US20130156849A1 - Modified nucleoside, nucleotide, and nucleic acid compositions - Google Patents
Modified nucleoside, nucleotide, and nucleic acid compositions Download PDFInfo
- Publication number
- US20130156849A1 US20130156849A1 US13/714,458 US201213714458A US2013156849A1 US 20130156849 A1 US20130156849 A1 US 20130156849A1 US 201213714458 A US201213714458 A US 201213714458A US 2013156849 A1 US2013156849 A1 US 2013156849A1
- Authority
- US
- United States
- Prior art keywords
- optionally substituted
- modified
- mrna
- lipid
- nucleic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 *C1(*)C(*)(*)[C@@]([5*])(CP(=C)(C)C)C(CCC)=[U][C@@]1([4*])B.*C1(*)C(*)(*)[C@@]([5*])(CP(=C)(C)C)[C@@]([3*])(CCC)[U](C)[C@@]1([4*])B Chemical compound *C1(*)C(*)(*)[C@@]([5*])(CP(=C)(C)C)C(CCC)=[U][C@@]1([4*])B.*C1(*)C(*)(*)[C@@]([5*])(CP(=C)(C)C)[C@@]([3*])(CCC)[U](C)[C@@]1([4*])B 0.000 description 49
- IERHLVCPSMICTF-UHFFFAOYSA-L NC1=NC(=O)N(C2OC(COP(=O)([O-])[O-])C(O)C2O)C=C1 Chemical compound NC1=NC(=O)N(C2OC(COP(=O)([O-])[O-])C(O)C2O)C=C1 IERHLVCPSMICTF-UHFFFAOYSA-L 0.000 description 3
- UDMBCSSLTHHNCD-UHFFFAOYSA-L NC1=NC=NC2=C1N=CN2C1OC(COP(=O)([O-])[O-])C(O)C1O Chemical compound NC1=NC=NC2=C1N=CN2C1OC(COP(=O)([O-])[O-])C(O)C1O UDMBCSSLTHHNCD-UHFFFAOYSA-L 0.000 description 3
- RQFCJASXJCIDSX-UHFFFAOYSA-L NC1=Nc2n(C3OC(COP(=O)([O-])[O-])C(O)C3O)C=NC=2C(=O)N1 Chemical compound NC1=Nc2n(C3OC(COP(=O)([O-])[O-])C(O)C3O)C=NC=2C(=O)N1 RQFCJASXJCIDSX-UHFFFAOYSA-L 0.000 description 2
- DJJCXFVJDGTHFX-UHFFFAOYSA-L O=C1C=CN(C2OC(COP(=O)([O-])[O-])C(O)C2O)C(=O)N1 Chemical compound O=C1C=CN(C2OC(COP(=O)([O-])[O-])C(O)C2O)C(=O)N1 DJJCXFVJDGTHFX-UHFFFAOYSA-L 0.000 description 2
- VGIWVGUVEKXPIS-VAJVWOLFSA-J B[C@@H]1O[C@H](CO)[C@H](O)C1O.B[C@@H]1O[C@H](COP(=O)([O-])O)[C@H](O)C1O.B[C@@H]1O[C@H](COP(=O)([O-])O)[C@H](O)C1O.O=P(=O)P(=O)([O-])[O-].[O-][O-] Chemical compound B[C@@H]1O[C@H](CO)[C@H](O)C1O.B[C@@H]1O[C@H](COP(=O)([O-])O)[C@H](O)C1O.B[C@@H]1O[C@H](COP(=O)([O-])O)[C@H](O)C1O.O=P(=O)P(=O)([O-])[O-].[O-][O-] VGIWVGUVEKXPIS-VAJVWOLFSA-J 0.000 description 1
- QFMPJGCUGRMKHD-NTGFFJAUSA-N B[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1C.B[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1C.B[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1C.B[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1OC.B[C@@H]1O[C@H](COP(B)(=O)OP(=O)(O)O)[C@@H](O)[C@H]1C.B[C@@H]1O[C@H](COP(C)(=O)OP(=O)(O)O)[C@@H](O)[C@H]1C.B[C@@H]1O[C@H](COP(O)(=[Se])OP(=O)(O)O)[C@@H](O)[C@H]1C Chemical compound B[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1C.B[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1C.B[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1C.B[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1OC.B[C@@H]1O[C@H](COP(B)(=O)OP(=O)(O)O)[C@@H](O)[C@H]1C.B[C@@H]1O[C@H](COP(C)(=O)OP(=O)(O)O)[C@@H](O)[C@H]1C.B[C@@H]1O[C@H](COP(O)(=[Se])OP(=O)(O)O)[C@@H](O)[C@H]1C QFMPJGCUGRMKHD-NTGFFJAUSA-N 0.000 description 1
- LMSRJYIPVYXGSL-BXQGLMHYSA-N C.C=C1NC(=O)C=CN1[C@@H]1C[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.C=C1NC(=O)C=CN1[C@@H]1C[C@H](COP(=O)(O)O)[C@H]2OC(C)(C)OC21.[H]N(CCCOCCCC)C1=NC=NC2=C1N=CN2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O Chemical compound C.C=C1NC(=O)C=CN1[C@@H]1C[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.C=C1NC(=O)C=CN1[C@@H]1C[C@H](COP(=O)(O)O)[C@H]2OC(C)(C)OC21.[H]N(CCCOCCCC)C1=NC=NC2=C1N=CN2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O LMSRJYIPVYXGSL-BXQGLMHYSA-N 0.000 description 1
- AJQYDTSIILNZGH-DLIZXHARSA-N C.C=C1NC(=O)NC=C1[C@@H]1O[C@@]2(CCP(=C)(C)C)CCO[C@@H]1[C@@H]2O.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@@]1(C)O.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1OC.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1OC.C=C1NC(=O)NC=C1[C@@H]1O[C@](C)(CCP(=C)(C)C)[C@@H](O)[C@H]1O Chemical compound C.C=C1NC(=O)NC=C1[C@@H]1O[C@@]2(CCP(=C)(C)C)CCO[C@@H]1[C@@H]2O.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@@]1(C)O.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1OC.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1OC.C=C1NC(=O)NC=C1[C@@H]1O[C@](C)(CCP(=C)(C)C)[C@@H](O)[C@H]1O AJQYDTSIILNZGH-DLIZXHARSA-N 0.000 description 1
- PFTQNKUYDOHRLU-WIKFHGDQSA-N C.C=P(C)(C)CC[C@H]1O[C@@H](N2C(N)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)N(C)C3=O)[C@H](O)[C@@H]1O Chemical compound C.C=P(C)(C)CC[C@H]1O[C@@H](N2C(N)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)N(C)C3=O)[C@H](O)[C@@H]1O PFTQNKUYDOHRLU-WIKFHGDQSA-N 0.000 description 1
- JTTKLPQHWMULSD-MKEGKSPMSA-N C.CC1=NC2=C(C=CN2[C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)N1.CC1=NC2=C(N=CN2[C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(Cl)=N1 Chemical compound C.CC1=NC2=C(C=CN2[C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)N1.CC1=NC2=C(N=CN2[C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(Cl)=N1 JTTKLPQHWMULSD-MKEGKSPMSA-N 0.000 description 1
- BSDCUOGDCVCRMU-UHFFFAOYSA-N C/C1=N/N(C)/C2=N/C=N\C3=C2[N+]1=CN3C1OC(CO)C(O)C1O.C/C1=N/N(C)/C2=N/C=N\C3=C2[N+]1=CN3C1OC(CO[PH](=O)(=[O-])O[PH](=O)(=[O-])O[PH](=O)([O-])=[O-])C(O)C1O Chemical compound C/C1=N/N(C)/C2=N/C=N\C3=C2[N+]1=CN3C1OC(CO)C(O)C1O.C/C1=N/N(C)/C2=N/C=N\C3=C2[N+]1=CN3C1OC(CO[PH](=O)(=[O-])O[PH](=O)(=[O-])O[PH](=O)([O-])=[O-])C(O)C1O BSDCUOGDCVCRMU-UHFFFAOYSA-N 0.000 description 1
- UYKBJRDHXRXRNS-FLCCKLPLSA-O C/C1=N/N(C)C2=CC=NC3=C2[N+]1=CN3[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.C[N+]1=CN([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C2=C1C([O-])=CC=N2.C[N+]1=CN([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C2=C1C([S-])=CC=N2.NC1=NC=NC2=C1N=C1C(OP(=O)(O)O)[C@H]3O[C@H]([C@H](O)[C@@H]3O)N12.NC1=[N+]([O-])C=NC2=C1N=CN2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O Chemical compound C/C1=N/N(C)C2=CC=NC3=C2[N+]1=CN3[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.C[N+]1=CN([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C2=C1C([O-])=CC=N2.C[N+]1=CN([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C2=C1C([S-])=CC=N2.NC1=NC=NC2=C1N=C1C(OP(=O)(O)O)[C@H]3O[C@H]([C@H](O)[C@@H]3O)N12.NC1=[N+]([O-])C=NC2=C1N=CN2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O UYKBJRDHXRXRNS-FLCCKLPLSA-O 0.000 description 1
- IGYNPQFEQNBDFX-UHFFFAOYSA-N C/C1=N/N(C)C2=NC=NC3=C2\N1=C/N3C(C)(C)C.CC(C)(C)N1C=NC2=C1N=C[N+]([O-])=C2N Chemical compound C/C1=N/N(C)C2=NC=NC3=C2\N1=C/N3C(C)(C)C.CC(C)(C)N1C=NC2=C1N=C[N+]([O-])=C2N IGYNPQFEQNBDFX-UHFFFAOYSA-N 0.000 description 1
- NMOMNWQTNYKOQT-UEMNJUNVSA-N C1=CC2OC2C1.C1=CCC=C1.CC(=O)OC(C)=O.CC(=O)OO.CC(=O)O[C@H]1C=C[C@@H](C)C1.CC(=O)O[C@H]1C=C[C@@H](O)C1.CC1(C)OC2C(O1)[C@H](N1C=CC(=O)NC1=O)C[C@@H]2O.CC1(C)OC2C(O1)[C@H](N1C=CC(=O)NC1=O)C[C@@H]2OCP(=O)(O)O.CC1(C)OC2C(O1)[C@H](N1C=CC(=O)NC1=O)C[C@@H]2OCP(=O)(O)OP(=O)(O)OP(=O)(O)O.O=C1C=CN([C@H]2C=C[C@@H](O)C2)C(=O)N1 Chemical compound C1=CC2OC2C1.C1=CCC=C1.CC(=O)OC(C)=O.CC(=O)OO.CC(=O)O[C@H]1C=C[C@@H](C)C1.CC(=O)O[C@H]1C=C[C@@H](O)C1.CC1(C)OC2C(O1)[C@H](N1C=CC(=O)NC1=O)C[C@@H]2O.CC1(C)OC2C(O1)[C@H](N1C=CC(=O)NC1=O)C[C@@H]2OCP(=O)(O)O.CC1(C)OC2C(O1)[C@H](N1C=CC(=O)NC1=O)C[C@@H]2OCP(=O)(O)OP(=O)(O)OP(=O)(O)O.O=C1C=CN([C@H]2C=C[C@@H](O)C2)C(=O)N1 NMOMNWQTNYKOQT-UEMNJUNVSA-N 0.000 description 1
- RVDSVNTZYDPBGL-UHFFFAOYSA-N C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C=COC.CC(=O)CC#CC1=CN(C2OC(CO)C(O)C2O)C(=O)CC1N.NC1CC(=O)N(C2OC(CO)C(O)C2O)C=C1I.O=C1CC2CC=CC2=CN1C1OC(CO)C(O)C1O.O=C1NC2CC=CC2=CN1C1OC(COP(=O)(O)OP(=O)(O)OP(=O)(O)O)C(O)C1O.[Pd] Chemical compound C1=CC=C(P(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.C=COC.CC(=O)CC#CC1=CN(C2OC(CO)C(O)C2O)C(=O)CC1N.NC1CC(=O)N(C2OC(CO)C(O)C2O)C=C1I.O=C1CC2CC=CC2=CN1C1OC(CO)C(O)C1O.O=C1NC2CC=CC2=CN1C1OC(COP(=O)(O)OP(=O)(O)OP(=O)(O)O)C(O)C1O.[Pd] RVDSVNTZYDPBGL-UHFFFAOYSA-N 0.000 description 1
- CXDCUCRXFWZUCW-UHFFFAOYSA-N C1=CC=C2CC=CC2=C1.CC(C)C Chemical compound C1=CC=C2CC=CC2=C1.CC(C)C CXDCUCRXFWZUCW-UHFFFAOYSA-N 0.000 description 1
- ZIVIJXULQMCNRC-GJXCLPMVSA-N C=C1C=C(N)C(Br)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C(C#CC)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C(CCO)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=CC(=N)N=C2NCCCCC(C)C(=O)O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=CC(=N)N=C2NCCCCC(C)C(=O)OC(=O)OCC2C3=C(C=CC=C3)C3=C2C=CC=C3)[C@H](O)[C@@H]1O Chemical compound C=C1C=C(N)C(Br)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C(C#CC)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C(CCO)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=CC(=N)N=C2NCCCCC(C)C(=O)O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=CC(=N)N=C2NCCCCC(C)C(=O)OC(=O)OCC2C3=C(C=CC=C3)C3=C2C=CC=C3)[C@H](O)[C@@H]1O ZIVIJXULQMCNRC-GJXCLPMVSA-N 0.000 description 1
- RDPVMWPEUOJEFH-YOLKOZNKSA-N C=C1N=C(C)C(C)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C(CO)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C(CO[Si](C)(C)C(C)(C)C)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@@]1(C)O.C=C1N=C(N)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@]1(C)O.C=C1N=C(NC(C)=O)C(CC)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O Chemical compound C=C1N=C(C)C(C)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C(CO)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C(CO[Si](C)(C)C(C)(C)C)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@@]1(C)O.C=C1N=C(N)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@]1(C)O.C=C1N=C(NC(C)=O)C(CC)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O RDPVMWPEUOJEFH-YOLKOZNKSA-N 0.000 description 1
- DRYHPTCCFXNCOJ-AKHGYTOYSA-N C=C1N=C(N)C(Br)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C(OC)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C(OC)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1OC.C=C1N=C(NC(C)=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(NC(C)=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1OC.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(C)C(=S)N=C2C)[C@H](O)[C@@H]1O Chemical compound C=C1N=C(N)C(Br)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C(OC)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C(OC)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1OC.C=C1N=C(NC(C)=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(NC(C)=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1OC.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(C)C(=S)N=C2C)[C@H](O)[C@@H]1O DRYHPTCCFXNCOJ-AKHGYTOYSA-N 0.000 description 1
- QAUIIYSKDCDOLV-IXYHNAAKSA-N C=C1N=C(N)C(C)=CN1[C@@H]1O[C@@]2(CCP(=C)(C)C)CO[C@@H]1[C@@H]2O.C=C1N=C(N)C=CN1[C@@H]1C=C(CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C=CN1[C@@H]1O[C@@]2(CCP(=C)(C)C)CO[C@@H]1[C@@H]2O.C=C1N=C(N)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1Br.C=C1N=C(N)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1C.C=C1N=C(N)C=CN1[C@@H]1O[C@](C)(CCP(=C)(C)C)[C@@H](O)[C@H]1O Chemical compound C=C1N=C(N)C(C)=CN1[C@@H]1O[C@@]2(CCP(=C)(C)C)CO[C@@H]1[C@@H]2O.C=C1N=C(N)C=CN1[C@@H]1C=C(CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C=CN1[C@@H]1O[C@@]2(CCP(=C)(C)C)CO[C@@H]1[C@@H]2O.C=C1N=C(N)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1Br.C=C1N=C(N)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1C.C=C1N=C(N)C=CN1[C@@H]1O[C@](C)(CCP(=C)(C)C)[C@@H](O)[C@H]1O QAUIIYSKDCDOLV-IXYHNAAKSA-N 0.000 description 1
- GRZGUSWCEYVEEF-UHQPLYKSSA-N C=C1N=C(N)C(C)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C(I)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C=NN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C2NC(C)=CC2=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O Chemical compound C=C1N=C(N)C(C)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C(I)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)C=NN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C(N)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1N=C2NC(C)=CC2=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O GRZGUSWCEYVEEF-UHQPLYKSSA-N 0.000 description 1
- OWXCEKKIVXNWLC-TVRHYEGNSA-N C=C1N=C(NC(C)=O)C(CC)=CN1[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.CC(C)(C)[Si](C)(C)OCC1=CN([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)N=C1N.CC1=CN([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)N=C1N.NC1=NC(=O)N([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C=C1I Chemical compound C=C1N=C(NC(C)=O)C(CC)=CN1[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.CC(C)(C)[Si](C)(C)OCC1=CN([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)N=C1N.CC1=CN([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)N=C1N.NC1=NC(=O)N([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C=C1I OWXCEKKIVXNWLC-TVRHYEGNSA-N 0.000 description 1
- BDUNJMNOHBWANN-PRULPYPASA-N C=C1N=C2NC(C)=CC2=CN1[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O Chemical compound C=C1N=C2NC(C)=CC2=CN1[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O BDUNJMNOHBWANN-PRULPYPASA-N 0.000 description 1
- FEAHJCFLIKGZBZ-JABWHSGGSA-N C=C1NC(=O)C(/C=C/CN)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)C(I)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)C(O)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)CCN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O Chemical compound C=C1NC(=O)C(/C=C/CN)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)C(I)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)C(O)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)CCN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O FEAHJCFLIKGZBZ-JABWHSGGSA-N 0.000 description 1
- JSLYVJWGQRVKKY-JAWZEPJBSA-N C=C1NC(=O)C(C#CC)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)C(CO)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)N(C)C=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=S)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O Chemical compound C=C1NC(=O)C(C#CC)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)C(CO)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)N(C)C=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=S)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O JSLYVJWGQRVKKY-JAWZEPJBSA-N 0.000 description 1
- IJWALTQHABDFDM-USFSRKDSSA-N C=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1OC.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(C(=O)CC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(C(=O)COC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=CC(=O)N(C)C2=O)[C@H](OC)[C@@H]1O Chemical compound C=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1OC.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(C(=O)CC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(C(=O)COC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=CC(=O)N(C)C2=O)[C@H](OC)[C@@H]1O IJWALTQHABDFDM-USFSRKDSSA-N 0.000 description 1
- LMIBPJACCQDNQP-QPBABPNBSA-N C=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CNC(=O)N(C)C2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(OCC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O Chemical compound C=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CNC(=O)N(C)C2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(OCC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O LMIBPJACCQDNQP-QPBABPNBSA-N 0.000 description 1
- LFYQSKKDKNRZIR-RODFCKQHSA-N C=C1NC(=O)C(C)CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)C=NN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)N(C)C=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=S)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O Chemical compound C=C1NC(=O)C(C)CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)C=NN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)N(C)C=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=C1NC(=S)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O LFYQSKKDKNRZIR-RODFCKQHSA-N 0.000 description 1
- WIJNJRMETSPGJT-QSZDAZAZSA-N C=C1NC(=O)C(I)=CN1[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.CC1=CN([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)NC1=O Chemical compound C=C1NC(=O)C(I)=CN1[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.CC1=CN([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)NC1=O WIJNJRMETSPGJT-QSZDAZAZSA-N 0.000 description 1
- CJCCKUFHCUCQJF-SKEAJCSDSA-N C=C1NC(=O)C=CN1[C@@H]1O[C@@]2(CCP(=C)(C)C)CCO[C@@H]1[C@@H]2O.C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1Cl.C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1I.C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@]1(C)O.C=C1NC(=O)C=CN1[C@@H]1O[C@](C)(CCP(=C)(C)C)[C@@H](O)[C@H]1O Chemical compound C=C1NC(=O)C=CN1[C@@H]1O[C@@]2(CCP(=C)(C)C)CCO[C@@H]1[C@@H]2O.C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1Cl.C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1I.C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@]1(C)O.C=C1NC(=O)C=CN1[C@@H]1O[C@](C)(CCP(=C)(C)C)[C@@H](O)[C@H]1O CJCCKUFHCUCQJF-SKEAJCSDSA-N 0.000 description 1
- CCQGPEPGQDQQCN-MCSYBPSWSA-N C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@@]1(C)O.C=CCC1=CN([C@@H]2O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]2O)C(=O)NC1=O.C=CCCC1=CN([C@@H]2O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]2O)C(=O)NC1=O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CCC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CCCC)C(=O)NC2=O)[C@H](O)[C@@H]1O Chemical compound C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@@]1(C)O.C=CCC1=CN([C@@H]2O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]2O)C(=O)NC1=O.C=CCCC1=CN([C@@H]2O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]2O)C(=O)NC1=O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CCC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CCCC)C(=O)NC2=O)[C@H](O)[C@@H]1O CCQGPEPGQDQQCN-MCSYBPSWSA-N 0.000 description 1
- FMAGKJGSBSNIOT-YNNPUDDMSA-N C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1Br.C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1C.C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1I.C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1OC.C=P(C)(C)CC[C@H]1O[C@@H](N2C=CC(=O)N(C)C2=O)[C@H](O)[C@@H]1O Chemical compound C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1Br.C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1C.C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1I.C=C1NC(=O)C=CN1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1OC.C=P(C)(C)CC[C@H]1O[C@@H](N2C=CC(=O)N(C)C2=O)[C@H](O)[C@@H]1O FMAGKJGSBSNIOT-YNNPUDDMSA-N 0.000 description 1
- GYEOKYSFJJEGNW-VQFJZQOSSA-N C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1C.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1Cl.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1F.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1I.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1OC Chemical compound C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1C.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1Cl.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1F.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1I.C=C1NC(=O)NC=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1OC GYEOKYSFJJEGNW-VQFJZQOSSA-N 0.000 description 1
- AZNOEJDUMODGTN-IUFRWEHQSA-N C=C1NC(=S)N(C)C=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(CNCCC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(CNCCC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCCC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCCC)C(=O)NC2=O)[C@H](O)[C@@H]1O Chemical compound C=C1NC(=S)N(C)C=C1[C@@H]1O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(CNCCC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(CNCCC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCCC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCCC)C(=O)NC2=O)[C@H](O)[C@@H]1O AZNOEJDUMODGTN-IUFRWEHQSA-N 0.000 description 1
- TXLSFFHEODOVOR-XGJYKREASA-N C=CC1=CN([C@@H]2O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]2O)C(=C)NC1=O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(/C=C/C(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(/C=C/CC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCCC)C(=O)NC2=S)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCCC)C(=O)NC2=S)[C@H](O)[C@@H]1O Chemical compound C=CC1=CN([C@@H]2O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]2O)C(=C)NC1=O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(/C=C/C(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(/C=C/CC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCCC)C(=O)NC2=S)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCCC)C(=O)NC2=S)[C@H](O)[C@@H]1O TXLSFFHEODOVOR-XGJYKREASA-N 0.000 description 1
- JZAUWHVXJBOXGU-LICJNBMTSA-N C=CCCN1C=C([C@@H]2O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]2O)C(=O)NC1=O.C=CCN1C=C([C@@H]2O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]2O)C(=O)NC1=O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(CCC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CCC)C(=O)NC2=O)[C@H](O)[C@@H]1O Chemical compound C=CCCN1C=C([C@@H]2O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]2O)C(=O)NC1=O.C=CCN1C=C([C@@H]2O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]2O)C(=O)NC1=O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(CCC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CCC)C(=O)NC2=O)[C@H](O)[C@@H]1O JZAUWHVXJBOXGU-LICJNBMTSA-N 0.000 description 1
- NZAWMAORDPTHPW-XVQZVOHPSA-N C=CN1C=C([C@@H]2O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]2O)C(=O)NC1=O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(C)C(=O)N(C)C2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(CC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(CCC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(CCCC)C(=O)NC2=O)[C@H](O)[C@@H]1O Chemical compound C=CN1C=C([C@@H]2O[C@H](CCP(=C)(C)C)[C@@H](O)[C@H]2O)C(=O)NC1=O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(C)C(=O)N(C)C2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(CC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(CCC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(CCCC)C(=O)NC2=O)[C@H](O)[C@@H]1O NZAWMAORDPTHPW-XVQZVOHPSA-N 0.000 description 1
- AVRHUJHKVIBSTD-KRSRFJKOSA-N C=P(C)(C)CC[C@@]1(C)O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@@](C)(O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@H](Cl)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@H](F)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@](C)(O)[C@@H]1O.C=P(C)(C)CC[C@]12CO[C@H]([C@@H]1O)[C@H](N1C=NC3=C1N=C(C)NC3=O)O2 Chemical compound C=P(C)(C)CC[C@@]1(C)O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@@](C)(O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@H](Cl)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@H](F)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@](C)(O)[C@@H]1O.C=P(C)(C)CC[C@]12CO[C@H]([C@@H]1O)[C@H](N1C=NC3=C1N=C(C)NC3=O)O2 AVRHUJHKVIBSTD-KRSRFJKOSA-N 0.000 description 1
- DJXNJCVDZRPEMH-TWQAQSBDSA-N C=P(C)(C)CC[C@@]1(C)O[C@@H](N2C=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@@](C)(O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@H](Cl)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@H](F)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@](C)(O)[C@@H]1O.C=P(C)(C)CC[C@]12CO[C@H]([C@@H]1O)[C@H](N1C=NC3=C1N=CC=C3N)O2 Chemical compound C=P(C)(C)CC[C@@]1(C)O[C@@H](N2C=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@@](C)(O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@H](Cl)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@H](F)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@](C)(O)[C@@H]1O.C=P(C)(C)CC[C@]12CO[C@H]([C@@H]1O)[C@H](N1C=NC3=C1N=CC=C3N)O2 DJXNJCVDZRPEMH-TWQAQSBDSA-N 0.000 description 1
- AONOIZFJNLMQNE-HXFWVBAOSA-N C=P(C)(C)CC[C@H]1O/C(=N2/C=NC3=C2N=C(OC)N=C3NC/C=C(/C)CC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)N=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)N=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(CCCC)N=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(SC)N=C3NC/C=C(/C)CC)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O/C(=N2/C=NC3=C2N=C(OC)N=C3NC/C=C(/C)CC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)N=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)N=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(CCCC)N=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(SC)N=C3NC/C=C(/C)CC)[C@H](O)[C@@H]1O AONOIZFJNLMQNE-HXFWVBAOSA-N 0.000 description 1
- GFVFLPFRRVBBKH-YXWFNMJDSA-N C=P(C)(C)CC[C@H]1O[C@@H](C)C(Br)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C)C(Cl)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C)C(F)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C)C(I)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](C)C(Br)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C)C(Cl)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C)C(F)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C)C(I)[C@@H]1O GFVFLPFRRVBBKH-YXWFNMJDSA-N 0.000 description 1
- FNVMFZJPHKZGEK-QHKUGZRKSA-N C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(C)C(=O)N(CCC(C)C(=O)O)C2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(C)C(=O)N(CCC(C)C(=O)OC(=O)OCC3C4=C(C=CC=C4)C4=C3C=CC=C4)C2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=O)[C@H](OC)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNC)C(=O)NC2=[Se])[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(C)C(=O)N(CCC(C)C(=O)O)C2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](C2=CN(C)C(=O)N(CCC(C)C(=O)OC(=O)OCC3C4=C(C=CC=C4)C4=C3C=CC=C4)C2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=O)[C@H](OC)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNC)C(=O)NC2=[Se])[C@H](O)[C@@H]1O FNVMFZJPHKZGEK-QHKUGZRKSA-N 0.000 description 1
- DBIADCIMXWEAAQ-VYPBZWEZSA-N C=P(C)(C)CC[C@H]1O[C@@H](C2C(=S)NC(=O)C(CNCC=C(C)C)=C2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC=C(C)C)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC=C(C)C)C(=O)NC2=O)[C@H](OC)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](C2C(=S)NC(=O)C(CNCC=C(C)C)=C2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC=C(C)C)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC=C(C)C)C(=O)NC2=O)[C@H](OC)[C@@H]1O DBIADCIMXWEAAQ-VYPBZWEZSA-N 0.000 description 1
- MCYSVOXMIJYWBG-OBMYHTINSA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C(Br)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(CC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(CCC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(CCCC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(Cl)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(F)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C(Br)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(CC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(CCC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(CCCC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(Cl)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(F)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O MCYSVOXMIJYWBG-OBMYHTINSA-N 0.000 description 1
- SHDYAKCPUSHEAC-GBJGKYQJSA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C(Br)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(Cl)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(F)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(I)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(S)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C(Br)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(Cl)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(F)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(I)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(S)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O SHDYAKCPUSHEAC-GBJGKYQJSA-N 0.000 description 1
- SXHSVQUKTRZQOX-PONYEIMGSA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C(C)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)N=C3OC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)N=C3OCC)[C@H](Cl)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(N)N=C3OCCC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(N)N=C3OCCCC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(NCCCC)NC3=O)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C(C)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)N=C3OC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)N=C3OCC)[C@H](Cl)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(N)N=C3OCCC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(N)N=C3OCCCC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(NCCCC)NC3=O)[C@H](O)[C@@H]1O SXHSVQUKTRZQOX-PONYEIMGSA-N 0.000 description 1
- HFCGJBLEFBWNDR-KBYVTDEWSA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C(C)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(CC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(CCC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(CCCC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CN=C3NC/C=C(/C)CC)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C(C)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(CC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(CCC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(CCCC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CN=C3NC/C=C(/C)CC)[C@H](O)[C@@H]1O HFCGJBLEFBWNDR-KBYVTDEWSA-N 0.000 description 1
- LSQCLHLVNNOJAZ-CFWFBKOBSA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C(I)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(S)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCCC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCCCC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C(I)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(S)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCCC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCCCC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O LSQCLHLVNNOJAZ-CFWFBKOBSA-N 0.000 description 1
- DTTKEWFOELDDHV-ARDSSKPFSA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C(N)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCCC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCCCC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCCCCC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C(N)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCCC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCCCC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCCCCC)=NC3=C2N=CC=C3N)[C@H](O)[C@@H]1O DTTKEWFOELDDHV-ARDSSKPFSA-N 0.000 description 1
- FNUFENKSJCDHKK-SFNMNLDSSA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCCCCC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=CC3=C2N=C(C)NC3=S)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=S)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(N(C)C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(NC)NC3=O)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C(SCCCCC)=NC3=C2N=C(C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=CC3=C2N=C(C)NC3=S)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=S)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(N(C)C)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(NC)NC3=O)[C@H](O)[C@@H]1O FNUFENKSJCDHKK-SFNMNLDSSA-N 0.000 description 1
- HZGWTNKXTCJUIB-JBQHMGRUSA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(C(O)C(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(C(O)C(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(C(OC(=O)C(F)(F)F)C(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(C(OC(=O)OCC3C4=C(C=CC=C4)C4=C3C=CC=C4)C(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(OCC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(C(O)C(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(C(O)C(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(C(OC(=O)C(F)(F)F)C(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(C(OC(=O)OCC3C4=C(C=CC=C4)C4=C3C=CC=C4)C(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(OCC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O HZGWTNKXTCJUIB-JBQHMGRUSA-N 0.000 description 1
- HHCXJLLXCRRYDY-OQLHVJQRSA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=S)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNC)C(=O)NC2=S)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC(C)=O)C(=O)NC2=S)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNC)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNC)C(=O)NC2=S)[C@H](O)[C@@H]1O HHCXJLLXCRRYDY-OQLHVJQRSA-N 0.000 description 1
- INWMAIVAGKJVEY-XKAYUZGJSA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC)C(=O)NC2=S)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CN(C)C(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNC(C)=O)C(=O)NC2=S)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNC)C(=O)NC2=O)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CC)C(=O)NC2=S)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CN(C)C(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNC(C)=O)C(=O)NC2=S)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNC)C(=O)NC2=O)[C@H](O)[C@@H]1O INWMAIVAGKJVEY-XKAYUZGJSA-N 0.000 description 1
- XXJBAQIKIXLYLZ-QVDWCOKWSA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CN(CC(=O)OC(C)(C)C)C(=O)C(F)(F)F)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC(C)=O)C(=O)NC2=O)[C@H](OC)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC(C)=O)C(=O)NC2=S)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CN(CC(=O)OC(C)(C)C)C(=O)C(F)(F)F)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC(C)=O)C(=O)NC2=O)[C@H](OC)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC(C)=O)C(=O)NC2=S)[C@H](O)[C@@H]1O XXJBAQIKIXLYLZ-QVDWCOKWSA-N 0.000 description 1
- YXKUZWKRVOTJBT-XFMZFGJXSA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC(C)=O)C(=O)NC2=O)[C@H](OC)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC(C)=O)C(=O)NC2=S)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(OCC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=CC(=O)N(CCC(C)C(=O)O)C2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=CC(=O)N(CCC(C)C(=O)OC(=O)OCC3C4=C(C=CC=C4)C4=C3C=CC=C4)C2=O)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC(C)=O)C(=O)NC2=O)[C@H](OC)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(CNCC(C)=O)C(=O)NC2=S)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=C(OCC(C)=O)C(=O)NC2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=CC(=O)N(CCC(C)C(=O)O)C2=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=CC(=O)N(CCC(C)C(=O)OC(=O)OCC3C4=C(C=CC=C4)C4=C3C=CC=C4)C2=O)[C@H](O)[C@@H]1O YXKUZWKRVOTJBT-XFMZFGJXSA-N 0.000 description 1
- IWQMCTLMWOWSTM-PPLGOIFRSA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)N=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3NC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CN=C3NCC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CN=C3NCCC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CN=C3NCCCC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CN=C3NCCCOCCOCCOCCOCCOCCCN)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)N=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3NC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CN=C3NCC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CN=C3NCCC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CN=C3NCCCC)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CN=C3NCCCOCCOCCOCCOCCOCCCN)[C@H](O)[C@@H]1O IWQMCTLMWOWSTM-PPLGOIFRSA-N 0.000 description 1
- PVXGIGAQDVMTKH-WJIQZSALSA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@H](Br)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@H](C)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@H](Cl)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@H](OC)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(NCC)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(NCCC)NC3=O)[C@H](O)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@H](Br)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@H](C)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@H](Cl)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(C)NC3=O)[C@H](OC)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(NCC)NC3=O)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(NCCC)NC3=O)[C@H](O)[C@@H]1O PVXGIGAQDVMTKH-WJIQZSALSA-N 0.000 description 1
- MPDFPHCNDFOTGN-RMIYNLSISA-N C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(CC)N=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(CCC)N=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@H](Br)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@H](C)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@H](I)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@H](OC)[C@@H]1O Chemical compound C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(CC)N=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=C(CCC)N=C3N)[C@H](O)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@H](Br)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@H](C)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@H](I)[C@@H]1O.C=P(C)(C)CC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3N)[C@H](OC)[C@@H]1O MPDFPHCNDFOTGN-RMIYNLSISA-N 0.000 description 1
- JLZRWFLZIKNRAW-UHFFFAOYSA-J CC(=O)OC(C)=O.CC1(C)OC2C3OC(C2O1)N1C(=NC2=C1/N=C\N=C/2N)C3O.CC1C2=NC3=C(/N=C\N=C/3N)N2C2OC1C(O)C2O.CC1C2=NC3=C(/N=C\N=C/3N)N2C2OC1C1OC(C)(C)OC12.COC1C2OC(C1OC(C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1)N1C(=NC3=C1/N=C\N=C/3N)C2C.ClC(C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1.N/C1=N/C=N\C2=C1N=C1C(O)C3OC(C(O)C3O)N12.N/C1=N/C=N\C2=C1N=C1C(OP(=O)([O-])OP(=O)([O-])OP(=O)([O-])[O-])C3OC(C(O)C3O)N12 Chemical compound CC(=O)OC(C)=O.CC1(C)OC2C3OC(C2O1)N1C(=NC2=C1/N=C\N=C/2N)C3O.CC1C2=NC3=C(/N=C\N=C/3N)N2C2OC1C(O)C2O.CC1C2=NC3=C(/N=C\N=C/3N)N2C2OC1C1OC(C)(C)OC12.COC1C2OC(C1OC(C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1)N1C(=NC3=C1/N=C\N=C/3N)C2C.ClC(C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1.N/C1=N/C=N\C2=C1N=C1C(O)C3OC(C(O)C3O)N12.N/C1=N/C=N\C2=C1N=C1C(OP(=O)([O-])OP(=O)([O-])OP(=O)([O-])[O-])C3OC(C(O)C3O)N12 JLZRWFLZIKNRAW-UHFFFAOYSA-J 0.000 description 1
- SXEABMNIVLZDQW-PYSQXLBDSA-N CC1=NC2=C(CC(=O)N2[C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)N1.CC1=NC2=C(N=CN2[C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)N1C.COC1=NC(C)=NC2=C1N=CN2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.NC1=CC=NC2=C1C=CN2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.O=C1CC=NC2=C1N=CN2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O Chemical compound CC1=NC2=C(CC(=O)N2[C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)N1.CC1=NC2=C(N=CN2[C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)N1C.COC1=NC(C)=NC2=C1N=CN2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.NC1=CC=NC2=C1C=CN2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.O=C1CC=NC2=C1N=CN2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O SXEABMNIVLZDQW-PYSQXLBDSA-N 0.000 description 1
- WIAVSEIBTAKMPI-PACGIKPZSA-N CCCCCC/C=C\COC(=O)CCCCCCCC(CCCCCCCC(=O)OC/C=C\CCCCCC)OC(=O)CCCN(C)C.CCCCCC/C=C\COC(=O)CCCCCCOCCC(CN(C)C)OCCCCCCC(=O)OC/C=C\CCCCCC.CCCCCCCC/C=C\CCCCCCCCC(CCCCCCCC/C=C\CCCCCCCC(=O)OC)OC(=O)CCCN(C)C.CCCCCCCC/C=C\CCCCCCCCOCCC(CN(C)C)OCCCCCCCC/C=C\CCCCCCCC(=O)OC Chemical compound CCCCCC/C=C\COC(=O)CCCCCCCC(CCCCCCCC(=O)OC/C=C\CCCCCC)OC(=O)CCCN(C)C.CCCCCC/C=C\COC(=O)CCCCCCOCCC(CN(C)C)OCCCCCCC(=O)OC/C=C\CCCCCC.CCCCCCCC/C=C\CCCCCCCCC(CCCCCCCC/C=C\CCCCCCCC(=O)OC)OC(=O)CCCN(C)C.CCCCCCCC/C=C\CCCCCCCCOCCC(CN(C)C)OCCCCCCCC/C=C\CCCCCCCC(=O)OC WIAVSEIBTAKMPI-PACGIKPZSA-N 0.000 description 1
- BXFCLLSUPDHICK-UHFFFAOYSA-L CCCCCCCCCCC(C(C1O)OC(COP([O-])([O-])=O)C1O)(C(C)C=C1)C(O)=NC1=O Chemical compound CCCCCCCCCCC(C(C1O)OC(COP([O-])([O-])=O)C1O)(C(C)C=C1)C(O)=NC1=O BXFCLLSUPDHICK-UHFFFAOYSA-L 0.000 description 1
- KDFUXPHWPKJPLK-IDMQDQCCSA-N CN1C(=O)NC=C([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C1=O.CN1C=C([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)N(C)C1=O.CN1C=C([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)NC1=O.O=C1NC=C([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)N1 Chemical compound CN1C(=O)NC=C([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C1=O.CN1C=C([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)N(C)C1=O.CN1C=C([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)NC1=O.O=C1NC=C([C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C(=O)N1 KDFUXPHWPKJPLK-IDMQDQCCSA-N 0.000 description 1
- WZBUWVOWBACDMW-ODQXGYOPSA-N CN1C=NC2=C(N=CN2[C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C1=N.CNC1=CC=NC2=C1N=CN2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.CNC1=NC(C)=NC2=C1N=CN2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.O=P(O)(O)OC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3Cl)[C@H](O)[C@@H]1O.[N-]=[N+]=NC1=NC2=C(N=CC=C2N)N1[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O Chemical compound CN1C=NC2=C(N=CN2[C@@H]2O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]2O)C1=N.CNC1=CC=NC2=C1N=CN2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.CNC1=NC(C)=NC2=C1N=CN2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O.O=P(O)(O)OC[C@H]1O[C@@H](N2C=NC3=C2N=CC=C3Cl)[C@H](O)[C@@H]1O.[N-]=[N+]=NC1=NC2=C(N=CC=C2N)N1[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O WZBUWVOWBACDMW-ODQXGYOPSA-N 0.000 description 1
- FVBNFMHYKNGOBB-FPYJXQEESA-N CNC1=NC(N)=NC2=C1N=CN2[C@@H]1O[C@H](CO)[C@H](O)C1O.CNC1=NC(N)=NC2=C1N=CN2[C@@H]1O[C@H](CO[PH](=O)(=[O-])O[PH](=O)(=[O-])O[PH](=O)([O-])=[O-])[C@H](O)C1O.NC1=NC2=C(N=CN2[C@@H]2O[C@H](CO)[C@H](O)C2O)C(Cl)=N1 Chemical compound CNC1=NC(N)=NC2=C1N=CN2[C@@H]1O[C@H](CO)[C@H](O)C1O.CNC1=NC(N)=NC2=C1N=CN2[C@@H]1O[C@H](CO[PH](=O)(=[O-])O[PH](=O)(=[O-])O[PH](=O)([O-])=[O-])[C@H](O)C1O.NC1=NC2=C(N=CN2[C@@H]2O[C@H](CO)[C@H](O)C2O)C(Cl)=N1 FVBNFMHYKNGOBB-FPYJXQEESA-N 0.000 description 1
- JWUVDSRXCALXLG-NJYIELLYSA-N C[N+]1=CN([C@@H]2O[C@H](CO)[C@H](O)C2O)C2=C1C([O-])=NC(N)=N2.C[N+]1=CN([C@@H]2O[C@H](CO[PH](=O)(=[O-])O[PH](=O)(=[O-])O[PH](=O)([O-])=[O-])[C@H](O)C2O)C2=C1C([O-])=NC(N)=N2 Chemical compound C[N+]1=CN([C@@H]2O[C@H](CO)[C@H](O)C2O)C2=C1C([O-])=NC(N)=N2.C[N+]1=CN([C@@H]2O[C@H](CO[PH](=O)(=[O-])O[PH](=O)(=[O-])O[PH](=O)([O-])=[O-])[C@H](O)C2O)C2=C1C([O-])=NC(N)=N2 JWUVDSRXCALXLG-NJYIELLYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/193—Colony stimulating factors [CSF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7115—Nucleic acids or oligonucleotides having modified bases, i.e. other than adenine, guanine, cytosine, uracil or thymine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
- A61K38/482—Serine endopeptidases (3.4.21)
- A61K38/4833—Thrombin (3.4.21.5)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0008—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
- A61K48/0025—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
- A61K48/0033—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being non-polymeric
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0008—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
- A61K48/0025—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
- A61K48/0041—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being polymeric
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
- A61K48/0066—Manipulation of the nucleic acid to modify its expression pattern, e.g. enhance its duration of expression, achieved by the presence of particular introns in the delivered nucleic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
- A61K9/1272—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers comprising non-phosphatidyl surfactants as bilayer-forming substances, e.g. cationic lipids or non-phosphatidyl liposomes coated or grafted with polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1641—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
- A61K9/1647—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/53—Colony-stimulating factor [CSF]
- C07K14/535—Granulocyte CSF; Granulocyte-macrophage CSF
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2/00—Peptides of undefined number of amino acids; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/117—Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/67—General methods for enhancing the expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/88—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
Definitions
- exogenous unmodified nucleic acid molecules particularly viral nucleic acids
- IFN interferon
- a nucleic acid e.g., a ribonucleic acid (RNA)
- RNA ribonucleic acid
- the present disclosure provides, inter alia, formulation compositions comprising modified nucleic acid molecules which may encode a protein, a protein precursor, or a partially or fully processed form of the protein or a protein precursor.
- the formulation compositions may further include a modified nucleic acid molecule and a delivery agent.
- the present invention further provides nucleic acids useful for encoding polypeptides capable of modulating a cell's function and/or activity.
- a method of producing a polypeptide of interest in a mammalian cell or tissue comprises contacting the mammalian cell or tissue with a formulation comprising a modified mRNA encoding a polypeptide of interest.
- the formulation may be, but is not limited to, nanoparticles, poly(lactic-co-glycolic acid) (PLGA) microspheres, lipidoids, lipoplex, liposome, polymers, carbohydrates (including simple sugars), cationic lipids, fibrin gel, fibrin hydrogel, fibrin glue, fibrin sealant, fibrinogen, thrombin, rapidly eliminated lipid nanoparticles (reLNPs) and combinations thereof.
- the modified mRNA may comprise a purified IVT transcript.
- the formulation comprising the modified mRNA is a nanoparticle which may comprise at least one lipid.
- the lipid may be selected from, but is not limited to, DLin-DMA, DLin-K-DMA, 98N12-5, C12-200, DLin-MC3-DMA, DLin-KC2-DMA, DODMA, PLGA, PEG, PEG-DMG and PEGylated lipids.
- the lipid may be a cationic lipid such as, but not limited to, DLin-DMA, DLin-D-DMA, DLin-MC3-DMA, DLin-KC2-DMA and DODMA.
- the lipid to modified mRNA ration in the formulation may be between 10:1 and 30:10.
- the mean size of the nanoparticle formulation may comprise the modified mRNA between 60 and 225 nm.
- the PDI of the nanoparticle formulation comprising the modified mRNA is between 0.03 and 0.15.
- the zeta potential of the lipid may be from ⁇ 10 to +10 at a pH of 7.4
- the formulations of modified mRNA may comprise a fusogenic lipid, cholesterol and a PEG lipid.
- the formulation may have a molar ratio 50:10:38.5:1.5-3.0 (cationic lipid:fusogenic lipid: cholesterol: PEG lipid).
- the PEG lipid may be selected from, but is not limited to PEG-c-DOMG, PEG-DMG.
- the fusogenic lipid may be DSPC.
- the mammalian cell or tissue may be contacted using a device such as, but not limited to, a syringe pump, internal osmotic pump and external osmotic pump.
- a device such as, but not limited to, a syringe pump, internal osmotic pump and external osmotic pump.
- the formulation of modified mRNA may be a PLGA microsphere which may be between 4 and 20 ⁇ m in size.
- the modified mRNA may be released from the formulation at less than 50% in a 48 hour time period.
- the PLGA microsphere formulation may be stable in serum. Stability may be determined relative to unformulated modified mRNA in 90%.
- the loading weight percent of the modified mRNA PLGA microsphere may be at least 0.05%, at least 0.1%, at least 0.2%, at least 0.3%, at least 0.4% or at least 0.5%.
- the encapsulation efficiency of the modified mRNA in the PLGA microsphere may be at least 50%, at least 70%, at least 90% or at least 97%.
- a lipid nanoparticle of the present invention may be formulated in a sealant such as, but not limited to, a fibrin sealant.
- the mammalian cells or tissues may be contacted by a route of administration such as, but not limited to, intravenous, intramuscular, intravitreal, intrathecal, intratumoral, pulmonary and subcutaneous.
- the mammalian cells or tissues may be contacted using a split dosing schedule.
- the mammalian cell or tissue may be contacted by injection.
- the injection may be made to tissue selected from the group consisting of intradermal space, epidermis, subcutaneous tissue and muscle.
- the polypeptide of interest may be produced in the cell or tissue in a location systemic from the location of contacting.
- the polypeptide of interest may be detectable in serum for up to 72 hours after contacting.
- the level of the polypeptide of interest can be higher than the levels prior to dosing.
- the level of the polypeptide of interest may be greater in the serum of female subjects than in the serum of male subjects.
- modified mRNA may comprise more than one modified mRNA.
- the formulation may have two or three modified mRNA.
- the formulation comprising the modified mRNA may comprise a rapidly eliminated lipid nanoparticle (reLNP) which may comprise a reLNP lipid, fusogenic lipid, cholesterol and a PEG lipid at a molar ratio of 50:10:38.5:1.5 (reLNP lipid:fusogenic lipid: cholesterol: PEG lipid).
- the fusogenic lipid may be DSPC and the PEG lipid may be PEG-c-DOMG.
- the reLNP lipid may be DLin-DMA with an internal or terminal ester or DLin-MC3-DMA with an internal or terminal ester.
- the total lipid to modified mRNA weight ration may be between 10:1 and 30:1.
- the formulation comprising modified mRNA may comprise a fibrin sealant.
- the formulation comprising modified mRNA may comprise a lipidoid where the lipid is selected from the group consisting of C12-200 and 98N12-5.
- the formulation comprising modified mRNA may include a polymer.
- the polymer may be coated, covered, surrounded, enclosed or comprise a layer of a hydrogel or surgical sealant.
- the polymer may be selected from the group consisting of PLGA, ethylene vinyl acetate, poloxamer and GELSITE®.
- a polypeptide of interest may be produced in a mammalian cell or tissue by contacting the mammalian cell or tissue with a buffer formulation comprising a modified mRNA encoding the polypeptide of interest.
- the buffer formulation may be selected from, but is not limited to, slaine, phosphate buffered saline and Ringer's lactate.
- the buffer formulation may comprise a calcium concentration of between 1 to 10 mM.
- the modified mRNA in the buffer formulation may comprise a purified IVT transcript.
- a pharmacologic effect in a primate may be produced by contacting the primate with a composition comprising a formulated modified mRNA encoding a polypeptide of interest.
- the modified mRNA may comprise a purified IVT transcript and/or may be formulated in nanoparticles, poly(lactic-co-glycolic acid) (PLGA) microspheres, lipidoids, lipoplex, liposome, polymers, carbohydrates (including simple sugars), cationic lipids, fibrin gel, fibrin hydrogel, fibrin glue, fibrin sealant, fibrinogen, thrombin, rapidly eliminated lipid nanoparticles (reLNPs) and combinations thereof.
- PLGA poly(lactic-co-glycolic acid)
- the pharmacological effect may be greater than the pharmacologic effect associated with a therapeutic agent and/or composition known to produce said pharmacologic effect.
- the composition may comprise a formulated or unformulated modified mRNA.
- the pharmacologic effect may result in a therapeutically effective outcome of a disease, disorder, condition or infection. Such therapeutically effective outcome may include, but is not limited to, treatment, improvement of one or more symptoms, diagnosis, prevention, and delay of onset.
- the pharmacologic effect may include, but is not limited to, change in cell count, alteration in serum chemistry, alteration of enzyme activity, increase in hemoglobin, and increase in hematocrit.
- the present disclosure provides a formulation composition which comprises a modified nucleic acid molecule and a delivery agent.
- the modified nucleic acid molecule may be selected from the group consisting of DNA, complimentary DNA (cDNA), RNA, messenger RNA (mRNA), RNAi-inducing agents, RNAi agents, siRNA, shRNA, miRNA, antisense RNA, ribozymes, catalytic DNA, RNA that induce triple helix formation, aptamers, vectors and combinations thereof. If the modified nucleic acid molecule is mRNA the mRNA may be derived from cDNA.
- the modified nucleic acid molecule may comprise at least one modification and a translatable region. In some instances, the modified nucleic acid comprises at least two modifications and a translatable region.
- the modification may be located on the backbone and/or a nucleoside of the nucleic acid molecule. The modification may be located on both a nucleoside and a backbone linkage.
- a modification may be located on the backbone linkage of the modified nucleic acid molecule.
- the backbone linkage may be modified by replacing of one or more oxygen atoms.
- the modification of the backbone linkage may comprise replacing at least one phosphodiester linkage with a phosphorothioate linkage.
- a modification may be located on a nucleoside of the modified nucleic acid molecule.
- the modification on the nucleoside may be located on the sugar of said nucleoside.
- the modification of the nucleoside may occur at the 2′ position on the nucleoside.
- the nucleoside modification may include a compound selected from the group consisting of pyridin-4-one ribonucleoside, 5-aza-uridine, 2-thio-5-aza-uridine, 2-thiouridine, 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxyuridine, 3-methyluridine, 5-carboxymethyl-uridine, 1-carboxymethyl-pseudouridine, 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurinomethyluridine, 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uridine, 1-taurinomethyl-4-thio-uridine, 5-methyl-uridine, 1-methyl-pseudouridine, 4-thio-1-methyl-pseudouridine, 2-thio-1-methyl-pseudouridine, 1-methyl-1-deaza-pseudouridine,
- a modification may be located on a nucleobase of the modified nucleic acid molecule.
- the modification on the nucleobase may be selected from the group consisting of cytosine, guanine, adenine, thymine and uracil.
- the modification on the nucleobase may be selected from the group consisting of deaza-adenosine and deaza-guanosine, and the linker may be attached at a C-7 or C-8 position of said deaza-adenosine or deaza-guanosine.
- the modified nucleobase may be selected from the group consisting of cytosine and uracil, and the linker may be attached to the modified nucleobase at an N3 or C-5 position.
- the linker attached to the nucleobase may be selected from the group consisting of diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, tetraethylene glycol, tetraethylene glycol, divalent alkyl, alkenyl, alkynyl moiety, ester, amide, and ether moiety.
- two modifications of the nucleic acid molecule may be located on nucleosides of the modified nucleic acid molecule.
- the modified nucleosides may be selected from 5-methylcytosine and pseudouridine.
- two modifications of the modified nucleic acid molecule may be located on a nucleotide or a nucleoside.
- the present disclosure provides a formulation comprising a nucleic acid molecule such as, but not limited to, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9 and SEQ ID NO: 10 and a delivery agent.
- the nucleic acid molecule may comprise a polyA tail about 160 nucleotides in length.
- the nucleic acid molecule may comprise at least one 5′ terminal cap such as, but not limited to, Cap0, Cap1, ARCA, inosine, N1-methyl-guanosine, 2′ fluoro-guanosine, 7-deaza-guanosine, 8-oxo-guanosine, 2-amino-guanosine, LNA-guanosine, and 2-azido-guanosine.
- 5′ terminal cap such as, but not limited to, Cap0, Cap1, ARCA, inosine, N1-methyl-guanosine, 2′ fluoro-guanosine, 7-deaza-guanosine, 8-oxo-guanosine, 2-amino-guanosine, LNA-guanosine, and 2-azido-guanosine.
- the present disclosure provides a nucleic acid of SEQ ID NO: 6, a 5′ terminal cap which is Cap1, a poly A tail of approximately 160 nucleotides in length and a delivery agent.
- the present disclosure provides a nucleic acid of SEQ ID NO: 7, a 5′ terminal cap which is Cap1, a poly A tail of approximately 160 nucleotides in length and a delivery agent.
- the present disclosure provides a nucleic acid of SEQ ID NO: 9, a 5′ terminal cap which is Cap1, a poly A tail of approximately 160 nucleotides in length and a delivery agent.
- the present disclosure provides a nucleic acid of SEQ ID NO: 10, a 5′ terminal cap which is Cap1, a poly A tail of approximately 160 nucleotides in length and a delivery agent.
- the delivery agent comprises at least one method to improve delivery selected from the group consisting of lipidoids, liposomes, lipid nanoparticles, rapidly eliminated lipid nanoparticles (reLNPs), polymers, lipoplexes, peptides, proteins, hydrogels, sealants, chemical modifications, conjugation, cells and enhancers.
- lipidoids liposomes
- lipid nanoparticles rapidly eliminated lipid nanoparticles (reLNPs)
- reLNPs rapidly eliminated lipid nanoparticles
- polymers lipoplexes
- peptides proteins
- hydrogels hydrogels
- sealants chemical modifications, conjugation, cells and enhancers.
- the lipidoid, lipid nanoparticle and rapidly eliminated lipid nanoparticles which may be used as a delivery agent may include a lipid which may be selected from the group consisting of C12-200, MD1, 98N12-5, DLin-DMA, DLin-K-DMA, DLin-KC2-DMA, DLin-MC3-DMA, PLGA, PEG, PEG-DMG, PEGylated lipids and analogs thereof.
- the rapidly eliminated lipid nanoparticle may have an ester linkage at the terminal end of the lipid chain, or an ester linkage may be an internal linkage located to the right or left of a saturated carbon in the lipid chain.
- the rapidly eliminated lipid nanoparticle which may be used as a delivery agent may be, but is not limited to, DLin-MC3-DMA and DLin-DMA.
- the lipid nanoparticle may comprise PEG and at least one component such as, but not limited to, cholesterol, cationic lipid and fusogenic lipid.
- the lipid nanoparticle may comprise at least one of a PEG, cholesterol, cationic lipid and fusogenic lipid.
- the fusogenic lipid is disteroylphophatidyl choline (DSPC).
- the PEG lipid is PEG-DMG.
- the cationic lipid may be, but not limited to, DLin-DMA, DLin-MC3-DMA, C12-200, 98N12-5 and DLin-KC2-DMA.
- the lipid nanoparticle composition may comprise 50 mol % cationic lipid, 10 mol % DSPC, 1.5-3.0 mol % PEG and 37-38.5 mol % cholesterol.
- a modified nucleic acid may be formulated with PLGA to form a sustained release formulation.
- a modified nucleic acid may be formulated with PLGA and other active and/or inactive components to form a sustained release formulation.
- the modified nucleic acid molecule may include, but is not limited to, SEQ ID NO: 9 and SEQ ID NO: 10.
- a sustained release formulation may comprise a sustained release microsphere.
- the sustained release microsphere may be about 10 to about 50 um in diameter.
- the sustained release microsphere may contain about 0.001 to about 1.0 weight percent of at least one modified nucleic acid molecule.
- the modified nucleic acids of the present invention may include at least one stop codon before the 3′ untranslated region (UTR).
- the stop codon may be selected from TGA, TAA and TAG.
- the modified nucleic acids of the present invention include the stop codon TGA and one additional stop codon.
- the addition stop codon may be TAA.
- the modified nucleic acid of the present invention includes three stop codons.
- the present disclosure provides a controlled release formulation comprising a modified nucleic acid which may encode a polypeptide of interest.
- the modified nucleic acid may be encapsulated or substantially encapsulated in a delivery agent.
- the delivery agent may be coated, covered, surrounded, enclosed or comprise a layer of polymer, hydrogel and/or surgical sealant.
- the controlled release formulation may comprise a second layer of polymer, hydrogel and/or surgical sealant.
- the delivery agent of the controlled release formulation may include, but is not limited to, lipidoids, liposomes, lipid nanoparticles, rapidly eliminated lipid nanoparticles, lipoplexes and self-assembled lipid nanoparticles.
- the polymer which may be used in the controlled release formulation may include, but is not limited to, PLGA, ethylene vinyl acetate, poloxamer and GELSITE®.
- the surgical sealant which may be used in the controlled release formulation may include, but is not limited to, fibrinogen polymers, TISSEELL®, PEG-based sealants and COSEAL®.
- the delivery agent of the controlled release formulation comprises a lipid nanoparticle or a rapidly eliminated lipid nanoparticle delivery agent.
- the lipid nanoparticle or rapidly eliminated lipid nanoparticle may be coated, substantially coated, covered, substantially covered, surrounded, substantially surrounded, enclosed, substantially enclosed or comprises a layer of polymer, hydrogel and/or surgical sealant.
- the delivery agent may be a lipid nanoparticle which may be coated, substantially coated, covered, substantially covered, surrounded, substantially surrounded, enclosed, substantially enclosed or comprises a layer of PLGA.
- FIG. 1 illustrates lipid structures in the prior art useful in the present invention. Shown are the structures for 98N12-5 (TETA5-LAP), DLin-DMA, DLin-K-DMA (2,2-Dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolane), DLin-KC2-DMA, DLin-MC3-DMA and C12-200.
- TETA5-LAP TETA5-LAP
- DLin-DMA DLin-K-DMA (2,2-Dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolane)
- DLin-KC2-DMA DLin-MC3-DMA
- C12-200 C12-200.
- FIG. 2 is a representative plasmid useful in the IVT reactions taught herein.
- the plasmid contains Insert 64818, designed by the instant inventors.
- FIG. 3 is a gel profile of modified mRNA encapsulated in PLGA microspheres.
- the delivery of nucleic acids into cells has many undesired complications including the integration of the nucleic acid into the target cell genome which may result in imprecise expression levels, the deleterious transfer of the nucleic acid to progeny and neighbor cells and a substantial risk of causing mutations.
- the modified nucleic acid molecules of the present disclosure are capable of reducing the innate immune activity of a population of cells into which they are introduced, thus increasing the efficiency of protein production in that cell population. Further, one or more additional advantageous activities and/or properties of the nucleic acids and proteins of the present disclosure are described herein.
- kits for treating a subject having or being suspected of having a disease, disorder and/or condition comprising administering to a subject in need of such treatment a composition described herein in an amount sufficient to treat the disease, disorder and/or condition.
- the present disclosure provides nucleic acids, including RNA such as mRNA, which contain one or more modified nucleosides or nucleotides (termed “modified nucleic acid molecules,” “modified mRNA” or “modified mRNA molecules”) as described herein.
- modified nucleic acid molecules of the present invention may have useful properties including, but not limited to, a significant decrease in or a lack of a substantial induction of the innate immune response of a cell into which the modified mRNA is introduced.
- the modified nucleic acid molecules may also exhibit enhanced efficiency of protein production, intracellular retention of nucleic acids, and viability of contacted cells, as well as having reduced immunogenicity as compared to unmodified nucleic acid molecules.
- modified nucleic acid molecules containing a translatable region and one, two, or more than two different nucleoside modifications
- Exemplary nucleic acids for use in this disclosure include ribonucleic acids (RNA), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), locked nucleic acids (LNAs) or a hybrid thereof.
- the modified nucleic acid molecules include messenger RNA (mRNA).
- mRNA messenger RNA
- the modified nucleic acid molecules of the present disclosure may not substantially induce an innate immune response of a cell into which the modified mRNA is introduced.
- the modified nucleic acid molecule may exhibit reduced degradation, as compared to a nucleic acid that has not been modified, in a cell where the modified nucleic acid molecule is introduced.
- nucleic acid includes any compound and/or substance that is or can be incorporated into an oligonucleotide chain.
- exemplary nucleic acids for use in accordance with the present disclosure include, but are not limited to, one or more of DNA, cDNA, RNA including messenger RNA (mRNA), hybrids thereof, RNAi-inducing agents, RNAi agents, siRNA, shRNA, miRNA, antisense RNA, ribozymes, catalytic DNA, RNA that induce triple helix formation, aptamers, vectors and the like.
- the present disclosure provides a modified nucleic acid molecule containing a degradation domain, which is capable of being acted on in a directed manner within a cell.
- the modified nucleic acid molecules may be chemically modified on the sugar, nucleobase (e.g., in the 5′ position of the nucleobase), or phosphate backbone (e.g., replacing the phosphate with another moiety such as a thiophospate).
- the modification may result in a disruption of a major groove binding partner interaction, which may contribute to an innate immune response.
- the formulation composition when administered to a subject, can result in improved bioavailability, therapeutic window, or volume of distribution of the modified nucleic acid molecule relative to administration of the modified nucleic acid molecule without the incorporation of the delivery agent.
- the modified nucleosides and nucleotides of the modified nucleic acid molecules of the present invention may be synthesized using the O-protected compounds described in International Pub. No. WO2012138530, the contents of which is herein incorporated by reference in its entirety.
- the modified nucleic acid molecule may comprise mRNA.
- the modified mRNA may be derived from cDNA.
- mRNA may comprise at least two nucleoside modifications.
- the nucleoside modifications may be selected from 5-methylcytosine and pseudouridine.
- at least one of the nucleoside modifications is not 5-methylcytosine and/or pseudouridine.
- the delivery agent may comprise formulations allowing for localized and systemic delivery of mRNA.
- the formulations of the modified nucleic acids molecules and/or mRNA may be selected from, but are not limited to, lipidoids, liposomes and lipid nanoparticles, rapidly eliminated lipid nanoparticles, polymers, lipoplexes, peptides and proteins, at least one chemical modification and conjugation, enhancers, and/or cells.
- the modified nucleic acid molecules of the present invention may include at least two stop codons before the 3′ untranslated region (UTR).
- the stop codon may be selected from TGA, TAA and TAG.
- the nucleic acids of the present invention include the stop codon TGA and one additional stop codon.
- the addition stop codon may be TAA.
- the modified nucleic acid molecules may comprise three stop codons.
- nucleic acid is optional in a modified nucleic acid molecule but these components may be beneficial in some embodiments.
- Untranslated regions (UTRs) of a gene are transcribed but not translated.
- the 5′ UTR starts at the transcription start site and continues to the start codon but does not include the start codon; whereas, the 3′ UTR starts immediately following a stop codon and continues until the transcriptional termination signal.
- the regulatory features of a UTR can be incorporated into the modified mRNA molecules of the present invention to enhance the stability of the molecule.
- the specific features can also be incorporated to ensure controlled down-regulation of the transcript in case they are misdirected to undesired organs sites.
- Natural 5′ UTRs bear features which play roles in for translation initiation. They harbor signatures like Kozak sequences which are commonly known to be involved in the process by which the ribosome initiates translation of many genes. Kozak sequences have the consensus CCR(A/G)CCAUGG (SEQ ID NO: 1), where R is a purine (adenine or guanine) three bases upstream of the start codon (AUG), which is followed by another ‘G’. 5′ UTR also have been known to form secondary structures which are involved in elongation factor binding.
- modified mRNA molecules of the invention By engineering the features typically found in abundantly expressed genes of specific target organs, one can enhance the stability and protein production of the modified mRNA molecules of the invention.
- introduction of 5′ UTR of liver-expressed mRNA such as albumin, serum amyloid A, Apolipoprotein A/B/E, transferrin, alpha fetoprotein, erythropoietin, or Factor VIII, could be used to enhance expression of a modified nucleic acid molecule, such as a mRNA, in hepatic cell lines or liver.
- tissue-specific mRNA to improve expression in that tissue is possible for muscle (MyoD, Myosin, Myoglobin, Myogenin, Herculin), for endothelial cells (Tie-1, CD36), for myeloid cells (C/EBP, AML1, G-CSF, GM-CSF, CD11b, MSR Fr-1, i-NOS), for leukocytes (CD45, CD18), for adipose tissue (CD36, GLUT4, ACRP30, adiponectin) and for lung epithelial cells (SP-A/B/C/D).
- non-UTR sequences may be incorporated into the 5′ (or 3′ UTR) UTRs of the modified nucleic acid molecules of the present invention.
- introns or portions of introns sequences may be incorporated into the flanking regions of the modified mRNA of the invention. Incorporation of intronic sequences may increase protein production as well as mRNA levels.
- 3′ UTRs are known to have stretches of Adenosines and Uridines embedded in them. These AU rich signatures are particularly prevalent in genes with high rates of turnover. Based on their sequence features and functional properties, the AU rich elements (AREs) can be separated into three classes (Chen et al, 1995): Class I AREs contain several dispersed copies of an AUUUA motif within U-rich regions. C-Myc and MyoD contain class I AREs. Class II AREs possess two or more overlapping UUAUUUA(U/A)(U/A) (SEQ ID NO: 2) nonamers. Molecules containing this type of AREs include GM-CSF and TNF-a. Class III ARES are less well defined.
- AREs 3′ UTR AU rich elements
- AREs 3′ UTR AU rich elements
- one or more copies of an ARE can be introduced to make modified mRNA of the invention less stable and thereby curtail translation and decrease production of the resultant protein.
- AREs can be identified and removed or mutated to increase the intracellular stability and thus increase translation and production of the resultant protein.
- Transfection experiments can be conducted in relevant cell lines, using modified mRNA of the invention and protein production can be assayed at various time points post-transfection.
- cells can be transfected with different ARE-engineering molecules and by using an ELISA kit to the relevant protein and assaying protein produced at 6 hours, 12 hours, 24 hours, 48 hours, and 7 days post-transfection.
- microRNAs are 19-25 nucleotide long noncoding RNAs that bind to the 3′ UTR of nucleic acid molecules and down-regulate gene expression either by reducing nucleic acid molecule stability or by inhibiting translation.
- the modified mRNA of the invention may comprise one or more microRNA target sequences, microRNA sequences, or microRNA seeds. Such sequences may correspond to any known microRNA such as those taught in US Publication US2005/0261218 and US Publication US2005/0059005, the contents of which are incorporated herein by reference in their entirety.
- a microRNA sequence comprises a “seed” region, i.e., a sequence in the region of positions 2-8 of the mature microRNA, which sequence has perfect Watson-Crick complementarity to the miRNA target sequence.
- a microRNA seed may comprise positions 2-8 or 2-7 of the mature microRNA.
- a microRNA seed may comprise 7 nucleotides (e.g., nucleotides 2-8 of the mature microRNA), wherein the seed-complementary site in the corresponding miRNA target is flanked by an adenine (A) opposed to microRNA position 1.
- a microRNA seed may comprise 6 nucleotides (e.g., nucleotides 2-7 of the mature microRNA), wherein the seed-complementary site in the corresponding miRNA target is flanked byan adenine (A) opposed to microRNA position 1.
- A an adenine
- the bases of the microRNA seed have complete complementarity with the target sequence.
- microRNA target sequences By engineering microRNA target sequences into the 3′UTR of modified mRNA of the invention one can target the molecule for degradation or reduced translation, provided the microRNA in question is available. This process will reduce the hazard of off target effects upon nucleic acid molecule delivery. Identification of microRNA, microRNA target regions, and their expression patterns and role in biology have been reported (Bonauer et al., Curr Drug Targets 2010 11:943-949; Anand and Cheresh Curr Opin Hematol 2011 18:171-176; Contreras and Rao Leukemia 2012 26:404-413 (2011 December 20. doi: 10.1038/leu.2011.356); Bartel Cell 2009 136:215-233; Landgraf et al, Cell, 2007 129:1401-1414; each of which is herein incorporated by reference in its entirety).
- the modified nucleic acid molecule is a modified mRNA and is not intended to be delivered to the liver but ends up there, then miR-122, a microRNA abundant in liver, can inhibit the expression of the gene of interest if one or multiple target sites of miR-122 are engineered into the 3′ UTR of the modified mRNA.
- Introduction of one or multiple binding sites for different microRNA can be engineered to further decrease the longevity, stability, and protein translation of a modified nucleic acid molecule and/or modified mRNA.
- microRNA site refers to a microRNA target site or a microRNA recognition site, or any nucleotide sequence to which a microRNA binds or associates. It should be understood that “binding” may follow traditional Watson-Crick hybridization rules or may reflect any stable association of the microRNA with the target sequence at or adjacent to the microRNA site.
- microRNA binding sites can be engineered out of (i.e. removed from) sequences in which they naturally occur in order to increase protein expression in specific tissues.
- miR-122 binding sites may be removed to improve protein expression in the liver. Regulation of expression in multiple tissues can be accomplished through introduction or removal or one or several microRNA binding sites.
- tissues where microRNA are known to regulate mRNA, and thereby protein expression include, but are not limited to, liver (miR-122), muscle (miR-133, miR-206, miR-208), endothelial cells (miR-17-92, miR-126), myeloid cells (miR-142-3p, miR-142-5p, miR-16, miR-21, miR-223, miR-24, miR-27), adipose tissue (let-7, miR-30c), heart (miR-id, miR-149), kidney (miR-192, miR-194, miR-204), and lung epithelial cells (let-7, miR-133, miR-126).
- liver miR-122
- muscle miR-133, miR-206, miR-208
- endothelial cells miR-17-92, miR-126
- myeloid cells miR-142-3p, miR-142-5p, miR-16, miR-21, miR-223, mi
- MicroRNA can also regulate complex biological processes such as angiogenesis (miR-132) (Anand and Cheresh Curr Opin Hematol 2011 18:171-176; herein incorporated by reference in its entirety).
- angiogenesis miR-132
- binding sites for microRNAs that are involved in such processes may be removed or introduced, in order to tailor the expression of the modified mRNA expression to biologically relevant cell types or to the context of relevant biological processes.
- modified mRNA can be engineered for more targeted expression in specific cell types or only under specific biological conditions.
- modified mRNA could be designed that would be optimal for protein expression in a tissue or in the context of a biological condition.
- Transfection experiments can be conducted in relevant cell lines, using engineered modified mRNA and protein production can be assayed at various time points post-transfection.
- cells can be transfected with different microRNA binding site-engineering modified mRNA and by using an ELISA kit to the relevant protein and assaying protein produced at 6 hour, 12 hour, 24 hour, 48 hour, 72 hour and 7 days post-transfection.
- In vivo experiments can also be conducted using microRNA-binding site-engineered molecules to examine changes in tissue-specific expression of formulated modified mRNA.
- the 5′ cap structure of an mRNA is involved in nuclear export, increasing mRNA stability and binds the mRNA Cap Binding Protein (CBP), which is responsible for mRNA stability in the cell and translation competency through the association of CBP with poly(A) binding protein to form the mature cyclic mRNA species.
- CBP mRNA Cap Binding Protein
- the cap further assists the removal of 5′ proximal introns removal during mRNA splicing.
- Endogenous mRNA molecules may be 5′-end capped generating a 5′-ppp-5′-triphosphate linkage between a terminal guanosine cap residue and the 5′-terminal transcribed sense nucleotide of the mRNA molecule.
- This 5′-guanylate cap may then be methylated to generate an N7-methyl-guanylate residue.
- the ribose sugars of the terminal and/or anteterminal transcribed nucleotides of the 5′ end of the mRNA may optionally also be 2′-O-methylated.
- 5′-decapping through hydrolysis and cleavage of the guanylate cap structure may target a nucleic acid molecule, such as an mRNA molecule, for degradation.
- Modifications to the modified mRNA of the present invention may generate a non-hydrolyzable cap structure preventing decapping and thus increasing mRNA half-life. Because cap structure hydrolysis requires cleavage of 5′-ppp-5′ phosphorodiester linkages, modified nucleotides may be used during the capping reaction. For example, a Vaccinia Capping Enzyme from New England Biolabs (Ipswich, Mass.) may be used with ⁇ -thio-guanosine nucleotides according to the manufacturer's instructions to create a phosphorothioate linkage in the 5′-ppp-5′ cap. Additional modified guanosine nucleotides may be used such as ⁇ -methyl-phosphonate and seleno-phosphate nucleotides.
- Additional modifications include, but are not limited to, 2′-O-methylation of the ribose sugars of 5′-terminal and/or 5′-anteterminal nucleotides of the mRNA (as mentioned above) on the 2′-hydroxyl group of the sugar ring.
- Multiple distinct 5′-cap structures can be used to generate the 5′-cap of a nucleic acid molecule, such as an mRNA molecule.
- Cap analogs which herein are also referred to as synthetic cap analogs, chemical caps, chemical cap analogs, or structural or functional cap analogs, differ from natural (i.e. endogenous, wild-type or physiological) 5′-caps in their chemical structure, while retaining cap function. Cap analogs may be chemically (i.e. non-enzymatically) or enzymatically synthesized and/or linked to a nucleic acid molecule.
- the Anti-Reverse Cap Analog (ARCA) cap contains two guanines linked by a 5′-5′-triphosphate group, wherein one guanine contains an N7 methyl group as well as a 3′-O-methyl group (i.e., N7,3′-O-dimethyl-guanosine-5′-triphosphate-5′-guanosine (m 7 G-3′ mppp-G; which may equivalently be designated 3′ O-Me-m7G(5)ppp(5′)G).
- the 3′-O atom of the other, unmodified, guanine becomes linked to the 5′-terminal nucleotide of the capped nucleic acid molecule (e.g. an mRNA or mRNA).
- the N7- and 3′-O-methlyated guanine provides the terminal moiety of the capped nucleic acid molecule (e.g. mRNA or mRNA).
- mCAP is similar to ARCA but has a 2′-O-methyl group on guanosine (i.e., N7,2′-O-dimethyl-guanosine-5′-triphosphate-5′-guanosine, m 7 Gm-ppp-G).
- cap analogs allow for the concomitant capping of a nucleic acid molecule in an in vitro transcription reaction, up to 20% of transcripts can remain uncapped. This, as well as the structural differences of a cap analog from an endogenous 5′-cap structures of nucleic acids produced by the endogenous, cellular transcription machinery, may lead to reduced translational competency and reduced cellular stability.
- Modified mRNA of the present invention may also be capped post-transcriptionally, using enzymes, in order to generate more authentic 5′-cap structures.
- the phrase “more authentic” refers to a feature that closely mirrors or mimics, either structurally or functionally, an endogenous or wild type feature. That is, a “more authentic” feature is better representative of an endogenous, wild-type, natural or physiological cellular function and/or structure as compared to synthetic features or analogs, etc., of the prior art, or which outperforms the corresponding endogenous, wild-type, natural or physiological feature in one or more respects.
- Non-limiting examples of more authentic 5′ cap structures of the present invention are those which, among other things, have enhanced binding of cap binding proteins, increased half life, reduced susceptibility to 5′ endonucleases and/or reduced 5′ decapping, as compared to synthetic 5′ cap structures known in the art (or to a wild-type, natural or physiological 5′ cap structure).
- recombinant Vaccinia Virus Capping Enzyme and recombinant 2′-O-methyltransferase enzyme can create a canonical 5′-5′-triphosphate linkage between the 5′-terminal nucleotide of an mRNA and a guanine cap nucleotide wherein the cap guanine contains an N7 methylation and the 5′-terminal nucleotide of the mRNA contains a 2′-O-methyl.
- Cap1 structure is termed the Cap1 structure.
- Cap structures include, but are not limited to, 7mG(5′)ppp(5′)N,pN2p (cap 0), 7mG(5′)ppp(5′)NlmpNp (cap 1), and 7mG(5′)-ppp(5′)NlmpN2 mp (cap 2).
- modified mRNA may be capped post-transcriptionally, and because this process is more efficient, nearly 100% of the modified mRNA may be capped. This is in contrast to ⁇ 80% when a cap analog is linked to an mRNA in the course of an in vitro transcription reaction.
- 5′ terminal caps may include endogenous caps or cap analogs.
- a 5′ terminal cap may comprise a guanine analog.
- Useful guanine analogs include, but are not limited to, inosine, N1-methyl-guanosine, 2′ fluoro-guanosine, 7-deaza-guanosine, 8-oxo-guanosine, 2-amino-guanosine, LNA-guanosine, and 2-azido-guanosine.
- Additional viral sequences such as, but not limited to, the translation enhancer sequence of the barley yellow dwarf virus (BYDV-PAV) can be engineered and inserted in the 3′ UTR of the modified mRNA of the invention and can stimulate the translation of the mRNA in vitro and in vivo.
- Transfection experiments can be conducted in relevant cell lines at and protein production can be assayed by ELISA at 12 hour, 24 hour, 48 hour, 72 hour and day 7 post-transfection.
- modified mRNA which may contain an internal ribosome entry site (IRES).
- IRES internal ribosome entry site
- An IRES may act as the sole ribosome binding site, or may serve as one of multiple ribosome binding sites of an mRNA.
- Modified mRNA containing more than one functional ribosome binding site may encode several peptides or polypeptides that are translated independently by the ribosomes (“multicistronic nucleic acid molecules”).
- multicistronic nucleic acid molecules When modified mRNA are provided with an IRES, further optionally provided is a second translatable region.
- IRES sequences that can be used according to the invention include without limitation, those from picornaviruses (e.g. FMDV), pest viruses (CFFV), polio viruses (PV), encephalomyocarditis viruses (ECMV), foot-and-mouth disease viruses (FMDV), hepatitis C viruses (HCV), classical swine fever viruses (CSFV), murine leukemia virus (MLV), simian immune deficiency viruses (SIV) or cricket paralysis viruses (CrPV).
- picornaviruses e.g. FMDV
- CFFV pest viruses
- PV polio viruses
- ECMV encephalomyocarditis viruses
- FMDV foot-and-mouth disease viruses
- HCV hepatitis C viruses
- CSFV classical swine fever viruses
- MLV murine leukemia virus
- SIV simian immune deficiency viruses
- CrPV cricket paralysis viruses
- a long chain of adenine nucleotides may be added to a modified nucleic acid molecule such as a modified mRNA molecules in order to increase stability.
- a modified nucleic acid molecule such as a modified mRNA molecules
- the 3′ end of the transcript may be cleaved to free a 3′ hydroxyl.
- poly-A polymerase adds a chain of adenine nucleotides to the RNA.
- the process called polyadenylation, adds a poly-A tail that can be between, for example, approximately 100 and 250 residues long.
- the length of a poly-A tail of the present invention is greater than 30 nucleotides in length.
- the poly-A tail is greater than 35 nucleotides in length (e.g., at least or greater than about 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,500, and 3,000 nucleotides).
- the modified mRNA includes from about 30 to about 3,000 nucleotides (e.g., from 30 to 50, from 30 to 100, from 30 to 250, from 30 to 500, from 30 to 750, from 30 to 1,000, from 30 to 1,500, from 30 to 2,000, from 30 to 2,500, from 50 to 100, from 50 to 250, from 50 to 500, from 50 to 750, from 50 to 1,000, from 50 to 1,500, from 50 to 2,000, from 50 to 2,500, from 50 to 3,000, from 100 to 500, from 100 to 750, from 100 to 1,000, from 100 to 1,500, from 100 to 2,000, from 100 to 2,500, from 100 to 3,000, from 500 to 750, from 500 to 1,000, from 500 to 1,500, from 500 to 2,000, from 500 to 2,500, from 500 to 3,000, from 1,000 to 1,500, from 1,000 to 2,000, from 1,000 to 2,500, from 1,000 to 3,000, from 1,500 to 2,000, from 1,500 to 2,500, from 1,500 to 3,000, from 1,000 to 1,500, from 1,000 to 2,000
- the poly-A tail is designed relative to the length of the overall modified mRNA. This design may be based on the length of the coding region, the length of a particular feature or region (such as the flanking regions), or based on the length of the ultimate product expressed from the modified mRNA.
- the poly-A tail may be 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100% greater in length than the modified mRNA, region or feature thereof.
- the poly-A tail may also be designed as a fraction of modified mRNA to which it belongs.
- the poly-A tail may be 10, 20, 30, 40, 50, 60, 70, 80, or 90% or more of the total length of the molecule or the total length of the molecule minus the poly-A tail.
- engineered binding sites and conjugation of modified mRNA for Poly-A binding protein may enhance expression.
- multiple distinct modified mRNA may be linked together to the PABP (Poly-A binding protein) through the 3′-end using modified nucleotides at the 3′-terminus of the poly-A tail.
- Transfection experiments can be conducted in relevant cell lines at and protein production can be assayed by ELISA at 12 hour, 24 hour, 48 hour, 72 hour and day 7 post-transfection.
- the modified mRNA of the present invention are designed to include a polyA-G quartet.
- the G-quartet is a cyclic hydrogen bonded array of four guanine nucleotides that can be formed by G-rich sequences in both DNA and RNA.
- the G-quartet is incorporated at the end of the poly-A tail.
- the resultant mRNA molecule is assayed for stability, protein production and other parameters including half-life at various time points. It has been discovered that the polyA-G quartet results in protein production equivalent to at least 75% of that seen using a poly-A tail of 120 nucleotides alone.
- modified nucleic acids and modified mRNA (mmRNA) of the invention may contain one, two, or more different modifications.
- modified nucleic acids and mRNA may contain one, two, or more different nucleoside or nucleotide modifications.
- a modified nucleic acid or mRNA (e.g., having one or more mRNA molecules) introduced to a cell may exhibit reduced degradation in the cell, as compared to an unmodified nucleic acid or mRNA.
- the modified nucleic acids and mRNA can include any useful modification, such as to the sugar, the nucleobase (e.g., one or more modifications of a nucleobase, such as by replacing or substituting an atom of a pyrimidine nucleobase with optionally substituted amino, optionally substituted thiol, optionally substituted alkyl (e.g., methyl or ethyl), or halo (e.g., chloro or fluoro), or the internucleoside linkage (e.g., one or more modification to the phosphodiester backbone).
- the nucleobase e.g., one or more modifications of a nucleobase, such as by replacing or substituting an atom of a pyrimidine nucleobase with optionally substituted amino, optionally substituted thiol, optionally substituted alkyl (e.g., methyl or ethyl), or halo (e.g., chloro or fluoro), or the internu
- modifications are present in both the sugar and the internucleoside linkage (e.g., one or modifications, such as those present in ribonucleic acids (RNA), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs) or hybrids thereof). Additional modifications are described herein.
- RNA ribonucleic acids
- DNAs deoxyribonucleic acids
- TAAs threose nucleic acids
- GNAs glycol nucleic acids
- PNAs peptide nucleic acids
- LNAs locked nucleic acids
- the modified nucleic acids and mRNA of the invention do not substantially induce an innate immune response of a cell into which the mRNA is introduced.
- degradation of a modified nucleic acid molecule or modified mRNA may be preferable if precise timing of protein production is desired.
- the invention provides a modified nucleic acid molecule containing a degradation domain, which is capable of being acted on in a directed manner within a cell.
- nucleic acids comprising a nucleoside or nucleotide that can disrupt the binding of a major groove interacting, e.g. binding, partner with the nucleic acid (e.g., where the modified nucleotide has decreased binding affinity to major groove interacting partner, as compared to an unmodified nucleotide).
- the modified nucleic acid and mRNA can optionally include other agents (e.g., RNAi-inducing agents, RNAi agents, siRNA, shRNA, miRNA, antisense RNA, ribozymes, catalytic DNA, tRNA, RNA that induce triple helix formation, aptamers, vectors, etc.).
- the modified nucleic acids or mRNA may include one or more messenger RNA (mRNA) and one or more modified nucleoside or nucleotides (e.g., mmRNA molecules). Details for these modified nucleic acids and mRNA follow.
- the modified nucleic acids or mRNA of the invention may include a first region of linked nucleosides encoding a polypeptide of interest, a first flanking region located at the 5′ terminus of the first region, and a second flanking region located at the 3′ terminus of the first region.
- the modified nucleic acids or mRNA includes n number of linked nucleosides having Formula (Ia) or Formula (Ia-1):
- each R U is, independently, H, halo, or optionally substituted alkyl;
- each of R 1′ , R 2′ , R 1′′ , R 2′′ , R 1 , R 2 , R 3 , R 4 , and R 5 is if present, independently, H, halo, hydroxy, thiol, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, optionally substituted hydroxyalkoxy, optionally substituted amino, azido, optionally substituted aryl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, or absent; wherein the combination of R 3 with one or more of R 1′ , R 1′′ , R 2′ , R 2′′ , or R 5 (e.g., the combination of R 1′ and R 3 , the combination of R 1′′ and R 3 , the combination of R 2′ and R 3 ,
- each of m′ and m′′ is, independently, an integer from 0 to 3 (e.g., from 0 to 2, from 0 to 1, from 1 to 3, or from 1 to 2);
- each of Y 1 , Y 2 , and Y 3 is, independently, O, S, Se, —NR N1 —, optionally substituted alkylene, or optionally substituted heteroalkylene, wherein R N1 is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, or absent;
- each Y 4 is, independently, H, hydroxy, thiol, boranyl, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted thioalkoxy, optionally substituted alkoxyalkoxy, or optionally substituted amino;
- each Y 5 is, independently, O, S, Se, optionally substituted alkylene (e.g., methylene), or optionally substituted heteroalkylene;
- n is an integer from 1 to 100,000;
- B is a nucleobase (e.g., a purine, a pyrimidine, or derivatives thereof), wherein the combination of B and R 1′ , the combination of B and R 2′ , the combination of B and R 1′′ , or the combination of B and R 2′′ can, taken together with the carbons to which they are attached, optionally form a bicyclic group (e.g., a bicyclic heterocyclyl) or wherein the combination of B, R 1′′ , and R 3 or the combination of B, R 2′′ , and R 3 can optionally form a tricyclic or tetracyclic group (e.g., a tricyclic or tetracyclic heterocyclyl, such as in Formula (IIo)-(IIp) herein).
- the modified nucleic acid or mRNA includes a modified ribose.
- the modified nucleic acid or mRNA includes n number of linked nucleosides having Formula (Ia-2)-(Ia-5) or a pharmaceutically acceptable salt or stereoisomer thereof.
- the modified nucleic acid or mRNA includes n number of linked nucleosides having Formula (Ib) or Formula (Ib-1):
- each R U is, independently, H, halo, or optionally substituted alkyl;
- each of R 1 , R 3′ , R 3′′ , and R 4 is, independently, H, halo, hydroxy, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, optionally substituted hydroxyalkoxy, optionally substituted amino, azido, optionally substituted aryl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, or absent; and wherein the combination of R 1 and R 3′ or the combination of R 1 and R 3′′ can be taken together to form optionally substituted alkylene or optionally substituted heteroalkylene (e.g., to produce a locked nucleic acid);
- each R 5 is, independently, H, halo, hydroxy, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, or absent;
- each of Y 1 , Y 2 , and Y 3 is, independently, O, S, Se, —NR N1 —, optionally substituted alkylene, or optionally substituted heteroalkylene, wherein R N1 is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, or optionally substituted aryl; each Y 4 is, independently, H, hydroxy, thiol, boranyl, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted alkoxyalkoxy, or optionally substituted amino;
- n is an integer from 1 to 100,000;
- B is a nucleobase
- the modified nucleic acid or mRNA includes n number of linked nucleosides having Formula (Ic):
- each R U is, independently, H, halo, or optionally substituted alkyl;
- each of B 1 , B 2 , and B 3 is, independently, a nucleobase (e.g., a purine, a pyrimidine, or derivatives thereof, as described herein), H, halo, hydroxy, thiol, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, optionally substituted hydroxyalkoxy, optionally substituted amino, azido, optionally substituted aryl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, or optionally substituted aminoalkynyl, wherein one and only one of B 1 , B 2 , and B 3 is a nucleobase;
- a nucleobase e.g., a purine, a pyrimidine, or derivatives thereof, as described herein
- H halo, hydroxy, thi
- each of R b1 , R b2 , R b3 , R 3 , and R 5 is, independently, H, halo, hydroxy, thiol, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, optionally substituted hydroxyalkoxy, optionally substituted amino, azido, optionally substituted aryl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl or optionally substituted aminoalkynyl;
- each of Y 1 , Y 2 , and Y 3 is, independently, O, S, Se, —NR N1 —, optionally substituted alkylene, or optionally substituted heteroalkylene, wherein R N1 is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, or optionally substituted aryl;
- each Y 4 is, independently, H, hydroxy, thiol, boranyl, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted thioalkoxy, optionally substituted alkoxyalkoxy, or optionally substituted amino;
- each Y 5 is, independently, O, S, Se, optionally substituted alkylene (e.g., methylene), or optionally substituted heteroalkylene;
- n is an integer from 1 to 100,000;
- ring including U can include one or more double bonds.
- the ring including U does not have a double bond between U-cB 3 R b3 or between CB 3 R b3 —C B2 R b2 .
- the modified nucleic acid or mRNA includes n number of linked nucleosides having Formula (Id):
- each R U is, independently, H, halo, or optionally substituted alkyl;
- each R 3 is, independently, H, halo, hydroxy, thiol, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, optionally substituted hydroxyalkoxy, optionally substituted amino, azido, optionally substituted aryl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, or optionally substituted aminoalkynyl;
- each of Y 1 , Y 2 , and Y 3 is, independently, O, S, Se, —NR N1 —, optionally substituted alkylene, or optionally substituted heteroalkylene, wherein R N1 is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, or optionally substituted aryl;
- each Y 4 is, independently, H, hydroxy, thiol, boranyl, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted thioalkoxy, optionally substituted alkoxyalkoxy, or optionally substituted amino;
- each Y 5 is, independently, O, S, optionally substituted alkylene (e.g., methylene), or optionally substituted heteroalkylene;
- n is an integer from 1 to 100,000;
- B is a nucleobase (e.g., a purine, a pyrimidine, or derivatives thereof).
- the modified nucleic acid molecules or modified mRNA includes n number of linked nucleosides having Formula (Ie):
- each of U′ and U′′ is, independently, O, S, N(R U ) nu , or C(R U ) nu , wherein nu is an integer from 0 to 2 and each R U is, independently, H, halo, or optionally substituted alkyl;
- each R 6 is, independently, H, halo, hydroxy, thiol, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, optionally substituted hydroxyalkoxy, optionally substituted amino, azido, optionally substituted aryl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, or optionally substituted aminoalkynyl;
- each Y 5′ is, independently, O, S, optionally substituted alkylene (e.g., methylene or ethylene), or optionally substituted heteroalkylene;
- n is an integer from 1 to 100,000;
- B is a nucleobase (e.g., a purine, a pyrimidine, or derivatives thereof).
- the modified nucleic acid or mRNA includes n number of linked nucleosides having Formula (If) or (If-1):
- each of U′ and U′′ is, independently, O, S, N,N(R U ) nu , or C(R U ) nu , wherein nu is an integer from 0 to 2 and each R U is, independently, H, halo, or optionally substituted alkyl (e.g., U′ is O and U′′ is N);
- each of R 1′ , R 2′ , R 1′′ , R 2′′ , R 3 , and R 4 is, independently, H, halo, hydroxy, thiol, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, optionally substituted hydroxyalkoxy, optionally substituted amino, azido, optionally substituted aryl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, or absent; and wherein the combination of R 1′ and R 3 , the combination of R 1′′ and R 3 , the combination of R 2′ and R 3 , or the combination of R 2′′ and R 3 can be taken together to form optionally substituted alkylene or optionally substituted heteroalkylene (e.g., to produce a locked nucleic acid);each of m
- each of Y 1 , Y 2 , and Y 3 is, independently, O, S, Se, —NR N1 —, optionally substituted alkylene, or optionally substituted heteroalkylene, wherein R N1 is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, or absent;
- each Y 4 is, independently, H, hydroxy, thiol, boranyl, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted thioalkoxy, optionally substituted alkoxyalkoxy, or optionally substituted amino;
- each Y 5 is, independently, O, S, Se, optionally substituted alkylene (e.g., methylene), or optionally substituted heteroalkylene;
- n is an integer from 1 to 100,000;
- B is a nucleobase (e.g., a purine, a pyrimidine, or derivatives thereof).
- the ring including U has one or two double bonds.
- the modified nucleic acid or mRNA e.g., Formulas (Ia)-Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IV1), and (IXa)-(IXr)), each of R 1 , R 1′ , and R 1′′ , if present, is H.
- each of R 2 , R 2′ , and R 2′′ is, independently, H, halo (e.g., fluoro), hydroxy, optionally substituted alkoxy (e.g., methoxy or ethoxy), or optionally substituted alkoxyalkoxy.
- alkoxyalkoxy is —(CH 2 ) s2 (OCH 2 CH 2 ) s1 (CH 2 ) s3 OR′, wherein s1 is an integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4), each of s2 and s3, independently, is an integer from 0 to 10 (e.g., from 0 to 4, from 0 to 6, from 1 to 4, from 1 to 6, or from 1 to 10), and R′ is H or C 1-20 alkyl). In some embodiments, s2 is 0, s1 is 1 or 2, s3 is 0 or 1, and R′ is C 1-6 alkyl.
- the modified nucleic acid or mRNA e.g., Formulas (Ia)-Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IV1), and (IXa)-(IXr)), each of R 2 , R 2′ , and R 2′′ , if present, is H.
- each of R 1 , R 1′ , and R 1′′ is, independently, H, halo (e.g., fluoro), hydroxy, optionally substituted alkoxy (e.g., methoxy or ethoxy), or optionally substituted alkoxyalkoxy.
- alkoxyalkoxy is —(CH 2 ) s2 (OCH 2 CH 2 ) s1 (CH 2 ) s3 OR′, wherein s1 is an integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4), each of s2 and s3, independently, is an integer from 0 to 10 (e.g., from 0 to 4, from 0 to 6, from 1 to 4, from 1 to 6, or from 1 to 10), and R′ is H or C 1-20 alkyl). In some embodiments, s2 is 0, s1 is 1 or 2, s3 is 0 or 1, and R′ is C 1-6 alkyl.
- each of R 3 , R 4 , and R 5 is, independently, H, halo (e.g., fluoro), hydroxy, optionally substituted alkyl, optionally substituted alkoxy (e.g., methoxy or ethoxy), or optionally substituted alkoxyalkoxy.
- R 3 is H, R 4 is H, R 5 is H, or R 3 , R 4 , and R 5 are all H.
- R 3 is C 1-6 alkyl
- R 4 is C 1-6 alkyl
- R 5 is C 1-6 alkyl
- R 3 and R 4 are both H
- R 5 is C 1-6 alkyl.
- R 3 and R 5 join together to form optionally substituted alkylene or optionally substituted heteroalkylene and, taken together with the carbons to which they are attached, provide an optionally substituted heterocyclyl (e.g., a bicyclic, tricyclic, or tetracyclic heterocyclyl, such as trans-3′,4′ analogs, wherein R 3 and R 5 join together to form heteroalkylene (e.g., —(CH 2 ) b1 O(CH 2 ) b2 O(CH 2 ) b3 —, wherein each of b
- modified nucleic acids or mRNA e.g., Formulas (Ia)-Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IV1), and (IXa)-(IXr)
- R 3 and one or more of R 1′ , R 1′′ , R 2′ , R 2′′ , or R 5 join together to form optionally substituted alkylene or optionally substituted heteroalkylene and, taken together with the carbons to which they are attached, provide an optionally substituted heterocyclyl (e.g., a bicyclic, tricyclic, or tetracyclic heterocyclyl, R 3 and one or more of R 1′ , R 1′′ , R 2′ , R 2′′ , or R 5 join together to form heteroalkylene (e.g.,
- R 5 and one or more of R 1′ , R 1′′ , R 2′ , or R 2′′ join together to form optionally substituted alkylene or optionally substituted heteroalkylene and, taken together with the carbons to which they are attached, provide an optionally substituted heterocyclyl (e.g., a bicyclic, tricyclic, or tetracyclic heterocyclyl, R 5 and one or more of R 1′ , R 1′′ , R 2′ , or R 2′′ join together to form heteroalkylene (e.g., —(CH 2 )
- each Y 2 is, independently, O, S, or —NR N1 —, wherein R N1 is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, or optionally substituted aryl.
- Y 2 is NR N1 —, wherein R N1 is H or optionally substituted alkyl (e.g., C 1-6 alkyl, such as methyl, ethyl, isopropyl, or n-propyl).
- R N1 is H or optionally substituted alkyl (e.g., C 1-6 alkyl, such as methyl, ethyl, isopropyl, or n-propyl).
- each Y 3 is, independently, O or S.
- R 1 is H; each R 2 is, independently, H, halo (e.g., fluoro), hydroxy, optionally substituted alkoxy (e.g., methoxy or ethoxy), or optionally substituted alkoxyalkoxy (e.g., —(CH 2 ) s2 (OCH 2 CH 2 ) s1 (CH 2 ) s3 OR′, wherein s1 is an integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4), each of s2 and s3, independently, is an integer from 0
- R 3 is H, halo (e.g., fluoro), hydroxy, optionally substituted alkyl, optionally substituted alkoxy (e.g., methoxy or ethoxy), or optionally substituted alkoxyalkoxy.
- halo e.g., fluoro
- hydroxy optionally substituted alkyl
- optionally substituted alkoxy e.g., methoxy or ethoxy
- optionally substituted alkoxyalkoxy optionally substituted alkoxyalkoxy.
- each Y 1 is, independently, O or —NR N1 —, wherein R N1 is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, or optionally substituted aryl (e.g., wherein R N1 is H or optionally substituted alkyl (e.g., C 1-6 alkyl, such as methyl, ethyl, isopropyl, or n-propyl)); and each Y 4 is, independently, H, hydroxy, thiol, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted thioalkoxy, optionally substituted alkoxyalkoxy, or optionally substituted amino.
- R N1 is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, or optionally substituted aryl (e.g., wherein R N1 is H or optionally substituted alkyl (e.g.
- each R 1 is, independently, H, halo (e.g., fluoro), hydroxy, optionally substituted alkoxy (e.g., methoxy or ethoxy), or optionally substituted alkoxyalkoxy (e.g., —(CH 2 ) s2 (OCH 2 CH 2 ) s1 (CH 2 ) s3 OR′, wherein s1 is an integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4), each of s2 and s3, independently, is an integer from 0 to 10 (e
- R 3 is H, halo (e.g., fluoro), hydroxy, optionally substituted alkyl, optionally substituted alkoxy (e.g., methoxy or ethoxy), or optionally substituted alkoxyalkoxy.
- halo e.g., fluoro
- hydroxy optionally substituted alkyl
- optionally substituted alkoxy e.g., methoxy or ethoxy
- optionally substituted alkoxyalkoxy optionally substituted alkoxyalkoxy.
- each Y 1 is independently, O or —NR N1 —, wherein R N1 is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, or optionally substituted aryl (e.g., wherein R N1 is H or optionally substituted alkyl (e.g., C 1-6 alkyl, such as methyl, ethyl, isopropyl, or n-propyl)); and each Y 4 is, independently, H, hydroxy, thiol, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted thioalkoxy, optionally substituted alkoxyalkoxy, or optionally substituted amino.
- R N1 is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, or optionally substituted aryl (e.g., wherein R N1 is H or optionally substituted alkyl (e.g.,
- the ring including U is in the ⁇ -D (e.g., ⁇ -D-ribo) configuration.
- the ring including U is in the ⁇ -L (e.g., ⁇ -L-ribo) configuration.
- one or more B is not pseudouridine ( ⁇ ) or 5-methyl-cytidine (m 5 C).
- about 10% to about 100% of B nucleobases is not w or m 5 C (e.g., from 10% to 20%, from 10% to 35%, from 10% to 50%, from 10% to 60%, from 10% to 75%, from 10% to 90%, from 10% to 95%, from 10% to 98%, from 10% to 99%, from 20% to 35%, from 20% to 50%, from 20% to 60%, from 20% to 75%, from 20% to 90%, from 20% to 95%, from 20% to 98%, from 20% to 99%, from 20% to 100%, from 50% to 60%, from 50% to 75%, from 50% to 90%, from 50% to 95%, from 50% to 98%, from 50% to 99%, from 50% to 100%, from 75% to 90%, from 75% to 95%, from 75% to 98%, from 75% to 99%, and from 75% to 100% of n number of B is not ⁇ or m 5 C). In some embodiments, B is not ⁇ or m 5 C.
- modified nucleic acids or mRNA e.g., Formulas (Ia)-(Ia-5), (Ib)-(If-1), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IV1), and (IXa)-(IXr)
- B is an unmodified nucleobase selected from cytosine, guanine, uracil and adenine
- at least one of Y 1 , Y 2 , or Y 3 is not O.
- modified nucleic acids or mRNA includes a modified ribose. In some embodiments, modified nucleic acids or mRNA includes n number of linked nucleosides having Formula (IIa)-(IIc):
- U is O or C(R U ) nu , wherein nu is an integer from 0 to 2 and each R U is, independently, H, halo, or optionally substituted alkyl (e.g., U is —CH 2 — or —CH—).
- each of R 1 , R 2 , R 3 , R 4 , and R 5 is, independently, H, halo, hydroxy, thiol, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, optionally substituted hydroxyalkoxy, optionally substituted amino, azido, optionally substituted aryl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, or absent (e.g., each R 1 and R 2 is, independently, H, halo, hydroxy, optionally substituted alkyl, or optionally substituted alkoxy; each R 3 and R 4 is, independently, H or optionally substituted alkyl; and R 5 is H or hydroxy), and - - - is a single bond or double bond.
- the modified nucleic acid or mRNA includes n number of linked nucleosides having Formula (IIb-1)-(IIb-2):
- U is O or C(R U ) nu , wherein nu is an integer from 0 to 2 and each R U is, independently, H, halo, or optionally substituted alkyl (e.g., U is —CH 2 — or —CH—).
- each of R 1 and R 2 is, independently, H, halo, hydroxy, thiol, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, optionally substituted hydroxyalkoxy, optionally substituted amino, azido, optionally substituted aryl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, or absent (e.g., each R 1 and R 2 is, independently, H, halo, hydroxy, optionally substituted alkyl, or optionally substituted alkoxy, e.g., H, halo, hydroxy, alkyl, or alkoxy).
- R 2 is hydroxy or optionally substituted alkoxy (e.g., methoxy, ethoxy, or any described herein).
- the modified nucleic acid or mRNA includes n number of linked nucleosides having Formula (IIc-1)-(IIc-4):
- U is O or C(R U ) nu , wherein nu is an integer from 0 to 2 and each R U is, independently, H, halo, or optionally substituted alkyl (e.g., U is —CH 2 — or —CH—).
- each of R 1 , R 2 , and R 3 is, independently, H, halo, hydroxy, thiol, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, optionally substituted hydroxyalkoxy, optionally substituted amino, azido, optionally substituted aryl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, or absent (e.g., each R 1 and R 2 is, independently, H, halo, hydroxy, optionally substituted alkyl, or optionally substituted alkoxy, e.g., H, halo, hydroxy, alkyl, or alkoxy; and each R 3 is, independently, H or optionally substituted alkyl)).
- R 2 is optionally substituted alkoxy (e.g., methoxy or ethoxy, or any described herein).
- R 1 is optionally substituted alkyl
- R 2 is hydroxy.
- R 1 is hydroxy
- R 2 is optionally substituted alkyl.
- R 3 is optionally substituted alkyl.
- the modified nucleic acids or mRNA includes an acyclic modified ribose. In some embodiments, the modified nucleic acids or mRNA includes n number of linked nucleosides having Formula (IId)-(IIf):
- the modified nucleic acids or mRNA includes an acyclic modified hexitol. In some embodiments, the modified nucleic acids or mRNA includes n number of linked nucleosides having Formula (IIg)-(IIj):
- the modified nucleic acids or mRNA includes a sugar moiety having a contracted or an expanded ribose ring. In some embodiments, the modified nucleic acids or mRNA includes n number of linked nucleosides having Formula (IIk)-(IIm):
- each of R 1′ , R 1′′ , R 2′ , and R 2′′ is, independently, H, halo, hydroxy, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, or absent; and wherein the combination of R 2′ and R 3 or the combination of R 2′′ and R 3 can be taken together to form optionally substituted alkylene or optionally substituted heteroalkylene.
- the modified nucleic acids or mRNA includes a locked modified ribose. In some embodiments, the modified nucleic acids or mRNA includes n number of linked nucleosides having Formula (IIn):
- R 3′ is O, S, or —NR N1 —, wherein R N1 is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, or optionally substituted aryl and R 3′′ is optionally substituted alkylene (e.g., —CH 2 —, —CH 2 CH 2 —, or —CH 2 CH 2 CH 2 —) or optionally substituted heteroalkylene (e.g., —CH 2 NH—, —CH 2 CH 2 NH—, —CH 2 OCH 2 —, or —CH 2 CH 2 OCH 2 —)(e.g., R 3′ is O and R 3′′ is optionally substituted alkylene (e.g., —CH 2 —, —CH 2 CH 2 —, or —CH 2 CH 2 CH 2 —)).
- the modified nucleic acid or mRNA includes n number of linked nucleosides having Formula (IIn-1)-(II-n2):
- R 3′ is O, S, or —NR N1 —, wherein R N1 is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, or optionally substituted aryl and R 3′′ is optionally substituted alkylene (e.g., —CH 2 —, —CH 2 CH 2 —, or —CH 2 CH 2 CH 2 —) or optionally substituted heteroalkylene (e.g., —CH 2 NH—, —CH 2 CH 2 NH—, —CH 2 OCH 2 —, or —CH 2 CH 2 OCH 2 —) (e.g., R 3′ is O and R 3′′ is optionally substituted alkylene (e.g., —CH 2 —, —CH 2 CH 2 —, or —CH 2 CH 2 CH 2 —)).
- the modified nucleic acids or mRNA includes a locked modified ribose that forms a tetracyclic heterocyclyl. In some embodiments, the modified nucleic acids or mRNA includes n number of linked nucleosides having Formula (IIo):
- R 12a , R 12c , T 1′ , T 1′′ , T 2′ , T 2′′ , V 1 , and V 3 are as described herein.
- any of the formulas for the modified nucleic acids or mRNA can include one or more nucleobases described herein (e.g., Formulas (b1)-(b43)).
- the present invention provides methods of preparing a modified nucleic acids or mRNA comprising at least one nucleotide (e.g., mRNA molecule), wherein the modified nucleic acid comprises n number of nucleosides having Formula (Ia), as defined herein:
- the present invention provides methods of amplifying a modified nucleic acids or mRNA comprising at least one nucleotide (e.g., mRNA molecule), the method comprising: reacting a compound of Formula (IIIa), as defined herein, with a primer, a cDNA template, and an RNA polymerase.
- a nucleotide e.g., mRNA molecule
- the present invention provides methods of preparing a modified nucleic acids or mRNA comprising at least one nucleotide (e.g., mRNA molecule), wherein the modified nucleic acid comprises n number of nucleosides having Formula (Ia-1), as defined herein:
- the present invention provides methods of amplifying a modified nucleic acids or mRNA comprising at least one nucleotide (e.g., mRNA molecule), the method comprising reacting a compound of Formula (IIIa-1), as defined herein, with a primer, a cDNA template, and an RNA polymerase.
- a nucleotide e.g., mRNA molecule
- the present invention provides methods of preparing a modified mRNA comprising at least one nucleotide (e.g., mRNA molecule), wherein the polynucleotide comprises n number of nucleosides having Formula (Ia-2), as defined herein:
- the present invention provides methods of amplifying a modified mRNA comprising at least one nucleotide (e.g., mRNA molecule), the method comprising:
- reaction may be repeated from 1 to about 7,000 times.
- B may be a nucleobase of Formula (b1)-(b43).
- modified nucleic acids and mRNA can optionally include 5′ and/or 3′ flanking regions, which are described herein.
- RNA e.g. mRNA
- the present invention also includes building blocks, e.g., modified ribonucleosides, modified ribonucleotides, of modified RNA (mmRNA) molecules.
- modified RNA mmRNA
- these mRNA can be useful for preparing the modified nucleic acids or mRNA of the invention.
- the building block molecule has Formula (IIIa) or (IIIa-1):
- the building block molecule which may be incorporated into a modified nucleic acid or mRNA, has Formula (IVa)-(IVb):
- Formula (IVa) or (IVb) is combined with a modified uracil (e.g., any one of formulas (b1)-(b9), (b21)-(b23), and (b28)-(b31), such as formula (bl), (b8), (b28), (b29), or (b30)).
- a modified uracil e.g., any one of formulas (b1)-(b9), (b21)-(b23), and (b28)-(b31), such as formula (bl), (b8), (b28), (b29), or (b30)
- Formula (IVa) or (IVb) is combined with a modified cytosine (e.g., any one of formulas (b10)-(b14), (b24), (b25), and (b32)-(b36), such as formula (b10) or (b32)).
- a modified cytosine e.g., any one of formulas (b10)-(b14), (b24), (b25), and (b32)-(b36), such as formula (b10) or (b32)
- Formula (IVa) or (IVb) is combined with a modified guanine (e.g., any one of formulas (b15)-(b17) and (b37)-(b40)).
- Formula (IVa) or (IVb) is combined with a modified adenine (e.g., any one of formulas (b18)-(b20) and (b41)-(b43)).
- the building block molecule which may be incorporated into a modified nucleic acid molecule or mRNA, has Formula (IVc)-(IVk):
- one of Formulas (IVc)-(IVk) is combined with a modified uracil (e.g., any one of formulas (b1)-(b9), (b21)-(b23), and (b28)-(b31), such as formula (bl), (b8), (b28), (b29), or (b30)).
- a modified uracil e.g., any one of formulas (b1)-(b9), (b21)-(b23), and (b28)-(b31), such as formula (bl), (b8), (b28), (b29), or (b30)
- one of Formulas (IVc)-(IVk) is combined with a modified cytosine (e.g., any one of formulas (b10)-(b14), (b24), (b25), and (b32)-(b36), such as formula (b10) or (b32)).
- one of Formulas (IVc)-(IVk) is combined with a modified guanine (e.g., any one of formulas (b15)-(b17) and (b37)-(b40)).
- one of Formulas (IVc)-(IVk) is combined with a modified adenine (e.g., any one of formulas (b18)-(b20) and (b41)-(b43)).
- the building block molecule which may be incorporated into a modified nucleic acid molecule or mRNA, has Formula (Va) or (Vb):
- B is as described herein (e.g., any one of (b1)-(b43)).
- the building block molecule which may be incorporated into a modified nucleic acid molecule or mRNA, has Formula (IXa)-(IXd):
- one of Formulas (IXa)-(IXd) is combined with a modified uracil (e.g., any one of formulas (bl)-(b9), (b21)-(b23), and (b28)-(b31), such as formula (bl), (b8), (b28), (b29), or (b30)).
- a modified uracil e.g., any one of formulas (bl)-(b9), (b21)-(b23), and (b28)-(b31), such as formula (bl), (b8), (b28), (b29), or (b30)
- one of Formulas (IXa)-(IXd) is combined with a modified cytosine (e.g., any one of formulas (b10)-(b14), (b24), (b25), and (b32)-(b36), such as formula (b10) or (b32)).
- one of Formulas (IXa)-(IXd) is combined with a modified guanine (e.g., any one of formulas (b15)-(b17) and (b37)-(b40)).
- one of Formulas (IXa)-(IXd) is combined with a modified adenine (e.g., any one of formulas (b18)-(b20) and (b41)-(b43)).
- the building block molecule which may be incorporated into a modified nucleic acid molecule or mRNA, has Formula (IXe)-(IXg):
- one of Formulas (IXe)-(IXg) is combined with a modified uracil (e.g., any one of formulas (b1)-(b9), (b21)-(b23), and (b28)-(b31), such as formula (bl), (b8), (b28), (b29), or (b30)).
- a modified uracil e.g., any one of formulas (b1)-(b9), (b21)-(b23), and (b28)-(b31), such as formula (bl), (b8), (b28), (b29), or (b30)
- one of Formulas (IXe)-(IXg) is combined with a modified cytosine (e.g., any one of formulas (b10)-(b14), (b24), (b25), and (b32)-(b36), such as formula (b10) or (b32)).
- one of Formulas (IXe)-(IXg) is combined with a modified guanine (e.g., any one of formulas (b15)-(b17) and (b37)-(b40)).
- one of Formulas (IXe)-(IXg) is combined with a modified adenine (e.g., any one of formulas (b18)-(b20) and (b41)-(b43)).
- the building block molecule which may be incorporated into a modified nucleic acid molecule or mRNA, has Formula (IXh)-(IXk):
- one of Formulas (IXh)-(IXk) is combined with a modified uracil (e.g., any one of formulas (b1)-(b9), (b21)-(b23), and (b28)-(b31), such as formula (bl), (b8), (b28), (b29), or (b30)).
- a modified uracil e.g., any one of formulas (b1)-(b9), (b21)-(b23), and (b28)-(b31), such as formula (bl), (b8), (b28), (b29), or (b30)
- one of Formulas (IXh)-(IXk) is combined with a modified cytosine (e.g., any one of formulas (b10)-(b14), (b24), (b25), and (b32)-(b36), such as formula (b10) or (b32)).
- one of Formulas (IXh)-(IXk) is combined with a modified guanine (e.g., any one of formulas (b15)-(b17) and (b37)-(b40)).
- one of Formulas (IXh)-(IXk) is combined with a modified adenine (e.g., any one of formulas (b18)-(b20) and (b41)-(b43)).
- the building block molecule which may be incorporated into a modified nucleic acid molecule or mRNA, has Formula (IXl)-(IXr):
- each r1 and r2 is, independently, an integer from 0 to 5 (e.g., from 0 to 3, from 1 to 3, or from 1 to 5) and B is as described herein (e.g., any one of (b1)-(b43)).
- one of Formulas (IXl)-(IXr) is combined with a modified uracil (e.g., any one of formulas (b1)-(b9), (b21)-(b23), and (b28)-(b31), such as formula (b1), (b8), (b28), (b29), or (b30)).
- one of Formulas (IXl)-(IXr) is combined with a modified cytosine (e.g., any one of formulas (b10)-(b14), (b24), (b25), and (b32)-(b36), such as formula (b10) or (b32)).
- one of Formulas (IXl)-(IXr) is combined with a modified guanine (e.g., any one of formulas (b15)-(b17) and (b37)-(b40)).
- one of Formulas (IXl)-(IXr) is combined with a modified adenine (e.g., any one of formulas (b18)-(b20) and (b41)-(b43)).
- the building block molecule which may be incorporated into a modified nucleic acid molecules or mRNA, can be selected from the group consisting of:
- each r is, independently, an integer from 0 to 5 (e.g., from 0 to 3, from 1 to 3, or from 1 to 5).
- the building block molecule which may be incorporated into a modified nucleic acid molecule or mRNA, can be selected from the group consisting of:
- each r is, independently, an integer from 0 to 5 (e.g., from 0 to 3, from 1 to 3, or from 1 to 5) and s1 is as described herein.
- the building block molecule which may be incorporated into a nucleic acid (e.g., RNA, mRNA, or mRNA), is a modified uridine (e.g., selected from the group consisting of:
- Y 1 , Y 3 , Y 4 , Y 6 , and r are as described herein (e.g., each r is, independently, an integer from 0 to 5, such as from 0 to 3, from 1 to 3, or from 1 to 5)).
- the building block molecule which may be incorporated into a modified nucleic acid molecule or mRNA, is a modified cytidine (e.g., selected from the group consisting of:
- the building block molecule which may be incorporated into a modified nucleic acid molecule or mRNA, can be:
- each r is, independently, an integer from 0 to 5 (e.g., from 0 to 3, from 1 to 3, or from 1 to 5).
- the building block molecule which may be incorporated into a modified nucleic acid molecule or mRNA, is a modified adenosine (e.g., selected from the group consisting of:
- Y 1 , Y 3 , Y 4 , Y 6 , and r are as described herein (e.g., each r is, independently, an integer from 0 to 5, such as from 0 to 3, from 1 to 3, or from 1 to 5)).
- the building block molecule which may be incorporated into a modified nucleic acid molecule or mRNA, is a modified guanosine (e.g., selected from the group consisting of:
- Y 1 , Y 3 , Y 4 , Y 6 , and r are as described herein (e.g., each r is, independently, an integer from 0 to 5, such as from 0 to 3, from 1 to 3, or from 1 to 5)).
- the chemical modification can include replacement of C group at C-5 of the ring (e.g., for a pyrimidine nucleoside, such as cytosine or uracil) with N (e.g., replacement of the >CH group at C-5 with >NR N1 group, wherein R N 1 is H or optionally substituted alkyl).
- the mRNA molecule which may be incorporated into a modified nucleic acid molecule or mRNA, can be:
- each r is, independently, an integer from 0 to 5 (e.g., from 0 to 3, from 1 to 3, or from 1 to 5).
- the chemical modification can include replacement of the hydrogen at C-5 of cytosine with halo (e.g., Br, Cl, F, or I) or optionally substituted alkyl (e.g., methyl).
- halo e.g., Br, Cl, F, or I
- optionally substituted alkyl e.g., methyl
- the mRNA molecule which may be incorporated into a modified nucleic acid or mRNA, can be:
- each r is, independently, an integer from 0 to 5 (e.g., from 0 to 3, from 1 to 3, or from 1 to 5).
- the chemical modification can include a fused ring that is formed by the NH 2 at the C-4 position and the carbon atom at the C-5 position.
- the building block molecule which may be incorporated into a modified nucleic acid molecule or mRNA, can be:
- each r is, independently, an integer from 0 to 5 (e.g., from 0 to 3, from 1 to 3, or from 1 to 5).
- modified nucleosides and nucleotides which may be incorporated into a modified nucleic acid or mRNA (e.g., RNA or mRNA, as described herein), can be modified on the sugar of the ribonucleic acid.
- mRNA e.g., RNA or mRNA, as described herein
- the 2′ hydroxyl group (OH) can be modified or replaced with a number of different substituents.
- substitutions at the 2′-position include, but are not limited to, H, halo, optionally substituted C 1-6 alkyl; optionally substituted C 1-6 alkoxy; optionally substituted C 6-10 aryloxy; optionally substituted C 3-8 cycloalkyl; optionally substituted C 3-8 cycloalkoxy; optionally substituted C 6-10 aryloxy; optionally substituted C 6-10 aryl-C 1-6 alkoxy, optionally substituted C 1-12 (heterocyclyl)oxy; a sugar (e.g., ribose, pentose, or any described herein); a polyethyleneglycol (PEG), —O(CH 2 CH 2 O)—CH 2 CH 2 OR where R is H or optionally substituted alkyl, and n is an integer from 0 to 20 (e.g., from 0 to 4, from 0 to 8, from 0 to 10, from 0 to 16, from 1 to 4, from 1 to 8, from 1 to 10, from 1 to 16, from 1 to 16,
- RNA includes the sugar group ribose, which is a 5-membered ring having an oxygen.
- modified nucleotides include replacement of the oxygen in ribose (e.g., with S, Se, or alkylene, such as methylene or ethylene); addition of a double bond (e.g., to replace ribose with cyclopentenyl or cyclohexenyl); ring contraction of ribose (e.g., to form a 4-membered ring of cyclobutane or oxetane); ring expansion of ribose (e.g., to form a 6- or 7-membered ring having an additional carbon or heteroatom, such as for anhydrohexitol, altritol, mannitol, cyclohexanyl, cyclohexenyl, and morpholino that also has a phosphoramidate backbone); multicyclic forms (e.
- the sugar group can also contain one or more carbons that possess the opposite stereochemical configuration than that of the corresponding carbon in ribose.
- a modified nucleic acid molecule or mRNA can include nucleotides containing, e.g., arabinose, as the sugar.
- nucleoside is defined as a compound containing a sugar molecule (e.g., a pentose or ribose) or a derivative thereof in combination with an organic base (e.g., a purine or pyrimidine) or a derivative thereof.
- organic base e.g., a purine or pyrimidine
- nucleotide is defined as a nucleoside including a phosphate group.
- modified nucleotides e.g., modified mRNA
- modified mRNA may by synthesized by any useful method, as described herein (e.g., chemically, enzymatically, or recombinantly to include one or more modified or non-natural nucleosides).
- the modified nucleotide base pairing encompasses not only the standard adenosine-thymine, adenosine-uracil, or guanosine-cytosine base pairs, but also base pairs formed between nucleotides and/or modified nucleotides comprising non-standard or modified bases, wherein the arrangement of hydrogen bond donors and hydrogen bond acceptors permits hydrogen bonding between a non-standard base and a standard base or between two complementary non-standard base structures.
- non-standard base pairing is the base pairing between the modified nucleotide inosine and adenine, cytosine or uracil.
- the modified nucleosides and nucleotides can include a modified nucleobase.
- nucleobases found in RNA include, but are not limited to, adenine, guanine, cytosine, and uracil.
- nucleobase found in DNA include, but are not limited to, adenine, guanine, cytosine, and thymine.
- These nucleobases can be modified or wholly replaced to provide modified nucleic acids or mRNA molecules having enhanced properties, e.g., resistance to nucleases through disruption of the binding of a major groove binding partner.
- Table 1 below identifies the chemical faces of each canonical nucleotide. Circles identify the atoms comprising the respective chemical regions.
- B is a modified uracil.
- exemplary modified uracils include those having Formula (b1)-(b5):
- each of T 1′ , T 1′′ , T 2 , and T 2′′ is, independently, H, optionally substituted alkyl, optionally substituted alkoxy, or optionally substituted thioalkoxy, or the combination of T 1′ and T 1′′ or the combination of T 2′ and T 2 join together (e.g., as in T 2 ) to form O (oxo), S (thio), or Se (seleno);
- each of V 1 and V 2 is, independently, O, S, N(R Vb ) nv , or C(R Vb ) nv , wherein nv is an integer from 0 to 2 and each R Vb is, independently, H, halo, optionally substituted amino acid, optionally substituted alkyl, optionally substituted haloalkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted hydroxyalkyl, optionally substituted hydroxyalkenyl, optionally substituted hydroxyalkynyl, optionally substituted aminoalkyl (e.g., substituted with an N-protecting group, such as any described herein, e.g., trifluoroacetyl), optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, optionally substituted acylaminoalkyl
- R 10 is H, halo, optionally substituted amino acid, hydroxy, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aminoalkyl, optionally substituted hydroxyalkyl, optionally substituted hydroxyalkenyl, optionally substituted hydroxyalkynyl, optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, optionally substituted alkoxy, optionally substituted alkoxycarbonylalkyl, optionally substituted alkoxycarbonylalkenyl, optionally substituted alkoxycarbonylalkynyl, optionally substituted alkoxycarbonylalkoxy, optionally substituted carboxyalkoxy, optionally substituted carboxyalkyl, or optionally substituted carbamoylalkyl;
- R 11 is H or optionally substituted alkyl
- R 12a is H, optionally substituted alkyl, optionally substituted hydroxyalkyl, optionally substituted hydroxyalkenyl, optionally substituted hydroxyalkynyl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, or optionally substituted aminoalkynyl, optionally substituted carboxyalkyl (e.g., optionally substituted with hydroxy), optionally substituted carboxyalkoxy, optionally substituted carboxyaminoalkyl, or optionally substituted carbamoylalkyl; and
- R 12c is H, halo, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted thioalkoxy, optionally substituted amino, optionally substituted hydroxyalkyl, optionally substituted hydroxyalkenyl, optionally substituted hydroxyalkynyl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, or optionally substituted aminoalkynyl.
- exemplary modified uracils include those having Formula (b6)-(b9):
- each of T 1′ , T 1′′ , T 2′ , and T 2′′ is, independently, H, optionally substituted alkyl, optionally substituted alkoxy, or optionally substituted thioalkoxy, or the combination of T 1′ and T 1′′ join together (e.g., as in T 1 ) or the combination of T 2′ and T 2′′ join together (e.g., as in T 2 ) to form O (oxo), S (thio), or Se (seleno), or each T 1 and T 2 is, independently, O (oxo), S (thio), or Se (seleno);
- each of W 1 and W 2 is, independently, N(R wa ) nw , or C(R Wa ) nw , wherein nw is an integer from 0 to 2 and each R Wa is, independently, H, optionally substituted alkyl, or optionally substituted alkoxy;
- each V 3 is, independently, O, S, N(R Va ) nv , or C(R Va ) nv , wherein nv is an integer from 0 to 2 and each R Va is, independently, H, halo, optionally substituted amino acid, optionally substituted alkyl, optionally substituted hydroxyalkyl, optionally substituted hydroxyalkenyl, optionally substituted hydroxyalkynyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted heterocyclyl, optionally substituted alkheterocyclyl, optionally substituted alkoxy, optionally substituted alkenyloxy, or optionally substituted alkynyloxy, optionally substituted aminoalkyl (e.g., substituted with an N-protecting group, such as any described herein, e.g., trifluoroacetyl, or sulfoalkyl), optionally substituted aminoalkenyl, optionally substituted aminoalkyn
- R 12a is H, optionally substituted alkyl, optionally substituted hydroxyalkyl, optionally substituted hydroxyalkenyl, optionally substituted hydroxyalkynyl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, optionally substituted carboxyalkyl (e.g., optionally substituted with hydroxy and/or an O-protecting group), optionally substituted carboxyalkoxy, optionally substituted carboxyaminoalkyl, optionally substituted carbamoylalkyl, or absent;
- R 12b is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted hydroxyalkyl, optionally substituted hydroxyalkenyl, optionally substituted hydroxyalkynyl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, optionally substituted alkaryl, optionally substituted heterocyclyl, optionally substituted alkheterocyclyl,
- optionally substituted amino acid optionally substituted alkoxycarbonylacyl, optionally substituted alkoxycarbonylalkoxy, optionally substituted alkoxycarbonylalkyl, optionally substituted alkoxycarbonylalkenyl, optionally substituted alkoxycarbonylalkynyl, optionally substituted alkoxycarbonylalkoxy, optionally substituted carboxyalkyl (e.g., optionally substituted with hydroxy and/or an O-protecting group), optionally substituted carboxyalkoxy, optionally substituted carboxyaminoalkyl, or optionally substituted carbamoylalkyl,
- R 12c is H, halo, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted thioalkoxy, optionally substituted amino, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, or optionally substituted aminoalkynyl.
- modified uracils include those having Formula (b28)-(b31):
- each of T 1 and T 2 is, independently, O (oxo), S (thio), or Se (seleno);
- each R Vb′ and R Vb′′ is, independently, H, halo, optionally substituted amino acid, optionally substituted alkyl, optionally substituted haloalkyl, optionally substituted hydroxyalkyl, optionally substituted hydroxyalkenyl, optionally substituted hydroxyalkynyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkyl (e.g., substituted with an N-protecting group, such as any described herein, e.g., trifluoroacetyl, or sulfoalkyl), optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, optionally substituted acylaminoalkyl (e.g., substituted with an N-protecting group, such as any described herein, e.g., trifluoroacetyl),
- R 12a is H, optionally substituted alkyl, optionally substituted carboxyaminoalkyl, optionally substituted aminoalkyl (e.g., e.g., substituted with an N-protecting group, such as any described herein, e.g., trifluoroacetyl, or sulfoalkyl), optionally substituted aminoalkenyl, or optionally substituted aminoalkynyl; and
- R 12b is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted hydroxyalkyl, optionally substituted hydroxyalkenyl, optionally substituted hydroxyalkynyl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, optionally substituted aminoalkynyl (e.g., e.g., substituted with an N-protecting group, such as any described herein, e.g., trifluoroacetyl, or sulfoalkyl),
- optionally substituted alkoxycarbonylacyl optionally substituted alkoxycarbonylalkoxy, optionally substituted alkoxycarbonylalkyl, optionally substituted alkoxycarbonylalkenyl, optionally substituted alkoxycarbonylalkynyl, optionally substituted alkoxycarbonylalkoxy, optionally substituted carboxyalkoxy, optionally substituted carboxyalkyl, or optionally substituted carbamoylalkyl.
- T 1 is O (oxo), and T 2 is S (thio) or Se (seleno). In other embodiments, T 1 is S (thio), and T 2 is O (oxo) or Se (seleno).
- R Vb′ is H, optionally substituted alkyl, or optionally substituted alkoxy.
- each R 12a and R 12b is, independently, H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, or optionally substituted hydroxyalkyl.
- R 12a is H.
- both R 12a and R 12b are H.
- each R Vb′ of R 12b is, independently, optionally substituted aminoalkyl (e.g., substituted with an N-protecting group, such as any described herein, e.g., trifluoroacetyl, or sulfoalkyl), optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, or optionally substituted acylaminoalkyl (e.g., substituted with an N-protecting group, such as any described herein, e.g., trifluoroacetyl).
- an N-protecting group such as any described herein, e.g., trifluoroacetyl
- the amino and/or alkyl of the optionally substituted aminoalkyl is substituted with one or more of optionally substituted alkyl, optionally substituted alkenyl, optionally substituted sulfoalkyl, optionally substituted carboxy (e.g., substituted with an O-protecting group), optionally substituted hydroxy (e.g., substituted with an O-protecting group), optionally substituted carboxyalkyl (e.g., substituted with an O-protecting group), optionally substituted alkoxycarbonylalkyl (e.g., substituted with an O-protecting group), or N-protecting group.
- optionally substituted alkyl optionally substituted alkenyl, optionally substituted sulfoalkyl
- optionally substituted carboxy e.g., substituted with an O-protecting group
- optionally substituted hydroxy e.g., substituted with an O-protecting group
- optionally substituted carboxyalkyl e.g.,
- optionally substituted aminoalkyl is substituted with an optionally substituted sulfoalkyl or optionally substituted alkenyl.
- R 12a and R Vb′′ are both H.
- T 1 is O (oxo)
- T 2 is S (thio) or Se (seleno).
- R Vb′ is optionally substituted alkoxycarbonylalkyl or optionally substituted carbamoylalkyl.
- the optional substituent for R 12a , R 12b , R 12c , or R Va is a polyethylene glycol group (e.g., —(CH 2 ) s2 (OCH 2 CH 2 ) s1 (CH 2 ) s3 OR′, wherein s1 is an integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4), each of s2 and s3, independently, is an integer from 0 to 10 (e.g., from 0 to 4, from 0 to 6, from 1 to 4, from 1 to 6, or from 1 to 10), and R′ is H or C 1-20 alkyl); or an amino-polyethylene glycol group (e.g., —NR N1 (CH 2 ) s2 (CH 2 CH 2 O) s1 (CH 2 ) s3 NR N1 , wherein s1 is an integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4), each of s2 and s3, independently
- B is a modified cytosine.
- exemplary modified cytosines include compounds (b10)-(b14):
- each of T 3′ and T 3′′ is, independently, H, optionally substituted alkyl, optionally substituted alkoxy, or optionally substituted thioalkoxy, or the combination of T 3′ and T 3′′ join together (e.g., as in T 3 ) to form O (oxo), S (thio), or Se (seleno);
- each V 4 is, independently, O, S, N(R Vc ) nv , or C(R Vc ) nv , wherein nv is an integer from 0 to 2 and each R Vc is, independently, H, halo, optionally substituted amino acid, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted heterocyclyl, optionally substituted alkheterocyclyl, or optionally substituted alkynyloxy (e.g., optionally substituted with any substituent described herein, such as those selected from (1)-(21) for alkyl), wherein the combination of R 13b and R Vc can be taken together to form optionally substituted heterocyclyl;
- each V 5 is, independently, N(R Vd ) nv , or C(R Vd ) nv , wherein nv is an integer from 0 to 2 and each R Vd is, independently, H, halo, optionally substituted amino acid, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted heterocyclyl, optionally substituted alkheterocyclyl, or optionally substituted alkynyloxy (e.g., optionally substituted with any substituent described herein, such as those selected from (1)-(21) for alkyl) (e.g., V 5 is —CH or N);
- each of R 13a and R 13b is, independently, H, optionally substituted acyl, optionally substituted acyloxyalkyl, optionally substituted alkyl, or optionally substituted alkoxy, wherein the combination of R 13b and R 14 can be taken together to form optionally substituted heterocyclyl;
- each R 14 is, independently, H, halo, hydroxy, thiol, optionally substituted acyl, optionally substituted amino acid, optionally substituted alkyl, optionally substituted haloalkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted hydroxyalkyl (e.g., substituted with an O-protecting group), optionally substituted hydroxyalkenyl, optionally substituted hydroxyalkynyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, optionally substituted acyloxyalkyl, optionally substituted amino (e.g., —NHR wherein R is H, alkyl, aryl, or phosphoryl), azido, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted alkheterocyclyl, optionally substitute
- each of R 15 and R 16 is, independently, H, optionally substituted alkyl, optionally substituted alkenyl, or optionally substituted alkynyl.
- modified cytosines include those having Formula (b32)-(b35):
- each of T 1 and T 3 is, independently, O (oxo), S (thio), or Se (seleno);
- each of R 13a and R 13b is, independently, H, optionally substituted acyl, optionally substituted acyloxyalkyl, optionally substituted alkyl, or optionally substituted alkoxy, wherein the combination of R 13b and R 14 can be taken together to form optionally substituted heterocyclyl;
- each R 14 is, independently, H, halo, hydroxy, thiol, optionally substituted acyl, optionally substituted amino acid, optionally substituted alkyl, optionally substituted haloalkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted hydroxyalkyl (e.g., substituted with an O-protecting group), optionally substituted hydroxyalkenyl, optionally substituted hydroxyalkynyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, optionally substituted acyloxyalkyl, optionally substituted amino (e.g., —NHR wherein R is H, alkyl, aryl, or phosphoryl), azido, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted alkheterocyclyl, optionally substitute
- each of R 15 and R 16 is, independently, H, optionally substituted alkyl, optionally substituted alkenyl, or optionally substituted alkynyl (e.g., R 15 is H, and R 16 is H or optionally substituted alkyl).
- R 15 is H, and R 16 is H or optionally substituted alkyl.
- R 14 is H, acyl, or hydroxyalkyl.
- R 14 is halo.
- both R 14 and R 15 are H.
- both R 15 and R 16 are H.
- each of R 14 and R 15 and R 16 is H.
- each of R 13a and R 13b is independently, H or optionally substituted alkyl.
- modified cytosines include compounds of Formula (b36):
- each R 13b is, independently, H, optionally substituted acyl, optionally substituted acyloxyalkyl, optionally substituted alkyl, or optionally substituted alkoxy, wherein the combination of R 13b and R 14b can be taken together to form optionally substituted heterocyclyl;
- each R 14a and R 14b is, independently, H, halo, hydroxy, thiol, optionally substituted acyl, optionally substituted amino acid, optionally substituted alkyl, optionally substituted haloalkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted hydroxyalkyl (e.g., substituted with an O-protecting group), optionally substituted hydroxyalkenyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy, optionally substituted aminoalkoxy, optionally substituted alkoxyalkoxy, optionally substituted acyloxyalkyl, optionally substituted amino (e.g., —NHR wherein R is H, alkyl, aryl, phosphoryl, optionally substituted aminoalkyl, or optionally substituted carboxyaminoalkyl), azido, optionally substituted aryl, optionally substituted heterocyclyl, optional
- each of R 15 is, independently, H, optionally substituted alkyl, optionally substituted alkenyl, or optionally substituted alkynyl.
- R 14b is an optionally substituted amino acid (e.g., optionally substituted lysine). In some embodiments, R 14a is H.
- B is a modified guanine.
- exemplary modified guanines include compounds of Formula (b15)-(b17):
- each of T 4′ , T 4′′ , T 5′ , T 5′′ , T 6′ , and T 6′′ is independently, H, optionally substituted alkyl, or optionally substituted alkoxy, and wherein the combination of T 4′ and T 4′′ (e.g., as in T 4 ) or the combination of T 5′ and T 5′′ (e.g., as in T 5 ) or the combination of T 6′ and T 6′′ join together (e.g., as in T 6 ) form O (oxo), S (thio), or Se (seleno);
- each of V 5 and V 6 is, independently, O, S, N(R Vd ) nv , or C(R Vd ) nv , wherein nv is an integer from 0 to 2 and each R Vd is, independently, H, halo, thiol, optionally substituted amino acid, cyano, amidine, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted alkenyloxy, optionally substituted alkynyloxy (e.g., optionally substituted with any substituent described herein, such as those selected from (1)-(21) for alkyl), optionally substituted thioalkoxy, or optionally substituted amino; and
- each of R 17 , R 18 , R 19a , R 19b , R 21 , R 22 , R 23 , and R 24 is, independently, H, halo, thiol, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted thioalkoxy, optionally substituted amino, or optionally substituted amino acid.
- Exemplary modified guanosines include compounds of Formula (b37)-(b40):
- each of T 4′ is, independently, H, optionally substituted alkyl, or optionally substituted alkoxy, and each T 4 is, independently, O (oxo), S (thio), or Se (seleno);
- each of R 18 , R 19a , R 19b , and R 21 is, independently, H, halo, thiol, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted thioalkoxy, optionally substituted amino, or optionally substituted amino acid.
- R 18 is H or optionally substituted alkyl.
- T 4 is oxo.
- each of R 19a and R 19b is, independently, H or optionally substituted alkyl.
- B is a modified adenine.
- exemplary modified adenines include compounds of Formula (b18)-(b20):
- each V 7 is, independently, O, S, N(R Ve ) nv , or C(R Ve ) nv , wherein nv is an integer from 0 to 2 and each R Ve is, independently, H, halo, optionally substituted amino acid, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted alkenyloxy, or optionally substituted alkynyloxy (e.g., optionally substituted with any substituent described herein, such as those selected from (1)-(21) for alkyl);
- each R 25 is, independently, H, halo, thiol, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted thioalkoxy, or optionally substituted amino;
- each of R 26a and R 26b is, independently, H, optionally substituted acyl, optionally substituted amino acid, optionally substituted carbamoylalkyl, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted hydroxyalkyl, optionally substituted hydroxyalkenyl, optionally substituted hydroxyalkynyl, optionally substituted alkoxy, or polyethylene glycol group (e.g., —(CH 2 ) s2 (OCH 2 CH 2 ) s1 (CH 2 ) s3 OR′, wherein s1 is an integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4), each of s2 and s3, independently, is an integer from 0 to 10 (e.g., from 0 to 4, from 0 to 6, from 1 to 4, from 1 to 6, or from 1 to 10), and R′ is H or C 1-20 alkyl); or an amino-polyethylene glycol
- each R 27 is, independently, H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted thioalkoxy or optionally substituted amino;
- each R 28 is, independently, H, optionally substituted alkyl, optionally substituted alkenyl, or optionally substituted alkynyl;
- each R 29 is, independently, H, optionally substituted acyl, optionally substituted amino acid, optionally substituted carbamoylalkyl, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted hydroxyalkyl, optionally substituted hydroxyalkenyl, optionally substituted alkoxy, or optionally substituted amino.
- Exemplary modified adenines include compounds of Formula (b41)-(b43):
- each R 25 is, independently, H, halo, thiol, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted thioalkoxy, or optionally substituted amino;
- each of R 26a and R 26b is, independently, H, optionally substituted acyl, optionally substituted amino acid, optionally substituted carbamoylalkyl, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted hydroxyalkyl, optionally substituted hydroxyalkenyl, optionally substituted hydroxyalkynyl, optionally substituted alkoxy, or polyethylene glycol group (e.g., —(CH 2 ) s2 (OCH 2 CH 2 ) s1 (CH 2 ) s3 OR′, wherein s1 is an integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4), each of s2 and s3, independently, is an integer from 0 to 10 (e.g., from 0 to 4, from 0 to 6, from 1 to 4, from 1 to 6, or from 1 to 10), and R′ is H or C 1-20 alkyl); or an amino-polyethylene glycol
- each R 27 is, independently, H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted thioalkoxy, or optionally substituted amino.
- R 26a is H, and R 26b is optionally substituted alkyl. In some embodiments, each of R 26a and R 26b is, independently, optionally substituted alkyl. In particular embodiments, R 27 is optionally substituted alkyl, optionally substituted alkoxy, or optionally substituted thioalkoxy. In other embodiments, R 25 is optionally substituted alkyl, optionally substituted alkoxy, or optionally substituted thioalkoxy.
- the optional substituent for R 26a , R 26b ,or R 29 is a polyethylene glycol group (e.g., —(CH 2 ) s2 (OCH 2 CH 2 ) s1 (CH 2 ) s3 OR′, wherein s1 is an integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4), each of s2 and s3, independently, is an integer from 0 to 10 (e.g., from 0 to 4, from 0 to 6, from 1 to 4, from 1 to 6, or from 1 to 10), and R′ is H or C 1-20 alkyl); or an amino-polyethylene glycol group (e.g., —NR N1 (CH 2 ) s2 (CH 2 CH 2 O) s1 (CH 2 ) s3 NR N1 , wherein s1 is an integer from 1 to 10 (e.g., from 1 to 6 or from 1 to 4), each of s2 and s3, independently, is an integer from
- B may have Formula (b21):
- X 12 is, independently, O, S, optionally substituted alkylene (e.g., methylene), or optionally substituted heteroalkylene
- xa is an integer from 0 to 3
- R 12a and T 2 are as described herein.
- B may have Formula (b22):
- R 10′ is, independently, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, optionally substituted alkoxy, optionally substituted alkoxycarbonylalkyl, optionally substituted alkoxycarbonylalkenyl, optionally substituted alkoxycarbonylalkynyl, optionally substituted alkoxycarbonylalkoxy, optionally substituted carboxyalkoxy, optionally substituted carboxyalkyl, or optionally substituted carbamoylalkyl, and R 11 , R 12a , T 1 , and T 2 are as described herein.
- B may have Formula (b23):
- R 10 is optionally substituted heterocyclyl (e.g., optionally substituted furyl, optionally substituted thienyl, or optionally substituted pyrrolyl), optionally substituted aryl (e.g., optionally substituted phenyl or optionally substituted naphthyl), or any substituent described herein (e.g., for R 10 ); and wherein R 11 (e.g., H or any substituent described herein), R 12a (e.g., H or any substituent described herein), T 1 (e.g., oxo or any substituent described herein), and T 2 (e.g., oxo or any substituent described herein) are as described herein.
- R 11 e.g., H or any substituent described herein
- R 12a e.g., H or any substituent described herein
- T 1 e.g., oxo or any substituent described herein
- T 2 e.g., oxo or any
- B may have Formula (b24):
- R 14′ is, independently, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted alkaryl, optionally substituted alkheterocyclyl, optionally substituted aminoalkyl, optionally substituted aminoalkenyl, optionally substituted aminoalkynyl, optionally substituted alkoxy, optionally substituted alkoxycarbonylalkyl, optionally substituted alkoxycarbonylalkenyl, optionally substituted alkoxycarbonylalkynyl, optionally substituted alkoxycarbonylalkoxy, optionally substituted carboxyalkoxy, optionally substituted carboxyalkyl, or optionally substituted carbamoylalkyl, and R 13a , R 13b , R 15 , and T 3 are as described herein.
- B may have Formula (b25):
- R 14′ is optionally substituted heterocyclyl (e.g., optionally substituted furyl, optionally substituted thienyl, or optionally substituted pyrrolyl), optionally substituted aryl (e.g., optionally substituted phenyl or optionally substituted naphthyl), or any substituent described herein (e.g., for R 14 or R 14′ ); and wherein R 13a (e.g., H or any substituent described herein), R 13b (e.g., H or any substituent described herein), R 15 (e.g., H or any substituent described herein), and T 3 (e.g., oxo or any substituent described herein) are as described herein.
- R 13a e.g., H or any substituent described herein
- R 13b e.g., H or any substituent described herein
- R 15 e.g., H or any substituent described herein
- T 3 e.g., oxo or
- B is a nucleobase selected from the group consisting of cytosine, guanine, adenine, and uracil. In some embodiments, B may be:
- the modified nucleobase is a modified uracil.
- exemplary nucleobases and nucleosides having a modified uracil include pseudouridine ( ⁇ ), pyridin-4-one ribonucleoside, 5-aza-uridine, 6-aza-uridine, 2-thio-5-aza-uridine, 2-thio-uridine (s2U), 4-thio-uridine (s4U), 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxy-uridine (ho 5 U), 5-aminoallyl-uridine, 5-halo-uridine (e.g., 5-iodo-uridine or 5-bromo-uridine), 3-methyl-uridine (m 3 U), 5-methoxy-uridine (mo 5 U), uridine 5-oxyacetic acid (cmo 5 U), uridine 5-oxyacetic acid methyl ester (mcmo 5 U), 5-carboxymethyl-uridine (cm 5 U), 1-car
- the modified nucleobase is a modified cytosine.
- exemplary nucleobases and nucleosides having a modified cytosine include 5-aza-cytidine, 6-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine (m 3 C), N4-acetyl-cytidine (act), 5-formyl-cytidine (f 5 C), N4-methyl-cytidine (m 4 C), 5-methyl-cytidine (m 5 C), 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethyl-cytidine (hm 5 C), 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine (s2C), 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine,
- the modified nucleobase is a modified adenine.
- exemplary nucleobases and nucleosides having a modified adenine include 2-amino-purine, 2,6-diaminopurine, 2-amino-6-halo-purine (e.g., 2-amino-6-chloro-purine), 6-halo-purine (e.g., 6-chloro-purine), 2-amino-6-methyl-purine, 8-azido-adenosine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-amino-purine, 7-deaza-8-aza-2-amino-purine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyl-adenosine (m 1 A), 2-methyl-adenine (m 2 A), N6-methyl-adenosine (m 1
- the modified nucleobase is a modified guanine
- nucleobases and nucleosides having a modified guanine include inosine (I), 1-methyl-inosine (m 1 I), wyosine (imG), methylwyosine (mimG), 4-demethyl-wyosine (imG-14), isowyosine (imG2), wybutosine (yW), peroxywybutosine (o 2 yW), hydroxywybutosine (OHyW), undermodified hydroxywybutosine (OHyW*), 7-deaza-guanosine, queuosine (Q), epoxyqueuosine (oQ), galactosyl-queuosine (galQ), mannosyl-queuosine (manQ), 7-cyano-7-deaza-guanosine (preQ 0 ), 7-aminomethyl-7-deaza-guanosine
- the nucleobase of the nucleotide can be independently selected from a purine, a pyrimidine, a purine or pyrimidine analog.
- the nucleobase can each be independently selected from adenine, cytosine, guanine, uracil, or hypoxanthine.
- the nucleobase can also include, for example, naturally-occurring and synthetic derivatives of a base, including pyrazolo[3,4-d]pyrimidines, 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo (e.g., 8-bromo), 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and
- each letter refers to the representative base and/or derivatives thereof, e.g., A includes adenine or adenine analogs, e.g., 7-deaza adenine).
- modified nucleosides and nucleotides which may be incorporated into a modified nucleic acid or mRNA molecule, can be modified on the internucleoside linkage (e.g., phosphate backbone).
- the phosphate groups of the backbone can be modified by replacing one or more of the oxygen atoms with a different substituent.
- the modified nucleosides and nucleotides can include the wholesale replacement of an unmodified phosphate moiety with a modified phosphate as described herein.
- modified phosphate groups include, but are not limited to, phosphorothioate, phosphoroselenates, boranophosphates, boranophosphate esters, hydrogen phosphonates, phosphoramidates, phosphorodiamidates, alkyl or aryl phosphonates, and phosphotriesters.
- Phosphorodithioates have both non-linking oxygens replaced by sulfur.
- the phosphate linker can also be modified by the replacement of a linking oxygen with nitrogen (bridged phosphoramidates), sulfur (bridged phosphorothioates), and carbon (bridged methylene-phosphonates).
- the ⁇ -thio substituted phosphate moiety is provided to confer stability to RNA and DNA polymers through the unnatural phosphorothioate backbone linkages.
- Phosphorothioate DNA and RNA have increased nuclease resistance and subsequently a longer half-life in a cellular environment.
- Phosphorothioate linked modified nucleic acids or mRNA molecules are expected to also reduce the innate immune response through weaker binding/activation of cellular innate immune molecules.
- a modified nucleoside includes an alpha-thio-nucleoside (e.g., 5′-O-(1-thiophosphate)-adenosine, 5′-O-(1-thiophosphate)-cytidine ⁇ -thio-cytidine), 5′-O-(1-thiophosphate)-guanosine, 5′-O-(1-thiophosphate)-uridine, or 5′-O-(1-thiophosphate)-pseudouridine).
- alpha-thio-nucleoside e.g., 5′-O-(1-thiophosphate)-adenosine, 5′-O-(1-thiophosphate)-cytidine ⁇ -thio-cytidine
- 5′-O-(1-thiophosphate)-guanosine 5′-O-(1-thiophosphate)-uridine
- the modified nucleic acids and mRNA of the invention can include a combination of modifications to the sugar, the nucleobase, and/or the internucleoside linkage. These combinations can include any one or more modifications described herein.
- any of the nucleotides described herein in Formulas (Ia), (Ia-1)-(Ia-3), (Ib)-(If), (IIa)-(IIp), (IIb-1), (IIb-2), (IIc-1)-(IIc-2), (IIn-1), (IIn-2), (IVa)-(IV1), and (IXa)-(IXr) can be combined with any of the nucleobases described herein (e.g., in Formulas (b1)-(b43) or any other described herein).
- modified nucleic acid and mRNA molecules for use in accordance with the invention may be prepared according to any useful technique, as described herein.
- the modified nucleosides and nucleotides used in the synthesis of modified nucleic acid and mRNA molecules disclosed herein can be prepared from readily available starting materials using the following general methods and procedures. Where typical or preferred process conditions (e.g., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are provided, a skilled artisan would be able to optimize and develop additional process conditions. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
- spectroscopic means such as nuclear magnetic resonance spectroscopy (e.g., 1 H or 13 C) infrared spectroscopy, spectrophotometry (e.g., UV-visible), or mass spectrometry, or by chromatography such as high performance liquid chromatography (HPLC) or thin layer chromatography.
- HPLC high performance liquid chromatography
- Preparation of modified nucleic acid and mRNA molecules of the present invention can involve the protection and deprotection of various chemical groups.
- the need for protection and deprotection, and the selection of appropriate protecting groups can be readily determined by one skilled in the art.
- the chemistry of protecting groups can be found, for example, in Greene, et al., Protective Groups in Organic Synthesis, 2d. Ed., Wiley & Sons, 1991, which is incorporated herein by reference in its entirety.
- Suitable solvents can be substantially nonreactive with the starting materials (reactants), the intermediates, or products at the temperatures at which the reactions are carried out, i.e., temperatures which can range from the solvent's freezing temperature to the solvent's boiling temperature.
- a given reaction can be carried out in one solvent or a mixture of more than one solvent.
- suitable solvents for a particular reaction step can be selected.
- An example method includes fractional recrystallization using a “chiral resolving acid” which is an optically active, salt-forming organic acid.
- Suitable resolving agents for fractional recrystallization methods are, for example, optically active acids, such as the D and L forms of tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid or the various optically active camphorsulfonic acids.
- Resolution of racemic mixtures can also be carried out by elution on a column packed with an optically active resolving agent (e.g., dinitrobenzoylphenylglycine).
- an optically active resolving agent e.g., dinitrobenzoylphenylglycine
- Suitable elution solvent composition can be determined by one skilled in the art.
- Modified nucleosides and nucleotides can be prepared according to the synthetic methods described in Ogata et al., J. Org. Chem. 74:2585-2588 (2009); Purmal et al., Nucl. Acids Res. 22(1): 72-78, (1994); Fukuhara et al., Biochemistry, 1(4): 563-568 (1962); and Xu et al., Tetrahedron, 48(9): 1729-1740 (1992), each of which are incorporated by reference in their entirety.
- the modified nucleic acid and mRNA of the invention need not be uniformly modified along the entire length of the molecule.
- one or more or all types of nucleotide e.g., purine or pyrimidine, or any one or more or all of A, G, U, C
- nucleotides X in a polynucleotide of the invention are modified, wherein X may any one of nucleotides A, G, U, C, or any one of the combinations A+G, A+U, A+C, G+U, G+C, U+C, A+G+U, A+G+C, G+U+C or A+G+C
- nucleotide modifications may exist at various positions in the modified nucleic acid or mRNA.
- nucleotide analogs or other modification(s) may be located at any position(s) of a modified nucleic acid or mRNA such that the function of the modified nucleic acid or mRNA is not substantially decreased.
- a modification may also be a 5′ or 3′ terminal modification.
- the modified nucleic acid or mRNA may contain from about 1% to about 100% modified nucleotides, or any intervening percentage (e.g., from 1% to 20%, from 1% to 25%, from 1% to 50%, from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%, from 10% to 20%, from 10% to 25%, from 10% to 50%, from 10% to 60%, from 10% to 70%, from 10% to 80%, from 10% to 90%, from 10% to 95%, from 10% to 100%, from 20% to 25%, from 20% to 50%, from 20% to 60%, from 20% to 70%, from 20% to 80%, from 20% to 90%, from 20% to 95%, from 20% to 100%, from 50% to 60%, from 50% to 70%, from 50% to 80%, from 50% to 90%, from 50% to 95%, from 50% to 100%, from 70% to 80%, from 70% to 90%, from 70% to 95%, from 70% to 100%, from 80% to 90%, from 80% to 95%, from 90% to 95%, from 90% to 95%
- the modified nucleic acid or mRNA includes a modified pyrimidine (e.g., a modified uracil/uridine or modified cytosine/cytidine).
- the uracil or uridine in the modified nucleic acid or mRNA molecule may be replaced with from about 1% to about 100% of a modified uracil or modified uridine (e.g., from 1% to 20%, from 1% to 25%, from 1% to 50%, from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%, from 10% to 20%, from 10% to 25%, from 10% to 50%, from 10% to 60%, from 10% to 70%, from 10% to 80%, from 10% to 90%, from 10% to 95%, from 10% to 100%, from 20% to 25%, from 20% to 50%, from 20% to 60%, from 20% to 70%, from 20% to 80%, from 20% to 90%, from 20% to 95%, from 20% to 100%, from 50% to 60%, from 50% to 50% to 60%, from 20% to
- the modified uracil or uridine can be replaced by a compound having a single unique structure or by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures, as described herein).
- the cytosine or cytidine in the modified nucleic acid or mRNA molecule may be replaced with from about 1% to about 100% of a modified cytosine or modified cytidine (e.g., from 1% to 20%, from 1% to 25%, from 1% to 50%, from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%, from 10% to 20%, from 10% to 25%, from 10% to 50%, from 10% to 60%, from 10% to 70%, from 10% to 80%, from 10% to 90%, from 10% to 95%, from 10% to 100%, from 20% to 25%, from 20% to 50%, from 20% to 60%, from 20% to 70%, from 20% to 80%, from 20% to 90%, from 20% to 95%, from 20% to 100%, from 50%, from
- the present disclosure provides methods of synthesizing a modified nucleic acid or mRNA including n number of linked nucleosides having Formula (Ia-1):
- Y 9 is H, hydroxy, phosphoryl, pyrophosphate, sulfate, amino, thiol, optionally substituted amino acid, or a peptide (e.g., including from 2 to 12 amino acids); and each P 1 , P 2 , and P 3 is, independently, a suitable protecting group; and denotes a solid support;
- steps a) and b) are repeated from 1 to about 10,000 times.
- the methods further comprise a nucleotide (e.g., building block molecule) selected from the group consisting of adenosine, cytosine, guanosine, and uracil.
- the nucleobase may be a pyrimidine or derivative thereof.
- the modified nucleic acid or mRNA is translatable.
- modified nucleic acids and mRNA are optional, and are beneficial in some embodiments.
- a 5′ untranslated region (UTR) and/or a 3′UTR are provided, wherein either or both may independently contain one or more different nucleoside modifications.
- nucleoside modifications may also be present in the translatable region.
- modified nucleic acids and mRNA containing a Kozak sequence are also provided.
- Scheme 1 provides a general method for phosphorylation of nucleosides, including modified nucleosides.
- Scheme 2 provides the use of multiple protecting and deprotecting steps to promote phosphorylation at the 5′ position of the sugar, rather than the 2′ and 3′ hydroxyl groups.
- Modified nucleotides can be synthesized in any useful manner.
- Schemes 3, 4, and 7 provide exemplary methods for synthesizing modified nucleotides having a modified purine nucleobase; and
- Schemes 5 and 6 provide exemplary methods for synthesizing modified nucleotides having a modified pseudouridine or pseudoisocytidine, respectively.
- Schemes 8 and 9 provide exemplary syntheses of modified nucleotides.
- Scheme 10 provides a non-limiting biocatalytic method for producing nucleotides.
- Scheme 11 provides an exemplary synthesis of a modified uracil, where the N1 position is modified with R 12b , as provided elsewhere, and the 5′-position of ribose is phosphorylated.
- T 1 , T 2 , R 12a , R 12b , and r are as provided herein.
- This synthesis, as well as optimized versions thereof, can be used to modify other pyrimidine nucleobases and purine nucleobases (see e.g., Formulas (b1)-(b43)) and/or to install one or more phosphate groups (e.g., at the 5′ position of the sugar).
- This alkylating reaction can also be used to include one or more optionally substituted alkyl group at any reactive group (e.g., amino group) in any nucleobase described herein (e.g., the amino groups in the Watson-Crick base-pairing face for cytosine, uracil, adenine, and guanine).
- any reactive group e.g., amino group
- nucleobase described herein e.g., the amino groups in the Watson-Crick base-pairing face for cytosine, uracil, adenine, and guanine.
- modified nucleotides and modified nucleotide combinations are provided below in Table 2. These combinations of modified nucleotides can be used to form the modified nucleic acids or mRNA of the invention. Unless otherwise noted, the modified nucleotides may be completely substituted for the natural nucleotides of the modified nucleic acids or mRNA of the invention. As a non-limiting example, the natural nucleotide uridine may be substituted with a modified nucleoside described herein.
- the natural nucleotide uridine may be partially substituted (e.g., about 0.1%, 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 99.9%) with at least one of the modified nucleoside disclosed herein.
- modified nucleotide combinations are provided below in Table 3. These combinations of modified nucleotides can be used to form the modified nucleic acid molecules or mRNA of the invention.
- At least 25% of the cytosines are replaced by a compound of Formula (b10)-(b14) (e.g., at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100%).
- a compound of Formula (b10)-(b14) e.g., at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100%).
- At least 25% of the uracils are replaced by a compound of Formula (b1)-(b9) (e.g., at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100%).
- a compound of Formula (b1)-(b9) e.g., at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100%).
- At least 25% of the cytosines are replaced by a compound of Formula (b10)-(b14), and at least 25% of the uracils are replaced by a compound of Formula (b1)-(b9) (e.g., at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100%).
- Modified nucleic acid molecules for use in accordance with the present disclosure may be prepared according to any available technique including, but not limited to, in vitro transcription such as chemical synthesis and enzymatic synthesis, or enzymatic and chemical cleavage of a longer precursor, etc.
- Methods of synthesizing RNA are known in the art (see, e.g., Gait, M. J. (ed.) Oligonucleotide synthesis: a practical approach , Oxford [Oxfordshire], Washington, D.C.: IRL Press, 1984; and Herdewijn, P. (ed.) Oligonucleotide synthesis: methods and applications , Methods in Molecular Biology, v. 288 (Clifton, N.J.) Totowa, N.J.: Humana Press, 2005; both of which are incorporated herein by reference).
- modified nucleic acid molecules disclosed herein can be prepared from readily available starting materials using the following general methods and procedures. It is understood that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
- spectroscopic means such as nuclear magnetic resonance spectroscopy (e.g., 1 H or 13 C) infrared spectroscopy, spectrophotometry (e.g., UV-visible), mass spectrometry, or by chromatography such as high performance liquid chromatography (HPLC) or thin layer chromatography.
- HPLC high performance liquid chromatography
- Preparation of modified nucleic acid molecules can involve the protection and deprotection of various chemical groups.
- the need for protection and deprotection, and the selection of appropriate protecting groups can be readily determined by one skilled in the art.
- the chemistry of protecting groups can be found, for example, in Greene, et al., Protective Groups in Organic Synthesis, 2d. Ed., Wiley & Sons, 1991, which is incorporated herein by reference in its entirety.
- Suitable solvents can be substantially nonreactive with the starting materials (reactants), the intermediates, or products at the temperatures at which the reactions are carried out, i.e., temperatures which can range from the solvent's freezing temperature to the solvent's boiling temperature.
- a given reaction can be carried out in one solvent or a mixture of more than one solvent.
- suitable solvents for a particular reaction step can be selected.
- Resolution of racemic mixtures of modified nucleic acid molecules can be carried out by any of numerous methods known in the art.
- An example method includes, but is not limited to, fractional recrystallization using a “chiral resolving acid” which is an optically active, salt-forming organic acid.
- Suitable resolving agents for fractional recrystallization methods are, for example, optically active acids, such as the D and L forms of tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid or the various optically active camphorsulfonic acids.
- Resolution of racemic mixtures can also be carried out by elution on a column packed with an optically active resolving agent (e.g., dinitrobenzoylphenylglycine).
- an optically active resolving agent e.g., dinitrobenzoylphenylglycine
- Suitable elution solvent composition can be determined by one skilled in the art.
- Modified nucleic acid molecules need not be uniformly modified along the entire length of the molecule. Different nucleic acid modifications and/or backbone structures may exist at various positions in the nucleic acid. One of ordinary skill in the art will appreciate that the nucleotide analogs or other modification(s) may be located at any position(s) of a nucleic acid such that the function of the nucleic acid is not substantially decreased. A modification may also be a 5′ or 3′ terminal modification.
- the nucleic acids may contain at a minimum one modified nucleotide and at maximum 100% modified nucleotides, or any intervening percentage, such as at least 5% modified nucleotides, at least 10% modified nucleotides, at least 25% modified nucleotides, at least 50% modified nucleotides, at least 80% modified nucleotides, or at least 90% modified nucleotides.
- the nucleic acids may contain a modified pyrimidine such as uracil or cytosine.
- at least 5%, at least 10%, at least 25%, at least 50%, at least 80%, at least 90% or 100% of the uracil in the nucleic acid may be replaced with a modified uracil.
- the modified uracil can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures). In some embodiments, at least 5%, at least 10%, at least 25%, at least 50%, at least 80%, at least 90% or 100% of the cytosine in the nucleic acid may be replaced with a modified cytosine.
- the modified cytosine can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures).
- the shortest length of a modified mRNA, herein “mRNA,” of the present disclosure can be the length of an mRNA sequence that may be sufficient to encode for a dipeptide. In another embodiment, the length of the mRNA sequence may be sufficient to encode for a tripeptide. In another embodiment, the length of an mRNA sequence may be sufficient to encode for a tetrapeptide. In another embodiment, the length of an mRNA sequence may be sufficient to encode for a pentapeptide. In another embodiment, the length of an mRNA sequence may be sufficient to encode for a hexapeptide. In another embodiment, the length of an mRNA sequence may be sufficient to encode for a heptapeptide.
- the length of an mRNA sequence may be sufficient to encode for an octapeptide. In another embodiment, the length of an mRNA sequence may be sufficient to encode for a nonapeptide. In another embodiment, the length of an mRNA sequence may be sufficient to encode for a decapeptide.
- dipeptides that the modified nucleic acid molecule sequences can encode for include, but are not limited to, carnosine and anserine.
- the mRNA may be greater than 30 nucleotides in length. In another embodiment, the RNA molecule may be greater than 35 nucleotides in length (e.g., at least or greater than about 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,500, 3,000, 4,000 and 5,000 nucleotides).
- the RNA molecule may be greater than 35 nucleotides in length (e.g., at least or greater than about 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600,
- modified nucleic acid molecules e.g., modified mRNA (mmRNA)
- mmRNA modified mRNA
- RNA ligands comprising modified nucleotides or modified nucleic acid molecules, as described herein, decrease interactions with major groove binding partners, and therefore decrease an innate immune response, or expression and secretion of pro-inflammatory cytokines, or both.
- Example major groove interacting, e.g. binding, partners include, but are not limited to, the following nucleases and helicases.
- TLRs Toll-like Receptors
- members of the superfamily 2 class of DEX(D/H) helicases and ATPases can sense RNA to initiate antiviral responses.
- These helicases include the RIG-I (retinoic acid-inducible gene I) and MDA5 (melanoma differentiation-associated gene 5).
- Other examples include laboratory of genetics and physiology 2 (LGP2), HIN-200 domain containing proteins, or Helicase-domain containing proteins.
- the modified nucleic acid molecules decrease the innate immune response in a cell.
- innate immune response includes a cellular response to exogenous nucleic acids, including, but not limited to, single stranded nucleic acids, generally of viral or bacterial origin, which involve the induction of cytokine expression and release, particularly the interferons, and cell death. Protein synthesis may also be reduced during the innate cellular immune response. While it is advantageous to eliminate the innate immune response in a cell, the present disclosure provides modified mRNA that substantially reduce the immune response, including interferon signaling, without entirely eliminating such a response.
- the immune response may be reduced by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 99.9%, or greater than 99.9% as compared to the immune response induced by a corresponding unmodified nucleic acid molecule.
- a reduction can be measured by the expression or activity level of Type 1 interferons or the expression of interferon-regulated genes such as the toll-like receptors (e.g., TLR7 and TLR8).
- Reduction of the innate immune response can also be measured by decreased cell death following one or more administrations of modified RNA to a cell population; e.g., cell death is 10%, 25%, 50%, 75%, 85%, 90%, 95%, or over 95% less than the cell death frequency observed with a corresponding unmodified nucleic acid molecule.
- cell death may affect fewer than 50%, 40%, 30%, 20%, 10%, 5%, 1%, 0.1%, 0.01% or fewer than 0.01% of cells contacted with the modified nucleic acid molecules.
- the present disclosure provides for the repeated introduction (e.g., transfection) of modified nucleic acid molecules into a target cell population, e.g., in vitro, ex vivo, or in vivo.
- the step of contacting the cell population may be repeated one or more times (such as two, three, four, five or more than five times).
- the step of contacting the cell population with the modified nucleic acid molecules may be repeated a number of times sufficient such that a predetermined efficiency of protein translation in the cell population is achieved. Given the reduced cytotoxicity of the target cell population by the nucleic acid modifications, such repeated transfections are achievable in a variety of cell types.
- modified nucleic acids of the invention including the combination of modifications taught herein may have superior properties making them more suitable as therapeutic modalities.
- methods of determining the effectiveness of a modified mRNA as compared to unmodified involves the measure and analysis of one or more cytokines whose expression is triggered by the administration of the exogenous nucleic acid of the invention. These values are compared to administration of an umodified nucleic acid or to a standard metric such as cytokine response, PolylC, R-848 or other standard known in the art.
- One example of a standard metric developed herein is the measure of the ratio of the level or amount of encoded polypeptide (protein) produced in the cell, tissue or organism to the level or amount of one or more (or a panel) of cytokines whose expression is triggered in the cell, tissue or organism as a result of administration or contact with the modified nucleic acid.
- Such ratios are referred to herein as the Protein:Cytokine Ratio or “PC” Ratio.
- PC ratio Protein:Cytokine Ratio
- the higher the PC ratio the more efficacioius the modified nucleic acid (polynucleotide encoding the protein measured).
- Preferred PC Ratios, by cytokine, of the present invention may be greater than 1, greater than 10, greater than 100, greater than 1000, greater than 10,000 or more. Modified nucleic acids having higher PC Ratios than a modified nucleic acid of a different or unmodified construct are preferred.
- the PC ratio may be further qualified by the percent modification present in the polynucleotide. For example, normalized to a 100% modified nucleic acid, the protein production as a function of cytokine (or risk) or cytokine profile can be determined.
- the present invention provides a method for determining, across chemistries, cytokines or percent modification, the relative efficacy of any particular modified polynucleotide by comparing the PC Ratio of the modified nucleic acid (polynucleotide).
- mRNA molecules may be used to elicit or provoke an immune response in an organism.
- the mRNA molecules to be delivered may encode an immunogenic peptide or polypeptide and may encode more than one such peptide or polypeptide.
- modified nucleosides when introduced into the modified nucleic acid molecules or mRNA of the invention will activate the innate immune response.
- activating molecules are useful as adjuvants when combined with polypeptides and/or other vaccines.
- the activating molecules contain a translatable region which encodes for a polypeptide sequence useful as a vaccine, thus providing the ability to be a self-adjuvant.
- the modified nucleic acid molecules and/or mRNA of the invention may encode an immunogen.
- the delivery of modified nucleic acid molecules and/or mRNA encoding an immunogen may activate the immune response.
- the modified nucleic acid molecules and/or mRNA encoding an immunogen may be delivered to cells to trigger multiple innate response pathways (see International Pub. No. WO2012006377; herein incorporated by reference in its entirety).
- the modified nucleic acid molecules and mRNA of the present invention encoding an immunogen may be delivered to a vertebrate in a dose amount large enough to be immunogenic to the vertebrate (see International Pub. No. WO2012006372 and WO2012006369; each of which is herein incorporated by reference in their entirety).
- the modified nucleic acid molecules or mRNA of invention may encode a polypeptide sequence for a vaccine and may further comprise an inhibitor.
- the inhibitor may impair antigen presentation and/or inhibit various pathways known in the art.
- the modified nucleic acid molecules or mRNA of the invention may be used for a vaccine in combination with an inhibitor which can impair antigen presentation (see International Pub. No. WO2012089225 and WO2012089338; each of which is herein incorporated by reference in their entirety).
- the modified nucleic acid molecules or mRNA of the invention may be self-replicating RNA.
- Self-replicating RNA molecules can enhance efficiency of RNA delivery and expression of the enclosed gene product.
- the modified nucleic acid molecules or mRNA may comprise at least one modification described herein and/or known in the art.
- the self-replicating RNA can be designed so that the self-replicating RNA does not induce production of infectious viral particles.
- the self-replicating RNA may be designed by the methods described in US Pub. No. US20110300205 and International Pub. No. WO2011005799, each of which is herein incorporated by reference in their entirety.
- the self-replicating modified nucleic acid molecules or mRNA of the invention may encode a protein which may raise the immune response.
- the modified nucleic acid molecules and/or mRNA may be self-replicating mRNA may encode at least one antigen (see US Pub. No. US20110300205 and International Pub. No. WO2011005799; each of which is herein incorporated by reference in their entirety).
- the self-replicating modified nucleic acids or mRNA of the invention may be formulated using methods described herein or known in the art.
- the self-replicating RNA may be formulated for delivery by the methods described in Geall et al (Nonviral delivery of self-amplifying RNA vaccines, PNAS 2012; PMID: 22908294; herein incorporated by reference in its entirety).
- the modified nucleic acid molecules or mRNA of the present invention may encode amphipathic and/or immunogenic amphipathic peptides.
- a formulation of the modified nucleic acid molecules or mRNA of the present invention may further comprise an amphipathic and/or immunogenic amphipathic peptide.
- the modified nucleic acid molecule or mRNA comprising an amphipathic and/or immunogenic amphipathic peptide may be formulated as described in US. Pub. No. US20110250237 and International Pub. Nos. WO2010009277 and WO2010009065; each of which is herein incorporated by reference in their entirety.
- the modified nucleic acid molecules and mRNA of the present invention may be immunostimultory.
- the modified nucleic acid molecules and mRNA may encode all or a part of a positive-sense or a negative-sense stranded RNA virus genome (see International Pub No. WO2012092569 and US Pub No. US20120177701, each of which is herein incorporated by reference in their entirety).
- the immunostimultory modified nucleic acid molecules or mRNA of the present invention may be formulated with an excipient for administration as described herein and/or known in the art (see International Pub No. WO2012068295 and US Pub No. US20120213812, each of which is herein incorporated by reference in their entirety).
- the response of the vaccine formulated by the methods described herein may be enhanced by the addition of various compounds to induce the therapeutic effect.
- the vaccine formulation may include a MHC II binding peptide or a peptide having a similar sequence to a MHC II binding peptide (see International Pub Nos. WO2012027365, WO2011031298 and US Pub No. US20120070493, US20110110965, each of which is herein incorporated by reference in their entirety).
- the vaccine formulations may comprise modified nicotinic compounds which may generate an antibody response to nicotine residue in a subject (see International Pub No. WO2012061717 and US Pub No. US20120114677, each of which is herein incorporated by reference in their entirety).
- the modified nucleic acid molecules encode polypeptides, e.g., a variant polypeptides, which have a certain identity to a reference polypeptide sequence.
- identity refers to a relationship between the sequences of two or more peptides, determined by comparing the sequences. In the art, “identity” also refers to the degree of sequence relatedness between peptides, as determined by the number of matches between strings of two or more amino acid residues. Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., “algorithms”). Identity of related peptides can be readily calculated by known methods.
- Such methods include, but are not limited to, those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M. Stockton Press, New York, 1991; and Carillo et al., SIAM J. Applied Math. 48, 1073 (1988); all of which are herein incorporated by reference in their entirety.
- the polypeptide variant may have the same or a similar activity as the reference polypeptide.
- the variant may have an altered activity (e.g., increased or decreased) relative to a reference polypeptide.
- variants of a particular polynucleotide or polypeptide of the present disclosure will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art.
- protein fragments, functional protein domains, and homologous proteins are also considered to be within the scope of this present disclosure.
- a protein fragment of a reference protein meaning a polypeptide sequence which is at least one amino acid residue shorter than a reference polypeptide sequence but otherwise identical
- 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or greater than 100 amino acids in length can be utilized in accordance with the present disclosure.
- any protein that includes a stretch of about 20, about 30, about 40, about 50, or about 100 amino acids which are about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, or about 100% identical to any of the sequences described herein can be utilized in accordance with the present disclosure.
- a protein sequence to be utilized in accordance with the present disclosure includes 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mutations as shown in any of the sequences provided or referenced herein.
- Proper protein translation involves the physical aggregation of a number of polypeptides and nucleic acids associated with the mRNA.
- Provided by the present disclosure are protein-nucleic acid complexes, containing a translatable mRNA having one or more nucleoside modifications (e.g., at least two different nucleoside modifications) and one or more polypeptides bound to the mRNA.
- the proteins are provided in an amount effective to prevent or to reduce an innate immune response of a cell into which the complex is introduced.
- mRNA having sequences that are substantially not translatable may be effective as a vaccine when administered to a subject. It is further provided that the subject administered the vaccine may be a mammal, more preferably a human and most preferably a patient.
- modified nucleic acid molecules that contain one or more noncoding regions. Such modified nucleic acid molecules are generally not translated, but are capable of binding to and sequestering one or more translational machinery component such as a ribosomal protein or a transfer RNA (tRNA), thereby effectively reducing the protein expression in the cell.
- the modified nucleic acid molecule may contain a small nucleolar RNA (sno-RNA), micro RNA (miRNA), small interfering RNA (siRNA) or Piwi-interacting RNA (piRNA).
- the present invention provides modified nucleic acids and mRNA compositions and complexes in combination with one or more pharmaceutically acceptable excipients.
- Pharmaceutical compositions may optionally comprise one or more additional active substances, e.g. therapeutically and/or prophylactically active substances.
- additional active substances e.g. therapeutically and/or prophylactically active substances.
- General considerations in the formulation and/or manufacture of pharmaceutical agents may be found, for example, in Remington: The Science and Practice of Pharmacy 21 st ed., Lippincott Williams & Wilkins, 2005 (incorporated herein by reference in its entirety).
- compositions are administered to humans, human patients or subjects.
- active ingredient generally refers to modified nucleic acids and mRNA to be delivered as described herein.
- compositions are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to any other animal, e.g., to non-human animals, e.g. non-human mammals. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with merely ordinary, if any, experimentation.
- Subjects to which administration of the pharmaceutical compositions is contemplated include, but are not limited to, humans and/or other primates; mammals, including commercially relevant mammals such as cattle, pigs, horses, sheep, cats, dogs, mice, and/or rats; and/or birds, including commercially relevant birds such as poultry, chickens, ducks, geese, and/or turkeys.
- Formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, dividing, shaping and/or packaging the product into a desired single- or multi-dose unit.
- a pharmaceutical composition in accordance with the invention may be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses.
- a “unit dose” is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient.
- the amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.
- Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition in accordance with the invention will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered.
- the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.
- the modified nucleic acid, and mRNA of the invention can be formulated using one or more excipients to: (1) increase stability; (2) increase cell transfection; (3) permit the sustained or delayed release (e.g., from a depot formulation of the modified nucleic acid, or mRNA); (4) alter the biodistribution (e.g., target the modified nucleic acid, or mRNA to specific tissues or cell types); (5) increase the translation of encoded protein in vivo; and/or (6) alter the release profile of encoded protein in vivo.
- excipients to: (1) increase stability; (2) increase cell transfection; (3) permit the sustained or delayed release (e.g., from a depot formulation of the modified nucleic acid, or mRNA); (4) alter the biodistribution (e.g., target the modified nucleic acid, or mRNA to specific tissues or cell types); (5) increase the translation of encoded protein in vivo; and/or (6) alter the release profile of encoded protein in vivo.
- excipients of the present invention can include, without limitation, lipidoids, liposomes, lipid nanoparticles, polymers, lipoplexes, core-shell nanoparticles, peptides, proteins, cells transfected with modified nucleic acid, or mRNA (e.g., for transplantation into a subject), hyaluronidase, nanoparticle mimics and combinations thereof.
- the formulations of the invention can include one or more excipients, each in an amount that together increases the stability of the modified nucleic acid, or mRNA, increases cell transfection by the modified nucleic acid, or mRNA, increases the expression of modified nucleic acid, or mRNA encoded protein, and/or alters the release profile of modified nucleic acid, or mRNA encoded proteins.
- the modified nucleic acids and mRNA of the present invention may be formulated using self-assembled nucleic acid nanoparticles.
- Formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of associating the active ingredient with an excipient and/or one or more other accessory ingredients.
- a pharmaceutical composition in accordance with the present disclosure may be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses.
- a “unit dose” refers to a discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient.
- the amount of the active ingredient may generally be equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage including, but not limited to, one-half or one-third of such a dosage.
- Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition in accordance with the present disclosure may vary, depending upon the identity, size, and/or condition of the subject being treated and further depending upon the route by which the composition is to be administered.
- the composition may comprise between 0.1% and 99% (w/w) of the active ingredient.
- the modified mRNA formulations described herein may contain at least one modified mRNA.
- the formulations may contain 1, 2, 3, 4 or 5 modified mRNA.
- the formulation contains at least three modified mRNA encoding proteins.
- the formulation contains at least five modified mRNA encoding proteins.
- compositions may additionally comprise a pharmaceutically acceptable excipient, which, as used herein, includes, but is not limited to, any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, and the like, as suited to the particular dosage form desired.
- a pharmaceutically acceptable excipient includes, but is not limited to, any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, and the like, as suited to the particular dosage form desired.
- excipients for formulating pharmaceutical compositions and techniques for preparing the composition are known in the art (see Remington: The Science and Practice of Pharmacy, 21 st Edition, A. R. Gennaro, Lippincott, Williams & Wilkins, Baltimore, Md
- any conventional excipient medium may be contemplated within the scope of the present disclosure, except insofar as any conventional excipient medium may be incompatible with a substance or its derivatives, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition.
- the particle size of the lipid nanoparticle may be increased and/or decreased.
- the change in particle size may be able to help counter biological reaction such as, but not limited to, inflammation or may increase the biological effect of the modified mRNA delivered to mammals.
- compositions include, but are not limited to, inert diluents, surface active agents and/or emulsifiers, preservatives, buffering agents, lubricating agents, and/or oils. Such excipients may optionally be included in the pharmaceutical formulations of the invention.
- lipidoids The synthesis of lipidoids has been extensively described and formulations containing these compounds are particularly suited for delivery of modified nucleic acid molecules or mRNA (see Mahon et al., Bioconjug Chem. 2010 21:1448-1454; Schroeder et al., J Intern Med. 2010 267:9-21; Akinc et al., Nat Biotechnol. 2008 26:561-569; Love et al., Proc Natl Acad Sci USA. 2010 107:1864-1869; Siegwart et al., Proc Natl Acad Sci USA. 2011 108:12996-3001; all of which are incorporated herein in their entireties).
- the present disclosure describes their formulation and use in delivering single stranded modified nucleic acid molecules or mRNA.
- Complexes, micelles, liposomes or particles can be prepared containing these lipidoids and therefore, can result in an effective delivery of the modified nucleic acid molecules or mRNA, as judged by the production of an encoded protein, following the injection of a lipidoid formulation via localized and/or systemic routes of administration.
- Lipidoid complexes of modified nucleic acid molecules or mRNA can be administered by various means including, but not limited to, intravenous, intramuscular, or subcutaneous routes.
- nucleic acids may be affected by many parameters, including, but not limited to, the formulation composition, nature of particle PEGylation, degree of loading, oligonucleotide to lipid ratio, and biophysical parameters such as, but not limited to, particle size (Akinc et al., Mol. Ther. 2009 17:872-879; herein incorporated by reference in its entirety).
- particle size Akinc et al., Mol. Ther. 2009 17:872-879; herein incorporated by reference in its entirety.
- small changes in the anchor chain length of poly(ethylene glycol) (PEG) lipids may result in significant effects on in vivo efficacy.
- Formulations with the different lipidoids including, but not limited to penta[3-(1-laurylaminopropionyl)]-triethylenetetramine hydrochloride (TETA-5LAP; aka 98N12-5, see Murugaiah et al., Analytical Biochemistry, 401:61 (2010); herein incorporated by reference in its entirety), C12-200 (including derivatives and variants), and MD1, can be tested for in vivo activity.
- TETA-5LAP penta[3-(1-laurylaminopropionyl)]-triethylenetetramine hydrochloride
- C12-200 including derivatives and variants
- MD1 can be tested for in vivo activity.
- lipidoid referred to herein as “98N12-5” is disclosed by Akinc et al., Mol. Ther. 2009 17:872-879 and is incorporated by reference in its entirety (See FIG. 1 ).
- the lipidoid referred to herein as “C12-200” is disclosed by Love et al., Proc Natl Acad Sci USA. 2010 107:1864-1869 and Liu and Huang, Molecular Therapy. 2010 669-670 (see FIG. 1 ); both of which are herein incorporated by reference in their entirety.
- the lipidoid formulations can include particles comprising either 3 or 4 or more components in addition to modified nucleic acid molecules or mRNA.
- formulations with certain lipidoids include, but are not limited to, 98N12-5 and may contain 42% lipidoid, 48% cholesterol and 10% PEG (C 1-4 alkyl chain length).
- formulations with certain lipidoids include, but are not limited to, C12-200 and may contain 50% lipidoid, 10% disteroylphosphatidyl choline, 38.5% cholesterol, and 1.5% PEG-DMG.
- a modified nucleic acid molecule or mRNA formulated with a lipidoid for systemic intravenous administration can target the liver.
- a final optimized intravenous formulation using modified nucleic acid molecule or mRNA, and comprising a lipid molar composition of 42% 98N12-5, 48% cholesterol, and 10% PEG-lipid with a final weight ratio of about 7.5 to 1 total lipid to modified nucleic acid, or mRNA, and a C 1-4 alkyl chain length on the PEG lipid, with a mean particle size of roughly 50-60 nm can result in the distribution of the formulation to be greater than 90% to the liver.
- lipidoid may have a molar ratio of 50/10/38.5/1.5 of C12-200/disteroylphosphatidyl choline/cholesterol/PEG-DMG, with a weight ratio of 7 to 1 total lipid to modified nucleic acid molecule or mRNA, and a mean particle size of 80 nm may be effective to deliver modified nucleic acid molecule or mRNA to hepatocytes (see, Love et al., Proc Natl Acad Sci USA.
- an MD1 lipidoid-containing formulation may be used to effectively deliver modified nucleic acid molecule or mRNA to hepatocytes in vivo.
- the characteristics of optimized lipidoid formulations for intramuscular or subcutaneous routes may vary significantly depending on the target cell type and the ability of formulations to diffuse through the extracellular matrix into the blood stream. While a particle size of less than 150 nm may be desired for effective hepatocyte delivery due to the size of the endothelial fenestrae (see, Akinc et al., Mol. Ther.
- lipidoid-formulated modified nucleic acid molecules or mRNA to deliver the formulation to other cells types including, but not limited to, endothelial cells, myeloid cells, and muscle cells may not be similarly size-limited.
- Use of lipidoid formulations to deliver siRNA in vivo to other non-hepatocyte cells such as myeloid cells and endothelium has been reported (see Akinc et al., Nat. Biotechnol. 2008 26:561-569; Leuschner et al., Nat. Biotechnol. 2011 29:1005-1010; Cho et al. Adv. Funct. Mater.
- lipidoid formulations may have a similar component molar ratio. Different ratios of lipidoids and other components including, but not limited to, disteroylphosphatidyl choline, cholesterol and PEG-DMG, may be used to optimize the formulation of the modified nucleic acid, or mRNA for delivery to different cell types including, but not limited to, hepatocytes, myeloid cells, muscle cells, etc.
- the component molar ratio may include, but is not limited to, 50% C12-200, 10% disteroylphosphatidyl choline, 38.5% cholesterol, and %1.5 PEG-DMG (see Leuschner et al., Nat Biotechnol 2011 29:1005-1010; herein incorporated by reference in its entirety).
- the use of lipidoid formulations for the localized delivery of nucleic acids to cells (such as, but not limited to, adipose cells and muscle cells) via either subcutaneous or intramuscular delivery, may not require all of the formulation components desired for systemic delivery, and as such may comprise only the lipidoid and the modified nucleic acid molecule or mRNA.
- Combinations of different lipidoids may be used to improve the efficacy of modified nucleic acid molecule or mRNA directed protein production as the lipidoids may be able to increase cell transfection by the modified nucleic acid molecule or mRNA; and/or increase the translation of encoded protein (see Whitehead et al., Mol. Ther. 2011, 19:1688-1694, herein incorporated by reference in its entirety).
- Liposomes Liposomes, Lipoplexes, and Lipid Nanoparticles
- modified nucleic acid molecules and mRNA of the invention can be formulated using one or more liposomes, lipoplexes, or lipid nanoparticles.
- pharmaceutical compositions of modified nucleic acid molecule or mRNA include liposomes. Liposomes are artificially-prepared vesicles which may primarily be composed of a lipid bilayer and may be used as a delivery vehicle for the administration of nutrients and pharmaceutical formulations.
- Liposomes can be of different sizes such as, but not limited to, a multilamellar vesicle (MLV) which may be hundreds of nanometers in diameter and may contain a series of concentric bilayers separated by narrow aqueous compartments, a small unicellular vesicle (SUV) which may be smaller than 50 nm in diameter, and a large unilamellar vesicle (LUV) which may be between 50 and 500 nm in diameter.
- MLV multilamellar vesicle
- SUV small unicellular vesicle
- LUV large unilamellar vesicle
- Liposome design may include, but is not limited to, opsonins or ligands in order to improve the attachment of liposomes to unhealthy tissue or to activate events such as, but not limited to, endocytosis.
- Liposomes may contain a low or a high pH in order to improve the delivery of the pharmaceutical formulations.
- liposomes may depend on the physicochemical characteristics such as, but not limited to, the pharmaceutical formulation entrapped and the liposomal ingredients, the nature of the medium in which the lipid vesicles are dispersed, the effective concentration of the entrapped substance and its potential toxicity, any additional processes involved during the application and/or delivery of the vesicles, the optimization size, polydispersity and the shelf-life of the vesicles for the intended application, and the batch-to-batch reproducibility and possibility of large-scale production of safe and efficient liposomal products.
- compositions described herein may include, without limitation, liposomes such as those formed from 1,2-dioleyloxy-N,N-dimethylaminopropane (DODMA) liposomes, DiLa2 liposomes from Marina Biotech (Bothell, Wash.), 1,2-dilinoleyloxy-3-dimethylaminopropane (DLin-DMA), 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLin-KC2-DMA), and MC3 (US20100324120; herein incorporated by reference in its entirety) and liposomes which may deliver small molecule drugs such as, but not limited to, DOXIL® from Janssen Biotech, Inc.
- DODMA 1,2-dioleyloxy-N,N-dimethylaminopropane
- DiLa2 liposomes from Marina Biotech (Bothell, Wash.
- DLin-DMA 1,2-dil
- compositions described herein may include, without limitation, liposomes such as those formed from the synthesis of stabilized plasmid-lipid particles (SPLP) or stabilized nucleic acid lipid particle (SNALP) that have been previously described and shown to be suitable for oligonucleotide delivery in vitro and in vivo (see Wheeler et al. Gene Therapy. 1999 6:271-281; Zhang et al. Gene Therapy. 1999 6:1438-1447; Jeffs et al. Pharm Res. 2005 22:362-372; Morrissey et al., Nat. Biotechnol. 2005 2:1002-1007; Zimmermann et al., Nature.
- liposomes such as those formed from the synthesis of stabilized plasmid-lipid particles (SPLP) or stabilized nucleic acid lipid particle (SNALP) that have been previously described and shown to be suitable for oligonucleotide delivery in vitro and in vivo (see Wheeler et al. Gene Therapy. 1999
- a liposome can contain, but is not limited to, 55% cholesterol, 20% disteroylphosphatidyl choline (DSPC), 10% PEG-S-DSG, and 15% 1,2-dioleyloxy-N,N-dimethylaminopropane (DODMA), as described by Jeffs et al.
- DSPC disteroylphosphatidyl choline
- PEG-S-DSG 10% PEG-S-DSG
- DODMA 1,2-dioleyloxy-N,N-dimethylaminopropane
- certain liposome formulations may contain, but are not limited to, 48% cholesterol, 20% DSPC, 2% PEG-c-DMA, and 30% cationic lipid, where the cationic lipid can be 1,2-distearloxy-N,N-dimethylaminopropane (DSDMA), DODMA, DLin-DMA, or 1,2-dilinolenyloxy-3-dimethylaminopropane (DLenDMA), as described by Heyes et al.
- DSDMA 1,2-distearloxy-N,N-dimethylaminopropane
- DODMA 1,2-dilinolenyloxy-3-dimethylaminopropane
- compositions may include liposomes which may be formed to deliver mRNA which may encode at least one immunogen.
- the mRNA may be encapsulated by the liposome and/or it may be contained in an aqueous core which may then be encapsulated by the liposome (see International Pub. Nos. WO2012031046, WO2012031043, WO2012030901 and WO2012006378; each of which is herein incorporated by reference in their entirety).
- the mRNA which may encode an immunogen may be formulated in a cationic oil-in-water emulsion where the emulsion particle comprises an oil core and a cationic lipid which can interact with the mRNA anchoring the molecule to the emulsion particle (see International Pub. No. WO2012006380; herein incorporated by reference in its entirety).
- the lipid formulation may include at least cationic lipid, a lipid which may enhance transfection and a least one lipid which contains a hydrophilic head group linked to a lipid moiety (International Pub. No. WO2011076807 and U.S. Pub. No. 20110200582; each of which is herein incorporated by reference in their entirety).
- the modified mRNA encoding an immunogen may be formulated in a lipid vesicle which may have crosslinks between functionalized lipid bilayers (see U.S. Pub. No. 20120177724, herein incorporated by reference in its entirety).
- the modified mRNA may be formulated in a lipid vesicle which may have crosslinks between functionalized lipid bilayers.
- the modified mRNA may be formulated in a lipid-polycation complex.
- the formation of the lipid-polycation complex may be accomplished by methods known in the art and/or as described in U.S. Pub. No. 20120178702, herein incorporated by reference in its entirety.
- the polycation may include a cationic peptide or a polypeptide such as, but not limited to, polylysine, polyornithine and/or polyarginine and the cationic peptides described in International Pub. No. WO2012013326; herein incorporated by reference in its entirety.
- the modified mRNA may be formulated in a lipid-polycation complex which may further include a neutral lipid such as, but not limited to, cholesterol or dioleoyl phosphatidylethanolamine (DOPE).
- DOPE dioleoyl phosphatidylethanolamine
- the liposome formulation may be influenced by, but not limited to, the selection of the cationic lipid component, the degree of cationic lipid saturation, the nature of the PEGylation, ratio of all components and biophysical parameters such as size.
- the liposome formulation was composed of 57.1% cationic lipid, 7.1% dipalmitoylphosphatidylcholine, 34.3% cholesterol, and 1.4% PEG-c-DMA.
- changing the composition of the cationic lipid could more effectively deliver siRNA to various antigen presenting cells (Basha et al. Mol. Ther. 2011 19:2186-2200; herein incorporated by reference in its entirety).
- the ratio of PEG in the lipid nanoparticle (LNP) formulations may be increased or decreased and/or the carbon chain length of the PEG lipid may be modified from C14 to C18 to alter the pharmacokinetics and/or biodistribution of the LNP formulations.
- LNP formulations may contain 1-5% of the lipid molar ratio of PEG-c-DOMG as compared to the cationic lipid, DSPC and cholesterol.
- the PEG-c-DOMG may be replaced with a PEG lipid such as, but not limited to, PEG-DSG (1,2-Distearoyl-sn-glycerol, methoxypolyethylene glycol) or PEG-DPG (1,2-Dipalmitoyl-sn-glycerol, methoxypolyethylene glycol).
- PEG-DSG 1,2-Distearoyl-sn-glycerol, methoxypolyethylene glycol
- PEG-DPG 1,2-Dipalmitoyl-sn-glycerol, methoxypolyethylene glycol
- the cationic lipid may be selected from any lipid known in the art such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12-200 and DLin-KC2-DMA.
- the cationic lipid may be selected from, but not limited to, a cationic lipid described in International Publication Nos. WO2012040184, WO2011153120, WO2011149733, WO2011090965, WO2011043913, WO2011022460, WO2012061259, WO2012054365, WO2012044638, WO2010080724, WO201021865 and WO2008103276, U.S. Pat. Nos. 7,893,302, 7,404,969 and 8,283,333 and US Patent Publication No. US20100036115 and US20120202871; each of which is herein incorporated by reference in their entirety.
- the cationic lipid may be selected from, but not limited to, formula A described in International Publication Nos. WO2012040184, WO2011153120, WO2011149733, WO2011090965, WO2011043913, WO2011022460, WO2012061259, WO2012054365 and WO2012044638; each of which is herein incorporated by reference in their entirety.
- the cationic lipid may be selected from, but not limited to, formula CLI-CLXXIX of International Publication No. WO2008103276, formula CLI-CLXXIX of U.S. Pat. No. 7,893,302, formula CLI-CLXXXXII of U.S. Pat. No.
- the cationic lipid may be selected from (20Z,23Z)—N,N-dimethylnonacosa-20,23-dien-10-amine, (17Z,20Z)—N,N-dimemylhexacosa-17,20-dien-9-amine, (1Z,19Z)—N5N-dimethylpentacosa-16,19-dien-8-amine, (13Z,16Z)—N,N-dimethyldocosa-13,16-dien-5-amine, (12Z,15Z)—N,N-dimethylhenicosa-12,15-dien-4-amine, (14Z,17Z)—N,N-dimethyltricosa-14,17-dien-6-amine, (15Z,18Z)—N,N-dimethyltetracosa-15,
- the cationic lipid may be synthesized by methods known in the art and/or as described in International Publication Nos. WO2012040184, WO2011153120, WO2011149733, WO2011090965, WO2011043913, WO2011022460, WO2012061259, WO2012054365, WO2012044638, WO2010080724 and WO201021865; each of which is herein incorporated by reference in their entirety.
- the LNP formulation may contain PEG-c-DOMG at 3% lipid molar ratio. In another embodiment, the LNP formulation may contain PEG-c-DOMG at 1.5% lipid molar ratio.
- the LNP formulation may contain PEG-DMG 2000 (1,2-dimyristoyl-sn-glycero-3-phophoethanolamine-N-[methoxy(polyethylene glycol)-2000).
- the LNP formulation may contain PEG-DMG 2000, a cationic lipid known in the art and at least one other component.
- the LNP formulation may contain PEG-DMG 2000, a cationic lipid known in the art, DSPC and cholesterol.
- the LNP formulation may contain PEG-DMG 2000, DLin-DMA, DSPC and cholesterol.
- the LNP formulation may contain PEG-DMG 2000, DLin-DMA, DSPC and cholesterol in a molar ratio of 2:40:10:48 (see e.g. Geall et al., Nonviral delivery of self-amplifying RNA vaccines, PNAS 2012; PMID: 22908294; herein incorporated by reference in its entirety).
- the LNP formulation may be formulated by the methods described in International Publication Nos. WO2011127255 or WO2008103276, each of which is herein incorporated by reference in their entirety.
- modified RNA described herein may be encapsulated in LNP formulations as described in WO2011127255 and/or WO2008103276; each of which is herein incorporated by reference in their entirety.
- modified RNA described herein may be formulated in a nanoparticle to be delivered by a parenteral route as described in U.S. Pub. No. 20120207845; herein incorporated by reference in its entirety.
- LNP formulations described herein may comprise a polycationic composition.
- the polycationic composition may be selected from formula 1-60 of US Patent Publication No. US20050222064; herein incorporated by reference in its entirety.
- the LNP formulations comprising a polycationic composition may be used for the delivery of the modified RNA described herein in vivo and/or in vitro.
- the LNP formulations described herein may additionally comprise a permeability enhancer molecule.
- a permeability enhancer molecule are described in US Patent Publication No. US20050222064; herein incorporated by reference in its entirety.
- the pharmaceutical compositions may be formulated in liposomes such as, but not limited to, DiLa2 liposomes (Marina Biotech, Bothell, Wash.), SMARTICLES® (Marina Biotech, Bothell, Wash.), neutral DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) based liposomes (e.g., siRNA delivery for ovarian cancer (Landen et al. Cancer Biology & Therapy 2006 5(12) 1708-1713); herein incorporated by reference in its entirety) and hyaluronan-coated liposomes (Quiet Therapeutics, Israel).
- DiLa2 liposomes Marina Biotech, Bothell, Wash.
- SMARTICLES® Marina Biotech, Bothell, Wash.
- neutral DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine
- hyaluronan-coated liposomes Quiet Therapeutics, Israel
- the nanoparticle formulations may be a carbohydrate nanoparticle comprising a carbohydrate carrier and a modified nucleic acid molecule (e.g., mRNA).
- the carbohydrate carrier may include, but is not limited to, an anhydride-modified phytoglycogen or glycogen-type material, phtoglycogen octenyl succinate, phytoglycogen beta-dextrin, anhydride-modified phytoglycogen beta-dextrin. (See e.g., International Publication No. WO2012109121; herein incorporated by reference in its entirety).
- Lipid nanoparticle formulations may be improved by replacing the cationic lipid with a biodegradable cationic lipid which is known as a rapidly eliminated lipid nanoparticle (reLNP).
- Ionizable cationic lipids such as, but not limited to, DLinDMA, DLin-KC2-DMA, and DLin-MC3-DMA, have been shown to accumulate in plasma and tissues over time and may be a potential source of toxicity.
- the rapid metabolism of the rapidly eliminated lipids can improve the tolerability and therapeutic index of the lipid nanoparticles by an order of magnitude from a 1 mg/kg dose to a 10 mg/kg dose in rat.
- ester linkage can improve the degradation and metabolism profile of the cationic component, while still maintaining the activity of the reLNP formulation.
- the ester linkage can be internally located within the lipid chain or it may be terminally located at the terminal end of the lipid chain.
- the internal ester linkage may replace any carbon in the lipid chain.
- the internal ester linkage may be located on either side of the saturated carbon.
- reLNPs include,
- an immune response may be elicited by delivering a lipid nanoparticle which may include a nanospecies, a polymer and an immunogen.
- a lipid nanoparticle which may include a nanospecies, a polymer and an immunogen.
- the polymer may encapsulate the nanospecies or partially encapsulate the nanospecies.
- the immunogen may be a recombinant protein, a modified RNA described herein.
- the lipid nanoparticle may be formulated for use in a vaccine such as, but not limited to, against a pathogen.
- Lipid nanoparticles may be engineered to alter the surface properties of particles so the lipid nanoparticles may penetrate the mucosal barrier.
- Mucus is located on mucosal tissue such as, but not limted to, oral (e.g., the buccal and esophageal membranes and tonsil tissue), ophthalmic, gastrointestinal (e.g., stomach, small intestine, large intestine, colon, rectum), nasal, respiratory (e.g., nasal, pharyngeal, tracheal and bronchial membranes), genital (e.g., vaginal, cervical and urethral membranes).
- oral e.g., the buccal and esophageal membranes and tonsil tissue
- ophthalmic e.g., gastrointestinal (e.g., stomach, small intestine, large intestine, colon, rectum)
- nasal, respiratory e.g., nasal, pharyngeal, tracheal and bron
- Nanoparticles larger than 10-200 nm which are preferred for higher drug encapsulation efficiency and the ability to provide the sustained delivery of a wide array of drugs have been thought to be too large to rapidly diffuse through mucosal barriers. Mucus is continuously secreted, shed, discarded or digested and recycled so most of the trapped particles may be removed from the mucosla tissue within seconds or within a few hours. Large polymeric nanoparticles (200 nm-500 nm in diameter) which have been coated densely with a low molecular weight polyethylene glycol (PEG) diffused through mucus only 4 to 6-fold lower than the same particles diffusing in water (Lai et al. PNAS 2007 104(5):1482-487; Lai et al.
- PEG polyethylene glycol
- the transport of nanoparticles may be determined using rates of permeation and/or fluorescent microscopy techniques including, but not limited to, fluorescence recovery after photobleaching (FRAP) and high resolution multiple particle tracking (MPT).
- FRAP fluorescence recovery after photobleaching
- MPT high resolution multiple particle tracking
- compositions which can penetrate a mucosal barrier may be made as described in U.S. Pat. No. 8,241,670, herein incorporated by reference in its entirety.
- the lipid nanoparticle engineered to penetrate mucus may comprise a polymeric material (i.e. a polymeric core) and/or a polymer-vitamin conjugate and/or a tri-block co-polymer.
- the polymeric material may include, but is not limited to, polyamines, polyethers, polyamides, polyesters, polycarbamates, polyureas, polycarbonates, poly(styrenes), polyimides, polysulfones, polyurethanes, polyacetylenes, polyethylenes, polyethyeneimines, polyisocyanates, polyacrylates, polymethacrylates, polyacrylonitriles, and polyarylates.
- the polymeric material may be biodegradable and/or biocompatible.
- the polymeric material may additionally be irradiated.
- the polymeric material may be gamma irradiated (See e.g., International App. No. WO201282165, herein incorporated by reference in its entirety).
- Non-limiting examples of specific polymers include poly(caprolactone) (PCL), ethylene vinyl acetate polymer (EVA), poly(lactic acid) (PLA), poly(L-lactic acid) (PLLA), poly(glycolic acid) (PGA), poly(lactic acid-co-glycolic acid) (PLGA), poly(L-lactic acid-co-glycolic acid) (PLLGA), poly(D,L-lactide) (PDLA), poly(L-lactide) (PLLA), poly(D,L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone-co-glycolide), poly(D,L-lactide-co-PEO-co-D,L-lactide), poly(D,L-lactide-co-PPO-co-D,L-lactide), polyalkyl cyanoacralate, polyurethane, poly-L-lysine (PLL), hydroxypropyl methacrylate (
- the lipid nanoparticle may be coated or associated with a co-polymer such as, but not limited to, a block co-polymer, and (poly(ethylene glycol))-(poly(propylene oxide))-(poly(ethylene glycol)) triblock copolymer (see e.g., US Publication 20120121718 and US Publication 20100003337 and U.S. Pat. No. 8,263,665; each of which is herein incorporated by reference in their entirety).
- the co-polymer may be a polymer that is generally regarded as safe (GRAS) and the formation of the lipid nanoparticle may be in such a way that no new chemical entities are created.
- the lipid nanoparticle may comprise poloxamers coating PLGA nanoparticles without forming new chemical entities which are still able to rapidly penetrate human mucus (Yang et al. Angew. Chem. Int. Ed. 2011 50:2597-2600; herein incorporated by reference in its entirety).
- the vitamin of the polymer-vitamin conjugate may be vitamin E.
- the vitamin portion of the conjugate may be substituted with other suitable components such as, but not limited to, vitamin A, vitamin E, other vitamins, cholesterol, a hydrophobic moiety, or a hydrophobic component of other surfactants (e.g., sterol chains, fatty acids, hydrocarbon chains and alkylene oxide chains).
- the lipid nanoparticle engineered to penetrate mucus may include surface altering agents such as, but not limited to, mRNA, anionic proteins (e.g., bovine serum albumin), surfactants (e.g., cationic surfactants such as for example dimethyldioctadecyl-ammonium bromide), sugars or sugar derivatives (e.g., cyclodextrin), nucleic acids, polymers (e.g., heparin, polyethylene glycol and poloxamer), mucolytic agents (e.g., N-acetylcysteine, mugwort, bromelain, papain, clerodendrum, acetylcysteine, bromhexine, carbocisteine, eprazinone, mesna, ambroxol, sobrerol, domiodol, letosteine, stepronin, tiopronin, gelsolin, thymosin ⁇ 4 dor
- the surface altering agent may be embedded or enmeshed in the particle's surface or disposed (e.g., by coating, adsorption, covalent linkage, or other process) on the surface of the lipid nanoparticle.
- the mucus penetrating lipid nanoparticles may comprise at least one mRNA described herein.
- the mRNA may be encapsulated in the lipid nanoparticle and/or disposed on the surface of the paricle.
- the mRNA may be covalently coupled to the lipid nanoparticle.
- Formulations of mucus penetrating lipid nanoparticles may comprise a plurality of nanoparticles. Further, the formulations may contain particles which may interact with the mucus and alter the structural and/or adhesive properties of the surrounding mucus to decrease mucoadhesion which may increase the delivery of the mucus penetrating lipid nanoparticles to the mucosal tissue.
- the modified nucleic acid molecule or mRNA is formulated as a lipoplex, such as, without limitation, the ATUPLEXTM system, the DACC system, the DBTC system and other siRNA-lipoplex technology from Silence Therapeutics (London, United Kingdom), STEMFECTTM from STEMGENT® (Cambridge, Mass.), and polyethylenimine (PEI) or protamine-based targeted and non-targeted delivery of nucleic acids acids (Aleku et al. Cancer Res. 2008 68:9788-9798; Strumberg et al.
- a lipoplex such as, without limitation, the ATUPLEXTM system, the DACC system, the DBTC system and other siRNA-lipoplex technology from Silence Therapeutics (London, United Kingdom), STEMFECTTM from STEMGENT® (Cambridge, Mass.), and polyethylenimine (PEI) or protamine-based targeted and non-targeted delivery of nucleic acids acids (Aleku et al. Cancer Res
- such formulations may also be constructed or compositions altered such that they passively or actively are directed to different cell types in vivo, including but not limited to hepatocytes, immune cells, tumor cells, endothelial cells, antigen presenting cells, and leukocytes (Akinc et al. Mol. Ther. 2010 18:1357-1364; Song et al., Nat. Biotechnol. 2005 23:709-717; Judge et al., J Clin Invest.
- DLin-DMA DLin-KC2-DMA
- DLin-MC3-DMA-based lipid nanoparticle formulations which have been shown to bind to apolipoprotein E and promote binding and uptake of these formulations into hepatocytes in vivo (Akinc et al. Mol. Ther. 2010 18:1357-1364; herein incorporated by reference in its entirety).
- Formulations can also be selectively targeted through expression of different ligands on their surface as exemplified by, but not limited by, folate, transferrin, N-acetylgalactosamine (GalNAc), and antibody targeted approaches (Kolhatkar et al., Curr Drug Discov Technol. 2011 8:197-206; Musacchio and Torchilin, Front Biosci. 2011 16:1388-1412; Yu et al., Mol Membr Biol. 2010 27:286-298; Patil et al., Crit. Rev Ther Drug Carrier Syst. 2008 25:1-61; Benoit et al., Biomacromolecules.
- the modified nucleic acid molecules or mRNA are formulated as a solid lipid nanoparticle.
- a solid lipid nanoparticle may be spherical with an average diameter between 10 to 1000 nm. SLN possess a solid lipid core matrix that can solubilize lipophilic molecules and may be stabilized with surfactants and/or emulsifiers.
- the lipid nanoparticle may be a self-assembly lipid-polymer nanoparticle (see Zhang et al., ACS Nano, 2008, 2 (8), pp 1696-1702; herein incorporated by reference in its entirety).
- Liposomes, lipoplexes, or lipid nanoparticles may be used to improve the efficacy of modified nucleic acid molecules or mRNA directed protein production as these formulations may be able to increase cell transfection by the modified nucleic acid molecule or mRNA; and/or increase the translation of encoded protein.
- One such example involves the use of lipid encapsulation to enable the effective systemic delivery of polyplex plasmid DNA (Heyes et al., Mol. Ther. 2007 15:713-720; herein incorporated by reference in its entirety).
- the liposomes, lipoplexes, or lipid nanoparticles may also be used to increase the stability of the modified nucleic acid molecules or mRNA.
- the modified nucleic acid molecules and/or the mRNA of the present invention can be formulated for controlled release and/or targeted delivery.
- controlled release refers to a pharmaceutical composition or compound release profile that conforms to a particular pattern of release to effect a therapeutic outcome.
- the modified nucleic acids molecules or the mRNA may be encapsulated into a delivery agent described herein and/or known in the art for controlled release and/or targeted delivery.
- encapsulate means to enclose, surround or encase. As it relates to the formulation of the compounds of the invention, encapsulation may be substantial, complete or partial.
- substantially encapsulated means that at least greater than 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.9 or greater than 99.999% of the pharmaceutical composition or compound of the invention may be enclosed, surrounded or encased within the delivery agent.
- Partially encapsulation means that less than 10, 10, 20, 30, 40 50 or less of the pharmaceutical composition or compound of the invention may be enclosed, surrounded or encased within the delivery agent.
- encapsulation may be determined by measuring the escape or the activity of the pharmaceutical composition or compound of the invention using fluorescence and/or electron micrograph.
- At least 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.99 or greater than 99.99% of the pharmaceutical composition or compound of the invention are encapsulated in the delivery agent.
- the controlled release formulation may include, but is not limited to, tri-block co-polymers.
- the formulation may include two different types of tri-block co-polymers (International Pub. No. WO2012131104 and WO2012131106; each of which is herein incorporated by reference in its entirety).
- the modified nucleic acid molecules or the mRNA may be encapsulated into a lipid nanoparticle or a rapidly eliminated lipid nanoparticle and the lipid nanoparticles or a rapidly eliminated lipid nanoparticle may then be encapsulated into a polymer, hydrogel and/or surgical sealant described herein and/or known in the art.
- the polymer, hydrogel or surgical sealant may be PLGA, ethylene vinyl acetate (EVAc), poloxamer, GELSITE® (Nanotherapeutics, Inc. Alachua, Fla.), HYLENEX® (Halozyme Therapeutics, San Diego Calif.), surgical sealants such as fibrinogen polymers (Ethicon Inc. Cornelia, Ga.), TISSELL® (Baxter International, Inc Deerfield, Ill.), PEG-based sealants, and COSEAL® (Baxter International, Inc Deerfield, Ill.).
- the lipid nanoparticle may be encapsulated into any polymer known in the art which may form a gel when injected into a subject.
- the lipid nanoparticle may be encapsulated into a polymer matrix which may be biodegradable.
- the modified nucleic acid molecules or mRNA formulation for controlled release and/or targeted delivery may also include at least one controlled release coating.
- Controlled release coatings include, but are not limited to, OPADRY®, polyvinylpyrrolidone/vinyl acetate copolymer, polyvinylpyrrolidone, hydroxypropyl methylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, EUDRAGIT RL®, EUDRAGIT RS® and cellulose derivatives such as ethylcellulose aqueous dispersions (AQUACOAT® and SURELEASE®).
- the controlled release and/or targeted delivery formulation may comprise at least one degradable polyester which may contain polycationic side chains.
- Degradable polyesters include, but are not limited to, poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester), and combinations thereof.
- the degradable polyesters may include a PEG conjugation to form a PEGylated polymer.
- the modified nucleic acid molecules and/or the mRNA of the present invention may be encapsulated in a therapeutic nanoparticle.
- Therapeutic nanoparticles may be formulated by methods described herein and known in the art such as, but not limited to, International Pub Nos. WO2010005740, WO2010030763, WO2010005721, WO2010005723, WO2012054923, US Pub. Nos. US20110262491, US20100104645, US20100087337, US20100068285, US20110274759, US20100068286 and US20120288541, and US Pat No.
- therapeutic polymer nanoparticles may be identified by the methods described in US Pub No. US20120140790, herein incorporated by reference in its entirety.
- the therapeutic nanoparticle may be formulated for sustained release.
- sustained release refers to a pharmaceutical composition or compound that conforms to a release rate over a specific period of time. The period of time may include, but is not limited to, hours, days, weeks, months and years.
- the sustained release nanoparticle may comprise a polymer and a therapeutic agent such as, but not limited to, the modified nucleic acid molecules and mRNA of the present invention (see International Pub No. 2010075072 and US Pub No. US20100216804, US20110217377 and US20120201859, each of which is herein incorporated by reference in their entirety).
- the therapeutic nanoparticles may be formulated to be target specific.
- the thereapeutic nanoparticles may include a corticosteroid (see International Pub. No. WO2011084518 herein incorporated by reference in its entirety).
- the therapeutic nanoparticles of the present invention may be formulated to be cancer specific.
- the therapeutic nanoparticles may be formulated in nanoparticles described in International Pub No. WO2008121949, WO2010005726, WO2010005725, WO2011084521 and US Pub No. US20100069426, US20120004293 and US20100104655, each of which is herein incorporated by reference in their entirety.
- the nanoparticles of the present invention may comprise a polymeric matrix.
- the nanoparticle may comprise two or more polymers such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polylysine, poly(ethylene imine), poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester) or combinations thereof.
- the therapeutic nanoparticle comprises a diblock copolymer.
- the diblock copolymer may include PEG in combination with a polymer such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates, polycaprolactones, polyamides, polyacetals, polyethers, polyesters, poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polycyanoacrylates, polyureas, polystyrenes, polyamines, polylysine, poly(ethylene imine), poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester) or combinations thereof.
- a polymer such as, but not limited to, polyethylenes, polycarbonates, polyanhydrides, polyhydroxyacids, polypropylfumerates
- the therapeutic nanoparticle comprises a PLGA-PEG block copolymer (see US Pub. No. US20120004293 and U.S. Pat. No. 8,236,330, each of which is herein incorporated by reference in their entirety).
- the therapeutic nanoparticle is a stealth nanoparticle comprising a diblock copolymer of PEG and PLA or PEG and PLGA (see US Pat No 8,246,968, herein incorporated by reference in its entirety).
- the therapeutic nanoparticle may comprise a multiblock copolymer (See e.g., U.S. Pat. Nos. 8,263,665 and 8,287,910; each of which is herein incorporated by reference in its entirety).
- the block copolymers described herein may be included in a polyion complex comprising a non-polymeric micelle and the block copolymer.
- a polyion complex comprising a non-polymeric micelle and the block copolymer.
- the therapeutic nanoparticle may comprise at least one acrylic polymer.
- Acrylic polymers include but are not limited to, acrylic acid, methacrylic acid, acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, amino alkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), polycyanoacrylates and combinations thereof.
- the therapeutic nanoparticles may comprise at least one cationic polymer described herein and/or known in the art.
- the therapeutic nanoparticles may comprise at least one amine-containing polymer such as, but not limited to polylysine, polyethylene imine, poly(amidoamine) dendrimers, poly(beta-amino esters) (See e.g., U.S. Pat. No. 8,287,849; herein incorporated by reference in its entirety) and combinations thereof.
- amine-containing polymer such as, but not limited to polylysine, polyethylene imine, poly(amidoamine) dendrimers, poly(beta-amino esters) (See e.g., U.S. Pat. No. 8,287,849; herein incorporated by reference in its entirety) and combinations thereof.
- the therapeutic nanoparticles may comprise at least one degradable polyester which may contain polycationic side chains.
- Degradable polyesters include, but are not limited to, poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester), and combinations thereof.
- the degradable polyesters may include a PEG conjugation to form a PEGylated polymer.
- the therapeutic nanoparticle may include a conjugation of at least one targeting ligand.
- the targeting ligand may be any ligand known in the art such as, but not limited to, a monoclonal antibody. (Kirpotin et al, Cancer Res. 2006 66:6732-6740; herein incorporated by reference in its entirety).
- the therapeutic nanoparticle may be formulated in an aqueous solution which may be used to target cancer (see International Pub No. WO2011084513 and US Pub No. US20110294717, each of which is herein incorporated by reference in their entirety).
- the modified nucleic acid molecules or mRNA may be encapsulated in, linked to and/or associated with synthetic nanocarriers.
- Synthetic nanocarriers include, but are not limited to, those described in International Pub. Nos. WO2010005740, WO2010030763, WO201213501, WO2012149252, WO2012149255, WO2012149259, WO2012149265, WO2012149268, WO2012149282, WO2012149301, WO2012149393, WO2012149405, WO2012149411 and WO2012149454 and US Pub. Nos.
- the synthetic nanocarriers may be formulated using methods known in the art and/or described herein. As a non-limiting example, the synthetic nanocarriers may be formulated by the methods described in International Pub Nos. WO2010005740, WO2010030763 and WO201213501 and US Pub. Nos. US20110262491, US20100104645, US20100087337 and US20120244222, each of which is herein incorporated by reference in their entirety. In another embodiment, the synthetic nanocarrier formulations may be lyophilized by methods described in International Pub. No. WO2011072218 and U.S. Pat. No. 8,211,473; each of which is herein incorporated by reference in their entirety.
- the synthetic nanocarriers may contain reactive groups to release the modified nucleic acid molecules and/or mRNA described herein (see International Pub. No. WO20120952552 and US Pub No. US20120171229, each of which is herein incorporated by reference in their entirety).
- the synthetic nanocarriers may contain an immunostimulatory agent to enhance the immune response from delivery of the synthetic nanocarrier.
- the synthetic nanocarrier may comprise a Th1 immunostimulatory agent which may enhance a Th1-based response of the immune system (see International Pub No. WO2010123569 and US Pub. No. US20110223201, each of which is herein incorporated by reference in its entirety).
- the synthetic nanocarriers may be formulated for targeted release.
- the synthetic nanocarrier is formulated to release the modified nucleic acid molecules and/or mRNA at a specified pH and/or after a desired time interval.
- the synthetic nanoparticle may be formulated to release the modified mRNA molecules and/or mRNA after 24 hours and/or at a pH of 4.5 (see International Pub. Nos. WO2010138193 and WO2010138194 and US Pub Nos. US20110020388 and US20110027217, each of which is herein incorporated by reference in their entirety).
- the synthetic nanocarriers may be formulated for controlled and/or sustained release of the modified nucleic acid molecules and/or mRNA described herein.
- the synthetic nanocarriers for sustained release may be formulated by methods known in the art, described herein and/or as described in International Pub No. WO2010138192 and US Pub No. 20100303850, each of which is herein incorporated by reference in their entirety.
- the synthetic nanocarrier may be formulated for use as a vaccine.
- the synthetic nanocarrier may encapsulate at least one modified nucleic acid molecule and/or mRNA which encodes at least one antigen.
- the synthetic nanocarrier may include at least one antigen and an excipient for a vaccine dosage form (see International Pub No. WO2011150264 and US Pub No. US20110293723, each of which is herein incorporated by reference in their entirety).
- a vaccine dosage form may include at least two synthetic nanocarriers with the same or different antigens and an excipient (see International Pub No. WO2011150249 and US Pub No.
- the vaccine dosage form may be selected by methods described herein, known in the art and/or described in International Pub No. WO2011150258 and US Pub No. US20120027806, each of which is herein incorporated by reference in their entirety).
- the synthetic nanocarrier may comprise at least one modified nucleic acid molecule and/or mRNA which encodes at least one adjuvant.
- the synthetic nanocarrier may comprise at least one modified nucleic molecule acid and/or mRNA and an adjuvant.
- the synthetic nanocarrier comprising and adjuvant may be formulated by the methods described in International Pub No. WO2011150240 and US Pub No. US20110293700, each of which is herein incorporated by reference in its entirety.
- the synthetic nanocarrier may encapsulate at least one modified nucleic acid molecule and/or mRNA which encodes a peptide, fragment or region from a virus.
- the synthetic nanocarrier may include, but is not limited to, the nanocarriers described in International Pub No. WO2012024621, WO201202629, WO2012024632 and US Pub No. US20120064110, US20120058153 and US20120058154, each of which is herein incorporated by reference in their entirety.
- the nanoparticle may be optimized for oral administration.
- the nanoparticle may comprise at least one cationic biopolymer such as, but not limited to, chitosan or a derivative thereof.
- the nanoparticle may be formulated by the methods described in U.S. Pub. No. 20120282343; herein incorporated by reference in its entirety.
- the modified nucleic acid molecules and mRNA of the invention can be formulated using natural and/or synthetic polymers.
- polymers which may be used for delivery include, but are not limited to, DYNAMIC POLYCONJUGATE® (Arrowhead Research Corp., Pasadena, Calif.) formulations from MIRUS® Bio (Madison, Wis.) and Roche Madison (Madison, Wis.), PHASERXTM polymer formulations such as, without limitation, SMARTT POLYMER TECHNOLOGYTTM (Seattle, Wash.), DMRI/DOPE, poloxamer, VAXFECTIN® adjuvant from Vical (San Diego, Calif.), chitosan, cyclodextrin from Calando Pharmaceuticals (Pasadena, Calif.), dendrimers and poly(lactic-co-glycolic acid) (PLGA) polymers, RONDELTM (RNAi/Oligonucleotide Nanoparticle Delivery) polymers (Arro
- chitosan formulation includes a core of positively charged chitosan and an outer portion of negatively charged substrate (U.S. Pub. No. 20120258176; herein incorporated by reference in its entirety).
- Chitosan includes, but is not limited to N-trimethyl chitosan, mono-N-carboxymethyl chitosan (MCC), N-palmitoyl chitosan (NPCS), EDTA-chitosan, low molecular weight chitosan, chitosan derivatives, or combinations thereof.
- the polymers used in the present invention have undergone processing to reduce and/or inhibit the attachement of unwanted substances such as, but not limited to, bacteria, to the surface of the polymer.
- the polymer may be processed by methods known and/or described in the art and/or described in International Pub. No. WO2012150467, herein incorporated by reference in its entirety.
- PLGA formulations include, but are not limited to, PLGA injectable depots (e.g., ELIGARD® which is formed by dissolving PLGA in 66% N-methyl-2-pyrrolidone (NMP) and the remainder being aqueous solvent and leuprolide. Once injected, the PLGA and leuprolide peptide precipitates into the subcutaneous space).
- PLGA injectable depots e.g., ELIGARD® which is formed by dissolving PLGA in 66% N-methyl-2-pyrrolidone (NMP) and the remainder being aqueous solvent and leuprolide. Once injected, the PLGA and leuprolide peptide precipitates into the subcutaneous space).
- NMP N-methyl-2-pyrrolidone
- the polymer complex On binding to the hepatocyte and entry into the endosome, the polymer complex disassembles in the low-pH environment, with the polymer exposing its positive charge, leading to endosomal escape and cytoplasmic release of the siRNA from the polymer.
- the polymer Through replacement of the N-acetylgalactosamine group with a mannose group, it was shown one could alter targeting from asialoglycoprotein receptor-expressing hepatocytes to sinusoidal endothelium and Kupffer cells.
- Another polymer approach involves using transferrin-targeted cyclodextrin-containing polycation nanoparticles.
- the polymer formulation can permit the sustained or delayed release of modified nucleic acid molecules or mRNA (e.g., following intramuscular or subcutaneous injection).
- the altered release profile for the modified nucleic acid molecule or mRNA can result in, for example, translation of an encoded protein over an extended period of time.
- the polymer formulation may also be used to increase the stability of the modified nucleic acid molecule or mRNA.
- Biodegradable polymers have been previously used to protect nucleic acids other than mRNA from degradation and been shown to result in sustained release of payloads in vivo (Rozema et al., Proc Natl Acad Sci USA. 2007 104:12982-12887; Sullivan et al., Expert Opin Drug Deliv.
- the pharmaceutical compositions may be sustained release formulations.
- the sustained release formulations may be for subcutaneous delivery.
- Sustained release formulations may include, but are not limited to, PLGA microspheres, ethylene vinyl acetate (EVAc), poloxamer, GELSITE® (Nanotherapeutics, Inc. Alachua, Fla.), HYLENEX® (Halozyme Therapeutics, San Diego Calif.), surgical sealants such as fibrinogen polymers (Ethicon Inc. Cornelia, Ga.), TISSELL® (Baxter International, Inc Deerfield, Ill.), PEG-based sealants, and COSEAL® (Baxter International, Inc Deerfield, Ill.).
- modified mRNA may be formulated in PLGA microspheres by preparing the PLGA microspheres with tunable release rates (e.g., days and weeks) and encapsulating the modified mRNA in the PLGA microspheres while maintaining the integrity of the modified mRNA during the encapsulation process.
- EVAc are non-biodegradeable, biocompatible polymers which are used extensively in pre-clinical sustained release implant applications (e.g., extended release products Ocusert a pilocarpine ophthalmic insert for glaucoma or progestasert a sustained release progesterone intrauterine device; transdermal delivery systems Testoderm, Duragesic and Selegiline; catheters).
- Poloxamer F-407 NF is a hydrophilic, non-ionic surfactant triblock copolymer of polyoxyethylene-polyoxypropylene-polyoxyethylene having a low viscosity at temperatures less than 5° C. and forms a solid gel at temperatures greater than 15° C.
- PEG-based surgical sealants comprise two synthetic PEG components mixed in a delivery device which can be prepared in one minute, seals in 3 minutes and is reabsorbed within 30 days.
- GELSITE® and natural polymers are capable of in-situ gelation at the site of administration. They have been shown to interact with protein and peptide therapeutic candidates through ionic interaction to provide a stabilizing effect.
- Polymer formulations can also be selectively targeted through expression of different ligands as exemplified by, but not limited by, folate, transferrin, and N-acetylgalactosamine (GalNAc) (Benoit et al., Biomacromolecules. 2011 12:2708-2714; Rozema et al., Proc Natl Acad Sci USA. 2007 104:12982-12887; Davis, Mol. Pharm. 2009 6:659-668; Davis, Nature 2010 464:1067-1070; each of which is herein incorporated by reference in its entirety).
- GalNAc N-acetylgalactosamine
- the modified nucleic acid molecules and mRNA of the invention may be formulated with or in a polymeric compound.
- the polymer may include at least one polymer such as, but not limited to, polyethenes, polyethylene glycol (PEG), poly(1-lysine)(PLL), PEG grafted to PLL, cationic lipopolymer, biodegradable cationic lipopolymer, polyethyleneimine (PEI), cross-linked branched poly(alkylene imines), a polyamine derivative, a modified poloxamer, a biodegradable polymer, elastic biodegradable polymer, biodegradable block copolymer, biodegradable random copolymer, biodegradable polyester copolymer, biodegradable polyester block copolymer, biodegradable polyester block random copolymer, multiblock copolymers, linear biodegradable copolymer, poly[ ⁇ -(4-aminobutyl)-L-glycolic acid) (PAGA), bio
- the modified nucleic acid molecules or mRNA of the invention may be formulated with the polymeric compound of PEG grafted with PLL as described in U.S. Pat. No. 6,177,274; herein incorporated by reference in its entirety.
- the formulation may be used for transfecting cells in vitro or for in vivo delivery of the modified nucleic acid molecules and mRNA.
- the modified nucleic acid molecules and mRNA may be suspended in a solution or medium with a cationic polymer, in a dry pharmaceutical composition or in a solution that is capable of being dried as described in U.S. Pub. Nos. 20090042829 and 20090042825; each of which are herein incorporated by reference in their entireties.
- the modified nucleic acid molecules or mRNA of the invention may be formulated with a PLGA-PEG block copolymer (see US Pub. No. US20120004293 and U.S. Pat. No. 8,236,330, each of which are herein incorporated by reference in their entireties) or PLGA-PEG-PLGA block copolymers (See U.S. Pat. No. 6,004,573, herein incorporated by reference in its entirety).
- the modified nucleic acid molecules or mRNA of the invention may be formulated with a diblock copolymer of PEG and PLA or PEG and PLGA (see US Pat No 8,246,968, herein incorporated by reference in its entirety).
- a polyamine derivative may be used to deliver nucleic acid molecules and/or mRNA or to treat and/or prevent a disease or to be included in an implantable or injectable device (U.S. Pub. No. 20100260817 herein incorporated by reference in its entirety).
- a pharmaceutical composition may include the modified nucleic acid molecules and mRNA and the polyamine derivative described in U.S. Pub. No. 20100260817 (the contents of which are incorporated herein by reference in its entirety).
- the modified nucleic acids or mRNA of the present invention may be delivered using a polyamide polymer such as, but not limited to, a polymer comprising a 1,3-dipolar addition polymer prepared by combining a carbohydrate diazide monomer with a dilkyne unite comprising oligoamines (U.S. Pat. No. 8,236,280; herein incorporated by reference in its entirety).
- a polyamide polymer such as, but not limited to, a polymer comprising a 1,3-dipolar addition polymer prepared by combining a carbohydrate diazide monomer with a dilkyne unite comprising oligoamines (U.S. Pat. No. 8,236,280; herein incorporated by reference in its entirety).
- the modified nucleic acid molecules and/or mRNA of the invention may be formulated with at least one acrylic polymer.
- Acrylic polymers include but are not limited to, acrylic acid, methacrylic acid, acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, amino alkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), polycyanoacrylates and combinations thereof.
- the modified nucleic acid molecules and/or mRNA of the present invention may be formulated with at least one polymer and/or derivatives thereof described in International Publication Nos. WO2011115862, WO2012082574 and WO2012068187 and U.S. Pub. No. 20120283427, each of which are herein incorporated by reference in their entireties.
- the modified nucleic acid molecules or mRNA of the present invention may be formulated with a polymer of formula Z as described in WO2011115862, herein incorporated by reference in its entirety.
- the modified nucleic acid molecules or mRNA may be formulated with a polymer of formula Z, Z′ or Z′′ as described in International Pub. Nos.
- WO2012082574 or WO2012068187 each of which are herein incorporated by reference in their entireties.
- the polymers formulated with the modified nucleic acids and/or modified mRNA of the present invention may be synthesized by the methods described in International Pub. Nos. WO2012082574 or WO2012068187, each of which are herein incorporated by reference in their entireties.
- Formulations of modified nucleic acid molecules and/or mRNA of the invention may include at least one amine-containing polymer such as, but not limited to polylysine, polyethylene imine, poly(amidoamine) dendrimers or combinations thereof.
- amine-containing polymer such as, but not limited to polylysine, polyethylene imine, poly(amidoamine) dendrimers or combinations thereof.
- the modified nucleic acid molecules and/or mRNA of the invention may be formulated in a pharmaceutical compound including a poly(alkylene imine), a biodegradable cationic lipopolymer, a biodegradable block copolymer, a biodegradable polymer, or a biodegradable random copolymer, a biodegradable polyester block copolymer, a biodegradable polyester polymer, a biodegradable polyester random copolymer, a linear biodegradable copolymer, PAGA, a biodegradable cross-linked cationic multi-block copolymer or combinations thereof.
- a pharmaceutical compound including a poly(alkylene imine), a biodegradable cationic lipopolymer, a biodegradable block copolymer, a biodegradable polymer, or a biodegradable random copolymer, a biodegradable polyester block copolymer, a biodegradable polyester polymer, a biodegradable
- the biodegradable cationic lipopolymer may be made by methods known in the art and/or described in U.S. Pat. No. 6,696,038, U.S. App. Nos. 20030073619 and 20040142474 each of which is herein incorporated by reference in their entireties.
- the poly(alkylene imine) may be made using methods known in the art and/or as described in U.S. Pub. No. 20100004315, herein incorporated by reference in its entirety.
- biodegradabale polymer, biodegradable block copolymer, the biodegradable random copolymer, biodegradable polyester block copolymer, biodegradable polyester polymer, or biodegradable polyester random copolymer may be made using methods known in the art and/or as described in U.S. Pat. Nos. 6,517,869 and 6,267,987, the contents of which are each incorporated herein by reference in their entirety.
- the linear biodegradable copolymer may be made using methods known in the art and/or as described in U.S. Pat. No. 6,652,886.
- the PAGA polymer may be made using methods known in the art and/or as described in U.S. Pat. No.
- the PAGA polymer may be copolymerized to form a copolymer or block copolymer with polymers such as but not limited to, poly-L-lysine, polyargine, polyornithine, histones, avidin, protamines, polylactides and poly(lactide-co-glycolides).
- the biodegradable cross-linked cationic multi-block copolymers may be made my methods known in the art and/or as described in U.S. Pat. No. 8,057,821 or U.S. Pub. No. 2012009145 each of which are herein incorporated by reference in their entireties.
- the multi-block copolymers may be synthesized using linear polyethyleneimine (LPEI) blocks which have distinct patterns as compared to branched polyethyleneimines.
- LPEI linear polyethyleneimine
- the composition or pharmaceutical composition may be made by the methods known in the art, described herein, or as described in U.S. Pub. No. 20100004315 or U.S. Pat. Nos. 6,267,987 and 6,217,912 each of which are herein incorporated by reference in their entireties.
- the modified nucleic acid molecules and mRNA of the invention may be formulated with at least one degradable polyester which may contain polycationic side chains.
- Degradable polyesters include, but are not limited to, poly(serine ester), poly(L-lactide-co-L-lysine), poly(4-hydroxy-L-proline ester), and combinations thereof.
- the degradable polyesters may include a PEG conjugation to form a PEGylated polymer.
- modified nucleic acid molecules and mRNA of the invention may be formulated with at least one crosslinkable polyester.
- Crosslinkable polyesters include those known in the art and described in US Pub. No. 20120269761, herein incorporated by reference in its entirety.
- the polymers described herein may be conjugated to a lipid-terminating PEG.
- PLGA may be conjugated to a lipid-terminating PEG forming PLGA-DSPE-PEG.
- PEG conjugates for use with the present invention are described in International Publication No. WO2008103276, herein incorporated by reference in its entirety.
- the polymers may be conjugated using a ligand conjugate such as, but not limited to, the conjugates described in U.S. Pat. No. 8,273,363, herein incorporated by reference in its entirety.
- the modified nucleic acid molecules and/or mRNA described herein may be conjugated with another compound.
- conjugates are described in U.S. Pat. Nos. 7,964,578 and 7,833,992, each of which are herein incorporated by reference in their entireties.
- modified RNA of the present invention may be conjugated with conjugates of formula 1-122 as described in U.S. Pat. Nos. 7,964,578 and 7,833,992, each of which are herein incorporated by reference in their entireties.
- the modified RNA described herein may be conjugated with a metal such as, but not limited to, gold. (See e.g., Giljohann et al. Journ. Amer. Chem. Soc.
- modified nucleic acid molecules and/or mRNA described herein may be conjugated and/or encapsulated in gold-nanoparticles.
- a gene delivery composition may include a nucleotide sequence and a poloxamer.
- the modified nucleic acid and mRNA of the present invention may be used in a gene delivery composition with the poloxamer described in U.S. Pub. No. 20100004313.
- the polymer formulation of the present invention may be stabilized by contacting the polymer formulation, which may include a cationic carrier, with a cationic lipopolymer which may be covalently linked to cholesterol and polyethylene glycol groups.
- the polymer formulation may be contacted with a cationic lipopolymer using the methods described in U.S. Pub. No. 20090042829 herein incorporated by reference in its entirety.
- the cationic carrier may include, but is not limited to, polyethylenimine, poly(trimethylenimine), poly(tetramethylenimine), polypropylenimine, aminoglycoside-polyamine, dideoxy-diamino-b-cyclodextrin, spermine, spermidine, poly(2-dimethylamino)ethyl methacrylate, poly(lysine), poly(histidine), poly(arginine), cationized gelatin, dendrimers, chitosan, 1,2-Dioleoyl-3-Trimethylammonium-Propane (DOTAP), N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA), 1-[2-(oleoyloxy)ethyl]-2-oleyl-3-(2-hydroxyethyl)imidazolinium chloride (DOTIM), 2,3-dioleyloxy-
- the modified nucleic acid molecules and/or mRNA of the invention may be formulated in a polyplex of one or more polymers (U.S. Pub. No. 20120237565 and 20120270927; each of which is herein incorporated by reference in its entirety).
- the polyplex comprises two or more cationic polymers.
- the catioinic polymer may comprise a poly(ethylene imine) (PEI) such as linear PEI.
- the modified nucleic acid molecules and mRNA of the invention can also be formulated as a nanoparticle using a combination of polymers, lipids, and/or other biodegradable agents, such as, but not limited to, calcium phosphate.
- Components may be combined in a core-shell, hybrid, and/or layer-by-layer architecture, to allow for fine-tuning of the nanoparticle so to delivery of the modified nucleic acid molecule and mRNA may be enhanced (Wang et al., Nat. Mater. 2006 5:791-796; Fuller et al., Biomaterials. 2008 29:1526-1532; DeKoker et al., Adv Drug Deliv Rev.
- the nanoparticle may comprise a plurality of polymers such as, but not limited to hydrophilic-hydrophobic polymers (e.g., PEG-PLGA), hydrophobic polymers (e.g., PEG) and/or hydrophilic polymers (International Pub. No. WO20120225129; herein incorporated by reference in its entirety).
- hydrophilic-hydrophobic polymers e.g., PEG-PLGA
- hydrophobic polymers e.g., PEG
- hydrophilic polymers International Pub. No. WO20120225129
- Biodegradable calcium phosphate nanoparticles in combination with lipids and/or polymers have been shown to deliver modified nucleic acid molecules and mRNA in vivo.
- a lipid coated calcium phosphate nanoparticle which may also contain a targeting ligand such as anisamide, may be used to deliver the modified nucleic acid molecule and mRNA of the present invention.
- a targeting ligand such as anisamide
- a lipid coated calcium phosphate nanoparticle was used (Li et al., J Contr Rel. 2010 142: 416-421; Li et al., J Contr Rel. 2012 158:108-114; Yang et al., Mol. Ther. 2012 20:609-615; herein incorporated by reference in its entirety).
- This delivery system combines both a targeted nanoparticle and a component to enhance the endosomal escape, calcium phosphate, in order to improve delivery of the siRNA.
- calcium phosphate with a PEG-polyanion block copolymer may be used to deliver modified nucleic acid molecules and mRNA (Kazikawa et al., J Contr Rel. 2004 97:345-356; Kazikawa et al., J Contr Rel. 2006 111:368-370; herein incorporated by reference in its entirety).
- a PEG-charge-conversional polymer (Pitella et al., Biomaterials. 2011 32:3106-3114) may be used to form a nanoparticle to deliver the modified nucleic acid molecules and mRNA of the present invention.
- the PEG-charge-conversional polymer may improve upon the PEG-polyanion block copolymers by being cleaved into a polycation at acidic pH, thus enhancing endosomal escape.
- core-shell nanoparticles have additionally focused on a high-throughput approach to synthesize cationic cross-linked nanogel cores and various shells (Siegwart et al., Proc Natl Acad Sci USA. 2011 108:12996-13001).
- the complexation, delivery, and internalization of the polymeric nanoparticles can be precisely controlled by altering the chemical composition in both the core and shell components of the nanoparticle.
- the core-shell nanoparticles may efficiently deliver siRNA to mouse hepatocytes after they covalently attach cholesterol to the nanoparticle.
- a hollow lipid core comprising a middle PLGA layer and an outer neutral lipid layer containing PEG may be used to delivery of the modified nucleic acid molecules and mRNA of the present invention.
- a luciferease-expressing tumor it was determined that the lipid-polymer-lipid hybrid nanoparticle significantly suppressed luciferase expression, as compared to a conventional lipoplex (Shi et al, Angew Chem Int Ed. 2011 50:7027-7031; herein incorporated by reference in its entirety).
- the lipid nanoparticles may comprise a core of the modified nucleic acid molecules disclosed herein and a polymer shell.
- the polymer shell may be any of the polymers described herein and are known in the art.
- the polymer shell may be used to protect the modified nucleic acids in the core.
- Core-shell nanoparticles for use with the modified nucleic acid molecules of the present invention are described and may be formed by the methods described in U.S. Pat. No. 8,313,777 herein incorporated by reference in its entirety.
- the core-shell nanoparticles may comprise a core of the modified nucleic acid molecules disclosed herein and a polymer shell.
- the polymer shell may be any of the polymers described herein and are known in the art.
- the polymer shell may be used to protect the modified nucleic acid molecules in the core.
- modified nucleic acid molecules and mRNA of the invention can be formulated with peptides and/or proteins in order to increase transfection of cells by the modified nucleic acid molecules or mRNA.
- peptides such as, but not limited to, cell penetrating peptides and proteins and peptides that enable intracellular delivery may be used to deliver pharmaceutical formulations.
- a non-limiting example of a cell penetrating peptide which may be used with the pharmaceutical formulations of the present invention include a cell-penetrating peptide sequence attached to polycations that facilitates delivery to the intracellular space, e.g., HIV-derived TAT peptide, penetratins, transportans, or hCT derived cell-penetrating peptides (see, e.g., Caron et al., Mol. Ther. 3(3):310-8 (2001); Langel, Cell-Penetrating Peptides: Processes and Applications (CRC Press, Boca Raton Fla., 2002); El-Andaloussi et al., Curr. Pharm. Des.
- compositions can also be formulated to include a cell penetrating agent, e.g., liposomes, which enhance delivery of the compositions to the intracellular space.
- a cell penetrating agent e.g., liposomes
- Modified nucleic acid molecules and mRNA of the invention may be complexed to peptides and/or proteins such as, but not limited to, peptides and/or proteins from Aileron Therapeutics (Cambridge, Mass.) and Permeon Biologics (Cambridge, Mass.) in order to enable intracellular delivery (Cronican et al., ACS Chem. Biol. 2010 5:747-752; McNaughton et al., Proc. Natl. Acad. Sci. USA 2009 106:6111-6116; Sawyer, Chem Biol Drug Des. 2009 73:3-6; Verdine and Hilinski, Methods Enzymol. 2012; 503:3-33; all of which are herein incorporated by reference in its entirety).
- Aileron Therapeutics Cambridge, Mass.
- Permeon Biologics Cambridge, Mass.
- the cell-penetrating polypeptide may comprise a first domain and a second domain.
- the first domain may comprise a supercharged polypeptide.
- the second domain may comprise a protein-binding partner.
- protein-binding partner includes, but are not limited to, antibodies and functional fragments thereof, scaffold proteins, or peptides.
- the cell-penetrating polypeptide may further comprise an intracellular binding partner for the protein-binding partner.
- the cell-penetrating polypeptide may be capable of being secreted from a cell where the modified nucleic acid molecules or mRNA may be introduced.
- Formulations of the including peptides or proteins may be used to increase cell transfection by the modified nucleic acid molecule or mRNA, alter the biodistribution of the modified nucleic acid molecule or mRNA (e.g., by targeting specific tissues or cell types), and/or increase the translation of encoded protein.
- alter the biodistribution of the modified nucleic acid molecule or mRNA e.g., by targeting specific tissues or cell types
- increase the translation of encoded protein See e.g., International Pub. No. WO2012110636; herein incorporated by reference in its entirety).
- the modified nucleic acid molecule and mRNA of the invention can be transfected ex vivo into cells, which are subsequently transplanted into a subject.
- the pharmaceutical compositions may include red blood cells to deliver modified RNA to liver and myeloid cells, virosomes to deliver modified nucleic acid molecules and mRNA in virus-like particles (VLPs), and electroporated cells such as, but not limited to, from MAXCYTE® (Gaithersburg, Md.) and from ERYTECH® (Lyon, France) to deliver modified RNA. Examples of use of red blood cells, viral particles and electroporated cells to deliver payloads other than mRNA have been documented (Godfrin et al., Expert Opin Biol Ther.
- the modified nucleic acid molecules and mRNA may be delivered in synthetic VLPs synthesized by the methods described in International Pub No. WO2011085231 and US Pub No. 20110171248, each of which are herein incorporated by reference in their entireties.
- Cell-based formulations of the modified nucleic acid molecules and mRNA of the invention may be used to ensure cell transfection (e.g., in the cellular carrier), alter the biodistribution of the modified nucleic acid molecule or mRNA (e.g., by targeting the cell carrier to specific tissues or cell types), and/or increase the translation of encoded protein.
- nucleic acid into a cell
- non-viral mediated techniques include, but are not limited to, electroporation, calcium phosphate mediated transfer, nucleofection, sonoporation, heat shock, magnetofection, liposome mediated transfer, microinjection, microprojectile mediated transfer (nanoparticles), cationic polymer mediated transfer (DEAE-dextran, polyethylenimine, polyethylene glycol (PEG) and the like) or cell fusion.
- sonoporaiton or cellular sonication
- sound e.g., ultrasonic frequencies
- Sonoporation methods are known to those in the art and are taught for example as it relates to bacteria in US Patent Publication 20100196983 and as it relates to other cell types in, for example, US Patent Publication 20100009424, each of which are incorporated herein by reference in their entirety.
- modified nucleic acid molecules or mRNA may be delivered by electroporation as described in Example 8.
- modified nucleic acid molecules or mRNA of the invention can include hyaluronidase, which catalyzes the hydrolysis of hyaluronan.
- hyaluronidase catalyzes the hydrolysis of hyaluronan.
- hyaluronidase By catalyzing the hydrolysis of hyaluronan, a constituent of the interstitial barrier, hyaluronidase lowers the viscosity of hyaluronan, thereby increasing tissue permeability (Frost, Expert Opin. Drug Deliv. (2007) 4:427-440; herein incorporated by reference in its entirety). It is useful to speed their dispersion and systemic distribution of encoded proteins produced by transfected cells.
- the hyaluronidase can be used to increase the number of cells exposed to a modified nucleic acid molecule or mRNA of the invention administered intramuscularly or subcutaneously.
- the modified nucleic acid molecules and mRNA of the invention may be encapsulated within and/or absorbed to a nanoparticle mimic.
- a nanoparticle mimic can mimic the delivery function organisms or particles such as, but not limited to, pathogens, viruses, bacteria, fungus, parasites, prions and cells.
- the modified mRNA of the invention may be encapsulated in a non-viron particle which can mimic the delivery function of a virus (see International Pub. No. WO2012006376 herein incorporated by reference in its entirety).
- the modified nucleic acid molecules or mRNA of the invention can be attached or otherwise bound to at least one nanotube such as, but not limited to, rosette nanotubes, rosette nanotubes having twin bases with a linker, carbon nanotubes and/or single-walled carbon nanotubes,
- the modified nucleic acid molecules or mRNA may be bound to the nanotubes through forces such as, but not limited to, steric, ionic, covalent and/or other forces.
- the nanotube can release one or more modified nucleic acid molecule or mRNA into cells.
- the size and/or the surface structure of at least one nanotube may be altered so as to govern the interaction of the nanotubes within the body and/or to attach or bind to the modified nucleic acid molecule or mRNA disclosed herein.
- the building block and/or the functional groups attached to the building block of the at least one nanotube may be altered to adjust the dimensions and/or properties of the nanotube.
- the length of the nanotubes may be altered to hinder the nanotubes from passing through the holes in the walls of normal blood vessels but still small enough to pass through the larger holes in the blood vessels of tumor tissue.
- At least one nanotube may also be coated with delivery enhancing compounds including polymers, such as, but not limited to, polyethylene glycol.
- delivery enhancing compounds including polymers, such as, but not limited to, polyethylene glycol.
- at least one nanotube and/or the modified mRNA may be mixed with pharmaceutically acceptable excipients and/or delivery vehicles.
- the modified mRNA are attached and/or otherwise bound to at least one rosette nanotube.
- the rosette nanotubes may be formed by a process known in the art and/or by the process described in International Publication No. WO2012094304, herein incorporated by reference in its entirety.
- At least one modified mRNA may be attached and/or otherwise bound to at least one rosette nanotube by a process as described in International Publication No. WO2012094304, herein incorporated by reference in its entirety, where rosette nanotubes or modules forming rosette nanotubes are mixed in aqueous media with at least one modified mRNA under conditions which may cause at least one modified mRNA to attach or otherwise bind to the rosette nanotubes.
- the modified nucleic acid molecule or mRNA may be attached to and/or otherwise bound to at least one carbon nanotube.
- the modified nucleic acid molecule or mRNA may be bound to a linking agent and the linked agent may be bound to the carbon nanotube (See e.g., U.S. Pat. No. 8,246,995; herein incorporated by reference in its entirety).
- the carbon nanotube may be a single-walled nanotube (See e.g., U.S. Pat. No. 8,246,995; herein incorporated by reference in its entirety).
- modified nucleic acids molecules and mRNA of the invention include conjugates, such as a modified nucleic acid molecule or mRNA covalently linked to a carrier or targeting group, or including two encoding regions that together produce a fusion protein (e.g., bearing a targeting group and therapeutic protein or peptide).
- conjugates such as a modified nucleic acid molecule or mRNA covalently linked to a carrier or targeting group, or including two encoding regions that together produce a fusion protein (e.g., bearing a targeting group and therapeutic protein or peptide).
- the conjugates of the invention include a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), high-density lipoprotein (HDL), or globulin); an carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or a lipid.
- the ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid, an oligonucleotide (e.g. an aptamer).
- polyamino acids examples include polyamino acid is a polylysine (PLL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, or polyphosphazine.
- PLL polylysine
- poly L-aspartic acid poly L-glutamic acid
- styrene-maleic acid anhydride copolymer poly(L-lactide-co-glycolied) copolymer
- divinyl ether-maleic anhydride copolymer divinyl ether-
- polyamines include: polyethylenimine, polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an alpha helical peptide.
- the conjugate of the present invention may function as a carrier for the modified nucleic acid molecules and mRNA of the present invention.
- the conjugate may comprise a cationic polymer such as, but not limited to, polyamine, polylysine, polyalkylenimine, and polyethylenimine which may be grafted to with poly(ethylene glycol).
- the conjugate may be similar to the polymeric conjugate and the method of synthesizing the polymeric conjugate described in U.S. Pat. No. 6,586,524 herein incorporated by reference in its entirety.
- the conjugates can also include targeting groups, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a kidney cell.
- a cell or tissue targeting agent e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a kidney cell.
- a targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B12, biotin, an RGD peptide, an RGD peptide mimetic or an aptamer.
- Targeting groups can be proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell.
- Targeting groups may also include hormones and hormone receptors. They can also include non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, or aptamers.
- the ligand can be, for example, a lipopolysaccharide, or an activator of p38 MAP kinase.
- the targeting group can be any ligand that is capable of targeting a specific receptor. Examples include, without limitation, folate, GalNAc, galactose, mannose, mannose-6P, apatamers, integrin receptor ligands, chemokine receptor ligands, transferrin, biotin, serotonin receptor ligands, PSMA, endothelin, GCPII, somatostatin, LDL, and HDL ligands.
- the targeting group is an aptamer.
- the aptamer can be unmodified or have any combination of modifications disclosed herein.
- compositions of the present invention may include chemical modifications such as, but not limited to, modifications similar to locked nucleic acids.
- LNA locked nucleic acid
- Some embodiments featured in the invention include modified nucleic acids or mRNA with phosphorothioate backbones and oligonucleosides with other modified backbones, and in particular —CH 2 —NH—CH 2 —, —CH 2 —N(CH 3 )—O—CH 2 —[known as a methylene (methylimino) or MMI backbone], —CH 2 —O—N(CH 3 )—CH 2 —, —CH 2 —N(CH 3 )—N(CH 3 )—CH 2 — and —N(CH 3 )—CH 2 —CH 2 —[wherein the native phosphodiester backbone is represented as —O—P(O) 2 —O—CH 2 —] of the above-referenced U.S.
- the polynucletotides featured herein have morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506.
- Modifications at the 2′ position may also aid in delivery.
- modifications at the 2′ position are not located in a polypeptide-coding sequence, i.e., not in a translatable region.
- Modifications at the 2′ position may be located in a 5′ UTR, a 3′ UTR and/or a tailing region.
- Modifications at the 2′ position can include one of the following at the 2′ position: H (i.e., 2′-deoxy); F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C 1 to C 10 alkyl or C 2 to C 10 alkenyl and alkynyl.
- Exemplary suitable modifications include O[(CH 2 ) n O] m CH 3 , O(CH 2 ).
- n OCH 3 O(CH 2 ) n NH 2 , O(CH 2 ) n CH 3 , O(CH 2 ) n ONH 2 , and O(CH 2 ) n ON[(CH 2 ) n CH 3 )] 2 , where n and m are from 1 to about 10.
- the modified nucleic acids or mRNA include one of the following at the 2′ position: C 1 to C 10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH 3 , OCN, Cl, Br, CN, CF 3 , OCF 3 , SOCH 3 , SO 2 CH 3 , ONO 2 , NO 2 , N 3 , NH 2 , heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties, or a group for improving the pharmacodynamic properties, and other substituents having similar properties.
- the modification includes a 2′-methoxyethoxy (2′-O—CH 2 CH 2 OCH 3 , also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Hely. Chim. Acta, 1995, 78:486-504) i.e., an alkoxy-alkoxy group.
- 2′-dimethylaminooxyethoxy i.e., a O(CH 2 ) 2 ON(CH 3 ) 2 group, also known as 2′-DMAOE, as described in examples herein below
- 2′-dimethylaminoethoxyethoxy also known in the art as 2′- ⁇ -dimethylaminoethoxyethyl or 2′-DMAEOE
- 2′-O—CH 2 —O—CH 2 —N(CH 2 ) 2 also described in examples herein below.
- the modified nucleic acid molecule or mRNA is covalently conjugated to a cell-penetrating polypeptide.
- the cell-penetrating peptide may also include a signal sequence.
- the conjugates of the invention can be designed to have increased stability; increased cell transfection; and/or altered the biodistribution (e.g., targeted to specific tissues or cell types).
- Self-assembled nanoparticles have a well-defined size which may be precisely controlled as the nucleic acid strands may be easily reprogrammable.
- the optimal particle size for a cancer-targeting nanodelivery carrier is 20-100 nm as a diameter greater than 20 nm avoids renal clearance and enhances delivery to certain tumors through enhanced permeability and retention effect.
- Using self-assembled nucleic acid nanoparticles a single uniform population in size and shape having a precisely controlled spatial orientation and density of cancer-targeting ligands for enhanced delivery.
- oligonucleotide nanoparticles were prepared using programmable self-assembly of short DNA fragments and therapeutic siRNAs.
- nanoparticles are molecularly identical with controllable particle size and target ligand location and density.
- the DNA fragments and siRNAs self-assembled into a one-step reaction to generate DNA/siRNA tetrahedral nanoparticles for targeted in vivo delivery. (Lee et al., Nature Nanotechnology 2012 7:389-393; herein incorporated by reference in its entirety).
- the modified nucleic acid molecules and mRNA disclosed herein may be formulated as self-assembled nanoparticles.
- nucleic acids may be used to make nanoparticles which may be used in a delivery system for the modified nucleic acid molecules and/or mRNA of the present invention (See e.g., International Pub. No. WO2012125987; herein incorporated by reference in its entirety).
- the nucleic acid self-assembled nanoparticles may comprise a core of the modified nucleic acid molecules or mRNA disclosed herein and a polymer shell.
- the polymer shell may be any of the polymers described herein and are known in the art.
- the polymer shell may be used to protect the modified nucleic acid molecules and mRNA in the core.
- Polymers may be used to form sheets which self-assembled into nanoparticles. These nanoparticles may be used to deliver the modified nucleic acids and mRNA of the present invention.
- these self-assembled nanoparticles may be microsponges formed of long polymers of RNA hairpins which form into crystalline ‘pleated’ sheets before self-assembling into microsponges.
- These microsponges are densely-packed sponge like microparticles which may function as an efficient carrier and may be able to deliver cargo to a cell.
- the microsponges may be from 1 um to 300 nm in diameter.
- the microsponges may be complexed with other agents known in the art to form larger microsponges.
- the microsponge may be complexed with an agent to form an outer layer to promote cellular uptake such as polycation polyethyleneime (PEI).
- PEI polycation polyethyleneime
- This complex can form a 250-nm diameter particle that can remain stable at high temperatures (150° C.) (Grabow and Jaegar, Nature Materials 2012, 11:269-269; herein incorporated by reference in its entirety). Additionally these microsponges may be able to exhibit an extraordinary degree of protection from degradation by ribonucleases.
- the polymer-based self-assembled nanoparticles such as, but not limited to, microsponges, may be fully programmable nanoparticles.
- the geometry, size and stoichiometry of the nanoparticle may be precisely controlled to create the optimal nanoparticle for delivery of cargo such as, but not limited to, modified nucleic acid molecules and mRNA.
- the polymer based nanoparticles may comprise a core of the modified nucleic acid molecules and mRNA disclosed herein and a polymer shell.
- the polymer shell may be any of the polymers described herein and are known in the art.
- the polymer shell may be used to protect the modified nucleic acid molecules and mRNA in the core.
- the modified nucleic acid molecules or mRNAs of the present invention may be formulated in inorganic nanoparticles (U.S. Pat. No. 8,257,745, herein incorporated by reference in its entirety).
- the inorganic nanoparticles may include, but are not limited to, clay substances that are water swellable.
- the inorganic nanoparticle may include synthetic smectite clays which are made from simple silicates (See e.g., U.S. Pat. Nos. 5,585,108 and 8,257,745 each of which are herein incorporated by reference in their entirety).
- the inorganic nanoparticles may comprise a core of the modified nucleic acids disclosed herein and a polymer shell.
- the polymer shell may be any of the polymers described herein and are known in the art.
- the polymer shell may be used to protect the modified nucleic acids in the core.
- the modified nucleic acid molecules or mRNAs of the present invention may be formulated in water-dispersible nanoparticle comprising a semiconductive or metallic material (U.S. Pub. No. 20120228565; herein incorporated by reference in its entirety) or formed in a magnetic nanoparticle (U.S. Pub. No. 20120265001 and 20120283503; each of which is herein incorporated by reference in its entirety).
- the water-dispersible nanoparticles may be hydrophobic nanoparticles or hydrophilic nanoparticles.
- the semi-conductive and/or metallic nanoparticles may comprise a core of the modified nucleic acids disclosed herein and a polymer shell.
- the polymer shell may be any of the polymers described herein and are known in the art.
- the polymer shell may be used to protect the modified nucleic acids in the core.
- the modified mRNA disclosed herein may be encapsulated into any hydrogel known in the art which may form a gel when injected into a subject.
- Hydrogels are a network of polymer chains that are hydrophilic, and are sometimes found as a colloidal gel in which water is the dispersion medium. Hydrogels are highly absorbent (they can contain over 99% water) natural or synthetic polymers. Hydrogels also possess a degree of flexibility very similar to natural tissue, due to their significant water content.
- the hydrogel described herein may used to encapsulate lipid nanoparticles which are biocompatible, biodegradable and/or porous.
- the hydrogel may be an aptamer-functionalized hydrogel.
- the aptamer-functionalized hydrogel may be programmed to release one or more modified nucleic acid molecules and/or mRNA using nucleic acid hybridization. (Battig et al., J. Am. Chem. Society. 2012 134:12410-12413; herein incorporated by reference in its entirety).
- the hydrogel may be a shaped as an inverted opal.
- the opal hydrogels exhibit higher swelling ratios and the swelling kinetics is an order of magnitude faster as well.
- Methods of producing opal hydrogels and description of opal hydrogels are described in International Pub. No. WO2012148684, herein incorporated by reference in its entirety.
- the hydrogel may be an antibacterial hydrogel.
- the antibacterial hydrogel may comprise a pharmaceutical acceptable salt or organic material such as, but not limited to pharmaceutical grade and/or medical grade silver salt and aloe vera gel or extract. (International Pub. No. WO2012151438, herein incorporated by reference in its entirety).
- the modified mRNA may be encapsulated in a lipid nanoparticle and then the lipid nanoparticle may be encapsulated into a hyrdogel.
- the modified mRNA disclosed herein may be encapsulated into any gel known in the art.
- the gel may be a fluorouracil injectable gel or a fluorouracil injectable gel containing a chemical compound and/or drug known in the art.
- the modified mRNA may be encapsulated in a fluorouracil gel containing epinephrine (See e.g., Smith et al. Cancer Chemotherapty and Pharmacology, 1999 44(4):267-274; herein incorporated by reference in its entirety).
- the modified nucleic acid molecules and/or mRNA disclosed herein may be encapsulated into a fibrin gel, fibrin hydrogel or fibrin glue.
- the modified nucleic acid molecules and/or mRNA may be formulated in a lipid nanoparticle or a rapidly eliminated lipid nanoparticle prior to being encapsulated into a fibrin gel, fibrin hydrogel or a fibrin glue.
- the modified nucleic acid molecules and/or mRNA may be formulated as a lipoplex prior to being encapsulated into a fibrin gel, hydrogel or a fibrin glue.
- Fibrin gels, hydrogels and glues comprise two components, a fibrinogen solution and a thrombin solution which is rich in calcium (See e.g., Spicer and Mikos, Journal of Controlled Release 2010. 148: 49-55; Kidd et al. Journal of Controlled Release 2012. 157:80-85; each of which is herein incorporated by reference in its entirety).
- the concentration of the components of the fibrin gel, hydrogel and/or glue can be altered to change the characteristics, the network mesh size, and/or the degradation characteristics of the gel, hydrogel and/or glue such as, but not limited to changing the release characteristics of the fibrin gel, hydrogel and/or glue. (See e.g., Spicer and Mikos, Journal of Controlled Release 2010.
- This feature may be advantageous when used to deliver the modified mRNA disclosed herein. (See e.g., Kidd et al. Journal of Controlled Release 2012. 157:80-85; Catelas et al. Tissue Engineering 2008. 14:119-128; each of which is herein incorporated by reference in its entirety).
- Formulations of modified nucleic acid molecules disclosed herein may include cations or anions.
- the formulations include metal cations such as, but not limited to, Zn2+, Ca2+, Cu2+, Mg+ and combinations thereof.
- formulations may include polymers and a modified mRNA complexed with a metal cation (See e.g., U.S. Pat. Nos. 6,265,389 and 6,555,525, each of which is herein incorporated by reference in its entirety).
- the modified nucleic acid molecules and/or mRNA disclosed herein may be formulated in nanoparticles and/or microparticles. These nanoparticles and/or microparticles may be molded into any size shape and chemistry. As an example, the nanoparticles and/or microparticles may be made using the PRINT® technology by LIQUIDA TECHNOLOGIES® (Morrisville, N.C.) (See e.g., International Pub. No. WO2007024323; herein incorporated by reference in its entirety).
- the molded nanoparticles may comprise a core of the modified nucleic acid molecules and/or mRNA disclosed herein and a polymer shell.
- the polymer shell may be any of the polymers described herein and are known in the art.
- the polymer shell may be used to protect the modified nucleic acid molecules and/or mRNA in the core.
- NanoJackets are made of compounds that are naturally found in the body including calcium, phosphate and may also include a small amount of silicates. Nanojackets may range in size from 5 to 50 nm and may be used to deliver hydrophilic and hydrophobic compounds such as, but not limited to, modified nucleic acid molecules and/or mRNA.
- NanoLiposomes are made of lipids such as, but not limited to, lipids which naturally occur in the body. NanoLiposomes may range in size from 60-80 nm and may be used to deliver hydrophilic and hydrophobic compounds such as, but not limited to, modified nucleic acid molecules and/or mRNA. In one aspect, the modified nucleic acids disclosed herein are formulated in a NanoLiposome such as, but not limited to, Ceramide NanoLiposomes.
- compositions may additionally comprise a pharmaceutically acceptable excipient, which, as used herein, includes, but are not limited to, any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired.
- a pharmaceutically acceptable excipient includes, but are not limited to, any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired.
- excipients for formulating pharmaceutical compositions and techniques for preparing the composition are known in the art (see Remington: The Science and Practice of Pharmacy, 21 st Edition, A. R. Gen
- any conventional excipient medium may be contemplated within the scope of the present disclosure, except insofar as any conventional excipient medium may be incompatible with a substance or its derivatives, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition.
- a pharmaceutically acceptable excipient may be at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% pure.
- an excipient may be approved for use for humans and for veterinary use.
- an excipient may be approved by United States Food and Drug Administration.
- an excipient may be of pharmaceutical grade.
- an excipient may meet the standards of the United States Pharmacopoeia (USP), the European Pharmacopoeia (EP), the British Pharmacopoeia, and/or the International Pharmacopoeia.
- compositions include, but are not limited to, inert diluents, dispersing and/or granulating agents, surface active agents and/or emulsifiers, disintegrating agents, binding agents, preservatives, buffering agents, lubricating agents, and/or oils. Such excipients may optionally be included in pharmaceutical formulations.
- the composition may also include excipients such as cocoa butter and suppository waxes, coloring agents, coating agents, sweetening, flavoring, and/or perfuming agents.
- Exemplary diluents include, but are not limited to, calcium carbonate, sodium carbonate, calcium phosphate, dicalcium phosphate, calcium sulfate, calcium hydrogen phosphate, sodium phosphate lactose, sucrose, cellulose, microcrystalline cellulose, kaolin, mannitol, sorbitol, inositol, sodium chloride, dry starch, cornstarch, powdered sugar, etc., and/or combinations thereof.
- Exemplary granulating and/or dispersing agents include, but are not limited to, potato starch, corn starch, tapioca starch, sodium starch glycolate, clays, alginic acid, guar gum, citrus pulp, agar, bentonite, cellulose and wood products, natural sponge, cation-exchange resins, calcium carbonate, silicates, sodium carbonate, cross-linked poly(vinyl-pyrrolidone) (crospovidone), sodium carboxymethyl starch (sodium starch glycolate), carboxymethyl cellulose, cross-linked sodium carboxymethyl cellulose (croscarmellose), methylcellulose, pregelatinized starch (starch 1500), microcrystalline starch, water insoluble starch, calcium carboxymethyl cellulose, magnesium aluminum silicate (VEEGUM®), sodium lauryl sulfate, quaternary ammonium compounds, etc., and/or combinations thereof.
- crospovidone cross-linked poly(vinyl-pyrrolidone)
- Exemplary surface active agents and/or emulsifiers include, but are not limited to, natural emulsifiers (e.g. acacia, agar, alginic acid, sodium alginate, tragacanth, chondrux, cholesterol, xanthan, pectin, gelatin, egg yolk, casein, wool fat, cholesterol, wax, and lecithin), colloidal clays (e.g. bentonite [aluminum silicate] and VEEGUM® [magnesium aluminum silicate]), long chain amino acid derivatives, high molecular weight alcohols (e.g.
- stearyl alcohol cetyl alcohol, oleyl alcohol, triacetin monostearate, ethylene glycol distearate, glyceryl monostearate, and propylene glycol monostearate, polyvinyl alcohol), carbomers (e.g. carboxy polymethylene, polyacrylic acid, acrylic acid polymer, and carboxyvinyl polymer), carrageenan, cellulosic derivatives (e.g. carboxymethylcellulose sodium, powdered cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, methylcellulose), sorbitan fatty acid esters (e.g.
- polyoxyethylene monostearate [MYRJ® 45], polyoxyethylene hydrogenated castor oil, polyethoxylated castor oil, polyoxymethylene stearate, and SOLUTOL®), sucrose fatty acid esters, polyethylene glycol fatty acid esters (e.g. CREMOPHOR®), polyoxyethylene ethers, (e.g.
- polyoxyethylene lauryl ether [BRIJ® 30]), poly(vinyl-pyrrolidone), diethylene glycol monolaurate, triethanolamine oleate, sodium oleate, potassium oleate, ethyl oleate, oleic acid, ethyl laurate, sodium lauryl sulfate, PLUORINC®F 68, POLOXAMER® 188, cetrimonium bromide, cetylpyridinium chloride, benzalkonium chloride, docusate sodium, etc. and/or combinations thereof.
- Exemplary binding agents include, but are not limited to, starch (e.g. cornstarch and starch paste); gelatin; sugars (e.g. sucrose, glucose, dextrose, dextrin, molasses, lactose, lactitol, mannitol,); natural and synthetic gums (e.g.
- acacia sodium alginate, extract of Irish moss, panwar gum, ghatti gum, mucilage of isapol husks, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, microcrystalline cellulose, cellulose acetate, poly(vinyl-pyrrolidone), magnesium aluminum silicate (VEEGUM®), and larch arabogalactan); alginates; polyethylene oxide; polyethylene glycol; inorganic calcium salts; silicic acid; polymethacrylates; waxes; water; alcohol; etc.; and combinations thereof.
- Exemplary preservatives may include, but are not limited to, antioxidants, chelating agents, antimicrobial preservatives, antifungal preservatives, alcohol preservatives, acidic preservatives, and/or other preservatives.
- Exemplary antioxidants include, but are not limited to, alpha tocopherol, ascorbic acid, acorbyl palmitate, butylated hydroxyanisole, butylated hydroxytoluene, monothioglycerol, potassium metabisulfite, propionic acid, propyl gallate, sodium ascorbate, sodium bisulfite, sodium metabisulfite, and/or sodium sulfite.
- Exemplary chelating agents include ethylenediaminetetraacetic acid (EDTA), citric acid monohydrate, disodium edetate, dipotassium edetate, edetic acid, fumaric acid, malic acid, phosphoric acid, sodium edetate, tartaric acid, and/or trisodium edetate.
- EDTA ethylenediaminetetraacetic acid
- citric acid monohydrate disodium edetate
- dipotassium edetate dipotassium edetate
- edetic acid fumaric acid, malic acid, phosphoric acid, sodium edetate, tartaric acid, and/or trisodium edetate.
- antimicrobial preservatives include, but are not limited to, benzalkonium chloride, benzethonium chloride, benzyl alcohol, bronopol, cetrimide, cetylpyridinium chloride, chlorhexidine, chlorobutanol, chlorocresol, chloroxylenol, cresol, ethyl alcohol, glycerin, hexetidine, imidurea, phenol, phenoxyethanol, phenylethyl alcohol, phenylmercuric nitrate, propylene glycol, and/or thimerosal.
- Exemplary antifungal preservatives include, but are not limited to, butyl paraben, methyl paraben, ethyl paraben, propyl paraben, benzoic acid, hydroxybenzoic acid, potassium benzoate, potassium sorbate, sodium benzoate, sodium propionate, and/or sorbic acid.
- Exemplary alcohol preservatives include, but are not limited to, ethanol, polyethylene glycol, phenol, phenolic compounds, bisphenol, chlorobutanol, hydroxybenzoate, and/or phenylethyl alcohol.
- Exemplary acidic preservatives include, but are not limited to, vitamin A, vitamin C, vitamin E, beta-carotene, citric acid, acetic acid, dehydroacetic acid, ascorbic acid, sorbic acid, and/or phytic acid.
- preservatives include, but are not limited to, tocopherol, tocopherol acetate, deteroxime mesylate, cetrimide, butylated hydroxyanisol (BHA), butylated hydroxytoluened (BHT), ethylenediamine, sodium lauryl sulfate (SLS), sodium lauryl ether sulfate (SLES), sodium bisulfite, sodium metabisulfite, potassium sulfite, potassium metabisulfite, GLYDANT PLUS®, PHENONIP®, methylparaben, GERMALL® 115, GERMABEN®II, NEOLONETM, KATHONTM, and/or EUXYL®.
- Exemplary buffering agents include, but are not limited to, citrate buffer solutions, acetate buffer solutions, phosphate buffer solutions, ammonium chloride, calcium carbonate, calcium chloride, calcium citrate, calcium glubionate, calcium gluceptate, calcium gluconate, d-gluconic acid, calcium glycerophosphate, calcium lactate, propanoic acid, calcium levulinate, pentanoic acid, dibasic calcium phosphate, phosphoric acid, tribasic calcium phosphate, calcium hydroxide phosphate, potassium acetate, potassium chloride, potassium gluconate, potassium mixtures, dibasic potassium phosphate, monobasic potassium phosphate, potassium phosphate mixtures, sodium acetate, sodium bicarbonate, sodium chloride, sodium citrate, sodium lactate, dibasic sodium phosphate, monobasic sodium phosphate, sodium phosphate mixtures, tromethamine, magnesium hydroxide, aluminum hydroxide, alginic acid, pyrogen-free water, isot
- Exemplary lubricating agents include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, silica, talc, malt, glyceryl behanate, hydrogenated vegetable oils, polyethylene glycol, sodium benzoate, sodium acetate, sodium chloride, leucine, magnesium lauryl sulfate, sodium lauryl sulfate, etc., and combinations thereof.
- oils include, but are not limited to, almond, apricot kernel, avocado, babassu, bergamot, black current seed, borage, cade, camomile, canola, caraway, carnauba, castor, cinnamon, cocoa butter, coconut, cod liver, coffee, corn, cotton seed, emu, eucalyptus, evening primrose, fish, flaxseed, geraniol, gourd, grape seed, hazel nut, hyssop, isopropyl myristate, jojoba, kukui nut, lavandin, lavender, lemon, litsea cubeba, macademia nut, mallow, mango seed, meadowfoam seed, mink, nutmeg, olive, orange, orange roughy, palm, palm kernel, peach kernel, peanut, poppy seed, pumpkin seed, rapeseed, rice bran, rosemary, safflower, sandalwood, sasquana, savoury
- oils include, but are not limited to, butyl stearate, caprylic triglyceride, capric triglyceride, cyclomethicone, diethyl sebacate, dimethicone 360, isopropyl myristate, mineral oil, octyldodecanol, oleyl alcohol, silicone oil, and/or combinations thereof.
- Excipients such as cocoa butter and suppository waxes, coloring agents, coating agents, sweetening, flavoring, and/or perfuming agents can be present in the composition, according to the judgment of the formulator.
- the present disclosure encompasses the delivery of modified nucleic acid molecules or mRNA for any of therapeutic, pharmaceutical, diagnostic or imaging by any appropriate route taking into consideration likely advances in the sciences of drug delivery. Delivery may be naked or formulated.
- the modified nucleic acid molecules or mRNA of the present invention may be delivered to a cell naked.
- naked refers to delivering modified nucleic acid molecules or mRNA free from agents which promote transfection.
- the modified nucleic acid molecules or mRNA delivered to the cell may contain no modifications.
- the naked modified nucleic acid molecules or mRNA may be delivered to the cell using routes of administration known in the art and described herein.
- the modified nucleic acid molecules or mRNA of the present invention may be formulated, using the methods described herein.
- the formulations may contain modified nucleic acid molecules or mRNA which may be modified and/or unmodified.
- the formulations may further include, but are not limited to, cell penetration agents, a pharmaceutically acceptable carrier, a delivery agent, a bioerodible or biocompatible polymer, a solvent, and a sustained-release delivery depot.
- the formulated modified nucleic acid molecules or mRNA may be delivered to the cell using routes of administration known in the art and described herein.
- compositions may also be formulated for direct delivery to an organ or tissue in any of several ways in the art including, but not limited to, direct soaking or bathing, via a catheter, by gels, powder, ointments, creams, gels, lotions, and/or drops, by using substrates such as fabric or biodegradable materials coated or impregnated with the compositions, and the like.
- the modified nucleic acid molecules or mRNA of the present invention may be administered by any route which results in a therapeutically effective outcome. These include, but are not limited to enteral, gastroenteral, epidural, oral, transdermal, epidural (peridural), intracerebral (into the cerebrum), intracerebroventricular (into the cerebral ventricles), epicutaneous (application onto the skin), intradermal, (into the skin itself), subcutaneous (under the skin), nasal administration (through the nose), intravenous (into a vein), intraarterial (into an artery), intramuscular (into a muscle), intracardiac (into the heart), intraosseous infusion (into the bone marrow), intrathecal (into the spinal canal), intraperitoneal, (infusion or injection into the peritoneum), intravesical infusion, intravitreal, (through the eye), intracavernous injection, (into the base of the penis), intravaginal administration, intrauterine, extra-amniotic
- Liquid dosage forms for parenteral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and/or elixirs.
- liquid dosage forms may comprise inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- inert diluents commonly used in the art such as, for example, water or
- oral compositions can include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and/or perfuming agents.
- adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and/or perfuming agents.
- compositions are mixed with solubilizing agents such as CREMOPHOR®, alcohols, oils, modified oils, glycols, polysorbates, cyclodextrins, polymers, and/or combinations thereof.
- Injectable preparations for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing agents, wetting agents, and/or suspending agents.
- Sterile injectable preparations may be sterile injectable solutions, suspensions, and/or emulsions in nontoxic parenterally acceptable diluents and/or solvents, for example, as a solution in 1,3-butanediol.
- the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P., and isotonic sodium chloride solution.
- Sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil can be employed including synthetic mono- or diglycerides.
- Fatty acids such as oleic acid can be used in the preparation of injectables.
- Injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, and/or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
- the rate of drug release can be controlled.
- biodegradable polymers include poly(orthoesters) and poly(anhydrides).
- Depot injectable formulations are prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.
- compositions for rectal or vaginal administration are typically suppositories which can be prepared by mixing compositions with suitable non-irritating excipients such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active ingredient.
- suitable non-irritating excipients such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active ingredient.
- Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and/or elixirs.
- liquid dosage forms may comprise inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- inert diluents commonly used in the art such as, for example, water or other solvent
- oral compositions can include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and/or perfuming agents.
- adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and/or perfuming agents.
- compositions are mixed with solubilizing agents such as CREMOPHOR®, alcohols, oils, modified oils, glycols, polysorbates, cyclodextrins, polymers, and/or combinations thereof.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
- an active ingredient is mixed with at least one inert, pharmaceutically acceptable excipient such as sodium citrate or dicalcium phosphate and/or fillers or extenders (e.g. starches, lactose, sucrose, glucose, mannitol, and silicic acid), binders (e.g. carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia), humectants (e.g. glycerol), disintegrating agents (e.g.
- the dosage form may comprise buffering agents.
- solution retarding agents e.g. paraffin
- absorption accelerators e.g. quaternary ammonium compounds
- wetting agents e.g. cetyl alcohol and glycerol monostearate
- absorbents e.g. kaolin and bentonite clay
- lubricants e.g. talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate
- the dosage form may comprise buffering agents.
- compositions containing the modified nucleic acid molecules or mRNA of the invention may be formulated for administration topically.
- the skin may be an ideal target site for delivery as it is readily accessible. Gene expression may be restricted not only to the skin, potentially avoiding nonspecific toxicity, but also to specific layers and cell types within the skin.
- the site of cutaneous expression of the delivered compositions will depend on the route of nucleic acid delivery.
- Three routes are commonly considered to deliver modified nucleic acid molecules or mRNA to the skin: (i) topical application (e.g. for local/regional treatment); (ii) intradermal injection (e.g. for local/regional treatment); and (iii) systemic delivery (e.g. for treatment of dermatologic diseases that affect both cutaneous and extracutaneous regions).
- Modified nucleic acid molecules or mRNA can be delivered to the skin by several different approaches known in the art.
- the invention provides for a variety of dressings (e.g., wound dressings) or bandages (e.g., adhesive bandages) for conveniently and/or effectively carrying out methods of the present invention.
- dressing or bandages may comprise sufficient amounts of pharmaceutical compositions and/or modified nucleic acid molecules or mRNA described herein to allow a user to perform multiple treatments of a subject(s).
- the invention provides for the modified nucleic acid molecules or mRNA compositions to be delivered in more than one injection.
- tissue such as skin
- a device and/or solution which may increase permeability.
- the tissue may be subjected to an abrasion device to increase the permeability of the skin (see U.S. Patent Publication No. 20080275468, herein incorporated by reference in its entirety).
- the tissue may be subjected to an ultrasound enhancement device.
- An ultrasound enhancement device may include, but is not limited to, the devices described in U.S. Publication No. 20040236268 and U.S. Pat. Nos. 6,491,657 and 6,234,990; each of which are herein incorporated by reference in their entireties.
- a device may be used to increase permeability of tissue before delivering formulations of modified mRNA described herein.
- the permeability of skin may be measured by methods known in the art and/or described in U.S. Pat. No. 6,190,315, herein incorporated by reference in its entirety.
- a modified mRNA formulation may be delivered by the drug delivery methods described in U.S. Pat. No. 6,190,315, herein incorporated by reference in its entirety.
- tissue may be treated with a eutectic mixture of local anesthetics (EMLA) cream before, during and/or after the tissue may be subjected to a device which may increase permeability.
- EMLA local anesthetics
- enhancers may be applied to the tissue before, during, and/or after the tissue has been treated to increase permeability.
- Enhancers include, but are not limited to, transport enhancers, physical enhancers, and cavitation enhancers. Non-limiting examples of enhancers are described in U.S. Pat. No. 6,190,315, herein incorporated by reference in its entirety.
- a device may be used to increase permeability of tissue before delivering formulations of modified mRNA described herein, which may further contain a substance that invokes an immune response.
- a formulation containing a substance to invoke an immune response may be delivered by the methods described in U.S. Publication Nos. 20040171980 and 20040236268; each of which are herein incorporated by reference in their entireties.
- Dosage forms for topical and/or transdermal administration of a composition may include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants and/or patches.
- an active ingredient is admixed under sterile conditions with a pharmaceutically acceptable excipient and/or any needed preservatives and/or buffers as may be required.
- transdermal patches which often have the added advantage of providing controlled delivery of a compound to the body.
- dosage forms may be prepared, for example, by dissolving and/or dispensing the compound in the proper medium.
- rate may be controlled by either providing a rate controlling membrane and/or by dispersing the compound in a polymer matrix and/or gel.
- Formulations suitable for topical administration include, but are not limited to, liquid and/or semi liquid preparations such as liniments, lotions, oil in water and/or water in oil emulsions such as creams, ointments and/or pastes, and/or solutions and/or suspensions.
- Topically-administrable formulations may, for example, comprise from about 0.1% to about 10% (w/w) active ingredient, although the concentration of active ingredient may be as high as the solubility limit of the active ingredient in the solvent.
- Formulations for topical administration may further comprise one or more of the additional ingredients described herein.
- the composition is formulated in depots for extended release.
- a specific organ or tissue a “target tissue” is targeted for administration.
- the modified nucleic acid molecules or mRNA are spatially retained within or proximal to a target tissue.
- a composition to a target tissue of a mammalian subject by contacting the target tissue (which contains one or more target cells) with the composition under conditions such that the composition, in particular the nucleic acid component(s) of the composition, is substantially retained in the target tissue, meaning that at least 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.99 or greater than 99.99% of the composition is retained in the target tissue.
- retention is determined by measuring the amount of the nucleic acid present in the composition that enters one or more target cells.
- At least 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, 99.9, 99.99 or greater than 99.99% of the nucleic acids administered to the subject are present intracellularly at a period of time following administration.
- intramuscular injection to a mammalian subject is performed using an aqueous composition containing a ribonucleic acid and a transfection reagent, and retention of the composition is determined by measuring the amount of the ribonucleic acid present in the muscle cells.
- aspects of the invention are directed to methods of providing a composition to a target tissue of a mammalian subject, by contacting the target tissue (containing one or more target cells) with the composition under conditions such that the composition is substantially retained in the target tissue.
- the composition contains an effective amount of a nucleic acid molecules or mRNA such that the polypeptide of interest is produced in at least one target cell.
- the compositions generally contain a cell penetration agent, although “naked” nucleic acid (such as nucleic acids without a cell penetration agent or other agent) is also contemplated, and a pharmaceutically acceptable carrier.
- the amount of a protein produced by cells in a tissue is desirably increased.
- this increase in protein production is spatially restricted to cells within the target tissue.
- the composition includes a plurality of different modified nucleic acid molecules or mRNA, where one or more than one of the modified nucleic acid molecules or mRNA encodes a polypeptide of interest.
- the composition also contains a cell penetration agent to assist in the intracellular delivery of the composition.
- a determination is made of the dose of the composition required to produce the polypeptide of interest in a substantial percentage of cells contained within the predetermined volume of the target tissue (generally, without inducing significant production of the polypeptide of interest in tissue adjacent to the predetermined volume, or distally to the target tissue). Subsequent to this determination, the determined dose is introduced directly into the tissue of the mammalian subject.
- the invention provides for the modified nucleic acid molecules or mRNA to be delivered in more than one injection or by split dose injections.
- the invention may be retained near target tissue using a small disposable drug reservoir, patch pump or osmotic pump.
- patch pumps include those manufactured and/or sold by BD®, (Franklin Lakes, N.J.), Insulet Corporation (Bedford, Mass.), SteadyMed Therapeutics (San Francisco, Calif.), Medtronic (Minneapolis, Minn.) (e.g., MiniMed), UniLife (York, Pa.), Valeritas (Bridgewater, N.J.), and SpringLeaf Therapeutics (Boston, Mass.).
- a non-limiting example of an osmotic pump include those manufactured by DURECT® (Cupertino, Calif.) (e.g., DUROS® and ALZET®).
- a pharmaceutical composition may be prepared, packaged, and/or sold in a formulation suitable for pulmonary administration via the buccal cavity.
- a formulation may comprise dry particles which comprise the active ingredient and which have a diameter in the range from about 0.5 nm to about 7 nm or from about 1 nm to about 6 nm.
- Such compositions are suitably in the form of dry powders for administration using a device comprising a dry powder reservoir to which a stream of propellant may be directed to disperse the powder and/or using a self propelling solvent/powder dispensing container such as a device comprising the active ingredient dissolved and/or suspended in a low-boiling propellant in a sealed container.
- Such powders comprise particles wherein at least 98% of the particles by weight have a diameter greater than 0.5 nm and at least 95% of the particles by number have a diameter less than 7 nm. Alternatively, at least 95% of the particles by weight have a diameter greater than 1 nm and at least 90% of the particles by number have a diameter less than 6 nm.
- Dry powder compositions may include a solid fine powder diluent such as sugar and are conveniently provided in a unit dose form.
- Low boiling propellants generally include liquid propellants having a boiling point of below 65° F. at atmospheric pressure. Generally the propellant may constitute 50% to 99.9% (w/w) of the composition, and active ingredient may constitute 0.1% to 20% (w/w) of the composition.
- a propellant may further comprise additional ingredients such as a liquid non-ionic and/or solid anionic surfactant and/or a solid diluent (which may have a particle size of the same order as particles comprising the active ingredient).
- modified nucleic acid molecules or mRNA described herein may be formulated for pulmonary delivery by the methods described in U.S. Pat. No. 8,257,685; herein incorporated by reference in its entirety.
- compositions formulated for pulmonary delivery may provide an active ingredient in the form of droplets of a solution and/or suspension.
- Such formulations may be prepared, packaged, and/or sold as aqueous and/or dilute alcoholic solutions and/or suspensions, optionally sterile, comprising active ingredient, and may conveniently be administered using any nebulization and/or atomization device.
- Such formulations may further comprise one or more additional ingredients including, but not limited to, a flavoring agent such as saccharin sodium, a volatile oil, a buffering agent, a surface active agent, and/or a preservative such as methylhydroxybenzoate.
- Droplets provided by this route of administration may have an average diameter in the range from about 0.1 nm to about 200 nm.
- Formulations described herein as being useful for pulmonary delivery are useful for intranasal delivery of a pharmaceutical composition.
- Another formulation suitable for intranasal administration is a coarse powder comprising the active ingredient and having an average particle from about 0.2 ⁇ m to 500 ⁇ m. Such a formulation is administered in the manner in which snuff is taken, i.e. by rapid inhalation through the nasal passage from a container of the powder held close to the nose.
- Formulations suitable for nasal administration may, for example, comprise from about as little as 0.1% (w/w) and as much as 100% (w/w) of active ingredient, and may comprise one or more of the additional ingredients described herein.
- a pharmaceutical composition may be prepared, packaged, and/or sold in a formulation suitable for buccal administration. Such formulations may, for example, be in the form of tablets and/or lozenges made using conventional methods, and may, for example, 0.1% to 20% (w/w) active ingredient, the balance comprising an orally dissolvable and/or degradable composition and, optionally, one or more of the additional ingredients described herein.
- formulations suitable for buccal administration may comprise a powder and/or an aerosolized and/or atomized solution and/or suspension comprising active ingredient.
- Such powdered, aerosolized, and/or aerosolized formulations when dispersed, may have an average particle and/or droplet size in the range from about 0.1 nm to about 200 nm, and may further comprise one or more of any additional ingredients described herein.
- a pharmaceutical composition may be prepared, packaged, and/or sold in a formulation suitable for ophthalmic administration.
- Such formulations may, for example, be in the form of eye drops including, for example, a 0.1/1.0% (w/w) solution and/or suspension of the active ingredient in an aqueous or oily liquid excipient.
- Such drops may further comprise buffering agents, salts, and/or one or more other of any additional ingredients described herein.
- Other ophthalmically-administrable formulations which are useful include those which comprise the active ingredient in microcrystalline form and/or in a liposomal preparation. Ear drops and/or eye drops are contemplated as being within the scope of this invention.
- a multilayer thin film device may be prepared to contain a pharmaceutical composition for delivery to the eye and/or surrounding tissue.
- modified nucleic acid molecules or mRNA described herein can be used in a number of different scenarios in which delivery of a substance (the “payload”) to a biological target is desired, for example delivery of detectable substances for detection of the target, or delivery of a therapeutic agent.
- Detection methods can include, but are not limited to, both imaging in vitro and in vivo imaging methods, e.g., immunohistochemistry, bioluminescence imaging (BLI), Magnetic Resonance Imaging (MRI), positron emission tomography (PET), electron microscopy, X-ray computed tomography, Raman imaging, optical coherence tomography, absorption imaging, thermal imaging, fluorescence reflectance imaging, fluorescence microscopy, fluorescence molecular tomographic imaging, nuclear magnetic resonance imaging, X-ray imaging, ultrasound imaging, photoacoustic imaging, lab assays, or in any situation where tagging/staining/imaging is required.
- imaging in vitro and in vivo imaging methods e.g., immunohistochemistry, bioluminescence imaging (BLI), Magnetic Resonance Imaging (MRI), positron emission tomography (PET), electron microscopy, X-ray computed tomography, Raman imaging, optical coherence tomography, absorption imaging, thermal imaging
- the modified nucleic acid molecules or mRNA can be designed to include both a linker and a payload in any useful orientation.
- a linker having two ends is used to attach one end to the payload and the other end to the nucleobase, such as at the C-7 or C-8 positions of the deaza-adenosine or deaza-guanosine or to the N-3 or C-5 positions of cytosine or uracil.
- the polynucleotide of the invention can include more than one payload (e.g., a label and a transcription inhibitor), as well as a cleavable linker.
- the modified nucleotide is a modified 7-deaza-adenosine triphosphate, where one end of a cleavable linker is attached to the C7 position of 7-deaza-adenine, the other end of the linker is attached to an inhibitor (e.g., to the C5 position of the nucleobase on a cytidine), and a label (e.g., Cy5) is attached to the center of the linker (see, e.g., compound I of A*pCp C5 Parg Capless in FIG. 5 and columns 9 and 10 of U.S. Pat. No. 7,994,304, incorporated herein by reference).
- an inhibitor e.g., to the C5 position of the nucleobase on a cytidine
- a label e.g., Cy5
- the resulting polynucleotide having a cleavable linker attached to a label and an inhibitor (e.g., a polymerase inhibitor).
- an inhibitor e.g., a polymerase inhibitor.
- the linker e.g., with reductive conditions to reduce a linker having a cleavable disulfide moiety
- the label and inhibitor are released. Additional linkers and payloads (e.g., therapeutic agents, detectable labels, and cell penetrating payloads) are described herein.
- Scheme 12 depicts an exemplary modified nucleotide wherein the nucleobase, adenine, is attached to a linker at the C 1-7 carbon of 7-deaza adenine.
- Scheme 12 depicts the modified nucleotide with the linker and payload, e.g., a detectable agent, incorporated onto the 3′ end of the mRNA. Disulfide cleavage and 1,2-addition of the thiol group onto the propargyl ester releases the detectable agent.
- the remaining structure (depicted, for example, as pApC5 Parg in Scheme 12) is the inhibitor.
- the tethered inhibitor sterically interferes with the ability of the polymerase to incorporate a second base.
- the tether be long enough to affect this function and that the inhibiter be in a stereochemical orientation that inhibits or prohibits second and follow on nucleotides into the growing polynucleotide strand.
- the modified nucleic acid molecules or mRNA described herein can be used in reprogramming induced pluripotent stem cells (iPS cells), which can directly track cells that are transfected compared to total cells in the cluster.
- iPS cells induced pluripotent stem cells
- a drug that may be attached to the modified nucleic acid molecules or mRNA via a linker and may be fluorescently labeled can be used to track the drug in vivo, e.g. intracellularly.
- Other examples include, but are not limited to, the use of modified nucleic acid molecules or mRNA in reversible drug delivery into cells.
- the modified nucleic acid molecules or mRNA described herein can be used in intracellular targeting of a payload, e.g., detectable or therapeutic agent, to specific organelle.
- exemplary intracellular targets can include, but are not limited to, the nuclear localization for advanced mRNA processing, or a nuclear localization sequence (NLS) linked to the mRNA containing an inhibitor.
- NLS nuclear localization sequence
- modified nucleic acid molecules or mRNA described herein can be used to deliver therapeutic agents to cells or tissues, e.g., in living animals.
- the modified nucleic acids or mRNA described herein can be used to deliver highly polar chemotherapeutics agents to kill cancer cells.
- the modified nucleic acid molecules or mRNA attached to the therapeutic agent through a linker can facilitate member permeation allowing the therapeutic agent to travel into a cell to reach an intracellular target.
- the linker is attached at the 2′-position of the ribose ring and/or at the 3′ and/or 5′ position of the modified nucleic acid molecule or mRNA (See e.g., International Pub. No. WO2012030683, herein incorporated by reference in its entirety).
- the linker may be any linker disclosed herein, known in the art and/or disclosed in International Pub. No. WO2012030683, herein incorporated by reference in its entirety.
- the modified nucleic acid molecules or mRNA can be attached to the modified nucleic acid molecules or mRNA a viral inhibitory peptide (VIP) through a cleavable linker.
- VIP viral inhibitory peptide
- the modified nucleic acid molecules or mRNA can be attached through the linker to an ADP-ribosylate, which is responsible for the actions of some bacterial toxins, such as cholera toxin, diphtheria toxin, and pertussis toxin.
- toxin proteins are ADP-ribosyltransferases that modify target proteins in human cells.
- cholera toxin ADP-ribosylates G proteins modifies human cells by causing massive fluid secretion from the lining of the small intestine, which results in life-threatening diarrhea.
- the payload may be a therapeutic agent such as a cytotoxin, radioactive ion, chemotherapeutic, or other therapeutic agent.
- a cytotoxin or cytotoxic agent includes any agent that may be detrimental to cells. Examples include, but are not limited to, taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, teniposide, vincristine, vinblastine, colchicine, doxorubicin, daunorubicin, dihydroxyanthracinedione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, maytansinoids, e.g., maytansinol (see U.S.
- Radioactive ions include, but are not limited to iodine (e.g., iodine 125 or iodine 131), strontium 89, phosphorous, palladium, cesium, iridium, phosphate, cobalt, yttrium 90, samarium 153, and praseodymium.
- iodine e.g., iodine 125 or iodine 131
- strontium 89 phosphorous, palladium, cesium, iridium, phosphate, cobalt, yttrium 90, samarium 153, and praseodymium.
- therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thiotepa chlorambucil, rachelmycin (CC-1065), melphalan, carmustine (BSNU), lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and
- the payload may be a detectable agent, such as various organic small molecules, inorganic compounds, nanoparticles, enzymes or enzyme substrates, fluorescent materials, luminescent materials (e.g., luminol), bioluminescent materials (e.g., luciferase, luciferin, and aequorin), chemiluminescent materials, radioactive materials (e.g., 18 F, 67 Ga, 81m Kr, 82 Rb, 111 In, 123 I, 133 Xe, 201 Tl, 125 I, 35 S, 14 C 3 H, or 99m Tc (e.g., as pertechnetate (technetate(VII), TcO 4 ⁇ )), and contrast agents (e.g., gold (e.g., gold nanoparticles), gadolinium (e.g., chelated Gd), iron oxides (e.g., superparamagnetic iron oxide (SPIO), monocrystalline iron oxide nanoparticles (
- optically-detectable labels include for example, without limitation, 4-acetamido-4′-isothiocyanatostilbene-2,2′ disulfonic acid; acridine and derivatives (e.g., acridine and acridine isothiocyanate); 5-(2′-aminoethyl)aminonaphthalene-1-sulfonic acid (EDANS); 4-amino-N4-[3-vinylsulfonyl)phenyl]naphthalimide-3,5 disulfonate; N-(4-anilino-1-naphthyl)maleimide; anthranilamide; BODIPY; Brilliant Yellow; coumarin and derivatives (e.g., coumarin, 7-amino-4-methylcoumarin (AMC, Coumarin 120), and 7-amino-4-trifluoromethylcoumarin (Coumarin 151)); cyanine dyes; cyanosine; 4′,6-
- rhod B sulfonyl chloride rhodamine (Rhod), rhodamine B, rhodamine 123, rhodamine X isothiocyanate, sulforhodamine B, sulforhodamine 101, sulfonyl chloride derivative of sulforhodamine 101 (Texas Red), N,N,N′,N′tetramethyl-6-carboxyrhodamine (TAMRA) tetramethyl rhodamine, and tetramethyl rhodamine isothiocyanate (TRITC)); riboflavin; rosolic acid; terbium chelate derivatives; Cyanine-3 (Cy3); Cyanine-5 (Cy5); cyanine-5.5 (Cy5.5), Cyanine-7 (Cy7); IRD 700; IRD 800; Alexa 647; La Jolta Blue; phthalo cyanine;
- the detectable agent may be a non-detectable pre-cursor that becomes detectable upon activation (e.g., fluorogenic tetrazine-fluorophore constructs (e.g., tetrazine-BODIPY FL, tetrazine-Oregon Green 488, or tetrazine-BODIPY TMR-X) or enzyme activatable fluorogenic agents (e.g., PROSENSE® (VisEn Medical))).
- fluorogenic tetrazine-fluorophore constructs e.g., tetrazine-BODIPY FL, tetrazine-Oregon Green 488, or tetrazine-BODIPY TMR-X
- enzyme activatable fluorogenic agents e.g., PROSENSE® (VisEn Medical)
- ELISAs enzyme linked immunosorbent assays
- IA enzyme immunoassays
- RIA radioimmunoassays
- Western blot analysis In vitro assays in which the enzyme labeled compositions can be used include, but are not limited to, enzyme linked immunosorbent assays (ELISAs), immunoprecipitation assays, immunofluorescence, enzyme immunoassays (EIA), radioimmunoassays (RIA), and Western blot analysis.
- nucleic acid molecules or mRNA may be used in combination with one or more other therapeutic, prophylactic, diagnostic, or imaging agents.
- combination with it is not intended to imply that the agents must be administered at the same time and/or formulated for delivery together, although these methods of delivery are within the scope of the present disclosure.
- Compositions can be administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. In general, each agent will be administered at a dose and/or on a time schedule determined for that agent.
- the present disclosure encompasses the delivery of pharmaceutical, prophylactic, diagnostic, or imaging compositions in combination with agents that may improve their bioavailability, reduce and/or modify their metabolism, inhibit their excretion, and/or modify their distribution within the body.
- the nucleic acid molecules or mRNA may be used in combination with a pharmaceutical agent for the treatment of cancer or to control hyperproliferative cells.
- a combination therapy for the treatment of solid primary or metastasized tumor is described using a pharmaceutical composition including a DNA plasmid encoding for interleukin-12 with a lipopolymer and also administering at least one anticancer agent or chemotherapeutic.
- the nucleic acid molecules and mRNA of the present invention that encodes anti-proliferative molecules may be in a pharmaceutical composition with a lipopolymer (see e.g., U.S. Pub. No.
- the modified nucleotides and modified nucleic acid molecules which are incorporated into a nucleic acid, e.g., RNA or mRNA, can also include a payload that can be a cell penetrating moiety or agent that enhances intracellular delivery of the compositions.
- the compositions can include, but are not limited to, a cell-penetrating peptide sequence that facilitates delivery to the intracellular space, e.g., HIV-derived TAT peptide, penetratins, transportans, or hCT derived cell-penetrating peptides, see, e.g., Caron et al., (2001) Mol. Ther.
- compositions can also be formulated to include a cell penetrating agent, e.g., liposomes, which enhance delivery of the compositions to the intracellular space.
- a cell penetrating agent e.g., liposomes
- modified nucleotides and modified nucleic acid molecules described herein which are incorporated into a nucleic acid, e.g., RNA or mRNA, can be used to deliver a payload to any biological target for which a specific ligand exists or can be generated.
- the ligand can bind to the biological target either covalently or non-covalently.
- biological targets include, but are not limited to, biopolymers, e.g., antibodies, nucleic acids such as RNA and DNA, proteins, enzymes; examples of proteins include, but are not limited to, enzymes, receptors, and ion channels.
- the target may be a tissue- or a cell-type specific marker, e.g., a protein that is expressed specifically on a selected tissue or cell type.
- the target may be a receptor, such as, but not limited to, plasma membrane receptors and nuclear receptors; more specific examples include, but are not limited to, G-protein-coupled receptors, cell pore proteins, transporter proteins, surface-expressed antibodies, HLA proteins, MHC proteins and growth factor receptors.
- the present invention provides methods comprising administering modified mRNAs and their encoded proteins or complexes in accordance with the invention to a subject in need thereof.
- Nucleic acids, proteins or complexes, or pharmaceutical, imaging, diagnostic, or prophylactic compositions thereof may be administered to a subject using any amount and any route of administration effective for preventing, treating, diagnosing, or imaging a disease, disorder, and/or condition (e.g., a disease, disorder, and/or condition relating to working memory deficits).
- a disease, disorder, and/or condition e.g., a disease, disorder, and/or condition relating to working memory deficits.
- the exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like.
- compositions in accordance with the invention are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the compositions of the present invention may be decided by the attending physician within the scope of sound medical judgment.
- the specific therapeutically effective, prophylactically effective, or appropriate imaging dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.
- compositions in accordance with the present invention may be administered at dosage levels sufficient to deliver from about 0.0001 mg/kg to about 100 mg/kg, from about 0.001 mg/kg to about 0.05 mg/kg, from about 0.005 mg/kg to about 0.05 mg/kg, from about 0.001 mg/kg to about 0.005 mg/kg, from about 0.05 mg/kg to about 0.5 mg/kg, from about 0.01 mg/kg to about 50 mg/kg, from about 0.1 mg/kg to about 40 mg/kg, from about 0.5 mg/kg to about 30 mg/kg, from about 0.01 mg/kg to about 10 mg/kg, from about 0.1 mg/kg to about 10 mg/kg, or from about 1 mg/kg to about 25 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic, diagnostic, prophylactic, or imaging effect.
- the desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks.
- the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations).
- a “split dose” is the division of single unit dose or total daily dose into two or more doses, e.g, two or more administrations of the single unit dose.
- a “single unit dose” is a dose of any therapeutic administered in one dose/at one time/single route/single point of contact, i.e., single administration event.
- a “total daily dose” is an amount given or prescribed in 24 hr period. It may be administered as a single unit dose.
- the mRNA of the present invention are administered to a subject in split doses.
- the mRNA may be formulated in buffer only or in a formulation described herein.
- a pharmaceutical composition described herein can be formulated into a dosage form described herein, such as a topical, intranasal, intratracheal, or injectable (e.g., intravenous, intraocular, intravitreal, intramuscular, intracardiac, intraperitoneal, subcutaneous).
- injectable e.g., intravenous, intraocular, intravitreal, intramuscular, intracardiac, intraperitoneal, subcutaneous.
- Liquid dosage forms for parenteral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and/or elixirs.
- liquid dosage forms may comprise inert diluents commonly used in the art including, but not limited to, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- compositions may be mixed with solubilizing
- Injectable preparations for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art and may include suitable dispersing agents, wetting agents, and/or suspending agents.
- Sterile injectable preparations may be sterile injectable solutions, suspensions, and/or emulsions in nontoxic parenterally acceptable diluents and/or solvents, for example, a solution in 1,3-butanediol.
- the acceptable vehicles and solvents that may be employed include, but are not limited to, water, Ringer's solution, U.S.P., and isotonic sodium chloride solution.
- Sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. Fatty acids such as oleic acid can be used in the preparation of injectables.
- Injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, and/or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
- the rate of modified mRNA release can be controlled.
- biodegradable polymers include, but are not limited to, poly(orthoesters) and poly(anhydrides).
- Depot injectable formulations may be prepared by entrapping the modified mRNA in liposomes or microemulsions which are compatible with body tissues.
- Formulations described herein as being useful for pulmonary delivery may also be used for intranasal delivery of a pharmaceutical composition.
- Another formulation suitable for intranasal administration may be a coarse powder comprising the active ingredient and having an average particle from about 0.2 ⁇ m to 500 ⁇ m.
- Such a formulation may be administered in the manner in which snuff is taken, i.e. by rapid inhalation through the nasal passage from a container of the powder held close to the nose.
- Formulations suitable for nasal administration may, for example, comprise from about as little as 0.1% (w/w) and as much as 100% (w/w) of active ingredient, and may comprise one or more of the additional ingredients described herein.
- a pharmaceutical composition may be prepared, packaged, and/or sold in a formulation suitable for buccal administration. Such formulations may, for example, be in the form of tablets and/or lozenges made using conventional methods, and may, for example, contain about 0.1% to 20% (w/w) active ingredient, where the balance may comprise an orally dissolvable and/or degradable composition and, optionally, one or more of the additional ingredients described herein.
- formulations suitable for buccal administration may comprise a powder and/or an aerosolized and/or atomized solution and/or suspension comprising active ingredient.
- Such powdered, aerosolized, and/or aerosolized formulations when dispersed, may have an average particle and/or droplet size in the range from about 0.1 nm to about 200 nm, and may further comprise one or more of any additional ingredients described herein.
- Solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally comprise opacifying agents and can be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. Solid compositions of a similar type may be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
- the modified nucleic acid molecules and mRNA when formulated into a composition with a delivery agent as described herein, can exhibit an increase in bioavailability as compared to a composition lacking a delivery agent as described herein.
- bioavailability refers to the systemic availability of a given amount of a modified nucleic acid molecule administered to a mammal. Bioavailability can be assessed by measuring the area under the curve (AUC) or the maximum serum or plasma concentration (C max ) of the unchanged form of a compound following administration of the compound to a mammal.
- AUC is a determination of the area under the curve plotting the serum or plasma concentration of a compound along the ordinate (Y-axis) against time along the abscissa (X-axis).
- the AUC for a particular compound can be calculated using methods known to those of ordinary skill in the art and as described in G. S. Banker, Modern Pharmaceutics, Drugs and the Pharmaceutical Sciences, v. 72, Marcel Dekker, New York, Inc., 1996, herein incorporated by reference in its entirety.
- the C max value is the maximum concentration of the compound achieved in the serum or plasma of a mammal following administration of the compound to the mammal.
- the C max value of a particular compound can be measured using methods known to those of ordinary skill in the art.
- the phrases “increasing bioavailability” or “improving the pharmacokinetics,” as used herein mean that the systemic availability of a first modified nucleic acid molecule, measured as AUC, C max , or C min in a mammal is greater, when co-administered with a delivery agent as described herein, than when such co-administration does not take place.
- the bioavailability of the modified nucleic acid molecule can increase by at least about 2%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100%.
- the modified nucleic acid molecules and mRNA when formulated into a composition with a delivery agent as described herein, can exhibit an increase in the therapeutic window of the administered modified nucleic acid molecule composition as compared to the therapeutic window of the administered modified nucleic acid molecule composition lacking a delivery agent as described herein.
- therapeutic window refers to the range of plasma concentrations, or the range of levels of therapeutically active substance at the site of action, with a high probability of eliciting a therapeutic effect.
- the therapeutic window of the modified nucleic acid molecule when co-administered with a delivery agent as described herein can increase by at least about 2%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100%.
- the modified nucleic acid molecules when formulated into a composition with a delivery agent as described herein, can exhibit an improved volume of distribution (V dtst ), e.g., reduced or targeted, relative to a modified nucleic acid molecule composition lacking a delivery agent as described herein.
- the volume of distribution (V dist ) relates the amount of the drug in the body to the concentration of the drug in the blood or plasma.
- the term “volume of distribution” refers to the fluid volume that would be required to contain the total amount of the drug in the body at the same concentration as in the blood or plasma: V dist equals the amount of drug in the body/concentration of drug in blood or plasma.
- the volume of distribution would be 1 liter.
- the volume of distribution reflects the extent to which the drug is present in the extravascular tissue.
- a large volume of distribution reflects the tendency of a compound to bind to the tissue components compared with plasma protein binding.
- V dist can be used to determine a loading dose to achieve a steady state concentration.
- the volume of distribution of the modified nucleic acid molecule when co-administered with a delivery agent as described herein can decrease at least about 2%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%.
- the biological effect of the modified mRNA delivered to the animals may be categorized by analyzing the protein expression in the animals.
- the protein expression may be determined from analyzing a biological sample collected from a mammal administered the modified mRNA of the present invention.
- the expression protein encoded by the modified mRNA administered to the mammal of at least 50 pg/ml may be preferred.
- a protein expression of 50-200 pg/ml for the protein encoded by the modified mRNA delivered to the mammal may be seen as a therapeutically effective amount of protein in the mammal.
- Mass spectrometry is an analytical technique that can provide structural and molecular mass/concentration information on molecules after their conversion to ions.
- the molecules are first ionized to acquire positive or negative charges and then they travel through the mass analyzer to arrive at different areas of the detector according to their mass/charge (m/z) ratio.
- Mass spectrometry is performed using a mass spectrometer which includes an ion source for ionizing the fractionated sample and creating charged molecules for further analysis.
- ionization of the sample may be performed by electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), photoionization, electron ionization, fast atom bombardment (FAB)/liquid secondary ionization (LSIMS), matrix assisted laser desorption/ionization (MALDI), field ionization, field desorption, thermospray/plasmaspray ionization, and particle beam ionization.
- ESI electrospray ionization
- APCI atmospheric pressure chemical ionization
- FAB fast atom bombardment
- LIMS liquid secondary ionization
- MALDI matrix assisted laser desorption/ionization
- field ionization field desorption
- thermospray/plasmaspray ionization and particle beam ionization.
- the positively charged or negatively charged ions thereby created may be analyzed to determine a mass-to-charge ratio (i.e., m/z).
- Suitable analyzers for determining mass-to-charge ratios include quadropole analyzers, ion traps analyzers, and time-of-flight analyzers.
- the ions may be detected using several detection modes. For example, selected ions may be detected (i.e., using a selective ion monitoring mode (SIM)), or alternatively, ions may be detected using a scanning mode, e.g., multiple reaction monitoring (MRM) or selected reaction monitoring (SRM).
- SIM selective ion monitoring mode
- MRM multiple reaction monitoring
- SRM selected reaction monitoring
- LC-MS/MRM Liquid chromatography-multiple reaction monitoring
- MRM multiple reaction monitoring
- a biological sample which may contain at least one protein encoded by at least one modified mRNA of the present invention may be analyzed by the method of MRM-MS.
- the quantification of the biological sample may further include, but is not limited to, isotopically labeled peptides or proteins as internal standards.
- the biological sample once obtained from the subject, may be subjected to enzyme digestion.
- digest means to break apart into shorter peptides.
- the phrase “treating a sample to digest proteins” means manipulating a sample in such a way as to break down proteins in a sample.
- enzymes include, but are not limited to, trypsin, endoproteinase Glu-C and chymotrypsin.
- a biological sample which may contain at least one protein encoded by at least one modified mRNA of the present invention may be digested using enzymes.
- a biological sample which may contain protein encoded by modified mRNA of the present invention may be analyzed for protein using electrospray ionization.
- Electrospray ionization (ESI) mass spectrometry (ESIMS) uses electrical energy to aid in the transfer of ions from the solution to the gaseous phase before they are analyzed by mass spectrometry.
- Samples may be analyzed using methods known in the art (e.g., Ho et al., Clin Biochem Rev. 2003 24(1):3-12; herein incorporated by reference in its entirety).
- the ionic species contained in solution may be transferred into the gas phase by dispersing a fine spray of charge droplets, evaporating the solvent and ejecting the ions from the charged droplets to generate a mist of highly charged droplets.
- the mist of highly charged droplets may be analyzed using at least 1, at least 2, at least 3 or at least 4 mass analyzers such as, but not limited to, a quadropole mass analyzer.
- the mass spectrometry method may include a purification step.
- the first quadrapole may be set to select a single m/z ratio so it may filter out other molecular ions having a different m/z ratio which may eliminate complicated and time-consuming sample purification procedures prior to MS analysis.
- a biological sample which may contain protein encoded by modified mRNA of the present invention may be analyzed for protein in a tandem ESIMS system (e.g., MS/MS).
- the droplets may be analyzed using a product scan (or daughter scan) a precursor scan (parent scan) a neutral loss or a multiple reaction monitoring.
- a biological sample which may contain protein encoded by modified mRNA of the present invention may be analyzed using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MALDIMS).
- MALDI matrix-assisted laser desorption/ionization
- MALDIMS matrix-assisted laser desorption/ionization mass spectrometry
- MALDI provides for the nondestructive vaporization and ionization of both large and small molecules, such as proteins.
- the analyte is first co-crystallized with a large molar excess of a matrix compound, which may also include, but is not limited to, an ultraviolet absorbing weak organic acid.
- Non-limiting examples of matrices used in MALDI are ⁇ -cyano-4-hydroxycinnamic acid, 3,5-dimethoxy-4-hydroxycinnamic acid and 2,5-dihydroxybenzoic acid.
- Laser radiation of the analyte-matrix mixture may result in the vaporization of the matrix and the analyte.
- the laser induced desorption provides high ion yields of the intact analyte and allows for measurement of compounds with high accuracy.
- Samples may be analyzed using methods known in the art (e.g., Lewis, Wei and Siuzdak, Encyclopedia of Analytical Chemistry 2000:5880-5894; herein incorporated by reference in its entirety).
- mass analyzers used in the MALDI analysis may include a linear time-of-flight (TOF), a TOF reflectron or a Fourier transform mass analyzer.
- the analyte-matrix mixture may be formed using the dried-droplet method.
- a biologic sample is mixed with a matrix to create a saturated matrix solution where the matrix-to-sample ratio is approximately 5000:1.
- An aliquot (approximately 0.5-2.0 uL) of the saturated matrix solution is then allowed to dry to form the analyte-matrix mixture.
- the analyte-matrix mixture may be formed using the thin-layer method.
- a matrix homogeneous film is first formed and then the sample is then applied and may be absorbed by the matrix to form the analyte-matrix mixture.
- the analyte-matrix mixture may be formed using the thick-layer method.
- a matrix homogeneous film is formed with a nitro-cellulose matrix additive. Once the uniform nitro-cellulose matrix layer is obtained the sample is applied and absorbed into the matrix to form the analyte-matrix mixture.
- the analyte-matrix mixture may be formed using the sandwich method.
- a thin layer of matrix crystals is prepared as in the thin-layer method followed by the addition of droplets of aqueous trifluoroacetic acid, the sample and matrix. The sample is then absorbed into the matrix to form the analyte-matrix mixture.
- modified nucleic acid molecules and the proteins translated from the modified nucleic acid molecules described herein can be used as therapeutic agents.
- a modified nucleic acid molecule described herein can be administered to a subject, wherein the modified nucleic acid molecule is translated in vivo to produce a therapeutic peptide in the subject.
- compositions, methods, kits, and reagents for treatment or prevention of disease or conditions in humans and other mammals are provided herein.
- the active therapeutic agents of the present disclosure include, but are not limited to, modified nucleic acid molecules, cells containing modified nucleic acid molecules or polypeptides translated from the modified nucleic acid molecules, polypeptides translated from modified nucleic acid molecules, and cells contacted with cells containing modified nucleic acid molecules or polypeptides translated from the modified nucleic acid molecules.
- combination therapeutics may containing one or more modified nucleic acid molecules containing translatable regions along with a protein that induces antibody-dependent cellular toxicity.
- translatable regions encode for a protein or proteins that may boost a subject's immunity.
- therapeutics containing one or more nucleic acids that encode trastuzumab and granulocyte-colony stimulating factor (G-CSF).
- G-CSF granulocyte-colony stimulating factor
- combination therapeutics may be useful in Her2+ breast cancer patients who develop induced resistance to trastuzumab. (See, e.g., Albrecht, Immunotherapy. 2(6):795-8 (2010); herein incorporated by reference in its entirety).
- Methods of inducing translation of a recombinant polypeptide in a cell population using the modified nucleic acid molecules described herein are also provided. Such translation can be in vivo, ex vivo, in culture, or in vitro.
- the cell population may be contacted with an effective amount of a composition containing a nucleic acid that has at least one nucleoside modification, and a translatable region encoding the recombinant polypeptide.
- the population may be contacted under conditions such that the nucleic acid may be localized into one or more cells of the cell population and the recombinant polypeptide may be translated in the cell from the nucleic acid.
- an effective amount of the composition may be provided based, at least in part, on the target tissue, target cell type, means of administration, physical characteristics of the nucleic acid (e.g., size, and extent of modified nucleosides), and other determinants.
- an effective amount of the composition provides efficient protein production in the cell, preferably more efficient than a composition containing a corresponding unmodified nucleic acid molecule. Increased efficiency may be demonstrated by increased cell transfection (i.e., the percentage of cells transfected with the nucleic acid), increased protein translation from the nucleic acid, decreased nucleic acid degradation (as demonstrated, e.g., by increased duration of protein translation from a modified nucleic acid molecule), or reduced innate immune response of the host cell.
- aspects of the present disclosure are directed to methods of inducing in vivo translation of a recombinant polypeptide in a mammalian subject in need thereof.
- an effective amount of a composition containing a nucleic acid that has at least one nucleoside modification and a translatable region encoding the recombinant polypeptide may be administered to the subject using the delivery methods described herein.
- the nucleic acid may be provided in an amount and under other conditions such that the nucleic acid is localized into a cell of the subject and the recombinant polypeptide may be translated in the cell from the nucleic acid.
- the cell in which the nucleic acid is localized, or the tissue in which the cell is present, may be targeted with one or more than one rounds of nucleic acid administration.
- compositions containing modified nucleic acid molecules are formulated for administration intramuscularly, transarterially, intraperitoneally, intravenously, intranasally, subcutaneously, endoscopically, transdermally, or intrathecally. In some embodiments, the composition may be formulated for extended release.
- the subject to whom the therapeutic agent may be administered suffers from or may be at risk of developing a disease, disorder, or deleterious condition.
- GWAS genome-wide association studies
- the administered modified nucleic acid molecule directs production of one or more recombinant polypeptides that provide a functional activity which may be substantially absent in the cell in which the recombinant polypeptide may be translated.
- the missing functional activity may be enzymatic, structural, or gene regulatory in nature.
- the administration of a modified nucleic acid molecule directs production of one or more recombinant polypeptides that replace a polypeptide (or multiple polypeptides) that may be substantially absent in the cell in which the recombinant polypeptide may be translated. Such absence may be due to a genetic mutation of the encoding gene or a regulatory pathway thereof.
- the recombinant polypeptide functions to antagonize the activity of an endogenous protein present in, on the surface of, or secreted from the cell. Usually, the activity of the endogenous protein may be deleterious to the subject, for example, due to the mutation of the endogenous protein resulting in altered activity or localization.
- the recombinant polypeptide antagonizes, directly or indirectly, the activity of a biological moiety present in, on the surface of, or secreted from the cell.
- antagonized biological moieties include, but are not limited to, lipids (e.g., cholesterol), a lipoprotein (e.g., low density lipoprotein), a nucleic acid, a carbohydrate, or a small molecule toxin.
- the recombinant proteins described herein may be engineered for localization within the cell, potentially within a specific compartment such as the nucleus, or are engineered for secretion from the cell or translocation to the plasma membrane of the cell.
- a useful feature of the modified nucleic acid molecules of the present disclosure is the capacity to reduce the innate immune response of a cell to an exogenous nucleic acid.
- the cell may be contacted with a first composition that contains a first dose of a first exogenous nucleic acid including a translatable region and at least one nucleoside modification, and the level of the innate immune response of the cell to the first exogenous nucleic acid may be determined.
- the cell may be contacted with a second composition, which includes a second dose of the first exogenous nucleic acid, the second dose containing a lesser amount of the first exogenous nucleic acid as compared to the first dose.
- the cell may be contacted with a first dose of a second exogenous nucleic acid.
- the second exogenous nucleic acid may contain one or more modified nucleosides, which may be the same or different from the first exogenous nucleic acid or, alternatively, the second exogenous nucleic acid may not contain modified nucleosides.
- the steps of contacting the cell with the first composition and/or the second composition may be repeated one or more times. Additionally, efficiency of protein production (e.g., protein translation) in the cell may be optionally determined, and the cell may be re-transfected with the first and/or second composition repeatedly until a target protein production efficiency is achieved.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Dispersion Chemistry (AREA)
- Dermatology (AREA)
- Neurosurgery (AREA)
- Diabetes (AREA)
- Ophthalmology & Optometry (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Neurology (AREA)
- Obesity (AREA)
Priority Applications (18)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/714,458 US20130156849A1 (en) | 2011-12-16 | 2012-12-14 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US13/897,375 US9295689B2 (en) | 2011-12-16 | 2013-05-18 | Formulation and delivery of PLGA microspheres |
| US13/897,367 US8680069B2 (en) | 2011-12-16 | 2013-05-18 | Modified polynucleotides for the production of G-CSF |
| US13/897,372 US20130244279A1 (en) | 2011-12-16 | 2013-05-18 | Formulation and delivery of plga microspheres |
| US13/897,371 US9271996B2 (en) | 2011-12-16 | 2013-05-18 | Formulation and delivery of PLGA microspheres |
| US13/898,758 US8664194B2 (en) | 2011-12-16 | 2013-05-21 | Method for producing a protein of interest in a primate |
| US13/898,699 US20130236974A1 (en) | 2011-12-16 | 2013-05-21 | Method for increasing the production of a protein of interest |
| US13/898,588 US9186372B2 (en) | 2011-12-16 | 2013-05-21 | Split dose administration |
| US13/898,983 US20130245106A1 (en) | 2011-12-16 | 2013-05-21 | Method of producing a protein of interest |
| US13/898,536 US20130237593A1 (en) | 2011-12-16 | 2013-05-21 | Multi-site administration |
| US13/898,870 US8754062B2 (en) | 2011-12-16 | 2013-05-21 | DLIN-KC2-DMA lipid nanoparticle delivery of modified polynucleotides |
| US13/898,512 US20130237592A1 (en) | 2011-12-16 | 2013-05-21 | Method for producing a protein of interest at the site of a clot |
| US13/899,641 US20130245107A1 (en) | 2011-12-16 | 2013-05-22 | Dlin-mc3-dma lipid nanoparticle delivery of modified polynucleotides |
| US13/917,720 US20130266640A1 (en) | 2011-12-16 | 2013-06-14 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US15/077,705 US20160193299A1 (en) | 2011-12-16 | 2016-03-22 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US15/621,693 US20180125937A1 (en) | 2011-12-16 | 2017-06-13 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US16/525,145 US20200164038A1 (en) | 2011-12-16 | 2019-07-29 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US18/177,455 US20240123035A1 (en) | 2011-12-16 | 2023-03-02 | Modified nucleoside, nucleotide, and nucleic acid compositions |
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161576705P | 2011-12-16 | 2011-12-16 | |
| US201261618957P | 2012-04-02 | 2012-04-02 | |
| US201261648244P | 2012-05-17 | 2012-05-17 | |
| US201261681712P | 2012-08-10 | 2012-08-10 | |
| US201261696381P | 2012-09-04 | 2012-09-04 | |
| US201261709303P | 2012-10-03 | 2012-10-03 | |
| US201261712490P | 2012-10-11 | 2012-10-11 | |
| US13/714,458 US20130156849A1 (en) | 2011-12-16 | 2012-12-14 | Modified nucleoside, nucleotide, and nucleic acid compositions |
Related Child Applications (14)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/897,367 Continuation US8680069B2 (en) | 2011-12-16 | 2013-05-18 | Modified polynucleotides for the production of G-CSF |
| US13/897,372 Continuation US20130244279A1 (en) | 2011-12-16 | 2013-05-18 | Formulation and delivery of plga microspheres |
| US13/897,375 Continuation US9295689B2 (en) | 2011-12-16 | 2013-05-18 | Formulation and delivery of PLGA microspheres |
| US13/897,371 Continuation US9271996B2 (en) | 2011-12-16 | 2013-05-18 | Formulation and delivery of PLGA microspheres |
| US13/898,758 Continuation US8664194B2 (en) | 2011-12-16 | 2013-05-21 | Method for producing a protein of interest in a primate |
| US13/898,699 Continuation US20130236974A1 (en) | 2011-12-16 | 2013-05-21 | Method for increasing the production of a protein of interest |
| US13/898,588 Continuation US9186372B2 (en) | 2011-12-16 | 2013-05-21 | Split dose administration |
| US13/898,512 Continuation US20130237592A1 (en) | 2011-12-16 | 2013-05-21 | Method for producing a protein of interest at the site of a clot |
| US13/898,983 Continuation US20130245106A1 (en) | 2011-12-16 | 2013-05-21 | Method of producing a protein of interest |
| US13/898,536 Continuation US20130237593A1 (en) | 2011-12-16 | 2013-05-21 | Multi-site administration |
| US13/898,870 Continuation US8754062B2 (en) | 2011-12-16 | 2013-05-21 | DLIN-KC2-DMA lipid nanoparticle delivery of modified polynucleotides |
| US13/899,641 Continuation US20130245107A1 (en) | 2011-12-16 | 2013-05-22 | Dlin-mc3-dma lipid nanoparticle delivery of modified polynucleotides |
| US13/917,720 Division US20130266640A1 (en) | 2011-12-16 | 2013-06-14 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US15/077,705 Division US20160193299A1 (en) | 2011-12-16 | 2016-03-22 | Modified nucleoside, nucleotide, and nucleic acid compositions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20130156849A1 true US20130156849A1 (en) | 2013-06-20 |
Family
ID=48610363
Family Applications (18)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/714,458 Abandoned US20130156849A1 (en) | 2011-12-16 | 2012-12-14 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US13/897,371 Active US9271996B2 (en) | 2011-12-16 | 2013-05-18 | Formulation and delivery of PLGA microspheres |
| US13/897,375 Active US9295689B2 (en) | 2011-12-16 | 2013-05-18 | Formulation and delivery of PLGA microspheres |
| US13/897,367 Active US8680069B2 (en) | 2011-12-16 | 2013-05-18 | Modified polynucleotides for the production of G-CSF |
| US13/897,372 Abandoned US20130244279A1 (en) | 2011-12-16 | 2013-05-18 | Formulation and delivery of plga microspheres |
| US13/898,699 Abandoned US20130236974A1 (en) | 2011-12-16 | 2013-05-21 | Method for increasing the production of a protein of interest |
| US13/898,536 Abandoned US20130237593A1 (en) | 2011-12-16 | 2013-05-21 | Multi-site administration |
| US13/898,758 Active US8664194B2 (en) | 2011-12-16 | 2013-05-21 | Method for producing a protein of interest in a primate |
| US13/898,870 Active 2033-03-06 US8754062B2 (en) | 2011-12-16 | 2013-05-21 | DLIN-KC2-DMA lipid nanoparticle delivery of modified polynucleotides |
| US13/898,983 Abandoned US20130245106A1 (en) | 2011-12-16 | 2013-05-21 | Method of producing a protein of interest |
| US13/898,512 Abandoned US20130237592A1 (en) | 2011-12-16 | 2013-05-21 | Method for producing a protein of interest at the site of a clot |
| US13/898,588 Active US9186372B2 (en) | 2011-12-16 | 2013-05-21 | Split dose administration |
| US13/899,641 Abandoned US20130245107A1 (en) | 2011-12-16 | 2013-05-22 | Dlin-mc3-dma lipid nanoparticle delivery of modified polynucleotides |
| US13/917,720 Abandoned US20130266640A1 (en) | 2011-12-16 | 2013-06-14 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US15/077,705 Abandoned US20160193299A1 (en) | 2011-12-16 | 2016-03-22 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US15/621,693 Abandoned US20180125937A1 (en) | 2011-12-16 | 2017-06-13 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US16/525,145 Abandoned US20200164038A1 (en) | 2011-12-16 | 2019-07-29 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US18/177,455 Pending US20240123035A1 (en) | 2011-12-16 | 2023-03-02 | Modified nucleoside, nucleotide, and nucleic acid compositions |
Family Applications After (17)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/897,371 Active US9271996B2 (en) | 2011-12-16 | 2013-05-18 | Formulation and delivery of PLGA microspheres |
| US13/897,375 Active US9295689B2 (en) | 2011-12-16 | 2013-05-18 | Formulation and delivery of PLGA microspheres |
| US13/897,367 Active US8680069B2 (en) | 2011-12-16 | 2013-05-18 | Modified polynucleotides for the production of G-CSF |
| US13/897,372 Abandoned US20130244279A1 (en) | 2011-12-16 | 2013-05-18 | Formulation and delivery of plga microspheres |
| US13/898,699 Abandoned US20130236974A1 (en) | 2011-12-16 | 2013-05-21 | Method for increasing the production of a protein of interest |
| US13/898,536 Abandoned US20130237593A1 (en) | 2011-12-16 | 2013-05-21 | Multi-site administration |
| US13/898,758 Active US8664194B2 (en) | 2011-12-16 | 2013-05-21 | Method for producing a protein of interest in a primate |
| US13/898,870 Active 2033-03-06 US8754062B2 (en) | 2011-12-16 | 2013-05-21 | DLIN-KC2-DMA lipid nanoparticle delivery of modified polynucleotides |
| US13/898,983 Abandoned US20130245106A1 (en) | 2011-12-16 | 2013-05-21 | Method of producing a protein of interest |
| US13/898,512 Abandoned US20130237592A1 (en) | 2011-12-16 | 2013-05-21 | Method for producing a protein of interest at the site of a clot |
| US13/898,588 Active US9186372B2 (en) | 2011-12-16 | 2013-05-21 | Split dose administration |
| US13/899,641 Abandoned US20130245107A1 (en) | 2011-12-16 | 2013-05-22 | Dlin-mc3-dma lipid nanoparticle delivery of modified polynucleotides |
| US13/917,720 Abandoned US20130266640A1 (en) | 2011-12-16 | 2013-06-14 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US15/077,705 Abandoned US20160193299A1 (en) | 2011-12-16 | 2016-03-22 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US15/621,693 Abandoned US20180125937A1 (en) | 2011-12-16 | 2017-06-13 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US16/525,145 Abandoned US20200164038A1 (en) | 2011-12-16 | 2019-07-29 | Modified nucleoside, nucleotide, and nucleic acid compositions |
| US18/177,455 Pending US20240123035A1 (en) | 2011-12-16 | 2023-03-02 | Modified nucleoside, nucleotide, and nucleic acid compositions |
Country Status (26)
| Country | Link |
|---|---|
| US (18) | US20130156849A1 (enExample) |
| EP (2) | EP2791160B1 (enExample) |
| JP (2) | JP2015501844A (enExample) |
| KR (1) | KR20140102759A (enExample) |
| CN (2) | CN110201187A (enExample) |
| AU (3) | AU2012352180A1 (enExample) |
| CA (2) | CA3018046A1 (enExample) |
| CY (1) | CY1125212T1 (enExample) |
| DE (1) | DE12858350T1 (enExample) |
| DK (1) | DK2791160T3 (enExample) |
| ES (1) | ES2923757T3 (enExample) |
| HK (1) | HK1203077A1 (enExample) |
| HR (1) | HRP20220717T1 (enExample) |
| HU (1) | HUE059110T2 (enExample) |
| IL (1) | IL232749A0 (enExample) |
| LT (1) | LT2791160T (enExample) |
| MX (1) | MX2014007233A (enExample) |
| PL (1) | PL2791160T3 (enExample) |
| PT (1) | PT2791160T (enExample) |
| RS (1) | RS63244B1 (enExample) |
| RU (1) | RU2649364C2 (enExample) |
| SG (2) | SG11201402666WA (enExample) |
| SI (1) | SI2791160T1 (enExample) |
| SM (1) | SMT202200355T1 (enExample) |
| WO (1) | WO2013090648A1 (enExample) |
| ZA (1) | ZA201403783B (enExample) |
Cited By (121)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014081507A1 (en) | 2012-11-26 | 2014-05-30 | Moderna Therapeutics, Inc. | Terminally modified rna |
| WO2014113089A2 (en) | 2013-01-17 | 2014-07-24 | Moderna Therapeutics, Inc. | Signal-sensor polynucleotides for the alteration of cellular phenotypes |
| US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US20140284270A1 (en) * | 2012-09-21 | 2014-09-25 | George Fox | RNA pores and methods and compositions for making and using same |
| US9095552B2 (en) | 2012-04-02 | 2015-08-04 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding copper metabolism (MURR1) domain containing 1 |
| US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
| EP2918275A1 (en) * | 2013-12-13 | 2015-09-16 | Atanu Roy | Alternative nucleic acid molecules and uses thereof |
| US9186372B2 (en) | 2011-12-16 | 2015-11-17 | Moderna Therapeutics, Inc. | Split dose administration |
| WO2016005099A1 (fr) * | 2014-07-09 | 2016-01-14 | Jérôme Lemoine | Composition aqueuse hypotonique comprenant des nanoparticules d'arnm, kit et procédé de préparation |
| US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
| WO2016077123A1 (en) | 2014-11-10 | 2016-05-19 | Moderna Therapeutics, Inc. | Multiparametric nucleic acid optimization |
| US9376669B2 (en) | 2012-11-01 | 2016-06-28 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US9422577B2 (en) | 2011-12-05 | 2016-08-23 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US9512456B2 (en) | 2012-08-14 | 2016-12-06 | Modernatx, Inc. | Enzymes and polymerases for the synthesis of RNA |
| US9533047B2 (en) | 2011-03-31 | 2017-01-03 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
| WO2017070618A1 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Cancer vaccines |
| WO2017070624A1 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Tropical disease vaccines |
| US9670261B2 (en) | 2012-12-21 | 2017-06-06 | Sanofi | Functionalized exendin-4 derivatives |
| WO2017100562A1 (en) | 2015-12-09 | 2017-06-15 | Alexion Pharmaceuticals, Inc, | Modified mrna encoding a uridine diphopsphate glucuronosyl transferase and uses thereof |
| US9694053B2 (en) | 2013-12-13 | 2017-07-04 | Sanofi | Dual GLP-1/glucagon receptor agonists |
| US9701965B2 (en) | 2010-10-01 | 2017-07-11 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
| EP3052106A4 (en) * | 2013-09-30 | 2017-07-19 | ModernaTX, Inc. | Polynucleotides encoding immune modulating polypeptides |
| US20170209597A1 (en) * | 2014-04-01 | 2017-07-27 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Capped and uncapped rna molecules and block copolymers for intracellular delivery of rna |
| US9750788B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Non-acylated exendin-4 peptide analogues |
| US9751926B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Dual GLP-1/GIP receptor agonists |
| WO2017151623A1 (en) | 2016-03-01 | 2017-09-08 | Alexion Pharmaceuticals, Inc. | Biodegradable activated polymers for therapeutic delivery |
| US9758561B2 (en) | 2014-04-07 | 2017-09-12 | Sanofi | Dual GLP-1/glucagon receptor agonists derived from exendin-4 |
| US9770489B2 (en) | 2014-01-31 | 2017-09-26 | Factor Bioscience Inc. | Methods and products for nucleic acid production and delivery |
| US9771406B2 (en) | 2014-04-07 | 2017-09-26 | Sanofi | Peptidic dual GLP-1/glucagon receptor agonists derived from exendin-4 |
| US9775904B2 (en) | 2014-04-07 | 2017-10-03 | Sanofi | Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists |
| US9789165B2 (en) | 2013-12-13 | 2017-10-17 | Sanofi | Exendin-4 peptide analogues as dual GLP-1/GIP receptor agonists |
| WO2017194454A1 (en) * | 2016-05-09 | 2017-11-16 | Astrazeneca Ab | Lipid nanoparticles comprising lipophilic anti-inflammatory agents and methods of use thereof |
| US9822370B2 (en) | 2013-04-04 | 2017-11-21 | President And Fellows Of Harvard College | Method of making a deletion in a target sequence in isolated primary cells using Cas9 and two guide RNAs |
| US20170348244A1 (en) * | 2014-07-02 | 2017-12-07 | RaNA Therapeutics | Encapsulation of messenger rna |
| WO2017218704A1 (en) * | 2016-06-14 | 2017-12-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
| US9932381B2 (en) | 2014-06-18 | 2018-04-03 | Sanofi | Exendin-4 derivatives as selective glucagon receptor agonists |
| US20180105852A1 (en) * | 2016-10-13 | 2018-04-19 | Korea Institute Of Science And Technology | Method of packing polynucleotides |
| US9982029B2 (en) | 2015-07-10 | 2018-05-29 | Sanofi | Exendin-4 derivatives as selective peptidic dual GLP-1/glucagon receptor agonists |
| US10077439B2 (en) | 2013-03-15 | 2018-09-18 | Modernatx, Inc. | Removal of DNA fragments in mRNA production process |
| WO2018170347A1 (en) * | 2017-03-17 | 2018-09-20 | Modernatx, Inc. | Zoonotic disease rna vaccines |
| US20180289792A1 (en) * | 2015-10-22 | 2018-10-11 | ModernaTX. Inc. | Sexually transmitted disease vaccines |
| US10106800B2 (en) | 2005-09-28 | 2018-10-23 | Biontech Ag | Modification of RNA, producing an increased transcript stability and translation efficiency |
| US10137206B2 (en) | 2016-08-17 | 2018-11-27 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10138507B2 (en) | 2013-03-15 | 2018-11-27 | Modernatx, Inc. | Manufacturing methods for production of RNA transcripts |
| US10155031B2 (en) | 2012-11-28 | 2018-12-18 | Biontech Rna Pharmaceuticals Gmbh | Individualized vaccines for cancer |
| WO2019018765A1 (en) | 2017-07-21 | 2019-01-24 | Modernatx, Inc. | MODIFIED mRNA ENCODING PROPIONYL-COA-CARBOXYLASE AND USES THEREOF |
| WO2019023179A1 (en) | 2017-07-24 | 2019-01-31 | Modernatx, Inc. | MODIFIED mRNA ENCODING GLUCOSE-6-PHOSPHATASE AND USES THEREOF |
| US10195156B2 (en) | 2015-12-22 | 2019-02-05 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
| US10208319B2 (en) | 2013-07-09 | 2019-02-19 | President And Fellows Of Harvard College | Therapeutic uses of genome editing with CRISPR/Cas systems |
| WO2019051100A1 (en) * | 2017-09-07 | 2019-03-14 | Combined Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR TARGETED CODING ADMINISTRATION, EXPRESSION AND MODULATION OF RIBONUCLEIC ACIDS IN TISSUE |
| CN109477102A (zh) * | 2015-02-13 | 2019-03-15 | 菲克特生物科学股份有限公司 | 核酸产品及其施用方法 |
| US10258698B2 (en) | 2013-03-14 | 2019-04-16 | Modernatx, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
| US10266485B2 (en) | 2015-09-17 | 2019-04-23 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| US10273269B2 (en) | 2017-02-16 | 2019-04-30 | Modernatx, Inc. | High potency immunogenic zika virus compositions |
| US10286086B2 (en) | 2014-06-19 | 2019-05-14 | Modernatx, Inc. | Alternative nucleic acid molecules and uses thereof |
| US10300148B2 (en) * | 2014-10-02 | 2019-05-28 | University Of Seoul Industry Cooperation | Messenger RNA nanoparticles and preparation method therefor |
| US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
| US10385088B2 (en) | 2013-10-02 | 2019-08-20 | Modernatx, Inc. | Polynucleotide molecules and uses thereof |
| WO2019158955A1 (en) | 2018-02-19 | 2019-08-22 | Combined Therapeutics, Inc. | Compositions and methods for organ-protective expression and modulation of coding ribonucleic acids |
| US10407683B2 (en) | 2014-07-16 | 2019-09-10 | Modernatx, Inc. | Circular polynucleotides |
| US10449244B2 (en) | 2015-07-21 | 2019-10-22 | Modernatx, Inc. | Zika RNA vaccines |
| US10485884B2 (en) | 2012-03-26 | 2019-11-26 | Biontech Rna Pharmaceuticals Gmbh | RNA formulation for immunotherapy |
| US10501404B1 (en) | 2019-07-30 | 2019-12-10 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US20190381137A1 (en) * | 2012-09-04 | 2019-12-19 | Lauren Sciences Llc | Bolaamphiphilic compounds, compositions and uses thereof |
| WO2020002540A1 (en) * | 2018-06-28 | 2020-01-02 | Astrazeneca Ab | Exosome extracellular vesicles and methods of use |
| US10590161B2 (en) | 2013-03-15 | 2020-03-17 | Modernatx, Inc. | Ion exchange purification of mRNA |
| CN110945127A (zh) * | 2017-05-22 | 2020-03-31 | 百深公司 | 用于血友病b的基因疗法的编码具有增加的表达的重组fix的病毒载体 |
| WO2020086701A1 (en) | 2018-10-24 | 2020-04-30 | Codiak Biosciences, Inc. | Methods to improve potency of electroporation |
| US10653767B2 (en) | 2017-09-14 | 2020-05-19 | Modernatx, Inc. | Zika virus MRNA vaccines |
| US10738355B2 (en) | 2011-05-24 | 2020-08-11 | Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh | Individualized vaccines for cancer |
| US10751426B2 (en) | 2015-10-30 | 2020-08-25 | Bonac Corporation | Composition stably containing single-stranded nucleic acid molecule that suppresses expression of TGF-β1 gene |
| US10758592B2 (en) | 2012-10-09 | 2020-09-01 | Sanofi | Exendin-4 derivatives as dual GLP1/glucagon agonists |
| WO2020206231A1 (en) * | 2019-04-05 | 2020-10-08 | Precision Biosciences, Inc. | Methods of preparing populations of genetically-modified immune cells |
| US10806797B2 (en) | 2015-06-05 | 2020-10-20 | Sanofi | Prodrugs comprising an GLP-1/glucagon dual agonist linker hyaluronic acid conjugate |
| US10849920B2 (en) | 2015-10-05 | 2020-12-01 | Modernatx, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
| US10857093B2 (en) | 2015-06-29 | 2020-12-08 | Corium, Inc. | Microarray for delivery of therapeutic agent, methods of use, and methods of making |
| US10857105B2 (en) | 2017-03-15 | 2020-12-08 | MordernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| US20210137840A1 (en) * | 2018-04-25 | 2021-05-13 | Ethris Gmbh | Lipid-based formulations for the delivery of rna |
| US11027025B2 (en) | 2013-07-11 | 2021-06-08 | Modernatx, Inc. | Compositions comprising synthetic polynucleotides encoding CRISPR related proteins and synthetic sgRNAs and methods of use |
| US20210180041A1 (en) * | 2017-02-27 | 2021-06-17 | Translate Bio, Inc. | Methods For Purification of Messenger RNA |
| US11052231B2 (en) * | 2012-12-21 | 2021-07-06 | Corium, Inc. | Microarray for delivery of therapeutic agent and methods of use |
| US11066355B2 (en) | 2019-09-19 | 2021-07-20 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
| US11156617B2 (en) | 2015-02-12 | 2021-10-26 | BioNTech RNA Pharmaceuticals GbmH | Predicting T cell epitopes useful for vaccination |
| US11173120B2 (en) | 2014-09-25 | 2021-11-16 | Biontech Rna Pharmaceuticals Gmbh | Stable formulations of lipids and liposomes |
| US11203569B2 (en) | 2017-03-15 | 2021-12-21 | Modernatx, Inc. | Crystal forms of amino lipids |
| US11222711B2 (en) | 2013-05-10 | 2022-01-11 | BioNTech SE | Predicting immunogenicity of T cell epitopes |
| WO2022035621A1 (en) | 2020-07-31 | 2022-02-17 | Combined Therapeutics, Inc. | Compositions and methods for improved vaccination |
| CN114144173A (zh) * | 2019-06-05 | 2022-03-04 | 盖德治疗公司 | 用于组织递送的材料的分析 |
| US11298426B2 (en) | 2003-10-14 | 2022-04-12 | BioNTech SE | Recombinant vaccines and use thereof |
| US11364292B2 (en) | 2015-07-21 | 2022-06-21 | Modernatx, Inc. | CHIKV RNA vaccines |
| US11377470B2 (en) | 2013-03-15 | 2022-07-05 | Modernatx, Inc. | Ribonucleic acid purification |
| US11389546B2 (en) | 2015-12-09 | 2022-07-19 | Modernatx, Inc. | Heterologous UTR sequences for enhanced mRNA expression |
| WO2022155500A1 (en) | 2021-01-14 | 2022-07-21 | Senti Biosciences, Inc. | Secretable payload regulation |
| US11413346B2 (en) * | 2015-11-09 | 2022-08-16 | Curevac Ag | Rotavirus vaccines |
| US11419816B2 (en) | 2010-05-04 | 2022-08-23 | Corium, Inc. | Method and device for transdermal delivery of parathyroid hormone using a microprojection array |
| US11434486B2 (en) | 2015-09-17 | 2022-09-06 | Modernatx, Inc. | Polynucleotides containing a morpholino linker |
| US11492628B2 (en) | 2015-10-07 | 2022-11-08 | BioNTech SE | 3′-UTR sequences for stabilization of RNA |
| US11565097B2 (en) | 2013-03-15 | 2023-01-31 | Corium Pharma Solutions, Inc. | Microarray for delivery of therapeutic agent and methods of use |
| US11583504B2 (en) | 2016-11-08 | 2023-02-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
| US11603399B2 (en) | 2013-03-13 | 2023-03-14 | Modernatx, Inc. | Long-lived polynucleotide molecules |
| US11696892B2 (en) * | 2017-10-31 | 2023-07-11 | Modernatx, Inc. | Lipid nanoparticles for delivering modified RNA encoding a VEGF-A polypeptide |
| WO2023172747A1 (en) * | 2022-03-11 | 2023-09-14 | W. L. Gore & Associates, Inc. | Bioabsorbable particles and method of use |
| US11865190B2 (en) | 2018-10-09 | 2024-01-09 | The University Of British Columbia | Compositions and systems comprising transfection-competent vesicles free of organic-solvents and detergents and methods related thereto |
| US11866475B2 (en) | 2016-06-07 | 2024-01-09 | Modernatx, Inc. | Modified RNA encoding VEGF-A polypeptides, formulations, and uses relating thereto |
| EP4327829A1 (en) | 2022-08-26 | 2024-02-28 | Ethris GmbH | Stabilization of lipid or lipidoid nanoparticle suspensions |
| WO2024042236A1 (en) | 2022-08-26 | 2024-02-29 | Ethris Gmbh | Stable lipid or lipidoid nanoparticle suspensions |
| US11926817B2 (en) | 2019-08-09 | 2024-03-12 | Nutcracker Therapeutics, Inc. | Microfluidic apparatus and methods of use thereof |
| US11969506B2 (en) | 2017-03-15 | 2024-04-30 | Modernatx, Inc. | Lipid nanoparticle formulation |
| US12031155B2 (en) | 2015-05-08 | 2024-07-09 | President And Fellows Of Harvard College | Universal donor stem cells and related methods |
| US12070495B2 (en) | 2019-03-15 | 2024-08-27 | Modernatx, Inc. | HIV RNA vaccines |
| US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
| US12109274B2 (en) | 2015-09-17 | 2024-10-08 | Modernatx, Inc. | Polynucleotides containing a stabilizing tail region |
| US12180263B2 (en) | 2014-11-06 | 2024-12-31 | President And Fellows Of Harvard College | Cells lacking B2M surface expression and methods for allogeneic administration of such cells |
| US12227768B2 (en) | 2011-12-05 | 2025-02-18 | Factor Bioscience Inc. | Methods and products for transfection |
| WO2025045767A1 (en) | 2023-08-25 | 2025-03-06 | Ethris Gmbh | Stabilized lipid and lipidoid nanoparticle formulations with specific surfactant properties for enhanced pharmaceutical applications |
| US12263248B2 (en) | 2018-09-19 | 2025-04-01 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| US12270813B2 (en) | 2017-06-09 | 2025-04-08 | BioNTech SE | Methods for predicting the usefulness of disease specific amino acid modifications for immunotherapy |
| EP4346914A4 (en) * | 2021-06-03 | 2025-05-07 | Magle Chemoswed AB | PHARMACEUTICALLY ACCEPTABLE AQUEOUS GEL COMPOSITION FOR MRNA DELIVERY |
| US12344572B2 (en) | 2019-07-03 | 2025-07-01 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US12385034B2 (en) | 2016-06-24 | 2025-08-12 | Modernatx, Inc. | Methods and apparatus for filtration |
Families Citing this family (459)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005120546A2 (en) | 2004-03-03 | 2005-12-22 | Essentia Biosystems, Inc. | Compositions and methods for topical diagnostic and therapeutic transport |
| US9211248B2 (en) | 2004-03-03 | 2015-12-15 | Revance Therapeutics, Inc. | Compositions and methods for topical application and transdermal delivery of botulinum toxins |
| US9180081B2 (en) | 2005-03-03 | 2015-11-10 | Revance Therapeutics, Inc. | Compositions and methods for topical application and transdermal delivery of botulinum toxins |
| US8153435B1 (en) | 2005-03-30 | 2012-04-10 | Tracer Detection Technology Corp. | Methods and articles for identifying objects using encapsulated perfluorocarbon tracers |
| JP5475753B2 (ja) | 2008-04-15 | 2014-04-16 | プロチバ バイオセラピューティクス インコーポレイティッド | 核酸送達用の脂質製剤 |
| ES2613498T3 (es) | 2009-07-01 | 2017-05-24 | Protiva Biotherapeutics Inc. | Nuevas formulaciones de lípidos para el suministro de agentes terapéuticos a tumores sólidos |
| RS57314B1 (sr) | 2009-12-01 | 2018-08-31 | Translate Bio Inc | Isporuka irnk za povećanje ekspresije proteina i enzima u humanim genetskim oboljenjima |
| CA2796464C (en) | 2010-04-16 | 2021-08-03 | Immune Disease Institute, Inc. | Sustained polypeptide expression from synthetic, modified rnas and uses thereof |
| US9006417B2 (en) | 2010-06-30 | 2015-04-14 | Protiva Biotherapeutics, Inc. | Non-liposomal systems for nucleic acid delivery |
| PL2591114T3 (pl) | 2010-07-06 | 2017-08-31 | Glaxosmithkline Biologicals Sa | Immunizacja dużych ssaków małymi dawkami rna |
| SI3243526T1 (sl) | 2010-07-06 | 2020-02-28 | Glaxosmithkline Biologicals S.A. | Dostava RNA za sprožitev večih imunskih poti |
| HUE026646T2 (en) | 2010-07-06 | 2016-07-28 | Glaxosmithkline Biologicals Sa | Preferred liposomes containing lipids of PKA value for delivery of RNA |
| RS63329B1 (sr) | 2010-08-31 | 2022-07-29 | Glaxosmithkline Biologicals Sa | Pegilovani lipozomi za isporuku rnk koja kodira imunogen |
| CN103269713B (zh) | 2010-10-11 | 2016-01-20 | 诺华有限公司 | 抗原递送平台 |
| CA2816420C (en) * | 2010-10-29 | 2018-01-16 | Najib Babul | Compositions of (-)-17-(cyclobutylmethyl)morphinan-3,14-diol |
| US8853377B2 (en) | 2010-11-30 | 2014-10-07 | Shire Human Genetic Therapies, Inc. | mRNA for use in treatment of human genetic diseases |
| WO2012116715A1 (en) | 2011-03-02 | 2012-09-07 | Curevac Gmbh | Vaccination in newborns and infants |
| LT2717893T (lt) | 2011-06-08 | 2019-08-12 | Translate Bio, Inc. | Lipidų nanodalelių kompozicijos ir mrnr pristatymo būdai |
| EP3332802A1 (en) | 2011-07-06 | 2018-06-13 | GlaxoSmithKline Biologicals SA | Immunogenic combination compositions and uses thereof |
| CA2853829C (en) | 2011-07-22 | 2023-09-26 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
| US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| DK3682905T3 (da) | 2011-10-03 | 2022-02-28 | Modernatx Inc | Modificerede nukleosider, nukleotider og nukleinsyrer og anvendelser deraf |
| CA2856742A1 (en) | 2011-12-07 | 2013-06-13 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
| US10501513B2 (en) | 2012-04-02 | 2019-12-10 | Modernatx, Inc. | Modified polynucleotides for the production of oncology-related proteins and peptides |
| HK1208618A1 (en) | 2012-06-08 | 2016-03-11 | 夏尔人类遗传性治疗公司 | Pulmonary delivery of mrna to non-lung target cells |
| US20150267192A1 (en) | 2012-06-08 | 2015-09-24 | Shire Human Genetic Therapies, Inc. | Nuclease resistant polynucleotides and uses thereof |
| US9095625B2 (en) * | 2012-08-31 | 2015-08-04 | University Of Massachusetts | Graft-copolymer stabilized metal nanoparticles |
| RU2721275C2 (ru) | 2012-12-12 | 2020-05-18 | Те Брод Инститьют, Инк. | Доставка, конструирование и оптимизация систем, способов и композиций для манипуляции с последовательностями и применения в терапии |
| EP2931319B1 (en) * | 2012-12-13 | 2019-08-21 | ModernaTX, Inc. | Modified nucleic acid molecules and uses thereof |
| LT2959005T (lt) | 2013-02-22 | 2022-01-25 | The Board Of Trustees Of The Leland Stanford Junior University | Medicininis naudojimas, susijęs su telomerų ilgėjimu |
| EP3467108B1 (en) | 2013-03-14 | 2024-05-22 | Translate Bio, Inc. | Methods for purification of messenger rna |
| SMT202100430T1 (it) | 2013-03-14 | 2021-09-14 | Translate Bio Inc | Metodi e composizioni per il rilascio di anticorpi codificati da mrna |
| MX393573B (es) | 2013-03-14 | 2025-03-21 | Shire Human Genetic Therapies | Composiciones de acido ribonucleico mensajero del regulador transmembrana de fibrosis quistica y metodos y usos relacionados |
| US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
| EP4614148A3 (en) | 2013-03-15 | 2025-12-17 | Translate Bio, Inc. | Synergistic enhancement of the delivery of nucleic acids via blended formulations |
| BR112015031608A2 (pt) | 2013-06-17 | 2017-08-22 | Massachusetts Inst Technology | Aplicação e uso dos sistemas crispr-cas, vetores e composições para direcionamento e terapia hepáticos |
| WO2014204729A1 (en) | 2013-06-17 | 2014-12-24 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components |
| AU2014281030B2 (en) | 2013-06-17 | 2020-07-09 | Massachusetts Institute Of Technology | Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells |
| AU2014300980B2 (en) * | 2013-06-28 | 2020-03-05 | Ethris Gmbh | Compositions for introducing RNA into cells |
| EP3677567A1 (en) * | 2013-07-23 | 2020-07-08 | Arbutus Biopharma Corporation | Compositions and methods for delivering messenger rna |
| US9163284B2 (en) | 2013-08-09 | 2015-10-20 | President And Fellows Of Harvard College | Methods for identifying a target site of a Cas9 nuclease |
| US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
| JP2016530294A (ja) | 2013-09-03 | 2016-09-29 | モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. | キメラポリヌクレオチド |
| EP3041938A1 (en) | 2013-09-03 | 2016-07-13 | Moderna Therapeutics, Inc. | Circular polynucleotides |
| US9340800B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | Extended DNA-sensing GRNAS |
| US9322037B2 (en) | 2013-09-06 | 2016-04-26 | President And Fellows Of Harvard College | Cas9-FokI fusion proteins and uses thereof |
| US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
| WO2015061461A1 (en) | 2013-10-22 | 2015-04-30 | Shire Human Genetic Therapies, Inc. | Cns delivery of mrna and uses thereof |
| CN105813656B (zh) | 2013-10-22 | 2021-01-15 | 夏尔人类遗传性治疗公司 | 用于递送信使rna的脂质制剂 |
| AU2014340092B2 (en) | 2013-10-22 | 2019-09-19 | Translate Bio, Inc. | mRNA therapy for Argininosuccinate Synthetase Deficiency |
| EA201992208A1 (ru) | 2013-10-22 | 2020-07-31 | Транслейт Био, Инк. | ЛЕЧЕНИЕ ФЕНИЛКЕТОНУРИИ С ПРИМЕНЕНИЕМ мРНК |
| EP3066201B1 (en) | 2013-11-07 | 2018-03-07 | Editas Medicine, Inc. | Crispr-related methods and compositions with governing grnas |
| WO2015077401A1 (en) | 2013-11-20 | 2015-05-28 | Drexel University | Compositions and methods for macrophage conversion |
| EP3985118A1 (en) | 2013-11-22 | 2022-04-20 | MiNA Therapeutics Limited | C/ebp alpha short activating rna compositions and methods of use |
| EP3080257A1 (en) | 2013-12-12 | 2016-10-19 | The Broad Institute Inc. | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
| MX374529B (es) | 2013-12-12 | 2025-03-06 | Broad Inst Inc | Suministro, uso y aplicaciones terapeuticas de sistemas y composiciones crispr-cas para edicion del genoma. |
| WO2015089486A2 (en) | 2013-12-12 | 2015-06-18 | The Broad Institute Inc. | Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems |
| EP4219699A1 (en) | 2013-12-12 | 2023-08-02 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation |
| CN106536729A (zh) | 2013-12-12 | 2017-03-22 | 布罗德研究所有限公司 | 使用粒子递送组分靶向障碍和疾病的crispr‑cas系统和组合物的递送、用途和治疗应用 |
| EP3080261B1 (en) | 2013-12-12 | 2019-05-22 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders |
| US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
| EP3104889B1 (en) | 2014-02-10 | 2021-10-13 | The Board of Trustees of the Leland Stanford Junior University | Activation of innate immunity for enhanced nuclear reprogramming of somatic cells with mrna |
| DK3122878T3 (en) * | 2014-03-24 | 2019-02-04 | Translate Bio Inc | MRNA THERAPY FOR TREATMENT OF EYE DISEASES |
| HUE069802T2 (hu) | 2014-04-23 | 2025-04-28 | Modernatx Inc | Nukleinsav vakcinák |
| DK3636742T3 (da) | 2014-04-25 | 2025-11-24 | Translate Bio Inc | Fremgangsmåder til oprensning af messenger-rna |
| US10323067B2 (en) * | 2014-05-14 | 2019-06-18 | Evorx Technologies, Inc. | Methods and compositions for controlling gene expression and treating cancer |
| EP3587409B8 (en) | 2014-05-30 | 2022-07-13 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
| EA033966B1 (ru) | 2014-06-24 | 2019-12-13 | Транслейт Био, Инк. | Стереохимически обогащенные композиции для доставки нуклеиновых кислот |
| ES2931832T3 (es) | 2014-06-25 | 2023-01-03 | Acuitas Therapeutics Inc | Lípidos y formulaciones de nanopartículas lipídicas novedosos para la entrega de ácidos nucleicos |
| US10583084B2 (en) * | 2014-06-26 | 2020-03-10 | Ramot At Tel-Aviv University Ltd. | Liposomal formulations for delivery of nucleic acids |
| WO2016005004A1 (en) | 2014-07-11 | 2016-01-14 | Biontech Rna Pharmaceuticals Gmbh | Stabilization of poly(a) sequence encoding dna sequences |
| CA2955250A1 (en) | 2014-07-16 | 2016-01-21 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
| WO2016014846A1 (en) | 2014-07-23 | 2016-01-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of intrabodies |
| WO2016022363A2 (en) | 2014-07-30 | 2016-02-11 | President And Fellows Of Harvard College | Cas9 proteins including ligand-dependent inteins |
| WO2016022914A1 (en) * | 2014-08-08 | 2016-02-11 | Moderna Therapeutics, Inc. | Compositions and methods for the treatment of ophthalmic diseases and conditions |
| EP3180426B1 (en) | 2014-08-17 | 2019-12-25 | The Broad Institute, Inc. | Genome editing using cas9 nickases |
| WO2016049163A2 (en) | 2014-09-24 | 2016-03-31 | The Broad Institute Inc. | Use and production of chd8+/- transgenic animals with behavioral phenotypes characteristic of autism spectrum disorder |
| WO2016049258A2 (en) | 2014-09-25 | 2016-03-31 | The Broad Institute Inc. | Functional screening with optimized functional crispr-cas systems |
| US9816080B2 (en) | 2014-10-31 | 2017-11-14 | President And Fellows Of Harvard College | Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs) |
| EP3542825A1 (en) | 2014-11-10 | 2019-09-25 | Ethris GmbH | Induction of osteogenesis by delivering bmp encoding rna |
| GB201420139D0 (en) | 2014-11-12 | 2014-12-24 | Ucl Business Plc | Factor IX gene therapy |
| EP3226912B1 (en) | 2014-12-05 | 2021-01-20 | Translate Bio, Inc. | Messenger rna therapy for treatment of articular disease |
| EP3985115A1 (en) | 2014-12-12 | 2022-04-20 | The Broad Institute, Inc. | Protected guide rnas (pgrnas) |
| WO2016094874A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Escorted and functionalized guides for crispr-cas systems |
| DK4023755T5 (da) | 2014-12-12 | 2024-07-29 | CureVac SE | Kunstige nukleinsyremolekyler til forbedret proteinudtrykkelse |
| WO2016094880A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Delivery, use and therapeutic applications of crispr systems and compositions for genome editing as to hematopoietic stem cells (hscs) |
| EP3230452B1 (en) | 2014-12-12 | 2025-06-11 | The Broad Institute, Inc. | Dead guides for crispr transcription factors |
| WO2016100974A1 (en) | 2014-12-19 | 2016-06-23 | The Broad Institute Inc. | Unbiased identification of double-strand breaks and genomic rearrangement by genome-wide insert capture sequencing |
| WO2016106236A1 (en) | 2014-12-23 | 2016-06-30 | The Broad Institute Inc. | Rna-targeting system |
| EP3702456A1 (en) | 2014-12-24 | 2020-09-02 | The Broad Institute, Inc. | Crispr having or associated with destabilization domains |
| CA3197849A1 (en) | 2014-12-29 | 2016-07-07 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
| AU2016209295B2 (en) | 2015-01-21 | 2021-08-12 | Genevant Sciences Gmbh | Methods, compositions, and systems for delivering therapeutic and diagnostic agents into cells |
| US20180000953A1 (en) * | 2015-01-21 | 2018-01-04 | Moderna Therapeutics, Inc. | Lipid nanoparticle compositions |
| WO2016118725A1 (en) * | 2015-01-23 | 2016-07-28 | Moderna Therapeutics, Inc. | Lipid nanoparticle compositions |
| EP3900702A1 (en) | 2015-03-19 | 2021-10-27 | Translate Bio, Inc. | Mrna therapy for pompe disease |
| WO2016168595A1 (en) | 2015-04-17 | 2016-10-20 | Barrett David Maxwell | Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells |
| JP2018526321A (ja) | 2015-04-27 | 2018-09-13 | ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア | 適応免疫応答を誘導するためのヌクレオシド修飾rna |
| US10682401B2 (en) | 2015-05-19 | 2020-06-16 | Morphogenesis, Inc. | Multi-indication mRNA cancer immunotherapy |
| ES3031941T3 (en) * | 2015-05-26 | 2025-07-14 | Univ Ramot | Targeted lipid particles for systemic delivery of nucleic acid molecules to leukocytes |
| WO2016205749A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
| US9790490B2 (en) | 2015-06-18 | 2017-10-17 | The Broad Institute Inc. | CRISPR enzymes and systems |
| WO2016205613A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Crispr enzyme mutations reducing off-target effects |
| WO2016205745A2 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Cell sorting |
| CA3012631A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
| PT3313829T (pt) | 2015-06-29 | 2024-07-08 | Acuitas Therapeutics Inc | Formulações de lípidos e de nanopartículas lipídicas para a administração de ácidos nucleicos |
| AU2016297014B2 (en) | 2015-07-21 | 2021-06-17 | Novartis Ag | Methods for improving the efficacy and expansion of immune cells |
| JP2018521084A (ja) * | 2015-07-24 | 2018-08-02 | フィブラリン コーポレイションFibralign Corp. | 核酸ベースの治療法の標的送達の組成物 |
| EP3328394A4 (en) | 2015-07-30 | 2019-03-13 | ModernaTX, Inc. | CONCATEMEE peptide epitope RNAs |
| WO2017031232A1 (en) * | 2015-08-17 | 2017-02-23 | Modernatx, Inc. | Methods for preparing particles and related compositions |
| US11214800B2 (en) | 2015-08-18 | 2022-01-04 | The Broad Institute, Inc. | Methods and compositions for altering function and structure of chromatin loops and/or domains |
| WO2017049132A1 (en) | 2015-09-18 | 2017-03-23 | DNARx | Systems and methods for nucleic acid expression in vivo |
| WO2017069958A2 (en) | 2015-10-09 | 2017-04-27 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
| WO2017062990A1 (en) * | 2015-10-09 | 2017-04-13 | Case Western Reserve University | Compositions and methods for the delivery of nucleic acids |
| MA56219A (fr) | 2015-10-14 | 2022-04-20 | Translate Bio Inc | Modification d'enzymes apparentées à l'arn pour une production améliorée |
| WO2017070613A1 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Human cytomegalovirus vaccine |
| BR112018008102A2 (pt) | 2015-10-22 | 2018-11-06 | Modernatx Inc | vacina de vírus sincicial respiratório |
| MD3718565T2 (ro) * | 2015-10-22 | 2022-09-30 | Modernatx Inc | Vaccinuri împotriva virusului respirator |
| AU2016342038B2 (en) | 2015-10-22 | 2022-09-08 | Massachusetts Institute Of Technology | Type VI-B CRISPR enzymes and systems |
| KR20180096591A (ko) * | 2015-10-22 | 2018-08-29 | 모더나티엑스, 인크. | 광범위 인플루엔자 바이러스 백신 |
| EA201891001A1 (ru) | 2015-10-22 | 2018-11-30 | МОДЕРНАТиЭкс, ИНК. | Вакцины на основе нуклеиновых кислот против вируса ветряной оспы (vzv) |
| EA201890999A1 (ru) * | 2015-10-22 | 2018-12-28 | МОДЕРНАТиЭкс, ИНК. | Вакцина против вируса простого герпеса |
| IL294014B2 (en) | 2015-10-23 | 2024-07-01 | Harvard College | Nucleobase editors and uses thereof |
| WO2017075038A1 (en) * | 2015-10-26 | 2017-05-04 | Rana Therapeutics, Inc. | Nanoparticle formulations for delivery of nucleic acid complexes |
| EP3368687B1 (en) | 2015-10-27 | 2021-09-29 | The Broad Institute, Inc. | Compositions and methods for targeting cancer-specific sequence variations |
| WO2017075451A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1 |
| WO2017075465A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting gata3 |
| EP3368689B1 (en) | 2015-10-28 | 2020-06-17 | The Broad Institute, Inc. | Composition for modulating immune responses by use of immune cell gene signature |
| PT3368507T (pt) | 2015-10-28 | 2023-02-07 | Acuitas Therapeutics Inc | Novos lípidos e formulações de nanopartículas lipídicas para distribuição de ácidos nucleicos |
| PT3386484T (pt) | 2015-12-10 | 2022-08-01 | Modernatx Inc | Composições e métodos para entrega de agentes terapêuticos |
| WO2017106657A1 (en) | 2015-12-18 | 2017-06-22 | The Broad Institute Inc. | Novel crispr enzymes and systems |
| CN108700535B (zh) * | 2015-12-23 | 2021-10-12 | 加利福尼亚大学董事会 | 用于核酸检测和鉴别的纳米传感器 |
| US10465190B1 (en) | 2015-12-23 | 2019-11-05 | Modernatx, Inc. | In vitro transcription methods and constructs |
| PT3394093T (pt) | 2015-12-23 | 2022-05-30 | Modernatx Inc | Métodos de utilização de polinucleotídeos que codificam ligandos ox40 |
| EP3397755B1 (en) | 2015-12-28 | 2024-11-06 | Novartis AG | Methods of making chimeric antigen receptor -expressing cells |
| US20190241658A1 (en) | 2016-01-10 | 2019-08-08 | Modernatx, Inc. | Therapeutic mRNAs encoding anti CTLA-4 antibodies |
| EP3405579A1 (en) | 2016-01-22 | 2018-11-28 | Modernatx, Inc. | Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof |
| EP3410849B1 (en) | 2016-02-05 | 2023-07-05 | Institut Pasteur | Use of inhibitors of adam12 as adjuvants in tumor therapies |
| WO2017177169A1 (en) | 2016-04-08 | 2017-10-12 | Rana Therapeutics, Inc. | Multimeric coding nucleic acid and uses thereof |
| EP3442590A2 (en) | 2016-04-13 | 2019-02-20 | Modernatx, Inc. | Lipid compositions and their uses for intratumoral polynucleotide delivery |
| US20200263190A1 (en) | 2016-04-19 | 2020-08-20 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
| US11286478B2 (en) | 2016-04-19 | 2022-03-29 | The Broad Institute, Inc. | Cpf1 complexes with reduced indel activity |
| CA3026055A1 (en) | 2016-04-19 | 2017-10-26 | The Broad Institute, Inc. | Novel crispr enzymes and systems |
| US10751423B2 (en) | 2016-05-02 | 2020-08-25 | Massachusetts Institute Of Technology | Nanoparticle conjugates of highly potent toxins and intraperitoneal administration of nanoparticles for treating or imaging cancer |
| KR20230074598A (ko) | 2016-05-18 | 2023-05-30 | 모더나티엑스, 인크. | 릴랙신을 인코딩하는 폴리뉴클레오타이드 |
| US12128113B2 (en) | 2016-05-18 | 2024-10-29 | Modernatx, Inc. | Polynucleotides encoding JAGGED1 for the treatment of Alagille syndrome |
| JP2019522047A (ja) | 2016-06-13 | 2019-08-08 | トランスレイト バイオ, インコーポレイテッド | オルニチントランスカルバミラーゼ欠損症治療のためのメッセンジャーrna療法 |
| CN109642231A (zh) | 2016-06-17 | 2019-04-16 | 博德研究所 | Vi型crispr直向同源物和系统 |
| US20210222164A1 (en) | 2016-06-29 | 2021-07-22 | The Broad Institute, Inc. | Crispr-cas systems having destabilization domain |
| EP3478828B1 (en) | 2016-06-29 | 2024-09-04 | CRISPR Therapeutics AG | Materials and methods for treatment of friedreich ataxia and other related disorders |
| AU2017286980B2 (en) | 2016-06-30 | 2023-10-26 | Arbutus Biopharma Corporation | Compositions and methods for delivering messenger RNA |
| EP3481943A1 (en) | 2016-07-07 | 2019-05-15 | Rubius Therapeutics, Inc. | Compositions and methods related to therapeutic cell systems expressing exogenous rna |
| AU2017306676B2 (en) | 2016-08-03 | 2024-02-22 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
| EP3493834A1 (en) | 2016-08-07 | 2019-06-12 | Novartis AG | Mrna-mediated immunization methods |
| EP3497214B1 (en) | 2016-08-09 | 2023-06-28 | President and Fellows of Harvard College | Programmable cas9-recombinase fusion proteins and uses thereof |
| EP3500670B1 (en) | 2016-08-17 | 2024-07-10 | The Broad Institute, Inc. | Method for selecting target sequences for guide rna of crispr systems |
| EP4485466A3 (en) | 2016-08-17 | 2025-04-02 | The Broad Institute Inc. | Novel crispr enzymes and systems |
| CN107400669A (zh) * | 2016-08-18 | 2017-11-28 | 广州市锐博生物科技有限公司 | 用于抑制HIF1A靶基因mRNA表达的寡核酸分子及其成套组合物 |
| US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
| US20190262399A1 (en) | 2016-09-07 | 2019-08-29 | The Broad Institute, Inc. | Compositions and methods for evaluating and modulating immune responses |
| CA3036831A1 (en) | 2016-09-14 | 2018-03-22 | Modernatx, Inc. | High purity rna compositions and methods for preparation thereof |
| WO2018064208A1 (en) | 2016-09-28 | 2018-04-05 | The Broad Institute, Inc. | Systematic screening and mapping of regulatory elements in non-coding genomic regions, methods, compositions, and applications thereof |
| WO2018067546A1 (en) | 2016-10-03 | 2018-04-12 | President And Fellows Of Harvard College | Delivery of therapeutic rnas via arrdc1-mediated microvesicles |
| WO2018067991A1 (en) | 2016-10-07 | 2018-04-12 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
| WO2018071868A1 (en) | 2016-10-14 | 2018-04-19 | President And Fellows Of Harvard College | Aav delivery of nucleobase editors |
| EP3528821A4 (en) | 2016-10-21 | 2020-07-01 | ModernaTX, Inc. | HUMAN CYTOMEGALOVIRUS VACCINE |
| US12491261B2 (en) | 2016-10-26 | 2025-12-09 | Acuitas Therapeutics, Inc. | Lipid nanoparticle formulations |
| EP3532103B1 (en) | 2016-10-26 | 2025-12-03 | Acuitas Therapeutics, Inc. | Lipid nanoparticle formulations |
| US20190274968A1 (en) * | 2016-10-27 | 2019-09-12 | The Trustees Of The University Of Pennsylvania | Nucleoside-modified rna for inducing an adaptive immune response |
| EP3538136A1 (en) * | 2016-11-10 | 2019-09-18 | Translate Bio, Inc. | Subcutaneous delivery of messenger rna |
| WO2018089851A2 (en) | 2016-11-11 | 2018-05-17 | Modernatx, Inc. | Influenza vaccine |
| EP3973955B1 (en) * | 2016-11-23 | 2025-05-21 | Mayo Foundation for Medical Education and Research | Particle-mediated delivery of inhibitory rna |
| WO2018107088A2 (en) | 2016-12-08 | 2018-06-14 | Modernatx, Inc. | Respiratory virus nucleic acid vaccines |
| CA3045122A1 (en) * | 2016-12-09 | 2018-06-14 | Sangamo Therapeutics, Inc. | Delivery of target specific nucleases |
| WO2018111967A1 (en) | 2016-12-13 | 2018-06-21 | Modernatx, Inc. | Rna affinity purification |
| WO2018115973A2 (en) * | 2016-12-22 | 2018-06-28 | Avectas Limited | Vector-free intracellular delivery by reversible permeabilisation |
| WO2018119359A1 (en) | 2016-12-23 | 2018-06-28 | President And Fellows Of Harvard College | Editing of ccr5 receptor gene to protect against hiv infection |
| EP3568155A4 (en) | 2017-01-11 | 2020-09-23 | The Trustees Of The University Of Pennsylvania | RNA MODIFIED BY NUCLEOSIDE TO INDUCE AN IMMUNE RESPONSE AGAINST ZIKA VIRUS |
| MX2019009070A (es) * | 2017-02-01 | 2019-10-30 | Modernatx Inc | Composiciones de arnm terapeuticas inmunomoduladoras que codifican peptidos de mutacion de oncogenes de activacion. |
| US11559588B2 (en) | 2017-02-22 | 2023-01-24 | Crispr Therapeutics Ag | Materials and methods for treatment of Spinocerebellar Ataxia Type 1 (SCA1) and other Spinocerebellar Ataxia Type 1 Protein (ATXN1) gene related conditions or disorders |
| US11407997B2 (en) | 2017-02-22 | 2022-08-09 | Crispr Therapeutics Ag | Materials and methods for treatment of primary hyperoxaluria type 1 (PH1) and other alanine-glyoxylate aminotransferase (AGXT) gene related conditions or disorders |
| US11920148B2 (en) | 2017-02-22 | 2024-03-05 | Crispr Therapeutics Ag | Compositions and methods for gene editing |
| MX2019010155A (es) | 2017-02-27 | 2020-12-10 | Translate Bio Inc | Arnm de cftr optimizado por codón novedoso. |
| EP3592853A1 (en) | 2017-03-09 | 2020-01-15 | President and Fellows of Harvard College | Suppression of pain by gene editing |
| WO2018165631A1 (en) | 2017-03-09 | 2018-09-13 | President And Fellows Of Harvard College | Cancer vaccine |
| WO2018165629A1 (en) | 2017-03-10 | 2018-09-13 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
| WO2018170256A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Herpes simplex virus vaccine |
| EP3609534A4 (en) | 2017-03-15 | 2021-01-13 | ModernaTX, Inc. | WIDE SPECTRUM INFLUENZA VIRUS VACCINE |
| EP3596207B1 (en) | 2017-03-15 | 2023-12-20 | The Broad Institute, Inc. | Novel cas13b orthologues crispr enzymes and systems |
| EP3595713A4 (en) | 2017-03-15 | 2021-01-13 | ModernaTX, Inc. | Respiratory syncytial virus vaccine |
| WO2018170270A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Varicella zoster virus (vzv) vaccine |
| JP7162021B2 (ja) | 2017-03-17 | 2022-10-27 | ニューカッスル ユニバーシティ | 筋ジストロフィーを治療するためのマイクロジストロフィン断片のアデノ随伴ウイルスベクター送達 |
| KR20240116572A (ko) | 2017-03-23 | 2024-07-29 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | 핵산 프로그램가능한 dna 결합 단백질을 포함하는 핵염기 편집제 |
| US11905525B2 (en) | 2017-04-05 | 2024-02-20 | Modernatx, Inc. | Reduction of elimination of immune responses to non-intravenous, e.g., subcutaneously administered therapeutic proteins |
| KR20240155360A (ko) | 2017-04-12 | 2024-10-28 | 더 브로드 인스티튜트, 인코퍼레이티드 | 신규 타입 vi crispr 오르소로그 및 시스템 |
| WO2018191719A1 (en) | 2017-04-13 | 2018-10-18 | Acuitas Therapeutics, Inc. | Lipid delivery of therapeutic agents to adipose tissue |
| US11357856B2 (en) | 2017-04-13 | 2022-06-14 | Acuitas Therapeutics, Inc. | Lipids for delivery of active agents |
| US12350368B2 (en) | 2017-04-14 | 2025-07-08 | The Broad Institute, Inc. | Delivery of large payloads |
| ES2994451T3 (en) | 2017-04-20 | 2025-01-24 | Atyr Pharma Inc | Compositions for treating lung inflammation |
| JP7464954B2 (ja) | 2017-04-27 | 2024-04-10 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア | C型肝炎ウイルスに対するヌクレオシド修飾mRNA-脂質ナノ粒子系統ワクチン |
| EP3615510B1 (en) | 2017-04-28 | 2024-03-27 | Acuitas Therapeutics, Inc. | Novel carbonyl lipids and lipid nanoparticle formulations for delivery of nucleic acids |
| WO2018204777A2 (en) | 2017-05-05 | 2018-11-08 | The Broad Institute, Inc. | Methods for identification and modification of lncrna associated with target genotypes and phenotypes |
| US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
| WO2018213476A1 (en) | 2017-05-16 | 2018-11-22 | Translate Bio, Inc. | Treatment of cystic fibrosis by delivery of codon-optimized mrna encoding cftr |
| EP3625342B1 (en) | 2017-05-18 | 2022-08-24 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
| JP7285220B2 (ja) | 2017-05-18 | 2023-06-01 | モデルナティエックス インコーポレイテッド | 連結したインターロイキン-12(il12)ポリペプチドをコードするポリヌクレオチドを含む脂質ナノ粒子 |
| US11786607B2 (en) | 2017-06-15 | 2023-10-17 | Modernatx, Inc. | RNA formulations |
| US10034951B1 (en) | 2017-06-21 | 2018-07-31 | New England Biolabs, Inc. | Use of thermostable RNA polymerases to produce RNAs having reduced immunogenicity |
| CN111801345A (zh) | 2017-07-28 | 2020-10-20 | 哈佛大学的校长及成员们 | 使用噬菌体辅助连续进化(pace)的进化碱基编辑器的方法和组合物 |
| EP3668833A1 (en) | 2017-08-16 | 2020-06-24 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
| JP7461872B2 (ja) | 2017-08-17 | 2024-04-04 | アクイタス セラピューティクス インコーポレイテッド | 脂質ナノ粒子製剤における使用のための脂質 |
| US11542225B2 (en) | 2017-08-17 | 2023-01-03 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
| WO2019036030A1 (en) | 2017-08-17 | 2019-02-21 | Acuitas Therapeutics, Inc. | LIPIDS FOR USE IN LIPID NANOPARTICLE FORMULATIONS |
| EP3668971B8 (en) | 2017-08-18 | 2024-05-29 | ModernaTX, Inc. | Rna polymerase variants |
| WO2019036683A1 (en) | 2017-08-18 | 2019-02-21 | Modernatx, Inc. | ANALYTICAL METHODS BY HPLC |
| US11912982B2 (en) | 2017-08-18 | 2024-02-27 | Modernatx, Inc. | Methods for HPLC analysis |
| US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
| JP7275111B2 (ja) | 2017-08-31 | 2023-05-17 | モデルナティエックス インコーポレイテッド | 脂質ナノ粒子の生成方法 |
| US11162099B2 (en) | 2017-09-08 | 2021-11-02 | Mina Therapeutics Limited | HNF4A saRNA compositions and methods of use |
| WO2019048645A1 (en) | 2017-09-08 | 2019-03-14 | Mina Therapeutics Limited | STABILIZED COMPOSITIONS OF SMALL ACTIVATOR RNA (PARNA) FROM CEBPA AND METHODS OF USE |
| WO2019060746A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | SYSTEMS, METHODS, AND COMPOSITIONS FOR THE TARGETED EDITING OF NUCLEIC ACIDS |
| MY202341A (en) * | 2017-09-29 | 2024-04-24 | Intellia Therapeutics Inc | Polynucleotides, compositions, and methods for genome editing |
| US20200255828A1 (en) | 2017-10-04 | 2020-08-13 | The Broad Institute, Inc. | Methods and compositions for altering function and structure of chromatin loops and/or domains |
| WO2019079347A1 (en) | 2017-10-16 | 2019-04-25 | The Broad Institute, Inc. | USES OF BASIC EDITORS ADENOSINE |
| WO2019135816A2 (en) | 2017-10-23 | 2019-07-11 | The Broad Institute, Inc. | Novel nucleic acid modifiers |
| CN111566124A (zh) | 2017-10-25 | 2020-08-21 | 诺华股份有限公司 | 制备表达嵌合抗原受体的细胞的方法 |
| WO2019089803A1 (en) | 2017-10-31 | 2019-05-09 | The Broad Institute, Inc. | Methods and compositions for studying cell evolution |
| WO2019089828A1 (en) | 2017-10-31 | 2019-05-09 | Acuitas Therapeutics, Inc. | Lamellar lipid nanoparticles |
| WO2019094983A1 (en) | 2017-11-13 | 2019-05-16 | The Broad Institute, Inc. | Methods and compositions for treating cancer by targeting the clec2d-klrb1 pathway |
| US12406749B2 (en) | 2017-12-15 | 2025-09-02 | The Broad Institute, Inc. | Systems and methods for predicting repair outcomes in genetic engineering |
| MA51306A (fr) | 2017-12-20 | 2020-10-28 | Translate Bio Inc | Compositions et procédés améliorés pour le traitement du déficit en ornithine transcarbamylase |
| US20230193242A1 (en) | 2017-12-22 | 2023-06-22 | The Broad Institute, Inc. | Cas12b systems, methods, and compositions for targeted dna base editing |
| BR112020013201A2 (pt) * | 2017-12-27 | 2020-12-01 | Takeda Pharmaceutical Company Limited | nanopartícula lipídica, medicamento, métodos para expressar um receptor, para prevenir ou tratar câncer e para produzir um medicamento, uso da nanopartícula lipídica e do imunócito ex vivo, composição, imunócito ex vivo, e, célula ex vivo |
| CN109988777A (zh) * | 2017-12-29 | 2019-07-09 | 南京金斯瑞生物科技有限公司 | 谷氨酰胺合成酶基因以及应用 |
| MA54676A (fr) | 2018-01-29 | 2021-11-17 | Modernatx Inc | Vaccins à base d'arn contre le vrs |
| US20210024928A1 (en) * | 2018-02-16 | 2021-01-28 | Mina Therapeutics Limited | C/ebp alpha sarna compositions and methods of use |
| US20190292596A1 (en) * | 2018-03-21 | 2019-09-26 | Roche Molecular Systems, Inc. | Modified nucleoside phosphates with high thermal stability |
| KR102114787B1 (ko) * | 2018-04-02 | 2020-05-26 | 중앙대학교 산학협력단 | 리보핵산분해효소 5 고발현된 각막 내피세포를 포함하는 3차원 각막 내피 이식체 제조방법 |
| US10968257B2 (en) | 2018-04-03 | 2021-04-06 | The Broad Institute, Inc. | Target recognition motifs and uses thereof |
| WO2019197845A1 (en) | 2018-04-12 | 2019-10-17 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
| SG11202008225PA (en) | 2018-04-17 | 2020-11-27 | Curevac Ag | Novel rsv rna molecules and compositions for vaccination |
| WO2019210005A1 (en) * | 2018-04-24 | 2019-10-31 | Ligandal, Inc. | Methods and compositions for genome editing |
| EP3797160A1 (en) | 2018-05-23 | 2021-03-31 | The Broad Institute Inc. | Base editors and uses thereof |
| WO2019235635A1 (ja) | 2018-06-08 | 2019-12-12 | 富士フイルム株式会社 | 化合物またはその塩および脂質粒子 |
| WO2019239144A1 (en) | 2018-06-15 | 2019-12-19 | Mina Therapeutics Limited | Combination therapies comprising c/ebp alpha sarna |
| HUE072475T2 (hu) | 2018-06-18 | 2025-11-28 | Res Inst Nationwide Childrens Hospital | Izomspecifikus mikrodisztrofin adenoasszociáltvírus-vektorral történõ bejuttatása izomdisztrófia kezelésére |
| EP3810098B1 (en) * | 2018-06-22 | 2024-01-10 | The Trustees Of Columbia University In The City Of New York | Sustained release compositions and methods for treatment of temporomandibular joint degeneration |
| WO2020014261A1 (en) | 2018-07-09 | 2020-01-16 | The Broad Institute, Inc. | Rna programmable epigenetic rna modifiers and uses thereof |
| EP3821003A4 (en) | 2018-07-09 | 2022-07-20 | Gro Biosciences Inc. | Non-standard amino acid containing compositions and uses thereof |
| EP3821012A4 (en) | 2018-07-13 | 2022-04-20 | The Regents of The University of California | Retrotransposon-based delivery vehicle and methods of use thereof |
| WO2020028133A1 (en) | 2018-07-30 | 2020-02-06 | Trucode Gene Repair, Inc. | Lipid nanoparticle formulations comprising nucleic acid mimics |
| US12497632B2 (en) * | 2018-08-03 | 2025-12-16 | Sangamo Therapeutics, Inc. | Clinical parameters by expression of factor VIII |
| US20210163944A1 (en) | 2018-08-07 | 2021-06-03 | The Broad Institute, Inc. | Novel cas12b enzymes and systems |
| US10842885B2 (en) | 2018-08-20 | 2020-11-24 | Ucl Business Ltd | Factor IX encoding nucleotides |
| US12421507B2 (en) | 2018-08-20 | 2025-09-23 | The Broad Institute, Inc. | Methods and compositions for optochemical control of CRISPR-CAS9 |
| GB201813528D0 (en) | 2018-08-20 | 2018-10-03 | Ucl Business Plc | Factor IX encoding nucleotides |
| WO2020041456A1 (en) | 2018-08-22 | 2020-02-27 | The Regents Of The University Of California | Variant type v crispr/cas effector polypeptides and methods of use thereof |
| KR20210060480A (ko) | 2018-08-24 | 2021-05-26 | 트랜슬레이트 바이오 인코포레이티드 | 전령 rna의 정제 방법 |
| CA3111076A1 (en) | 2018-08-30 | 2020-03-05 | Tenaya Therapeutics, Inc. | Cardiac cell reprogramming with myocardin and ascl1 |
| WO2020047449A2 (en) | 2018-08-31 | 2020-03-05 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
| AU2019331496A1 (en) | 2018-08-31 | 2021-03-18 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
| US12378572B2 (en) | 2018-09-07 | 2025-08-05 | Crispr Therapeutics Ag | Universal donor cells |
| WO2020056155A2 (en) * | 2018-09-13 | 2020-03-19 | Modernatx, Inc. | Polynucleotides encoding branched-chain alpha-ketoacid dehydrogenase complex e1-alpha, e1-beta, and e2 subunits for the treatment of maple syrup urine disease |
| EP4509118A3 (en) | 2018-09-19 | 2025-05-14 | ModernaTX, Inc. | High-purity peg lipids and uses thereof |
| JP7526168B2 (ja) | 2018-09-19 | 2024-07-31 | モデルナティエックス インコーポレイテッド | Peg脂質及びそれらの使用 |
| WO2020061457A1 (en) | 2018-09-20 | 2020-03-26 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
| WO2020061426A2 (en) | 2018-09-21 | 2020-03-26 | Acuitas Therapeutics, Inc. | Systems and methods for manufacturing lipid nanoparticles and liposomes |
| WO2020072914A1 (en) | 2018-10-04 | 2020-04-09 | New England Biolabs, Inc. | Methods and compositions for increasing capping efficiency of transcribed rna |
| US11072808B2 (en) | 2018-10-04 | 2021-07-27 | New England Biolabs, Inc. | Methods and compositions for increasing capping efficiency of transcribed RNA |
| US12331320B2 (en) | 2018-10-10 | 2025-06-17 | The Research Foundation For The State University Of New York | Genome edited cancer cell vaccines |
| MX2021004357A (es) * | 2018-10-18 | 2021-05-31 | Takeda Pharmaceuticals Co | Metodo para la activacion y proliferacion de las celulas t. |
| WO2020092453A1 (en) | 2018-10-29 | 2020-05-07 | The Broad Institute, Inc. | Nucleobase editors comprising geocas9 and uses thereof |
| US12460189B2 (en) | 2018-11-09 | 2025-11-04 | Inari Agriculture Technology, Inc. | RNA-guided nucleases and DNA binding proteins |
| MX2021005969A (es) | 2018-11-21 | 2021-09-14 | Translate Bio Inc | Tratamiento de la fibrosis quística mediante el suministro de arnm que codifica cftr nebulizado. |
| DK3908568T3 (da) | 2019-01-11 | 2024-08-26 | Acuitas Therapeutics Inc | Lipider til lipidnanopartikellevering af aktivstoffer |
| CN109810184B (zh) * | 2019-01-17 | 2022-07-12 | 武汉明德生物科技股份有限公司 | 人nf155抗原、人nf155抗体检测试剂盒及其制备方法与应用 |
| WO2020150915A1 (zh) * | 2019-01-23 | 2020-07-30 | 上海交通大学 | 核酸-药物结合物、药物递送系统及其制备方法和应用 |
| WO2020154500A1 (en) | 2019-01-23 | 2020-07-30 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
| US11351242B1 (en) | 2019-02-12 | 2022-06-07 | Modernatx, Inc. | HMPV/hPIV3 mRNA vaccine composition |
| MA54951A (fr) | 2019-02-15 | 2021-12-22 | Bayer Healthcare Llc | Édition de gène pour l'hémophilie a avec une expression de facteur viii améliorée |
| EP3927821A4 (en) | 2019-02-20 | 2023-01-25 | ModernaTX, Inc. | RNA POLYMERASE VARIANTS FOR CO-STRANSCRIPTION CAPTING |
| US11851694B1 (en) | 2019-02-20 | 2023-12-26 | Modernatx, Inc. | High fidelity in vitro transcription |
| US12215382B2 (en) | 2019-03-01 | 2025-02-04 | The General Hospital Corporation | Liver protective MARC variants and uses thereof |
| EP3930683A1 (en) * | 2019-03-01 | 2022-01-05 | Flagship Pioneering Innovations VI, LLC | Compositions, methods, and kits for delivery of polyribonucleotides |
| CA3130789A1 (en) | 2019-03-07 | 2020-09-10 | The Regents Of The University Of California | Crispr-cas effector polypeptides and methods of use thereof |
| JP2022526089A (ja) | 2019-03-11 | 2022-05-23 | モデルナティエックス インコーポレイテッド | 流加バッチインビトロ転写プロセス |
| US20220177863A1 (en) | 2019-03-18 | 2022-06-09 | The Broad Institute, Inc. | Type vii crispr proteins and systems |
| BR112021018607A2 (pt) | 2019-03-19 | 2021-11-23 | Massachusetts Inst Technology | Métodos e composições para editar sequências de nucleotídeos |
| WO2020208361A1 (en) | 2019-04-12 | 2020-10-15 | Mina Therapeutics Limited | Sirt1-sarna compositions and methods of use |
| WO2020210678A1 (en) | 2019-04-12 | 2020-10-15 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
| EP3956349A1 (en) | 2019-04-17 | 2022-02-23 | The Broad Institute, Inc. | Adenine base editors with reduced off-target effects |
| US11490453B2 (en) * | 2019-05-16 | 2022-11-01 | Apple Inc. | Self-organizing device |
| US20220220469A1 (en) | 2019-05-20 | 2022-07-14 | The Broad Institute, Inc. | Non-class i multi-component nucleic acid targeting systems |
| RU2721562C1 (ru) * | 2019-06-04 | 2020-05-20 | Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" | Способ загрузки неорганических наночастиц или органических молекул в пористые частицы микронного или субмикронного размера |
| KR102660546B1 (ko) | 2019-06-07 | 2024-04-24 | 후지필름 가부시키가이샤 | 지질 조성물 |
| JP2022536173A (ja) * | 2019-06-13 | 2022-08-12 | プロキューアール セラピューティクス ツー ベスローテン フェンノートシャップ | シチジンアナログを含むアンチセンスrna編集オリゴヌクレオチド |
| EP3997226A1 (en) | 2019-07-11 | 2022-05-18 | Tenaya Therapeutics, Inc. | Cardiac cell reprogramming with micrornas and other factors |
| JP7764363B2 (ja) | 2019-07-23 | 2025-11-05 | トランスレイト バイオ, インコーポレイテッド | mRNA担持脂質ナノ粒子の安定性組成物および作製のプロセス |
| LT4013385T (lt) | 2019-08-14 | 2024-09-25 | Acuitas Therapeutics, Inc. | Patobulintos lipidų nanodalelės nukleorūgščių įvedimui |
| EP4017539A1 (en) | 2019-08-19 | 2022-06-29 | MiNA Therapeutics Limited | Oligonucleotide conjugate compositions and methods of use |
| US11118195B2 (en) | 2019-09-05 | 2021-09-14 | Crispr Therapeutics Ag | Universal donor cells |
| WO2021044377A1 (en) | 2019-09-05 | 2021-03-11 | Crispr Therapeutics Ag | Universal donor cells |
| KR20220108036A (ko) | 2019-09-26 | 2022-08-02 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | 최소 아레스틴 도메인 함유 단백질 1 (arrdc1) 구축물 |
| WO2021061594A1 (en) * | 2019-09-27 | 2021-04-01 | Merck Sharp & Dohme Corp. | Method for measuring nucleic acid content in lipid nanoprticles using ultraviolet spectrometry |
| US12297426B2 (en) | 2019-10-01 | 2025-05-13 | The Broad Institute, Inc. | DNA damage response signature guided rational design of CRISPR-based systems and therapies |
| US12435330B2 (en) | 2019-10-10 | 2025-10-07 | The Broad Institute, Inc. | Methods and compositions for prime editing RNA |
| US12378560B2 (en) | 2019-10-29 | 2025-08-05 | Northwestern University | Sequence multiplicity within spherical nucleic acids |
| KR20220082885A (ko) | 2019-11-15 | 2022-06-17 | 후지필름 가부시키가이샤 | 지질 조성물 |
| CA3163104A1 (en) | 2019-11-26 | 2021-06-03 | Novartis Ag | Chimeric antigen receptors and uses thereof |
| EP4069291A1 (en) | 2019-12-03 | 2022-10-12 | Evotec International GmbH | Interferon-associated antigen binding proteins and uses thereof |
| CN111041025B (zh) | 2019-12-17 | 2021-06-18 | 深圳市瑞吉生物科技有限公司 | 基于结合N-乙酰半乳糖胺多肽的mRNA靶向分子及其制备方法 |
| US12194089B2 (en) | 2020-02-04 | 2025-01-14 | CureVac SE | Coronavirus vaccine |
| CN111217867B (zh) * | 2020-02-18 | 2024-03-22 | 福建瑞博奥科技有限公司 | 一种制备曲氟尿苷的方法 |
| CN112121180B (zh) * | 2020-02-19 | 2023-08-25 | 深圳厚存纳米药业有限公司 | 泊洛沙姆和或泊洛沙胺与peg脂质组合的复合物纳米粒 |
| CN111944157B (zh) * | 2020-02-21 | 2022-02-11 | 武汉中科先进技术研究院有限公司 | 一种纳米磁珠及其在2019新型冠状病毒核酸提取、扩增、检测中的应用 |
| CN115297868B (zh) | 2020-02-21 | 2024-04-12 | 联合治疗公司 | 用于编码核糖核酸的器官保护性表达和调节的组合物及方法 |
| EP4110377A2 (en) | 2020-02-27 | 2023-01-04 | Novartis AG | Methods of making chimeric antigen receptor-expressing cells |
| JP2023515672A (ja) | 2020-03-02 | 2023-04-13 | テナヤ セラピューティクス, インコーポレイテッド | 心筋細胞発現マイクロrnaによる遺伝子ベクター制御 |
| CN115397856A (zh) | 2020-03-30 | 2022-11-25 | 生物技术公司 | 靶向密蛋白-18.2的rna组合物 |
| WO2021205077A1 (en) | 2020-04-09 | 2021-10-14 | Finncure Oy | Mimetic nanoparticles for preventing the spreading and lowering the infection rate of novel coronaviruses |
| US12194157B2 (en) | 2020-04-09 | 2025-01-14 | Finncure Oy | Carrier for targeted delivery to a host |
| US20240269266A1 (en) * | 2020-04-14 | 2024-08-15 | The Regents Of The University Of California | Broad-spectrum multi-antigen pan-coronavirus vaccine |
| AU2021261471B2 (en) | 2020-04-22 | 2024-10-24 | BioNTech SE | Coronavirus vaccine |
| AU2021267940A1 (en) | 2020-05-08 | 2022-12-08 | President And Fellows Of Harvard College | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
| WO2021229502A1 (en) | 2020-05-15 | 2021-11-18 | Crispr Therapeutics Ag | Messenger rna encoding cas9 for use in genome-editing systems |
| TW202208630A (zh) | 2020-06-15 | 2022-03-01 | 美國全美兒童醫院之研究學會 | 針對肌肉營養不良症的腺相關病毒載體遞送 |
| WO2025056938A1 (en) | 2023-09-11 | 2025-03-20 | BioNTech SE | Rna compositions for delivery of incretin agents |
| CN111744019B (zh) | 2020-07-01 | 2023-08-04 | 深圳瑞吉生物科技有限公司 | 基于甘露糖的mRNA靶向递送系统及其应用 |
| US11976019B2 (en) | 2020-07-16 | 2024-05-07 | Acuitas Therapeutics, Inc. | Cationic lipids for use in lipid nanoparticles |
| EP4199947A4 (en) | 2020-08-18 | 2024-10-16 | Onchilles Pharma, Inc. | Modified porcine pancreatic elastase proteins |
| US11406703B2 (en) | 2020-08-25 | 2022-08-09 | Modernatx, Inc. | Human cytomegalovirus vaccine |
| CN112076149B (zh) * | 2020-09-09 | 2022-03-01 | 上海交通大学 | 香豆素靶向控释纳米凝胶及其制备方法 |
| WO2022054955A1 (ja) | 2020-09-14 | 2022-03-17 | 富士フイルム株式会社 | 脂質組成物 |
| TW202229228A (zh) | 2020-10-14 | 2022-08-01 | 喬治梅森研究基金會 | 可離子化脂質及其製造和使用方法 |
| US11459372B2 (en) | 2020-11-30 | 2022-10-04 | Crispr Therapeutics Ag | Gene-edited natural killer cells |
| BR112023012303A2 (pt) | 2020-12-22 | 2024-02-15 | CureVac SE | Vacina de rna contra variantes de sars-cov-2 |
| WO2022144632A1 (en) | 2020-12-30 | 2022-07-07 | Crispr Therapeutics Ag | Compositions and methods for differentiating stem cells into nk cells |
| US11566230B2 (en) | 2020-12-31 | 2023-01-31 | Crispr Therapeutics Ag | Universal donor cells |
| EP4274607A1 (en) | 2021-01-11 | 2023-11-15 | ModernaTX, Inc. | Seasonal rna influenza virus vaccines |
| US11524023B2 (en) | 2021-02-19 | 2022-12-13 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
| EP4314292A1 (en) | 2021-03-26 | 2024-02-07 | MiNA Therapeutics Limited | Tmem173 sarna compositions and methods of use |
| WO2022215036A1 (en) | 2021-04-08 | 2022-10-13 | Vaxthera Sas | Coronavirus vaccine comprising a mosaic protein |
| WO2022229644A1 (en) | 2021-04-28 | 2022-11-03 | Mina Therapeutics Limited | Combination therapies comprising c/ebp alpha sarna |
| EP4337331A1 (en) | 2021-05-12 | 2024-03-20 | The Broad Institute Inc. | Modified mrna, modified non-coding rna, and uses thereof |
| US20220363937A1 (en) | 2021-05-14 | 2022-11-17 | Armstrong World Industries, Inc. | Stabilization of antimicrobial coatings |
| KR102836820B1 (ko) | 2021-07-07 | 2025-07-22 | 포항공과대학교 산학협력단 | 히알루론산-지질 유도체, 이를 포함하는 지질나노입자 및 그 용도 |
| US20250339514A1 (en) * | 2021-07-20 | 2025-11-06 | The Regents Of The University Of California | Single-and multi-epitope peptide and mrna vaccines to generate tolerogenic effects for allergic and autoimmune disease by targeting liver sinusoidal endothelial cells |
| WO2023023055A1 (en) | 2021-08-16 | 2023-02-23 | Renagade Therapeutics Management Inc. | Compositions and methods for optimizing tropism of delivery systems for rna |
| KR20240067079A (ko) | 2021-08-30 | 2024-05-16 | 라센 테라퓨틱스 1, 인코포레이티드 | 항-IL-11Rα 항체 |
| AU2022336209B2 (en) | 2021-09-03 | 2025-10-16 | CureVac SE | Novel lipid nanoparticles for delivery of nucleic acids |
| TW202328067A (zh) | 2021-09-14 | 2023-07-16 | 美商雷納嘉德醫療管理公司 | 環狀脂質及其使用方法 |
| WO2023044343A1 (en) | 2021-09-14 | 2023-03-23 | Renagade Therapeutics Management Inc. | Acyclic lipids and methods of use thereof |
| EP4408995A4 (en) | 2021-09-28 | 2025-08-13 | Acrigen Biosciences | COMPOSITIONS AND METHODS FOR NUCLEIC ACID MODIFICATIONS |
| WO2023064469A1 (en) | 2021-10-13 | 2023-04-20 | Modernatx, Inc. | Compositions of mrna-encoded il15 fusion proteins and methods of use thereof |
| JP2024539512A (ja) | 2021-10-22 | 2024-10-28 | セイル バイオメディシンズ インコーポレイテッド | Mrnaワクチン組成物 |
| EP4422698A1 (en) | 2021-10-29 | 2024-09-04 | CureVac SE | Improved circular rna for expressing therapeutic proteins |
| WO2023081756A1 (en) | 2021-11-03 | 2023-05-11 | The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone | Precise genome editing using retrons |
| EP4433450A1 (en) | 2021-11-16 | 2024-09-25 | Sail Biomedicines, Inc. | Novel ionizable lipids and lipid nanoparticles and methods of using the same |
| KR20240128683A (ko) | 2021-11-22 | 2024-08-26 | 세일 바이오메디슨스, 인크. | 신규한 이온화 가능 지질 및 지질 나노입자, 및 이를 사용하는 방법 |
| KR20240107356A (ko) | 2021-11-23 | 2024-07-09 | 세일 바이오메디슨스, 인크. | 박테리아-유래 지질 조성물 및 이의 용도 |
| US12186387B2 (en) | 2021-11-29 | 2025-01-07 | BioNTech SE | Coronavirus vaccine |
| WO2023099884A1 (en) | 2021-12-01 | 2023-06-08 | Mina Therapeutics Limited | Pax6 sarna compositions and methods of use |
| KR20240123832A (ko) | 2021-12-16 | 2024-08-14 | 아퀴타스 테라퓨틱스 인크. | 지질 나노입자 제형에 사용하기 위한 지질 |
| AU2022421841A1 (en) | 2021-12-20 | 2024-06-27 | Sail Biomedicines, Inc. | Mrna therapeutic compositions |
| CA3243054A1 (en) | 2021-12-23 | 2025-04-08 | Renagade Therapeutics Management Inc. | Constrained Lipids and Associated Utilization Processes |
| CN118369335A (zh) * | 2022-01-06 | 2024-07-19 | 上海吉量医药工程有限公司 | N1位修饰假尿嘧啶核苷及其在mRNA合成中的应用 |
| WO2023141602A2 (en) | 2022-01-21 | 2023-07-27 | Renagade Therapeutics Management Inc. | Engineered retrons and methods of use |
| US20250345416A1 (en) | 2022-01-27 | 2025-11-13 | BioNTech SE | Pharmaceutical compositions for delivery of herpes simplex virus antigens and related methods |
| US20250099614A1 (en) | 2022-01-28 | 2025-03-27 | CureVac SE | Nucleic acid encoded transcription factor inhibitors |
| WO2023149775A1 (ko) * | 2022-02-07 | 2023-08-10 | 한국과학기술원 | 유전자 전달용 올리고뉴클레오티드 및 이를 포함하는 유전자 전달용 지질나노입자 |
| AU2023227443A1 (en) | 2022-03-01 | 2024-10-10 | Crispr Therapeutics Ag | Methods and compositions for treating angiopoietin-like 3 (angptl3) related conditions |
| WO2023170435A1 (en) | 2022-03-07 | 2023-09-14 | Mina Therapeutics Limited | Il10 sarna compositions and methods of use |
| CN118891051A (zh) | 2022-03-15 | 2024-11-01 | 富士胶片株式会社 | 脂质组合物 |
| KR20240166554A (ko) | 2022-03-25 | 2024-11-26 | 세일 바이오메디슨스, 인크. | 신규한 이온화 가능 지질 및 지질 나노입자, 및 이를 사용하는 방법 |
| CA3255225A1 (en) | 2022-04-04 | 2023-10-12 | The Regents Of The University Of California | COMPOSITIONS AND METHODS OF GENETIC COMPLEMENTATION |
| WO2023196931A1 (en) | 2022-04-07 | 2023-10-12 | Renagade Therapeutics Management Inc. | Cyclic lipids and lipid nanoparticles (lnp) for the delivery of nucleic acids or peptides for use in vaccinating against infectious agents |
| AU2023268051A1 (en) | 2022-05-13 | 2025-01-02 | BioNTech SE | Rna compositions targeting hiv |
| CA3248209A1 (en) | 2022-05-25 | 2023-11-30 | CureVac SE | Escherichia coli Antigenic Polypeptide-Based Nucleic Acid Vaccine (FIMH) |
| US20250319177A1 (en) | 2022-05-25 | 2025-10-16 | BioNTech SE | Rna compositions for delivery of monkeypox antigens and related methods |
| JP2025518221A (ja) | 2022-05-30 | 2025-06-12 | ビオンテック・ソシエタス・エウロパエア | 核酸の送達のための複合体 |
| EP4536294A1 (en) * | 2022-06-08 | 2025-04-16 | Merck Sharp & Dohme LLC | Method for sustained delivery of mrna vaccines |
| WO2024002985A1 (en) | 2022-06-26 | 2024-01-04 | BioNTech SE | Coronavirus vaccine |
| KR20250056256A (ko) | 2022-08-31 | 2025-04-25 | 세일 바이오메디슨스, 인크. | 신규 이온화성 지질 및 지질 나노입자, 그리고 이의 사용 방법 |
| IL319225A (en) | 2022-09-15 | 2025-04-01 | Novartis Ag | Treatment of autoimmune disorders using antigen receptor chemotherapeutics |
| WO2024063788A1 (en) | 2022-09-23 | 2024-03-28 | BioNTech SE | Compositions for delivery of malaria antigens and related methods |
| WO2024063789A1 (en) | 2022-09-23 | 2024-03-28 | BioNTech SE | Compositions for delivery of malaria antigens and related methods |
| JP2025533527A (ja) | 2022-09-23 | 2025-10-07 | ビオンテック・ソシエタス・エウロパエア | Plasmodium CSP抗原の送達のための組成物及び関連方法 |
| CN120225219A (zh) | 2022-09-23 | 2025-06-27 | 生物技术欧洲股份公司 | 用于递送肝期抗原的组合物及相关方法 |
| AU2023357320A1 (en) | 2022-10-06 | 2025-04-17 | BioNTech SE | Rna compositions targeting claudin-18.2 |
| WO2024074211A1 (en) | 2022-10-06 | 2024-04-11 | BioNTech SE | Rna compositions targeting claudin-18.2 |
| EP4608442A1 (en) | 2022-10-28 | 2025-09-03 | GlaxoSmithKline Biologicals S.A. | Nucleic acid based vaccine |
| WO2024097874A1 (en) * | 2022-11-03 | 2024-05-10 | Modernatx, Inc. | Chemical stability of mrna |
| WO2024102434A1 (en) | 2022-11-10 | 2024-05-16 | Senda Biosciences, Inc. | Rna compositions comprising lipid nanoparticles or lipid reconstructed natural messenger packs |
| EP4634388A1 (en) | 2022-12-14 | 2025-10-22 | Providence Therapeutics Holdings Inc. | Compositions and methods for infectious diseases |
| WO2024134199A1 (en) | 2022-12-22 | 2024-06-27 | Mina Therapeutics Limited | Chemically modified sarna compositions and methods of use |
| EP4642797A1 (en) | 2022-12-28 | 2025-11-05 | BioNTech SE | Rna compositions targeting hiv |
| CN118272396A (zh) | 2022-12-29 | 2024-07-02 | 仁景(苏州)生物科技有限公司 | 用于预防或治疗hpv感染相关疾病的多核苷酸分子 |
| CN115671045B (zh) * | 2022-12-30 | 2023-04-07 | 华南理工大学 | 非肝靶向的核酸纳米制剂及其制备方法和应用 |
| EP4646432A1 (en) | 2023-01-06 | 2025-11-12 | Lassen Therapeutics, Inc. | Anti-il-18bp antibodies |
| EP4646433A1 (en) | 2023-01-06 | 2025-11-12 | Lassen Therapeutics, Inc. | Anti-il-18bp antibodies |
| WO2024159172A1 (en) | 2023-01-27 | 2024-08-02 | Senda Biosciences, Inc. | A modified lipid composition and uses thereof |
| WO2024175887A1 (en) | 2023-02-22 | 2024-08-29 | Mina Therapeutics Limited | Compositions and methods of using c/ebp alpha sarna |
| WO2024178305A1 (en) | 2023-02-24 | 2024-08-29 | Modernatx, Inc. | Compositions of mrna-encoded il-15 fusion proteins and methods of use thereof for treating cancer |
| DE112024001143T5 (de) | 2023-03-08 | 2025-12-18 | CureVac SE | Neue lipid-nanopartikel-formeln für die abgabe von nukleinsäuren |
| WO2024200823A1 (en) | 2023-03-30 | 2024-10-03 | Ose Immunotherapeutics | Lipid-based nanoparticle targeted at activated immune cells for the expression of immune cell enhancing molecule and use thereof |
| AU2024254671A1 (en) | 2023-03-30 | 2025-10-02 | Ose Immunotherapeutics | Method of synthesis of targeted lipid nanoparticle and uses thereof |
| WO2024220712A2 (en) | 2023-04-19 | 2024-10-24 | Sail Biomedicines, Inc. | Vaccine compositions |
| WO2024220752A2 (en) | 2023-04-19 | 2024-10-24 | Sail Biomedicines, Inc. | Rna therapeutic compositions |
| WO2024220625A1 (en) | 2023-04-19 | 2024-10-24 | Sail Biomedicines, Inc. | Delivery of polynucleotides from lipid nanoparticles comprising rna and ionizable lipids |
| WO2024228044A1 (en) | 2023-05-03 | 2024-11-07 | BioNTech SE | Optimized csp variants and related methods |
| AU2024266138A1 (en) | 2023-05-03 | 2025-11-13 | Manifold Biotechnologies, Inc. | Methods and compositions for high-throughput protein delivery, screening, and detection |
| AU2024265158A1 (en) | 2023-05-03 | 2025-11-06 | BioNTech SE | Optimized csp variants and related methods |
| WO2024230934A1 (en) | 2023-05-11 | 2024-11-14 | CureVac SE | Therapeutic nucleic acid for the treatment of ophthalmic diseases |
| WO2024230842A1 (zh) | 2023-05-11 | 2024-11-14 | 尧唐(上海)生物科技有限公司 | 一种Cas蛋白、其相应的基因编辑系统及应用 |
| CN119080855A (zh) * | 2023-06-05 | 2024-12-06 | 中国科学院深圳先进技术研究院 | 一种化学修饰胞嘧啶核苷三磷酸及其制备方法和应用 |
| WO2025005592A1 (ko) * | 2023-06-29 | 2025-01-02 | 전북대학교산학협력단 | C(5)-할로겐화 피리미딘 리보뉴클레오타이드가 결합된 mRNA 및 이를 이용하여 단백질의 발현을 높이는 방법 |
| WO2025019352A2 (en) * | 2023-07-14 | 2025-01-23 | Modernatx, Inc. | Mers-cov mrna vaccines |
| AU2024301077A1 (en) | 2023-07-21 | 2026-01-08 | BioNTech SE | Compositions for delivery of plasmodium antigens and related methods |
| WO2025024324A1 (en) | 2023-07-21 | 2025-01-30 | BioNTech SE | Compositions for delivery of plasmodium antigens and related methods |
| WO2025024337A1 (en) | 2023-07-24 | 2025-01-30 | BioNTech SE | Compositions for delivery of plasmodium antigens and related methods |
| WO2025026545A1 (en) | 2023-08-01 | 2025-02-06 | BioNTech SE | Ionizable thioplipids and uses thereof |
| WO2025027116A1 (en) | 2023-08-01 | 2025-02-06 | Institut Curie | Nanoparticles comprising nucleic acid sequences encoding cyclic gmp-amp synthase |
| WO2025027089A1 (en) | 2023-08-01 | 2025-02-06 | BioNTech SE | Ionizable thiolipids and uses thereof |
| WO2025027579A2 (en) | 2023-08-03 | 2025-02-06 | BioNTech SE | Rna compositions targeting hiv |
| WO2025030097A2 (en) | 2023-08-03 | 2025-02-06 | BioNTech SE | Pharmaceutical compositions for delivery of herpes simplex virus antigens and related methods |
| WO2025027576A2 (en) | 2023-08-03 | 2025-02-06 | BioNTech SE | Rna compositions targeting hiv |
| WO2025030154A1 (en) | 2023-08-03 | 2025-02-06 | The Trustees Of The University Of Pennsylvania | Pharmaceutical compositions for delivery of herpes simplex virus glycoprotein b antigens and related methods |
| WO2025046121A1 (en) | 2023-09-01 | 2025-03-06 | Novoarc Gmbh | Lipid nanoparticle with nucleic acid cargo and ionizable lipid |
| WO2025054383A1 (en) * | 2023-09-06 | 2025-03-13 | Modernatx, Inc. | Chemical stability of mrna |
| WO2025054556A1 (en) | 2023-09-07 | 2025-03-13 | BioNTech SE | Rna compositions for delivery of mpox antigens and related methods |
| WO2025052098A1 (en) | 2023-09-08 | 2025-03-13 | Mina Therapeutics Limited | Tmem173 sarna compositions and methods of use |
| WO2025057088A1 (en) | 2023-09-11 | 2025-03-20 | BioNTech SE | Rna compositions for delivery of incretin agents |
| WO2025059215A1 (en) | 2023-09-12 | 2025-03-20 | Aadigen, Llc | Methods and compositions for treating or preventing cancer |
| WO2025064850A1 (en) | 2023-09-22 | 2025-03-27 | BioNTech SE | Rna constructs with n-terminal degrons to enhance an immune response |
| WO2025072383A1 (en) | 2023-09-25 | 2025-04-03 | The Broad Institute, Inc. | Viral open reading frames, uses thereof, and methods of detecting the same |
| WO2025081042A1 (en) | 2023-10-12 | 2025-04-17 | Renagade Therapeutics Management Inc. | Nickase-retron template-based precision editing system and methods of use |
| WO2025097055A2 (en) | 2023-11-02 | 2025-05-08 | The Broad Institute, Inc. | Compositions and methods of use of t cells in immunotherapy |
| TW202539697A (zh) | 2023-11-15 | 2025-10-16 | 德商拜恩技術股份公司 | 冠狀病毒疫苗 |
| WO2025124711A1 (en) | 2023-12-13 | 2025-06-19 | BioNTech SE | Glycolipid compositions |
| WO2025129158A1 (en) | 2023-12-15 | 2025-06-19 | The Broad Institute, Inc. | Engineered arc delivery vesicles and uses thereof |
| WO2025133115A1 (en) | 2023-12-21 | 2025-06-26 | Ose Immunotherapeutics | Lipid-based nanoparticles comprising il-35 |
| TW202525287A (zh) | 2023-12-21 | 2025-07-01 | 德商拜恩技術運輸科技有限責任公司 | 可離子化脂質 |
| WO2025133105A1 (en) | 2023-12-21 | 2025-06-26 | Biontech Delivery Technologies Gmbh | Compositions and methods |
| WO2025134066A1 (en) | 2023-12-21 | 2025-06-26 | Biontech Delivery Technologies Gmbh | Ionizable lipids |
| WO2025144938A1 (en) | 2023-12-26 | 2025-07-03 | Emmune, Inc. | Systems for nucleic acid transfer |
| WO2025149492A1 (en) | 2024-01-08 | 2025-07-17 | BioNTech SE | Rna encoding an immune inhibitory il-1 family member |
| WO2025155753A2 (en) | 2024-01-17 | 2025-07-24 | Renagade Therapeutics Management Inc. | Improved gene editing system, guides, and methods |
| WO2025184508A1 (en) | 2024-03-01 | 2025-09-04 | Acuitas Therapeutics, Inc. | Materials and methods for encapsulating therapeutics in lipid nanoparticles |
| WO2025194138A1 (en) | 2024-03-14 | 2025-09-18 | Tessera Therapeutics, Inc. | St1cas9 compositions and methods for modulating a genome |
| WO2025202937A1 (en) | 2024-03-26 | 2025-10-02 | BioNTech SE | Cancer vaccines |
| WO2025213131A1 (en) | 2024-04-05 | 2025-10-09 | BioNTech SE | Rna compositions for delivery of orthopox antigens and related methods |
| WO2025212951A1 (en) * | 2024-04-05 | 2025-10-09 | Elixirgen Therapeutics, Inc. | Methods for expression of protein from synthetic mrna delivered by injection |
| WO2025215636A1 (en) | 2024-04-08 | 2025-10-16 | Yeda Research And Development Co. Ltd. | Anti-defense system polypeptides and uses thereof |
| WO2025224036A1 (en) | 2024-04-22 | 2025-10-30 | Mina Therapeutics Limited | Chemically modified sarna compositions and methods of use |
| WO2025250808A1 (en) | 2024-05-29 | 2025-12-04 | The Brigham And Women’S Hospital, Inc. | Anti-crispr delivery compositions and methods |
| WO2025259931A1 (en) | 2024-06-14 | 2025-12-18 | Orbital Therapeutics, Inc. | Compositions and methods for rna circularization |
| WO2025262460A1 (en) | 2024-06-21 | 2025-12-26 | BioNTech SE | Lipid compositions for nucleic acid delivery |
| WO2026006203A2 (en) | 2024-06-24 | 2026-01-02 | Orbital Therapeutics, Inc. | Compositions and methods for making circular rna |
| CN118834328B (zh) * | 2024-07-02 | 2025-09-16 | 江苏海洋大学 | 金属蛋白酶9抗原决定基印迹纳米颗粒的制备方法及应用 |
| WO2026009227A1 (en) | 2024-07-04 | 2026-01-08 | Yeda Research And Development Co. Ltd. | Compositions for downregulating zeb2 in macrophages and uses thereof |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1991016024A1 (en) * | 1990-04-19 | 1991-10-31 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
| WO2005120152A2 (en) * | 2004-06-07 | 2005-12-22 | Protiva Biotherapeutics, Inc. | Cationic lipids and methods of use |
| WO2007024708A2 (en) * | 2005-08-23 | 2007-03-01 | The Trustees Of The University Of Pennsylvania | Rna containing modified nucleosides and methods of use thereof |
| US20080171711A1 (en) * | 2004-07-21 | 2008-07-17 | Curevac Gmbh | Mrna Mixture For Vaccinating Against Tumoral Diseases |
Family Cites Families (1396)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US576705A (en) | 1897-02-09 | Vegetable cutter and grater | ||
| US618862A (en) | 1899-02-07 | Automatic stoker | ||
| US618953A (en) | 1899-02-07 | Apparatus for preventing pounding or water-hammering in circulating-pipes of heating | ||
| US618896A (en) | 1899-02-07 | Potato-bug gatherer | ||
| US533554A (en) | 1895-02-05 | Henry d | ||
| US533537A (en) | 1895-02-05 | Watchmakers calipers | ||
| US618885A (en) | 1899-02-07 | Railway-car brake | ||
| US618873A (en) | 1899-02-07 | Oyster-tongs | ||
| US618957A (en) | 1899-02-07 | Inda may kelly | ||
| US681712A (en) | 1898-03-26 | 1901-09-03 | American Railway Electric Light Co | Means for controlling electric currents. |
| US648244A (en) | 1899-04-28 | 1900-04-24 | Orrin A Dever | Tank-mold. |
| US696381A (en) | 1900-03-01 | 1902-03-25 | Hugo Loewenbach | Paper-feeding machine. |
| US709303A (en) | 1901-11-19 | 1902-09-16 | Edward Chester & Company Ltd | Construction of tanks. |
| US712490A (en) | 1902-01-13 | 1902-11-04 | Francis Blossom | Economizer system. |
| US2008526A (en) | 1932-11-03 | 1935-07-16 | Wappler Frederick Charles | Method and means for treating living tissue |
| US2588623A (en) | 1948-05-10 | 1952-03-11 | Eliscu Frank | Surgical instrument for intradermal injection of fluids |
| US3467096A (en) | 1966-04-12 | 1969-09-16 | Ferrell S Horn | Multiple hypodermic syringe arrangement |
| US3572336A (en) | 1968-04-30 | 1971-03-23 | Daniel R Hershberg | Syringe |
| BE757653A (fr) | 1969-10-21 | 1971-04-16 | Ugine Kuhlmann | Nouveaux medicaments derives d'acides nucleiques et procedes pour leur preparation |
| BE786542A (fr) | 1971-07-22 | 1973-01-22 | Dow Corning | Dispositif d'aspiration permettant d'obtenir des echantillons de cellules |
| US3906092A (en) | 1971-11-26 | 1975-09-16 | Merck & Co Inc | Stimulation of antibody response |
| US4270537A (en) | 1979-11-19 | 1981-06-02 | Romaine Richard A | Automatic hypodermic syringe |
| US4399216A (en) | 1980-02-25 | 1983-08-16 | The Trustees Of Columbia University | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
| US4458066A (en) | 1980-02-29 | 1984-07-03 | University Patents, Inc. | Process for preparing polynucleotides |
| US4500707A (en) | 1980-02-29 | 1985-02-19 | University Patents, Inc. | Nucleosides useful in the preparation of polynucleotides |
| US5132418A (en) | 1980-02-29 | 1992-07-21 | University Patents, Inc. | Process for preparing polynucleotides |
| US4411657A (en) | 1980-05-19 | 1983-10-25 | Anibal Galindo | Hypodermic needle |
| US4668777A (en) | 1981-03-27 | 1987-05-26 | University Patents, Inc. | Phosphoramidite nucleoside compounds |
| US4415732A (en) | 1981-03-27 | 1983-11-15 | University Patents, Inc. | Phosphoramidite compounds and processes |
| US4973679A (en) | 1981-03-27 | 1990-11-27 | University Patents, Inc. | Process for oligonucleo tide synthesis using phosphormidite intermediates |
| US4401796A (en) | 1981-04-30 | 1983-08-30 | City Of Hope Research Institute | Solid-phase synthesis of polynucleotides |
| US4373071A (en) | 1981-04-30 | 1983-02-08 | City Of Hope Research Institute | Solid-phase synthesis of polynucleotides |
| US4474569A (en) | 1982-06-28 | 1984-10-02 | Denver Surgical Developments, Inc. | Antenatal shunt |
| JPS5927900A (ja) | 1982-08-09 | 1984-02-14 | Wakunaga Seiyaku Kk | 固定化オリゴヌクレオチド |
| US4737462A (en) | 1982-10-19 | 1988-04-12 | Cetus Corporation | Structural genes, plasmids and transformed cells for producing cysteine depleted muteins of interferon-β |
| US4588585A (en) | 1982-10-19 | 1986-05-13 | Cetus Corporation | Human recombinant cysteine depleted interferon-β muteins |
| FR2540122B1 (fr) | 1983-01-27 | 1985-11-29 | Centre Nat Rech Scient | Nouveaux composes comportant une sequence d'oligonucleotide liee a un agent d'intercalation, leur procede de synthese et leur application |
| US4605735A (en) | 1983-02-14 | 1986-08-12 | Wakunaga Seiyaku Kabushiki Kaisha | Oligonucleotide derivatives |
| US4948882A (en) | 1983-02-22 | 1990-08-14 | Syngene, Inc. | Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis |
| US4824941A (en) | 1983-03-10 | 1989-04-25 | Julian Gordon | Specific antibody to the native form of 2'5'-oligonucleotides, the method of preparation and the use as reagents in immunoassays or for binding 2'5'-oligonucleotides in biological systems |
| US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
| US4587044A (en) | 1983-09-01 | 1986-05-06 | The Johns Hopkins University | Linkage of proteins to nucleic acids |
| US5118800A (en) | 1983-12-20 | 1992-06-02 | California Institute Of Technology | Oligonucleotides possessing a primary amino group in the terminal nucleotide |
| US5118802A (en) | 1983-12-20 | 1992-06-02 | California Institute Of Technology | DNA-reporter conjugates linked via the 2' or 5'-primary amino group of the 5'-terminal nucleoside |
| US4579849A (en) | 1984-04-06 | 1986-04-01 | Merck & Co., Inc. | N-alkylguanine acyclonucleosides as antiviral agents |
| US4957735A (en) | 1984-06-12 | 1990-09-18 | The University Of Tennessee Research Corporation | Target-sensitive immunoliposomes- preparation and characterization |
| FR2567892B1 (fr) | 1984-07-19 | 1989-02-17 | Centre Nat Rech Scient | Nouveaux oligonucleotides, leur procede de preparation et leurs applications comme mediateurs dans le developpement des effets des interferons |
| US5430136A (en) | 1984-10-16 | 1995-07-04 | Chiron Corporation | Oligonucleotides having selectably cleavable and/or abasic sites |
| US5258506A (en) | 1984-10-16 | 1993-11-02 | Chiron Corporation | Photolabile reagents for incorporation into oligonucleotide chains |
| US4828979A (en) | 1984-11-08 | 1989-05-09 | Life Technologies, Inc. | Nucleotide analogs for nucleic acid labeling and detection |
| US4959314A (en) | 1984-11-09 | 1990-09-25 | Cetus Corporation | Cysteine-depleted muteins of biologically active proteins |
| US5036006A (en) | 1984-11-13 | 1991-07-30 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
| US5116943A (en) | 1985-01-18 | 1992-05-26 | Cetus Corporation | Oxidation-resistant muteins of Il-2 and other protein |
| CA1288073C (en) | 1985-03-07 | 1991-08-27 | Paul G. Ahlquist | Rna transformation vector |
| US5034506A (en) | 1985-03-15 | 1991-07-23 | Anti-Gene Development Group | Uncharged morpholino-based polymers having achiral intersubunit linkages |
| US4596556A (en) | 1985-03-25 | 1986-06-24 | Bioject, Inc. | Hypodermic injection apparatus |
| EP0204401A1 (en) | 1985-04-09 | 1986-12-10 | Biogen, Inc. | Method of improving the yield of polypeptides produced in a host cell by stabilizing mRNA |
| US4762779A (en) | 1985-06-13 | 1988-08-09 | Amgen Inc. | Compositions and methods for functionalizing nucleic acids |
| US5017691A (en) | 1986-07-03 | 1991-05-21 | Schering Corporation | Mammalian interleukin-4 |
| US5317098A (en) | 1986-03-17 | 1994-05-31 | Hiroaki Shizuya | Non-radioisotope tagging of fragments |
| US5153319A (en) | 1986-03-31 | 1992-10-06 | University Patents, Inc. | Process for preparing polynucleotides |
| US4695273A (en) | 1986-04-08 | 1987-09-22 | I-Flow Corporation | Multiple needle holder and subcutaneous multiple channel infusion port |
| US4879111A (en) | 1986-04-17 | 1989-11-07 | Cetus Corporation | Treatment of infections with lymphokines |
| JPS638396A (ja) | 1986-06-30 | 1988-01-14 | Wakunaga Pharmaceut Co Ltd | ポリ標識化オリゴヌクレオチド誘導体 |
| US4886499A (en) | 1986-12-18 | 1989-12-12 | Hoffmann-La Roche Inc. | Portable injection appliance |
| GB8704027D0 (en) | 1987-02-20 | 1987-03-25 | Owen Mumford Ltd | Syringe needle combination |
| US4904582A (en) | 1987-06-11 | 1990-02-27 | Synthetic Genetics | Novel amphiphilic nucleic acid conjugates |
| US4790824A (en) | 1987-06-19 | 1988-12-13 | Bioject, Inc. | Non-invasive hypodermic injection device |
| US4941880A (en) | 1987-06-19 | 1990-07-17 | Bioject, Inc. | Pre-filled ampule and non-invasive hypodermic injection device assembly |
| US4940460A (en) | 1987-06-19 | 1990-07-10 | Bioject, Inc. | Patient-fillable and non-invasive hypodermic injection device assembly |
| US6090591A (en) | 1987-07-31 | 2000-07-18 | The Board Of Trustees Of The Leland Stanford Junior University | Selective amplification of target polynucleotide sequences |
| IE72468B1 (en) | 1987-07-31 | 1997-04-09 | Univ Leland Stanford Junior | Selective amplification of target polynucleotide sequences |
| US5585481A (en) | 1987-09-21 | 1996-12-17 | Gen-Probe Incorporated | Linking reagents for nucleotide probes |
| US5525465A (en) | 1987-10-28 | 1996-06-11 | Howard Florey Institute Of Experimental Physiology And Medicine | Oligonucleotide-polyamide conjugates and methods of production and applications of the same |
| DE3738460A1 (de) | 1987-11-12 | 1989-05-24 | Max Planck Gesellschaft | Modifizierte oligonukleotide |
| DE68908054T2 (de) | 1988-01-21 | 1994-03-10 | Genentech Inc | Verstärkung und nachweis von nukleinsäuresequenzen. |
| JP2650159B2 (ja) | 1988-02-24 | 1997-09-03 | アクゾ・ノベル・エヌ・ベー | 核酸増幅方法 |
| CA1340807C (en) | 1988-02-24 | 1999-11-02 | Lawrence T. Malek | Nucleic acid amplification process |
| US5082830A (en) | 1988-02-26 | 1992-01-21 | Enzo Biochem, Inc. | End labeled nucleotide probe |
| DE68923027D1 (de) | 1988-03-04 | 1995-07-20 | Cancer Res Campaign Tech | Antigene. |
| US5339163A (en) | 1988-03-16 | 1994-08-16 | Canon Kabushiki Kaisha | Automatic exposure control device using plural image plane detection areas |
| JPH02503867A (ja) | 1988-04-15 | 1990-11-15 | プロテイン デザイン ラブズ インコーポレーテッド | Il‐2レセプター特異的キメラ抗体 |
| US5109124A (en) | 1988-06-01 | 1992-04-28 | Biogen, Inc. | Nucleic acid probe linked to a label having a terminal cysteine |
| US5021335A (en) | 1988-06-17 | 1991-06-04 | The Board Of Trustees Of The Leland Stanford Junior University | In situ transcription in cells and tissues |
| US5168038A (en) | 1988-06-17 | 1992-12-01 | The Board Of Trustees Of The Leland Stanford Junior University | In situ transcription in cells and tissues |
| US5130238A (en) | 1988-06-24 | 1992-07-14 | Cangene Corporation | Enhanced nucleic acid amplification process |
| US5262536A (en) | 1988-09-15 | 1993-11-16 | E. I. Du Pont De Nemours And Company | Reagents for the preparation of 5'-tagged oligonucleotides |
| US5759802A (en) | 1988-10-26 | 1998-06-02 | Tonen Corporation | Production of human serum alubumin A |
| FR2638359A1 (fr) | 1988-11-03 | 1990-05-04 | Tino Dalto | Guide de seringue avec reglage de la profondeur de penetration de l'aiguille dans la peau |
| US5512439A (en) | 1988-11-21 | 1996-04-30 | Dynal As | Oligonucleotide-linked magnetic particles and uses thereof |
| US5262530A (en) | 1988-12-21 | 1993-11-16 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
| US5047524A (en) | 1988-12-21 | 1991-09-10 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
| US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
| US5457183A (en) | 1989-03-06 | 1995-10-10 | Board Of Regents, The University Of Texas System | Hydroxylated texaphyrins |
| US5599923A (en) | 1989-03-06 | 1997-02-04 | Board Of Regents, University Of Tx | Texaphyrin metal complexes having improved functionalization |
| US6214804B1 (en) | 1989-03-21 | 2001-04-10 | Vical Incorporated | Induction of a protective immune response in a mammal by injecting a DNA sequence |
| US5703055A (en) | 1989-03-21 | 1997-12-30 | Wisconsin Alumni Research Foundation | Generation of antibodies through lipid mediated DNA delivery |
| US5693622A (en) | 1989-03-21 | 1997-12-02 | Vical Incorporated | Expression of exogenous polynucleotide sequences cardiac muscle of a mammal |
| US6673776B1 (en) | 1989-03-21 | 2004-01-06 | Vical Incorporated | Expression of exogenous polynucleotide sequences in a vertebrate, mammal, fish, bird or human |
| DK0737750T3 (da) | 1989-03-21 | 2003-09-01 | Vical Inc | Ekspression af exogene polynucleotidsekvenser i vertebrater |
| US6867195B1 (en) | 1989-03-21 | 2005-03-15 | Vical Incorporated | Lipid-mediated polynucleotide administration to reduce likelihood of subject's becoming infected |
| US5012818A (en) | 1989-05-04 | 1991-05-07 | Joishy Suresh K | Two in one bone marrow surgical needle |
| IE66597B1 (en) | 1989-05-10 | 1996-01-24 | Akzo Nv | Method for the synthesis of ribonucleic acid (RNA) |
| US5240855A (en) | 1989-05-12 | 1993-08-31 | Pioneer Hi-Bred International, Inc. | Particle gun |
| US5332671A (en) | 1989-05-12 | 1994-07-26 | Genetech, Inc. | Production of vascular endothelial cell growth factor and DNA encoding same |
| US5391723A (en) | 1989-05-31 | 1995-02-21 | Neorx Corporation | Oligonucleotide conjugates |
| US4958013A (en) | 1989-06-06 | 1990-09-18 | Northwestern University | Cholesteryl modified oligonucleotides |
| CA2020958C (en) | 1989-07-11 | 2005-01-11 | Daniel L. Kacian | Nucleic acid sequence amplification methods |
| US5451463A (en) | 1989-08-28 | 1995-09-19 | Clontech Laboratories, Inc. | Non-nucleoside 1,3-diol reagents for labeling synthetic oligonucleotides |
| US5254469A (en) | 1989-09-12 | 1993-10-19 | Eastman Kodak Company | Oligonucleotide-enzyme conjugate that can be used as a probe in hybridization assays and polymerase chain reaction procedures |
| US5591722A (en) | 1989-09-15 | 1997-01-07 | Southern Research Institute | 2'-deoxy-4'-thioribonucleosides and their antiviral activity |
| US5545522A (en) | 1989-09-22 | 1996-08-13 | Van Gelder; Russell N. | Process for amplifying a target polynucleotide sequence using a single primer-promoter complex |
| DE69034150T2 (de) | 1989-10-24 | 2005-08-25 | Isis Pharmaceuticals, Inc., Carlsbad | 2'-Modifizierte Oligonukleotide |
| US5208020A (en) | 1989-10-25 | 1993-05-04 | Immunogen Inc. | Cytotoxic agents comprising maytansinoids and their therapeutic use |
| US5064413A (en) | 1989-11-09 | 1991-11-12 | Bioject, Inc. | Needleless hypodermic injection device |
| US5312335A (en) | 1989-11-09 | 1994-05-17 | Bioject Inc. | Needleless hypodermic injection device |
| US5215899A (en) | 1989-11-09 | 1993-06-01 | Miles Inc. | Nucleic acid amplification employing ligatable hairpin probe and transcription |
| NO904633L (no) | 1989-11-09 | 1991-05-10 | Molecular Diagnostics Inc | Amplifikasjon av nukleinsyrer ved transkriberbar haarnaalsprobe. |
| US5292873A (en) | 1989-11-29 | 1994-03-08 | The Research Foundation Of State University Of New York | Nucleic acids labeled with naphthoquinone probe |
| US5633076A (en) | 1989-12-01 | 1997-05-27 | Pharming Bv | Method of producing a transgenic bovine or transgenic bovine embryo |
| US5697901A (en) | 1989-12-14 | 1997-12-16 | Elof Eriksson | Gene delivery by microneedle injection |
| US5486603A (en) | 1990-01-08 | 1996-01-23 | Gilead Sciences, Inc. | Oligonucleotide having enhanced binding affinity |
| US5670633A (en) | 1990-01-11 | 1997-09-23 | Isis Pharmaceuticals, Inc. | Sugar modified oligonucleotides that detect and modulate gene expression |
| US5578718A (en) | 1990-01-11 | 1996-11-26 | Isis Pharmaceuticals, Inc. | Thiol-derivatized nucleosides |
| US7037646B1 (en) | 1990-01-11 | 2006-05-02 | Isis Pharmaceuticals, Inc. | Amine-derivatized nucleosides and oligonucleosides |
| US6783931B1 (en) | 1990-01-11 | 2004-08-31 | Isis Pharmaceuticals, Inc. | Amine-derivatized nucleosides and oligonucleosides |
| US5646265A (en) | 1990-01-11 | 1997-07-08 | Isis Pharmceuticals, Inc. | Process for the preparation of 2'-O-alkyl purine phosphoramidites |
| AU7579991A (en) | 1990-02-20 | 1991-09-18 | Gilead Sciences, Inc. | Pseudonucleosides and pseudonucleotides and their polymers |
| US5214136A (en) | 1990-02-20 | 1993-05-25 | Gilead Sciences, Inc. | Anthraquinone-derivatives oligonucleotides |
| GB9009980D0 (en) | 1990-05-03 | 1990-06-27 | Amersham Int Plc | Phosphoramidite derivatives,their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides |
| DK0455905T3 (da) | 1990-05-11 | 1998-12-07 | Microprobe Corp | Dipsticks til nukleinsyrehybridiseringsassays og fremgangsmåde til kovalent immobilisering af oligonukleotider |
| US5194370A (en) | 1990-05-16 | 1993-03-16 | Life Technologies, Inc. | Promoter ligation activated transcription amplification of nucleic acid sequences |
| AU649066B2 (en) | 1990-07-25 | 1994-05-12 | Syngene, Inc. | Circular extension for generating multiple nucleic acid complements |
| US5489677A (en) | 1990-07-27 | 1996-02-06 | Isis Pharmaceuticals, Inc. | Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms |
| US5602240A (en) | 1990-07-27 | 1997-02-11 | Ciba Geigy Ag. | Backbone modified oligonucleotide analogs |
| US5608046A (en) | 1990-07-27 | 1997-03-04 | Isis Pharmaceuticals, Inc. | Conjugated 4'-desmethyl nucleoside analog compounds |
| US5688941A (en) | 1990-07-27 | 1997-11-18 | Isis Pharmaceuticals, Inc. | Methods of making conjugated 4' desmethyl nucleoside analog compounds |
| US5138045A (en) | 1990-07-27 | 1992-08-11 | Isis Pharmaceuticals | Polyamine conjugated oligonucleotides |
| US5218105A (en) | 1990-07-27 | 1993-06-08 | Isis Pharmaceuticals | Polyamine conjugated oligonucleotides |
| US5245022A (en) | 1990-08-03 | 1993-09-14 | Sterling Drug, Inc. | Exonuclease resistant terminally substituted oligonucleotides |
| US5190521A (en) | 1990-08-22 | 1993-03-02 | Tecnol Medical Products, Inc. | Apparatus and method for raising a skin wheal and anesthetizing skin |
| US5512667A (en) | 1990-08-28 | 1996-04-30 | Reed; Michael W. | Trifunctional intermediates for preparing 3'-tailed oligonucleotides |
| US6140496A (en) | 1990-10-09 | 2000-10-31 | Benner; Steven Albert | Precursors for deoxyribonucleotides containing non-standard nucleosides |
| DE69132510T2 (de) | 1990-11-08 | 2001-05-03 | Hybridon, Inc. | Verbindung von mehrfachreportergruppen auf synthetischen oligonukleotiden |
| US5527288A (en) | 1990-12-13 | 1996-06-18 | Elan Medical Technologies Limited | Intradermal drug delivery device and method for intradermal delivery of drugs |
| US6100024A (en) | 1991-02-08 | 2000-08-08 | Promega Corporation | Methods and compositions for nucleic acid detection by target extension and probe amplification |
| EP1905782A1 (en) | 1991-03-18 | 2008-04-02 | New York University | Monoclonal and chimeric antibodies specific for human tumor necrosis factor |
| US5426180A (en) | 1991-03-27 | 1995-06-20 | Research Corporation Technologies, Inc. | Methods of making single-stranded circular oligonucleotides |
| ES2134212T3 (es) | 1991-04-25 | 1999-10-01 | Chugai Pharmaceutical Co Ltd | Anticuerpo humano reconstituido contra el receptor de la interleuquina 6 humano. |
| US5719262A (en) | 1993-11-22 | 1998-02-17 | Buchardt, Deceased; Ole | Peptide nucleic acids having amino acid side chains |
| US5539082A (en) | 1993-04-26 | 1996-07-23 | Nielsen; Peter E. | Peptide nucleic acids |
| US5714331A (en) | 1991-05-24 | 1998-02-03 | Buchardt, Deceased; Ole | Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility |
| US5169766A (en) | 1991-06-14 | 1992-12-08 | Life Technologies, Inc. | Amplification of nucleic acid molecules |
| US5371241A (en) | 1991-07-19 | 1994-12-06 | Pharmacia P-L Biochemicals Inc. | Fluorescein labelled phosphoramidites |
| US5199441A (en) | 1991-08-20 | 1993-04-06 | Hogle Hugh H | Fine needle aspiration biopsy apparatus and method |
| GB9118204D0 (en) | 1991-08-23 | 1991-10-09 | Weston Terence E | Needle-less injector |
| SE9102652D0 (sv) | 1991-09-13 | 1991-09-13 | Kabi Pharmacia Ab | Injection needle arrangement |
| EP0538194B1 (de) | 1991-10-17 | 1997-06-04 | Novartis AG | Bicyclische Nukleoside, Oligonukleotide, Verfahren zu deren Herstellung und Zwischenprodukte |
| US5298422A (en) | 1991-11-06 | 1994-03-29 | Baylor College Of Medicine | Myogenic vector systems |
| US5359044A (en) | 1991-12-13 | 1994-10-25 | Isis Pharmaceuticals | Cyclobutyl oligonucleotide surrogates |
| US5824307A (en) | 1991-12-23 | 1998-10-20 | Medimmune, Inc. | Human-murine chimeric antibodies against respiratory syncytial virus |
| US5565552A (en) | 1992-01-21 | 1996-10-15 | Pharmacyclics, Inc. | Method of expanded porphyrin-oligonucleotide conjugate synthesis |
| US5595726A (en) | 1992-01-21 | 1997-01-21 | Pharmacyclics, Inc. | Chromophore probe for detection of nucleic acid |
| EP0625049A4 (en) | 1992-01-23 | 1995-07-12 | Vical Inc | EX VIVO GENTRANSFER. |
| FR2687679B1 (fr) | 1992-02-05 | 1994-10-28 | Centre Nat Rech Scient | Oligothionucleotides. |
| US5328483A (en) | 1992-02-27 | 1994-07-12 | Jacoby Richard M | Intradermal injection device with medication and needle guard |
| JP3368603B2 (ja) | 1992-02-28 | 2003-01-20 | オリンパス光学工業株式会社 | 遺伝子治療用処置具 |
| DK0563475T3 (da) | 1992-03-25 | 2000-09-18 | Immunogen Inc | Konjugater af cellebindende midler og derivater af CC-1065 |
| US6174666B1 (en) | 1992-03-27 | 2001-01-16 | The United States Of America As Represented By The Department Of Health And Human Services | Method of eliminating inhibitory/instability regions from mRNA |
| US6132419A (en) | 1992-05-22 | 2000-10-17 | Genetronics, Inc. | Electroporetic gene and drug therapy |
| US5514545A (en) | 1992-06-11 | 1996-05-07 | Trustees Of The University Of Pennsylvania | Method for characterizing single cells based on RNA amplification for diagnostics and therapeutics |
| EP0577558A2 (de) | 1992-07-01 | 1994-01-05 | Ciba-Geigy Ag | Carbocyclische Nukleoside mit bicyclischen Ringen, Oligonukleotide daraus, Verfahren zu deren Herstellung, deren Verwendung und Zwischenproduckte |
| US5272250A (en) | 1992-07-10 | 1993-12-21 | Spielvogel Bernard F | Boronated phosphoramidate compounds |
| US6670178B1 (en) | 1992-07-10 | 2003-12-30 | Transkaryotic Therapies, Inc. | In Vivo production and delivery of insulinotropin for gene therapy |
| US5383851A (en) | 1992-07-24 | 1995-01-24 | Bioject Inc. | Needleless hypodermic injection device |
| DE69310179T2 (de) | 1992-07-31 | 1997-07-31 | Behringwerke Ag | Verfahren zur einführung von definierten sequenzen am 3' ende von polynukleotiden |
| US5273525A (en) | 1992-08-13 | 1993-12-28 | Btx Inc. | Injection and electroporation apparatus for drug and gene delivery |
| US5240885A (en) | 1992-09-21 | 1993-08-31 | Corning Incorporated | Rare earth-doped, stabilized cadmium halide glasses |
| US5569189A (en) | 1992-09-28 | 1996-10-29 | Equidyne Systems, Inc. | hypodermic jet injector |
| US5334144A (en) | 1992-10-30 | 1994-08-02 | Becton, Dickinson And Company | Single use disposable needleless injector |
| AU5665694A (en) | 1992-11-04 | 1994-05-24 | Denver Biomaterials Inc. | Apparatus for removal of pleural effusion fluid |
| WO1994011026A2 (en) | 1992-11-13 | 1994-05-26 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human b lymphocyte restricted differentiation antigen for treatment of b cell lymphoma |
| US5736137A (en) | 1992-11-13 | 1998-04-07 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
| US5574142A (en) | 1992-12-15 | 1996-11-12 | Microprobe Corporation | Peptide linkers for improved oligonucleotide delivery |
| AU688751B2 (en) | 1993-01-12 | 1998-03-19 | Biogen Idec Ma Inc. | Recombinant anti-VLA4 antibody molecules |
| FR2703253B1 (fr) | 1993-03-30 | 1995-06-23 | Centre Nat Rech Scient | Applicateur d'impulsions electriques pour traitement de tissus biologiques. |
| EP0691968B1 (en) | 1993-03-30 | 1997-07-16 | Sanofi | Acyclic nucleoside analogs and oligonucleotide sequences containing them |
| DE4311944A1 (de) | 1993-04-10 | 1994-10-13 | Degussa | Umhüllte Natriumpercarbonatpartikel, Verfahren zu deren Herstellung und sie enthaltende Wasch-, Reinigungs- und Bleichmittelzusammensetzungen |
| US7135312B2 (en) | 1993-04-15 | 2006-11-14 | University Of Rochester | Circular DNA vectors for synthesis of RNA and DNA |
| US5773244A (en) | 1993-05-19 | 1998-06-30 | Regents Of The University Of California | Methods of making circular RNA |
| US5851829A (en) | 1993-07-16 | 1998-12-22 | Dana-Farber Cancer Institute | Method of intracellular binding of target molecules |
| US6294664B1 (en) | 1993-07-29 | 2001-09-25 | Isis Pharmaceuticals, Inc. | Synthesis of oligonucleotides |
| US5672491A (en) | 1993-09-20 | 1997-09-30 | The Leland Stanford Junior University | Recombinant production of novel polyketides |
| US6432711B1 (en) | 1993-11-03 | 2002-08-13 | Diacrin, Inc. | Embryonic stem cells capable of differentiating into desired cell lines |
| US6096503A (en) | 1993-11-12 | 2000-08-01 | The Scripps Research Institute | Method for simultaneous identification of differentially expresses mRNAs and measurement of relative concentrations |
| US5446137B1 (en) | 1993-12-09 | 1998-10-06 | Behringwerke Ag | Oligonucleotides containing 4'-substituted nucleotides |
| US5519134A (en) | 1994-01-11 | 1996-05-21 | Isis Pharmaceuticals, Inc. | Pyrrolidine-containing monomers and oligomers |
| US5840299A (en) | 1994-01-25 | 1998-11-24 | Athena Neurosciences, Inc. | Humanized antibodies against leukocyte adhesion molecule VLA-4 |
| US7435802B2 (en) | 1994-01-25 | 2008-10-14 | Elan Pharaceuticals, Inc. | Humanized anti-VLA4 immunoglobulins |
| ATE272113T1 (de) | 1994-02-16 | 2004-08-15 | Crucell Holland Bv | Melanoma-assoziierte antigene, epitope davon und impstoffe gegen melanoma |
| DE69530914T2 (de) * | 1994-02-17 | 2004-03-11 | New York Blood Center, Inc. | Biologische bioadhäsive präparate, die fibrinkleber und liposomen enthalten, verfahren für ihre herstellung und verwendung |
| IL112820A0 (en) | 1994-03-07 | 1995-05-26 | Merck & Co Inc | Coordinate in vivo gene expression |
| WO1995024176A1 (en) | 1994-03-07 | 1995-09-14 | Bioject, Inc. | Ampule filling device |
| US5466220A (en) | 1994-03-08 | 1995-11-14 | Bioject, Inc. | Drug vial mixing and transfer device |
| EP0754242A4 (en) | 1994-03-18 | 1997-06-11 | Lynx Therapeutics Inc | SYNTHESIS AND SUBSTANCE, HYBRIDIZATION AND NUCLEASE-RESISTANT PROPERTIES OF OLIGONUCLEOTID-N3'-m (7) P5'-PHOSPHORAMIDATE |
| WO1995026204A1 (en) | 1994-03-25 | 1995-10-05 | Isis Pharmaceuticals, Inc. | Immune stimulation by phosphorothioate oligonucleotide analogs |
| US5457041A (en) | 1994-03-25 | 1995-10-10 | Science Applications International Corporation | Needle array and method of introducing biological substances into living cells using the needle array |
| US5627053A (en) | 1994-03-29 | 1997-05-06 | Ribozyme Pharmaceuticals, Inc. | 2'deoxy-2'-alkylnucleotide containing nucleic acid |
| US5464395A (en) | 1994-04-05 | 1995-11-07 | Faxon; David P. | Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway |
| US6074642A (en) | 1994-05-02 | 2000-06-13 | Alexion Pharmaceuticals, Inc. | Use of antibodies specific to human complement component C5 for the treatment of glomerulonephritis |
| AU699552B2 (en) | 1994-05-18 | 1998-12-10 | Bayer Cropscience Aktiengesellschaft | DNA sequences coding for enzymes capable of facilitating the synthesis of linear alpha-1,4 glucans in plants, fungi and microorganisms |
| EP0802980A1 (en) | 1994-06-02 | 1997-10-29 | Chiron Corporation | Nucleic acid immunization using a virus-based infection/transfection system |
| GB9412230D0 (en) | 1994-06-17 | 1994-08-10 | Celltech Ltd | Interleukin-5 specific recombiant antibodies |
| US6239116B1 (en) | 1994-07-15 | 2001-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
| US5597696A (en) | 1994-07-18 | 1997-01-28 | Becton Dickinson And Company | Covalent cyanine dye oligonucleotide conjugates |
| AU3272695A (en) | 1994-08-12 | 1996-03-07 | Immunomedics Inc. | Immunoconjugates and humanized antibodies specific for b-cell lymphoma and leukemia cells |
| US5580731A (en) | 1994-08-25 | 1996-12-03 | Chiron Corporation | N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith |
| US5597909A (en) | 1994-08-25 | 1997-01-28 | Chiron Corporation | Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use |
| US5665545A (en) | 1994-11-28 | 1997-09-09 | Akzo Nobel N.V. | Terminal repeat amplification method |
| US5641665A (en) | 1994-11-28 | 1997-06-24 | Vical Incorporated | Plasmids suitable for IL-2 expression |
| US5588960A (en) | 1994-12-01 | 1996-12-31 | Vidamed, Inc. | Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence |
| US5807718A (en) | 1994-12-02 | 1998-09-15 | The Scripps Research Institute | Enzymatic DNA molecules |
| US5585108A (en) | 1994-12-30 | 1996-12-17 | Nanosystems L.L.C. | Formulations of oral gastrointestinal therapeutic agents in combination with pharmaceutically acceptable clays |
| PT795018E (pt) | 1995-01-06 | 2007-12-21 | Plant Res Int Bv | Sequências de adn codificando enzimas de síntese de polímeros de hidratos de carbono e método para a produção de plantas transgénicas |
| US5599302A (en) | 1995-01-09 | 1997-02-04 | Medi-Ject Corporation | Medical injection system and method, gas spring thereof and launching device using gas spring |
| US5795587A (en) | 1995-01-23 | 1998-08-18 | University Of Pittsburgh | Stable lipid-comprising drug delivery complexes and methods for their production |
| US5824497A (en) | 1995-02-10 | 1998-10-20 | Mcmaster University | High efficiency translation of mRNA molecules |
| EP0727187B1 (en) | 1995-02-15 | 2003-08-06 | Joseph Eldor | Multiple hole spinal needle |
| DE69621507T2 (de) | 1995-03-28 | 2003-01-09 | Japan Science And Technology Corp., Kawaguchi | Verfahren zur molekularen Indexierung von Genen unter Verwendung von Restriktionsenzymen |
| US5869230A (en) | 1995-03-30 | 1999-02-09 | Beth Israel Hospital Association | Gene transfer into the kidney |
| US5986054A (en) | 1995-04-28 | 1999-11-16 | The Hospital For Sick Children, Hsc Research And Development Limited Partnership | Genetic sequences and proteins related to alzheimer's disease |
| FR2733762B1 (fr) | 1995-05-02 | 1997-08-01 | Genset Sa | Methode de couplage specifique de la coiffe de l'extremite 5' d'un fragment d'arnm et preparation d'arnm et d'adnc complet |
| US5700642A (en) | 1995-05-22 | 1997-12-23 | Sri International | Oligonucleotide sizing using immobilized cleavable primers |
| US5730723A (en) | 1995-10-10 | 1998-03-24 | Visionary Medical Products Corporation, Inc. | Gas pressured needle-less injection device and method |
| US6111095A (en) | 1995-06-07 | 2000-08-29 | Merck & Co., Inc. | Capped synthetic RNA, analogs, and aptamers |
| US6051429A (en) | 1995-06-07 | 2000-04-18 | Life Technologies, Inc. | Peptide-enhanced cationic lipid transfections |
| US5889136A (en) | 1995-06-09 | 1999-03-30 | The Regents Of The University Of Colorado | Orthoester protecting groups in RNA synthesis |
| US5713863A (en) | 1996-01-11 | 1998-02-03 | Interventional Technologies Inc. | Catheter with fluid medication injectors |
| US5766903A (en) | 1995-08-23 | 1998-06-16 | University Technology Corporation | Circular RNA and uses thereof |
| US6265389B1 (en) | 1995-08-31 | 2001-07-24 | Alkermes Controlled Therapeutics, Inc. | Microencapsulation and sustained release of oligonucleotides |
| WO1997011085A1 (en) | 1995-09-19 | 1997-03-27 | University Of Massachusetts | Inhibited biological degradation of oligodeoxynucleotides |
| US5830879A (en) | 1995-10-02 | 1998-11-03 | St. Elizabeth's Medical Center Of Boston, Inc. | Treatment of vascular injury using vascular endothelial growth factor |
| US6265387B1 (en) | 1995-10-11 | 2001-07-24 | Mirus, Inc. | Process of delivering naked DNA into a hepatocyte via bile duct |
| EP0771873A3 (en) | 1995-10-27 | 1998-03-04 | Takeda Chemical Industries, Ltd. | Neuronal cell-specific receptor protein |
| CU22584A1 (es) | 1995-11-17 | 1999-11-03 | Centro Inmunologia Molecular | Composiciones farmacéuticas que contienen un anticuerpo monoclonal que reconoce el antígeno de diferenciación leucocitario humano cd6 y sus usos para el diagnóstico y tratamiento de la psoriasis |
| US6090382A (en) | 1996-02-09 | 2000-07-18 | Basf Aktiengesellschaft | Human antibodies that bind human TNFα |
| US5962271A (en) | 1996-01-03 | 1999-10-05 | Cloutech Laboratories, Inc. | Methods and compositions for generating full-length cDNA having arbitrary nucleotide sequence at the 3'-end |
| US5893397A (en) | 1996-01-12 | 1999-04-13 | Bioject Inc. | Medication vial/syringe liquid-transfer apparatus |
| US6261584B1 (en) | 1996-02-02 | 2001-07-17 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
| US6395292B2 (en) | 1996-02-02 | 2002-05-28 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
| AU1874397A (en) | 1996-02-16 | 1997-09-02 | Stichting Rega Vzw | Hexitol containing oligonucleotides and their use in antisense strategies |
| US6534312B1 (en) | 1996-02-22 | 2003-03-18 | Merck & Co., Inc. | Vaccines comprising synthetic genes |
| US6090391A (en) | 1996-02-23 | 2000-07-18 | Aviron | Recombinant tryptophan mutants of influenza |
| US6300487B1 (en) | 1996-03-19 | 2001-10-09 | Cell Therapuetics, Inc. | Mammalian lysophosphatidic acid acyltransferase |
| SE9601245D0 (sv) | 1996-03-29 | 1996-03-29 | Pharmacia Ab | Chimeric superantigens and their use |
| TW517061B (en) | 1996-03-29 | 2003-01-11 | Pharmacia & Amp Upjohn Ab | Modified/chimeric superantigens and their use |
| GB9607549D0 (en) | 1996-04-11 | 1996-06-12 | Weston Medical Ltd | Spring-powered dispensing device |
| US20030073908A1 (en) | 1996-04-26 | 2003-04-17 | 2000 Injectx, Inc. | Method and apparatus for delivery of genes, enzymes and biological agents to tissue cells |
| US5712127A (en) | 1996-04-29 | 1998-01-27 | Genescape Inc. | Subtractive amplification |
| US5853719A (en) | 1996-04-30 | 1998-12-29 | Duke University | Methods for treating cancers and pathogen infections using antigen-presenting cells loaded with RNA |
| DE69739524D1 (de) | 1996-06-05 | 2009-09-17 | Novartis Vaccines & Diagnostic | Dp-75 kodierende dna und verfahren zu ihrer verwendung |
| US7329741B2 (en) | 1996-06-05 | 2008-02-12 | Chiron Corporation | Polynucleotides that hybridize to DP-75 and their use |
| WO1997048370A2 (en) | 1996-06-21 | 1997-12-24 | Merck & Co., Inc. | Vaccines comprising synthetic genes |
| US6234990B1 (en) | 1996-06-28 | 2001-05-22 | Sontra Medical, Inc. | Ultrasound enhancement of transdermal transport |
| US5677124A (en) | 1996-07-03 | 1997-10-14 | Ambion, Inc. | Ribonuclease resistant viral RNA standards |
| US5939262A (en) | 1996-07-03 | 1999-08-17 | Ambion, Inc. | Ribonuclease resistant RNA preparation and utilization |
| US7288266B2 (en) | 1996-08-19 | 2007-10-30 | United States Of America As Represented By The Secretary, Department Of Health And Human Services | Liposome complexes for increased systemic delivery |
| US5849546A (en) | 1996-09-13 | 1998-12-15 | Epicentre Technologies Corporation | Methods for using mutant RNA polymerases with reduced discrimination between non-canonical and canonical nucleoside triphosphates |
| US6114148C1 (en) | 1996-09-20 | 2012-05-01 | Gen Hospital Corp | High level expression of proteins |
| CA2266325C (en) | 1996-09-24 | 2012-07-17 | Lxr Biotechnology, Inc. | A family of genes encoding apoptosis-related peptides, peptides encoded thereby and methods of use thereof |
| US6214966B1 (en) | 1996-09-26 | 2001-04-10 | Shearwater Corporation | Soluble, degradable poly(ethylene glycol) derivatives for controllable release of bound molecules into solution |
| CA2268825C (en) | 1996-10-11 | 2006-04-18 | The Regents Of The University Of California | Immunostimulatory polynucleotide/immunomodulatory molecule conjugates |
| EP0839912A1 (en) | 1996-10-30 | 1998-05-06 | Instituut Voor Dierhouderij En Diergezondheid (Id-Dlo) | Infectious clones of RNA viruses and vaccines and diagnostic assays derived thereof |
| GB9623051D0 (en) | 1996-11-06 | 1997-01-08 | Schacht Etienne H | Delivery of DNA to target cells in biological systems |
| US5980887A (en) | 1996-11-08 | 1999-11-09 | St. Elizabeth's Medical Center Of Boston | Methods for enhancing angiogenesis with endothelial progenitor cells |
| US5759179A (en) | 1996-12-31 | 1998-06-02 | Johnson & Johnson Medical, Inc. | Needle and valve assembly for use with a catheter |
| CA2278786C (en) | 1997-01-21 | 2010-07-20 | The General Hospital Corporation | Selection of proteins using rna-protein fusions |
| EP0855184A1 (en) | 1997-01-23 | 1998-07-29 | Grayson B. Dr. Lipford | Pharmaceutical composition comprising a polynucleotide and an antigen especially for vaccination |
| US6696291B2 (en) | 1997-02-07 | 2004-02-24 | Merck & Co., Inc. | Synthetic HIV gag genes |
| IL131131A0 (en) | 1997-02-07 | 2001-01-28 | Merck & Co Inc | Synthetic hiv gag genes |
| US6251665B1 (en) | 1997-02-07 | 2001-06-26 | Cem Cezayirli | Directed maturation of stem cells and production of programmable antigen presenting dentritic cells therefrom |
| US6228640B1 (en) | 1997-02-07 | 2001-05-08 | Cem Cezayirli | Programmable antigen presenting cell of CD34 lineage |
| US6576752B1 (en) | 1997-02-14 | 2003-06-10 | Isis Pharmaceuticals, Inc. | Aminooxy functionalized oligomers |
| JP3756313B2 (ja) | 1997-03-07 | 2006-03-15 | 武 今西 | 新規ビシクロヌクレオシド及びオリゴヌクレオチド類縁体 |
| US6406705B1 (en) | 1997-03-10 | 2002-06-18 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
| US6306393B1 (en) | 1997-03-24 | 2001-10-23 | Immunomedics, Inc. | Immunotherapy of B-cell malignancies using anti-CD22 antibodies |
| US6261281B1 (en) | 1997-04-03 | 2001-07-17 | Electrofect As | Method for genetic immunization and introduction of molecules into skeletal muscle and immune cells |
| US5914269A (en) | 1997-04-04 | 1999-06-22 | Isis Pharmaceuticals, Inc. | Oligonucleotide inhibition of epidermal growth factor receptor expression |
| WO1998047913A2 (en) | 1997-04-18 | 1998-10-29 | The University Of Medicine And Dentistry Of New Jersey | Inhibition of hiv-1 replication by a tat rna-binding domain peptide analog |
| US5958688A (en) | 1997-04-28 | 1999-09-28 | The Trustees Of The University Of Pennsylvania | Characterization of mRNA patterns in neurites and single cells for medical diagnosis and therapeutics |
| US6235883B1 (en) | 1997-05-05 | 2001-05-22 | Abgenix, Inc. | Human monoclonal antibodies to epidermal growth factor receptor |
| US5989911A (en) | 1997-05-09 | 1999-11-23 | University Of Massachusetts | Site-specific synthesis of pseudouridine in RNA |
| US6761726B1 (en) | 1998-05-15 | 2004-07-13 | Pyng Medical Corp. | Method and apparatus for the intraosseous introduction of a device such as an infusion tube |
| US5993412A (en) | 1997-05-19 | 1999-11-30 | Bioject, Inc. | Injection apparatus |
| US6124091A (en) | 1997-05-30 | 2000-09-26 | Research Corporation Technologies, Inc. | Cell growth-controlling oligonucleotides |
| US6589940B1 (en) | 1997-06-06 | 2003-07-08 | Dynavax Technologies Corporation | Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof |
| ATE252596T1 (de) | 1997-06-06 | 2003-11-15 | Dynavax Tech Corp | Immunstimulierende oligonucleotide, zusammensetzungen davon, und verfahren zur verwendung davon |
| JP2002510319A (ja) | 1997-07-01 | 2002-04-02 | アイシス・ファーマシューティカルス・インコーポレーテッド | オリゴヌクレオチドの消化管を介したデリバリーのための組成物及び方法 |
| US5994511A (en) | 1997-07-02 | 1999-11-30 | Genentech, Inc. | Anti-IgE antibodies and methods of improving polypeptides |
| KR20010022075A (ko) | 1997-07-21 | 2001-03-15 | 존 헤덴스트룀 | T세포활성화를유도하는슈퍼항원접합체에의한표적세포의세포용해 |
| US20030073640A1 (en) | 1997-07-23 | 2003-04-17 | Ribozyme Pharmaceuticals, Inc. | Novel compositions for the delivery of negatively charged molecules |
| WO1999006073A1 (en) | 1997-07-31 | 1999-02-11 | St. Elizabeth's Medical Center Of Boston, Inc. | Method for the treatment of grafts |
| US6794499B2 (en) | 1997-09-12 | 2004-09-21 | Exiqon A/S | Oligonucleotide analogues |
| EP1015009A4 (en) | 1997-09-18 | 2001-11-07 | Univ Pennsylvania | GENETIC MATERIAL IN THE FORM OF MITIGATED IMMUNIZATION CASSETTES BASED ON LIVER DNA FOR GENETIC VACCINES |
| EP1021549A2 (en) | 1997-09-19 | 2000-07-26 | Sequitur, Inc. | SENSE mRNA THERAPY |
| US6004573A (en) | 1997-10-03 | 1999-12-21 | Macromed, Inc. | Biodegradable low molecular weight triblock poly(lactide-co-glycolide) polyethylene glycol copolymers having reverse thermal gelation properties |
| AU750106B2 (en) | 1997-10-07 | 2002-07-11 | University Of Maryland Biotechnology Institute | Method for introducing and expressing RNA in animal cells |
| AP1219A (en) | 1997-10-20 | 2003-10-22 | Gtc Biotherapeutics Inc | Novel modified MSP-1 nucleic acid sequences and methods for increasing mRNA levels and protein expression in cell systems. |
| US6019747A (en) | 1997-10-21 | 2000-02-01 | I-Flow Corporation | Spring-actuated infusion syringe |
| CA2348675A1 (en) * | 1997-10-24 | 1999-05-06 | Warren Dang | Methods for preparing polynucleotide transfection complexes |
| US6077251A (en) | 1997-10-30 | 2000-06-20 | Ting; Windsor | Medicinal agent administration system |
| DE69815707T2 (de) | 1997-11-20 | 2004-07-01 | Vical, Inc., San Diego | Behandlung von krebs durch verwendung von zytokin-exprimierender polynukleotiden und zusammensetzungen dafür |
| US7655777B2 (en) | 1997-11-24 | 2010-02-02 | Monsanto Technology Llc | Nucleic acid molecules associated with the tocopherol pathway |
| US6517869B1 (en) | 1997-12-12 | 2003-02-11 | Expression Genetics, Inc. | Positively charged poly(alpha-(omega-aminoalkyl)lycolic acid) for the delivery of a bioactive agent via tissue and cellular uptake |
| AR014940A1 (es) | 1997-12-12 | 2001-04-11 | Expression Genetics Inc | Un portador para la liberacion de un agente bioactivo, un polimero poliester biodegradable, copolimeros y composiciones farmaceuticas que loscontienen. |
| US6320017B1 (en) | 1997-12-23 | 2001-11-20 | Inex Pharmaceuticals Corp. | Polyamide oligomers |
| JP2002500010A (ja) | 1997-12-23 | 2002-01-08 | カイロン コーポレイション | ヒト遺伝子および遺伝子発現産物i |
| US6383811B2 (en) | 1997-12-30 | 2002-05-07 | Mirus Corporation | Polyampholytes for delivering polyions to a cell |
| ATE443528T1 (de) | 1998-01-05 | 2009-10-15 | Univ Washington | Erhöhter transport unter benutzung membranzerstörender stoffe |
| US8287483B2 (en) | 1998-01-08 | 2012-10-16 | Echo Therapeutics, Inc. | Method and apparatus for enhancement of transdermal transport |
| IT1298087B1 (it) | 1998-01-08 | 1999-12-20 | Fiderm S R L | Dispositivo per il controllo della profondita' di penetrazione di un ago, in particolare applicabile ad una siringa per iniezioni |
| JP2002500075A (ja) | 1998-01-08 | 2002-01-08 | ソントラ メディカル, インコーポレイテッド | 超音波伝達で増強される経皮輸送 |
| US6365346B1 (en) | 1998-02-18 | 2002-04-02 | Dade Behring Inc. | Quantitative determination of nucleic acid amplification products |
| US5955310A (en) | 1998-02-26 | 1999-09-21 | Novo Nordisk Biotech, Inc. | Methods for producing a polypeptide in a bacillus cell |
| US6432925B1 (en) | 1998-04-16 | 2002-08-13 | John Wayne Cancer Institute | RNA cancer vaccine and methods for its use |
| US6429301B1 (en) | 1998-04-17 | 2002-08-06 | Whitehead Institute For Biomedical Research | Use of a ribozyme to join nucleic acids and peptides |
| GB9808327D0 (en) | 1998-04-20 | 1998-06-17 | Chiron Spa | Antidiotypic compounds |
| US6395253B2 (en) * | 1998-04-23 | 2002-05-28 | The Regents Of The University Of Michigan | Microspheres containing condensed polyanionic bioactive agents and methods for their production |
| AU3534199A (en) | 1998-04-23 | 1999-11-08 | Takara Shuzo Co., Ltd. | Method For Synthesizing DNA |
| US20020064517A1 (en) * | 1998-04-30 | 2002-05-30 | Stewart A. Cederholm-Williams | Fibrin sealant as a transfection/transformation vehicle for gene therapy |
| US20090208418A1 (en) | 2005-04-29 | 2009-08-20 | Innexus Biotechnology Internaltional Ltd. | Superantibody synthesis and use in detection, prevention and treatment of disease |
| US6177274B1 (en) | 1998-05-20 | 2001-01-23 | Expression Genetics, Inc. | Hepatocyte targeting polyethylene glyco-grafted poly-L-lysine polymeric gene carrier |
| US6503231B1 (en) | 1998-06-10 | 2003-01-07 | Georgia Tech Research Corporation | Microneedle device for transport of molecules across tissue |
| US7091192B1 (en) | 1998-07-01 | 2006-08-15 | California Institute Of Technology | Linear cyclodextrin copolymers |
| KR20010079526A (ko) | 1998-07-13 | 2001-08-22 | 추후제출 | 용해성 생분해 유전자 전달 담체인 폴리-l-리신의폴리에스테르 유사체 |
| EP1100579B1 (en) | 1998-07-13 | 2015-09-02 | Inovio Pharmaceuticals, Inc. | Skin and muscle-targeted gene therapy by pulsed electrical field |
| US6222030B1 (en) | 1998-08-03 | 2001-04-24 | Agilent Technologies, Inc. | Solid phase synthesis of oligonucleotides using carbonate protecting groups and alpha-effect nucleophile deprotection |
| EP1974747B1 (en) | 1998-08-11 | 2012-06-27 | Biogen Idec Inc. | Combination therapies for B-cell lymphomas comprising administration of anti-CD20 antibody |
| GB9817662D0 (en) | 1998-08-13 | 1998-10-07 | Crocker Peter J | Substance delivery |
| US20020065236A1 (en) | 1998-09-09 | 2002-05-30 | Yew Nelson S. | CpG reduced plasmids and viral vectors |
| US20090042283A1 (en) | 1998-09-29 | 2009-02-12 | Shire Human Genetic Therapies, Inc., A Delaware Corporation | Optimized messenger rna |
| US6924365B1 (en) | 1998-09-29 | 2005-08-02 | Transkaryotic Therapies, Inc. | Optimized messenger RNA |
| CA2348779A1 (en) | 1998-11-03 | 2000-05-11 | Yale University | Multidomain polynucleotide molecular sensors |
| EP1949912A3 (en) | 1998-11-09 | 2008-08-13 | Biogen Idec, Inc. | Treatment of chronic lymphcytic leukemia (CLL) using chimeric anti-CD20 antibody |
| DE69941903D1 (de) | 1998-11-09 | 2010-02-25 | Biogen Idec Inc | Behandlung von patienten die eine knochenmarktransplantation oder eine transplantation peripherer blutstammzellen erhalten mit anti-cd20 antikörpern |
| WO2000027340A2 (en) | 1998-11-12 | 2000-05-18 | The Children's Medical Center Corporation | USE OF t-RNA AND FRAGMENTS FOR INHIBITING ANGIOGENESIS AND COMPOSITIONS THEREOF |
| EP1129064B1 (en) | 1998-11-12 | 2008-01-09 | Invitrogen Corporation | Transfection reagents |
| US6210931B1 (en) | 1998-11-30 | 2001-04-03 | The United States Of America As Represented By The Secretary Of Agriculture | Ribozyme-mediated synthesis of circular RNA |
| US20040171980A1 (en) | 1998-12-18 | 2004-09-02 | Sontra Medical, Inc. | Method and apparatus for enhancement of transdermal transport |
| EP1141376A4 (en) | 1998-12-23 | 2002-03-13 | Human Genome Sciences | PEPTIDOGLYCANE RECOGNITION PROTEINS |
| GB9902000D0 (en) | 1999-01-30 | 1999-03-17 | Delta Biotechnology Ltd | Process |
| US6255476B1 (en) | 1999-02-22 | 2001-07-03 | Pe Corporation (Ny) | Methods and compositions for synthesis of labelled oligonucleotides and analogs on solid-supports |
| EP1155124A2 (en) | 1999-02-22 | 2001-11-21 | European Molecular Biology Laboratory | In vitro translation system |
| US7629311B2 (en) | 1999-02-24 | 2009-12-08 | Edward Lewis Tobinick | Methods to facilitate transmission of large molecules across the blood-brain, blood-eye, and blood-nerve barriers |
| CA2689696C (en) | 1999-02-26 | 2013-08-06 | Novartis Vaccines And Diagnostics, Inc. | Microemulsions with adsorbed macromolecules and microparticles |
| DE60035861T2 (de) | 1999-03-01 | 2008-04-24 | Cytyc Corp., Marlborough | Geräte, methoden und kits für die gleichzeitige austragung von substanzen in mehrere milchkanäle der brust |
| US7084125B2 (en) | 1999-03-18 | 2006-08-01 | Exiqon A/S | Xylo-LNA analogues |
| CA2369119A1 (en) | 1999-03-29 | 2000-05-25 | Statens Serum Institut | Nucleotide construct with optimised codons for an hiv genetic vaccine based on a primary, early hiv isolate and synthetic envelope |
| CN1311005C (zh) | 1999-04-09 | 2007-04-18 | 迪纳尔生物技术公司 | 用于制备单分散聚合物颗粒的方法 |
| KR100782896B1 (ko) | 1999-05-04 | 2007-12-06 | 엑시콘 에이/에스 | L-리보-lna 유사체 |
| IL146005A0 (en) | 1999-05-07 | 2002-07-25 | Genentech Inc | Treatment of autoimmune diseases with antagonists which bind to b cell surface markers |
| US8663692B1 (en) | 1999-05-07 | 2014-03-04 | Pharmasol Gmbh | Lipid particles on the basis of mixtures of liquid and solid lipids and method for producing same |
| US7171264B1 (en) | 1999-05-10 | 2007-01-30 | Genetronics, Inc. | Intradermal delivery of active agents by needle-free injection and electroporation |
| US6346382B1 (en) | 1999-06-01 | 2002-02-12 | Vanderbilt University | Human carbamyl phosphate synthetase I polymorphism and diagnostic methods related thereto |
| AU4332399A (en) | 1999-06-04 | 2000-12-28 | Cheng-Ming Chuong | Rna polymerase chain reaction |
| US6611707B1 (en) | 1999-06-04 | 2003-08-26 | Georgia Tech Research Corporation | Microneedle drug delivery device |
| US6743211B1 (en) | 1999-11-23 | 2004-06-01 | Georgia Tech Research Corporation | Devices and methods for enhanced microneedle penetration of biological barriers |
| US6303573B1 (en) | 1999-06-07 | 2001-10-16 | The Burnham Institute | Heart homing peptides and methods of using same |
| EP1196558A1 (fr) | 1999-06-08 | 2002-04-17 | Aventis Pasteur | Oligonucleotide immunostimulant |
| DE60042785D1 (de) | 1999-06-09 | 2009-10-01 | Immunomedics Inc | Immuntherapie von autoimmunerkrankungen durch die verwendung von b-zell spezifischen antikörpern |
| US6949245B1 (en) | 1999-06-25 | 2005-09-27 | Genentech, Inc. | Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies |
| BR0012099A (pt) | 1999-06-30 | 2003-07-29 | Advanced Cell Tech Inc | Transferência citoplásmica para de-diferenciar células recipientes |
| US6514948B1 (en) | 1999-07-02 | 2003-02-04 | The Regents Of The University Of California | Method for enhancing an immune response |
| BR0012325A (pt) | 1999-07-09 | 2002-05-21 | American Home Prod | Métodos e composições para prevenção da formação de rna anormal durante a transcrição de uma sequência de plasmìdeo |
| US8557244B1 (en) | 1999-08-11 | 2013-10-15 | Biogen Idec Inc. | Treatment of aggressive non-Hodgkins lymphoma with anti-CD20 antibody |
| DK1212422T3 (da) | 1999-08-24 | 2007-07-02 | Medarex Inc | Humane CTLA-4-antistoffer og anvendelserne deraf |
| US20050112141A1 (en) | 2000-08-30 | 2005-05-26 | Terman David S. | Compositions and methods for treatment of neoplastic disease |
| US6551338B1 (en) | 1999-09-01 | 2003-04-22 | Mcgill University | Method and device for myogenesis and angiogenesis of the heart |
| US20040106567A1 (en) | 1999-09-07 | 2004-06-03 | Hagstrom James E. | Intravascular delivery of non-viral nucleic acid |
| DE69943068D1 (de) | 1999-09-09 | 2011-02-03 | Curevac Gmbh | Transfer von mRNA unter Verwendung von polykationischen Verbindungen |
| WO2001021810A1 (en) | 1999-09-17 | 2001-03-29 | Aventis Pasteur Limited | Chlamydia antigens and corresponding dna fragments and uses thereof |
| US6623457B1 (en) | 1999-09-22 | 2003-09-23 | Becton, Dickinson And Company | Method and apparatus for the transdermal administration of a substance |
| WO2002064799A2 (en) | 1999-09-28 | 2002-08-22 | Transkaryotic Therapies, Inc. | Optimized messenger rna |
| AU7863200A (en) | 1999-10-06 | 2001-05-10 | Quark Biotech, Inc. | Method for enrichment of natural antisense messenger rna |
| US20020198509A1 (en) | 1999-10-14 | 2002-12-26 | Mikszta John A. | Intradermal delivery of vaccines and gene therapeutic agents via microcannula |
| US7060291B1 (en) | 1999-11-24 | 2006-06-13 | Transave, Inc. | Modular targeted liposomal delivery system |
| US6613026B1 (en) | 1999-12-08 | 2003-09-02 | Scimed Life Systems, Inc. | Lateral needle-less injection apparatus and method |
| US6277974B1 (en) | 1999-12-14 | 2001-08-21 | Cogent Neuroscience, Inc. | Compositions and methods for diagnosing and treating conditions, disorders, or diseases involving cell death |
| US6245929B1 (en) | 1999-12-20 | 2001-06-12 | General Electric Company | Catalyst composition and method for producing diaryl carbonates, using bisphosphines |
| ATE280188T1 (de) | 1999-12-22 | 2004-11-15 | Basell Poliolefine Spa | Alpha-olefin enthaltendes polymerisationskatalysatorsystem, das ein aromatisches silan enthält |
| SE515932C2 (sv) | 1999-12-23 | 2001-10-29 | Prostalund Operations Ab | Sätt och anordning vid behandling av prostata |
| WO2001051092A2 (en) | 2000-01-07 | 2001-07-19 | University Of Washington | Enhanced transport of agents using membrane disruptive agents |
| WO2001051661A2 (en) | 2000-01-13 | 2001-07-19 | Amsterdam Support Diagnostics B.V. | A universal nucleic acid amplification system for nucleic acids in a sample |
| CA2398756A1 (en) | 2000-01-31 | 2001-08-02 | Eyal Raz | Immunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen |
| WO2001055306A2 (en) | 2000-01-31 | 2001-08-02 | Human Genome Sciences, Inc. | Nucleic acids, proteins, and antibodies |
| US7833992B2 (en) | 2001-05-18 | 2010-11-16 | Merck Sharpe & Dohme | Conjugates and compositions for cellular delivery |
| US7491805B2 (en) | 2001-05-18 | 2009-02-17 | Sirna Therapeutics, Inc. | Conjugates and compositions for cellular delivery |
| AU2001238595A1 (en) | 2000-02-22 | 2001-09-03 | Shearwater Corporation | N-maleimidyl polymer derivatives |
| EP1257584B2 (en) | 2000-02-24 | 2013-03-06 | Washington University St. Louis | Humanized antibodies that sequester amyloid beta peptide |
| ATE511400T1 (de) | 2000-03-03 | 2011-06-15 | Genetronics Inc | Nukleinsäure-fomulierungen zur genverabreichung |
| AU8729101A (en) | 2000-03-31 | 2001-10-15 | Idec Pharma Corp | Combined use of anti-cytokine antibodies or antagonists and anti-CD20 for the treatment of B cell lymphoma |
| AU2001249727A1 (en) | 2000-03-31 | 2001-10-15 | Genentech, Inc. | Compositions and methods for detecting and quantifying gene expression |
| US6565572B2 (en) | 2000-04-10 | 2003-05-20 | Sdgi Holdings, Inc. | Fenestrated surgical screw and method |
| WO2001079444A2 (en) | 2000-04-12 | 2001-10-25 | Human Genome Sciences, Inc | Albumin fusion proteins |
| US6368801B1 (en) | 2000-04-12 | 2002-04-09 | Molecular Staging, Inc. | Detection and amplification of RNA using target-mediated ligation of DNA by RNA ligase |
| US20010046496A1 (en) | 2000-04-14 | 2001-11-29 | Brettman Lee R. | Method of administering an antibody |
| US6468247B1 (en) | 2000-04-21 | 2002-10-22 | Mark Zamoyski | Perfusion device for localized drug delivery |
| US6375972B1 (en) | 2000-04-26 | 2002-04-23 | Control Delivery Systems, Inc. | Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof |
| US7871598B1 (en) | 2000-05-10 | 2011-01-18 | Novartis Ag | Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery and methods of use |
| US20040229271A1 (en) | 2000-05-19 | 2004-11-18 | Williams Richard B. | Compositions and methods for the identification and selection of nucleic acids and polypeptides |
| WO2001092523A2 (en) | 2000-05-30 | 2001-12-06 | Curagen Corporation | Human polynucleotides and polypeptides encoded thereby |
| US6537242B1 (en) | 2000-06-06 | 2003-03-25 | Becton, Dickinson And Company | Method and apparatus for enhancing penetration of a member for the intradermal sampling or administration of a substance |
| US20040052763A1 (en) | 2000-06-07 | 2004-03-18 | Mond James J. | Immunostimulatory RNA/DNA hybrid molecules |
| US6607513B1 (en) | 2000-06-08 | 2003-08-19 | Becton, Dickinson And Company | Device for withdrawing or administering a substance and method of manufacturing a device |
| MXPA02012256A (es) | 2000-06-23 | 2003-04-25 | American Cyanamid Co | Proteinas v de morbillivirus modificados. |
| US20050181033A1 (en) | 2000-06-29 | 2005-08-18 | Dekker John P.Iii | Method for delivering interferons to the intradermal compartment |
| EP2166019A3 (en) | 2000-07-03 | 2010-06-09 | Novartis Vaccines and Diagnostics S.r.l. | Immunisation against Chlamydia Pneumoniae |
| US6440096B1 (en) | 2000-07-14 | 2002-08-27 | Becton, Dickinson And Co. | Microdevice and method of manufacturing a microdevice |
| ES2277605T3 (es) | 2000-07-21 | 2007-07-16 | Glaxo Group Limited | Secuencias de papilomavirus de codones optimizados. |
| US6902734B2 (en) | 2000-08-07 | 2005-06-07 | Centocor, Inc. | Anti-IL-12 antibodies and compositions thereof |
| US20040142474A1 (en) | 2000-09-14 | 2004-07-22 | Expression Genetics, Inc. | Novel cationic lipopolymer as a biocompatible gene delivery agent |
| US6696038B1 (en) | 2000-09-14 | 2004-02-24 | Expression Genetics, Inc. | Cationic lipopolymer as biocompatible gene delivery agent |
| UA83458C2 (uk) * | 2000-09-18 | 2008-07-25 | Байоджен Айдек Ма Інк. | Виділений поліпептид baff-r (рецептор фактора активації в-клітин сімейства tnf) |
| AU2001290078A1 (en) | 2000-09-20 | 2002-04-02 | Ruggero Della Bitta | Stem cell therapy |
| CA2425152A1 (en) | 2000-10-04 | 2002-04-11 | The Trustees Of The University Of Pennsylvania | Highly expressible genes |
| US6998484B2 (en) | 2000-10-04 | 2006-02-14 | Santaris Pharma A/S | Synthesis of purine locked nucleic acid analogues |
| US6998115B2 (en) | 2000-10-10 | 2006-02-14 | Massachusetts Institute Of Technology | Biodegradable poly(β-amino esters) and uses thereof |
| US6649138B2 (en) | 2000-10-13 | 2003-11-18 | Quantum Dot Corporation | Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
| US7202226B2 (en) | 2000-10-23 | 2007-04-10 | Detroit R & D | Augmentation of wound healing by elF-4E mRNA and EGF mRNA |
| US20030077604A1 (en) | 2000-10-27 | 2003-04-24 | Yongming Sun | Compositions and methods relating to breast specific genes and proteins |
| CN101584867A (zh) * | 2000-10-31 | 2009-11-25 | 瑟莫迪克斯药品公司 | 提高生物活性分子传递的方法和组合物 |
| US20020132788A1 (en) | 2000-11-06 | 2002-09-19 | David Lewis | Inhibition of gene expression by delivery of small interfering RNA to post-embryonic animal cells in vivo |
| US7521054B2 (en) | 2000-11-17 | 2009-04-21 | The United States Of America As Represented By The Department Of Health And Human Services | Reduction of the nonspecific animal toxicity of immunotoxins by mutating the framework regions of the Fv to lower the isoelectric point |
| ES2397627T3 (es) | 2000-12-07 | 2013-03-08 | Novartis Vaccines And Diagnostics, Inc. | Retrovirus endógenos regulados por aumento en el cáncer de próstata |
| US7708915B2 (en) | 2004-05-06 | 2010-05-04 | Castor Trevor P | Polymer microspheres/nanospheres and encapsulating therapeutic proteins therein |
| US20020130430A1 (en) * | 2000-12-29 | 2002-09-19 | Castor Trevor Percival | Methods for making polymer microspheres/nanospheres and encapsulating therapeutic proteins and other products |
| US7628780B2 (en) | 2001-01-13 | 2009-12-08 | Medtronic, Inc. | Devices and methods for interstitial injection of biologic agents into tissue |
| EP1224943A1 (en) | 2001-01-19 | 2002-07-24 | Crucell Holland B.V. | Fibronectin as a tumor marker detected by phage antibodies |
| CN1524088B (zh) | 2001-01-19 | 2012-11-07 | 维洛诺瓦蒂夫公司 | 在易感哺乳动物中引起呼吸道疾病的病毒 |
| US20040110191A1 (en) | 2001-01-31 | 2004-06-10 | Winkler Matthew M. | Comparative analysis of nucleic acids using population tagging |
| JP2004527236A (ja) | 2001-02-14 | 2004-09-09 | ベイラー カレッジ オブ メディスン | Rna増幅の方法及び組成物 |
| US6652886B2 (en) | 2001-02-16 | 2003-11-25 | Expression Genetics | Biodegradable cationic copolymers of poly (alkylenimine) and poly (ethylene glycol) for the delivery of bioactive agents |
| DE10109897A1 (de) * | 2001-02-21 | 2002-11-07 | Novosom Ag | Fakultativ kationische Liposomen und Verwendung dieser |
| US7232425B2 (en) | 2001-03-02 | 2007-06-19 | Sorenson Development, Inc. | Apparatus and method for specific interstitial or subcutaneous diffusion and dispersion of medication |
| NZ528000A (en) | 2001-03-09 | 2005-09-30 | Gene Stream Pty Ltd | A construct comprising in operable linkage a polynucleotide that encodes a polypeptide with a half-life of less than three hours |
| JP2002262882A (ja) | 2001-03-12 | 2002-09-17 | Nisshinbo Ind Inc | Rnaの増幅法 |
| FR2822164B1 (fr) | 2001-03-19 | 2004-06-18 | Centre Nat Rech Scient | Polypeptides derives des arn polymerases, et leurs utilisations |
| US6520949B2 (en) | 2001-04-02 | 2003-02-18 | Martin St. Germain | Method and apparatus for administering fluid to animals subcutaneously |
| US6625486B2 (en) | 2001-04-11 | 2003-09-23 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for intracellular delivery of an agent |
| US20090088721A1 (en) * | 2001-04-17 | 2009-04-02 | Eyegate Pharma S.A.S. | Enhanced retinal delivery of a nucleic acid through iontophoresis |
| DE10119005A1 (de) | 2001-04-18 | 2002-10-24 | Roche Diagnostics Gmbh | Verfahren zur Proteinexpression ausgehend von stabilisierter linearer kurzer DNA in zellfreien in vitro-Transkription/Translations-Systemen mit Exonuklease-haltigen Lysaten oder in einem zellulären System enthaltend Exonukleasen |
| US20030171253A1 (en) | 2001-04-19 | 2003-09-11 | Averil Ma | Methods and compositions relating to modulation of A20 |
| EP1383556B9 (de) | 2001-04-21 | 2008-03-19 | Curevac GmbH | INJEKTIONSGERÄT FÜR mRNA APPLIKATION |
| US7332332B2 (en) | 2001-04-23 | 2008-02-19 | Amaxa Ag | Buffer solution for electroporation and a method comprising the use of the same |
| US7560424B2 (en) | 2001-04-30 | 2009-07-14 | Zystor Therapeutics, Inc. | Targeted therapeutic proteins |
| US6777187B2 (en) | 2001-05-02 | 2004-08-17 | Rubicon Genomics, Inc. | Genome walking by selective amplification of nick-translate DNA library and amplification from complex mixtures of templates |
| AU2002308623A1 (en) | 2001-05-08 | 2002-11-18 | Magnatech International, L.P. | Electronic length control wire pay-off system and method |
| US20050137155A1 (en) | 2001-05-18 | 2005-06-23 | Sirna Therapeutics, Inc. | RNA interference mediated treatment of Parkinson disease using short interfering nucleic acid (siNA) |
| US8137911B2 (en) | 2001-05-22 | 2012-03-20 | Cellscript, Inc. | Preparation and use of single-stranded transcription substrates for synthesis of transcription products corresponding to target sequences |
| US7514098B2 (en) | 2001-05-30 | 2009-04-07 | The Board Of Trustees Of The Leland Stanford Junior University | Use of targeted cross-linked nanoparticles for in vivo gene delivery |
| ATE464317T1 (de) | 2001-06-05 | 2010-04-15 | Curevac Gmbh | Stabilisierte mrna mit erhöhtem g/c-gehalt für die gentherapie |
| EP1402035A2 (en) | 2001-06-18 | 2004-03-31 | Novartis AG | G-protein coupled receptors and dna sequences thereof |
| US7547551B2 (en) | 2001-06-21 | 2009-06-16 | University Of Antwerp. | Transfection of eukaryontic cells with linear polynucleotides by electroporation |
| US7785610B2 (en) | 2001-06-21 | 2010-08-31 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same—III |
| EP1270732A1 (en) | 2001-06-21 | 2003-01-02 | Schuler, Gerold | Improved transfection of eukaryontic cells with linear polynucleotides by electroporation |
| JP2005503137A (ja) | 2001-06-26 | 2005-02-03 | ノバルティス アクチエンゲゼルシャフト | Gタンパク質共役レセプターおよびそのdna配列 |
| SE0102327D0 (sv) | 2001-06-28 | 2001-06-28 | Active Biotech Ab | A novel engineered superantigen for human therapy |
| WO2003029401A2 (en) | 2001-07-13 | 2003-04-10 | Advanced Research And Technology Institute | Peptidoglycan recognition protein encoding nucleic acids and methods of use thereof |
| US6586524B2 (en) | 2001-07-19 | 2003-07-01 | Expression Genetics, Inc. | Cellular targeting poly(ethylene glycol)-grafted polymeric gene carrier |
| US7169750B2 (en) | 2001-07-31 | 2007-01-30 | Anormed, Inc. | Methods to mobilize progenitor/stem cells |
| JP2004536614A (ja) | 2001-08-01 | 2004-12-09 | ユニバーシティ オブ ユタ | Pde3環状ヌクレオチド・ホスホジエステラーゼのアイソフォーム選択的な阻害剤および活性化剤 |
| JP2005502344A (ja) | 2001-08-27 | 2005-01-27 | ノバルティス アクチエンゲゼルシャフト | 新規gタンパク質共役受容体およびそのdna配列 |
| US20040142325A1 (en) | 2001-09-14 | 2004-07-22 | Liat Mintz | Methods and systems for annotating biomolecular sequences |
| EP2390328A1 (en) | 2001-09-28 | 2011-11-30 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | MicroRNA molecules |
| CA2462593A1 (en) | 2001-10-03 | 2003-04-10 | Kam W. Leong | Compositions for oral gene therapy and methods of using same |
| AR045702A1 (es) | 2001-10-03 | 2005-11-09 | Chiron Corp | Composiciones de adyuvantes. |
| DE10148886A1 (de) | 2001-10-04 | 2003-04-30 | Avontec Gmbh | Inhibition von STAT-1 |
| US7276489B2 (en) | 2002-10-24 | 2007-10-02 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
| US7429258B2 (en) | 2001-10-26 | 2008-09-30 | Massachusetts Institute Of Technology | Microneedle transport device |
| ATE427992T1 (de) | 2001-11-14 | 2009-04-15 | Toyo Boseki | Dna-synthesepromotoren, mit dna-polymerase assoziierte faktoren und nutzung davon |
| WO2003044482A2 (en) | 2001-11-16 | 2003-05-30 | The University Of Tennessee Research Corporation | Recombinant antibody fusion proteins and methods for detection of apoptotic cells |
| JP2005510251A (ja) | 2001-11-29 | 2005-04-21 | ノバルティス アクチエンゲゼルシャフト | サルコイドーシスの評価法と予後判定法 |
| CA2409775C (en) | 2001-12-03 | 2010-07-13 | F. Hoffmann-La Roche Ag | Reversibly modified thermostable enzymes for dna synthesis and amplification in vitro |
| EP1521594B1 (en) | 2001-12-07 | 2013-10-02 | Novartis Vaccines and Diagnostics, Inc. | Endogenous retrovirus polypeptides linked to oncogenic transformation |
| US20060275747A1 (en) | 2001-12-07 | 2006-12-07 | Hardy Stephen F | Endogenous retrovirus up-regulated in prostate cancer |
| EP2208736A3 (en) | 2001-12-07 | 2010-10-27 | Novartis Vaccines and Diagnostics, Inc. | Endogenous retrovirus up-regulated in prostate cancer |
| US20050107589A1 (en) | 2001-12-17 | 2005-05-19 | Gung-Wei Chirn | Novel g-protein coupled receptors and dna sequences thereof |
| DE10162480A1 (de) | 2001-12-19 | 2003-08-07 | Ingmar Hoerr | Die Applikation von mRNA für den Einsatz als Therapeutikum gegen Tumorerkrankungen |
| MXPA04004919A (es) | 2001-12-21 | 2004-08-11 | Alcon Inc | Uso de nanoparticulas inorganicas sinteticas como vehiculos para farmacos oftalmicos y oticos. |
| AU2003235707A1 (en) | 2002-01-18 | 2003-07-30 | Curevac Gmbh | Immunogenic preparations and vaccines on the basis of mrna |
| AU2003203079B9 (en) | 2002-02-04 | 2009-01-15 | Oncothyreon Inc. | Immunostimulatory, covalently lipidated oligonucleotides |
| AU2003210802B2 (en) | 2002-02-05 | 2009-09-10 | Genentech Inc. | Protein purification |
| FR2835749B1 (fr) | 2002-02-08 | 2006-04-14 | Inst Nat Sante Rech Med | Composition pharmaceutique ameliorant le transfert de gene in vivo |
| DE10207178A1 (de) | 2002-02-19 | 2003-09-04 | Novosom Ag | Komponenten für die Herstellung amphoterer Liposomen |
| AR038568A1 (es) | 2002-02-20 | 2005-01-19 | Hoffmann La Roche | Anticuerpos anti-a beta y su uso |
| US20050222064A1 (en) | 2002-02-20 | 2005-10-06 | Sirna Therapeutics, Inc. | Polycationic compositions for cellular delivery of polynucleotides |
| US7354742B2 (en) | 2002-02-22 | 2008-04-08 | Ortho-Mcneil Pharmaceutical, Inc. | Method for generating amplified RNA |
| CA2481479C (en) | 2002-02-26 | 2012-12-11 | Maxygen, Inc. | Novel flavivirus antigens |
| ES2362931T3 (es) | 2002-03-04 | 2011-07-15 | Imclone Llc | Anticuerpos humanos específicos contra kdr y usos de los mismos. |
| US20050152980A1 (en) | 2002-03-13 | 2005-07-14 | Michael Ausborn | Pharmeutical microparticles |
| US7074596B2 (en) | 2002-03-25 | 2006-07-11 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Synthesis and use of anti-reverse mRNA cap analogues |
| EP3006043B1 (en) | 2002-04-04 | 2019-05-29 | Zoetis Belgium S.A. | Immunostimulatory g,u-containing oligoribonucleotides |
| WO2003087815A2 (en) | 2002-04-17 | 2003-10-23 | Novartis Ag | Method for the identification of inhibitors of the binding of are-containing mrn a and an hur protein |
| GB0209539D0 (en) | 2002-04-26 | 2002-06-05 | Avecia Ltd | Monomer Polymer and process |
| EP1361277A1 (en) | 2002-04-30 | 2003-11-12 | Centre National De La Recherche Scientifique (Cnrs) | Optimization of transgene expression in mammalian cells |
| BR122019027966B8 (pt) | 2002-05-02 | 2021-07-27 | Wyeth Corp | conjugado monomérico de derivado de caliqueamicina/anti-corpo anti-cd22 e uso dos mesmos |
| AU2003217531A1 (en) | 2002-05-02 | 2003-11-17 | Massachusetts Eye And Ear Infirmary | Ocular drug delivery systems and use thereof |
| WO2003094995A1 (en) | 2002-05-06 | 2003-11-20 | Becton, Dickinson And Company | Method and device for controlling drug pharmacokinetics |
| BR0311849A (pt) | 2002-05-08 | 2005-04-05 | Univ California | Sistema para formar um bloqueio de condução em uma estrutura de tecido cardìaco para tratar uma arritmia cardìaca em um coração de um paciente, métodos para tratar uma arritmia cardìaca em um coração de um paciente e para montar um sistema de tratamento de arritmia cardìaca a partir de uma pluralidade de sistemas de distribuição cardìacos, e, sistema para tratar uma arritmia cardìaca em um coração de um paciente |
| US20040018525A1 (en) | 2002-05-21 | 2004-01-29 | Bayer Aktiengesellschaft | Methods and compositions for the prediction, diagnosis, prognosis, prevention and treatment of malignant neoplasma |
| US7374930B2 (en) | 2002-05-21 | 2008-05-20 | Expression Genetics, Inc. | GLP-1 gene delivery for the treatment of type 2 diabetes |
| DE10224200C1 (de) | 2002-05-31 | 2003-08-21 | Artus Ges Fuer Molekularbiolog | Vermehrung von Ribonukleinsäuren |
| AU2003237367A1 (en) | 2002-06-03 | 2003-12-19 | Chiron Corporation | Use of nrg4, or inhibitors thereof, in the treatment of colon and pancreatic cancer |
| SE0201907D0 (sv) | 2002-06-19 | 2002-06-19 | Atos Medical Ab | Plaster for tracheostoma valves |
| US7901708B2 (en) | 2002-06-28 | 2011-03-08 | Protiva Biotherapeutics, Inc. | Liposomal apparatus and manufacturing methods |
| BR0312395A (pt) | 2002-07-01 | 2007-06-19 | Kenneth S Warren Inst Inc | citocina protetora de tecido recombinante de muteìna, célula de mamìfero responsiva à citocina protetora de tecido recombinante, molécula de ácido nucleico isolada, vetor, vetor de expressão, célula geneticamente engenheirada, célula, composição farmacêutica, método para proteger, manter ou realçar a viabilidade de uma célula, tecido ou órgão isolados de um corpo de mamìfero, uso de uma citocina protetora de tecido recombinante, método para facilitar a transcitose de uma molécula através de uma barreira de célula endotelial em um mamìfero, e, composição para transportar uma molécula por intermédio da transcitose através de uma barreira de célula endotelial |
| DE10229872A1 (de) | 2002-07-03 | 2004-01-29 | Curevac Gmbh | Immunstimulation durch chemisch modifizierte RNA |
| GB0215509D0 (en) | 2002-07-04 | 2002-08-14 | Novartis Ag | Marker genes |
| US20040009180A1 (en) | 2002-07-11 | 2004-01-15 | Allergan, Inc. | Transdermal botulinum toxin compositions |
| US7316925B2 (en) | 2002-07-16 | 2008-01-08 | Vgx Pharmaceuticals, Inc. | Codon optimized synthetic plasmids |
| US7927791B2 (en) | 2002-07-24 | 2011-04-19 | Ptc Therapeutics, Inc. | Methods for identifying small molecules that modulate premature translation termination and nonsense mediated mRNA decay |
| EP1393745A1 (en) | 2002-07-29 | 2004-03-03 | Hybridon, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5'ends |
| EP1386925A1 (en) | 2002-07-31 | 2004-02-04 | Girindus AG | Method for preparing oligonucleotides |
| US6653468B1 (en) | 2002-07-31 | 2003-11-25 | Isis Pharmaceuticals, Inc. | Universal support media for synthesis of oligomeric compounds |
| ATE419794T1 (de) | 2002-08-01 | 2009-01-15 | Abbott Lab Vascular Entpr Ltd | Einspritzgerät zum abdichten von punkturwunden |
| EP1873180B1 (en) | 2002-08-14 | 2014-05-07 | Novartis AG | Ophthalmic device made from a radiation-curable prepolymer |
| CA2497086A1 (en) | 2002-08-30 | 2004-03-11 | Becton, Dickinson And Company | Method of controlling pharmacokinetics of immunomodulatory compounds |
| ATE533513T1 (de) | 2002-09-06 | 2011-12-15 | Cerulean Pharma Inc | Polymere auf basis von cyclodextrin zur verabreichung von an diese kovalent gebundene arzneimittel |
| ES2315526T3 (es) | 2002-09-09 | 2009-04-01 | Nektar Therapeutics Al, Corporation | Metodo para preparar derivados polimericos solubles en agua que llevan un acido carboxilico terminal. |
| AU2003278776A1 (en) | 2002-09-10 | 2004-04-30 | Vical Incorporated | Codon-optimized polynucleotide-based vaccines against bacillus anthracis infection |
| US7534872B2 (en) | 2002-09-27 | 2009-05-19 | Syngen, Inc. | Compositions and methods for the use of FMOC derivatives in DNA/RNA synthesis |
| EA021644B1 (ru) | 2002-10-17 | 2015-08-31 | Генмаб А/С | Человеческое моноклональное антитело против cd20 и его применение |
| SG146441A1 (en) | 2002-10-22 | 2008-10-30 | Eisai R&D Man Co Ltd | Gene specifically expressed in postmitotic dopaminergic neuron precursor cells |
| US6896666B2 (en) | 2002-11-08 | 2005-05-24 | Kochamba Family Trust | Cutaneous injection delivery under suction |
| CN1738914A (zh) | 2002-11-21 | 2006-02-22 | 震源技术公司 | 使用编码双链启动子一条链的引物的方法 |
| US7491234B2 (en) | 2002-12-03 | 2009-02-17 | Boston Scientific Scimed, Inc. | Medical devices for delivery of therapeutic agents |
| AU2003297832A1 (en) | 2002-12-09 | 2004-06-30 | Medtronic Vascular | Modular stent having polymer bridges at modular unit contact sites |
| PL212899B1 (pl) | 2002-12-16 | 2012-12-31 | Genentech Inc | Humanizowane przeciwcialo, kompozycja zawierajaca to przeciwcialo, wyrób fabryczny, przeciwcialo lub jego fragment do zastosowania w sposobie indukowania apoptozy, izolowany kwas nukleinowy, wektor ekspresji, komórka gospodarza, sposób wytwarzania przeciwciala lub jego fragmentu, plynny preparat i zastosowanie przeciwciala do wytwarzania leku |
| CA2508985A1 (en) | 2002-12-23 | 2004-07-15 | Dynavax Technologies Corporation | Branched immunomodulatory compounds and methods of using the same |
| US7169892B2 (en) | 2003-01-10 | 2007-01-30 | Astellas Pharma Inc. | Lipid-peptide-polymer conjugates for long blood circulation and tumor specific drug delivery systems |
| WO2004067728A2 (en) | 2003-01-17 | 2004-08-12 | Ptc Therapeutics | Methods and systems for the identification of rna regulatory sequences and compounds that modulate their function |
| EP1604011A4 (en) | 2003-01-21 | 2009-12-09 | Ptc Therapeutics Inc | METHODS FOR IDENTIFYING COMPOUNDS THAT MODULATE THE EXPRESSION OF DEPENDENT GENES FROM A NON-TRANSLATED REGION, AND METHODS OF USING SAME |
| US9068234B2 (en) | 2003-01-21 | 2015-06-30 | Ptc Therapeutics, Inc. | Methods and agents for screening for compounds capable of modulating gene expression |
| US8426194B2 (en) | 2003-01-21 | 2013-04-23 | Ptc Therapeutics, Inc. | Methods and agents for screening for compounds capable of modulating VEGF expression |
| US20040147027A1 (en) | 2003-01-28 | 2004-07-29 | Troy Carol M. | Complex for facilitating delivery of dsRNA into a cell and uses thereof |
| SI3417875T1 (sl) | 2003-02-10 | 2021-01-29 | Biogen Ma Inc. | Formulacija imunoglobulina in metode za njegovo pripravo |
| US20040167090A1 (en) | 2003-02-21 | 2004-08-26 | Monahan Sean D. | Covalent modification of RNA for in vitro and in vivo delivery |
| CA2450289A1 (en) | 2003-03-20 | 2005-05-19 | Imclone Systems Incorporated | Method of producing an antibody to epidermal growth factor receptor |
| US7320961B2 (en) | 2003-03-24 | 2008-01-22 | Abbott Laboratories | Method for treating a disease, disorder or adverse effect caused by an elevated serum concentration of an UGT1A1 substrate |
| EP2194123B1 (en) | 2003-03-25 | 2012-08-22 | Stratagene California | DNA polymerase fusions and uses thereof |
| WO2004092329A2 (en) | 2003-04-08 | 2004-10-28 | Galenica Pharmaceuticals, Inc. | Semi-synthetic saponin analogs with carrier and immune stimulatory activities for dna and rna vaccines |
| HRP20090325T1 (en) | 2003-04-09 | 2009-07-31 | Genentech | Therapy of autoimmune disease in a patient with an inadequate response to a tnf-alpha inhibitor |
| CN100393367C (zh) | 2003-05-05 | 2008-06-11 | 宾-古里安尼格夫大学研究及发展部 | 可注射的交联聚合制剂及其应用 |
| US7348004B2 (en) | 2003-05-06 | 2008-03-25 | Syntonix Pharmaceuticals, Inc. | Immunoglobulin chimeric monomer-dimer hybrids |
| TWI353991B (en) | 2003-05-06 | 2011-12-11 | Syntonix Pharmaceuticals Inc | Immunoglobulin chimeric monomer-dimer hybrids |
| EP3002012A1 (en) | 2003-05-06 | 2016-04-06 | Biogen Hemophilia Inc. | Clotting factor-fc chimeric proteins to treat hemophilia |
| US20040226556A1 (en) | 2003-05-13 | 2004-11-18 | Deem Mark E. | Apparatus for treating asthma using neurotoxin |
| US9567591B2 (en) | 2003-05-15 | 2017-02-14 | Mello Biotechnology, Inc. | Generation of human embryonic stem-like cells using intronic RNA |
| GB0313132D0 (en) | 2003-06-06 | 2003-07-09 | Ich Productions Ltd | Peptide ligands |
| WO2005009346A2 (en) | 2003-06-24 | 2005-02-03 | Mirus Corporation | Inhibition of gene function by delivery of polynucleotide-based gene expression inhibitors to mammalian cells in vivo |
| GB0316089D0 (en) | 2003-07-09 | 2003-08-13 | Xo Bioscience Ltd | Differentiation method |
| US8592197B2 (en) | 2003-07-11 | 2013-11-26 | Novavax, Inc. | Functional influenza virus-like particles (VLPs) |
| US7575572B2 (en) | 2003-07-15 | 2009-08-18 | Spinal Generations, Llc | Method and device for delivering medicine to bone |
| US20050013870A1 (en) | 2003-07-17 | 2005-01-20 | Toby Freyman | Decellularized extracellular matrix of conditioned body tissues and uses thereof |
| AU2004265595B2 (en) | 2003-07-18 | 2011-12-08 | Amgen Fremont Inc. | Specific binding agents to hepatocyte growth factor |
| EP2530157B1 (en) | 2003-07-31 | 2016-09-28 | Regulus Therapeutics Inc. | Oligomeric compounds and compositions for use in modulation of miRNAs |
| DE10335833A1 (de) * | 2003-08-05 | 2005-03-03 | Curevac Gmbh | Transfektion von Blutzellen mit mRNA zur Immunstimulation und Gentherapie |
| US8668926B1 (en) | 2003-09-15 | 2014-03-11 | Shaker A. Mousa | Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations thereof |
| US7135010B2 (en) | 2003-09-30 | 2006-11-14 | Damage Control Surgical Technologies, Inc. | Method and apparatus for rapid deployment chest drainage |
| US20070155772A1 (en) | 2003-10-06 | 2007-07-05 | Susan Ide | Use of genetic polymorphisms that associate with efficacy of treatment of inflammatory disease |
| US20050130201A1 (en) | 2003-10-14 | 2005-06-16 | Dharmacon, Inc. | Splint-assisted enzymatic synthesis of polyribounucleotides |
| DE10347710B4 (de) | 2003-10-14 | 2006-03-30 | Johannes-Gutenberg-Universität Mainz | Rekombinante Impfstoffe und deren Verwendung |
| RS54450B1 (sr) | 2003-11-05 | 2016-06-30 | Roche Glycart Ag | Molekuli koji se vezuju za antigen sa povećanim afinitetom vezivanja za fc receptor i efektornom funkcijom |
| WO2005047536A2 (en) | 2003-11-13 | 2005-05-26 | Novartis Ag | Detection of genomic amplification and deletion in cancer |
| US7998119B2 (en) | 2003-11-18 | 2011-08-16 | Nano Pass Technologies Ltd. | System and method for delivering fluid into flexible biological barrier |
| US20070054278A1 (en) | 2003-11-18 | 2007-03-08 | Applera Corporation | Polymorphisms in nucleic acid molecules encoding human enzyme proteins, methods of detection and uses thereof |
| US7699852B2 (en) | 2003-11-19 | 2010-04-20 | Zimmer Spine, Inc. | Fenestrated bone tap and method |
| US20050153333A1 (en) | 2003-12-02 | 2005-07-14 | Sooknanan Roy R. | Selective terminal tagging of nucleic acids |
| WO2007062495A1 (en) | 2005-11-30 | 2007-06-07 | Roy Rabindranauth Sooknanan | Selective terminal tagging of nucleic acids |
| EP1691746B1 (en) | 2003-12-08 | 2015-05-27 | Gel-Del Technologies, Inc. | Mucoadhesive drug delivery devices and methods of making and using thereof |
| US7674884B2 (en) | 2003-12-10 | 2010-03-09 | Novimmune S.A. | Neutralizing antibodies and methods of use thereof |
| US8372966B2 (en) | 2003-12-19 | 2013-02-12 | University Of Cincinnati | Oligonucleotide decoys and methods of use |
| HRP20120376T1 (hr) | 2003-12-23 | 2012-05-31 | Genentech | Nova protutijela protiv il-13 i njihove upotrebe |
| WO2005065721A2 (en) | 2003-12-30 | 2005-07-21 | Board Of Regents, The University Of Texas System | Use of an anti-inflammatory compound for the reduction of inflammation secondary to the administration of a lipid-nucleic acid complex |
| US7150726B2 (en) | 2004-01-23 | 2006-12-19 | Norfolk Medical | Device for subcutaneous infusion of fluids |
| WO2005072710A2 (en) | 2004-01-28 | 2005-08-11 | Johns Hopkins University | Drugs and gene carrier particles that rapidly move through mucous barriers |
| EP1716233B1 (en) | 2004-01-30 | 2009-08-26 | Maxygen Holdings Ltd. | Regulated stop codon readthrough |
| US7309487B2 (en) | 2004-02-09 | 2007-12-18 | George Inana | Methods and compositions for detecting and treating retinal diseases |
| JP4805848B2 (ja) | 2004-02-12 | 2011-11-02 | モルフォテック、インク. | 腫瘍抗原の生物活性を特異的に阻止するモノクローナル抗体 |
| US20070265220A1 (en) | 2004-03-15 | 2007-11-15 | City Of Hope | Methods and compositions for the specific inhibition of gene expression by double-stranded RNA |
| JPWO2005090405A1 (ja) | 2004-03-24 | 2008-04-17 | 中外製薬株式会社 | インターロイキン−6受容体に対するヒト型化抗体のサブタイプ |
| WO2005098433A2 (en) | 2004-04-01 | 2005-10-20 | Novartis Ag | Diagnostic assays for alzheimer’s disease |
| ES2759856T3 (es) | 2004-04-12 | 2020-05-12 | Allergan Inc | Sistema de inyección multi-sitio |
| AU2005329255B2 (en) | 2004-04-15 | 2010-09-30 | Chiasma, Inc. | Compositions capable of facilitating penetration across a biological barrier |
| JP5848861B2 (ja) | 2004-04-20 | 2016-01-27 | ジェンマブ エー/エスGenmab A/S | Cd20に対するヒトモノクローナル抗体 |
| ES2246694B1 (es) | 2004-04-29 | 2007-05-01 | Instituto Cientifico Y Tecnologico De Navarra, S.A. | Nanoparticulas pegiladas. |
| US20080119645A1 (en) | 2004-05-05 | 2008-05-22 | Isis Pharmaceuticals, Inc. | Amidites and Methods of Rna Synthesis |
| ATE409025T1 (de) * | 2004-05-12 | 2008-10-15 | Baxter Int | Nukleinsäure-mikrokügelchen, ihre herstellung und abgabe |
| CN1980641A (zh) * | 2004-05-12 | 2007-06-13 | 巴克斯特国际公司 | 含有寡核苷酸的微球体及其在制备用于治疗1型糖尿病的药物中的应用 |
| US20080103053A1 (en) | 2005-11-22 | 2008-05-01 | Helicos Biosciences Corporation | Methods and compositions for sequencing a nucleic acid |
| US20060020329A1 (en) | 2004-05-26 | 2006-01-26 | Medtronic Vascular, Inc. | Semi-directional drug delivering stents |
| CA2568772A1 (en) | 2004-06-01 | 2005-12-15 | San Diego State University Foundation | Expression system based on recombinant vesicular stomatitis virus synthesizing t7 rna polymerase |
| US7799565B2 (en) | 2004-06-07 | 2010-09-21 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering RNA |
| EP1773240B1 (en) | 2004-06-11 | 2019-11-20 | Trustees of the Tufts College | Silk-based drug delivery system |
| US8338648B2 (en) | 2004-06-12 | 2012-12-25 | Signum Biosciences, Inc. | Topical compositions and methods for epithelial-related conditions |
| WO2006046978A2 (en) | 2004-06-28 | 2006-05-04 | Argos Therapeutics, Inc. | Cationic peptide-mediated transformation |
| WO2006005058A2 (en) | 2004-06-30 | 2006-01-12 | Nektar Therapeutics Al, Corporation | Polymer-factor ix moiety conjugates |
| CA2572870A1 (en) | 2004-07-06 | 2006-01-12 | Transpharma Medical Ltd. | Delivery system for transdermal immunization |
| CA2574088C (en) | 2004-07-21 | 2013-09-17 | Alnylam Pharmaceuticals, Inc. | Oligonucleotides comprising a modified or non-natural nucleobase |
| US7603349B1 (en) | 2004-07-29 | 2009-10-13 | Yahoo! Inc. | User interfaces for search systems using in-line contextual queries |
| GB0417487D0 (en) | 2004-08-05 | 2004-09-08 | Novartis Ag | Organic compound |
| US7291208B2 (en) | 2004-08-13 | 2007-11-06 | Gore Enterprise Holdings, Inc. | Grooved active and passive adsorbent filters |
| SE0402025D0 (sv) | 2004-08-13 | 2004-08-13 | Active Biotech Ab | Treatment of hyperproliferative disease with superantigens in combination with another anticancer agent |
| CA2478458A1 (en) | 2004-08-20 | 2006-02-20 | Michael Panzara | Treatment of pediatric multiple sclerosis |
| ES2535235T3 (es) | 2004-08-26 | 2015-05-07 | Engeneic Molecular Delivery Pty Ltd | Administración de ácidos nucleicos funcionales a células de mamífero a través de minicélulas intactas obtenidas a partir de bacterias |
| DE102004042546A1 (de) | 2004-09-02 | 2006-03-09 | Curevac Gmbh | Kombinationstherapie zur Immunstimulation |
| US7501486B2 (en) | 2004-09-07 | 2009-03-10 | Burnham Institute For Medical Research | Peptides that selectively home to heart vasculature and related conjugates and methods |
| US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
| US8663599B1 (en) | 2004-10-05 | 2014-03-04 | Gp Medical, Inc. | Pharmaceutical composition of nanoparticles |
| US20080075698A1 (en) | 2004-10-12 | 2008-03-27 | Tissue Targeting Japan Inc. | Brain-Localizing Bone Marrow Progenitor cells |
| CA2583177A1 (en) | 2004-10-13 | 2006-04-27 | Ptc Therapeutics, Inc. | Compounds for nonsense suppression, and methods for their use |
| US8057821B2 (en) | 2004-11-03 | 2011-11-15 | Egen, Inc. | Biodegradable cross-linked cationic multi-block copolymers for gene delivery and methods of making thereof |
| WO2006047842A2 (en) | 2004-11-08 | 2006-05-11 | K.U. Leuven Research And Development | Modified nucleosides for rna interference |
| US8007466B2 (en) | 2004-11-18 | 2011-08-30 | Nanopass Technologies Ltd. | System and method for delivering fluid into flexible biological barrier |
| JP2008520740A (ja) | 2004-11-23 | 2008-06-19 | ピーティーシー セラピューティクス, インコーポレイテッド | Vegf産生を阻害する活性因子としての置換されたフェノール |
| US7964571B2 (en) | 2004-12-09 | 2011-06-21 | Egen, Inc. | Combination of immuno gene therapy and chemotherapy for treatment of cancer and hyperproliferative diseases |
| US8354476B2 (en) | 2004-12-10 | 2013-01-15 | Kala Pharmaceuticals, Inc. | Functionalized poly(ether-anhydride) block copolymers |
| WO2006071903A2 (en) | 2004-12-28 | 2006-07-06 | Ptc Therapeutics, Inc. | Cell based methods and systems for the identification of rna regulatory sequences and compounds that modulate their functions |
| US8192718B1 (en) | 2005-01-04 | 2012-06-05 | Gp Medical, Inc. | Pharmaceutical composition of nanoparticles |
| US8187570B1 (en) | 2005-01-04 | 2012-05-29 | Gp Medical, Inc. | Nanoparticles for protein drug delivery |
| US8535702B2 (en) | 2005-02-01 | 2013-09-17 | Boston Scientific Scimed, Inc. | Medical devices having porous polymeric regions for controlled drug delivery and regulated biocompatibility |
| US7404969B2 (en) | 2005-02-14 | 2008-07-29 | Sirna Therapeutics, Inc. | Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules |
| CA2597724A1 (en) | 2005-02-14 | 2007-08-02 | Sirna Therapeutics, Inc. | Cationic lipids and formulated molecular compositions containing them |
| US20060263338A1 (en) | 2005-03-04 | 2006-11-23 | Jacoby Douglas B | Catheter-based delivery of Skeletal Myoblasts to the Myocardium of Damaged Hearts |
| US20100221186A1 (en) | 2005-03-11 | 2010-09-02 | Hueseyin Firat | Biomarkers for cardiovascular side-effects induced by cox-2 inhibitory compounds |
| JP4793806B2 (ja) | 2005-03-22 | 2011-10-12 | Tti・エルビュー株式会社 | イオントフォレーシス装置 |
| US8415325B2 (en) | 2005-03-31 | 2013-04-09 | University Of Delaware | Cell-mediated delivery and targeted erosion of noncovalently crosslinked hydrogels |
| US7638558B2 (en) | 2005-04-01 | 2009-12-29 | Intezyne Technologies, Inc. | Polymeric micelles for drug delivery |
| AU2006235276A1 (en) | 2005-04-07 | 2006-10-19 | Novartis Vaccines And Diagnostics Inc. | CACNA1E in cancer diagnosis, detection and treatment |
| EP1871911A2 (en) | 2005-04-07 | 2008-01-02 | Chiron Corporation | Cancer-related genes (prlr) |
| EP1885403B1 (en) | 2005-04-12 | 2013-05-08 | Nektar Therapeutics | Poly(ethyleneglycol) conjugates of Lysostaphin |
| EP1899467A2 (en) | 2005-04-26 | 2008-03-19 | Coley Pharmaceutical GmbH | Modified oligoribonucleotide analogs with enhances immunostimulatory activity |
| US7850656B2 (en) | 2005-04-29 | 2010-12-14 | Warsaw Orthopedic, Inc. | Devices and methods for delivering medical agents |
| KR101498834B1 (ko) | 2005-05-09 | 2015-03-05 | 오노 야꾸힝 고교 가부시키가이샤 | 예정 사멸 인자 1(pd-1)에 대한 인간 모노클로날 항체, 및 항-pd-1 항체를 단독 사용하거나 기타 면역 요법제와 병용한 암 치료 방법 |
| US8246995B2 (en) | 2005-05-10 | 2012-08-21 | The Board Of Trustees Of The Leland Stanford Junior University | Hydrophobic nanotubes and nanoparticles as transporters for the delivery of drugs into cells |
| US20070072175A1 (en) | 2005-05-13 | 2007-03-29 | Biogen Idec Ma Inc. | Nucleotide array containing polynucleotide probes complementary to, or fragments of, cynomolgus monkey genes and the use thereof |
| US20060265771A1 (en) | 2005-05-17 | 2006-11-23 | Lewis David L | Monitoring microrna expression and function |
| DE102005023170A1 (de) | 2005-05-19 | 2006-11-23 | Curevac Gmbh | Optimierte Formulierung für mRNA |
| US20090208500A1 (en) | 2005-06-03 | 2009-08-20 | Genentech, Inc. | Method of producing antibodies with improved function |
| US7550264B2 (en) | 2005-06-10 | 2009-06-23 | Datascope Investment Corporation | Methods and kits for sense RNA synthesis |
| US7691086B2 (en) | 2005-06-14 | 2010-04-06 | Tengiz Tkebuchava | Catheter for introduction of medications to the tissues of a heart or other organ |
| WO2006138572A2 (en) | 2005-06-16 | 2006-12-28 | Nektar Therapeutics Al, Corporation | Conjugates having a degradable linkage and polymeric reagents useful in preparing such conjugates |
| CN102016814B (zh) | 2005-06-17 | 2013-10-23 | 北卡罗来纳大学查珀尔希尔分校 | 纳米粒子制备方法、系统及材料 |
| US8202835B2 (en) | 2005-06-17 | 2012-06-19 | Yitzchak Hillman | Disease treatment via antimicrobial peptides or their inhibitors |
| US8101385B2 (en) | 2005-06-30 | 2012-01-24 | Archemix Corp. | Materials and methods for the generation of transcripts comprising modified nucleotides |
| WO2007005645A2 (en) | 2005-06-30 | 2007-01-11 | Archemix Corp. | Materials and methods for the generation of fully 2'-modified nucleic acid transcripts |
| US20080220471A1 (en) | 2005-07-27 | 2008-09-11 | Genentech, Inc. | Vectors and Methods Using Same |
| US9012219B2 (en) | 2005-08-23 | 2015-04-21 | The Trustees Of The University Of Pennsylvania | RNA preparations comprising purified modified RNA for reprogramming cells |
| US20070048741A1 (en) | 2005-08-24 | 2007-03-01 | Getts Robert C | Methods and kits for sense RNA synthesis |
| CA2621023C (en) | 2005-09-01 | 2019-07-02 | Novartis Vaccines And Diagnostics Gmbh & Co. Kg | Multiple vaccination including serogroup c meningococcus |
| ATE499112T1 (de) | 2005-09-01 | 2011-03-15 | Celgene Corp | Immunologische verwendungen von immunmodulatorischen verbindungen für einen impfstoff und therapie gegen infektionskrankheiten |
| CA2621055A1 (en) * | 2005-09-02 | 2007-03-15 | Takeda Pharmaceutical Company Limited | Sustained-release microsphere containing short chain deoxyribonucleic acid or short chain ribonucleic acid and method of producing the same |
| US8420605B2 (en) | 2005-09-07 | 2013-04-16 | The University Of Strathclyde | Hydrogel compositions |
| US20120021042A1 (en) | 2005-09-15 | 2012-01-26 | Steffen Panzner | Efficient Method For Loading Amphoteric Liposomes With Nucleic Acid Active Substances |
| US20070185432A1 (en) | 2005-09-19 | 2007-08-09 | Transport Pharmaceuticals, Inc. | Electrokinetic system and method for delivering methotrexate |
| DE102005046490A1 (de) | 2005-09-28 | 2007-03-29 | Johannes-Gutenberg-Universität Mainz | Modifikationen von RNA, die zu einer erhöhten Transkriptstabilität und Translationseffizienz führen |
| US20070087437A1 (en) | 2005-10-14 | 2007-04-19 | Jifan Hu | Methods for rejuvenating cells in vitro and in vivo |
| US8012096B2 (en) | 2005-10-17 | 2011-09-06 | Cardiogenesis Corporation | Surgical device and method for performing combination revascularization and therapeutic substance delivery to tissue |
| WO2007052058A1 (en) | 2005-11-04 | 2007-05-10 | Novartis Vaccines And Diagnostics Srl | Influenza vaccines including combinations of particulate adjuvants and immunopotentiators |
| US20070105124A1 (en) | 2005-11-08 | 2007-05-10 | Getts Robert C | Methods and kits for nucleic acid amplification |
| JP2009515539A (ja) | 2005-11-18 | 2009-04-16 | バイオライン・リミテッド | 酵素的dnaポリメラーゼ反応を増強するための方法 |
| JP5525729B2 (ja) | 2005-11-28 | 2014-06-18 | ゲンマブ エー/エス | 組換え一価抗体およびその作製方法 |
| TWI389709B (zh) | 2005-12-01 | 2013-03-21 | Novartis Ag | 經皮治療系統 |
| US8603457B2 (en) | 2005-12-02 | 2013-12-10 | University Of Rochester | Nonsense suppression and genetic codon alteration by targeted modification |
| EP1954252B1 (en) | 2005-12-02 | 2016-02-03 | GlaxoSmithKline Biologicals SA | Nanoparticles for use in immunogenic compositions |
| CA2632451C (en) | 2005-12-06 | 2015-11-03 | Centre National De La Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| US7579318B2 (en) | 2005-12-06 | 2009-08-25 | Centre De La Recherche De La Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| CA2630597A1 (en) | 2005-12-08 | 2007-06-14 | Novartis Ag | Effects of inhibitors of fgfr3 on gene transcription |
| NZ569530A (en) | 2005-12-13 | 2011-07-29 | Univ Kyoto | Nuclear reprogramming factor |
| JP2009519033A (ja) | 2005-12-16 | 2009-05-14 | ディアト | 核酸を細胞に送達するための細胞貫通ペプチド結合体 |
| WO2007082304A2 (en) | 2006-01-12 | 2007-07-19 | Massachusetts Institute Of Technology | Biodegradable elastomers |
| AU2007208452B2 (en) | 2006-01-13 | 2012-07-05 | The Trustees Of The University Of Pennsylvania | Vaccines and immunotherapeutics using codon optimized IL-15 and methods for using the same |
| CN103215293B (zh) | 2006-01-27 | 2015-10-28 | 比奥根Ma公司 | Nogo受体拮抗剂 |
| US7399845B2 (en) | 2006-01-27 | 2008-07-15 | Isis Pharmaceuticals, Inc. | 6-modified bicyclic nucleic acid analogs |
| US20070178103A1 (en) | 2006-01-30 | 2007-08-02 | Fey Georg H | CD19-specific immunotoxin and treatment method |
| US8476234B2 (en) | 2006-02-03 | 2013-07-02 | Prolor Biotech Inc. | Long-acting coagulation factors and methods of producing same |
| US9458444B2 (en) | 2006-02-03 | 2016-10-04 | Opko Biologics Ltd. | Long-acting coagulation factors and methods of producing same |
| US8946155B2 (en) | 2006-02-03 | 2015-02-03 | Opko Biologics Ltd. | Long-acting polypeptides and methods of producing and administering same |
| DE102006007433A1 (de) | 2006-02-17 | 2007-08-23 | Curevac Gmbh | Adjuvanz in Form einer Lipid-modifizierten Nukleinsäure |
| US20100168034A1 (en) | 2006-02-20 | 2010-07-01 | Ewha University-Industry Collaboration Foundation | Peptide having cell membrane penetrating activity |
| MX2008010841A (es) | 2006-02-21 | 2008-10-27 | Nektar Therapeutics Al Corp | Polimeros degradables segmentados y conjugados hechos de los mismos. |
| US8431160B2 (en) | 2006-02-24 | 2013-04-30 | Novartis Ag | Microparticles containing biodegradable polymer and cationic polysaccharide for use in immunogenic compositions |
| US20080038278A1 (en) | 2006-02-24 | 2008-02-14 | Jingsong Cao | GPAT3 encodes a mammalian, microsomal acyl-coa:glycerol 3- phosphate acyltransferase |
| US7910152B2 (en) | 2006-02-28 | 2011-03-22 | Advanced Cardiovascular Systems, Inc. | Poly(ester amide)-based drug delivery systems with controlled release rate and morphology |
| EP4276469A3 (en) | 2006-02-28 | 2024-01-17 | Biogen MA Inc. | Methods of treating inflammatory and autoimmune diseases with natalizumab |
| GB0605217D0 (en) | 2006-03-15 | 2006-04-26 | Novartis Ag | Method and compositions for assessing acute rejection |
| EP2012751A4 (en) | 2006-03-21 | 2010-11-24 | Morehouse School Of Medicine | NEW NANOPARTICLES FOR THE DELIVERY OF ACTIVE AGENTS |
| WO2008105773A2 (en) | 2006-03-31 | 2008-09-04 | Massachusetts Institute Of Technology | System for targeted delivery of therapeutic agents |
| EP2007358A4 (en) | 2006-04-04 | 2012-01-25 | Stc Unm | INFLATING PARTICLES FOR THE ADMINISTRATION OF A MEDICINAL PRODUCT |
| US20070281336A1 (en) | 2006-04-14 | 2007-12-06 | Epicentre Technologies | Kits and methods for generating 5' capped RNA |
| EP1852127A1 (en) | 2006-05-02 | 2007-11-07 | Charité - Universitätsmedizin Berlin | Use of a B-cell-depleting antibody for treatment of polyoma virus infections |
| US8367113B2 (en) | 2006-05-15 | 2013-02-05 | Massachusetts Institute Of Technology | Polymers for functional particles |
| HRP20120382T1 (hr) | 2006-05-24 | 2012-06-30 | Merck Serono Sa | Kombinacija davanja interferona-beta i kladribina za liječenje multiple skleroze |
| EP2492684B1 (en) | 2006-06-02 | 2016-12-28 | President and Fellows of Harvard College | Protein surface remodeling |
| US20130004480A1 (en) | 2006-07-04 | 2013-01-03 | Paul Parren | CD20 Binding Molecules for the Treatment of Copd |
| CA2706124A1 (en) * | 2006-07-07 | 2008-01-10 | Aarhus Universitet | Nanoparticles for nucleic acid delivery |
| US8404783B2 (en) | 2006-07-12 | 2013-03-26 | Novartis Ag | Polymers |
| JP2009544287A (ja) | 2006-07-20 | 2009-12-17 | ノバルティス アーゲー | 癌を処置、診断、または検出するためのamigo−2インヒビター |
| US8728527B2 (en) | 2006-07-24 | 2014-05-20 | Luminus Biosciences, Inc. | Solid nanoparticle formulation of water insoluble pharmaceutical substances with reduced ostwald ripening |
| CA2659301A1 (en) | 2006-07-28 | 2008-02-07 | Applera Corporation | Dinucleotide mrna cap analogs |
| JP2010507361A (ja) | 2006-07-31 | 2010-03-11 | キュアバック ゲーエムベーハー | 具体的には免疫刺激剤/アジュバントとしての、一般式(I):GlXmGn、または一般式(II):ClXmCnで表される核酸 |
| DE102006035618A1 (de) | 2006-07-31 | 2008-02-07 | Curevac Gmbh | Nukleinsäure der Formel (I): GlXmGn, insbesondere als immunstimulierendes Adjuvanz |
| RU2009108289A (ru) | 2006-08-07 | 2010-09-20 | Джензим Корпорейшн (Us) | Комбинированная терапия |
| US20080076701A1 (en) | 2006-08-18 | 2008-03-27 | Nastech Pharmaceutical Company Inc. | Dicer substrate rna peptide conjugates and methods for rna therapeutics |
| US8658211B2 (en) | 2006-08-18 | 2014-02-25 | Arrowhead Madison Inc. | Polyconjugates for in vivo delivery of polynucleotides |
| US7846895B2 (en) | 2006-09-06 | 2010-12-07 | The Regents Of The University Of California | Selectively targeted antimicrobial peptides and the use thereof |
| US8192927B2 (en) | 2006-09-07 | 2012-06-05 | Crucell Holland B.V. | Human bind molecules capable of neutralizing influenza virus h5n1 and uses thereof |
| EP2073735B1 (en) | 2006-09-08 | 2010-11-24 | Arbel Medical Ltd. | Device for combined treatment |
| AU2007292902B8 (en) | 2006-09-08 | 2013-09-05 | Johns Hopkins University | Compositions and methods for enhancing transport through mucus |
| US8454948B2 (en) | 2006-09-14 | 2013-06-04 | Medgenics Medical Israel Ltd. | Long lasting drug formulations |
| GB0619182D0 (en) | 2006-09-29 | 2006-11-08 | Leuven K U Res & Dev | Oligonucleotide arrays |
| EP2068886B1 (en) | 2006-10-03 | 2013-09-18 | Tekmira Pharmaceuticals Corporation | Lipid containing formulations |
| JP2010505877A (ja) | 2006-10-05 | 2010-02-25 | ザ・ジョンズ・ホプキンス・ユニバーシティー | スマートな高分子ナノ粒子を用いた低水溶性薬物用の水分散性経口、非経口および局所的製剤 |
| DE102006051516A1 (de) * | 2006-10-31 | 2008-05-08 | Curevac Gmbh | (Basen-)modifizierte RNA zur Expressionssteigerung eines Proteins |
| US8414927B2 (en) | 2006-11-03 | 2013-04-09 | Boston Scientific Scimed, Inc. | Cross-linked polymer particles |
| US7999087B2 (en) | 2006-11-15 | 2011-08-16 | Agilent Technologies, Inc. | 2′-silyl containing thiocarbonate protecting groups for RNA synthesis |
| US8242258B2 (en) | 2006-12-03 | 2012-08-14 | Agilent Technologies, Inc. | Protecting groups for RNA synthesis |
| US8399007B2 (en) | 2006-12-05 | 2013-03-19 | Landec Corporation | Method for formulating a controlled-release pharmaceutical formulation |
| EP2121011B1 (en) | 2006-12-06 | 2014-05-21 | Novartis AG | Vaccines including antigen from four strains of influenza virus |
| US9034348B2 (en) | 2006-12-11 | 2015-05-19 | Chi2Gel Ltd. | Injectable chitosan mixtures forming hydrogels |
| MX2009006651A (es) | 2006-12-18 | 2009-08-26 | Acceleron Pharma Inc | Antagonistas de activina-actrii y usos para incrementar los niveles de globulos rojo. |
| DK2104739T3 (da) | 2006-12-21 | 2013-10-07 | Novozymes Inc | Modificerede messenger-RNA-stabiliseringssekvenser til ekspression af gener i bakterieceller |
| JP5452230B2 (ja) | 2006-12-21 | 2014-03-26 | ストライカー コーポレイション | 生物学的因子の結晶、高分子ゲルおよび粒子懸濁液を含む持続放出処方物 |
| WO2008078180A2 (en) | 2006-12-22 | 2008-07-03 | Archemix Corp. | Materials and methods for the generation of transcripts comprising modified nucleotides |
| DE102006061015A1 (de) | 2006-12-22 | 2008-06-26 | Curevac Gmbh | Verfahren zur Reinigung von RNA im präparativen Maßstab mittels HPLC |
| US8057426B2 (en) | 2007-01-03 | 2011-11-15 | Medtronic Vascular, Inc. | Devices and methods for injection of multiple-component therapies |
| US8338166B2 (en) | 2007-01-04 | 2012-12-25 | Lawrence Livermore National Security, Llc | Sorting, amplification, detection, and identification of nucleic acid subsequences in a complex mixture |
| DE102007001370A1 (de) | 2007-01-09 | 2008-07-10 | Curevac Gmbh | RNA-kodierte Antikörper |
| WO2008091799A2 (en) | 2007-01-22 | 2008-07-31 | The Trustees Of Columbia University In The City Of New York | Cell-based methods for identifying inhibitors of parkinson's disease-associated lrrk2 mutants |
| CN103755789B (zh) | 2007-01-30 | 2016-12-07 | 埃皮瓦克斯公司 | 调节性t细胞表位、组合物及其用途 |
| TW201940502A (zh) | 2007-02-02 | 2019-10-16 | 美商艾瑟勒朗法瑪公司 | 衍生自ActRIIB的變體與其用途 |
| US8859229B2 (en) | 2007-02-02 | 2014-10-14 | Yale University | Transient transfection with RNA |
| WO2008096370A2 (en) | 2007-02-05 | 2008-08-14 | Natco Pharma Limited | An efficient and novel purification method of recombinant hg-csf |
| US8333799B2 (en) | 2007-02-12 | 2012-12-18 | C. R. Bard, Inc. | Highly flexible stent and method of manufacture |
| CA2689042A1 (en) | 2007-02-16 | 2008-08-28 | Merck & Co., Inc. | Compositions and methods for potentiated activity of biologicaly active molecules |
| US8242087B2 (en) | 2007-02-27 | 2012-08-14 | K.U.Leuven Research & Development | Phosphate modified nucleosides useful as substrates for polymerases and as antiviral agents |
| DK2126093T3 (da) | 2007-03-02 | 2013-01-07 | Boehringer Ingelheim Pharma | Forbedring af proteinfremstilling |
| EP1964922A1 (en) | 2007-03-02 | 2008-09-03 | Boehringer Ingelheim Pharma GmbH & Co. KG | Improvement of protein production |
| US8029496B2 (en) | 2007-03-05 | 2011-10-04 | Ebrahim Versi | Method and device for delivering drug to the trigone of the bladder |
| JP5249248B2 (ja) | 2007-03-05 | 2013-07-31 | ワシントン ユニバーシティー | 膜組み込みペプチドのためのナノ粒子輸送システム |
| JP2010521966A (ja) | 2007-03-20 | 2010-07-01 | ミレニアム・ファーマシューティカルズ・インコーポレイテッド | α4β7インテグリンに結合するヒト化免疫グロブリンをコードする核酸 |
| DE602008005299D1 (de) | 2007-04-27 | 2011-04-14 | Echo Therapeutics Inc | Hautpermeationsvorrichtung für Analytenmessung oder transdermale Arzneiabgabe |
| JP2010526087A (ja) | 2007-04-30 | 2010-07-29 | グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー | 抗il−5抗体を投与するための方法 |
| WO2008135855A2 (en) | 2007-05-03 | 2008-11-13 | Pfizer Products Inc. | Nanoparticles comprising a cholesteryl ester transfer protein inhibitor and a nonionizable polymer |
| ES2531520T3 (es) | 2007-05-04 | 2015-03-16 | Marina Biotech, Inc. | Lipoaminoácidos y usos de los mismos |
| US7682789B2 (en) * | 2007-05-04 | 2010-03-23 | Ventana Medical Systems, Inc. | Method for quantifying biomolecules conjugated to a nanoparticle |
| US8728491B2 (en) | 2007-05-07 | 2014-05-20 | Alba Therapeutics Corporation | Transcutaneous delivery of therapeutic agents |
| JP5296328B2 (ja) | 2007-05-09 | 2013-09-25 | 独立行政法人理化学研究所 | 1本鎖環状rnaおよびその製造方法 |
| HUE028389T2 (en) | 2007-05-10 | 2016-12-28 | Agilent Technologies Inc | For the synthesis of thiocarbons protecting groups RNSS |
| WO2008144365A2 (en) | 2007-05-17 | 2008-11-27 | Novartis Ag | Method for making dry powder compositions containing ds-rna based on supercritical fluid technology |
| JP2010529954A (ja) | 2007-05-22 | 2010-09-02 | ノバルティス アーゲー | Fgf21関連障害を処置、診断および検出する方法 |
| CN101802172A (zh) | 2007-05-30 | 2010-08-11 | 通用医疗公司 | 由体细胞产生多能细胞的方法 |
| DK2160464T3 (da) | 2007-05-30 | 2014-08-04 | Univ Northwestern | Nukleinsyrefunktionaliserede nanopartikler til terapeutiske anvendelser |
| CN104072561B (zh) | 2007-06-19 | 2017-12-22 | 路易斯安那州州立大学及农业机械学院管理委员会 | 信使rna帽的抗‑反向硫代磷酸类似物的合成和用途 |
| EP2173872B1 (en) | 2007-06-29 | 2014-04-02 | CellScript, Inc. | Copy dna and sense rna |
| US8367318B2 (en) | 2007-07-23 | 2013-02-05 | Dharmacon, Inc. | Screening of micro-RNA cluster inhibitor pools |
| US20090042825A1 (en) | 2007-08-06 | 2009-02-12 | Majed Matar | Composition, method of preparation & application of concentrated formulations of condensed nucleic acids with a cationic lipopolymer |
| US9144546B2 (en) | 2007-08-06 | 2015-09-29 | Clsn Laboratories, Inc. | Nucleic acid-lipopolymer compositions |
| ES2868136T3 (es) | 2007-08-14 | 2021-10-21 | Hutchinson Fred Cancer Res | Disposición de matriz de agujas y método para administrar agentes terapéuticos |
| WO2009023770A1 (en) | 2007-08-15 | 2009-02-19 | Avellanet Francisco J | Biologically engineered stent |
| BRPI0815725A2 (pt) | 2007-08-23 | 2015-02-10 | Novartis Ag | Métodos para detecção de oligonucleotídeos |
| WO2009030254A1 (en) | 2007-09-04 | 2009-03-12 | Curevac Gmbh | Complexes of rna and cationic peptides for transfection and for immunostimulation |
| BRPI0816458A2 (pt) | 2007-09-05 | 2013-03-12 | Hoffmann La Roche | terapia combinada com anticorpos anti-cd20 tipo i e tipo ii |
| US8506928B2 (en) | 2007-09-07 | 2013-08-13 | The Regents Of The University Of California | Methods and compounds for targeting tissues |
| US20110086904A1 (en) | 2007-09-17 | 2011-04-14 | The Trustees Of The University Of Pennsylvania | GENERATION OF HYPERSTABLE mRNAs |
| EP2205618B1 (en) | 2007-09-26 | 2016-11-09 | Intrexon Corporation | Synthetic 5'utrs, expression vectors, and methods for increasing transgene expression |
| NZ584356A (en) | 2007-09-26 | 2011-10-28 | Univ Oregon Health & Science | Cyclic undecapeptides and derivatives as multiple sclerosis therapies |
| PL2644192T3 (pl) | 2007-09-28 | 2017-09-29 | Pfizer Inc. | Ukierunkowanie na komórki nowotworowe z zastosowaniem nanocząstek |
| EP2042193A1 (en) | 2007-09-28 | 2009-04-01 | Biomay AG | RNA Vaccines |
| WO2009046388A1 (en) | 2007-10-03 | 2009-04-09 | United States Medical Research & Material Command | Cr-2 binding peptide p28 as molecular adjuvant for dna vaccines |
| WO2009046738A1 (en) | 2007-10-09 | 2009-04-16 | Curevac Gmbh | Composition for treating lung cancer, particularly of non-small lung cancers (nsclc) |
| WO2009046739A1 (en) * | 2007-10-09 | 2009-04-16 | Curevac Gmbh | Composition for treating prostate cancer (pca) |
| CA2702083C (en) | 2007-10-12 | 2021-11-30 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
| US20090098118A1 (en) | 2007-10-15 | 2009-04-16 | Thomas Friess | Combination therapy of a type ii anti-cd20 antibody with an anti-bcl-2 active agent |
| KR101198354B1 (ko) * | 2007-10-17 | 2013-03-14 | 주식회사 삼양바이오팜 | 핵산 전달용 저밀도 지단백질 유사(LDL-like) 양이온성 나노입자, 그의 제조방법 및 이를 이용한 핵산의 전달 방법 |
| EP2205277B1 (en) | 2007-10-22 | 2017-07-26 | Genmab A/S | Novel antibody therapies |
| EP2209908B1 (en) | 2007-11-01 | 2014-09-03 | University Of Rochester | Recombinant factor viii having increased stability |
| AU2008323815B2 (en) | 2007-11-09 | 2013-09-19 | Novartis Ag | Uses of anti-CD40 antibodies |
| WO2009062348A1 (en) | 2007-11-14 | 2009-05-22 | Institute Of Microbiology, Chinese Academy Of Sciences | Methods for inhibiting influenza virus infection and their drugs |
| US20090137945A1 (en) | 2007-11-28 | 2009-05-28 | Claire Marquez | Electro Collagen Induction Therapy Device |
| WO2009068649A2 (en) | 2007-11-30 | 2009-06-04 | Glaxo Group Limited | Antigen-binding constructs |
| JP5530933B2 (ja) * | 2007-12-10 | 2014-06-25 | アルナイラム ファーマシューティカルズ, インコーポレイテッド | 第vii因子遺伝子発現阻害のための組成物及び方法 |
| CN101939428B (zh) | 2007-12-11 | 2014-05-07 | 斯克利普斯研究所 | 涉及mRNA翻译增强因子的组合物和方法 |
| AU2008334948B2 (en) | 2007-12-13 | 2014-11-20 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for prevention or treatment of RSV infection |
| EP2072618A1 (en) | 2007-12-14 | 2009-06-24 | Johannes Gutenberg-Universität Mainz | Use of RNA for reprogramming somatic cells |
| JP2011507897A (ja) | 2007-12-21 | 2011-03-10 | ジェネンテック, インコーポレイテッド | リツキシマブ抵抗性関節リウマチ患者の治療 |
| EP2248906A4 (en) | 2008-01-23 | 2012-07-11 | Ajinomoto Kk | PROCESS FOR THE PREPARATION OF L-AMINO ACID |
| JPWO2009093384A1 (ja) | 2008-01-24 | 2011-05-26 | 独立行政法人産業技術総合研究所 | ポリヌクレオチド及びポリヌクレオチド類似体並びにこれらを用いた遺伝子発現制御方法 |
| JP5721441B2 (ja) | 2008-01-31 | 2015-05-20 | キュアバック ゲーエムベーハーCurevac Gmbh | 免疫賦活剤/アジュバントとしての式(I)(NuGlXmGnNv)aで表される核酸分子及びその誘導体 |
| WO2009101407A2 (en) | 2008-02-11 | 2009-08-20 | Cambridge Enterprise Limited | Improved reprogramming of mammalian cells, and the cells obtained |
| DK2240155T3 (da) | 2008-02-13 | 2012-09-17 | Intarcia Therapeutics Inc | Indretninger, formuleringer og fremgangsmåder til levering af flere gavnlige midler |
| DE102008009920A1 (de) | 2008-02-15 | 2009-08-20 | Aj Innuscreen Gmbh | Mobiles Gerät für die Nukleinsäureisolierung |
| US20120027813A1 (en) | 2008-02-22 | 2012-02-02 | Novartis Vaccines And Diagnostics Srl | Adjuvanted influenza vaccines for pediatric use |
| US8506966B2 (en) | 2008-02-22 | 2013-08-13 | Novartis Ag | Adjuvanted influenza vaccines for pediatric use |
| WO2009108891A2 (en) | 2008-02-29 | 2009-09-03 | Egen, Inc. | Modified poloxamers for gene expression and associated methods |
| ES2759075T3 (es) | 2008-03-14 | 2020-05-07 | Biocon Ltd | Un anticuerpo monoclonal y un método del mismo |
| WO2009114854A1 (en) | 2008-03-14 | 2009-09-17 | Egen, Inc. | Biodegradable cross-linked branched poly (alkylene imines) |
| ES2441945T3 (es) | 2008-03-28 | 2014-02-07 | Glaxosmithkline Llc | Métodos de tratamiento |
| JP5475753B2 (ja) * | 2008-04-15 | 2014-04-16 | プロチバ バイオセラピューティクス インコーポレイティッド | 核酸送達用の脂質製剤 |
| WO2009127230A1 (en) * | 2008-04-16 | 2009-10-22 | Curevac Gmbh | MODIFIED (m)RNA FOR SUPPRESSING OR AVOIDING AN IMMUNOSTIMULATORY RESPONSE AND IMMUNOSUPPRESSIVE COMPOSITION |
| KR20110042152A (ko) | 2008-04-25 | 2011-04-25 | 노쓰웨스턴유니버시티 | 콜레스테롤을 격리시키기에 적합한 나노구조 |
| WO2009134808A2 (en) | 2008-04-28 | 2009-11-05 | President And Fellows Of Harvard College | Supercharged proteins for cell penetration |
| BRPI0913012B1 (pt) | 2008-04-30 | 2021-12-14 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention | Quimera de ácido nucleico, métodos para detectar um anticorpo do vírus da dengue em uma amostra de um paciente, e para produzir partículas virais que expressam proteínas prm e e do vírus da dengue, uso de vírus codificado pela quimera e flavivírus ou partícula viral quiméricos |
| US9394538B2 (en) | 2008-05-07 | 2016-07-19 | Shi-Lung Lin | Development of universal cancer drugs and vaccines |
| WO2009137785A2 (en) | 2008-05-08 | 2009-11-12 | Replenish Pumps, Llc | Drug-delivery pumps and methods of manufacture |
| US8697098B2 (en) | 2011-02-25 | 2014-04-15 | South Dakota State University | Polymer conjugated protein micelles |
| CN103342789B (zh) | 2008-05-13 | 2016-11-23 | 华盛顿大学 | 用于向细胞内递送的二嵌段共聚物和其多核苷酸复合物 |
| US9738680B2 (en) | 2008-05-21 | 2017-08-22 | Rheinische Friedrich-Wilhelms-Universität Bonn | 5′ triphosphate oligonucleotide with blunt end and uses thereof |
| AU2009253160B2 (en) | 2008-05-26 | 2015-03-05 | Universitat Zurich | Protamine/RNA nanoparticles for immunostimulation |
| EP2297197B1 (en) | 2008-05-29 | 2012-03-07 | HanAll Biopharma Co., Ltd. | Modified erythropoietin (epo)polypeptides that exhibit increased protease resistance and pharmaceutical compositions thereof |
| FR2931824B1 (fr) | 2008-05-29 | 2014-11-28 | Centre Nat Rech Scient | Procede de synthese d'arn par voie chimique. |
| WO2009148528A2 (en) | 2008-05-30 | 2009-12-10 | Millennium Pharmaceuticals, Inc. | Assessment of chromosomal alterations to predict clinical outcome of bortezomib treatment |
| PL215513B1 (pl) | 2008-06-06 | 2013-12-31 | Univ Warszawski | Nowe boranofosforanowe analogi dinukleotydów, ich zastosowanie, czasteczka RNA, sposób otrzymywania RNA oraz sposób otrzymywania peptydów lub bialka |
| EP2296731A2 (en) | 2008-06-06 | 2011-03-23 | Wockhardt Research Centre | A device and a system for delivery of biological material |
| TWI451876B (zh) | 2008-06-13 | 2014-09-11 | Lilly Co Eli | 聚乙二醇化之離脯胰島素化合物 |
| ES2654533T3 (es) | 2008-06-16 | 2018-02-14 | Pfizer Inc. | Procedimientos para la preparación de copolímeros dibloque funcionalizados con un agente de direccionamiento para su uso en la fabricación de nanopartículas terapéuticas |
| KR20160116062A (ko) | 2008-06-16 | 2016-10-06 | 바인드 쎄라퓨틱스, 인크. | 약물 부하된 중합체성 나노입자, 및 이의 제조 및 사용 방법 |
| US8613951B2 (en) | 2008-06-16 | 2013-12-24 | Bind Therapeutics, Inc. | Therapeutic polymeric nanoparticles with mTor inhibitors and methods of making and using same |
| EP2309991B1 (en) | 2008-06-16 | 2019-03-06 | Pfizer Inc | Therapeutic polymeric nanoparticles comprising vinca alkaloids and methods of making and using same |
| US7799016B2 (en) | 2008-06-20 | 2010-09-21 | Pharmaco-Kinesis Corporation | Magnetic breather pump and a method for treating a brain tumor using the same |
| WO2009158032A1 (en) | 2008-06-25 | 2009-12-30 | Fe2, Inc. | Patches and methods for the transdermal delivery of a therapeutically effective amount of iron |
| US20100009424A1 (en) | 2008-07-14 | 2010-01-14 | Natasha Forde | Sonoporation systems and methods |
| EP2313085A2 (en) | 2008-07-15 | 2011-04-27 | Novartis AG | Immunogenic amphipathic peptide compositions |
| WO2010009065A2 (en) | 2008-07-15 | 2010-01-21 | Novartis Ag | Amphipathic peptide compositions |
| EP2326331A4 (en) | 2008-08-18 | 2013-05-15 | Merck Sharp & Dohme | NEW LIPID NANOPARTICLES AND NEW COMPONENTS FOR THE RELEASE OF NUCLEIC ACIDS |
| WO2010024871A1 (en) | 2008-08-26 | 2010-03-04 | Med Institute, Inc. | Balloon catheters having a plurality of needles for the injection of one or more therapeutic agents |
| US20110172126A1 (en) | 2008-09-03 | 2011-07-14 | Xenome Ltd | Libraries of peptide conjugates and methods for making them |
| EP2326656B1 (en) | 2008-09-06 | 2017-01-25 | Chemgenes Corporation | Rna synthesis - phosphoramidites for synthetic rna in the reverse direction, and application in convenient introduction of ligands, chromophores and modifications of synthetic rna at the 3' - end |
| WO2010027903A2 (en) | 2008-09-08 | 2010-03-11 | Fred Hutchinson Cancer Research Center | Lung cancer diagnosis |
| US20100087337A1 (en) | 2008-09-10 | 2010-04-08 | Bind Biosciences, Inc. | High Throughput Fabrication of Nanoparticles |
| TW201438738A (zh) | 2008-09-16 | 2014-10-16 | 建南德克公司 | 治療進展型多發性硬化症之方法 |
| US20120021519A1 (en) | 2008-09-19 | 2012-01-26 | Presidents And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
| WO2010037408A1 (en) | 2008-09-30 | 2010-04-08 | Curevac Gmbh | Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof |
| WO2010042490A1 (en) | 2008-10-06 | 2010-04-15 | Boston Medical Center Corporation | A single lentiviral vector system for induced pluripotent (ips) stem cells derivation |
| CA2740000C (en) | 2008-10-09 | 2017-12-12 | Tekmira Pharmaceuticals Corporation | Improved amino lipids and methods for the delivery of nucleic acids |
| US8535655B2 (en) | 2008-10-10 | 2013-09-17 | Polyactiva Pty Ltd. | Biodegradable polymer—bioactive moiety conjugates |
| CN102245130A (zh) | 2008-10-10 | 2011-11-16 | 米卢克斯控股股份有限公司 | 药物输注 |
| US8343498B2 (en) | 2008-10-12 | 2013-01-01 | Massachusetts Institute Of Technology | Adjuvant incorporation in immunonanotherapeutics |
| ITVI20080239A1 (it) | 2008-10-14 | 2010-04-15 | Antoine Assaf | Apparato medicale per iniezioni multiple. |
| WO2010047765A2 (en) | 2008-10-20 | 2010-04-29 | Massachussetts Institute Of Technology | Nanostructures for drug delivery |
| US20120015899A1 (en) | 2008-10-25 | 2012-01-19 | Plant Bioscience, Limited | Modified plant virus particles and uses therefor |
| MX353900B (es) | 2008-11-07 | 2018-02-01 | Massachusetts Inst Technology | Lipidoides de aminoalcohol y usos de los mismos. |
| CA2743139C (en) | 2008-11-10 | 2019-04-02 | Alnylam Pharmaceuticals, Inc. | Novel lipids and compositions for the delivery of therapeutics |
| US8734853B2 (en) | 2008-11-17 | 2014-05-27 | University Of North Texas Health Science Center At Fort Worth | HDL particles for delivery of nucleic acids |
| CN102215820A (zh) | 2008-11-17 | 2011-10-12 | 安龙制药公司 | 用于核酸输送系统的可释放融合脂质 |
| EP2191840A1 (en) | 2008-11-28 | 2010-06-02 | Sanofi-Aventis | Antitumor combinations containing antibodies recognizing specifically CD38 and melphalan |
| KR101073875B1 (ko) | 2008-11-28 | 2011-10-14 | 한국생명공학연구원 | 대장암 진단 마커 및 이를 이용한 대장암 진단방법 |
| EP2196476A1 (en) | 2008-12-10 | 2010-06-16 | Novartis Ag | Antibody formulation |
| NZ593618A (en) | 2008-12-10 | 2013-02-22 | Alnylam Pharmaceuticals Inc | Gnaq targeted dsrna compositions and methods for inhibiting expression |
| WO2010068866A2 (en) | 2008-12-12 | 2010-06-17 | Bind Biosciences | Therapeutic particles suitable for parenteral administration and methods of making and using same |
| WO2010068918A2 (en) | 2008-12-12 | 2010-06-17 | The Regents Of The University Of California | Novel targets for treatment of hypercholesterolemia |
| JP2012512175A (ja) | 2008-12-15 | 2012-05-31 | バインド バイオサイエンシズ インコーポレイテッド | 治療薬を徐放するための長時間循環性ナノ粒子 |
| US20110250262A1 (en) * | 2008-12-24 | 2011-10-13 | Biomedcore, Inc. | Method for producing liposome and method for dissolving cholesterol |
| WO2010080724A1 (en) | 2009-01-12 | 2010-07-15 | Merck Sharp & Dohme Corp. | Novel lipid nanoparticles and novel components for delivery of nucleic acids |
| JP2012515217A (ja) | 2009-01-16 | 2012-07-05 | グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー | ベンダムスチンおよび抗−cd20抗体の組合せを用いた癌治療 |
| WO2010084371A1 (en) | 2009-01-26 | 2010-07-29 | Mitoprod | Novel circular interfering rna molecules |
| EP3243504A1 (en) | 2009-01-29 | 2017-11-15 | Arbutus Biopharma Corporation | Improved lipid formulation |
| US8669085B2 (en) | 2009-02-05 | 2014-03-11 | Ut-Battelle, Llc | Transformation of gram positive bacteria by sonoporation |
| WO2010088927A1 (en) | 2009-02-09 | 2010-08-12 | Curevac Gmbh | Use of pei for the improvement of endosomal release and expression of transfected nucleic acids, complexed with cationic or polycationic compounds |
| US20140141089A1 (en) | 2009-02-11 | 2014-05-22 | Colorado School Of Mines | Nanoparticles, Compositions Thereof, and Methods of Use, and Methods of Making the Same |
| EP2401365B1 (en) | 2009-02-24 | 2016-04-27 | The Scripps Research Institute | Reengineering mrna primary structure for enhanced protein production |
| US8685458B2 (en) | 2009-03-05 | 2014-04-01 | Bend Research, Inc. | Pharmaceutical compositions of dextran polymer derivatives |
| WO2010141135A2 (en) | 2009-03-05 | 2010-12-09 | Trustees Of Boston University | Bacteriophages expressing antimicrobial peptides and uses thereof |
| JP2012520085A (ja) | 2009-03-13 | 2012-09-06 | エーゲン、インコーポレイテッド | 生物活性rnaの送達のための組成物及び方法 |
| CN102438978B (zh) | 2009-03-20 | 2017-02-22 | Clsn实验室股份有限公司 | 聚胺衍生物 |
| US20120095077A1 (en) | 2009-03-23 | 2012-04-19 | University Of Utah Research Foundation | Methods and compositions related to modified guanine bases for controlling off-target effects in rna interference |
| JP5622254B2 (ja) | 2009-03-31 | 2014-11-12 | 国立大学法人東京大学 | 二本鎖リボ核酸ポリイオンコンプレックス |
| SMT202000246T1 (it) | 2009-04-03 | 2020-07-08 | Univ Chicago | Composizioni e metodi relativi a varianti della proteina a (spa) |
| US9724404B2 (en) | 2009-04-13 | 2017-08-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | HPV particles and uses thereof |
| AU2010236257A1 (en) | 2009-04-17 | 2011-11-03 | Biogen Idec Ma Inc. | Compositions and methods to treat acute myelogenous leukemia |
| EA201101530A1 (ru) | 2009-04-21 | 2012-03-30 | Селекта Байосайенсиз, Инк. | ИММУНОНАНОТЕРАПИЯ, ОБЕСПЕЧИВАЮЩАЯ Th1-СМЕЩЕННЫЙ ОТВЕТ |
| WO2010123501A1 (en) | 2009-04-22 | 2010-10-28 | Massachusetts Institute Of Technology | Innate immune suppression enables repeated delivery of long rna molecules |
| EA027071B1 (ru) | 2009-04-27 | 2017-06-30 | Новартис Аг | АНТИТЕЛО К ActRIIB И СОДЕРЖАЩАЯ ЕГО КОМПОЗИЦИЯ |
| US8715736B2 (en) | 2009-04-30 | 2014-05-06 | Florida Agricultural And Mechanical University | Nanoparticle formulations for skin delivery |
| US8287910B2 (en) | 2009-04-30 | 2012-10-16 | Intezyne Technologies, Inc. | Polymeric micelles for polynucleotide encapsulation |
| KR102229618B1 (ko) | 2009-05-05 | 2021-03-18 | 알닐람 파마슈티칼스 인코포레이티드 | 지질 조성물 |
| JP5889783B2 (ja) | 2009-05-05 | 2016-03-22 | テクミラ ファーマシューティカルズ コーポレイションTekmira Pharmaceuticals Corporation | 免疫細胞へオリゴヌクレオチドを送達する方法 |
| DE202009007116U1 (de) | 2009-05-18 | 2010-10-14 | Amoena Medizin-Orthopädie-Technik GmbH | Antidekubituskissen |
| EA201500447A1 (ru) | 2009-05-27 | 2017-03-31 | Селекта Байосайенсиз, Инк. | НАЦЕЛЕННЫЕ СИНТЕТИЧЕСКИЕ НАНОНОСИТЕЛИ С pH-ЧУВСТВИТЕЛЬНЫМ ВЫСВОБОЖДЕНИЕМ ИММУНОМОДУЛИРУЮЩИХ СРЕДСТВ |
| US8574835B2 (en) | 2009-05-29 | 2013-11-05 | Life Technologies Corporation | Scaffolded nucleic acid polymer particles and methods of making and using |
| NZ622843A (en) * | 2009-06-10 | 2015-10-30 | Tekmira Pharmaceuticals Corp | Improved lipid formulation |
| EP2440556A1 (en) | 2009-06-10 | 2012-04-18 | Vertex Pharmaceuticals Incorporated | Inhibitors of phosphatidylinositol 3-kinase |
| NZ597504A (en) | 2009-06-15 | 2013-10-25 | Alnylam Pharmaceuticals Inc | Lipid formulated dsrna targeting the pcsk9 gene |
| US20110097329A1 (en) | 2009-06-26 | 2011-04-28 | Massachusetts Institute Of Technology | Compositions and methods for treating cancer and modulating stress granule formation |
| US8569256B2 (en) | 2009-07-01 | 2013-10-29 | Protiva Biotherapeutics, Inc. | Cationic lipids and methods for the delivery of therapeutic agents |
| ES2613498T3 (es) | 2009-07-01 | 2017-05-24 | Protiva Biotherapeutics Inc. | Nuevas formulaciones de lípidos para el suministro de agentes terapéuticos a tumores sólidos |
| WO2011005799A2 (en) | 2009-07-06 | 2011-01-13 | Novartis Ag | Self replicating rna molecules and uses thereof |
| EA022786B1 (ru) | 2009-07-31 | 2016-03-31 | Этрис Гмбх | Рнк с комбинацией из немодифицированных и модифицированных нуклеотидов для экспрессии белков |
| EP2281579A1 (en) | 2009-08-05 | 2011-02-09 | BioNTech AG | Vaccine composition comprising 5'-Cap modified RNA |
| US9181295B2 (en) | 2009-08-20 | 2015-11-10 | Sirna Therapeutics, Inc. | Cationic lipids with various head groups for oligonucleotide delivery |
| MX343908B (es) | 2009-08-26 | 2016-11-28 | Selecta Biosciences Inc * | Composiciones que inducen la ayuda de las células t. |
| US20110053829A1 (en) | 2009-09-03 | 2011-03-03 | Curevac Gmbh | Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids |
| US20110070227A1 (en) | 2009-09-18 | 2011-03-24 | Anna-Marie Novotney-Barry | Treatment of Autoimmune and Inflammatory Diseases |
| EP2485770A4 (en) | 2009-10-08 | 2013-04-10 | Merck Sharp & Dohme | Novel cationic lipids with short lipid chains for oligonucleotide delivery |
| US8859284B2 (en) | 2009-10-22 | 2014-10-14 | The United States Of America, As Represented By The Secretary Of The Navy | Delivery of nanoparticles to neurons |
| EP2496700B1 (en) | 2009-11-04 | 2017-03-01 | The University Of British Columbia | Nucleic acid-containing lipid particles and related methods |
| US8449916B1 (en) | 2009-11-06 | 2013-05-28 | Iowa State University Research Foundation, Inc. | Antimicrobial compositions and methods |
| WO2011060250A1 (en) | 2009-11-13 | 2011-05-19 | Bend Research, Inc. | Cationic dextran polymer derivatives |
| WO2011062965A2 (en) | 2009-11-18 | 2011-05-26 | University Of Washington Through Its Center For Commercialization | Targeting monomers and polymers having targeting blocks |
| US8530429B2 (en) | 2009-11-24 | 2013-09-10 | Arch Cancer Therapeutics, Inc. | Brain tumor targeting peptides and methods |
| RS57314B1 (sr) | 2009-12-01 | 2018-08-31 | Translate Bio Inc | Isporuka irnk za povećanje ekspresije proteina i enzima u humanim genetskim oboljenjima |
| US20110245756A1 (en) | 2009-12-03 | 2011-10-06 | Rishi Arora | Devices for material delivery, electroporation, sonoporation, and/or monitoring electrophysiological activity |
| DE102009056884B4 (de) | 2009-12-03 | 2021-03-18 | Novartis Ag | Impfstoff-Adjuvantien und verbesserte Verfahren zur Herstellung derselben |
| JP5903048B2 (ja) | 2009-12-06 | 2016-04-13 | バイオジェン ヘモフィリア インコーポレイテッド | 第VIII−Fc因子キメラおよびハイブリッドポリペプチドならびにその使用法 |
| AU2010328336B2 (en) | 2009-12-07 | 2017-03-02 | Arbutus Biopharma Corporation | Compositions for nucleic acid delivery |
| US20130189741A1 (en) | 2009-12-07 | 2013-07-25 | Cellscript, Inc. | Compositions and methods for reprogramming mammalian cells |
| CN114317612B (zh) | 2009-12-07 | 2024-10-29 | 宾夕法尼亚州大学信托人 | 用于重编程细胞的包含纯化的经修饰的rna的rna制剂 |
| WO2011069529A1 (en) | 2009-12-09 | 2011-06-16 | Curevac Gmbh | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
| WO2011069528A1 (en) | 2009-12-09 | 2011-06-16 | Curevac Gmbh | Lyophilization of nucleic acids in lactate-containing solutions |
| US8357401B2 (en) | 2009-12-11 | 2013-01-22 | Bind Biosciences, Inc. | Stable formulations for lyophilizing therapeutic particles |
| US9295649B2 (en) | 2009-12-15 | 2016-03-29 | Bind Therapeutics, Inc. | Therapeutic polymeric nanoparticle compositions with high glass transition temperature or high molecular weight copolymers |
| EP2512487A4 (en) | 2009-12-15 | 2013-08-07 | THERAPEUTIC POLYMERNANOPARTICLES WITH CORTICOSTEROIDS AND METHOD FOR THE PRODUCTION AND USE THEREOF | |
| WO2011084521A2 (en) | 2009-12-15 | 2011-07-14 | Bind Biosciences, Inc. | Therapeutic polymeric nanoparticles comprising epothilone and methods of making and using same |
| DE102009058769A1 (de) | 2009-12-16 | 2011-06-22 | MagForce Nanotechnologies AG, 10589 | Temperaturabhängige Aktivierung von katalytischen Nukleinsäuren zur kontrollierten Wirkstofffreisetzung |
| EP2512522A4 (en) | 2009-12-16 | 2013-09-25 | Brigham & Womens Hospital | PARTICLES FOR ADMINISTRATION OF MULTIPLE AGENTS |
| WO2011075656A1 (en) | 2009-12-18 | 2011-06-23 | The University Of British Columbia | Methods and compositions for delivery of nucleic acids |
| EP2338520A1 (de) | 2009-12-21 | 2011-06-29 | Ludwig Maximilians Universität | Konjugat mit Zielfindungsligand und dessen Verwendung |
| SG10201407996PA (en) | 2009-12-23 | 2015-01-29 | Novartis Ag | Lipids, lipid compositions, and methods of using them |
| WO2011085231A2 (en) | 2010-01-08 | 2011-07-14 | Selecta Biosciences, Inc. | Synthetic virus-like particles conjugated to human papillomavirus capsid peptides for use as vaccines |
| US8846631B2 (en) | 2010-01-14 | 2014-09-30 | Regulus Therapeutics Inc. | MicroRNA compositions and methods |
| EP2526113B1 (en) | 2010-01-22 | 2016-08-10 | Sirna Therapeutics, Inc. | Post-synthetic chemical modification of rna at the 2'-position of the ribose ring via "click" chemistry |
| JP5988435B2 (ja) | 2010-01-24 | 2016-09-07 | ノバルティス アーゲー | 放射線照射された生分解性微粒子 |
| NZ601737A (en) | 2010-02-24 | 2013-06-28 | Arrowhead Res Corp | Compositions for targeted delivery of sirna |
| US8889193B2 (en) | 2010-02-25 | 2014-11-18 | The Johns Hopkins University | Sustained delivery of therapeutic agents to an eye compartment |
| WO2011112608A1 (en) | 2010-03-08 | 2011-09-15 | University Of Rochester | Synthesis of nanoparticles using reducing gases |
| WO2011116072A1 (en) | 2010-03-16 | 2011-09-22 | Escape Therapeutics, Inc. | Hybrid hydrogel scaffold compositions and methods of use |
| AU2011227264A1 (en) | 2010-03-16 | 2012-10-04 | University Of Utah Research Foundation | Cleavable modifications to reducible poly (amido ethylenimines)s to enhance nucleotide delivery |
| WO2011115862A1 (en) | 2010-03-18 | 2011-09-22 | Merck Sharp & Dohme Corp. | Endosomolytic poly(amidoamine) disulfide polymers for the delivery of oligonucleotides |
| US20110230816A1 (en) | 2010-03-18 | 2011-09-22 | Tyco Healthcare Group Lp | Gels for Transdermal Delivery |
| US9149432B2 (en) | 2010-03-19 | 2015-10-06 | Massachusetts Institute Of Technology | Lipid vesicle compositions and methods of use |
| KR101852210B1 (ko) * | 2010-03-24 | 2018-04-25 | 알엑스아이 파마슈티칼스 코포레이션 | 진피 및 섬유증성 적응증에서의 rna 간섭 |
| GB201005005D0 (en) | 2010-03-25 | 2010-05-12 | Angeletti P Ist Richerche Bio | New vaccine |
| WO2011120053A1 (en) | 2010-03-26 | 2011-09-29 | Mersana Therapeutics, Inc. | Modified polymers for delivery of polynucleotides, method of manufacture, and methods of use thereof |
| US8207290B2 (en) | 2010-03-26 | 2012-06-26 | Cerulean Pharma Inc. | Methods and systems for generating nanoparticles |
| US20110247090A1 (en) | 2010-04-02 | 2011-10-06 | Intrexon Corporation | Synthetic 5'UTRs, Expression Vectors, and Methods for Increasing Transgene Expression |
| EP2555794A4 (en) | 2010-04-05 | 2014-01-15 | Univ Chicago | COMPOSITIONS AND METHODS RELATING TO PROTEIN A (SPA) ANTIBODIES AS IMMUNE REACTION AMPLIFIERS |
| US9744228B2 (en) | 2010-04-07 | 2017-08-29 | Norvartis Ag | Method for generating a parvovirus B19 virus-like particle |
| WO2011127255A1 (en) | 2010-04-08 | 2011-10-13 | Merck Sharp & Dohme Corp. | Preparation of lipid nanoparticles |
| US20130071430A1 (en) | 2010-04-09 | 2013-03-21 | The University Of Tokyo | Microrna-controlled recombinant vaccinia virus and use thereof |
| US20110250264A1 (en) | 2010-04-09 | 2011-10-13 | Pacira Pharmaceuticals, Inc. | Method for formulating large diameter synthetic membrane vesicles |
| US20110262491A1 (en) | 2010-04-12 | 2011-10-27 | Selecta Biosciences, Inc. | Emulsions and methods of making nanocarriers |
| KR101196667B1 (ko) | 2010-04-15 | 2012-11-02 | 포항공과대학교 산학협력단 | 피에이치 민감성 금속 나노 입자를 이용한 항암제 전달 시스템 |
| CA2832672A1 (en) | 2010-04-16 | 2011-10-20 | Nuevolution A/S | Bi-functional complexes and methods for making and using such complexes |
| CA2796464C (en) | 2010-04-16 | 2021-08-03 | Immune Disease Institute, Inc. | Sustained polypeptide expression from synthetic, modified rnas and uses thereof |
| EP2377938A1 (en) | 2010-04-16 | 2011-10-19 | Eukarys | Capping-prone RNA polymerase enzymes and their applications |
| US20130260460A1 (en) | 2010-04-22 | 2013-10-03 | Isis Pharmaceuticals Inc | Conformationally restricted dinucleotide monomers and oligonucleotides |
| WO2012046149A1 (en) | 2010-04-28 | 2012-04-12 | Kimberly-Clark Worldwide, Inc. | Method for increasing permeability of an epithelial barrier |
| US9629979B2 (en) | 2010-04-28 | 2017-04-25 | Sanovas, Inc. | Pressure/Vacuum actuated catheter drug delivery probe |
| US20130156845A1 (en) | 2010-04-29 | 2013-06-20 | Alnylam Pharmaceuticals, Inc. | Lipid formulated single stranded rna |
| BR112012027816A2 (pt) | 2010-04-30 | 2017-08-08 | Novartis Ag | marcadores preditivos úteis no tratamento da síndrome do x frágil (fxs). |
| US9254327B2 (en) | 2010-05-10 | 2016-02-09 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for delivery of active agents |
| US10077232B2 (en) | 2010-05-12 | 2018-09-18 | Arbutus Biopharma Corporation | Cyclic cationic lipids and methods of use |
| EP2569276B1 (en) | 2010-05-12 | 2021-02-24 | Arbutus Biopharma Corporation | Novel cationic lipids and methods of use thereof |
| EP2387999A1 (en) | 2010-05-21 | 2011-11-23 | CureVac GmbH | Histidine-containing solution for transfection and/or injection of nucleic acids and uses thereof |
| JP2013531634A (ja) | 2010-05-24 | 2013-08-08 | メルク・シャープ・エンド・ドーム・コーポレイション | オリゴヌクレオチド送達のための新規なアミノアルコールカチオン性脂質 |
| WO2011150264A2 (en) | 2010-05-26 | 2011-12-01 | Selecta Biosciences, Inc. | Synthetic nanocarrier combination vaccines |
| US8748667B2 (en) | 2010-06-04 | 2014-06-10 | Sirna Therapeutics, Inc. | Low molecular weight cationic lipids for oligonucleotide delivery |
| CA2800650C (en) | 2010-06-14 | 2018-04-03 | F. Hoffmann-La Roche Ag | Cell-penetrating peptides and uses therof |
| WO2011163121A1 (en) | 2010-06-21 | 2011-12-29 | Alnylam Pharmaceuticals, Inc. | Multifunctional copolymers for nucleic acid delivery |
| US20120158100A1 (en) | 2010-06-21 | 2012-06-21 | Kevin Schomacker | Driving Microneedle Arrays into Skin and Delivering RF Energy |
| AU2011268507B2 (en) | 2010-06-25 | 2014-08-14 | Novartis Ag | Combinations of meningococcal factor H binding proteins |
| US9066971B2 (en) | 2010-07-01 | 2015-06-30 | Postech Academy-Industry Foundation | Method for treating and diagnosing cancer by using cell-derived microvesicles |
| KR101130137B1 (ko) | 2010-07-02 | 2012-03-28 | 연세대학교 산학협력단 | 발광다이오드 모듈 |
| ES2655701T3 (es) | 2010-07-02 | 2018-02-21 | The University Of Chicago | Composiciones y métodos relacionados con variantes de la proteína A (SpA) |
| US8353871B2 (en) | 2010-07-05 | 2013-01-15 | Roller Jet Ltd. | Drug delivery device with needles and roller |
| US9770463B2 (en) | 2010-07-06 | 2017-09-26 | Glaxosmithkline Biologicals Sa | Delivery of RNA to different cell types |
| HUE026646T2 (en) | 2010-07-06 | 2016-07-28 | Glaxosmithkline Biologicals Sa | Preferred liposomes containing lipids of PKA value for delivery of RNA |
| EP2590676B1 (en) | 2010-07-06 | 2016-08-17 | GlaxoSmithKline Biologicals SA | Virion-like delivery particles for self-replicating rna molecules |
| EP3449910A1 (en) | 2010-07-06 | 2019-03-06 | GlaxoSmithKline Biologicals S.A. | Cationic oil-in-water emulsions |
| US9192661B2 (en) | 2010-07-06 | 2015-11-24 | Novartis Ag | Delivery of self-replicating RNA using biodegradable polymer particles |
| SI3243526T1 (sl) | 2010-07-06 | 2020-02-28 | Glaxosmithkline Biologicals S.A. | Dostava RNA za sprožitev večih imunskih poti |
| PL2591114T3 (pl) | 2010-07-06 | 2017-08-31 | Glaxosmithkline Biologicals Sa | Immunizacja dużych ssaków małymi dawkami rna |
| WO2012006623A1 (en) | 2010-07-09 | 2012-01-12 | Biogen Idec Hemophilia Inc. | Systems for factor viii processing and methods thereof |
| CN103140237A (zh) | 2010-07-09 | 2013-06-05 | 比奥根艾迪克依蒙菲利亚公司 | 因子ix多肽及其使用方法 |
| WO2012009406A2 (en) | 2010-07-13 | 2012-01-19 | University Of Utah Research Foundation | Gold particles and methods of making and using the same in cancer treatment |
| GB201012410D0 (en) | 2010-07-23 | 2010-09-08 | Medical Res Council | Intracellular immunity |
| DE102010032758B4 (de) | 2010-07-29 | 2012-02-23 | Fujitsu Technology Solutions Intellectual Property Gmbh | Computersystem, Verfahren zum Programmieren einer Echtzeituhr und Computerprogrammprodukt |
| SG186706A1 (en) | 2010-07-30 | 2013-02-28 | Curevac Gmbh | Complexation of nucleic acids with disulfide-crosslinked cationic components for transfection and immunostimulation |
| US20130190626A1 (en) | 2010-08-02 | 2013-07-25 | Curtin University Of Technology | Determining location of, and imaging, a subsurface boundary |
| EP3578205A1 (en) | 2010-08-06 | 2019-12-11 | ModernaTX, Inc. | A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof |
| WO2012021516A2 (en) | 2010-08-09 | 2012-02-16 | The Trustees Of The University Of Pennsylvania | Nanoparticle-oligonucletide hybrid structures and methods of use thereof |
| WO2012019630A1 (en) | 2010-08-13 | 2012-02-16 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
| EP2605792B1 (en) | 2010-08-20 | 2014-12-10 | Novartis AG | Soluble needle arrays for delivery of influenza vaccines |
| US20120058154A1 (en) | 2010-08-20 | 2012-03-08 | Selecta Biosciences, Inc. | Synthetic nanocarrier vaccines comprising peptides obtained or derived from human influenza a virus m2e |
| WO2012024595A2 (en) | 2010-08-20 | 2012-02-23 | University Of Washington | Circumferential aerosol device for delivering drugs to olfactory epithelium and brain |
| US20120225129A1 (en) | 2010-08-20 | 2012-09-06 | Cerulean Pharma Inc. | Conjugates, particles, compositions, and related methods |
| MX2013002173A (es) | 2010-08-23 | 2013-05-06 | Selecta Biosciences Inc | Formas farmaceuticas dirigidas de epitopos multiples para la induccion de una respuesta inmunologica frente a antigenos. |
| EP2743530B1 (en) | 2010-08-24 | 2019-11-27 | GKN Driveline International GmbH | Boot for joints, especially for constant velocity joints, with a transition area |
| RS63329B1 (sr) | 2010-08-31 | 2022-07-29 | Glaxosmithkline Biologicals Sa | Pegilovani lipozomi za isporuku rnk koja kodira imunogen |
| JP6165629B2 (ja) | 2010-08-31 | 2017-07-19 | キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッドCanon U.S. Life Sciences, Inc. | 流体混合及びチップインターフェースのための方法、デバイス、及びシステム |
| DK4008357T3 (da) | 2010-08-31 | 2023-02-20 | Glaxosmithkline Biologicals Sa | Små liposomer til afgivelse af immunogen-kodende RNA |
| AU2011295938B2 (en) | 2010-08-31 | 2016-01-14 | Glaxosmithkline Biologicals S.A. | Lipids suitable for liposomal delivery of protein-coding RNA |
| ES2908978T3 (es) | 2010-08-31 | 2022-05-04 | Sirna Therapeutics Inc | Nuevas entidades químicas simples y métodos para la administración de oligonucleótidos |
| EP3556396B1 (en) | 2010-08-31 | 2022-04-20 | Theraclone Sciences, Inc. | Human immunodeficiency virus (hiv)-neutralizing antibodies |
| WO2012031205A2 (en) | 2010-09-03 | 2012-03-08 | The Brigham And Women's Hospital, Inc. | Lipid-polymer hybrid particles |
| WO2012034077A2 (en) | 2010-09-09 | 2012-03-15 | The University Of Chicago | Compositions and methods related to attenuated staphylococcal strains |
| WO2012034067A1 (en) | 2010-09-09 | 2012-03-15 | The University Of Chicago | Methods and compositions involving protective staphylococcal antigens |
| WO2012039979A2 (en) | 2010-09-10 | 2012-03-29 | The Johns Hopkins University | Rapid diffusion of large polymeric nanoparticles in the mammalian brain |
| US8466122B2 (en) | 2010-09-17 | 2013-06-18 | Protiva Biotherapeutics, Inc. | Trialkyl cationic lipids and methods of use thereof |
| BR112013004585B1 (pt) | 2010-09-20 | 2021-09-08 | Merck Sharp & Dohme Corp | Lipídeo catiônico, composição de lnp, e, uso de um lipídeo catiônico |
| WO2012038448A1 (en) | 2010-09-21 | 2012-03-29 | Riboxx Gmbh | Method for synthesizing rna using dna template |
| BR112013008697A2 (pt) | 2010-09-24 | 2016-06-21 | Massachusetts Inst Technology | géis nanoestruturados capazes de liberação controlada de agentes encapsulados |
| WO2012050975A2 (en) | 2010-09-29 | 2012-04-19 | The University Of North Carolina At Chapel Hill | Novel circular mammalian rna molecules and uses thereof |
| WO2012044638A1 (en) | 2010-09-30 | 2012-04-05 | Merck Sharp & Dohme Corp. | Low molecular weight cationic lipids for oligonucleotide delivery |
| HUE069586T2 (hu) | 2010-10-01 | 2025-03-28 | Modernatx Inc | Módosított nukleozidok, nukleotidok és nukleinsavak, valamint ezek felhasználása |
| WO2013086505A1 (en) | 2011-12-09 | 2013-06-13 | Vanderbilt University | Integrated organ-on-chip system and applications of the same |
| WO2012051220A1 (en) | 2010-10-11 | 2012-04-19 | Wichita State University | Composite magnetic nanoparticle drug delivery system |
| CN103269713B (zh) | 2010-10-11 | 2016-01-20 | 诺华有限公司 | 抗原递送平台 |
| KR20130124308A (ko) | 2010-10-21 | 2013-11-13 | 머크 샤프 앤드 돔 코포레이션 | 올리고뉴클레오티드 전달을 위한 신규 저분자량 양이온성 지질 |
| US20150056300A1 (en) | 2010-10-22 | 2015-02-26 | Bind Therapeutics, Inc. | Therapeutic nanoparticles with high molecular weight copolymers |
| KR20130138789A (ko) | 2010-10-29 | 2013-12-19 | 머크 샤프 앤드 돔 코포레이션 | 재조합 서브유닛 뎅기 바이러스 백신 |
| EA201390660A1 (ru) | 2010-11-05 | 2013-11-29 | Селекта Байосайенсиз, Инк. | Модифицированные никотиновые соединения и связанные способы |
| EP2635254B1 (en) | 2010-11-05 | 2019-05-15 | The John Hopkins University | Compositions and methods relating to reduced mucoadhesion |
| US9067882B2 (en) | 2010-11-05 | 2015-06-30 | Sirna Therapeutics, Inc. | Low molecular weight cyclic amine containing cationic lipids for oligonucleotide delivery |
| JP2014500867A (ja) | 2010-11-09 | 2014-01-16 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 皮膚浸透性および細胞侵入性(space)ペプチドとその使用法 |
| EP3536703B1 (en) | 2010-11-12 | 2021-05-26 | The Trustees of the University of Pennsylvania | Consensus prostate antigens, nucleic acid molecules encoding the same and uses thereof |
| EA030096B1 (ru) | 2010-11-16 | 2018-06-29 | Селекта Байосайенсиз, Инк. | Способы, композиции и нуклеиновые кислоты для стимуляции гуморального иммунного ответа |
| SMT201800444T1 (it) | 2010-11-17 | 2018-09-13 | Aduro Biotech Inc | Metodi e composizioni per indurre una risposta immunitaria contro egfrviii |
| WO2012068187A1 (en) | 2010-11-19 | 2012-05-24 | Merck Sharp & Dohme Corp. | Poly(amide) polymers for the delivery of oligonucleotides |
| CN103415302A (zh) | 2010-11-19 | 2013-11-27 | 艾德拉药物股份有限公司 | 调控基于toll-样受体的免疫应答的免疫调节寡核苷酸(iro)化合物 |
| US8853377B2 (en) | 2010-11-30 | 2014-10-07 | Shire Human Genetic Therapies, Inc. | mRNA for use in treatment of human genetic diseases |
| WO2012072096A1 (en) | 2010-12-03 | 2012-06-07 | Biontech Ag | Method for cellular rna expression |
| WO2012103985A2 (en) | 2010-12-16 | 2012-08-09 | Steve Pascolo | Pharmaceutical composition consisting of rna having alkali metal as counter ion and formulated with dications |
| US8901101B2 (en) | 2010-12-17 | 2014-12-02 | Sirna Therapeutics, Inc. | Membrane lytic poly(amido amine) polymers for the delivery of oligonucleotides |
| US8501930B2 (en) | 2010-12-17 | 2013-08-06 | Arrowhead Madison Inc. | Peptide-based in vivo siRNA delivery system |
| CA2825370A1 (en) | 2010-12-22 | 2012-06-28 | President And Fellows Of Harvard College | Continuous directed evolution |
| EP2658981B1 (en) | 2010-12-29 | 2016-09-28 | F.Hoffmann-La Roche Ag | Small molecule conjugates for intracellular delivery of nucleic acids |
| WO2012089225A1 (en) | 2010-12-29 | 2012-07-05 | Curevac Gmbh | Combination of vaccination and inhibition of mhc class i restricted antigen presentation |
| WO2012092552A1 (en) | 2010-12-30 | 2012-07-05 | Selecta Biosciences, Inc. | Synthetic nanocarriers with reactive groups that release biologically active agents |
| WO2012092569A2 (en) | 2010-12-31 | 2012-07-05 | Selecta Biosciences, Inc. | Compositions comprising immunostimulatory nucleic acids and related methods |
| EP2661255B1 (en) | 2011-01-04 | 2021-03-10 | Brown University | Nanotubes as carriers of nucleic acids into cells |
| WO2012094574A2 (en) | 2011-01-06 | 2012-07-12 | The Johns Hopkins University | Stabilized polyribonucleotide nanoparticles |
| WO2012094653A2 (en) | 2011-01-07 | 2012-07-12 | Massachusetts Institute Of Technology | Compositions and methods for macromolecular drug delivery |
| DK2663548T3 (en) | 2011-01-11 | 2017-07-24 | Alnylam Pharmaceuticals Inc | PEGYLED LIPIDS AND THEIR USE FOR PHARMACEUTICAL SUPPLY |
| DE102011082231A1 (de) | 2011-01-12 | 2012-07-12 | Robert Bosch Gmbh | Zündspule, insbesondere für kleinbauende Motoren |
| US20120189700A1 (en) | 2011-01-19 | 2012-07-26 | Zoraida Aguilar | Nanoparticle Based Immunological Stimulation |
| US20140065172A1 (en) | 2011-01-26 | 2014-03-06 | Cenix Bioscience Gmbh | Delivery system and conjugates for compound delivery via naturally occurring intracellular transport routes |
| US10363309B2 (en) | 2011-02-04 | 2019-07-30 | Case Western Reserve University | Targeted nanoparticle conjugates |
| US20140066363A1 (en) | 2011-02-07 | 2014-03-06 | Arun K. Bhunia | Carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide |
| WO2012116715A1 (en) | 2011-03-02 | 2012-09-07 | Curevac Gmbh | Vaccination in newborns and infants |
| US20120207840A1 (en) | 2011-02-10 | 2012-08-16 | Aura Biosciences, Inc. | Virion Derived Protein Nanoparticles For Delivering Diagnostic Or Therapeutic Agents For The Treatment Of Non-Melanoma Skin Cancer |
| CN103703013A (zh) | 2011-02-14 | 2014-04-02 | 斯威夫特生物科学公司 | 多核苷酸引物和探针 |
| CA2827118A1 (en) | 2011-02-15 | 2012-08-23 | Merrimack Pharmaceuticals, Inc. | Compositions and methods for delivering nucleic acid to a cell |
| US20140081012A1 (en) | 2011-02-15 | 2014-03-20 | The University Of North Carolina At Chapel Hill | Nanoparticle, liposomes, polymers, agents and proteins modified with reversible linkers |
| EP2489371A1 (en) | 2011-02-18 | 2012-08-22 | Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria | Carrier peptides for drug delivery |
| WO2012113413A1 (en) | 2011-02-21 | 2012-08-30 | Curevac Gmbh | Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates |
| BR112013021494B1 (pt) | 2011-02-22 | 2021-09-08 | California Institute Of Technology | Vetor viral, polinucleotídeo isolado, uso de um vírus adeno-associado (aav) recombinante e método para produzir o mesmo |
| US8696637B2 (en) | 2011-02-28 | 2014-04-15 | Kimberly-Clark Worldwide | Transdermal patch containing microneedles |
| US20140112950A1 (en) | 2011-03-02 | 2014-04-24 | Manmohan Singh | Combination vaccines with lower doses of antigen and/or adjuvant |
| WO2012116714A1 (en) | 2011-03-02 | 2012-09-07 | Curevac Gmbh | Vaccination in elderly patients |
| CA2832807A1 (en) | 2011-03-07 | 2012-09-13 | Massachusetts Institute Of Technology | Methods for transfecting cells with nucleic acids |
| US20120237565A1 (en) | 2011-03-14 | 2012-09-20 | Intezyne Technologies, Incorporated | Pegylated polyplexes containing two or more different polymers for polynucleotide delivery |
| WO2012125680A1 (en) | 2011-03-16 | 2012-09-20 | Novartis Ag | Methods of treating vasculitis using an il-17 binding molecule |
| PH12013501878A1 (en) | 2011-03-17 | 2013-10-14 | Novartis Ag | Fgfr and ligands thereof as biomarkers for breast cancer in hr positive subjects |
| WO2012125987A2 (en) | 2011-03-17 | 2012-09-20 | Massachusetts Institute Of Technology | Delivery system |
| EP2688590B1 (en) | 2011-03-24 | 2020-02-12 | GlaxoSmithKline Biologicals SA | Adjuvant nanoemulsions with phospholipids |
| EP2694040A4 (en) | 2011-03-25 | 2014-09-03 | Selecta Biosciences Inc | SYNTHETIC NANOTRACKERS WITH OSMOTICALLY MEDIATED RELEASE |
| US9238716B2 (en) | 2011-03-28 | 2016-01-19 | Massachusetts Institute Of Technology | Conjugated lipomers and uses thereof |
| US20140005070A1 (en) | 2011-03-28 | 2014-01-02 | Novartis Ag | Markers associated with cyclin-dependent kinase inhibitors |
| EP2691078A1 (en) | 2011-03-31 | 2014-02-05 | Ingell Technologies Holding B.V. | Biodegradable compositions suitable for controlled release |
| JP2014511687A (ja) * | 2011-03-31 | 2014-05-19 | モデルナ セラピューティクス インコーポレイテッド | 工学操作された核酸の送達および製剤 |
| US9901554B2 (en) | 2011-03-31 | 2018-02-27 | Ingell Technologies Holding B.V. | Biodegradable compositions suitable for controlled release |
| WO2012138453A1 (en) | 2011-04-03 | 2012-10-11 | The General Hospital Corporation | Efficient protein expression in vivo using modified rna (mod-rna) |
| EP2694524B1 (en) | 2011-04-04 | 2016-05-18 | The U.S.A. As Represented By The Secretary, Department Of Health And Human Services | 2'-o-aminooxymethyl nucleoside derivatives for use in the synthesis and modification of nucleosides, nucleotides and oligonucleotides |
| WO2012142132A1 (en) | 2011-04-11 | 2012-10-18 | Life Technologies Corporation | Polymer particles and methods of making and using same |
| WO2012142240A1 (en) | 2011-04-13 | 2012-10-18 | The Trustees Of The University Of Pennsylvania | Coated mesoporous nanoparticles |
| WO2013158127A1 (en) | 2012-04-16 | 2013-10-24 | Molecular Transfer, Inc. | Agents for improved delivery of nucleic acids to eukaryotic cells |
| US20140178894A1 (en) | 2011-04-20 | 2014-06-26 | Novartis Forschungsstiftung, Zweigniederlassung | Culture medium suitable for the culture of undifferentiated cells |
| CA2834349A1 (en) | 2011-04-26 | 2012-11-01 | Molecular Express, Inc. | Liposomal formulations |
| WO2012148684A1 (en) | 2011-04-27 | 2012-11-01 | President And Fellows Of Harvard College | Cell-friendly inverse opal hydrogels for cell encapsulation, drug and protein delivery, and functional nanoparticle encapsulation |
| CA2834365A1 (en) | 2011-04-28 | 2012-11-01 | Sandia Corporation | Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery and methods of using same |
| EP2702075A4 (en) | 2011-04-28 | 2015-04-22 | Jackson H M Found Military Med | NEUTRALIZING ANTIBODIES TO NIPAH AND HENDRA VIRUSES |
| JP2014515759A (ja) | 2011-04-29 | 2014-07-03 | ノバルティス アーゲー | 扁平上皮がんを治療する方法関連出願 |
| AU2012249540B2 (en) | 2011-04-29 | 2017-07-13 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers to reduce immune responses to therapeutic proteins |
| US20120283503A1 (en) | 2011-04-29 | 2012-11-08 | The Johns Hopkins University | Nanoparticle loaded stem cells and their use in mri guided hyperthermia |
| UA116189C2 (uk) | 2011-05-02 | 2018-02-26 | Мілленніум Фармасьютікалз, Інк. | КОМПОЗИЦІЯ АНТИ-α4β7 АНТИТІЛА |
| CN107012118A (zh) | 2011-05-02 | 2017-08-04 | 韦恩州立大学 | 蛋白质诱导的多能细胞技术及其用途 |
| EP2704565B1 (en) | 2011-05-04 | 2018-08-22 | The University Of Nottingham | Novel polymers which resist bacterial attachment |
| US9327029B2 (en) | 2011-05-05 | 2016-05-03 | Celacare Technologies, Llc | Antimicrobial silver hydrogel composition for the treatment of burns and wounds |
| US8945588B2 (en) | 2011-05-06 | 2015-02-03 | The University Of Chicago | Methods and compositions involving protective staphylococcal antigens, such as EBH polypeptides |
| CN103547350A (zh) | 2011-05-10 | 2014-01-29 | 巴斯夫欧洲公司 | 水包油乳液 |
| CN103687624B (zh) | 2011-05-11 | 2018-02-02 | 雷蒙特亚特特拉维夫大学有限公司 | 靶向的聚合缀合物和其用途 |
| EP2706983A1 (en) | 2011-05-12 | 2014-03-19 | Helmut Vockner | Novel pharmaceutical formulation |
| ES2762224T3 (es) | 2011-05-12 | 2020-05-22 | Yissum Res Dev Co Of Hebrew Univ Jerusalem Ltd | Liposomas que comprenden lípidos conjugados con polímero y usos relacionados |
| WO2012158613A1 (en) | 2011-05-13 | 2012-11-22 | Novartis Ag | Pre-fusion rsv f antigens |
| CA2835428A1 (en) | 2011-05-17 | 2012-11-22 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof for non-human vertebrates |
| US8691750B2 (en) | 2011-05-17 | 2014-04-08 | Axolabs Gmbh | Lipids and compositions for intracellular delivery of biologically active compounds |
| EP2710196A1 (en) | 2011-05-20 | 2014-03-26 | Kohler Co. | Toilet installation system and method |
| HRP20230443T1 (hr) | 2011-05-24 | 2023-09-15 | BioNTech SE | Individualizirana cjepiva protiv raka |
| MX340453B (es) | 2011-05-25 | 2016-07-08 | Novartis Ag | Biomarcadores para cancer de pulmon. |
| US20120302940A1 (en) | 2011-05-26 | 2012-11-29 | Jackson State University | Popcorn Shape Gold Nanoparticle For Targeted Diagnosis, Photothermal Treatment and In-Situ Monitoring Therapy Response for Cancer and Multiple Drug Resistance Bacteria |
| WO2012166923A2 (en) | 2011-05-31 | 2012-12-06 | Bind Biosciences | Drug loaded polymeric nanoparticles and methods of making and using same |
| WO2012166241A1 (en) | 2011-06-02 | 2012-12-06 | Novartis Ag | Biomarkers for hedgehog inhibitor therapy |
| CN103857387B (zh) | 2011-06-02 | 2017-03-15 | 加利福尼亚大学董事会 | 膜包封的纳米颗粒及使用方法 |
| EP2717911A1 (en) | 2011-06-06 | 2014-04-16 | Novartis Forschungsstiftung, Zweigniederlassung | Protein tyrosine phosphatase, non-receptor type 11 (ptpn11) and triple-negative breast cancer |
| CN103748078B (zh) | 2011-06-08 | 2016-11-09 | 夏尔人类遗传性治疗公司 | 可裂解脂质 |
| LT2717893T (lt) | 2011-06-08 | 2019-08-12 | Translate Bio, Inc. | Lipidų nanodalelių kompozicijos ir mrnr pristatymo būdai |
| US8636696B2 (en) | 2011-06-10 | 2014-01-28 | Kimberly-Clark Worldwide, Inc. | Transdermal device containing microneedles |
| WO2012168491A1 (en) | 2011-06-10 | 2012-12-13 | Novartis Ag | Pharmaceutical formulations of pcsk9 antagonists |
| WO2012170607A2 (en) | 2011-06-10 | 2012-12-13 | Novartis Ag | Use of pcsk9 antagonists |
| MX345704B (es) | 2011-06-10 | 2017-02-10 | Novartis Tiergesundheit Ag | Vacuna bovinas y métodos. |
| US8916696B2 (en) | 2011-06-12 | 2014-12-23 | City Of Hope | Aptamer-mRNA conjugates for targeted protein or peptide expression and methods for their use |
| WO2012172495A1 (en) | 2011-06-14 | 2012-12-20 | Novartis Ag | Compositions and methods for antibodies targeting tem8 |
| CN103717249B (zh) | 2011-06-15 | 2017-03-22 | 克洛恩泰克制药股份公司 | 注射针和装置 |
| CN103635490A (zh) | 2011-06-16 | 2014-03-12 | 诺瓦提斯公司 | 用作治疗剂的可溶性蛋白 |
| JP6113155B2 (ja) | 2011-06-20 | 2017-04-12 | ユニバーシティ オブ ピッツバーグ − オブ ザ コモンウェルス システム オブ ハイヤー エデュケイション | 計算で最適化した広い反応性を示すh1n1インフルエンザの抗原 |
| US9862926B2 (en) | 2011-06-27 | 2018-01-09 | Cellscript, Llc. | Inhibition of innate immune response |
| EP3473296B1 (en) | 2011-06-28 | 2020-08-05 | Inovio Pharmaceuticals, Inc. | A minimally invasive dermal electroporation device |
| ES2692519T3 (es) | 2011-07-01 | 2018-12-04 | Novartis Ag | Método para tratar trastornos metabólicos |
| JP2014520506A (ja) | 2011-07-04 | 2014-08-25 | コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション | 核酸複合体 |
| EP3508219A1 (en) | 2011-07-06 | 2019-07-10 | GlaxoSmithKline Biologicals S.A. | Self-replicating rna prime - protein boost vaccines |
| EP3456316A1 (en) | 2011-07-06 | 2019-03-20 | GlaxoSmithKline Biologicals S.A. | Cationic oil-in-water emulsions |
| TR201802662T4 (tr) | 2011-07-06 | 2018-03-21 | Glaxosmithkline Biologicals Sa | Nükleik asitler içeren su içinde yağ emülsiyonları. |
| EP3332802A1 (en) | 2011-07-06 | 2018-06-13 | GlaxoSmithKline Biologicals SA | Immunogenic combination compositions and uses thereof |
| JP2014520806A (ja) | 2011-07-06 | 2014-08-25 | ノバルティス アーゲー | Rna分子の送達のための有用なn:p比を有するリポソーム |
| US8975302B2 (en) | 2011-07-07 | 2015-03-10 | Life Technologies Corporation | Polymer particles, nucleic acid polymer particles and methods of making and using the same |
| EP2758458A4 (en) | 2011-07-10 | 2015-10-21 | Harvard College | COMPOSITIONS AND METHODS FOR SELF-ASSEMBLING POLYMERS WITH COMPLEMENTARY MACROSCOPIC AND MICROSCOPIC SCALE UNITS |
| US20130012566A1 (en) | 2011-07-10 | 2013-01-10 | Aura Biosciences, Inc. | Virion Derived Protein Nanoparticles For Delivering Diagnostic Or Therapeutic Agents For The Treatment of Alopecia |
| WO2013009717A1 (en) | 2011-07-10 | 2013-01-17 | Elisabet De Los Pinos | Virion derived protein nanoparticles for delivering diagnostic or therapeutic agents for the treatment of skin-related diseases |
| GB2492999A (en) | 2011-07-20 | 2013-01-23 | Univ Central Lancashire | Neutron detector |
| US20140148503A1 (en) | 2011-07-20 | 2014-05-29 | University Of Iowa Research Foundation | Nucleic acid aptamers |
| ES2670944T3 (es) | 2011-07-21 | 2018-06-04 | Croda International Plc | Copolímeros de bloques de poliéter-poliamida ramificados y métodos de preparación y uso de los mismos |
| ES2687129T3 (es) | 2011-07-25 | 2018-10-23 | Glaxosmithkline Biologicals Sa | Composiciones y métodos para evaluar la inmunogenicidad funcional de vacunas contra parvovirus |
| US9493549B2 (en) | 2011-07-25 | 2016-11-15 | The Rockefeller University | Antibodies directed toward the HIV-1 GP120 CD4 binding site with increased potency and breadth |
| CA2843274A1 (en) | 2011-07-29 | 2013-02-07 | Selecta Biosciences, Inc. | Synthetic nanocarriers that generate humoral and cytotoxic t lymphocyte (ctl) immune responses |
| AU2012296576B2 (en) | 2011-08-15 | 2017-09-07 | The University Of Chicago | Compositions and methods related to antibodies to staphylococcal protein a |
| HK1199736A1 (en) | 2011-08-26 | 2015-07-17 | 箭头研究公司 | Poly(vinyl ester) polymers for in vivo nucleic acid delivery |
| US8889657B2 (en) | 2011-08-31 | 2014-11-18 | Mallinckrodt Llc | Nanoparticle PEG modification with H-phosphonates |
| HUE041800T2 (hu) | 2011-08-31 | 2019-05-28 | Glaxosmithkline Biologicals Sa | Pegilált liposzómák immunogént kódoló RNS bejuttatására |
| US9126966B2 (en) | 2011-08-31 | 2015-09-08 | Protiva Biotherapeutics, Inc. | Cationic lipids and methods of use thereof |
| WO2013033620A1 (en) | 2011-09-01 | 2013-03-07 | Irm Llc | Compounds and compositions as pdgfr kinase inhibitors |
| EA201490553A1 (ru) | 2011-09-02 | 2014-08-29 | Новартис Аг | Органические композиции для лечения связанных с hsf1 заболеваний |
| EP2755693A4 (en) * | 2011-09-12 | 2015-05-20 | Moderna Therapeutics Inc | MANIPULATED NUCLEIC ACIDS AND METHOD OF APPLICATION THEREFOR |
| WO2013039857A1 (en) * | 2011-09-12 | 2013-03-21 | modeRNA Therapeutics | Engineered nucleic acids and methods of use thereof |
| US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US9358284B2 (en) | 2011-09-14 | 2016-06-07 | Glaxosmithkline Biologicals Sa | Methods for making saccharide-protein glycoconjugates |
| CA2848410A1 (en) | 2011-09-16 | 2013-03-21 | The Trustees Of The University Of Pennsylvania | Rna engineered t cells for the treatment of cancer |
| JP2014531456A (ja) | 2011-09-22 | 2014-11-27 | バインド セラピューティックス インコーポレイテッド | 治療用ナノ粒子と癌を治療する方法 |
| US9375388B2 (en) | 2011-09-23 | 2016-06-28 | Indian Institute Of Technology, Bombay | Nanoparticle based cosmetic composition |
| UY34346A (es) | 2011-09-26 | 2013-04-30 | Novartis Ag | Proteínas de fusión para tratar trastornos metabólicos |
| TW201315742A (zh) | 2011-09-26 | 2013-04-16 | Novartis Ag | 治療代謝病症之雙功能蛋白質 |
| AU2012315965A1 (en) | 2011-09-27 | 2014-04-03 | Alnylam Pharmaceuticals, Inc. | Di-aliphatic substituted PEGylated lipids |
| WO2013045505A1 (en) | 2011-09-28 | 2013-04-04 | Novartis Ag | Biomarkers for raas combination therapy |
| DK3682905T3 (da) * | 2011-10-03 | 2022-02-28 | Modernatx Inc | Modificerede nukleosider, nukleotider og nukleinsyrer og anvendelser deraf |
| WO2013055971A1 (en) | 2011-10-11 | 2013-04-18 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Polymers for delivering a substance into a cell |
| CA2872033A1 (en) | 2011-10-11 | 2013-04-18 | Novartis Ag | Recombinant self-replicating polycistronic rna molecules |
| WO2014066811A1 (en) | 2012-10-25 | 2014-05-01 | The Johns Hopkins University | Bioreducible poly (b-amino ester)s for sirna delivery |
| WO2013055331A1 (en) | 2011-10-12 | 2013-04-18 | The Curators Of The University Of Missouri | Pentablock polymers |
| AU2012323937A1 (en) | 2011-10-14 | 2014-06-05 | Stc.Unm | Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery including transdermal delivery of cargo and methods thereof |
| CN109111523B (zh) | 2011-10-14 | 2022-06-07 | 诺华股份有限公司 | 用于Wnt途径相关疾病的抗体和方法 |
| EP3597644B1 (en) | 2011-10-18 | 2021-09-29 | Dicerna Pharmaceuticals, Inc. | Amine cationic lipids and uses thereof |
| EP2768571B1 (en) | 2011-10-18 | 2023-02-22 | Micell Technologies, Inc. | Drug delivery medical device |
| CN103930112B (zh) | 2011-10-20 | 2018-11-09 | 诺华股份有限公司 | 预测对α7烟碱型乙酰胆碱受体激活剂疗法的响应的生物标志物 |
| AU2012324398A1 (en) | 2011-10-20 | 2014-05-01 | Seqirus UK Limited | Adjuvanted influenza B virus vaccines for pediatric priming |
| EP2770980A4 (en) | 2011-10-25 | 2015-11-04 | Univ British Columbia | LOW SIZE LIPID NANOPARTICLES AND METHODS THEREOF |
| WO2013061290A1 (en) | 2011-10-26 | 2013-05-02 | Nanopass Technologies Ltd. | Microneedle intradermal drug delivery device with auto-disable functionality |
| EP3574950B1 (en) | 2011-10-27 | 2021-02-17 | Sorrento Therapeutics, Inc. | Transdermal delivery of high viscosity bioactive agents |
| PE20181541A1 (es) | 2011-10-27 | 2018-09-26 | Massachusetts Inst Technology | Derivados de aminoacidos funcionalizados en la terminal n capaces de formar microesferas encapsuladoras de farmaco |
| EP2771043A4 (en) | 2011-10-28 | 2015-04-29 | Presage Biosciences Inc | ACTIVE RELEASE PROCEDURE |
| AU2012328524B2 (en) | 2011-10-28 | 2017-05-18 | Excelse Bio, Inc. | Protein formulations containing amino acids |
| WO2013062140A1 (en) | 2011-10-28 | 2013-05-02 | Kyoto University | Method for efficiently inducing differentiation of pluripotent stem cells into hepatic lineage cells |
| CN108704132A (zh) | 2011-10-31 | 2018-10-26 | 弗·哈夫曼-拉罗切有限公司 | 抗体制剂 |
| CN104023793B (zh) | 2011-10-31 | 2017-11-24 | 马林克罗特有限公司 | 用于治疗癌症的联合脂质体组合物 |
| WO2013064911A2 (en) | 2011-11-04 | 2013-05-10 | Nitto Denko Corporation | Single use system for sterilely producing lipid-nucleic acid particles |
| US10449257B2 (en) | 2011-11-04 | 2019-10-22 | Agency For Science, Technology And Research | Self-assembled composite ultrasmall peptide-polymer hydrogels |
| US9872870B2 (en) | 2011-11-04 | 2018-01-23 | University Of Notre Dame Du Lac | Multifunctional micellar nanoparticle-based drug and targeting agent system |
| US9579338B2 (en) | 2011-11-04 | 2017-02-28 | Nitto Denko Corporation | Method of producing lipid nanoparticles for drug delivery |
| CA2854457A1 (en) | 2011-11-04 | 2013-05-10 | David Jenkins | Low density lipoprotein-related protein 6 (lrp6) - half life extender constructs |
| US20130116408A1 (en) | 2011-11-05 | 2013-05-09 | Aura Biosciences, Inc. | Virion Derived Protein Nanoparticles For Delivering Radioisotopes For The Diagnosis And Treatment Of Malignant And Systemic Disease And The Monitoring Of Therapy |
| US20130115247A1 (en) | 2011-11-05 | 2013-05-09 | Aura Biosciences, Inc. | Virion Derived Protein Nanoparticles For Delivering Radioisotopes For The Diagnosis And Treatment Of Malignant And Systemic Disease And The Monitoring Of Therapy |
| US9849087B2 (en) | 2011-11-08 | 2017-12-26 | The Board Of Trustees Of The University Of Arkansas | Methods and compositions for X-ray induced release from pH sensitive liposomes |
| US20140314787A1 (en) | 2011-11-08 | 2014-10-23 | Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute | Treatment for neurodegenerative diseases |
| US20140287510A1 (en) | 2011-11-08 | 2014-09-25 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute | Rod cell-specific promoter |
| EP2776838A1 (en) | 2011-11-08 | 2014-09-17 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Early diagnostic of neurodegenerative diseases |
| WO2013070653A1 (en) | 2011-11-09 | 2013-05-16 | Board Of Trustees Michigan State University | Metallic nanoparticle synthesis with carbohydrate capping agent |
| WO2013068847A2 (en) | 2011-11-11 | 2013-05-16 | Variation Biotechnologies, Inc. | Compositions and methods for treatment of cytomegalovirus |
| WO2013071047A1 (en) | 2011-11-11 | 2013-05-16 | Children's Medical Center Corporation | Compositions and methods for in vitro transcription of rna |
| BR112014011560A2 (pt) | 2011-11-14 | 2017-05-09 | Novartis Ag | complexos imunogênicos de carbômeros polianiônicos e polipeptídeos env, e métodos de fabricação e uso dos mesmos |
| US20140343128A1 (en) | 2011-11-15 | 2014-11-20 | Novartis Ag | Combination of a phosphoinositide 3-kinase inhibitor and a modulator of the Janus Kinase 2 - Signal Transducer and Activator of Transcription 5 pathway |
| ES2909777T3 (es) | 2011-11-18 | 2022-05-10 | Regeneron Pharma | Formulación de liberación prolongada que comprende micropartículas para su uso en el humor vítreo del ojo para tratar trastornos oculares vasculares |
| BR112014012101A2 (pt) | 2011-11-21 | 2019-09-24 | Novartis Ag | métodos de tratamento de artrite psoriática (psa) usando os antagonistas de il- 17 e alelos de resposta ou não resposta à psa |
| WO2013078199A2 (en) | 2011-11-23 | 2013-05-30 | Children's Medical Center Corporation | Methods for enhanced in vivo delivery of synthetic, modified rnas |
| TR201111743A2 (tr) | 2011-11-28 | 2012-04-24 | Nesl�Han G�Rsoy Reyhan | Kanser tedavisinde kullanılmak üzere yağ bazlı nanotaşıyıcı sistemler. |
| WO2013082111A2 (en) | 2011-11-29 | 2013-06-06 | The University Of North Carolina At Chapel Hill | Geometrically engineered particles and methods for modulating macrophage or immune responses |
| WO2013082427A1 (en) | 2011-11-30 | 2013-06-06 | 3M Innovative Properties Company | Microneedle device including a peptide therapeutic agent and an amino acid and methods of making and using the same |
| US9364549B2 (en) | 2011-11-30 | 2016-06-14 | Andreas Voigt | Hydrophobic drug-delivery material, method for manufacturing thereof and methods for delivery of a drug-delivery composition |
| WO2013082529A1 (en) | 2011-12-02 | 2013-06-06 | Yale University | Enzymatic synthesis of poly(amine-co-esters) and methods of use thereof for gene delivery |
| EP2785333A4 (en) | 2011-12-02 | 2015-04-01 | Pegasus Lab Inc | AMPHIPATIVE COMPOSITIONS WITH DELAYED RELIEF ON LIPID BASIS |
| WO2013082590A1 (en) | 2011-12-02 | 2013-06-06 | Invivo Therapeutics Corporation | Peg based hydrogel for peripheral nerve injury applications and compositions and method of use of synthetic hydrogel sealants |
| US8497124B2 (en) | 2011-12-05 | 2013-07-30 | Factor Bioscience Inc. | Methods and products for reprogramming cells to a less differentiated state |
| MX382822B (es) | 2011-12-05 | 2025-03-13 | Factor Bioscience Inc | Metodos y productos para transfeccion de celulas. |
| US9814867B2 (en) | 2011-12-05 | 2017-11-14 | Nano Precision Medical, Inc. | Device having titania nanotube membrane for drug delivery |
| WO2013086373A1 (en) | 2011-12-07 | 2013-06-13 | Alnylam Pharmaceuticals, Inc. | Lipids for the delivery of active agents |
| GB201121070D0 (en) | 2011-12-07 | 2012-01-18 | Isis Innovation | composition for delivery of biotherapeutics |
| CA3170051A1 (en) | 2011-12-07 | 2013-06-13 | Alnylam Pharmaceuticals, Inc. | Branched alkyl and cycloalkyl terminated biodegradable lipids for the delivery of active agents |
| CA2856742A1 (en) | 2011-12-07 | 2013-06-13 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
| WO2013086526A1 (en) | 2011-12-09 | 2013-06-13 | The Regents Of The University Of California | Liposomal drug encapsulation |
| US9725687B2 (en) | 2011-12-09 | 2017-08-08 | President And Fellows Of Harvard College | Integrated human organ-on-chip microphysiological systems |
| US10087422B2 (en) | 2011-12-09 | 2018-10-02 | President And Fellows Of Harvard College | Organ chips and uses thereof |
| US9839616B2 (en) | 2011-12-12 | 2017-12-12 | Kyowa Hakko Kirin Co., Ltd. | Lipid nano particles comprising cationic lipid for drug delivery system |
| US9750795B2 (en) | 2011-12-12 | 2017-09-05 | The Trustees Of The University Of Pennsylvania | Proteins comprising MRSA PBP2a and fragments thereof, nucleic acids encoding the same, and compositions and their use to prevent and treat MRSA infections |
| CN104159615B (zh) | 2011-12-12 | 2017-08-18 | 协和发酵麒麟株式会社 | 含有阳离子性脂质的组合的脂质纳米粒子 |
| US20150000936A1 (en) | 2011-12-13 | 2015-01-01 | Schlumberger Technology Corporation | Energization of an element with a thermally expandable material |
| EP2604253A1 (en) | 2011-12-13 | 2013-06-19 | Otto Glatter | Water-in-oil emulsions and methods for their preparation |
| MX385832B (es) | 2011-12-13 | 2025-03-18 | Engeneic Molecular Delivery Pty Ltd | Minicélulas bacterianamente derivadas, intactas para la formación de mágenes de tumores cerebrales. |
| EP2791364A4 (en) | 2011-12-14 | 2015-11-11 | Moderna Therapeutics Inc | PROCESS FOR RESPONSE TO A BIOLOGICAL THREAT |
| US20140343129A1 (en) | 2011-12-14 | 2014-11-20 | Moderna Therapeutics, Inc. | Modified nucleic acids, and acute care uses thereof |
| WO2013090897A1 (en) | 2011-12-15 | 2013-06-20 | The Trustees Of The University Of Pennsylvania | Using adaptive immunity to detect drug resistance |
| US9636414B2 (en) | 2011-12-15 | 2017-05-02 | Biontech Ag | Particles comprising single stranded RNA and double stranded RNA for immunomodulation |
| WO2013090601A2 (en) | 2011-12-16 | 2013-06-20 | Massachusetts Institute Of Technology | Compact nanoparticles for biological applications |
| HRP20220717T1 (hr) | 2011-12-16 | 2022-07-22 | Modernatx, Inc. | Modificirani pripravci mrna |
| CA2859205A1 (en) | 2011-12-16 | 2013-06-20 | Massachusetts Institute Of Technology | Alpha-aminoamidine polymers and uses thereof |
| KR20140103939A (ko) | 2011-12-16 | 2014-08-27 | 노파르티스 아게 | 흡입 프로파일-비의존적 약물 전달을 위한 에어로졸화 장치 |
| BR112014014678A2 (pt) | 2011-12-16 | 2017-06-13 | Allergan Inc | composições oftálmicas compreendendo copolímeros de enxertia de polivinil caprolactama-acetato de polivinila-polietileno glicol |
| EP2791171A1 (en) | 2011-12-16 | 2014-10-22 | Synthon Biopharmaceuticals B.V. | EXPRESSION OF SECRETORY IgA ANTIBODIES IN DUCKWEED |
| WO2013091001A1 (en) | 2011-12-19 | 2013-06-27 | The University Of Sydney | A peptide-hydrogel composite |
| US9241829B2 (en) | 2011-12-20 | 2016-01-26 | Abbott Medical Optics Inc. | Implantable intraocular drug delivery apparatus, system and method |
| RU2014129863A (ru) | 2011-12-21 | 2016-02-10 | Модерна Терапьютикс, Инк. | Способы повышения жизнеспособности или увеличения продолжительности жизни органа или экспланта органа |
| US20130195851A1 (en) | 2011-12-23 | 2013-08-01 | Genentech, Inc. | Articles of manufacture and methods for co-administration of antibodies |
| WO2013101908A1 (en) | 2011-12-27 | 2013-07-04 | Massachusetts Institute Of Technology | Microneedle devices and uses thereof |
| US10596246B2 (en) | 2011-12-29 | 2020-03-24 | Glaxosmithkline Biological Sa | Adjuvanted combinations of meningococcal factor H binding proteins |
| WO2013101690A1 (en) | 2011-12-29 | 2013-07-04 | modeRNA Therapeutics | Modified mrnas encoding cell-penetrating polypeptides |
| EP3421601B1 (en) | 2011-12-30 | 2019-12-04 | Cellscript, Llc | Making and using in vitro-synthesized ssrna for introducing into mammalian cells to induce a biological or biochemical effect |
| CN110025608A (zh) | 2012-01-06 | 2019-07-19 | 燿石治疗公司 | 降低心血管疾病风险的方法 |
| WO2013106496A1 (en) | 2012-01-10 | 2013-07-18 | modeRNA Therapeutics | Methods and compositions for targeting agents into and across the blood-brain barrier |
| SG11201404361UA (en) | 2012-01-26 | 2014-09-26 | Life Technologies Corp | Methods for increasing the infectivity of viruses |
| WO2013112778A1 (en) | 2012-01-26 | 2013-08-01 | Life Technologies Corporation | Methods for increasing the infectivity of viruses |
| WO2013113326A1 (en) | 2012-01-31 | 2013-08-08 | Curevac Gmbh | Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen |
| EP2623121A1 (en) | 2012-01-31 | 2013-08-07 | Bayer Innovation GmbH | Pharmaceutical composition comprising a polymeric carrier cargo complex and an antigen |
| WO2013113325A1 (en) | 2012-01-31 | 2013-08-08 | Curevac Gmbh | Negatively charged nucleic acid comprising complexes for immunostimulation |
| KR102081560B1 (ko) | 2012-02-09 | 2020-02-25 | 라이프 테크놀로지스 코포레이션 | 친수성 중합체성 입자 및 그의 제조 방법 |
| US20150064255A1 (en) | 2012-02-22 | 2015-03-05 | Northwestern University | Nanostructures for treating cancers and other conditions |
| HK1205751A1 (en) | 2012-02-22 | 2015-12-24 | Cerulean Pharma Inc. | Conjugates, particles, compositions, and related methods |
| US20130243867A1 (en) | 2012-02-23 | 2013-09-19 | University Of South Florida (A Florida Non-Profit Corporation) | Micelle compositions and methods for their use |
| WO2013130535A1 (en) | 2012-02-27 | 2013-09-06 | Newgen Biopharma Corporation | Topical delivery of hormonal and non hormonal nano formulations, methods of making and using the same |
| EP2819652A1 (en) | 2012-02-27 | 2015-01-07 | Epitarget As | Use of a particulate immunomodulator in cancer therapy |
| EP2819651A1 (en) | 2012-02-27 | 2015-01-07 | Epitarget AS | Use of an antibody and a particulate immunomodulator in therapy |
| MX353382B (es) | 2012-03-01 | 2018-01-10 | Amgen Res Munich Gmbh | Moleculas de union polipeptido de larga duracion. |
| US20130236504A1 (en) | 2012-03-06 | 2013-09-12 | Medical University Of South Carolina | Delivery System for Enhancing Drug Efficacy |
| CN104271149B (zh) | 2012-03-13 | 2016-03-16 | 夸祖鲁-纳塔尔大学 | 经皮递送装置 |
| US10322089B2 (en) | 2012-03-14 | 2019-06-18 | The Board Of Trustees Of The Leland Stanford Junior University | Nanoparticles, nanoparticle delivery methods, and systems of delivery |
| AU2013231638B2 (en) | 2012-03-16 | 2017-10-12 | Merck Patent Gmbh | Targeting aminoacid lipids |
| EA032552B1 (ru) | 2012-03-16 | 2019-06-28 | Дзе Джонс Хопкинс Юниверсити | Препараты с контролируемым высвобождением для доставки ингибиторов hif-1 |
| AU2013232300B2 (en) | 2012-03-16 | 2015-12-17 | The Johns Hopkins University | Non-linear multiblock copolymer-drug conjugates for the delivery of active agents |
| US9610346B2 (en) | 2012-03-23 | 2017-04-04 | International Aids Vaccine Initiative | Recombinant viral vectors |
| WO2013142349A1 (en) | 2012-03-23 | 2013-09-26 | University Of Chicago | Compositions and methods related to staphylococcal sbi |
| WO2013143555A1 (en) | 2012-03-26 | 2013-10-03 | Biontech Ag | Rna formulation for immunotherapy |
| WO2013148186A1 (en) | 2012-03-26 | 2013-10-03 | President And Fellows Of Harvard College | Lipid-coated nucleic acid nanostructures of defined shape |
| SG11201405545XA (en) | 2012-03-27 | 2014-11-27 | Curevac Gmbh | Artificial nucleic acid molecules comprising a 5'top utr |
| MX2019002345A (es) | 2012-03-27 | 2022-08-24 | Curevac Ag | Moleculas artificiales de acido nucleico para la expresion mejorada de proteina o peptido. |
| WO2013148541A1 (en) | 2012-03-27 | 2013-10-03 | Merck Sharp & Dohme Corp. | DIETHER BASED BIODEGRADABLE CATIONIC LIPIDS FOR siRNA DELIVERY |
| KR102186497B1 (ko) | 2012-03-27 | 2020-12-04 | 큐어백 아게 | 인공 핵산 분자 |
| CA2868030C (en) | 2012-03-29 | 2021-05-25 | Shire Human Genetic Therapies, Inc. | Lipid-derived neutral nanoparticles |
| CN108949772A (zh) | 2012-04-02 | 2018-12-07 | 现代泰克斯公司 | 用于产生与人类疾病相关的生物制剂和蛋白质的修饰多核苷酸 |
| US20150050354A1 (en) | 2012-04-02 | 2015-02-19 | Moderna Therapeutics, Inc. | Modified polynucleotides for the treatment of otic diseases and conditions |
| US20140275229A1 (en) | 2012-04-02 | 2014-09-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding udp glucuronosyltransferase 1 family, polypeptide a1 |
| US10501512B2 (en) | 2012-04-02 | 2019-12-10 | Modernatx, Inc. | Modified polynucleotides |
| JP6189415B2 (ja) | 2012-04-02 | 2017-08-30 | モデルナティエックス インコーポレイテッドModernaTX,Inc. | 細胞質および細胞骨格タンパク質の産生のための修飾ポリヌクレオチド |
| EP2833918B1 (en) | 2012-04-05 | 2019-05-08 | Massachusetts Institute of Technology | Immunostimulatory compositions and methods of use thereof |
| EP2833926A4 (en) | 2012-04-05 | 2015-11-25 | Univ Florida | NEUROPHILIC NANOPARTICLES |
| WO2013152351A2 (en) | 2012-04-06 | 2013-10-10 | The Trustees Of Columbia University In The City Of New York | Fusion polypeptides and methods of use thereof |
| RU2635466C2 (ru) | 2012-04-08 | 2017-11-13 | Теракоат Лтд | Препараты термообратимого гидрогеля для применения при лечении нарушений уротелия |
| NZ709953A (en) | 2012-04-11 | 2016-09-30 | Intezyne Technologies Inc | Block copolymers for stable micelles |
| CA2869748C (en) | 2012-04-12 | 2017-10-24 | Yale University | Vehicles for controlled delivery of different pharmaceutical agents |
| WO2013155513A1 (en) | 2012-04-13 | 2013-10-17 | President And Fellows Of Harvard College | Devices and methods for in vitro aerosol delivery |
| WO2013154766A1 (en) | 2012-04-13 | 2013-10-17 | New York University | Microrna control of ldl receptor pathway |
| JP2015515530A (ja) | 2012-04-18 | 2015-05-28 | アローヘッド リサーチ コーポレイション | インビボ核酸送達のためのポリ(アクリラート)ポリマー |
| US9402816B2 (en) | 2012-04-19 | 2016-08-02 | Sima Therapeutics, Inc. | Diester and triester based low molecular weight, biodegradeable cationic lipids for oligonucleotide delivery |
| EP2841056A4 (en) | 2012-04-23 | 2015-09-16 | Massachusetts Inst Technology | STABLE LAYER COATED PARTICLES |
| AR090825A1 (es) | 2012-04-25 | 2014-12-10 | Regulus Therapeutics Inc | COMPUESTO DE microARN Y METODOS DE MODULACION DE LA ACTIVIDAD DE miR-21 |
| KR102310775B1 (ko) | 2012-05-03 | 2021-10-07 | 칼라 파마슈티컬스, 인크. | 개선된 점막 수송을 나타내는 제약 나노입자 |
| JP6392209B2 (ja) | 2012-05-04 | 2018-09-19 | ザ・ジョンズ・ホプキンス・ユニバーシティー | 粘液内層を通過する迅速な透過のための脂質ベース薬物キャリア |
| WO2013173657A1 (en) | 2012-05-16 | 2013-11-21 | Micell Technologies, Inc. | Low burst sustained release lipophilic and biologic agent compositions |
| US9399672B2 (en) | 2012-05-17 | 2016-07-26 | The United States Of America, As Represented By The Secretary Department Of Health And Human Services | Hepatitis C virus neutralizing antibody |
| WO2013173693A1 (en) | 2012-05-18 | 2013-11-21 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Nanoparticles with enhanced entry into cancer cells |
| US9750819B2 (en) | 2012-05-23 | 2017-09-05 | Ohio State Innovation Foundation | Lipid nanoparticle compositions and methods of making and methods of using the same |
| WO2013174409A1 (en) | 2012-05-25 | 2013-11-28 | Curevac Gmbh | Reversible immobilization and/or controlled release of nucleic acid containing nanoparticles by (biodegradable) polymer coatings |
| CA2874453C (en) | 2012-06-06 | 2021-05-18 | Loma Vista Medical, Inc. | Inflatable medical devices |
| EP2858677B1 (en) | 2012-06-08 | 2020-08-05 | ethris GmbH | Pulmonary delivery of messenger rna |
| LT2858974T (lt) | 2012-06-08 | 2018-12-10 | Nitto Denko Corporation | Lipidai, skirti terapinio agento pristatymo kompozicijoms |
| HK1208618A1 (en) | 2012-06-08 | 2016-03-11 | 夏尔人类遗传性治疗公司 | Pulmonary delivery of mrna to non-lung target cells |
| WO2014014613A2 (en) | 2012-06-20 | 2014-01-23 | President And Fellows Of Harvard College | Self-assembling peptides, peptide nanostructures and uses thereof |
| CN104507458B (zh) | 2012-06-20 | 2018-05-22 | 滑铁卢大学 | 粘膜粘合剂纳米颗粒递送系统 |
| US9803010B2 (en) | 2012-06-27 | 2017-10-31 | Merck Sharp & Dohme Corp. | Crystalline anti-human IL-23p19 antibodies |
| US9150841B2 (en) | 2012-06-29 | 2015-10-06 | Shire Human Genetic Therapies, Inc. | Cells for producing recombinant iduronate-2-sulfatase |
| US9956291B2 (en) | 2012-07-10 | 2018-05-01 | Shaker A. Mousa | Nanoformulation and methods of use of thyroid receptor beta1 agonists for liver targeting |
| EP2872120B1 (en) | 2012-07-16 | 2017-05-03 | Nanoderm Sciences, Inc. | Therapeutic nanoparticles with a polymyxin b as targeting agent |
| EP2687252A1 (en) | 2012-07-17 | 2014-01-22 | Sanofi-Aventis Deutschland GmbH | Drug delivery device |
| EP2687251A1 (en) | 2012-07-17 | 2014-01-22 | Sanofi-Aventis Deutschland GmbH | Drug delivery device |
| CN112587658A (zh) | 2012-07-18 | 2021-04-02 | 博笛生物科技有限公司 | 癌症的靶向免疫治疗 |
| WO2014015334A1 (en) | 2012-07-20 | 2014-01-23 | Brown University | System and methods for nanostructure protected delivery of treatment agent and selective release thereof |
| CN104781416B (zh) | 2012-07-24 | 2017-07-04 | 哈佛学院院长及董事 | 核酸纳米结构的自装配 |
| GB201213624D0 (en) | 2012-07-27 | 2012-09-12 | Univ Ulster The | Method and system for production of conjugated nanoparticles |
| WO2014015422A1 (en) | 2012-07-27 | 2014-01-30 | Ontario Institute For Cancer Research | Cellulose-based nanoparticles for drug delivery |
| WO2014025795A1 (en) | 2012-08-07 | 2014-02-13 | Northeastern University | Compositions for the delivery of rna and drugs into cells |
| WO2014024193A1 (en) | 2012-08-07 | 2014-02-13 | Prodel Pharma Ltd. | Compositions and methods for rapid transmucosal delivery of pharmaceutical ingredients |
| US9974886B2 (en) | 2012-08-08 | 2018-05-22 | Nanyang Technological University | Methods of manufacturing hydrogel microparticles having living cells, and compositions for manufacturing a scaffold for tissue engineering |
| WO2014026044A2 (en) | 2012-08-08 | 2014-02-13 | Presage Biosciences, Inc. | Extrusion methods and devices for drug delivery |
| CN104736181A (zh) | 2012-08-10 | 2015-06-24 | 北德克萨斯大学健康科学中心 | 包含靶向聚氨基酸与脂肪酸之缀合物的药物递送载剂 |
| EP2882706A1 (en) | 2012-08-13 | 2015-06-17 | Massachusetts Institute of Technology | Amine-containing lipidoids and uses thereof |
| WO2014027006A1 (en) | 2012-08-13 | 2014-02-20 | Edko Pazarlama Tanitim Ticaret Limited Sirketi | Bioadhesive formulations for use in drug delivery |
| WO2014028429A2 (en) | 2012-08-14 | 2014-02-20 | Moderna Therapeutics, Inc. | Enzymes and polymerases for the synthesis of rna |
| WO2014026284A1 (en) | 2012-08-14 | 2014-02-20 | Froese Aaron | Internal structured self assembling liposomes |
| WO2014028209A1 (en) | 2012-08-14 | 2014-02-20 | The Trustees Of The University Of Pennsylvania | Stabilizing shear-thinning hydrogels |
| EP2885414B1 (en) | 2012-08-15 | 2020-09-23 | The University of Chicago | Exosome-based therapeutics against neurodegenerative disorders |
| US10179134B2 (en) | 2012-09-05 | 2019-01-15 | Creighton University | Polymeric nanoparticles in a thermosensitive gel for coital-independent vaginal prophylaxis of HIV |
| US8703197B2 (en) | 2012-09-13 | 2014-04-22 | International Business Machines Corporation | Branched polyamines for delivery of biologically active materials |
| JP6356678B2 (ja) | 2012-09-17 | 2018-07-11 | ファイザー・インク | 治療用ナノ粒子を製造する方法 |
| WO2014047649A1 (en) | 2012-09-24 | 2014-03-27 | The Regents Of The University Of California | Methods for arranging and packing nucleic acids for unusual resistance to nucleases and targeted delivery for gene therapy |
| WO2014052634A1 (en) | 2012-09-27 | 2014-04-03 | The University Of North Carolina At Chapel Hill | Lipid coated nanoparticles containing agents having low aqueous and lipid solubilities and methods thereof |
| WO2014053880A1 (en) | 2012-10-04 | 2014-04-10 | Centre National De La Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| US20140100178A1 (en) | 2012-10-04 | 2014-04-10 | Aslam Ansari | Composition and methods for site-specific drug delivery to treat malaria and other liver diseases |
| CN104812372A (zh) | 2012-10-04 | 2015-07-29 | 约翰内斯堡金山大学 | 脂质体药物递送系统 |
| WO2014053881A1 (en) | 2012-10-04 | 2014-04-10 | Centre National De La Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| EP2716655A1 (en) | 2012-10-04 | 2014-04-09 | Institut Pasteur | Neutralizing antibodies directed against Hepatitis C virus ectodomain glycoprotein E2 |
| WO2014053882A1 (en) | 2012-10-04 | 2014-04-10 | Centre National De La Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| WO2014053879A1 (en) | 2012-10-04 | 2014-04-10 | Centre National De La Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| EP2716689A1 (en) | 2012-10-05 | 2014-04-09 | National University of Ireland, Galway | Polymer comprising a plurality of branches having at least one disulfide group and/or at least one vinyl group |
| WO2014064534A2 (en) | 2012-10-05 | 2014-05-01 | Chrontech Pharma Ab | Injection needle, device, immunogenic compositions and method of use |
| US9931410B2 (en) | 2012-10-09 | 2018-04-03 | The Brigham And Women's Hospital, Inc. | Nanoparticles for targeted delivery of multiple therapeutic agents and methods of use |
| US20140106260A1 (en) | 2012-10-11 | 2014-04-17 | The Trustees Of The University Of Pennsylvania | Core-shell nanoparticulate compositions and methods |
| KR20150070318A (ko) | 2012-10-16 | 2015-06-24 | 엔도사이트, 인코포레이티드 | 비천연 아미노산을 함유하는 약물 전달 컨쥬게이트 및 사용 방법 |
| PL2908912T3 (pl) | 2012-10-18 | 2021-05-17 | The Rockefeller University | Szeroko neutralizujące przeciwciała anty-hiv |
| CN104918639B (zh) | 2012-10-22 | 2018-01-26 | 萨拜格Rfa公司 | 用于将治疗剂递送到活细胞和细胞核中的系统 |
| KR20150090072A (ko) * | 2012-10-23 | 2015-08-05 | 카리스 라이프 사이언스 스위스 홀딩스 게엠베하 | 압타머 및 이의 용도 |
| WO2014066898A1 (en) | 2012-10-26 | 2014-05-01 | The Johns Hopkins University | A layer-by-layer approach to co-deliver dna and sirna via aunps: a potential platform for modifying release kinetics |
| US10172956B2 (en) | 2012-10-26 | 2019-01-08 | Vanderbilt University | Polymeric nanoparticles |
| MX2015005328A (es) | 2012-10-26 | 2015-09-25 | Nlife Therapeutics S L | Composiciones y metodos para la administracion selectiva de moleculas de oligonucleotidos a tipos de celulas. |
| US20150376581A1 (en) | 2012-10-29 | 2015-12-31 | Technische Universitaet Dortmund | T7 rna polymerase variants and methods of using the same |
| BR122019025678B1 (pt) | 2012-11-01 | 2023-04-18 | Factor Bioscience Inc | Composições que compreendem ácido nucleico que codifica uma proteína de edição gênica |
| WO2014071072A2 (en) | 2012-11-02 | 2014-05-08 | Pungente Michael D | Novel cationic carotenoid-based lipids for cellular nucleic acid uptake |
| US10017767B2 (en) | 2012-11-05 | 2018-07-10 | Fondazione Centro San Raffaele | Targets in multiple myeloma and other disorders |
| US9975916B2 (en) | 2012-11-06 | 2018-05-22 | President And Fellows Of Harvard College | Compositions and methods relating to complex nucleic acid nanostructures |
| MX367301B (es) | 2012-11-06 | 2019-08-14 | Rochal Ind Llc | Liberacion de agentes biologicamente activos utilizando disolventes hidrofobicos volatiles. |
| US9669104B2 (en) | 2012-11-07 | 2017-06-06 | Council Of Scientific And Industrial Research | Nanocomplex containing amphipathic peptide useful for efficient transfection of biomolecules |
| US9572893B2 (en) | 2012-11-07 | 2017-02-21 | Council Of Scientific And Industrial Research | Nanocomplex containing cationic peptide for biomolecule delivery |
| ES3023054T3 (en) | 2012-11-08 | 2025-05-29 | Clearside Biomedical Inc | Methods for the treatment of ocular disease in human subjects |
| RU2670943C9 (ru) | 2012-11-08 | 2018-11-26 | Илэвэн Байотерапьютикс, Инк. | Антагонисты ил-6 и их применение |
| AU2013343503B2 (en) | 2012-11-08 | 2017-12-14 | Albumedix Ltd. | Albumin variants |
| TW201428101A (zh) | 2012-11-08 | 2014-07-16 | Inviragen Inc | 登革熱病毒血清型4型之建構物的組成物、方法及用途 |
| US9200119B2 (en) | 2012-11-09 | 2015-12-01 | Momentive Performance Materials Inc. | Silicon-containing zwitterionic linear copolymer composition |
| WO2014072468A1 (en) | 2012-11-09 | 2014-05-15 | Velin-Pharma A/S | Compositions for pulmonary delivery |
| TR201809547T4 (tr) | 2012-11-09 | 2018-07-23 | Biontech Rna Pharmaceuticals Gmbh | Hücresel RNA ifadesine yönelik yöntem. |
| WO2014071963A1 (en) | 2012-11-09 | 2014-05-15 | Biontech Ag | Method for cellular rna expression |
| AU2013341711A1 (en) | 2012-11-12 | 2015-05-21 | Redwood Bioscience, Inc. | Compounds and methods for producing a conjugate |
| WO2014075047A2 (en) | 2012-11-12 | 2014-05-15 | Genvec, Inc. | Malaria antigens and methods of use |
| GB201220354D0 (en) | 2012-11-12 | 2012-12-26 | Medpharm Ltd | Dermal compositions |
| WO2014078399A1 (en) | 2012-11-13 | 2014-05-22 | Baylor College Of Medicine | Multi-arm biodegradable polymers for nucleic acid delivery |
| WO2014078636A1 (en) | 2012-11-16 | 2014-05-22 | President And Fellows Of Harvard College | Nucleic acid hydrogel self-assembly |
| US9310374B2 (en) | 2012-11-16 | 2016-04-12 | Redwood Bioscience, Inc. | Hydrazinyl-indole compounds and methods for producing a conjugate |
| EP2919760A4 (en) | 2012-11-19 | 2016-08-03 | Technion Res & Dev Foundation | LIPOSOMES FOR IN VIVO RELEASE |
| EP2732825B1 (en) | 2012-11-19 | 2015-07-01 | Invivogen | Conjugates of a TLR7 and/or TLR8 agonist and a TLR2 agonist |
| US20150290328A1 (en) | 2012-11-20 | 2015-10-15 | Phasebio Pharmaceuticals, Inc. | Formulations of active agents for sustained release |
| US20140141037A1 (en) | 2012-11-20 | 2014-05-22 | Novartis Ag | Rsv f prefusion trimers |
| WO2014081299A1 (en) | 2012-11-22 | 2014-05-30 | Tagworks Pharmaceuticals B.V. | Activatable liposomes |
| EP2922574B1 (en) | 2012-11-22 | 2023-05-17 | Tagworks Pharmaceuticals B.V. | Chemically cleavable group |
| WO2014081300A1 (en) | 2012-11-22 | 2014-05-30 | Tagworks Pharmaceuticals B.V. | Channel protein activatable liposomes |
| EP2922554B1 (en) * | 2012-11-26 | 2022-02-23 | ModernaTX, Inc. | Terminally modified rna |
| WO2014093574A1 (en) | 2012-12-13 | 2014-06-19 | Moderna Therapeutics, Inc. | Modified polynucleotides for altering cell phenotype |
| EP2931319B1 (en) | 2012-12-13 | 2019-08-21 | ModernaTX, Inc. | Modified nucleic acid molecules and uses thereof |
| US20140193484A1 (en) | 2013-01-10 | 2014-07-10 | Sylvie Carine Bertholet Girardin | Influenza virus immunogenic compositions and uses thereof |
| JP2016504050A (ja) | 2013-01-17 | 2016-02-12 | モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. | 細胞表現型の改変のためのシグナルセンサーポリヌクレオチド |
| EP2964234A4 (en) | 2013-03-09 | 2016-12-07 | Moderna Therapeutics Inc | Heterologous untranslated regions for mrna |
| US20160022774A1 (en) | 2013-03-12 | 2016-01-28 | Moderna Therapeutics, Inc. | Diagnosis and treatment of fibrosis |
| US20160024181A1 (en) | 2013-03-13 | 2016-01-28 | Moderna Therapeutics, Inc. | Long-lived polynucleotide molecules |
| EP2971010B1 (en) | 2013-03-14 | 2020-06-10 | ModernaTX, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
| EP3578663A1 (en) | 2013-03-15 | 2019-12-11 | ModernaTX, Inc. | Manufacturing methods for production of rna transcripts |
| EP2971165A4 (en) | 2013-03-15 | 2016-11-23 | Moderna Therapeutics Inc | DISSOLUTION OF DNA FRAGMENTS IN MRNA MANUFACTURING METHODS |
| US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
| US20160032273A1 (en) | 2013-03-15 | 2016-02-04 | Moderna Therapeutics, Inc. | Characterization of mrna molecules |
| EP3578652B1 (en) | 2013-03-15 | 2023-07-12 | ModernaTX, Inc. | Ribonucleic acid purification |
| WO2014144767A1 (en) | 2013-03-15 | 2014-09-18 | Moderna Therapeutics, Inc. | Ion exchange purification of mrna |
| US20160017313A1 (en) | 2013-03-15 | 2016-01-21 | Moderna Therapeutics, Inc. | Analysis of mrna heterogeneity and stability |
| SI3019619T1 (sl) | 2013-07-11 | 2021-12-31 | Modernatx, Inc. | Sestave, ki zajemajo sintetične polinukleotide, ki kodirajo proteine, pozvezane s crispr, in sintetične sgrna, ter metode uporabe |
| JP2016530294A (ja) | 2013-09-03 | 2016-09-29 | モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. | キメラポリヌクレオチド |
| EP3041938A1 (en) | 2013-09-03 | 2016-07-13 | Moderna Therapeutics, Inc. | Circular polynucleotides |
| WO2015038892A1 (en) | 2013-09-13 | 2015-03-19 | Moderna Therapeutics, Inc. | Polynucleotide compositions containing amino acids |
| EP3052106A4 (en) | 2013-09-30 | 2017-07-19 | ModernaTX, Inc. | Polynucleotides encoding immune modulating polypeptides |
| KR20160067219A (ko) | 2013-10-03 | 2016-06-13 | 모더나 세라퓨틱스, 인코포레이티드 | 저밀도 지단백질 수용체를 암호화하는 폴리뉴클레오타이드 |
| US20160243221A1 (en) | 2013-10-18 | 2016-08-25 | Moderna Therapeutics, Inc. | Compositions and methods for tolerizing cellular systems |
| EP3092250A4 (en) | 2014-01-08 | 2017-05-24 | Moderna Therapeutics, Inc. | Polynucleotides for the in vivo production of antibodies |
| EP3159407A1 (en) * | 2015-10-23 | 2017-04-26 | Silence Therapeutics (London) Ltd | Guide rnas, methods and uses |
| KR102636537B1 (ko) | 2017-05-31 | 2024-02-15 | 울트라제닉스 파마수티컬 인코포레이티드 | 글리코겐 축적 질환 유형 iii에 대한 치료제 |
| JP7722629B2 (ja) * | 2017-07-04 | 2025-08-13 | キュアバック エスイー | 新規核酸分子 |
| JP7631215B2 (ja) * | 2019-03-28 | 2025-02-18 | インテリア セラピューティクス,インコーポレイテッド | Ttrガイドrnaと、rnaガイドdna結合剤をコードするポリヌクレオチドとを含む組成物および方法 |
| JP2023535225A (ja) * | 2020-07-24 | 2023-08-16 | ストランド セラピューティクス インコーポレイテッド | 改変ヌクレオチドを含む脂質ナノ粒子 |
-
2012
- 2012-12-14 HR HRP20220717TT patent/HRP20220717T1/hr unknown
- 2012-12-14 SI SI201232001T patent/SI2791160T1/sl unknown
- 2012-12-14 RU RU2014129004A patent/RU2649364C2/ru active
- 2012-12-14 SG SG11201402666WA patent/SG11201402666WA/en unknown
- 2012-12-14 CN CN201910369662.9A patent/CN110201187A/zh active Pending
- 2012-12-14 US US13/714,458 patent/US20130156849A1/en not_active Abandoned
- 2012-12-14 AU AU2012352180A patent/AU2012352180A1/en not_active Abandoned
- 2012-12-14 EP EP12858350.7A patent/EP2791160B1/en not_active Revoked
- 2012-12-14 CA CA3018046A patent/CA3018046A1/en not_active Abandoned
- 2012-12-14 DK DK12858350.7T patent/DK2791160T3/da active
- 2012-12-14 WO PCT/US2012/069610 patent/WO2013090648A1/en not_active Ceased
- 2012-12-14 CA CA2859387A patent/CA2859387A1/en not_active Abandoned
- 2012-12-14 PT PT128583507T patent/PT2791160T/pt unknown
- 2012-12-14 ES ES12858350T patent/ES2923757T3/es active Active
- 2012-12-14 SM SM20220355T patent/SMT202200355T1/it unknown
- 2012-12-14 KR KR1020147019601A patent/KR20140102759A/ko not_active Ceased
- 2012-12-14 HK HK15103589.4A patent/HK1203077A1/xx unknown
- 2012-12-14 RS RS20220503A patent/RS63244B1/sr unknown
- 2012-12-14 LT LTEPPCT/US2012/069610T patent/LT2791160T/lt unknown
- 2012-12-14 JP JP2014547454A patent/JP2015501844A/ja active Pending
- 2012-12-14 DE DE12858350.7T patent/DE12858350T1/de active Pending
- 2012-12-14 EP EP22159380.9A patent/EP4144378A1/en not_active Withdrawn
- 2012-12-14 HU HUE12858350A patent/HUE059110T2/hu unknown
- 2012-12-14 MX MX2014007233A patent/MX2014007233A/es unknown
- 2012-12-14 SG SG10201604896TA patent/SG10201604896TA/en unknown
- 2012-12-14 CN CN201280069609.3A patent/CN104114572A/zh active Pending
- 2012-12-14 PL PL12858350T patent/PL2791160T3/pl unknown
-
2013
- 2013-05-18 US US13/897,371 patent/US9271996B2/en active Active
- 2013-05-18 US US13/897,375 patent/US9295689B2/en active Active
- 2013-05-18 US US13/897,367 patent/US8680069B2/en active Active
- 2013-05-18 US US13/897,372 patent/US20130244279A1/en not_active Abandoned
- 2013-05-21 US US13/898,699 patent/US20130236974A1/en not_active Abandoned
- 2013-05-21 US US13/898,536 patent/US20130237593A1/en not_active Abandoned
- 2013-05-21 US US13/898,758 patent/US8664194B2/en active Active
- 2013-05-21 US US13/898,870 patent/US8754062B2/en active Active
- 2013-05-21 US US13/898,983 patent/US20130245106A1/en not_active Abandoned
- 2013-05-21 US US13/898,512 patent/US20130237592A1/en not_active Abandoned
- 2013-05-21 US US13/898,588 patent/US9186372B2/en active Active
- 2013-05-22 US US13/899,641 patent/US20130245107A1/en not_active Abandoned
- 2013-06-14 US US13/917,720 patent/US20130266640A1/en not_active Abandoned
-
2014
- 2014-05-22 IL IL232749A patent/IL232749A0/en unknown
- 2014-05-23 ZA ZA2014/03783A patent/ZA201403783B/en unknown
-
2016
- 2016-03-22 US US15/077,705 patent/US20160193299A1/en not_active Abandoned
- 2016-09-20 AU AU2016231503A patent/AU2016231503A1/en not_active Abandoned
-
2017
- 2017-06-13 US US15/621,693 patent/US20180125937A1/en not_active Abandoned
-
2018
- 2018-07-23 AU AU2018207584A patent/AU2018207584A1/en not_active Abandoned
-
2019
- 2019-01-24 JP JP2019009835A patent/JP2019059793A/ja not_active Withdrawn
- 2019-07-29 US US16/525,145 patent/US20200164038A1/en not_active Abandoned
-
2022
- 2022-05-27 CY CY20221100370T patent/CY1125212T1/el unknown
-
2023
- 2023-03-02 US US18/177,455 patent/US20240123035A1/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1991016024A1 (en) * | 1990-04-19 | 1991-10-31 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
| WO2005120152A2 (en) * | 2004-06-07 | 2005-12-22 | Protiva Biotherapeutics, Inc. | Cationic lipids and methods of use |
| US20080171711A1 (en) * | 2004-07-21 | 2008-07-17 | Curevac Gmbh | Mrna Mixture For Vaccinating Against Tumoral Diseases |
| WO2007024708A2 (en) * | 2005-08-23 | 2007-03-01 | The Trustees Of The University Of Pennsylvania | Rna containing modified nucleosides and methods of use thereof |
Non-Patent Citations (4)
| Title |
|---|
| APC Insider, March 2009, p. 1-2, at http://www.hcpro.com/REV-230459-859/QA-One-injection-code-or-two.html * |
| Kenneth Stanley, Design of Randomized Controlled Trials. Circulation. 2007;115:1164-1169. * |
| Lindencrona et al., CD4+ T CELL-MEDIATED HER-2/NEU-SPECIFIC TUMOR REJECTION IN THEABSENCE OF B CELLS. Int. J. Cancer: 109, 259-264 (2004) * |
| Parker et al., Targeting of Polyelectrolyte RNA Complexes to Cell Surface Integrins as an Efficient, Cytoplasmic Transfection Mechanism. Journalof BIOACTIVE AND COMPATIBLE POLYMERS, July 2002, p1-10. * |
Cited By (269)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11298426B2 (en) | 2003-10-14 | 2022-04-12 | BioNTech SE | Recombinant vaccines and use thereof |
| US10106800B2 (en) | 2005-09-28 | 2018-10-23 | Biontech Ag | Modification of RNA, producing an increased transcript stability and translation efficiency |
| US12385049B2 (en) | 2005-09-28 | 2025-08-12 | BioNTech SE | Modification of RNA, producing an increased transcript stability and translation efficiency |
| US12377044B2 (en) | 2010-05-04 | 2025-08-05 | Panther Life Sciences Corporation | Method and device for transdermal delivery of parathyroid hormone using a microprojection array |
| US11419816B2 (en) | 2010-05-04 | 2022-08-23 | Corium, Inc. | Method and device for transdermal delivery of parathyroid hormone using a microprojection array |
| US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US9447164B2 (en) | 2010-08-06 | 2016-09-20 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US9937233B2 (en) | 2010-08-06 | 2018-04-10 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
| US9181319B2 (en) | 2010-08-06 | 2015-11-10 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US9701965B2 (en) | 2010-10-01 | 2017-07-11 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
| US9950068B2 (en) | 2011-03-31 | 2018-04-24 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US12502431B2 (en) | 2011-03-31 | 2025-12-23 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US9533047B2 (en) | 2011-03-31 | 2017-01-03 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US12419957B2 (en) | 2011-03-31 | 2025-09-23 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US12364763B2 (en) | 2011-03-31 | 2025-07-22 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US11911474B2 (en) | 2011-03-31 | 2024-02-27 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US10898574B2 (en) | 2011-03-31 | 2021-01-26 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US12409226B2 (en) | 2011-03-31 | 2025-09-09 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US10738355B2 (en) | 2011-05-24 | 2020-08-11 | Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh | Individualized vaccines for cancer |
| US11248264B2 (en) | 2011-05-24 | 2022-02-15 | Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh | Individualized vaccines for cancer |
| US10662410B1 (en) | 2011-12-05 | 2020-05-26 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US12227768B2 (en) | 2011-12-05 | 2025-02-18 | Factor Bioscience Inc. | Methods and products for transfection |
| US9605278B2 (en) | 2011-12-05 | 2017-03-28 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US12391961B2 (en) | 2011-12-05 | 2025-08-19 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US10472611B2 (en) | 2011-12-05 | 2019-11-12 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US11466293B2 (en) | 2011-12-05 | 2022-10-11 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US10982229B2 (en) | 2011-12-05 | 2021-04-20 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US9422577B2 (en) | 2011-12-05 | 2016-08-23 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US10829738B2 (en) | 2011-12-05 | 2020-11-10 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US11708586B2 (en) | 2011-12-05 | 2023-07-25 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US12227757B2 (en) | 2011-12-05 | 2025-02-18 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US9605277B2 (en) | 2011-12-05 | 2017-03-28 | Factor Bioscience, Inc. | Methods and products for transfecting cells |
| US11692203B2 (en) | 2011-12-05 | 2023-07-04 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US9186372B2 (en) | 2011-12-16 | 2015-11-17 | Moderna Therapeutics, Inc. | Split dose administration |
| US9295689B2 (en) | 2011-12-16 | 2016-03-29 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
| US11559587B2 (en) | 2012-03-26 | 2023-01-24 | Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh | RNA formulation for immunotherapy |
| US10485884B2 (en) | 2012-03-26 | 2019-11-26 | Biontech Rna Pharmaceuticals Gmbh | RNA formulation for immunotherapy |
| US9301993B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding apoptosis inducing factor 1 |
| US9220755B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
| US9254311B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
| US9095552B2 (en) | 2012-04-02 | 2015-08-04 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding copper metabolism (MURR1) domain containing 1 |
| US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
| US10385106B2 (en) | 2012-04-02 | 2019-08-20 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
| US9675668B2 (en) | 2012-04-02 | 2017-06-13 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding hepatitis A virus cellular receptor 2 |
| US9114113B2 (en) | 2012-04-02 | 2015-08-25 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding citeD4 |
| US9587003B2 (en) | 2012-04-02 | 2017-03-07 | Modernatx, Inc. | Modified polynucleotides for the production of oncology-related proteins and peptides |
| US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
| US9255129B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding SIAH E3 ubiquitin protein ligase 1 |
| US9149506B2 (en) | 2012-04-02 | 2015-10-06 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding septin-4 |
| US9828416B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
| US9192651B2 (en) | 2012-04-02 | 2015-11-24 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of secreted proteins |
| US9216205B2 (en) | 2012-04-02 | 2015-12-22 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding granulysin |
| US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
| US9221891B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | In vivo production of proteins |
| US10577403B2 (en) | 2012-04-02 | 2020-03-03 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
| US9220792B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aquaporin-5 |
| US9233141B2 (en) | 2012-04-02 | 2016-01-12 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
| US9303079B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
| US9782462B2 (en) | 2012-04-02 | 2017-10-10 | Modernatx, Inc. | Modified polynucleotides for the production of proteins associated with human disease |
| US10703789B2 (en) | 2012-04-02 | 2020-07-07 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
| US9814760B2 (en) | 2012-04-02 | 2017-11-14 | Modernatx, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
| US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
| US10772975B2 (en) | 2012-04-02 | 2020-09-15 | Modernatx, Inc. | Modified Polynucleotides for the production of biologics and proteins associated with human disease |
| US9827332B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of proteins |
| US9512456B2 (en) | 2012-08-14 | 2016-12-06 | Modernatx, Inc. | Enzymes and polymerases for the synthesis of RNA |
| US20190381137A1 (en) * | 2012-09-04 | 2019-12-19 | Lauren Sciences Llc | Bolaamphiphilic compounds, compositions and uses thereof |
| US20140284270A1 (en) * | 2012-09-21 | 2014-09-25 | George Fox | RNA pores and methods and compositions for making and using same |
| US10758592B2 (en) | 2012-10-09 | 2020-09-01 | Sanofi | Exendin-4 derivatives as dual GLP1/glucagon agonists |
| US9487768B2 (en) | 2012-11-01 | 2016-11-08 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US9464285B2 (en) | 2012-11-01 | 2016-10-11 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US10767195B2 (en) | 2012-11-01 | 2020-09-08 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US10752919B2 (en) | 2012-11-01 | 2020-08-25 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US10752917B2 (en) | 2012-11-01 | 2020-08-25 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US11339410B2 (en) | 2012-11-01 | 2022-05-24 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US10752918B2 (en) | 2012-11-01 | 2020-08-25 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US11332758B2 (en) | 2012-11-01 | 2022-05-17 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US10724053B2 (en) | 2012-11-01 | 2020-07-28 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US12006508B2 (en) | 2012-11-01 | 2024-06-11 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US11339409B2 (en) | 2012-11-01 | 2022-05-24 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US10590437B2 (en) | 2012-11-01 | 2020-03-17 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US9376669B2 (en) | 2012-11-01 | 2016-06-28 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US9657282B2 (en) | 2012-11-01 | 2017-05-23 | Factor Bioscience, Inc. | Methods and products for expressing proteins in cells |
| US10415060B2 (en) | 2012-11-01 | 2019-09-17 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US9758797B2 (en) | 2012-11-01 | 2017-09-12 | Factor Bioscience, Inc. | Methods and products for expressing proteins in cells |
| US11332759B2 (en) | 2012-11-01 | 2022-05-17 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US9447395B2 (en) | 2012-11-01 | 2016-09-20 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| WO2014081507A1 (en) | 2012-11-26 | 2014-05-30 | Moderna Therapeutics, Inc. | Terminally modified rna |
| US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
| EP4074834A1 (en) | 2012-11-26 | 2022-10-19 | ModernaTX, Inc. | Terminally modified rna |
| US10155031B2 (en) | 2012-11-28 | 2018-12-18 | Biontech Rna Pharmaceuticals Gmbh | Individualized vaccines for cancer |
| US11504419B2 (en) | 2012-11-28 | 2022-11-22 | BioNTech SE | Individualized vaccines for cancer |
| US9745360B2 (en) | 2012-12-21 | 2017-08-29 | Sanofi | Dual GLP1/GIP or trigonal GLP1/GIP/glucagon agonists |
| US9670261B2 (en) | 2012-12-21 | 2017-06-06 | Sanofi | Functionalized exendin-4 derivatives |
| US11052231B2 (en) * | 2012-12-21 | 2021-07-06 | Corium, Inc. | Microarray for delivery of therapeutic agent and methods of use |
| US10253079B2 (en) | 2012-12-21 | 2019-04-09 | Sanofi | Functionalized Exendin-4 derivatives |
| EP3434774A1 (en) | 2013-01-17 | 2019-01-30 | ModernaTX, Inc. | Signal-sensor polynucleotides for the alteration of cellular phenotypes |
| WO2014113089A2 (en) | 2013-01-17 | 2014-07-24 | Moderna Therapeutics, Inc. | Signal-sensor polynucleotides for the alteration of cellular phenotypes |
| US11603399B2 (en) | 2013-03-13 | 2023-03-14 | Modernatx, Inc. | Long-lived polynucleotide molecules |
| US10258698B2 (en) | 2013-03-14 | 2019-04-16 | Modernatx, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
| US10138507B2 (en) | 2013-03-15 | 2018-11-27 | Modernatx, Inc. | Manufacturing methods for production of RNA transcripts |
| US10077439B2 (en) | 2013-03-15 | 2018-09-18 | Modernatx, Inc. | Removal of DNA fragments in mRNA production process |
| US11377470B2 (en) | 2013-03-15 | 2022-07-05 | Modernatx, Inc. | Ribonucleic acid purification |
| US10858647B2 (en) | 2013-03-15 | 2020-12-08 | Modernatx, Inc. | Removal of DNA fragments in mRNA production process |
| US11845772B2 (en) | 2013-03-15 | 2023-12-19 | Modernatx, Inc. | Ribonucleic acid purification |
| US10590161B2 (en) | 2013-03-15 | 2020-03-17 | Modernatx, Inc. | Ion exchange purification of mRNA |
| US11565097B2 (en) | 2013-03-15 | 2023-01-31 | Corium Pharma Solutions, Inc. | Microarray for delivery of therapeutic agent and methods of use |
| US9822370B2 (en) | 2013-04-04 | 2017-11-21 | President And Fellows Of Harvard College | Method of making a deletion in a target sequence in isolated primary cells using Cas9 and two guide RNAs |
| US11222711B2 (en) | 2013-05-10 | 2022-01-11 | BioNTech SE | Predicting immunogenicity of T cell epitopes |
| US10208319B2 (en) | 2013-07-09 | 2019-02-19 | President And Fellows Of Harvard College | Therapeutic uses of genome editing with CRISPR/Cas systems |
| US11027025B2 (en) | 2013-07-11 | 2021-06-08 | Modernatx, Inc. | Compositions comprising synthetic polynucleotides encoding CRISPR related proteins and synthetic sgRNAs and methods of use |
| US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
| EP3052106A4 (en) * | 2013-09-30 | 2017-07-19 | ModernaTX, Inc. | Polynucleotides encoding immune modulating polypeptides |
| US10023626B2 (en) | 2013-09-30 | 2018-07-17 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
| US10385088B2 (en) | 2013-10-02 | 2019-08-20 | Modernatx, Inc. | Polynucleotide molecules and uses thereof |
| US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
| US9751926B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Dual GLP-1/GIP receptor agonists |
| US9789165B2 (en) | 2013-12-13 | 2017-10-17 | Sanofi | Exendin-4 peptide analogues as dual GLP-1/GIP receptor agonists |
| US9750788B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Non-acylated exendin-4 peptide analogues |
| US9694053B2 (en) | 2013-12-13 | 2017-07-04 | Sanofi | Dual GLP-1/glucagon receptor agonists |
| EP2918275A1 (en) * | 2013-12-13 | 2015-09-16 | Atanu Roy | Alternative nucleic acid molecules and uses thereof |
| US12201675B2 (en) | 2014-01-31 | 2025-01-21 | Factor Bioscience Inc. | Methods and products for nucleic acid production and delivery |
| US9770489B2 (en) | 2014-01-31 | 2017-09-26 | Factor Bioscience Inc. | Methods and products for nucleic acid production and delivery |
| US10124042B2 (en) | 2014-01-31 | 2018-11-13 | Factor Bioscience Inc. | Methods and products for nucleic acid production and delivery |
| US11179478B2 (en) * | 2014-04-01 | 2021-11-23 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Capped and uncapped RNA molecules and block copolymers for intracellular delivery of RNA |
| US20170209597A1 (en) * | 2014-04-01 | 2017-07-27 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Capped and uncapped rna molecules and block copolymers for intracellular delivery of rna |
| US9775904B2 (en) | 2014-04-07 | 2017-10-03 | Sanofi | Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists |
| US9771406B2 (en) | 2014-04-07 | 2017-09-26 | Sanofi | Peptidic dual GLP-1/glucagon receptor agonists derived from exendin-4 |
| US9758561B2 (en) | 2014-04-07 | 2017-09-12 | Sanofi | Dual GLP-1/glucagon receptor agonists derived from exendin-4 |
| US9932381B2 (en) | 2014-06-18 | 2018-04-03 | Sanofi | Exendin-4 derivatives as selective glucagon receptor agonists |
| US10286086B2 (en) | 2014-06-19 | 2019-05-14 | Modernatx, Inc. | Alternative nucleic acid molecules and uses thereof |
| US20180263918A1 (en) * | 2014-07-02 | 2018-09-20 | Translate Bio, Inc. | Encapsulation of messenger rna |
| US20170348244A1 (en) * | 2014-07-02 | 2017-12-07 | RaNA Therapeutics | Encapsulation of messenger rna |
| FR3023483A1 (fr) * | 2014-07-09 | 2016-01-15 | Jerome Lemoine | Procede de preparation de nanoparticules d'arn messager et composition aqueuse hypotonique comprenant les nanoparticules d'arnm |
| WO2016005099A1 (fr) * | 2014-07-09 | 2016-01-14 | Jérôme Lemoine | Composition aqueuse hypotonique comprenant des nanoparticules d'arnm, kit et procédé de préparation |
| US10407683B2 (en) | 2014-07-16 | 2019-09-10 | Modernatx, Inc. | Circular polynucleotides |
| US11173120B2 (en) | 2014-09-25 | 2021-11-16 | Biontech Rna Pharmaceuticals Gmbh | Stable formulations of lipids and liposomes |
| US12220484B2 (en) | 2014-09-25 | 2025-02-11 | BioNTech SE | Stable formulations of lipids and liposomes |
| US10300148B2 (en) * | 2014-10-02 | 2019-05-28 | University Of Seoul Industry Cooperation | Messenger RNA nanoparticles and preparation method therefor |
| US12180263B2 (en) | 2014-11-06 | 2024-12-31 | President And Fellows Of Harvard College | Cells lacking B2M surface expression and methods for allogeneic administration of such cells |
| EP3218508A4 (en) * | 2014-11-10 | 2018-04-18 | Modernatx, Inc. | Multiparametric nucleic acid optimization |
| WO2016077123A1 (en) | 2014-11-10 | 2016-05-19 | Moderna Therapeutics, Inc. | Multiparametric nucleic acid optimization |
| EP4324473A3 (en) * | 2014-11-10 | 2024-05-29 | ModernaTX, Inc. | Multiparametric nucleic acid optimization |
| US11156617B2 (en) | 2015-02-12 | 2021-10-26 | BioNTech RNA Pharmaceuticals GbmH | Predicting T cell epitopes useful for vaccination |
| CN109477102A (zh) * | 2015-02-13 | 2019-03-15 | 菲克特生物科学股份有限公司 | 核酸产品及其施用方法 |
| US11241505B2 (en) | 2015-02-13 | 2022-02-08 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US12031155B2 (en) | 2015-05-08 | 2024-07-09 | President And Fellows Of Harvard College | Universal donor stem cells and related methods |
| US12421493B2 (en) | 2015-05-08 | 2025-09-23 | President And Fellows Of Harvard College | Universal donor stem cells and related methods |
| US12497590B2 (en) | 2015-05-08 | 2025-12-16 | President And Fellows Of Harvard College | Universal donor stem cells and related methods |
| US12110500B2 (en) | 2015-05-08 | 2024-10-08 | President And Fellows Of Harvard College | Universal donor stem cells and related methods |
| US12031154B2 (en) | 2015-05-08 | 2024-07-09 | President And Fellows Of Harvard College | Universal donor stem cells and related methods |
| US10806797B2 (en) | 2015-06-05 | 2020-10-20 | Sanofi | Prodrugs comprising an GLP-1/glucagon dual agonist linker hyaluronic acid conjugate |
| US10857093B2 (en) | 2015-06-29 | 2020-12-08 | Corium, Inc. | Microarray for delivery of therapeutic agent, methods of use, and methods of making |
| US9982029B2 (en) | 2015-07-10 | 2018-05-29 | Sanofi | Exendin-4 derivatives as selective peptidic dual GLP-1/glucagon receptor agonists |
| US11364292B2 (en) | 2015-07-21 | 2022-06-21 | Modernatx, Inc. | CHIKV RNA vaccines |
| US10449244B2 (en) | 2015-07-21 | 2019-10-22 | Modernatx, Inc. | Zika RNA vaccines |
| US10702597B2 (en) | 2015-07-21 | 2020-07-07 | Modernatx, Inc. | CHIKV RNA vaccines |
| US11007260B2 (en) | 2015-07-21 | 2021-05-18 | Modernatx, Inc. | Infectious disease vaccines |
| US12404232B2 (en) | 2015-09-17 | 2025-09-02 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| US12109274B2 (en) | 2015-09-17 | 2024-10-08 | Modernatx, Inc. | Polynucleotides containing a stabilizing tail region |
| US10442756B2 (en) | 2015-09-17 | 2019-10-15 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| US11220476B2 (en) | 2015-09-17 | 2022-01-11 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| US10392341B2 (en) | 2015-09-17 | 2019-08-27 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| US10266485B2 (en) | 2015-09-17 | 2019-04-23 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| US12151995B2 (en) | 2015-09-17 | 2024-11-26 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| US12071620B2 (en) | 2015-09-17 | 2024-08-27 | Modernatx, Inc. | Polynucleotides containing a morpholino linker |
| US11434486B2 (en) | 2015-09-17 | 2022-09-06 | Modernatx, Inc. | Polynucleotides containing a morpholino linker |
| US12246030B2 (en) | 2015-10-05 | 2025-03-11 | Modernatx, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
| US10849920B2 (en) | 2015-10-05 | 2020-12-01 | Modernatx, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
| US11590157B2 (en) | 2015-10-05 | 2023-02-28 | Modernatx, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
| US12516333B2 (en) | 2015-10-07 | 2026-01-06 | BioNTech SE | 3′-UTR sequences for stabilization of RNA |
| US11492628B2 (en) | 2015-10-07 | 2022-11-08 | BioNTech SE | 3′-UTR sequences for stabilization of RNA |
| US11278611B2 (en) | 2015-10-22 | 2022-03-22 | Modernatx, Inc. | Zika virus RNA vaccines |
| WO2017070618A1 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Cancer vaccines |
| US10675342B2 (en) | 2015-10-22 | 2020-06-09 | Modernatx, Inc. | Chikungunya virus RNA vaccines |
| US10517940B2 (en) | 2015-10-22 | 2019-12-31 | Modernatx, Inc. | Zika virus RNA vaccines |
| US20180289792A1 (en) * | 2015-10-22 | 2018-10-11 | ModernaTX. Inc. | Sexually transmitted disease vaccines |
| US10124055B2 (en) | 2015-10-22 | 2018-11-13 | Modernatx, Inc. | Zika virus RNA vaccines |
| US10238731B2 (en) | 2015-10-22 | 2019-03-26 | Modernatx, Inc. | Chikagunya virus RNA vaccines |
| US11235052B2 (en) | 2015-10-22 | 2022-02-01 | Modernatx, Inc. | Chikungunya virus RNA vaccines |
| WO2017070624A1 (en) * | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Tropical disease vaccines |
| US10751426B2 (en) | 2015-10-30 | 2020-08-25 | Bonac Corporation | Composition stably containing single-stranded nucleic acid molecule that suppresses expression of TGF-β1 gene |
| US11786590B2 (en) | 2015-11-09 | 2023-10-17 | CureVac SE | Rotavirus vaccines |
| US11413346B2 (en) * | 2015-11-09 | 2022-08-16 | Curevac Ag | Rotavirus vaccines |
| US12318444B2 (en) | 2015-11-09 | 2025-06-03 | Cure Vac SE | Rotavirus vaccines |
| WO2017100562A1 (en) | 2015-12-09 | 2017-06-15 | Alexion Pharmaceuticals, Inc, | Modified mrna encoding a uridine diphopsphate glucuronosyl transferase and uses thereof |
| US11980672B2 (en) | 2015-12-09 | 2024-05-14 | Modernatx, Inc. | Heterologous UTR sequences for enhanced mRNA expression |
| US11389546B2 (en) | 2015-12-09 | 2022-07-19 | Modernatx, Inc. | Heterologous UTR sequences for enhanced mRNA expression |
| US12396961B2 (en) | 2015-12-22 | 2025-08-26 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
| US10195156B2 (en) | 2015-12-22 | 2019-02-05 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
| US10799463B2 (en) | 2015-12-22 | 2020-10-13 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
| WO2017151623A1 (en) | 2016-03-01 | 2017-09-08 | Alexion Pharmaceuticals, Inc. | Biodegradable activated polymers for therapeutic delivery |
| US20170367988A1 (en) * | 2016-05-09 | 2017-12-28 | Astrazeneca Ab | Lipid nanoparticles comprising lipophilic anti-inflammatory agents and methods of use thereof |
| WO2017194454A1 (en) * | 2016-05-09 | 2017-11-16 | Astrazeneca Ab | Lipid nanoparticles comprising lipophilic anti-inflammatory agents and methods of use thereof |
| US11458106B2 (en) | 2016-05-09 | 2022-10-04 | Astrazeneca Ab | Lipid nanoparticles comprising lipophilic anti-inflammatory agents and methods of use thereof |
| US11866475B2 (en) | 2016-06-07 | 2024-01-09 | Modernatx, Inc. | Modified RNA encoding VEGF-A polypeptides, formulations, and uses relating thereto |
| WO2017218704A1 (en) * | 2016-06-14 | 2017-12-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
| US12385034B2 (en) | 2016-06-24 | 2025-08-12 | Modernatx, Inc. | Methods and apparatus for filtration |
| US10576167B2 (en) | 2016-08-17 | 2020-03-03 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10137206B2 (en) | 2016-08-17 | 2018-11-27 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US11904023B2 (en) | 2016-08-17 | 2024-02-20 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10369233B2 (en) | 2016-08-17 | 2019-08-06 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10894092B2 (en) | 2016-08-17 | 2021-01-19 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10363321B2 (en) | 2016-08-17 | 2019-07-30 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10350304B2 (en) | 2016-08-17 | 2019-07-16 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10888627B2 (en) | 2016-08-17 | 2021-01-12 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10793889B2 (en) * | 2016-10-13 | 2020-10-06 | Korea Institute Of Science And Technology | Method of packing polynucleotides |
| US20180105852A1 (en) * | 2016-10-13 | 2018-04-19 | Korea Institute Of Science And Technology | Method of packing polynucleotides |
| US12144895B2 (en) | 2016-11-08 | 2024-11-19 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
| US11583504B2 (en) | 2016-11-08 | 2023-02-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
| US10273269B2 (en) | 2017-02-16 | 2019-04-30 | Modernatx, Inc. | High potency immunogenic zika virus compositions |
| US20210180041A1 (en) * | 2017-02-27 | 2021-06-17 | Translate Bio, Inc. | Methods For Purification of Messenger RNA |
| US12410422B2 (en) * | 2017-02-27 | 2025-09-09 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| US11203569B2 (en) | 2017-03-15 | 2021-12-21 | Modernatx, Inc. | Crystal forms of amino lipids |
| US12324859B2 (en) | 2017-03-15 | 2025-06-10 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| US11969506B2 (en) | 2017-03-15 | 2024-04-30 | Modernatx, Inc. | Lipid nanoparticle formulation |
| US10857105B2 (en) | 2017-03-15 | 2020-12-08 | MordernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| US11497807B2 (en) | 2017-03-17 | 2022-11-15 | Modernatx, Inc. | Zoonotic disease RNA vaccines |
| WO2018170347A1 (en) * | 2017-03-17 | 2018-09-20 | Modernatx, Inc. | Zoonotic disease rna vaccines |
| CN110945127A (zh) * | 2017-05-22 | 2020-03-31 | 百深公司 | 用于血友病b的基因疗法的编码具有增加的表达的重组fix的病毒载体 |
| US12270813B2 (en) | 2017-06-09 | 2025-04-08 | BioNTech SE | Methods for predicting the usefulness of disease specific amino acid modifications for immunotherapy |
| US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
| WO2019018765A1 (en) | 2017-07-21 | 2019-01-24 | Modernatx, Inc. | MODIFIED mRNA ENCODING PROPIONYL-COA-CARBOXYLASE AND USES THEREOF |
| WO2019023179A1 (en) | 2017-07-24 | 2019-01-31 | Modernatx, Inc. | MODIFIED mRNA ENCODING GLUCOSE-6-PHOSPHATASE AND USES THEREOF |
| AU2018328289B2 (en) * | 2017-09-07 | 2025-07-10 | Combined Therapeutics, Inc. | Compositions and processes for targeted delivery, expression and modulation of coding ribonucleic acids in tissue |
| CN111212650A (zh) * | 2017-09-07 | 2020-05-29 | 联合治疗公司 | 用于编码核糖核酸在组织中的靶向递送、表达和调节的组合物和方法 |
| EP4218770A3 (en) * | 2017-09-07 | 2023-08-09 | Combined Therapeutics, Inc. | Compositions and processes for targeted delivery, expression and modulation of coding ribonucleic acids in tissue |
| US11359212B2 (en) | 2017-09-07 | 2022-06-14 | Combined Therapeutics, Inc. | Compositions and processes for targeted delivery, expression and modulation of coding ribonucleic acids in tissue |
| WO2019051100A1 (en) * | 2017-09-07 | 2019-03-14 | Combined Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR TARGETED CODING ADMINISTRATION, EXPRESSION AND MODULATION OF RIBONUCLEIC ACIDS IN TISSUE |
| EP3678673B1 (en) * | 2017-09-07 | 2023-01-25 | Combined Therapeutics, Inc. | Compositions and processes for targeted delivery, expression and modulation of coding ribonucleic acids in tissue |
| US12195746B2 (en) | 2017-09-07 | 2025-01-14 | Combined Therapeutics, Inc. | Compositions and processes for targeted delivery, expression and modulation of coding ribonucleic acids in tissue |
| US11207398B2 (en) | 2017-09-14 | 2021-12-28 | Modernatx, Inc. | Zika virus mRNA vaccines |
| US10653767B2 (en) | 2017-09-14 | 2020-05-19 | Modernatx, Inc. | Zika virus MRNA vaccines |
| US11696892B2 (en) * | 2017-10-31 | 2023-07-11 | Modernatx, Inc. | Lipid nanoparticles for delivering modified RNA encoding a VEGF-A polypeptide |
| WO2019158955A1 (en) | 2018-02-19 | 2019-08-22 | Combined Therapeutics, Inc. | Compositions and methods for organ-protective expression and modulation of coding ribonucleic acids |
| EP4008333A1 (en) | 2018-02-19 | 2022-06-08 | Combined Therapeutics, Inc. | Compositions and methods for organ-protective expression and modulation of coding ribonucleic acids |
| US20210137840A1 (en) * | 2018-04-25 | 2021-05-13 | Ethris Gmbh | Lipid-based formulations for the delivery of rna |
| US12465568B2 (en) | 2018-04-25 | 2025-11-11 | Ethris Gmbh | Cryoprotective agents for particulate formulations |
| WO2020002540A1 (en) * | 2018-06-28 | 2020-01-02 | Astrazeneca Ab | Exosome extracellular vesicles and methods of use |
| CN112543629A (zh) * | 2018-06-28 | 2021-03-23 | 阿斯利康(瑞典)有限公司 | 外泌体胞外囊泡及其使用方法 |
| US12109310B2 (en) | 2018-06-28 | 2024-10-08 | Hadi Valadi | Exosome extracellular vesicles and methods of use |
| US12263248B2 (en) | 2018-09-19 | 2025-04-01 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
| US11865190B2 (en) | 2018-10-09 | 2024-01-09 | The University Of British Columbia | Compositions and systems comprising transfection-competent vesicles free of organic-solvents and detergents and methods related thereto |
| US11980673B2 (en) | 2018-10-09 | 2024-05-14 | The University Of British Columbia | Compositions and systems comprising transfection-competent vesicles free of organic-solvents and detergents and methods related thereto |
| WO2020086701A1 (en) | 2018-10-24 | 2020-04-30 | Codiak Biosciences, Inc. | Methods to improve potency of electroporation |
| US12070495B2 (en) | 2019-03-15 | 2024-08-27 | Modernatx, Inc. | HIV RNA vaccines |
| WO2020206231A1 (en) * | 2019-04-05 | 2020-10-08 | Precision Biosciences, Inc. | Methods of preparing populations of genetically-modified immune cells |
| EP3980550A4 (en) * | 2019-06-05 | 2023-07-05 | Guide Therapeutics, Inc. | MATERIALS ANALYSIS FOR TISSUE ADMINISTRATION |
| CN114144173A (zh) * | 2019-06-05 | 2022-03-04 | 盖德治疗公司 | 用于组织递送的材料的分析 |
| US12344572B2 (en) | 2019-07-03 | 2025-07-01 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US10611722B1 (en) | 2019-07-30 | 2020-04-07 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US11242311B2 (en) | 2019-07-30 | 2022-02-08 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US11814333B2 (en) | 2019-07-30 | 2023-11-14 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US10752576B1 (en) | 2019-07-30 | 2020-08-25 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US12384740B2 (en) | 2019-07-30 | 2025-08-12 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US10501404B1 (en) | 2019-07-30 | 2019-12-10 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US10556855B1 (en) | 2019-07-30 | 2020-02-11 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US11926817B2 (en) | 2019-08-09 | 2024-03-12 | Nutcracker Therapeutics, Inc. | Microfluidic apparatus and methods of use thereof |
| US12492394B2 (en) | 2019-08-09 | 2025-12-09 | Nutcracker Therapeutics, Inc. | Microfluidic apparatus and methods of use thereof |
| US12448618B2 (en) | 2019-08-09 | 2025-10-21 | Nutcracker Therapeutics, Inc. | Microfluidic apparatus and methods of use thereof |
| US11597698B2 (en) | 2019-09-19 | 2023-03-07 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
| US12312293B2 (en) | 2019-09-19 | 2025-05-27 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
| US11066355B2 (en) | 2019-09-19 | 2021-07-20 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
| WO2022035621A1 (en) | 2020-07-31 | 2022-02-17 | Combined Therapeutics, Inc. | Compositions and methods for improved vaccination |
| WO2022155500A1 (en) | 2021-01-14 | 2022-07-21 | Senti Biosciences, Inc. | Secretable payload regulation |
| EP4346914A4 (en) * | 2021-06-03 | 2025-05-07 | Magle Chemoswed AB | PHARMACEUTICALLY ACCEPTABLE AQUEOUS GEL COMPOSITION FOR MRNA DELIVERY |
| WO2023172747A1 (en) * | 2022-03-11 | 2023-09-14 | W. L. Gore & Associates, Inc. | Bioabsorbable particles and method of use |
| EP4327829A1 (en) | 2022-08-26 | 2024-02-28 | Ethris GmbH | Stabilization of lipid or lipidoid nanoparticle suspensions |
| WO2024042236A1 (en) | 2022-08-26 | 2024-02-29 | Ethris Gmbh | Stable lipid or lipidoid nanoparticle suspensions |
| WO2025045767A1 (en) | 2023-08-25 | 2025-03-06 | Ethris Gmbh | Stabilized lipid and lipidoid nanoparticle formulations with specific surfactant properties for enhanced pharmaceutical applications |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240123035A1 (en) | Modified nucleoside, nucleotide, and nucleic acid compositions | |
| US10501513B2 (en) | Modified polynucleotides for the production of oncology-related proteins and peptides | |
| US9587003B2 (en) | Modified polynucleotides for the production of oncology-related proteins and peptides | |
| US9255129B2 (en) | Modified polynucleotides encoding SIAH E3 ubiquitin protein ligase 1 | |
| US9301993B2 (en) | Modified polynucleotides encoding apoptosis inducing factor 1 | |
| US20150030576A1 (en) | Methods and compositions for targeting agents into and across the blood-brain barrier | |
| US20160205924A1 (en) | Methods of increasing the viability or longevity of an organ or organ explant | |
| US20140378538A1 (en) | Methods of responding to a biothreat | |
| US20250074962A1 (en) | Modified polynucleotides for the production of oncology-related proteins and peptides | |
| HK40089572A (en) | Modified nucleoside, nucleotide, and nucleic acid compositions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MODERNA THERAPEUTICS, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHRUM, JASON P.;REEL/FRAME:029512/0053 Effective date: 20101123 Owner name: MODERNA THERAPEUTICS, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE FOUGEROLLES, ANTONIN;WOOD, KRISTY M.;ELBASHIR, SAYDA M.;REEL/FRAME:029511/0082 Effective date: 20121218 |
|
| AS | Assignment |
Owner name: MODERNA THERAPEUTICS, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AFEYAN, NOUBAR B.;REEL/FRAME:029517/0813 Effective date: 20121221 Owner name: MODERNA THERAPEUTICS, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VALENCIA, PEDRO;REEL/FRAME:029518/0977 Effective date: 20121221 |
|
| AS | Assignment |
Owner name: MODERNA THERAPEUTICS, INC., MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY NAME. PREVIOUSLY RECORDED ON REEL 029512 FRAME 0053. ASSIGNOR(S) HEREBY CONFIRMS THE RECEIVING PARTY NAME;ASSIGNOR:SCHRUM, JASON P.;REEL/FRAME:034687/0373 Effective date: 20101123 Owner name: MODERNA THERAPEUTICS, INC., MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY NAME FROM MODERNA THERAPEUTICS TO MODERNA THERAPEUTICS, INC. PREVIOUSLY RECORDED ON REEL 029511 FRAME 0082. ASSIGNOR(S) HEREBY CONFIRMS THE RECEIVING PARTY NAME ON THE ATTACHED PATENT ASSIGNMENT COVER SHEET IS INCOMPLETE.;ASSIGNORS:FOUGEROLLES, ANTONIN DE;WOOD, KRISTY M.;ELBASHIR, SAYDA M.;REEL/FRAME:034687/0578 Effective date: 20121218 Owner name: MODERNA THERAPEUTICS, INC., MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY NAME FROM MODERNA THERAPEUTICS TO MODERNA THERAPEUTICS, INC. PREVIOUSLY RECORDED ON REEL 029517 FRAME 0813. ASSIGNOR(S) HEREBY CONFIRMS THE RECEIVING PARTY NAME ON THE ATTACHED PATENT ASSIGNMENT COVER SHEET IS INCOMPLETE.;ASSIGNOR:AFEYAN, NOUBAR B.;REEL/FRAME:034688/0179 Effective date: 20121221 Owner name: MODERNA THERAPEUTICS, INC., MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY NAME FROM MODERNA THERAPEUTICS TO MODERNA THERAPEUTICS, INC. PREVIOUSLY RECORDED AT REEL: 029518 FRAME: 0977. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:VALENCIA, PEDRO;REEL/FRAME:034681/0406 Effective date: 20121221 |
|
| AS | Assignment |
Owner name: MODERNA THERAPEUTICS, INC., MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INVENTOR NAME PREVIOUSLY RECORDED ON REEL 034687 FRAME 0578. ASSIGNOR(S) HEREBY CONFIRMS THE INVENTOR NAME IN THE PREVIOUS COVER SHEET HAD A TYPO;ASSIGNORS:DE FOUGEROLLES, ANTONIN;WOOD, KRISTY M.;ELBASHIR, SAYDA M.;REEL/FRAME:034778/0706 Effective date: 20121218 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |