WO2023149775A1 - 유전자 전달용 올리고뉴클레오티드 및 이를 포함하는 유전자 전달용 지질나노입자 - Google Patents

유전자 전달용 올리고뉴클레오티드 및 이를 포함하는 유전자 전달용 지질나노입자 Download PDF

Info

Publication number
WO2023149775A1
WO2023149775A1 PCT/KR2023/001691 KR2023001691W WO2023149775A1 WO 2023149775 A1 WO2023149775 A1 WO 2023149775A1 KR 2023001691 W KR2023001691 W KR 2023001691W WO 2023149775 A1 WO2023149775 A1 WO 2023149775A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
mrna
lipid
hybridized
seq
Prior art date
Application number
PCT/KR2023/001691
Other languages
English (en)
French (fr)
Inventor
정현정
임산해
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230015668A external-priority patent/KR20230120590A/ko
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2023149775A1 publication Critical patent/WO2023149775A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation

Definitions

  • oligonucleotides for gene transfer and lipid nanoparticles for gene transfer including the same.
  • Gene therapy technology is an innovative technology that has great advantages in the treatment and prevention of various diseases, such as congenital genetic diseases, various cancers, and infectious disease vaccines, by specifically expressing, suppressing, or regulating target genes.
  • methods for delivering gene drugs are largely divided into viral-based delivery methods and non-viral delivery methods.
  • the viral-based delivery method has the advantage of high delivery efficiency, but has disadvantages such as side effects of immunity in the body and carcinogenicity.
  • Research on non-viral delivery methods is actively underway.
  • the target gene exists only temporarily, but it is continuously expressed for a considerable period of time, so active research is being conducted to apply it to protein replacement therapy for genetic diseases, cancer vaccine, vaccine for infectious diseases, etc. there is.
  • the non-viral delivery method is relatively safe compared to the viral-based delivery method, but has the disadvantage of low delivery efficiency to the target when administered in vivo, so the use of a carrier material is required, and conventional mRNA delivery is difficult.
  • a carrier material for this purpose, polymeric materials, ionizable lipids, cell penetrating peptides, and dendrimers have been actively studied and used. Since these carrier materials used to increase efficiency may cause various side effects due to cytotoxicity, a solution to this is required.
  • the present inventors have attempted to develop an effective and simple platform technology by modifying or modifying mRNA, in addition to a method of developing a new type of lipid to increase the delivery efficiency in the existing lipid nanoparticle-based delivery method.
  • One aspect is to provide an oligonucleotide for gene delivery in which a compound of Formula 1 and a compound of Formula 2 are combined:
  • Another aspect is to provide a lipid nanoparticle for gene transfer comprising a transgene hybridized with the oligonucleotide.
  • Another aspect is hybridizing the oligonucleotide and the transgene.
  • Another aspect is to provide a composition for gene transfer comprising a lipid nanoparticle according to one aspect.
  • One aspect provides an oligonucleotide for gene delivery to which a compound of Formula 1 and a compound of Formula 2 are combined:
  • the compound of Formula 1 is cyanine 5 (Cy5), which exhibits fluorescence in the far-infrared region (650 nm to 670 nm), may be derived from nature, and may be synthesized using a known organic synthesis method, It may be a non-protein compound, a peptide, an extract of tissue or cells of plant origin, a product obtained by the culture of microorganisms (eg bacteria or fungi, and especially yeast).
  • the compound of Chemical Formula 2 is cholesterol-TEG (cholesterol-tetraethylene glycol), which may be derived from nature, or may be synthesized using a known organic synthesis method, and may include non-protein compounds, peptides, plant-derived tissues or cells. It may be an extract of , a product obtained by culturing microorganisms (eg bacteria or fungi, and especially yeast).
  • cholesterol-TEG cholesterol-tetraethylene glycol
  • the oligonucleotide may be one in which the compound of Formula 1 is bound to the 5' position of the oligonucleotide and the compound of Formula 2 is bound to the 3' position of the oligonucleotide.
  • gene refers to a nucleic acid (eg, DNA or RNA) sequence comprising a partial-length or full-length coding sequence necessary for the production of a polypeptide or precursor polypeptide.
  • polypeptide refers to a polymer composed of two or more amino acids linked by amide bonds (or peptide bonds).
  • gene transfer refers to artificially inserting a gene or group of genes into a cell to express the gene group.
  • oligonucleotide refers to a short polynucleotide (eg, 100 or less linked nucleosides), and in one aspect, the oligonucleotide consists of gfp(1), gfp(2), luc and polyA. It may be one or more oligonucleotides selected from the group, and specifically, the oligonucleotide may be one or two oligonucleotides selected from the group consisting of gfp (1), gfp (2), luc and polyA, more specifically For example, the oligonucleotide may be gfp(1), gfp(2), luc or polyA, or luc and polyA.
  • the gfp(1) may be a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 3
  • the gfp(2) may be a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 4
  • the luc is It may be a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 5
  • the polyA may be a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 6.
  • polynucleotide refers to deoxyribonucleotides (DNA) or ribonucleotides (RNA) in the form of single or double strands. Unless otherwise limited, known analogs of natural nucleotides that hybridize to nucleic acids in a manner similar to naturally occurring nucleotides may also be included.
  • Another aspect provides a lipid nanoparticle for gene transfer comprising a transgene hybridized with the oligonucleotide.
  • oligonucleotide or “gene transfer” and the like may be within the scope described above.
  • transgene refers to a nucleic acid sequence encoding a gene product.
  • the transgene may mean any kind of gene to be delivered, specifically including mRNA, ribosomal RNA, non-coding RNA, tRNA, viral RNA, siRNA, miRNA, sgRNA, shRNA, etc. It can be any type of RNA.
  • the transgene may be one or more selected from the group consisting of mRNA, siRNA, miRNA, sgRNA, tRNA, and shRNA, and specifically may be mRNA.
  • the transgene is mRNA
  • the mRNA is loaded on the hydrophilic portion of the lipid nanoparticle and delivered to a target site in the cell, and the protein encoded by the mRNA is expressed, thereby exhibiting a gene transfer effect.
  • hybridization refers to a reaction in which one or more polynucleotides react to form a complex stabilized through hydrogen bonds between bases of nucleotide residues. Hydrogen bonding may occur by Watson-Crick base pairing, Hoogstein bonding, or in any other sequence-specific manner.
  • each base of the transgene and the oligonucleotide may be hybridized through a hydrogen bond.
  • the oligonucleotide and the transgene are 1:0.1 to 1:100, 1:0.1 to 1:50, 1:0.1 to 1:20, 1:0.5 to 1:100, 1:0.5 to 1 :50, 1:0.5 to 1:20, 1:0.8 to 1:100, 1:0.8 to 1:50, or 1:0.8 to 1:20.
  • the molar ratio is less than 1:0.1, most of the transgene can hybridize with the oligonucleotide, but the oligonucleotide may be wasted or the concentration of the hybridized transgene may be low, resulting in low expression efficiency in the cell.
  • the molar ratio is greater than 1:100, the amount of the unhybridized transgene is greater than the amount of the transgene hybridized with the oligonucleotide, and thus expression efficiency in cells may be low.
  • lipid nanoparticles refers to an effective drug delivery system for biologically active compounds such as cell-impermeable therapeutic nucleic acids, proteins, and peptides, and lipid-nucleic acid particles or nucleic acid-lipid particles (eg eg, stable nucleic acid-lipid particles).
  • Lipid nanoparticles refer to particles made of lipids (e.g., cationic lipids, non-cationic lipids, and conjugated lipids that prevent particle aggregation), nucleic acids, wherein nucleic acids (e.g., siRNA, aiRNA, miRNA, ssDNA, dsDNA, ssRNA, short hairpin RNA (shRNA), dsRNA, mRNA, self-amplifying RNA, or plasmid, including plasmids from which interfering RNA or mRNA is transcribed) are encapsulated in lipids.
  • nucleic acids e.g., siRNA, aiRNA, miRNA, ssDNA, dsDNA, ssRNA, short hairpin RNA (shRNA), dsRNA, mRNA, self-amplifying RNA, or plasmid, including plasmids from which interfering RNA or mRNA is transcribed
  • the lipid nanoparticle is (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn- It may be composed of one or more lipids selected from the group consisting of glycero-3-phosphocholine, cholesterol, and 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000, specifically (6Z,9Z,28Z ,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, cholesterol and 1,2-dimyristoyl-rac- It may be composed of glycero-3-methoxypolyethylene glycol-2000.
  • the (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate may be a compound represented by Formula 3 below
  • 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine may be a compound represented by the following Chemical Formula 4
  • the cholesterol may be a compound represented by the following Chemical Formula 5
  • the 1,2-dimyristoyl-rac-glycero- 3-methoxypolyethylene glycol-2000 may be a compound represented by Formula 6 below:
  • the lipid nanoparticles are (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine ,
  • the lipid nanoparticles are (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen- 19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, cholesterol and 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 are 50:10:38.5:1.5 It may be constituted by being mixed in
  • the lipid nanoparticles When the lipid nanoparticles are mixed at a molar ratio outside the 50:10:38.5:1.5 ratio, the lipid nanoparticles may not be properly formed, resulting in low gene transfer efficiency.
  • the lipid nanoparticle for gene delivery can transfer the gene by loading the transgene hybridized with the oligonucleotide on the hydrophilic portion of the lipid nanoparticle to transfer the lipid nanoparticle for gene transfer into a cell.
  • It provides a method for producing a lipid nanoparticle for gene transfer comprising mixing the hybridized transgene and lipid.
  • oligonucleotide "transgene”, “hybridization”, “gene transfer” or “lipid nanoparticle” may be within the above-described range.
  • the oligonucleotide and the transgene may be obtained by hybridizing respective bases through hydrogen bonding.
  • oligonucleotide refers to a short polynucleotide (eg, 100 or less linked nucleosides), and in one aspect, the oligonucleotide consists of gfp(1), gfp(2), luc and polyA. It may be one or more oligonucleotides selected from the group, and specifically, the oligonucleotide may be one or two oligonucleotides selected from the group consisting of gfp (1), gfp (2), luc and polyA, more specifically For example, the oligonucleotide may be gfp(1), gfp(2), luc or polyA, or luc and polyA.
  • the gfp(1) may be a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 3
  • the gfp(2) may be a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 4
  • the luc is It may be a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 5
  • the polyA may be a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 6.
  • the temperature of the hybridization step is 5 °C to 45 °C, 5 °C to 40 °C, 5 °C to 35 °C, 10 °C to 45 °C, 10 °C to 40 °C, 10 °C to 35 °C, 15 °C to It may be made of a temperature of 45 °C, 15 °C to 40 °C or 15 °C to 35 °C.
  • the temperature at which the hybridization step is performed is less than 5° C. or higher than 45° C., hybridization between the oligonucleotide and the transgene is not performed and gene transfer is not performed, so gene transfer efficiency may be low.
  • the time of the hybridization step is 1 second to 120 minutes, 1 minute to 120 minutes, 1 minute to 60 minutes, 1 minute to 20 minutes, 5 minutes to 120 minutes, 5 minutes to 60 minutes, 5 minutes to It may consist of a time of 20 minutes, 8 minutes to 120 minutes, 8 minutes to 60 minutes, or 8 minutes to 20 minutes.
  • hybridization step When the hybridization step is performed for less than 1 minute, hybridization between the oligonucleotide and the transgene is not sufficiently performed, the amount of hybridized transgene is small, and gene transfer efficiency may be low, and the hybridization step is performed for more than 120 minutes. In this case, gene transfer efficiency is similar to that performed for 1 to 120 minutes.
  • lipid refers to organic compounds comprising esters of fatty acids and characterized by being insoluble in water but soluble in many organic solvents.
  • the lipid is (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero- It may be one or more selected from the group consisting of 3-phosphocholine, cholesterol, and 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000, specifically, (6Z,9Z,28Z,31Z)-heptatriaconta-6 ,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, cholesterol and 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol- It could be 2000.
  • the (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate may be a compound represented by Formula 3 below
  • 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine may be a compound represented by the following Chemical Formula 4
  • the cholesterol may be a compound represented by the following Chemical Formula 5
  • the 1,2-dimyristoyl-rac-glycero- 3-methoxypolyethylene glycol-2000 may be a compound represented by Formula 6 below:
  • the lipid is (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, cholesterol and 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000, the lipid is (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4 -(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, cholesterol and 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 in a molar ratio of 50:10:38.5:1.5 can be mixed.
  • lipid nanoparticles may not be properly formed, resulting in low gene transfer efficiency.
  • the lipid nanoparticle for gene delivery can transfer the gene by loading the transgene hybridized with the oligonucleotide on the hydrophilic portion of the lipid nanoparticle to transfer the lipid nanoparticle for gene transfer into a cell.
  • composition for gene delivery comprising the lipid nanoparticles.
  • the “lipid nanoparticles” or “gene delivery” may be within the above range.
  • the composition may be administered or ingested to a subject, "administration” means introducing a predetermined substance to the subject in an appropriate manner, and “ingestion” may deliver a predetermined substance to the subject to a site required for biological action.
  • “Individual” means all living things, such as rats, mice, livestock, etc., including humans. As a specific example, it may be mammals including humans.
  • the optimal functionalized oligonucleotide was designed using software, and the functionalized oligonucleotide was hybridized with mRNA at various temperatures and for various times. It was confirmed that the oligonucleotide and the mRNA hybridized well (see Example 1).
  • lipid nanoparticles are prepared by mixing mRNA hybridized with the functionalized oligonucleotide with constituents of lipid nanoparticles, and mRNA hybridized with the functionalized oligonucleotide can exhibit an optimized expression effect in cells.
  • mRNA hybridized with the functionalized oligonucleotide can exhibit an optimized expression effect in cells.
  • the intracellular expression effect was increased when the molar ratio of the functionalized oligonucleotide and the hybridized mRNA was 1:1 (see Example 2).
  • the hydrodynamic radius was 120 nm and the zeta potential was -2 It was confirmed that there was no significant difference between the oligonucleotide functionalized to the degree of mV and the lipid nanoparticles hybridized with the mRNA not loaded. As a result of measuring the amount of loaded mRNA through primers and real-time PCR (qPCR), it was confirmed that more than 90% of the mRNA was loaded and was not affected by oligonucleotide hybridization (see Example 2). .
  • the lipid nanoparticles carrying the mRNA hybridized with the functionalized oligonucleotide were analyzed for the efficiency of mRNA delivery through qPCR with a primer specific for luciferase mRNA.
  • the functionalized oligonucleotide and the hybridized mRNA were loaded It was confirmed that the lipid nanoparticles with the functionalized oligonucleotide delivered a higher amount of mRNA into the cells than the lipid nanoparticles that did not carry the mRNA hybridized with the functionalized oligonucleotide (see Example 3).
  • the protein expression effect by mRNA delivery of lipid nanoparticles loaded with luciferase and EGFP mRNAs hybridized with the oligonucleotides was measured in A549, HeLa and MDA-MB As a result of analysis in -231 cells, it was confirmed that the lipid nanoparticles carrying the mRNA hybridized with the oligonucleotide showed more effective protein expression than the lipid nanoparticles without the mRNA hybridized with the oligonucleotide in the cell, After cell fixation and staining of actin and nuclei for imaging analysis, as a result of confocal microscopy, it was confirmed that mRNA intracellular delivery efficiency increased and protein expression increased (Example 4). reference).
  • the functionalized oligonucleotide according to one aspect is hybridized with a transgene, which is a gene to be delivered, and mounted on a lipid nanoparticle, so that it can be used as a composition for gene delivery.
  • the composition can be used in various gene delivery methods, including gene therapy, because the mRNA intracellular delivery efficiency and mRNA expression efficiency are remarkably superior to existing compositions or gene delivery methods for the delivery of a gene to be delivered.
  • 1 is a diagram showing the results of confirming conditions for hybridization of a transgene and a functionalized oligonucleotide.
  • FIG. 2 is a diagram showing a method for preparing and delivering lipid nanoparticles loaded with a transgene hybridized with a functionalized oligonucleotide.
  • FIG. 3 is a diagram showing the results of analyzing the effect of transgene expression according to the hybridization ratio between the transgene and the functionalized oligonucleotide.
  • Figure 4 is a diagram showing the results of analyzing the characteristics of lipid nanoparticles loaded with transgenes hybridized with functionalized oligonucleotides.
  • 5 is a diagram showing the results of analyzing transgene delivery efficiency in various types of cells through qPCR and FACS.
  • FIG. 6 is a diagram showing the results of analyzing the expression effect of transgene delivery of lipid nanoparticles through a microplate reader and FACS.
  • FIG. 7 is a diagram showing the results of analyzing the expression effects of luciferase and EGFP transgenes of lipid nanoparticles through confocal microscopy.
  • Figure 8 is a diagram showing the results of comparing the effect according to the sequence-specific C-oligo hybridization time of mRNA.
  • FIG. 9 is a diagram showing the results of stability analysis of optimized lipid nanoparticles loaded with transgenes hybridized with functionalized oligonucleotides.
  • FIG. 10 is a diagram confirming the intracellular delivery and expression of lipid nanoparticles loaded with a hybridized transgene according to the length of the functionalized oligonucleotide.
  • FIG. 11 is a diagram confirming intracellular delivery and effects according to lipid components of lipid nanoparticles loaded with transgenes hybridized with functionalized oligonucleotides.
  • FIG. 12 is a diagram confirming the intracellular delivery effect according to the lipid component of lipid nanoparticles loaded with a transgene hybridized with a functionalized oligonucleotide.
  • FIG. 13 is a diagram confirming the delivery effect in mice of optimized lipid nanoparticles loaded with transgenes hybridized with functionalized oligonucleotides.
  • luciferase and EGFP-expressing mRNAs were used. Each mRNA forms a predictable complex secondary structure, and the secondary structure of mRNA is predicted and modeled using IPknot and VARNA, which are secondary structure prediction software, to determine the optimal sequence for C-oligo hybridization.
  • FIG. 2 A schematic diagram of the production and delivery of lipid nanoparticles loaded with C-oligo-hybridized mRNA is shown (FIG. 2). Specifically, (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate, a constituent of lipid nanoparticles, after hybridization of mRNA and C-oligo (DLin-MC3-DMA, a compound represented by Formula 3 below), 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC, a compound represented by Formula 4 below), cholesterol (cholesterol, represented by Formula 5 below) compound) and 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 (DMG-PEG2000, a compound represented by Chemical Formula 6) in a 50:10:38.5:1.5 mol ratio, and dried at room
  • the mass ratio of mRNA hybridized with C-oligo to be loaded and the total amount of dried lipid is 1:40, and the molar ratio of mRNA and C-oligo is 1:1, 1:2, 1:5, and 1: 10 hybridized mRNA was mixed with sodium citrate (pH 4.0) buffer, and the dried lipid film was dissolved in ethanol.
  • lipid nanoparticles were synthesized by mixing the buffer volume of mRNA hybridized with C-oligo and ethanol at a volume ratio of 3:1, and dialysis was performed against PBS (pH 7.4) at 4°C to remove the remaining ethanol. did Thereafter, the cells were treated, and the expression effects of luciferase and EGFP mRNA hybridized at various molar ratios were compared through a microplate reader and fluorescence-activated cell sorting (FACS), respectively.
  • FACS fluorescence-activated cell sorting
  • the hydrodynamic size and zeta potential of the synthesized lipid nanoparticles were diluted with PBS (pH7.4) at room temperature, and the zeta-potential & particle size analyzer It was measured using, and it was confirmed that there is no significant difference from existing lipid nanoparticles with a hydrodynamic size of 120 nm and a zeta potential of -2 mV according to the position where C-oligo hybridizes.
  • lipid nanoparticles loaded with C-oligo-hybridized mRNA were treated with lipid nanoparticles loaded with C-oligo-hybridized mRNA at 37°C, and after 6 hours, mRNA was measured by qPCR with primers specific for luciferase mRNA (forward primer: SEQ ID NO: 7, reverse primer: SEQ ID NO: 8). The delivery efficiency of was analyzed. It was confirmed that lipid nanoparticles loaded with C-oligo hybridized mRNA delivered a larger amount of mRNA into cells than conventional lipid nanoparticles. Additionally, when synthesizing luciferase mRNA, an azido functional group was introduced using 8-azidoadenosine-5'-triphosphate (a compound represented by Formula 7 below):
  • DBCO-PEG4-BODIPY-FL compound represented by Formula 8 below
  • DBCO dibenzylcyclooctyne
  • luciferase-expressing mRNA was used.
  • mRNA was hybridized with C-oligo (UTR: SEQ ID NO: 9, 5'-UCUUUAACCUGUCGUUC-3') designed to include Cy5 and cholesterol-TEG at 5' and 3' of the oligo, respectively.
  • the reaction time was changed from 0 minutes to 1 hour. As a result, it was confirmed through fluorescence imaging of Cy5 conjugated to C-oligo that hybridization with mRNA was well achieved under the 1-hour reaction condition in a 10% polyacrylamide gel (page gel) (FIG. 8A ).
  • C-oligo hybridized mRNA was mixed with (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (DLin) under reaction conditions of 0 minutes to 1 hour.
  • DLin 4-(dimethylamino)butanoate
  • lipid nanoparticles loaded with C-oligo-hybridized mRNA were used.
  • Lipid nanoparticles loaded with hybridized mRNA were formed using C-oligo (luc: SEQ ID NO: 5) and stored at -20 ° C for 0 to 192 hours. After diluting with PBS (pH7.4) and storing at -20 ° C, the hydrodynamic size according to the time was measured using a zeta potential & particle size analyzer. As a result, it was confirmed that the hydrodynamic size of the lipid nanoparticles loaded with C-oligo-hybridized mRNA was stably maintained (FIG. 9A).
  • mRNA expressing luciferase was used.
  • the length of C-oligo was selected as 7nt, 12nt, and 17nt, and the increased expression effect of lipid nanoparticles loaded with mRNA hybridized with each C-oligo was confirmed in A549 cells in a microplate reader. As a result, it was confirmed that intracellular delivery and expression of mRNA hybridized with the relatively long 17nt C-oligo were effectively increased compared to the case without the oligo (FIG. 10).
  • Each lipid nanoparticle component was mixed in a mol ratio and dried at room temperature to prepare a film.
  • the hybridized mRNA was mixed with sodium citrate (pH 4.0) buffer, and dried lipid film was dissolved in ethanol.
  • the buffer volume of mRNA and the volume ratio of ethanol are mixed so that the volume ratio is 3: 1, each lipid nanoparticle is synthesized so that the mass ratio of mRNA and lipid dried in the form of a film is 1: 10 to 1: 40, and the remaining ethanol Dialysis was performed in PBS (pH 7.4) at 4° C. to remove it. Then, A549 cells were treated, and the effect of mRNA expression by C-oligo was confirmed through a microplate reader.
  • 11A shows (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (DLin-MC3-DMA), 1 component of lipid nanoparticles.
  • DLin-MC3-DMA 4-(dimethylamino)butanoate
  • DSPC dioctadecanoyl-sn-glycero-3-phosphocholine
  • cholesterol cholesterol
  • DMG-PEG2000 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000
  • 11B shows the composition of lipid nanoparticles [(4-Hydroxybutyl)azanediyl]di(hexane-6,1-diyl) bis(2-hexyldecanoate) (ALC-0315), 1,2-dioctadecanoyl-sn-glycero- 3-phosphocholine (DSPC), cholesterol (cholesterol) and 2-[(polyethylene glycol)-2000] -N,N-ditetradecylacetamide (ALC-0159) were mixed in a 46.3:9.4:42.7:1.6 mol ratio.
  • 11C shows heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate (SM-102), 1,2-dioctadecanoyl- Sn-glycero-3-phosphocholine (DSPC), cholesterol (cholesterol) and 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 (DMG-PEG2000) were mixed in a 50:10:38.5:1.5 mol ratio. is the result of the experiment.
  • lipid nanoparticles having (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (DLin-MC3-DMA) as a lipid component See [(4-Hydroxybutyl)azanediyl]di(hexane-6,1-diyl)bis(2-hexyldecanoate) (ALC-0315), heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6 -(undecyloxy)hexyl)amino)octanoate (SM-102) was used to express mRNA more effectively in lipid nanoparticles, and the increased expression effect by C-oligo was confirmed (FIG. 12).
  • C-oligo-hybridized mRNA mRNA expressing luciferase was used.
  • C-oligo (UTR: SEQ ID NO: 9) hybridized mRNA is loaded, and contains [(4-Hydroxybutyl)azanediyl]di(hexane-6,1-diyl) bis(2-hexyldecanoate) (ALC-0315) lipid lipid nanoparticles were synthesized.
  • Balb/c mice were treated with 2.5 ⁇ g of mRNA by intramuscular injection from 6 to 24 hours, and the effect of mRNA expression increased by C-oligo was confirmed by IVIS, a biofluorescence device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Preparation (AREA)

Abstract

일 양상은 유전자 전달용 올리고뉴클레오티드, 이와 혼성화된 트랜스진을 포함하는 유전자 전달용 지질나노입자 및 이의 제조 방법에 관한 것이다. 일 양상에 따른 기능화된 올리고뉴클레오티드는 전달하고자 하는 유전자인 트랜스진과 혼성화되고 지질나노입자에 탑재됨으로써 유전자 전달용 조성물로 활용될 수 있다. 상기 조성물은 기존의 전달하고자 하는 유전자의 전달용 조성물 또는 유전자 전달 방법에 비해 mRNA의 세포 내 전달 효율 및 mRNA 발현 효율이 현저히 우수한 바, 유전자 치료제를 포함한 다양한 유전자 전달 방법에 활용될 수 있다.

Description

유전자 전달용 올리고뉴클레오티드 및 이를 포함하는 유전자 전달용 지질나노입자
유전자 전달용 올리고뉴클레오티드 및 이를 포함하는 유전자 전달용 지질나노입자에 관한 것이다.
유전자 치료기술은 타겟 유전자를 특이적으로 발현, 억제 또는 조절함으로써 선천성 유전질환, 각종 암, 감염병 백신 등 다양한 질병의 치료 및 예방에 있어서 큰 장점을 지니는 획기적인 기술이다. 특히, 유전자 약물을 전달하는 방법은 크게 바이러스 기반 전달 방법과 비바이러스성 전달방법으로 나눠지는데, 바이러스 기반 전달 방법의 경우 전달 효율이 높다는 장점이 있지만, 체내의 면역 부작용 및 발암성 등의 단점을 가져 비바이러스성 전달 방법에 대한 연구가 활발히 진행 중에 있다. 이 중 mRNA 기반 유전자 치료의 경우 타겟 유전자가 일시적으로만 존재하나, 상당 기간 지속적으로 발현시킴으로써 유전자 질환에 대한 단백질 대체 요법(protein replacement therapy), 암 백신, 감염병 백신 등에 적용하기 위해 활발한 연구가 진행되고 있다. 그러나, 비바이러스성 전달 방법은 바이러스성 기반 전달 방법에 비해 상대적으로 안전하지만, 생체 내 투여 시, 표적으로의 전달 효율이 낮은 단점이 있기 때문에 캐리어 물질의 사용이 필요하며, 기존의 mRNA를 전달하기 위해 폴리머 물질(polymeric materials), 이온화성 지질(ionizable lipids), 세포 투과성 펩타이드(cell penetrating peptides), 덴드리머(dendrimer) 등이 활발히 연구되어 사용되고 있다. 효율을 높이기 위해 사용하는 이러한 캐리어 물질들이 세포 독성에 의해 여러 부작용이 생길 수 있으므로, 이에 대한 해결방안이 필요하다. 최근 COVID-19 발병 및 이에 대한 백신 개발로 인해 지질나노입자 기반 mRNA 전달에 대한 연구가 활발하며, 기존 지질나노입자의 경우 현재까지 개발된 제형을 통틀어 가장 높은 효과를 보이지만, 세포독성 문제 및 면역 부작용 문제가 여전히 존재한다. 따라서, 캐리어 물질을 적게 사용하면서 효과적으로 전달하는 방법의 연구가 필요한 실정이다. 상대적으로 분자량이 작은 siRNA의 경우, 지질을 컨쥬게이션하여 세포 내에 효과적으로 전달시키는 기술들이 개발되었지만, 이를 mRNA에 적용한 연구 사례는 거의 없었다.
이에, 본 발명자는 기존의 지질나노입자 기반 전달 방법에서 전달 효율을 증가시키기 위해 새로운 종류의 지질을 개발하는 방법 외에, mRNA를 개질하거나 변형시켜 적용함으로써 효과적이면서 간단한 플랫폼 기술을 개발하고자 하였다.
일 양상은 하기 화학식 1의 화합물 및 하기 화학식 2의 화합물이 결합된 유전자 전달용 올리고뉴클레오티드를 제공하는 것이다:
[화학식 1]
Figure PCTKR2023001691-appb-img-000001
,
[화학식 2]
Figure PCTKR2023001691-appb-img-000002
.
다른 양상은 상기 올리고뉴클레오티드와 혼성화된 트랜스진을 포함하는 유전자 전달용 지질나노입자를 제공하는 것이다.
또 다른 양상은 상기 올리고뉴클레오티드와 트랜스진을 혼성화하는 단계; 및
상기 혼성화된 트랜스진과 지질을 혼합하는 단계를 포함하는 유전자 전달용 지질나노입자의 제조 방법을 제공하는 것이다.
또 다른 양상은 일 양상에 따른 지질나노입자를 포함하는 유전자 전달용 조성물을 제공하는 것이다.
일 양상은 하기 화학식 1의 화합물 및 하기 화학식 2의 화합물이 결합된 유전자 전달용 올리고뉴클레오티드를 제공한다:
[화학식 1]
Figure PCTKR2023001691-appb-img-000003
,
[화학식 2]
Figure PCTKR2023001691-appb-img-000004
.
상기 화학식 1의 화합물은 시아닌5(Cy5)이며, 원적외선 영역(650 nm 내지 670 nm)에서 형광을 나타내는 것으로, 천연으로부터 유래되는 것일 수 있고, 공지의 유기 합성 방법을 이용하여 합성되는 것일 수 있으며, 비단백질 화합물, 펩티드, 식물 유래 조직이나 세포의 추출물, 미생물(예를 들어 세균류 또는 진균류, 그리고 특히 효모)의 배양으로 얻어진 생산물일 수 있다.
상기 화학식 2의 화합물은 콜레스테롤-TEG(cholesterol-tetraethylene glycol)이며, 천연으로부터 유래되는 것일 수 있고, 공지의 유기 합성 방법을 이용하여 합성되는 것일 수 있으며, 비단백질 화합물, 펩티드, 식물 유래 조직이나 세포의 추출물, 미생물(예를 들어 세균류 또는 진균류, 그리고 특히 효모)의 배양으로 얻어진 생산물일 수 있다.
일 양상에 있어서, 상기 올리고뉴클레오티드는 상기 올리고뉴클레오티드의 5’ 위치에 상기 화학식 1의 화합물이 결합되고, 3’ 위치에 상기 화학식 2의 화합물이 결합된 것일 수 있다.
상기 용어 “유전자”는 폴리펩티드 또는 전구체 폴리펩티드의 생산에 필요한 부분 길이 또는 전체 길이 코딩 서열을 포함하는 핵산 (예를 들어, DNA 또는 RNA) 서열을 의미한다.
상기 용어 “폴리펩티드”는 아마이드 결합 (또는 펩티드 결합)으로 연결된 2개 이상의 아미노산으로 이루어진 폴리머를 의미한다.
상기 용어 “유전자 전달”은 인위적으로 유전자 또는 일단의 유전자군을 세포에 삽입하여 그 유전자군을 발현시키는 것을 의미한다.
상기 용어 “올리고뉴클레오티드”는 짧은 폴리뉴클레오티드(예컨대, 100개 이하의 연결된 뉴클레오사이드)를 의미하며, 일 양상에 있어서, 상기 올리고뉴클레오티드는 gfp(1), gfp(2), luc 및 polyA으로 이루어진 군에서 선택되는 하나 이상의 올리고뉴클레오티드일 수 있고, 구체적으로, 상기 올리고뉴클레오티드는 gfp(1), gfp(2), luc 및 polyA으로 이루어진 군에서 선택되는 하나 또는 둘의 올리고뉴클레오티드일 수 있고, 보다 구체적으로, 상기 올리고뉴클레오티드는 gfp(1), gfp(2), luc 또는 polyA이거나 luc 및 polyA일 수 있다.
또한, 일 양상에 있어서, 상기 gfp(1)은 서열번호 3의 염기 서열로 이루어진 폴리뉴클레오티드일 수 있고, 상기 gfp(2)는 서열번호 4의 염기 서열로 이루어진 폴리뉴클레오티드일 수 있고, 상기 luc는 서열번호 5의 염기 서열로 이루어진 폴리뉴클레오티드일 수 있고, 상기 polyA는 서열번호 6의 염기 서열로 이루어진 폴리뉴클레오티드일 수 있다.
상기 용어 “폴리뉴클레오티드(polynucleotide)”는 단일 또는 이중가닥의 형태로된 데옥시리보뉴클레오티드 (DNA) 또는 리보뉴클레오티드 (RNA)를 말한다. 다른 제한이 없는 한, 자연적으로 생성되는 뉴클레오티드와 비슷한 방법으로 핵산에 혼성화되는 자연적 뉴클레오티드의 공지된 아날로그도 포함할 수 있다.
다른 양상은 상기 올리고뉴클레오티드와 혼성화된 트랜스진을 포함하는 유전자 전달용 지질나노입자를 제공한다.
상기 용어 “올리고뉴클레오티드” 또는 “유전자 전달” 등은 전술한 범위 내일 수 있다.
상기 “트랜스진(transgene)”은 유전자 산물을 암호화하는 핵산 서열을 의미한다.
일 양상에 있어서, 상기 트랜스진은 전달하고자 하는 모든 종류의 유전자를 의미할 수 있고, 구체적으로 mRNA, ribosomal RNA, non-coding RNA, tRNA, viral RNA, siRNA, miRNA, sgRNA, shRNA 등을 포함하는 모든 종류의 RNA일 수 있다.
일 양상에 있어서, 상기 트랜스진은 mRNA, siRNA, miRNA, sgRNA, tRNA 및 shRNA로 이루어진 군에서 선택되는 하나 이상일 수 있고, 구체적으로는 mRNA일 수 있다.
상기 트랜스진이 mRNA인 경우, mRNA가 지질나노입자 내 친수성 부분에 탑재되어 세포 내 목적 부위에 전달되고, mRNA가 코딩하는 단백질이 발현됨으로써 유전자 전달 효과를 나타낼 수 있다.
상기 용어 “혼성화”는 하나 이상의 폴리뉴클레오티드가 반응하여 뉴클레오티드 잔기의 염기 사이의 수소 결합을 통해 안정화되는 복합체를 형성하는 반응을 의미한다. 수소 결합은 왓슨-크릭 염기쌍, 후그스테인 결합에 의해, 또는 임의의 다른 서열 특이적 방식으로 발생할 수 있다.
일 양상에 있어서, 상기 트랜스진과 상기 올리고뉴클레오티드는 각각의 염기들이 수소결합을 통해 혼성화된 것일 수 있다.
일 양상에 있어서, 상기 올리고뉴클레오티드 및 상기 트랜스진은 1:0.1 내지 1:100, 1:0.1 내지 1:50, 1:0.1 내지 1:20, 1:0.5 내지 1:100, 1:0.5 내지 1:50, 1:0.5 내지 1:20, 1:0.8 내지 1:100, 1:0.8 내지 1:50 또는 1:0.8 내지 1:20의 몰 비율로 혼성화된 것일 수 있다.
상기 몰 비율이 1:0.1 미만인 경우, 트랜스진은 대부분 올리고뉴클레오티드와 혼성화가 가능하나, 올리고뉴클레오티드가 낭비되거나, 혼성화된 트랜스진의 농도 자체가 낮아, 세포 내 발현 효율이 낮을 수 있고, 상기 몰 비율이 몰 비율이 1:100 초과인 경우, 상기 올리고뉴클레오티드와 혼성화된 트랜스진의 양보다 혼성화되지 않은 트랜스진의 양이 많아, 세포 내 발현 효율이 낮을 수 있다.
상기 용어 “지질나노입자(Lipid Nanoparticles, LNPs)”는 세포 불투과성인 치료용 핵산, 단백질, 및 펩타이드와 같은 생물학적 활성 화합물에 대한 효과적인 약물 전달 시스템으로, 지질-핵산 입자 또는 핵산-지질 입자(예를 들어, 안정한 핵산-지질 입자)를 지칭한다. 지질나노입자는 지질(예를 들어, 양이온성 지질, 비양이온성 지질, 및 입자의 응집을 방지하는 접합 지질), 핵산으로 만들어진 입자를 나타내고, 여기서 핵산(예를 들어, siRNA, aiRNA, miRNA, ssDNA, dsDNA, ssRNA, 짧은 헤어핀 RNA (shRNA), dsRNA, mRNA, 자가 증폭 RNA, 또는 플라스미드, 간섭 RNA 또는 mRNA가 전사되는 플라스미드 포함)이 지질 내에 캡슐화된다.
일 양상에 있어서, 상기 지질나노입자는 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, 콜레스테롤 및 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000으로 이루어진 군에서 선택되는 하나 이상의 지질로 구성되는 것일 수 있고, 구체적으로는, (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, 콜레스테롤 및 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000으로 구성되는 것일 수 있다.
일 양상에 있어서, 상기 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate는 하기 화학식 3으로 표시되는 화합물일 수 있고, 상기 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine는 하기 화학식 4로 표시되는 화합물일 수 있고, 상기 콜레스테롤은 하기 화학식 5로 표시되는 화합물일 수 있고, 상기 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000는 하기 화학식 6으로 표시되는 화합물일 수 있다:
[화학식 3]
Figure PCTKR2023001691-appb-img-000005
,
[화학식 4]
Figure PCTKR2023001691-appb-img-000006
,
[화학식 5]
Figure PCTKR2023001691-appb-img-000007
,
[화학식 6]
Figure PCTKR2023001691-appb-img-000008
.
상기 지질나노입자가 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, 콜레스테롤 및 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000로 구성된 경우, 상기 지질나노입자는 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, 콜레스테롤 및 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000이 50:10:38.5:1.5의 몰 비율로 혼합되어 구성되는 것일 수 있다.
상기 지질나노입자가 상기 50:10:38.5:1.5의 몰 비율을 벗어난 비율로 혼합되어 구성되는 경우, 지질나노입자가 제대로 형성되지 않아, 유전자 전달 효율이 낮을 수 있다.
일 양상에 따르면, 상기 유전자 전달용 지질나노입자는 상기 올리고뉴클레오티드와 혼성화된 트랜스진을 지질나노입자 내 친수성 부분에 탑재시켜 상기 유전자 전달용 지질나노입자를 세포 내로 전달하여 유전자가 전달될 수 있다.
또 다른 양상에 있어서, 상기 올리고뉴클레오티드와 트랜스진을 혼성화하는 단계; 및
상기 혼성화된 트랜스진과 지질을 혼합하는 단계를 포함하는 유전자 전달용 지질나노입자의 제조 방법을 제공한다.
상기 “올리고뉴클레오티드”, “트랜스진”, “혼성화”, “유전자 전달” 또는 “지질나노입자” 등은 전술한 범위 내일 수 있다.
상기 혼성화 단계를 통해 올리고뉴클레오티드와 트랜스진은 각각의 염기들이 수소결합을 통해 혼성화된 것일 수 있다.
상기 용어 “올리고뉴클레오티드”는 짧은 폴리뉴클레오티드(예컨대, 100개 이하의 연결된 뉴클레오사이드)를 의미하며, 일 양상에 있어서, 상기 올리고뉴클레오티드는 gfp(1), gfp(2), luc 및 polyA으로 이루어진 군에서 선택되는 하나 이상의 올리고뉴클레오티드일 수 있고, 구체적으로, 상기 올리고뉴클레오티드는 gfp(1), gfp(2), luc 및 polyA으로 이루어진 군에서 선택되는 하나 또는 둘의 올리고뉴클레오티드일 수 있고, 보다 구체적으로, 상기 올리고뉴클레오티드는 gfp(1), gfp(2), luc 또는 polyA이거나 luc 및 polyA일 수 있다.
또한, 일 양상에 있어서, 상기 gfp(1)은 서열번호 3의 염기 서열로 이루어진 폴리뉴클레오티드일 수 있고, 상기 gfp(2)는 서열번호 4의 염기 서열로 이루어진 폴리뉴클레오티드일 수 있고, 상기 luc는 서열번호 5의 염기 서열로 이루어진 폴리뉴클레오티드일 수 있고, 상기 polyA는 서열번호 6의 염기 서열로 이루어진 폴리뉴클레오티드일 수 있다.
일 양상에 있어서, 상기 혼성화 단계의 온도는 5℃ 내지 45℃, 5℃내지 40℃, 5℃ 내지 35℃, 10℃ 내지 45℃, 10℃ 내지 40℃, 10℃ 내지 35℃, 15℃ 내지 45℃, 15℃ 내지 40℃ 또는 15℃ 내지 35℃의 온도로 이루어지는 것일 수 있다.
상기 혼성화 단계 수행 온도가 5℃ 미만이거나 온도가 45℃ 초과인 경우, 상기 올리고뉴클레오티드와 트랜스진의 혼성화가 이루어지지 않고, 유전자 전달이 이루어지지 않아, 유전자 전달 효율이 낮을 수 있다.
일 양상에 있어서, 상기 혼성화 단계의 시간은 1초 내지 120분, 1분 내지 120분, 1분 내지 60분, 1분 내지 20분, 5분 내지 120분, 5분 내지 60분, 5분 내지 20분, 8분 내지 120분, 8분 내지 60분 또는 8분 내지 20분의 시간으로 이루어지는 것일 수 있다.
상기 혼성화 단계 수행 시간이 1분 미만인 경우, 상기 올리고뉴클레오티드와 트랜스진의 혼성화가 충분히 이루어지지 않고, 혼성화된 트랜스진의 양이 적어, 유전자 전달 효율이 낮을 수 있으며, 상기 혼성화 단계 수행 시간이 120분 초과인 경우, 1분 내지 120분 수행된 것에 비하여, 유전자 전달 효율이 유사하다.
상기 용어 “지질”은 지방산의 에스테르를 포함하고, 물 중에서는 불용성이지만 많은 유기 용매 중에서는 가용성인 것을 특징으로 하는 유기 화합물을 의미한다.
일 양상에 있어서, 상기 지질은 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, 콜레스테롤 및 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000으로 이루어진 군에서 선택되는 하나 이상일 수 있고, 구체적으로는, (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, 콜레스테롤 및 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000일 수 있다.
일 양상에 있어서, 상기 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate는 하기 화학식 3으로 표시되는 화합물일 수 있고, 상기 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine는 하기 화학식 4로 표시되는 화합물일 수 있고, 상기 콜레스테롤은 하기 화학식 5로 표시되는 화합물일 수 있고, 상기 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000는 하기 화학식 6으로 표시되는 화합물일 수 있다:
[화학식 3]
Figure PCTKR2023001691-appb-img-000009
,
[화학식 4]
Figure PCTKR2023001691-appb-img-000010
,
[화학식 5]
Figure PCTKR2023001691-appb-img-000011
,
[화학식 6]
Figure PCTKR2023001691-appb-img-000012
.
상기 지질이 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, 콜레스테롤 및 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000로 구성된 경우, 상기 지질은 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, 콜레스테롤 및 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000이 50:10:38.5:1.5의 몰 비율로 혼합될 수 있다.
상기 지질이 상기 50:10:38.5:1.5의 몰 비율을 벗어난 비율로 혼합되는 경우, 지질나노입자가 제대로 형성되지 않아, 유전자 전달 효율이 낮을 수 있다.
일 양상에 따르면, 상기 유전자 전달용 지질나노입자는 상기 올리고뉴클레오티드와 혼성화된 트랜스진을 지질나노입자 내 친수성 부분에 탑재시켜 상기 유전자 전달용 지질나노입자를 세포 내로 전달하여 유전자가 전달될 수 있다.
또 다른 양상은 상기 지질나노입자를 포함하는 유전자 전달용 조성물을 제공한다.
상기 “지질나노입자” 또는 “유전자 전달” 등은 전술한 범위 내일 수 있다. 상기 조성물은 개체에 투여되거나 섭취되는 것일 수 있고, “투여”란 적절한 방법으로 개체에게 소정의 물질을 도입하는 것을 의미하고, “섭취”란 개체에게 소정의 물질을 생물 작용에 필요한 부위로 전달할 수 있는 방법을 의미하며, “개체”란 인간을 포함한 쥐, 생쥐, 가축 등의 모든 생물을 의미한다. 구체적인 예로, 인간을 포함한 포유동물일 수 있다.
일 실시예에서는 소프트웨어를 이용하여 최적의 기능화된 올리고뉴클레오티드를 디자인하였고, 상기 기능화된 올리고뉴클레오티드를 mRNA와 다양한 온도 및 다양한 시간에서 혼성화시킨 결과, 25℃의 혼성화 온도 및 1시간의 혼성화 시간에서 상기 기능화된 올리고뉴클레오티드와 mRNA가 혼성화가 잘 이루어짐을 확인하였다(실시예 1 참조).
다른 실시예에서는 상기 기능화된 올리고뉴클레오티드와 혼성화된 mRNA를 지질나노입자의 구성 성분과 혼합하여 지질나노입자를 제조하고, 상기 기능화된 올리고뉴클레오티드와 혼성화된 mRNA가 세포 내에서 최적화된 발현 효과를 나타낼 수 있도록 몰 비율을 실험한 결과, 상기 기능화된 올리고뉴클레오티드와 혼성화된 mRNA의 몰 비가 1:1인 경우, 세포 내 발현 효과가 증가됨을 확인하였다(실시예2 참조).
또한, 제타 전위(zeta-potential) & 입도분석기(particle size analyzer)를 이용하여, 제조된 지질나노입자의 유체역학적 반경과 제타 전위를 측정한 결과, 유체역학적 반경은 120 nm, 제타 전위는 -2 mV 정도로 기능화된 올리고뉴클레오티드와 혼성화된 mRNA를 탑재하지 않는 지질나노입자와 큰 차이가 없음을 확인하였다. 탑재된 mRNA의 양을 프라이머와 Real-time PCR (qPCR)을 통해 측정한 결과, mRNA의 90 %이상이 탑재되어있고, 올리고뉴클레오티드의 혼성화에 영향을 받지는 않는다는 것을 확인하였다(실시예2 참조).
또 다른 실시예에서는 상기 기능화된 올리고뉴클레오티드와 혼성화된 mRNA를 탑재하는 지질나노입자를 luciferase mRNA에 특이적인 프라이머와 qPCR을 통해 mRNA의 전달 효율을 분석한 결과, 기능화된 올리고뉴클레오티드와 혼성화된 mRNA를 탑재하는 지질나노입자가 기능화된 올리고뉴클레오티드와 혼성화된 mRNA를 탑재하지 않는 지질나노입자 보다 더 많은 양의 mRNA를 세포 내로 전달함을 확인하였다(실시예3 참조).
또한, 형광 발현을 위해 luciferase mRNA에 아지도(azido) 기능기를 도입하고, 형광 염료인 DBCO-PEG4-BODIPY-FL와 반응시켰고, A549, HeLa 및 MDA-MB-231 세포에서 형광세기를 확인한 결과, 기능화된 올리고뉴클레오티드와 혼성화된 mRNA를 탑재하는 지질나노입자가 기능화된 올리고뉴클레오티드와 혼성화된 mRNA를 탑재하지 않는 지질나노입자 보다 mRNA의 전달 효율이 증가된 것을 확인하였다(실시예3 참조).
또 다른 실시예에서는 마이크로플레이트 리더(microplate reader) 및 FACS를 이용하여, 상기 올리고뉴클레오티드가 혼성화된 luciferase 및 EGFP mRNA를 탑재하는 지질나노입자의 mRNA 전달에 의한 단백질 발현 효과를 A549, HeLa 및 MDA-MB-231 세포에서 분석한 결과, 세포 내에서 상기 올리고뉴클레오티드가 혼성화된 mRNA를 탑재하는 지질나노입자가 상기 올리고뉴클레오티드가 혼성화된 mRNA를 탑재하지 않는 지질나노입자 보다 더욱 효과적인 단백질 발현이 나타남을 확인하였으며, 이미징 분석을 위해 세포고정 및 액틴(actin)과 핵 염색을 진행한 후 공초점 현미경(confocal microscopy)으로 확인한 결과, mRNA의 세포 내 전달 효율이 증가되고, 단백질 발현이 증가됨을 확인하였다(실시예4 참조).
일 양상에 따른 기능화된 올리고뉴클레오티드는 전달하고자 하는 유전자인 트랜스진과 혼성화되고 지질나노입자에 탑재됨으로써 유전자 전달용 조성물로 활용될 수 있다. 상기 조성물은 기존의 전달하고자 하는 유전자의 전달용 조성물 또는 유전자 전달 방법에 비해 mRNA의 세포 내 전달 효율 및 mRNA 발현 효율이 현저히 우수한 바, 유전자 치료제를 포함한 다양한 유전자 전달 방법에 활용될 수 있다.
도 1은 트랜스진과 기능화된 올리고뉴클레오티드 혼성화 조건을 확인한 결과를 나타낸 도이다.
도 2는 기능화된 올리고뉴클레오티드와 혼성화된 트랜스진을 탑재하는 지질나노입자의 제작 및 전달 방법을 나타낸 도이다.
도 3은 트랜스진과 기능화된 올리고뉴클레오티드의 혼성화 비율에 따른 트랜스진의 발현 효과를 분석한 결과를 나타낸 도이다.
도 4는 기능화된 올리고뉴클레오티드가 혼성화된 트랜스진을 탑재하는 지질나노입자의 특성을 분석한 결과를 나타내 도이다.
도 5는 qPCR과 FACS를 통한 여러 종류의 세포에서 트랜스진의 전달 효율을 분석한 결과를 나타낸 도이다.
도 6은 지질나노입자의 트랜스진의 전달에 의한 발현 효과를 Microplate reader기와 FACS를 통해 분석한 결과를 나타낸 도이다.
도 7은 지질나노입자의 luciferase 및 EGFP 트랜스진의 발현 효과를 confocal microscopy를 통해 분석한 결과를 나타낸 도이다.
도 8은 mRNA의 서열 특이적 C-oligo 혼성화 시간에 따른 효과 비교 결과를 나타낸 도이다.
도 9는 기능화된 올리고뉴클레오티드가 혼성화된 트랜스진을 탑재하는 최적화된 지질나노입자의 안정성 분석 결과를 나타낸 도이다.
도 10은 기능화된 올리고뉴클레오티드의 길이에 따른 혼성화된 트랜스진을 탑재하는 지지질나노입자의 세포내 전달 및 발현을 확인한 도이다.
도 11은 기능화된 올리고뉴클레오티드가 혼성화된 트랜스진을 탑재하는 지질나노입자의 지질성분에 따른 세포내 전달 및 효과를 확인한 도이다.
도 12는 기능화된 올리고뉴클레오티드가 혼성화된 트랜스진을 탑재하는 지질나노입자의 지질성분에 따른 세포내 전달효과를 확인한 도이다.
도 13은 기능화된 올리고뉴클레오티드가 혼성화된 트랜스진을 탑재하는 최적화된 지질나노입자의 마우스내 전달 효과를 확인한 도이다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예
1. mRNA의 서열 특이적 C-oligo 디자인 및 혼성화 확인
C-oligo를 통한 mRNA의 개질 효과를 확인하기 위해 루시퍼라제(luciferase) 및 EGFP를 발현하는 mRNA (luciferase mRNA: 서열번호 1, EGFP mRNA: 서열번호 2)를 사용하였다. 각각의 mRNA는 예측 가능한 복잡한 2차구조를 형성하며, 2차 구조 예측 소프트웨어인 IPknot과 VARNA를 이용하고 mRNA의 2차 구조를 예측 및 모식화하여, C-oligo가 혼성화하기 위한 최적의 서열을 정하였다. Oligo의 5’과 3’에 각각 Cy5 (하기 화학식 1로 표시되는 화합물) 및 콜레스테롤-TEG (하기 화학식 2로 표시되는 화합물)를 포함하게 디자인된 C-oligo(gfp(1): 서열번호 3, gfp(2): 서열번호 4, luc: 서열번호 5, polyA: 서열번호 6)와 mRNA가 혼성화 하기 위한 최적의 조건을 찾기 위해, IDT duplex buffer상에서 온도를 25℃, 30℃ 및 35℃로 하였고, 반응 시간을 10분 및 1시간으로 바꾸어서 확인하였다(서열번호 3: 5’-Cy5-CUUCUGCUUGUCGGCCA-cholesterol-TEG-3’, 서열번호 4: 5’-Cy5-CGCUUCUCGUUGGGGUC-cholesterol-TEG-3’, 서열번호 5: 5’-Cy5-GAUGAAGAAGUGCUCGU-cholesterol-TEG-3’, 서열번호 6: 5’-Cy5-UUUUUUUUUUUUUUUUU-cholesterol-TEG-3’):
[화학식 1]
Figure PCTKR2023001691-appb-img-000013
,
[화학식 2]
Figure PCTKR2023001691-appb-img-000014
.
그 결과, 25℃ 1시간 반응 조건에서 mRNA와 혼성화가 잘 이루어진 것을 C-oligo에 컨쥬게이션되어 있는 Cy5의 형광을 10% 폴리아크릴아마이드 겔(polyacrylamide gel, (page gel))에서 형광 이미징을 통해 확인하였다(도 1).
2. C-oligo가 혼성화된 mRNA를 탑재하는 최적화된 지질나노입자 제작 및 특성 분석
C-oligo가 혼성화된 mRNA를 탑재하는 지질나노입자의 제작 및 전달에 대한 모식도를 나타내었다(도 2). 구체적으로, mRNA와 C-oligo를 혼성화한 후 지질나노입자의 구성 성분인 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (DLin-MC3-DMA, 하기 화학식 3으로 표시되는 화합물), 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC, 하기 화학식 4로 표시되는 화합물), 콜레스테롤(cholesterol, 하기 화학식 5로 표시되는 화합물) 및 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 (DMG-PEG2000, 하기 화학식 6으로 표시되는 화합물)을 50:10:38.5:1.5 mol 비율로 혼합하고, 상온에서 건조하여 필름 형태로 만들었다:
[화학식 3]
Figure PCTKR2023001691-appb-img-000015
,
[화학식 4]
Figure PCTKR2023001691-appb-img-000016
,
[화학식 5]
Figure PCTKR2023001691-appb-img-000017
,
[화학식 6]
Figure PCTKR2023001691-appb-img-000018
.
탑재시키고자 하는 C-oligo가 혼성화된 mRNA와 건조된 전체 지질 양의 질량비가 1:40이 되도록 하며, mRNA와 C-oligo의 몰 비율이 1:1, 1:2, 1:5 및 1:10으로 혼성화된 mRNA를 구연산나트륨(sodium citrate, pH 4.0) 버퍼와 혼합하고, 건조된 지질 필름은 에탄올에 녹였다. 최종적으로 C-oligo가 혼성화된 mRNA의 버퍼 부피와 에탄올의 부피비가 3:1이 되도록 혼합하여 지질나노입자를 합성하며, 남아있는 에탄올을 제거하기 위해 4℃에서 PBS (pH 7.4)에 투석을 진행하였다. 이후 세포에 처리하여, 여러 몰 비율대로 혼성화된 luciferase 및 EGFP mRNA의 발현 효과를 마이크로플레이트 리더(microplate reader)와 FACS(fluorescence-activated cell sorting)을 통해 각각 비교하였다.
그 결과, 몰 비가 1:1일 때, 세포 내 발현 효과가 증가됨을 확인하였다(도 3).
또한, 합성한 지질나노입자의 유체역학적 직경(hydrodynamic size)과 제타 전위(zeta potential)를 상온에서 PBS (pH7.4)와 희석하고, 제타 전위(zeta-potential) & 입도분석기(particle size analyzer)를 이용하여 측정하였으며, C-oligo가 혼성화하는 위치에 따라 유체역학적 직경(hydrodynamic size)은 120 nm, 제타 전위(zeta potential)는 -2 mV 정도로 기존 지질나노입자와 큰 차이가 없음을 확인하였다. 탑재된 mRNA의 양을 프라이머 (정방향 프라이머: 서열번호 7, 역방향 프라이머: 서열번호 8)와 Real-time PCR (qPCR)을 통해 측정한 결과, mRNA의 90 %이상이 탑재되어있고, C-oligo의 혼성화에 영향을 받지는 않는다는 것을 확인하였다(서열번호 7: 5’-TGGTGTGCAGCGAGAATAG-3’, 서열번호 8: 5’-CGCTCGTTGTAGATGTCGTTAG-3’)(도 4).
3. 지질나노입자의 세포 내 전달 확인
C-oligo가 혼성화된 mRNA를 탑재하는 지질나노입자를 37℃ 조건에서 세포에 처리하고 6시간 후에 luciferase mRNA에 특이적인 프라이머 (정방향 프라이머: 서열번호 7, 역방향 프라이머: 서열번호 8)와 qPCR로 mRNA의 전달 효율을 분석하였다. C-oligo가 혼성화된 mRNA를 탑재하는 지질나노입자가 기존의 지질나노입자보다 더 많은 양의 mRNA를 세포 내로 전달함을 확인하였다. 추가적으로 luciferase mRNA를 합성할 때, 8-azidoadenosine-5'-triphosphate (하기 화학식 7로 표시되는 화합물)를 사용하여 아지도(azido) 기능기를 도입하였다:
[화학식 7]
Figure PCTKR2023001691-appb-img-000019
.
또한, 아지도(azido) 기능기와 촉매 없이 상온에서 효율적으로 반응하는 디벤질사이클록틴(DBCO: dibenzylcyclooctyne)이 도입되어 있는 형광 염료인 DBCO-PEG4-BODIPY-FL (하기 화학식 8로 표시되는 화합물)과 상온에서 2시간동안 반응을 시켜 mRNA에 형광을 도입하였다:
[화학식 8]
Figure PCTKR2023001691-appb-img-000020
.
이를 여러 종류의 세포 (A549, HeLa, MDA-MB-231)에 37℃ 조건에서 6시간동안 처리하여 FACS로 BODIPY-FL의 형광세기를 확인한 결과, mRNA의 전달 효율이 증가된 것을 확인하였다. 이 결과들로부터 C-oligo가 혼성화된 mRNA를 탑재하는 지질나노입자는 동일한 양의 지질나노입자를 세포에 처리하여도 더욱 증가된 효율의 mRNA의 전달을 보여준다(도 5).
4. 지질나노입자에 의해 전달된 mRNA의 발현 확인
최종적으로 C-oligo가 혼성화된 luciferase 및 EGFP mRNA를 탑재하는 지질나노입자의 mRNA 전달에 의한 발현 효과를 37℃ 조건에서 세포에 48시간동안 처리하고, 각각 마이크로플레이트 리더(microplate reader) 및 FACS를 통해 분석하였다(도 6). 여러 종류의 세포에서 C-oligo가 혼성화된 mRNA를 탑재하는 지질나노입자의 처리에 의해 기존의 지질나노입자보다 더욱 효과적인 luciferase 및 EGFP mRNA의 발현 효과를 확인하였다. 또한, 이에 대한 이미징 분석을 위해 세포고정 및 액틴(actin)과 핵 염색을 진행하였으며, 이를 공초점 현미경(confocal microscopy)으로 확인하였다(도 7).
5. mRNA의 서열 특이적 C-oligo 혼성화 시간에 따른 효과 비교
C-oligo의 혼성화 시간에 따른 mRNA의 개질 효과를 확인하기 위해 루시퍼라제 (luciferase)를 발현하는 mRNA를 사용하였다. 앞서 사용한 C-oligo의 서열과 마찬가지로 oligo의 5’과 3’에 각각 Cy5 및 콜레스테롤-TEG를 포함하게 디자인된 C-oligo (UTR: 서열번호 9, 5’-UCUUUAACCUGUCGUUC-3’)와 mRNA가 혼성화하는 반응시간에 따른 효과를 알아보기 위해 반응시간을 0분에서 1시간으로 바꾸어서 확인하였다. 그 결과, 1시간 반응조건에서 mRNA와 혼성화가 잘 이루어진 것을 C-oligo에 컨쥬게이션 되어있는 Cy5의 형광을 10% 폴리아크릴아마이드 겔 (polyacrylamide gel, page gel)에서 형광 이미징을 통해 확인하였다 (도 8A).
또한, 0분에서 1시간 반응조건에서의 mRNA 안정성을 1% 몹스 아가로오스 겔 (MOPS agarose gel)에서 형광 이미징을 통해 확인하였다 (도 8B).
마찬가지로 0분에서 1시간 반응조건에서 C-oligo가 혼성화된 mRNA를 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate (DLin-MC3-DMA) 지질을 포함하는 지질나노입자에 탑재하고, 1시간 반응조건에서 증가된 발현 효과를 A549 세포에서 마이크로플레이트 리더 (microplate reader)를 통해 확인하였다 (도 8C).
6. C-oligo가 혼성화된 mRNA를 탑재하는 최적화된 지질나노입자의 안정성 분석
C-oligo가 혼성화된 mRNA를 탑재하는 지질나노입자의 안정성 및 전달효과를 확인하기위해 루시퍼라제 (luciferase)를 발현하는 mRNA를 사용하였다. C-oligo (luc: 서열번호 5)를 사용하여 혼성화된 mRNA를 탑재하는 지질나노입자를 형성하고 -20℃에 0시간에서 192시간까지 보관하였다. 이후 PBS (pH7.4)와 희석하여 -20℃에 보관한 시간에 따른 유체역학적 직경 (hydrodynamic size)을 제타 전위 (zeta potential) & 입도분석기 (particle size analyzer)를 이용하여 측정하였다. 그 결과, C-oligo가 혼성화되어 있는 mRNA를 탑재하는 지질나노입자의 유체역학적 직경 (hydrodynamic size)이 안정적으로 유지되는 것을 확인하였다 (도 9A).
또한, 각각의 -20℃에 보관된 시간에 따라 A549세포에 전달된 입자의 안정적이고, 증가된 mRNA발현 효과를 마이크로플레이트 리더 (microplate reader)를 통해 확인하였다 (도 9B).
7. C-oligo의 길이에 따른 혼성화된 mRNA를 탑재하는 지지질나노입자의 세포내 전달 및 발현 확인
C-oligo (luc: 서열번호 5, polyA: 서열번호 6, UTR: 서열번호 9)의 길이에 따른 mRNA의 개질 효과를 확인하기 위해 루시퍼라제 (luciferase)를 발현하는 mRNA를 사용하였다. C-oligo의 길이를 7nt, 12nt, 17nt로 선정하였으며, 각각의 C-oligo와 혼성화된 mRNA를 탑재하는 지질나노입자의 증가된 발현효과를 A549 세포에서 마이크로플레이트 리더 (microplate reader)에서 확인하였다. 그 결과, 상대적으로 길이가 긴 17nt의 C-oligo와 혼성화되어 있는 mRNA의 세포내 전달 및 발현이 oligo가 없는 경우보다 효과적으로 증가된 것을 확인하였다 (도 10).
8. C-oligo가 혼성화된 mRNA를 탑재하는 지질나노입자의 지질성분에 따른 세포내 전달 및 효과 확인
각각의 지질나노입자 구성성분 mol비율로 혼합하고, 상온에서 건조하여 필름 형태로 제조하였다.
탑재시키고자 하는 mRNA와 C-oligo (luc: 서열번호 5, UTR: 서열번호 9)를 혼성화한 후, 혼성화된 mRNA를 구연산나트륨(sodium citrate, pH4.0)버퍼와 혼합하고, 건조된 지질 필름은 에탄올에 녹였다. mRNA의 버퍼 부피와 에탄올의 부피비가 3:1이 되도록 혼합하고, mRNA와 필름 형태로 건조시킨 지질의 질량비가 1:10에서 1:40이 되도록 각각의 지질나노입자를 합성하며, 남아있는 에탄올을 제거하기 위해 4℃에서 PBS (pH7.4에 투석을 진행하였다. 이후 A549 세포에 처리하여, C-oligo에 의해 mRNA의 발현 효과를 마이크로플레이트 리더 (microplate reader)를 통해 확인하였다.
도 11A는 지질나노입자의 구성 성분인 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen- 19-yl 4-(dimethylamino)butanoate (DLin-MC3-DMA), 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC), 콜레스테롤 (cholesterol) 및 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 (DMG-PEG2000)을 50:10:38.5:1.5 mol 비율로 혼합한 실험 결과이다.
도 11B는 지질나노입자의 구성 성분인 [(4-Hydroxybutyl)azanediyl]di(hexane-6,1-diyl) bis(2-hexyldecanoate) (ALC-0315), 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC), 콜레스테롤 (cholesterol) 및 2-[(polyethylene glycol)-2000]-N,N-ditetradecylacetamide (ALC-0159)을 46.3:9.4:42.7:1.6 mol 비율로 혼합한 실험 결과이다.
도 11C는 지질나노입자의 구성 성분인 heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate (SM-102), 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC), 콜레스테롤 (cholesterol) 및 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 (DMG-PEG2000)을 50:10:38.5:1.5 mol 비율로 혼합한 실험 결과이다.
결과적으로, 절대적인 발현량은 DLin-MC3-DMA보다 ALC-0315 및 SM-102 지질을 포함하는 지질나노입자가 높음을 확인하였다. 그리고, DLin-MC3-DMA 및 ALC-0315 지질을 포함하는 지질나노입자에서 C-oligo의 혼성화에 의해 증가된 mRNA 발현효과를 확인하였다.
9. C-oligo가 혼성화된 mRNA를 탑재하는 지질나노입자의 지질성분에 따른 세포내 전달효과 확인
C-oligo (gfp: 서열번호 4, polyA: 서열번호 6)가 혼성화된 EGFP mRNA를 탑재하는 지질나노입자의 지질성분에 따른 mRNA 전달에 의한 발현 효과를 37℃ 조건에서 A549 세포에 24시간동안 처리하고, 세포고정 및 액틴 (actin)과 핵 염색을 진행하였으며, 이를 공초점 현미경(confocal microscopy)으로 이미징 분석을 하였다. 이 결과로부터, (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen- 19-yl 4-(dimethylamino)butanoate (DLin-MC3-DMA)를 지질성분으로 가지는 지질나노입자보다 [(4-Hydroxybutyl)azanediyl]di(hexane-6,1-diyl) bis(2-hexyldecanoate) (ALC-0315), heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate (SM-102)를 사용한 지질나노입자에서 더 효과적으로 mRNA가 발현이 되며, C-oligo에 의한 증가된 발현효과를 확인하였다 (도 12).
10. C-oligo가 혼성화된 mRNA를 탑재하는 최적화된 지질나노입자의 마우스내 전달 효과 확인
C-oligo가 혼성화된 mRNA의 개질 효과를 마우스내에서 확인하기 위해 루시퍼라제 (luciferase)를 발현하는 mRNA를 사용하였다. C-oligo (UTR: 서열번호 9)가 혼성화된 mRNA를 탑재하고, [(4-Hydroxybutyl)azanediyl]di(hexane-6,1-diyl) bis(2-hexyldecanoate) (ALC-0315) 지질을 포함하는 지질나노입자를 합성하였다. Balb/c 마우스에 근육내 주사 (intramuscular injection)를 통해 2.5μg의 mRNA를 6시간에서 24시간까지 처리하고, C-oligo에 의해 증가된 mRNA의 발현효과를 생체형광장비 IVIS를 통해 확인하였다.
그 결과, 6시간일 때 57.8%가 증가하였으며, 12시간일 때 73.8%, 24시간 경과 후에는 125.2%의 증가를 확인하였다 (도 13).

Claims (13)

  1. 하기 화학식 1의 화합물 및 하기 화학식 2의 화합물이 결합된 유전자 전달용 올리고뉴클레오티드:
    [화학식 1]
    Figure PCTKR2023001691-appb-img-000021
    ,
    [화학식 2]
    Figure PCTKR2023001691-appb-img-000022
    .
  2. 청구항 1에 있어서, 상기 올리고뉴클레오티드는 상기 올리고뉴클레오티드의 5’ 위치에 상기 화학식 1의 화합물이 결합되고, 3’ 위치에 상기 화학식 2의 화합물이 결합된 것인, 유전자 전달용 올리고뉴클레오티드.
  3. 청구항 1에 있어서, 상기 올리고뉴클레오티드는 서열번호 3의 염기 서열로 이루어진 폴리뉴클레오티드, 서열번호 4의 염기 서열로 이루어진 폴리뉴클레오티드, 서열번호 5의 염기 서열로 이루어진 폴리뉴클레오티드 및 서열번호 6의 염기 서열로 이루어진 폴리뉴클레오티드로 이루어진 군에서 선택되는 하나 이상의 폴리뉴클레오티드인, 유전자 전달용 올리고뉴클레오티드.
  4. 청구항 1의 올리고뉴클레오티드와 혼성화된 트랜스진(transgene)을 포함하는 유전자 전달용 지질나노입자.
  5. 청구항 4에 있어서, 상기 트랜스진은 mRNA, siRNA, miRNA, sgRNA, tRNA 및 shRNA로 이루어진 군에서 선택되는 하나 이상인, 유전자 전달용 지질나노입자.
  6. 청구항 4에 있어서, 상기 지질나노입자는 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, 콜레스테롤 및 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000으로 이루어진 군에서 선택되는 하나 이상의 지질로 구성된 것인, 유전자 전달용 지질나노입자.
  7. 청구항 4에 있어서, 상기 올리고뉴클레오티드 및 상기 트랜스진은 1:0.1 내지 1:100의 몰 비율로 혼성화된 것인, 유전자 전달용 지질나노입자.
  8. 청구항 1의 올리고뉴클레오티드와 트랜스진을 혼성화하는 단계; 및
    상기 혼성화된 트랜스진과 지질을 혼합하는 단계를 포함하는 유전자 전달용 지질나노입자의 제조 방법.
  9. 청구항 8에 있어서, 상기 올리고뉴클레오티드는 서열번호 3의 염기 서열로 이루어진 폴리뉴클레오티드, 서열번호 4의 염기 서열로 이루어진 폴리뉴클레오티드, 서열번호 5의 염기 서열로 이루어진 폴리뉴클레오티드 및 서열번호 6의 염기 서열로 이루어진 폴리뉴클레오티드로 이루어진 군에서 선택되는 하나 이상의 폴리뉴클레오티드인, 유전자 전달용 지질나노입자의 제조 방법.
  10. 청구항 8에 있어서, 상기 혼성화 단계는 5℃ 내지 45℃의 온도에서 이루어지는 것인, 유전자 전달용 지질나노입자의 제조 방법.
  11. 청구항 8에 있어서, 상기 혼성화 단계는 1초 내지 120분 동안 이루어지는 것인, 유전자 전달용 지질나노입자의 제조 방법.
  12. 청구항 8에 있어서, 상기 지질은 (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate, 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine, 콜레스테롤 및 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000으로 이루어진 군에서 선택되는 하나 이상인, 유전자 전달용 지질나노입자의 제조 방법.
  13. 청구항 4의 지질나노입자를 포함하는 유전자 전달용 조성물.
PCT/KR2023/001691 2022-02-07 2023-02-07 유전자 전달용 올리고뉴클레오티드 및 이를 포함하는 유전자 전달용 지질나노입자 WO2023149775A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0015564 2022-02-07
KR20220015564 2022-02-07
KR10-2023-0015668 2023-02-06
KR1020230015668A KR20230120590A (ko) 2022-02-07 2023-02-06 유전자 전달용 올리고뉴클레오티드 및 이를 포함하는 유전자 전달용 지질나노입자

Publications (1)

Publication Number Publication Date
WO2023149775A1 true WO2023149775A1 (ko) 2023-08-10

Family

ID=87552666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001691 WO2023149775A1 (ko) 2022-02-07 2023-02-07 유전자 전달용 올리고뉴클레오티드 및 이를 포함하는 유전자 전달용 지질나노입자

Country Status (1)

Country Link
WO (1) WO2023149775A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130245107A1 (en) * 2011-12-16 2013-09-19 modeRNA Therapeutics Dlin-mc3-dma lipid nanoparticle delivery of modified polynucleotides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130245107A1 (en) * 2011-12-16 2013-09-19 modeRNA Therapeutics Dlin-mc3-dma lipid nanoparticle delivery of modified polynucleotides

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANDREAS BUNGE, MARTIN LOEW, PAULA PESCADOR, ANNA ARBUZOVA, NICOLAI BRODERSEN, JING KANG, LARS DÄHNE, JÜRGEN LIEBSCHER,: "Lipid Membranes Carrying Lipophilic Cholesterol-Based Oligonucleotides—Characterization and Application on Layer-by-Layer Coated Particles", JOURNAL OF PHYSICAL CHEMISTRY PART B, AMERICAN CHEMICAL SOCIETY, US, vol. 113, no. 51, 24 December 2009 (2009-12-24), US , pages 16425 - 16434, XP055608590, ISSN: 1520-6106, DOI: 10.1021/jp9067747 *
TSAI SHANG JUI, ATAI NADIA A., CACCIOTTOLO MAFALDA, NICE JUSTIN, SALEHI ARJANG, GUO CHENXU, SEDGWICK ALANNA, KANAGAVELU SARAVANA, : "Exosome-mediated mRNA delivery in vivo is safe and can be used to induce SARS-CoV-2 immunity", JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, US, vol. 297, no. 5, 1 November 2021 (2021-11-01), US , pages 101266, XP093082539, ISSN: 0021-9258, DOI: 10.1016/j.jbc.2021.101266 *
YERNENI SAIGOPALAKRISHNA S., LATHWAL SUSHIL, SHRESTHA PRADEEP, SHIRWAN HAVAL, MATYJASZEWSKI KRZYSZTOF, WEISS LEE, YOLCU ESMA S., C: "Rapid On-Demand Extracellular Vesicle Augmentation with Versatile Oligonucleotide Tethers", ACS NANO, AMERICAN CHEMICAL SOCIETY, US, vol. 13, no. 9, 24 September 2019 (2019-09-24), US , pages 10555 - 10565, XP093082478, ISSN: 1936-0851, DOI: 10.1021/acsnano.9b04651 *
ZHAN QI, YI KAIKAI, QI HONGZHAO, LI SIDI, LI XUEPING, WANG QIXUE, WANG YUNFEI, LIU CHAOYONG, QIU MINGZHE, YUAN XUBO, ZHAO JIN, HOU: "Engineering blood exosomes for tumor-targeting efficient gene/chemo combination therapy", THERANOSTICS, IVYSPRING INTERNATIONAL PUBLISHER, AU, vol. 10, no. 17, 1 January 2020 (2020-01-01), AU , pages 7889 - 7905, XP093082537, ISSN: 1838-7640, DOI: 10.7150/thno.45028 *

Similar Documents

Publication Publication Date Title
US8729037B2 (en) Method and medicament for inhibiting the expression of a given gene
WO2012053741A9 (ko) Rna 간섭을 유도하는 핵산 분자 및 그 용도
JP2010235618A (ja) 核酸の送達法
KR20200106485A (ko) 변형된 cpf1 가이드 rna
WO2023149775A1 (ko) 유전자 전달용 올리고뉴클레오티드 및 이를 포함하는 유전자 전달용 지질나노입자
KR20230120590A (ko) 유전자 전달용 올리고뉴클레오티드 및 이를 포함하는 유전자 전달용 지질나노입자
WO2023204384A1 (ko) 재조합 프로타민을 이용한 지질 나노입자 기반 약물 전달체 및 이의 제조방법
WO2011002258A9 (ko) 아르기닌 기제 양친성 펩티드 마이셀
AU2017276342A1 (en) Method and medicament for inhibiting the expression of a defined gene
AU2008202208A1 (en) Method and medicament for inhibiting the expression of a defined gene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23750008

Country of ref document: EP

Kind code of ref document: A1