibodies to epidermal growth factor receptor
GB9711167D0 (en) * 1997-05-31 1997-07-23 Babraham The Inst Telomere-associated chromosome fragmentation
WO1999008707A1 (fr) 1997-08-15 1999-02-25 Chugai Seiyaku Kabushiki Kaisha Preventifs et/ou medicaments contre le lupus erythemateux systemique, contenant un anticorps anti-recepteur d'il-6 comme ingredient actif
GB9823930D0 (en) * 1998-11-03 1998-12-30 Babraham Inst Murine expression of human ig\ locus
WO2000026352A1 (fr) 1998-11-04 2000-05-11 Chugai Research Institute For Molecular Medicine, Inc. Nouvelles serine proteases de la famille de la trypsine
US7109003B2 (en) 1998-12-23 2006-09-19 Abgenix, Inc. Methods for expressing and recovering human monoclonal antibodies to CTLA-4
EE05627B1 (et) 1998-12-23 2013-02-15 Pfizer Inc. CTLA-4 vastased inimese monoklonaalsed antikehad
CZ302706B6 (cs) 1998-12-23 2011-09-14 Pfizer Inc. Lidská monoklonální protilátka, farmaceutická kompozice tuto protilátku obsahující, bunecná linie produkující tuto protilátku, izolovaná molekula kódující težký nebo lehký retezec uvedené protilátky, hostitelská bunka obsahující tuto izolovanou molek
US6914128B1 (en) 1999-03-25 2005-07-05 Abbott Gmbh & Co. Kg Human antibodies that bind human IL-12 and methods for producing
EP1961818A3 (fr) 1999-04-09 2008-09-10 Chugai Seiyaku Kabushiki Kaisha Nouveaux gènes de foetus
EP1188830B1 (fr) 1999-06-02 2010-01-20 Chugai Seiyaku Kabushiki Kaisha Proteine receptrice d'hemopoietine
US6833268B1 (en) 1999-06-10 2004-12-21 Abgenix, Inc. Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions
ES2307526T3 (es) 1999-08-23 2008-12-01 Chugai Seiyaku Kabushiki Kaisha Potenciadores de la expresion del antigeno hm1.24.
MXPA02001911A (es) 1999-08-24 2003-07-21 Medarex Inc Anticuerpos ctla-4 humanos y sus usos.
US7605238B2 (en) 1999-08-24 2009-10-20 Medarex, Inc. Human CTLA-4 antibodies and their uses
AU6871900A (en) 1999-09-06 2001-04-10 Chugai Seiyaku Kabushiki Kaisha Tsg-like gene
AU7491800A (en) * 1999-09-15 2001-04-17 Therapeutic Human Polyclonals, Inc. Immunotherapy with substantially human polyclonal antibody preparations purifiedfrom genetically engineered birds
EP1486510B1 (fr) 1999-09-21 2009-05-13 Chugai Seiyaku Kabushiki Kaisha Utilisation du gene pour le transporteur oatp-c pour la criblage de substances d'essai
US8062638B1 (en) 1999-10-01 2011-11-22 Chugai Seiyaku Kabushiki Kaisha Prevention and treatment of diseases associated with blood coagulation
CN100497624C (zh) 2000-01-24 2009-06-10 杉山治夫 Wt1相互作用蛋白质wtip
WO2001082968A1 (fr) 2000-04-28 2001-11-08 Chugai Seiyaku Kabushiki Kaisha Inhibiteurs de proliferation cellulaire
US7560534B2 (en) 2000-05-08 2009-07-14 Celldex Research Corporation Molecular conjugates comprising human monoclonal antibodies to dendritic cells
JP3597140B2 (ja) 2000-05-18 2004-12-02 日本たばこ産業株式会社 副刺激伝達分子ailimに対するヒトモノクローナル抗体及びその医薬用途
US6902734B2 (en) 2000-08-07 2005-06-07 Centocor, Inc. Anti-IL-12 antibodies and compositions thereof
UA81743C2 (uk) 2000-08-07 2008-02-11 Центокор, Инк. МОНОКЛОНАЛЬНЕ АНТИТІЛО ЛЮДИНИ, ЩО СПЕЦИФІЧНО ЗВ'ЯЗУЄТЬСЯ З ФАКТОРОМ НЕКРОЗУ ПУХЛИН АЛЬФА (ФНПα), ФАРМАЦЕВТИЧНА КОМПОЗИЦІЯ, ЩО ЙОГО МІСТИТЬ, ТА СПОСІБ ЛІКУВАННЯ РЕВМАТОЇДНОГО АРТРИТУ
US7288390B2 (en) 2000-08-07 2007-10-30 Centocor, Inc. Anti-dual integrin antibodies, compositions, methods and uses
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US6586251B2 (en) * 2000-10-31 2003-07-01 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US20050144655A1 (en) 2000-10-31 2005-06-30 Economides Aris N. Methods of modifying eukaryotic cells
DZ3494A1 (fr) 2001-01-05 2002-07-11 Pfizer Anticorps anti-recepteur du facteur de croissance i analogue a l'insuline
JP3986439B2 (ja) 2001-02-07 2007-10-03 中外製薬株式会社 造血器腫瘍の治療剤
JP2005507635A (ja) 2001-02-12 2005-03-24 メダレックス, インク. Fcα受容体(CD89)に対するヒトモノクローナル抗体
UA80091C2 (en) 2001-04-02 2007-08-27 Chugai Pharmaceutical Co Ltd Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist
IL161968A0 (en) 2001-11-14 2005-11-20 Centocor Inc Anti-il-6 antibodies, compositions, methods and uses
US7435871B2 (en) 2001-11-30 2008-10-14 Amgen Fremont Inc. Transgenic animals bearing human Igλ light chain genes
JP4063769B2 (ja) 2001-12-28 2008-03-19 中外製薬株式会社 タンパク質安定化方法
CN1638800A (zh) 2002-01-09 2005-07-13 米德列斯公司 抗cd30的人类单克隆抗体
EP3192528A1 (fr) 2002-02-14 2017-07-19 Chugai Seiyaku Kabushiki Kaisha Formulation des solutions contenant des anti-corps anti-il-6r comportant un sucre comme stabilisateur
ATE431406T1 (de) 2002-02-25 2009-05-15 Genentech Inc Neuer typ-1-cytokinrezeptor glm-r
AU2003220930A1 (en) 2002-03-29 2003-10-13 Chugai Seiyaku Kabushiki Kaisha Emthod of screening transporter inhibitor
WO2004022597A1 (fr) 2002-09-04 2004-03-18 Chugai Seiyaku Kabushiki Kaisha Anticorps d'un peptide n-terminal du gpc3 solubilise dans le sang
JP2005529873A (ja) 2002-04-12 2005-10-06 メダレックス インコーポレイテッド Ctla−4抗体を使用した治療の方法
US7217796B2 (en) 2002-05-24 2007-05-15 Schering Corporation Neutralizing human anti-IGFR antibody
EP1513934B1 (fr) 2002-06-06 2011-03-02 Oncotherapy Science, Inc. Genes et polypeptides en rapport avec les cancers du colon chez l'homme
ES2361541T3 (es) 2002-06-06 2011-06-17 Oncotherapy Science, Inc. Genes y polipéptidos relacionados con cánceres de colon humanos.
JP4489591B2 (ja) 2002-08-27 2010-06-23 中外製薬株式会社 タンパク質溶液製剤の安定化方法
AU2003262087B2 (en) 2002-09-11 2010-11-11 Chugai Seiyaku Kabushiki Kaisha Protein purification method
TW200413539A (en) 2002-09-30 2004-08-01 Oncotherapy Science Inc Genes and polypeptides relating to prostate cancers
TW200413725A (en) 2002-09-30 2004-08-01 Oncotherapy Science Inc Method for diagnosing non-small cell lung cancers
WO2004035607A2 (fr) 2002-10-17 2004-04-29 Genmab A/S Anticorps monoclonaux humains anti-cd20
AU2003301576A1 (en) 2002-10-22 2004-05-13 Eisai Co., Ltd. Gene expressed specifically in dopamine-producing neuron precursor cells after termination of division
AU2003280643A1 (en) 2002-10-30 2004-05-25 Chugai Seiyaku Kabushiki Kaisha Membrane protein originating in mast cells
KR101329843B1 (ko) 2002-11-15 2013-11-14 젠맵 에이/에스 Cd25에 대한 인간 모노클로날 항체
ES2347239T3 (es) 2002-12-02 2010-10-27 Amgen Fremont Inc. Anticuerpos dirigidos al factor de necrosis tumoral y usos de los mismos.
ATE527278T1 (de) 2002-12-16 2011-10-15 Genmab As Humane monoklonale antikörper gegen interleukin 8 (il-8)
EP1613750B1 (fr) 2003-03-19 2015-10-14 Amgen Fremont Inc. Anticorps contre l'antigene de lymphocytes t, du domaine d'immunoglobuline et du domaine 1 de mucine (tim-1) et leurs utilisations
GB2401040A (en) 2003-04-28 2004-11-03 Chugai Pharmaceutical Co Ltd Method for treating interleukin-6 related diseases
US7491802B2 (en) 2003-05-28 2009-02-17 Takeda Pharmaceutical Company Limited Anti-BAMBI antibody and diagnostic or remedy for colon cancer and liver cancer
US9708410B2 (en) 2003-05-30 2017-07-18 Janssen Biotech, Inc. Anti-tissue factor antibodies and compositions
WO2005004794A2 (fr) 2003-06-09 2005-01-20 Alnylam Pharmaceuticals Inc. Procede de traitement de maladie neurodegenerative
WO2005017155A1 (fr) 2003-06-18 2005-02-24 Chugai Seiyaku Kabushiki Kaisha Transporteur du fucose
AU2004259398A1 (en) 2003-06-27 2005-02-03 Amgen Fremont Inc. Antibodies directed to the deletion mutants of epidermal growth factor receptor and uses thereof
US7396914B2 (en) 2003-08-04 2008-07-08 University Of Massachusetts SARS nucleic acids, proteins, antibodies, and uses thereof
EP1652923B1 (fr) 2003-08-08 2011-10-12 Perseus Proteomics Inc. Gene surexprime dans le cancer
JP2007521232A (ja) 2003-08-08 2007-08-02 アブジェニックス・インコーポレーテッド 副甲状腺ホルモン(pth)に対する抗体およびその使用
AU2003271174A1 (en) 2003-10-10 2005-04-27 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
JPWO2005035754A1 (ja) 2003-10-14 2006-12-21 中外製薬株式会社 機能蛋白質を代替する二種特異性抗体
US7642341B2 (en) 2003-12-18 2010-01-05 Merck Serono S.A. Angiogenesis inhibiting molecules, their selection, production and their use in the treatment of cancer
EP1533617A1 (fr) 2003-11-19 2005-05-25 RMF Dictagene S.A. Molécules inhibant l'angiogénèse, leur sélection, production et utilisation pour le traitement et diagnose du cancer
CA2548185A1 (fr) 2003-12-03 2005-06-16 Chugai Seiyaku Kabushiki Kaisha Systemes d'expression utilisant le promoteur du gene de la .beta.- actine d'un mammifere
KR101374514B1 (ko) 2003-12-10 2014-03-13 메다렉스, 인코포레이티드 Ip―10 항체 및 그의 용도
DK2418220T3 (da) 2003-12-10 2017-11-06 Squibb & Sons Llc Interferon-alpha-antistoffer og anvendelser deraf
EP1710255A4 (fr) 2003-12-12 2008-09-24 Chugai Pharmaceutical Co Ltd Anticorps modifies reconnaissant un recepteur trimere ou plus grand
CA2553946C (fr) 2004-02-06 2019-02-26 University Of Massachusetts Anticorps contre des toxines de clostridium difficile et utilisations connexes
US7625549B2 (en) 2004-03-19 2009-12-01 Amgen Fremont Inc. Determining the risk of human anti-human antibodies in transgenic mice
MXPA06010673A (es) 2004-03-19 2007-06-20 Amgen Inc Reduccion del riesgo de anticuerpos humanos anti-humano a traves de manipulacion del gen v.
JP4938451B2 (ja) 2004-03-23 2012-05-23 オンコセラピー・サイエンス株式会社 非小細胞肺癌の診断のための方法
PL1737891T3 (pl) 2004-04-13 2013-08-30 Hoffmann La Roche Przeciwciała przeciw selektynie p
WO2005103081A2 (fr) 2004-04-20 2005-11-03 Genmab A/S Anticorps monoclonaux humains diriges contre cd20
US9228008B2 (en) 2004-05-28 2016-01-05 Idexx Laboratories, Inc. Canine anti-CD20 antibodies
EA012622B1 (ru) 2004-06-01 2009-10-30 Домэнтис Лимитед Биспецифичные гибридные антитела с увеличенным периодом полувыведения из сыворотки
LT2662390T (lt) 2004-06-21 2017-10-10 E. R. Squibb & Sons, L.L.C. Interferono-alfa receptoriaus-1 antikūnai ir jų panaudojimas
JP5112863B2 (ja) 2004-07-01 2013-01-09 ノヴォ ノルディスク アー/エス ヒト抗−kir抗体
MY145073A (en) 2004-07-09 2011-12-15 Chugai Pharmaceutical Co Ltd Anti-glypican 3 antibody
US20080199437A1 (en) 2004-07-22 2008-08-21 Eisai Co., Ltd. Lrp4/Corin Dopaminergic Neuron Progenitor Cell Markers
TWI309240B (en) 2004-09-17 2009-05-01 Hoffmann La Roche Anti-ox40l antibodies
MX2007003533A (es) 2004-10-01 2007-05-23 Medarex Inc Metodos de tratar linfomas cd30 positivas.
US20080026457A1 (en) 2004-10-22 2008-01-31 Kevin Wells Ungulates with genetically modified immune systems
CA3079874C (fr) 2004-10-22 2023-01-03 Revivicor, Inc. Ongules dotes de systemes immunitaires genetiquement modifies
CA2587903A1 (fr) 2004-11-17 2006-05-26 Amgen Fremont Inc. Anticorps monoclonaux entierement humains diriges contre l'il-13
NZ555464A (en) 2004-12-02 2010-03-26 Domantis Ltd Bispecific domain antibodies targeting serum albumin and glp-1 or pyy
EP1838737B1 (fr) 2004-12-20 2011-04-06 Amgen Fremont Inc. Proteines de liaison specifiques de la matriptase humaine
WO2006068953A2 (fr) 2004-12-21 2006-06-29 Astrazeneca Ab Anticorps dirigés contre l'angiopoïétine 2 et leurs utilisations
US20090061485A1 (en) 2004-12-22 2009-03-05 Chugai Seiyaku Kabushiki Kaisha Method of Producing an Antibody Using a Cell in Which the Function of Fucose Transporter Is Inhibited
ES2395953T3 (es) 2005-01-26 2013-02-18 Amgen Fremont Inc. Anticuerpos frente a interleucina-1 beta
EP1856278A2 (fr) 2005-02-10 2007-11-21 Oncotherapy Science, Inc. Methode de diagnostic du cancer de la vessie
JP2008530244A (ja) 2005-02-18 2008-08-07 メダレックス, インク. フコシル残基を欠くcd30に対するモノクローナル抗体
TWI406870B (zh) 2005-02-21 2013-09-01 Chugai Pharmaceutical Co Ltd A method of making a protein using hamster IGF-1
WO2006098464A1 (fr) 2005-03-14 2006-09-21 Link Genomics, Inc. Méthode pour diagnostiquer le cancer de la prostate
ES2716874T3 (es) 2005-03-23 2019-06-17 Genmab As Anticuerpos contra cd38 para el tratamiento del mieloma múltiple
SI1876236T1 (sl) 2005-04-08 2014-11-28 Chugai Seiyaku Kabushiki Kaisha Protitelo, ki funkcionalno nadomesti faktor viii za koagulacijo krvi
PA8672101A1 (es) 2005-04-29 2006-12-07 Centocor Inc Anticuerpos anti-il-6, composiciones, métodos y usos
EP3530736A3 (fr) 2005-05-09 2019-11-06 ONO Pharmaceutical Co., Ltd. Anticorps monoclonaux humains pour mort programmée 1 (pd-1) et procédés de traitement du cancer à l'aide d'anticorps anti-pd-1 seuls ou combinés à d'autres formulations immunothérapeutiques
AU2006256041B2 (en) 2005-06-10 2012-03-29 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
EP3501537A1 (fr) 2005-06-30 2019-06-26 Janssen Biotech, Inc. Anticorps anti-il23, compositions, procédés et utilisations
SI1907424T1 (sl) 2005-07-01 2015-12-31 E. R. Squibb & Sons, L.L.C. Humana monoklonska protitelesa proti programiranem smrtnem ligandu 1 (PD-L1)
EP1907859B1 (fr) 2005-07-27 2011-03-02 Oncotherapy Science, Inc. Genes et polypeptides associes aux cancers de la prostate
JP5230420B2 (ja) 2005-08-18 2013-07-10 ゲンマブ エー/エス Cd4結合ペプチドおよび放射線による治療
EA016186B1 (ru) 2005-09-26 2012-03-30 Медарекс, Инк. Человеческие моноклональные антитела к cd70 и их применение
DK1939288T3 (da) 2005-09-29 2013-03-11 Eisai R&D Man Co Ltd T-celleadhæsionsmolekyle og antistof, der er rettet mod molekylet
WO2007043641A1 (fr) 2005-10-14 2007-04-19 Fukuoka University Inhibiteur de dysfonctionnement d'îlots transplantés dans un transplant d'îlots
BRPI0617664B8 (pt) 2005-10-21 2021-05-25 Chugai Pharmaceutical Co Ltd uso de um anticorpo que reconhece a il-6 para a produção de uma composição farmacêutica para tratar o enfarte do miocárdio ou suprimir a remodelagem ventricular esquerda depois do enfarte do miocárdio
JP5006330B2 (ja) 2005-10-21 2012-08-22 ノバルティス アーゲー Il13に対するヒト抗体および治療的使用
CN101351221A (zh) 2005-10-28 2009-01-21 明治制果株式会社 绿脓杆菌的外膜蛋白pa5158
CA2629453C (fr) 2005-11-10 2018-03-06 Curagen Corporation Methode de traitement du cancer de l'ovaire et du rein utilisant des anticorps diriges contre l'antigene a domaine 1 de mucine et a domaine immunoglobuline des lymphocytes t (tim-1)
US8128934B2 (en) 2005-11-14 2012-03-06 Ribomic, Inc. Method for treatment or prevention of disease associated with functional disorder of regulatory T cell
AR057582A1 (es) 2005-11-15 2007-12-05 Nat Hospital Organization Agentes para suprimir la induccion de linfocitos t citotoxicos
AR057941A1 (es) 2005-11-25 2007-12-26 Univ Keio Agentes terapeuticos para el cancer de prostata
JP2009518446A (ja) 2005-12-07 2009-05-07 メダレックス インコーポレーティッド Ctla−4抗体投与量漸増レジメン
JP5512128B2 (ja) 2005-12-08 2014-06-04 メダレックス・リミテッド・ライアビリティ・カンパニー フコシルgm1に対するヒトモノクローナル抗体および抗フコシルgm1を使用するための方法
PT1979001E (pt) 2005-12-13 2012-07-13 Medimmune Ltd Proteínas de ligação específicas para factores de crescimento insulínicos e suas aplicações
WO2007077934A1 (fr) 2005-12-28 2007-07-12 Asubio Pharma Co., Ltd. Anticorps anti-periostine et composition pharmaceutique pour prevenir ou traiter une maladie liee a la periostine contenant cet anticorps
US9084777B2 (en) 2005-12-28 2015-07-21 Chugai Seiyaku Kabushiki Kaisha Stabilized antibody-containing formulations
AR056857A1 (es) 2005-12-30 2007-10-24 U3 Pharma Ag Anticuerpos dirigidos hacia her-3 (receptor del factor de crecimiento epidérmico humano-3) y sus usos
ES2586825T3 (es) 2006-01-12 2016-10-19 Alexion Pharmaceuticals, Inc. Anticuerpos para OX-2/CD200 y usos de los mismos
EP1976883B1 (fr) 2006-01-17 2012-10-03 Medarex, Inc. Anticorps monoclonaux anti-cd30 depourvus de residus fucosyl et xylosyl
EP3135298B1 (fr) 2006-01-27 2018-06-06 Keio University Agents thérapeutiques pour maladie associée à la neovascularisation choroïdienne
SG170804A1 (en) 2006-03-30 2011-05-30 Meiji Seika Kaisha Pseudomonas aeruginosa outer membrane protein pa0427
WO2007117410A2 (fr) 2006-03-31 2007-10-18 Medarex, Inc. Animaux transgéniques exprimant des anticorps chimériques destinés à être utilisés pour la préparation d'anticorps humains
WO2007118214A2 (fr) 2006-04-07 2007-10-18 The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services Compositions d'anticorps et méthodes de traitement d'une maladie néoplasique
CN101495146B (zh) 2006-04-07 2012-10-17 国立大学法人大阪大学 肌肉再生促进剂
TW200813091A (en) 2006-04-10 2008-03-16 Amgen Fremont Inc Targeted binding agents directed to uPAR and uses thereof
WO2007129457A1 (fr) 2006-04-25 2007-11-15 The University Of Tokyo Agents thérapeutiques employés dans le cadre de la maladie d'alzheimer et du cancer
DK2047863T3 (da) 2006-06-08 2013-09-16 Chugai Pharmaceutical Co Ltd Middel til forebyggelse eller behandling af inflammatoriske sygdomme
AU2007259739B2 (en) 2006-06-14 2013-03-07 Chugai Seiyaku Kabushiki Kaisha Agents for promoting the growth of hematopoietic stem cells
CA2657385A1 (fr) 2006-07-13 2008-01-17 Naoki Kimura Inducteur de mort cellulaire
JP5175729B2 (ja) 2006-07-21 2013-04-03 中外製薬株式会社 腎疾患治療剤
TW200815474A (en) 2006-08-03 2008-04-01 Astrazeneca Ab Antibodies alphaVbeta6 and uses thereof
CL2007002225A1 (es) 2006-08-03 2008-04-18 Astrazeneca Ab Agente de union especifico para un receptor del factor de crecimiento derivado de plaquetas (pdgfr-alfa); molecula de acido nucleico que lo codifica; vector y celula huesped que la comprenden; conjugado que comprende al agente; y uso del agente de un
WO2008020586A1 (fr) 2006-08-14 2008-02-21 Forerunner Pharma Research Co., Ltd. diagnostic et traitement du cancer à l'aide de l'anticorps anti-desmogléine-3
BRPI0714893A2 (pt) 2006-09-05 2013-05-28 Medarex Inc anticorpo monoclonal isolado ou uma porÇço de ligaÇço ao seu antÍgeno, um fragmento de anticorpo, um anticorpo mimÉtico, imunoconjugado, composiÇço molÉcula de Ácido nuclÉico isolada, vetor de expressço, cÉlula hospedeira, mÉtodo para preparar um anticorpo anti-bmp2 ou anti-bmp4, mÉtodo para tratar ou prevenir uma doenÇa associada com formaÇço àssea normal e ossificaÇço, hibridoma e metodo para preparar o anticorpo
JPWO2008032833A1 (ja) 2006-09-14 2010-01-28 株式会社医学生物学研究所 Adcc活性を増強させた抗体及びその製造方法
DK2081595T3 (da) 2006-09-26 2019-07-15 Genmab As Anti-cd38 plus corticosteroid plus et ikke-corticosteroid kemoterapeutikum til behandling af tumorer
AU2007301599B2 (en) 2006-09-28 2013-01-10 Merck Serono S.A. Junctional Adhesion Molecule-C (JAM-C) binding compounds and methods of their use
ES2625798T3 (es) 2006-10-02 2017-07-20 E. R. Squibb & Sons, L.L.C. Anticuerpos humanos que se unen a CXCR4 y usos de los mismos
CA2665528C (fr) 2006-10-12 2018-01-23 The University Of Tokyo Diagnostic et traitement du cancer a l'aide d'un anticorps anti-ereg
US8613925B2 (en) 2006-10-19 2013-12-24 Csl Limited Anti-IL-13Rα1 antibodies and their uses thereof
JP5378795B2 (ja) 2006-10-20 2013-12-25 中外製薬株式会社 抗hb−egf抗体を有効成分として含む医薬組成物
AU2007311946A1 (en) 2006-10-20 2008-04-24 Forerunner Pharma Research Co., Ltd. Anti-cancer agent comprising anti-HB-EGF antibody as active ingredient
AU2007334264A1 (en) 2006-11-15 2008-06-26 Medarex, Inc. Human monoclonal antibodies to BTLA and methods of use
EP2095826B1 (fr) 2006-11-17 2012-12-26 The Research Foundation for Microbial Diseases of Osaka University Agent promoteur de l'etirement des nerfs et agent inhibiteur de l'etirement des nerfs
CN101626782B (zh) 2006-12-01 2013-03-27 梅达雷克斯公司 结合cd22的人抗体及其用途
CL2007003622A1 (es) 2006-12-13 2009-08-07 Medarex Inc Anticuerpo monoclonal humano anti-cd19; composicion que lo comprende; y metodo de inhibicion del crecimiento de celulas tumorales.
EP2103628A4 (fr) 2006-12-14 2012-02-22 Forerunner Pharma Res Co Ltd Anticorps monoclonal anti-claudine 3, et traitement et diagnostic du cancer au moyen d'un tel anticorps
AU2007333098A1 (en) 2006-12-14 2008-06-19 Medarex, Inc. Human antibodies that bind CD70 and uses thereof
EP2123676A4 (fr) 2007-01-05 2011-01-05 Univ Tokyo Diagnostic et traitement de cancers utilisant un anticorps anti-prg-3
SG177982A1 (en) 2007-01-16 2012-02-28 Abbott Lab Methods for treating psoriasis
TWI438208B (zh) 2007-01-23 2014-05-21 Chugai Pharmaceutical Co Ltd 抑制慢性排斥反應之藥劑
EP3246407B1 (fr) 2007-02-09 2019-04-03 Eisai R&D Management Co., Ltd. Marqueur 65b13 de cellules progénitrices de neurones gaba
JP5241518B2 (ja) 2007-02-15 2013-07-17 国立大学法人九州大学 抗hmgb−1抗体を含む間質性肺疾患治療剤
EP3248617A3 (fr) 2007-02-16 2018-02-21 Merrimack Pharmaceuticals, Inc. Anticorps dirigés contre l'erbb3 et leurs utilisations
MX2009008706A (es) 2007-02-21 2009-09-14 Univ Massachusetts Anticuerpos humanos contra el virus de la hepatitis c (hcv) y usos de los mismos.
JP5374360B2 (ja) 2007-02-27 2013-12-25 中外製薬株式会社 抗grp78抗体を有効成分として含む医薬組成物
CL2008000719A1 (es) 2007-03-12 2008-09-05 Univ Tokushima Chugai Seiyaku Agente terapeutico para cancer resistente a agentes quimioterapeuticos que comprende un anticuerpo que reconoce hla de clase i como ingrediente activo; composicion farmaceutica que comprende dicho anticuerpo; y metodo para tratar cancer resistente a
CN103214577B (zh) 2007-03-22 2015-09-02 生物基因Ma公司 特异性结合cd154的包括抗体、抗体衍生物和抗体片段在内的结合蛋白及其用途
AU2008234248C1 (en) 2007-03-29 2015-01-22 Genmab A/S Bispecific antibodies and methods for production thereof
FI20075278A0 (fi) 2007-04-20 2007-04-20 Biotie Therapies Corp Uudet täysin ihmisperäiset anti-VAP-1 monoklonaaliset vasta-aineet
JP5117765B2 (ja) 2007-05-28 2013-01-16 国立大学法人 東京大学 抗robo1抗体を含むpet用腫瘍診断剤
US20100267934A1 (en) 2007-05-31 2010-10-21 Genmab A/S Stable igg4 antibodies
WO2008145140A2 (fr) 2007-05-31 2008-12-04 Genmab A/S Animaux transgéniques produisant des anticorps humains monovalents et anticorps pouvant s'obtenir à partir de ces animaux
WO2008153926A2 (fr) 2007-06-05 2008-12-18 Yale University Inhibiteurs de récepteurs tyrosine kinases et leurs méthodes d'utilisation
US8722858B2 (en) 2007-06-25 2014-05-13 Chugai Seiyaku Kabushiki Kaisha Anti-Prominin-1 antibody having ADCC activity or CDC activity
WO2009001940A1 (fr) 2007-06-27 2008-12-31 Asubio Pharma Co., Ltd. Remède anticancéreux contenant un anticorps dirigé contre un peptide codé par l'exon-17 de la périostine
WO2009008414A1 (fr) 2007-07-10 2009-01-15 Shionogi & Co., Ltd. Anticorps monoclonal ayant une activité neutralisante contre le mmp13
JP5424330B2 (ja) 2007-07-26 2014-02-26 国立大学法人大阪大学 インターロイキン6受容体阻害剤を有効成分とする眼炎症疾患治療剤
DK2185719T3 (en) 2007-08-02 2014-02-17 Novimmune Sa ANTI-RANTES ANTIBODIES AND PROCEDURES FOR USE THEREOF
EP2185692A4 (fr) 2007-08-10 2012-05-02 Medarex Inc Hco32 et hco27 et exemples connexes
WO2009025196A1 (fr) 2007-08-20 2009-02-26 Oncotherapy Science, Inc. Peptide foxm1 et agent médicinal le comprenant
PL2186889T3 (pl) 2007-08-20 2015-09-30 Oncotherapy Science Inc Peptyd CDCA1 i środek farmaceutyczny go zawierający
JP5294271B2 (ja) 2007-08-20 2013-09-18 オンコセラピー・サイエンス株式会社 Cdh3ペプチド及びこれを含む薬剤
US8865875B2 (en) 2007-08-22 2014-10-21 Medarex, L.L.C. Site-specific attachment of drugs or other agents to engineered antibodies with C-terminal extensions
EP2615114B1 (fr) 2007-08-23 2022-04-06 Amgen Inc. Protéines de liaison à un antigène pour proprotéine convertase subtilisine kexine de type 9 (PCSK9)
JOP20080381B1 (ar) 2007-08-23 2023-03-28 Amgen Inc بروتينات مرتبطة بمولدات مضادات تتفاعل مع بروبروتين كونفيرتاز سيتيليزين ككسين من النوع 9 (pcsk9)
PL2769729T3 (pl) 2007-09-04 2019-09-30 Compugen Ltd. Polipeptydy i polinukleotydy i ich zastosowanie jako cel dla leków do wytwarzania leków i środków biologicznych
EP2497783A3 (fr) 2007-09-26 2013-04-17 U3 Pharma GmbH Protéines de liaison avec l'antigène du facteur de croissance de type facteur de croissance épidermique se liant à l'héparine
KR101601986B1 (ko) 2007-10-02 2016-03-17 추가이 세이야쿠 가부시키가이샤 인터류킨 6 수용체 저해제를 유효 성분으로 하는 이식편대숙주병 치료제
AR068767A1 (es) 2007-10-12 2009-12-02 Novartis Ag Anticuerpos contra esclerostina, composiciones y metodos de uso de estos anticuerpos para tratar un trastorno patologico mediado por esclerostina
MX2010004007A (es) 2007-10-15 2010-06-15 Chugai Pharmaceutical Co Ltd Metodo para la produccion de un anticuerpo.
KR20100115340A (ko) 2007-10-19 2010-10-27 이무나스 파마 가부시키가이샤 Aβ 올리고머에 특이적으로 결합하는 항체 및 그의 이용
EA201000718A1 (ru) 2007-11-02 2011-06-30 Новартис Аг Молекулы и способы, предназначенные для модуляции родственного рецептору липопротеидов низкой плотности белка 6 (lrp6)
ES2445755T3 (es) 2007-11-07 2014-03-05 Celldex Therapeutics, Inc. Anticuerpos que se unen a células dendríticas y epiteliales humanas 205 (DEC-205)
ES2556214T3 (es) 2007-11-12 2016-01-14 U3 Pharma Gmbh Anticuerpos para AXL
AU2008321840B2 (en) 2007-11-14 2014-02-06 Chugai Seiyaku Kabushiki Kaisha Diagnosis and treatment of cancer using anti-GPR49 antibody
AR069333A1 (es) 2007-11-15 2010-01-13 Chugai Pharmaceutical Co Ltd Anticuerpos monoclonales que se unen al receptor tirosin quinasa anexelekto (axl), hibridomas que los producen y sus usos
EP2241332A4 (fr) 2007-12-05 2011-01-26 Chugai Pharmaceutical Co Ltd Agent thérapeutique contre le prurit
EP2236604B1 (fr) 2007-12-05 2016-07-06 Chugai Seiyaku Kabushiki Kaisha Anticorps anti-nr10 et son utilisation
US20110262425A1 (en) 2007-12-12 2011-10-27 National Cancer Center Therapeutic agent for mll leukemia and moz leukemia of which molecular target is m-csf receptor, and use thereof
ES2483942T5 (es) 2007-12-14 2017-02-06 Novo Nordisk A/S Anticuerpos contra NKG2D humano y usos de los mismos
AU2008342152B2 (en) 2007-12-25 2013-06-27 Meiji Seika Pharma Co., Ltd. Component protein PA1698 for type-III secretion system of Pseudomonas aeruginosa
PE20091174A1 (es) 2007-12-27 2009-08-03 Chugai Pharmaceutical Co Ltd Formulacion liquida con contenido de alta concentracion de anticuerpo
EP2248826B1 (fr) 2008-01-10 2013-06-12 Shionogi&Co., Ltd. Anticorps dirigé contre pcrv
US9274119B2 (en) 2008-01-11 2016-03-01 The University Of Tokyo Anti-CLDN6 antibody
CN102037007A (zh) 2008-01-25 2011-04-27 奥尔胡斯大学 选择性外部位点抑制papp-a对igfbp-4的活性
EP2641612A1 (fr) 2008-02-05 2013-09-25 Bristol-Myers Squibb Company Anticorps Alpha 5 - beta 1 et leurs utilisations
CN102936287B (zh) 2008-02-08 2015-09-09 伊缪纳斯制药株式会社 能够特异性结合Aβ寡聚体的抗体及其应用
EP2274333A4 (fr) 2008-03-18 2011-06-15 Abbott Lab Procédé de traitement de psoriasis
EP2260863A1 (fr) 2008-03-27 2010-12-15 Takara Bio, Inc. Agent prophylactique/thérapeutique pour maladie infectieuse
CL2009000647A1 (es) 2008-04-04 2010-06-04 Chugai Pharmaceutical Co Ltd Composicion farmaceutica para tratar o prevenir cancer hepatico que comprende una combinacion de un agente quimioterapeutico y un anticuerpo anti-glipicano 3; agente para atenuar un efecto secundario que comprende dicho anticuerpo; metodo para tratar o prevenir un cancer hepatico de un sujeto.
US9226934B2 (en) 2008-06-02 2016-01-05 The University Of Tokyo Anti-cancer drug
KR101665729B1 (ko) 2008-06-05 2016-10-12 국립연구개발법인 고쿠리츠간켄큐센터 신경침윤 억제제
US8575314B2 (en) 2008-06-20 2013-11-05 National University Corporation Okayama University Antibody against oxidized LDL/β2GPI complex and use of the same
EP2815766B1 (fr) 2008-08-05 2017-07-05 Novartis AG Compositions et procédés pour des anticorps ciblant une protéine du complément C5
JP5692746B2 (ja) 2008-08-07 2015-04-01 国立大学法人 長崎大学 全身性疼痛症候群の治療または予防薬
AR072999A1 (es) 2008-08-11 2010-10-06 Medarex Inc Anticuerpos humanos que se unen al gen 3 de activacion linfocitaria (lag-3) y los usos de estos
MX2011001409A (es) 2008-08-14 2011-03-29 Cephalon Australia Pty Ltd Anticuerpos anti-il-12/il-23.
CA2735900A1 (fr) 2008-09-19 2010-03-25 Medimmune, Llc Anticorps diriges contre dll4 et leurs utilisations
DK2342226T3 (en) 2008-09-26 2016-09-26 Dana Farber Cancer Inst Inc HUMAN ANTI-PD-1, PD-L1 AND PD-L2 ANTIBODIES AND APPLICATIONS THEREOF
AU2009298458B2 (en) 2008-09-30 2015-10-08 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
WO2010051288A1 (fr) 2008-10-27 2010-05-06 Revivicor, Inc. Ongulés immunodéprimés
PT2894165T (pt) 2008-11-10 2023-03-17 Alexion Pharma Inc Métodos e composições para o tratamento de distúrbios associados ao complemento
AU2009324092A1 (en) 2008-12-03 2011-06-23 Genmab A/S Antibody variants having modifications in the constant region
EP2865689A1 (fr) 2008-12-08 2015-04-29 Compugen Ltd. FAM26F polypeptides et polynucléotides, et leurs utilisations en tant que médicament cible pour produire des médicaments et des agents biologiques
UA109633C2 (uk) 2008-12-09 2015-09-25 Антитіло людини проти тканинного фактора
AU2009329365B2 (en) * 2008-12-18 2016-01-14 Roger Kingdon Craig Non-human transgenic animals expressing humanised antibodies and use thereof
JP5756292B2 (ja) 2008-12-22 2015-07-29 中外製薬株式会社 抗hs6st2抗体及びその用途
US8877449B2 (en) 2008-12-22 2014-11-04 Eisai R&D Management Co., Ltd. Method for obtaining pancreatic progenitor cell using NEPH3
JP2012513194A (ja) 2008-12-23 2012-06-14 アストラゼネカ アクチボラグ α5β1に向けられた標的結合剤およびその使用
EP2385114A4 (fr) 2008-12-25 2012-08-08 Univ Tokyo Diagnostic de traitement d'un cancer à l'aide d'un anticorps anti-tm4sf20
WO2010074192A1 (fr) 2008-12-26 2010-07-01 国立大学法人東京大学 Diagnostic et traitement du cancer à l'aide d'un anticorps anti-lgr7
EA028336B1 (ru) 2009-03-05 2017-11-30 МЕДАРЕКС Л.Л.Си. Полностью человеческие антитела, специфические в отношении cadm1
JP2010210772A (ja) 2009-03-13 2010-09-24 Dainippon Screen Mfg Co Ltd 液晶表示装置の製造方法
JPWO2010110346A1 (ja) 2009-03-24 2012-10-04 独立行政法人理化学研究所 白血病幹細胞マーカー
WO2010112034A2 (fr) 2009-04-02 2010-10-07 Aarhus Universitet Compositions et méthodes pour le traitement et le diagnostic de synucléinopathies
CA2762187C (fr) 2009-04-08 2017-08-01 Olle Hernell Nouvelles methodes de traitement de maladies inflammatoires
WO2010119691A1 (fr) 2009-04-16 2010-10-21 国立大学法人東京大学 Diagnostic et traitement du cancer au moyen d'un anticorps anti-tmprss11e
JP5812418B2 (ja) 2009-04-17 2015-11-11 イムナス・ファーマ株式会社 Aβオリゴマーに特異的に結合する抗体およびその利用
US9062116B2 (en) 2009-04-23 2015-06-23 Infinity Pharmaceuticals, Inc. Anti-fatty acid amide hydrolase-2 antibodies and uses thereof
EA201101572A1 (ru) 2009-04-27 2012-05-30 Новартис Аг Композиции и способы применения терапевтических антител, специфичных в отношении субъединицы бета1 рецептора il-12
MA33279B1 (fr) 2009-04-27 2012-05-02 Novartis Ag Compositions et procédés pour l'augmentation de la croissance des muscles
EP2426149A4 (fr) 2009-05-01 2013-01-23 Univ Tokyo Anticorps anti-cadhérine
PL2448970T3 (pl) 2009-05-04 2014-12-31 Abbvie Res B V Przeciwciało przeciwko czynnikowi wzrostu nerwów (NGF) ze zwiększoną stabilnością in vivo
CN104974250A (zh) 2009-05-05 2015-10-14 诺维莫尼公司 抗il-17f抗体及其使用方法
WO2010137654A1 (fr) 2009-05-29 2010-12-02 株式会社未来創薬研究所 Composition pharmaceutique contenant un antagoniste d'un ligand de la famille de l'egf en tant que composant
WO2010151632A1 (fr) 2009-06-25 2010-12-29 Bristol-Myers Squibb Company Purification de protéines par précipitation de l'acide caprylique (l'acide octanoïque)
HUE055817T2 (hu) 2009-07-08 2021-12-28 Kymab Ltd Állatmodellek és terápiás molekulák
US20120204278A1 (en) 2009-07-08 2012-08-09 Kymab Limited Animal models and therapeutic molecules
US9445581B2 (en) 2012-03-28 2016-09-20 Kymab Limited Animal models and therapeutic molecules
MY161541A (en) 2009-07-31 2017-04-28 Shin Maeda Cancer metastasis inhibitor
EP2459594A1 (fr) 2009-07-31 2012-06-06 N.V. Organon Anticorps totalement humains dirigés contre le btla
ES2624835T3 (es) 2009-08-06 2017-07-17 Immunas Pharma, Inc. Anticuerpos que se unen específicamente a los oligómeros A beta y uso de los mismos
DK2462162T3 (en) 2009-08-06 2017-01-16 Immunas Pharma Inc Antibodies that specifically bind to A-beta oligomers and their use
WO2011017294A1 (fr) 2009-08-07 2011-02-10 Schering Corporation Anticorps anti-rankl humain
CN102574917A (zh) 2009-08-17 2012-07-11 株式会社未来创药研究所 含有抗hb-egf抗体作为有效成分的药物组合物
WO2011021146A1 (fr) 2009-08-20 2011-02-24 Pfizer Inc. Anticorps contre l'ostéopontine
RU2012114854A (ru) 2009-09-14 2013-10-27 Эбботт Лэборетриз Способы лечения псориаза
US20120178910A1 (en) 2009-09-23 2012-07-12 Medarex, Inc. Cation exchange chromatography (methods)
TW201118166A (en) 2009-09-24 2011-06-01 Chugai Pharmaceutical Co Ltd HLA class I-recognizing antibodies
RU2012124090A (ru) 2009-11-09 2013-12-20 Алексион Фармасьютикалз, Инк. Реагенты и способы для определения клеток ii типа при pnh
CA2778953C (fr) 2009-11-13 2020-01-14 Dana-Farber Cancer Institute, Inc. Compositions, kits et methodes utilises pour le diagnostic, le pronostic, la surveillance, le traitement et la modulation des lymphoproliferations apres greffe d'organe et de l'hypoxie associee a l'angiogenese au moyen de la galectine-1
TWI630916B (zh) 2009-11-13 2018-08-01 第一三共歐洲公司 供治療或預防人表皮生長因子受體-3(her-3)相關疾病之藥料和方法
EP3431608A3 (fr) 2009-11-17 2019-02-20 E. R. Squibb & Sons, L.L.C. Procédé de production améliorée de protéines
EP3279215B1 (fr) 2009-11-24 2020-02-12 MedImmune Limited Agents de liaison ciblés contre b7-h1
US9428586B2 (en) 2009-12-01 2016-08-30 Compugen Ltd Heparanase splice variant
MX2012008108A (es) 2010-01-11 2012-10-03 Alexion Pharma Inc Biomarcadores de efectos de inmunomodulacion en seres humanos tratados con anticuerpos anti-cd200.
TWI609698B (zh) 2010-01-20 2018-01-01 Chugai Pharmaceutical Co Ltd 穩定化的含抗體溶液製劑
TR201806936T4 (tr) 2010-01-29 2018-06-21 Chugai Pharmaceutical Co Ltd Anti-dll3 antikoru.
SI3095871T1 (sl) * 2010-02-08 2019-06-28 Regeneron Pharmaceuticals, Inc. Miš z navadno lahko verigo
US20130045492A1 (en) 2010-02-08 2013-02-21 Regeneron Pharmaceuticals, Inc. Methods For Making Fully Human Bispecific Antibodies Using A Common Light Chain
US9796788B2 (en) 2010-02-08 2017-10-24 Regeneron Pharmaceuticals, Inc. Mice expressing a limited immunoglobulin light chain repertoire
RU2577125C2 (ru) 2010-02-10 2016-03-10 Фуджифилм Ри Фарма Ко., Лтд. Меченное радиоактивным металлом антитело против кадгерина
EP2533810B1 (fr) 2010-02-10 2016-10-12 ImmunoGen, Inc. Anticorps anti-cd20 et utilisations de ceux-ci
US20120321557A1 (en) 2010-02-26 2012-12-20 Forerunner Pharma Research Co., Ltd. Anti-icam3 antibody and use thereof
JP5889181B2 (ja) 2010-03-04 2016-03-22 中外製薬株式会社 抗体定常領域改変体
CN103003307B (zh) 2010-03-10 2017-08-11 根马布股份公司 抗c‑MEt的单克隆抗体
JP2013522313A (ja) 2010-03-17 2013-06-13 アボツト・リサーチ・ベー・フエー 抗神経成長因子(ngf)抗体組成物
CN107098958B (zh) 2010-03-26 2021-11-05 达特茅斯大学理事会 Vista调节性t细胞介体蛋白、vista结合剂及其用途
US20150231215A1 (en) 2012-06-22 2015-08-20 Randolph J. Noelle VISTA Antagonist and Methods of Use
US10745467B2 (en) 2010-03-26 2020-08-18 The Trustees Of Dartmouth College VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
LT3248462T (lt) 2010-03-31 2024-05-27 Ablexis, Llc Pelių genų inžinerija, skirta chimerinių antikūnų gamybai
EA024701B1 (ru) 2010-04-13 2016-10-31 Селлдекс Терапьютикс Инк. Антитела, связывающие cd27 человека, и их применение
MX353144B (es) 2010-04-20 2017-12-20 Genmab As Proteinas que contienen fc de anticuerpos heterodimericos y metodos para produccion de las mismas.
US9011852B2 (en) 2010-04-30 2015-04-21 Alexion Pharmaceuticals, Inc. Anti-C5a antibodies
WO2011140151A1 (fr) 2010-05-04 2011-11-10 Dyax Corp. Anticorps contre le récepteur du facteur de croissance épidermique (egfr)
SG185366A1 (en) 2010-05-04 2012-12-28 Merrimack Pharmaceuticals Inc Antibodies against epidermal growth factor receptor (egfr) and uses thereof
ES2949159T3 (es) 2010-05-06 2023-09-26 Novartis Ag Composiciones y métodos de uso para anticuerpos terapéuticos de proteína 6 relacionada con lipoproteínas de baja densidad (LRP6)
KR20130066631A (ko) 2010-05-06 2013-06-20 노파르티스 아게 치료적 저밀도 지단백질-관련 단백질 6 (lrp6) 다가 항체에 대한 조성물 및 사용 방법
CN103153339B (zh) 2010-05-27 2021-05-04 根马布股份公司 针对her2表位的单克隆抗体
CA3051311A1 (fr) 2010-05-27 2011-12-01 Genmab A/S Anticorps monoclonaux contre her2
DK2578231T3 (da) 2010-05-28 2022-12-12 Chugai Pharmaceutical Co Ltd Antitumor-t-celle-reaktionsforstærker
WO2011149046A1 (fr) 2010-05-28 2011-12-01 独立行政法人国立がん研究センター Agent thérapeutique contre le cancer du pancréas
EP2580243B1 (fr) 2010-06-09 2019-10-16 Genmab A/S Anticorps dirigés contre le cd38 humain
BR112012031727B1 (pt) 2010-06-15 2022-03-29 Genmab A/S Conjugado de droga-anticorpo, composição farmacêutica, e, uso do conjugado de droga- anticorpo
AU2011270959A1 (en) 2010-06-22 2013-01-10 Musc Foundation For Research Development Antibodies to the C3d fragment of complement component 3
EP3327035A1 (fr) 2010-06-22 2018-05-30 Precision Biologics Inc. Antigènes et anticorps spécifiques des cancers du côlon et du pancréas
US9485812B2 (en) 2010-07-08 2016-11-01 Honda Motor Co., Ltd. High frequency heating coil
KR20130097156A (ko) 2010-07-26 2013-09-02 트리아니, 인코포레이티드 트랜스제닉 동물 및 이의 사용 방법
US10662256B2 (en) 2010-07-26 2020-05-26 Trianni, Inc. Transgenic mammals and methods of use thereof
US10793829B2 (en) 2010-07-26 2020-10-06 Trianni, Inc. Transgenic mammals and methods of use thereof
DK2601298T3 (en) 2010-08-02 2017-02-27 Regeneron Pharma Mice generating binding proteins comprising VL domains
WO2012018404A2 (fr) 2010-08-06 2012-02-09 U3 Pharma Gmbh Utilisation d'agents de liaison her3 dans le traitement de la prostate
PT2606070T (pt) 2010-08-20 2017-03-31 Novartis Ag Anticorpos para o recetor 3 do fator de crescimento epidérmico (her3)
US8999335B2 (en) 2010-09-17 2015-04-07 Compugen Ltd. Compositions and methods for treatment of drug resistant multiple myeloma
AR083035A1 (es) 2010-09-17 2013-01-30 Baxter Int ESTABILIZACION DE INMUNOGLOBULINAS MEDIANTE UNA FORMULACION ACUOSA CON HISTIDINA A pH ACIDO DEBIL A NEUTRO, COMPOSICION ACUOSA DE INMUNOGLOBULINA
US9068014B2 (en) 2010-09-23 2015-06-30 Precision Biologics, Inc. Colon and pancreas cancer peptidomimetics
WO2012043747A1 (fr) 2010-09-30 2012-04-05 独立行政法人理化学研究所 Procédé de traitement de gliomes, procédé d'examen de gliomes, procédé d'administration d'une substance souhaitée à un gliome, et médicament utilisé dans lesdits procédés
CN103154037A (zh) 2010-10-05 2013-06-12 诺瓦提斯公司 抗IL12Rβ1抗体及它们在治疗自身免疫病和炎性疾病中的用途
BR112013010136A2 (pt) 2010-10-25 2019-09-24 Univ Minnesota vacina, composição terapêutica e métodos para o tratamento ou inibição de gliblastoma
PT2634194T (pt) 2010-10-29 2018-10-19 Perseus Proteomics Inc Anticorpos anti-cdh3 possuidores de elevada capacidade de internalização
EP2644698B1 (fr) 2010-11-17 2018-01-03 Chugai Seiyaku Kabushiki Kaisha Molécule de liaison à un antigène multi-spécifique ayant une fonction alternative par rapport à la fonction du facteur viii de coagulation sanguine
EP2643353A1 (fr) 2010-11-24 2013-10-02 Novartis AG Molécules multi-spécifiques
RU2663123C2 (ru) 2010-11-30 2018-08-01 Чугаи Сейяку Кабусики Кайся Индуцирующий цитотоксичность терапевтический агент
CN108715614A (zh) 2010-11-30 2018-10-30 中外制药株式会社 与多分子的抗原重复结合的抗原结合分子
US9085772B2 (en) 2010-12-27 2015-07-21 National University Corporation Nagoya University Method for suppressing receptor tyrosine kinase-mediated pro-survival signaling in cancer cell
SG10201600531TA (en) 2011-01-24 2016-02-26 Univ Singapore Pathogenic mycobacteria-derived mannose-capped lipoarabinomannan antigen binding proteins
AU2012212066A1 (en) 2011-02-03 2013-08-15 Alexion Pharmaceuticals, Inc. Use of an anti-CD200 antibody for prolonging the survival of allografts
WO2012133782A1 (fr) 2011-03-30 2012-10-04 中外製薬株式会社 Rétention de molécules de liaison à l'antigène dans le plasma sanguin et procédé de modification du caractère immunogène
BR112013021526B1 (pt) 2011-02-25 2021-09-21 Chugai Seiyaku Kabushiki Kaisha Polipeptídio variante, métodos para manter ou diminuir as atividades de ligação a fcgriia (tipo r) e fcgriia (tipo h) e aumentar a atividade de ligação a fcgriib de um polipeptídio e para a supressão da produção de um anticorpo contra um polipeptídio compreendendo a região fc do anticorpo, métodos para a produção do referido polipeptídio com atividades de ligação mantidas ou diminuídas e aumentada e para a produção suprimida de um anticorpo, composição farmacêutica e uso de um polipeptídio
WO2012118693A1 (fr) 2011-02-28 2012-09-07 Northshore University Healthsystem Méthodes de diagnostic d'infection par clostridium difficile
JP5948683B2 (ja) 2011-02-28 2016-07-06 国立研究開発法人国立循環器病研究センター 悪性腫瘍転移抑制用医薬
AU2012240231B2 (en) 2011-04-04 2017-05-25 University Of Iowa Research Foundation Methods of improving vaccine immunogenicity
AU2012239997A1 (en) 2011-04-07 2013-10-17 Amgen Inc. Novel EGFR binding proteins
WO2012136552A1 (fr) 2011-04-08 2012-10-11 H. Lundbeck A/S Anticorps spécifiquement dirigés contre la protéine bêta-amyloïde pyroglutamatée
US9150644B2 (en) 2011-04-12 2015-10-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies that bind insulin-like growth factor (IGF) I and II
CN105601741A (zh) 2011-04-15 2016-05-25 卡姆普根有限公司 多肽和多核苷酸及其用于治疗免疫相关失调和癌症的用途
WO2012144208A1 (fr) 2011-04-18 2012-10-26 国立大学法人東京大学 Diagnostic et traitement du cancer à l'aide d'un anticorps anti-itm2a
CN103796678B (zh) 2011-04-20 2018-02-27 健玛保 针对her2的双特异性抗体
JP2014514314A (ja) 2011-04-20 2014-06-19 ゲンマブ エー/エス Her2およびcd3に対する二重特異性抗体
EP2702077A2 (fr) 2011-04-27 2014-03-05 AbbVie Inc. Procédé de contrôle du profil de galactosylation de protéines exprimées de manière recombinante
JOP20200043A1 (ar) 2011-05-10 2017-06-16 Amgen Inc طرق معالجة أو منع الاضطرابات المختصة بالكوليسترول
CN107936121B (zh) 2011-05-16 2022-01-14 埃泰美德(香港)有限公司 多特异性fab融合蛋白及其使用方法
KR102046666B1 (ko) 2011-05-25 2019-11-19 이나뜨 파르마 염증성 장애의 치료를 위한 항-kir 항체
US8691231B2 (en) 2011-06-03 2014-04-08 Merrimack Pharmaceuticals, Inc. Methods of treatment of tumors expressing predominantly high affinity EGFR ligands or tumors expressing predominantly low affinity EGFR ligands with monoclonal and oligoclonal anti-EGFR antibodies
WO2012172495A1 (fr) 2011-06-14 2012-12-20 Novartis Ag Compositions et procédés de ciblage du tem8 par des anticorps
US9890218B2 (en) 2011-06-30 2018-02-13 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
AU2012277376B2 (en) 2011-06-30 2016-11-24 Compugen Ltd. Polypeptides and uses thereof for treatment of autoimmune disorders and infection
HUE040276T2 (hu) 2011-07-01 2019-02-28 Novartis Ag Eljárás metabolikus rendellenességek kezelésére
US10323081B2 (en) 2011-07-06 2019-06-18 Genmag A/S Modulation of complement-dependent cytotoxicity through modifications of the C-terminus of antibody heavy chains
UA117901C2 (uk) 2011-07-06 2018-10-25 Ґенмаб Б.В. Спосіб посилення ефекторної функції вихідного поліпептиду, його варіанти та їх застосування
US9238689B2 (en) 2011-07-15 2016-01-19 Morpho Sys AG Antibodies that are cross-reactive for macrophage migration inhibitory factor (MIF) and D-dopachrome tautomerase (D-DT)
US9156911B2 (en) 2011-07-18 2015-10-13 Amgen Inc. Apelin antigen-binding proteins and uses thereof
WO2013012022A1 (fr) 2011-07-19 2013-01-24 中外製薬株式会社 Préparation à teneur en protéines stable renfermant de l'argininamide ou un composé analogue correspondant
WO2013017656A1 (fr) 2011-08-02 2013-02-07 Medizinische Universität Wien Antagonistes de ribonucléases pour traiter l'obésité
WO2013017691A1 (fr) 2011-08-04 2013-02-07 Medizinische Universität Innsbruck Inhibiteurs de cahgtlp destinés à être utilisés dans le traitement de la candidiase
RS61946B1 (sr) 2011-08-05 2021-07-30 Regeneron Pharma Humanizovani miševi univerzalnog lakog lakca
JP5925783B2 (ja) 2011-08-12 2016-05-25 国立感染症研究所長 アスペルギルスフミガーツス感染症の検査、予防及び治療のための方法並びに組成物
EP2749572A4 (fr) 2011-08-23 2015-04-01 Chugai Pharmaceutical Co Ltd Nouvel anticorps anti-ddr1 ayant une activité anti-tumorale
WO2013035824A1 (fr) 2011-09-07 2013-03-14 ファーマロジカルズ・リサーチ プライベート リミテッド Séparation de cellules souches cancéreuses
CA2846319A1 (fr) 2011-09-19 2013-03-28 Kymab Limited Anticorps, domaines variables & chaines adaptees pour une utilisation humaine
WO2013045916A1 (fr) 2011-09-26 2013-04-04 Kymab Limited Chaînes légères substituts (cls) chimères comprenant vpreb humain
WO2013047752A1 (fr) 2011-09-30 2013-04-04 中外製薬株式会社 Molécule de liaison aux antigènes pour favoriser la perte d'antigènes
US10024867B2 (en) 2011-09-30 2018-07-17 Chugai Seiyaku Kabushiki Kaisha Ion concentration-dependent binding molecule library
MX366968B (es) 2011-09-30 2019-08-01 Chugai Pharmaceutical Co Ltd Molecula de union al antigeno que induce la inmunorespuesta al antigeno objetivo.
JP6271251B2 (ja) 2011-10-05 2018-01-31 中外製薬株式会社 糖鎖受容体結合ドメインを含む抗原の血漿中からの消失を促進する抗原結合分子
EP2766033B1 (fr) 2011-10-14 2019-11-20 Novartis AG Anticorps et méthodes pour traiter des maladies associées à la voie de signalisation wnt
EP3216871B1 (fr) 2011-10-17 2021-12-22 Regeneron Pharmaceuticals, Inc. Souris à chaîne lourde d'immunoglobuline limitée
AU2012328322A1 (en) 2011-10-27 2014-06-12 Genmab A/S Production of heterodimeric proteins
US20140302511A1 (en) 2011-10-28 2014-10-09 Pharmalogicals Research Pte. Ltd. Cancer stem cell-specific molecule
AU2012332593B2 (en) 2011-11-01 2016-11-17 Bionomics, Inc. Anti-GPR49 antibodies
ES2697674T3 (es) 2011-11-01 2019-01-25 Bionomics Inc Procedimientos para bloquear el crecimiento de células madre cancerosas
CN104053671A (zh) 2011-11-01 2014-09-17 生态学有限公司 治疗癌症的抗体和方法
AU2012332590B2 (en) 2011-11-01 2016-10-20 Bionomics, Inc. Anti-GPR49 antibodies
CN104168922A (zh) 2011-11-16 2014-11-26 安姆根有限公司 治疗表皮生长因子缺失突变体viii相关疾病的方法
BR112014013081A2 (pt) 2011-11-30 2020-10-20 Chugai Seiyaku Kabushiki Kaisha veículo contendo fármaco em célula para formação de um complexo imune
US9253965B2 (en) 2012-03-28 2016-02-09 Kymab Limited Animal models and therapeutic molecules
KR102083957B1 (ko) 2011-12-05 2020-03-04 노파르티스 아게 표피 성장 인자 수용체 3 (her3)에 대한 항체
KR20140103135A (ko) 2011-12-05 2014-08-25 노파르티스 아게 Her3의 도메인 ii에 대해 지시된 표피 성장 인자 수용체 3 (her3)에 대한 항체
AU2012356170B2 (en) 2011-12-21 2016-06-16 Novartis Ag Compositions and methods for antibodies targeting Factor P
TWI593705B (zh) 2011-12-28 2017-08-01 Chugai Pharmaceutical Co Ltd Humanized anti-epiregulin antibody and cancer therapeutic agent containing the antibody as an active ingredient
CN104185681A (zh) 2012-02-01 2014-12-03 卡姆普根有限公司 C1orf32抗体及其用于治疗癌症的用途
PT2812443T (pt) 2012-02-06 2019-09-05 Inhibrx Inc Anticorpos cd47 e métodos de utilização dos mesmos
SG11201404751UA (en) 2012-02-09 2014-09-26 Chugai Pharmaceutical Co Ltd Modified fc region of antibody
US20160046693A1 (en) 2012-02-24 2016-02-18 Chugai Seiyaku Kabushiki Kaisha Antigen-Binding Molecule for Promoting Disappearance of Antigen via Fc gamma RIIB
US10251377B2 (en) 2012-03-28 2019-04-09 Kymab Limited Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies
GB2502127A (en) 2012-05-17 2013-11-20 Kymab Ltd Multivalent antibodies and in vivo methods for their production
JP6280031B2 (ja) 2012-03-29 2018-02-14 中外製薬株式会社 抗lamp5抗体およびその利用
WO2013150623A1 (fr) 2012-04-04 2013-10-10 株式会社ペルセウスプロテオミクス Conjugué d'anticorps anti-cdh3 anticorps (p-cadhérine) et médicament
WO2013158279A1 (fr) 2012-04-20 2013-10-24 Abbvie Inc. Procédés de purification de protéines pour réduire des espèces acides
US9067990B2 (en) 2013-03-14 2015-06-30 Abbvie, Inc. Protein purification using displacement chromatography
US9181572B2 (en) 2012-04-20 2015-11-10 Abbvie, Inc. Methods to modulate lysine variant distribution
EA039663B1 (ru) 2012-05-03 2022-02-24 Амген Инк. Применение антитела против pcsk9 для снижения сывороточного холестерина лпнп и лечения связанных с холестерином расстройств
US9416189B2 (en) 2012-05-11 2016-08-16 Microbial Chemistry Research Foundation Anti-CXADR antibody
WO2013176754A1 (fr) 2012-05-24 2013-11-28 Abbvie Inc. Nouvelle purification d'anticorps au moyen de chromatographie à interaction hydrophobe
ES2856272T3 (es) 2012-05-30 2021-09-27 Chugai Pharmaceutical Co Ltd Molécula de unión a antígenos para eliminar antígenos agregados
RU2743463C2 (ru) 2012-05-30 2021-02-18 Чугаи Сейяку Кабусики Кайся Специфичная к ткани-мишени антигенсвязывающая молекула
SG10201609535TA (en) * 2012-06-05 2017-01-27 Regeneron Pharma Methods for making fully human bispecific antibodies using a common light chain
MX2014015195A (es) 2012-06-11 2015-02-17 Amgen Inc Proteinas fijadoras de antigeno antagonistas del receptor de accion dual y sus usos.
EP3597037B1 (fr) 2012-06-12 2021-04-28 Regeneron Pharmaceuticals, Inc. Animaux non humains humanisés à locus limités de chaîne lourde d'immunoglobuline
JP6628966B2 (ja) 2012-06-14 2020-01-15 中外製薬株式会社 改変されたFc領域を含む抗原結合分子
US9890215B2 (en) 2012-06-22 2018-02-13 King's College London Vista modulators for diagnosis and treatment of cancer
EP2864352B1 (fr) 2012-06-22 2018-08-08 The Trustees Of Dartmouth College Nouveaux produits de recombinaison vista-ig et leur utilisation dans le traitement des troubles autoimmuns, allergiques et inflammatoires
UY34887A (es) 2012-07-02 2013-12-31 Bristol Myers Squibb Company Una Corporacion Del Estado De Delaware Optimización de anticuerpos que se fijan al gen de activación de linfocitos 3 (lag-3) y sus usos
CN104736174B (zh) 2012-07-06 2019-06-14 根马布私人有限公司 具有三重突变的二聚体蛋白质
EP3632462A1 (fr) 2012-07-06 2020-04-08 Genmab B.V. Protéine dimérique ayant des mutations triples
WO2014007402A1 (fr) 2012-07-06 2014-01-09 京都府公立大学法人 Marqueur de différenciation et régulation de différenciation de cellules oculaires
WO2014021339A1 (fr) 2012-07-30 2014-02-06 国立大学法人名古屋大学 Anticorps monoclonal dirigé contre la protéine midkine d'origine humaine
CA2882272C (fr) 2012-08-24 2023-08-29 Chugai Seiyaku Kabushiki Kaisha Variant de la region fc specifique a fc.gamma.riib
EP3597747B1 (fr) 2012-08-24 2023-03-15 Chugai Seiyaku Kabushiki Kaisha Anticorps fc spécifiques fcgammarii de souris
AU2013309506A1 (en) 2012-09-02 2015-03-12 Abbvie Inc. Methods to control protein heterogeneity
US9512214B2 (en) 2012-09-02 2016-12-06 Abbvie, Inc. Methods to control protein heterogeneity
JOP20200308A1 (ar) 2012-09-07 2017-06-16 Novartis Ag جزيئات إرتباط il-18
CA2884704C (fr) 2012-09-07 2023-04-04 Randolph J. Noelle Modulateurs vista de diagnostic et de traitement de cancer
WO2014042251A1 (fr) 2012-09-13 2014-03-20 中外製薬株式会社 Animal non humain comportant un gène knock-in
EA031631B1 (ru) 2012-09-27 2019-01-31 Чугаи Сеияку Кабушики Каиша Способ лечения или предупреждения злокачественного новообразования, способ отбора пациента, способ тестирования предрасположенности к злокачественному новообразованию у субъекта, гибридный полипептид и его применения
CA2886326C (fr) 2012-09-28 2021-11-02 Chugai Seiyaku Kabushiki Kaisha Procede d'evaluation de reaction de coagulation du sang
EP3489258A1 (fr) 2012-11-08 2019-05-29 Eleven Biotherapeutics, Inc. Antagonistes de l'il-6 et leurs utilisations
ES2689782T3 (es) 2012-11-08 2018-11-15 University Of Miyazaki Anticuerpo capaz de reconocer específicamente un receptor de transferrina
WO2014084859A1 (fr) 2012-11-30 2014-06-05 Novartis Ag Molécules et procédés pour la modulation d'activités de tmem16a
PT2928921T (pt) 2012-12-05 2021-04-06 Novartis Ag Composições e métodos para anticorpos que visam epo
EP2935589A1 (fr) 2012-12-18 2015-10-28 Novartis AG Compositions et procédés qui utilisent une étiquette peptidique qui se lie au hyaluronane
ES2876009T3 (es) 2012-12-27 2021-11-11 Chugai Pharmaceutical Co Ltd Polipéptido heterodimerizado
US9938344B2 (en) 2012-12-28 2018-04-10 Precision Biologics, Inc. Humanized monoclonal antibodies and methods of use for the diagnosis and treatment of colon and pancreas cancer
KR20160007478A (ko) 2013-01-10 2016-01-20 젠맵 비. 브이 인간 IgG1 Fc 영역 변이체 및 그의 용도
EP2948478B1 (fr) 2013-01-25 2019-04-03 Amgen Inc. Anticorps ciblant cdh19 pour un mélanome
JO3519B1 (ar) 2013-01-25 2020-07-05 Amgen Inc تركيبات أجسام مضادة لأجل cdh19 و cd3
EP4137518A1 (fr) 2013-02-06 2023-02-22 Inhibrx, Inc. Anticorps cd47 n'induisant ni l'appauvrissement en globules rouges ni l'appauvrissement en plaquettes
UY35315A (es) 2013-02-08 2014-09-30 Novartis Ag Anticuerpos anti-il-17a y su uso en el tratamiento de trastornos autoinmunes e inflamatorios
JP6357113B2 (ja) 2013-02-08 2018-07-11 株式会社医学生物学研究所 ヒトnrg1タンパク質に対する抗体
DK2840892T3 (en) 2013-02-20 2018-07-23 Regeneron Pharma Non-human animals with modified heavy chain immunoglobulin sequences
US9429584B2 (en) 2013-02-28 2016-08-30 National Cancer Center Antibody against insoluble fibrin
WO2014136910A1 (fr) 2013-03-08 2014-09-12 国立大学法人大阪大学 ANTICORPS DIRIGÉ CONTRE UN PEPTIDE CODÉ PAR L'Exon-21 DE LA PÉRIOSTINE, ET COMPOSITION PHARMACEUTIQUE POUR LA PRÉVENTION OU LE TRAITEMENT D'UNE MALADIE INFLAMMATOIRE CONTENANT LEDIT ANTICORPS
AU2013381687A1 (en) 2013-03-12 2015-09-24 Abbvie Inc. Human antibodies that bind human TNF-alpha and methods of preparing the same
US8921526B2 (en) 2013-03-14 2014-12-30 Abbvie, Inc. Mutated anti-TNFα antibodies and methods of their use
US9017687B1 (en) 2013-10-18 2015-04-28 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same using displacement chromatography
WO2014159239A2 (fr) 2013-03-14 2014-10-02 Novartis Ag Anticorps dirigés contre notch 3
WO2014151878A2 (fr) 2013-03-14 2014-09-25 Abbvie Inc. Procédés pour la modulation des profils de glycosylation de protéines de traitements à base de protéines recombinantes au moyen de monosaccharides et d'oligosaccharides
LT2970449T (lt) 2013-03-15 2019-11-25 Amgen Res Munich Gmbh Viengrandės surišančios molekulės, apimančios n galo abp
US9505849B2 (en) 2013-03-15 2016-11-29 Amgen Research (Munich) Gmbh Antibody constructs for influenza M2 and CD3
US9788534B2 (en) 2013-03-18 2017-10-17 Kymab Limited Animal models and therapeutic molecules
AU2014250434B2 (en) 2013-04-02 2019-08-08 Chugai Seiyaku Kabushiki Kaisha Fc region variant
WO2014174596A1 (fr) 2013-04-23 2014-10-30 株式会社医学生物学研究所 Anticorps monoclonal fonctionnel dirigé contre le facteur de croissance de type facteur de croissance épidermique se liant à l'héparine
US9783593B2 (en) 2013-05-02 2017-10-10 Kymab Limited Antibodies, variable domains and chains tailored for human use
US11707056B2 (en) 2013-05-02 2023-07-25 Kymab Limited Animals, repertoires and methods
CA2912526C (fr) 2013-05-16 2021-09-14 Kyoto University Procede de determination d'un pronostic de cancer
WO2014186877A1 (fr) 2013-05-24 2014-11-27 Uger Marni Diane Anticorps dirigés contre le récepteur fas à usage diagnostique et thérapeutique
US10782290B2 (en) 2013-06-11 2020-09-22 National Center Of Neurology And Psychiatry Method for predicting post-therapy prognosis of relapsing-remitting multiple sclerosis (RRMS) patient, and method for determining applicability of novel therapy
AR096601A1 (es) 2013-06-21 2016-01-20 Novartis Ag Anticuerpos del receptor 1 de ldl oxidado similar a lectina y métodos de uso
BR112015032414A2 (pt) 2013-06-24 2017-11-07 Chugai Pharmaceutical Co Ltd agente terapêutico compreendendo anticorpo antiepirregulina humanizado como ingrediente ativo para carcinoma de pulmão de célula não pequena excluindo adenocarcinoma
CA2916259C (fr) 2013-06-28 2024-02-20 Amgen Inc. Procedes de traitement d'une hypercholesterolemie familiale homozygote
BR112016002198A2 (pt) 2013-08-14 2017-09-12 Novartis Ag métodos de tratamento de miosite por corpos de inclusão esporádica
EP3033356B1 (fr) 2013-08-14 2020-01-15 Sachdev Sidhu Anticorps contre les protéines frizzled et leurs méthodes d'utilisation
US20160193308A1 (en) 2013-09-04 2016-07-07 Osaka University Dpp-4-targeting vaccine for treating diabetes
US20160229922A1 (en) 2013-09-20 2016-08-11 Chugai Seiyaku Kabushiki Kaisha Treatment for hemorrhagic diseases by anti-protein-c antibody
TW201546284A (zh) 2013-10-01 2015-12-16 Kymab Ltd 動物模式及治療分子
EP3052640A2 (fr) 2013-10-04 2016-08-10 AbbVie Inc. Utilisation d'ions métaux pour la modulation des profils de glycosylation de protéines recombinantes
US9181337B2 (en) 2013-10-18 2015-11-10 Abbvie, Inc. Modulated lysine variant species compositions and methods for producing and using the same
US9085618B2 (en) 2013-10-18 2015-07-21 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same
US8946395B1 (en) 2013-10-18 2015-02-03 Abbvie Inc. Purification of proteins using hydrophobic interaction chromatography
EP3070167A4 (fr) 2013-11-06 2017-06-07 Osaka University Anticorps présentant une large activité neutralisante contre le virus de la grippe a de groupe 1
CA2929044A1 (fr) 2013-11-11 2015-05-14 Chugai Seiyaku Kabushiki Kaisha Molecule se liant a l'antigene contenant une region variable d'anticorps modifiee
WO2015073884A2 (fr) 2013-11-15 2015-05-21 Abbvie, Inc. Compositions de protéines de liaison génétiquement glycomodifiées
EP3763813A1 (fr) 2013-12-04 2021-01-13 Chugai Seiyaku Kabushiki Kaisha Molécules de liaison à un antigène, dont l'activité de liaison à un antigène varie en fonction de la concentration en composés et bibliothèques desdites molécules
US11014987B2 (en) 2013-12-24 2021-05-25 Janssen Pharmaceutics Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
MX369173B (es) 2013-12-24 2019-10-30 Janssen Pharmaceutica Nv Anticuerpos y fragmentos anti-vista.
KR101836756B1 (ko) 2013-12-27 2018-03-08 오사카 유니버시티 Il-17a를 표적화하는 백신
MX2016008498A (es) 2013-12-27 2016-10-07 Chugai Pharmaceutical Co Ltd Metodo para purificar anticuerpo que tiene bajo punto isoelectrico.
TW201609093A (zh) 2013-12-27 2016-03-16 Chugai Pharmaceutical Co Ltd Fgfr門控蛋白變異基因及以其爲標的之醫藥
US10106623B2 (en) 2014-02-12 2018-10-23 Michael Uhlin Bispecific antibodies for use in stem cell transplantation
US10881085B2 (en) 2014-03-21 2021-01-05 Regeneron Pharmaceuticals, Inc. Non-human animals that make single domain binding proteins
SG10201808083VA (en) 2014-03-21 2018-10-30 Regeneron Pharma Vl antigen binding proteins exhibiting distinct binding characteristics
SG11201607772WA (en) 2014-03-31 2016-10-28 Debiopharm Int Sa Fgfr fusions
KR102352573B1 (ko) 2014-04-04 2022-01-18 바이오노믹스 인코포레이티드 Lgr5에 결합하는 인간화된 항체들
TW201622746A (zh) 2014-04-24 2016-07-01 諾華公司 改善或加速髖部骨折術後身體復原之方法
SG10201810507WA (en) 2014-06-06 2018-12-28 Bristol Myers Squibb Co Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
CN107073109B (zh) 2014-06-11 2021-08-06 凯西·A·格林 Vista激动剂和拮抗剂抑制或增强体液免疫的用途
TWI695011B (zh) 2014-06-18 2020-06-01 美商梅爾莎納醫療公司 抗her2表位之單株抗體及其使用之方法
TWI831106B (zh) 2014-06-20 2024-02-01 日商中外製藥股份有限公司 用於因第viii凝血因子及/或活化的第viii凝血因子的活性降低或欠缺而發病及/或進展的疾病之預防及/或治療之醫藥組成物
EP3161001A2 (fr) 2014-06-25 2017-05-03 Novartis AG Anticorps spécifiques pour il-17a fusé à des étiquettes de peptide de liaison hyaluronan
WO2015198243A2 (fr) 2014-06-25 2015-12-30 Novartis Ag Compositions et procédés pour protéines à action longue
WO2015198240A2 (fr) 2014-06-25 2015-12-30 Novartis Ag Compositions et procédés permettant d'obtenir des protéines à action prolongée
WO2016007414A1 (fr) 2014-07-08 2016-01-14 New York University Ligands de visualisation de tau et leurs utilisations dans le diagnostic et le traitement de tauopathies
AU2015286569B2 (en) 2014-07-11 2021-04-15 Genmab A/S Antibodies binding AXL
UY36245A (es) 2014-07-31 2016-01-29 Amgen Res Munich Gmbh Constructos de anticuerpos para cdh19 y cd3
WO2016016415A1 (fr) 2014-07-31 2016-02-04 Amgen Research (Munich) Gmbh Construction d'anticorps monocaténaires bispécifiques avec distribution tissulaire améliorée
CA2956471A1 (fr) 2014-07-31 2016-02-04 Amgen Research (Munich) Gmbh Constructions optimisees d'anticorps monocatenaires, bispecifiques, specifiques d'especes croisees
ES2726645T3 (es) 2014-08-01 2019-10-08 Inst Nat Sante Rech Med Un anticuerpo anti-CD45RC para usar como medicamento
WO2016020880A2 (fr) 2014-08-07 2016-02-11 Novartis Ag Anticorps de l'angiopoïétine-like 4 et procédés d'utilisation correspondants
WO2016020882A2 (fr) 2014-08-07 2016-02-11 Novartis Ag Anticorps de type angiopoétine 4 (angptl4) et procédés d'utilisation
JP6858559B2 (ja) 2014-08-20 2021-04-14 中外製薬株式会社 蛋白質溶液の粘度測定方法
SG10201902924RA (en) 2014-10-03 2019-05-30 Massachusetts Inst Technology Antibodies that bind ebola glycoprotein and uses thereof
WO2016059220A1 (fr) 2014-10-16 2016-04-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Agents d'activation du tcr à utiliser dans le traitement de la lla-t
US10738078B2 (en) 2014-11-03 2020-08-11 Bristol-Myers Squibb Company Use of caprylic acid precipitation for protein purification
BR112017009297B1 (pt) 2014-11-05 2024-02-15 Annexon, Inc Anticorpos antifator de complemento c1q humanizados, composição farmacêutica e kit compreendendo os mesmos, uso terapêutico destes,polinucleotídeo isolado, célula hospedeira isolada, bem como métodos in vitro para detectar sinapses
SG11201703574VA (en) 2014-11-07 2017-05-30 Eleven Biotherapeutics Inc Improved il-6 antibodies
WO2016073894A1 (fr) 2014-11-07 2016-05-12 Eleven Biotherapeutics, Inc. Agents thérapeutiques avec une rétention oculaire accrue
NZ731633A (en) 2014-11-21 2022-01-28 Bristol Myers Squibb Co Antibodies against cd73 and uses thereof
WO2016090347A1 (fr) 2014-12-05 2016-06-09 Immunext, Inc. Identification de vsig8 en tant que récepteur putatif de vista et son utilisation pour produire des modulateurs de vista/vsig8
UY36449A (es) 2014-12-19 2016-07-29 Novartis Ag Composiciones y métodos para anticuerpos dirigidos a bmp6
EP3945096A1 (fr) 2014-12-19 2022-02-02 Regenesance B.V. Anticorps qui se lient au c6 humain et leurs utilisations
SG10202006538TA (en) 2014-12-23 2020-08-28 Bristol Myers Squibb Co Antibodies to tigit
TWI805046B (zh) 2015-02-27 2023-06-11 日商中外製藥股份有限公司 Il-6受體抗體用於製備醫藥組成物的用途
JP6807859B2 (ja) 2015-03-13 2021-01-06 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company クロマトグラフィーにおける不純物を取り除くためのアルカリ洗浄の使用
EP3271403A1 (fr) * 2015-03-19 2018-01-24 Regeneron Pharmaceuticals, Inc. Animaux non humains qui sélectionnent des régions variables de chaînes légères qui se lient à l'antigène
US20180105554A1 (en) 2015-03-20 2018-04-19 Bristol-Myers Squibb Company Use of dextran sulfate to enhance protein a affinity chromatography
US20180105555A1 (en) 2015-03-20 2018-04-19 Bristol-Myers Squibb Company Use of dextran for protein purification
EP4276116A3 (fr) 2015-04-17 2024-01-17 Amgen Research (Munich) GmbH Constructions d'anticorps bispécifiques pour cdh3 et cd3
CA2978038A1 (fr) 2015-04-17 2016-10-20 F. Hoffmann-La Roche Ag Polytherapie avec des facteurs de coagulation et des anticorps polyspecifiques
CR20200517A (es) 2015-04-28 2021-01-12 Mitsubishi Tanabe Pharma Corp PROTEINA DE UNION A RGma Y SUS USO
PE20180926A1 (es) 2015-05-29 2018-06-08 Bristol Myers Squibb Co Anticuerpos contra el miembro 4 de la superfamilia del receptor del factor de necrosis tumoral (ox40) y sus usos
BR112017021484A2 (pt) 2015-06-05 2018-07-03 Novartis Ag anticorpos de direcionamento à proteína morfogenética óssea 9 (bmp9) e métodos para os mesmos
BR112017027870A2 (pt) 2015-06-24 2018-08-28 Janssen Pharmaceutica Nv anticorpos e fragmentos anti-vista
JP2018526977A (ja) 2015-06-29 2018-09-20 ザ ロックフェラー ユニヴァーシティ アゴニスト活性が増強されたcd40に対する抗体
EP3319993B1 (fr) 2015-07-10 2020-01-15 Genmab A/S Conjugués anticorps-médicament spécifiques d'axl pour le traitement du cancer
JO3711B1 (ar) 2015-07-13 2021-01-31 H Lundbeck As أجسام مضادة محددة لبروتين تاو وطرق استعمالها
GB201512215D0 (en) 2015-07-13 2015-08-19 Lundbeck & Co As H Agents,uses and methods
GB201512203D0 (en) 2015-07-13 2015-08-19 Lundbeck & Co As H Agents,uses and methods
TWI717375B (zh) 2015-07-31 2021-02-01 德商安美基研究(慕尼黑)公司 Cd70及cd3抗體構築體
TWI829617B (zh) 2015-07-31 2024-01-21 德商安美基研究(慕尼黑)公司 Flt3及cd3抗體構築體
TWI796283B (zh) 2015-07-31 2023-03-21 德商安美基研究(慕尼黑)公司 Msln及cd3抗體構築體
TWI744242B (zh) 2015-07-31 2021-11-01 德商安美基研究(慕尼黑)公司 Egfrviii及cd3抗體構築體
TW202346349A (zh) 2015-07-31 2023-12-01 德商安美基研究(慕尼黑)公司 Dll3及cd3抗體構築體
CN108350072B (zh) 2015-08-03 2022-05-24 诺华股份有限公司 治疗fgf21相关病症的方法
JP6913078B2 (ja) 2015-08-13 2021-08-04 ニューヨーク・ユニバーシティ タウの短縮型Asp421エピトープに特異的な、抗体を基にした分子、ならびにタウ異常症の診断および治療におけるそれらの使用
US10358503B2 (en) 2015-08-13 2019-07-23 New York University Antibody-based molecules selective for the {P}Ser404 epitope of Tau and their uses in the diagnosis and treatment of tauopathy
AU2016320748B2 (en) 2015-09-09 2019-05-02 Novartis Ag Thymic stromal lymphopoietin (TSLP)-binding antibodies and methods of using the antibodies
EP3347377B1 (fr) 2015-09-09 2021-02-17 Novartis AG Anticorps de liaison à la lymphopoïétine stromale thymique (tslp) et méthodes d'utilisation des anticorps
WO2017086367A1 (fr) 2015-11-18 2017-05-26 中外製薬株式会社 Polythérapie utilisant une molécule de liaison à l'antigène à rôle de redirection des cellules t, ciblant des cellules immunosupressives
EP3378488A4 (fr) 2015-11-18 2019-10-30 Chugai Seiyaku Kabushiki Kaisha Procédé pour renforcer la réponse immunitaire humorale
WO2017087678A2 (fr) 2015-11-19 2017-05-26 Bristol-Myers Squibb Company Anticorps dirigés contre un récepteur du facteur de nécrose tumorale induit par glucocorticoïdes (gitr) et leurs utilisations
PT3383920T (pt) 2015-11-30 2024-04-15 Univ California Entrega de carga útil específica para tumores e ativação imune utilizando um anticorpo humano que tem como alvo um antigénio altamente específico da superfície das células tumorais
EP3383903A1 (fr) 2015-11-30 2018-10-10 Bristol-Myers Squibb Company Anticorps anti ip-10 humaine et leurs utilisations
EP3384030A4 (fr) 2015-12-03 2019-07-03 Trianni, Inc. Diversité améliorée d'immunoglobulines
UY37030A (es) 2015-12-18 2017-07-31 Novartis Ag Anticuerpos dirigidos a cd32b y métodos de uso de los mismos
JP6954842B2 (ja) 2015-12-25 2021-10-27 中外製薬株式会社 増強された活性を有する抗体及びその改変方法
EP3851457A1 (fr) 2016-01-21 2021-07-21 Novartis AG Molécules multispécifiques ciblant cll-1
PL3411404T3 (pl) 2016-02-03 2023-02-13 Amgen Research (Munich) Gmbh Konstrukty dwuswoistych przeciwciał wobec PSMA i CD3 angażujących komórki T
EA039859B1 (ru) 2016-02-03 2022-03-21 Эмджен Рисерч (Мюник) Гмбх Биспецифические конструкты антител, связывающие egfrviii и cd3
US10301391B2 (en) 2016-02-03 2019-05-28 Amgen Research (Munich) Gmbh BCMA and CD3 bispecific T cell engaging antibody constructs
WO2017136734A1 (fr) 2016-02-04 2017-08-10 Trianni, Inc. Production améliorée d'immunoglobulines
BR112018016461A2 (pt) 2016-02-12 2019-10-01 Janssen Pharmaceutica Nv anticorpos e fragmentos anti-vista, usos dos mesmos e métodos de identificação dos mesmos
MX2018010672A (es) 2016-03-04 2019-05-27 Univ Rockefeller Anticuerpos para cumulo de diferenciación 40 (cd40) con actividad agonista mejorada.
EA201891983A8 (ru) 2016-03-04 2020-05-28 Бристол-Майерс Сквибб Компани Комбинированная терапия антителами к cd73
CA3016424A1 (fr) 2016-03-14 2017-09-21 Chugai Seiyaku Kabushiki Kaisha Medicament therapeutique induisant des lesions cellulaires a utiliser dans le traitement du cancer
WO2017157305A1 (fr) 2016-03-15 2017-09-21 Generon (Shanghai) Corporation Ltd. Protéines de fusion à fab multispécifiques et leur utilisation
KR102413037B1 (ko) 2016-03-15 2022-06-23 메르사나 테라퓨틱스, 인코포레이티드 Napi2b 표적화된 항체-약물 접합체 및 이의 사용 방법
JP2019509322A (ja) 2016-03-22 2019-04-04 バイオノミクス リミテッド 抗lgr5モノクローナル抗体の投与
US10765724B2 (en) 2016-03-29 2020-09-08 Janssen Biotech, Inc. Method of treating psoriasis with increased interval dosing of anti-IL12/23 antibody
WO2017175058A1 (fr) 2016-04-07 2017-10-12 Janssen Pharmaceutica Nv Anticorps anti-vista et fragments de ceux-ci, leurs utilisations et leurs procédés d'identification
MX2018012469A (es) 2016-04-15 2019-07-04 Immunext Inc Anticuerpos vista antihumanos y uso de los mismos.
EA201892362A1 (ru) 2016-04-18 2019-04-30 Селлдекс Терапьютикс, Инк. Агонистические антитела, которые связываются с cd40 человека, и варианты их применения
JOP20170091B1 (ar) 2016-04-19 2021-08-17 Amgen Res Munich Gmbh إعطاء تركيبة ثنائية النوعية ترتبط بـ cd33 وcd3 للاستخدام في طريقة لعلاج اللوكيميا النخاعية
SG11201809793UA (en) 2016-05-09 2018-12-28 Bristol Myers Squibb Co Tl1a antibodies and uses thereof
KR102492057B1 (ko) 2016-06-15 2023-01-26 노파르티스 아게 골 형태형성 단백질 6(bmp6)의 억제제를 사용한 질병의 치료 방법
GEP20217222B (en) 2016-07-12 2021-02-10 Lundbeck A/S H Antibodies specific for hyperphosphorylated tau and methods of use thereof
SG11201900026TA (en) 2016-07-14 2019-01-30 Bristol Myers Squibb Co Antibodies against tim3 and uses thereof
WO2018029586A1 (fr) 2016-08-07 2018-02-15 Novartis Ag Procédés d'immunisation à médiation par arnm.
US10947268B2 (en) 2016-08-12 2021-03-16 Bristol-Myers Squibb Company Methods of purifying proteins
WO2018044970A1 (fr) 2016-08-31 2018-03-08 University Of Rochester Anticorps monoclonaux humains dirigés contre l'enveloppe du rétrovirus endogène humain k (herv-k) et leurs utilisations
MX2019002510A (es) 2016-09-06 2019-06-24 Chugai Pharmaceutical Co Ltd Metodos para usar un anticuerpo biespecifico que reconoce el factor de coagulacion ix y/o el factor de coagulacion ix activado y el factor de coagulacion x y/o factor de coagulacion x activado.
TW201825674A (zh) 2016-09-09 2018-07-16 美商艾斯合顧問有限公司 表現雙特異性接合分子的溶瘤病毒
AU2017336799B2 (en) 2016-09-30 2023-08-31 Janssen Biotech, Inc. Safe and effective method of treating psoriasis with anti-IL23 specific antibody
CU20210030A7 (es) 2016-10-13 2021-11-04 Massachusetts Inst Technology Anticuerpos que se unen a la proteína de envoltura del virus zika
US11339209B2 (en) 2016-11-14 2022-05-24 Novartis Ag Compositions, methods, and therapeutic uses related to fusogenic protein minion
RU2019114679A (ru) 2016-11-15 2020-12-17 Х. Лундбекк А/С Средства, пути применения и способы лечения синуклеопатии
MX2019005661A (es) 2016-11-16 2019-10-07 Janssen Biotech Inc Método para tratar la psoriasis con el anticuerpo específico anti-il23.
TWI776827B (zh) 2016-11-28 2022-09-11 日商中外製藥股份有限公司 能夠調節配體結合活性的配體結合分子
MA47019A (fr) 2016-12-16 2021-04-21 H Lundbeck As Agents, utilisations et procédés
US10364286B2 (en) 2016-12-22 2019-07-30 H. Lundbeck A/S Monoclonal anti-alpha-synuclein antibodies for preventing tau aggregation
JP7062669B2 (ja) 2016-12-23 2022-05-06 ブリストル-マイヤーズ スクイブ カンパニー 改善されたバイオアナリシス特性およびバイオプロセシング特性のための、治療用免疫グロブリンg4の設計
MA47205A (fr) 2017-01-04 2019-11-13 H Lundbeck As Anticorps spécifiques de la protéine tau hyperphosphorylée pour traiter des maladies oculaires
WO2018129451A2 (fr) 2017-01-09 2018-07-12 Merrimack Pharmaceuticals, Inc. Anticorps anti-fgfr et procédés d'utilisation
EP3573658A4 (fr) 2017-01-30 2021-07-21 Janssen Biotech, Inc. Anticorps anti-tnf, compositions et méthodes pour le traitement du rhumatisme psoriasique actif
JOP20190189A1 (ar) 2017-02-02 2019-08-01 Amgen Res Munich Gmbh تركيبة صيدلانية ذات درجة حموضة منخفضة تتضمن بنيات جسم مضاد يستهدف الخلية t
JP2020506947A (ja) 2017-02-07 2020-03-05 ヤンセン バイオテツク,インコーポレーテツド 活動性強直性脊椎炎を治療するための抗tnf抗体、組成物、及び方法
AU2018218557B9 (en) 2017-02-08 2021-06-24 Novartis Ag FGF21 mimetic antibodies and uses thereof
JP7136790B2 (ja) 2017-02-17 2022-09-13 ブリストル-マイヤーズ スクイブ カンパニー アルファ-シヌクレインに対する抗体およびその使用
KR102628323B1 (ko) 2017-03-24 2024-01-22 노바르티스 아게 심장질환 예방 및 치료 방법
JP7050333B2 (ja) 2017-03-24 2022-04-08 全薬工業株式会社 抗IgM/B細胞表面抗原二重特異性抗体
KR102660861B1 (ko) 2017-03-30 2024-04-25 더 존스 홉킨스 유니버시티 생체거대분자의 정제를 위한 초분자 고친화성 단백질-결합 시스템
CN110461358A (zh) 2017-03-31 2019-11-15 公立大学法人奈良县立医科大学 可用于预防和/或治疗凝血因子ⅸ异常、包含代替凝血因子ⅷ的功能的多特异性抗原结合分子的药物组合物
TWI788340B (zh) 2017-04-07 2023-01-01 美商必治妥美雅史谷比公司 抗icos促效劑抗體及其用途
US20200109390A1 (en) 2017-04-27 2020-04-09 Chugai Seiyaku Kabushiki Kaisha Coagulation factor ix with improved pharmacokinetics
US11851486B2 (en) 2017-05-02 2023-12-26 National Center Of Neurology And Psychiatry Method for predicting and evaluating therapeutic effect in diseases related to IL-6 and neutrophils
MA48763A (fr) 2017-05-05 2020-04-08 Amgen Inc Composition pharmaceutique comprenant des constructions d'anticorps bispécifiques pour un stockage et une administration améliorés
WO2018229715A1 (fr) 2017-06-16 2018-12-20 Novartis Ag Compositions comprenant des anticorps anti-cd32b et procédés d'utilisation correspondants
AU2018292579A1 (en) 2017-06-28 2019-12-05 Novartis Ag Methods for preventing and treating urinary incontinence
US10894833B2 (en) 2017-07-20 2021-01-19 H. Lundbeck A/S Agents, uses and methods for treatment
JP7379323B2 (ja) 2017-08-18 2023-11-14 ザ・ジョンズ・ホプキンス・ユニバーシティ タンパク質精製のための超分子フィラメント集合体
TW201922780A (zh) 2017-09-25 2019-06-16 美商健生生物科技公司 以抗il12/il23抗體治療狼瘡之安全且有效之方法
KR20200074160A (ko) 2017-10-20 2020-06-24 가꼬우호우징 효고 이카다이가쿠 항il-6 수용체 항체를 함유하는 수술 후의 유착을 억제하기 위한 의약 조성물
WO2019081983A1 (fr) 2017-10-25 2019-05-02 Novartis Ag Anticorps ciblant cd32b et leurs procédés d'utilisation
AU2018376309A1 (en) 2017-11-28 2020-06-25 Chugai Seiyaku Kabushiki Kaisha Ligand-binding molecule having adjustable ligand-binding activity
EA202091422A1 (ru) 2017-12-11 2020-08-28 Эмджен Инк. Способ непрерывного производства продуктов на основе биспецифических антител
EP3498293A1 (fr) 2017-12-15 2019-06-19 Institut National De La Sante Et De La Recherche Medicale (Inserm) Traitement de maladies monogéniques avec un anticorps anti-cd45rc
JP7314146B2 (ja) 2017-12-28 2023-07-25 中外製薬株式会社 細胞傷害誘導治療剤
TW201940518A (zh) 2017-12-29 2019-10-16 美商安進公司 針對muc17和cd3之雙特異性抗體構建體
SG11202005323SA (en) 2018-01-12 2020-07-29 Bristol Myers Squibb Co Combination therapy with anti-il-8 antibodies and anti-pd-1 antibodies for treating cancer
CN111886255A (zh) 2018-01-12 2020-11-03 百时美施贵宝公司 抗tim3抗体及其用途
WO2019151418A1 (fr) 2018-01-31 2019-08-08 元一 加藤 Agent thérapeutique pour l'asthme contenant un inhibiteur d'il-6
WO2019171252A1 (fr) 2018-03-05 2019-09-12 Janssen Biotech, Inc. Méthodes de traitement de la maladie de crohn avec un anticorps spécifique anti-il23
TW202003565A (zh) 2018-03-23 2020-01-16 美商必治妥美雅史谷比公司 抗mica及/或micb抗體及其用途
EP3774882A1 (fr) 2018-03-29 2021-02-17 Bristol-Myers Squibb Company Procédés de purification d'anticorps monoclonaux monomères
BR112020022265A2 (pt) 2018-05-07 2021-02-23 Genmab A/S método para tratar câncer em um indivíduo, e, estojo.
KR20210044183A (ko) 2018-05-07 2021-04-22 젠맵 에이/에스 항-pd-1 항체 및 항-조직 인자 항체-약물 접합체의 조합을 사용하여 암을 치료하는 방법
JP2021523138A (ja) 2018-05-11 2021-09-02 ヤンセン バイオテツク,インコーポレーテツド Il−23抗体を使用してうつを治療する方法
US20210196568A1 (en) 2018-05-21 2021-07-01 Chugai Seiyaku Kabushiki Kaisha Lyophilized formulation sealed in glass container
TW202015726A (zh) 2018-05-30 2020-05-01 瑞士商諾華公司 Entpd2抗體、組合療法、及使用該等抗體和組合療法之方法
CN112533635A (zh) 2018-07-10 2021-03-19 田边三菱制药株式会社 末梢神经病变或者伴随确认到末梢神经病变或星形胶质细胞病变的疾病的疼痛的预防或治疗方法
JP2021530697A (ja) 2018-07-18 2021-11-11 ヤンセン バイオテツク,インコーポレーテツド 抗il23特異的抗体で治療した後の持続応答予測因子
CN112771075A (zh) 2018-07-30 2021-05-07 安进研发(慕尼黑)股份有限公司 结合至cd33和cd3的双特异性抗体构建体的延长施用
PE20211400A1 (es) 2018-08-03 2021-07-27 Amgen Res Munich Gmbh Constructos de anticuerpos para cldn18.2 y cd3
WO2020043670A1 (fr) 2018-08-27 2020-03-05 Affimed Gmbh Cellules nk cryoconservées préchargées avec une construction d'anticorps
JP2022502076A (ja) 2018-09-18 2022-01-11 メリマック ファーマシューティカルズ インコーポレーティッド 抗tnfr2抗体およびその使用
CA3113837C (fr) 2018-09-24 2022-07-12 Janssen Biotech, Inc. Methode sure et efficace de traitement de la rectocolite hemorragique avec un anticorps anti-il12/il23
MX2021003976A (es) 2018-10-11 2021-05-27 Amgen Inc Procesamiento posterior de constructos de anticuerpos biespecificos.
UY38407A (es) 2018-10-15 2020-05-29 Novartis Ag Anticuerpos estabilizadores de trem2
UA127902C2 (uk) 2018-10-30 2024-02-07 Генмаб А/С Застосування комбінації антитіла проти vegf і кон'югата антитіло проти тканинного фактора-лікарський засіб для лікування раку
US11274150B2 (en) 2018-11-16 2022-03-15 Bristol-Myers Squibb Company Anti-human natural killer cell inhibitory receptor group 2A protein (NKG2A) antibodies
EP3883607A4 (fr) 2018-11-20 2022-08-17 Janssen Biotech, Inc. Procédé sûr et efficace de traitement du psoriasis avec un anticorps spécifique anti-il-23
MA54562A (fr) 2018-12-18 2021-10-27 Janssen Biotech Inc Méthode sûre et efficace de traitement du lupus avec un anticorps anti-il12/il23
WO2020148651A1 (fr) 2019-01-15 2020-07-23 Janssen Biotech, Inc. Compositions d'anticorps anti-tnf et procédés pour le traitement de l'arthrite idiopathique juvénile
SG11202107951YA (en) 2019-01-22 2021-08-30 Bristol Myers Squibb Co Antibodies against il-7r alpha subunit and uses thereof
US20220064278A1 (en) 2019-01-23 2022-03-03 Janssen Biotech, Inc. Anti-TNF Antibody Compositions for Use in Methods for the Treatment of Psoriatic Arthritis
EP3915581A4 (fr) 2019-01-24 2023-03-22 Chugai Seiyaku Kabushiki Kaisha Nouveaux antigènes du cancer et anticorps desdits antigènes
US20220290128A1 (en) 2019-02-04 2022-09-15 National University Corporation Ehime University CAR LIBRARY AND scFv MANUFACTURING METHOD
EP3932952A4 (fr) 2019-02-28 2022-11-30 Juntendo Educational Foundation Anticorps capable de se lier à la calréticuline mutante tronquée, et médicament de diagnostic, prophylactique ou thérapeutique pour néoplasmes myéloprolifératifs
US20220281990A1 (en) 2019-03-01 2022-09-08 Merrimack Pharmaceuticals, Inc. Anti-tnfr2 antibodies and uses thereof
MA55282A (fr) 2019-03-14 2022-01-19 Janssen Biotech Inc Procédés de fabrication pour la production de compositions d'anticorps anti-tnf
EP3938391A1 (fr) 2019-03-14 2022-01-19 Janssen Biotech, Inc. Procédés de production de compositions d'anticorps anti-tnf
EA202192508A1 (ru) 2019-03-14 2022-03-29 Янссен Байотек, Инк. Способы получения композиций антитела к фно
KR20210141990A (ko) 2019-03-14 2021-11-23 얀센 바이오테크 인코포레이티드 항-il12/il23 항체 조성물을 생성하기 위한 제조 방법
MA55383A (fr) 2019-03-18 2022-01-26 Janssen Biotech Inc Méthode de traitement du psoriasis chez des sujets pédiatriques avec un anticorps anti-il12/il23
EP3943108A4 (fr) 2019-03-19 2023-01-04 Chugai Seiyaku Kabushiki Kaisha Molécule de liaison à l'antigène contenant un domaine de liaison à l'antigène dont l'activité de liaison à l'antigène est modifiée en fonction de la mta, et banque pour obtenir ledit domaine de liaison à l'antigène
KR20210144819A (ko) 2019-03-29 2021-11-30 브리스톨-마이어스 스큅 컴퍼니 크로마토그래피 수지의 소수성을 측정하는 방법
SG11202110986YA (en) 2019-04-10 2021-11-29 Chugai Pharmaceutical Co Ltd Method for purifying fc region-modified antibody
JP7501876B2 (ja) 2019-04-17 2024-06-18 国立大学法人広島大学 Il-6阻害剤及びccr2阻害剤を組み合わせて投与することを特徴とする泌尿器がんの治療剤
CN113874073A (zh) 2019-05-23 2021-12-31 詹森生物科技公司 用针对IL-23和TNFα的抗体的联合疗法治疗炎性肠病的方法
EP3976648A1 (fr) 2019-06-03 2022-04-06 Janssen Biotech, Inc. Compositions d'anticorps anti-tnf et méthodes pour le traitement de l'arthrite psoriasique
JP2022535534A (ja) 2019-06-03 2022-08-09 ヤンセン バイオテツク,インコーポレーテツド 活動性強直性脊椎炎を治療するための抗tnf抗体、組成物、及び方法
AU2020288499A1 (en) 2019-06-05 2022-01-27 Chugai Seiyaku Kabushiki Kaisha Antibody cleavage site-binding molecule
KR20220019785A (ko) 2019-06-12 2022-02-17 노파르티스 아게 나트륨이뇨 펩티드 수용체 1 항체 및 사용 방법
CA3137494A1 (fr) 2019-06-13 2020-12-17 Amgen Inc. Commande de perfusion contenant de la biomasse automatisee dans la fabrication de produits biologiques
JP2022542890A (ja) 2019-07-26 2022-10-07 アムジエン・インコーポレーテツド 抗il13抗原結合タンパク質
WO2021028752A1 (fr) 2019-08-15 2021-02-18 Janssen Biotech, Inc. Anticorps anti-tfn pour le traitement du diabète de type i
JP2022547135A (ja) 2019-09-10 2022-11-10 アムジエン・インコーポレーテツド 増強されたプロテインl捕捉動的結合容量を有する二重特異性抗原結合ポリペプチドの精製方法
TW202124446A (zh) 2019-09-18 2021-07-01 瑞士商諾華公司 與entpd2抗體之組合療法
CN114502590A (zh) 2019-09-18 2022-05-13 诺华股份有限公司 Entpd2抗体、组合疗法、以及使用这些抗体和组合疗法的方法
WO2021091815A1 (fr) 2019-11-04 2021-05-14 Seagen Inc. Conjugés medicament-anticorps anti-cd30 et leur utilisation pour le traitement des infections à vih
MX2022005222A (es) 2019-11-07 2022-06-08 Genmab As Metodos para tratar el cancer con una combinacion de un anticuerpo anti muerte programada 1 (pd-1) y un conjugado de anticuerpo anti factor tisular-farmaco.
TW202131954A (zh) 2019-11-07 2021-09-01 丹麥商珍美寶股份有限公司 利用鉑類劑與抗組織因子抗體-藥物共軛體之組合來治療癌症之方法
US20220396599A1 (en) 2019-11-13 2022-12-15 Amgen Inc. Method for Reduced Aggregate Formation in Downstream Processing of Bispecific Antigen-Binding Molecules
JP2023509373A (ja) 2019-12-20 2023-03-08 ノヴァロック バイオセラピューティクス, リミテッド 抗インターロイキン-23 p19抗体およびそれの使用方法
UY38995A (es) 2019-12-20 2021-06-30 Amgen Inc Constructos de anticuerpo multiespecíficos agonistas de cd40 dirigidos a mesotelina para el tratamiento de tumores sólidos
AR120898A1 (es) 2019-12-26 2022-03-30 Univ Osaka Agente para tratar o prevenir neuromielitis óptica en fase aguda
AU2020414409A1 (en) 2019-12-27 2022-06-16 Affimed Gmbh Method for the production of bispecific FcyRIIl x CD30 antibody construct
US20230090965A1 (en) 2020-01-15 2023-03-23 Osaka University Prophylactic or therapeutic agent for dementia
EP4091632A1 (fr) 2020-01-15 2022-11-23 Osaka University Agent pour la prévention ou le traitement d'une neuropathie autonome diabétique
WO2021150824A1 (fr) 2020-01-22 2021-07-29 Amgen Research (Munich) Gmbh Combinaisons de constructions d'anticorps et d'inhibiteurs du syndrome de libération de cytokine et leurs utilisations
TW202200615A (zh) 2020-03-12 2022-01-01 美商安進公司 用於治療和預防患者的crs之方法
KR20220155338A (ko) 2020-03-19 2022-11-22 암젠 인크 뮤신 17에 대한 항체 및 이의 용도
EP4129333A4 (fr) 2020-03-27 2024-06-12 PhotoQ3 Inc. Médicament pharmaceutique pour détruire des cellules tumorales
CN115379858A (zh) 2020-04-06 2022-11-22 光爱科技公司 用于杀死肿瘤细胞的医药品
JP2023106635A (ja) 2020-04-17 2023-08-02 中外製薬株式会社 二重特異性抗原結合分子ならびに、それに関連する組成物、組成物の製造のための使用、キット、および方法
JP2023523760A (ja) 2020-05-01 2023-06-07 ノバルティス アーゲー 免疫グロブリン変異体
JP2023523794A (ja) 2020-05-01 2023-06-07 ノバルティス アーゲー 人工操作免疫グロブリン
US20230192867A1 (en) 2020-05-15 2023-06-22 Bristol-Myers Squibb Company Antibodies to garp
CA3183756A1 (fr) 2020-05-19 2021-11-25 Amgen Inc. Constructions de liaison a mageb2
WO2021235537A1 (fr) 2020-05-22 2021-11-25 中外製薬株式会社 Anticorps pour neutraliser une substance ayant une activité de substitution de la fonction du facteur viii de coagulation (f.viii)
EP4157874A2 (fr) 2020-05-29 2023-04-05 Amgen Inc. Administration atténuant des effets indésirables d'une construction d'anticorps bispécifique de liaison à cd33 et cd3
EP4174071A1 (fr) 2020-06-24 2023-05-03 The University of Tokyo Colorant photosensibilisant
TW202216210A (zh) 2020-06-29 2022-05-01 丹麥商珍美寶股份有限公司 抗組織因子抗體-藥物共軛體類和彼等於治療癌症之用途
WO2022014703A1 (fr) 2020-07-17 2022-01-20 田辺三菱製薬株式会社 Agent pour prévenir ou traiter une maladie musculaire
WO2022025030A1 (fr) 2020-07-28 2022-02-03 中外製薬株式会社 Préparation de seringue pré-remplie dotée d'une aiguille, pourvue d'un protecteur d'aiguille et comprenant un nouvel anticorps modifié
AU2021317974A1 (en) 2020-07-31 2023-03-16 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical Composition comprising Cell Expressing Chimeric Receptor
JP2023534765A (ja) 2020-08-07 2023-08-10 フォーティス セラピューティクス,インク. 免疫複合体を標的とするcd46およびその使用方法
IL300764A (en) 2020-08-27 2023-04-01 Juntendo Educational Found Antibody and composition of calr-cd3 mutant anti-clotting drugs
JP2023540526A (ja) 2020-09-04 2023-09-25 ノヴァロック バイオセラピューティクス, リミテッド ネクチン-4抗体およびそれの使用
WO2022074206A1 (fr) 2020-10-08 2022-04-14 Affimed Gmbh Lieurs trispécifiques
WO2022096716A2 (fr) 2020-11-06 2022-05-12 Amgen Inc. Molécules bispécifiques multicibles de liaison à un antigène à sélectivité accrue
JP2023547499A (ja) 2020-11-06 2023-11-10 ノバルティス アーゲー 抗体Fc変異体
KR20230098335A (ko) 2020-11-06 2023-07-03 암젠 인크 클리핑 비율이 감소된 항원 결합 도메인
US20230406929A1 (en) 2020-11-06 2023-12-21 Amgen Inc. Polypeptide constructs binding to cd3
AU2021374036A1 (en) 2020-11-06 2023-06-08 Amgen Inc. Polypeptide constructs selectively binding to cldn6 and cd3
WO2022108931A2 (fr) 2020-11-17 2022-05-27 Seagen Inc. Méthodes de traitement du cancer au moyen d'une association de tucatinib et d'un anticorps anti-pd-1/anti-pd-l1
EP4259661A1 (fr) 2020-12-14 2023-10-18 Novartis AG Agents d'inversion de liaison pour anticorps anti-récepteur 1 du peptide natriurétique (npr1) et leurs utilisations
AR124914A1 (es) 2021-02-18 2023-05-17 Mitsubishi Tanabe Pharma Corp Nuevo anticuerpo anti-pad4
JP2024510588A (ja) 2021-03-12 2024-03-08 ヤンセン バイオテツク,インコーポレーテツド 抗il23特異的抗体による、tnf療法に対する不十分な応答を有する乾癬性関節炎患者を治療する方法
WO2022191306A1 (fr) 2021-03-12 2022-09-15 中外製薬株式会社 Composition pharmaceutique pour le traitement ou la prévention de la myasthénie grave
CA3212729A1 (fr) 2021-03-12 2022-09-15 Janssen Biotech, Inc. Methode sure et efficace de traitement de l'arthrite psoriasique au moyen d'un anticorps specifique anti-il23
AU2022246675A1 (en) 2021-04-02 2023-10-19 Amgen Inc. Mageb2 binding constructs
IL307672A (en) 2021-05-06 2023-12-01 Amgen Res Munich Gmbh CD20 and CD22 targeting antigen-binding molecules for use in proliferative diseases
EP4367137A1 (fr) 2021-07-09 2024-05-15 Janssen Biotech, Inc. Procédés de fabrication pour produire des compositions d'anticorps anti-tnf
IL309987A (en) 2021-07-09 2024-03-01 Janssen Biotech Inc Production methods for the production of anti-IL12/IL23 antibody compositions
KR20240034218A (ko) 2021-07-09 2024-03-13 얀센 바이오테크 인코포레이티드 항-tnf 항체 조성물을 생산하기 위한 제조 방법
AU2022320948A1 (en) 2021-07-30 2024-01-18 Affimed Gmbh Duplexbodies
CN117999098A (zh) 2021-09-24 2024-05-07 光爱科技公司 用于杀死肿瘤细胞的医药品
WO2023057871A1 (fr) 2021-10-04 2023-04-13 Novartis Ag Stabilisants tensioactifs
KR20240082388A (ko) 2021-10-08 2024-06-10 추가이 세이야쿠 가부시키가이샤 프리필드 시린지 제제의 조제 방법
IL312401A (en) 2021-10-29 2024-06-01 Janssen Biotech Inc Methods for treating Crohn's disease with a specific anti-IL23 antibody
IL312110A (en) 2021-10-29 2024-06-01 Seagen Inc Cancer treatment methods with a combination of anti-PD-1 antibody and antibody-CD30 conjugate
CA3233696A1 (fr) 2021-11-03 2023-05-11 Joachim Koch Liants de cd16a bispecifiques
WO2023079493A1 (fr) 2021-11-03 2023-05-11 Affimed Gmbh Liants de cd16a bispécifiques
CA3238377A1 (fr) 2021-11-15 2023-05-19 Janssen Biotech, Inc. Methodes de traitement de la maladie de crohn au moyen d'un anticorps specifique anti-il23
CA3239216A1 (fr) 2021-11-23 2023-06-01 Janssen Biotech, Inc. Methode de traitement de la rectocolite hemorragique avec un anticorps specifique anti-il23
US20230312703A1 (en) 2022-03-30 2023-10-05 Janssen Biotech, Inc. Method of Treating Psoriasis with IL-23 Specific Antibody
TW202400658A (zh) 2022-04-26 2024-01-01 瑞士商諾華公司 靶向il—13和il—18的多特異性抗體
TW202408583A (zh) 2022-05-06 2024-03-01 丹麥商珍美寶股份有限公司 使用抗組織因子抗體-藥物共軛體以治療癌症之方法
TW202346368A (zh) 2022-05-12 2023-12-01 德商安美基研究(慕尼黑)公司 具有增加的選擇性的多鏈多靶向性雙特異性抗原結合分子
WO2023223265A1 (fr) 2022-05-18 2023-11-23 Janssen Biotech, Inc. Méthode d'évaluation et de traitement de l'arthrite psoriasique avec un anticorps il23
WO2024013724A1 (fr) 2022-07-15 2024-01-18 Pheon Therapeutics Ltd Conjugués anticorps-médicament
WO2024059675A2 (fr) 2022-09-14 2024-03-21 Amgen Inc. Composition de stabilisation de molécule bispécifique
US20240199734A1 (en) 2022-11-22 2024-06-20 Janssen Biotech, Inc. Method of Treating Ulcerative Colitis with Anti-IL23 Specific Antibody
WO2024127366A1 (fr) 2022-12-16 2024-06-20 Pheon Therapeutics Ltd Anticorps dirigés contre la protéine 1 contenant le domaine cub (cdcp1) et leurs utilisations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990004036A1 (fr) * 1988-10-12 1990-04-19 Medical Research Council Production d'anticorps a partir d'animaux transgeniques
WO1992003918A1 (fr) * 1990-08-29 1992-03-19 Genpharm International, Inc. Animaux non humains transgeniques capables de produire des anticorps heterologues
WO1993012227A1 (fr) * 1991-12-17 1993-06-24 Genpharm International, Inc. Animaux transgeniques non humains capables de produire des anticorps heterologues

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991000906A1 (fr) * 1989-07-12 1991-01-24 Genetics Institute, Inc. Animaux chimeriques et transgeniques pouvant produire des anticorps humains
AU633698B2 (en) * 1990-01-12 1993-02-04 Amgen Fremont Inc. Generation of xenogeneic antibodies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990004036A1 (fr) * 1988-10-12 1990-04-19 Medical Research Council Production d'anticorps a partir d'animaux transgeniques
WO1992003918A1 (fr) * 1990-08-29 1992-03-19 Genpharm International, Inc. Animaux non humains transgeniques capables de produire des anticorps heterologues
WO1993012227A1 (fr) * 1991-12-17 1993-06-24 Genpharm International, Inc. Animaux transgeniques non humains capables de produire des anticorps heterologues

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
DURDIK ET AL: "Isotype switching by a microinjected mu immunoglobulin heavy chain gene in transgenic mice" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA,NATIONAL ACADEMY OF SCIENCE. WASHINGTON,US, vol. 86, April 1989 (1989-04), pages 2346-2350, XP002100492 ISSN: 0027-8424 *
KITAMURA ET AL: "A B cell-deficient mouse by targeted disruption of the membrane exon of the immununoglobulin chain gene" NATURE,GB,MACMILLAN JOURNALS LTD. LONDON, vol. 350, 4 April 1991 (1991-04-04), pages 423-426, XP002065596 ISSN: 0028-0836 *
LONBERG NILS ET AL: "A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins." JOURNAL OF CELLULAR BIOCHEMISTRY SUPPLEMENT, no. 17 PART B, 1993, page 204 XP000944314 Keystone Symposium on Molecular Aspects of B Lymphocyte Differentiation;Taos, New Mexico, USA; February 1-8, 1993 ISSN: 0733-1959 *
LONBERG NILS ET AL: "Antigen-specific human antibodies from mice comprising four distinct genetic modifications." NATURE (LONDON), vol. 368, no. 6474, 28 April 1994 (1994-04-28), pages 856-859, XP000941636 ISSN: 0028-0836 *
LONBERG NILS ET AL: "Human sequence antibodies from transgenic mice." JOURNAL OF CELLULAR BIOCHEMISTRY SUPPLEMENT, no. 18D, 1994, page 185 XP000944312 Keystone Symposium on Antibody Engineering: Research and Application of Genes Encoding Immunoglobulins;Lake Tahoe, California, USA; March 7-13, 1994 ISSN: 0733-1959 *
See also references of WO9425585A1 *
TAYLOR L D ET AL: "A TRANSGENIC MOUSE THAT EXPRESSES A DIVERSITY OF HUMAN SEQUENCE HEAVY AND LIGHT CHAIN IMMUNOGLOBINS" NUCLEIC ACIDS RESEARCH,GB,OXFORD UNIVERSITY PRESS, SURREY, vol. 20, no. 23, 11 December 1992 (1992-12-11), pages 6287-6295, XP002041128 ISSN: 0305-1048 *
TAYLOR LISA D ET AL: "Human immunoglobulin transgenes undergo rearrangement, somatic mutation and class switching in mice that lack endogenous IgM." INTERNATIONAL IMMUNOLOGY, vol. 6, no. 4, April 1994 (1994-04), pages 579-591, XP000944310 ISSN: 0953-8178 *
TUAILLON NADINE ET AL: "Human immunoglobulin heavy-chain minilocus recombination in transgenic mice: Gene-segment use in mu and gamma transcripts." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 90, no. 8, 1993, pages 3720-3724, XP000941639 1993 ISSN: 0027-8424 *

Also Published As

Publication number Publication date
CA2161351C (fr) 2010-12-21
EP0754225A4 (fr) 2001-01-31
JPH08509612A (ja) 1996-10-15
JP5550026B2 (ja) 2014-07-16
JP5099405B2 (ja) 2012-12-19
CA2161351A1 (fr) 1994-11-10
JP2012143252A (ja) 2012-08-02
JP2007054076A (ja) 2007-03-08
AU6819494A (en) 1994-11-21
WO1994025585A1 (fr) 1994-11-10

Similar Documents

Publication Publication Date Title
US5770429A (en) Transgenic non-human animals capable of producing heterologous antibodies
US5625126A (en) Transgenic non-human animals for producing heterologous antibodies
CA2161351C (fr) Animaux transgeniques, pouvant produire des anticorps heterologues
US5814318A (en) Transgenic non-human animals for producing heterologous antibodies
US7084260B1 (en) High affinity human antibodies and human antibodies against human antigens
US8293480B2 (en) Transgenic non-human animals for producing chimeric antibodies
AU747370B2 (en) Transgenic non-human animals capable of producing heterologous antibo dies
US5661016A (en) Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5789650A (en) Transgenic non-human animals for producing heterologous antibodies
US5545806A (en) Ransgenic non-human animals for producing heterologous antibodies
WO1997013852A9 (fr) Animaux non humains transgeniques pouvant produire des anticorps heterologues
WO1998024884A9 (fr) Animaux transgeniques non humains capables de produire des anticorps heterologues
AU3328493A (en) Transgenic non-human animals capable of producing heterologous antibodies
WO1999045962A1 (fr) Animaux transgeniques capables de fabriquer des anticorps heterologues
EP1288229A2 (fr) Animaux transgéniques non humains, capables de fabriquer des anticorps hétérologues
AU2003204055B2 (en) Transgenic non-human animals capable of producing heterologous antibodies
AU720612B2 (en) Transgenic non-human animals capable of producing heterologous antibodies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB LI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 12N 15/13 A, 7A 01K 67/027 B, 7A 61K 39/00 B

A4 Supplementary search report drawn up and despatched

Effective date: 20001218

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB LI

17Q First examination report despatched

Effective date: 20020919

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040609