DE4239291A1 - - Google Patents

Info

Publication number
DE4239291A1
DE4239291A1 DE4239291A DE4239291A DE4239291A1 DE 4239291 A1 DE4239291 A1 DE 4239291A1 DE 4239291 A DE4239291 A DE 4239291A DE 4239291 A DE4239291 A DE 4239291A DE 4239291 A1 DE4239291 A1 DE 4239291A1
Authority
DE
Germany
Prior art keywords
spring
friction clutch
force
clutch according
pressure plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE4239291A
Other languages
English (en)
Other versions
DE4239291B4 (de
Inventor
Wolfgang Reik
Christoph Wittmann
Karl-Ludwig Kimmig
Edmund Maucher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
LuK Lamellen und Kupplungsbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27435325&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE4239291(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by LuK Lamellen und Kupplungsbau GmbH filed Critical LuK Lamellen und Kupplungsbau GmbH
Publication of DE4239291A1 publication Critical patent/DE4239291A1/de
Application granted granted Critical
Publication of DE4239291B4 publication Critical patent/DE4239291B4/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/583Diaphragm-springs, e.g. Belleville
    • F16D13/585Arrangements or details relating to the mounting or support of the diaphragm on the clutch on the clutch cover or the pressure plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/70Pressure members, e.g. pressure plates, for clutch-plates or lamellae; Guiding arrangements for pressure members
    • F16D13/71Pressure members, e.g. pressure plates, for clutch-plates or lamellae; Guiding arrangements for pressure members in which the clutching pressure is produced by springs only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/75Features relating to adjustment, e.g. slack adjusters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/75Features relating to adjustment, e.g. slack adjusters
    • F16D13/757Features relating to adjustment, e.g. slack adjusters the adjusting device being located on or inside the clutch cover, e.g. acting on the diaphragm or on the pressure plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D2013/581Securing means for transportation or shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/70Pressure members, e.g. pressure plates, for clutch-plates or lamellae; Guiding arrangements for pressure members
    • F16D2013/706Pressure members, e.g. pressure plates, for clutch-plates or lamellae; Guiding arrangements for pressure members the axially movable pressure plate is supported by leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/18Sensors; Details or arrangements thereof

Description

Die Erfindung betrifft eine Reibungskupplung, insbesondere für Kraftfahrzeuge, mit einer Druckplatte, die drehfest, jedoch axial begrenzt verlagerbar mit einem Gehäuse ver­ bunden ist, wobei zwischen Gehäuse und Druckplatte eine Anpreßtellerfeder axial verspannt ist, die einerseits um eine vom Gehäuse getragene Schwenklagerung verschwenkbar ist und andererseits die Druckplatte in Richtung einer zwischen dieser und einer Gegendruckplatte, wie einem Schwungrad, einklemmbaren Kupplungsscheibe beaufschlagt, wobei eine den Verschleiß der Reibbeläge der Kupplungsscheibe kompensieren­ de Nachstellvorkehrung vorhanden ist.
Automatische Nachstelleinrichtungen, die eine praktisch gleichbleibende Kraftbeaufschlagung der Druckplatte durch die Anpreßtellerfeder bewirken sollen, sind beispielsweise durch die DE-OS 29 16 755 und 35 18 781 bekannt geworden. Die in Abhängigkeit von mindestens einem Sensor verstell­ baren Nachstelleinrichtungen sind dabei zwischen der Druckscheibe und der Anpreßtellerfeder angeordnet bzw. wirksam. Infolge der Anlenkung der Druckscheibe am Gehäuse über tangential angeordnete Blattfedern deren Kraft, weil diese der Anpreßkraft der Tellerfeder entgegengerichtet ist, nur relativ gering sein darf kann die eine verhältnismäßig große Masse besitzende Druckscheibe bei ausgerückter Reibungskupplung axial schwingen, dabei also von der Tellerfeder abheben, wodurch die Funktion der Kupplung nicht nur beeinträchtigt wird, sondern die Kupplung sogar zum Sicherheitsrisiko wird, weil nämlich die Nachstelleinrich­ tung in geöffnetem Zustand nachstellt, bis die Druckplatte an der Kupplungsscheibe anliegt, also die Kupplung nicht mehr trennen kann. Aus diesem Grunde haben sich derartige Nachstelleinrichtungen in der Praxis nicht durchgesetzt.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, diese Nachteile zu beseitigen und Nachstellvorkehrungen der eingangs genannten Art zu schaffen, die in der Praxis auf breiter Basis und auch bei rauhem Betrieb einsetzbar sind, die einen einfachen Aufbau und eine dauerhaft sichere Funktion besitzen, die weiterhin einen geringen Einbauraum benötigen und die preiswert in der Herstellung sind. Außerdem sollen die erforderlichen Ausrückkräfte gering sein, über die Lebensdauer gering bleiben und die Lebens­ dauer von Reibungskupplungen darüber hinaus noch erhöht werden.
Gemäß der Erfindung wird diese Aufgabe dadurch gelöst, daß bei einer Reibungskupplung mit von einer Tellerfeder belast­ barer Druckplatte, bei der die Anpreßkraft durch eine Tel­ lerfeder erzeugt wird, welche einerseits an einem Bauteil, wie einem Gehäuse abgestützt ist und die andererseits um eine am Gehäuse in kreisförmiger Anordnung vorgesehene Schwenklagerung verschwenkbar ist, zwischen Deckel und Tellerfeder eine selbsttätige, die gehäuseseitige Auflage verschleißabhängig vom Gehäuse wegverlagernde Nachstell­ einrichtung wirksam ist, die von einer Vorschubeinrichtung weitertransportierbar ist und die Tellerfeder in Richtung auf die Schwenklagerung unter der Wirkung einer Abstützkraft steht. Diese Abstützkraft ist zweckmäßigerweise permanent vorhanden, so daß die Tellerfeder entgegen der Ausrückkraft lediglich kraftschlüssig und zwar durch eine Federkraft und nicht durch formschlüssig angelenkte Mittel, abgestützt ist. Die Tellerfeder ist dabei über ihren Arbeitsbereich mit degressiver Kennlinie eingebaut, und zwar derart, daß die Abstützkraft und die Tellerfederkraft derart aufeinander abgestimmt sind, daß die Abstützkraft bei der vorgesehenen Einbaulage der Tellerfeder und ohne verschleißbedingte Konizitätsveränderung und über den Ausrückweg der Tel­ lerfeder größer ist als die von der Tellerfeder aufgebrachte der Abstützkraft entgegenwirkende Kraft, bei verschleiß­ bedingter Änderung der Konizität der Tellerfeder die Abstützkraft über Teilbereiche des Ausrückweges der Tel­ lerfeder geringer ist als die Form der Tellerfeder gegen die Abstützkraft aufgebrachte Kraft. Die Abstützkraft kann dabei durch ein einziges Federelement oder zumindest im wesent­ lichen durch ein einziges Federelement oder Federelementsy­ stem aufgebracht werden. Unter "Abstützkraft" ist gleichwohl die Summe aller gegen die Tellerfeder wirksamen Federkräfte - soweit sie bemerkbar auftreten - zu verstehen, also z. B. auch oder nur die durch (Drehmomentübertragungs- bzw. Ab­ hub-) Blattfedern wirksamen Kräfte, die (Rest-) Federung von Belagfederung oder deren "Ersatz".
Als Kraftspeicher, der die Abstützkraft zumindest im wesentlichen aufbringt, kann zweckmäßigerweise eine Feder verwendet werden, die über die Nachstellung ihre Gestalt ändert, z. B. eine Tellerfeder. Die die Abstützkraft auf­ bringenden Kraftspeicher können aber auch durch die Blatt­ federn gebildet sein.
Eine die Abstützkraft aufbringende Tellerfeder kann direkt an der Tellerfeder auflagern, z. B. auf der radialen Höhe der axial verlagerbaren, deckelseitigen Abstützung.
Besonders vorteilhaft ist es, wenn die Nachstelleinrichtung axial zwischen Tellerfeder und Deckel angeordnet ist. Die Nachstellanordnung kann in besonders zweckmäßiger Weise Auflaufflächen, wie Rampen, enthalten.
Durch die Erfindung wird gewährleistet, daß die Tellerfeder über die Lebensdauer der Reibungskupplung betrachtet, praktisch immer die gleiche Konizität bzw. Verspannung bei eingerückter Reibungskupplung besitzt und eine praktisch gleichbleibende Kraftbeaufschlagung der Druckplatte und damit der Kupplungsscheibe - unabhängig vom Verschleiß der Reibbeläge, der Druckplatte selbst oder anderer Elemente, wie der deckel- oder druckplattenseitigen Abstützungen, der Tellerfeder oder Reibfläche der Schwungscheibe - gegeben ist. Durch die erfindungsgemäße Maßgabe wird darüber hinaus gewährleistet, daß die Masse der Druckplatte durch die der Nachstelleinrichtung nicht erhöht wird. Sie ist weiterhin in einem Bereich untergebracht, in welchem sie vor Einwirkungen des Scheibenabriebes geschützt und in welchem sie von der Quelle der Reibungshitze weiter entfernt ist.
Eine besonders vorteilhafte Ausgestaltung einer erfindungs­ gemäßen Reibungskupplung kann dadurch erzielt werden, daß die Anpreßtellerfeder am Gehäuse zwischen zwei Auflagen - von denen die der Druckplatte zugewandte in Richtung der An­ preßtellerfeder federbelastet ist - verschwenkbar abgestützt ist, wobei die von der Anpreßtellerfeder beim Ausrücken der Kupplung auf die federbelastete Auflage einwirkende Kraft bei Belagverschleiß zunimmt und dann größer wird als die auf die federbelastete Auflage einwirkende Gegenkraft bzw. Abstützkraft. Die Anpreßtellerfeder besitzt dabei einen derartigen Kennlinienverlauf, daß, ausgehend von ihrer konstruktiv definierten Einbaulage in der Reibungskupplung, bei einer durch Reibbelagverschleiß bedingten Entspannungs­ richtung die von ihr dann aufgebrachte Kraft und damit auch die benötigte Ausrückkraft zunächst zunimmt und bei einer gegenüber der definierten Einbaulage weiter verformten bzw. verspannten Position die von ihr aufbringbare Kraft beim Ausrückvorgang abnimmt. Durch eine derartige Anordnung und Auslegung der Anpreßtellerfeder ist gewährleistet, daß bei auftretendem Belagverschleiß sich stets wieder ein Gleichge­ wicht zwischen der von der Anpreßtellerfeder auf die Auflage beim Ausrücken ausgeübten Kraft und der auf die federbela­ stete Auflage einwirkenden Gegenkraft einstellen kann, weil beim Überschreiten der Abstützkraft durch die von der Tellerfeder auf die Auflage ausgeübte Kraft die Tellerfeder die Sensorfeder von der deckelseitigen Auflage wegverlagert und die Nachstelleinrichtung weiterverdreht werden kann durch die Kraft der Vorschubeinrichtung. Damit wird die Auflage axial verlagert, bis die vom Sensor ausgeübte Kraft ein Weiterdrehen und eine weitere axiale Verlagerung der Auflage verhindert.
Besonders vorteilhaft kann es, wie bereits erwähnt, sein, wenn die Anpreßtellerfeder in die Reibungskupplung derart eingebaut ist, daß sie zumindest über einen Teil des Ausrückbereiches, vorzugsweise praktisch über den gesamten Ausrückbereich der Reibungskupplung, eine abfallende Kraftkennlinie besitzt. Die Einbaulage der Anpreßtellerfeder kann dabei derart sein, daß im ausgerückten Zustand der Reibungskupplung die Anpreßtellerfeder praktisch das Minimum bzw. den Talpunkt ihres sinusförmigen Kraft-Weg-Verlaufes erreicht oder überschreitet.
Die auf die federbelastete Auflage ausgeübte Gegenkraft kann in vorteilhafter Weise durch einen Kraftspeicher erzeugt werden, der im wesentlichen eine konstante Kraft zumindest über den vorgesehenen Nachstellbereich aufbringt. In besonders vorteilhafter Weise eignet sich hierfür eine entsprechend ausgebildete und im vorgespannten Zustand in die Reibungskupplung eingebaute Tellerfeder.
Die Nachstellvorrichtung gemäß der Erfindung kann in beson­ ders vorteilhafter Weise bei Reibungskupplungen Verwendung finden mit einer Anpreßtellerfeder, die mit radial äußeren Bereichen die Druckplatte beaufschlagt und über radial weiter innen liegende Bereiche zwischen zwei Schwenkauflagen am Gehäuse gelagert ist. Bei dieser Bauart kann die Tel­ lerfeder als zweiarmiger Hebel wirken.
Die Erfindung ist jedoch nicht auf Reibungskupplungen mit Tellerfedern, die gleichzeitig die Ausrückhebel in Form von Tellerfederzungen angeformt haben, begrenzt, sondern er­ streckt sich auch auf andere Kupplungsaufbauten, bei denen z. B. die Tellerfeder über zusätzliche Hebel betätigt wird.
Um eine einwandfreie Nachstellung des Verschleißes bzw. eine optimale Anpreßkraft für die Reibungskupplung zu gewähr­ leisten, kann es besonders vorteilhaft sein, wenn die auf der der federbelasteten Auflage abgewandten Seite der Anpreßtellerfeder vorgesehene Gegenauflage derart ausgebil­ det ist, daß sie axial in Richtung der Druckplatte automa­ tisch bzw. selbsttätig verlagerbar, in Gegenrichtung jedoch durch eine Vorkehrung selbsttätig bzw. automatisch arretier­ bar ist. Die Nachstellung der Gegenauflage, also der deckelseitigen Auflage, kann mittels eines Kraftspeichers erfolgen, der diese Gegenauflage in Richtung Druckplatte bzw. gegen die Anpreßtellerfeder beaufschlagt. Es kann also die Gegenauflage entsprechend der durch den Belagverschleiß bedingten Verlagerung der federbeaufschlagten Auflage selbsttätig nachstellen, wodurch eine spielfreie Schwenk­ lagerung der Anpreßtellerfeder gewährleistet werden kann.
Die Gegenauflage kann mittels einer zwischen Anpreßteller­ feder und Deckel vorgesehenen Nachstelleinrichtung axial verlagerbar sein. Die Nachstelleinrichtung kann dabei ein ringförmiges, also in sich zusammenhängendes Bauteil besit­ zen, das zumindest im eingerückten Zustand der Reibungskupp­ lung von der Anpreßtellerfeder axial beaufschlagt wird. Durch Verdrehung des ringförmigen Bauteils bei auftretendem Verschleiß und während des Ausrückvorganges kann die Schwenklagerung entsprechend dem Belagverschleiß nach­ gestellt werden. Hierfür kann in besonders vorteilhafter Weise die Nachstellvorkehrung bzw. das ringförmige Bauteil dieser Nachstellvorkehrung in axialer Richtung ansteigende Nachstellrampen besitzen. Weiterhin kann es von Vorteil sein, wenn das ringförmige Bauteil die Gegenauflage trägt, wobei letztere durch einen Drahtring gebildet sein kann. Dieser Drahtring kann in einer umlaufenden Ringnut des Bauteils aufgenommen und mit diesem über Formschluß ver­ bunden sein. Der Formschluß kann dabei als Schnappverbindung ausgebildet sein.
Die Auflauframpen können mit zylinderförmigen oder kugelähn­ lichen Abwälzkörpern zur Nachstellung zusammenwirken. Besonders vorteilhaft kann es jedoch sein, wenn die Auflauf­ rampen mit korrespondierenden Gegenauflauframpen zusammenar­ beiten, da dann durch entsprechende Wahl des Auflaufwinkels dieser Rampen eine Selbsthemmung bei axialer Verspannung der Rampen erfolgen kann. Die Gegenauflauframpen können von einem ringartigen Bauteil getragen sein, das zwischen dem die Auflauframpen tragenden Bauteil und dem Deckel angeord­ net sein kann. Ein besonders einfacher Aufbau kann jedoch durch Einbringung der Gegenauflauframpen in das Gehäuse gewährleistet werden. Letzteres kann in besonders einfacher Weise bei Blechgehäusen erfolgen, da die Gegenauflauframpen angeprägt werden können. Die Anprägung kann dabei in radial verlaufenden Bereichen des Gehäuses erfolgen.
Um eine preisgünstige Herstellung der Reibungskupplung zu gewährleisten, kann es weiterhin von Vorteil sein, wenn wenigstens ein Teil der Nachstelleinrichtung aus Kunststoff hergestellt ist. Derartige Kunststoffteile können durch Spritzen gefertigt werden. Als Kunststoff eignen sich in besonders vorteilhafter Weise Thermoplaste, wie z. B. Polyamid. Der Einsatz von Kunststoffen wird deshalb möglich, weil sich die Nachstelleinrichtung in einem den Hitzeein­ wirkungen nur wenig ausgesetzten Bereich befinden. Darüber­ hinaus ergibt sich infolge des geringeren Gewichtes auch ein geringeres Massenträgheitsmoment.
Gemäß einem weiteren erfinderischen Gedanken kann die Nachstellvorkehrung derart ausgebildet sein, daß sie - in Ausrückrichtung der Reibungskupplung betrachtet - frei­ laufähnlich wirkt, in der der Ausrückrichtung entgegenge­ setzten Richtung jedoch selbsthemmend ist. Hierfür können die Auflauframpen und/oder die Gegenauflauframpen derart ausgebildet werden, daß sie in axialer Richtung einen Steigungswinkel besitzen, der zwischen 4 und 20 Grad liegt, vorzugsweise in der Größenordnung von 5 bis 12 Grad. In vorteilhafter Weise werden die Auflauframpen und/oder Gegenauflauframpen derart ausgebildet, daß eine Selbst­ hemmung durch Reibungseingriff stattfindet. Die Selbsthemmung kann aber auch durch einen Formschluß erreicht bzw. unter­ stützt werden, indem z. B. eine der Rampen weich und die andere mit einer Profilierung ausgestaltet ist, oder indem beide Rampen Profilierungen aufweisen. Durch diese Maßnahmen ist gewährleistet, daß keine zusätzlichen Mittel erfor­ derlich sind, um eine ungewollte Rückstellung zu vermeiden.
Die Nachstelleinrichtung kann besonders vorteilhaft und einfach sein, wenn die in Umfangsrichtung wirksame Vor­ schubeinrichtung als vorgespannt eingebaute Feder ausgebil­ det ist, die wenigstens ein die Auflauframpen tragendes Bauteil und/oder ein die Gegenauflauframpen bzw. Gegen­ auflaufbereiche tragendes Bauteil in Nachstellrichtung federnd beaufschlagt. Die Federbeaufschlagung kann dabei in vorteilhafter Weise derart erfolgen, daß die Funktion der übrigen Federn, wie insbesondere der Betätigungstellerfeder und der die axial nachgiebige Auflage beaufschlagenden Feder nicht bzw. praktisch nicht beeinflußt wird.
Für manche Anwendungsfälle kann es vorteilhaft sein, wenn die Nachstellvorkehrung mehrere verlagerbare Nachstell­ elemente, wie z. B. in radialer und/oder in Umfangsrichtung verlagerbare Nachstellkeile oder Wälzkörper besitzt. Weiterhin kann es von Vorteil sein, wenn die Nachstellvor­ kehrung drehzahlabhängig ist. So kann z. B. die auf einzelne Elemente der Nachstellvorkehrung einwirkende Fliehkraft zur Betätigung und/oder zur Verriegelung der Nachstelleinrich­ tung bei bestimmten Betriebszuständen der Brennkraftmaschine herangezogen werden. Insbesondere kann die Nachstellvor­ kehrung durch fliehkraftabhängige Mittel ab einer bestimmten Drehzahl, blockiert werden, was z. B. bei zumindest annä­ hernder Leerlaufdrehzahl oder Drehzahl unterhalb der Leerlaufdrehzahl erfolgen kann, so daß die Verschleißnach­ stellung nur bei geringen Drehzahlen stattfindet. Dies hat den Vorteil, daß keine ungewollten Nachstellungen, die durch Schwingungen bei hohen Drehzahlen entstehen könnten, auftreten.
Ein besonders einfacher und funktionssicherer Aufbau der Nachstelleinrichtung kann dadurch gewährleistet werden, daß die relativ zum Gehäuse verlagerbaren Teile, welche Auflauf­ rampen und/oder Gegenauflauframpen bzw. Gegenauflaufbereiche besitzen, federnd belastet sind. Sofern nur ein entsprechen­ des Bauteil mit den entsprechenden Rampen bzw. Bereichen vorhanden ist, das gegenüber dem Gehäuse verlagerbar ist, wird dieses beaufschlagt. Besonders vorteilhaft kann es dabei sein, wenn die Federbelastung eine Kraft in Umfangs­ richtung erzeugt.
Für den Aufbau und die Funktion der Reibungskupplung kann es weiterhin von Vorteil sein, wenn die als Scheibenfeder, wie Tellerfeder ausgebildete Sensorfeder sich mit ihrem radial äußeren Bereich an einem axial festen Bauteil, wie dem Gehäuse abstützt und mit radial weiter innen liegenden Bereichen die dem Deckel abgekehrte Abwälzauflage beauf­ schlagt. Diese Abwälzauflage kann auch einteilig mit der Sensorfeder ausgebildet sein, so daß also die Sensortel­ lerfeder auch die Auflage bildet. Zur Halterung der Sensor­ feder in verspannter Lage kann das Gehäuse Abstützbereiche tragen. Diese Abstützbereiche können durch einzelne, am Gehäuse angebrachte Abstützelemente gebildet sein. Vor­ teilhaft kann es jedoch auch sein, wenn die Abstützbereiche einteilig mit dem Gehäuse sind, z. B. können am Gehäuse Anprägungen oder ausgeschnittene und verformte Bereiche vorgesehen werden, welche die Sensorfeder zur Abstützung axial untergreifen.
Für die Funktion der Reibungskupplung, insbesondere zur Minimierung des Ausrückkraftverlaufes bzw. der maximal erforderlichen Ausrückkraft kann es besonders vorteilhaft sein, wenn die zwischen Druckplatte und Gegendruckplatte einklemmbare Kupplungsscheibe Reibbeläge besitzt, zwischen denen eine sogenannte Belagfederung, wie sie beispielsweise durch die DE-OS 36 31 863 bekannt geworden ist, vorgesehen ist. Durch Verwendung einer derartigen Kupplungsscheibe wird die Betätigung, insbesondere der Ausrückvorgang der Rei­ bungskupplung, unterstützt. Dies ist darauf zurückzuführen, daß im eingerückten Zustand der Reibungskupplung die ver­ spannte Belagfederung auf die Druckplatte eine Reaktions­ kraft ausübt, die der von der Anpreßtellerfeder bzw. Betätigungstellerfeder auf diese Druckplatte ausgeübten Kraft entgegengerichtet ist. Beim Ausrückvorgang wird während der axialen Verlagerung der Druckplatte diese zunächst durch die federnd verspannte Belagfederung zurück­ gedrängt, wobei gleichzeitig infolge des im Ausrückbereich vorhandenen verhältnismäßig steil abfallenden Kennlinienab­ schnittes der Anpreßtellerfeder die von dieser auf die Druckplatte ausgeübte Kraft abnimmt. Mit der Abnahme der von der Anpreßtellerfeder auf die Druckplatte ausgeübten Kraft nimmt auch die von der Belagfederung auf diese Druckplatte ausgeübte Rückstellkraft abnehmen. Die effektiv zum Aus­ rücken der Reibungskupplung erforderliche Kraft ergibt sich aus der Differenz zwischen Rückstellkraft der Belagfederung und Anpreßkraft der Anpreßtellerfeder. Nach Entspannung der Belagfederung, also bei Abhub der Druckplatte von den Reibbelägen bzw. Freigabe der Kupplungsscheibe durch die Druckplatte wird die erforderliche Ausrückkraft hauptsäch­ lich durch die Anpreßtellerfeder bestimmt. Die Kraft-Weg- Charakteristik der Belagfederung und die Kraft-Weg-Charak­ teristik der Anpreßtellerfeder können in besonders vor­ teilhafter Weise derart aufeinander abgestimmt sein, daß bei Freigabe der Kupplungsscheibe durch die Druckplatte die zum Betätigen der Anpreßtellerfeder erforderliche Kraft sich auf einem niedrigen Niveau befindet. Es kann also durch gezielte Abstimmung oder gar Angleichung der Belagfederungscharakte­ ristik an die Anpreßtellerfedercharakteristik bis zur Freigabe der Kupplungsscheibe durch die Druckplatte nur eine sehr geringe, im Extremfall praktisch gar keine Betäti­ gungskraft für die Anpreßtellerfeder zur Überwindung des restlichen Abtriebes erforderlich sein. Weiterhin kann die Charakteristik der Anpreßtellerfeder derart ausgelegt werden, daß nach freigegebener Kupplungsscheibe die dann noch von der Anpreßtellerfeder einer Verschwenkung ent­ gegengesetzte Kraft bzw. die zum Verschwenken der Anpreßtel­ lerfeder erforderliche Kraft sich gegenüber der von dieser Anpreßtellerfeder im eingerückten Zustand der Reibungskupp­ lung aufgebrachten Anpreßkraft auf einem sehr niedrigen Niveau befindet. Es sind auch Auslegungen möglich, bei denen bei Freigabe der Kupplungsscheibe durch die Druckplatte nur eine sehr geringe bzw. praktisch keine Kraft erforderlich ist, um die Anpreßtellerfeder zum Ausrücken der Kupplung zu betätigen. Derartige Reibungskupplungen können so ausgelegt werden, daß die Betätigungskräfte in der Größenordnung zwischen 0 und 200 N liegen.
Gemäß einem zusätzlichen erfinderischen Gedanken kann die Reibungskupplung derart ausgelegt werden, daß zumindest annähernd bei Freigabe der Kupplungsscheibe durch die Druckplatte die von der Anpreßtellerfeder aufgebrachte Axialkraft sich im Nullbereich befindet, wobei bei Fort­ setzung des Ausrückvorganges die von der Anpreßtellerfeder aufgebrachte Kraft negativ werden kann, also eine Umkehrung der Kraftwirkung der Anpreßtellerfeder stattfindet. Dies bedeutet, daß bei vollständig ausgerückter Reibungskupplung diese praktisch von selbst geöffnet bleibt und nur durch äußere Krafteinwirkung der Einkuppelvorgang wieder eingelei­ tet werden kann.
Die Erfindung betrifft weiterhin eine Reibungskupplung, ins­ besondere für Kraftfahrzeuge, mit einer Druckplatte, die drehfest, jedoch axial begrenzt verlagerbar, mit einem Gehäuse verbunden ist, wobei zwischen Gehäuse und Druck­ platte wenigstens eine verspannbare Anpreßfeder wirksam ist, die die Druckplatte in Richtung einer zwischen dieser und einer Gegendruckplatte, wie einem Schwungrad, einklemmbaren Kupplungsscheibe beaufschlagt.
Derartige Kupplungen sind beispielsweise durch die DE-OS 24 60 963, die DE-PS 24 41 141 und 8 98 531 sowie die DE-AS 12 67 916 bekannt geworden.
Der vorliegenden Erfindung lag weiterhin die Aufgabe zugrun­ de, derartige Reibungskupplungen bezüglich der Funktion und Lebensdauer zu verbessern. Insbesondere sollen durch die Erfindung die zur Betätigung derartiger Reibungskupplungen erforderlichen Kräfte reduziert werden und über deren Lebensdauer ein praktisch geichbleibender Ausrückkraftver­ lauf gewährleistet werden. Weiterhin sollen die erfindungs­ gemäßen Reibungskupplungen in besonders einfacher und wirtschaftlicher Weise herstellbar sein.
Gemäß der Erfindung wird dies dadurch erzielt, daß eine den Verschleiß der Reibbeläge der Kupplungsscheibe selbsttätig kompensierende Nachstellvorkehrung vorhanden ist, die eine praktisch gleichbleibende Kraftbeaufschlagung der Druck­ platte durch die Anpreßfeder bewirkt, und die Reibungskupp­ lung Betätigungsmittel zum Ein- und Ausrücken besitzt sowie eine Vorkehrung aufweist, die während des Ausrückvorganges, zumindest über einen Teilbereich des Betätigungsweges der Betätigungsmittel und/oder des Ausrückwegs der Druckplatte, einen allmählichen Abbau des von der Reibungskupplung bzw. der Kupplungsscheibe übertragbaren Momentes bewirkt. Durch eine derartige Vorkehrung kann ebenfalls erzielt werden, daß während des Einrückvorganges der Reibungskupplung und bei Beginn der Einspannung der Reibbeläge zwischen Druck- und Gegendruckplatte ein allmählicher bzw. progressiver Aufbau des von der Reibungskupplung übertragbaren Momentes erfolgt.
Durch die erfindungsgemäße Auslegung einer Reibungskupplung wird gewährleistet, daß die Anpreßtellerfeder, über die Lebensdauer der Reibungskupplung betrachtet, praktisch immer die gleiche Vorspannung bei eingerückter Reibungskupplung besitzt und somit eine praktisch gleichbleibende Kraftbeauf­ schlagung der Druckplatte gegeben ist. Weiterhin kann durch die zusätzliche Vorkehrung, welche einen allmählichen Abbau des von der Reibungskupplung übertragbaren Momentes während eines Ausrückvorganges bewirkt, eine Reduzierung bzw. Mini­ mierung des Ausrückkraftverlaufes bzw. der maximal erforder­ lichen Ausrückkraft erzielt werden. Dies ist darauf zurück­ zuführen, daß die Vorkehrung die Betätigung, insbesondere den Ausrückvorgang, der Reibungskupplung unterstützt. Hierfür kann die Vorkehrung axial federnd nachgiebige Mittel aufweisen, die auf die Betätigungsmittel und/oder auf die Anpreßfeder und/oder auf die Druckplatte und/oder auf die Gegendruckplatte eine Reaktionskraft ausüben, die der von der Anpreßfeder auf die Druckplatte ausgeübten Kraft entgegengerichtet und in Serie geschaltet ist.
Besonders vorteilhaft kann es sein, wenn die Vorkehrung der Reibungskupplung derart angeordnet ist, daß sie während des Ausrückvorganges über einen Teilabschnitt des axialen Verla­ gerungsweges der durch die Anpreßfeder beaufschlagten Druckplattenbereiche einen allmählichen Abbau des von der Reibungskupplung bzw. der Kupplungsscheibe übertragbaren Momentes bewirkt.
Für manche Anwendungsfälle kann die Vorkehrung in vorteil­ hafter Weise im Kraftfluß zwischen der Schwenklagerung der Betätigungsmittel bzw. zwischen der Anpreßfeder und den Befestigungsstellen, wie Verschraubungen, des Gehäuses an der Gegendruckplatte vorgesehen werden.
Für andere Anwendungsfälle kann es jedoch auch vorteilhaft sein, wenn die Vorkehrung im Kraftfluß zwischen der Schwenk­ lagerung der Betätigungsmittel bzw. zwischen der Anpreßfeder und der Reibfläche der Druckplatte vorgesehen ist. Eine derartige Anordnung ist z. B. durch die DE-OS 37 42 354 und die DE-OS 14 50 201 vorgeschlagen worden.
Für weitere Anwendungsfälle kann es besonders vorteilhaft sein, wenn die Vorkehrung axial zwischen zwei Rücken an Rücken angeordneten Reibbelägen der Kupplungsscheibe vorgesehen wird, also durch eine sogenannte "Belagfederung" gebildet ist, z. B. durch zwischen den Belägen vorgesehene Belagfedersegmente. Derartige Vorkehrungen sind beispiels­ weise durch die DE-OS 36 31 863 bekannt geworden.
Eine weitere Möglichkeit, einen progressiven Momentenaufbau bzw. -abbau zu erzielen, ist durch die DE-OS 21 64 297 vorgeschlagen worden, bei der das Schwungrad zweiteilig ausgebildet ist und das die Gegendruckplatte bildende Bauteil axial federnd gegenüber dem mit der Abtriebswelle der Brennkraftmaschine verbundenen Bauteil abgestützt ist.
Für die Funktion und den Aufbau einer erfindungsgemäßen Reibungskupplung kann es besonders zweckmäßig sein, wenn die Vorkehrung eine axiale, federnde Nachgiebigkeit zwischen Kupplungsbauteilen ermöglicht, wobei die Vorkehrung derart angeordnet und ausgestaltet ist, daß bei geöffneter Kupplung die auf die Vorkehrung einwirkende Kraft am kleinsten ist und über den Schließvorgang der Kupplung, also über den Einrückweg der Kupplung, die auf die Vorkehrung einwirkende Kraft allmählich auf das Maximum ansteigt, wobei dieser Anstieg zweckmäßigerweise nur über einen Teilbereich des Schließweges bzw. Einrückweges der Betätigungsmittel bzw. der Druckplatte stattfindet. Besonders vorteilhaft kann es sein, wenn die Vorkehrung derart ausgelegt ist, daß die allmähliche Abnahme bzw. die allmähliche Zunahme des von der Reibungskupplung übertragbaren Momentes über zumindest annähernd 40 bis 70 % des Betätigungsweges der Betätigungs­ mittel und/oder des maximal axialen Weges der Druckplatte erfolgt. Der restliche Bereich des entsprechenden Weges wird zur einwandfreien Trennung des Kraftflusses und zum Aus­ gleich von eventuell vorhandenen Verformungen an den Kupplungsbauteilen, wie insbesondere der Kupplungsscheibe, der Druckplatte sowie der Gegendruckplatte, benötigt.
Um die zur Betätigung der erfindungsgemäßen Reibungskupplung erforderlichen Kräfte zu minimieren, kann es besonders vor­ teilhaft sein, wenn die Anpreßfeder, zumindest über einen Teil des Ausrückweges der Reibungskupplung, einen degressi­ ven Kraft-Weg-Verlauf besitzt, das bedeutet also, daß die Anpreßfeder, zumindest über einen Teilbereich ihres Kompres­ sions- bzw. Verformungsweges, einen abfallenden Kraftverlauf besitzt. Dadurch kann erzielt werden, daß beim Ausrück­ vorgang der Reibungskupplung die Federkraft der Vorkehrung der Kraft der Anpreßfeder entgegenwirkt, so daß über einen Teilbereich des Ausrückweges die Verspannung bzw. Verformung der Anpreßfeder durch die Federkraft der Vorkehrung unter­ stützt wird, wobei gleichzeitig, infolge des im Ausrück­ bereich vorhandenen degressiven bzw. abfallenden Kraft-Weg- Verlaufes der Anpreßfeder, die von letzterer auf die Druckplatte bzw. die Reibbeläge ausgeübte Kraft abnimmt. Der effektiv zum Ausrücken der Reibungskupplung erforderliche Kraftverlauf ergibt sich, soweit keine zusätzlichen, sich überlagernden Federwirkungen vorhanden sind, aus der Differenz zwischen dem von der Vorkehrung aufgebrachten Kraftverlauf und dem Kraftverlauf der Anpreßfeder. Bei Abhub der Druckplatte von den Reibbelägen bzw. Freigabe der Kupplungsscheibe durch die Druckplatte wird der erforderli­ che verbleibende Ausrückkraftverlauf bzw. die erforderliche Ausrückkraft hauptsächlich durch die Anpreßfeder bestimmt. Die Kraft-Weg-Charakteristik der Vorkehrung und die Kraft- Weg-Charakteristik der Anpreßfeder können derart aufeinander abgestimmt sein, daß bei Freigabe der Kupplungsscheibe durch die Druckplatte die zum Betätigen der Anpreßfeder erforder­ liche Kraft auf einem verhältnismäßig niedrigen Niveau befindet. Es kann also durch Annäherung oder gar Angleichung der Federcharakteristik bzw. Kraftcharakteristik der Vorkehrung an die Anpreßfedercharakteristik bis zur Freigabe der Kupplungsscheibe durch die Druckplatte nur eine sehr geringe, im Extremfall praktisch gar keine Betätigungskraft für die Anpreßfeder erforderlich sein.
Als Anpreßfeder eignet sich in besonders vorteilhafter Weise eine Tellerfeder, die einerseits um eine vom Gehäuse getra­ gene ringartige Schwenklagerung verschwenkbar sein kann und andererseits die Druckplatte beaufschlagt. Dabei kann die Tellerfeder einen Ringkörper aufweisen, von dem radial nach innen hin gerichtete Zungen ausgehen, welche die Betäti­ gungsmittel bilden. Die Betätigungsmittel können jedoch auch durch Hebel gebildet sein, die z. B. am Gehäuse schwenkbar gelagert sind. Die Anpreßkraft für die Druckplatte kann jedoch auch durch andere Federarten, wie z. B. Schraubenfe­ dern, aufgebracht werden, die in der Reibungskupplung derart angeordet sind, daß die von diesen auf die Druckplatte ausgeübte Axialkraft im eingerückten Zustand der Reibungs­ kupplung am größten ist und diese Kraft sich während des Ausrückvorganges verringert. Dies kann z. B. durch Schräg­ stellung von Schraubenfedern gegenüber der Rotationsachse der Reibungskupplung erfolgen.
Besonders vorteilhaft kann es sein, wenn die Tellerfeder am Gehäuse zwischen zwei Auflagen verschwenkbar abgestützt ist, zur Bildung einer sogenannten Kupplung der gedrückten Bauart. Bei derartigen Kupplungen werden die Betätigungs­ mittel zum Ausrücken der Reibungskupplung üblicherweise in Richtung der Druckplatte beaufschlagt. Die Erfindung ist jedoch nicht auf Kupplungen der gedrückten Bauart be­ schränkt, sondern umfaßt auch Kupplungen der gezogenen Bauart, bei denen die Betätigungsmittel zum Ausrücken der Reibungskupplung üblicherweise in Richtung von der Druck­ platte weg beaufschlagt werden.
In besonders vorteilhafter Weise kann die erfindungsgemäße Reibungskupplung eine Tellerfeder aufweisen, die derart ausgelegt ist, daß sie einen sinusartigen Kraft-Weg-Verlauf aufweist und die derart eingebaut ist, daß im eingerückten Zustand der Reibungskupplung ihr Betriebspunkt auf dem, dem ersten Kraftmaximum folgenden, degressiven Kennlinienbereich vorgesehen ist. Dabei kann es besonders vorteilhaft sein, wenn die Tellerfeder ein Kräfteverhältnis von 1:0,4 bis 1:0,7 zwischen dem ersten Kraftmaximum und dem darauffol­ genden -minimum aufweist.
Besonders vorteilhaft kann es weiterhin sein, wenn die Rei­ bungskupplung über ein an den Betätigungsmitteln, wie z. B. an den Zungenspitzen der Tellerfeder, angreifendes Aus­ rücksystem betätigbar ist, wobei das Ausrücksystem ein Kupplungspedal aufweisen kann, das ähnlich wie ein Gaspedal ausgebildet und im Kraftfahrzeuginnenraum angeordnet ist. Eine derartige Ausgestaltung des Kupplungspedales kann besonders vorteilhaft sein, da durch die erfindungsgemäße Ausgestaltung die zum Ausrücken der Reibungskupplung erforderliche Kraft bzw. der Kraftverlauf auf ein sehr niedriges Niveau gebracht werden kann so daß über ein Gaspedal-ähnlich ausgebildetes Kupplungspedal eine bessere Dosierbarkeit der Betätigungskraft möglich ist.
Durch die erfindungsgemäße Ausgestaltung einer Reibungskupp­ lung und die damit verbundene Möglichkeit der Reduzierung der über die Lebensdauer der Reibungskupplung maximal auftretenden Anpreßfederkräfte können die Bauteile ent­ sprechend verkleinert bzw. in ihrer Festigkeit reduziert werden, wodurch eine erhebliche Verbilligung in der Her­ stellung erfolgen kann. Durch Reduzierung der Ausrückkräfte werden weiterhin die Reibungs- und Elastizitätsverluste in der Kupplung und im Ausrücksystem verringert und somit der Wirkungsgrad des Systems Reibungskupplung/Ausrücksystem wesentlich verbessert. Es kann somit das ganze System optimal ausgelegt werden und dadurch der Kupplungskomfort wesentlich verbessert werden.
Die erfindungsgemäße Ausgestaltung ist allgemein bei Rei­ bungskupplungen anwendbar und insbesondere bei solchen, wie sie beispielsweise durch die DE-PS 29 16 755, DE-PS 29 20 932, DE-OS 35 18 781, DE-OS 40 92 382, FR-OS 26 05 692, FR-OS 26 06 477, FR-OS 25 99 444, FR-OS 25 99 446, GB-PS 15 67 019, US-PS 49 24 991, US-PS 41 91 285, US-PS 40 57 131, JP-GM 3-25 026, JP-GM 3-123, JP- GM 2-1 24 326, JP-GM 1-1 63 218, JP-OS 51-1 26 452, JP-GM 3-19 131, JP-GM 3-53 628 vorgeschlagen worden sind.
Die vorliegende Erfindung bezieht sich weiterhin auf die älteren Anmeldungen DE-P 42 07 528.9, deren Inhalt ausdrück­ lich zum Offenbarungsinhalt der vorliegenden Erfindung gehört.
Die Verwendung einer Reibungskupplung mit einem selbst­ tätigen bzw. automatischen Ausgleich zumindest des Belagver­ schleißes - wodurch eine zumindest über die Lebensdauer der Reibungskupplung annähernd gleichbleibende Einspannkraft der Kupplungsscheibe gewährleistet ist - ist insbesondere in Verbindung mit Kupplungsaggregaten vorteilhaft, bei denen die Reibungskupplung, die Kupplungsscheibe und die Gegen­ druckplatte, wie zum Beispiel einem Schwungrad, eine Montageeinheit bzw. ein Modul bilden. Bei einer derartigen Montageeinheit ist es aus Kostengründen vorteilhaft, wenn das Kupplungsgehäuse mit der Gegendruckplatte über eine nicht lösbare Verbindung, wie zum Beispiel Schweißverbindung oder Formverbindung, zum Beispiel durch plastische Material­ verformung, verbunden ist. Durch eine derartige Verbindung können die üblicherweise verwendeten Befestigungsmittel, wie Schrauben, entfallen. Bei solchen Montageeinheiten ist ein Auswechseln der Kupplungsscheibe bzw. der Kupplungsbeläge wegen Überschreitung der Verschleißgrenze ohne Zerstörung von Bauteilen, wie zum Beispiel dem Kupplungsgehäuse, praktisch nicht möglich. Durch Einsatz einer verschleißnach­ stellenden Kupplung kann die Montageeinheit derart ausgelegt werden, daß diese über die gesamte Fahrzeuglebensdauer eine einwandfreie Funktion garantiert. Es kann also aufgrund der erfindungsgemäßen Ausgestaltung die Verschleißreserve der Kupplungsscheibe und die Nachstellreserve der Reibungskupp­ lung bzw. des Kupplungsmoduls so groß dimensioniert werden, daß die Kupplungslebensdauer und somit auch die Lebensdauer der Montageeinheit mit Sicherheit zumindest diejenige des Fahrzeuges erreichen.
Gemäß einer Weiterbildung der Erfindung kann es besonders vorteilhaft sein, wenn eine eine Verschleißnachstellvorkeh­ rung aufweisende Reibungskupplung mit einem sogenannten Zweimassenschwungrad kombiniert wird, wobei die Reibungs­ kupplung unter Zwischenlegung einer Kupplungsscheibe auf der einen mit einem Getriebe verbindbaren Schwungmasse montier­ bar ist und die zweite Schwungmasse mit der Abtriebswelle einer Brennkraftmaschine verbindbar ist. Zweimassenschwun­ gräder, bei denen die erfindungsgemäße Reibungskupplung Verwendung finden kann, sind zum Beispiel bekannt geworden durch die DE-OS 37 21 712, 37 21 711, 41 17 571, 41 17 582 und 41 17 579. Der gesamte Inhalt dieser Anmeldungen gehört auch zum Offenbarungsinhalt der vorliegenden Erfindung, so daß die in diesen Anmeldungen beschriebenen Merkmale in beliebiger Weise mit den in der vorliegenden Erfindung beschriebenen Merkmalen kombiniert werden können. Ins­ besondere kann das Kupplungsgehäuse bzw. der Kupplungsdeckel über eine nicht ohne Zerstörung lösbare Verbindung mit der sie tragenden Schwungmasse verbunden sein, wie dies zum Beispiel für verschiedene Ausführungsformen in der DE- OS 41 17 579 gezeigt und beschrieben ist.
Durch Einsatz einer Reibungskupplung mit einer Vorkehrung, welche zumindest den Belagverschleiß ausgleicht, kann weiterhin eine Optimierung in der Auslegung der Reibungs­ kupplung erfolgen, insbesondere des die Verspannkraft für die Kupplungsscheibe aufbringenden Kraftspeichers. Dieser Kraftspeicher kann also derart ausgelegt werden, daß er praktisch lediglich die zur Übertragung des gewünschten Drehmomentes erforderliche Einspannkraft für die Kupplungs­ scheibe aufbringt. Der Kraftspeicher kann durch zumindest eine Tellerfeder oder durch eine Mehrzahl von Schraubenfe­ dern gebildet sein. Weiterhin ist die Verwendung einer selbstnachstellenden Reibungskupplung in Verbindung mit Zweimassenschwungrädern vorteilhaft, bei denen der zwischen den beiden Schwungmassen angeordnete drehelastische Dämpfer radial außerhalb der Kupplungsscheibe bzw. des äußeren Reibdurchmessers der Reibfläche der mit dem Getriebe verbindbaren Schwungmasse vorgesehen ist. Bei derartigen Zweimassenschwungrädern muß der Reibdurchmesser der Kupp­ lungsscheibe kleiner sein als bei konventionellen Kupp­ lungen, so daß die Anpreßkraft entsprechend dem Verhältnis der mittleren Reibradien erhöht werden muß, um ein definier­ tes Motordrehmoment übertragen zu können. Bei Verwendung einer konventionellen Kupplung würde dies zu einer Erhöhung der Ausrückkraft führen. Durch den Einsatz einer verschleiß­ nachstellenden Kupplung mit einem über den Ausrückweg progressiven Abbau des von der Kupplungsscheibe übertrag­ baren Drehmomentes gemäß dem Anspruch 1 kann jedoch eine Ausrückkraftabsenkung erzielt werden, wodurch eine Erhöhung der Ausrückkraft vermieden werden kann oder durch entspre­ chende Auslegung der Reibungskupplung gar eine Ausrückkraft­ absenkung gegenüber einer konventionellen Kupplung erzielt werden kann.
Es kann also durch die erfindungsgemäße Ausgestaltung einer Reibungskupplung gewährleistet werden, daß trotz reduziertem Reibbelagaußendurchmesser und der dadurch erforderlichen höheren Anpreßkraft die Ausrückkraft niedrig gehalten werden kann. Durch die niedrigere Ausrückkraft wird auch die Bela­ stung des Wälzlagers, über die die beiden Schwungmassen relativ zueinander verdrehbar sind, reduziert. Weiterhin wird durch die Verschleißnachstellung die Lebensdauer der Kupplung erhöht, so daß ein Auswechseln der Teile, ins­ besondere der Kupplungsscheibe während der Lebensdauer des Kraftfahrzeuges, nicht mehr erforderlich ist. Es kann also der Kupplungsdeckel fest mit der mit dem Getriebe verbind­ baren Schwungmasse verbunden werden, zum Beispiel durch Vernieten oder Verschweißen. Dies ist besonders dann vorteilhaft, wenn ein beschränkter Einbauraum bzw. be­ schränkte Konturen der Kupplungsglocke vorhanden sind, die eine Verbindung des Kupplungsdeckels mit dem getriebeseiti­ gen Schwungrad in herkömmlicher Weise durch Verschrauben nicht mehr ermöglichen.
Bei Reibungskupplung mit integrierter Nachstellvorkehrung für den Belagverschleiß werden bei konventioneller Befesti­ gung der aus Reibungskupplung und Schwungrad bestehenden Kupplungseinheit an der Abtriebswelle einer Brennkraftma­ schine Axial-, Dreh- und Taumelschwingungen auf die Kupp­ lungseinheit übertragen, welche durch die Abtriebswelle der Brennkraftmaschine, wie insbesondere Kurbelwelle, angeregt werden. Damit die Kupplungseinheit bzw. die Nachstellvor­ kehrung in ihrer Funktion durch solche Schwingungen nicht beeinträchtigt werden und insbesondere eine unerwünschte Nachstellung der Verschleißausgleichsvorkehrung unterdrückt wird, müssen bei der Auslegung der Nachstellvorkehrung die Trägheitskräfte derjenigen Bauteile, welche auf diese Vorkehrung einwirken, berücksichtigt werden. Um diese insbesondere durch Axial- und Taumelschwingungen verursach­ ten unerwünschten Nebeneffekte bzw. der damit verbundene höhere Aufwand für die Auslegung einer Nachstellvorkehrung zum Ausgleich des Belagverschleißes zu vermeiden, wird gemäß einem weiteren Erfindungsgedanken die die Nachstellvor­ kehrung aufweisende Kupplungseinheit gegenüber den von der Abtriebswelle der Brennkraftmaschine angeregten Axial- und Biegeschwingungen weitgehend entkoppelt. Dies kann dadurch geschehen, daß die Kupplungseinheit über ein axial elasti­ sches bzw. federnd nachgiebiges Bauteil mit der Abtriebs­ welle der Brennkraftmaschine verbindbar ist. Die Steifigkeit dieses Bauteils ist dabei derart bemessen, daß die durch die Abtriebswelle der Brennkraftmaschine an der Kupplungseinheit erzeugten Axial- und Taumel- bzw. Biegeschwingungen durch dieses elastische Bauteil zumindest auf ein Maß gedämpft bzw. unterdrückt werden, daß eine einwandfreie Funktion der Reibungskupplung, insbesondere deren Nachstellvorkehrung gewährleistet. Derartige elastische Bauteile sind beispiels­ weise durch die EP-OS 03 85 752 und 04 64 997 sowie das SAE Technical Paper 9 00 391 bekannt geworden. Der Inhalt dieser Veröffentlichungen soll ebenfalls zum Offenbarungsinhalt der vorliegenden Erfindung gehören. Durch die Verwendung eines elastischen Bauteils ist es möglich, eine unerwünschte Verschleißnachstellung, verursacht durch Axialschwingungen der Druckplatte relativ zum Kupplungsdeckel - insbesondere bei ausgerückter Reibungskupplung - durch Schwungradschwin­ gungen und/oder Schwingungen der Tellerfeder zu beseitigen. Derartige Schwingungen können bei Kupplungsaggregaten bzw. Kupplungseinheiten ohne eine diese Schwingungen zumindest im wesentlichen unterdrückende Vorkehrung, wie insbesondere eine axial nachgiebige Scheibe, zu einer veränderten Einstellung unabhängig vom Verschleißzustand der Kupplungs­ scheibe führen, wobei die Tellerfeder der Reibungskupplung in der Anpreßkraft gegen ein Kraftminimum heruntergeregelt werden könnte, wodurch die Übertragung des gewünschten Momentes nicht mehr gewährleistet wäre.
Gemäß einer weiteren erfinderischen Ausgestaltung kann eine Reibungskupplung mit einem selbsttätigen bzw. automatischen Ausgleich, die insbesondere entsprechend der vorliegenden Erfindung ausgebildet sein kann, in vorteilhafter Weise in einer Antriebseinheit, insbesondere für Kraftfahrzeuge, Verwendung finden, welche aus einem automatischen oder halb­ automatischen Getriebe und einer zwischen einem Antriebs­ motor, wie einer Brennkraftmaschine, und Getriebe angeordne­ ten, zumindest in Abhängigkeit der Betätigung des Getriebes gesteuert bzw. geregelt betätigbaren Reibungskupplung be­ steht. Die Reibungskupplung ist vorzugsweise vollautomatisch betätigbar. Eine automatisierte bzw. vollautomatische Betätigung einer Reibungskupplung ist beispielsweise durch die DE-OS 40 11 850.9 vorgeschlagen worden, so daß bezüglich der Wirkungsweise und der erforderlichen Mittel auf diese Schrift verwiesen wird.
Bei den bisher bekannten Antriebseinheiten mit automatischem oder halbautomatischem Getriebe und konventioneller Rei­ bungskupplung bestanden bisher erhebliche Probleme für die Kupplungsbetätigung und die Auslegung der dazu erforderli­ chen Aktuatoren, wie z. B. Kolben/Zylindereinheiten und/oder Elektromotoren. Aufgrund der bei konventionellen Kupplungen erforderlichen verhältnismäßig hohen Ausrückkräfte sind sehr stark bzw. groß dimensionierte Aktuatoren erforderlich. Dies bedeutet großes Bauvolumen, hohes Gewicht und hohe Kosten. Auch sind derartig groß ausgelegte Aktuatoren aufgrund ihrer Massenträgheit in der Ansprechzeit verhältnismäßig langsam. Bei Verwendung von Stellzylindern ist außerdem ein größerer Volumenstrom an Druckmittel erforderlich, so daß auch die Versorgungspumpe verhältnismäßig groß dimensioniert werden muß, um die gewünschte Betätigungszeit für die entsprechende Reibungskupplung zu gewährleisten. Um die vorerwähnten Nach­ teile teilweise zu beheben, ist beispielsweise durch die DE-OS 33 09 427 vorgeschlagen worden, die Betätigungskraft zum Ausrücken der Kupplung durch entsprechende Kompensa­ tionsfedern zu reduzieren, um dadurch kleiner dimensionierte Aktuatoren einsetzen zu können. Da die Ausrückkraft bei konventionellen Kupplungen jedoch über die Lebensdauer sehr stark schwankt, das heißt die Ausrückkraft ist im Neuzustand relativ gering und steigt über die Lebensdauer mit zunehmen­ dem Belagverschleiß an, kann über eine Kompensationsfeder nur ein Teil der normalerweise erforderlichen Ausrückkraft abgebaut werden. Unter Berücksichtigung sämtlicher Toleran­ zen wird trotz Einsatz von Kompensationsfedern eine Ausrück­ leistung der Aktuatoren erforderlich sein, die größer ist als die für eine neue konventionelle Kupplung. Durch den Einsatz einer erfindungsgemäßen Reibungskupplung mit Belagverschleißausgleich in Verbindung mit einer Antriebs­ einheit, bestehend aus einem Motor und einem automatischen oder halbautomatischen Getriebe, kann die Ausrückkraft gegenüber dem vorerwähnten Stand der Technik ganz erheblich abgesenkt werden, und zwar direkt in der Kupplung, wobei dieser Ausrückkraftwert bzw. Ausrückkraftverlauf der neuen Kupplung über die gesamte Lebensdauer derselben praktisch unverändert erhalten bleibt. Hierdurch ergeben sich wesent­ liche Vorteile für die Auslegung der Aktuatoren, da deren Antriebsleistung oder Betätigungsleistung entsprechend nieder gehalten werden kann, wobei auch die im gesamten Ausrücksystem auftretenden Kräfte bzw. Drücke entsprechend geringer sind. Dadurch werden die im Ausrücksystem auf­ tretenden Verluste infolge Reibung oder Elastizität der Bauteile beseitigt bzw. auf ein Minimum reduziert.
Anhand der Fig. 1 bis 27 sei die Erfindung näher er­ läutert.
Dabei zeigt:
Fig. 1 eine erfindungsgemäße Reibungskupplung in Ansicht,
Fig. 2 einen Schnitt gemäß der Linie II-II der Fig. 1,
Fig. 3 einen bei der Reibungskupplung gemäß den Fig. 1 und 2 verwendeten Verstellring,
Fig. 4 einen Schnitt gemäß der Linie IV-IV der Fig. 3,
Fig. 5 einen bei der Reibungskupplung gemäß den Fig. 1 und 2 verwendeten Abstützring,
Fig. 6 einen Schnitt gemäß der Linie VI-VI der Fig. 5,
Fig. 7 und 7a eine Feder, die eine Verdrehkraft auf den Verstellring ausübt,
die Fig. 8 bis 11 Diagramme mit verschiedenen Kennlinien, aus denen das Zusammenwirken der einzelnen Feder- und Nachstellelemente der erfindungsgemäßen Reibungskupplung zu entnehmen sind,
die Fig. 12 und 13 eine weitere Ausgestaltungsmöglichkeit einer erfindungsgemäßen Reibungskupplung, wobei Fig. 13 einen Schnitt gemäß der Linie XIII der Fig. 12 darstellt,
Fig. 14 den bei der Reibungskupplung gemäß den Fig. 12 und 13 verwendeten Verstellring in Ansicht,
die Fig. 15 bis 17 Einzelheiten einer weiteren Reibungs­ kupplung mit einer Ausgleichsvorkehrung,
die Fig. 18 und 19 Diagramme mit verschiedenen Kenn­ linien, aus denen das Zusammenwirken der Anpreßtellerfeder und der Belagfederung sowie die dadurch entstehende Aus­ wirkung auf den Ausrückkraftverlauf der Reibungskupplung zu entnehmen sind,
Fig. 20 eine weitere erfindungsgemäße Reibungskupplung in Teilansicht,
Fig. 20a eine Teilansicht in Richtung des Pfeiles A der Fig. 20,
Fig. 21 einen Schnitt gemäß der Linie XXI der Fig. 20,
Fig. 22 eine Teilansicht eines bei einer Reibungskupplung gemäß den Fig. 20 bis 21 verwendbaren Verstellringes,
die Fig. 23 und 24 weitere Ausführungsvarianten erfin­ dungsgemäßer Reibungskupplungen,
Fig. 25 einen Verstellring in Ansicht, der bei einer Reibungskupplung gemäß den Fig. 12 und 13 oder 20 bis 21 einsetzbar ist,
die Fig. 26 bis 29 zusätzliche Ausführungsvarianten von Reibungskupplungen,
die Fig. 30 bis 32 Einzelheiten einer anderen Ausgestal­ tungsmöglichkeit einer Reibungskupplung, wobei die Fig. 31 eine Teilansicht gemäß dem Pfeil A der Fig. 30 und die Fig. 32 einen Schnitt gemäß den Pfeilen B-B der Fig. 31 darstellen.
Die in den Fig. 1 und 2 dargestellte Reibungskupplung 1 besitzt ein Gehäuse 2 und eine mit diesem drehfest verbunde­ ne, jedoch axial begrenzt verlagerbare Druckscheibe 3. Axial zwischen der Druckscheibe 3 und dem Deckel 2 ist eine Anpreßtellerfeder 4 verspannt, die um eine vom Gehäuse 2 getragene ringartige Schwenklagerung 5 verschwenkbar ist und die Druckscheibe 3 in Richtung einer mit dem Gehäuse 2 fest verbundenen Gegendruckplatte 6, wie zum Beispiel einem Schwungrad, beaufschlagt, wodurch die Reibbeläge 7 der Kupplungsscheibe 8 zwischen den Reibflächen der Druckscheibe 3 und der Gegendruckplatte 6 eingespannt werden.
Die Druckscheibe 3 ist mit dem Gehäuse 2 über in Umfangs­ richtung bzw. tangential gerichtete Blattfedern 9 drehfest verbunden. Bei dem dargestellten Ausführungsbeispiel besitzt die Kupplungsscheibe 8 sogenannte Belagfedersegmente 10, die, einen progressiven Drehmomentaufbau beim Einrücken der Reibungskupplung 1 gewährleisten, indem sie über eine begrenzte axiale Verlagerung der beiden Reibbeläge 7 in Richtung aufeinander zu einen progressiven Anstieg der auf die Reibbeläge 7 einwirkenden Axialkräfte ermöglichen. Es könnte jedoch auch eine Kupplungsscheibe verwendet werden, bei der die Reibbeläge 7 axial praktisch starr auf eine Trägerscheibe aufgebracht wären. In einem solchen Falle könnte ein "Belagfedersatz" verwendet werden, also eine Federung in Serie mit der Tellerfeder, z. B. eine Federung zwischen Deckel und Schwungrad, zwischen Deckel und deckel­ seitiger Auflage sowie zwischen Tellerfeder und Druckplatte oder durch die Deckelelastizität.
Bei dem dargestellten Ausführungsbeispiel besitzt die Tellerfeder 4 einen die Anpreßkraft aufbringenden ringförmi­ gen Grundkörper 4a, von dem radial nach innen hin ver­ laufende Betätigungszungen 4b ausgehen. Die Tellerfeder 4 ist dabei derart eingebaut, daß sie mit radial weiter außen liegenden Bereichen die Druckscheibe 3 beaufschlagt und mit radial weiter innen liegenden Bereichen um die Schwenkla­ gerung 5 kippbar ist.
Die Schwenklagerung 5 umfaßt zwei Schwenkauflagen 11, 12, die hier durch Drahtringe gebildet sind und zwischen denen die Tellerfeder 4 axial gehaltert bzw. eingespannt ist. Die auf der Druckscheibe 3 zugewandten Seite der Tellerfeder 4 vorgesehene Schwenkauflage 11 ist axial in Richtung des Gehäuses 2 mittels eines Kraftspeichers 13 kraftbeauf­ schlagt. Der Kraftspeicher 13 ist durch eine Tellerfeder bzw. durch ein tellerfederartiges Bauteil 13 gebildet, das sich mit seinem äußeren Randbereich 13a am Gehäuse 2 abstützt und mit radial weiter innen liegenden Abschnitten die Schwenkauflage 11 gegen die Betätigungstellerfeder 4 und somit auch in Richtung des Gehäuses 2 axial beaufschlagt. Die zwischen der Druckscheibe 3 und der Betätigungstel­ lerfeder 4 vorgesehene Tellerfeder 13 besitzt einen äußeren ringförmigen Randbereich 13b, von dessen Innenrand radial nach innen verlaufende Zungen 13c ausgehen, die sich an der Schwenkauflage 11 abstützen.
Zur Abstützung des tellerfederartigen Bauteils 13 sind bei dem dargestellten Ausführungsbeispiel am Gehäuse 2 zusätzli­ che Mittel 14 befestigt, die eine Schwenkauflage für das tellerfederartige Bauteil 13 bilden. Diese zusätzlichen Mittel können durch angeheftete oder angenietete segmentför­ mige Einzelteile 14 gebildet sein, die über den Umfang gleichmäßig verteilt sein können. Die Mittel 14 können jedoch auch durch ein kreisringförmiges, in sich geschlosse­ nes Bauteil gebildet sein. Weiterhin können die Abstütz­ mittel 14 unmittelbar aus dem Gehäuse 2 herausgeformt sein, z. B. durch im axialen Bereich des Gehäuses 2 eingebrachte Anprägungen oder durch zungenförmige Ausschnitte, die nach dem Einlegen und Verspannen des tellerfederartigen Bauteils 13 unter den äußeren Randbereich dieses Bauteils 13 durch Materialverformung gedrängt werden. Weiterhin kann zwischen den Abstützmitteln 14 und dem tellerfederartigen Bauteil 13 eine bajonettartige Verbindung bzw. Verriegelung vorhanden sein, so daß das tellerfederartige Bauteil 13 zunächst vorgespannt und dessen radial äußere Bereiche axial über die Abstützmittel 14 gebracht werden können. Danach können durch eine entsprechende Verdrehung des tellerfederartigen Bauteils 13 gegenüber dem Gehäuse 2 die Abstützbereiche des Bauteils 13 zur Anlage an den Abstützmitteln 14 gebracht werden. Die Abstützbereiche des tellerfederartigen Bauteils 13 können dabei durch am ringförmigen Grundkörper 13b radial nach außen hin hervorstehende Ausleger gebildet sein.
Zur Drehsicherung der Betätigungstellerfeder 4 und gegebe­ nenfalls des tellerfederartigen Bauteils 13 sowie zur Zentrierung der Drahtringe 11, 12 sind am Gehäuse 2 axial sich erstreckende Zentrierungsmittel in Form von Niet­ elementen 15 befestigt. Die Nietelemente 15 besitzen jeweils einen axial sich erstreckenden Schaft 15a, der sich axial durch einen zwischen benachbarten Tellerfederzungen 4b vorgesehenen Ausschnitt erstreckt und der von an der ihm zugeordneten Zunge 13c der Tellerfeder 13 angeformten Bereichen 13d teilweise umgriffen werden kann.
Das tellerfederartige Bauteil bzw. die Tellerfeder 13 ist als Sensorfeder ausgebildet, die über einen vorbestimmten Arbeitsweg eine zumindest im wesentlichen annähernd kon­ stante Kraft erzeugt. Über diese Sensorfeder 13 wird die auf die Zungenspitzen 4c aufgebrachte Kupplungsausrückkraft abgefangen, wobei stets zumindest ein annäherndes Gleichge­ wicht zwischen der durch die Ausrückkraft auf die Schwen­ kauflage 11 erzeugten Kraft und der durch die Sensortel­ lerfeder 13 auf diese Schwenkauflage 11 ausgeübten Gegen­ kraft herrscht. Unter Ausrückkraft ist die Kraft zu ver­ stehen, die während der Betätigung der Reibungskupplung 1 auf die Zungenspitzen 4c bzw. auf die Ausrückhebel der Tellerfederzungen ausgeübt wird und somit der Sensorfeder 13 entgegenwirkt.
Die gehäuseseitige Schwenkauflage 12 ist über eine im axialen Raum zwischen Tellerfeder 4 und Gehäuse 2 vor­ gesehene Nachstellvorkehrung 16 am Gehäuse 2 abgestützt. Diese Nachstellvorkehrung 16 gewährleistet, daß bei einer axialen Verlagerung der Schwenkauflagen 11 und 12 in Richtung der Druckscheibe 3 bzw. in Richtung der Gegendruck­ platte 6 kein ungewolltes Spiel zwischen der Schwenkauflage 12 und dem Gehäuse 2 bzw. zwischen der Schwenkauflage 12 und der Tellerfeder 4 entstehen kann. Dadurch wird gewähr­ leistet, daß keine ungewollten Tot- bzw. Leerwege bei der Betätigung der Reibungskupplung entstehen, wodurch ein optimaler Wirkungsgrad und dadurch eine einwandfreie Betätigung der Reibungskupplung 1 gegeben ist. Die axiale Verlagerung der Schwenkauflagen 11 und 12 erfolgt bei axialem Verschleiß an den Reibflächen der Druckscheibe 3 und der Gegendruckplatte 6 sowie der Reibbeläge 7. Die Nach­ stellung erfolgt bei Einrichtungen gemäß der Erfindung aber auch bei einem Verschleiß der Schwenkauflagen 11, 12, den dort axial gegenüberliegenden Bereichen der Tellerfeder und bei einem Verschleiß der Tellerfeder im Bereich der Druck­ plattenauflagenocken (bei 3a) oder den diesen gegenüber­ liegenden Bereichen der Tellerfeder. Die Wirkungsweise der automatischen Nachstellung der Schwenklagerung 5 wird noch im Zusammenhang mit den Diagrammen gemäß den Fig. 8 bis 11 näher erläutert.
Die Nachstellvorkehrung 16 umfaßt ein federbeaufschlagtes Nachstellelement in Form eines ringartigen Bauteils 17, das in den Fig. 3 und 4 dargestellt ist. Das ringartige Bauteil 17 besitzt in Umfangsrichtung sich erstreckende und axial ansteigende Auflauframpen 18, die über den Umfang des Bauteils 17 verteilt sind. Das Nachstellelement 17 ist in die Kupplung 1 derart eingebaut, daß die Auflauframpen 18 dem Gehäuseboden 2a zugewandt sind. Auf der den Auflaufram­ pen 18 abgekehrten Seite des Nachstellelementes 17 ist die durch einen Drahtring gebildete Schwenkauflage 12 in einer rillenförmigen Aufnahme 19 (Fig. 2) zentrisch positioniert. Die Aufnahme 19 kann dabei derart ausgebildet sein, daß die Schwenkauflage 12 am Nachstellelement 17 auch in axialer Richtung gesichert ist. Dies kann z. B. dadurch erfolgen, daß zumindest abschnittsweise die an die Aufnahme 19 angrenzenden Bereiche des Nachstellelementes 17 die Schwenk­ auflage 12 klammernd festhalten bzw. eine Schnappverbindung für die Schwenkauflage 12 bilden. Bei Verwendung unter­ schiedlicher Werkstoffe für die Schwenkauflage 12 und das Nachstellelement 17 kann es zweckmäßig sein, um die bei großen Temperaturänderungen entstehenden Ausdehnungsunter­ schiede zu kompensieren, wenn die als Drahtring ausgelegte Schwenkauflage 12 offen ist, also über den Umfang zumindest an einer Stelle getrennt ist, wodurch eine Bewegung des Drahtringes 12 gegenüber der Aufnahme 19 in Umfangsrichtung ermöglicht wird und damit der Drahtring 12 sich an Durch­ messeränderungen der Aufnahme 19 anpassen kann.
Bei dem dargestellten Ausführungsbeispiel ist das Nach­ stellelement 17 aus Kunststoff, wie z. B. aus einem hitzebe­ ständigen Thermoplast hergestellt, der zusätzlich noch faserverstärkt sein kann. Dadurch läßt sich das Nachstell­ element 17 in einfacher Weise als Spritzteil herstellen. Ein Nachstellelement aus Kunststoff mit geringerem spezifischem Gewicht ergibt, wie bereits erwähnt, ein geringeres Mas­ senträgheitsgewicht, wodurch sich auch die Empfindlichkeit gegen Druckschwingungen verringert. Auch die Schwenkauflage könnte direkt durch den Kunststoffring gebildet sein. Das Nachstellelement 17 kann jedoch auch als Blechformteil oder durch Sintern hergestellt werden. Weiterhin kann bei ent­ sprechender Werkstoffwahl die Schwenkauflage 12 mit dem Nachstellelement 17 einstückig ausgebildet werden. Die Schwenkauflage 11 kann unmittelbar durch die Sensorfeder 13 gebildet sein. Hierfür können die Spitzen der Zungen 13c entsprechende Anprägungen bzw. Anformungen, wie z. B. Sicken aufweisen.
Der Nachstellring 17 wird durch die axial verlaufenden Bereiche 15a der über den Umfang gleichmäßig verteilten Niete 15 zentriert. Hierfür besitzt der Nachstellring 17 Zentrierungskonturen 20, die durch in Umfangsrichtung sich erstreckende Ausnehmungen 21 gebildet sind, welche radial innerhalb der Schwenkauflage 11 liegen. Zur Bildung der Ausnehmungen 21 besitzt der Nachstellring 17 am inneren Randbereich radial nach innen sich erstreckende Nocken 22, die die radial inneren Konturen der Ausnehmungen 21 begren­ zen.
Wie aus Fig. 3 zu entnehmen ist, sind in Umfangsrichtung betrachtet, zwischen den gleichmäßig verteilten Ausnehmungen 21 jeweils 5 Auflauframpen 18 vorgesehen. Die Ausnehmungen 21 sind in Umfangsrichtung derart ausgebildet, daß diese zumindest einen Verdrehwinkel des Nachstellringes 17 gegen­ über dem Gehäuse 2 ermöglichen, der über die gesamte Lebens­ dauer der Reibungskupplung 1 eine Nachstellung des an den Reibflächen der Druckscheibe 3 und der Gegendruckplatte 6 sowie den Reibbelägen 7 auftretenden Verschleißes sowie gegebenenfalls des Verschleißes der Kupplung selbst, also z. B. der Auflagen 11, 12, der dazwischenliegenden Tel­ lerfederbereiche, der Druckplattennocken (bei 3a) oder der diesen gegenüberliegenden Bereiche der Tellerfeder 4 gewähr­ leistet. Dieser Nachstellwinkel kann je nach Auslegung der Auflauframpen in der Größenordnung zwischen 8 und 60 Grad liegen, vorzugsweise in der Größenordnung von 10 bis 30 Grad. Bei dem dargestellten Ausführungsbeispiel liegt dieser Verdrehwinkel im Bereich von 12 Grad, wobei der Aufstell­ winkel 23 der Auflauframpen 18 ebenfalls im Bereich von 12 Grad liegt. Dieser Winkel 23 ist derart gewählt, daß die beim Aufeinanderpressen der Auflauframpen 18 des Nachstell­ ringes 17 und der Gegenauflauframpen 24 des in den Fig. 5 und 6 dargestellten Abstützringes 25 entstehende Reibung ein Verrutschen zwischen den Auflauframpen 18 und 24 verhindert. Je nach Werkstoffpaarung im Bereich der Auflauf- 18 und Gegenauflauframpen 24 kann der Winkel 23 im Bereich zwischen 4 und 20 Grad liegen.
Der Nachstellring 17 ist in Umfangsrichtung federbelastet, und zwar in Nachstelldrehrichtung, also in die Richtung, welche durch Auflaufen der Rampen 18 an den Gegenrampen 24 des Abstützringes 25 eine axiale Verlagerung des Nachstell­ ringes 17 in Richtung Druckscheibe 3, das bedeutet also in axialer Richtung vom radialen Gehäuseabschnitt 2a weg, bewirkt. Bei dem in den Fig. 1 und 2 dargestellten Ausführungsbeispiel wird die Federbelastung des Nachstell­ ringes 17 durch wenigstens eine ringförmige Schenkelfeder 26 gewährleistet, welche z. B. zwei Windungen besitzen kann und an einem ihrer Enden einen radial verlaufenden Schenkel 27 besitzt, der drehfest mit dem Nachstellring 17 ist, und am anderen Ende einen axial verlaufenden Schenkel 28 aufweist, der drehfest am Gehäuse 2 eingehängt ist. Die Feder 27 ist federnd verspannt eingebaut.
Der in den Fig. 5 und 6 gezeigte Abstützring 25 ist ebenfalls durch ein ringförmiges Bauteil gebildet, welches Gegenauflauframpen 24 besitzt, welche komplementäre Flächen zu den durch die Auflauframpen 18 begrenzten Flächen bilden, wobei die durch die Auflauframpen 18 und Gegenauflauframpen 24 begrenzten Flächen auch kongruent sein können. Der Anstellwinkel 29 der Gegenauflauframpe 24 entspricht dem Winkel 23 der Auflauframpen 18. Wie durch einen Vergleich der Fig. 3 und 5 ersichtlich ist, sind die Auflauframpen 18 und die Gegenauflauframpen 24 in Umfangsrichtung ähnlich verteilt. Der Abstützring 25 ist mit dem Gehäuse 2 drehfest verbunden. Hierfür besitzt der Abstützring 25 über den Umfang verteilte Ausnehmungen 30, durch welche sich die Vernietungsansätze der Niete 15 hindurcherstrecken.
In Fig. 2 ist strichliert eine weitere ringförmige Schen­ kelfeder 26a angedeutet, die, ähnlich wie die Schenkelfeder 26 an ihren Endbereichen, abgebogen sein kann, um eine drehfeste Verbindung mit einerseits dem Gehäuse 2 und andererseits dem Nachstellelement 17 zu gewährleisten. Diese Feder 26a ist ebenfalls federnd verspannt eingebaut, so daß sie auf das Nachstellelement 17 eine Verdrehkraft ausübt. Die Verwendung von zwei Schenkelfedern 26, 26a kann für manche Anwendungsfälle vorteilhaft sein, da bei Rotation der Reibungskupplung 1 infolge der auf die Feder 26 bzw. 26a einwirkenden Fliehkräfte eine Federkraftverstärkung auf­ tritt. Durch Verwendung zweier Schenkelfedern kann die zum Beispiel an der Feder 26 auftretende Kraftverstärkung durch die von der Schenkelfeder 26a aufgebrachte Kraft kompensiert werden. Hierfür sind die Schenkelfedern 26 und 26a derart gewickelt, daß sie zumindest unter Fliehkrafteinfluß auf das Nachstellelement 17 Kräfte erzeugen, die in Umfangsrichtung entgegengesetzt wirken. Die beiden Schenkelfedern 26, 26a können eine oder mehrere Windungen besitzen, weiterhin können diese Schenkelfedern 26, 26a unterschiedliche Windungsdurchmesser aufweisen, wie dies in Fig. 2 darge­ stellt ist, wobei die normalerweise damit verbundenen und auf die Federn 26, 26a einwirkenden Fliehkräfte, welche unterschiedlich große Umfangskräfte am Nachstellelement 17 erzeugen würden, durch entsprechende Auslegung der Draht­ stärke und/oder der Windungszahl der einzelnen Federn 26, 26a zumindest annähernd ausgeglichen werden können. In Fig. 2 ist die Feder 26 radial innerhalb des Nachstellelementes 17 und die Feder 26a radial außerhalb dieses Nachstell­ elementes 17 angeordnet. Beide Federn könnten jedoch durch entsprechende Auslegung auch radial innerhalb oder radial außerhalb des Nachstellelementes 17 angeordnet sein.
In Fig. 7 ist die Schenkelfeder 26 in Draufsicht darge­ stellt. In entspanntem Zustand der Schenkelfeder 26 sind die Schenkel 27,28 um einen Winkel 31 versetzt, der in der Größenordnung zwischen 40 und 120 Grad liegen kann. Bei dem dargestellten Ausführungsbeispiel ist dieser Winkel 31 in der Größenordnung von 85 Grad. Mit 32 ist die relative Lage des Schenkels 27 gegenüber dem Schenkel 28 dargestellt, die dieser bei neuen Reibbelägen 7 in der Reibungskupplung 1 einnimmt. Mit 33 ist diejenige Stellung des Schenkels 27 dargestellt, die dem maximal zulässigen Verschleiß an den Reibbelägen 7 entspricht. Der Nachstellwinkel 34 liegt bei dem dargestellten Ausführungsbeispiel in der Größenordnung von 12 Grad. Die Feder 26 ist derart ausgebildet, daß im entspannten Zustand dieser Feder 26 zwischen den beiden Schenkeln 27, 28 nur eine Drahtwindung 35 verläuft. Im übrigen Umfangsbereich liegen zwei Drahtwindungen axial übereinander. Die Feder 26a ist ähnlich wie die Feder 26 ausgebildet, besitzt jedoch einen größeren Wicklungsdurch­ messer und eine andere Verspannrichtung in bezug auf das Nachstellelement 17 gemäß Fig. 2. Die durch die Feder 26 auf den Nachstellring 17 ausgeübte Kraft ist jedoch größer als die der Feder 26a.
Im Neuzustand der Reibungskupplung 1 greifen die Auflaufram­ pen 18 und Gegenauflauframpen 24 bildenden axialen Nocken 18a, 24a am weitesten axial ineinander, das bedeutet, daß die aufeinander liegenden Ringe 17 und 25 den geringsten axialen Bauraum benötigen.
Bei dem Ausführungsbeispiel gemäß den Fig. 1 und 2 sind die Gegenauflauframpen 24 bzw. die diese bildenden nocken­ förmigen Ansätze 24a durch ein eigenes Bauteil gebildet. Die Gegenauflauframpen 24 können jedoch unmittelbar durch das Gehäuse 2 gebildet sein, zum Beispiel durch Anprägen von nockenförmigen Ansätzen, die sich in den Gehäuseraum er­ strecken können. Das Anprägen ist insbesondere bei Blechge­ häusen bzw. Deckeln vorteilhaft, die einteilig ausgebildet sind.
Um den Verstellring 17 vor der Montage der Reibungskupplung 1 in seiner zurückgezogenen Lage zu halten, besitzt dieser im Bereich der Nocken 22 Angriffsbereiche 36 für ein Verdreh- bzw. Rückhaltemittel, das sich andererseits am Gehäuse 2 abstützen kann. Derartige Rückhaltemittel können bei der Herstellung bzw. beim Zusammenbau der Reibungskupplung 1 vorgesehen werden und nach der Montage der Reibungskupplung 1 auf das Schwungrad 6 von der Kupplung entfernt werden, wodurch die Nachstelleinrichtung 16 aktiviert wird. Bei dem dargestellten Ausführungsbeispiel sind hierfür im Deckel bzw. Gehäuse 2 in Umfangsrichtung gelegte längliche Aus­ nehmungen 37 und im Nachstellring 17 eine Vertiefung bzw. ein Absatz 38 vorgesehen. Die in Umfangsrichtung gelegten länglichen Ausnehmungen 37 müssen dabei zumindest eine derartige Erstreckung aufweisen, daß der Nachstellring 17 entsprechend dem größtmöglichen Verschleißnachstellungs­ winkel zurückgedreht werden kann. Es kann auch nach dem Zusammenbau der Reibungskupplung 1 ein Verdrehwerkzeug axial durch die Schlitze 37 des Deckels hindurchgeführt und in/ an die Ausnehmungen 38 des Verstellringes 17 herange­ führt werden. Danach kann der Ring 17 mittels des Werkzeuges zurückgedreht werden, so daß dieser in Richtung des radialen Bereiches 2a des Gehäuses 2 verlagert wird und gegenüber diesem Bereich 2a seinen geringsten axialen Abstand ein­ nimmt. In dieser Position wird dann der Nachstellring 17 gesichert, zum Beispiel durch eine Klammer oder einen Stift, der in eine fluchtende Ausnehmung des Deckels und des Nachstellringes 17 eingreift und ein Verdrehen dieser beiden Bauteile verhindert. Dieser Stift kann nach der Montage der Reibungskupplung 1 auf das Schwungrad 6 aus der Ausnehmung entfernt werden, so daß, wie bereits erwähnt, die Nachstell­ vorrichtung 16 freigegeben wird. Die Schlitze 37 im Gehäuse 2 sind derart ausgebildet, daß bei der Demontage bzw. nach der Demontage der Reibungskupplung 1 von dem Schwungrad 6 der Nachstellring 17 in seine zurückgezogene Lage gebracht werden kann. Hierfür wird die Kupplung 1 zunächst ausge­ rückt, so daß die Betätigungstellerfeder 4 auf die Schwenk­ auflage 12 keine Axialkraft ausübt und somit eine einwand­ freie Verdrehung des Nachstellringes 17 gewährleistet ist.
Eine weitere Möglichkeit, die Bauteile der an einer Brenn­ kraftmaschine bereits befestigten Reibungskupplung 1 in eine funktionsgerechte Lage zu bringen, besteht darin, das Nachstellelement bzw. den Nachstellring 17 erst nach der Montage an die Brennkraftmaschine bzw. an das Schwungrad derselben zurückzudrehen bzw. zurückzustellen. Hierfür kann z. B. über ein Hilfswerkzeug die Reibungskupplung 1 betätigt und der dann praktisch entlastete Ring 17 in seine gegenüber der Druckplatte zurückgezogene Lage verstellt werden. Danach wird die Reibungskupplung 1 wieder eingekuppelt, so daß der Ring 17 diese zurückgezogene Lage zunächst beibehält.
Das ringförmige Nachstellelement 17 bzw. der Abstützring 25 können auch jeweils zwei in radialer Richtung versetzte, in Umfangsrichtung sich erstreckende und axial ansteigende Sätze von Auflauframpen besitzen, die jeweils über den Umfang dieser Bauteile verteilt sind. Die radial inneren Auflauframpen können dabei gegenüber den radial außen angeordneten Auflauframpen in Umfangsrichtung versetzt, und zwar in etwa um die Hälfte einer Rampenlänge bzw. einer Rampenteilung sein. Durch die in Umfangsrichtung versetzten Rampen wird gewährleistet, daß eine einwandfreie zentrische Führung zwischen dem Nachstellelement 17 und dem Abstützring 25 erzielt wird.
Im Zusammenhang mit den in die Diagramme gemäß den Fig. 8 bis 11 eingetragenen Kennlinien sei nun die Funktionsweise der vorbeschriebenen Reibungskupplung 1 näher erläutert.
Die Linie 40 in Fig. 8 zeigt die in Abhängigkeit von der Konizitätsveränderung der Tellerfeder 4 erzeugte Axialkraft, und zwar bei Verformung der Tellerfeder 4 zwischen zwei Abstützungen, deren radialer Abstand dem radialen Abstand zwischen der Schwenklagerung 5 und dem radial äußeren Abstützdurchmesser 3a an der Druckscheibe 3 entspricht. Auf der Abszisse ist der relative Axialweg zwischen den beiden Auflagen und auf der Ordinate die von der Tellerfeder erzeugte Kraft dargestellt. Der Punkt 41 repräsentiert die Planlage der Tellerfeder, die zweckmäßigerweise als Ein­ baulage der Tellerfeder 4 bei geschlossener Kupplung 1 gewählt wird, also die Lage, bei der die Tellerfeder 4 für die entsprechende Einbaulage die maximale Anpreßkraft auf die Druckscheibe 3 ausübt. Der Punkt 41 kann durch Änderung der konischen Einbaulage also der Aufstellung der Tel­ lerfeder 4 entlang der Linie 40 nach oben oder nach unten verschoben werden.
Die Linie 42 stellt die von den Belagfedersegmenten 10 aufgebrachte axiale Spreizkraft, welche zwischen den beiden Reibbelägen 7 wirkt, dar. Diese axiale Spreizkraft wirkt der von der Tellerfeder 4 auf die Druckscheibe 3 ausgeübten Axialkraft entgegen. Vorteilhaft ist es, wenn die für die mögliche elastische Verformung der Federsegmente 10 erfor­ derliche Axialkraft wenigstens der von der Tellerfeder 4 auf die Druckscheibe 3 ausgeübten Kraft entspricht. Beim Aus­ rücken der Reibungskupplung 1 entspannen sich die Federseg­ mente 10, und zwar über den Weg 43. Über diesen, auch einer entsprechenden axialen Verlagerung der Druckscheibe 3 ent­ sprechenden Weg 43 wird der Ausrückvorgang der Kupplung 1 unterstützt, das bedeutet also, daß eine geringere maximale Ausrückkraft aufgebracht werden muß, als diejenige, welche dem Einbaupunkt 41 bei Nichtvorhandensein der Belagfederseg­ mente 10 entsprechen würde (bei Nichtvorhandensein einer Belagfederung). Bei Überschreitung des Punktes 44 werden die Reibbeläge 7 freigegeben, wobei aufgrund des degressiven Kennlinienbereiches der Tellerfeder 4 die dann noch aufzu­ bringende Ausrückkraft erheblich verringert ist gegenüber der, welche dem Punkt 41 entsprechen würde. Die Ausrückkraft für die Kupplung 1 nimmt solange ab, bis das Minimum bzw. der Talpunkt 45 der sinusartigen Kennlinie 40 erreicht ist. Bei Überschreitung des Minimums 45 steigt die erforderliche Ausrückkraft wieder an, wobei der Ausrückweg im Bereich der Zungenspitzen 4c derart gewählt ist, daß selbst bei Über­ schreitung des Minimums 45 die Ausrückkraft nicht die am Punkt 44 anstehende maximale Ausrückkraft überschreitet, vorzugsweise unterhalb dieser bleibt. Es soll also der Punkt 46 nicht überschritten werden.
Die als Kraftsensor dienende Feder 13 hat einen Weg-Kraft- Verlauf entsprechend der Linie 47 der Fig. 9. Diese Kennli­ nie 47 entspricht derjenigen, welche erzeugt wird, wenn das tellerfederartige Bauteil 13 aus der entspannten Lage in seiner Konizität verändert wird, und zwar zwischen zwei Schwenkauflagen, die einen radialen Abstand besitzen, der dem radialen Abstand zwischen den Schwenkauflagen 11 und 14 entspricht. Wie die Kennlinie 47 zeigt, besitzt das tel­ lerfederartige Bauteil 13 einen Federweg 48, über den die von ihr erzeugte Axialkraft praktisch konstant bleibt. Die in diesem Bereich 48 erzeugte Kraft ist dabei derart gewählt, daß diese der im Punkt 44 der Fig. 8 anstehenden Ausrückkraft der Kupplung zumindest annähernd entspricht. Die von der Sensorfeder 13 aufzubringende Abstützkraft ist gegenüber der dem Punkt 44 entsprechenden Kraft der Tel­ lerfeder 4 entsprechend der Hebelübersetzung dieser Tel­ lerfeder 4 verringert. Dieses Übersetzungsverhältnis liegt in den meisten Fällen in der Größenordnung zwischen 1:3 bis 1:5, kann jedoch für manche Anwendungsfälle auch größer oder kleiner sein.
Die erwähnte Tellerfederübersetzung entspricht dem Verhält­ nis zwischen dem radialen Abstand der Schwenklagerung 5 zur Abstützung 3a und dem radialen Abstand der Schwenklagerung 5 zum Anlagedurchmesser 4c, z. B. für ein Ausrücklager.
Die Einbaulage des tellerfederartigen Elements 13 in der Reibungskupplung 1 ist derart gewählt, daß dieses im Bereich der Schwenklagerung 5 einen axialen Federweg in Richtung der Reibbeläge 7 durchfahren kann, der sowohl zumindest dem axialen Nachstellweg der Druckscheibe 3 in Richtung der Gegendruckplatte 6 entspricht, welcher infolge des Reibflä­ chen- und Reibbelagverschleißes entsteht, als auch eine zumindest annähernd konstante axiale Abstützkraft für die Schwenklagerung 5 gewährleistet. Das bedeutet, daß der lineare Bereich 48 der Kennlinie 47 zumindest eine Länge haben sollte, die dem erwähnten Verschleißweg entspricht, vorzugsweise größer als dieser Verschleißweg ist, da dadurch auch Einbautoleranzen zumindest teilweise ausgeglichen werden können.
Um einen praktisch gleichbleibenden bzw. definierten Frei­ gabepunkt 44 der Reibbeläge 7 beim Ausrücken der Reibungs­ kupplung 1 zu erhalten, kann eine sogenannte Doppelsegment­ belagfederung zwischen den Reibbelägen 7 verwendet werden, also eine Belagfederung, bei der paarweise einzelne Feder­ segmente Rücken an Rücken vorgesehen sind, wobei die einzelnen Paare von Segmenten eine gewisse axiale Vor­ spannung relativ zueinander aufweisen können. Durch Vor­ spannung der zwischen den Belägen vorgesehenen Federmittel kann erzielt werden, daß die über die Betriebsdauer auf­ tretenden Einbettungsverluste der Segmente in die Rückseite der Beläge zumindest im wesentlichen ausgeglichen bzw. kompensiert werden. Unter Einbettungsverlusten sind die Verluste zu verstehen, welche durch Einarbeitung der Segmente in die Rückseite der Beläge entstehen. Durch eine entsprechende Begrenzung des axialen Federwegs zwischen den beiden Reibbelägen 7 sowie durch eine definierte Vorspannung der zwischen den Reibbelägen wirksamen Federung kann weiterhin erzielt werden, daß beim Ausrücken der Reibungs­ kupplung 1 die Druckplatte 3 über einen definierten Weg 43 durch die zwischen den Belägen vorgesehene Federung zurück­ gedrängt wird. Um einen definierten Weg 43 zu erhalten, kann der axiale Weg zwischen den Reibbelägen durch entsprechende Anschläge sowohl in Entspannungsrichtung als auch in Verspannungsrichtung der Belagfederung 10 begrenzt werden. Als Belagfederungen können die in Verbindung mit der vorliegenden Erfindung in vorteilhafter Weise solche eingesetzt werden, wie sie z. B. durch die Patentanmeldung P 42 06 880.0, welche ausdrücklich zum Inhalt und Gegenstand der vorliegenden Anmeldung hinzugenommen sei, bekannt geworden sind.
In Fig. 10 zeigt die Linie 49 den Kraftbedarf zum Ausrücken der Kupplung durch ein am Bereich 4c der Tellerfeder angreifendes Ausrückelement, um die Druckplatte vom Punkt 41 zum Punkt 44 (Fig. 8) zu bewegen. Die Linie 49 zeigt weiter­ hin den Weg der Zungenspitzen der Tellerfeder im Bereich 4c.
Um eine optimale Funktion der Reibungskupplung 1 bzw. der einen automatischen Ausgleich des Belagverschleißes gewähr­ leistenden Nachstellvorrichtung sicherzustellen, ist es sinnvoll, daß - über den tatsächlich auftretenden Ausrück­ kraftverlauf 49 gemäß Fig. 10 betrachtet - die zunächst durch die Belagfederung 10 und die Sensorfeder 13 auf die Tellerfeder 4 ausgeübten und sich addierenden Kräfte größer sind als die von der Tellerfeder 4 auf die Auflage 11 ausge­ übte Kraft. Auch nach dem Abheben der Druckscheibe 3 von den Reibbelägen 7 soll dann die noch von der Sensorfeder 13 auf die Tellerfeder 4 ausgeübte Kraft größer sein, zumindest jedoch gleich groß, als die im Bereich 4c der Tellerfeder­ zungenspitzen angreifende und sich entsprechend Fig. 10 über den Ausrückweg erforderliche und verändernde Ausrück­ kraft (gemäß Linie 49). Die dabei von der Sensortellerfeder 13 auf die Auflage 11 ausgeübte Kraft soll weiterhin so bemessen sein, daß ein Verdrehen des unter der Kraft der Feder 26 stehenden Ringes 17 und damit eine axiale Ver­ lagerung der Tellerfeder verhindert wird, zumindest annähernd bis der der Einbaulage der Tellerfeder entsprechende Punkt 41 des ansteigenden Astes der Kennlinie 40 nicht über­ schritten ist.
Die bisherige Betrachtung entspricht einer ganz bestimmten Einbaulage der Tellerfeder 4, und es wurde noch kein Verschleiß an den Reibbelägen 7 berücksichtigt.
Bei axialem Verschleiß, z. B. der Reibbeläge 7, verlagert sich die Position der Druckscheibe 3 in Richtung der Gegendruckplatte 6, wodurch eine Veränderung der Konizität der Tellerfeder (die Zungenspitzen 4c wandern, vom Betra­ chter aus gesehen, nach rechts) und somit auch eine Ver­ änderung der von der Tellerfeder im eingerückten Zustand der Reibungskupplung 1 aufgebrachten Anpreßkraft entsteht, und zwar im Sinne einer Zunahme. Diese Veränderung bewirkt, daß der Punkt 41 in Richtung Punkt 41′ wandert, und der Punkt 44 in Richtung des Punktes 44′. Durch diese Veränderung wird das beim Ausrücken der Kupplung 1 ursprünglich vorhandene Kräftegleichgewicht im Bereich der Schwenkauflage 11 zwischen der Betätigungstellerfeder 4 und der Sensorfeder 13 gestört. Die durch den Belagverschleiß verursachte Erhöhung der Tellerfederanpreßkraft für die Druckscheibe 3 bewirkt auch eine Verschiebung des Verlaufes der Ausrückkraft im Sinne einer Zunahme. Der dadurch entstehende Ausrückkraft­ verlauf ist in Fig. 10 durch die strichlierte Linie 50 dargestellt. Durch die Erhöhung des Ausrückkraftverlaufes wird während des Ausrückvorganges der Reibungskupplung 1 die von der Sensorfeder 13 auf die Tellerfeder 4 ausgeübte Axialkraft überwunden, so daß die Sensorfeder 13 im Bereich der Schwenklagerung 5 um einen axialen Weg nachgibt, der im wesentlichen dem Verschleiß der Reibbeläge 7 entspricht. Während dieser Durchfederungsphase der Sensorfeder 13 stützt sich die Tellerfeder 4 am Beaufschlagungsbereich 3a der Druckscheibe 3 ab, so daß die Tellerfeder 4 ihre Konizität verändert und somit auch die in dieser gespeicherten Energie bzw. das in dieser gespeicherte Drehmoment und demzufolge auch die durch die Tellerfeder 4 auf die Schwenkauflage 11 bzw. die Sensorfeder 13 und auf die Druckscheibe 3 ausgeübte Kraft. Diese Veränderung erfolgt, wie dies im Zusammenhang mit Fig. 8 erkennbar ist im Sinne einer Verringerung der von der Tellerfeder 4 auf die Druckplatte 3 aufgebrachten Kräfte. Diese Veränderung findet solange statt, bis die von der Tellerfeder 4 im Bereich der Schwenkauflage 11 auf die Sensorfeder 13 ausgeübte Axialkraft im Gleichgewicht ist mit der von der Sensorfeder 13 erzeugten Gegenkraft. Das bedeutet, daß in dem Diagramm gemäß Fig. 8 die Punkte 41′ und 44′ wieder in Richtung der Punkte 41 und 44 wandern. Nachdem dieses Gleichgewicht wieder hergestellt ist, kann die Druckscheibe 66935 00070 552 001000280000000200012000285916682400040 0002004239291 00004 66816 3 wieder von den Reibbelägen 7 abheben. Während dieser Nachstellphase des Verschleißes, während also bei einem Ausrückvorgang der Reibungskupplung 1 die Sensor­ feder 13 nachgibt, wird das Nachstellelement 17 der Nach­ stellvorrichtung 16 durch die vorgespannte Feder 26 ver­ dreht, wodurch auch die Schwenkauflage 12 entsprechend dem Belagverschleiß nachwandert, und somit wieder eine spiel­ freie Schwenklagerung 5 der Tellerfeder 4 gewährleistet ist. Nach dem Nachstellvorgang entspricht der Ausrückkraftverlauf wiederum der Linie 49 gemäß Fig. 10. Die Linien 50 und 51 der Fig. 10 repräsentieren den axialen Weg der Druckscheibe 3 bei einem Ausrückkraft-Weg-Verlauf entsprechend den Linien 49, 50.
Im Diagramm gemäß Fig. 11 ist der Kräfteverlauf über den Ausrückweg der bei einem Ausrückvorgang auf das Gehäuse 2 bzw. auf die Tellerfeder 13 ausgeübten Kraft dargestellt, wobei die Extremwerte gekappt wurden. Ausgehend von der eingerückten Stellung gemäß Fig. 1 wirkt auf das Gehäuse 2 und somit auch auf die Druckscheibe 3 zunächst eine Kraft, die dem Einbaupunkt 41 (Fig. 8) der Tellerfeder 4 ent­ spricht. Während des Ausrückvorganges nimmt die durch die Tellerfeder 4 auf das Gehäuse 2 bzw. die Schwenkauflage 12 ausgeübte Axialkraft entsprechend der Linie 52 der Fig. 11 ab, und zwar bis zu dem Punkt 53. Bei Überschreitung des Punktes 53 in Ausrückrichtung würde bei einer konventionel­ len Kupplung, bei der die Tellerfeder axial fest am Gehäuse schwenkbar gelagert ist, also die Schwenkauflage 11 axial unnachgiebig mit dem Gehäuse 2 verbunden wäre, eine axiale Richtungsumkehrung der Krafteinwirkung durch die Tellerfeder 4 auf das Gehäuse 2 auf radialer Höhe der Schwenklagerung 5 stattfinden. Bei der erfindungsgemäßen Kupplung wird im Bereich der Schwenklagerung 5 die durch die axiale Umkehrung der durch die Tellerfeder 4 im Bereich der Schwenklagerung 5 erzeugte Kraft durch die Sensorfeder 13 abgefangen. Bei Erreichen des Punktes 54 hebt die Tellerfeder 4 von dem Beaufschlagungsbereich 3a der Druckscheibe 3 ab. Bis zumin­ dest zu diesem Punkt 54 wird der Ausrückvorgang der Rei­ bungskupplung 1 durch die von der Belagfederung 10 aufge­ brachte Axialkraft unterstützt, weil sie entgegen der Tellerfederkraft wirkt. Die von der Belagfederung 10 aufge­ brachte Kraft nimmt dabei mit zunehmendem Ausrückweg im Bereich 4c der Zungenspitzen bzw. mit zunehmendem axialem Ausrückhub der Druckscheibe 3 ab. Die Linie 52 stellt also eine resultierende der über den Ausrückvorgang betrachteten, einerseits im Zungenspitzenbereich 4 c einwirkenden Ausrück­ kraft und andererseits der im radialen Bereich 3a auf die Tellerfeder 4 durch die Belagfederung 10 ausgeübten Axial­ kraft dar. Bei Überschreitung des Punktes 54 in Ausrückrich­ tung wird die von der Tellerfeder 4 auf die Schwenkauflage 11 ausgeübte Axialkraft durch die von der Sensortellerfeder 13 aufgebrachte Gegenkraft abgefangen, wobei diese beiden Kräfte zumindest nach Entlastung der Reibbeläge 7 durch die Druckscheibe 3 im Gleichgewicht sind und bei Fortsetzung des Ausrückvorganges die von der Sensorfeder 13 im Bereich der Schwenklagerung 5 aufgebrachte Axialkraft vorzugsweise etwas größer wird als die anstehende Ausrückkraft. Der Teilbereich 55 der Kennlinie 52 des Diagramms gemäß Fig. 11 zeigt, daß mit zunehmendem Ausrückweg die Ausrückkraft bzw. die von der Tellerfeder 4 auf die Schwenkauflage 11 ausgeübte Kraft kleiner wird gegenüber der am Punkt 54 anstehenden Ausrück­ kraft. Die strichlierte Linie 56 entspricht einem Zustand der Reibungskupplung 1, bei dem im Bereich der Reibbeläge 7 ein Verschleiß aufgetreten ist, jedoch noch keine Nach­ stellung im Bereich der Schwenklagerung 5 erfolgt ist. Auch hier ist erkennbar, daß die durch den Verschleiß verursachte Anderung der Einbaulage der Tellerfeder 4 eine Erhöhung der auf das Gehäuse 2 und auf die Schwenkauflage 11 bzw. auf die Sensorfeder 13 ausgeübten Kräfte bewirkt. Dies hat ins­ besondere zur Folge, daß der Punkt 54 in Richtung des Punktes 54′ wandert, was bewirkt, daß beim erneuten Ausrück­ vorgang der Reibungskupplung 1 die von der Tellerfeder 4 auf die Sensorfeder 13 im Bereich der Schwenkauflage 11 ausge­ übte Axialkraft größer ist als die Gegenkraft der Sensorfe­ der 13, wodurch der bereits beschriebene Nachstellvorgang durch axiales Ausfedern der Sensorfeder 13 erfolgt. Durch den durch die Feder 26 bewirkten Nachstellvorgang, also durch die Verdrehung des Ringes 17 und die axiale Ver­ lagerung der Auflage 12 wird der Punkt 54′ wieder in Richtung des Punktes 54 verlagert, wodurch der gewünschte Gleichgewichtszustand im Bereich der Schwenkauflagerung 5 zwischen der Tellerfeder 4 und der Sensorfeder 13 wieder hergestellt ist.
In der Praxis findet die beschriebene Nachstellung konti­ nuierlich bzw. in sehr kleinen Schritten statt, so daß die zum besseren Verständnis der Erfindung in den Diagrammen dargestellten großen Punkteverschiebungen und Kennlinienver­ schiebungen normalerweise nicht auftreten.
Es können über die Betriebszeit der Reibungskupplung 1 sich einige Funktionsparameter bzw. Betriebspunkte verändern. So kann zum Beispiel durch eine unsachgemäße Betätigung der Reibungskupplung 1 eine Überhitzung der Belagfederung 10 erfolgen, die ein Setzen, also eine Verringerung der axialen Federung der Belagfederung bzw. Belagsegmente 10 zur Folge haben kann. Durch eine entsprechende Auslegung der Kennlinie 40 der Tellerfeder 4 und entsprechende Anpassung des Ver­ laufes 47 der Sensorfeder 13 kann jedoch eine betriebs­ sichere Funktion der Reibungskupplung gewährleistet werden. Ein axiales Setzen der Belagfederung 10 hätte lediglich zur Folge, daß die Tellerfeder 4 eine gegenüber der in Fig. 1 dargestellten Lage durchgedrücktere Lage einnehmen würde, wobei die von der Tellerfeder 4 auf die Druckscheibe ausge­ übte Anpreßkraft etwas geringer wäre, wie dies im Zusammen­ hang mit der Kennlinie 40 gemäß Fig. 8 erkennbar ist. Weiterhin würde eine entsprechende axiale Verformung der Sensorfeder 13 und damit eine entsprechende axiale Verla­ gerung der Schwenkauflage 11 erfolgen.
Gemäß einem weiteren erfinderischen Gedanken kann die auf die Betätigungstellerfeder 4 einwirkende resultierende Abstützkraft mit zunehmendem Verschleiß der Reibbeläge 7 ansteigen. Der Anstieg kann dabei auf einen Teilbereich des insgesamt maximal zugelassenen Verschleißweges der Reibbelä­ ge 7 begrenzt sein. Der Anstieg der Abstützkraft für die Betätigungstellerfeder 4 kann dabei durch entsprechende Auslegung der Sensorfeder 13 erfolgen. In Fig. 9 ist strichliert und mit dem Bezugszeichen 47a gekennzeichnet ein entsprechender Kennlinienverlauf über den Bereich 48 darge­ stellt. Durch einen Anstieg der Abstützkraft für die Betäti­ gungstellerfeder 4 mit zunehmendem Verschleiß kann ein Anpreßkraftabfall der Betätigungstellerfeder 4 für die Druckplatte 3, bedingt durch eine Abnahme der Belagfederung, z. B. durch Einbettung der Segmente in die Beläge, zumindest teilweise kompensiert werden. Besonders vorteilhaft kann es dabei sein, wenn die Abstützkraft für die Betätigungsteller­ feder 4 proportional zum Setzen der Belagfederung bzw. oportional zur Segmenteinbettung in die Beläge ansteigt. Dies bedeutet, daß mit Verringerung der Scheibendicke im Bereich der Beläge, also Verkleinerung des Abstandes zwischen den Reibflächen der Beläge infolge der Segment­ einbettung und/oder eines Setzens der Belagfederung und/oder des Belagverschleißes, die erwähnte Abstützkraft ansteigen soll. Besonders vorteilhaft ist es dabei, wenn der Kraft­ anstieg derart erfolgt, daß dieser über einen ersten Teilbereich größer ist als in einem sich daran anschließen­ den zweiten Teilbereich, wobei die beiden Teilbereiche sich innerhalb des Bereiches 48 gemäß Fig. 9 befinden. Letztere Auslegung ist vorteilhaft, weil der größte Teil der er­ wähnten Einbettung zwischen den Federsegmenten und den Belägen hauptsächlich innerhalb eines gegenüber der gesamten Lebensdauer der Reibungskupplung geringen Zeitraumes erfolgt und danach die Verhältnisse zwischen den Federsegmenten und den Reibbelägen sich praktisch stabilisieren. Das bedeutet, daß ab einer bestimmten Einbettung keine wesentliche Änderung bezüglich der Einbettung mehr stattfindet. Ein Anstieg der Abstützkraft für die Betätigungstellerfeder kann auch über wenigstens einen Teil des Abriebverschleißes der Reibbeläge erfolgen.
Bei der vorangegangenen Beschreibung des Nachstellvorganges zum Ausgleich des Reibbelagverschleißes wurden die durch die Blattfeder 9 eventuell aufgebrachten Axialkräfte nicht berücksichtigt. Bei einer Vorspannung der Blattfedern 9 im Sinne eines Abhubes der Druckscheibe 3 von dem entsprechen­ den Reibbelag 7, also im Sinne einer Anpressung der Druck­ scheibe 3 gegen die Tellerfeder 4 findet eine Unterstützung des Ausrückvorganges statt. Es überlagert sich die von den Blattfedern 9 aufgebrachte Axialkraft mit den von der Sensorfeder 13 und der Tellerfeder 4 aufgebrachten Kräften sowie mit der Ausrückkraft. Dies wurde des besseren Ver­ ständnisses wegen bei der Beschreibung der Diagramme gemäß den Fig. 8 bis 11 bisher nicht berücksichtigt. Die die Betätigungstellerfeder 4 im ausgerückten Zustand der Rei­ bungskupplung 1 gegen die deckelseitige Abwälzauflage 12 beaufschlagende Gesamtkraft ergibt sich durch Addition der Kräfte, welche hauptsächlich durch die Blattfederelemente 9, durch die Sensorfeder 13 und durch die vorhandene Ausrück­ kraft auf die Betätigungstellerfeder 4 ausgeübt werden. Die Blattfederelemente 9 können dabei derart zwischen dem Deckel 2 und der Druckplatte 3 verbaut sein, daß mit zunehmendem Verschleiß der Reibbeläge 7 die durch die Blattfedern 9 auf die Betätigungstellerfeder 4 ausgeübte Axialkraft größer wird. So kann z. B. über den Weg 48 gemäß Fig. 9 und somit auch über den Verschleißausgleichsweg der Nachstellvor­ kehrung 16 die von den Blattfedern 9 aufgebrachte axiale Kraft einen Verlauf gemäß der Linie 47b aufweisen. Aus Fig. 9 ist auch zu entnehmen, daß mit zunehmender Durchfederung der Sensorfeder 13 die von den Blattfedern 9 auf die Druckplatte 3 ausgeübte Rückstellkraft, welche auch auf die Betätigungstellerfeder 4 wirkt, zunimmt. Durch Addition des Kraftverlaufes gemäß den Kennlinien 47b und der Tellerfeder­ kennlinie ergibt sich der resultierende Kraftverlauf, welcher axial auf die Tellerfeder 4 einwirkt, und zwar im Sinne eines Andrückens der Tellerfeder 4 gegen die deckel­ seitige Schwenkauflage 12. Um einen Verlauf gemäß der Linie 47a zu erhalten, wobei zu Beginn des Verstellbereiches 47d zunächst ein anfänglicher Kraftanstieg vorhanden ist, der in einen etwa konstanten Kraftbereich übergeht, ist es zweckmä­ ßig, die Sensortellerfeder derart auszulegen, daß sie einen Kennlinienverlauf entsprechend der Linie 47c der Fig. 9 aufweist. Durch Addition des Kraftverlaufes gemäß Linie 47c und des Kraftverlaufes gemäß der Linie 47b ergibt sich dann der Kraftverlauf gemäß Linie 47a. Es kann also durch eine entsprechende Vorspannung der Blattfedern 9 die von der Sensorfeder aufzubringende Abstützkraft bzw. der Abstütz­ kraftverlauf reduziert werden. Durch entsprechende Ausge­ staltung und Anordnung der Blattfederelemente 9 kann ebenfalls eine Abnahme der Belagfederung und/oder eine Einbettung der Belagfedersegmente in die Beläge zumindest teilweise kompensiert werden. Es kann also dadurch gewähr­ leistet werden, daß die Tellerfeder 4 im wesentlichen den gleichen Betriebspunkt bzw. den gleichen Betriebsbereich beibehält, so daß die Tellerfeder 4 über die Lebensdauer der Reibungskupplung im wesentlichen eine zumindest annähernd konstante Anpreßkraft auf die Druckplatte 3 ausübt. Weiter­ hin muß bei der Auslegung der Reibungskupplung, insbesondere der Sensorfeder 13 und/oder der Blattfedern 9, die durch die auf das Nachstellelement 17 einwirkenden Nachstellfedern 26 und/oder 26a erzeugte resultierende Axialkraft, welche der Sensorfeder 13 und/oder den Blattfedern 9 entgegenwirkt, berücksichtigt werden.
Bei einer Auslegung der Reibungskupplung 1 mit vorgespannten Blattfedern 9 muß noch berücksichtigt werden, daß durch die Vorspannung der Blattfedern 9 die von der Druckplatte 3 auf die Reibbeläge 7 ausgeübte Axialkraft beeinflußt wird. Das bedeutet also, daß bei einer Vorspannung der Blattfedern 9 in Richtung der Betätigungstellerfeder 4 die von der Tellerfeder 4 aufgebrachte Anpreßkraft um die Vorspannkraft der Blattfedern 9 verringert ist. Es bildet sich also bei einer derartigen Reibungskupplung 1 ein resultierender Anpreßkraftverlauf für die Druckplatte 3 bzw. für die Reibbeläge 7, der sich durch Überlagerung des Anpreßkraft­ verlaufes der Tellerfeder 4 mit dem Verspannungsverlauf der Blattfedern 9 ergibt. Unter der Annahme, daß - über den Betriebsbereich der Reibungskupplung 1 betrachtet - die Kennlinie 40 gemäß Fig. 8 den resultierenden Kraftverlauf aus Betätigungstellerfeder 4 und vorgespannten Blattfedern 9 im Neuzustand der Reibungskupplung 1 darstellt, sich mit Verringerung des Abstandes zwischen der Druckplatte 3 und der Gegendruckplatte 6 infolge von Belagverschleiß eine Verschiebung des resultierenden Verlaufes im Sinne einer Reduzierung ergeben würde. In Fig. 8 ist strichliert eine Linie 40a dargestellt, die beispielsweise einem Gesamtbelag­ verschleiß von 1,5 mm entspricht. Durch diese über die Lebensdauer der Reibungskupplung auftretende Verschiebung der Linie 40 in Richtung der Linie 40a verringert sich die beim Ausrücken der Reibungskupplung 1 durch die Tellerfeder 4 auf die Sensorfeder 13 ausgeübte Axialkraft, und zwar aufgrund des mit zunehmendem Verschleiß durch die Blatt­ federn 9 auf die Tellerfeder 4 ausgeübten Gegenmomentes. Dieses Gegenmoment ist aufgrund des radialen Abstandes zwischen der Schwenklagerung 5 und dem Beaufschlagungsdurch­ messer 3a zwischen Betätigungstellerfeder 4 und Druckplatte 3 vorhanden.
Die in den Fig. 12 und 13 dargestellte Reibungskupplung 101 unterscheidet sich im wesentlichen gegenüber der in den Fig. 1 und 2 dargestellten Reibungskupplung 1 dadurch, daß der Nachstellring 117 durch Schraubenfedern 126 in Umfangsrichtung belastet ist. Bezüglich seiner Funktion und Wirkungsweise bezüglich des Verschleißausgleiches der Reibbeläge entspricht der Nachstellring 117 dem Nachstell­ ring 17 gemäß den Fig. 2 bis 4. Bei dem gezeigten Ausführungsbeispiel sind drei Schraubenfedern 126 vor­ gesehen, die über den Umfang gleichmäßig verteilt und zwischen Kupplungsgehäuse 2 und Nachstellring 117 vor­ gespannt sind.
Wie insbesondere aus Fig. 14 hervorgeht, besitzt der Nachstellring 117 am Innenumfang radiale Vorsprünge bzw. Abstufungen 127, an denen sich die bogenförmig angeordneten Schraubenfedern 126 mit einem ihrer Enden zur Beaufschlagung des Nachstellringes 117 in Umfangsrichtung abstützen können. Die anderen Endbereiche der Federn 126 stützen sich an vom Kupplungsgehäuse 2 getragenen Anschlägen 128 ab. Bei dem dargestellten Ausführungsbeispiel sind diese Anschläge 128 durch schraubenähnliche Verbindungselemente gebildet, welche mit dem Deckel 2 verbunden sind. Diese Anschläge 128 können jedoch auch durch axiale Anformungen, die einteilig mit dem Kupplungsgehäuse 2 ausgestaltet sind, gebildet sein. So können z. B. die Anschläge 128 durch aus einem Blechgehäuse 2 axial herausgeformte Anprägungen oder Laschen gebildet sein. Wie insbesondere aus den Fig. 13 und 14 zu entneh­ men ist, kann der Ring 117 am Innenumfang derart ausgebildet werden, daß zumindest im wesentlichen im Bereich der Erstreckung der Federn 126 und vorzugsweise auch über den zur Nachstellung des Verschleißes erforderlichen Verdrehwin­ kel des Ringes 117 bzw. über den Entspannungsweg der Federn 126 eine Führung 129 vorhanden ist, die eine axiale Halte­ rung und radiale Abstützung der Federn 126 gewährleistet. Die Federführungen 129 sind bei dem dargestellten Aus­ führungsbeispiel durch, im Querschnitt betrachtet, im wesentlichen halbkreisartig ausgebildete Vertiefungen gebildet, deren Begrenzungsflächen im wesentlichen an den Querschnitt der Schraubenfedern 126 angepaßt sind.
Eine derartige Ausgestaltung hat den Vorteil, daß bei drehender Reibungskupplung eine einwandfreie Führung der Federn 126 gegeben ist, so daß diese axial nicht ausweichen können. Zur zusätzlichen Sicherung der Schraubenfedern 126 kann, wie dies in Fig. 13 dargestellt ist, der Deckel 2 an seinem radial inneren Randbereich axiale Anformungen 130 besitzen, welche die Federn 126 in Achsrichtung überlappen. Anstatt einzelner Anformungen 130 kann der Deckel 2 auch einen über den Umfang durchlaufenden und axialen Innenrand 130 besitzen. Der Innenrand 130 kann zur Begrenzung der Entspannung der Tellerfeder 4 dienen.
Eine Führung der Nachstellfedern 126 gemäß den Fig. 12 bis 14 hat den Vorteil, daß bei sich drehender Kupplungs­ einheit 1 die Einzelwindungen der Federn 126 sich unter Fliehkrafteinwirkung an dem Nachstellring 117 radial abstützen können, wobei die von den Federn 126 in Umfangs­ richtung aufgebrachten Verstellkräfte infolge der zwischen den Federwindungen und dem Nachstellring 117 erzeugten Reibwiderstände verringert oder gar vollständig aufgehoben werden. Die Federn 126 können sich also bei Rotation der Reibungskupplung 101 (infolge der die Federwirkung unter­ drückenden Reibkräfte) praktisch starr verhalten. Dadurch kann erzielt werden, daß wenigstens bei Drehzahlen oberhalb der Leerlaufdrehzahl der Brennkraftmaschine der Nachstell­ ring 117 nicht durch die Federn 126 verdreht werden kann. Dadurch kann erzielt werden, daß ein Ausgleich des Reibbe­ lagverschleißes nur bei Betätigung der Reibungskupplung 101 bei Leerlaufdrehzahl bzw. zumindest annähernd bei Leerlauf­ drehzahl stattfindet. Die Blockierung des Nachstellringes 117 kann jedoch auch derart erfolgen, daß nur bei still­ stehender Brennkraftmaschine, also sich nicht drehender Reibungskupplung 101 eine Nachstellung aufgrund des Belag­ verschleißes stattfinden kann.
Eine Blockierung des Nachstellvorganges bei Rotation der Reibungskupplung 1 bzw. bei Überschreitung einer bestimmten Drehzahl kann auch bei einer Ausführungsform gemäß den Fig. 1 und 2 von Vorteil sein. Hierfür können beispiels­ weise am Gehäuse 2 Mittel vorgesehen werden, die unter Fliehkrafteinwirkung am Nachstellelement 17 eine Verdreh­ sicherung bewirken, und zwar entgegen der durch die Schen­ kelfeder 26 und/oder 26a erzeugten Verstellkraft. Die Blockiermittel können dabei durch mindestens ein unter Fliehkrafteinwirkung radial nach außen drängbares Gewicht gebildet sein, das sich beispielsweise am Innenrand des Ringes 17 abstützt und dort eine Reibung erzeugen kann, die am Ring 17 ein Haltemoment hervorruft, das größer ist als das von den Verstellfedern auf den Ring 17 ausgeübte Verdrehmoment.
Zur radialen Abstützung zumindest eines Teilbereiches der Erstreckung der Federn 126 können auch vom Gehäuse 2 getra­ gene Abstützmittel vorgesehen werden. Diese Abstützmittel können bei der Ausführungsform gemäß den Fig. 12 und 13 mit den Anschlägen 128 einteilig ausgebildet sein. Hierfür können die Anschläge 128 winkelförmig ausgebildet sein, so daß sie jeweils einen sich in Umfangsrichtung erstreckenden Bereich besitzen, der sich zumindest über einen Teilab­ schnitt der Erstreckung einer Feder 126 in diese hineiner­ streckt. Dadurch kann zumindest ein Teil der Federwindungen geführt und zumindest in radialer Richtung abgestützt werden.
Wie aus Fig. 13 zu entnehmen ist, ist der in Fig. 2 vorgesehene Drahtring 11 entfallen und durch im Zungen­ spitzenbereich der Sensorfeder 113 angebrachte Anformungen 111 ersetzt worden. Hierfür sind die Zungen 113c im Bereich ihrer Spitzen auf ihrer der Betätigungstellerfeder 4 zuge­ wandten Seite ballig ausgebildet.
In den Fig. 15 bis 17 ist eine weitere Ausführungs­ variante einer erfindungsgemäßen Verschleißnachstellung dargestellt, bei der anstatt eines ringförmigen Nachstell­ ringes einzelne Nachstellelemente 217 verwendet sind. Diese Nachstellelemente sind über den Umfang des Deckels 202 gleichmäßig verteilt. Die Nachstellelemente 217 sind durch knopf- bzw. scheibenförmige Bauteile gebildet, die eine sich in Umfangsrichtung erstreckende und axial ansteigende Auflauframpe 218 besitzen. Die ringförmigen Nachstell­ elemente 217 besitzen eine zentrale Ausnehmung bzw. Bohrung 219, durch welche sich die vom Deckel getragenen axialen stiftartigen Ansätze 215a erstrecken, so daß die ringförmi­ gen Nachstellelemente 218 drehbar auf diesen Ansätzen 215a gelagert sind. Am Deckel 202 sind Anprägungen 225 vor­ gesehen, welche Gegenauflauframpen 224 für die Rampen 218 bilden. Zwischen einem Nachstellelement 217 und dem Deckel 202 ist ein Federelement 226 verspannt, welches das Nach­ stellelement 217 in die eine Nachstellung bewirkende Drehrichtung beaufschlagt. Das Federelement 226 kann sich, wie aus Fig. 15 hervorgeht, um einen axialen Ansatz 215a erstrecken, also schraubenfederähnlich ausgebildet sein. An den Endbereichen einer Feder 226 sind Anformungen, wie z. B. Abbiegungen bzw. Schenkel vorgesehen zur Abstützung des einen Federendes am Gehäuse 202 und des anderen Federendes an dem entsprechenden Nachstellelement 217. Bei einer axialen Verlagerung der Tellerfeder 204 bzw. der Sensorfeder 213 im Bereich der Schwenkauflage 205 werden die Nachstell­ elemente 218 verdreht und die Verlagerung durch Auflaufen der Rampen 218 an den Rampen 224 ausgeglichen.
Die axiale Abstützung der Sensortellerfeder 213 am Gehäuse 202 erfolgt mittels Laschen 214, die aus dem axial ver­ laufenden Bereich des Gehäuses 202 herausgeformt und radial nach innen unter die äußeren Bereiche der Sensorfeder 213 gedrängt wurden.
Die ringförmigen Nachstellelemente 218 haben den Vorteil, daß diese weitgehend fliehkraftunabhängig bezüglich ihrer Nachstellwirkung ausgebildet werden können.
Anstatt der in Fig. 14 dargestellten rotierenden bzw. sich verdrehenden Nachstellelemente 217 könnten auch einzelne keilartige Nachstellelemente verwendet werden, die in radialer und/oder in Umfangsrichtung zur Verschleißnachstel­ lung verlagerbar sind. Diese keilartigen Nachstellelemente können eine längliche Ausnehmung aufweisen, durch welche sich ein axialer Ansatz 215a zur Führung des entsprechenden Nachstellelementes erstrecken kann. Die keilförmigen Nachstellelemente können aufgrund der auf sie einwirkenden Fliehkraft nachstellend wirken. Es können jedoch auch Kraftspeicher vorgesehen werden, die die keilförmigen Nach­ stellelemente in Nachstellrichtung beaufschlagen. Zur einwandfreien Führung der keilartigen Nachstellelemente kann das Gehäuse 202 Anformungen besitzen. Die gegenüber einer zur Rotationsachse der Reibungskupplung senkrecht ver­ laufenden Ebene mit einem bestimmten Auflaufwinkel ver­ laufenden Keilflächen der Nachstellelemente können gehäuse­ seitig und/oder auf der Seite der Betätigungstellerfeder vorgesehen werden. Bei Verwendung von derartigen keilförmi­ gen Einzelelementen ist es zweckmäßig, diese aus einem leichten Werkstoff herzustellen, um die auf sie einwirkenden Fliehkräfte auf ein Minimum zu reduzieren.
Die Werkstoffpaarung zwischen den die Nachstellrampen bildenden Bauteilen ist vorzugsweise derart gewählt, daß über die Betriebsdauer der Reibungskupplung keine, eine Nachstellung verhindernde Haftung zwischen den Auflauframpen und Gegenauflauframpen auftreten kann. Um eine solche Haftung zu vermeiden, kann wenigstens eines dieser Bauteile mit einer Beschichtung zumindest im Bereich der Rampen oder Gegenrampen versehen sein. Durch derartige Beschichtungen kann insbesondere Korrosion bei Verwendung zweier metalli­ scher Bauteile vermieden werden. Ein Haften bzw. Festkleben zwischen den die Nachstellrampen bildenden Bauteilen kann weiterhin dadurch vermieden werden, daß die sich aneinander abstützenden und die Rampen sowie Gegenrampen bildenden Bauteile aus einem Material mit unterschiedlichem Aus­ dehnungskoeffizienten hergestellt sind, so daß infolge der während des Betriebes der Reibungskupplung auftretenden Temperaturschwankungen die sich in Kontakt befindlichen Flächen, welche Nachstellrampen bilden, relativ zueinander eine Bewegung vollführen. Dadurch werden die die Auflaufram­ pen und Gegenauflauframpen bildenden Bauteile relativ zueinander stets beweglich gehalten. Es kann also ein Haften bzw. Festkleben zwischen diesen Teilen nicht erfolgen, da durch die unterschiedlichen Ausdehnungen diese Teile stets voneinander wieder losgebrochen bzw. gelöst werden. Ein Lösen der Nachstellrampen kann auch dadurch erzielt werden, daß aufgrund unterschiedlicher Festigkeit und/oder Aus­ bildung der Teile die auf diese Teile einwirkenden Flieh­ kräfte unterschiedliche Dehnungen bzw. Bewegungen ver­ ursachen, die wiederum ein Haften bzw. Festkleben der Teile vermeiden.
Um eine Haftverbindung zwischen Auflauframpen und Gegenauf­ lauframpen zu vermeiden, kann auch zumindest eine Vorkehrung vorgesehen werden, die beim Ausrücken der Reibungskupplung bzw. bei Verschleißnachstellung eine Axialkraft auf das bzw. die Nachstellelemente ausübt. Hierfür kann das Nachstellele­ ment 17, 117 mit einem Bauteil axial gekoppelt werden, das Bereiche besitzt, die bei auftretendem Verschleiß sich axial verlagern. Diese Koppelung kann insbesondere im Bereich der Schwenklagerung 5 erfolgen, und zwar mit der Betätigungstel­ lerfeder 4 und/oder der Sensorfeder 13.
Im Diagramm gemäß Fig. 18 ist eine Anpreßtellerfederkennli­ nie 340 dargestellt, die einen Talpunkt bzw. ein Minimum 345 besitzt, in dem die von der Anpreßtellerfeder aufgebrachte Kraft verhältnismäßig gering ist (ca. 450 Nm). Das Maximum der Tellerfeder mit der Weg-Kraft-Kennlinie 340 liegt in der Größenordnung von 7600 Nm. Die Kennlinie 340 wird durch Verformung einer Tellerfeder zwischen zwei radial beabstan­ deten Abstützungen erzeugt, und zwar, wie dies in Verbindung mit der Kennlinie 40 gemäß Fig. 8 und im Zusammenhang mit der Tellerfeder 4 beschrieben wurde.
Die Tellerfederkennlinie 340 kann mit einer Belagfederkenn­ linie 342 kombiniert werden. Wie aus Fig. 18 zu entnehmen ist, ist der Weg-Kraft-Verlauf der Belagfedersegmentkenn­ linie 342 an die Anpreßtellerfederkennlinie 340 angenähert bzw. die beiden Kennlinien verlaufen nur in einem geringen Abstand voneinander, so daß die entsprechende Reibungskupp­ lung mit einer sehr geringen Kraft betätigt werden kann. Im Wirkbereich der Belagfederung ergibt sich die theoretische Ausrückkraft aus der Differenz zweier vertikal übereinander liegender Punkte der Linien 340 und 342. Eine solche Diffe­ renz ist mit 360 gekennzeichnet. Die tatsächlich erforderli­ che Ausrückkraft verringert sich um die entsprechende Hebelübersetzung der Betätigungselemente, wie z. B. Tellerfe­ derzungen. Dies wurde ebenfalls in Verbindung mit der Ausführungsform gemäß den Fig. 1 und 2 sowie den Diagram­ men gemäß den Fig. 8 bis 11 beschrieben.
In Fig. 18 ist strichliert eine weitere Betätigungstel­ lerfederkennlinie 440 dargestellt, welche ein Minimum bzw. einen Talpunkt 445 besitzt, in dem die von der Tellerfeder aufgebrachte Kraft negativ ist, also nicht in Einrück­ richtung der entsprechenden Reibungskupplung, sondern in Ausrückrichtung wirkt. Dies bedeutet, daß bei Überschreitung des Punktes 461 während der Ausrückphase die Reibungskupp­ lung selbsttätig offen bleibt. Der Tellerfederkennlinie 440 kann eine Belagfederungskennlinie entsprechend der Linie 442 zugeordnet werden, um minimale Ausrückkräfte zu erhalten, ist ein möglichst paralleler Verlauf der Belagfederkennlinie 442 zur Tellerfederkennlinie 440 anzustreben.
In Fig. 19 ist der zum Ausrücken der entsprechenden Rei­ bungskupplung auf die Betätigungshebel, wie die Tellerfeder­ zungen, aufzubringende Ausrückkraftverlauf über den Aus­ rückweg für die zugeordneten Kennlinien 340 und 342 bzw. 440 und 442 dargestellt. Wie ersichtlich ist, ist der Ausrück­ kraftverlauf 349, der den Kennlinien 340, 342 zugeordnet ist, stets im positiven Kraftbereich, das bedeutet, daß, um die Kupplung im ausgerückten Zustand zu halten, stets eine Kraft in Ausrückrichtung erforderlich ist. Der Ausrückkraft­ verlauf 449, der den Kennlinien 440 und 442 zugeordnet ist, besitzt einen Teilbereich 449a, in dem die Ausrückkraft zunächst abnimmt und dann vom positiven in den negativen Kraftbereich übergeht, so daß die entsprechende Reibungs­ kupplung im ausgerückten Zustand keine Haltekraft benötigt. Bei der in den Fig. 20, 20a und 21 dargestellten Ausfüh­ rungsform einer Reibungskupplung 501 ist die Sensortellerfe­ der 513 am Kupplungsdeckel 502 axial über eine bajonett­ artige Verbindung 514 abgestützt. Hierfür besitzt die Sensorfeder 513 radial sich vom Außenumfang des ringförmigen Grundkörpers 513b erstreckende Laschen 513d, die sich an radialen Bereichen 502a, in Form von aus dem Deckelmaterial herausgeformten Laschen, axial abstützen. Die Deckellaschen 502a sind aus dem im wesentlichen axial verlaufenden Randbereich 502b des Deckels herausgeformt, wobei es zweckmä­ ßig ist, wenn hierfür die Laschen 502a zumindest teilweise durch einen Freischnitt 502c oder 502d aus dem Deckelmateri­ al zunächst herausgeformt sind. Durch zumindest teilweises Umschneiden der Laschen 502a können diese in ihre Soll­ position leichter verformt werden. Wie insbesondere aus Fig. 21 zu entnehmen ist, sind die Laschen 502a und die Ausleger bzw. Zungen 513d derart aufeinander abgestimmt, daß eine Zentrierung der Sensorfeder 513 gegenüber dem Deckel 502 erfolgen kann. Bei dem dargestellten Ausführungsbeispiel besitzen die Laschen 502a hierfür eine kleine axiale Abstufung 502e.
Um eine einwandfreie Positionierung der Sensorfeder 513 ge­ genüber dem Gehäuse 502 während der Herstellung der bajo­ nettartigen Verriegelungsverbindung 514 zu gewährleisten, sind wenigstens drei vorzugsweise über den Umfang des Deckels 502 gleichmäßig verteilte Laschen 502a in Bezug auf die anderen Deckelbereiche derart abgestimmt, daß nach einer definierten Relativverdrehung zwischen der Sensorfeder 513 und dem Deckel 502 die entsprechenden Ausleger 513d an einem Umfangsanschlag 502f zur Anlage kommen und somit eine weitere Relativverdrehung zwischen Sensorfeder 513 und Deckel 502 vermieden wird. Der Anschlag 502f ist bei dem dargestellten Ausführungsbeispiel, wie dies insbesondere aus Fig. 20a hervorgeht, durch einen axialen Absatz des Deckels 502 gebildet. Aus Fig. 20a geht weiterhin hervor, daß wenigstens einzelne, vorzugsweise drei Laschen 502a eine weitere Verdrehbegrenzung 502g zwischen dem Deckel 502 und den Zungen 513d der Sensorfeder 513 bilden. Bei dem darge­ stellten Beispiel bilden die gleichen Laschen 502a die Verdrehsicherungen 502f und 502g für beide Drehrichtungen. Die eine Entriegelung zwischen der Sensorfeder 513 und dem Deckel 502 vermeidenden Anschläge 502g sind durch axiale, in radialer Richtung verlaufende Abkantungen der Zungen 502a gebildet. Durch die Umfangsanschläge 502f und 502g ist eine definierte Positionierung in Umfangsrichtung der Sensorfeder 513 gegenüber dem Deckel 502 gegeben. Zur Herstellung der Verriegelungsverbindung 514 wird die Sensorfeder 513 axial in Richtung des Deckels 502 verspannt, so daß die Zungen 513d axial in die Freischnitte 502c und 502d eintauchen und axial über die Deckelabstützungen 502a zu liegen kommen. Danach können der Deckel 502 und die Sensorfeder 513 relativ zueinander verdreht werden, bis einige der Zungen 513d an den Verdrehbegrenzungen 502f zur Anlage kommen. Daraufhin erfolgt eine teilweise Entspannung der Sensorfeder 513, so daß einige der Zungen 513d, in Umfangsrichtung betrachtet, zwischen die entsprechenden Anschläge 502f und 502g zu liegen kommen und alle Zungen 513d an den deckelseitigen Abstützungen 502a auflagern. Durch die erfindungsgemäße Ausgestaltung der bajonettartigen Verriegelung 514 wird gewährleistet, daß bei der Montage der Reibungskupplung 1 die Zungen 513d nicht neben den deckelseitigen Auflagen 502a zu liegen kommen.
Bei den bisher dargestellten Ausführungsbeispielen ist der die eigentliche Federkraft der Sensorfeder 513 aufbringende kreisringförmige Grundkörper, z. B. 513b, radial außerhalb des Beaufschlagungsbereiches bzw. Abstützbereiches zwischen Druckplatte und Betätigungstellerfeder vorgesehen. Für manche Anwendungsfälle kann es jedoch auch zweckmäßig sein, wenn der kreisringförmige Grundkörper der Sensortellerfeder radial innerhalb des Beaufschlagungsdurchmessers zwischen Druckplatte und Betätigungstellerfeder vorgesehen ist. Das bedeutet also für eine Ausführungsform gemäß den Fig. 1 und 2, daß der die axiale Verspannkraft der Sensorfeder 13 aufbringende Grundkörper 13b radial innerhalb des Beauf­ schlagungsbereiches 3a zwischen Betätigungstellerfeder 4 und Druckplatte 3 vorgesehen ist.
Bei der Ausführungsform gemäß den Fig. 20 bis 21 sind die deckelseitigen Gegenauflauframpen 524 durch nockenförmige Anprägungen, die in das Blechgehäuse 502 eingebracht sind, gebildet. Weiterhin werden bei dieser Ausführungsform die zwischen dem Gehäuse 502 und dem Nachstellring 517 verspann­ ten Schraubenfedern 526 durch Führungsdorne 528, die eintei­ lig mit dem Nachstellring 517 ausgebildet sind und sich in Umfangsrichtung erstrecken, geführt. Diese Führungsdorne 528 können, wie dies insbesondere aus Fig. 21 hervorgeht, in axialer Richtung einen länglichen Querschnitt aufweisen, der an den inneren Durchmesser der Federn 526 angepaßt ist. Die Führungen 528 erstrecken sich zumindest über einen Teilbe­ reich der Längenerstreckung der Federn 526 in diese hinein. Dadurch kann zumindest ein Teil der Federwindungen geführt und zumindest in radialer Richtung abgestützt werden. Weiterhin kann ein Ausknicken bzw. ein Herausspringen der Federn 526 in axialer Richtung vermieden werden. Durch die Dorne 548 kann die Montage der Reibungskupplung wesentlich erleichtert werden.
In Fig. 22 ist der Nachstellring 517 teilweise dargestellt. Der Nachstellring 517 besitzt radial nach innen verlaufende Anformungen 527, welche die dornartigen, in Umfangsrichtung sich erstreckenden Führungsbereiche 528 für die Schraubenfe­ dern 526 tragen. Bei dem dargestellten Ausführungsbeispiel sind die Federaufnahmebereiche 528 einteilig mit dem als Spritzteil hergestellten Kunststoffring 517 ausgebildet. Die Federführungsbereiche bzw. Federaufnahmebereiche 528 können jedoch auch durch einzelne Bauteile oder alle gemeinsam durch ein einziges Bauteil gebildet sein, welche bzw. welches mit dem Nachstellring 517, z. B. über eine Schnapp­ verriegelung, verbunden werden bzw. wird. So können alle Führungsbereiche 528 durch einen gegebenenfalls über den Umfang offenen Ring gebildet sein, der mit dem Nachstellring 517 über wenigstens drei Verbindungsstellen, vorzugsweise als Schnappverriegelung ausgebildet, gekoppelt ist.
Ähnlich wie in Verbindung mit den Fig. 12 und 13 be­ schrieben, können sich die Schraubenfedern 526 noch zusätz­ lich, z. B. aufgrund von Fliehkrafteinwirkung, an entspre­ chend ausgebildeten Bereichen des Deckels 502 und/oder des Nachstellringes 517 radial abstützen.
Die deckelseitigen Abstützungen für die Schraubenfedern 526 sind durch aus dem Deckelmaterial herausgeformte und in axialer Richtung sich erstreckende Flügel oder durch axiale Wandungen bildende Anprägungen 526 gebildet. Diese Ab­ stützbereiche 526a für die Federn 526 sind dabei zweckmäßi­ gerweise derart ausgebildet, daß die entsprechenden Enden der Federn geführt werden und somit gegen eine unzulässige Verlagerung in axialer und/oder radialer Richtung gesichert sind.
Bei der in Fig. 23 dargestellten Ausführungsform einer Kupplung 601 ist die Sensorfeder 613 auf der der Druckplatte 603 abgekehrten Seite des Gehäuses 602 vorgesehen. Durch Anordnung der Sensorfeder 613 außerhalb des Gehäuseinnenrau­ mes, welcher die Druckplatte 603 aufnimmt, kann die thermi­ sche Beanspruchung der Sensorfeder 613 verringert werden, wodurch die Gefahr eines Setzens dieser Feder 613 aufgrund einer thermischen Überbeanspruchung vermieden wird. Auch erfolgt auf der äußeren Seite des Gehäuses 602 eine bessere Kühlung der Feder 613.
Die Abstützung der auf der dem Deckel abgekehrten Seite der Betätigungstellerfeder 604 vorgesehenen Schwenkauflage 611 erfolgt über Abstandsniete 615, die sich axial durch ent­ sprechende Ausnehmungen der Tellerfeder 604 und des Gehäuses 602 erstrecken und mit der Sensorfeder 613 axial verbunden sind. Bei dem dargestellten Ausführungsbeispiel sind die Abstandsniete 615 mit der Sensorfeder 613 vernietet. Anstelle von Abstandsnieten 615 können auch andere Mittel verwendet werden, die eine Verbindung zwischen der Abwälz­ auflage 611 und der Sensorfeder 613 herstellen. So könnte z. B. die Sensorfeder 613 im radial inneren Bereich axial sich erstreckende Laschen aufweisen, welche die Abwälz­ auflage 611 mit entsprechenden radialen Bereichen abstützen oder gar diese Abwälzauflage 611 durch entsprechende Anformungen unmittelbar bilden. Anstatt der fest mit der Sensorfeder vernieteten Elemente 615 können auch anders ausgebildete, z. B. gelenkig am Sensor angelenkte Elemente verwendet werden.
Bei der Ausführungsform gemäß Fig. 24 erstreckt sich die Sensorfeder 713 radial innerhalb der Schwenklagerung 715 für die Betätigungstellerfeder 704. Die Sensorfeder 713 ist an ihren radial inneren Bereichen am Deckel 702 abgestützt; hierfür besitzt der Deckel 702 axial sich durch entsprechen­ de Schlitze bzw. Ausnehmungen der Tellerfeder 704 erstrec­ kende Laschen 715, welche die Sensortellerfeder 713 axial abstützen.
Der in Fig. 25 dargestellte Nachstellring 817 kann bei einer Reibungskupplung gemäß den Fig. 20 bis 21 verwendet werden. Der Nachstellring 817 besitzt radial innen Anformun­ gen 827, die sich radial erstrecken. Die Anformungen 827 besitzen radiale Ansätze 827a, die Abstützbereiche für die in Umfangsrichtung zwischen Kupplungsdeckel und Verstellring 817 verspannten Schraubenfedern 826 bilden. Zur Führung und Erleichterung der Montage der Schraubenfedern 826 ist ein Ring 528 vorgesehen, der am Außenumfang unterbrochen bzw. offen ist. Der Ring 528 ist mit den radialen Anformungen 827a verbunden. Hierfür können die Anformungen 827a in Umfangsrichtung sich erstreckende Vertiefungen bzw. Nuten aufweisen, die derart ausgebildet sind, daß sie in Ver­ bindung mit dem Ring 828 eine Schnappverbindung bilden. Die deckelseitigen Abstützungen für die Nachstellfedern 826 sind durch axiale Laschen 826a des Kupplungsdeckels gebildet. Die axialen Laschen 826a besitzen jeweils einen axialen Ein­ schnitt 826b zur Aufnahme des Ringes 828. Die Einschnitte 826b sind dabei derart ausgebildet, daß der Ring 828 gegenüber den Laschen 826a eine axiale Verlagermöglichkeit, zumindest entsprechend dem Verschleißweg der Reibungskupp­ lung, besitzt. Hierfür ist es besonders zweckmäßig, wenn die in die radialen Anformungen 827a eingebrachten Vertiefungen zur Aufnahme des Ringes 828 und die Ausschnitte 826b, in axialer Richtung betrachtet, gegensinnig ausgebildet sind, oder mit anderen Worten, daß die Vertiefungen in den Anformungen 827a in die eine axiale Richtung und die Ausschnitte 826b in die andere axiale Richtung offen sind.
Bei der in Fig. 26 dargestellten Ausführungsform einer Reibungskupplung 901 findet die Abstützung der Betätigungs­ tellerfeder 904 in Ausrückrichtung in einem mittleren Bereich des Grundkörpers 904a der Tellerfeder 904 statt. Radial außen stützt sich der Grundkörper 904a an der Druckplatte 903 ab und erstreckt sich radial nach innen hin über die Schwenklagerung 905 hinaus. Das bedeutet, daß die Schwenklagerung 905 vom Innenrand des Grundkörpers 904a der Tellerfeder 905 bzw. den Schlitzenden, welche die Zungen der Tellerfeder 904 bilden, im Vergleich zu den bisher bekannten Tellerfederkupplungen, verhältnismäßig weit entfernt ist. Bei dem dargestellten Ausführungsbeispiel liegt das radiale Breitenverhältnis der radial innerhalb der Schwenklagerung 905 vorgesehenen Grundkörperbereiche zu den radial außerhalb der Schwenklagerung 905 vorhandenen Grundkörperbereichen in der Größenordnung von 1:2. Zweckmäßig ist es, wenn dieses Verhältnis zwischen 1:6 und 1:2 liegt. Durch eine derartige Abstützung der Betätigungstellerfeder 904 kann eine Beschädigung bzw. eine Überbeanspruchung des Tel­ lerfedergrundkörpers 904a im Bereich der Schwenklagerung 905 vermieden werden.
In Fig. 26 ist weiterhin strichliert eine axiale Anformung 903a, welche an der Druckplatte 903 vorgesehen ist, angedeu­ tet. Über derartige an der Druckplatte 903, insbesondere im Bereich der Auflagenocken 903b vorgesehene Anformungen 903a kann die Betätigungstellerfeder 904 gegenüber der Kupplung 901 zentriert werden. Es kann also die Betätigungstel­ lerfeder 904 über eine Außendurchmesserzentrierung in radialer Richtung gegenüber dem Deckel 902 gehaltert werden, so daß die in Fig. 26 ebenfalls dargestellten Zentrierniete bzw. Bolzen 915 entfallen können. Obwohl nicht dargestellt, kann die Außendurchmesserzentrierung auch über aus dem Material des Deckels 902 herausgeformte Laschen oder Anprägungen erfolgen.
Bei der Reibungskupplung 901 ist die Sensorfeder 913 derart ausgebildet, daß der die Kraft aufbringende Grundkörper 913a radial innerhalb der Nocken 903b vorgesehen ist. Zur Abstüt­ zung der Betätigungstellerfeder 904 einerseits und zur eige­ nen Abstützung am Deckel 902 andererseits besitzt die Sensorfeder 913 radiale Ausleger bzw. Zungen, die sich einerseits vom Grundkörper 913a radial nach innen hin erstrecken und andererseits vom Grundkörper 913a ausgehend radial nach außen hin erstrecken.
Bei der in Fig. 27 dargestellten Ausführungsvariante einer Reibungskupplung 1001 ist die der Ausrückkraft der Reibungs­ kupplung bzw. der Verschwenkkraft der Betätigungstellerfeder 1004 entgegengerichtete Kraft durch eine Sensorfeder 1013 aufgebracht, welche zwischen dem Gehäuse 1002 und der Druck­ platte 1003 axial verspannt ist. Bei einer derartigen Ausführungsform wird die Betätigungstellerfeder 104 im Schwenk- bzw. Kippbereich 1005 nicht durch eine Schwenk­ lagerung in Ausrückrichtung abgestützt. Die Anlage der Tellerfeder 1004 an der deckelseitigen Schwenkauflage bzw. Abstützauflage 1012 wird durch die Vorspannkraft der Sensorfeder 1013 gewährleistet. Diese Sensorfeder ist derart ausgelegt, daß während des Ausrückvorganges der Reibungs­ kupplung 1001 die von dieser Sensorfeder 1013 aufgebrachte Axialkraft auf die Tellerfeder 1004 größer ist bzw. wird als die erforderliche Ausrückkraft der Reibungskupplung 1001. Es muß dabei gewährleistet sein, daß, wenn kein Verschleiß an den Reibbelägen vorhanden ist, die Tellerfeder 1004 stets an der deckelseitigen Abstützung bzw. den Verschwenkauflagen 1012 in Anlage bleibt. Hierfür muß, in ähnlicher Weise, wie dies im Zusammenhang mit den bisherigen Ausführungsformen beschrieben wurde, eine Abstimmung zwischen den einzelnen, in axialer Richtung wirksamen und sich überlagernden Kräften, erfolgen. Diese Kräfte, welche durch die Sensorfe­ der 1013, durch die Belagfederung durch die zwischen der Druckplatte 1003 und dem Gehäuse 1002 eventuell vorgesehenen Blattfederelemente, durch die Betätigungstellerfeder 1004, durch die Ausrückkraft für die Reibungskupplung 1001 und durch die auf den Nachstellring 1017 einwirkenden Nachstell­ federelemente erzeugt werden, müssen entsprechend aufein­ ander abgestimmt werden.
Bei der Reibungskupplung 1101 gemäß Fig. 28 stützt sich die Sensorfeder 1113 radial außerhalb des deckelseitigen ring­ förmigen Abstützbereiches 1112 ab. Bei dem dargestellten Ausführungsbeispiel ist die gegenseitige Abstützung zwischen der Betätigungstellerfeder 1104 und der Sensorfeder 1113 auch radial außerhalb des Abstützdurchmessers 1103a der Betätigungstellerfeder 1104 an der Druckplatte 1103 vor­ gesehen. Zur Abstützung am Deckel 1102 besitzt die Sensorfe­ der 1113 radial außen Anformungen in Form von radial nach außen hin weisenden Armen 1113b, die in ähnlicher Weise, wie dies im Zusammenhang mit den Fig. 20 bis 21 beschrieben wurde, über eine Bajonettverriegelung 1514 am Deckel 1102 axial abgestützt und gegen Verdrehung gesichert sind. Für die Montage der Sensorfeder 1113 besitzt der Deckel 1102 entsprechende axiale Ausnehmungen 1502b, in welche die radial äußeren Abstützarme der Sensorfeder 1113 zur Her­ stellung der Bajonettverriegelung 1514 axial eingeführt werden können. Die Anlage der Tellerfeder 1104 an der deckelseitigen Schwenkauflage bzw. Abstützauflage 1112 wird durch die Vorspannkraft der Sensorfeder 1113 gewährleistet.
Im Zusammenhang mit Fig. 27 sei die Funktion der Kupplung näher erläutert. Dabei ist die Sensorfeder derart ausgelegt, daß sie der Ausrückkraft im Nachstellpunkt entspricht. Wird nach aufgetretenem Belagverschleiß (oder Verschleiß an anderen Stellen) und damit verändertem Tellerfederwinkel und dadurch höherer Tellerfederkraft ausgerückt, so verschwenkt sich die Tellerfeder zunächst um die Auflage 1012 bis in die Nähe des Nachstellpunktes. Da in diesem Punkt dann die Ausrückkraft gleich wird der Sensorkraft mitsamt der Belagfeder - Restkraft - verschwenkt die Tellerfeder bei weiterem Ausrücken um die Auflage an der Druckplatte, solange, bis ein Kräftegleichgewicht zwischen der Ausrück­ kraft und der Sensorkraft wiederhergestellt ist. Dabei hebt die Tellerfeder von der deckelseitigen Auflage ab und gibt diese zur Nachstellung frei. Über den weiteren Ausrückweg fällt die Ausrückkraft weiter ab, die Sensorkraft überwiegt und drückt über die Druckplatte die Tellerfeder gegen die deckelseitige Auflage 1012, um welche dann die weitere Verschwenkung der Tellerfeder erfolgt. Beim Übergang der Tellerfeder von der deckelseitigen Auflagerung zur druck­ plattenseitigen Auflagerung ändert die Tellerfeder in der Tendenz ihre Funktion als zweiarmiger Hebel. Sie stützt sich an der Druckplatte vorübergehend mit der nun vorhandenen Ausrückkraft an der Druckplatte ab und hebt dadurch vor­ übergehend von der deckelseitigen Auflage ab. Nach weiterem Ausrückweg überwiegt aufgrund des damit verbundenen Kraft­ abfalles die Kraft der Sensorfeder und drückt die Tel­ lerfeder wieder gegen die deckelseitige Auflage, wodurch die Nachstelleinrichtung blockiert und der Nachstellvorgang beendet ist. Die Tellerfeder ist für den weiteren Ausrückweg sodann wieder als zweiarmiger Hebel wirksam. Die Tellerfeder ist unter Berücksichtigung sämtlicher Federkräfte, die mittel- oder unmittelbar gegen die Tellerfeder wirken, auszulegen. Hierzu gehören insbesondere die Kräfte, welche durch die Betätigungstellerfeder und die axial gegenüber dem Deckel verlagerbaren Bauteile der entsprechenden Ausgleichs- bzw. Nachstellvorkehrung erzeugt werden.
Die Ausführungsform gemäß Fig. 28 hat weiterhin den Vorteil, daß im eingerückten Zustand der Reibungskupplung die Tellerfeder 1104 praktisch als zweiarmiger Hebel verspannt bzw. wirksam ist und die Tellerfeder 1104 somit zwischen der deckelseitigen Abstützung 1112 und der druck­ plattenseitigen Abstützung 1103a verspannt ist, beim Ausrücken der Reibungskupplung 1101 die Tellerfeder sich jedoch praktisch lediglich an der Sensorfeder 1113 abstützt und um den Abstützbereich 1113a verschwenkt wird, bei gleichzeitiger axialer Verlagerung des Abstützbereiches 1113a, so daß sie dann praktisch als einarmiger Hebel wirksam ist.
Die Sensorfeder 1113 gemäß Fig. 28 kann sich - ebenso wie die Sensortellerfedern der anderen Figuren - bei entspre­ chender Auslegung bzw. Anpassung an einem beliebigen Durch­ messer der Betätigungstellerfeder 1104 abstützen. So kann die Abstützung der Sensorfeder 1113 an der Tellerfeder 1104 auch auf einem Durchmesser erfolgen, der sich zwischen dem deckelseitigen Schwenkbereich 1105 und dem druckplattensei­ tigen Abstützdurchmesser 1103a befindet. Weiterhin könnte die Abstützung der Sensorfeder 1113 an der Tellerfeder 1104 auch radial innerhalb des deckelseitigen Abstützdurchmessers 1105 vorgesehen werden. Dabei wird tendenzmäßig die von der Sensorfeder 1113 aufzubringende axiale Abstützkraft um so größer, je kleiner deren Abstützdurchmesser 1113a an der Tellerfeder 1104 wird. Weiterhin muß der Federbereich mit praktisch konstanter Kraft der Sensorfeder 1113 umso größer werden, je weiter der Abstützdurchmesser 1113a zwischen den Federn 1104 und 1113 vom deckelseitigen Abstützdurchmesser 1105 der Tellerfeder 1104 entfernt ist.
Die Ausführungsform gemäß Fig. 29 besitzt eine Nachstell­ vorkehrung 1216, die in ähnlicher Weise, wie dies mit den vorangegangenen Figuren, insbesondere in Verbindung mit den Fig. 1 bis 14 beschrieben wurde, wirksam ist. Die Betäti­ gungstellerfeder 1204 ist zwischen zwei ringförmigen Abwälz­ auflagen 1211 und 1212 verschwenkbar gelagert. Die der Druckplatte 1203 benachbarte Auflage 1211 wird durch die Sensorfeder 1213 beaufschlagt. Die Reibungskupplung 1201 besitzt eine Vorkehrung 1261, die gewährleistet, daß über die Lebensdauer der Reibungskupplung betrachtet, die Rampen des Nachstellringes 1217 nicht an den deckelseitig vor­ gesehenen Gegenrampen haften bleiben. Bei dem dargestellten Ausführungsbeispiel sind die Gegenrampen, ähnlich wie dies in Verbindung mit Fig. 2 beschrieben wurde, an einem am Deckel drehfesten Abstützring 1225 vorgesehen. Ein Haften zwischen den Rampen und Gegenrampen hätte zur Folge, daß die gewünschte Verschleißnachstellung nicht mehr stattfinden könnte.
Die Vorkehrung 1261 bildet einen Losreißmechanismus, der beim Ausrücken der Reibungskupplung 1201 und bei vorhandenem Verschleiß an den Reibbelägen 1207 eine Axialkraft auf den Nachstellring 1217 ausüben kann, wodurch die eventuell vorhandene Haftverbindung zwischen den Rampen und den Gegenrampen gelöst wird. Der Mechanismus 1261 umfaßt ein axial federndes Element 1262, das bei dem dargestellten Ausführungsbeispiel axial mit der Tellerfeder 1204 verbunden ist. Das Element 1262 besitzt einen ringförmigen membran­ artig bzw. tellerfederartig federnden Grundkörper 1262a, der radial außen mit der Tellerfeder 1204 verbunden ist. Vom radial inneren Randbereich des ringförmigen Grundkörpers 1262a erstrecken sich über den Umfang verteilte, axiale Laschen 1263, die sich durch axiale Ausnehmungen der Tellerfeder 1204 hindurcherstrecken. An ihrem freien Endbereich besitzen die Laschen 1263 Anschlagkonturen in Form von Abbiegungen 1264, welche mit Gegenanschlagkonturen 1265 des Nachstellringes 1217 zusammenwirken. Die Gegen­ anschlagkonturen 1265 sind durch in den Ring 1217 radial eingebrachte Aussparungen oder durch eine umlaufende Nut gebildet. Der Abstand zwischen den Anschlagkonturen 1264 und Gegenanschlagkonturen 1265 im eingerückten Zustand der Rei­ bungskupplung ist derart bemessen, daß über zumindest einen Großteil der Kupplungsausrückphase keine Berührung zwischen den Konturen 1264 und Gegenkonturen 1265 stattfindet. Vor­ zugsweise kommen die Anschlagkonturen 1264 an den Gegenan­ schlagkonturen 1265 erst bei vollständig ausgerückter Rei­ bungskupplung zur Anlage, wodurch das Element 1262 elastisch zwischen dem Nachstellring 1217 und der Tellerfeder 1204 verspannt werden kann. Dadurch wird gewährleistet, daß, sobald infolge von Belagverschleiß eine axiale Verlagerung der Schwenkauflage 1211 erfolgt, der Nachstellring 1217 zwangsweise von den deckelseitigen Auflauframpen abgehoben wird. Weiterhin soll der Mechanismus 1261 verhindern, daß bei zu großem Ausrückweg, zum Beispiel aufgrund einer fehlerhaften Grundeinstellung des Ausrückersystems, eine Nachstellung des Ringes 1217 erfolgt. Dies wird dadurch erzielt, daß bei zu großem Verschwenkwinkel der Tellerfeder 1204 in Ausrückrichtung das federnde Element 1262 den Nachstellring 1217 gegen die Tellerfeder 1204 verspannt, wodurch eine Verdrehsicherung des Nachstellringes 1217 gegenüber der Tellerfeder 1204 erfolgt. Es muß also gewähr­ leistet sein, daß bei Überschreitung des Punktes 46 gemäß Fig. 8 in Ausrückrichtung der Nachstellring 1217 drehfest gehaltert wird gegenüber der Tellerfeder 1204, da bei Überschreitung des Punktes 46 die Rückhaltekraft der Sensorfeder 1213 überwunden wird, wodurch auch bei nicht vorhandenem Verschleiß an der Kupplungsscheibe eine Nach­ stellung erfolgen würde. Dies hätte eine Veränderung des Betriebspunktes, also eine Veränderung der Einbaulage der Tellerfeder 1204, zur Folge, und zwar in Richtung einer kleineren Anpreßkraft. Das bedeutet, daß in Fig. 8 der Betriebspunkt 41 entlang der Kennlinie 40 in Richtung des mit 45 gekennzeichneten Minimums wandern würde.
Bei einer Ausführungsform einer Reibungskupplung, die ent­ sprechend den Einzelheiten gemäß den Fig. 30 bis 32 ausgebildet ist, sind die einzelnen Schraubenfedern 1326 auf Laschen 1328 aufgenommen, welche einstückig ausgebildet sind mit dem Kupplungsdeckel 1302. Die Laschen 1328 sind aus dem Blechmaterial des Deckels 1302 durch Bildung einer z. B. ausgestanzten U-förmigen Umschneidung 1302a herausgeformt. Die Laschen 1328 erstrecken sich, in Umfangsrichtung betrachtet, bogenförmig oder tangential und sind vorzugs­ weise zumindest annähernd auf gleicher axialer Höhe wie die unmittelbar benachbarten Deckelbereiche. Aus Fig. 32 ist zu entnehmen, daß bei dem dargestellten Ausführungsbeispiel die Lasche 1328 in etwa um die halbe Materialstärke gegenüber den Bodenbereichen 1302b des Deckels versetzt ist. Die Breite einer Lasche 1328 ist derart bemessen, daß die darauf vorgesehene Schraubenfeder 1326 sowohl in radialer als auch in axialer Richtung geführt ist.
Der von den Federn 1326 in Nachstellrichtung beaufschlagte Nachstellring 1317 besitzt an seinem Innenumfang radial nach innen weisende Anformungen bzw. Ausleger 1327, die sich zwi­ schen dem Deckel 1302 und der Tellerfeder 1304 erstrecken. Die Ausleger 1327 besitzen radial innen eine in Achsrichtung gerichtete Gabel bzw. U-förmige Anformung 1327a, deren beide in Achsrichtung gerichtete Zinken 1327b eine Federführungs­ lasche 1328 beidseits umgreifen. Hierfür erstrecken sich die beiden Zinken 1327b axial durch den Ausschnitt 1302a des Deckels 1302. An den Anformungen 1327a bzw. an deren Zinken 1327b stützen sich die Nachstellfedern 1326 ab.
Der Nachstellring 1317 stützt sich in ähnlicher Weise über seine Auflauframpen an den in den Deckel 1302 eingeprägten Gegenauflauframpen 1324 ab, wie dies in Verbindung mit den vorangegangenen Figuren beschrieben wurde. Die die Gegenauf­ lauframpen 1324 bildenden Deckelanprägungen sind jedoch der­ art ausgebildet, daß diese in Drehrichtung der Kupplung eine Luftdurchlaßöffnung 1324 bilden. Durch eine derartige Ausge­ staltung wird bei Rotation der entsprechenden Reibungskupp­ lung eine bessere Kühlung derselben durch eine zwangsweise Luftzirkulation erzielt. Insbesondere wird dadurch auch der aus Kunststoff hergestellte Nachstellring 1317 gekühlt, wodurch die thermische Belastung auch dieses Bauteiles wesentlich reduziert werden kann.
Gemäß einer weiteren Ausführungsvariante kann die Sensor­ kraft, welche auf die Betätigungstellerfeder der Reibungs­ kupplung wirkt, durch beispielsweise zwischen dem Kupplungs­ gehäuse und der Druckplatte vorgesehene Blattfederelemente aufgebracht werden, wobei diese Blattfederelemente die Druckplatte und das Gehäuse drehfest, jedoch axial begrenzt relativ zueinander verlagerbar koppeln können. Bei einer derartigen Ausführungsform wäre also keine spezielle Sensorfeder erforderlich, sondern es könnten zum Beispiel die Blattfederelemente 9 der Reibungskupplung 1 gemäß den Fig. 1 und 2 derart ausgebildet werden, daß sie zusätz­ lich noch die Funktion der Sensortellerfeder 13 übernehmen. Dadurch kann sowohl die Sensorfeder 13 als auch der Ab­ wälzring 11 entfallen. Die Blattfederelemente 9 müssen dabei derart ausgestaltet werden, daß während einer Betätigung der Reibungskupplung 1 und ohne daß Belagverschleiß vorhanden ist, die Betätigungstellerfeder 4 an der deckelseitigen Abwälzauflage 12 anliegen bleibt. Sobald jedoch ein entspre­ chender Verschleiß an den Reibbelägen 7 auftritt, wodurch die Ausrückkraft der Tellerfeder 4 zunimmt, müssen die Blattfederelemente 9 eine dem Verschleiß entsprechende Nachstellung der Tellerfeder 4 ermöglichen. Vorzugsweise besitzen die in die Reibungskupplung eingebauten Blattfeder­ elemente zumindest über den maximal erforderlichen Nach­ stellweg der Reibungskupplung bwz. der Druckplatte eine praktisch lineare Kraft-Weg-Kennlinie. Das bedeutet also, daß die Blattfederelemente 9, ähnlich wie dies im Zusammen­ hang mit Fig. 9 beschrieben wurde, einen Kennlinienbereich 48 gemäß der Kennlinie 47 oder 47a aufweisen sollen.
Die Erfindung ist nicht auf die dargestellten und beschrie­ benen Ausführungsbeispiele beschränkt, sondern umfaßt auch Varianten, die durch Kombination von einzelnen, in Ver­ bindung mit den verschiedenen Ausführungsformen beschriebe­ nen Merkmalen bzw. Elementen gebildet werden können. Weiterhin stellen einzelne, in Verbindung mit den Figuren beschriebene neue Merkmale bzw. Funktionsweisen für sich selbständige Erfindungen dar.

Claims (42)

1. Reibungskupplung (1), insbesondere für Kraftfahrzeuge, mit einer Druckplatte (3), die drehfest, jedoch axial begrenzt verlagerbar mit einem Gehäuse (2) verbunden ist, wobei zwischen Gehäuse und Druckplatte eine die Anpreßkraft erzeugende Tellerfeder (4) axial verspannt ist, die einerseits um eine vom Gehäuse getragene Schwenklagerung (12) verschwenkbar ist und andererseits die Druckplatte (3) in Richtung einer zwischen dieser und einer Gegendruckplatte (6), wie einem Schwungrad, einklemmbaren Kupplungsscheibe (8) beaufschlagt, wobei die vom Gehäuse getragene Schwenklagerung (12) von einer zumindest den Verschleiß der Reibbeläge (7) der Kupp­ lungsscheibe kompensierenden, von einer Vorschubeinrich­ tung (26) weitertransportierten, zwischen Deckel und Tellerfeder wirksamen selbsttätigen Nachstelleinrichtung (16) axial verlagerbar ist und die Tellerfeder in Rich­ tung auf die Schwenklagerung unter der Wirkung einer Abstützkraft steht.
2. Reibungskupplung nach Anspruch 1, dadurch gekennzeich­ net, daß die Tellerfeder (4) über ihren Arbeitsbereich mit degressiver Kennlinie eingebaut ist.
3. Reibungkupplung nach Anspruch 1 oder 2, dadurch gekenn­ zeichnet, daß die Tellerfeder (4) entgegen der Ausrück­ kraft lediglich kraftschlüssig abgestützt ist.
4. Reibungskupplung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Abstützkraft und die Tellerfederkraft derart aufeinander abgestimmt sind, daß die Abstützkraft bei der vorgesehenen Einbaulage der Tellerfeder (4) und ohne verschleißbedingte Konizitäts­ veränderung und über den Ausrückweg der Tellerfeder (4) größer ist als die von der Tellerfeder aufgebrachte der Abstützkraft entgegenwirkende Kraft, bei verschleißbe­ dingter Änderung der Konizität der Tellerfeder (4) die Abstützkraft über Teilbereiche des Ausrückweges der Tellerfeder geringer ist als die von der Tellerfeder gegen die Abstützkraft aufgebrachte Kraft.
5. Reibungskupplung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Abstützkraft durch wenigstens einen Kraftspeicher (13), wie eine Feder, aufgebracht ist, die über eine verschleißbedingte Nachstellung der Tellerfeder (4) bzw. der deckelseitigen Auflage (12) ihre Gestalt ändert.
6. Reibungskupplung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Nachstelleinrichtung (16) axial zwischen Tellerfeder (4) und Deckel (2) ange­ ordnet ist.
7. Reibungskupplung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Nachstelleinrichtung (16) Auflaufflächen (18, 24), wie Rampen, enthält.
8. Reibungskupplung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Abstützkraft durch ein tellerfederartiges Element (13) aufgebracht ist.
9. Reibungskupplung nach mindestens einem der vorhergehen­ den Ansprüche, dadurch gekennzeichnet, daß die die Abstützkraft aufbringende Tellerfeder (113) auf der radialen Höhe der axial verlagerbaren Abstützung an der Tellerfeder (4) auflagert.
10. Reibungskupplung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Anpreßtellerfeder (4) am Gehäuse (2) zwischen zwei Auflagen (11, 12) - von denen die (11) der Druckplatte (3) zugewandte in Richtung der Anpreßtellerfeder (4) federbelastet ist - verschwenkbar abgestützt ist.
11. Reibungskupplung nach Anspruch 10, dadurch gekennzeich­ net, daß die durch die Abstützkraft federbelastete Auflage (11) axial verlagerbar ist.
12. Reibungskupplung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß bei Verlagerung der federbe­ lasteten Auflage (11) die Ausrückkraft der Anpreßtel­ lerfeder (4) abnimmt.
13. Reibungskupplung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die federbelastete Auflage (11) so weit verlagert wird, bis sich ein Kräftegleich­ gewicht zwischen der auf die Auflage (11) einwirkenden Ausrückkraft der Anpreßtellerfeder (4) und der auf diese Auflage (11) ausgeübten Gegenkraft einstellt.
14. Reibungskupplung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die auf die federbelastete Auflage (11) ausgeübte Gegenkraft durch einen Kraft­ speicher (13) erzeugt wird, der im wesentlichen eine konstante Kraft über den vorgesehenen Nachstellbereich besitzt.
15. Reibungskupplung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß der die Abstützkraft erzeu­ gende Kraftspeicher (13) als Sensor wirksam ist.
16. Reibungskupplung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die auf der der federbela­ steten Auflage (11) abgewandten Seite der Anpreßtel­ lerfeder (4) vorgesehene Gegenauflage (12) axial in Richtung der Druckplatte (3) verlagerbar, in Gegen­ richtung jedoch arretierbar ist.
17. Reibungskupplung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die die Nachstellein­ richtung (16) weitertransportierende Vorschubeinrichtung eine Feder (27) ist.
18. Reibungskupplung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß die Nachstelleinrichtung (16) ein in sich zusammenhängendes ringförmiges Bauteil (17) besitzt, das von der Anpreßtellerfeder (4) im einge­ rückten Zustand der Reibungskupplung (1) axial beauf­ schlagt wird.
19. Reibungskupplung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß die Nachstellvorkehrung (16) in axialer Richtung ansteigende Nachstellrampen (18, 24) besitzt.
20. Reibungskupplung nach Anspruch 19, dadurch gekennzeich­ net, daß die Nachstellrampen (18) am ringförmigen Bauteil (17) vorgesehen sind.
21. Reibungskupplung nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, daß das ringförmige Bauteil (17) die Gegenauflage (12) trägt.
22. Reibungskupplung nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, daß Auflauframpen (18) mit korrespondierenden Gegenauflauframpen (24) zusammenwirken.
23. Reibungskupplung nach Anspruch 22, dadurch gekennzeich­ net, daß die Gegenauflauframpen (24) von einem ring­ artigen Bauteil (25) getragen sind, das zwischen dem die Auflauframpen (18) tragenden Bauteil (17) und dem Deckel (2) angeordnet ist.
24. Reibungskupplung nach Anspruch 23, dadurch gekennzeich­ net, daß die Gegenauflauframpen (24) unmittelbar in radial verlaufende Bereiche (2a) des Gehäuses einge­ bracht sind.
25. Reibungskupplung nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die Nachstellvorkehrung (16) - in Ausrückrichtung der Reibungskupplung betrachtet - freilaufähnlich wirkt, in die der Ausrückrichtung ent­ gegengesetzten Richtung jedoch selbsthemmend ist.
26. Reibungskupplung nach einem der Ansprüche 19 bis 25, dadurch gekennzeichnet, daß zumindest die Auflauframpen (18) einen Steigungswinkel besitzen, der zwischen 4 und 20 Grad liegt, vorzugsweise in der Größenordnung von 5 bis 12 Grad.
27. Reibungskupplung nach einem der Ansprüche 19 bis 26, dadurch gekennzeichnet, daß die Auflauframpen (18) einen Steigungswinkel (23) besitzen, der eine Selbsthemmung durch Reibungseingriff der Auflauframpen mit Gegen­ auflaufbereichen eines anderen Bauteils (25) bewirkt.
28. Reibungskupplung nach einem der Ansprüche 19 bis 27, dadurch gekennzeichnet, daß wenigstens ein die Auflauf­ rampen (18) tragendes Bauteil (17) und/oder ein die Gegenauflauframpen (24) bzw. Gegenauflaufbereiche tragendes Bauteil (25) in Nachstellrichtung federbeauf­ schlagt ist.
29. Reibungskupplung nach einem der Ansprüche 1 bis 28, dadurch gekennzeichnet, daß die Nachstellvorkehrung (16) mehrere verlagerbare Nachstellelemente (217) aufweist.
30. Reibungskupplung nach einem der Ansprüche 1 bis 29, dadurch gekennzeichnet, daß die Nachstellvorkehrung drehzahlabhängig ist (Fig. 12, 13).
31. Reibungskupplung nach einem der Ansprüche 1 bis 30, dadurch gekennzeichnet, daß die Nachstellvorkehrung drehzahlabhängig gesperrt wird (Fig. 12, 13).
32. Reibungskupplung nach einem der Ansprüche 1 bis 31, dadurch gekennzeichnet, daß die Nachstellvorkehrung bei Drehzahlen oberhalb einer bestimmten Grenze blockiert ist.
33. Reibungskupplung nach einem der Ansprüche 1 bis 32, dadurch gekennzeichnet, daß die Nachstellvorkehrung bei Leerlaufdrehzahl oder Drehzahlen unterhalb der Leer­ laufdrehzahl wirksam ist.
34. Reibungskupplung nach einem der Ansprüche 1 bis 33, dadurch gekennzeichnet, daß die Nachstellvorkehrung praktisch bei Drehzahl Null aktiviert ist.
35. Reibungskupplung nach einem der Ansprüche 1 bis 34, dadurch gekennzeichnet, daß die die Auflauframpen (18) und/oder Gegenauflauframpen (24) bzw. -bereiche auf­ weisenden und relativ zum Gehäuse (2) verlagerbaren Teile (17, 25) der Nachstellvorkehrung (16) federnd bela­ stet sind.
36. Reibungskupplung nach Anspruch 35, dadurch gekennzeich­ net, daß die Federbelastung eine Kraft in Umfangsrich­ tung erzeugt.
37. Reibungskupplung nach einem der Ansprüche 1 bis 36, dadurch gekennzeichnet, daß sich eine die Gegenkraft aufbringende Sensorfeder (13) mit ihrem radial äußeren Bereich (13a) am Gehäuse (2) abstützt.
38. Reibungskupplung nach einem der Ansprüche 1 bis 37, dadurch gekennzeichnet, daß am Gehäuse (502) Abstützbe­ reiche (502a) für eine die Gegenkraft erzeugende Sensor­ feder (513) vorgesehen sind.
39. Reibungskupplung nach einem der Ansprüche 1 bis 38, dadurch gekennzeichnet, daß zwischen den Reibbelägen (7) der Kupplungsscheibe (8) eine Belagfederung (10) oder ein Belagfederungsersatz vorhanden ist.
40. Reibungskupplung insbesondere nach einem der Ansprüche 1 bis 39, dadurch gekennzeichnet, daß die zwischen den Reibbelägen (7) der Kupplungsscheibe (8) vorgesehene Belagfederung (10) eine Weg-Kraft-Charakteristik auf­ weist, die über den Federweg der Belagfederung an die Weg-Kraft-Charakteristik der von der Anpreßtellerfeder (4) auf die Druckplatte (3) ausgeübten Kraft angenähert ist (Fig. 18).
41. Reibungskupplung nach einem der Ansprüche 1 bis 40, dadurch gekennzeichnet, daß im ausgerückten Zustand der Reibungskupplung die zur Betätigung der Anpreßtellerfe­ der (4) bzw. der Reibungskupplung (1) erforderliche Kraft in der Größenordnung zwischen minus 150 bis 150 Nm liegt.
42. Reibungskupplung nach einem der Ansprüche 1 bis 41, dadurch gekennzeichnet, daß nach Freigabe der Kupplungs­ scheibe (8) durch die Gegendruckplatte (6) die Anpreß­ tellerfeder (4) von einem positiven Kraft-Weg-Verlauf in einen negativen Kraft-Weg-Verlauf übergeht (Fig. 18).
DE4239291A 1991-11-26 1992-11-23 Reibungskupplung Expired - Lifetime DE4239291B4 (de)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE4138806 1991-11-26
DEP4138806.2 1991-11-26
DEP4206904.1 1992-03-05
DE4206904 1992-03-05
DE4207528 1992-03-10
DEP4207528.9 1992-03-10
DE4212940 1992-04-18
DEP4212940.0 1992-04-18

Publications (2)

Publication Number Publication Date
DE4239291A1 true DE4239291A1 (de) 1993-05-27
DE4239291B4 DE4239291B4 (de) 2007-01-18

Family

ID=27435325

Family Applications (6)

Application Number Title Priority Date Filing Date
DE4239291A Expired - Lifetime DE4239291B4 (de) 1991-11-26 1992-11-23 Reibungskupplung
DE4239289A Ceased DE4239289A1 (de) 1991-11-26 1992-11-23
DE4244818A Expired - Lifetime DE4244818B4 (de) 1991-11-26 1992-11-23 Reibungskupplung
DE9219181U Expired - Lifetime DE9219181U1 (de) 1991-11-26 1992-11-23 Reibungskupplung
DE4244993A Expired - Lifetime DE4244993B4 (de) 1991-11-26 1992-11-23 Reibungskupplung
DE9219029U Expired - Lifetime DE9219029U1 (de) 1991-11-26 1992-11-23 Reibungskupplung

Family Applications After (5)

Application Number Title Priority Date Filing Date
DE4239289A Ceased DE4239289A1 (de) 1991-11-26 1992-11-23
DE4244818A Expired - Lifetime DE4244818B4 (de) 1991-11-26 1992-11-23 Reibungskupplung
DE9219181U Expired - Lifetime DE9219181U1 (de) 1991-11-26 1992-11-23 Reibungskupplung
DE4244993A Expired - Lifetime DE4244993B4 (de) 1991-11-26 1992-11-23 Reibungskupplung
DE9219029U Expired - Lifetime DE9219029U1 (de) 1991-11-26 1992-11-23 Reibungskupplung

Country Status (12)

Country Link
US (5) US5409091A (de)
JP (2) JP3471834B2 (de)
KR (1) KR100429653B1 (de)
BR (2) BR9204566A (de)
CA (2) CA2083743C (de)
DE (6) DE4239291B4 (de)
ES (2) ES2108594B1 (de)
FR (5) FR2684151B1 (de)
GB (2) GB2261922B (de)
IT (2) IT1256333B (de)
SE (4) SE512355C2 (de)
UA (1) UA29394C2 (de)

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693522A1 (fr) * 1992-07-11 1994-01-14 Luk Lamellen & Kupplungsbau Groupe d'embrayage.
DE4330263A1 (de) * 1992-09-07 1994-03-10 Daikin Mfg Co Ltd Kupplungsabdeckungsausbildung
JPH07151165A (ja) * 1993-09-13 1995-06-13 Luk Lamellen & Kupplungsbau Gmbh レリーズ装置
FR2726871A1 (fr) * 1994-11-14 1996-05-15 Luk Lamellen & Kupplungsbau Embrayage a friction
DE4440412A1 (de) * 1994-11-11 1996-05-30 Fichtel & Sachs Ag Reibungskupplung mit automatischem Verschleißausgleich
DE4442594A1 (de) * 1994-11-30 1996-06-13 Fichtel & Sachs Ag Reibungskupplung
US5667048A (en) * 1994-05-21 1997-09-16 Luk Lamell Und Kupplungsbau Clutch disengaging device
US5669480A (en) * 1994-12-23 1997-09-23 Luk Lamellen Und Kupplungsbau Gmbh Clutch operating apparatus
US5679091A (en) * 1994-02-23 1997-10-21 Luk Getriebe-Systeme Gmbh Method of and apparatus for regulating the transmission of torque in power trains
FR2752277A1 (fr) 1993-06-19 1998-02-13 Luk Lamellen & Kupplungsbau Dispositif de transmission de couple
US5725456A (en) * 1994-10-29 1998-03-10 Luk Getriebe Systeme Gmbh Method of regulating the operation of a torque transmission apparatus
US5727666A (en) * 1992-12-22 1998-03-17 Luk Lamellen Und Kupplungsbau Gmbh Self-adjusting friction clutch
US5803224A (en) * 1996-03-05 1998-09-08 Luk Lamellen Und Kupplungsbau Gmbh Friction clutch
FR2767167A1 (fr) 1997-08-04 1999-02-12 Luk Lamellen & Kupplungsbau Embrayage a friction
FR2767367A1 (fr) 1997-08-04 1999-02-19 Luk Lamellen & Kupplungsbau Dispositif pour l'amortissement d'oscillations de rotation
US5890992A (en) * 1994-02-23 1999-04-06 Luk Getriebe-Systeme Gmbh Method of and apparatus for regulating the transmission of torque in power trains
US5894916A (en) * 1996-05-24 1999-04-20 Luk Lamellen Und Kupplungbau Gmbh Friction clutch
FR2772093A1 (fr) 1997-12-09 1999-06-11 Luk Lamellen & Kupplungsbau Embrayage a friction pour vehicules automobiles
US5954178A (en) * 1996-01-31 1999-09-21 Luk Getriebe-Systeme Gmbh Apparatus for actuating an aggregate in the power train of a motor vehicle
FR2776349A1 (fr) 1998-03-19 1999-09-24 Luk Lamellen & Kupplungsbau Embrayage a friction
FR2794200A1 (fr) 1999-05-31 2000-12-01 Luk Lamellen & Kupplungsbau Accouplement a friction
FR2802266A1 (fr) 1999-12-08 2001-06-15 Luk Lamellen & Kupplungsbau Vehicule automobile et procede pour faire fonctionner un vehicule automobile
FR2802267A1 (fr) 1999-12-08 2001-06-15 Luk Lamellen & Kupplungsbau Vehicule automobile comportant une boite de vitesses
FR2803007A1 (fr) 1999-12-23 2001-06-29 Luk Lamellen & Kupplungsbau Vehicule a moteur et procede pour son utilisation
FR2807483A1 (fr) 2000-04-10 2001-10-12 Luk Lamellen & Kupplungsbau Unite d'embrayage
FR2813362A1 (fr) 2000-08-31 2002-03-01 Luk Lamellen & Kupplungsbau Procede pour debrancher, en fonction de la situation, l'alimentation en courant residuel d'un regulateur de couplage
FR2813564A1 (fr) 2000-09-04 2002-03-08 Luk Lamellen & Kupplungsbau Vehicule automobile comportant une boite de vitesses
FR2814208A1 (fr) 2000-09-15 2002-03-22 Luk Lamellen & Kupplungsbau Dispositif pour actionner des embrayages et procede pour faire fonctionner un dispositif pour actionner des embrayages
FR2815300A1 (fr) 2000-10-13 2002-04-19 Luk Lamellen & Kupplungsbau Vehicule a moteur comportant un mecanisme d'embrayage et une boite de vitesses automatique ou manuelle
USRE37746E1 (en) * 1992-09-07 2002-06-18 Exedy Corporation Clutch cover assembly
FR2818204A1 (fr) 2000-12-18 2002-06-21 Luk Lamellen & Kupplungsbau Amelioration de la securite d'utilisation d'un dispositif d' actionnement automatise d'un embrayage et/ou d'une boite de vitesses dans un vehicule automobile
FR2819454A1 (fr) 2001-01-12 2002-07-19 Luk Lamellen & Kupplungsbau Procede destine a faire fonctionner un vehicule automobile et dispositif de mise en oeuvre correspondant
WO2002066870A1 (de) 2001-02-23 2002-08-29 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Getriebe
FR2828916A1 (fr) 2001-08-24 2003-02-28 Luk Lamellen & Kupplungsbau Ligne d'entrainement
US6874607B2 (en) 2002-06-19 2005-04-05 Zf Sachs Ag Friction clutch
DE19703333B4 (de) * 1997-01-30 2006-02-02 Zf Sachs Ag Reibungskupplung für Kraftfahrzeuge
US6997075B2 (en) 2000-10-20 2006-02-14 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Motor vehicle with a gearbox and method for operating a motor vehicle
DE19960641B4 (de) * 1998-12-18 2006-02-16 Eaton Corp., Cleveland Sich automatisch einstellende Reibungskupplung mit Drehfedergehäuse
WO2007062615A1 (de) * 2005-11-29 2007-06-07 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat
WO2007062616A1 (de) * 2005-11-29 2007-06-07 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat
WO2007128261A1 (de) 2006-05-04 2007-11-15 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Reibungskupplung
EP1710461A3 (de) * 2002-04-10 2008-08-06 LuK Lamellen und Kupplungsbau Beteiligungs KG Kupplungsaggregat
EP1958713A1 (de) 2007-02-15 2008-08-20 LuK Lamellen und Kupplungsbau Beteiligungs KG Verfahren zur Herstellung einer Tellerfeder, Tellerfeder sowie Reibungskupplung mit einer solchen
EP2009306A2 (de) 2007-06-28 2008-12-31 LuK Lamellen und Kupplungsbau Beteiligungs KG Kupplungsaggregat
EP2028385A2 (de) 2007-08-20 2009-02-25 LuK Lamellen und Kupplungsbau Beteiligungs KG Kupplungsaggregat
DE102008044820A1 (de) 2007-09-24 2009-04-09 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Reibungskupplung
DE10012499B4 (de) * 1999-03-16 2009-12-17 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Einrichtung zum Übertragen eines Drehmoments
DE102009049253A1 (de) 2008-11-03 2010-05-06 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat mit Transportsicherung
DE102009049509A1 (de) 2008-11-13 2010-05-20 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Reibungskupplung mit Nachstelleinrichtung
DE102009055909A1 (de) 2008-12-22 2010-06-24 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat
DE102009053479A1 (de) 2008-12-22 2010-07-01 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat
DE102010006055A1 (de) 2009-02-12 2010-08-19 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat
DE19914937B4 (de) * 1998-04-09 2010-09-09 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Betätigungsvorrichtung
DE102010025458A1 (de) 2009-07-30 2011-02-03 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Reibungskupplung
DE102010050069A1 (de) 2009-11-12 2011-05-19 Schaeffler Technologies Gmbh & Co. Kg Kupplungsaggregat
DE102010054248A1 (de) 2009-12-21 2011-06-22 Schaeffler Technologies GmbH & Co. KG, 91074 Kupplungsaggregat
DE19880946B3 (de) * 1997-05-30 2012-04-05 Valeo Kupplungsmechanismus für eine Reibungskupplung
DE10208207B4 (de) * 2001-02-27 2012-05-16 Schaeffler Technologies Gmbh & Co. Kg Reibungskupplung
DE19713423B4 (de) * 1996-04-03 2012-11-29 Schaeffler Technologies AG & Co. KG Vorrichtung und Verfahren zur Betätigung eines Getriebes
DE102011102404A1 (de) 2011-05-25 2012-11-29 Schaeffler Technologies AG & Co. KG Selbstnachstellende Kupplung
DE102011102326A1 (de) 2011-05-25 2012-11-29 Schaeffler Technologies AG & Co. KG Selbstnachstellende Doppelkupplung
DE102012219787A1 (de) 2011-11-25 2013-05-29 Schaeffler Technologies AG & Co. KG Reibungskupplung
DE102013201697A1 (de) 2012-03-01 2013-09-05 Schaeffler Technologies AG & Co. KG Kupplungsdeckelanordnung für eine Reibungskupplung
DE10322783B4 (de) * 2002-06-19 2013-10-31 Zf Friedrichshafen Ag Reibungskupplung mit Reibungsdämpfungsvorrichtung
DE102013207694A1 (de) 2012-05-23 2013-11-28 Schaeffler Technologies AG & Co. KG Sensierring für eine weggesteuerte Nachstelleinrichtung einer Reibungskupplung
DE102012213684A1 (de) 2012-08-02 2014-02-06 Schaeffler Technologies AG & Co. KG Zugankeranordnung zum Verlagern einer Anpressplatte einer Reibungskupplung
DE102013217050A1 (de) 2012-08-31 2014-03-06 Schaeffler Technologies AG & Co. KG Reibungskupplungseinrichtung
DE102012215442A1 (de) 2012-08-31 2014-03-06 Schaeffler Technologies AG & Co. KG Kupplungsaggregat mit Nachstelleinrichtung und Verfahren zu dessen Montage
US8770366B2 (en) 2006-11-17 2014-07-08 Schaeffler Technologies AG & Co. KG Friction clutch unit
DE102004018377B4 (de) * 2003-04-17 2014-08-07 Schaeffler Technologies Gmbh & Co. Kg Reibungskupplung
DE102014204978A1 (de) 2013-04-12 2014-10-16 Schaeffler Technologies Gmbh & Co. Kg Vorrichtung zur Arretierung eines beweglichen Elements eines Kupplungsaggregats und Kupplungsaggregat mit einer entsprechenden Vorrichtung
WO2014173406A1 (de) 2013-04-24 2014-10-30 Schaeffler Technologies Gmbh & Co. Kg Rampenkörper für ein rampensystem einer nachstelleinrichtung
DE102014208889A1 (de) 2013-06-06 2014-12-11 Schaeffler Technologies Gmbh & Co. Kg Mehrteiliger Klemmfederring für ein Kupplungsaggregat
DE102013226470A1 (de) 2013-12-18 2015-06-18 Schaeffler Technologies AG & Co. KG Nachstelleinrichtung für eine Reibungskupplung sowie Verfahren zur Herstellung einer Nachstelleinrichtung
DE10165097B3 (de) * 2000-07-18 2015-07-23 Schaeffler Technologies AG & Co. KG Doppelkupplungsgetriebe
WO2015127930A1 (de) 2014-02-27 2015-09-03 Schaeffler Technologies AG & Co. KG Reibungskupplung mit kraftgesteuerter nachstelleinrichtung
DE102015204441A1 (de) 2015-03-12 2016-09-15 Schaeffler Technologies AG & Co. KG Nachstelleinrichtung sowie Kupplungsdeckel für eine Reibungskupplung
DE10209839B4 (de) * 2001-03-19 2016-09-22 Schaeffler Technologies AG & Co. KG Kraftfahrzeug sowie Verfahren zum Betreiben eines Kraftfahrzeuges
DE102015206115A1 (de) 2015-04-07 2016-10-13 Schaeffler Technologies AG & Co. KG Nachstelleinrichtung für eine Reibungskupplung und Kupplungsaggregat mit derartiger Reibungskupplung
DE112007002918B4 (de) * 2006-12-27 2017-01-05 Schaeffler Technologies AG & Co. KG Reibungskupplungseinrichtung mit Verschleißkompensationseinrichtung
DE102015214800A1 (de) 2015-08-04 2017-02-09 Schaeffler Technologies AG & Co. KG Verfahren zur Einstellung einer selbstnachstellenden Reibungskupplung
DE102016222503A1 (de) 2015-11-16 2017-05-18 Schaeffler Technologies AG & Co. KG Nachstelleinrichtung für eine Reibungskupplung
DE19884035B3 (de) * 1997-06-17 2018-09-27 Valeo Reibungskupplung mit Vorrichtung zur Verschleißnachstellung der Reibbeläge, insbesondere für Kraftfahrzeuge
DE102019100727A1 (de) 2019-01-14 2020-07-16 Schaeffler Technologies AG & Co. KG Nachstelleinrichtung

Families Citing this family (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE512355C2 (sv) * 1991-11-26 2000-03-06 Luk Lamellen & Kupplungsbau Friktionskoppling, särskilt för motorfordon, motorfordon med en dylik koppling samt kopplingsaggregat och drivenhet, speciellt för motorfordon
RU2238451C2 (ru) * 1992-03-10 2004-10-20 Лук Ламеллен унд Купплюнгсбау ГмбХ Фрикционная муфта и устройство сцепления
JP2656200B2 (ja) * 1992-07-06 1997-09-24 株式会社エクセディ クラッチカバー組立体
DE4345215B4 (de) * 1992-07-11 2005-05-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat
GB2305475B (en) * 1992-07-11 1997-05-21 Luk Lamellen & Kupplungsbau Friction clutch
DE4322677B4 (de) * 1992-07-11 2005-05-12 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Reibungskupplung
US6325192B1 (en) * 1992-11-25 2001-12-04 Luk Lamellen Und Kupplungsbau Self-adjusting friction clutch
DE4412107B4 (de) * 1993-04-29 2009-04-09 Zf Sachs Ag Reibungskupplung mit automatischem Verschleißausgleich und zwei Nachstellringen
EP0622559B1 (de) * 1993-04-29 1996-06-12 FICHTEL & SACHS AG Reibungskupplung mit automatischem Verschleissausgleich
ES2109849B1 (es) * 1993-07-16 1998-08-16 Fichtel & Sachs Ag Embrague de friccion con curva caracteristica plana.
GB2286021B (en) * 1994-01-27 1998-03-18 Automotive Products Plc Clutches
GB2286022B (en) * 1994-01-27 1998-01-28 Automotive Products Plc Clutches
DE4405344B4 (de) * 1994-02-19 2009-04-09 Zf Sachs Ag Reibungskupplung
US5810143A (en) * 1994-02-19 1998-09-22 Fichtel & Sachs Ag Motor vehicle friction clutch with a transmission element mounted on an axial guide
JPH07238953A (ja) * 1994-02-25 1995-09-12 Daikin Mfg Co Ltd クラッチカバー組立体
DE19510905A1 (de) * 1994-03-29 1995-10-05 Luk Lamellen & Kupplungsbau Reibungskupplung
US5509518A (en) * 1994-04-21 1996-04-23 Valeo Clutches And Transmissions, Inc. Diaphragm clutch assembly with wear compensator
DE4414471A1 (de) * 1994-04-26 1995-11-02 Hisao Dipl Ing Murase Kupplungsanlage
US5566804A (en) * 1994-06-21 1996-10-22 Dana Corporation Automatically adjusting friction torque device
EP1083356A3 (de) * 1994-06-21 2001-07-25 Eaton Corporation Reibungsdrehmomentvorrichtung mit automatischer Nachstellvorrichtung
ES2119642B1 (es) * 1994-07-12 1999-04-01 Fichtel & Sachs Ag Embrague de friccion
DE29506169U1 (de) * 1994-07-12 1995-06-08 Fichtel & Sachs Ag Reibungskupplung
US5628389A (en) * 1994-07-20 1997-05-13 Luk Lamellen Und Kupplungsbau Gmbh Friction clutch
DE4436110C1 (de) * 1994-10-10 1996-03-07 Fichtel & Sachs Ag Membranfederkupplung der gezogenen Bauart mit Verschleißausgleich
DE4436111C1 (de) * 1994-10-10 1996-01-18 Fichtel & Sachs Ag Reibungskupplung mit Verschleißausgleich
DE4440411C2 (de) * 1994-11-11 2000-11-09 Mannesmann Sachs Ag Membranfederkupplung mit Null-Durchgang
ES2119668B1 (es) * 1994-12-24 1999-04-01 Fichtel & Sachs Ag Embrague de friccion con muelle auxiliar para asistir a la fuerza de desembragado.
JP3086847B2 (ja) * 1994-12-24 2000-09-11 マンネスマン ザックス アクチエンゲゼルシャフト クラッチ解除力を補助するための補助ばねを有する摩擦クラッチ
DE19602006A1 (de) * 1995-01-28 1996-08-01 Luk Getriebe Systeme Gmbh Vorrichtung und ein Verfahren zur Ansteuerung eines Drehmomentübertragungssystems
FR2731661B1 (fr) * 1995-03-18 1999-06-25 Luk Getriebe Systeme Gmbh Procede de commande d'un systeme de transmission de couple et appareillage pour sa mise en oeuvre
FR2735823B1 (fr) * 1995-06-22 1997-09-05 Valeo Embrayage a friction a dispositif de rattrapage de jeu, notamment pour vehicule automobile
WO1997019275A1 (en) * 1995-11-17 1997-05-29 Kemper Yves J Controlled force actuator system
WO1997028383A1 (en) * 1996-01-30 1997-08-07 Kemper Yves J Controlled force actuator system
DE19608772C2 (de) * 1996-03-07 2002-07-18 Zf Sachs Ag Reibungskupplung mit Erzeugung der Anpreßkraft durch zwei Federn
US5904233A (en) * 1996-03-14 1999-05-18 Exedy Corporation Clutch cover assembly having a wear compensation mechanism with diaphragm spring attitude control
DE19611100C2 (de) * 1996-03-21 2002-10-24 Zf Sachs Ag Reibungskupplung mit Verschleißausgleich
JP3317631B2 (ja) * 1996-04-04 2002-08-26 株式会社エクセディ 摩擦クラッチ
JP3317630B2 (ja) * 1996-04-04 2002-08-26 株式会社エクセディ 摩擦クラッチ
FR2747750A1 (fr) * 1996-04-23 1997-10-24 Exedy Corp Embrayage a friction
US5776288A (en) * 1996-05-07 1998-07-07 Automotive Composites Company Method and apparatus for lined clutch plate
DE19712550A1 (de) * 1996-05-23 1997-11-27 Exedy Corp Reibungskupplung
US5984071A (en) * 1996-07-12 1999-11-16 Kemper; Yves J. Controlled force actuator system
US5960920A (en) * 1996-07-26 1999-10-05 Daikin Clutch Corporation Wear compensating friction clutch
GB2316723B (en) * 1996-08-06 2001-03-07 Luk Getriebe Systeme Gmbh Actuating apparatus for automatic actuation of a motor vehicle gearbox
WO1998010201A1 (fr) 1996-09-06 1998-03-12 Valeo Embrayage a friction a faible effort de debrayage
US5944157A (en) * 1996-09-17 1999-08-31 Valeo Friction clutch, in particular for a motor vehicle, including a wear compensating device
US5791448A (en) * 1996-10-04 1998-08-11 Eaton Corporation Segmented cam rings for automatic self adjusting clutch
DE19641507C1 (de) * 1996-10-09 1998-03-05 Mannesmann Sachs Ag Reibungskupplung, insbesondere für Kraftfahrzeuge
DE19746281B4 (de) * 1996-10-24 2007-10-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Reibungskupplung
US6047799A (en) * 1996-11-12 2000-04-11 Luk Getriebe-Systeme Gmbh Emergency facilities for influencing defective constituents of power trains in motor vehicles
US5934429A (en) * 1996-11-13 1999-08-10 Eaton Corporation Automatically adjusting friction clutch with cam locating fingers
US6109412A (en) * 1996-11-13 2000-08-29 Eaton Corp Automatically adjusting friction clutch with over adjustment protection and reset mechanism
US5941792A (en) 1996-11-23 1999-08-24 Luk Getriebe-Systeme Gmbh Method of and apparatus for regulating crawling movements of motor vehicles
DE19649135A1 (de) * 1996-11-27 1998-06-04 Mannesmann Sachs Ag Druckplattenbaugruppe, insbesondere für eine Kraftfahrzeug-Reibungskupplung mit automatischem Verschleißausgleich
US5967283A (en) * 1996-12-04 1999-10-19 Kemper; Yves J. Clutch spring assembly
DE19753557B4 (de) * 1996-12-11 2008-05-29 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Torsionsschwingungsdämpfer
DE19755713B4 (de) * 1996-12-13 2008-05-08 Exedy Corp., Neyagawa Vorrichtung zur Verschleißkompensation für einen Kupplungsmechanismus
US6006883A (en) * 1996-12-20 1999-12-28 Mannesmann Sachs Ag Friction clutch
DE19755081B4 (de) * 1996-12-20 2011-06-30 ZF Sachs AG, 97424 Reibungskupplung
NO980709L (no) * 1997-02-27 1998-08-28 Luk Getriebe Systeme Gmbh Motorvogn
DE19712888A1 (de) * 1997-03-27 1998-10-08 Mannesmann Sachs Ag Reibungskupplung mit selbsttätigem Verschleißausgleich
GB2327248B (en) * 1997-04-09 2001-05-16 Luk Getriebe Systeme Gmbh Motor vehicle with a power train having an automated clutch
DE19815257A1 (de) * 1997-04-18 1998-10-22 Atlas Fahrzeugtechnik Gmbh Getriebe
DE19815260B4 (de) * 1997-04-26 2006-03-02 Luk Gs Verwaltungs Kg Kraftfahrzeug
NO981839L (no) * 1997-04-30 1998-11-02 Luk Getriebe Systeme Gmbh Anordning for styring av et dreiemomentoverf°ringssystem
AU8431698A (en) 1997-05-30 1998-12-30 Luk Getriebe-Systeme Gmbh Method and device for controlling a clutch
FR2764020B1 (fr) * 1997-05-30 1999-08-06 Valeo Mecanisme d'embrayage pour embrayage a friction a faible effort de debrayage
DE19736557C5 (de) * 1997-08-22 2004-05-06 Daimlerchrysler Ag Reibungskupplung, insbesondere für Kraftfahrzeuge
DE19736558A1 (de) * 1997-08-22 1999-03-18 Daimler Benz Ag Reibungskupplung, insbesondere für Kraftfahrzeuge
US6171212B1 (en) 1997-08-26 2001-01-09 Luk Getriebe Systeme Gmbh Method of and apparatus for controlling the operation of a clutch in the power train of a motor vehicle
FR2772448B1 (fr) 1997-10-29 2000-01-14 Valeo Double volant amortisseur de torsion a rondelles d'etancheite, notamment pour vehicules automobiles
FR2774440B1 (fr) 1998-01-30 2000-03-03 Valeo Embrayage a friction dote d'un volant flexible
WO1999040335A1 (fr) 1998-02-05 1999-08-12 Valeo Mecanisme d'embrayage a friction, notamment pour vehicule automobile, comportant un dispositif de rattrapage d'usure
FR2774441B1 (fr) 1998-02-05 2000-06-23 Valeo Mecanisme d'embrayage a friction, notamment pour vehicule automobile, comportant un dispositif de rattrapage d'usure
FR2775038B1 (fr) * 1998-02-13 2000-10-27 Valeo Mecanisme d'embrayage, notamment pour vehicule automobile
GB2339602B (en) * 1998-03-13 2002-08-07 Sachs Race Eng Gmbh Friction clutch
DE19825240C2 (de) * 1998-03-13 2003-07-03 Sachs Race Eng Gmbh Reibungskupplung
EP1088175B2 (de) 1998-06-10 2010-11-10 Schaeffler Technologies AG & Co. KG Führungshülse für einen nehmerzylinder
US6019205A (en) * 1998-07-01 2000-02-01 Raytech Automotive Components Company Method and apparatus for lined clutch plate
FR2785349B1 (fr) 1998-10-29 2001-01-19 Valeo Double volant amortisseur de torsion a rondelles d'etancheite, notamment pour vehicules automobiles
FR2785954B1 (fr) * 1998-11-17 2001-01-19 Valeo Embrayage a friction, notamment pour vehicule automobile comportant un dispositif perfectionne de rattrapage d'usure
US6098773A (en) * 1998-11-30 2000-08-08 Eaton Corporation Friction clutch having protective internal shield
JP3717690B2 (ja) 1998-12-18 2005-11-16 株式会社エクセディ クラッチカバー組立体
US6062365A (en) * 1999-01-13 2000-05-16 Eaton Corporation Automatically adjusting friction clutch with over adjustment protection
WO2000055521A1 (de) 1999-03-15 2000-09-21 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Steuerungsystem zur automatischen betätigung einer kupplung während des anfahrens
FR2796435B1 (fr) 1999-07-12 2008-08-01 Luk Getriebe Systeme Gmbh Entrainement de generation d'un deplacement relatif de deux composants
DE19941210A1 (de) * 1999-08-30 2001-03-01 Mannesmann Sachs Ag Druckplattenbaugruppe
US6533094B2 (en) * 1999-12-09 2003-03-18 Exedy Corporation Clutch cover assembly
JP3609675B2 (ja) 1999-12-24 2005-01-12 アイシン精機株式会社 クラッチ装置
FR2804186B1 (fr) * 2000-01-25 2002-04-26 Valeo Embrayage a friction a dispositif de rattrapage d'usure des garnitures de frictions, notamment pour vehicule automobile
US6325193B1 (en) 2000-04-19 2001-12-04 Eaton Corporation Friction clutch with an adjustment limiting device
DE10117745A1 (de) 2000-04-20 2001-11-22 Luk Lamellen & Kupplungsbau Kupplungsscheibe
FR2809147B1 (fr) * 2000-05-19 2002-09-06 Valeo Embrayage a friction a dispositif de rattrapage de jeu pilote pour vehicule automobile
DE10192541B4 (de) 2000-06-23 2018-04-19 Schaeffler Technologies AG & Co. KG Vorrichtung zum Kompensieren des Einflusses der Drehzahl auf die Kennlinie einer Kupplung
DE10138722C5 (de) 2000-08-17 2017-05-24 Schaeffler Technologies AG & Co. KG Antriebsstrang
DE10048555A1 (de) * 2000-09-30 2002-04-11 Zf Sachs Ag Druckplattenbaugrupe und Vorspannfeder für eine Druckplattenbaugruppe
JP5023372B2 (ja) 2000-11-22 2012-09-12 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト クラッチ装置
WO2003029675A1 (de) * 2001-09-28 2003-04-10 Zf Sachs Ag Druckplattenbaugruppe für eine reibungskupplung
JP3903774B2 (ja) * 2001-11-15 2007-04-11 アイシン精機株式会社 車両用摩擦クラッチ
DE10163438A1 (de) * 2001-12-21 2003-07-03 Zahnradfabrik Friedrichshafen Verfahren zur Ermittlung des Kupplungsanlegepunktes
DE10201914B4 (de) * 2002-01-19 2013-06-06 Zf Friedrichshafen Ag Reibungskupplung
US6827192B2 (en) 2002-04-25 2004-12-07 Zf Sachs Ag Resilient plate for adjustable clutches
US6874608B2 (en) * 2002-07-01 2005-04-05 Eaton Corporation Clutch internal shielding device
CN100350167C (zh) * 2002-09-19 2007-11-21 卢克摩擦片和离合器两合公司 用于避免参考位置移动的方法及装置
DE10345906A1 (de) * 2002-10-09 2004-04-22 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren, Vorrichtung und deren Verwendung zum Betrieb eines Kraftfahrzeuges
JP4542307B2 (ja) * 2002-10-18 2010-09-15 アイシン精機株式会社 クラッチ制御装置
US6868949B2 (en) * 2003-02-06 2005-03-22 Borgwarner, Inc. Start-up clutch assembly
DE10330165A1 (de) * 2003-07-04 2005-01-20 Daimlerchrysler Ag Reibungskupplung, insbesondere für Kraftfahrzeuge
DE10330880A1 (de) * 2003-07-09 2005-01-27 Zf Sachs Ag Druckplattenbaugruppe
DE502004002172D1 (de) * 2004-04-10 2007-01-11 Borgwarner Inc Kupplungseinrichtung, insbesondere Anfahrkupplungseinrichtung
DE102004030660A1 (de) 2004-06-24 2006-01-26 Borgwarner Inc., Auburn Hills Kupplung
EP1612444B1 (de) * 2004-06-29 2008-03-12 BorgWarner Inc. Mehrfachkupplungsanordnung
DE602005011231D1 (de) * 2004-11-12 2009-01-08 Aisin Seiki Kupplungsnachstellvorrichtung
JP2006204043A (ja) * 2005-01-21 2006-08-03 Denso Corp 切替制御装置
JP4497040B2 (ja) * 2005-07-08 2010-07-07 日立工機株式会社 振動ドリル
BRPI0618633A2 (pt) * 2005-11-08 2011-09-06 Christian Salesse ferramenta de aperto, comportando um sistema de compensação autÈnomo
JP4667222B2 (ja) * 2005-12-09 2011-04-06 株式会社エクセディ クラッチカバー組立体
JP4754958B2 (ja) * 2005-12-09 2011-08-24 株式会社エクセディ クラッチカバー組立体
JP4173509B2 (ja) * 2006-01-25 2008-10-29 株式会社エクセディ クラッチカバー組立体
DE102006003665A1 (de) * 2006-01-26 2007-08-02 Bayerische Motoren Werke Ag Lamellenkupplung für Kraftfahrzeuge, insbesondere Motorräder
DE102007003960A1 (de) * 2006-02-16 2007-08-23 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren und Vorrichtung zum Nachstellen einer in einem Fahrzeugantriebsstrang befindlichen, von einem Aktor betätigten Reibungskupplung
DE102006057893A1 (de) 2006-12-08 2008-06-12 Zf Friedrichshafen Ag Reibungskupplung für den Antriebsstrang eines Fahrzeugs
CN101946105B (zh) * 2008-03-04 2013-07-17 博格华纳公司 具有区域控制的离合器冷却回路的双离合器变速器
CN101828055B (zh) * 2008-04-18 2013-09-04 博格华纳公司 具有简化控制的双离合器变速器
WO2010009806A1 (en) * 2008-07-25 2010-01-28 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Ring shaped axial wear compensation device
DE102008043492A1 (de) * 2008-11-05 2010-05-06 Zf Friedrichshafen Ag Verfahren und Anordnung zum Bestimmen des Verschleißzustandes einer Schaltkupplung
US8376906B2 (en) * 2008-12-09 2013-02-19 Borgwarner Inc. Automatic transmission for a hybrid vehicle
MD4079C1 (ro) * 2009-02-06 2011-07-31 Сергей БУРЛАК Dispozitiv de utilizare a energiei de frânare la autovehicule
EP2449290B1 (de) 2009-06-29 2015-10-21 Borgwarner Inc. Hydraulikventil zur verwendung in einem steuermodul eines automatikgetriebes
DE102010034823B4 (de) 2009-09-03 2019-12-19 Schaeffler Technologies AG & Co. KG Reibungskupplung mit Nachstelleinrichtung
DE102010051150A1 (de) 2009-11-26 2011-06-01 Schaeffler Technologies Gmbh & Co. Kg Selbstnachstellende Reibungskupplung
WO2011082095A2 (en) 2009-12-31 2011-07-07 Borgwarner Inc. Automatic transmission having high pressure actuation and low pressure lube hydraulic circuit
JP5008757B2 (ja) * 2010-08-20 2012-08-22 株式会社エクセディ クラッチカバー組立体
ITUD20110196A1 (it) * 2011-12-02 2013-06-03 Asoltech S R L Composizione a base di ubidecarenone
WO2013135493A1 (de) * 2012-03-16 2013-09-19 Schaeffler Technologies AG & Co. KG Reibungskupplung mit nachstelleinrichtung
DE102012207756A1 (de) 2012-05-09 2013-11-14 Schaeffler Technologies AG & Co. KG Selbstnachstellende Reibungskupplung
CN104364542B (zh) * 2012-06-14 2017-04-05 舍弗勒技术有限两合公司 自行补偿调节的摩擦离合器
DE102013210224A1 (de) 2012-06-27 2014-01-02 Schaeffler Technologies AG & Co. KG Reibungskupplung mit kraftkompensierter Tellerfeder
DE102013213149A1 (de) * 2012-07-12 2014-01-16 Schaeffler Technologies AG & Co. KG Drehmomentübertragungseinrichtung
FR2994723B1 (fr) * 2012-08-21 2014-08-22 Valeo Embrayages Procede de positionnement d'un plateau de pression d'un embrayage
KR102160943B1 (ko) 2012-11-09 2020-10-05 섀플러 테크놀로지스 아게 운트 코. 카게 클러치 장치
WO2014131416A1 (de) 2013-02-28 2014-09-04 Schaeffler Technologies Gmbh & Co. Kg Reibungskupplung
DE102014208689A1 (de) * 2013-06-06 2014-12-11 Schaeffler Technologies Gmbh & Co. Kg Selbstnachstellende Kupplung ohne Sensorfeder mit gezielter Nachstellung im zweiten Regelpunkt
DE112014006234A5 (de) * 2014-01-22 2016-10-27 Schaeffler Technologies AG & Co. KG Kupplungssystem mit druckgeregelter Reibungskupplung
EP3123048B1 (de) * 2014-03-25 2019-10-23 Schaeffler Technologies AG & Co. KG Weggesteuerte nachstelleinrichtung für eine reibkupplung
WO2015144165A1 (de) * 2014-03-25 2015-10-01 Schaeffler Technologies AG & Co. KG Nachstelleinrichtung für eine reibkupplung
CN104806751B (zh) * 2015-05-05 2017-10-03 广东交通职业技术学院 一种摩擦式离合器
DE102015216072A1 (de) 2015-08-24 2017-03-02 Schaeffler Technologies AG & Co. KG Kupplungsvorrichtung
DE102016211604A1 (de) 2016-06-28 2017-12-28 Schaeffler Technologies AG & Co. KG Selbstnachstellende Kupplung
US11015662B2 (en) * 2019-07-19 2021-05-25 Deere & Company Speed sensor for clutch assembly

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE898531C (de) * 1947-06-14 1953-11-30 Borg Warner Ein- und ausrueckbare Scheibenreibungskupplung
US2703164A (en) * 1950-04-13 1955-03-01 Binder Richard Automatic wear compensator
DE1267916B (de) * 1959-11-02 1968-05-09 Borg Warner Zweischeibenkupplung
DE1450201A1 (de) * 1964-01-24 1969-08-21 Ferordo Sa Franc Kupplung,insbesondere Membrankupplung
DE1775115A1 (de) * 1968-07-06 1971-05-19 Luk Lamellen & Kupplungsbau Befestigungseinrichtung fuer Abwaelzauflagen von Tellerfedern,insbesondere in Kupplungen
US3485330A (en) * 1969-02-17 1969-12-23 Stearns Electric Corp Self-adjusting clutch or brake
DE2036761C3 (de) * 1970-07-24 1973-09-13 Fichtel & Sachs Ag, 8720 Schweinfurt Kupplungsscheibe mit abgefederten metallischen oder metallkeramischen Reib belagen
DE2231035A1 (de) * 1972-06-24 1974-01-17 Luk Lamellen & Kupplungsbau Federelement und verwendung desselben
FR2210245A5 (de) * 1972-12-08 1974-07-05 Ferodo Sa
US3964586A (en) * 1973-07-02 1976-06-22 Ford Motor Company Clutch disc
FR2242893A5 (en) * 1973-08-28 1975-03-28 Ferodo Sa Gearshift-lever housing for diaphragm clutch on vehicle - has diaphragm attached to cover via bolts and intermediary supports
DE2460963A1 (de) * 1974-12-21 1976-07-01 Luk Lamellen & Kupplungsbau Reibungskupplung, insbesondere fuer kfz
JPS51126452A (en) * 1975-04-25 1976-11-04 Aisin Seiki Co Ltd Friction clutch
GB1567019A (en) * 1976-03-24 1980-05-08 Automotive Prod Co Ltd Friction clutches
US4057131A (en) * 1976-05-10 1977-11-08 Dana Corporation Multiple disk clutch stamped adapter ring
GB1540434A (en) * 1976-05-20 1979-02-14 Automotive Prod Co Ltd Driven plates for friction clutches
JPS53628U (de) * 1976-06-23 1978-01-06
US4086995A (en) * 1976-09-13 1978-05-02 Borg-Warner Corporation Friction clutches
US4191285A (en) * 1977-09-06 1980-03-04 Borg-Warner Corporation Wear compensator for Belleville spring clutch
DE2757892B2 (de) * 1977-12-24 1980-05-14 Ingo Dipl.-Ing. Dipl.- Wirtsch.-Ing. 7000 Stuttgart Haeussermann Federmembrane
US4206904A (en) * 1978-01-13 1980-06-10 Nyson Group Marketing, Ltd. Ball valve
JPS54109302A (en) * 1978-02-15 1979-08-27 Nec Corp Timing phase control system for high-speed discrimination of duo-binary waveform
JPS54116539A (en) * 1978-03-02 1979-09-10 Aisin Seiki Co Ltd Declutching defectiveness preventive device of friction clutch
FR2424446A1 (fr) * 1978-04-26 1979-11-23 Ferodo Sa Disque de friction a elasticite axiale
US4228883A (en) * 1978-04-27 1980-10-21 Borg-Warner Corporation Automatic wear adjuster for Belleville spring clutches
US4207972A (en) * 1978-05-26 1980-06-17 Borg-Warner Corporation Automatic wear compensator for Belleville spring clutches
DE3041341A1 (de) * 1980-11-03 1982-06-09 Fichtel & Sachs Ag, 8720 Schweinfurt Mehrscheibenkupplung mit federgestertem abhub
US4377225A (en) * 1980-11-17 1983-03-22 Borg-Warner Corporation Clutch driven plate assembly with variable friction area
JPS58158912A (ja) * 1982-03-16 1983-09-21 Agency Of Ind Science & Technol 高移動度半導体材料
DE3309427A1 (de) * 1982-03-18 1983-10-06 Valeo Betaetigungsvorrichtung fuer eine kupplung, ein regelgetriebe, eine bremse, oder aehnliches
DE3323995A1 (de) * 1983-07-02 1985-01-10 Fichtel & Sachs Ag, 8720 Schweinfurt Gedrueckte membranfederkupplung mit selbsttaetigem verschleissausgleich im bereich des kippkreises
DE3404738A1 (de) * 1984-02-10 1985-08-14 Fichtel & Sachs Ag, 8720 Schweinfurt Reibungskupplung mit zusatzschwungmasse auf der getriebeeingangswelle
DE3420537A1 (de) * 1984-06-01 1985-12-05 Fichtel & Sachs Ag, 8720 Schweinfurt Verschleissausgleich an der membranfederauflage ueber einen ausgleichsring
US4663983A (en) * 1984-07-19 1987-05-12 Aisin Seiki Kabushiki Kaisha Torque variation absorbing device
JPS6189522U (de) * 1984-10-31 1986-06-11
JPS61146629U (de) * 1985-03-04 1986-09-10
DE3516152C1 (de) * 1985-05-04 1986-06-05 Daimler-Benz Ag, 7000 Stuttgart Kupplung
DE3518781A1 (de) * 1985-05-24 1986-11-27 Fichtel & Sachs Ag, 8720 Schweinfurt Selbstnachstellende kupplung
FR2583484B1 (fr) * 1985-06-14 1989-05-19 Valeo Diaphragme elastique a doigts radiaux, notamment pour mecanisme d'embrayage
JPS6263226A (ja) * 1985-09-02 1987-03-19 Daikin Mfg Co Ltd クラツチ
JPH0648019B2 (ja) * 1986-02-26 1994-06-22 株式会社大金製作所 クラツチ
FR2599444B1 (fr) * 1986-06-03 1988-08-05 Valeo Embrayage multidisques, notamment pour vehicule automobile
FR2599446B1 (fr) * 1986-06-03 1988-08-05 Valeo Embrayage a friction a rattrapage d'usure continu
DE3721711C2 (de) * 1986-07-05 1997-09-04 Luk Lamellen & Kupplungsbau Einrichtung zum Dämpfen von Schwingungen
JP2718413B2 (ja) * 1986-07-05 1998-02-25 ルーク・ラメレン・ウント・クツプルングスバウ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 振動緩衝装置
DE3631863C2 (de) * 1986-09-19 1995-05-24 Fichtel & Sachs Ag Kupplungsscheibe mit doppelt angeordneten Federsegmenten und wechselseitig verbauten Belagnieten
FR2605692B1 (fr) * 1986-10-23 1989-05-19 Valeo Dispositif d'embrayage a rattrapage d'usure
FR2606477B1 (fr) * 1986-11-06 1989-02-24 Valeo Dispositif d'embrayage a rattrapage d'usure automatique
FR2608238B1 (fr) * 1986-12-15 1991-01-25 Valeo Embrayage a friction a progressivite d'actionnement
JPS63270925A (ja) * 1987-04-27 1988-11-08 Daikin Mfg Co Ltd クラツチカバ−アツセンブリ
US4949829A (en) * 1987-08-03 1990-08-21 Kabushiki Kaisha Daikin Seisakusho Clutch cover assembly with annular coned disc spring
US4809834A (en) * 1987-08-31 1989-03-07 Ford Motor Company Multiple plate clutch release proportioning device
JPH01163218A (ja) * 1987-12-19 1989-06-27 Toyota Central Res & Dev Lab Inc 繊維強化樹脂組成物
JPH0532661Y2 (de) * 1988-05-07 1993-08-20
JP2536606B2 (ja) * 1988-10-31 1996-09-18 いすゞ自動車株式会社 車両のブレ―キエネルギ―回生装置
US5029687A (en) * 1989-01-18 1991-07-09 Kabushiki Kaisha Daikin Seisakusho Self adjuster for pull-type clutch
EP0385752B1 (de) * 1989-02-28 1994-09-21 Unisia Jecs Corporation Schwungradanordnung für einen Verbrennungsmotor
JPH02124326U (de) * 1989-03-24 1990-10-12
DE4011850B4 (de) * 1989-04-17 2006-04-27 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zum Steuern einer zwischen einer Antriebsmaschine und einem Getriebe wirksamen automatisierten Reibungskupplung
US5088583A (en) * 1989-04-27 1992-02-18 Kabushiki Kaisha Daikin Seisakusho Clutch cover assembly with spring biased release assembly
JPH03123U (de) * 1989-05-22 1991-01-07
JPH03123A (ja) * 1989-05-29 1991-01-07 Matsushita Electric Works Ltd タンク内のスラリー濃度調整方法
JPH0319131A (ja) * 1989-06-16 1991-01-28 Kobe Steel Ltd 磁気デイスク用基板の製造方法
DE3920372C1 (de) * 1989-06-22 1990-08-02 Webasto Ag Fahrzeugtechnik, 8035 Stockdorf, De
JPH0538249Y2 (de) * 1989-07-06 1993-09-28
JPH0532664Y2 (de) * 1989-07-20 1993-08-20
JPH0353628A (ja) * 1989-07-21 1991-03-07 Fujitsu Ltd 光通信方式
JPH0353628U (de) * 1989-09-29 1991-05-23
JPH03134318A (ja) 1989-10-16 1991-06-07 Daikin Mfg Co Ltd クラッチカバーアッセンブリ
JPH03129129A (ja) * 1989-10-16 1991-06-03 Daikin Mfg Co Ltd クラッチカバーアッセンブリ
JPH041730U (de) * 1989-12-29 1992-01-08
JPH0532665Y2 (de) * 1990-03-14 1993-08-20
DE4014470C2 (de) * 1990-05-07 1999-05-27 Mannesmann Sachs Ag Reibungskupplung
JPH04211744A (ja) * 1990-05-16 1992-08-03 Atsugi Unisia Corp 自動車用動力伝達装置
FR2662758B1 (fr) * 1990-05-31 1996-09-20 Luk Lamellen & Kupplungsbau Dispositif de transmission de couple.
DE4117571A1 (de) * 1990-05-31 1991-12-05 Luk Lamellen & Kupplungsbau Geteiltes schwungrad
DE4117579B4 (de) * 1990-05-31 2007-07-12 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehmomentübertragungseinrichtung
DE4117582B4 (de) * 1990-05-31 2008-02-14 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehmomentübertragungseinrichtung
FR2670548B1 (fr) * 1990-12-13 1995-06-23 Valeo Disque de friction, notamment pour embrayage.
DE4244817B4 (de) * 1991-11-26 2005-05-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Reibungskupplung
SE512355C2 (sv) * 1991-11-26 2000-03-06 Luk Lamellen & Kupplungsbau Friktionskoppling, särskilt för motorfordon, motorfordon med en dylik koppling samt kopplingsaggregat och drivenhet, speciellt för motorfordon
US5634541A (en) 1992-03-05 1997-06-03 Luk Lamellen Und Kupplungsbau Gmbh Automatically adjustable friction clutch
DE4306688C2 (de) * 1992-05-06 1996-08-08 Fichtel & Sachs Ag Automatischer Verschleißausgleich für die Druckplatte einer Kraftfahrzeug-Reibungskupplung
US5263564A (en) * 1992-05-28 1993-11-23 Dana Corporation Adjusting ring seal
JP2656197B2 (ja) * 1992-09-07 1997-09-24 株式会社エクセディ クラッチカバー組立体
US5320205A (en) * 1992-11-12 1994-06-14 Dana Corporation Wear adjustment for a clutch

Cited By (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6098772A (en) * 1992-07-11 2000-08-08 Luk Lamellen Und Kupplungsbau Gmbh Self-adjusting friction clutch
FR2693522A1 (fr) * 1992-07-11 1994-01-14 Luk Lamellen & Kupplungsbau Groupe d'embrayage.
USRE37746E1 (en) * 1992-09-07 2002-06-18 Exedy Corporation Clutch cover assembly
DE4330263B4 (de) * 1992-09-07 2004-02-26 Exedy Corp., Neyagawa Kupplungsabdeckungsausbildung
US5586633A (en) * 1992-09-07 1996-12-24 Kabushiki Kaisha Daikin Seisakusho Clutch cover assembly
DE4330263A1 (de) * 1992-09-07 1994-03-10 Daikin Mfg Co Ltd Kupplungsabdeckungsausbildung
US5727666A (en) * 1992-12-22 1998-03-17 Luk Lamellen Und Kupplungsbau Gmbh Self-adjusting friction clutch
FR2752277A1 (fr) 1993-06-19 1998-02-13 Luk Lamellen & Kupplungsbau Dispositif de transmission de couple
DE4448016B4 (de) * 1993-06-19 2015-02-19 Schaeffler Technologies Gmbh & Co. Kg Schwungradvorrichtung
JPH07151165A (ja) * 1993-09-13 1995-06-13 Luk Lamellen & Kupplungsbau Gmbh レリーズ装置
DE4431641B4 (de) * 1993-09-13 2004-03-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Ausrückvorrichtung
US5890992A (en) * 1994-02-23 1999-04-06 Luk Getriebe-Systeme Gmbh Method of and apparatus for regulating the transmission of torque in power trains
US5679091A (en) * 1994-02-23 1997-10-21 Luk Getriebe-Systeme Gmbh Method of and apparatus for regulating the transmission of torque in power trains
DE19517666B4 (de) * 1994-05-21 2005-04-07 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Ausrückvorrichtung für eine Kupplung
US5667048A (en) * 1994-05-21 1997-09-16 Luk Lamell Und Kupplungsbau Clutch disengaging device
US5725456A (en) * 1994-10-29 1998-03-10 Luk Getriebe Systeme Gmbh Method of regulating the operation of a torque transmission apparatus
DE19538784B4 (de) * 1994-10-29 2007-03-29 Luk Gs Verwaltungs Kg Steuerverfahren für ein Drehmomentübertragungssystem
DE4440412A1 (de) * 1994-11-11 1996-05-30 Fichtel & Sachs Ag Reibungskupplung mit automatischem Verschleißausgleich
US5645154A (en) * 1994-11-11 1997-07-08 Fichtel & Sachs Ag Friction clutch with automatic wear compensation
DE4440412C2 (de) * 1994-11-11 2002-11-14 Zf Sachs Ag Reibungskupplung mit automatischem Verschleißausgleich
US5641048A (en) * 1994-11-14 1997-06-24 Luk Lamellen Und Kupplungsbau Gmbh Friction clutch
FR2726871A1 (fr) * 1994-11-14 1996-05-15 Luk Lamellen & Kupplungsbau Embrayage a friction
DE4442594B4 (de) * 1994-11-30 2005-02-03 Zf Sachs Ag Reibungskupplung
DE4442594A1 (de) * 1994-11-30 1996-06-13 Fichtel & Sachs Ag Reibungskupplung
US5669480A (en) * 1994-12-23 1997-09-23 Luk Lamellen Und Kupplungsbau Gmbh Clutch operating apparatus
US5954178A (en) * 1996-01-31 1999-09-21 Luk Getriebe-Systeme Gmbh Apparatus for actuating an aggregate in the power train of a motor vehicle
US5803224A (en) * 1996-03-05 1998-09-08 Luk Lamellen Und Kupplungsbau Gmbh Friction clutch
DE19713423B4 (de) * 1996-04-03 2012-11-29 Schaeffler Technologies AG & Co. KG Vorrichtung und Verfahren zur Betätigung eines Getriebes
DE19713423C5 (de) * 1996-04-03 2015-11-26 Schaeffler Technologies AG & Co. KG Vorrichtung und Verfahren zur Betätigung eines Getriebes
DE19721237B4 (de) * 1996-05-24 2007-02-15 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Reibungskupplung
US5894916A (en) * 1996-05-24 1999-04-20 Luk Lamellen Und Kupplungbau Gmbh Friction clutch
DE19703333B4 (de) * 1997-01-30 2006-02-02 Zf Sachs Ag Reibungskupplung für Kraftfahrzeuge
DE19880946B3 (de) * 1997-05-30 2012-04-05 Valeo Kupplungsmechanismus für eine Reibungskupplung
DE19884035B3 (de) * 1997-06-17 2018-09-27 Valeo Reibungskupplung mit Vorrichtung zur Verschleißnachstellung der Reibbeläge, insbesondere für Kraftfahrzeuge
FR2767167A1 (fr) 1997-08-04 1999-02-12 Luk Lamellen & Kupplungsbau Embrayage a friction
FR2767367A1 (fr) 1997-08-04 1999-02-19 Luk Lamellen & Kupplungsbau Dispositif pour l'amortissement d'oscillations de rotation
FR2772093A1 (fr) 1997-12-09 1999-06-11 Luk Lamellen & Kupplungsbau Embrayage a friction pour vehicules automobiles
DE19881886B4 (de) * 1997-12-09 2014-03-13 Schaeffler Technologies AG & Co. KG Reibungskupplung
WO1999030050A2 (de) 1997-12-09 1999-06-17 Luk Lamellen Und Kupplungsbau Gmbh Reibungskupplung mit progressivem ausrückwegskraftverlauf
DE19911667B4 (de) * 1998-03-19 2012-01-26 Schaeffler Technologies Gmbh & Co. Kg Reibungskupplung
FR2776349A1 (fr) 1998-03-19 1999-09-24 Luk Lamellen & Kupplungsbau Embrayage a friction
DE19914937B4 (de) * 1998-04-09 2010-09-09 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Betätigungsvorrichtung
DE19960641B4 (de) * 1998-12-18 2006-02-16 Eaton Corp., Cleveland Sich automatisch einstellende Reibungskupplung mit Drehfedergehäuse
DE10012499B4 (de) * 1999-03-16 2009-12-17 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Einrichtung zum Übertragen eines Drehmoments
DE10025850B4 (de) * 1999-05-31 2011-12-01 Schaeffler Technologies Gmbh & Co. Kg Reibungskupplung
FR2794200A1 (fr) 1999-05-31 2000-12-01 Luk Lamellen & Kupplungsbau Accouplement a friction
DE10059277B4 (de) * 1999-12-08 2010-03-25 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftfahrzeug und Verfahren zum Betreiben eines Kraftfahrzeuges
DE10059279B4 (de) * 1999-12-08 2013-07-25 Schaeffler Technologies AG & Co. KG Kraftfahrzeug mit Getriebe
FR2802267A1 (fr) 1999-12-08 2001-06-15 Luk Lamellen & Kupplungsbau Vehicule automobile comportant une boite de vitesses
FR2802266A1 (fr) 1999-12-08 2001-06-15 Luk Lamellen & Kupplungsbau Vehicule automobile et procede pour faire fonctionner un vehicule automobile
DE10059276B4 (de) * 1999-12-23 2014-06-05 Schaeffler Technologies Gmbh & Co. Kg Kraftfahrzeug sowie Verfahren zum Betreiben eines Kraftfahrzeugs
FR2803007A1 (fr) 1999-12-23 2001-06-29 Luk Lamellen & Kupplungsbau Vehicule a moteur et procede pour son utilisation
WO2001077540A3 (de) * 2000-04-10 2003-01-30 Luk Lamellen & Kupplungsbau Kupplungsaggregat
DE10191355B4 (de) * 2000-04-10 2014-07-31 Schaeffler Technologies Gmbh & Co. Kg Doppelkupplung und Verfahren zur Betätigung einer Doppelkupplung
FR2807483A1 (fr) 2000-04-10 2001-10-12 Luk Lamellen & Kupplungsbau Unite d'embrayage
WO2001077540A2 (de) 2000-04-10 2001-10-18 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat
GB2382110B (en) * 2000-04-10 2004-09-15 Luk Lamellen & Kupplungsbau Clutch assembly
DE10165097B3 (de) * 2000-07-18 2015-07-23 Schaeffler Technologies AG & Co. KG Doppelkupplungsgetriebe
DE10133695B4 (de) * 2000-07-18 2015-08-13 Schaeffler Technologies AG & Co. KG Doppelkuplungsgetriebe
DE10165096B3 (de) * 2000-07-18 2015-08-13 Schaeffler Technologies AG & Co. KG Getriebe
WO2002018809A1 (de) 2000-08-31 2002-03-07 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zur situationsabhängigen abschaltung der restbestromung eines kupplungsherstellers
FR2813362A1 (fr) 2000-08-31 2002-03-01 Luk Lamellen & Kupplungsbau Procede pour debrancher, en fonction de la situation, l'alimentation en courant residuel d'un regulateur de couplage
FR2813564A1 (fr) 2000-09-04 2002-03-08 Luk Lamellen & Kupplungsbau Vehicule automobile comportant une boite de vitesses
FR2814208A1 (fr) 2000-09-15 2002-03-22 Luk Lamellen & Kupplungsbau Dispositif pour actionner des embrayages et procede pour faire fonctionner un dispositif pour actionner des embrayages
DE10148088B4 (de) * 2000-10-13 2015-04-09 Schaeffler Technologies AG & Co. KG Kraftfahrzeug
DE10148088C5 (de) 2000-10-13 2019-03-07 Schaeffler Technologies AG & Co. KG Montageeinheit
FR2815300A1 (fr) 2000-10-13 2002-04-19 Luk Lamellen & Kupplungsbau Vehicule a moteur comportant un mecanisme d'embrayage et une boite de vitesses automatique ou manuelle
US6997075B2 (en) 2000-10-20 2006-02-14 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Motor vehicle with a gearbox and method for operating a motor vehicle
FR2818204A1 (fr) 2000-12-18 2002-06-21 Luk Lamellen & Kupplungsbau Amelioration de la securite d'utilisation d'un dispositif d' actionnement automatise d'un embrayage et/ou d'une boite de vitesses dans un vehicule automobile
FR2819454A1 (fr) 2001-01-12 2002-07-19 Luk Lamellen & Kupplungsbau Procede destine a faire fonctionner un vehicule automobile et dispositif de mise en oeuvre correspondant
WO2002066870A1 (de) 2001-02-23 2002-08-29 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Getriebe
DE10206561B4 (de) * 2001-02-23 2017-03-02 Schaeffler Technologies AG & Co. KG Doppelkupplungsgetriebe
FR2821409A1 (fr) 2001-02-23 2002-08-30 Luk Lamellen & Kupplungsbau Boite de vitesses
DE10208207B4 (de) * 2001-02-27 2012-05-16 Schaeffler Technologies Gmbh & Co. Kg Reibungskupplung
DE10209839B4 (de) * 2001-03-19 2016-09-22 Schaeffler Technologies AG & Co. KG Kraftfahrzeug sowie Verfahren zum Betreiben eines Kraftfahrzeuges
US8831847B2 (en) 2001-08-24 2014-09-09 Schaeffler Technologies AG & Co. KG Regulated drivetrain for damping out vibrations
WO2003019030A1 (de) 2001-08-24 2003-03-06 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Antriebsstrang mit regelung zur dämpfung von schwingungen
FR2828916A1 (fr) 2001-08-24 2003-02-28 Luk Lamellen & Kupplungsbau Ligne d'entrainement
EP1710461A3 (de) * 2002-04-10 2008-08-06 LuK Lamellen und Kupplungsbau Beteiligungs KG Kupplungsaggregat
DE10322783B4 (de) * 2002-06-19 2013-10-31 Zf Friedrichshafen Ag Reibungskupplung mit Reibungsdämpfungsvorrichtung
US6874607B2 (en) 2002-06-19 2005-04-05 Zf Sachs Ag Friction clutch
DE102004018377B4 (de) * 2003-04-17 2014-08-07 Schaeffler Technologies Gmbh & Co. Kg Reibungskupplung
DE112006002788B4 (de) * 2005-11-29 2019-07-25 Schaeffler Technologies AG & Co. KG Kupplungsaggregat
WO2007062615A1 (de) * 2005-11-29 2007-06-07 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat
WO2007062616A1 (de) * 2005-11-29 2007-06-07 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat
WO2007128261A1 (de) 2006-05-04 2007-11-15 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Reibungskupplung
US8770366B2 (en) 2006-11-17 2014-07-08 Schaeffler Technologies AG & Co. KG Friction clutch unit
DE112007002506B4 (de) * 2006-11-17 2016-12-08 Schaeffler Technologies AG & Co. KG Doppelkupplung
DE112007002918B4 (de) * 2006-12-27 2017-01-05 Schaeffler Technologies AG & Co. KG Reibungskupplungseinrichtung mit Verschleißkompensationseinrichtung
DE102008006065A1 (de) 2007-02-15 2008-08-21 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zur Herstellung einer Tellerfeder, Tellerfeder sowie Reibungskupplung mit einer solchen
DE102008006065B4 (de) 2007-02-15 2022-04-14 Schaeffler Technologies AG & Co. KG Verfahren zur Herstellung einer Tellerfeder
EP1958713A1 (de) 2007-02-15 2008-08-20 LuK Lamellen und Kupplungsbau Beteiligungs KG Verfahren zur Herstellung einer Tellerfeder, Tellerfeder sowie Reibungskupplung mit einer solchen
DE102008028179A1 (de) 2007-06-28 2009-01-08 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat
EP2009306A2 (de) 2007-06-28 2008-12-31 LuK Lamellen und Kupplungsbau Beteiligungs KG Kupplungsaggregat
EP2028385A2 (de) 2007-08-20 2009-02-25 LuK Lamellen und Kupplungsbau Beteiligungs KG Kupplungsaggregat
DE102008033030A1 (de) 2007-08-20 2009-02-26 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat
US8162120B2 (en) 2007-09-24 2012-04-24 Schaeffler Technologies AG & Co. KG Friction clutch
DE102008044820A1 (de) 2007-09-24 2009-04-09 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Reibungskupplung
US8408374B2 (en) 2008-11-03 2013-04-02 Schaeffler Technologies AG & Co. KG Coupling assembly having transport lock
DE112009002479B4 (de) 2008-11-03 2023-02-02 Schaeffler Technologies AG & Co. KG Kupplungsaggregat mit Transportsicherung
DE102009049253A1 (de) 2008-11-03 2010-05-06 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat mit Transportsicherung
DE102009049509A1 (de) 2008-11-13 2010-05-20 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Reibungskupplung mit Nachstelleinrichtung
DE102009055909B4 (de) * 2008-12-22 2017-06-14 Schaeffler Technologies AG & Co. KG Kupplungsaggregat mit einer Nachstelleinrichtung zur Kompensation von Verschleiß
DE102009053479B4 (de) 2008-12-22 2020-06-10 Schaeffler Technologies AG & Co. KG Kupplungsaggregat mit einer Nachstelleinrichtung zur Kompensation von Verschleiß
DE102009055909A1 (de) 2008-12-22 2010-06-24 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat
DE102009053479A1 (de) 2008-12-22 2010-07-01 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat
DE102010006055A1 (de) 2009-02-12 2010-08-19 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kupplungsaggregat
DE102010006055B4 (de) 2009-02-12 2019-07-25 Schaeffler Technologies AG & Co. KG Kupplungsaggregat
DE102010025458A1 (de) 2009-07-30 2011-02-03 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Reibungskupplung
DE102010025458B4 (de) 2009-07-30 2019-07-25 Schaeffler Technologies AG & Co. KG Reibungskupplung mit Nachstelleinrichtung und Verfahren zur Herstellung eines Kupplungsdeckels einer solchen Reibungskupplung
WO2011057600A1 (de) 2009-11-12 2011-05-19 Schaeffler Technologies Gmbh & Co. Kg Kupplungsaggregat
DE102010050069A1 (de) 2009-11-12 2011-05-19 Schaeffler Technologies Gmbh & Co. Kg Kupplungsaggregat
DE102010054248A1 (de) 2009-12-21 2011-06-22 Schaeffler Technologies GmbH & Co. KG, 91074 Kupplungsaggregat
DE102011102404A1 (de) 2011-05-25 2012-11-29 Schaeffler Technologies AG & Co. KG Selbstnachstellende Kupplung
DE102011102326A1 (de) 2011-05-25 2012-11-29 Schaeffler Technologies AG & Co. KG Selbstnachstellende Doppelkupplung
DE102012219787A1 (de) 2011-11-25 2013-05-29 Schaeffler Technologies AG & Co. KG Reibungskupplung
DE102013201697A1 (de) 2012-03-01 2013-09-05 Schaeffler Technologies AG & Co. KG Kupplungsdeckelanordnung für eine Reibungskupplung
DE102013207694A1 (de) 2012-05-23 2013-11-28 Schaeffler Technologies AG & Co. KG Sensierring für eine weggesteuerte Nachstelleinrichtung einer Reibungskupplung
DE102013207694B4 (de) * 2012-05-23 2021-06-17 Schaeffler Technologies AG & Co. KG Sensierring für eine weggesteuerte Nachstelleinrichtung einer Reibungskupplung
DE102012213684A1 (de) 2012-08-02 2014-02-06 Schaeffler Technologies AG & Co. KG Zugankeranordnung zum Verlagern einer Anpressplatte einer Reibungskupplung
DE102013217050A1 (de) 2012-08-31 2014-03-06 Schaeffler Technologies AG & Co. KG Reibungskupplungseinrichtung
DE102012215442A1 (de) 2012-08-31 2014-03-06 Schaeffler Technologies AG & Co. KG Kupplungsaggregat mit Nachstelleinrichtung und Verfahren zu dessen Montage
DE102014204978A1 (de) 2013-04-12 2014-10-16 Schaeffler Technologies Gmbh & Co. Kg Vorrichtung zur Arretierung eines beweglichen Elements eines Kupplungsaggregats und Kupplungsaggregat mit einer entsprechenden Vorrichtung
WO2014173406A1 (de) 2013-04-24 2014-10-30 Schaeffler Technologies Gmbh & Co. Kg Rampenkörper für ein rampensystem einer nachstelleinrichtung
DE112014002152B4 (de) 2013-04-24 2018-08-02 Schaeffler Technologies AG & Co. KG Nachstelleinrichtung zum Nachstellen eines verschleißbedingten Fehlabstands einer Anpressplatte zu einer Gegenplatte einer Reibungskupplung
DE102014205917A1 (de) 2013-04-24 2014-10-30 Schaeffler Technologies Gmbh & Co. Kg Rampenkörper für ein Rampensystem einer Nachstelleinrichtung
DE102014208889A1 (de) 2013-06-06 2014-12-11 Schaeffler Technologies Gmbh & Co. Kg Mehrteiliger Klemmfederring für ein Kupplungsaggregat
DE102013226470A1 (de) 2013-12-18 2015-06-18 Schaeffler Technologies AG & Co. KG Nachstelleinrichtung für eine Reibungskupplung sowie Verfahren zur Herstellung einer Nachstelleinrichtung
WO2015127930A1 (de) 2014-02-27 2015-09-03 Schaeffler Technologies AG & Co. KG Reibungskupplung mit kraftgesteuerter nachstelleinrichtung
DE102015204441A1 (de) 2015-03-12 2016-09-15 Schaeffler Technologies AG & Co. KG Nachstelleinrichtung sowie Kupplungsdeckel für eine Reibungskupplung
DE102015206115A1 (de) 2015-04-07 2016-10-13 Schaeffler Technologies AG & Co. KG Nachstelleinrichtung für eine Reibungskupplung und Kupplungsaggregat mit derartiger Reibungskupplung
DE102015214800A1 (de) 2015-08-04 2017-02-09 Schaeffler Technologies AG & Co. KG Verfahren zur Einstellung einer selbstnachstellenden Reibungskupplung
DE102016222503A1 (de) 2015-11-16 2017-05-18 Schaeffler Technologies AG & Co. KG Nachstelleinrichtung für eine Reibungskupplung
DE102019100727A1 (de) 2019-01-14 2020-07-16 Schaeffler Technologies AG & Co. KG Nachstelleinrichtung

Also Published As

Publication number Publication date
CA2083743A1 (en) 1993-05-27
BR9204565A (pt) 1993-06-01
SE9203403D0 (sv) 1992-11-13
FR2684730B1 (fr) 1996-06-07
ITMI922695A1 (it) 1994-05-25
DE9219029U1 (de) 1997-02-13
SE9203403L (sv) 1993-05-27
CA2083795C (en) 2002-10-15
JPH05215149A (ja) 1993-08-24
SE9502679L (sv) 1995-07-21
FR2684151B1 (fr) 1996-09-27
ES2108594B1 (es) 1998-08-01
CA2083795A1 (en) 1993-05-27
ITMI922696A1 (it) 1993-05-27
ES2107928B1 (es) 1998-07-01
JPH05215150A (ja) 1993-08-24
SE512438C2 (sv) 2000-03-20
GB9224491D0 (en) 1993-01-13
FR2807482B1 (fr) 2005-09-09
KR100429653B1 (ko) 2004-08-25
US6588565B1 (en) 2003-07-08
US5450934A (en) 1995-09-19
CA2083743C (en) 2006-10-10
SE9203400D0 (sv) 1992-11-13
DE9219181U1 (de) 1999-04-29
US6202818B1 (en) 2001-03-20
DE4244993B4 (de) 2011-12-01
SE521067C2 (sv) 2003-09-30
SE512355C2 (sv) 2000-03-06
FR2769059A1 (fr) 1999-04-02
US5409091A (en) 1995-04-25
GB2261922B (en) 1995-09-27
DE4244818B4 (de) 2011-12-01
FR2860275B1 (fr) 2007-09-07
GB2261923A (en) 1993-06-02
ES2107928A1 (es) 1997-12-01
US5823312A (en) 1998-10-20
ITMI922695A0 (it) 1992-11-25
FR2684151A1 (fr) 1993-05-28
SE9804220L (sv) 1998-12-04
ES2108594A1 (es) 1997-12-16
UA29394C2 (uk) 2000-11-15
FR2769059B1 (fr) 2002-08-09
IT1256333B (it) 1995-11-30
SE520446C2 (sv) 2003-07-08
FR2684730A1 (fr) 1993-06-11
GB2261922A (en) 1993-06-02
GB9224460D0 (en) 1993-01-13
SE9804220D0 (sv) 1998-12-04
DE4239291B4 (de) 2007-01-18
DE4239289A1 (de) 1993-05-27
FR2807482A1 (fr) 2001-10-12
SE9203400L (sv) 1993-05-27
BR9204566A (pt) 1993-06-01
SE9502679D0 (sv) 1995-07-21
GB2261923B (en) 1996-07-03
FR2860275A1 (fr) 2005-04-01
IT1256334B (it) 1995-11-30
ITMI922696A0 (it) 1992-11-25
JP3471834B2 (ja) 2003-12-02
JP3437594B2 (ja) 2003-08-18

Similar Documents

Publication Publication Date Title
DE4239291A1 (de)
DE4322677A1 (de) Kupplungsaggregat
DE4418026B4 (de) Reibungskupplung
WO1994001692A1 (de) Kupplungsaggregat
DE4345577B4 (de) Reibungskupplung
DE4306505B4 (de) Reibungskupplung
DE4342390B4 (de) Reibungskupplung
EP1499811B1 (de) Kupplungsaggregat
DE19721237B4 (de) Reibungskupplung
DE19510905A1 (de) Reibungskupplung
DE112006002788B4 (de) Kupplungsaggregat
DE4431641A1 (de) Ausrückvorrichtung
DE19541172A1 (de) Reibungskupplung
DE19881886B4 (de) Reibungskupplung
DE19524827B4 (de) Reibungskupplung
DE19547559C2 (de) Reibungskupplung mit Zusatzfeder zur Unterstützung der Ausrückkraft
DE102009032332B4 (de) Reibungskupplung mit Nachstelleinrichtung
DE19707785A1 (de) Reibungskupplung
DE10025850B4 (de) Reibungskupplung
DE4245035B4 (de) Reibungskupplung
DE4345215B4 (de) Kupplungsaggregat
DE19834961A1 (de) Reibungskupplung
DE10218365A1 (de) Mehrscheibenkupplung
DE112014002152B4 (de) Nachstelleinrichtung zum Nachstellen eines verschleißbedingten Fehlabstands einer Anpressplatte zu einer Gegenplatte einer Reibungskupplung
DE102016222503A1 (de) Nachstelleinrichtung für eine Reibungskupplung

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8172 Supplementary division/partition in:

Ref country code: DE

Ref document number: 4244818

Format of ref document f/p: P

Q171 Divided out to:

Ref country code: DE

Ref document number: 4244818

8127 New person/name/address of the applicant

Owner name: LUK LAMELLEN UND KUPPLUNGSBAU BETEILIGUNGS KG, 778

8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 H, DE

R081 Change of applicant/patentee

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20120828

R071 Expiry of right
R071 Expiry of right