US20040010134A1 - Albumin fusion proteins - Google Patents

Albumin fusion proteins Download PDF

Info

Publication number
US20040010134A1
US20040010134A1 US09/833,245 US83324501A US2004010134A1 US 20040010134 A1 US20040010134 A1 US 20040010134A1 US 83324501 A US83324501 A US 83324501A US 2004010134 A1 US2004010134 A1 US 2004010134A1
Authority
US
United States
Prior art keywords
cancer
immune
hematopoietic
fragment
variant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/833,245
Other languages
English (en)
Inventor
Craig Rosen
William Haseltine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Human Genome Sciences Inc
Original Assignee
Human Genome Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27394014&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20040010134(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Human Genome Sciences Inc filed Critical Human Genome Sciences Inc
Priority to US09/833,245 priority Critical patent/US20040010134A1/en
Assigned to HUMAN GENOME SCIENCES, INC. reassignment HUMAN GENOME SCIENCES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HASELTINE, WILLIAM A., ROSEN, CRAIG A.
Priority to US10/472,964 priority patent/US20070032414A1/en
Priority to US10/472,965 priority patent/US20070026454A1/en
Publication of US20040010134A1 publication Critical patent/US20040010134A1/en
Priority to US10/868,184 priority patent/US20070048818A1/en
Priority to US11/264,096 priority patent/US20060084794A1/en
Priority to US11/545,766 priority patent/US20070099833A1/en
Priority to US12/570,397 priority patent/US20100286048A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/482Serine endopeptidases (3.4.21)
    • A61K38/4846Factor VII (3.4.21.21); Factor IX (3.4.21.22); Factor Xa (3.4.21.6); Factor XI (3.4.21.27); Factor XII (3.4.21.38)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • A61K38/212IFN-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/38Albumins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/65Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/18Feminine contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/12Keratolytics, e.g. wart or anti-corn preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/12Drugs for disorders of the metabolism for electrolyte homeostasis
    • A61P3/14Drugs for disorders of the metabolism for electrolyte homeostasis for calcium homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/06Antimalarials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/10Anthelmintics
    • A61P33/12Schistosomicides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/10Drugs for disorders of the endocrine system of the posterior pituitary hormones, e.g. oxytocin, ADH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/38Drugs for disorders of the endocrine system of the suprarenal hormones
    • A61P5/40Mineralocorticosteroids, e.g. aldosterone; Drugs increasing or potentiating the activity of mineralocorticosteroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/56IFN-alpha
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/61Growth hormones [GH] (Somatotropin)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/65Insulin-like growth factors (Somatomedins), e.g. IGF-1, IGF-2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7151Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for tumor necrosis factor [TNF], for lymphotoxin [LT]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • C07K14/765Serum albumin, e.g. HSA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/31Fusion polypeptide fusions, other than Fc, for prolonged plasma life, e.g. albumin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
    • C07K2319/75Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor containing a fusion for activation of a cell surface receptor, e.g. thrombopoeitin, NPY and other peptide hormones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates generally to Therapeutic proteins (including, but not limited to, a polypeptide, antibody, or peptide, or fragments and variants thereof) fused to albumin or fragments or variants of albumin.
  • the invention further relates to Therapeutic proteins (including, but not limited to, a polypeptide, antibody, or peptide, or fragments and variants thereof) fused to albumin or fragments or variants of albumin, that exhibit extended shelf-life and/or extended or therapeutic activity in solution.
  • These fusion proteins are herein collectively referred to as “albumin fusion proteins of the invention.”
  • the invention encompasses therapeutic albumin fusion proteins, compositions, pharmaceutical compositions, formulations and kits.
  • Nucleic acid molecules encoding the albumin fusion proteins of the invention are also encompassed by the invention, as are vectors containing these nucleic acids, host cells transformed with these nucleic acids vectors, and methods of making the albumin fusion proteins of the invention using these nucleic acids, vectors, and/or host cells.
  • the invention is also directed to methods of in vitro stabilizing a Therapeutic protein via fusion or conjugation of the Therapeutic protein to albumin or fragments or variants of albumin.
  • HSA Human serum albumin
  • HA a protein of 585 amino acids in its mature form (as shown in FIG. 15 or in SEQ ID NO:18), is responsible for a significant proportion of the osmotic pressure of serum and also functions as a carrier of endogenous and exogenous ligands.
  • HSA Human serum albumin
  • rHA recombinant HA
  • albumin As a carrier molecule and its inert nature are desirable properties for use as a carrier and transporter of polypeptides in vivo.
  • the use of albumin as a component of an albumin fusion protein as a carrier for various proteins has been suggested in WO 93/15199, WO 93/15200, and EP 413 622.
  • the use of N-terminal fragments of HA for fusions to polypeptides has also been proposed (EP 399 666). Fusion of albumin to the Therapeutic protein may be achieved by genetic manipulation, such that the DNA coding for HA, or a fragment thereof, is joined to the DNA coding for the Therapeutic protein.
  • a suitable host is then transformed or transfected with the fused nucleotide sequences, so arranged on a suitable plasmid as to express a fusion polypeptide.
  • the expression may be effected in vitro from, for example, prokaryotic or eukaryotic cells, or in vivo e.g. from a transgenic organism.
  • Storage problems are particularly acute when pharmaceutical formulations must be stored and dispensed outside of the hospital environment.
  • Many protein and peptide drugs also require the addition of high concentrations of other protein such as albumin to reduce or prevent loss of protein due to binding to the container. This is a major concern with respect to proteins such as IFN. For this reason, many Therapeutic proteins are formulated in combination with large proportion of albumin carrier molecule (100-1000 fold excess), though this is an undesirable and expensive feature of the formulation.
  • the present invention is based, in part, on the discovery that Therapeutic proteins may be stabilized to extend the shelf-life, and/or to retain the Therapeutic protein's activity for extended periods of time in solution, in vitro and/or in vivo, by genetically or chemically fusing or conjugating the Therapeutic protein to albumin or a fragment (portion) or variant of albumin, that is sufficient to stabilize the protein and/or its activity.
  • albumin-fusion proteins or albumin conjugated proteins may reduce the need to formulate protein solutions with large excesses of carrier proteins (such as albumin, unfused) to prevent loss of Therapeutic proteins due to factors such as binding to the container.
  • the present invention encompasses albumin fusion proteins comprising a Therapeutic protein (e.g., a polypeptide, antibody, or peptide, or fragments and variants thereof) fused to albumin or a fragment (portion) or variant of albumin.
  • the present invention also encompasses albumin fusion proteins comprising a Therapeutic protein (e.g., a polypeptide, antibody, or peptide, or fragments and variants thereof) fused to albumin or a fragment (portion) or variant of albumin, that is sufficient to prolong the shelf life of the Therapeutic protein, and/or stabilize the Therapeutic protein and/or its activity in solution (or in a pharmaceutical composition) in vitro and/or in vivo.
  • Nucleic acid molecules encoding the albumin fusion proteins of the invention are also encompassed by the invention, as are vectors containing these nucleic acids, host cells transformed with these nucleic acids vectors, and methods of making the albumin fusion proteins of the invention and using these nucleic acids, vectors, and/or host cells.
  • the invention also encompasses pharmaceutical formulations comprising an albumin fusion protein of the invention and a pharmaceutically acceptable diluent or carrier.
  • Such formulations may be in a kit or container.
  • kit or container may be packaged with instructions pertaining to the extended shelf life of the Therapeutic protein.
  • Such formulations may be used in methods of treating, preventing, ameliorating or diagnosing a disease or disease symptom in a patient, preferably a mammal, most preferably a human, comprising the step of administering the pharmaceutical formulation to the patient.
  • the present invention encompasses methods of preventing treating, or ameliorating a disease or disorder.
  • the present invention encompasses a method of treating a disease or disorder listed in the “Preferred Indication Y” column of Table 1 comprising administering to a patient in which such treatment, prevention or amelioration is desired an albumin fusion protein of the invention that comprises a Therapeutic protein portion corresponding to a Therapeutic protein (or fragment or variant thereof) disclosed in the “Therapeutic Protein X” column of Table 1 (in the same row as the disease or disorder to be treated is listed in the “Preferred Indication Y” column of Table 1) in an amount effective to treat prevent or ameliorate the disease or disorder.
  • the invention includes a method of extending the shelf life of a Therapeutic protein (e.g., a polypeptide, antibody, or peptide, or fragments and variants thereof) comprising the step of fusing or conjugating the Therapeutic protein to albumin or a fragment (portion) or variant of albumin, that is sufficient to extend the shelf-life of the Therapeutic protein.
  • a Therapeutic protein e.g., a polypeptide, antibody, or peptide, or fragments and variants thereof
  • the Therapeutic protein used according to this method is fused to the albumin, or the fragment or variant of albumin.
  • the Therapeutic protein used according to this method is fused to albumin, or a fragment or variant of albumin, via recombinant DNA technology or genetic engineering.
  • the invention includes a method of stabilizing a Therapeutic protein (e.g., a polypeptide, antibody, or peptide, or fragments and variants thereof) in solution, comprising the step of fusing or conjugating the Therapeutic protein to albumin or a fragment (portion) or variant of albumin, that is sufficient to stabilize the Therapeutic protein.
  • a Therapeutic protein e.g., a polypeptide, antibody, or peptide, or fragments and variants thereof
  • the Therapeutic protein used according to this method is fused to the albumin, or the fragment or variant of albumin.
  • the Therapeutic protein used according to this method is fused to albumin, or a fragment or variant of albumin, via recombinant DNA technology or genetic engineering.
  • the present invention further includes transgenic organisms modified to contain the nucleic acid molecules of the invention, preferably modified to express the albumin fusion proteins encoded by the nucleic acid molecules.
  • FIG. 1 depicts the extended shelf-life of an HA fusion protein in terms of the biological activity (Nb2 cell proliferation) of HA-hGH remaining after incubation in cell culture media for up to 5 weeks at 37° C. Under these conditions, hGH has no observed activity by week 2.
  • FIG. 2 depicts the extended shelf-life of an HA fusion protein in terms of the stable biological activity (Nb2 cell proliferation) of HA-hGH remaining after incubation in cell culture media for up to 3 weeks at 4, 37, or 50° C. Data is normalized to the biological activity of hGH at time zero.
  • FIGS. 3A and 3B compare the biological activity of HA-hGH with hGH in the Nb2 cell proliferation assay.
  • FIG. 3A shows proliferation after 24 hours of incubation with various concentrations of hGH or the albumin fusion protein
  • FIG. 3B shows proliferation after 48 hours of incubation with various concentrations of hGH or the albumin fusion protein.
  • FIG. 4 shows a map of a plasmid (pPPC0005) that can be used as the base vector into which polynucleotides encoding the Therapeutic proteins (including polypeptide and fragments and variants thereof) may be cloned to form HA-fusions.
  • Plasmid Map key PRB1p: PRB1 S. cerevisiae promoter; FL: Fusion leader sequence; rHA: cDNA encoding HA; ADH1t: ADH1 S. cerevisiae terminator; T3: T3 sequencing primer site; T7: T7 sequencing primer site; Amp R: ⁇ -lactamase gene; ori: origin of replication.
  • the plasmid in FIG. 4 was labeled pPPC0006, instead of pPPC0005.
  • the drawing of this plasmid did not show certain pertinent restriction sites in this vector.
  • the drawing is labeled pPPC0005 and more restriction sites of the same vector are shown.
  • FIG. 5 compares the recovery of vial-stored HA-IFN solutions of various concentrations with a stock solution after 48 or 72 hours of storage.
  • FIG. 6 compares the activity of an HA- ⁇ -IFN fusion protein after administration to monkeys via TV or SC.
  • FIG. 7 describes the bioavailability and stability of an HA- ⁇ -IFN fusion protein.
  • FIG. 8 is a map of an expression vector for the production of HA- -IFN.
  • FIG. 9 shows the location of loops in HA.
  • FIG. 10 is an example of the modification of an HA loop.
  • FIG. 11 is a representation of the HA loops.
  • FIG. 12 shows the HA loop IV.
  • FIG. 13 shows the tertiary structure of HA.
  • FIG. 14 shows an example of a scFv-HA fusion
  • FIG. 15 shows the amino acid sequence of the mature form of human albumin (SEQ ID NO:18) and a polynucleotide encoding it (SEQ ID NO:17).
  • the present invention is based, in part, on the discovery that a Therapeutic protein (e.g., a polypeptide, antibody, or peptide, or fragments and variants thereof) may be stabilized to extend the shelf-life and/or retain the Therapeutic protein's activity for extended periods of time in solution (or in a pharmaceutical composition) in vitro and/or in vivo, by genetically fusing or chemically conjugating the Therapeutic protein, polypeptide or peptide to all or a portion of albumin sufficient to stabilize the protein and its activity.
  • a Therapeutic protein e.g., a polypeptide, antibody, or peptide, or fragments and variants thereof
  • albumin fusion protein refers to a protein formed by the fusion of at least one molecule of albumin (or a fragment or variant thereof) to at least one molecule of a Therapeutic protein (or fragment or variant thereof).
  • An albumin fusion protein of the invention comprises at least a fragment or variant of a Therapeutic protein and at least a fragment or variant of human serum albumin, which are associated with one another, preferably by genetic fusion (i.e., the albumin fusion protein is generated by translation of a nucleic acid in which a polynucleotide encoding all or a portion of a Therapeutic protein is joined in-frame with a polynucleotide encoding all or a portion of albumin) or chemical conjugation to one another.
  • the Therapeutic protein and albumin protein once part of the albumin fusion protein, may be referred to as a “portion”, “region” or “moiety” of the albumin fusion protein (e.g., a “Therapeutic protein portion” or an “albumin protein portion”).
  • the invention provides an albumin fusion protein comprising, or alternatively consisting of, a Therapeutic protein (e.g., as described in Table 1) and a serum albumin protein.
  • the invention provides an albumin fusion protein comprising, or alternatively consisting of, a biologically active and/or therapeutically active fragment of a Therapeutic protein and a serum albumin protein.
  • the invention provides an albumin fusion protein comprising, or alternatively consisting of, a biologically active and/or therapeutically active variant of a Therapeutic protein and a serum albumin protein.
  • the serum albumin protein component of the albumin fusion protein is the mature portion of serum albumin.
  • the invention provides an albumin fusion protein comprising, or alternatively consisting of, a Therapeutic protein, and a biologically active and/or therapeutically active fragment of serum albumin.
  • the invention provides an albumin fusion protein comprising, or alternatively consisting of, a Therapeutic protein and a biologically active and/or therapeutically active variant of serum albumin.
  • the Therapeutic protein portion of the albumin fusion protein is the mature portion of the Therapeutic protein.
  • the Therapeutic protein portion of the albumin fusion protein is the extracellular soluble domain of the Therapeutic protein.
  • the Therapeutic protein portion of the albumin fusion protein is the active form of the Therapeutic protien.
  • the invention provides an albumin fusion protein comprising, or alternatively consisting of, a biologically active and/or therapeutically active fragment or variant of a Therapeutic protein and a biologically active and/or therapeutically active fragment or variant of serum albumin.
  • the invention provides an albumin fusion protein comprising, or alternatively consisting of, the mature portion of a Therapeutic protein and the mature portion of serum albumin.
  • an albumin fusion protein of the invention comprises at least a fragment or variant of a Therapeutic protein and at least a fragment or variant of human serum albumin, which are associated with one another, preferably by genetic fusion or chemical conjugation.
  • Therapeutic protein refers to proteins, polypeptides, antibodies, peptides or fragments or variants thereof, having one or more therapeutic and/or biological activities.
  • Therapeutic proteins encompassed by the invention include but are not limited to, proteins, polypeptides, peptides, antibodies, and biologics. (The terms peptides, proteins, and polypeptides are used interchangeably herein.) It is specifically contemplated that the term “Therapeutic protein” encompasses antibodies and fragments and variants thereof.
  • an albumin fusion protein of the invention may contain at least a fragment or variant of a Therapeutic protein, and/or at least a fragment or variant of an antibody.
  • the term “Therapeutic protein” may refer to the endogenous or naturally occurring correlate of a Therapeutic protein.
  • a polypeptide displaying a “therapeutic activity” or a protein that is “therapeutically active” is meant a polypeptide that possesses one or more known biological and/or therapeutic activities associated with a therapeutic protein such as one or more of the Therapeutic proteins described herein or otherwise known in the art.
  • a “Therapeutic protein” is a protein that is useful to treat, prevent or ameliorate a disease, condition or disorder.
  • a “Therapeutic protein” may be one that binds specifically to a particular cell type (normal (e.g., lymphocytes) or abnormal e.g., (cancer cells)) and therefore may be used to target a compound (drug, or cytotoxic agent) to that cell type specifically.
  • a particular cell type normal (e.g., lymphocytes) or abnormal e.g., (cancer cells)
  • a compound drug, or cytotoxic agent
  • a “Therapeutic protein” is a protein that has a biological activity, and in particular, a biological activity that is useful for treating preventing or ameliorating a disease.
  • a non-inclusive list of biological activities that may be possessed by a Therapeutic protein includes, enhancing the immune response, promoting angiogenesis, inhibiting angiogenesis, regulating hematopoietic functions, stimulating nerve growth, enhancing an immune response, inhibiting an immune response, or any one or more of the biological activities described in the “Biological Activities” section below.
  • therapeutic activity may refer to an activity whose effect is consistent with a desirable therapeutic outcome in humans, or to desired effects in non-human mammals or in other species or organisms.
  • Therapeutic activity may be measured in vivo or in vitro.
  • a desirable effect may be assayed in cell culture.
  • hGH is the Therapeutic protein
  • the effects of hGH on cell proliferation as described in Example 1 may be used as the endpoint for which therapeutic activity is measured.
  • Such in vitro or cell culture assays are commonly available for many Therapeutic proteins as described in the art. Examples of assays include, but are not limited to those described herein in the Examples section or in the “Exemplary Activity Assay” column of Table 1.
  • Therapeutic proteins corresponding to a Therapeutic protein portion of an albumin fusion protein of the invention are often modified by the attachment of one or more oligosaccharide groups.
  • the modification referred to as glycosylation, can dramatically affect the physical properties of proteins and can be important in protein stability, secretion, and localization. Glycosylation occurs at specific locations along the polypeptide backbone.
  • glycosylation characterized by O-linked oligosaccharides, which are attached to serine or threonine residues; and glycosylation characterized by N-linked oligosaccharides, which are attached to asparagine residues in an Asn-X-Ser/Thr sequence, where X can be any amino acid except proline.
  • N-acetylneuramic acid also known as sialic acid
  • Variables such as protein structure and cell type influence the number and nature of the carbohydrate units within the chains at different glycosylation sites. Glycosylation isomers are also common at the same site within a given cell type.
  • Natural human interferon- ⁇ 2 is O-glycosylated at threonine 106, and N-glycosylation occurs at asparagine 72 in interferon- ⁇ 14 (Adolf et al., J. Biochem 276:511 (1991); Nyman T A et al., J. Biochem 329:295 (1998)).
  • the oligosaccharides at asparagine 80 in natural interferon- ⁇ 1 ⁇ may play an important factor in the solubility and stability of the protein, but may not be essential for its biological activity.
  • Interferon- ⁇ contains two N-linked oligosaccharide chains at positions 25 and 97, both important for the efficient formation of the bioactive recombinant protein, and having an influence on the pharmacokinetic properties of the protein (Sareneva et al., Eur. J. Biochem 242:191 (1996); Sareneva et al, Biochem J. 303:831 (1994); Sareneva et al., J. Interferon Res. 13:267 (1993)).
  • N-linked glycosylation occurs at asparagine residues located at positions 24, 38 and 83 while O-linked glycosylation occurs at a serine residue located at position 126 (Lai et al., J. Biol. Chem. 261:3116 (1986); Broudy et al., Arch. Biochem. Biophys. 265:329 (1988)).
  • Therapeutic proteins corresponding to a Therapeutic protein portion of an albumin fusion protein of the invention may be modified so that glycosylation at one or more sites is altered as a result of manipulation(s) of their nucleic acid sequence, by the host cell in which they are expressed, or due to other conditions of their expression.
  • glycosylation isomers may be produced by abolishing or introducing glycosylation sites, e.g., by substitution or deletion of amino acid residues, such as substitution of glutamine for asparagine, or unglycosylated recombinant proteins may be produced by expressing the proteins in host cells that will not glycosylate them, e.g. in E. coli or glycosylation-deficient yeast.
  • Therapeutic proteins are well known in the art and available in public databases such as Chemical Abstracts Services Databases (e.g., the CAS Registry), GenBank, and GenSeq as shown in Table 1.
  • Additional Therapeutic proteins corresponding to a Therapeutic protein portion of an albumin fusion protein of the invention include, but are not limited to, one or more of the Therapeutic proteins or peptides disclosed in the “Therapeutic Protein X” column of Table 1, or fragment or variable thereof.
  • Table 1 provides a non-exhaustive list of Therapeutic proteins that correspond to a Therapeutic protein portion of an albumin fusion protein of the invention.
  • the “Therapeutic Protein X” column discloses Therapeutic protein molecules followed by parentheses containing scientific and brand names that comprise, or alternatively consist of, that Therapeutic protein molecule or a fragment or variant thereof.
  • “Therapeutic protein X” as used herein may refer either to an individual Therapeutic protein molecule (as defined by the amino acid sequence obtainable from the CAS and Genbank accession numbers), or to the entire group of Therapeutic proteins associated with a given Therapeutic protein molecule disclosed in this column.
  • the “Exemplary Identifier” column provides Chemical Abstracts Services (CAS) Registry Numbers (published by the American Chemical Society) and/or Genbank Accession Numbers ((e.g., Locus ID, NP_XXXXX (Reference Sequence Protein), and XP_XXXXX (Model Protein) identifiers available through the national Center for Biotechnology Information (NCBI) webpage at www.ncbi.nlm.nih.gov) that correspond to entries in the CAS Registry or Genbank database which contain an amino acid sequence of the Therapeutic Protein Molecule or of a fragment or variant of the Therapeutic Protein Molecule.
  • CAS Chemical Abstracts Services
  • Genbank Accession Numbers (e.g., Locus ID, NP_XXXXX (Reference Sequence Protein), and XP_XXXXX (Model Protein) identifiers available through the national Center for Biotechnology Information (NCBI) webpage at www.ncbi.nlm.nih.gov) that correspond
  • GenSeq Accession numbers and/or journal publication citations are given to identify the exemplary amino acid sequence for some polypeptides.
  • the summary pages associated with each of these CAS and Genbank and GenSeq Accession Numbers as well as the cited journal publications are each incorporated by reference in their entireties, particularly with respect to the amino acid sequences described therein.
  • the “PCT/Patent Reference” column provides U.S. Patent numbers, or PCT International Publication Numbers corresponding to patents and/or published patent applications that describe the Therapeutic protein molecule.
  • Each of the patents and/or published patent applications cited in the “PCT/Patent Reference” column are herein incorporated by reference in their entireties.
  • the “Biological activity” column describes Biological activities associated with the Therapeutic protein molecule.
  • the “Exemplary Activity Assay” column provides references that describe assays which may be used to test the therapeutic and/or biological activity of a Therapeutic protein or an albumin fusion protein of the invention comprising a Therapeutic protein X portion.
  • Each of the references cited in the “Exemplary Activity Assay” column are herein incorporated by reference in their entireties, particularly with respect to the description of the respective activity assay described in the reference (see Methods section, for example) for assaying the corresponding biological activity set forth in the “Biological Activity” column of Table 1.
  • the “Preferred Indication Y” column describes disease, disorders, and/or conditions that may be treated, prevented, diagnosed, or ameliorated by Therapeutic protein X or an albumin fusion protein of the invention comprising a Therapeutic protein X portion.
  • Therapeutic protein in the “Preferred Indication Y” column indicates that corresponding Therapeutic protein, fusion protein containing the Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., leukemias, cancers, and/or as described below under “Hyperproliferative Disorders”).
  • neoplastic diseases e.g., leukemias, cancers, and/or as described below under “Hyperproliferative Disorders”.
  • a Therapeutic protein having a “Cancer” recitation in the “Preferred Indication” column of Table 1 an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate a neoplasm located in a tissue selected from the group consisting of: colon, abdomen, bone, breast, digestive system, liver, pancreas, prostate, peritoneum, lung, blood (e.g., leukemia), endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), uterus, eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.
  • a tissue selected from the group consisting of: colon, abdomen, bone, breast, digestive system, liver, pancreas, prostate, peritoneum, lung, blood (e.
  • a Therapeutic protein having a “Cancer” recitation in the “Preferred Indication” column of Table 1 an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate a pre-neoplastic condition, selected from the group consisting of: hyperplasia (e.g., endometrial hyperplasia and/or as described in the section entitled “Hyperproliferative Disorders”), metaplasia (e.g., connective tissue metaplasia, a typical metaplasia, and/or as described in the section entitled “Hyperproliferative Disorders”), and/or dysplasia (e.g., cervical dysplasia, and bronchopulmonary dysplasia).
  • hyperplasia e.g., endometrial hyperplasia and/or as described in the section entitled “Hyperproliferative Disorders”
  • metaplasia e.
  • a Therapeutic protein having a “Cancer” recitation in the “Preferred Indication” column of Table 1 an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate a benign dysproliferative disorder selected from the group consisting of: benign tumors, fibrocystic conditions, tissue hypertrophy, and/or as described in the section entitled “Hyperproliferative Disorders”.
  • Therapeutic protein fusion protein containing the Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under “Hyperproliferative Disorders”), blood disorders (e.g., as described below under “Immune Activity” “Cardiovascular Disorders” and/or “Blood-Related Disorders”), and infections (e.g., as described below under “Infectious Disease”).
  • neoplastic diseases e.g., as described below under “Hyperproliferative Disorders”
  • blood disorders e.g., as described below under “Immune Activity” “Cardiovascular Disorders” and/or “Blood-Related Disorders”
  • infections e.g., as described below under “Infectious Disease”.
  • a Therapeutic protein having a “Immune/Hematopoietic” recitation in the “Preferred Indication” column of Table 1, a fusion protein containing this Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate a disease or disorder selected from the group consisting of: anemia, pancytopenia, leukopenia, thrombocytopenia, leukemias, Hodgkin's disease, non-Hodgkin's lymphoma, acute lymphocytic anemia (ALL), plasmacytomas, multiple myeloma, Burkitt's lymphoma, arthritis, asthma, A/DS, autoimmune disease, rheumatoid arthritis, granulomatous disease, immune deficiency, inflammatory bowel disease, sepsis, neutropenia, neutrophilia, psoriasis, immune reactions to transplanted organs and tissues, systemic lupus
  • Therapeutic protein fusion protein containing the Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under “Hyperproliferative Disorders”), and disorders of the reproductive system (e.g., as described below under “Reproductive System Disorders”).
  • neoplastic diseases e.g., as described below under “Hyperproliferative Disorders”
  • reproductive system e.g., as described below under “Reproductive System Disorders”.
  • a Therapeutic protein having a “Reproductive” recitation in the “Preferred Indication” column of Table 1 may be used for example, to diagnose, treat, prevent, and/or ameliorate a disease or disorder selected from the group consisting of: cryptorchism, prostatitis, inguinal hernia, varicocele, leydig cell tumors, verrucous carcinoma, prostatitis, malacoplakia, Peyronie's disease, penile carcinoma, squamous cell hyperplasia, dysmenorrhea, ovarian adenocarcinoma, Turner's syndrome, mucopurulent cervicitis, Sertoli-leydig tumors, ovarian cancer, uterine cancer, pelvic inflammatory disease, testicular cancer, prostate cancer, Klinefelter's syndrome, Young's syndrome, premature ejaculation, diabetes mellitus, cystic fibrosis
  • Therapeutic protein in the “Preferred Indication Y” column indicates that corresponding Therapeutic protein, fusion protein containing the Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under “Hyperproliferative Disorders”), and disorders of the immune system (e.g., as described below under “Immune Activity”).
  • neoplastic diseases e.g., as described below under “Hyperproliferative Disorders”
  • Immune Activity disorders of the immune system
  • a Therapeutic protein having a “Musculoskeletal” recitation in the “Preferred Indication” column of Table 1, a fusion protein containing this Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate a disease or disorder selected from the group consisting of: bone cancers (e.g., osteochondromas, benign chondromas, chondroblastoma, chondromyxoid fibromas, osteoid osteomas, giant cell tumors, multiple myeloma, osteosarcomas), Paget's Disease, rheumatoid arthritis, systemic lupus erythematosus, osteomyelitis, Lyme Disease, gout, bursitis, tendonitis, osteoporosis, osteoarthritis, muscular dystrophy, mitochondrial myopathy, cachexia, and multiple sclerosis.
  • bone cancers e.g., osteochondromas, benign chondromas, chondroblast
  • Cardiovascular in the “Preferred Indication Y” column indicates that corresponding Therapeutic protein, fusion protein containing the Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under “Hyperproliferative Disorders”), and disorders of the cardiovascular system (e.g., as described below under “Cardiovascular Disorders”).
  • neoplastic diseases e.g., as described below under “Hyperproliferative Disorders”
  • Cardiovascular Disorders e.g., as described below under “Cardiovascular Disorders”.
  • a Therapeutic protein having a “Cardiovascular” recitation in the “Preferred Indication” column of Table 1, a fusion protein containing this Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate a disease or disorder selected from the group consisting of: myxomas, fibromas, rhabdomyomas, cardiovascular abnormalities (e.g., congenital heart defects, cerebral arterioyenous malformations, septal defects), heart disease (e.g., heart failure, congestive heart disease, arrhythmia, tachycardia, fibrillation, pericardial Disease, endocarditis), cardiac arrest, heart valve disease (e.g., stenosis, regurgitation, prolapse), vascular disease (e.g., hypertension, coronary artery disease, angina, aneurysm, arteriosclerosis, peripheral vascular disease), hyponatremia, hypernatremia, hypokal
  • Therapeutic protein fusion protein containing the Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under “Hyperproliferative Disorders”).
  • a Therapeutic protein having a “Mixed Fetal” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate a disease or disorder selected from the group consisting of: spina bifida, hydranencephaly, neurofibromatosis, fetal alcohol syndrome, diabetes mellitus, PKU, Down's syndrome, Patau syndrome, Edwards syndrome, Turner syndrome, Apert syndrome, Carpenter syndrome, Conradi syndrome, Crouzon syndrome, cutis laxa, Cornelia de Lange syndrome, Ellis-van Creveld syndrome, Holt-Oram syndrome, Kartagener syndrome, Meckel-Gruber syndrome, Noonan syndrome, Pallister-Hall syndrome, Rubinstein-Taybi syndrome, Scimitar syndrome, Smith-Lemli-Opitz syndrome, thromo
  • Therapeutic protein fusion protein containing the Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under “Hyperproliferative Disorders”) and renal disorders (e.g., as described below under “Renal Disorders”).
  • neoplastic diseases e.g., as described below under “Hyperproliferative Disorders”
  • renal disorders e.g., as described below under “Renal Disorders”.
  • a Therapeutic protein having a “Excretory” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate a disease or disorder selected from the group consisting of: bladder cancer, prostate cancer, benign prostatic hyperplasia, bladder disorders (e.g., urinary incontinence, urinary retention, urinary obstruction, urinary tract Infections, interstitial cystitis, prostatitis, neurogenic bladder, hematuria), renal disorders (e.g., hydronephrosis, proteinuria, renal failure, pyelonephritis, urolithiasis, reflux nephropathy, and unilateral obstructive uropathy).
  • bladder cancer e.g., prostate cancer, benign prostatic hyperplasia
  • bladder disorders e.g., urinary incontinence, urinary retention, urinary
  • Neurological/Sensory in the “Preferred Indication Y” column indicates that corresponding Therapeutic protein, fusion protein containing the Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under “Hyperproliferative Disorders”) and diseases or disorders of the nervous system (e.g., as described below under “Neural Activity and Neurological Diseases”).
  • neoplastic diseases e.g., as described below under “Hyperproliferative Disorders”
  • Neurological Diseases e.g., as described below under “Neural Activity and Neurological Diseases”.
  • a Therapeutic protein having a “Neural/Sensory” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate a disease or disorder selected from the group consisting of: brain cancer (e.g., brain stem glioma, brain tumors, central nervous system (Primary) lymphoma, central nervous system lymphoma, cerebellar astrocytoma, and cerebral astrocytoma, neurodegenerative disorders (e.g., Alzheimer's Disease, Creutzfeldt-Jakob Disease, Parkinson's Disease, and Idiopathic Presenile Dementia), encephalomyelitis, cerebral malaria, meningitis, metabolic brain diseases (e.g., phenylketonuria and pyruvate carboxylase deficiency), cerebellar at a disease or disorder selected from the
  • Therapeutic protein fusion protein containing the Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under “Hyperproliferative Disorders”) and diseases or disorders of the respiratory system (e.g., as described below under “Respiratory Disorders”).
  • neoplastic diseases e.g., as described below under “Hyperproliferative Disorders”
  • Respiratory Disorders e.g., as described below under “Respiratory Disorders”.
  • a Therapeutic protein having a “Respiratory” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate a disease or disorder selected from the group consisting of: cancers of the respiratory system such as larynx cancer, pharynx cancer, trachea cancer, epiglottis cancer, lung cancer, squamous cell carcinomas, small cell (oat cell) carcinomas, large cell carcinomas, and adenocarcinomas.
  • cancers of the respiratory system such as larynx cancer, pharynx cancer, trachea cancer, epiglottis cancer, lung cancer, squamous cell carcinomas, small cell (oat cell) carcinomas, large cell carcinomas, and adenocarcinomas.
  • Allergic reactions cystic fibrosis, sarcoidosis, histiocytosis X, infiltrative lung diseases (e.g., pulmonary fibrosis and lymphoid interstitial pneumonia), obstructive airway diseases (e.g., asthma, emphysema, chronic or acute bronchitis), occupational lung diseases (e.g., silicosis and asbestosis), pneumonia, and pleurisy.
  • infiltrative lung diseases e.g., pulmonary fibrosis and lymphoid interstitial pneumonia
  • obstructive airway diseases e.g., asthma, emphysema, chronic or acute bronchitis
  • occupational lung diseases e.g., silicosis and asbestosis
  • pneumonia e.g., silicosis and asbestosis
  • “Endocrine” in the “Preferred Indication Y” column indicates that corresponding Therapeutic protein, fusion protein containing the Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under “Hyperproliferative Disorders”) and diseases or disorders of the respiratory system (e.g., as described below under “Respiratory Disorders”), renal disorders (e.g., as described below under “Renal Disorders”), and disorders of the endocrine system (e.g., as described below under “Endocrine Disorders”.
  • neoplastic diseases e.g., as described below under “Hyperproliferative Disorders”
  • diseases or disorders of the respiratory system e.g., as described below under “Respiratory Disorders”
  • renal disorders e.g., as described below under “Renal Disorders”
  • disorders of the endocrine system
  • a Therapeutic protein having a “Endocrine” recitation in the “Preferred Indication” column of Table 1 an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate a disease or disorder selected from the group consisting of: cancers of endocrine tissues and organs (e.g., cancers of the hypothalamus, pituitary gland, thyroid gland, parathyroid glands, pancreas, adrenal glands, ovaries, and testes), diabetes (e.g., diabetes insipidus, type I and type II diabetes mellitus), obesity, disorders related to pituitary glands (e.g., hyperpituitarism, hypopituitarism, and pituitary dwarfism), hypothyroidism, hyperthyroidism, goiter, reproductive disorders (e.g.
  • cancers of endocrine tissues and organs e.g., cancers
  • disorders related to adrenal glands e.g., Addison's Disease, corticosteroid deficiency, and Cushing's Syndrome
  • kidney cancer e.g., hypemephroma, transitional cell cancer, and Wilm's tumor
  • diabetic nephropathy e.g., interstitial nephritis
  • polycystic kidney disease e.g., glomenilonephritis (e.g., IgM mesangial proliferative glomerulonephritis and glomerulonephritis caused by autoimmune disorders; such as Goodpasture's syndrome), and nephrocalcinosis.
  • Therapeutic protein fusion protein containing the Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under “Hyperproliferative Disorders”) and diseases or disorders of the gastrointestinal system (e.g., as described below under “Gastrointestinal Disorders”.
  • neoplastic diseases e.g., as described below under “Hyperproliferative Disorders”
  • Gastrointestinal Disorders e.g., as described below under “Gastrointestinal Disorders”.
  • a Therapeutic protein having a “Digestive” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate a disease or disorder selected from the group consisting of: ulcerative colitis, appendicitis, Crohn's disease, hepatitis, hepatic encephalopathy, portal hypertension, cholelithiasis, cancer of the digestive system (e.g., biliary tract cancer, stomach cancer, colon cancer, gastric cancer, pancreatic cancer, cancer of the bile duct, tumors of the colon (e.g., polyps or cancers), and cirrhosis), pancreatitis, ulcerative disease, pyloric stenosis, gastroenteritis, gastritis, gastric atropy, benign tumors of the duodenum,
  • a disease or disorder selected
  • Therapeutic protein fusion protein containing the Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under “Hyperproliferative Disorders”), cellular and genetic abnormalities (e.g., as described below under “Diseases at the Cellular Level”), angiogenesis (e.g., as described below under “Anti-Angiogenesis Activity”), and or to promote or inhibit regeneration (e.g., as described below under “Regeneration”), and wound healing (e.g., as described below under “Wound Healing and Epithelial Cell Proliferation”).
  • neoplastic diseases e.g., as described below under “Hyperproliferative Disorders”
  • cellular and genetic abnormalities e.g., as described below under “Diseases at the Cellular Level”
  • angiogenesis e.g., as described below under “Anti-Angiogenesis
  • a Therapeutic protein having a “Connective/Epithelial” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used for example, to diagnose, treat, prevent, and/or ameliorate a disease or disorder selected from the group consisting of: connective tissue metaplasia, mixed connective tissue disease, focal epithelial hyperplasia, epithelial metaplasia, mucoepithelial dysplasia, graft v.
  • the albumin fusion proteins of the invention are capable of a therapeutic activity and/or biologic activity corresponding to the therapeutic activity and/or biologic activity of the Therapeutic protein corresponding to the Therapeutic protein portion of the albumin fusion protein listed in the corresponding row of Table 1.
  • the therapeutically active protein portions of the albumin fusion proteins of the invention are fragments or variants of the reference sequence cited in the “Exemplary Identifier” column of Table 1, and are capable of the therapeutic activity and/or biologic activity of the corresponding Therapeutic protein.
  • the present invention is further directed to fragments of the Therapeutic proteins described in Table 1, albumin proteins, and/or albumin fusion proteins of the invention.
  • fragments of a Therapeutic protein corresponding to a Therapeutic protein portion of an albumin fusion protein of the invention include the full length protein as well as polypeptides having one or more residues deleted from the amino terminus of the amino acid sequence of the reference polypeptide (i.e., a Therapeutic protein as disclosed in Table 1).
  • N-terminal deletions may be described by the general formula m ⁇ q, where q is a whole integer representing the total number of amino acid residues in a reference polypeptide (e.g., a Therapeutic protein referred to in Table 1), and m is defined as any integer ranging from 2 to q ⁇ 6.
  • Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • fragments of serum albumin polypeptides corresponding to an albumin protein portion of an albumin fusion protein of the invention include the full length protein as well as polypeptides having one or more residues deleted from the amino terminus of the amino acid sequence of the reference polypeptide (i.e., serum albumin).
  • N-terminal deletions may be described by the general formula m ⁇ 585 , where 585 is a whole integer representing the total number of amino acid residues in serum albumin (SEQ ID NO:18), and m is defined as any integer ranging from 2 to 579.
  • Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • fragments of albumin fusion proteins of the invention include the full length albumin fusion protein as well as polypeptides having one or more residues deleted from the amino terminus of the albumin fusion protein.
  • N-terminal deletions may be described by the general formula m ⁇ q, where q is a whole integer representing the total number of amino acid residues in the albumin fusion protein, and m is defined as any integer ranging from 2 to q ⁇ 6. Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • a reference polypeptide e.g., a Therapeutic protein and/or serum albumin protein
  • other functional activities e.g., biological activities, ability to multimerize, ability to bind a ligand
  • Therapeutic activities may still be retained.
  • the ability of polypeptides with C-terminal deletions to induce and/or bind to antibodies which recognize the complete or mature forms of the polypeptide generally will be retained when less than the majority of the residues of the complete or mature polypeptide are removed from the C-terminus.
  • Whether a particular polypeptide lacking the N-terminal and/or C-terminal residues of a reference polypeptide retains Therapeutic activity can readily be determined by routine methods described herein and/or otherwise known in the art.
  • the present invention further provides polypeptides having one or more residues deleted from the carboxy terminus of the amino acid sequence of a Therapeutic protein corresponding to a Therapeutic protein portion of an albumin fusion protein of the invention (e.g., a Therapeutic protein referred to in Table 1).
  • C-terminal deletions may be described by the general formula 1 ⁇ n, where n is any whole integer ranging from 6 to q ⁇ 1, and where q is a whole integer representing the total number of amino acid residues in a reference polypeptide (e.g., a Therapeutic protein referred to in Table 1).
  • Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • the present invention provides polypeptides having one or more residues deleted from the carboxy terminus of the amino acid sequence of an albumin protein corresponding to an albumin protein portion of an albumin fusion protein of the invention (e.g., serum albumin).
  • C-terminal deletions may be described by the general formula 1 ⁇ n, where n is any whole integer ranging from 6 to 584, where 584 is the whole integer representing the total number of amino acid residues in serum albumin (SEQ ID NO: 18) minus 1.
  • Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • the present invention provides polypeptides having one or more residues deleted from the carboxy terminus of an albumin fusion protein of the invention.
  • C-terminal deletions may be described by the general formula 1 ⁇ n, where n is any whole integer ranging from 6 to q ⁇ 1, and where q is a whole integer representing the total number of amino acid residues in an albumin fusion protein of the invention.
  • Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • any of the above described N- or C-terminal deletions can be combined to produce a N- and C-terminal deleted reference polypeptide.
  • the invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini, which may be described generally as having residues m-n of a reference polypeptide (e.g., a Therapeutic protein referred to in Table 1, or serum albumin (e.g., SEQ ID NO: 18), or an albumin fusion protein of the invention) where n and m are integers as described above.
  • a reference polypeptide e.g., a Therapeutic protein referred to in Table 1, or serum albumin (e.g., SEQ ID NO: 18), or an albumin fusion protein of the invention
  • n and m are integers as described above.
  • Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • the present application is also directed to proteins containing polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to a reference polypeptide sequence (e.g., a Therapeutic protein, serum albumin protein or an albumin fusion protein of the invention) set forth herein, or fragments thereof.
  • a reference polypeptide sequence e.g., a Therapeutic protein, serum albumin protein or an albumin fusion protein of the invention
  • the application is directed to proteins comprising polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to reference polypeptides having the amino acid sequence of N- and C-terminal deletions as described above. Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • Preferred polypeptide fragments of the invention are fragments comprising, or alternatively, consisting of, an amino acid sequence that displays a Therapeutic activity and/or functional activity (e.g. biological activity) of the polypeptide sequence of the Therapeutic protein or serum albumin protein of which the amino acid sequence is a fragment.
  • Other preferred polypeptide fragments are biologically active fragments.
  • Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention.
  • the biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.
  • Variant refers to a polynucleotide or nucleic acid differing from a reference nucleic acid or polypeptide, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the reference nucleic acid or polypeptide.
  • variant refers to a Therapeutic protein portion of an albumin fusion protein of the invention, albumin portion of an albumin fusion protein of the invention, or albumin fusion protein differing in sequence from a Therapeutic protein (e.g. see “therapeutic” column of Table 1), albumin protein, and/or albumin fusion protein of the invention, respectively, but retaining at least one functional and/or therapeutic property thereof as described elsewhere herein or otherwise known in the art.
  • variants are overall very similar, and, in many regions, identical to the amino acid sequence of the Therapeutic protein corresponding to a Therapeutic protein portion of an albumin fusion protein of the invention, albumin protein corresponding to an albumin protein portion of an albumin fusion protein of the invention, and/or albumin fusion protein of the invention. Nucleic acids encoding these variants are also encompassed by the invention.
  • the present invention is also directed to proteins which comprise, or alternatively consist of, an amino acid sequence which is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100%, identical to, for example, the amino acid sequence of a Therapeutic protein corresponding to a Therapeutic protein portion of an albumin fusion protein of the invention (e.g., an amino acid sequence disclosed in the “Exemplary Identifier” column of Table 1, or fragments or variants thereof), albumin proteins (e.g., SEQ ID NO:18 or fragments or variants thereof) corresponding to an albumin protein portion of an albumin fusion protein of the invention, and/or albumin fusion proteins of the invention.
  • an amino acid sequence of a Therapeutic protein corresponding to a Therapeutic protein portion of an albumin fusion protein of the invention e.g., an amino acid sequence disclosed in the “Exemplary Identifier” column of Table 1, or fragments or variants thereof
  • albumin proteins e.g., SEQ ID NO:18 or fragment
  • polypeptides encompassed by the invention are polypeptides encoded by polynucleotides which hybridize to the complement of a nucleic acid molecule encoding an amino acid sequence of the invention under stringent hybridization conditions (e.g., hybridization to filter bound DNA in 6 ⁇ Sodium chloride/Sodium citrate (SSC) at about 45 degrees Celsius, followed by one or more washes in 0.2 ⁇ SSC, 0.1% SDS at about 50-65 degrees Celsius), under highly stringent conditions (e.g., hybridization to filter bound DNA in 6 ⁇ sodium chloride/Sodium citrate (SSC) at about 45 degrees Celsius, followed by one or more washes in 0.1 ⁇ SSC, 0.2% SDS at about 68 degrees Celsius), or under other stringent hybridization conditions which are known to those of skill in the art (see, for example, Ausubel, F.
  • stringent hybridization conditions e.g., hybridization to filter bound DNA in 6 ⁇ Sodium chloride/Sodium citrate (SSC) at about 45 degrees Celsius, followed by one or more
  • a polypeptide having an amino acid sequence at least, for example, 95% “identical” to a query amino acid sequence of the present invention it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence.
  • the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence.
  • up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, or substituted with another amino acid.
  • These alterations of the reference sequence may occur at the amino- or carboxy-terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.
  • any particular polypeptide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequence of an albumin fusion protein of the invention or a fragment thereof (such as the Therapeutic protein portion of the albumin fusion protein or the albumin portion of the albumin fusion protein), can be determined conventionally using known computer programs.
  • a preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245 (1990)).
  • the query and subject sequences are either both nucleotide sequences or both amino acid sequences.
  • the result of said global sequence alignment is expressed as percent identity.
  • the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment.
  • This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score.
  • This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.
  • a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity.
  • the deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus.
  • the 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C-termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%.
  • a 90 residue subject sequence is compared with a 100 residue query sequence.
  • deletions are internal deletions so there are no residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query.
  • percent identity calculated by FASTDB is not manually corrected.
  • residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.
  • the variant will usually have at least 75% (preferably at least about 80%, 90%, 95% or 99%) sequence identity with a length of normal HA or Therapeutic protein which is the same length as the variant.
  • Homology or identity at the nucleotide or amino acid sequence level is determined by BLAST (Basic Local Alignment Search Tool) analysis using the algorithm employed by the programs blastp, blastn, blastx, tblastn and tblastx (Karlin et al., Proc. Natl. Acad. Sci. USA 87: 2264-2268 (1990) and Altschul, J. Mol. Evol. 36: 290-300 (1993), fully incorporated by reference) which are tailored for sequence similarity searching.
  • the approach used by the BLAST program is to first consider similar segments between a query sequence and a database sequence, then to evaluate the statistical significance of all matches that are identified and finally to summarize only those matches which satisfy a preselected threshold of significance.
  • a threshold of significance For a discussion of basic issues in similarity searching of sequence databases, see Altschul et al., (Nature Genetics 6: 119-129 (1994)) which is fully incorporated by reference.
  • the search parameters for histogram, descriptions, alignments, expect i.e., the statistical significance threshold for reporting matches against database sequences
  • cutoff matrix and filter
  • the default scoring matrix used by blastp, blastx, tblastn, and tblastx is the BLOSUM62 matrix (Henikoff et al., Proc. Natl. Acad. Sci. USA 89: 10915-10919 (1992), fully incorporated by reference).
  • the scoring matrix is set by the ratios of M (i.e., the reward score for a pair of matching residues) to N (i.e., the penalty score for mismatching residues), wherein the default values for M and N are 5 and -4, respectively.
  • the polynucleotide variants of the invention may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, polypeptide variants in which less than 50, less than 40, less than 30, less than 20, less than 10, or 5-50, 5-25, 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred.
  • Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host, such as, yeast or E. coli ).
  • a polynucleotide encoding an albumin portion of an albumin fusion protein of the invention is optimized for expression in yeast or mammalian cells.
  • a polynucleotide encoding a Therapeutic protein portion of an albumin fusion protein of the invention is optimized for expression in yeast or mammalian cells.
  • a polynucleotide encoding an albumin fusion protein of the invention is optimized for expression in yeast or mammalian cells.
  • a codon optimized polynucleotide encoding a Therapeutic protein portion of an albumin fusion protein of the invention does not hybridize to the wild type polynucleotide encoding the Therapeutic protein under stringent hybridization conditions as described herein.
  • a codon optimized polynucleotide encoding an albumin portion of an albumin fusion protein of the invention do not hybridize to the wild type polynucleotide encoding the albumin protein under stringent hybridization conditions as described herein.
  • a codon optimized polynucleotide encoding an albumin fusion protein of the invention do not hybridize to the wild type polynucleotide encoding the Therapeutic protein portin or the albumin protein portion under stringent hybridization conditions as described herein.
  • polynucleotides encoding a Therapeutic protein portion of an albumin fusion protein of the invention do not comprise, or alternatively consist of, the naturally occurring sequence of that Therapeutic protein.
  • polynucleotides encoding an albumin protein portion of an albumin fusion protein of the invention do not comprise, or alternatively consist of, the naturally occurring sequence of albumin protein.
  • polynucleotides encoding an albumin fusion protein of the invention do not comprise, or alternatively consist of, the naturally occurring sequence of a Therapeutic protein portion or the albumin protein portion.
  • Naturally occurring variants are called “allelic variants,” and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985)). These allelic variants can vary at either the polynucleotide and/or polypeptide level and are included in the present invention. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.
  • variants may be generated to improve or alter the characteristics of the polypeptides of the present invention.
  • one or more amino acids can be deleted from the N-terminus or C-terminus of the polypeptide of the present invention without substantial loss of biological function.
  • Ron et al. J. Biol. Chem. 268: 2984-2988 (1993)
  • variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues.
  • Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)
  • the invention further includes polypeptide variants which have a functional activity (e.g., biological activity and/or therapeutic activity).
  • the invention provides variants of albumin fusion proteins that have a functional activity (e.g., biological activity and/or therapeutic activity) that corresponds to one or more biological and/or therapeutic activities of the Therapeutic protein corresponding to the Therapeutic protein portion of the albumin fusion protein.
  • Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity.
  • the variants of the invention have conservative substitutions.
  • conservative substitutions is intended swaps within groups such as replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.
  • the first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.
  • the second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. See Cunningham and Wells, Science 244:1081-1085 (1989). The resulting mutant molecules can then be tested for biological activity.
  • tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.
  • variants of the present invention include (i) polypeptides containing substitutions of one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) polypeptides containing substitutions of one or more of the amino acid residues having a substituent group, or (iii) polypeptides which have been fused with or chemically conjugated to another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), (iv) polypeptide containing additional amino acids, such as, for example, an IgG Fc fusion region peptide.
  • polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.
  • polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. See Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).
  • the polypeptides of the invention comprise, or alternatively, consist of, fragments or variants of the amino acid sequence of a Therapeutic protein described herein and/or human serum albumin, and/or albumin fusion protein of the invention, wherein the fragments or variants have 1-5, 5-10, 5-25, 5-50, 10-50 or 50-150, amino acid residue additions, substitutions, and/or deletions when compared to the reference amino acid sequence.
  • the amino acid substitutions are conservative. Nucleic acids encoding these polypeptides are also encompassed by the invention.
  • the polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids.
  • the polypeptides may be modified by either natural processes, such as post-translational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini.
  • polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods.
  • Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.
  • a polypeptide having functional activity refers to a polypeptide capable of displaying one or more known functional activities associated with the full-length, pro-protein, and/or mature form of a Therapeutic protein.
  • Such functional activities include, but are not limited to, biological activity, antigenicity [ability to bind (or compete with a polypeptide for binding) to an anti-polypeptide antibody], immunogenicity (ability to generate antibody which binds to a specific polypeptide of the invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide.
  • a polypeptide having biological activity refers to a polypeptide exhibiting activity similar to, but not necessarily identical to, an activity of a Therapeutic protein of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention).
  • an albumin fusion protein of the invention has at least one biological and/or therapeutic activity associated with the Therapeutic protein (or fragment or variant thereof) when it is not fused to albumin.
  • the albumin fusion proteins of the invention can be assayed for functional activity (e.g., biological activity) using or routinely modifying assays known in the art, as well as assays described herein. Additionally, one of skill in the art may routinely assay fragments of a Therapeutic protein corresponding to a Therapeutic protein portion of an albumin fusion protein of the invention, for activity using assays referenced in its corresponding row of Table 1. Further, one of skill in the art may routinely assay fragments of an albumin protein corresponding to an albumin protein portion of an albumin fusion protein of the invention, for activity using assays known in the art and/or as described in the Examples section below.
  • functional activity e.g., biological activity
  • routinely assay fragments of a Therapeutic protein corresponding to a Therapeutic protein portion of an albumin fusion protein of the invention for activity using assays referenced in its corresponding row of Table 1.
  • one of skill in the art may routinely assay fragments of an albumin protein corresponding to an albumin protein portion of
  • an albumin fusion protein of the invention in one embodiment where one is assaying for the ability of an albumin fusion protein of the invention to bind or compete with a Therapeutic protein for binding to an anti-Therapeutic polypeptide antibody and/or anti-albumin antibody, various immunoassays known in the art can be used, including but not limited to, competitive and non-competitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme linked immunosorbent assay), “sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophores
  • antibody binding is detected by detecting a label on the primary antibody.
  • the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody.
  • the secondary antibody is labeled. Many means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention.
  • binding partner e.g., a receptor or a ligand
  • binding to that binding partner by an albumin fusion protein containing that Therapeutic protein as the Therapeutic protein portion of the fusion can be assayed, e.g., by means well-known in the art, such as, for example, reducing and non-reducing gel chromatography, protein affinity chromatography, and affinity blotting. See generally, Phizicky et al., Microbiol. Rev. 59:94-123 (1995).
  • the ability of physiological correlates of an albumin fusion protein of the present invention to bind to a substrate(s) of the Therapeutic polypeptide corresponding to the Therapeutic portion of the albumin fusion protein of the invention can be routinely assayed using techniques known in the art.
  • association with other components of the multimer can be assayed, e.g., by means well-known in the art, such as, for example, reducing and non-reducing gel chromatography, protein affinity chromatography, and affinity blotting. See generally, Phizicky et al., supra.
  • an albumin fusion protein of the invention comprising all or a portion of an antibody that binds a Therapeutic protein, has at least one biological and/or therapeutic activity (e.g., to specifically bind a polypeptide or epitope) associated with the antibody that binds a Therapeutic protein (or fragment or variant thereof) when it is not fused to albumin.
  • the biological activity and/or therapeutic activity of an albumin fusion protein of the invention comprising all or a portion of an antibody that binds a Therapeutic protein is the inhibition (i.e. antagonism) or activation (i.e., agonism) of one or more of the biological activities and/or therapeutic activities associated with the polypeptide that is specifically bound by antibody that binds a Therapeutic protein.
  • Albumin fusion proteins of the invention may be characterized in a variety of ways.
  • albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein may be assayed for the ability to specifically bind to the same antigens specifically bound by the antibody that binds a Therapeutic protein corresponding to the Therapeutic protein portion of the albumin fusion protein using techniques described herein or routinely modifying techniques known in the art.
  • albumin fusion proteins of the invention e.g., comprising at least a fragment or variant of an antibody that binds a Therapeutic protein
  • Assays for the ability of the albumin fusion proteins of the invention to (specifically) bind a specific protein or epitope may be performed in solution (e.g., Houghten, Bio/Techniques 13:412-421(1992)), on beads (e.g., Lam, Nature 354:82-84 (1991)), on chips (e.g., Fodor, Nature 364:555-556 (1993)), on bacteria (e.g., U.S. Pat. No. 5,223,409), on spores (e.g., Patent Nos.
  • Albumin fusion proteins of the invention comprising at least a fragment or variant of a Therapeutic antibody may also be assayed for their specificity and affinity for a specific protein or epitope using or routinely modifying techniques described herein or otherwise known in the art.
  • the albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein may be assayed for cross-reactivity with other antigens (e.g., molecules that have sequence/structure conservation with the molecule(s) specifically bound by the antibody that binds a Therapeutic protein (or fragment or variant thereof) corresponding to the Therapeutic protein portion of the albumin fusion protein of the invention) by any method known in the art.
  • antigens e.g., molecules that have sequence/structure conservation with the molecule(s) specifically bound by the antibody that binds a Therapeutic protein (or fragment or variant thereof) corresponding to the Therapeutic protein portion of the albumin fusion protein of the invention
  • Immunoassays which can be used to analyze (immunospecific) binding and cross-reactivity include, but are not limited to, competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), “sandwich” immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, and protein A immunoassays, to name but a few.
  • competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), “sandwich” immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, aggluti
  • Immunoprecipitation protocols generally comprise lysing a population of cells in a lysis buffer such as RIPA buffer (1% NP-40 or Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.01 M sodium phosphate at pH 7.2, 1% Trasylol) supplemented with protein phosphatase and/or protease inhibitors (e.g., EDTA, PMSF, aprotinin, sodium vanadate), adding the albumin fusion protein of the invention (e.g., comprising at least a fragment or variant of an antibody that binds a Therapeutic protein) to the cell lysate, incubating for a period of time (e.g., 1 to 4 hours) at 40 degrees C., adding sepharose beads coupled to an anti-albumin antibody, for example, to the cell lysate, incubating for about an hour or more at 40 degrees C., washing the beads in lysis buffer and resus
  • albumin fusion protein of the invention to immunoprecipitate a particular antigen can be assessed by, e.g. western blot analysis.
  • One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the binding of the albumin fusion protein to an antigen and decrease the background (e.g., pre-clearing the cell lysate with sepharose beads).
  • immunoprecipitation protocols see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 10. 16.1.
  • Western blot analysis generally comprises preparing protein samples, electrophoresis of the protein samples in a polyacrylamide gel (e.g., 8%-20% SDS-PAGE depending on the molecular weight of the antigen), transferring the protein sample from the polyacrylamide gel to a membrane such as nitrocellulose, PVDF or nylon, blocking the membrane in blocking solution (e.g., PBS with 3% BSA or non-fat milk), washing the membrane in washing buffer (e.g., PBS-Tween 20), applying the albumin fusion protein of the invention (diluted in blocking buffer) to the membrane, washing the membrane in washing buffer, applying a secondary antibody (which recognizes the albumin fusion protein, e.g., an anti-human serum albumin antibody) conjugated to an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) or radioactive molecule (e.g., 32 P or 125 I) diluted in blocking buffer, washing the membrane in wash buffer, and detecting
  • ELISAs comprise preparing antigen, coating the well of a 96-well microtiter plate with the antigen, washing away antigen that did not bind the wells, adding the albumin fusion protein (e.g., comprising at least a fragment or variant of an antibody that binds a Therapeutic protein) of the invention conjugated to a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) to the wells and incubating for a period of time, washing away unbound or non-specifically bound albumin fusion proteins, and detecting the presence of the albumin fusion proteins specifically bound to the antigen coating the well.
  • an enzymatic substrate e.g., horseradish peroxidase or alkaline phosphatase
  • the albumin fusion protein does not have to be conjugated to a detectable compound; instead, a second antibody (which recognizes albumin fusion protein) conjugated to a detectable compound may be added to the well. Further, instead of coating the well with the antigen, the albumin fusion protein may be coated to the well.
  • the detectable molecule could be the antigen conjugated to a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase).
  • an enzymatic substrate e.g., horseradish peroxidase or alkaline phosphatase.
  • the binding affinity of an albumin fusion protein to a protein, antigen, or epitope and the off-rate of an albumin fusion protein-protein/antigen/epitope interaction can be determined by competitive binding assays.
  • a competitive binding assay is a radioimmunoassay comprising the incubation of labeled antigen (e.g., 3 H or 125 I) with the albumin fusion protein of the invention in the presence of increasing amounts of unlabeled antigen, and the detection of the antibody bound to the labeled antigen.
  • labeled antigen e.g., 3 H or 125 I
  • the affinity of the albumin fusion protein of the present invention for a specific protein, antigen, or epitope and the binding off-rates can be determined from the data by Scatchard plot analysis.
  • Competition with a second protein that binds the same protein, antigen or epitope as the albumin fusion protein can also be determined using radioimmunoassays.
  • the protein, antigen or epitope is incubated with an albumin fusion protein of the present invention conjugated to a labeled compound (e.g., 3 H or 125 I) in the presence of increasing amounts of an unlabeled second protein that binds the same protein, antigen, or epitope as the albumin fusion protein of the invention.
  • a labeled compound e.g., 3 H or 125 I
  • BIAcore kinetic analysis is used to determine the binding on and off rates of albumin fusion proteins of the invention to a protein, antigen or epitope.
  • BIAcore kinetic analysis comprises analyzing the binding and dissociation of albumin fusion proteins, or specific polypeptides, antigens or epitopes from chips with immobilized specific polypeptides, antigens or epitopes or albumin fusion proteins, respectively, on their surface.
  • Antibodies that bind a Therapeutic protein corresponding to the Therapeutic protein portion of an albumin fusion protein of the invention may also be described or specified in terms of their binding affinity for a given protein or antigen, preferably the antigen which they specifically bind.
  • Preferred binding affinities include those with a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 2 M, 10 ⁇ 2 M, 5 ⁇ 10 ⁇ 3 M, 10 ⁇ 3 M, 5 ⁇ 10 ⁇ 4 M, 10 ⁇ 4 M.
  • More preferred binding affinities include those with a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 5 M, 10 ⁇ 5 M, 5 ⁇ 10 ⁇ 6 M, 10 ⁇ 6 M, 5 ⁇ 10 ⁇ 7 M, 10 7 M, 5 ⁇ 10 ⁇ 8 M or 10 ⁇ 8 M.
  • Even more preferred binding affinities include those with a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 9 M, 10 ⁇ 9 M, 5 ⁇ 10 ⁇ M, 10 ⁇ 10 M, 5 ⁇ 10 ⁇ 11 M, 10 ⁇ 11 M, 5 ⁇ 10 ⁇ 12 M, 10 ⁇ 12 M, 5 ⁇ 10 ⁇ 13 M, 10 ⁇ 13 M, 5 ⁇ 10 ⁇ 14 M, 10 ⁇ 14 M, 5 ⁇ 10 ⁇ 15 M, or 10 ⁇ 15 M.
  • albumin fusion proteins comprising at least a fragment or variant of an antibody that binds a Therapeutic protein, has an affinity for a given protein or epitope similar to that of the corresponding antibody (not fused to albumin) that binds a Therapeutic protein, taking into account the valency of the albumin fusion protein (comprising at least a fragment or variant of an antibody that binds a Therapeutic protein) and the valency of the corresponding antibody.
  • albumin fusion proteins of the present invention may routinely be applied to measure the ability of albumin fusion proteins of the present invention and fragments, variants and derivatives thereof to elicit biological activity and/or Therapeutic activity (either in vitro or in vivo) related to either the Therapeutic protein portion and/or albumin portion of the albumin fusion protein of the present invention.
  • Therapeutic activity either in vitro or in vivo
  • Other methods will be known to the skilled artisan and are within the scope of the invention.
  • an albumin fusion protein of the invention comprises at least a fragment or variant of a Therapeutic protein and at least a fragment or variant of human serum albumin, which are associated with one another, preferably by genetic fusion or chemical conjugation.
  • HSA human serum albumin
  • HA human albumin
  • albumin and HA are broader, and encompass human serum albumin (and fragments and variants thereof) as well as albumin from other species (and fragments and variants thereof).
  • albumin refers collectively to albumin protein or amino acid sequence, or an albumin fragment or variant, having one or more functional activities (e.g., biological activities) of albumin.
  • albumin refers to human albumin or fragments thereof (see EP 201 239, EP 322 094 WO 97/24445, WO95/23857) especially the mature form of human albumin as shown in FIG. 15 and SEQ ID NO: 18, or albumin from other vertebrates or fragments thereof, or analogs or variants of these molecules or fragments thereof.
  • the human serum albumin protein used in the albumin fusion proteins of the invention contains one or both of the following sets of point mutations with reference to SEQ ID NO:18: Leu-407 to Ala, Leu-408 to Val, Val-409 to Ala, and Arg-410 to Ala; or Arg-410 to A, Lys-413 to Gln, and Lys-414 to Gln (see, e.g., International Publication No. WO95/23857, hereby incorporated in its entirety by reference herein).
  • albumin fusion proteins of the invention that contain one or both of above-described sets of point mutations have improved stability/resistance to yeast Yap3p proteolytic cleavage, allowing increased production of recombinant albumin fusion proteins expressed in yeast host cells.
  • a portion of albumin sufficient to prolong the therapeutic activity or shelf-life of the Therapeutic protein refers to a portion of albumin sufficient in length or structure to stabilize or prolong the therapeutic activity of the protein so that the shelf life of the Therapeutic protein portion of the albumin fusion protein is prolonged or extended compared to the shelf-life in the non-fusion state.
  • the albumin portion of the albumin fusion proteins may comprise the full length of the HA sequence as described above or as shown in FIG. 15, or may include one or more fragments thereof that are capable of stabilizing or prolonging the therapeutic activity.
  • Such fragments may be of 10 or more amino acids in length or may include about 15, 20, 25, 30, 50, or more contiguous amino acids from the HA sequence or may include part or all of specific domains of HA. For instance, one or more fragments of HA spanning the first two immunoglobulin-like domains may be used.
  • the albumin portion of the albumin fusion proteins of the invention may be a variant of normal HA.
  • the Therapeutic protein portion of the albumin fusion proteins of the invention may also be variants of the Therapeutic proteins as described herein.
  • variants includes insertions, deletions and substitutions, either conservative or non conservative, where such changes do not substantially alter one or more of the oncotic, useful ligand-binding and non-immunogenic properties of albumin, or the active site, or active domain which confers the therapeutic activities of the Therapeutic proteins.
  • the albumin fusion proteins of the invention may include naturally occurring polymorphic variants of human albumin and fragments of human albumin, for example those fragments disclosed in EP 322 094 (namely HA (Pn), where n is 369 to 419).
  • the albumin may be derived from any vertebrate, especially any mammal, for example human, cow, sheep, or pig.
  • Non-mammalian albumins include, but are not limited to, hen and salmon.
  • the albumin portion of the albumin fusion protein may be from a different animal than the Therapeutic protein portion.
  • an HA fragment or variant will be at least 100 amino acids long, preferably at least 150 amino acids long.
  • the HA variant may consist of or alternatively comprise at least one whole domain of HA, for example domains 1 (amino acids 1-194 of SEQ ID NO:18), 2 (amino acids 195-387 of SEQ ID NO:18), 3 (amino acids 388-585 of SEQ ID NO:18), 1+2 (1-387 of SEQ ID NO:18), 2+3 (195-585 of SEQ ID NO:18) or 1+3 (amino acids 1-194 of SEQ ID NO:18+amino acids 388-585 of SEQ ID NO:18).
  • Each domain is itself made up of two homologous subdomains namely 1-105, 120-194, 195-291, 316-387, 388-491 and 512-585, with flexible inter-subdomain linker regions comprising residues Lys106 to Glu119, Glu292 to Val315 and Glu492 to Ala511.
  • the albumin portion of an albumin fusion protein of the invention comprises at least one subdomain or domain of HA or conservative modifications thereof. If the fusion is based on subdomains, some or all of the adjacent linker is preferably used to link to the Therapeutic protein moiety.
  • Antibodies that Specifically Bind Therapeutic Proteins are also Therapeutic Proteins
  • the present invention also encompasses albumin fusion proteins that comprise at least a fragment or variant of an antibody that specifically binds a Therapeutic protein disclosed in Table 1. It is specifically contemplated that the term “Therapeutic protein” encompasses antibodies that bind a Therapeutic protein (e.g., as Described in column I of Table 1) and fragments and variants thereof. Thus an albumin fusion protein of the invention may contain at least a fragment or variant of a Therapeutic protein, and/or at least a fragment or variant of an an antibody that binds a Therapeutic protein.
  • the basic antibody structural unit is known to comprise a tetramer.
  • Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kDa) and one “heavy” chain (about 50-70 kDa).
  • the amino-terminal portion of each chain includes a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition.
  • the carboxy-terminal portion of each chain defines a constant region primarily responsible for effector function. Human light chains are classified as kappa and lambda light chains.
  • Heavy chains are classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, 1gG, IgA, and IgE, respectively. See generally, Fundamental Immunology Chapters 3-5 (Paul, W., ed., 4th ed. Raven Press, N.Y. (1998)) (incorporated by reference in its entirety for all purposes).
  • the variable regions of each light/heavy chain pair form the antibody binding site.
  • an intact IgG antibody has two binding sites. Except in bifunctional or bispecific antibodies, the two binding sites are the same.
  • the chains all exhibit the same general structure of relatively conserved framework regions (FR) joined by three hypervariable regions, also called complementarity determining regions or CDRs.
  • the CDR regions in general, are the portions of the antibody which make contact with the antigen and determine its specificity.
  • the CDRs from the heavy and the light chains of each pair are aligned by the framework regions, enabling binding to a specific epitope.
  • both light and heavy chains variable regions comprise the domains FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4.
  • the variable regions are connected to the heavy or light chain constant region.
  • antibody refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that specifically binds an antigen (e.g., a molecule containing one or more CDR regions of an antibody).
  • Antibodies that may correspond to a Therapeutic protein portion of an albumin fusion protein include, but are not limited to, monoclonal, multispecific, human, humanized or chimeric antibodies, single chain antibodies (e.g., single chain Fvs), Fab fragments, F(ab′) fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id antibodies specific to antibodies of the invention), and epitope-binding fragments of any of the above (e.g., VH domains, VL domains, or one or more CDR regions).
  • single chain antibodies e.g., single chain Fvs
  • Fab fragments fragments
  • F(ab′) fragments fragments produced by a Fab expression library
  • anti-idiotypic antibodies including, e.g., anti-Id antibodies specific to antibodies of the invention
  • epitope-binding fragments of any of the above e.g., VH domains, V
  • the present invention encompasses albumin fusion proteins that comprise at least a fragment or variant of an antibody that binds a Therapeutic Protein (e.g., as disclosed in Table 1) or fragment or variant thereof.
  • Antibodies that bind a Therapeutic protein may be from any animal origin, including birds and mammals.
  • the antibodies are human, murine (e.g., mouse and rat), donkey, sheep, rabbit, goat, guinea pig, camel, horse, or chicken antibodies.
  • the antibodies are human antibodies.
  • “human” antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin libraries and xenomice or other organisms that have been genetically engineered to produce human antibodies.
  • the antibody molecules that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of immunoglobulin molecule.
  • the antibody molecules that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention are IgG1.
  • the immunoglobulin molecules that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention are IgG2. In other preferred embodiments, the immunoglobulin molecules that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention are IgG4.
  • the antibodies that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention are human antigen-binding antibody fragments of the present invention and include, but are not limited to, Fab, Fab′ and F(ab′) 2 , Fd, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv) and fragments comprising either a VL or VH domain.
  • Antigen-binding antibody fragments, including single-chain antibodies may comprise the variable region(s) alone or in combination with the entirety or a portion of the following: hinge region, CH1, CH2, and CH3 domains.
  • the antibodies that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention may be monospecific, bispecific, trispecific or of greater multispecificity.
  • Multispecific antibodies may be specific for different epitopes of a Therapeutic protein or may be specific for both a Therapeutic protein as well as for a heterologous epitope, such as a heterologous polypeptide or solid support material. See, e.g., PCT publications WO 93/17715; WO 92/08802; WO 91/00360; WO 92/05793; Tutt, et al., J. Immunol. 147:60-69 (1991); U.S. Pat. Nos. 4,474,893; 4,714,681; 4,925,648; 5,573,920; 5,601,819; Kostelny et al., J. Immunol. 148:1547-1553 (1992).
  • Antibodies that bind a Therapeutic protein may be bispecific or bifunctional which means that the antibody is an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites.
  • Bispecific antibodies can be produced by a variety of methods including fusion of hybridomas or linking of Fab′ fragments. See, e.g., Songsivilai & Lachmann Clin. Exp. Immunol. 79: 315-321 (1990), Kostelny et al. J. Immunol. 148:1547 1553 (1992).
  • bispecific antibodies may be formed as “diabodies” (Holliger et al.
  • the present invention also provides albumin fusion proteins that comprise, fragments or variants (including derivatives) of an antibody described herein or known elsewhere in the art. Standard techniques known to those of skill in the art can be used to introduce mutations in the nucleotide sequence encoding a molecule of the invention, including, for example, site-directed mutagenesis and PCR-mediated mutagenesis which result in amino acid substitutions.
  • the variants encode less than 50 amino acid substitutions, less than 40 amino acid subsitutions, less than 30 amino acid substitutions, less than 25 amino acid substitutions, less than 20 amino acid substitutions, less than 15 amino acid substitutions, less than 10 amino acid substitutions, less than 5 amino acid substitutions, less than 4 amino acid substitutions, less than 3 amino acid substitutions, or less than 2 amino acid substitutions relative to the reference VH domain, VHCDR1, VHCDR2, VHCDR3, VL domain, VLCDR1, VLCDR2, or VLCDR3.
  • the variants encode substitutions of VHCDR3.
  • the variants have conservative amino acid substitutions at one or more predicted non-essential amino acid residues.
  • Antibodies that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention may be described or specified in terms of the epitope(s) or portion(s) of a Therapeutic protein which they recognize or specifically bind.
  • Antibodies which specifically bind a Therapeutic protein or a specific epitope of a Therapeutic protein may also be excluded. Therefore, the present invention encompasses antibodies that specifically bind Therapeutic proteins, and allows for the exclusion of the same.
  • albumin fusion proteins comprising at least a fragment or variant of an antibody that binds a Therapeutic protein, binds the same epitopes as the.
  • Antibodies that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention may also be described or specified in terms of their cross-reactivity. Antibodies that do not bind any other analog, ortholog, or homolog of a Therapeutic protein are included. Antibodies that bind polypeptides with at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55%, and at least 50% identity (as calculated using methods known in the art and described herein) to a Therapeutic protein are also included in the present invention.
  • antibodies that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention cross-react with murine, rat and/or rabbit homologs of human proteins and the corresponding epitopes thereof.
  • Antibodies that do not bind polypeptides with less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, and less than 50% identity (as calculated using methods known in the art and described herein) to a Therapeutic protein are also included in the present invention.
  • the above-described cross-reactivity is with respect to any single specific antigenic or immunogenic polypeptide, or combination(s) of 2, 3, 4, 5, or more of the specific antigenic and/or immunogenic polypeptides disclosed herein.
  • albumin fusion proteins comprising at least a fragment or variant of an antibody that binds a Therapeutic protein, has similar or substantially identical cross reactivity characteristics compared to the.
  • antibodies which bind polypeptides encoded by polynucleotides which hybridize to a polynucleotide encoding a Therapeutic protein under stringent hybridization conditions are also included in the present invention.
  • Antibodies that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention may also be described or specified in terms of their binding affinity to a polypeptide of the invention.
  • Preferred binding affinities include those with a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 2 M, 10 ⁇ 2 M, 5 ⁇ 10 ⁇ 3 M, 10 ⁇ 3 M, 5 ⁇ 10 ⁇ 4 M, 10 ⁇ 4 M.
  • More preferred binding affinities include those with a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 5 M, 10 ⁇ 5 M, 5 ⁇ 10 ⁇ 6 M, 10 ⁇ 6 M, 5 ⁇ 10 ⁇ 7 M, 10 7 M, 5 ⁇ 10 ⁇ 8 M or 10 ⁇ 8 M.
  • Even more preferred binding affinities include those with a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 9 M, 10 ⁇ 9 M, 5 ⁇ 10 ⁇ 10 M, 10 ⁇ 10 M, 5 ⁇ 10 ⁇ 11 M, 10 ⁇ 11 M, 5 ⁇ 10 ⁇ 12 M, 10 ⁇ 12 M, 5 ⁇ 10 ⁇ 13 M, 10 ⁇ 13 M, 5 ⁇ 10 ⁇ 14 M, 10 ⁇ 14 M, 5 ⁇ 10 ⁇ 15 M, or 10 ⁇ 15 M.
  • albumin fusion proteins comprising at least a fragment or variant of an antibody that binds a Therapeutic protein, has an affinity for a given protein or epitope similar to that of the corresponding antibody (not fused to albumin) that binds a Therapeutic protein, taking into account the valency of the albumin fusion protein (comprising at least a fragment or variant of an antibody that binds a Therapeutic protein) and the valency of the corresponding antibody.
  • the invention also provides antibodies that competitively inhibit binding of an antibody to an epitope of a Therapeutic protein as determined by any method known in the art for determining competitive binding, for example, the immunoassays described herein.
  • the antibody competitively inhibits binding to the epitope by at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50%.
  • albumin fusion proteins comprising at least a fragment or variant of an antibody that binds a Therapeutic protein, competitively inhibits binding of an antibody to an epitope of a Therapeutic protein as well as the competitively inhibits binding of an antibody to an epitope of a Therapeutic protein.
  • albumin fusion proteins comprising at least a fragment or variant of an antibody that binds a Therapeutic protein, competitively inhibits binding of the to an epitope of a Therapeutic protein by at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50%.
  • Antibodies that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention may act as agonists or antagonists of the Therapeutic protein.
  • the present invention includes antibodies which disrupt the receptor/ligand interactions with the polypeptides of the invention either partially or fully.
  • the invention features both receptor-specific antibodies and ligand-specific antibodies.
  • the invention also features receptor-specific antibodies which do not prevent ligand binding but prevent receptor activation. Receptor activation (i.e., signaling) may be determined by techniques described herein or otherwise known in the art.
  • receptor activation can be determined by detecting the phosphorylation (e.g., tyrosine or serine/threonine) of the receptor or its substrate by immunoprecipitation followed by western blot analysis (for example, as described supra).
  • antibodies are provided that inhibit ligand activity or receptor activity by at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50% of the activity in absence of the antibody.
  • albumin fusion proteins comprising at least a fragment or variant of an antibody that binds a Therapeutic protein, has similar or substantially similar characteristics with regard to preventing ligand binding and/or preventing receptor activation compared to the.
  • the invention also features receptor-specific antibodies which both prevent ligand binding and receptor activation as well as antibodies that recognize the receptor-ligand complex, and, preferably, do not specifically recognize the unbound receptor or the unbound ligand.
  • receptor-specific antibodies which both prevent ligand binding and receptor activation as well as antibodies that recognize the receptor-ligand complex, and, preferably, do not specifically recognize the unbound receptor or the unbound ligand.
  • neutralizing antibodies which bind the ligand and prevent binding of the ligand to the receptor, as well as antibodies which bind the ligand, thereby preventing receptor activation, but do not prevent the ligand from binding the receptor.
  • antibodies which activate the receptor are also act as receptor agonists, i.e., potentiate or activate either all or a subset of the biological activities of the ligand-mediated receptor activation, for example, by inducing dimerization of the receptor.
  • the antibodies may be specified as agonists, antagonists or inverse agonists for biological activities comprising the specific biological activities of the Therapeutic protreins (e.g. as disclosed in Table 1).
  • the above antibody agonists can be made using methods known in the art. See, e.g., PCT publication WO 96/40281; U.S. Pat. No. 5,811,097; Deng et al., Blood 92(6):1981-1988 (1998); Chen et al., Cancer Res. 58(16):3668-3678 (1998); Harrop et al., J. Immunol. 161(4):1786-1794 (1998); Zhu et al., Cancer Res.
  • albumin fusion proteins comprising at least a fragment or variant of an antibody that binds a Therapeutic protein, have similar or substantially identical agonist or antagonist properties as the.
  • Antibodies that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention may be used, for example, to purify, detect, and target Therapeutic proteins, including both in in vitro and in vivo diagnostic and therapeutic methods.
  • the antibodies have utility in immunoassays for qualitatively and quantitatively measuring levels of the Therapeutic protein in biological samples. See, e.g., Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); incorporated by reference herein in its entirety.
  • albumin fusion proteins comprising at least a fragment or variant of an antibody that binds a Therapeutic protein, may be used, for example, to purify, detect, and target Therapeutic proteins, including both in in vitro and in vivo diagnostic and therapeutic methods.
  • Antibodies that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein include derivatives that are modified, i.e, by the covalent attachment of any type of molecule to the antibody.
  • the antibody derivatives include antibodies that have been modified, e.g., by glycosylation, acetylation, pegylation, phosphylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc.
  • any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Additionally, the derivative may contain one or more non-classical amino acids. Albumin fusion proteins of the invention may also be modified as described above.
  • the antibodies that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention may be generated by any suitable method known in the art.
  • Polyclonal antibodies to an antigen-of-interest can be produced by various procedures well known in the art.
  • a Therapeutic protein may be administered to various host animals including, but not limited to, rabbits, mice, rats, etc. to induce the production of sera containing polyclonal antibodies specific for the antigen.
  • adjuvants may be used to increase the immunological response, depending on the host species, and include but are not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and corynebacterium parvum. Such adjuvants are also well known in the art.
  • Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof.
  • monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: Monoclonal Antibodies and T-Cell Hybridomas 563-681 (Elsevier, N.Y., 1981) (said references incorporated by reference in their entireties).
  • the term “monoclonal antibody” as used herein is not limited to antibodies produced through hybridoma technology.
  • the term “monoclonal antibody” refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced.
  • mice can be immunized with a Therapeutic protein or fragment or variant thereof or a cell expressing such a Therapeutic protein or fragment or variant thereof.
  • an immune response e.g., antibodies specific for the antigen are detected in the mouse serum
  • the mouse spleen is harvested and splenocytes isolated.
  • the splenocytes are then fused by well known techniques to any suitable myeloma cells, for example cells from cell line SP20 available from the ATCC.
  • Hybridomas are selected and cloned by limited dilution.
  • hybridoma clones are then assayed by methods known in the art for cells that secrete antibodies capable of binding a polypeptide of the invention.
  • Ascites fluid which generally contains high levels of antibodies, can be generated by immunizing mice with positive hybridoma clones.
  • the present invention provides methods of generating monoclonal antibodies as well as antibodies produced by the method comprising culturing a hybridoma cell secreting an antibody wherein, preferably, the hybridoma is generated by fusing splenocytes isolated from a mouse immunized with an antigen of the invention with myeloma cells and then screening the hybridomas resulting from the fusion for hybridoma clones that secrete an antibody able to bind a polypeptide of the invention.
  • EBV Epstein Barr Virus
  • Protocols for generating EBV-transformed B cell lines are commonly known in the art, such as, for example, the protocol outlined in Chapter 7.22 of Current Protocols in Immunology, Coligan et al., Eds., 1994, John Wiley & Sons, NY, which is hereby incorporated in its entirety by reference.
  • the source of B cells for transformation is commonly human peripheral blood, but B cells for transformation may also be derived from other sources including, but not limited to, lymph nodes, tonsil, spleen, tumor tissue, and infected tissues.
  • Tissues are generally made into single cell suspensions prior to EBV transformation. Additionally, steps may be taken to either physically remove or inactivate T cells (e.g., by treatment with cyclosporin A) in B cell-containing samples, because T cells from individuals seropositive for anti-EBV antibodies can suppress B cell immortalization by EBV.
  • EBV lines are generally polyclonal. However, over prolonged periods of cell cultures, EBV lines may become monoclonal or polyclonal as a result of the selective outgrowth of particular B cell clones.
  • polyclonal EBV transformed lines may be subcloned (e.g., by limiting dilution culture) or fused with a suitable fusion partner and plated at limiting dilution to obtain monoclonal B cell lines.
  • suitable fusion partners for EBV transformed cell lines include mouse myeloma cell lines (e.g., SP2/0, X63-Ag8.653), heteromyeloma cell lines (human ⁇ mouse; e.g, SPAM-8, SBC-H 2 O, and CB-F7), and human cell lines (e.g., GM 1500, SKO-007, RPMI 8226, and KR-4).
  • the present invention also provides a method of generating polyclonal or monoclonal human antibodies against polypeptides of the invention or fragments thereof, comprising EBV-transformation of human B cells.
  • Antibody fragments which recognize specific epitopes may be generated by known techniques.
  • Fab and F(ab′) 2 fragments of the invention may be produced by proteolytic cleavage of immunoglobulin molecules, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab′) 2 fragments).
  • F(ab′)2 fragments contain the variable region, the light chain constant region and the CH1 domain of the heavy chain.
  • antibodies that bind to a Therapeutic protein can also be generated using various phage display methods known in the art.
  • phage display methods functional antibody domains are displayed on the surface of phage particles which carry the polynucleotide sequences encoding them.
  • phage can be utilized to display antigen binding domains expressed from a repertoire or combinatorial antibody library (e.g., human or murine).
  • Phage expressing an antigen binding domain that binds the antigen of interest can be selected or identified with antigen, e.g., using labeled antigen or antigen bound or captured to a solid surface or bead.
  • Phage used in these methods are typically filamentous phage including fd and M13 binding domains expressed from phage with Fab, Fv or disulfide stabilized Fv antibody domains recombinantly fused to either the phage gene III or gene VIII protein.
  • phage display methods that can be used to make antibodies that bind to a Therapeutic protein include those disclosed in Brinkman et al., J. Immunol. Methods 182:41-50 (1995); Ames et al., J. Immunol. Methods 184:177-186 (1995); Kettleborough et al., Eur. J. Immunol.
  • the antibody coding regions from the phage can be isolated and used to generate whole antibodies, including human antibodies, or any other desired antigen binding fragment, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, e.g., as described in detail below.
  • a chimeric antibody is a molecule in which different portions of the antibody are derived from different animal species, such as antibodies having a variable region derived from a murine monoclonal antibody and a human immunoglobulin constant region.
  • Methods for producing chimeric antibodies are known in the art. See e.g., Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Gillies et al., (1989) J. Immunol. Methods 125:191-202; U.S. Pat. Nos. 5,807,715; 4,816,567; and 4,816,397, which are incorporated herein by reference in their entirety.
  • Humanized antibodies are antibody molecules from non-human species antibody that binds the desired antigen having one or more complementarity determining regions (CDRs) from the non-human species and a framework regions from a human immunoglobulin molecule.
  • CDRs complementarity determining regions
  • framework residues in the human framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, preferably improve, antigen binding.
  • These framework substitutions are identified by methods well known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. (See, e.g., Queen et al., U.S. Pat. No.
  • Antibodies can be humanized using a variety of techniques known in the art including, for example, CDR-grafting (EP 239,400; PCT publication WO 91/09967; U.S. Pat. Nos. 5,225,539; 5,530,101; and 5,585,089), veneering or resurfacing (EP 592,106; EP 519,596; Padlan, Molecular Immunology 28(4/5):489-498 (1991); Studnicka et al., Protein Engineering 7(6):805-814 (1994); Roguska. et al., PNAS 91:969-973 (1994)), and chain shuffling (U.S. Pat. No. 5,565,332).
  • Human antibodies are particularly desirable for therapeutic treatment of human patients.
  • Human antibodies can be made by a variety of methods known in the art including phage display methods described above using antibody libraries derived from human immunoglobulin sequences. See also, U.S. Pat. Nos. 4,444,887 and 4,716,111; and PCT publications WO 98/46645, WO 98/50433, WO 98/24893, WO 98/16654, WO 96/34096, WO 96/33735, and WO 91/10741; each of which is incorporated herein by reference in its entirety.
  • Human antibodies can also be produced using transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes.
  • the human heavy and light chain immunoglobulin gene complexes may be introduced randomly or by homologous recombination into mouse embryonic stem cells.
  • the human variable region, constant region, and diversity region may be introduced into mouse embryonic stem cells in addition to the human heavy and light chain genes.
  • the mouse heavy and light chain immunoglobulin genes may be rendered non-functional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination. In particular, homozygous deletion of the JH region prevents endogenous antibody production.
  • the modified embryonic stem cells are expanded and microinjected into blastocysts to produce chimeric mice.
  • the chimeric mice are then bred to produce homozygous offspring which express human antibodies.
  • the transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention.
  • Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology.
  • the human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation.
  • Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as “guided selection.”
  • a selected non-human monoclonal antibody e.g., a mouse antibody, is used to guide the selection of a completely human antibody recognizing the same epitope. (Jespers et al., Bio/technology 12:899-903 (1988)).
  • the invention further provides polynucleotides comprising a nucleotide sequence encoding an antibody and fragments thereof.
  • the invention also encompasses polynucleotides that hybridize under stringent or alternatively, under lower stringency hybridization conditions, e.g., as defined supra, to polynucleotides that encode an antibody, preferably, that specifically binds to a Therapeutic protein, and more preferably, an antibody that binds to a polypeptide having the amino acid sequence of a “therapeutic protein X as discosed in the “Exemplay Identifier” column of Table 1.
  • the polynucleotides may be obtained, and the nucleotide sequence of the polynucleotides determined, by any method known in the art.
  • a polynucleotide encoding the antibody may be assembled from chemically synthesized oligonucleotides (e.g., as described in Kutmeier et al., BioTechniques 17:242 (1994)), which, briefly, involves the synthesis of overlapping oligonucleotides containing portions of the sequence encoding the antibody, annealing and ligating of those oligonucleotides, and then amplification of the ligated oligonucleotides by PCR.
  • a polynucleotide encoding an antibody may be generated from nucleic acid from a suitable source. If a clone containing a nucleic acid encoding a particular antibody is not available, but the sequence of the antibody molecule is known, a nucleic acid encoding the immunoglobulin may be chemically synthesized or obtained from a suitable source (e.g., an antibody cDNA library, or a cDNA library generated from, or nucleic acid, preferably poly A+ RNA, isolated from, any tissue or cells expressing the antibody, such as hybridoma cells selected to express an antibody) by PCR amplification using synthetic primers hybridizable to the 3′ and 5′ ends of the sequence or by cloning using an oligonucleotide probe specific for the particular gene sequence to identify, e.g., a cDNA clone from a cDNA library that encodes the antibody. Amplified nucleic acids generated by PCR may then
  • nucleotide sequence and corresponding amino acid sequence of the antibody may be manipulated using methods well known in the art for the manipulation of nucleotide sequences, e.g., recombinant DNA techniques, site directed mutagenesis, PCR, etc. (see, for example, the techniques described in Sambrook et al., 1990, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • the amino acid sequence of the heavy and/or light chain variable domains may be inspected to identify the sequences of the complementarity determining regions (CDRs) by methods that are well know in the art, e.g., by comparison to known amino acid sequences of other heavy and light chain variable regions to determine the regions of sequence hypervariability.
  • CDRs complementarity determining regions
  • one or more of the CDRs may be inserted within framework regions, e.g., into human framework regions to humanize a non-human antibody, as described supra.
  • the framework regions may be naturally occurring or consensus framework regions, and preferably human framework regions (see, e.g., Chothia et al., J. Mol. Biol.
  • the polynucleotide generated by the combination of the framework regions and CDRs encodes an antibody that specifically binds a polypeptide of the invention.
  • one or more amino acid substitutions may be made within the framework regions, and, preferably, the amino acid substitutions improve binding of the antibody to its antigen. Additionally, such methods may be used to make amino acid substitutions or deletions of one or more variable region cysteine residues participating in an intrachain disulfide bond to generate antibody molecules lacking one or more intrachain disulfide bonds.
  • Other alterations to the polynucleotide are encompassed by the present invention and within the skill of the art.
  • a chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region, e.g., humanized antibodies.
  • Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.
  • Techniques for the assembly of functional Fv fragments in E. coli may also be used (Skerra et al., Science 242:1038-1041 (1988)).
  • an antibody, or fragment, derivative or analog thereof e.g., a heavy or light chain of an antibody or a single chain antibody
  • an expression vector containing a polynucleotide that encodes the antibody Once a polynucleotide encoding an antibody molecule or a heavy or light chain of an antibody, or portion thereof (preferably containing the heavy or light chain variable domain), of the invention has been obtained, the vector for the production of the antibody molecule may be produced by recombinant DNA technology using techniques well known in the art. Thus, methods for preparing a protein by expressing a polynucleotide containing an antibody encoding nucleotide sequence are described herein.
  • the invention provides replicable vectors comprising a nucleotide sequence encoding an antibody molecule of the invention, or a heavy or light chain thereof, or a heavy or light chain variable domain, operably linked to a promoter.
  • Such vectors may include the nucleotide sequence encoding the constant region of the antibody molecule (see, e.g., PCT Publication WO 86/05807; PCT Publication WO 89/01036; and U.S. Pat. No. 5,122,464) and the variable domain of the antibody may be cloned into such a vector for expression of the entire heavy or light chain.
  • the expression vector is transferred to a host cell by conventional techniques and the transfected cells are then cultured by conventional techniques to produce an antibody.
  • the invention includes host cells containing a polynucleotide encoding an antibody of the invention, or a heavy or light chain thereof, or a single chain antibody, operably linked to a heterologous promoter.
  • vectors encoding both the heavy and light chains may be co-expressed in the host cell for expression of the entire immunoglobulin molecule, as detailed below.
  • host-expression vector systems may be utilized to express the antibody molecules of the invention.
  • Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, express an antibody molecule of the invention in situ.
  • These include but are not limited to microorganisms such as bacteria (e.g., E. coli, B.
  • subtilis transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing antibody coding sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing antibody coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing antibody coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CAMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing antibody coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3 cells) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mamm
  • bacterial cells such as Escherichia coli
  • eukaryotic cells especially for the expression of whole recombinant antibody molecule
  • mammalian cells such as Chinese hamster ovary cells (CHO)
  • CHO Chinese hamster ovary cells
  • a vector such as the major intermediate early gene promoter element from human cytomegalovirus is an effective expression system for antibodies (Foecking et al., Gene 45:101 (1986); Cockett et al., Bio/Technology 8:2 (1990)).
  • a number of expression vectors may be advantageously selected depending upon the use intended for the antibody molecule being expressed.
  • vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable.
  • Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., EMBO J. 2:1791 (1983)), in which the antibody coding sequence may be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, Nucleic Acids Res.
  • pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST).
  • GST glutathione S-transferase
  • fusion proteins are soluble and can easily be purified from lysed cells by adsorption and binding to matrix glutathione-agarose beads followed by elution in the presence of free glutathione.
  • the pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.
  • Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes.
  • the virus grows in Spodoptera frugiperda cells.
  • the antibody coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter).
  • a number of viral-based expression systems may be utilized.
  • the antibody coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence.
  • This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing the antibody molecule in infected hosts. (e.g., see Logan & Shenk, Proc.
  • Specific initiation signals may also be required for efficient translation of inserted antibody coding sequences. These signals include the ATG initiation codon and adjacent sequences. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., Methods in Enzymol. 153:51-544 (1987)).
  • a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein.
  • Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed.
  • eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used.
  • Such mammalian host cells include but are not limited to CHO, VERY, BHK, Hela, COS, MDCK, 293, 3T3, WI38, and in particular, breast cancer cell lines such as, for example, BT483, Hs578T, HTB2, BT20 and T47D, and normal mammary gland cell line such as, for example, CRL7030 and Hs578Bst.
  • cell lines which stably express the antibody molecule may be engineered.
  • host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker.
  • appropriate expression control elements e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.
  • engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media.
  • the selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines.
  • This method may advantageously be used to engineer cell lines which express the antibody molecule.
  • Such engineered cell lines may be particularly useful in screening and evaluation of compounds that interact directly or indirectly with the antibody molecule.
  • a number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler et al., Cell 11:223 (1977)), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, Proc. Natl. Acad. Sci. USA 48:202 (1992)), and adenine phosphoribosyltransferase (Lowy et al., Cell 22:817 (1980)) genes can be employed in tk-, hgprt- or aprt-cells, respectively.
  • antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler et al., Natl. Acad. Sci. USA 77:357 (1980); O'Hare et al., Proc. Natl. Acad. Sci. USA 78:1527 (1981)); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, Proc. Natl. Acad. Sci.
  • the expression levels of an antibody molecule can be increased by vector amplification (for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)).
  • vector amplification for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)).
  • a marker in the vector system expressing antibody is amplifiable
  • increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the antibody gene, production of the antibody will also increase (Crouse et al., Mol. Cell. Biol. 3:257 (1983)).
  • Vectors which use glutamine synthase (GS) or DHFR as the selectable markers can be amplified in the presence of the drugs methionine sulphoximine or methotrexate, respectively.
  • An advantage of glutamine synthase based vectors are the availabilty of cell lines (e.g., the murine myeloma cell line, NS0) which are glutamine synthase negative.
  • Glutamine synthase expression systems can also function in glutamine synthase expressing cells (e.g. Chinese Hamster Ovary (CHO) cells) by providing additional inhibitor to prevent the functioning of the endogenous gene.
  • glutamine synthase expression system and components thereof are detailed in PCT publications: WO87/04462; WO86/05807; WO89/01036; WO89/10404; and WO91/06657 which are incorporated in their entireties by reference herein. Additionally, glutamine synthase expression vectors that may be used according to the present invention are commercially available from suppliers, including, for example Lonza Biologics, Inc. (Portsmouth, N.H.). Expression and production of monoclonal antibodies using a GS expression system in murine myeloma cells is described in Bebbington et al, Bio/technology 10:169(1992) and in Biblia and Robinson Biotechnol. Prog. 11:1 (1995) which are incorporated in their entirities by reference herein.
  • the host cell may be co-transfected with two expression vectors of the invention, the first vector encoding a heavy chain derived polypeptide and the second vector encoding a light chain derived polypeptide.
  • the two vectors may contain identical selectable markers which enable equal expression of heavy and light chain polypeptides.
  • a single vector may be used which encodes, and is capable of expressing, both heavy and light chain polypeptides. In such situations, the light chain should be placed before the heavy chain to avoid an excess of toxic free heavy chain (Proudfoot, Nature 322:52 (1986); Kohler, Proc. Natl. Acad. Sci. USA 77:2197 (1980)).
  • the coding sequences for the heavy and light chains may comprise cDNA or genomic DNA.
  • an antibody molecule of the invention may be purified by any method known in the art for purification of an immunoglobulin molecule, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins.
  • chromatography e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography
  • centrifugation e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography
  • differential solubility e.g., differential solubility
  • the antibodies that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention or fragments thereof can be fused to heterologous polypeptide sequences described herein or otherwise known in the art, to facilitate purification.
  • Antibodies that bind a Therapeutic protein or fragments or variants can be fused to marker sequences, such as a peptide to facilitate purification.
  • the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, Calif., 91311), among others, many of which are commercially available.
  • hexa-histidine provides for convenient purification of the fusion protein.
  • peptide tags useful for purification include, but are not limited to, the “HA” tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., Cell 37:767 (1984)) and the “flag” tag.
  • the present invention further encompasses antibodies or fragments thereof conjugated to a diagnostic or therapeutic agent.
  • the antibodies can be used diagnostically to, for example, monitor the development or progression of a tumor as part of a clinical testing procedure to, e.g., determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions.
  • the detectable substance may be coupled or conjugated either directly to the antibody (or fragment thereof) or indirectly, through an intermediate (such as, for example, a linker known in the art) using techniques known in the art. See, for example, U.S. Pat. No. 4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention.
  • suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase;
  • suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin;
  • suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin;
  • an example of a luminescent material includes luminol;
  • examples of bioluminescent materials include luciferase, luciferin, and aequorin;
  • suitable radioactive material include 125I, 131I, 111In or 99Tc. Other examples of detectable substances have been described elsewwhere herein.
  • an antibody of the invention may be conjugated to a therapeutic moiety such as a cytotoxin, e.g., a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, 213Bi.
  • a cytotoxin or cytotoxic agent includes any agent that is detrimental to cells.
  • Examples include paclitaxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
  • Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g.
  • the conjugates of the invention can be used for modifying a given biological response, the therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents.
  • the drug moiety may be a protein or polypeptide possessing a desired biological activity.
  • Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, alpha-interferon, ⁇ -interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g., TNF-alpha, TNF-beta, AIM I (See, International Publication No. WO 97/33899), AIM II (See, International Publication No. WO 97/34911), Fas Ligand (Takahashi et al., Int.
  • a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin
  • a protein such as tumor necrosis factor, alpha-interferon, ⁇ -interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an
  • VEGI See, International Publication No. WO 99/23105
  • a thrombotic agent or an anti-angiogenic agent e.g., angiostatin or endostatin
  • biological response modifiers such as, for example, lymphokines, interleukin-1 (“IL-”), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors.
  • IL- interleukin-1
  • IL-2 interleukin-2
  • IL-6 interleukin-6
  • GM-CSF granulocyte macrophage colony stimulating factor
  • G-CSF granulocyte colony stimulating factor
  • Antibodies may also be attached to solid supports, which are particularly useful for immunoassays or purification of the target antigen.
  • solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.
  • an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Pat. No. 4,676,980, which is incorporated herein by reference in its entirety.
  • An antibody, with or without a therapeutic moiety conjugated to it, administered alone or in combination with cytotoxic factor(s) and/or cytokine(s) can be used as a therapeutic.
  • Antibodies that bind to a Therapeutic protein and that may correspond to a Therapeutic protein portion of an albumin fusion protein of the invention include, but are not limited to, antibodies that bind a Therapeutic protein disclosed in the “Therapeutic Protein X” column of Table 1, or a fragment or variant thereof.
  • the fragment or variant of an antibody that immunospecifcally binds a Therapeutic protein and that corresponds to a Therapeutic protein portion of an albumin fusion protein comprises, or alternatively consists of, the VH domain.
  • the fragment or variant of an antibody that immunospecifcally binds a Therapeutic protein and that corresponds to a Therapeutic protein portion of an albumin fusion protein comprises, or alternatively consists of, one, two or three VH CDRs.
  • the fragment or variant of an antibody that immunospecifcally binds a Therapeutic protein and that corresponds to a Therapeutic protein portion of an albumin fusion protein comprises, or alternatively consists of the VH CDR1.
  • the fragment or variant of an antibody that immunospecifcally binds a Therapeutic protein and that corresponds to a Therapeutic protein portion of an albumin fusion protein comprises, or alternatively consists of, the VH CDR2. In other embodiments, the fragment or variant of an antibody that immunospecifcally binds a Therapeutic protein and that corresponds to a Therapeutic protein portion of an albumin fusion protein comprises, or alternatively consists of, the VH CDR3.
  • the fragment or variant of an antibody that immunospecifcally binds a Therapeutic protein and that corresponds to a Therapeutic protein portion of an albumin fusion protein comprises, or alternatively consists of, the VL domain.
  • the fragment or variant of an antibody that immunospecifcally binds a Therapeutic protein and that corresponds to a Therapeutic protein portion of an albumin fusion protein comprises, or alternatively consists of, one, two or three VL CDRs.
  • the fragment or variant of an antibody that immunospecifcally binds a Therapeutic protein and that corresponds to a Therapeutic protein portion of an albumin fusion protein comprises, or alternatively consists of, the VL CDR1.
  • the fragment or variant of an antibody that immunospecifcally binds a Therapeutic protein and that corresponds to a Therapeutic protein portion of an albumin fusion protein comprises, or alternatively consists of, the VL CDR2. In other embodiments, the fragment or variant of an antibody that immunospecifcally binds a Therapeutic protein and that corresponds to a Therapeutic protein portion of an albumin fusion protein comprises, or alternatively consists of, the VL CDR3.
  • the fragment or variant of an antibody that immunospecifcally binds a Therapeutic protein and that corresponds to a Therapeutic protein portion of an albumin fusion protein comprises, or alternatively consists of, one, two, three, four, five, or six VH and/or VL CDRs.
  • the fragment or variant of an antibody that immunospecifcally binds a Therapeutic protein and that corresponds to a Therapeutic protein portion of an albumin fusion protein comprises, or alternatively consists of, an scFv comprising the VH domain of the Therapeutic antibody, linked to the VL domain of the therapeutic antibody by a peptide linker such as (Gly 4 Ser) 3 (SEQ ID NO:36).
  • the antibodies of the invention or albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein (or fragment or variant thereof) may be utilized for immunophenotyping of cell lines and biological samples.
  • Therapeutic proteins of the present invention may be useful as cell-specific markers, or more specifically as cellular markers that are differentially expressed at various stages of differentiation and/or maturation of particular cell types.
  • Monoclonal antibodies (or albumin fusion proteins comprsing at least a fragment or variant of an antibody that binds a Therapeutic protein) directed against a specific epitope, or combination of epitopes, will allow for the screening of cellular populations expressing the marker.
  • Various techniques can be utilized using monoclonal antibodies (or albumin fusion proteins comprising at least a fragment or variant of an antibody that binds a Therapeutic protein) to screen for cellular populations expressing the marker(s), and include magnetic separation using antibody-coated magnetic beads, “panning” with antibody attached to a solid matrix (i.e., plate), and flow cytometry (See, e.g., U.S. Pat. No. 5,985,660; and Morrison et al., Cell, 96:737-49 (1999)).
  • the antibodies of the invention or albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein (or fragment or variant thereof) may be characterized in a variety of ways.
  • Albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein may be assayed for the ability to specifically bind to the same antigens specifically bound by the antibody that binds a Therapeutic protein corresponding to the antibody that binds a Therapeutic protein portion of the albumin fusion protein using techniques described herein or routinely modifying techniques known in the art.
  • Assays for the ability of the antibodies of the invention or albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein (or fragment or variant thereof) to (specifically) bind a specific protein or epitope may be performed in solution (e.g., Houghten, Bio/Techniques 13:412-421(1992)), on beads (e.g., Lam, Nature 354:82-84 (1991)), on chips (e.g., Fodor, Nature 364:555-556 (1993)), on bacteria (e.g., U.S. Pat. No. 5,223,409), on spores (e.g., Patent Nos.
  • the antibodies of the invention or albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein (or fragment or variant thereof) may also be assayed for their specificity and affinity for a specific protein or epitope using or routinely modifying techniques described herein or otherwise known in the art.
  • the albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein may be assayed for cross-reactivity with other antigens (e.g., molecules that have sequence/structure conservation with the molecule(s) specifically bound by the antibody that binds a Therapeutic protein (or fragment or variant thereof) corresponding to the Therapeutic protein portion of the albumin fusion protein of the invention) by any method known in the art.
  • antigens e.g., molecules that have sequence/structure conservation with the molecule(s) specifically bound by the antibody that binds a Therapeutic protein (or fragment or variant thereof) corresponding to the Therapeutic protein portion of the albumin fusion protein of the invention
  • Immunoassays which can be used to analyze (immunospecific) binding and cross-reactivity include, but are not limited to, competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), “sandwich” immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, and protein A immunoassays, to name but a few.
  • competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), “sandwich” immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, aggluti
  • Immunoprecipitation protocols generally comprise lysing a population of cells in a lysis buffer such as RIPA buffer (1% NP-40 or Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.01 M sodium phosphate at pH 7.2, 1% Trasylol) supplemented with protein phosphatase and/or protease inhibitors (e.g., EDTA, PMSF, aprotinin, sodium vanadate), adding an antibody of the invention or albumin fusion protein of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein (or fragment or variant thereof) to the cell lysate, incubating for a period of time (e.g., 1 to 4 hours) at 40 degrees C., adding protein A and/or protein G sepharose beads (or beads coated with an appropriate anti-iditoypic antibody or anti-albumin antibody in the case when an albumin fusion protein comprising at
  • the ability of the antibody or albumin fusion protein of the invention to immunoprecipitate a particular antigen can be assessed by, e.g., western blot analysis.
  • One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the binding of the antibody or albumin fusion protein to an antigen and decrease the background (e.g., pre-clearing the cell lysate with sepharose beads).
  • immunoprecipitation protocols see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 10.16.1.
  • Western blot analysis generally comprises preparing protein samples, electrophoresis of the protein samples in a polyacrylamide gel (e.g., 8%-20% SDS-PAGE depending on the molecular weight of the antigen), transferring the protein sample from the polyacrylamide gel to a membrane such as nitrocellulose, PVDF or nylon, blocking the membrane in blocking solution (e.g., PBS with 3% BSA or non-fat milk), washing the membrane in washing buffer (e.g., PBS-Tween 20), applying the antibody or albumin fusion protein of the invention (diluted in blocking buffer) to the membrane, washing the membrane in washing buffer, applying a secondary antibody (which recognizes the albumin fusion protein, e.g., an anti-human serum albumin antibody) conjugated to an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) or radioactive molecule (e.g., 32 P or 125 I) diluted in blocking buffer, washing the membrane in wash buffer, and
  • ELISAs comprise preparing antigen, coating the well of a 96-well microtiter plate with the antigen, washing away antigen that did not bind the wells, adding the antibody or albumin fusion protein (comprising at least a fragment or variant of an antibody that binds a Therapeutic protein) of the invention conjugated to a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) to the wells and incubating for a period of time, washing away unbound or non-specifically bound albumin fusion proteins, and detecting the presence of the antibody or albumin fusion proteins specifically bound to the antigen coating the well.
  • an enzymatic substrate e.g., horseradish peroxidase or alkaline phosphatase
  • the antibody or albumin fusion protein does not have to be conjugated to a detectable compound; instead, a second antibody (which recognizes the antibody or albumin fusion protein, respectively) conjugated to a detectable compound may be added to the well. Further, instead of coating the well with the antigen, antibody or the albumin fusion protein may be coated to the well.
  • the detectable molecule could be the antigen conjugated to a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase).
  • an enzymatic substrate e.g., horseradish peroxidase or alkaline phosphatase.
  • the binding affinity of an albumin fusion protein to a protein, antigen, or epitope and the off-rate of an antibody- or albumin fusion protein-protein/antigen/epitope interaction can be determined by competitive binding assays.
  • a competitive binding assay is a radioimmunoassay comprising the incubation of labeled antigen (e.g., 3 H or 125 I) with the antibody or albumin fusion protein of the invention in the presence of increasing amounts of unlabeled antigen, and the detection of the antibody bound to the labeled antigen.
  • the affinity of the antibody or albumin fusion protein of the present invention for a specific protein, antigen, or epitope and the binding off-rates can be determined from the data by Scatchard plot analysis. Competition with a second protein that binds the same protein, antigen or epitope as the antibody or albumin fusion protein, can also be determined using radioimmunoassays.
  • the protein, antigen or epitope is incubated with an antibody or albumin fusion protein of the present invention conjugated to a labeled compound (e.g. 3 H or 125 I) in the presence of increasing amounts of an unlabeled second protein that binds the same protein, antigen, or epitope as the albumin fusion protein of the invention.
  • a labeled compound e.g. 3 H or 125 I
  • BIAcore kinetic analysis is used to determine the binding on and off rates of antibody or albumin fusion proteins of the invention to a protein, antigen or epitope.
  • BIAcore kinetic analysis comprises analyzing the binding and dissociation of antibodies, albumin fusion proteins, or specific polypeptides, antigens or epitopes from chips with immobilized specific polypeptides, antigens or epitopes, antibodies or albumin fusion proteins, respectively, on their surface.
  • the present invention is further directed to antibody-based therapies which involve administering antibodies of the invention or albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein to an animal, preferably a mammal, and most preferably a human, patient for treating one or more of the disclosed diseases, disorders, or conditions.
  • Therapeutic compounds of the invention include, but are not limited to, antibodies of the invention (including fragments, analogs and derivatives thereof as described herein), nucleic acids encoding antibodies of the invention (including fragments, analogs and derivatives thereof and anti-idiotypic antibodies as described herein), albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein, and nucleic acids encoding such albumin fusion proteins.
  • the antibodies of the invention or albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein can be used to treat, inhibit or prevent diseases, disorders or conditions associated with aberrant expression and/or activity of a Therapeutic protein, including, but not limited to, any one or more of the diseases, disorders, or conditions described herein.
  • the treatment and/or prevention of diseases, disorders, or conditions associated with aberrant expression and/or activity of a Therapeutic protein includes, but is not limited to, alleviating symptoms associated with those diseases, disorders or conditions antibodies of the invention or albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.
  • the present invention is directed to antibody-based therapies which involve administering antibodies of the invention or albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein to an animal, preferably a mammal, and most preferably a human, patient for treating one or more diseases, disorders, or conditions, including but not limited to: neural disorders, immune system disorders, muscular disorders, reproductive disorders, gastrointestinal disorders, pulmonary disorders, cardiovascular disorders, renal disorders, proliferative disorders, and/or cancerous diseases and conditions., and/or as described elsewhere herein.
  • Therapeutic compounds of the invention include, but are not limited to, antibodies of the invention (e.g., antibodies directed to the full length protein expressed on the cell surface of a mammalian cell; antibodies directed to an epitope of a Therapeutic protein and nucleic acids encoding antibodies of the invention (including fragments, analogs and derivatives thereof and anti-idiotypic antibodies as described herein).
  • the antibodies of the invention can be used to treat, inhibit or prevent diseases, disorders or conditions associated with aberrant expression and/or activity of a Therapeutic protein, including, but not limited to, any one or more of the diseases, disorders, or conditions described herein.
  • the treatment and/or prevention of diseases, disorders, or conditions associated with aberrant expression and/or activity of a Therapeutic protein includes, but is not limited to, alleviating symptoms associated with those diseases, disorders or conditions.
  • Antibodies of the invention or albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.
  • a summary of the ways in which the antibodies of the invention or albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein may be used therapeutically includes binding Therapeutic proteins locally or systemically in the body or by direct cytotoxicity of the antibody, e.g. as mediated by complement (CDC) or by effector cells (ADCC). Some of these approaches are described in more detail below.
  • CDC complement
  • ADCC effector cells
  • the antibodies of the invention or albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein may be advantageously utilized in combination with other monoclonal or chimeric antibodies, or with lymphokines or hematopoietic growth factors (such as, e.g., IL-2, IL-3 and IL-7), for example, which serve to increase the number or activity of effector cells which interact with the antibodies.
  • lymphokines or hematopoietic growth factors such as, e.g., IL-2, IL-3 and IL-7
  • the antibodies of the invention or albumin fusion proteins of the invention comprising at least a fragment or variant of an antibody that binds a Therapeutic protein may be administered alone or in combination with other types of treatments (e.g., radiation therapy, chemotherapy, hormonal therapy, immunotherapy and anti-tumor agents). Generally, administration of products of a species origin or species reactivity (in the case of antibodies) that is the same species as that of the patient is preferred. Thus, in a preferred embodiment, human antibodies, fragments derivatives, analogs, or nucleic acids, are administered to a human patient for therapy or prophylaxis.
  • binding affinities include dissociation constants or Kd's less than 5 ⁇ 10 ⁇ 2 M, 10 ⁇ 2 M, 5 ⁇ 10 ⁇ 3 M, 10 ⁇ 3 M, 5 ⁇ 10 ⁇ 4 M, 10 ⁇ 4 M.
  • More preferred binding affinities include those with a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 5 M, 10 ⁇ 5 M, 5 ⁇ 10 ⁇ 6 M, 10 ⁇ 6 M, 5 ⁇ 10 ⁇ 7 M, 10 7 M, 5 ⁇ 10 ⁇ 8 M or 10 ⁇ 8 M.
  • Even more preferred binding affinities include those with a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 9 M, 10 ⁇ 9 M, 5 ⁇ 10 ⁇ 10 M, 10 ⁇ 10 M, 5 ⁇ 10 ⁇ 11 M, 10 ⁇ 11 M, 5 ⁇ 10 ⁇ 12 M, 10 ⁇ 12 M, 5 ⁇ 10 ⁇ 13 M, 10 ⁇ 13 M, 5 ⁇ 10 ⁇ 14 M, 10 ⁇ 14 M, 5 ⁇ 10 ⁇ 15 M, or 10 ⁇ 15 M.
  • nucleic acids comprising sequences encoding antibodies that bind therapeutic proteins or albumin fusion proteins comprising at least a fragment or varaint of an antibody that binds a Therapeutic protein are administered to treat, inhibit or prevent a disease or disorder associated with aberrant expression and/or activity of a Therapeutic protein, by way of gene therapy.
  • Gene therapy refers to therapy performed by the administration to a subject of an expressed or expressible nucleic acid.
  • the nucleic acids produce their encoded protein that mediates a therapeutic effect.
  • the compounds or pharmaceutical compositions of the invention are preferably tested in vitro, and then in vivo for the desired therapeutic or prophylactic activity, prior to use in humans.
  • in vitro assays to demonstrate the therapeutic or prophylactic utility of a compound or pharmaceutical composition include, the effect of a compound on a cell line or a patient tissue sample.
  • the effect of the compound or composition on the cell line and/or tissue sample can be determined utilizing techniques known to those of skill in the art including, but not limited to, rosette formation assays and cell lysis assays.
  • in vitro assays which can be used to determine whether administration of a specific compound is indicated, include in vitro cell culture assays in which a patient tissue sample is grown in culture, and exposed to or otherwise administered a compound, and the effect of such compound upon the tissue sample is observed.
  • the invention provides methods of treatment, inhibition and prophylaxis by administration to a subject of an effective amount of a compound or pharmaceutical composition of the invention, preferably an antibody.
  • the compound is substantially purified (e.g., substantially free from substances that limit its effect or produce undesired side-effects).
  • the subject is preferably an animal, including but not limited to animals such as cows, pigs, horses, chickens, cats, dogs, etc., and is preferably a mammal, and most preferably human.
  • Formulations and methods of administration that can be employed when the compound comprises a nucleic acid or an immunoglobulin are described above; additional appropriate formulations and routes of administration can be selected from among those described herein below.
  • Various delivery systems are known and can be used to administer a compound of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)), construction of a nucleic acid as part of a retroviral or other vector, etc.
  • Methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes.
  • the compounds or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local.
  • Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.
  • a protein, including an antibody, of the invention care must be taken to use materials to which the protein does not absorb.
  • the compound or composition can be delivered in a vesicle, in particular a liposome (see Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid.)
  • the compound or composition can be delivered in a controlled release system.
  • a pump may be used (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321:574 (1989)).
  • polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Fla.
  • a controlled release system can be placed in proximity of the therapeutic target, e.g., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).
  • the nucleic acid can be administered in vivo to promote expression of its encoded protein, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Pat. No.
  • a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination.
  • compositions comprise a therapeutically effective amount of a compound, and a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
  • carrier refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered.
  • Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like.
  • Water is a preferred carrier when the pharmaceutical composition is administered intravenously.
  • Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions.
  • Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
  • the composition if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
  • compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like.
  • the composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides.
  • Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin.
  • Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient.
  • the formulation should suit the mode of administration.
  • the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings.
  • compositions for intravenous administration are solutions in sterile isotonic aqueous buffer.
  • the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection.
  • the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
  • composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline.
  • an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
  • the compounds of the invention can be formulated as neutral or salt forms.
  • Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
  • the amount of the compound of the invention which will be effective in the treatment, inhibition and prevention of a disease or disorder associated with aberrant expression and/or activity of a Therapeutic protein can be determined by standard clinical techniques.
  • in vitro assays may optionally be employed to help identify optimal dosage ranges.
  • the precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
  • the dosage administered to a patient is typically 0.1 mg/kg to 100 mg/kg of the patient's body weight.
  • the dosage administered to a patient is between 0.1 mg/kg and 20 mg/kg of the patient's body weight, more preferably 1 mg/kg to 10 mg/kg of the patient's body weight.
  • human antibodies have a longer half-life within the human body than antibodies from other species due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent administration is often possible.
  • the dosage and frequency of administration of antibodies of the invention may be reduced by enhancing uptake and tissue penetration (e.g., into the brain) of the antibodies by modifications such as, for example, lipidation.
  • Labeled antibodies and derivatives and analogs thereof that bind a Therapeutic protein (or fragment or variant thereof) can be used for diagnostic purposes to detect, diagnose, or monitor diseases, disorders, and/or conditions associated with the aberrant expression and/or activity of Therapeutic protein.
  • the invention provides for the detection of aberrant expression of a Therapeutic protein, comprising (a) assaying the expression of the Therapeutic protein in cells or body fluid of an individual using one or more antibodies specific to the polypeptide interest and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed Therapeutic protein expression level compared to the standard expression level is indicative of aberrant expression.
  • the invention provides a diagnostic assay for diagnosing a disorder, comprising (a) assaying the expression of the Therapeutic protein in cells or body fluid of an individual using one or more antibodies specific to the Therapeutic protein or albumin fusion proteins comprising at least a fragment of variant of an antibody specific to a Therapeutic protein, and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed Therapeutic protein gene expression level compared to the standard expression level is indicative of a particular disorder.
  • the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
  • Antibodies of the invention or albumin fusion proteins comprising at least a fragment of variant of an antibody specific to a Therapeutic protein can be used to assay protein levels in a biological sample using classical immunohistological methods known to those of skill in the art (e.g., see Jalkanen et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen et al., J. Cell. Biol. 105:3087-3096 (1987)).
  • Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).
  • Suitable antibody assay labels include enzyme labels, such as, glucose oxidase; radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99Tc); luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.
  • enzyme labels such as, glucose oxidase
  • radioisotopes such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99Tc)
  • luminescent labels such as luminol
  • fluorescent labels such as fluorescein and rhodamine, and biotin.
  • diagnosis comprises: a) administering (for example, parenterally, subcutaneously, or intraperitoneally) to a subject an effective amount of a labeled molecule which specifically binds to the polypeptide of interest; b) waiting for a time interval following the administering for permitting the labeled molecule to preferentially concentrate at sites in the subject where the Therapeutic protein is expressed (and for unbound labeled molecule to be cleared to background level); c) determining background level; and d) detecting the labeled molecule in the subject, such that detection of labeled molecule above the background level indicates that the subject has a particular disease or disorder associated with aberrant expression of the therapeutic protein.
  • Background level can be determined by various methods including, comparing the amount of labeled molecule detected to a standard value previously determined for a particular system.
  • the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images.
  • the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99 mTc.
  • the labeled antibody, antibody fragment, or albumin fusion protein comprising at least a fragement or variant of an antibody that binds a Therapeutic protein will then preferentially accumulate at the location of cells which contain the specific Therapeutic protein. In vivo tumor imaging is described in S. W.
  • the time interval following the administration for permitting the labeled molecule to preferentially concentrate at sites in the subject and for unbound labeled molecule to be cleared to background level is 6 to 48 hours or 6 to 24 hours or 6 to 12 hours. In another embodiment the time interval following administration is 5 to 20 days or 5 to 10 days.
  • monitoring of the disease or disorder is carried out by repeating the method for diagnosing the disease or disease, for example, one month after initial diagnosis, six months after initial diagnosis, one year after initial diagnosis, etc.
  • Presence of the labeled molecule can be detected in the patient using methods known in the art for in vivo scanning. These methods depend upon the type of label used. Skilled artisans will be able to determine the appropriate method for detecting a particular label. Methods and devices that may be used in the diagnostic methods of the invention include, but are not limited to, computed tomography (CT), whole body scan such as position emission tomography (PET), magnetic resonance imaging (MRI), and sonography.
  • CT computed tomography
  • PET position emission tomography
  • MRI magnetic resonance imaging
  • sonography sonography
  • the molecule is labeled with a radioisotope and is detected in the patient using a radiation responsive surgical instrument (Thurston et al., U.S. Pat. No. 5,441,050).
  • the molecule is labeled with a fluorescent compound and is detected in the patient using a fluorescence responsive scanning instrument.
  • the molecule is labeled with a positron emitting metal and is detected in the patent using positron emission-tomography.
  • the molecule is labeled with a paramagnetic label and is detected in a patient using magnetic resonance imaging (MRI).
  • MRI magnetic resonance imaging
  • kits that can be used in the above methods.
  • a kit comprises an antibody, preferably a purified antibody, in one or more containers.
  • the kits of the present invention contain a substantially isolated polypeptide comprising an epitope which is specifically immunoreactive with an antibody included in the kit.
  • the kits of the present invention further comprise a control antibody which does not react with the polypeptide of interest.
  • kits of the present invention contain a means for detecting the binding of an antibody to a polypeptide of interest (e.g., the antibody may be conjugated to a detectable substrate such as a fluorescent compound, an enzymatic substrate, a radioactive compound or a luminescent compound, or a second antibody which recognizes the first antibody may be conjugated to a detectable substrate).
  • a detectable substrate such as a fluorescent compound, an enzymatic substrate, a radioactive compound or a luminescent compound, or a second antibody which recognizes the first antibody may be conjugated to a detectable substrate.
  • the kit is a diagnostic kit for use in screening serum containing antibodies specific against proliferative and/or cancerous polynucleotides and polypeptides.
  • a kit may include a control antibody that does not react with the polypeptide of interest.
  • a kit may include a substantially isolated polypeptide antigen comprising an epitope which is specifically immunoreactive with at least one anti-polypeptide antigen antibody.
  • a kit includes means for detecting the binding of said antibody to the antigen (e.g., the antibody may be conjugated to a fluorescent compound such as fluorescein or rhodamine which can be detected by flow cytometry).
  • the kit may include a recombinantly produced or chemically synthesized polypeptide antigen.
  • the polypeptide antigen of the kit may also be attached to a solid support.
  • the detecting means of the above-described kit includes a solid support to which said polypeptide antigen is attached.
  • a kit may also include a non-attached reporter-labeled anti-human antibody.
  • binding of the antibody to the polypeptide antigen can be detected by binding of the said reporter-labeled antibody.
  • the invention includes a diagnostic kit for use in screening serum containing antigens of the polypeptide of the invention.
  • the diagnostic kit includes a substantially isolated antibody specifically immunoreactive with polypeptide or polynucleotide antigens, and means for detecting the binding of the polynucleotide or polypeptide antigen to the antibody.
  • the antibody is attached to a solid support.
  • the antibody may be a monoclonal antibody.
  • the detecting means of the kit may include a second, labeled monoclonal antibody. Alternatively, or in addition, the detecting means may include a labeled, competing antigen.
  • test serum is reacted with a solid phase reagent having a surface-bound antigen obtained by the methods of the present invention.
  • the reagent After binding with specific antigen antibody to the reagent and removing unbound serum components by washing, the reagent is reacted with reporter-labeled-anti-human antibody to bind reporter to the reagent in proportion to the amount of bound anti-antigen antibody on the solid support.
  • the reagent is again washed to remove unbound labeled antibody, and the amount of reporter associated with the reagent is determined.
  • the reporter is an enzyme which is detected by incubating the solid phase in the presence of a suitable fluorometric, luminescent or colorimetric substrate (Sigma, St. Louis, Mo.).
  • the solid surface reagent in the above assay is prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, 96-well plate or filter material. These attachment methods generally include non-specific adsorption of the protein to the support or covalent attachment of the protein, typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group. Alternatively, streptavidin coated plates can be used in conjunction with biotinylated antigen(s).
  • the invention provides an assay system or kit for carrying out this diagnostic method.
  • the kit generally includes a support with surface-bound recombinant antigens, and a reporter-labeled anti-human antibody for detecting surface-bound anti-antigen antibody.
  • albumin fusion protein refers to a protein formed by the fusion of at least one molecule of albumin (or a fragment or variant thereof) to at least one molecule of a Therapeutic protein (or fragment or variant thereof).
  • An albumin fusion protein of the invention comprises at least a fragment or variant of a Therapeutic protein and at least a fragment or variant of human serum albumin, which are associated with one another, preferably by genetic fusion (i.e., the albumin fusion protein is generated by translation of a nucleic acid in which a polynucleotide encoding all or a portion of a Therapeutic protein is joined in-frame with a polynucleotide encoding all or a portion of albumin) or chemical conjugation to one another.
  • the Therapeutic protein and albumin protein, once part of the albumin fusion protein may be referred to as a “portion”, “region” or “moiety” of the albumin fusion protein.
  • the invention provides an albumin fusion protein comprising, or alternatively consisting of, a Therapeutic protein (e.g., as described in Table 1) and a serum albumin protein.
  • the invention provides an albumin fusion protein comprising, or alternatively consisting of, a biologically active and/or therapeutically active fragment of a Therapeutic protein and a serum albumin protein.
  • the invention provides an albumin fusion protein comprising, or alternatively consisting of, a biologically active and/or therapeutically active variant of a Therapeutic protein and a serum albumin protein.
  • the serum albumin protein component of the albumin fusion protein is the mature portion of serum albumin.
  • the invention provides an albumin fusion protein comprising, or alternatively consisting of, a Therapeutic protein, and a biologically active and/or therapeutically active fragment of serum albumin.
  • the invention provides an albumin fusion protein comprising, or alternatively consisting of, a Therapeutic protein and a biologically active and/or therapeutically active variant of serum albumin.
  • the Therapeutic protein portion of the albumin fusion protein is the mature portion of the Therapeutic protein.
  • the invention provides an albumin fusion protein comprising, or alternatively consisting of, a biologically active and/or therapeutically active fragment or variant of a Therapeutic protein and a biologically active and/or therapeutically active fragment or variant of serum albumin.
  • the invention provides an albumin fusion protein comprising, or alternatively consisting of, the mature portion of a Therapeutic protein and the mature portion of serum albumin.
  • the albumin fusion protein comprises HA as the N-terminal portion, and a Therapeutic protein as the C-terminal portion.
  • a Therapeutic protein as the C-terminal portion may also be used.
  • the albumin fusion protein has a Therapeutic protein fused to both the N-terminus and the C-terminus of albumin.
  • the Therapeutic proteins fused at the N- and C-termini are the same Therapeutic proteins.
  • the Therapeutic proteins fused at the N- and C-termini are different Therapeutic proteins.
  • the Therapeutic proteins fused at the N- and C-termini are different Therapeutic proteins which may be used to treat or prevent the same disease, disorder, or condition (e.g. as listed in the “Preferred Indication Y” column of Table 1).
  • the Therapeutic proteins fused at the N- and C-termini are different Therapeutic proteins which may be used to treat or prevent diseases or disorders (e.g. as listed in the “Preferred Indication Y” column of Table 1) which are known in the art to commonly occur in patients simultaneously.
  • albumin fusion proteins of the invention may also be produced by inserting the Therapeutic protein or peptide of interest (e.g., a Therapeutic protein X as diclosed in Table 1, or an antibody that binds a Therapeutic protein or a fragment or variant thereof) into an internal region of HA.
  • a Therapeutic protein X as diclosed in Table 1, or an antibody that binds a Therapeutic protein or a fragment or variant thereof
  • albumin fusion proteins of the invention may also be produced by inserting the Therapeutic protein or peptide of interest (e.g., a Therapeutic protein X as diclosed in Table 1, or an antibody that binds a Therapeutic protein or a fragment or variant thereof) into an internal region of HA.
  • a Therapeutic protein X as diclosed in Table 1, or an antibody that binds a Therapeutic protein or a fragment or variant thereof
  • PDB identifiers IAO6, 1BJ5, 1BKE, 1BM0, 1E7E to 1E7I and 1UOR for the most part extend away from the body of the molecule.
  • These loops are useful for the insertion, or internal fusion, of therapeutically active peptides, particularly those requiring a secondary structure to be functional, or Therapeutic proteins, to essentially generate an albumin molecule with specific biological activity.
  • Loops in human albumin structure into which peptides or polypeptides may be inserted to generate albumin fusion proteins of the invention include: Val54-Asn61, Thr76-Asp89, Ala92-Glu100, Gln170-Ala176, His 247-Glu252, Glu 266-Glu277, Glu 280-His288, Ala362-Glu368, Lys439-Pro447,Val462-Lys475, Thr478-Pro486, and Lys560-Thr566.
  • peptides or polypeptides are inserted into the Val54-Asn61, Gln170-Ala176, and/or Lys560-Thr566 loops of mature human albumin (SEQ ID NO: 18).
  • Peptides to be inserted may be derived from either phage display or synthetic peptide libraries screened for specific biological activity or from the active portions of a molecule with the desired function. Additionally, random peptide libraries may be generated within particular loops or by insertions of randomized peptides into particular loops of the HA molecule and in which all possible combinations of amino acids are represented.
  • Such library(s) could be generated on HA or domain fragments of HA by one of the following methods:
  • the HA or HA domain fragment may also be made multifunctional by grafting the peptides derived from different screens of different loops against different targets into the same HA or HA domain fragment.
  • peptides inserted into a loop of human serum albumin are peptide fragments or peptide variants of the Therapeutic proteins disclosed in Table 1. More particulary, the invention encompasses albumin fusion proteins which comprise peptide fragments or peptide variants at least 7 at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 20, at least 25, at least 30, at least 35, or at least 40 amino acids in length inserted into a loop of human serum albumin.
  • the invention also encompasses albumin fusion proteins which comprise peptide fragments or peptide variants at least 7 at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 20, at least 25, at least 30, at least 35, or at least 40 amino acids fused to the N-terminus of human serum albumin.
  • the invention also encompasses albumin fusion proteins which comprise peptide fragments or peptide variants at least 7 at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 20, at least 25, at least 30, at least 35, or at least 40 amino acids fused to the C-terminus of human serum albumin.
  • the albumin fusion proteins of the invention may have one HA-derived region and one Therapeutic protein-derived region. Multiple regions of each protein, however, may be used to make an albumin fusion protein of the invention. Similarly, more than one Therapeutic protein may be used to make an albumin fusion protein of the invention. For instance, a Therapeutic protein may be fused to both the N- and C-terminal ends of the HA. In such a configuration, the Therapeutic protein portions may be the same or different Therapeutic protein molecules.
  • the structure of bifunctional albumin fusion proteins may be represented as: X-HA-Y or Y-HA-X.
  • an anti-BLySTM scFv-HA-IFN ⁇ -2b fusion may be prepared to modulate the immune response to IFN ⁇ -2b by anti-BLySTM scFv.
  • An alternative is making a bi (or even multi) functional dose of HA-fusions e.g. HA-IFN ⁇ -2b fusion mixed with HA-anti-BLySTM scFv fusion or other HA-fusions in various ratio's depending on function, half-life etc.
  • Bi- or multi-functional albumin fusion proteins may also be prepared to target the Therapeutic protein portion of a fusion to a target organ or cell type via protein or peptide at the opposite terminus of HA.
  • the peptides could be obtained by screening libraries constructed as fusions to the N-, C- or N- and C-termini of HA, or domain fragment of HA, of typically 6, 8, 12, 20 or 25 or X n (where X is an amino acid (aa) and n equals the number of residues) randomized amino acids, and in which all possible combinations of amino acids were represented.
  • X is an amino acid (aa) and n equals the number of residues) randomized amino acids, and in which all possible combinations of amino acids were represented.
  • a particular advantage of this approach is that the peptides may be selected in situ on the HA molecule and the properties of the peptide would therefore be as selected for rather than, potentially, modified as might be the case for a peptide derived by any other method then being attached to HA.
  • the albumin fusion proteins of the invention may include a linker peptide between the fused portions to provide greater physical separation between the moieties and thus maximize the accessibility of the Therapeutic protein portion, for instance, for binding to its cognate receptor.
  • the linker peptide may consist of amino acids such that it is flexible or more rigid.
  • the linker sequence may be cleavable by a protease or chemically to yield the growth hormone related moiety.
  • the protease is one which is produced naturally by the host, for example the S. cerevisiae protease kex2 or equivalent proteases.
  • the albumin fusion proteins of the invention may have the following formula R1-L-R2; R2-L-R1; or R1-L-R2-L-R1, wherein R1 is at least one Therapeutic protein, peptide or polypeptide sequence, and not necessarily the same Therapeutic protein, L is a linker and R2 is a serum albumin sequence.
  • Albumin fusion proteins of the invention comprising a Therapeutic protein have extended shelf life compared to the shelf life the same Therapeutic protein when not fused to albumin. Shelf-life typically refers to the time period over which the therapeutic activity of a Therapeutic protein in solution or in some other storage formulation, is stable without undue loss of therapeutic activity. Many of the Therapeutic proteins are highly labile in their unfused state. As described below, the typical shelf-life of these Therapeutic proteins is markedly prolonged upon incorporation into the albumin fusion protein of the invention.
  • Albumin fusion proteins of the invention with “prolonged” or “extended” shelf-life exhibit greater therapeutic activity relative to a standard that has been subjected to the same storage and handling conditions.
  • the standard may be the unfused full-length Therapeutic protein.
  • the Therapeutic protein portion of the albumin fusion protein is an analog, a variant, or is otherwise altered or does not include the complete sequence for that protein, the prolongation of therapeutic activity may alternatively be compared to the unfused equivalent of that analog, variant, altered peptide or incomplete sequence.
  • an albumin fusion protein of the invention may retain greater than about 100% of the therapeutic activity, or greater than about 105%, 110%, 120%, 130%, 150% or 200% of the therapeutic activity of a standard when subjected to the same storage and handling conditions as the standard when compared at a given time point.
  • Shelf-life may also be assessed in terms of therapeutic activity remaining after storage, normalized to therapeutic activity when storage began.
  • Albumin fusion proteins of the invention with prolonged or extended shelf-life as exhibited by prolonged or extended therapeutic activity may retain greater than about 50% of the therapeutic activity, about 60%, 70%, 80%, or 90% or more of the therapeutic activity of the equivalent unfused Therapeutic protein when subjected to the same conditions.
  • an albumin fusion protein of the invention comprising hGH fused to the full length HA sequence may retain about 80% or more of its original activity in solution for periods of up to 5 weeks or more under various temperature conditions.
  • the albumin fusion proteins of the invention may be produced as recombinant molecules by secretion from yeast, a microorganism such as a bacterium, or a human or animal cell line.
  • the polypeptide is secreted from the host cells.
  • Hiramatsu et al. Appl Environ Microbiol 56:2125 (1990); Appl Environ Microbiol 57:2052 (1991) found that the N-terminal portion of the pro sequence in the Mucor pusillus rennin pre-pro leader was important.
  • the pro sequences were believed to assist in the folding of the hGH by acting as an intramolecular chaperone.
  • the present invention shows that HA or fragments of HA can perform a similar function.
  • a particular embodiment of the invention comprises a DNA construct encoding a signal sequence effective for directing secretion in yeast, particularly a yeast-derived signal sequence (especially one which is homologous to the yeast host), and the fused molecule of the first aspect of the invention, there being no yeast-derived pro sequence between the signal and the mature polypeptide.
  • Saccharomyces cerevisiae invertase signal is a preferred example of a yeast-derived signal sequence.
  • the present invention also includes a cell, preferably a yeast cell transformed to express an albumin fusion protein of the invention.
  • a cell preferably a yeast cell transformed to express an albumin fusion protein of the invention.
  • the present invention also contemplates a culture of those cells, preferably a monoclonal (clonally homogeneous) culture, or a culture derived from a monoclonal culture, in a nutrient medium. If the polypeptide is secreted, the medium will contain the polypeptide, with the cells, or without the cells if they have been filtered or centrifuged away.
  • Many expression systems are known and may be used, including bacteria (for example E.
  • yeasts for example Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris
  • filamentous fungi for example Aspergillus
  • plant cells animal cells and insect cells.
  • D88 Preferred yeast strains to be used in the production of albumin fusion proteins
  • D88 [leu2-3, leu2-122, canI, praI, ubc4] is a derivative of parent strain AH22his + (also known as DB1; see, e.g., Sleep et al. Biotechnology 8:42-46 (1990)).
  • the strain contains a leu2 mutation which allows for auxotropic selection of 2 micron-based plasmids that contain the LEU2 gene.
  • D88 also exhibits a derepression of PRB1 in glucose excess.
  • the PRB1 promoter is normally controlled by two checkpoints that monitor glucose levels and growth stage.
  • the promoter is activated in wild type yeast upon glucose depletion and entry into stationary phase.
  • Strain D88 exhibits the repression by glucose but maintains the induction upon entry into stationary phase.
  • the PRA1 gene encodes a yeast vacuolar protease, YscA endoprotease A, that is localized in the ER.
  • the UBC4 gene is in the ubiquitination pathway and is involved in targeting short lived and abnormal proteins for ubiquitin dependant degradation. Isolation of this ubc4 mutation was found to increase the copy number of an expression plasmid in the cell and cause an increased level of expression of a desired protein expressed from the plasmid (see, e.g., International Publication No. WO99/00504, hereby incorporated in its entirety by reference herein).
  • DXY1 a derivative of D88, has the following genotype: [leu2-3, leu2-122, canI, pra1, ubc4, ura3::yap3].
  • this strain also has a knockout of the YAP3 protease.
  • This protease causes cleavage of mostly di-basic residues (RR, RK, KR, KK) but can also promote cleavage at single basic residues in proteins. Isolation of this yap3 mutation resulted in higher levels of full length HSA production (see, e.g., U.S. Pat. No. 5,965,386 and Kerry-Williams et al., Yeast 14:161-169 (1998), hereby incorporated in their entireties by reference herein).
  • BXP10 has the following genotype: leu2-3, leu2-122, can1, pra1, ubc4, ura3, yap3::URA3, lys2, hsp150::LYS2, pmt1::URA3.
  • this strain also has a knockout of the PMT1 gene and the HSP150 gene.
  • the PMT1 gene is a member of the evolutionarily conserved family of dolichyl-phosphate-D-mannose protein O-mannosyltransferases (Pmts).
  • the transmembrane topology of Pmt1p suggests that it is an integral membrane protein of the endoplasmic reticulum with a role in O-linked glycosylation.
  • This mutation serves to reduce/eliminate O-linked glycosylation of HSA fusions (see, e.g., International Publication No. WO00/44772, hereby incorporated in its entirety by reference herein).
  • Studies revealed that the Hsp150 protein is inefficiently separated from rHA by ion exchange chromatography.
  • the mutation in the HSP150 gene removes a potential contaminant that has proven difficult to remove by standard purification techniques. See, e.g., U.S. Pat. No. 5,783,423, hereby incorporated in its entirety by reference herein.
  • the desired protein is produced in conventional ways, for example from a coding sequence inserted in the host chromosome or on a free plasmid.
  • the yeasts are transformed with a coding sequence for the desired protein in any of the usual ways, for example electroporation. Methods for transformation of yeast by electroporation are disclosed in Becker & Guarente (1990) Methods Enzymol. 194, 182.
  • Successfully transformed cells i.e., cells that contain a DNA construct of the present invention
  • cells resulting from the introduction of an expression construct can be grown to produce the desired polypeptide.
  • Cells can be harvested and lysed and their DNA content examined for the presence of the DNA using a method such as that described by Southern (1975) J. Mol. Biol. 98, 503 or Berent et al. (1985) Biotech. 3, 208.
  • the presence of the protein in the supernatant can be detected using antibodies.
  • Useful yeast plasmid vectors include pRS403-406 and pRS413-416 and are generally available from Stratagene Cloning Systems, La Jolla, Calif. 92037, USA.
  • Plasmids pRS403, pRS404, pRS405 and pRS406 are Yeast Integrating plasmids (YIps) and incorporate the yeast selectable markers HIS3, 7RP1, LEU2 and URA3.
  • Plasmids pRS413-416 are Yeast Centromere plasmids (Ycps).
  • Preferred vectors for making albumin fusion proteins for expression in yeast include pPPC0005, pScCHSA, pScNHSA, and pC4:HSA which are described in detail in Example 2.
  • FIG. 4 shows a map of the pPPC0005 plasmid that can be used as the base vector into which polynucleotides encoding Therapeutic proteins may be cloned to form HA-fusions. It contains a PRB1 S. cerevisiae promoter (PRB1p), a Fusion leader sequence (FL), DNA encoding HA (rHA) and an ADH1 S. cerevisiae terminator sequence.
  • sequence of the fusion leader sequence consists of the first 19 amino acids of the signal peptide of human serum albumin (SEQ ID NO:29) and the last five amino acids of the mating factor alpha 1 promoter (SLDKR, see EP-A-387 319 which is hereby incorporated by reference in its entirety.
  • plasmids pPPC0005, pScCHSA, pScNHSA, and pC4:HSA were deposited on Apr. 11, 2001 at the American Type Culture Collection, 10801 University Boulevard, Manassas, Va. 20110-2209 and given accession numbers ATCC ______, ______, ______, and ______, respectively.
  • Another vector useful for expressing an albumin fusion protein in yeast the pSAC35 vector which is described in Sleep et al., BioTechnology 8:42 (1990) which is hereby incorporated by reference in its entirety.
  • a variety of methods have been developed to operably link DNA to vectors via complementary cohesive termini. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.
  • Synthetic linkers containing one or more restriction sites provide an alternative method of joining the DNA segment to vectors.
  • the DNA segment generated by endonuclease restriction digestion, is treated with bacteriophage T4 DNA polymerase or E. coli DNA polymerase I, enzymes that remove protruding, -single-stranded termini with their 3′ 5′-exonucleolytic activities, and fill in recessed 3′-ends with their polymerizing activities.
  • the combination of these activities therefore generates blunt-ended DNA segments.
  • the blunt-ended segments are then incubated with a large molar excess of linker molecules in the presence of an enzyme that is able to catalyze the ligation of blunt-ended DNA molecules, such as bacteriophage T4 DNA ligase.
  • an enzyme that is able to catalyze the ligation of blunt-ended DNA molecules, such as bacteriophage T4 DNA ligase.
  • the products of the reaction are DNA segments carrying polymeric linker sequences at their ends.
  • These DNA segments are then cleaved with the appropriate restriction enzyme and ligated to an expression vector that has been cleaved with an enzyme that produces termini compatible with those of the DNA segment.
  • a desirable way to modify the DNA in accordance with the invention is to use the polymerase chain reaction as disclosed by Saiki et al. (1988) Science 239, 487-491.
  • the DNA to be enzymatically amplified is flanked by two specific oligonucleotide primers which themselves become incorporated into the amplified DNA.
  • the specific primers may contain restriction endonuclease recognition sites which can be used for cloning into expression vectors using methods known in the art.
  • Exemplary genera of yeast contemplated to be useful in the practice of the present invention as hosts for expressing the albumin fusion proteins are Pichia (Hansenula), Saccharomyces, Kluyveromyces, Candida, Torulopsis, Torulaspora, Schizosaccharomyces, Citeromyces, Pachysolen, Debaromyces, Metschunikowia, Rhodosporidium, Leucosporidium, Botryoascus, Sporidiobolus, Endomycopsis, and the like.
  • Preferred genera are those selected from the group consisting of Saccharomyces, Schizosaccharomyces, Kluyveromyces, Pichia and Torulaspora. Examples of Saccharomyces spp. are S. cerevisiae, S. italicus and S. rouxii.
  • Examples of Kluyveromyces spp. are K. fragilis, K. lactis and K. marxianus.
  • a suitable Torulaspora species is T. delbrueckii.
  • Examples of Pichia (Hansenula) spp. are P. angusta (formerly H. polymorpha ), P. anomala (formerly H. anomala ) and P. pastoris .
  • Methods for the transformation of S. cerevisiae are taught generally in EP 251 744, EP 258 067 and WO 90/01063, all of which are incorporated herein by reference.
  • Preferred exemplary species of Saccharomyces include S. cerevisiae, S. italicus, S. diastaticus, and Zygosaccharomyces rouxii.
  • Preferred exemplary species of Kluyveromyces include K. fragilis and K. lactis.
  • Preferred exemplary species of Hansenula include H. polymorpha (now Pichia angusta ), H. anomala (now Pichia anomala ), and Pichia capsulata. Additional preferred exemplary species of Pichia include P. pastoris .
  • Preferred exemplary species of Aspergillus include A. niger and A. nidulans.
  • Preferred exemplary species of Yarrowia include Y. lipolytica.
  • yeast species are available from the ATCC.
  • the following preferred yeast species are available from the ATCC and are useful in the expression of albumin fusion proteins: Saccharomyces cerevisiae Hansen, teleomorph strain BY4743 yap3 mutant (ATCC Accession No. 4022731); Saccharomyces cerevisiae Hansen, teleomorph strain BY4743 hsp150 mutant (ATCC Accession No. 4021266); Saccharomyces cerevisiae Hansen, teleomorph strain BY4743 pmt1 mutant (ATCC Accession No. 4023792); Saccharomyces cerevisiae Hansen, teleomorph (ATCC Accession Nos.
  • Suitable promoters for S. cerevisiae include those associated with the PGKI gene, GAL1 or GAL10 genes, CYCI, PHO5, TRPI, ADHI, ADH2, the genes for glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, triose phosphate isomerase, phosphoglucose isomerase, glucokinase, alpha-mating factor pheromone, [a mating factor pheromone], the PRBI promoter, the GUT2 promoter, the GPDI promoter, and hybrid promoters involving hybrids of parts of 5′ regulatory regions with parts of 5′ regulatory regions of other promoters or with upstream activation sites (e.g. the promoter of EP-A-258 067).
  • Convenient regulatable promoters for use in Schizosaccharomyces pombe are the thiamine-repressible promoter from the nmt gene as described by Maundrell (1990) J. Biol. Chem. 265, 10857-10864 and the glucose repressible jbp1 gene promoter as described by Hoffman & Winston (1990) Genetics 124, 807-816.
  • Pichia expression kits are commercially available from Invitrogen BV, Leek, Netherlands, and Invitrogen Corp., San Diego, Calif.
  • Suitable promoters include AOXI and AOX2.
  • Gleeson et al. (1986) J. Gen. Microbiol. 132, 3459-3465 include information on Hansenula vectors and transformation, suitable promoters being MOX1 and FMD1; whilst EP 361 991, Fleer et al. (1991) and other-publications from Rhone-Poulenc Rorer teach how to express foreign proteins in Kluyveromyces spp., a suitable promoter being PGKI.
  • the transcription termination signal is preferably the 3′ flanking sequence of a eukaryotic gene which contains proper signals for transcription termination and polyadenylation.
  • Suitable 3′ flanking sequences may, for example, be those of the gene naturally linked to the expression control sequence used, i.e. may correspond to the promoter. Alternatively, they may be different in which case the termination signal of the S. cerevisiae ADHI gene is preferred.
  • the desired albumin fusion protein may be initially expressed with a secretion leader sequence, which may be any leader effective in the yeast chosen.
  • Leaders useful in S. cerevisiae include that from the mating factor polypeptide (MF -1) and the hybrid leaders of EP-A-387 319. Such leaders (or signals) are cleaved by the yeast before the mature albumin is released into the surrounding medium. Further such leaders include those of S. cerevisiae invertase (SUC2) disclosed in JP 62-096086 (granted as 911036516), acid phosphatase (PH05), the pre-sequence of MFoz-1, 0 glucanase (BGL2) and killer toxin; S. diastaticus glucoamylase II; S. carlsbergensis -galactosidase (MEL1); K. lactis killer toxin; and Candida glucoarnylase.
  • SUC2 S. cerevisiae invertase
  • the present invention also relates to vectors containing a polynucleotide encoding an albumin fusion protein of the present invention, host cells, and the production of albumin fusion proteins by synthetic and recombinant techniques.
  • the vector may be, for example, a phage, plasmid, viral, or retroviral vector.
  • Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.
  • the polynucleotides encoding albumin fusion proteins of the invention may be joined to a vector containing a selectable marker for propagation in a host.
  • a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.
  • the polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan.
  • the expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation.
  • the coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.
  • the expression vectors will preferably include at least one selectable marker.
  • markers include dihydrofolate reductase, G418, glutamine synthase, or neomycin resistance for eukaryotic cell culture, and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria.
  • Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli , Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells (e.g., Saccharomyces cerevisiae or Pichia pastoris (ATCC Accession No.
  • insect cells such as Drosophila S2 and Spodoptera Sf9 cells
  • animal cells such as CHO, COS, NSO, 293, and Bowes melanoma cells
  • plant cells Appropriate culture mediums and conditions for the above-described host cells are known in the art.
  • vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc.
  • preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia.
  • Preferred expression vectors for use in yeast systems include, but are not limited to pYES2, pYD1, pTEF1/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalph, pPIC9, pPIC3.5, pHIL-D2, pHIL-S1, pPIC3.5K, pPIC9K, and PAO815 (all available from Invitrogen, Carlbad, Calif.).
  • Other suitable vectors will be readily apparent to the skilled artisan.
  • polynucleotides encoding an albumin fusion protein of the invention may be fused to signal sequences which will direct the localization of a protein of the invention to particular compartments of a prokaryotic or eukaryotic cell and/or direct the secretion of a protein of the invention from a prokaryotic or eukaryotic cell.
  • signal sequences which will direct the localization of a protein of the invention to particular compartments of a prokaryotic or eukaryotic cell and/or direct the secretion of a protein of the invention from a prokaryotic or eukaryotic cell.
  • E. coli one may wish to direct the expression of the protein to the periplasmic space.
  • Examples of signal sequences or proteins (or fragments thereof) to which the albumin fusion proteins of the invention may be fused in order to direct the expression of the polypeptide to the periplasmic space of bacteria include, but are not limited to, the pelB signal sequence, the maltose binding protein (MBP) signal sequence, MBP, the ompA signal sequence, the signal sequence of the periplasmic E. coli heat-labile enterotoxin B-subunit, and the signal sequence of alkaline phosphatase.
  • MBP maltose binding protein
  • ompA the signal sequence of the periplasmic E. coli heat-labile enterotoxin B-subunit
  • alkaline phosphatase Several vectors are commercially available for the construction of fusion proteins which will direct the localization of a protein, such as the pMAL series of vectors (particularly the pMAL-p series) available from New England Biolabs.
  • polynucleotides albumin fusion proteins of the invention may be fused to the pelB pectate lyase signal sequence to increase the efficiency of expression and purification of such polypeptides in Gram-negative bacteria. See, U.S. Pat. Nos. 5,576,195 and 5,846,818, the contents of which are herein incorporated by reference in their entireties.
  • Examples of signal peptides that may be fused to an albumin fusion protein of the invention in order to direct its secretion in mammalian cells include, but are not limited to, the MPIF-1 signal sequence (e.g., amino acids 1-21 of GenBank Accession number AAB51134), the stanniocalcin signal sequence (MLQNSAVLLLLVISASA, SEQ ID NO:34), and a consensus signal sequence (MPTWAWWLFLVLLLALWAPARG, SEQ ID NO:35).
  • a suitable signal sequence that may be used in conjunction with baculoviral expression systems is the gp67 signal sequence (e.g., amino acids 1-19 of GenBank Accession Number AAA72759).
  • Vectors which use glutamine synthase (GS) or DHFR as the selectable markers can be amplified in the presence of the drugs methionine sulphoximine or methotrexate, respectively.
  • An advantage of glutamine synthase based vectors are the availabilty of cell lines (e.g., the murine myeloma cell line, NSO) which are glutamine synthase negative.
  • Glutamine synthase expression systems can also function in glutamine synthase expressing cells (e.g., Chinese Hamster Ovary (CHO) cells) by providing additional inhibitor to prevent the functioning of the endogenous gene.
  • glutamine synthase expression system and components thereof are detailed in PCT publications: WO87/04462; WO86/05807; WO89/01036; WO89/10404; and WO91/06657, which are hereby incorporated in their entireties by reference herein. Additionally, glutamine synthase expression vectors can be obtained from Lonza Biologics, Inc. (Portsmouth, N.H.). Expression and production of monoclonal antibodies using a GS expression system in murine myeloma cells is described in Bebbington et al., Bio/technology 10:169(1992) and in Biblia and Robinson Biotechnol. Prog. 11:1 (1995) which are herein incorporated by reference.
  • the present invention also relates to host cells containing the above-described vector constructs described herein, and additionally encompasses host cells containing nucleotide sequences of the invention that are operably associated with one or more heterologous control regions (e.g., promoter and/or enhancer) using techniques known of in the art.
  • the host cell can be a higher eukaryotic cell, such as a mammalian cell (e.g., a human derived cell), or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell.
  • a host strain may be chosen which modulates the expression of the inserted gene sequences, or modifies and processes the gene product in the specific fashion desired.
  • Expression from certain promoters can be elevated in the presence of certain inducers; thus expression of the genetically engineered polypeptide may be controlled.
  • different host cells have characteristics and specific mechanisms for the translational and post-translational processing and modification (e.g., phosphorylation, cleavage) of proteins. Appropriate cell lines can be chosen to ensure the desired modifications and processing of the foreign protein expressed.
  • nucleic acids and nucleic acid constructs of the invention into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.
  • the invention also encompasses primary, secondary, and immortalized host cells of vertebrate origin, particularly mammalian origin, that have been engineered to delete or replace endogenous genetic material (e.g., the coding sequence corresponding to a Therapeutic protein may be replaced with an albumin fusion protein corresponding to the Therapeutic protein), and/or to include genetic material (e.g., heterologous polynucleotide sequences such as for example, an albumin fusion protein of the invention corresponding to the Therapeutic protein may be included).
  • the genetic material operably associated with the endogenous polynucleotide may activate, alter, and/or amplify endogenous polynucleotides.
  • heterologous polynucleotides e.g., polynucleotides encoding an albumin protein, or a fragment or variant thereof
  • heterologous control regions e.g., promoter and/or enhancer
  • endogenous polynucleotide sequences encoding a Therapeutic protein via homologous recombination (see, e.g., U.S. Pat. No. 5,641,670, issued Jun. 24, 1997; International Publication Number WO 96/29411; International Publication Number WO 94/12650; Koller et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989), the disclosures of each of which are incorporated by reference in their entireties).
  • Albumin fusion proteins of the invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, hydrophobic charge interaction chromatography and lectin chromatography. Most preferably, high performance liquid chromatography (“HPLC”) is employed for purification.
  • HPLC high performance liquid chromatography
  • the albumin fusion proteins of the invention are purified using Anion Exchange Chromatography including, but not limited to, chromatography on Q-sepharose, DEAE sepharose, poros HQ, poros DEAE, Toyopearl Q, Toyopearl QAE, Toyopearl DEAE, Resource/Source Q and DEAE, Fractogel Q and DEAE columns.
  • Anion Exchange Chromatography including, but not limited to, chromatography on Q-sepharose, DEAE sepharose, poros HQ, poros DEAE, Toyopearl Q, Toyopearl QAE, Toyopearl DEAE, Resource/Source Q and DEAE, Fractogel Q and DEAE columns.
  • the albumin fusion proteins of the invention are purified using Cation Exchange Chromatography including, but not limited to, SP-sepharose, CM sepharose, poros HS, poros CM, Toyopearl SP, Toyopearl CM, Resource/Source S and CM, Fractogel S and CM columns and their equivalents and comparables.
  • the albumin fusion proteins of the invention are purified using Hydrophobic Interaction Chromatography including, but not limited to, Phenyl, Butyl, Methyl, Octyl, Hexyl-sepharose, poros Phenyl, Butyl, Methyl, Octyl, Hexyl Toyopearl Phenyl, Butyl, Methyl, Octyl, Hexyl Resource/Source Phenyl, Butyl, Methyl, Octyl, Hexyl, Fractogel Phenyl, Butyl, Methyl, Octyl, Hexyl columns and their equivalents and comparables.
  • Hydrophobic Interaction Chromatography including, but not limited to, Phenyl, Butyl, Methyl, Octyl, Hexyl-sepharose, poros Phenyl, Butyl, Methyl, Octyl, Hexyl Toyopearl Phenyl, Butyl, Me
  • albumin fusion proteins of the invention are purified using Size Exclusion Chromatography including, but not limited to, sepharose S100, S200, S300, superdex resin columns and their equivalents and comparables.
  • albumin fusion proteins of the invention are purified using Affinity Chromatography including, but not limited to, Mimetic Dye affinity, peptide affinity and antibody affinity columns that are selective for either the HSA or the “fusion target” molecules.
  • albumin fusion proteins of the invention are purified using one or more Chromatography methods listed above. In other preferred embodiments, albumin fusion proteins of the invention are purified using one or more of the following Chromatography columns, Q sepharose FF column, SP Sepharose FF column, Q Sepharose High Performance Column, Blue Sepharose FF column, Blue Column, Phenyl Sepharose FF column, DEAE Sepharose FF, or Methyl Column.
  • albumin fusion proteins of the invention may be purified using the process described in PCT International Publication WO 00/44772 which is herein incorporated by reference in its entirety.
  • One of skill in the art could easily modify the process described therein for use in the purification of albumin fusion proteins of the invention.
  • Albumin fusion proteins of the present invention may be recovered from: products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, albumin fusion proteins of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes.
  • N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.
  • the yeast Pichia pastoris is used to express albumin fusion proteins of the invention in a eukaryotic system.
  • Pichia pastoris is a methylotrophic yeast which can metabolize methanol as its sole carbon source.
  • a main step in the methanol metabolization pathway is the oxidation of methanol to formaldehyde using O 2 . This reaction is catalyzed by the enzyme alcohol oxidase.
  • Pichia pastoris In order to metabolize methanol as its sole carbon source, Pichia pastoris must generate high levels of alcohol oxidase due, in part, to the relatively low affinity of alcohol oxidase for O 2 .
  • alcohol oxidase produced from the AOX1 gene comprises up to approximately 30% of the total soluble protein in Pichia pastoris . See Ellis, S. B., et al., Mol. Cell. Biol. 5:1111-21 (1985); Koutz, P. J, et al., Yeast 5:167-77 (1989); Tschopp, J. F., et al., Nucl. Acids Res. 15:3859-76 (1987).
  • a heterologous coding sequence such as, for example, a polynucleotide of the present invention, under the transcriptional regulation of all or part of the AOX1 regulatory sequence is expressed at exceptionally high levels in Pichia yeast grown in the presence of methanol.
  • the plasmid vector pPIC9K is used to express DNA encoding an albumin fusion protein of the invention, as set forth herein, in a Pichea yeast system essentially as described in “Pichia Protocols: Methods in Molecular Biology,” D. R. Higgins and J. Cregg, eds. The Humana Press, Totowa, N.J., 1998.
  • This expression vector allows expression and secretion of a polypeptide of the invention by virtue of the strong AOX1 promoter linked to the Pichia pastoris alkaline phosphatase (PHO) secretory signal peptide (i.e., leader) located upstream of a multiple cloning site.
  • PHO alkaline phosphatase
  • yeast vectors could be used in place of pPIC9K, such as, pYES2, pYD1, pTEF1/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalpha, pPIC9, pPIC3.5, pHIL-D2, pHIL-S1, pPIC3.5K, and PAO815, as one skilled in the art would readily appreciate, as long as the proposed expression construct provides appropriately located signals for transcription, translation, secretion (if desired), and the like, including an in-frame AUG as required.
  • high-level expression of a heterologous coding sequence such as, for example, a polynucleotide encoding an albumin fusion protein of the present invention, may be achieved by cloning the heterologous polynucleotide of the invention into an expression vector such as, for example, pGAPZ or pGAPZalpha, and growing the yeast culture in the absence of methanol.
  • albumin fusion proteins of the invention can be chemically synthesized using techniques known in the art (e.g., see Creighton, 1983, Proteins: Structures and Molecular Principles, W. H. Freeman & Co., N.Y., and Hunkapiller et al., Nature, 310:105-111 (1984)).
  • a polypeptide corresponding to a fragment of a polypeptide can be synthesized by use of a peptide synthesizer.
  • nonclassical amino acids or chemical amino acid analogs can be introduced as a substitution or addition into the polypeptide sequence.
  • Non-classical amino acids include, but are not limited to, to the D-isomers of the common amino acids, 2,4-diaminobutyric acid, a-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, g-Abu, e-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, b-alanine, fluoro-amino acids, designer amino acids such as b-methyl amino acids, Ca-methyl amino acids, Na-methyl amino acids, and amino acid analogs in general. Furthermore, the amino acid
  • the invention encompasses albumin fusion proteins of the present invention which are differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications may be carried out by known techniques, including but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH 4 ; acetylation, formylation, oxidation, reduction; metabolic synthesis in the presence of tunicamycin; etc.
  • Additional post-translational modifications encompassed by the invention include, for example, e.g., N-linked or O-linked carbohydrate chains, processing of N-terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of procaryotic host cell expression.
  • the albumin fusion proteins may also be modified with a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation of the protein.
  • suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include iodine ( 121 I, 123 I, 125 I, 131 I), carbon ( 14 C), sulfur ( 35 S), tritium ( 3 H), indium ( 111 In, 112 In, 113m In, 115m In), technetium ( 99 T
  • albumin fusion proteins of the present invention or fragments or variants thereof are attached to macrocyclic chelators that associate with radiometal ions, including but not limited to, 177 Lu, 90 Y, 166 Ho, and 153 Sm, to polypeptides.
  • the radiometal ion associated with the macrocyclic chelators is 111 In.
  • the radiometal ion associated with the macrocyclic chelator is 90 Y.
  • the macrocyclic chelator is 1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′′′-tetraacetic acid (DOTA).
  • DOTA is attached to an antibody of the invention or fragment thereof via linker molecule.
  • linker molecules useful for conjugating DOTA to a polypeptide are commonly known in the art—see, for example, DeNardo et al., Clin Cancer Res. 4(10):2483-90 (1998); Peterson et al., Bioconjug. Chem. 10(4):553-7 (1999); and Zimmerman et al, Nucl. Med. Biol. 26(8):943-50 (1999); which are hereby incorporated by reference in their entirety.
  • the albumin fusion proteins of the invention may be modified by either natural processes, such as post-translational processing, or by chemical modification techniques which are well known in the art. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide.
  • Polypeptides of the invention may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods.
  • Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.
  • Albumin fusion proteins of the invention and antibodies that bind a Therapeutic protein or fragments or variants thereof can be fused to marker sequences, such as a peptide to facilitate purification.
  • the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, Calif., 91311), among others, many of which are commercially available.
  • hexa-histidine provides for convenient purification of the fusion protein.
  • peptide tags useful for purification include, but are not limited to, the “HA” tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., Cell 37:767 (1984)) and the “flag” tag.
  • an albumin fusion protein of the invention may be conjugated to a therapeutic moiety such as a cytotoxin, e.g., a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, 213Bi.
  • a cytotoxin or cytotoxic agent includes any agent that is detrimental to cells.
  • Examples include paclitaxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
  • Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g.
  • the conjugates of the invention can be used for modifying a given biological response, the therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents.
  • the drug moiety may be a protein or polypeptide possessing a desired biological activity.
  • Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, alpha-interferon, ⁇ -interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g., TNF-alpha, TNF-beta, AIM I (See, International Publication No. WO 97/33899), AIM II (See, International Publication No. WO 97/34911), Fas Ligand (Takahashi et al, Int.
  • a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin
  • a protein such as tumor necrosis factor, alpha-interferon, ⁇ -interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an a
  • VEGI See, International Publication No. WO 99/23105
  • a thrombotic agent or an anti-angiogenic agent e.g., angiostatin or endostatin
  • biological response modifiers such as, for example, lymphokines, interleukin-1 (“IL-1”), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors.
  • IL-1 interleukin-1
  • IL-2 interleukin-2
  • IL-6 interleukin-6
  • GM-CSF granulocyte macrophage colony stimulating factor
  • G-CSF granulocyte colony stimulating factor
  • Albumin fusion proteins may also be attached to solid supports, which are particularly useful for immunoassays or purification of polypeptides that are bound by, that bind to, or associate with albumin fusion proteins of the invention.
  • solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.
  • Albumin fusion proteins with or without a therapeutic moiety conjugated to it, administered alone or in combination with cytotoxic factor(s) and/or cytokine(s) can be used as a therapeutic.
  • the albumin fusion protein of the invention comprises only the VH domain of an antibody that binds a Therapeutic protein
  • the albumin fusion protein of the invention comprises only the VL domain of an antibody that binds a Therapeutic protein
  • Some Therapeutic antibodies are bispecific antibodies, meaning the antibody that binds a Therapeutic protein is an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites.
  • the antibody that binds a Therapeutic protein is an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites.
  • the scFv fused to the N-terminus of albumin would correspond to one of the heavy/light (VH/VL) pairs of the original antibody that binds a Therapeutic protein and the scFv fused to the C-terminus of albumin would correspond to the other heavy/light (VH/VL) pair of the original antibody that binds a Therapeutic protein.
  • the chemical moieties for derivitization may be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol and the like.
  • the albumin fusion proteins may be modified at random positions within the molecule, or at predetermined positions within the molecule and may include one, two, three or more attached chemical moieties.
  • the polymer may be of any molecular weight, and may be branched or unbranched.
  • the preferred molecular weight is between about 1 kDa and about 100 kDa (the term “about” indicating that in preparations of polyethylene glycol, some molecules will weigh more, some less, than the stated molecular weight) for ease in handling and manufacturing.
  • Other sizes may be used, depending on the desired therapeutic profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or lack of antigenicity and other known effects of the polyethylene glycol to a Therapeutic protein or analog).
  • the polyethylene glycol may have an average molecular weight of about 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10,000, 10,500, 11,000, 11,500, 12,000, 12,500, 13,000, 13,500, 14,000, 14,500, 15,000, 15,500, 16,000, 16,500, 17,000, 17,500, 18,000, 18,500, 19,000, 19,500, 20,000, 25,000, 30,000, 35,000, 40,000, 45,000, 50,000, 55,000, 60,000, 65,000, 70,000, 75,000, 80,000, 85,000, 90,000, 95,000, or 100,000 kDa.
  • the polyethylene glycol may have a branched structure.
  • Branched polyethylene glycols are described, for example, in U.S. Pat. No. 5,643,575; Morpurgo et al., Appl. Biochem. Biotechnol. 56:59-72 (1996); Vorobjev et al., Nucleosides Nucleotides 18:2745-2750 (1999); and Caliceti et al., Bioconjug. Chem. 10:638-646 (1999), the disclosures of each of which are incorporated herein by reference.
  • polyethylene glycol molecules should be attached to the protein with consideration of effects on functional or antigenic domains of the protein.
  • attachment methods available to those skilled in the art, such as, for example, the method disclosed in EP 0 401 384 (coupling PEG to G-CSF), herein incorporated by reference; see also Malik et al., Exp. Hematol. 20:1028-1035 (1992), reporting pegylation of GM-CSF using tresyl chloride.
  • polyethylene glycol may be covalently bound through amino acid residues via reactive group, such as a free amino or carboxyl group. Reactive groups are those to which an activated polyethylene glycol molecule may be bound.
  • the amino acid residues having a free amino group may include lysine residues and the N-terminal amino acid residues; those having a free carboxyl group may include aspartic acid residues glutamic acid residues and the C-terminal amino acid residue.
  • Sulfhydryl groups may also be used as a reactive group for attaching the polyethylene glycol molecules. Preferred for therapeutic purposes is attachment at an amino group, such as attachment at the N-terminus or lysine group.
  • polyethylene glycol may be attached to proteins via linkage to any of a number of amino acid residues.
  • polyethylene glycol can be linked to proteins via covalent bonds to lysine, histidine, aspartic acid, glutamic acid, or cysteine residues.
  • One or more reaction chemistries may be employed to attach polyethylene glycol to specific amino acid residues (e.g., lysine, histidine, aspartic acid, glutamic acid, or cysteine) of the protein or to more than one type of amino acid residue (e.g., lysine, histidine, aspartic acid, glutamic acid, cysteine and combinations thereof) of the protein.
  • polyethylene glycol as an illustration of the present composition, one may select from a variety of polyethylene glycol molecules (by molecular weight, branching, etc.), the proportion of polyethylene glycol molecules to protein (polypeptide) molecules in the reaction mix, the type of pegylation reaction to be performed, and the method of obtaining the selected N-terminally pegylated protein.
  • the method of obtaining the N-terminally pegylated preparation i.e., separating this moiety from other monopegylated moieties if necessary
  • Selective proteins chemically modified at the N-terminus modification may be accomplished by reductive alkylation which exploits differential reactivity of different types of primary amino groups (lysine versus the N-terminal) available for derivatization in a particular protein. Under the appropriate reaction conditions, substantially selective derivatization of the protein at the N-terminus with a carbonyl group containing polymer is achieved.
  • pegylation of the albumin fusion proteins of the invention may be accomplished by any number of means.
  • polyethylene glycol may be attached to the albumin fusion protein either directly or by an intervening linker.
  • Linkerless systems for attaching polyethylene glycol to proteins are described in Delgado et al., Crit. Rev. Thera. Drug Carrier Sys. 9:249-304 (1992); Francis et al., Intern. J. of Hematol. 68:1-18 (1998); U.S. Pat. No. 4,002,531; U.S. Pat. No. 5,349,052; WO 95/06058; and WO 98/32466, the disclosures of each of which are incorporated herein by reference.
  • One system for attaching polyethylene glycol directly to amino acid residues of proteins without an intervening linker employs tresylated MPEG, which is produced by the modification of monmethoxy polyethylene glycol (MPEG) using tresylchloride (ClSO 2 CH 2 CF 3 ).
  • MPEG monmethoxy polyethylene glycol
  • ClSO 2 CH 2 CF 3 tresylchloride
  • polyethylene glycol is directly attached to amine groups of the protein.
  • the invention includes protein-polyethylene glycol conjugates produced by reacting proteins of the invention with a polyethylene glycol molecule having a 2,2,2-trifluoreothane sulphonyl group.
  • Polyethylene glycol can also be attached to proteins using a number of different intervening linkers.
  • U.S. Pat. No. 5,612,460 discloses urethane linkers for connecting polyethylene glycol to proteins.
  • Protein-polyethylene glycol conjugates wherein the polyethylene glycol is attached to the protein by a linker can also be produced by reaction of proteins with compounds such as MPEG-succinimidylsuccinate, MPEG activated with 1,1′-carbonyldiimidazole, MPEG-2,4,5-trichloropenylcarbonate, MPEG-p-nitrophenolcarbonate, and various MPEG-succinate derivatives.
  • the number of polyethylene glycol moieties attached to each albumin fusion protein of the invention may also vary.
  • the pegylated proteins of the invention may be linked, on average, to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20, or more polyethylene glycol molecules.
  • the average degree of substitution within ranges such as 1-3, 2-4, 3-5, 4-6, 5-7, 6-8, 7-9, 8-10, 9-11, 10-12, 11-13, 12-14, 13-15, 14-16, 15-17, 16-18, 17-19, or 18-20 polyethylene glycol moieties per protein molecule. Methods for determining the degree of substitution are discussed, for example, in Delgado et al., Crit. Rev. Thera. Drug Carrier Sys. 9:249-304 (1992).
  • polypeptides of the invention can be recovered and purified from chemical synthesis and recombinant cell cultures by standard methods which include, but are not limited to, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography (“HPLC”) is employed for purification. Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and/or purification.
  • HPLC high performance liquid chromatography
  • the presence and quantity of albumin fusion proteins of the invention may be determined using ELISA, a well known immunoassay known in the art.
  • ELISA protocol that would be useful for detecting/quantifying albumin fusion proteins of the invention, comprises the steps of coating an ELISA plate with an anti-human serum albumin antibody, blocking the plate to prevent non-specific binding, washing the ELISA plate, adding a solution containing the albumin fusion protein of the invention (at one or more different concentrations), adding a secondary anti-Therapeutic protein specific antibody coupled to a detectable label (as described herein or otherwise known in the art), and detecting the presence of the secondary antibody.
  • the ELISA plate might be coated with the anti-Therapeutic protein specific antibody and the labeled secondary reagent might be the anti-human albumin specific antibody.
  • polynucleotides of the present invention are useful to produce the albumin fusion proteins of the invention.
  • polynucleotides of the invention encoding albumin fusion proteins
  • Polynucleotides of the present invention are also useful in gene therapy.
  • One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect.
  • the polynucleotides disclosed in the present invention offer a means of targeting such genetic defects in a highly accurate manner.
  • Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell. Additional non-limiting examples of gene therapy methods encompassed by the present invention are more thoroughly described elsewhere herein (see, e.g., the sections labeled “Gene Therapy”, and Examples 17 and 18).
  • polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.
  • Albumin fusion proteins of the invention are useful to provide immunological probes for differential identification of the tissue(s) (e.g., immunohistochemistry assays such as, for example, ABC immunoperoxidase (Hsu et al., J. Histochem. Cytochem. 29:577-580 (1981)) or cell type(s) (e.g., immunocytochemistry assays).
  • tissue(s) e.g., immunohistochemistry assays such as, for example, ABC immunoperoxidase (Hsu et al., J. Histochem. Cytochem. 29:577-580 (1981)
  • cell type(s) e.g., immunocytochemistry assays
  • Albumin fusion proteins can be used to assay levels of polypeptides in a biological sample using classical immunohistological methods known to those of skill in the art (e.g., see Jalkanen, et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, et al., J. Cell. Biol. 105:3087-3096 (1987)).
  • Other methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).
  • Suitable assay labels include enzyme labels, such as, glucose oxidase; radioisotopes, such as iodine ( 131 I, 125 I, 123 I, 121 I), carbon ( 14 C), sulfur ( 35 S), tritium ( 3 H), indium ( 115m In, 113m In, 112 In, 111 In), and technetium ( 99 Tc, 99m Tc), thallium ( 201 Ti), gallium ( 68 Ga, 67 Ga), palladium ( 103 Pd), molybdenum ( 99 Mo), xenon ( 133 Xe), fluorine ( 18 F), 153 Sm, 177 Lu, 159 Gd, 149 Pm, 140 La, 175 Yb, 166 Ho, 90 Y, 47 Sc, 186 Re, 188 Re, 142 Pr, 105 Rh, 97 Ru; luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and bio
  • enzyme labels such
  • Albumin fusion proteins of the invention can also be detected in vivo by imaging.
  • Labels or markers for in vivo imaging of protein include those detectable by X-radiography, nuclear magnetic resonance (NMR) or electron spin relaxtion (ESR).
  • suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject.
  • suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the albumin fusion protein by labeling of nutrients given to a cell line expressing the albumin fusion protein of the invention.
  • An albumin fusion protein which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131 I, 112 In, 99m Tc, ( 131 I, 125 I, 123 I, 121 I), carbon ( 14 C), sulfur ( 35 S), tritium ( 3 H), indium ( 115m In, 113m In, 112 In, 111 In), and technetium ( 99 Tc, 99m Tc), thallium ( 201 Ti), gallium ( 68 Ga, 67 Ga), palladium ( 103 Pd), molybdenum ( 99 Mo), xenon ( 133 Xe), fluorine ( 18 F, 153 Sm, 177 Lu, 159 Gd, 149 Pm, 140 La, 175 Yb, 166 Ho, 90 Y, 47 Sc, 186 Re, 188 Re, 142 Pr, 105 Rh, 97 Ru), a radio-opaque substance, or a material detectable by nuclear magnetic resonance
  • the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images.
  • the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99m Tc.
  • the labeled albumin fusion protein will then preferentially accumulate at locations in the body (e.g., organs, cells, extracellular spaces or matrices) where one or more receptors, ligands or substrates (corresponding to that of the Therapeutic protein used to make the albumin fusion protein of the invention) are located.
  • the labeled albumin fusion protein will then preferentially accumulate at the locations in the body (e.g., organs, cells, extracellular spaces or matrices) where the polypeptides/epitopes corresponding to those bound by the Therapeutic antibody (used to make the albumin fusion protein of the invention) are located.
  • the locations in the body e.g., organs, cells, extracellular spaces or matrices
  • the polypeptides/epitopes corresponding to those bound by the Therapeutic antibody used to make the albumin fusion protein of the invention.
  • In vivo tumor imaging is described in S. W. Burchiel et al., “Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments” (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S. W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982)).
  • the protocols described therein could easily be modified by one of skill in the
  • the invention provides a method for the specific delivery of albumin fusion proteins of the invention to cells by administering albumin fusion proteins of the invention (e.g., polypeptides encoded by polynucleotides encoding albumin fusion proteins of the invention and/or antibodies) that are associated with heterologous polypeptides or nucleic acids.
  • the invention provides a method for delivering a Therapeutic protein into the targeted cell.
  • the invention provides a method for delivering a single stranded nucleic acid (e.g., antisense or ribozymes) or double stranded nucleic acid (e.g., DNA that can integrate into the cell's genome or replicate episomally and that can be transcribed) into the targeted cell.
  • a single stranded nucleic acid e.g., antisense or ribozymes
  • double stranded nucleic acid e.g., DNA that can integrate into the cell's genome or replicate episomally and that can be transcribed
  • the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering albumin fusion proteins of the invention in association with toxins or cytotoxic prodrugs.
  • toxin is meant one or more compounds that bind and activate endogenous cytotoxic effector systems, radioisotopes, holotoxins, modified toxins, catalytic subunits of toxins, or any molecules or enzymes not normally present in or on the surface of a cell that under defined conditions cause the cell's death.
  • Toxins that may be used according to the methods of the invention include, but are not limited to, radioisotopes known in the art, compounds such as, for example, antibodies (or complement fixing containing portions thereof) that bind an inherent or induced endogenous cytotoxic effector system, thymidine kinase, endonuclease, RNAse, alpha toxin, ricin, abrin, Pseudomonas exotoxin A, diphtheria toxin, saporin, momordin, gelonin, pokeweed antiviral protein, alpha-sarcin and cholera toxin.
  • radioisotopes known in the art
  • compounds such as, for example, antibodies (or complement fixing containing portions thereof) that bind an inherent or induced endogenous cytotoxic effector system, thymidine kinase, endonuclease, RNAse, alpha toxin, ricin, abrin, Pseu
  • Toxin also includes a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, 213 Bi, or other radioisotopes such as, for example, 103 Pd, 133 Xe, 131 I, 68 Ge, 57 Co, 65 Zn, 85 Sr, 32 P, 35 S, 90 Y, 153 Sm, 153 Gd, 169 Yb, 51 Cr, 54 Mn, 75 Se, 113 Sn, 90 Yttrium, 117 Tin, 186 Rhenium, 166 Holmium, and 188 Rhenium; luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.
  • alpha-emitters such as, for example, 213 Bi
  • radioisotopes such as, for example, 103 Pd, 133 Xe, 131 I, 68 Ge,
  • the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention or antibodies of the invention in association with the radioisotope 90 Y.
  • the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention or antibodies of the invention in association with the radioisotope 111 In.
  • the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention or antibodies of the invention in association with the radioisotope 131 I.
  • the albumin fusion proteins of the present invention are useful for diagnosis, treatment, prevention and/or prognosis of various disorders in mammals, preferably humans. Such disorders include, but are not limited to, those described herein under the section heading “Biological Activities,” below.
  • the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression level of a certain polypeptide in cells or body fluid of an individual using an albumin fusion protein of the invention; and (b) comparing the assayed polypeptide expression level with a standard polypeptide expression level, whereby an increase or decrease in the assayed polypeptide expression level compared to the standard expression level is indicative of a disorder.
  • a diagnostic method of a disorder involves (a) assaying the expression level of a certain polypeptide in cells or body fluid of an individual using an albumin fusion protein of the invention; and (b) comparing the assayed polypeptide expression level with a standard polypeptide expression level, whereby an increase or decrease in the assayed polypeptide expression level compared to the standard expression level is indicative of a disorder.
  • the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting
  • albumin fusion proteins of the present invention can be used to treat or prevent diseases or conditions such as, for example, neural disorders, immune system disorders, muscular disorders, reproductive disorders, gastrointestinal disorders, pulmonary disorders, cardiovascular disorders, renal disorders, proliferative disorders, and/or cancerous diseases and conditions.
  • patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B, SOD, catalase, DNA repair proteins), to inhibit the activity of a polypeptide (e.g., an oncogene or tumor supressor), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth inhibition, enhancement of the immune response to proliferative cells or tissues).
  • a polypeptide e.g., insulin
  • a different polypeptide e.g., hemoglobin S for hemoglobin B, SOD, catalase, DNA repair proteins
  • albumin fusion proteins comprising of at least a fragment or variant of a Therapeutic antibody can also be used to treat disease (as described supra, and elsewhere herein).
  • administration of an albumin fusion protein comprising of at least a fragment or variant of a Therapeutic antibody can bind, and/or neutralize the polypeptide to which the Therapeutic antibody used to make the albumin fusion protein specifically binds, and/or reduce overproduction of the polypeptide to which the Therapeutic antibody used to make the albumin fusion protein specifically binds.
  • an albumin fusion protein comprising of at least a fragment or variant of a Therapeutic antibody can activate the polypeptide to which the Therapeutic antibody used to make the albumin fusion protein specifically binds, by binding to the polypeptide bound to a membrane (receptor).
  • the albumin fusion proteins of the invention of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art.
  • Albumin fusion proteins of the invention can also be used to raise antibodies, which in turn may be used to measure protein expression of the Therapeutic protein, albumin protein, and/or the albumin fusion protein of the invention from a recombinant cell, as a way of assessing transformation of the host cell, or in a biological sample.
  • the albumin fusion proteins of the present invention can be used to test the biological activities described herein.
  • the compounds of the present invention are useful for diagnosis, treatment, prevention and/or prognosis of various disorders in mammals, preferably humans.
  • disorders include, but are not limited to, those described for each Therapeutic protein in the corresponding row of Table 1 and herein under the section headings “Immune Activity,” “Blood Related Disorders,” “Hyperproliferative Disorders,” “Renal Disorders,” “Cardiovascular Disorders,” “Respiratory Disorders,” “Anti-Angiogenesis Activity,” “Diseases at the Cellular Level,” “Wound Healing and Epithelial Cell Proliferation,” “Neural Activity and Neurological Diseases,” “Endocrine Disorders,” “Reproductive System Disorders,” “Infectious Disease,” “Regeneration,” and/or “Gastrointestinal Disorders,” infra.
  • substantially altered (increased or decreased) levels of gene expression can be detected in tissues, cells or bodily fluids (e.g., sera, plasma, urine, semen, synovial fluid or spinal fluid) taken from an individual having such a disorder, relative to a “standard” gene expression level, that is, the expression level in tissues or bodily fluids from an individual not having the disorder.
  • a diagnostic method useful during diagnosis of a disorder which involves measuring the expression level of the gene encoding a polypeptide in tissues, cells or body fluid from an individual and comparing the measured gene expression level with a standard gene expression level, whereby an increase or decrease in the gene expression level(s) compared to the standard is indicative of a disorder.
  • diagnostic assays may be performed in vivo or in vitro, such as, for example, on blood samples, biopsy tissue or autopsy tissue.
  • the present invention is also useful as a prognostic indicator, whereby patients exhibiting enhanced or depressed gene expression will experience a worse clinical outcome
  • assaying the expression level of the gene encoding a polypeptide is intended qualitatively or quantitatively measuring or estimating the level of a particular polypeptide (e.g. a polypeptide corresponding to a Therapeutic protein disclosed in Table 1) or the level of the mRNA encoding the polypeptide of the invention in a first biological sample either directly (e.g., by determining or estimating absolute protein level or mRNA level) or relatively (e.g., by comparing to the polypeptide level or mRNA level in a second biological sample).
  • the polypeptide expression level or mRNA level in the first biological sample is measured or estimated and compared to a standard polypeptide level or mRNA level, the standard being taken from a second biological sample obtained from an individual not having the disorder or being determined by averaging levels from a population of individuals not having the disorder.
  • a standard polypeptide level or mRNA level is known, it can be used repeatedly as a standard for comparison.
  • biological sample any biological sample obtained from an individual, cell line, tissue culture, or other source containing polypeptides of the invention (including portions thereof) or mRNA.
  • biological samples include body fluids (such as sera, plasma, urine, synovial fluid and spinal fluid) and tissue sources found to express the full length or fragments thereof of a polypeptide or mRNA. Methods for obtaining tissue biopsies and body fluids from mammals are well known in the art. Where the biological sample is to include mRNA, a tissue biopsy is the preferred source.
  • Total cellular RNA can be isolated from a biological sample using any suitable technique such as the single-step guanidinium-thiocyanate-phenol-chloroform method described in Chomczynski and Sacchi, Anal. Biochem. 162:156-159 (1987). Levels of mRNA encoding the polypeptides of the invention are then assayed using any appropriate method. These include Northern blot analysis, S1 nuclease mapping, the polymerase chain reaction (PCR), reverse transcription in combination with the polymerase chain reaction (RT-PCR), and reverse transcription in combination with the ligase chain reaction (RT-LCR).
  • PCR polymerase chain reaction
  • RT-PCR reverse transcription in combination with the polymerase chain reaction
  • RT-LCR reverse transcription in combination with the ligase chain reaction
  • the present invention also relates to diagnostic assays such as quantitative and diagnostic assays for detecting levels of polypeptides that bind to, are bound by, or associate with albumin fusion proteins of the invention, in a biological sample (e.g., cells and tissues), including determination of normal and abnormal levels of polypeptides.
  • a diagnostic assay in accordance with the invention for detecting abnormal expression of polypeptides that bind to, are bound by, or associate with albumin fusion proteins compared to normal control tissue samples may be used to detect the presence of tumors.
  • Assay techniques that can be used to determine levels of a polypeptide that bind to, are bound by, or associate with albumin fusion proteins of the present invention in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays. Assaying polypeptide levels in a biological sample can occur using any art-known method.
  • Assaying polypeptide levels in a biological sample can occur using a variety of techniques. For example, polypeptide expression in tissues can be studied with classical immunohistological methods (Jalkanen et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell. Biol. 105:3087-3096 (1987)). Other methods useful for detecting polypeptide gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).
  • ELISA enzyme linked immunosorbent assay
  • RIA radioimmunoassay
  • Suitable antibody assay labels include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine ( 125 I, 121 I), carbon ( 14 C), sulfur ( 35 S), tritium ( 3 H), indium ( 112 In), and technetium ( 99m Tc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.
  • enzyme labels such as, glucose oxidase, and radioisotopes, such as iodine ( 125 I, 121 I), carbon ( 14 C), sulfur ( 35 S), tritium ( 3 H), indium ( 112 In), and technetium ( 99m Tc)
  • fluorescent labels such as fluorescein and rhodamine, and biotin.
  • the tissue or cell type to be analyzed will generally include those which are known, or suspected, to express the gene of interest (such as, for example, cancer).
  • the protein isolation methods employed herein may, for example, be such as those described in Harlow and Lane (Harlow, E. and Lane, D., 1988, “Antibodies: A Laboratory Manual”, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), which is incorporated herein by reference in its entirety.
  • the isolated cells can be derived from cell culture or from a patient.
  • the analysis of cells taken from culture may be a necessary step in the assessment of cells that could be used as part of a cell-based gene therapy technique or, alternatively, to test the effect of compounds on the expression of the gene.
  • albumin fusion proteins may be used to quantitatively or qualitatively detect the presence of polypeptides that bind to, are bound by, or associate with albumin fusion proteins of the present invention. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled albumin fusion protein coupled with light microscopic, flow cytometric, or fluorimetric detection.
  • albumin fusion proteins comprising at least a fragment or variant of an antibody that specifically binds at least a Therapeutic protein disclosed herein (e.g., the Therapeutic proteins disclosed in Table 1) or otherwise known in the art may be used to quantitatively or qualitatively detect the presence of gene products or conserved variants or peptide fragments thereof. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody coupled with light microscopic, flow cytometric, or fluorimetric detection.
  • the albumin fusion proteins of the present invention may, additionally, be employed histologically, as in immunofluorescence, immunoelectron microscopy or non-immunological assays, for in situ detection of polypeptides that bind to, are bound by, or associate with an albumin fusion protein of the present invention.
  • In situ detection may be accomplished by removing a histological specimen from a patient, and applying thereto a labeled antibody or polypeptide of the present invention.
  • the albumin fusion proteins are preferably applied by overlaying the labeled albumin fusion proteins onto a biological sample.
  • Immunoassays and non-immunoassays that detect polypeptides that bind to, are bound by, or associate with albumin fusion proteins will typically comprise incubating a sample, such as a biological fluid, a tissue extract, freshly harvested cells, or lysates of cells which have been incubated in cell culture, in the presence of a detectably labeled antibody capable of binding gene products or conserved variants or peptide fragments thereof, and detecting the bound antibody by any of a number of techniques well-known in the art.
  • the biological sample may be brought in contact with and immobilized onto a solid phase support or carrier such as nitrocellulose, or other solid support which is capable of immobilizing cells, cell particles or soluble proteins.
  • a solid phase support or carrier such as nitrocellulose, or other solid support which is capable of immobilizing cells, cell particles or soluble proteins.
  • the support may then be washed with suitable buffers followed by treatment with the detectably labeled albumin fusion protein of the invention.
  • the solid phase support may then be washed with the buffer a second time to remove unbound antibody or polypeptide.
  • the antibody is subsequently labeled.
  • the amount of bound label on solid support may then be detected by conventional means.
  • solid phase support or carrier any support capable of binding a polypeptide (e.g., an albumin fusion protein, or polypeptide that binds, is bound by, or associates with an albumin fusion protein of the invention.
  • a polypeptide e.g., an albumin fusion protein, or polypeptide that binds, is bound by, or associates with an albumin fusion protein of the invention.
  • Well-known supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, gabbros, and magnetite.
  • the nature of the carrier can be either soluble to some extent or insoluble for the purposes of the present invention.
  • the support material may have virtually any possible structural configuration so long as the coupled molecule is capable of binding to a polypeptide.
  • the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod.
  • the surface may be flat such as a sheet, test strip, etc.
  • Preferred supports include polystyrene beads.
  • the binding activity of a given lot of albumin fusion protein may be determined according to well known methods. Those skilled in the art will be able to determine operative and optimal assay conditions for each determination by employing routine experimentation.
  • polypeptide in addition to assaying polypeptide levels in a biological sample obtained from an individual, polypeptide can also be detected in vivo by imaging.
  • albumin fusion proteins of the invention are used to image diseased or neoplastic cells.
  • Labels or markers for in vivo imaging of albumin fusion proteins of the invention include those detectable by X-radiography, NMR, MRI, CAT-scans or ESR.
  • suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject.
  • suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the albumin fusion protein by labeling of nutrients of a cell line (or bacterial or yeast strain) engineered.
  • albumin fusion proteins of the invention whose presence can be detected, can be administered.
  • albumin fusion proteins of the invention labeled with a radio-opaque or other appropriate compound can be administered and visualized in vivo, as discussed, above for labeled antibodies.
  • polypeptides can be utilized for in vitro diagnostic procedures.
  • a polypeptide-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety such as a radioisotope (for example, 131 I, 112 In, 99m Tc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously or intraperitoneally) into the mammal to be examined for a disorder.
  • an appropriate detectable imaging moiety such as a radioisotope (for example, 131 I, 112 In, 99m Tc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously or intraperitoneally) into the mammal to be examined for a disorder.
  • a radioisotope for example, 131 I, 112 In, 99m Tc
  • a radio-opaque substance for example, parenterally, subcutaneously or intraperitoneally
  • the quantity of radioactivity injected will normally range from
  • the labeled albumin fusion protein will then preferentially accumulate at the locations in the body which contain a polypeptide or other substance that binds to, is bound by or associates with an albumin fusion protein of the present invention.
  • In vivo tumor imaging is described in S. W. Burchiel et al., “Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments” (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S. W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982)).
  • an albumin fusion protein of the present invention can be detectably labeled is by linking the same to a reporter enzyme and using the linked product in an enzyme immunoassay (EIA) (Voller, A., “The Enzyme Linked Immunosorbent Assay (ELISA)”, 1978, Diagnostic Horizons 2:1-7, Microbiological Associates Quarterly Publication, Walkersville, Md.); Voller et al., J. Clin. Pathol. 31:507-520 (1978); Butler, J. E., Meth. Enzymol. 73:482-523 (1981); Maggio, E. (ed.), 1980, Enzyme Immunoassay, CRC Press, Boca Raton, Fla.,; Ishikawa, E.
  • EIA enzyme immunoassay
  • the reporter enzyme which is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety which can be detected, for example, by spectrophotometric, fluorimetric or by visual means.
  • Reporter enzymes which can be used to detectably label the antibody include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. Additionally, the detection can be accomplished by colorimetric methods which employ a chromogenic substrate for the reporter enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.
  • Albumin fusion proteins may also be radiolabelled and used in any of a variety of other immunoassays.
  • radioimmunoassay RIA
  • the radioactive isotope can be detected by means including, but not limited to, a gamma counter, a scintillation counter, or autoradiography.
  • the albumin fusion protein can also be detectably labeled using fluorescence emitting metals such as 152 Eu, or others of the lanthamide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).
  • DTPA diethylenetriaminepentacetic acid
  • EDTA ethylenediaminetetraacetic acid
  • the albumin fusion proteins can also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged albumin fusion protein is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction.
  • chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.
  • a bioluminescent compound may be used to label albumin fusion proteins of the present invention.
  • Bioluminescence is a type of chemiluminescence found in biological systems in, which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence.
  • Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.
  • Transgenic organisms that express the albumin fusion proteins of the invention are also included in the invention.
  • Transgenic organisms are genetically modified organisms into which recombinant, exogenous or cloned genetic material has been transferred. Such genetic material is often referred to as a transgene.
  • the nucleic acid sequence of the transgene may include one or more transcriptional regulatory sequences and other nucleic acid sequences such as introns, that may be necessary for optimal expression and secretion of the encoded protein.
  • the transgene may be designed to direct the expression of the encoded protein in a manner that facilitates its recovery from the organism or from a product produced by the organism, e.g. from the milk, blood, urine, eggs, hair or seeds of the organism.
  • the transgene may consist of nucleic acid sequences derived from the genome of the same species or of a different species than the species of the target animal.
  • the transgene may be integrated either at a locus of a genome where that particular nucleic acid sequence is not otherwise normally found or at the normal locus for the transgene.
  • the term “germ cell line transgenic organism” refers to a transgenic organism in which the genetic alteration or genetic information was introduced into a germ line cell, thereby conferring the ability of the transgenic organism to transfer the genetic information to offspring. If such offspring in fact possess some or all of that alteration or genetic information, then they too are transgenic organisms.
  • the alteration or genetic information may be foreign to the species of organism to which the recipient belongs, foreign only to the particular individual recipient, or may be genetic information already possessed by the recipient. In the last case, the altered or introduced gene may be expressed differently than the native gene.
  • a transgenic organism may be a transgenic animal or a transgenic plant.
  • Transgenic animals can be produced by a variety of different methods including transfection, electroporation, microinjection, gene targeting in embryonic stem cells and recombinant viral and retroviral infection (see, e.g., U.S. Pat. No. 4,736,866; U.S. Pat. No. 5,602,307; Mullins et al. (1993) Hypertension 22(4):630-633; Brenin et al. (1997) Surg. Oncol. 6(2)99-110; Tuan (ed.), Recombinant Gene Expression Protocols, Methods in Molecular Biology No. 62, Humana Press (1997)).
  • the method of introduction of nucleic acid fragments into recombination competent mammalian cells can be by any method which favors co-transformation of multiple nucleic acid molecules.
  • Detailed procedures for producing transgenic animals are readily available to one skilled in the art, including the disclosures in U.S. Pat. No. 5,489,743 and U.S. Pat. No. 5,602,307.
  • mice A number of recombinant or transgenic mice have been produced, including those which express an activated oncogene sequence (U.S. Pat. No. 4,736,866); express simian SV40 T-antigen (U.S. Pat. No. 5,728,915); lack the expression of interferon regulatory factor 1 (IRF-1) (U.S. Pat. No. 5,731,490); exhibit dopaminergic dysfunction (U.S. Pat. No. 5,723,719); express at least one human gene which participates in blood pressure control (U.S. Pat. No. 5,731,489); display greater similarity to the conditions existing in naturally occurring Alzheimer's disease (U.S. Pat. No.
  • mice and rats remain the animals of choice for most transgenic experimentation, in some instances it is preferable or even necessary to use alternative animal species.
  • Transgenic procedures have been successfully utilized in a variety of non-murine animals, including sheep, goats, pigs, dogs, cats, monkeys, chimpanzees, hamsters, rabbits, cows and guinea pigs (see, e.g., Kim et al. (1997) Mol. Reprod. Dev. 46(4):515-526; Houdebine (1995) Reprod. Nutr. Dev. 35(6):609-617; Petters (1994) Reprod. Fertil. Dev. 6(5):643-645; Schnieke et al. (1997) Science 278(5346):2130-2133; and Amoah (1997) J. Animal Science 75(2):578-585).
  • transgene-encoded protein of the invention may be put under the control of a promoter that is preferentially activated in mammary epithelial cells.
  • Promoters that control the genes encoding milk proteins are preferred, for example the promoter for casein, beta lactoglobulin, whey acid protein, or lactalbumin (see, e.g., DiTullio (1992) BioTechnology 10:74-77; Clark et al. (1989) BioTechnology 7:487-492; Gorton et al. (1987) BioTechnology 5:1183-1187; and Soulier et al. (1992) FEBS Letts. 297:13).
  • the transgenic mammals of choice would produce large volumes of milk and have long lactating periods, for example goats, cows, camels or sheep.
  • An albumin fusion protein of the invention can also be expressed in a transgenic plant, e.g. a plant in which the DNA transgene is inserted into the nuclear or plastidic genome.
  • Plant transformation procedures used to introduce foreign nucleic acids into plant cells or protoplasts are known in the art (e.g., see Example 19). See, in general, Methods in Enzymology Vol. 153 (“Recombinant DNA Part D”) 1987, Wu and Grossman Eds., Academic Press and European Patent Application EP 693554. Methods for generation of genetically engineered plants are further described in U.S. Pat. No. 5,283,184, U.S. Pat. No. 5, 482,852, and European Patent Application EP 693 554, all of which are hereby incorporated by reference.
  • the albumin fusion proteins of the invention or formulations thereof may be administered by any conventional method including parenteral (e.g. subcutaneous or intramuscular) injection or intravenous infusion.
  • the treatment may consist of a single dose or a plurality of doses over a period of time.
  • albumin fusion protein of the invention While it is possible for an albumin fusion protein of the invention to be administered alone, it is preferable to present it as a pharmaceutical formulation, together with one or more acceptable carriers.
  • the carrier(s) must be “acceptable” in the sense of being compatible with the albumin fusion protein and not deleterious to the recipients thereof.
  • the carriers will be water or saline which will be sterile and pyrogen free.
  • Albumin fusion proteins of the invention are particularly well suited to formulation in aqueous carriers such as sterile pyrogen free water, saline or other isotonic solutions because of their extended shelf-life in solution.
  • pharmaceutical compositions of the invention may be formulated well in advance in aqueous form, for instance, weeks or months or longer time periods before being dispensed.
  • formulations containing the albumin fusion protein may be prepared taking into account the extended shelf-life of the albumin fusion protein in aqueous formulations. As exhibited in Table 2, most Therapeutic proteins are unstable with short shelf-lives after formulation with an aqueous carrier. As discussed above, the shelf-life of many of these Therapeutic proteins are markedly increased or prolonged after fusion to HA. TABLE 2 Storage Conditions Tradename, of Non-Fusion Protein Manufacturer Route Formulation Protein Interferon, Roferon-A, sc sol n 4-8° C.
  • the albumin fusion proteins of the invention can be formulated as aerosols using standard procedures.
  • aerosol includes any gas-borne suspended phase of an albumin fusion protein of the instant invention which is capable of being inhaled into the bronchioles or nasal passages.
  • aerosol includes a gas-borne suspension of droplets of an albumin fusion protein of the instant invention, as may be produced in a metered dose inhaler or nebulizer, or in a mist sprayer.
  • Aerosol also includes a dry powder composition of a compound of the instant invention suspended in air or other carrier gas, which may be delivered by insufflation from an inhaler device, for example.
  • the formulations of the invention are also typically non-immunogenic, in part, because of the use of the components of the albumin fusion protein being derived from the proper species.
  • both the Therapeutic protein and albumin portions of the albumin fusion protein will typically be human.
  • that component may be humanized by substitution of key amino acids so that specific epitopes appear to the human immune system to be human in nature rather than foreign.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Such methods include the step of bringing into association the albumin fusion protein with the carrier that constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
  • Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation appropriate for the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
  • the formulations may be presented in unit-dose or multi-dose containers, for example sealed ampules, vials or syringes, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders.
  • Dosage formulations may contain the Therapeutic protein portion at a lower molar concentration or lower dosage compared to the non-fused standard formulation for the Therapeutic protein given the extended serum half-life exhibited by many of the albumin fusion proteins of the invention.
  • an albumin fusion protein of the invention comprises growth hormone as one or more of the Therapeutic protein regions
  • the dosage form can be calculated on the basis of the potency of the albumin fusion protein relative to the potency of hGH, while taking into account the prolonged serum half-life and shelf-life of the albumin fusion proteins compared to that of native hGH.
  • Growth hormone is typically administered at 0.3 to 30.0 IU/kg/week, for example 0.9 to 12.0 IU/kg/week, given in three or seven divided doses for a year or more.
  • an equivalent dose in terms of units would represent a greater weight of agent but the dosage frequency can be reduced, for example to twice a week, once a week or less.
  • Formulations or compositions of the invention may be packaged together with, or included in a kit with, instructions or a package insert referring to the extended shelf-life of the albumin fusion protein component.
  • instructions or package inserts may address recommended storage conditions, such as time, temperature and light, taking into account the extended or prolonged shelf-life of the albumin fusion proteins of the invention.
  • Such instructions or package inserts may also address the particular advantages of the albumin fusion proteins of the inventions, such as the ease of storage for formulations that may require use in the field, outside of controlled hospital, clinic or office conditions.
  • formulations of the invention may be in aqueous form and may be stored under less than ideal circumstances without significant loss of therapeutic activity.
  • albumin fusion proteins of the invention can also be included in nutraceuticals.
  • certain albumin fusion proteins of the invention may be administered in natural products, including milk or milk product obtained from a transgenic mammal which expresses albumin fusion protein.
  • Such compositions can also include plant or plant products obtained from a transgenic plant which expresses the albumin fusion protein.
  • the albumin fusion protein can also be provided in powder or tablet form, with or without other known additives, carriers, fillers and diluents. Nutraceuticals are described in Scott Hegenhart, Food Product Design, December 1993.
  • the invention also provides methods of treatment and/or prevention of diseases or disorders (such as, for example, any one or more of the diseases or disorders disclosed herein) by administration to a subject of an effective amount of an albumin fusion protein of the invention or a polynucleotide encoding an albumin fusion protein of the invention (“albumin fusion polynucleotide”) in a pharmaceutically acceptable carrier.
  • diseases or disorders such as, for example, any one or more of the diseases or disorders disclosed herein
  • the albumin fusion protein and/or polynucleotide will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the albumin fusion protein and/or polynucleotide alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners.
  • the “effective amount” for purposes herein is thus determined by such considerations.
  • the total pharmaceutically effective amount of the albumin fusion protein administered parenterally per dose will be in the range of about 1 ug/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone.
  • the albumin fusion protein is typically administered at a dose rate of about 1 ug/kg/hour to about 50 ug/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.
  • Albumin fusion proteins and/or polynucleotides can be are administered orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray.
  • “Pharmaceutically acceptable carrier” refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any.
  • parenteral refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.
  • Albumin fusion proteins and/or polynucleotides of the invention are also suitably administered by sustained-release systems.
  • sustained-release albumin fusion proteins and/or polynucleotides are administered orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray.
  • “Pharmaceutically acceptable carrier” refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
  • parenteral refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.
  • sustained-release albumin fusion proteins and/or polynucleotides include suitable polymeric materials (such as, for example, semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules), suitable hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, and sparingly soluble derivatives (such as, for example, a sparingly soluble salt).
  • Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman et al., Biopolymers 22:547-556 (1983)), poly (2-hydroxyethyl methacrylate) (Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (Langer et al., Id.) or poly-D-( ⁇ )-3-hydroxybutyric acid (EP 133,988).
  • polylactides U.S. Pat. No. 3,773,919, EP 58,481
  • copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman et al.,
  • Sustained-release albumin fusion proteins and/or polynucleotides also include liposomally entrapped albumin fusion proteins and/or polynucleotides of the invention (see generally, Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 317-327 and 353-365 (1989)).
  • Liposomes containing the albumin fusion protein and/or polynucleotide are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci.
  • the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal Therapeutic.
  • the albumin fusion proteins and/or polynucleotides of the invention are delivered by way of a pump (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321:574 (1989)).
  • the albumin fusion protein and/or polynucleotide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation.
  • a pharmaceutically acceptable carrier i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation.
  • the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to the Therapeutic.
  • the formulations are prepared by contacting the albumin fusion protein and/or polynucleotide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation.
  • the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.
  • the carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability.
  • additives such as substances that enhance isotonicity and chemical stability.
  • Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbi
  • the albumin fusion protein is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.
  • Any pharmaceutical used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Albumin fusion proteins and/or polynucleotides generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
  • a sterile access port for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
  • Albumin fusion proteins and/or polynucleotides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution.
  • a lyophilized formulation 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous albumin fusion protein and/or polynucleotide solution, and the resulting mixture is lyophilized.
  • the infusion solution is prepared by reconstituting the lyophilized albumin fusion protein and/or polynucleotide using bacteriostatic Water-for-Injection.
  • the Albumin fusion protein formulations comprises 0.01 M sodium phosphate, 0.15 mM sodium chloride, 0.16 micromole sodium octanoate/milligram of fusion protein, 15 micrograms/milliliter polysorbate 80, pH 7.2.
  • the Albumin fusion protein formulations consists 0.01 M sodium phosphate, 0.15 mM sodium chloride, 0.16 micromole sodium octanoate/milligram of fusion protein, 15 micrograms/milliliter polysorbate 80, pH 7.2.
  • the pH and buffer are chosen to match physiological conditions and the salt is added as a tonicifier.
  • Sodium octanoate has been chosen due to its reported ability to increase the thermal stability of the protein in solution.
  • polysorbate has been added as a generic surfactant, which lowers the surface tension of the solution and lowers non-specific adsorption of the albumin fusion protein to the container closure system.
  • the invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the albumin fusion proteins and/or polynucleotides of the invention.
  • a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the albumin fusion proteins and/or polynucleotides of the invention.
  • Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
  • the albumin fusion proteins and/or polynucleotides may be employed in conjunction with other therapeutic compounds.
  • albumin fusion proteins and/or polynucleotides of the invention may be administered alone or in combination with adjuvants.
  • Adjuvants that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, alum, alum plus deoxycholate (ImmunoAg), MTP-PE (Biocine Corp.), QS21 (Genentech, Inc.), BCG (e.g., THERACYS®), MPL and nonviable preparations of Corynebacterium parvum .
  • albumin fusion proteins and/or polynucleotides of the invention are administered in combination with alum.
  • albumin fusion proteins and/or polynucleotides of the invention are administered in combination with QS-21.
  • Further adjuvants that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, Monophosphoryl lipid immunomodulator, AdjuVax 100a, QS-21, QS-18, CRL1005, Aluminum salts, MF-59, and Virosomal adjuvant technology.
  • Vaccines that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, vaccines directed toward protection against MMR (measles, mumps, rubella), polio, varicella, tetanus/diptheria, hepatitis A, hepatitis B, Haemophilus influenzae B, whooping cough, pneumonia, influenza, Lyme's Disease, rotavirus, cholera, yellow fever, Japanese encephalitis, poliomyelitis, rabies, typhoid fever, and pertussis.
  • MMR measles, mumps, rubella
  • polio varicella
  • tetanus/diptheria hepatitis A
  • hepatitis B Haemophilus influenzae B
  • whooping cough pneumonia, influenza, Lyme's Disease, rotavirus
  • cholera yellow fever
  • Japanese encephalitis poliomyelitis
  • Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or sequentially.
  • Administration “in combination” further includes the separate administration of one of the compounds or agents given first, followed by the second.
  • albumin fusion proteins and/or polynucleotides of the invention may be administered alone or in combination with other therapeutic agents.
  • Albumin fusion protein and/or polynucleotide agents that may be administered in combination with the albumin fusion proteins and/or polynucleotides of the invention include but not limited to, chemotherapeutic agents, antibiotics, steroidal and non-steroidal anti-inflammatories, conventional immunotherapeutic agents, and/or therapeutic treatments described below. Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or sequentially.
  • Administration “in combination” further includes the separate administration of one of the compounds or agents given first, followed by the second.
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with an anticoagulant.
  • Anticoagulants that may be administered with the compositions of the invention include, but are not limited to, heparin, low molecular weight heparin, warfarin sodium (e.g., COUMADIN®), dicumarol, 4-hydroxycoumarin, anisindione (e.g., MIRADONTM), acenocoumarol (e.g., nicoumalone, SINTHROMETM), indan-1,3-dione, phenprocoumon (e.g., MARCUMARTM), ethyl biscoumacetate (e.g., TROMEXANTM), and aspirin.
  • heparin low molecular weight heparin
  • warfarin sodium e.g., COUMADIN®
  • dicumarol e.g., 4-hydroxycoumarin
  • anisindione e.g., MIRADONTM
  • compositions of the invention are administered in combination with heparin and/or warfarin. In another specific embodiment, compositions of the invention are administered in combination with warfarin. In another specific embodiment, compositions of the invention are administered in combination with warfarin and aspirin. In another specific embodiment, compositions of the invention are administered in combination with heparin. In another specific embodiment, compositions of the invention are administered in combination with heparin and aspirin.
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with thrombolytic drugs.
  • thrombolytic drugs that may be administered with the compositions of the invention include, but are not limited to, plasminogen, lys-plasminogen, alpha2-antiplasmin, streptokinae (e.g., KABIKINASETM), antiresplace (e.g., EMINASETM), tissue plasminogen activator (t-PA, altevase, ACTIVASETM), urokinase (e.g., ABBOKINASETM), sauruplase, (Prourokinase, single chain urokinase), and aminocaproic acid (e.g., AMICARTM).
  • compositions of the invention are administered in combination with tissue plasminogen activator and aspirin.
  • albumin fusion proteins and/or polynucleotides of the invention are administered in combination with antiplatelet drugs.
  • Antiplatelet drugs that may be administered with the compositions of the invention include, but are not limited to, aspirin, dipyridamole (e.g., PERSANTINETM), and ticlopidine (e.g., TICLIDTM).
  • the use of anti-coagulants, thrombolytic and/or antiplatelet drugs in combination with albumin fusion proteins and/or polynucleotides of the invention is contemplated for the prevention, diagnosis, and/or treatment of thrombosis, arterial thrombosis, venous thrombosis, thromboembolism, pulmonary embolism, atherosclerosis, myocardial infarction, transient ischemic attack, unstable angina.
  • the use of anticoagulants, thrombolytic drugs and/or antiplatelet drugs in combination with albumin fusion proteins and/or polynucleotides of the invention is contemplated for the prevention of occulsion of saphenous grafts, for reducing the risk of periprocedural thrombosis as might accompany angioplasty procedures, for reducing the risk of stroke in patients with atrial fibrillation including nonrheumatic atrial fibrillation, for reducing the risk of embolism associated with mechanical heart valves and or mitral valves disease.
  • occlusions in extracorporeal devices e.g., intravascular canulas, vascular access shunts in hemodialysis patients, hemodialysis machines, and cardiopulmonary bypass machines.
  • albumin fusion proteins and/or polynucleotides of the invention are administered in combination with antiretroviral agents, nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), and/or protease inhibitors (PIs).
  • NRTIs nucleoside/nucleotide reverse transcriptase inhibitors
  • NRTIs non-nucleoside reverse transcriptase inhibitors
  • PIs protease inhibitors
  • NRTIs that may be administered in combination with the albumin fusion proteins and/or polynucleotides of the invention, include, but are not limited to, RETROVIRTM (zidovudine/AZT), VIDEXTM (didanosine/ddI), HVIDTM (zalcitabine/ddC), ZERITTM (stavudine/d4T), EPIVIRTM (lamivudine/3TC), and COMBIVIRTM (zidovudine/lamivudine).
  • RETROVIRTM zidovudine/AZT
  • VIDEXTM didanosine/ddI
  • HVIDTM zalcitabine/ddC
  • ZERITTM stavudine/d4T
  • EPIVIRTM lamvudine/3TC
  • COMBIVIRTM zidovudine/lamivudine
  • NNRTIs that may be administered in combination with the albumin fusion proteins and/or polynucleotides of the invention, include, but are not limited to, VIRAMUNETM (nevirapine), RESCRIPTORTM (delavirdine), and SUSTIVATM (efavirenz).
  • Protease inhibitors that may be administered in combination with the albumin fusion proteins and/or polynucleotides of the invention, include, but are not limited to, CRIXIVANTM (indinavir), NORVIRTM (ritonavir), INVRASETM (saquinavir), and VIRACEPTTM (nelfinavir).
  • antiretroviral agents nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, and/or protease inhibitors may be used in any combination with albumin fusion proteins and/or polynucleotides of the invention to treat AIDS and/or to prevent or treat HIV infection.
  • Additional NRTIs include LODENOSINETM (F-ddA; an acid-stable adenosine NRTI; Triangle/Abbott; COVIRACILTM (emtricitabine/FTC; structurally related to lamivudine (3TC) but with 3- to 10-fold greater activity in vitro; Triangle/Abbott); dOTC (BCH-10652, also structurally related to lamivudine but retains activity against a substantial proportion of lamivudine-resistant isolates; Biochem Pharma); Adefovir (refused approval for anti-HIV therapy by FDA; Gilead Sciences); PREVEON® (Adefovir Dipivoxil, the active prodrug of adefovir; its active form is PMEA-pp); TENOFOVIRTM (bis-POC PMPA, a PMPA prodrug; Gilead); DAPD/DXG (active metabolite of DAPD; Triangle/Abbot
  • Additional NNRTIs include COACTINONTM (Emivirine/MKC-442, potent NNRTI of the HEPT class; Triangle/Abbott); CAPRAVIRINETM (AG-1549/S-1153, a next generation NNRTI with activity against viruses containing the K103N mutation; Agouron); PNU-142721 (has 20- to 50-fold greater activity than its predecessor delavirdine and is active against K103N mutants; Pharmacia & Upjohn); DPC-961 and DPC-963 (second-generation derivatives of efavirenz, designed to be active against viruses with the K103N mutation; DuPont); GW-420867 ⁇ (has 25-fold greater activity than HBY097 and is active against K103N mutants; Glaxo Wellcome); CALANOLIDE A (naturally occurring agent from the latex tree; active against viruses containing either or both the Y181C and K103N mutations); and Propolis (WO 99/49830).
  • COACTINONTM Esmivirine/MKC
  • protease inhibitors include LOPINAVIRTM (ABT378/r; Abbott Laboratories); BMS-232632 (an azapeptide; Bristol-Myres Squibb); TIPRANAVIRTM (PNU-140690, a non-peptic dihydropyrone; Pharmacia & Upjohn); PD-178390 (a nonpeptidic dihydropyrone; Parke-Davis); BMS 232632 (an azapeptide; Bristol-Myers Squibb); L-756,423 (an indinavir analog; Merck); DMP-450 (a cyclic urea compound; Avid & DuPont); AG-1776 (a peptidomimetic with in vitro activity against protease inhibitor-resistant viruses; Agouron); VX-175/GW-433908 (phosphate prodrug of amprenavir; Vertex & Glaxo Welcome); CGP61755 (Ciba); and AGENERASETM (amprenavir; Glaxo
  • Additional antiretroviral agents include fusion inhibitors/gp41 binders.
  • Fusion inhibitors/gp41 binders include T-20 (a peptide from residues 643-678 of the HIV gp41 transmembrane protein ectodomain which binds to gp41 in its resting state and prevents transformation to the fusogenic state; Trimeris) and T-1249 (a second-generation fusion inhibitor; Trimeris).
  • Additional antiretroviral agents include fusion inhibitors/chemokine receptor antagonists.
  • Fusion inhibitors/chemokine receptor antagonists include CXCR4 antagonists such as AMD 3100 (a bicyclam), SDF-1 and its analogs, and ALX40-4C (a cationic peptide), T22 (an 18 amino acid peptide; Trimeris) and the T22 analogs T134 and T140; CCR5 antagonists such as RANTES (9-68), AOP-RANTES, NNY-RANTES, and TAK-779; and CCR5/CXCR4 antagonists such as NSC 651016 (a distamycin analog). Also included are CCR2B, CCR3, and CCR6 antagonists. Chemokine recpetor agonists such as RANTES, SDF-1, MIP-1 ⁇ , MIP-1 ⁇ , etc., may also inhibit fusion.
  • Additional antiretroviral agents include integrase inhibitors.
  • Integrase inhibitors include dicaffeoylquinic (DFQA) acids; L-chicoric acid (a dicaffeoyltartaric (DCTA) acid); quinalizarin (QLC) and related anthraquinones; ZINTEVIRTM (AR 177, an oligonucleotide that probably acts at cell surface rather than being a true integrase inhibitor; Arondex); and naphthols such as those disclosed in WO 98/50347.
  • DFQA dicaffeoylquinic
  • DCTA dicaffeoyltartaric
  • QLC quinalizarin
  • ZINTEVIRTM AR 177, an oligonucleotide that probably acts at cell surface rather than being a true integrase inhibitor
  • Arondex naphthols such as those disclosed in WO 98/50347.
  • Additional antiretroviral agents include hydroxyurea-like compunds such as BCX-34 (a purine nucleoside phosphorylase inhibitor; Biocryst); ribonucleotide reductase inhibitors such as DIDOXTM (Molecules for Health); inosine monophosphate dehydrogenase (IMPDH) inhibitors sucha as VX-497 (Vertex); and mycopholic acids such as CellCept (mycophenolate mofetil; Roche).
  • BCX-34 purine nucleoside phosphorylase inhibitor
  • Biocryst ribonucleotide reductase inhibitors
  • DIDOXTM Diotide reductase inhibitor
  • IMPDH inosine monophosphate dehydrogenase
  • VX-497 Verytex
  • mycopholic acids such as CellCept (mycophenolate mofetil; Roche).
  • Additional antiretroviral agents include inhibitors of viral integrase, inhibitors of viral genome nuclear translocation such as arylene bis(methylketone) compounds; inhibitors of HIV entry such as AOP-RANTES, NNY-RANTES, RANTES-IgG fusion protein, soluble complexes of RANTES and glycosaminoglycans (GAG), and AMD-3100; nucleocapsid zinc finger inhibitors such as dithiane compounds; targets of HIV Tat and Rev; and pharmacoenhancers such as ABT-378.
  • inhibitors of viral integrase inhibitors of viral genome nuclear translocation such as arylene bis(methylketone) compounds
  • inhibitors of HIV entry such as AOP-RANTES, NNY-RANTES, RANTES-IgG fusion protein, soluble complexes of RANTES and glycosaminoglycans (GAG), and AMD-3100
  • nucleocapsid zinc finger inhibitors such as dithiane compounds
  • cytokines and lymphokines such as MIP-1 ⁇ , MIP-1 ⁇ , SDF-1 ⁇ , IL-2, PROLEUKINTM (aldesleukin/L2-7001; Chiron), 1L-4, IL-10, IL-12, and IL-13; interferons such as IFN- ⁇ 2a; antagonists of TNFs, NF ⁇ B, GM-CSF, M-CSF, and IL-10; agents that modulate immune activation such as cyclosporin and prednisone; vaccines such as RemuneTM (HIV Immunogen), APL 400-003 (Apollon), recombinant gp120 and fragments, bivalent (B/E) recombinant envelope glycoprotein, rgp120CM235, MN rgp120, SF-2 rgp120, gp120/soluble CD4 complex, Delta JR-FL protein, branched synthetic peptide derived from discontinuous gp120 C
  • antibodies such as the anti-CXCR4 antibody 12G5, the anti-CCR5 antibodies 2D7, 5C7, PA8, PA9, PA10, PA11, PA12, and PA14, the anti-CD4 antibodies Q4120 and RPA-T4, the anti-CCR3 antibody 7B11, the anti-gp120 antibodies 17b, 48d, 447-52D, 257-D, 268-D and 50.1, anti-Tat antibodies, anti-TNF- ⁇ antibodies, and monoclonal antibody 33A; aryl hydrocarbon (AH) receptor agonists and antagonists such as TCDD, 3,3′,4,4′,5-pentachlorobiphenyl, 3,3′,4,4′-tetrachlorobiphenyl, and ⁇ -naphthoflavone (WO 98/30213); and antioxidants such as ⁇ -L-glutamyl-L-cysteine ethyl ester ( ⁇ -GCE; WO 99/56764
  • albumin fusion proteins and/or polynucleotides of the invention are administered in combination with an antiviral agent.
  • Antiviral agents that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, acyclovir, ribavirin, amantadine, and remantidine.
  • albumin fusion proteins and/or polynucleotides of the invention may be administered in combination with anti-opportunistic infection agents.
  • Anti-opportunistic agents that may be administered in combination with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, TRIMETHOPRIM-SULFAMETHOXAZOLETM, DAPSONETM, PENTAMIDNETM, ATOVAQUONETM, ISONIAZIDTM, RIFAMPINTM, PYRAZINAMIDETM, ETHAMBUTOLTM, RIFABUTINTM, CLARITHROMYCINTM, AZITHROMYCINTM, GANCICLOVIRTM, FOSCARNETTM, CIDOFOVIRTM, FLUCONAZOLETM, ITRACONAZOLETM, KETOCONAZOLETM, ACYCLOVIRTM, FAMCICOLVIRTM, PYRIMETHAMINETM, LEUCOVORINTM, NEU
  • albumin fusion proteins and/or polynucleotides of the invention are used in any combination with TRIMETHOPRIM-SULFAMETHOXAZOLETM, DAPSONETM, PENTAMIDINETM, and/or ATOVAQUONETM to prophylactically treat or prevent an opportunistic Pneumocystis carinii pneumonia infection.
  • albumin fusion proteins and/or polynucleotides of the invention are used in any combination with ISONIAZIDTM, RIFAMPINTM, PYRAZINAMIDETM, and/or ETHAMBUTOLTM to prophylactically treat or prevent an opportunistic Mycobacterium avium complex infection.
  • albumin fusion proteins and/or polynucleotides of the invention are used in any combination with RIFABUTINTM, CLARITHROMYCINTM, and/or AZITHROMYCINTM to prophylactically treat or prevent an opportunistic Mycobacterium tuberculosis infection.
  • albumin fusion proteins and/or polynucleotides of the invention are used in any combination with GANCICLOVIRTM, FOSCARNETTM, and/or CIDOFOVIRTM to prophylactically treat or prevent an opportunistic cytomegalovirus infection.
  • albumin fusion proteins and/or polynucleotides of the invention are used in any combination with FLUCONAZOLETM, ITRACONAZOLETM, and/or KETOCONAZOLETM to prophylactically treat or prevent an opportunistic fungal infection.
  • albumin fusion proteins and/or polynucleotides of the invention are used in any combination with ACYCLOVIRTM and/or FAMCICOLVIRTM to prophylactically treat or prevent an opportunistic herpes simplex virus type I and/or type II infection.
  • albumin fusion proteins and/or polynucleotides of the invention are used in any combination with PYRIMETHAMINETM and/or LEUCOVORINTM to prophylactically treat or prevent an opportunistic Toxoplasma gondii infection.
  • albumin fusion proteins and/or polynucleotides of the invention are used in any combination with LEUCOVORINTM and/or NEUPOGENTM to prophylactically treat or prevent an opportunistic bacterial infection.
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with an antibiotic agent.
  • Antibiotic agents that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, amoxicillin, beta-lactamases, aminoglycosides, beta-lactam (glycopeptide), beta-lactamases, Clindamycin, chloramphenicol, cephalosporins, ciprofloxacin, erythromycin, fluoroquinolones, macrolides, metronidazole, penicillins, quinolones, rapamycin, rifampin, streptomycin, sulfonamide, tetracyclines, trimethoprim, trimethoprim-sulfamethoxazole, and vancomycin.
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with immunostimulants.
  • Immunostimulants that may be administered in combination with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, levamisole (e.g., ERGAMISOLTM), isoprinosine (e.g. INOSIPLEXTM), interferons (e.g. interferon alpha), and interleukins (e.g., IL-2).
  • albumin fusion proteins and/or polynucleotides of the invention are administered in combination with immunosuppressive agents.
  • Immunosuppressive agents that may be administered in combination with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, steroids, cyclosporine, cyclosporine analogs, cyclophosphamide methylprednisone, prednisone, azathioprine, FK-506, 15-deoxyspergualin, and other immunosuppressive agents that act by suppressing the function of responding T cells.
  • immunosuppressive agents that may be administered in combination with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, prednisolone, methotrexate, thalidomide, methoxsalen, rapamycin, leflunomide, mizoribine (BREDININTM), brequinar, deoxyspergualin, and azaspirane (SKF 105685), ORTHOCLONE OKT® 3 (muromonab-CD3), SANDIMMUNETM, NEORALTM, SANGDYATM (cyclosporine), PROGRAF® (FK506, tacrolimus), CELLCEPT® (mycophenolate motefil, of which the active metabolite is mycophenolic acid), IMURANTM (azathioprine), glucocorticosteroids, adrenocortical steroids such as DELTASONETM (prednisone) and HYDELTRASOLTM (predni
  • albumin fusion proteins and/or polynucleotides of the invention are administered alone or in combination with one or more intravenous immune globulin preparations.
  • Intravenous immune globulin preparations that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but not limited to, GAMMARTM, IVEEGAMTM, SANDOGLOBULINTM, GAMMAGARD S/DTM, ATGAMTM (antithymocyte glubulin), and GAMIMUNETM.
  • albumin fusion proteins and/or polynucleotides of the invention are administered in combination with intravenous immune globulin preparations in transplantation therapy (e.g., bone marrow transplant).
  • the albumin fusion proteins and/or polynucleotides of the invention are administered alone or in combination with an anti-inflammatory agent.
  • Anti-inflammatory agents that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, corticosteroids (e.g.
  • compositions of the invention are administered alone or in combination with an anti-angiogenic agent.
  • Anti-angiogenic agents that may be administered with the compositions of the invention include, but are not limited to, Angiostatin (Entremed, Rockville, Md.), Troponin-1 (Boston Life Sciences, Boston, Mass.), anti-Invasive Factor, retinoic acid and derivatives thereof, paclitaxel (Taxol), Suramin, Tissue Inhibitor of Metalloproteinase-1, Tissue Inhibitor of Metalloproteinase-2, VEGI, Plasminogen Activator Inhibitor-1, Plasminogen Activator Inhibitor-2, and various forms of the lighter “d group” transition metals.
  • Lighter “d group” transition metals include, for example, vanadium, molybdenum, tungsten, titanium, niobium, and tantalum species. Such transition metal species may form transition metal complexes. Suitable complexes of the above-mentioned transition metal species include oxo transition metal complexes.
  • vanadium complexes include oxo vanadium complexes such as vanadate and vanadyl complexes.
  • Suitable vanadate complexes include metavanadate and orthovanadate complexes such as, for example, ammonium metavanadate, sodium metavanadate, and sodium orthovanadate.
  • Suitable vanadyl complexes include, for example, vanadyl acetylacetonate and vanadyl sulfate including vanadyl sulfate hydrates such as vanadyl sulfate mono- and trihydrates.
  • tungsten and molybdenum complexes also include oxo complexes.
  • Suitable oxo tungsten complexes include tungstate and tungsten oxide complexes.
  • Suitable tungstate complexes include ammonium tungstate, calcium tungstate, sodium tungstate dihydrate, and tungstic acid.
  • Suitable tungsten oxides include tungsten (IV) oxide and tungsten (VI) oxide.
  • Suitable oxo molybdenum complexes include molybdate, molybdenum oxide, and molybdenyl complexes.
  • Suitable molybdate complexes include ammonium molybdate and its hydrates, sodium molybdate and its hydrates, and potassium molybdate and its hydrates.
  • Suitable molybdenum oxides include molybdenum (VI) oxide, molybdenum (VI) oxide, and molybdic acid.
  • Suitable molybdenyl complexes include, for example, molybdenyl acetylacetonate.
  • Other suitable tungsten and molybdenum complexes include hydroxo derivatives derived from, for example, glycerol, tartaric acid, and sugars.
  • anti-angiogenic factors include, but are not limited to, platelet factor 4; protamine sulphate; sulphated chitin derivatives (prepared from queen crab shells), (Murata et al., Cancer Res.
  • SP-PG Sulphated Polysaccharide Peptidoglycan Complex
  • steroids such as estrogen, and tamoxifen citrate
  • Staurosporine modulators of matrix metabolism, including for example, proline analogs, cishydroxyproline, d,L-3,4-dehydroproline, Thiaproline, alpha,alpha-dipyridyl, aminopropionitrile fumarate; 4-propyl-5-(4-pyridinyl)-2(3H)-oxazolone; Methotrexate; Mitoxantrone; Heparin; Interferons; 2 Macroglobulin-serum; ChIMP-3 (Pavloffet al., J.
  • Thalidomide (Celgene, Warren, N.J.); Angiostatic steroid; AGM-1470 (H. Brem and J. Folkman J Pediatr. Surg. 28:445-51 (1993)); an integrin alpha v beta 3 antagonist (C. Storgard et al., J Clin. Invest.
  • Anti-angiogenic agents that may be administed in combination with the compounds of the invention may work through a variety of mechanisms including, but not limited to, inhibiting proteolysis of the extracellular matrix, blocking the function of endothelial cell-extracellular matrix adhesion molecules, by antagonizing the function of angiogenesis inducers such as growth factors, and inhibiting integrin receptors expressed on proliferating endothelial cells.
  • anti-angiogenic inhibitors that interfere with extracellular matrix proteolysis and which may be administered in combination with the compositons of the invention include, but are not lmited to, AG-3340 (Agouron, La Jolla, Calif.), BAY-12-9566 (Bayer, West Haven, Conn.), BMS-275291 (Bristol Myers Squibb, Princeton, N.J.), CGS-27032A (Novartis, East Hanover, N.J.), Marimastat (British Biotech, Oxford, UK), and Metastat (Aeterna, St-Foy, Quebec).
  • anti-angiogenic inhibitors that act by blocking the function of endothelial cell-extracellular matrix adhesion molecules and which may be administered in combination with the compositons of the invention include, but are not lmited to, EMD-121974 (Merck KcgaA Darmstadt, Germany) and Vitaxin (Ixsys, La Jolla, Calif./Medimmune, Gaithersburg, Md.).
  • anti-angiogenic agents that act by directly antagonizing or inhibiting angiogenesis inducers and which may be administered in combination with the compositons of the invention include, but are not lmited to, Angiozyme (Ribozyme, Boulder, Colo.), Anti-VEGF antibody (Genentech, S.
  • SU-101 S. San Francisco, Calif.
  • SU-5416 Sugen/Pharmacia Upjohn, Bridgewater, N.J.
  • SU-6668 Sugen.
  • Other anti-angiogenic agents act to indirectly inhibit angiogenesis.
  • indirect inhibitors of angiogenesis which may be administered in combination with the compositons of the invention include, but are not limited to, IM-862 (Cytran, Kirkland, Wash.), Interferon-alpha, IL-12 (Roche, Nutley, N.J.), and Pentosan polysulfate (Georgetown University, Washington, D.C.).
  • compositions of the invention in combination with anti-angiogenic agents is contemplated for the treatment, prevention, and/or amelioration of an autoimmune disease, such as for example, an autoimmune disease described herein.
  • compositions of the invention in combination with anti-angiogenic agents is contemplated for the treatment, prevention, and/or amelioration of arthritis.
  • use of compositions of the invention in combination with anti-angiogenic agents is contemplated for the treatment, prevention, and/or amelioration of rheumatoid arthritis.
  • the polynucleotides encoding a polypeptide of the present invention are administered in combination with an angiogenic protein, or polynucleotides encoding an angiogenic protein.
  • angiogenic proteins include, but are not limited to, acidic and basic fibroblast growth factors, VEGF-1, VEGF-2, VEGF-3, epidermal growth factor alpha and beta, platelet-derived endothelial cell growth factor, platelet-derived growth factor, tumor necrosis factor alpha, hepatocyte growth factor, insulin-like growth factor, colony stimulating factor, macrophage colony stimulating factor, granulocyte/macrophage colony stimulating factor, and nitric oxide synthase.
  • compositions of the invention are administered in combination with a chemotherapeutic agent.
  • Chemotherapeutic agents that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to alkylating agents such as nitrogen mustards (for example, Mechlorethamine, cyclophosphamide, Cyclophosphamide Ifosfamide, Melphalan (L-sarcolysin), and Chlorambucil), ethylenimines and methylmelamines (for example, Hexamethylmelamine and Thiotepa), alkyl sulfonates (for example, Busulfan), nitrosoureas (for example, Carmustine (BCNU), Lomustine (CCNU), Semustine (methyl-CCNU), and Streptozocin (streptozotocin)), triazenes (for example, dacarbazine (DTIC; dimethyltriazenoimidazo
  • compositions of the invention are administered in combination with one or more of the following drugs: infliximab (also known as RemicadeTM Centocor, Inc.), Trocade (Roche, RO-32-3555), Leflunomide (also known as AravaTM from Hoechst Marion Roussel), KineretTM (an IL-1 Receptor antagonist also known as Anakinra from Amgen, Inc.)
  • infliximab also known as RemicadeTM Centocor, Inc.
  • Trocade Roche, RO-32-3555
  • Leflunomide also known as AravaTM from Hoechst Marion Roussel
  • KineretTM an IL-1 Receptor antagonist also known as Anakinra from Amgen, Inc.
  • compositions of the invention are administered in combination with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) or combination of one or more of the components of CHOP.
  • CHOP cyclophosphamide, doxorubicin, vincristine, and prednisone
  • the compositions of the invention are administered in combination with anti-CD20 antibodies, human monoclonal anti-CD20 antibodies.
  • the compositions of the invention are administered in combination with anti-CD20 antibodies and CHOP, or anti-CD20 antibodies and any combination of one or more of the components of CHOP, particularly cyclophosphamide and/or prednisone.
  • compositions of the invention are administered in combination with Rituximab.
  • compositions of the invention are administered with Rituximab and CHOP, or Rituximab and any combination of one or more of the components of CHOP, particularly cyclophosphamide and/or prednisone.
  • compositions of the invention are administered in combination with tositumomab.
  • compositions of the invention are administered with tositumomab and CHOP, or tositumomab and any combination of one or more of the components of CHOP, particularly cyclophosphamide and/or prednisone.
  • the anti-CD20 antibodies may optionally be associated with radioisotopes, toxins or cytotoxic prodrugs.
  • compositions of the invention are administered in combination ZevalinTM.
  • compositions of the invention are administered with ZevalinTM and CHOP, or ZevalinTM and any combination of one or more of the components of CHOP, particularly cyclophosphamide and/or prednisone.
  • ZevalinTM may be associated with one or more radisotopes. Particularly preferred isotopes are 90 Y and 111 In.
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with cytokines.
  • Cytokines that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, IL2, IL3, IL4, IL5, IL6, IL7, IL10, IL12, IL13, IL15, anti-CD40, CD40L, IFN-gamma and TNF-alpha.
  • albumin fusion proteins and/or polynucleotides of the invention may be administered with any interleukin, including, but not limited to, IL-1alpha, IL-1beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, and IL-21.
  • interleukin including, but not limited to, IL-1alpha, IL-1beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, and IL-21.
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with members of the TNF family.
  • TNF, TNF-related or TNF-like molecules that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, soluble forms of TNF-alpha, lymphotoxin-alpha (LT-alpha, also known as TNF-beta), LT-beta (found in complex heterotrimer LT-alpha2-beta), OPGL, FasL, CD27L, CD30L, CD40L, 4-1BBL, DcR3, OX40L, TNF-gamma (International Publication No.
  • WO 96/14328 AIM-I (International Publication No. WO 97/33899), endokine-alpha (International Publication No. WO 98/07880), OPG, and netitrokine-alpha (International Publication No. WO 98/18921, OX40, and nerve growth factor (NGF), and soluble forms of Fas, CD30, CD27, CD40 and 4-IBB, TR2 (International Publication No. WO 96/34095), DR3 (International Publication No. WO 97/33904), DR4 (International Publication No. WO 98/32856), TR5 (International Publication No. WO 98/30693), TRANK, TR9 (International Publication No. WO 98/56892),TR10 (International Publication No. WO 98/54202), 312C2 (International Publication No. WO 98/06842), and TR12, and soluble forms CD154, CD70, and CD153.
  • TR2 International Publication No.
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with angiogenic proteins.
  • Angiogenic proteins that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, Glioma Derived Growth Factor (GDGF), as disclosed in European Patent Number EP-399816; Platelet Derived Growth Factor-A (PDGF-A), as disclosed in European Patent Number EP-682110; Platelet Derived Growth Factor-B (PDGF-B), as disclosed in European Patent Number EP-282317; Placental Growth Factor (PIGF), as disclosed in International Publication Number WO 92/06194; Placental Growth Factor-2 (PIGF-2), as disclosed in Hauser et al., Growth Factors, 4:259-268 (1993); Vascular Endothelial Growth Factor (VEGF), as disclosed in International Publication Number WO 90/13649; Vascular Endothelial Growth Factor (
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with Fibroblast Growth Factors.
  • Fibroblast Growth Factors that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, FGF-11, FGF-12, FGF-13, FGF-14, and FGF-15.
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with hematopoietic growth factors.
  • Hematopoietic growth factors that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, granulocyte macrophage colony stimulating factor (GM-CSF) (sargramostim, LEUKINETM, PROKINETM), granulocyte colony stimulating factor (G-CSF) (filgrastim, NEUPOGENTM), macrophage colony stimulating factor (M-CSF, CSF-1) erythropoietin (epoetin alfa, EPOGENTM, PROCRITTM), stem cell factor (SCF, c-kit ligand, steel factor), megakaryocyte colony stimulating factor, PIXY321 (a GMCSF/IL-3 fusion protein), interleukins, especially any one or more of IL-1 through IL-12,
  • albumin fusion proteins and/or polynucleotides of the present invention are administered in combination with adrenergic blockers, such as, for example, acebutolol, atenolol, betaxolol, bisoprolol, carteolol, labetalol, metoprolol, nadolol, oxprenolol, penbutolol, pindolol, propranolol, sotalol, and timolol.
  • adrenergic blockers such as, for example, acebutolol, atenolol, betaxolol, bisoprolol, carteolol, labetalol, metoprolol, nadolol, oxprenolol, penbutolol, pindolol, propranolol, sotalol, and timolol.
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with an antiarrhythmic drug (e.g., adenosine, amidoarone, bretylium, digitalis, digoxin, digitoxin, diliazem, disopyramide, esmolol, flecainide, lidocaine, mexiletine, moricizine, phenytoin, procainamide, N-acetyl procainamide, propafenone, propranolol, quinidine, sotalol, tocainide, and verapamil).
  • an antiarrhythmic drug e.g., adenosine, amidoarone, bretylium, digitalis, digoxin, digitoxin, diliazem, disopyramide, esmolol, flecainide, lidocaine, mexiletine, moricizine, phenytoin, procainamide,
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with diuretic agents, such as carbonic anhydrase-inhibiting agents (e.g., acetazolamide, dichlorphenamide, and methazolamide), osmotic diuretics (e.g., glycerin, isosorbide, mannitol, and urea), diuretics that inhibit Na + -K + -2Cl ⁇ symport (e.g., furosemide, bumetamide, azosemide, piretamide, tripamide, ethacrynic acid, muzolimine, and torsemide), thiazide and thiazide-like diuretics (e.g., bendroflumethiazide, benzthiazide, chlorothiazide, hydrochlorothiazide, hydroflumethiazide, methyclothiazi
  • diuretic agents such
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with treatments for endocrine and/or hormone imbalance disorders.
  • Treatments for endocrine and/or hormone imbalance disorders include, but are not limited to, 127 I, radioactive isotopes of iodine such as 131 I and 123 I; recombinant growth hormone, such as HUMATROPETM (recombinant somatropin); growth hormone analogs such as PROTROPINTM (somatrem); dopamine agonists such as PARLODELTM (bromocriptine); somatostatin analogs such as SANDOSTATINTM (octreotide); gonadotropin preparations such as PREGNYLTM, A.P.L.TM and PROFASITM (chorionic gonadotropin (CG)), PERGONALTM (menotropins), and METRODINTM (urofollitropin (uFSH)); synthetic human gonadotropin
  • Additional treatments for endocrine and/or hormone imbalance disorders include, but are not limited to, estrogens or congugated estrogens such as ESTRACETM (estradiol), ESTINYLTM (ethinyl estradiol), PREMARINTM, ESTRATABTM, ORTHO-ESTTM, OGENTM and estropipate (estrone), ESTROVISTM (quinestrol), ESTRADERMTM (estradiol), DELESTROGENTM and VALERGENTM (estradiol valerate), DEPO-ESTRADIOL CYPIONATETM and ESTROJECT LATM (estradiol cypionate); antiestrogens such as NOLVADEXTM (tamoxifen), SEROPHENETM and CLOMIDTM (clomiphene); progestins such as DURALUTINTM (hydroxyprogesterone caproate), MPATM and DEPO-PROVERATM (medroxyprogesterone acetate), PROVERATM and
  • Additional treatments for endocrine and/or hormone imbalance disorders include, but are not limited to, testosterone esters such as methenolone acetate and testosterone undecanoate; parenteral and oral androgens such as TESTOJECT-50TM (testosterone), TESTEXTM (testosterone propionate), DELATESTRYLTM (testosterone enanthate), DEPO-TESTOSTERONETM (testosterone cypionate), DANOCRINETM (danazol), HALOTESTINTM (fluoxymesterone), ORETON METHYLTM, TESTREDTM and VIRILONTM (methyltestosterone), and OXANDRINTM (oxandrolone); testosterone transdermal systems such as TESTODERMTM; androgen receptor antagonist and 5-alpha-reductase inhibitors such as ANDROCURTM (cyproterone acetate), EULEXNTM (flutamide), and PROSCARTM (finasteride); a
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with treatments for uterine motility disorders.
  • Treatments for uterine motility disorders include, but are not limited to, estrogen drugs such as conjugated estrogens (e.g., PREMARIN® and ESTRATAB®), estradiols (e.g., CLIMARA® and ALORA®), estropipate, and chlorotrianisene; progestin drugs (e.g., AMEN® (medroxyprogesterone), MICRONOR® (norethidrone acetate), PROMETRIUM® progesterone, and megestrol acetate); and estrogen/progesterone combination therapies such as, for example, conjugated estrogens/medroxyprogesterone (e.g., PREMPROTM and PREMPHASE®) and norethindrone acetate/ethinyl estsradiol (e.g., FEMHRTTM).
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with drugs effective in treating iron deficiency and hypochromic anemias, including but not limited to, ferrous sulfate (iron sulfate, FEOSOLTM), ferrous fumarate (e.g., FEOSTATTM), ferrous gluconate (e.g., FERGONTM), polysaccharide-iron complex (e.g., NIFEREXTM), iron dextran injection (e.g., INFEDTM), cupric sulfate, pyroxidine, riboflavin, Vitamin B 12 , cyancobalamin injection (e.g., REDISOLTM, RUBRAMIN PCTM), hydroxocobalamin, folic acid (e.g., FOLVITETM), leucovorin (folinic acid, 5-CHOH4PteGlu, citrovorum factor) or WELLCOVORIN (Calcium
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with agents used to treat psychiatric disorders.
  • Psychiatric drugs that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, antipsychotic agents (e.g., chlorpromazine, chlorprothixene, clozapine, fluphenazine, haloperidol, loxapine, mesoridazine, molindone, olanzapine, perphenazine, pimozide, quetiapine, risperidone, thioridazine, thiothixene, trifluoperazine, and triflupromazine), antimanic agents (e.g., carbamazepine, divalproex sodium, lithium carbonate, and lithium citrate), antidepressants (e.g., amitriptyline, amoxa
  • antipsychotic agents
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with agents used to treat neurological disorders.
  • Neurological agents that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, antiepileptic agents (e.g., carbamazepine, clonazepam, ethosuximide, phenobarbital, phenytoin, primidone, valproic acid, divalproex sodium, felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, tiagabine, topiramate, zonisamide, diazepam, lorazepam, and clonazepam), antiparkinsonian agents (e.g., levodopa/carbidopa, selegiline, amantidine, bromocriptine, pergolide, ropinirole
  • albumin fusion proteins and/or polynucleotides of the invention are administered in combination with vasodilating agents and/or calcium channel blocking agents.
  • Vasodilating agents that may be administered with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to, Angiotensin Converting Enzyme (ACE) inhibitors (e.g., papaverine, isoxsuprine, benazepril, captopril, cilazapril, enalapril, enalaprilat, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril, spirapril, trandolapril, and nylidrin), and nitrates (e.g., isosorbide dinitrate, isosorbide mononitrate, and nitroglycerin).
  • ACE Angiotensin Con
  • calcium channel blocking agents that may be administered in combination with the albumin fusion proteins and/or polynucleotides of the invention include, but are not limited to amlodipine, bepridil, diltiazem, felodipine, flunarizine, isradipine, nicardipine, nifedipine, nimodipine, and verapamil.
  • the albumin fusion proteins and/or polynucleotides of the invention are administered in combination with treatments for gastrointestinal disorders.
  • Treatments for gastrointestinal disorders that may be administered with the albumin fusion protein and/or polynucleotide of the invention include, but are not limited to, H 2 histamine receptor antagonists (e.g., TAGAMETTM (cimetidine), ZANTACTM (ranitidine), PEPCIDTM (famotidine), and AXIDTM (nizatidine)); inhibitors of H + , K + ATPase (e.g., PREVACIDTM (lansoprazole) and PRILOSECTM (omeprazole)); Bismuth compounds (e.g., PEPTO-BISMOLTM (bismuth subsalicylate) and DE-NOLTM (bismuth subcitrate)); various antacids; sucralfate; prostaglandin analogs (e.g.
  • H 2 histamine receptor antagonists e.g.,
  • CYTOTECTM miprostol
  • muscarinic cholinergic antagonists e.g., laxatives (e.g., surfactant laxatives, stimulant laxatives, saline and osmotic laxatives); antidiarrheal agents (e.g., LOMOTILTM (diphenoxylate), MOTOFENTM (diphenoxin), and IMODIUMTM (loperamide hydrochloride)), synthetic analogs of somatostatin such as SANDOSTATINTM (octreotide), antiemetic agents (e.g., ZOFRANTM (ondansetron), KYTRILTM (granisetron hydrochloride), tropisetron, dolasetron, metoclopramide, chlorpromazine, perphenazine, prochlorperazine, promethazine, thiethylperazine, triflupromazine, domperidone, haloperidol, drop
  • albumin fusion proteins and/or polynucleotides of the invention are administered in combination with other therapeutic or prophylactic regimens, such as, for example, radiation therapy.
  • the invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions comprising albumin fusion proteins of the invention.
  • a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions comprising albumin fusion proteins of the invention.
  • Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
  • Constructs encoding albumin fusion proteins of the invention can be used as a part of a gene therapy protocol to deliver therapeutically effective doses of the albumin fusion protein.
  • a preferred approach for in vivo introduction of nucleic acid into a cell is by use of a viral vector containing nucleic acid, encoding an albumin fusion protein of the invention. Infection of cells with a viral vector has the advantage that a large proportion of the targeted cells can receive the nucleic acid. Additionally, molecules encoded within the viral vector, e.g., by a cDNA contained in the viral vector, are expressed efficiently in cells which have taken up viral vector nucleic acid.
  • Retrovirus vectors and adeno-associated virus vectors can be used as a recombinant gene delivery system for the transfer of exogenous nucleic acid molecules encoding albumin fusion proteins in vivo. These vectors provide efficient delivery of nucleic acids into cells, and the transferred nucleic acids are stably integrated into the chromosomal DNA of the host.
  • the development of specialized cell lines (termed “packaging cells”) which produce only replication-defective retroviruses has increased the utility of retroviruses for gene therapy, and defective retroviruses are characterized for use in gene transfer for gene therapy purposes (for a review see Miller, A. D. (1990) Blood 76:271).
  • a replication defective retrovirus can be packaged into virions which can be used to infect a target cell through the use of a helper virus by standard techniques. Protocols for producing recombinant retroviruses and for infecting cells in vitro or in vivo with such viruses can be found in Current Protocols in Molecular Biology, Ausubel, F. M. et al., (eds.) Greene Publishing Associates, (1989), Sections 9.10-9.14 and other standard laboratory manuals.
  • Another viral gene delivery system useful in the present invention uses adenovirus-derived vectors.
  • the genome of an adenovirus can be manipulated such that it encodes and expresses a gene product of interest but is inactivated in terms of its ability to replicate in a normal lytic viral life cycle. See, for example, Berkner et al., BioTechniques 6:616 (1988); Rosenfeld et al., Science 252:431-434 (1991); and Rosenfeld et al., Cell 68:143-155 (1992).
  • adenoviral vectors derived from the adenovirus strain Ad type 5 d1324 or other strains of adenovirus are known to those skilled in the art.
  • Recombinant adenoviruses can be advantageous in certain circumstances in that they are not capable of infecting nondividing cells and can be used to infect a wide variety of cell types, including epithelial cells (Rosenfeld et al., (1992) cited supra).
  • the virus particle is relatively stable and amenable to purification and concentration, and as above, can be modified so as to affect the spectrum of infectivity.
  • introduced adenoviral DNA (and foreign DNA contained therein) is not integrated into the genome of a host cell but remains episomal, thereby avoiding potential problems that can occur as a result of insertional mutagenesis in situations where introduced DNA becomes integrated into the host genome (e.g., retroviral DNA).
  • the carrying capacity of the adenoviral genome for foreign DNA is large (up to 8 kilobases) relative to other gene delivery vectors (Berkner et al., cited supra; Haj-Ahmand et al., J. Virol. 57:267 (1986)).
  • non-viral gene delivery systems of the present invention rely on endocytic pathways for the uptake of the subject nucleotide molecule by the targeted cell.
  • exemplary gene delivery systems of this type include liposomal derived systems, poly-lysine conjugates, and artificial viral envelopes.
  • a nucleic acid molecule encoding an albumin fusion protein of the invention can be entrapped in liposomes bearing positive charges on their surface (e.g., lipofectins) and (optionally) which are tagged with antibodies against cell surface antigens of the target tissue (Mizuno et al. (1992) No Shinkei Geka 20:547-551; PCT publication WO91/06309; Japanese patent application 1047381; and European patent publication EP-A-43075).
  • Gene delivery systems for a gene encoding an albumin fusion protein of the invention can be introduced into a patient by any of a number of methods.
  • a pharmaceutical preparation of the gene delivery system can be introduced systemically, e.g. by intravenous injection, and specific transduction of the protein in the target cells occurs predominantly from specificity of transfection provided by the gene delivery vehicle, cell-type or tissue-type expression due to the transcriptional regulatory sequences controlling expression of the receptor gene, or a combination thereof.
  • initial delivery of the recombinant gene is more limited with introduction into the animal being quite localized.
  • the gene delivery vehicle can be introduced by catheter (see U.S. Pat. No. 5,328,470) or by Stereotactic injection (e.g.
  • the pharmaceutical preparation of the gene therapy construct can consist essentially of the gene delivery system in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded.
  • the albumin fusion protein can be produced intact from recombinant cells, e.g. retroviral vectors, the pharmaceutical preparation can comprise one or more cells which produce the albumin fusion protein.
  • the gene therapy methods relate to the introduction of nucleic acid (DNA, RNA and antisense DNA or RNA) sequences into an animal to achieve expression of an albumin fusion protein of the invention.
  • This method requires a polynucleotide which codes for an albumin fusion protein of the present invention operatively linked to a promoter and any other genetic elements necessary for the expression of the fusion protein by the target tissue.
  • Such gene therapy and delivery techniques are known in the art, see, for example, WO90/11092, which is herein incorporated by reference.
  • cells from a patient may be engineered with a polynucleotide (DNA or RNA) comprising a promoter operably linked to a polynucleotide encoding an albumin fusion protein of the present invention ex vivo, with the engineered cells then being provided to a patient to be treated with the fusion protein of the present invention.
  • a polynucleotide DNA or RNA
  • Such methods are well-known in the art. For example, see Belldegrun, A., et al., J. Natl. Cancer Inst. 85: 207-216 (1993); Ferrantini, M. et al., Cancer Research 53: 1107-1112 (1993); Ferrantini, M. et al., J.
  • the cells which are engineered are arterial cells.
  • the arterial cells may be reintroduced into the patient through direct injection to the artery, the tissues surrounding the artery, or through catheter injection.
  • the polynucleotide constructs can be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, and the like).
  • the polynucleotide constructs may be delivered in a pharmaceutically acceptable liquid or aqueous carrier.
  • polynucleotides encoding the albumin fusion proteins of the present invention is delivered as a naked polynucleotide.
  • naked polynucleotide, DNA or RNA refers to sequences that are free from any delivery vehicle that acts to assist, promote or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like.
  • polynucleotides encoding the albumin fusion proteins of the present invention can also be delivered in liposome formulations and lipofectin formulations and the like can be prepared by methods well known to those skilled in the art. Such methods are described, for example, in U.S. Pat. Nos. 5,593,972, 5,589,466, and 5,580,859, which are herein incorporated by reference.
  • the polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication.
  • Appropriate vectors include pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; pSVK3, pBPV, pMSG and pSVL available from Pharmacia; and pEF1/V5, pcDNA3.1, and pRc/CMV2 available from Invitrogen.
  • Other suitable vectors will be readily apparent to the skilled artisan.
  • Suitable promoters include adenoviral promoters, such as the adenoviral major late promoter; or heterologous promoters, such as the cytomegalovirus (CMV) promoter; the respiratory syncytial virus (RSV) promoter; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters; the albumin promoter; the ApoAI promoter; human globin promoters; viral thymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter; retroviral LTRs; the b-actin promoter; and human growth hormone promoters.
  • the promoter also may be the native promoter for the gene corresponding to the Therapeutic protein portion of the albumin fusion proteins of the invention.
  • one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.
  • the polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue.
  • Interstitial space of the tissues comprises the intercellular, fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone.
  • the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. In vivo muscle cells are particularly competent in their ability to take up and express polynucleotides.
  • an effective dosage amount of DNA or RNA will be in the range of from about 0.05 mg/kg body weight to about 50 mg/kg body weight.
  • the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg.
  • this dosage will vary according to the tissue site of injection.
  • the appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration.
  • the preferred route of administration is by the parenteral route of injection into the interstitial space of tissues.
  • parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose.
  • naked DNA constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.
  • the naked polynucleotides are delivered by any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, and so-called “gene guns”. These delivery methods are known in the art.
  • constructs may also be delivered with delivery vehicles such as viral sequences, viral particles, liposome formulations, lipofectin, precipitating agents, etc. Such methods of delivery are known in the art.
  • the polynucleotide constructs are complexed in a liposome preparation.
  • Liposomal preparations for use in the instant invention include cationic (positively charged), anionic (negatively charged) and neutral preparations.
  • cationic liposomes are particularly preferred because a tight charge complex can be formed between the cationic liposome and the polyanionic nucleic acid.
  • Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner et al., Proc. Natl. Acad. Sci. USA (1987) 84:7413-7416, which is herein incorporated by reference); mRNA (Malone et al., Proc. Natl.
  • Cationic liposomes are readily available.
  • N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are particularly useful and are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, N.Y. (See, also, Felgner et al., Proc. Natl. Acad. Sci. USA (1987) 84:7413-7416, which is herein incorporated by reference).
  • Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boehringer).
  • cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, e.g. PCT Publication No. WO 90/11092 (which is herein incorporated by reference) for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes. Preparation of DOTMA liposomes is explained in the literature, see, e.g., P. Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417, which is herein incorporated by reference. Similar methods can be used to prepare liposomes from other cationic lipid materials.
  • anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, Ala.), or can be easily prepared using readily available materials.
  • Such materials include phosphatidyl, choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others.
  • DOPC dioleoylphosphatidyl choline
  • DOPG dioleoylphosphatidyl glycerol
  • DOPE dioleoylphoshatidyl ethanolamine
  • DOPC dioleoylphosphatidyl choline
  • DOPG dioleoylphosphatidyl glycerol
  • DOPE dioleoylphosphatidyl ethanolamine
  • DOPG/DOPC vesicles can be prepared by drying 50 mg each of DOPG and DOPC under a stream of nitrogen gas into a sonication vial. The sample is placed under a vacuum pump overnight and is hydrated the following day with deionized water.
  • the sample is then sonicated for 2 hours in a capped vial, using a Heat Systems model 350 sonicator equipped with an inverted cup (bath type) probe at the maximum setting while the bath is circulated at 15EC.
  • negatively charged vesicles can be prepared without sonication to produce multilamellar vesicles or by extrusion through nucleopore membranes to produce unilamellar vesicles of discrete size.
  • Other methods are known and available to those of skill in the art.
  • the liposomes can comprise multilamellar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs), with SUVs being preferred.
  • MLVs multilamellar vesicles
  • SUVs small unilamellar vesicles
  • LUVs large unilamellar vesicles
  • the various liposome-nucleic acid complexes are prepared using methods well known in the art. See, e.g., Straubinger et al., Methods of Immunology (1983), 101:512-527, which is herein incorporated by reference.
  • MLVs containing nucleic acid can be prepared by depositing a thin film of phospholipid on the walls of a glass tube and subsequently hydrating with a solution of the material to be encapsulated.
  • SUVs are prepared by extended sonication of MLVs to produce a homogeneous population of unilamellar liposomes.
  • the material to be entrapped is added to a suspension of preformed MLVs and then sonicated.
  • liposomes containing cationic lipids the dried lipid film is resuspended in an appropriate solution such as sterile water or an isotonic buffer solution such as 10 mM Tris/NaCl, sonicated, and then the preformed liposomes are mixed directly with the DNA.
  • the liposome and DNA form a very stable complex due to binding of the positively charged liposomes to the cationic DNA.
  • SUVs find use with small nucleic acid fragments.
  • LUVs are prepared by a number of methods, well known in the art. Commonly used methods include Ca 2+ -EDTA chelation (Papahadjopoulos et al., Biochim. Biophys. Acta (1975) 394:483; Wilson et al., Cell 17:77 (1979)); ether injection (Deamer, D. and Bangham, A., Biochim. Biophys. Acta 443:629 (1976); Ostro et al., Biochem. Biophys. Res. Commun. 76:836 (1977); Fraley et al., Proc. Natl. Acad. Sci. USA 76:3348 (1979)); detergent dialysis (Enoch, H.
  • the ratio of DNA to liposomes will be from about 10:1 to about 1:10.
  • the ration will be from about 5:1 to about 1:5. More preferably, the ration will be about 3:1 to about 1:3. Still more preferably, the ratio will be about 1:1.
  • U.S. Pat. No. 5,676,954 reports on the injection of genetic material, complexed with cationic liposomes carriers, into mice.
  • WO 94/9469 (which are herein incorporated by reference) provide cationic lipids for use in transfecting DNA into cells and mammals.
  • WO 94/9469 provide methods for delivering DNA-cationic lipid complexes to mammals.
  • cells are engineered, ex vivo or in vivo, using a retroviral particle containing RNA which comprises a sequence encoding an albumin fusion protein of the present invention.
  • Retroviruses from which the retroviral plasmid vectors may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, Rous sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, Myeloproliferative Sarcoma Virus, and mammary tumor virus.
  • the retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines.
  • packaging cells which may be transfected include, but are not limited to, the PE501, PA317, R-2, R-AM, PA12, T19-14X, VT-19-17-H2, RCRE, RCRIP, GP+E-86, GP+envAm12, and DAN cell lines as described in Miller, Human Gene Therapy 1:5-14 (1990), which is incorporated herein by reference in its entirety.
  • the vector may transduce the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaPO 4 precipitation.
  • the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.
  • the producer cell line generates infectious retroviral vector particles which include polynucleotide encoding an albumin fusion protein of the present invention. Such retroviral vector particles then may be employed, to transduce eukaryotic cells, either in vitro or in vivo. The transduced eukaryotic cells will express a fusion protin of the present invention.
  • cells are engineered, ex vivo or in vivo, with polynucleotide contained in an adenovirus vector.
  • Adenovirus can be manipulated such that it encodes and expresses fusion protein of the present invention, and at the same time is inactivated in terms of its ability to replicate in a normal lytic viral life cycle. Adenovirus expression is achieved without integration of the viral DNA into the host cell chromosome, thereby alleviating concerns about insertional mutagenesis.
  • adenoviruses have been used as live enteric vaccines for many years with an excellent safety profile (Schwartz et al. Am. Rev. Respir. Dis. 109:233-238 (1974)).
  • adenovirus mediated gene transfer has been demonstrated in a number of instances including transfer of alpha-1-antitrypsin and CFTR to the lungs of cotton rats (Rosenfeld, M. A. et al. (1991) Science 252:431-434; Rosenfeld et al., (1992) Cell 68:143-155). Furthermore, extensive studies to attempt to establish adenovirus as a causative agent in human cancer were uniformly negative (Green, M. et al. (1979) Proc. Natl. Acad. Sci. USA 76:6606).
  • Suitable adenoviral vectors useful in the present invention are described, for example, in Kozarsky and Wilson, Curr. Opin. Genet. Devel. 3:499-503 (1993); Rosenfeld et al., Cell 68:143-155 (1992); Engelhardt et al., Human Genet. Ther. 4:759-769 (1993); Yang et al., Nature Genet. 7:362-369 (1994); Wilson et al., Nature 365:691-692 (1993); and U.S. Pat. No. 5,652,224, which are herein incorporated by reference.
  • the adenovirus vector Ad2 is useful and can be grown in human 293 cells.
  • These cells contain the E1 region of adenovirus and constitutively express E1a and E1b, which complement the defective adenoviruses by providing the products of the genes deleted from the vector.
  • Ad2 other varieties of adenovirus (e.g., Ad3, Ad5, and Ad7) are also useful in the present invention.
  • the adenoviruses used in the present invention are replication deficient.
  • Replication deficient adenoviruses require the aid of a helper virus and/or packaging cell line to form infectious particles.
  • the resulting virus is capable of infecting cells and can express a polynucleotide of interest which is operably linked to a promoter, but cannot replicate in most cells.
  • Replication deficient adenoviruses may be deleted in one or more of all or a portion of the following genes: E1a, E1b, E3, E4, E2a, or L1 through L5.
  • the cells are engineered, ex vivo or in vivo, using an adeno-associated virus (AAV).
  • AAVs are naturally occurring defective viruses that require helper viruses to produce infectious particles (Muzyczka, N., Curr. Topics in Microbiol. Immunol. 158:97 (1992)). It is also one of the few viruses that may integrate its DNA into non-dividing cells. Vectors containing as little as 300 base pairs of AAV can be packaged and can integrate, but space for exogenous DNA is limited to about 4.5 kb. Methods for producing and using such AAVs are known in the art. See, for example, U.S. Pat. Nos. 5,139,941, 5,173,414, 5,354,678, 5,436,146, 5,474,935, 5,478,745, and 5,589,377.
  • an appropriate AAV vector for use in the present invention will include all the sequences necessary for DNA replication, encapsidation, and host-cell integration.
  • the polynucleotide construct is inserted into the AAV vector using standard cloning methods, such as those found in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989).
  • the recombinant AAV vector is then transfected into packaging cells which are infected with a helper virus, using any standard technique, including lipofection, electroporation, calcium phosphate precipitation, etc.
  • Appropriate helper viruses include adenoviruses, cytomegaloviruses, vaccinia viruses, or herpes viruses.
  • the packaging cells Once the packaging cells are transfected and infected, they will produce infectious AAV viral particles which contain the polynucleotide construct. These viral particles are then used to transduce eukaryotic cells, either ex vivo or in vivo.
  • the transduced cells will contain the polynucleotide construct integrated into its genome, and will express a fsuion protein of the invention.
  • Another method of gene therapy involves operably associating heterologous control regions and endogenous polynucleotide sequences (e.g. encoding a polypeptide of the present invention) via homologous recombination (see, e.g., U.S. Pat. No. 5,641,670, issued Jun. 24, 1997; International Publication No. WO 96/29411, published Sep. 26, 1996; International Publication No. WO 94/12650, published Aug. 4, 1994; Koller et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989), which are herein encorporated by reference.
  • This method involves the activation of a gene which is present in the target cells, but which is not normally expressed in the cells, or is expressed at a lower level than desired.
  • Polynucleotide constructs are made, using standard techniques known in the art, which contain the promoter with targeting sequences flanking the promoter. Suitable promoters are described herein.
  • the targeting sequence is sufficiently complementary to an endogenous sequence to permit homologous recombination of the promoter-targeting sequence with the endogenous sequence.
  • the targeting sequence will be sufficiently near the 5′ end of the desired endogenous polynucleotide sequence so the promoter will be operably linked to the endogenous sequence upon homologous recombination.
  • the promoter and the targeting sequences can be amplified using PCR.
  • the amplified promoter contains distinct restriction enzyme sites on the 5′ and 3′ ends.
  • the 3′ end of the first targeting sequence contains the same restriction enzyme site as the 5′ end of the amplified promoter and the 5′ end of the second targeting sequence contains the same restriction site as the 3′ end of the amplified promoter.
  • the amplified promoter and targeting sequences are digested and ligated together.
  • the promoter-targeting sequence construct is delivered to the cells, either as naked polynucleotide, or in conjunction with transfection-facilitating agents, such as liposomes, viral sequences, viral particles, whole viruses, lipofection, precipitating agents, etc., described in more detail above.
  • transfection-facilitating agents such as liposomes, viral sequences, viral particles, whole viruses, lipofection, precipitating agents, etc.
  • the P promoter-targeting sequence can be delivered by any method, included direct needle injection, intravenous injection, topical administration, catheter infusion, particle accelerators, etc. The methods are described in more detail below.
  • the promoter-targeting sequence construct is taken up by cells. Homologous recombination between the construct and the endogenous sequence takes place, such that an endogenous sequence is placed under the control of the promoter. The promoter then drives the expression of the endogenous sequence.
  • the polynucleotide encoding an albumin fusion protein of the present invention may contain a secretory signal sequence that facilitates secretion of the protein.
  • the signal sequence is positioned in the coding region of the polynucleotide to be expressed towards or at the 5′ end of the coding region.
  • the signal sequence may be homologous or heterologous to the polynucleotide of interest and may be homologous or heterologous to the cells to be transfected. Additionally, the signal sequence may be chemically synthesized using methods known in the art.
  • any mode of administration of any of the above-described polynucleotides constructs can be used so long as the mode results in the expression of one or more molecules in an amount sufficient to provide a therapeutic effect.
  • This includes direct needle injection, systemic injection, catheter infusion, biolistic injectors, particle accelerators (i.e., “gene guns”), gelfoam sponge depots, other commercially available depot materials, osmotic pumps (e.g., Alza minipumps), oral or suppositorial solid (tablet or pill) pharmaceutical formulations, and decanting or topical applications during surgery.
  • a preferred method of local administration is by direct injection.
  • an albumin fusion protein of the present invention complexed with a delivery vehicle is administered by direct injection into or locally within the area of arteries.
  • Administration of a composition locally within the area of arteries refers to injecting the composition centimeters and preferably, millimeters within arteries.
  • Another method of local administration is to contact a polynucleotide construct of the present invention in or around a surgical wound.
  • a patient can undergo surgery and the polynucleotide construct can be coated on the surface of tissue inside the wound or the construct can be injected into areas of tissue inside the wound.
  • compositions useful in systemic administration include fusion proteins of the present invention complexed to a targeted delivery vehicle of the present invention.
  • Suitable delivery vehicles for use with systemic administration comprise liposomes comprising ligands for targeting the vehicle to a particular site.
  • suitable delivery vehicles for use with systemic administration comprise liposomes comprising albumin fusion proteins of the invention for targeting the vehicle to a particular site.
  • Preferred methods of systemic administration include intravenous injection, aerosol, oral and percutaneous (topical) delivery.
  • Intravenous injections can be performed using methods standard in the art. Aerosol delivery can also be performed using methods standard in the art (see, for example, Stribling et al., Proc. Natl. Acad. Sci. USA 189:11277-11281, 1992, which is incorporated herein by reference).
  • Oral delivery can be performed by complexing a polynucleotide construct of the present invention to a carrier capable of withstanding degradation by digestive enzymes in the gut of an animal. Examples of such carriers, include plastic capsules or tablets, such as those known in the art.
  • Topical delivery can be performed by mixing a polynucleotide construct of the present invention with a lipophilic reagent (e.g., DMSO) that is capable of passing into the skin.
  • a lipophilic reagent e.g., DMSO
  • Determining an effective amount of substance to be delivered can depend upon a number of factors including, for example, the chemical structure and biological activity of the substance, the age and weight of the animal, the precise condition requiring treatment and its severity, and the route of administration.
  • the frequency of treatments depends upon a number of factors, such as the amount of polynucleotide constructs administered per dose, as well as the health and history of the subject. The precise amount, number of doses, and timing of doses will be determined by the attending physician or veterinarian.
  • Albumin fusion proteins of the present invention can be administered to any animal, preferably to mammals and birds.
  • Preferred mammals include humans, dogs, cats, mice, rats, rabbits sheep, cattle, horses and pigs, with humans being particularly preferred.
  • Albumin fusion proteins and/or polynucleotides encoding albumin fusion proteins of the present invention can be used in assays to test for one or more biological activities. If an albumin fusion protein and/or polynucleotide exhibits an activity in a particular assay, it is likely that the Therapeutic protein corresponding to the fusion portein may be involved in the diseases associated with the biological activity. Thus, the fusion protein could be used to treat the associated disease.
  • albumin fusion proteins of the invention and polynucleotides encoding these protiens may be used in diagnosis, prognosis, prevention and/or treatment of diseases and/or disorders associated with aberrant activity of secreted polypeptides.
  • fusion proteins of the present invention may be used in the diagnosis, prognosis, prevention and/or treatment of diseases and/or disorders relating to diseases and disorders of the endocrine system, the nervous system (See, for example, “Neurological Disorders” section below), and the immune system (See, for example, “Immune Activity” section below), respiratory system (See, for example, “Respiratory Disorders” section below), cardiovascular system (See, for example, “Cardiovascular Disorders” section below), reproductive system (See, for example, “Reproductive System Disorders” section below) digestive system (See, for example, “Gastrointestinal Disorders” section below), diseases and/or disorders relating to cell proliferation (See, for example, “Hyperproliferative Disorders” section below), and/or diseases or disorders relating to the blood ((See, for example, “Blood-Related Disorders” section below).
  • the present invention encompasses a method of treating a disease or disorder listed in the “Preferred Indication Y” column of Table 1 comprising administering to a patient in which such treatment, prevention or amelioration is desired an albumin fusion protein of the invention that comprises a Therapeutic protein portion corresponding to a Therapeutic protein disclosed in the “Therapeutic Protein X” column of Table 1 (in the same row as the disease or disorder to be treated is listed in the “Preferred Indication Y” column of Table 1) in an amount effective to treat, prevent or ameliorate the disease or disorder.
  • a Therapeutic protein having a “Cancer” recitation in the “Preferred Indication” column of Table 1 an albumin fusion protein that comprises a Therapeutic protein portion corresponding to a Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder relating to a neoplastic disease (e.g., leukemia, cancer, and/or as described below under “Hyperproliferative Disorders”).
  • a neoplastic disease e.g., leukemia, cancer, and/or as described below under “Hyperproliferative Disorders”.
  • a Therapeutic protein having a “Cancer” recitation in the “Preferred Indication” column of Table 1 an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a neoplasm located in a tissue selected from the group consisting of: colon, abdomen, bone, breast, digestive system, liver, pancreas, prostate, peritoneum, lung, blood (e.g., leukemia), endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), uterus, eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.
  • a tissue selected from the group consisting of: colon, abdomen, bone, breast, digestive system, liver, pancreas, prostate, peritoneum, lung, blood (e.g., leukemia), endocrine glands
  • a Therapeutic protein having a “Cancer” recitation in the “Preferred Indication” column of Table 1 an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a pre-neoplastic condition, selected from the group consisting of: hyperplasia (e.g., endometrial hyperplasia and/or as described in the section entitled “Hyperproliferative Disorders”), metaplasia (e.g., connective tissue metaplasia, a typical metaplasia, and/or as described in the section entitled “Hyperproliferative Disorders”), and dysplasia (e.g., cervical dysplasia, and bronchopulmonary dysplasia).
  • hyperplasia e.g., endometrial hyperplasia and/or as described in the section entitled “Hyperproliferative Disorders”
  • metaplasia e.g., connective tissue metaplasia, a typical meta
  • a Therapeutic protein having a “Cancer” recitation in the “Preferred Indication” column of Table 1 an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a benign dysproliferative disorder selected from the group consisting of: benign tumors, fibrocystic conditions, tissue hypertrophy, and/or as described in the section entitled “Hyperproliferative Disorders”.
  • a Therapeutic protein having a “Immune/Hematopoietic” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder relating to a neoplastic disease (e.g., as described below under “Hyperproliferative Disorders”), a blood disorder (e.g., as described below under “Immune Activity”, “Cardiovascular Disorders” and/or “Blood-Related Disorders”), and/or an infection (e.g., as described below under “Infectious Disease”).
  • a disease and/or disorder relating to a neoplastic disease e.g., as described below under “Hyperproliferative Disorders”
  • a blood disorder e.g., as described below under “Immune Activity”, “Cardiovascular Disorders” and/or “Blo
  • a Therapeutic protein having a “Immune/Hematopoietic” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder selected from the group consisting of: anemia, pancytopenia, leukopenia, thrombocytopenia, leukemias, Hodgkin's disease, non-Hodgkin's lymphoma, acute lymphocytic anemia (ALL), plasmacytomas, multiple myeloma, Burkitt's lymphoma, arthritis, asthma, AIDS, autoimmune disease, rheumatoid arthritis, granulomatous disease, immune deficiency, inflammatory bowel disease, sepsis, neutropenia, neutrophilia, psoriasis, an immune reaction to a transplanted organ and/or tissue, systemic lup
  • a Therapeutic protein having a “Reproductive” recitation in the “Preferred Indication” column of Table 1 an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder relating to a neoplastic disease (e.g., as described below under “Hyperproliferative Disorders”), and/or a disorder of the reproductive system (e.g., as described below under “Reproductive System Disorders”).
  • a disease and/or disorder relating to a neoplastic disease e.g., as described below under “Hyperproliferative Disorders”
  • a disorder of the reproductive system e.g., as described below under “Reproductive System Disorders”.
  • a Therapeutic protein having a “Reproductive” recitation in the “Preferred Indication” column of Table 1 an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder selected from the group consisting of: cryptorchism, prostatitis, inguinal hernia, varicocele, a leydig cell tumor, verrucous carcinoma, prostatitis, malacoplakia, Peyronie's disease, penile carcinoma, squamous cell hyperplasia, dysmenorrhea, ovarian adenocarcinoma, Turner's syndrome, mucopurulent cervicitis, a Sertoli-leydig tumor, ovarian cancer, uterine cancer, pelvic inflammatory disease, testicular cancer, prostate cancer, Klinefelter's syndrome, Young's syndrome, premature ejaculation, diabetes mellitus, cystic fibrosis
  • a Therapeutic protein having a “Musculoskeletal” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder relating to a neoplastic disease (e.g., as described below under “Hyperproliferative Disorders”), and/or a disorder of the immune system (e.g., as described below under “Immune Activity”).
  • a disease and/or disorder relating to a neoplastic disease e.g., as described below under “Hyperproliferative Disorders”
  • a disorder of the immune system e.g., as described below under “Immune Activity”.
  • a Therapeutic protein having a “Musculoskeletal” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder selected from the group consisting of bone cancer (e.g., osteochondroma, benign chondroma, chondroblastoma, chondromyxoid fibroma, osteoid osteoma, giant cell tumor, multiple myeloma, and osteosarcoma), Paget's Disease, rheumatoid arthritis, systemic lupus erythematosus, osteomyelitis, Lyme Disease, gout, bursitis, tendonitis, osteoporosis, osteoarthritis, muscular dystrophy, mitochondrial myopathy, cachexia, and multiple sclerosis.
  • bone cancer e.g., osteochondroma, benign chondroma, chondroblast
  • a Therapeutic protein having a “Cardiovascular” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder relating to a neoplastic disease (e.g., as described below under “Hyperproliferative Disorders”), and/or a disorder of the cardiovascular system (e.g., as described below under “Cardiovascular Disorders”).
  • a disease and/or disorder relating to a neoplastic disease e.g., as described below under “Hyperproliferative Disorders”
  • a disorder of the cardiovascular system e.g., as described below under “Cardiovascular Disorders”.
  • a Therapeutic protein having a “Cardiovascular” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder selected from the group consisting of: myxoma, fibroma, rhabdomyoma, cardiovascular abnormality (e.g., a congenital heart defect, cerebral arterioyenous malformation, septal defect), heart disease (e.g., heart failure, congestive heart disease, arrhythmia, tachycardia, fibrillation, pericardial Disease, endocarditis), cardiac arrest, heart valve disease (e.g., stenosis, regurgitation, prolapse), vascular disease (e.g., hypertension, coronary artery disease, angina, aneurysm, arteriosclerosis, peripheral vascular disease), hyponatremia, hypernatremia,
  • a Therapeutic protein having a “Mixed Fetal” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder relating to a neoplastic disease (e.g., as described below under “Hyperproliferative Disorders”).
  • a Therapeutic protein having a “Mixed Fetal” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder selected from the group consisting of: spina bifida, hydranencephaly, neurofibromatosis, fetal alcohol syndrome, diabetes mellitus, PKU, Down's syndrome, Patau syndrome, Edwards syndrome, Turner syndrome, Apert syndrome, Carpenter syndrome, Conradi syndrome, Crouzon syndrome, cutis laxa, Cornelia de Lange syndrome, Ellis-van Creveld syndrome, Holt-Oram syndrome, Kartagener syndrome, Meckel-Gruber syndrome, Noonan syndrome, Pallister-Hall syndrome, Rubinstein-Taybi syndrome, Scimitar syndrome, Smith-Lemli-Opitz syndrome, thromocytopenia-absent radius (TAR) syndrome
  • a Therapeutic protein having a “Excretory” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder relating to a neoplastic disease (e.g., as described below under “Hyperproliferative Disorders”) and/or a renal disorder (e.g., as described below under “Renal Disorders”).
  • a neoplastic disease e.g., as described below under “Hyperproliferative Disorders”
  • a renal disorder e.g., as described below under “Renal Disorders”.
  • a Therapeutic protein having a “Excretory” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder selected from the group consisting of: bladder cancer, prostate cancer, benign prostatic hyperplasia, bladder disorders (e.g., urinary incontinence, urinary retention, urinary obstruction, urinary tract Infections, interstitial cystitis, prostatitis, neurogenic bladder, hematuria), a renal disorder (e.g., hydronephrosis, proteinuria, renal failure, pyelonephritis, urolithiasis, reflux nephropathy, and unilateral obstructive uropathy).
  • a disease and/or disorder selected from the group consisting of: bladder cancer, prostate cancer, benign prostatic hyperplasia, bladder disorders (e.g., urinary incontinence, urinary retention, urinary
  • a Therapeutic protein having a “Neural/Sensory” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder relating to a neoplastic disease (e.g., as described below under “Hyperproliferative Disorders”) and/or a disease or disorder of the nervous system (e.g., as described below under “Neural Activity and Neurological Diseases”).
  • a disease and/or disorder relating to a neoplastic disease e.g., as described below under “Hyperproliferative Disorders”
  • a disease or disorder of the nervous system e.g., as described below under “Neural Activity and Neurological Diseases”.
  • a Therapeutic protein having a “Neural/Sensory” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder selected from the group consisting of: brain cancer (e.g., brain stem glioma, brain tumor, central nervous system (Primary) lymphoma, central nervous system lymphoma, cerebellar astrocytoma, and cerebral astrocytoma, a neurodegenerative disorder (e.g., Alzheimer's Disease, Creutzfeldt-Jakob Disease, Parkinson's Disease, and Idiopathic Presenile Dementia), encephalomyelitis, cerebral malaria, meningitis, a metabolic brain disease (e.g., phenylketonuria and pyruvate carboxylase deficiency), cerebellar ataxia, ataxia tel
  • a Therapeutic protein having a “Respiratory” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder relating to a neoplastic disease (e.g., as described below under “Hyperproliferative Disorders”) and/or a disease or disorder of the respiratory system (e.g., as described below under “Respiratory Disorders”).
  • a disease and/or disorder relating to a neoplastic disease e.g., as described below under “Hyperproliferative Disorders”
  • a disease or disorder of the respiratory system e.g., as described below under “Respiratory Disorders”.
  • a Therapeutic protein having a “Respiratory” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder selected from the group consisting of: a cancer of the respiratory system (such as larynx cancer, pharynx cancer, trachea cancer, epiglottis cancer, lung cancer, squamous cell carcinoma, small cell (oat cell) carcinoma, large cell carcinoma, and adenocarcinoma), an allergic reaction, cystic fibrosis, sarcoidosis, histiocytosis X, an infiltrative lung disease (e.g., pulmonary fibrosis and lymphoid interstitial pneumonia), an obstructive airway disease (e.g., asthma, emphysema, chronic or acute bronchitis), an occupational lung disease (e.g.,
  • a Therapeutic protein having an “Endocrine” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder relating to a neoplastic disease (e.g., as described below under “Hyperproliferative Disorders”), a disease or disorder of the respiratory system (e.g., as described below under “Respiratory Disorders”), a renal disorder (e.g., as described below under “Renal Disorders”), and/or a disorder of the endocrine system (e.g., as described below under “Endocrine Disorders”).
  • a neoplastic disease e.g., as described below under “Hyperproliferative Disorders”
  • a disease or disorder of the respiratory system e.g., as described below under “Respiratory Disorders”
  • a renal disorder e.g., as described below
  • a Therapeutic protein having a “Endocrine” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder selected from the group consisting of: a cancer of endocrine tissues and/or organs (e.g., cancer of the hypothalamus, pituitary gland, thyroid gland, parathyroid glands, pancreas, adrenal glands, ovaries, and testes), diabetes (e.g., diabetes insipidus, type I and type II diabetes mellitus), obesity, a disorder related to pituitary glands (e.g., hyperpituitarism, hypopituitarism, and pituitary dwarfism), hypothyroidism, hyperthyroidism, goiter, reproductive disorders (e.g.
  • a cancer of endocrine tissues and/or organs e.g., cancer of the hypothala
  • kidney cancer e.g., hypemephroma, transitional cell cancer, and Wilm's tumor
  • diabetic nephropathy e.g., interstitial nephritis
  • polycystic kidney disease e.g., glomerulonephritis (e.g., IgM mesangial proliferative glomerulonephritis and glomerulonephritis caused by an autoimmune disorder; such as Goodpasture's syndrome), and nephrocalcinosis.
  • a Therapeutic protein having a “Digestive” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder relating to, for example, a neoplastic disease (e.g., as described below under “Hyperproliferative Disorders”) and/or a disease or disorder of the gastrointestinal system (e.g., as described below under “Gastrointestinal Disorders”).
  • a neoplastic disease e.g., as described below under “Hyperproliferative Disorders”
  • a disease or disorder of the gastrointestinal system e.g., as described below under “Gastrointestinal Disorders”.
  • a Therapeutic protein having a “Digestive” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder selected from the group consisting of: ulcerative colitis, appendicitis, Crohn's disease, hepatitis, hepatic encephalopathy, portal hypertension, cholelithiasis, cancer of the digestive system (e.g., biliary tract cancer, stomach cancer, colon cancer, gastric cancer, pancreatic cancer, cancer of the bile duct, a tumor of the colon (e.g., polyps or cancers), and cirrhosis), pancreatitis, ulcerative disease, pyloric stenosis, gastroenteritis, gastritis, gastric atropy, a benign tumor of the duodenum, distension, irritable bowel syndrome
  • a Therapeutic protein having a “Connective/Epithelial” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder relating to a neoplastic disease (e.g., as described below under “Hyperproliferative Disorders”), a cellular and/or genetic abnormality (e.g., as described below under “Diseases at the Cellular Level”), angiogenesis (e.g., as described below under “Anti-Angiogenesis Activity”), and/or to promote or inhibit regeneration (e.g., as described below under “Regeneration”), and/or wound healing (e.g., as described below under “Wound Healing and Epithelial Cell Proliferation”).
  • a neoplastic disease e.g., as described below under “Hyperproliferative Disorders”
  • a Therapeutic protein having a “Connective/Epithelial” recitation in the “Preferred Indication” column of Table 1, an albumin fusion protein that comprises a Therapeutic protein portion corresponding to this Therapeutic protein, and fragments and variants thereof, may be used to treat a disease and/or disorder selected from the group consisting of: connective tissue metaplasia, mixed connective tissue disease, focal epithelial hyperplasia, epithelial metaplasia, mucoepithelial dysplasia, graft v.
  • an albumin fusion protein of the present invention may be used to diagnose and/or prognose diseases and/or disorders associated with the tissue(s) in which the gene corresponding to the Therapeutic protein portion of the fusion portien of the invention is expressed.
  • fusion proteins of the invention and polynucleotides encoding albumin fusion proteins of the invention are useful in the diagnosis, detection and/or treatment of diseases and/or disorders associated with activities that include, but are not limited to, prohormone activation, neurotransmitter activity, cellular signaling, cellular proliferation, cellular differentiation, and cell migration.
  • fusion proteins of the invention and polynucleotides encoding albumin fusion proteins of the invention may be useful for the diagnosis, prognosis, prevention and/or treatment of diseases and/or disorders associated with the following systems.
  • Albumin fusion proteins of the invention and polynucleotides encoding albumin fusion proteins of the invention may be useful in treating, preventing, diagnosing and/or prognosing diseases, disorders, and/or conditions of the immune system, by, for example, activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells.
  • Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells.
  • etiology of these immune diseases, disorders, and/or conditions may be genetic, somatic, such as cancer and some autoimmune diseases, acquired (e.g., by chemotherapy or toxins), or infectious.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention can be used as a marker or detector of a particular immune system disease or disorder.
  • a fusion protein of the invention and/or polynucleotide encoding an albumin fusion protein of the invention may be used to treat diseases and disorders of the immune system and/or to inhibit or enhance an immune response generated by cells associated with the tissue(s) in which the polypeptide of the invention is expressed.
  • Albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in treating, preventing, diagnosing, and/or prognosing immunodeficiencies, including both congenital and acquired immunodeficiencies.
  • B cell immunodeficiencies in which immunoglobulin levels B cell function and/or B cell numbers are decreased include: X-linked agammaglobulinemia (Bruton's disease), X-linked infantile agammaglobulinemia, X-linked immunodeficiency with hyper IgM, non X-linked immunodeficiency with hyper IgM, X-linked lymphoproliferative syndrome (XLP), agammaglobulinemia including congenital and acquired agammaglobulinemia, adult onset agammaglobulinemia, late-onset agammaglobulinemia, dysgammaglobulinemia, hypogammaglobulinemia, unspecified hypogammaglobulinemia, recessive agammaglobulinemia (Swiss type), Selective IgM deficiency, selective IgA deficiency, selective IgG subclass deficiencies, IgG subclass deficiency (with or without IgA deficiency), I
  • Ataxia-telangiectasia or conditions associated with ataxia-telangiectasia are treated, prevented, diagnosed, and/or prognosing using the, fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention.
  • Examples of congenital immunodeficiencies in which T cell and/or B cell function and/or number is decreased include, but are not limited to: DiGeorge anomaly, severe combined immunodeficiencies (SCID) (including, but not limited to, X-linked SCID, autosomal recessive SCID, adenosine deaminase deficiency, purine nucleoside phosphorylase (PNP) deficiency, Class II MHC deficiency (Bare lymphocyte syndrome), Wiskott-Aldrich syndrome, and ataxia telangiectasia), thymic hypoplasia, third and fourth pharyngeal pouch syndrome, 22q11.2 deletion, chronic mucocutaneous candidiasis, natural killer cell deficiency (NK), idiopathic CD4+ T-lymphocytopenia, immunodeficiency with predominant T cell defect (unspecified), and unspecified immunodeficiency of cell mediated immunity.
  • SCID severe combined immunodeficiencies
  • DiGeorge anomaly or conditions associated with DiGeorge anomaly are treated, prevented, diagnosed, and/or prognosed using fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention.
  • immunodeficiencies that may be treated, prevented, diagnosed, and/or prognosed using fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention, include, but are not limited to, chronic granulomatous disease, Chédiak-Higashi syndrome, myeloperoxidase deficiency, leukocyte glucose-6-phosphate dehydrogenase deficiency, X-linked lymphoproliferative syndrome (XLP), leukocyte adhesion deficiency, complement component deficiencies (including C1, C2, C3, C4, C5, C6, C7, C8 and/or C9 deficiencies), reticular dysgenesis, thymic alymphoplasia-aplasia, immunodeficiency with thymoma, severe congenital leukopenia, dysplasia with immunodeficiency, neonatal neutropenia, short limbed dwarfism, and Nezelof syndrome-combined immunodefici
  • the immunodeficiencies and/or conditions associated with the immunodeficiencies recited above are treated, prevented, diagnosed and/or prognosed using fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention could be used as an agent to boost immunoresponsiveness among immunodeficient individuals.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention could be used as an agent to boost immunoresponsiveness among B cell and/or T cell immunodeficient individuals.
  • the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in treating, preventing, diagnosing and/or prognosing autoimmune disorders.
  • Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention that can inhibit an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.
  • Autoimmune diseases or disorders that may be treated, prevented, diagnosed and/or prognosed by fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention include, but are not limited to, one or more of the following: systemic lupus erythematosus, rheumatoid arthritis, ankylosing spondylitis, multiple sclerosis, autoimmune thyroiditis, Hashimoto's thyroiditis, autoimmune hemolytic anemia, hemolytic anemia, thrombocytopenia, autoimmune thrombocytopenia purpura, autoimmune neonatal thrombocytopenia, idiopathic thrombocytopenia purpura, purpura (e.g., Henloch-Scoenlein purpura), autoimmunocytopenia, Goodpasture's syndrome, Pemphigus vulgaris, myasthenia gravis, Grave's disease (hyperthyroidism), and insulin-resistant diabetes mellit
  • Additional disorders that are likely to have an autoimmune component that may be treated, prevented, and/or diagnosed with the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention include, but are not limited to, type II collagen-induced arthritis, antiphospholipid syndrome, dermatitis, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease, neuritis, uveitis ophthalmia, polyendocrinopathies, Reiter's Disease, Stiff-Man Syndrome, autoimmune pulmonary inflammation, autism, Guillain-Barre Syndrome, insulin dependent diabetes mellitus, and autoimmune inflammatory eye disorders.
  • Additional disorders that are likely to have an autoimmune component that may be treated, prevented, diagnosed and/or prognosed with the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention include, but are not limited to, scleroderma with anti-collagen antibodies (often characterized, e.g., by nucleolar and other nuclear antibodies), mixed connective tissue disease (often characterized, e.g., by antibodies to extractable nuclear antigens (e.g., ribonucleoprotein)), polymyositis (often characterized, e.g., by nonhistone ANA), pernicious anemia (often characterized, e.g., by antiparietal cell, microsomes, and intrinsic factor antibodies), idiopathic Addison's disease (often characterized, e.g., by humoral and cell-mediated adrenal cytotoxicity, infertility (often characterized, e.g., by antispermat
  • Additional disorders that may have an autoimmune component that may be treated, prevented, diagnosed and/or prognosed with the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention include, but are not limited to, chronic active hepatitis (often characterized, e.g., by smooth muscle antibodies), primary biliary cirrhosis (often characterized, e.g., by mitochondria antibodies), other endocrine gland failure (often characterized, e.g., by specific tissue antibodies in some cases), vitiligo (often characterized, e.g., by melanocyte antibodies), vasculitis (often characterized, e.g., by Ig and complement in vessel walls and/or low serum complement), post-MI (often characterized, e.g., by myocardial antibodies), cardiotomy syndrome (often characterized, e.g., by myocardial antibodies), urticaria (often characterized, e.
  • the autoimmune diseases and disorders and/or conditions associated with the diseases and disorders recited above are treated, prevented, diagnosed and/or prognosed using for example, fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention.
  • rheumatoid arthritis is treated, prevented, and/or diagnosed using fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention.
  • systemic lupus erythematosus is treated, prevented, and/or diagnosed using fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention.
  • idiopathic thrombocytopenia purpura is treated, prevented, and/or diagnosed using fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention.
  • IgA nephropathy is treated, prevented, and/or diagnosed using fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention.
  • the autoimmune diseases and disorders and/or conditions associated with the diseases and disorders recited above are treated, prevented, diagnosed and/or prognosed using fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a immunosuppressive agent(s).
  • Albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in treating, preventing, prognosing, and/or diagnosing diseases, disorders, and/or conditions of hematopoietic cells.
  • Albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat or prevent those diseases, disorders, and/or conditions associated with a decrease in certain (or many) types hematopoietic cells, including but not limited to, leukopenia, neutropenia, anemia, and thrombocytopenia.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat or prevent those diseases, disorders, and/or conditions associated with an increase in certain (or many) types of hematopoietic cells, including but not limited to, histiocytosis.
  • Allergic reactions and conditions such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated, prevented, diagnosed and/or prognosed using fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention. Moreover, these molecules can be used to treat, prevent, prognose, and/or diagnose anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to treat, prevent, diagnose and/or prognose IgE-mediated allergic reactions.
  • allergic reactions include, but are not limited to, asthma, rhinitis, and eczema.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to modulate IgE concentrations in vitro or in vivo.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention have uses in the diagnosis, prognosis, prevention, and/or treatment of inflammatory conditions.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may inhibit the activation, proliferation and/or differentiation of cells involved in an inflammatory response, these molecules can be used to prevent and/or treat chronic and acute inflammatory conditions.
  • Such inflammatory conditions include, but are not limited to, for example, inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome), ischemia-reperfusion injury, endotoxin lethality, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, over production of cytokines (e.g., TNF or IL-1.), respiratory disorders (e.g., asthma and allergy); gastrointestinal disorders (e.g., inflammatory bowel disease); cancers (e.g., gastric, ovarian, lung, bladder, liver, and breast); CNS disorders (e.g., multiple sclerosis; ischemic brain injury and/or stroke, traumatic brain injury, neurodegenerative disorders (e.g., Parkinson's disease and Alzheimer's disease); AIDS-related dementia; and prion disease); cardiovascular disorders (e.g., atherosclerosis, myocarditis
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention have uses in the treatment of tissue-specific inflammatory disorders, including, but not limited to, adrenalitis, alveolitis, angiocholecystitis, appendicitis, balanitis, blepharitis, bronchitis, bursitis, carditis, cellulitis, cervicitis, cholecystitis, chorditis, cochlitis, colitis, conjunctivitis, cystitis, dermatitis, diverticulitis, encephalitis, endocarditis, esophagitis, eustachitis, fibrositis, folliculitis, gastritis, gastroenteritis, gingivitis, glossitis, hepatosplenitis, keratitis, labyrin
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are useful to diagnose, prognose, prevent, and/or treat organ transplant rejections and graft-versus-host disease.
  • Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response.
  • an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues.
  • Polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof, that inhibit an immune response, particularly the activation, proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention, that inhibit an immune response, particularly the activation, proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing experimental allergic and hyperacute xenograft rejection.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are useful to diagnose, prognose, prevent, and/or treat immune complex diseases, including, but not limited to, serum sickness, post streptococcal glomerulonephritis, polyarteritis nodosa, and immune complex-induced vasculitis.
  • Albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention can be used to treat, detect, and/or prevent infectious agents. For example, by increasing the immune response, particularly increasing the proliferation activation and/or differentiation of B and/or T cells, infectious diseases may be treated, detected, and/or prevented.
  • the immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may also directly inhibit the infectious agent (refer to section of application listing infectious agents, etc), without necessarily eliciting an immune response.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a vaccine adjuvant that enhances immune responsiveness to an antigen.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an adjuvant to enhance tumor-specific immune responses.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an adjuvant to enhance anti-viral immune responses.
  • Anti-viral immune responses that may be enhanced using the compositions of the invention as an adjuvant include virus and virus associated diseases or symptoms described herein or otherwise known in the art.
  • the compositions of the invention are used as an adjuvant to enhance an immune response to a virus, disease, or symptom selected from the group consisting of: AIDS, meningitis, Dengue, EBV, and hepatitis (e.g., hepatitis B).
  • compositions of the invention are used as an adjuvant to enhance an immune response to a virus, disease, or symptom selected from the group consisting of: HIV/AIDS, respiratory syncytial virus, Dengue, rotavirus, Japanese B encephalitis, influenza A and B, parainfluenza, measles, cytomegalovirus, rabies, Junin, Chikungunya, Rift Valley Fever, herpes simplex, and yellow fever.
  • a virus, disease, or symptom selected from the group consisting of: HIV/AIDS, respiratory syncytial virus, Dengue, rotavirus, Japanese B encephalitis, influenza A and B, parainfluenza, measles, cytomegalovirus, rabies, Junin, Chikungunya, Rift Valley Fever, herpes simplex, and yellow fever.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an adjuvant to enhance anti-bacterial or anti-fungal immune responses.
  • Anti-bacterial or anti-fungal immune responses that may be enhanced using the compositions of the invention as an adjuvant include bacteria or fungus and bacteria or fungus associated diseases or symptoms described herein or otherwise known in the art.
  • the compositions of the invention are used as an adjuvant to enhance an immune response to a bacteria or fungus, disease, or symptom selected from the group consisting of: tetanus, Diphtheria, botulism, and meningitis type B.
  • compositions of the invention are used as an adjuvant to enhance an immune response to a bacteria or fungus, disease, or symptom selected from the group consisting of: Vibrio cholerae, Mycobacterium leprae, Salmonella typhi, Salmonella paratyphi, Meisseria meningitidis, Streptococcus pneumoniae , Group B streptococcus, Shigella spp., Enterotoxigenic Escherichia coli , Enterohemorrhagic E. coli , and Borrelia burgdorferi.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an adjuvant to enhance anti-parasitic immune responses.
  • Anti-parasitic immune responses that may be enhanced using the compositions of the invention as an adjuvant include parasite and parasite associated diseases or symptoms described herein or otherwise known in the art.
  • the compositions of the invention are used as an adjuvant to enhance an immune response to a parasite.
  • the compositions of the invention are used as an adjuvant to enhance an immune response to Plasmodium (malaria) or Leishmania.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may also be employed to treat infectious diseases including silicosis, sarcoidosis, and idiopathic pulmonary fibrosis; for example, by preventing the recruitment and activation of mononuclear phagocytes.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an antigen for the generation of antibodies to inhibit or enhance immune mediated responses against polypeptides of the invention.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are administered to an animal (e.g., mouse, rat, rabbit, hamster, guinea pig, pigs, micro-pig, chicken, camel, goat, horse, cow, sheep, dog, cat, non-human primate, and human, most preferably human) to boost the immune system to produce increased quantities of one or more antibodies (e.g., IgG, IgA, IgM, and IgE), to induce higher affinity antibody production and immunoglobulin class switching (e.g., IgG, IgA, IgM, and IgE), and/or to increase an immune response.
  • an animal e.g., mouse, rat, rabbit, hamster, guinea pig, pigs, micro-pig, chicken, camel, goat, horse, cow, sheep, dog, cat, non-human primate, and human, most preferably human
  • an animal e.g.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a stimulator of B cell responsiveness to pathogens.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an activator of T cells.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an agent that elevates the immune status of an individual prior to their receipt of immunosuppressive therapies.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an agent to induce higher affinity antibodies.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an agent to increase serum immunoglobulin concentrations.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an agent to accelerate recovery of immunocompromised individuals.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an agent to boost immunoresponsiveness among aged populations and/or neonates.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an immune system enhancer prior to, during, or after bone marrow transplant and/or other transplants (e.g., allogeneic or xenogeneic organ transplantation).
  • compositions of the invention may be administered prior to, concomitant with, and/or after transplantation.
  • compositions of the invention are administered after transplantation, prior to the beginning of recovery of T-cell populations.
  • compositions of the invention are first administered after transplantation after the beginning of recovery of T cell populations, but prior to full recovery of B cell populations.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an agent to boost immunoresponsiveness among individuals having an acquired loss of B cell function.
  • Conditions resulting in an acquired loss of B cell function that may be ameliorated or treated by administering the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention, include, but are not limited to, HIV Infection, AIDS, bone marrow transplant, and B cell chronic lymphocytic leukemia (CLL).
  • CLL B cell chronic lymphocytic leukemia
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an agent to boost immunoresponsiveness among individuals having a temporary immune deficiency.
  • Conditions resulting in a temporary immune deficiency that may be ameliorated or treated by administering the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention include, but are not limited to, recovery from viral infections (e.g., influenza), conditions associated with malnutrition, recovery from infectious mononucleosis, or conditions associated with stress, recovery from measles, recovery from blood transfusion, and recovery from surgery.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a regulator of antigen presentation by monocytes, dendritic cells, and/or B-cells.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention enhance antigen presentation or antagonizes antigen presentation in vitro or in vivo.
  • this enhancement or antagonism of antigen presentation may be useful as an anti-tumor treatment or to modulate the immune system.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as an agent to direct an individual's immune system towards development of a humoral response (i.e. TH2) as opposed to a TH1 cellular response.
  • a humoral response i.e. TH2
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a means to induce tumor proliferation and thus make it more susceptible to anti-neoplastic agents.
  • multiple myeloma is a slowly dividing disease and is thus refractory to virtually all anti-neoplastic regimens. If these cells were forced to proliferate more rapidly their susceptibility profile would likely change.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a stimulator of B cell production in pathologies such as AIDS, chronic lymphocyte disorder and/or Common Variable Immunodificiency.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a therapy for generation and/or regeneration of lymphoid tissues following surgery, trauma or genetic defect.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used in the pretreatment of bone marrow samples prior to transplant.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a gene-based therapy for genetically inherited disorders resulting in immuno-incompetence/immunodeficiency such as observed among SCID patients.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a means of activating monocytes/macrophages to defend against parasitic diseases that effect monocytes such as Leishmania.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a means of regulating secreted cytokines that are elicited by polypeptides of the invention.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used in one or more of the applications decribed herein, as they may apply to veterinary medicine.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a means of blocking various aspects of immune responses to foreign agents or self.
  • diseases or conditions in which blocking of certain aspects of immune responses may be desired include autoimmune disorders such as lupus, and arthritis, as well as immunoresponsiveness to skin allergies, inflammation, bowel disease, injury and diseases/disorders associated with pathogens.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a therapy for preventing the B cell proliferation and Ig secretion associated with autoimmune diseases such as idiopathic thrombocytopenic purpura, systemic lupus erythematosus and multiple sclerosis.
  • polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention invention are used as a inhibitor of B and/or T cell migration in endothelial cells. This activity disrupts tissue architecture or cognate responses and is useful, for example in disrupting immune responses, and blocking sepsis.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a therapy for chronic hypergammaglobulinemia evident in such diseases as monoclonal gammopathy of undetermined significance (MGUS), Waldenstrom's disease, related idiopathic monoclonal gammopathies, and plasmacytomas.
  • MGUS monoclonal gammopathy of undetermined significance
  • Waldenstrom's disease related idiopathic monoclonal gammopathies
  • plasmacytomas MGUS
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be employed for instance to inhibit polypeptide chemotaxis and activation of macrophages and their precursors, and of neutrophils, basophils, B lymphocytes and some T-cell subsets, e.g., activated and CD8 cytotoxic T cells and natural killer cells, in certain autoimmune and chronic inflammatory and infective diseases. Examples of autoimmune diseases are described herein and include multiple sclerosis, and insulin-dependent diabetes.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may also be employed to treat idiopathic hyper-eosinophilic syndrome by, for example, preventing eosinophil production and migration.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used to enhance or inhibit complement mediated cell lysis.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used to enhance or inhibit antibody dependent cellular cytotoxicity.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may also be employed for treating atherosclerosis, for example, by preventing monocyte infiltration in the artery wall.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be employed to treat adult respiratory distress syndrome (ARDS).
  • ARDS adult respiratory distress syndrome
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful for stimulating wound and tissue repair, stimulating angiogenesis, and/or stimulating the repair of vascular or lymphatic diseases or disorders. Additionally, fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to stimulate the regeneration of mucosal surfaces.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used to diagnose, prognose, treat, and/or prevent a disorder characterized by primary or acquired immunodeficiency, deficient serum immunoglobulin production, recurrent infections, and/or immune system dysfunction.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to treat or prevent infections of the joints, bones, skin, and/or parotid glands, blood-borne infections (e.g., sepsis, meningitis, septic arthritis, and/or osteomyelitis), autoimmune diseases (e.g., those disclosed herein), inflammatory disorders, and malignancies, and/or any disease or disorder or condition associated with these infections, diseases, disorders and/or malignancies) including, but not limited to, CVID, other primary immune deficiencies, HIV disease, CLL, recurrent bronchitis, sinusitis, otitis media, conjunctivitis, pneumonia, hepatitis, meningitis, herpes zoster (e.g., severe herpes zoster), and/or pneumocystis carnii.
  • blood-borne infections e.g., sepsis, meningitis,
  • fusion proteins of the invention include, but are not limited to, HIV infection, HTLV-BLV infection, lymphopenia, phagocyte bactericidal dysfunction anemia, thrombocytopenia, and hemoglobinuria.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used to treat, and/or diagnose an individual having common variable immunodeficiency disease (“CVID”; also known as “acquired agammaglobulinemia” and “acquired hypogammaglobulinemia”) or a subset of this disease.
  • CVID common variable immunodeficiency disease
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to diagnose, prognose, prevent, and/or treat cancers or neoplasms including immune cell or immune tissue-related cancers or neoplasms.
  • cancers or neoplasms that may be prevented, diagnosed, or treated by fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention include, but are not limited to, acute myelogenous leukemia, chronic myelogenous leukemia, Hodgkin's disease, non-Hodgkin's lymphoma, acute lymphocytic anemia (ALL) Chronic lymphocyte leukemia, plasmacytomas, multiple myeloma, Burkitt's lymphoma, EBV-transformed diseases, and/or diseases and disorders described in the section entitled “Hyperproliferative Disorders” elsewhere herein.
  • ALL acute lymphocytic anemia
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a therapy for decreasing cellular proliferation of Large B-cell Lymphomas.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used as a means of decreasing the involvement of B cells and Ig associated with Chronic Myelogenous Leukemia.
  • compositions of the invention are used as an agent to boost immunoresponsiveness among B cell immunodeficient individuals, such as, for example, an individual who has undergone a partial or complete splenectomy.
  • the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to modulate hemostatic (the stopping of bleeding) or thrombolytic (clot dissolving) activity.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention could be used to treat or prevent blood coagulation diseases, disorders, and/or conditions (e.g., afibrinogenemia, factor deficiencies, hemophilia), blood platelet diseases, disorders, and/or conditions (e.g., thrombocytopenia), or wounds resulting from trauma, surgery, or other causes.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment or prevention of heart attacks (infarction), strokes, or scarring.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to prevent, diagnose, prognose, and/or treat thrombosis, arterial thrombosis, venous thrombosis, thromboembolism, pulmonary embolism, atherosclerosis, myocardial infarction, transient ischemic attack, unstable angina.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used for the prevention of occulsion of saphenous grafts, for reducing the risk of periprocedural thrombosis as might accompany angioplasty procedures, for reducing the risk of stroke in patients with atrial fibrillation including nonrheumatic atrial fibrillation, for reducing the risk of embolism associated with mechanical heart valves and or mitral valves disease.
  • albumin fusion proteins of the invention include, but are not limited to, the prevention of occlusions in extrcorporeal devices (e.g., intravascular canulas, vascular access shunts in hemodialysis patients, hemodialysis machines, and cardiopulmonary bypass machines).
  • extrcorporeal devices e.g., intravascular canulas, vascular access shunts in hemodialysis patients, hemodialysis machines, and cardiopulmonary bypass machines.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to prevent, diagnose, prognose, and/or treat diseases and disorders of the blood and/or blood forming organs associated with the tissue(s) in which the polypeptide of the invention is expressed.
  • the fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to modulate hematopoietic activity (the formation of blood cells).
  • the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to increase the quantity of all or subsets of blood cells, such as, for example, erythrocytes, lymphocytes (B or T cells), myeloid cells (e.g., basophils, eosinophils, neutrophils, mast cells, macrophages) and platelets.
  • the ability to decrease the quantity of blood cells or subsets of blood cells may be useful in the prevention, detection, diagnosis and/or treatment of anemias and leukopenias described below.
  • the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to decrease the quantity of all or subsets of blood cells, such as, for example, erythrocytes, lymphocytes (B or T cells), myeloid cells (e.g., basophils, eosinophils, neutrophils, mast cells, macrophages) and platelets.
  • the ability to decrease the quantity of blood cells or subsets of blood cells may be useful in the prevention, detection, diagnosis and/or treatment of leukocytoses, such as, for example eosinophilia.
  • the fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to prevent, treat, or diagnose blood dyscrasia.
  • Anemias are conditions in which the number of red blood cells or amount of hemoglobin (the protein that carries oxygen) in them is below normal. Anemia may be caused by excessive bleeding, decreased red blood cell production, or increased red blood cell destruction (hemolysis).
  • the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in treating, preventing, and/or diagnosing anemias.
  • Anemias that may be treated prevented or diagnosed by the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention include iron deficiency anemia, hypochromic anemia, microcytic anemia, chlorosis, hereditary siderob;astic anemia, idiopathic acquired sideroblastic anemia, red cell aplasia, megaloblastic anemia (e.g., pernicious anemia, (vitamin B12 deficiency) and folic acid deficiency anemia), aplastic anemia, hemolytic anemias (e.g., autoimmune helolytic anemia, microangiopathic hemolytic anemia, and paroxysmal nocturnal hemoglobinuria).
  • iron deficiency anemia e.g., hypochromic anemia, microcytic anemia, chlorosis, hereditary siderob;astic anemia, idiopathic acquired sideroblastic anemia, red cell aplasia,
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in treating, preventing, and/or diagnosing anemias associated with diseases including but not limited to, anemias associated with systemic lupus erythematosus, cancers, lymphomas, chronic renal disease, and enlarged spleens.
  • the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in treating, preventing, and/or diagnosing anemias arising from drug treatments such as anemias associated with methyldopa, dapsone, and/or sulfadrugs.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in treating, preventing, and/or diagnosing anemias associated with abnormal red blood cell architecture including but not limited to, hereditary spherocytosis, hereditary elliptocytosis, glucose-6-phosphate dehydrogenase deficiency, and sickle cell anemia.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in treating, preventing, and/or diagnosing hemoglobin abnormalities, (e.g., those associated with sickle cell anemia, hemoglobin C disease, hemoglobin S-C disease, and hemoglobin E disease). Additionally, the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in diagnosing, prognosing, preventing, and/or treating thalassemias, including, but not limited to, major and minor forms of alpha-thalassemia and beta-thalassemia.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in diagnosing, prognosing, preventing, and/or treating bleeding disorders including, but not limited to, thrombocytopenia (e.g., idiopathic thrombocytopenic purpura, and thrombotic thrombocytopenic purpura), Von Willebrand's disease, hereditary platelet disorders (e.g., storage pool disease such as Chediak-Higashi and Hermansky-Pudlak syndromes, thromboxane A2 dysfunction, thromboasthenia, and Bernard-Soulier syndrome), hemolytic-uremic syndrome, hemophelias such as hemophelia A or Factor VII deficiency and Christmas disease or Factor IX deficiency, Hereditary Hemorhhagic Telangiectsia, also known as Rendu-Osler-Weber syndrome, allergic purpura
  • thrombocytopenia
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention on the clotting time of blood may be monitored using any of the clotting tests known in the art including, but not limited to, whole blood partial thromboplastin time (PTT), the activated partial thromboplastin time (aPTT), the activated clotting time (ACT), the recalcified activated clotting time, or the Lee-White Clotting time.
  • PTT whole blood partial thromboplastin time
  • aPTT activated partial thromboplastin time
  • ACT activated clotting time
  • Lee-White Clotting time the recalcified activated clotting time
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in diagnosing, prognosing, preventing, and/or treating acquired platelet dysfunction such as platelet dysfunction accompanying kidney failure, leukemia, multiple myeloma, cirrhosis of the liver, and systemic lupus erythematosus as well as platelet dysfunction associated with drug treatments, including treatment with aspirin, ticlopidine, nonsteroidal anti-inflammatory drugs (used for arthritis, pain, and sprains), and penicillin in high doses.
  • the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders characterized by or associated with increased or decreased numbers of white blood cells.
  • Leukopenia occurs when the number of white blood cells decreases below normal. Leukopenias include, but are not limited to, neutropenia and lymphocytopenia. An increase in the number of white blood cells compared to normal is known as leukocytosis. The body generates increased numbers of white blood cells during infection. Thus, leukocytosis may simply be a normal physiological parameter that reflects infection.
  • leukocytosis may be an indicator of injury or other disease such as cancer.
  • Leokocytoses include but are not limited to, eosinophilia, and accumulations of macrophages.
  • the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in diagnosing, prognosing, preventing, and/or treating leukopenia.
  • the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in diagnosing, prognosing, preventing, and/or treating leukocytosis.
  • Leukopenia may be a generalized decreased in all types of white blood cells, or may be a specific depletion of particular types of white blood cells.
  • the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in diagnosing, prognosing, preventing, and/or treating decreases in neutrophil numbers, known as neutropenia.
  • Neutropenias that may be diagnosed, prognosed, prevented, and/or treated by the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention include, but are not limited to, infantile genetic agranulocytosis, familial neutropenia, cyclic neutropenia, neutropenias resulting from or associated with dietary deficiencies (e.g., vitamin B 12 deficiency or folic acid deficiency), neutropenias resulting from or associated with drug treatments (e.g., antibiotic regimens such as penicillin treatment, sulfonamide treatment, anticoagulant treatment, anticonvulsant drugs, anti-thyroid drugs, and cancer chemotherapy), and neutropenias resulting from increased neutrophil destruction that may occur in association with some bacterial or viral infections, allergic disorders, autoimmune diseases, conditions in which an individual has an enlarged spleen (e.g., Felty syndrome, malaria and sarcoidosis), and some drug treatment regimens.
  • the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in diagnosing, prognosing, preventing, and/or treating lymphocytopenias (decreased numbers of B and/or T lymphocytes), including, but not limited to, lymphocytopenias resulting from or associated with stress, drug treatments (e.g., drug treatment with corticosteroids, cancer chemotherapies, and/or radiation therapies), AIDS infection and/or other diseases such as, for example, cancer, rheumatoid arthritis, systemic lupus erythematosus, chronic infections, some viral infections and/or hereditary disorders (e.g., DiGeorge syndrome, Wiskott-Aldrich Syndome, severe combined immunodeficiency, ataxia telangiectsia).
  • lymphocytopenias decreased numbers of B and/or T lymphocytes
  • drug treatments e.g., drug treatment with cortic
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders associated with macrophage numbers and/or macrophage function including, but not limited to, Gaucher's disease, Niemann-Pick disease, Letterer-Siwe disease and Hand-Schuller-Christian disease.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders associated with eosinophil numbers and/or eosinophil function including, but not limited to, idiopathic hypereosinophilic syndrome, eosinophilia-myalgia syndrome, and Hand-Schuller-Christian disease.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in diagnosing, prognosing, preventing, and/or treating leukemias and lymphomas including, but not limited to, acute lymphocytic (lymphpblastic) leukemia (ALL), acute myeloid (myelocytic, myelogenous, myeloblastic, or myelomonocytic) leukemia, chronic lymphocytic leukemia (e.g., B cell leukemias, T cell leukemias, Sezary syndrome, and Hairy cell leukenia), chronic myelocytic (myeloid, myelogenous, or granulocytic) leukemia, Hodgkin's lymphoma, non-hodgkin's lymphoma, Burkitt's lymphoma, and mycosis fungoides.
  • ALL acute lymphocytic leukemia
  • acute myeloid my
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders of plasma cells including, but not limited to, plasma cell dyscrasias, monoclonal gammaopathies, monoclonal gammopathies of undetermined significance, multiple myeloma, macroglobulinemia, Waldenstrom's macroglobulinemia, cryoglobulinemia, and Raynaud's phenomenon.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in treating, preventing, and/or diagnosing myeloproliferative disorders, including but not limited to, polycythemia vera, relative polycythemia, secondary polycythemia, myelofibrosis, acute myelofibrosis, agnogenic myelod metaplasia, thrombocythemia, (including both primary and seconday thrombocythemia) and chronic myelocytic leukemia.
  • myeloproliferative disorders including but not limited to, polycythemia vera, relative polycythemia, secondary polycythemia, myelofibrosis, acute myelofibrosis, agnogenic myelod metaplasia, thrombocythemia, (including both primary and seconday thrombocythemia) and chronic myelocytic leukemia.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful as a treatment prior to surgery, to increase blood cell production.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful as an agent to enhance the migration, phagocytosis, superoxide production, antibody dependent cellular cytotoxicity of neutrophils, eosionophils and macrophages.
  • the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful as an agent to increase the number of stem cells in circulation prior to stem cells pheresis.
  • the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful as an agent to increase the number of stem cells in circulation prior to platelet pheresis.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful as an agent to increase cytokine production.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in preventing, diagnosing, and/or treating primary hematopoietic disorders.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention can be used to treat or detect hyperproliferative disorders, including neoplasms.
  • Albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may inhibit the proliferation of the disorder through direct or indirect interactions.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may proliferate other cells which can inhibit the hyperproliferative disorder.
  • hyperproliferative disorders can be treated.
  • This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response.
  • decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.
  • Examples of hyperproliferative disorders that can be treated or detected by fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention include, but are not limited to neoplasms located in the: colon, abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvis, skin, soft tissue, spleen, thorax, and urogenital tract.
  • neoplasms located in the: colon, abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvis, skin, soft tissue,
  • hyperproliferative disorders can also be treated or detected by fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention.
  • hyperproliferative disorders include, but are not limited to: Acute Childhood Lymphoblastic Leukemia, Acute Lymphoblastic Leukemia, Acute Lymphocytic Leukemia, Acute Myeloid Leukemia, Adrenocortical Carcinoma, Adult (Primary) Hepatocellular Cancer, Adult (Primary) Liver Cancer, Adult Acute Lymphocytic Leukemia, Adult Acute Myeloid Leukemia, Adult Hodgkin's Disease, Adult Hodgkin's Lymphoma, Adult Lymphocytic Leukemia, Adult Non-Hodgkin's Lymphoma, Adult Primary Liver Cancer, Adult Soft Tissue Sarcoma, AIDS-Related Lymphoma, AIDS-Related Malignancies, Anal Cancer, Astrocytoma, Bile
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used to diagnose, prognose, prevent, and/or treat premalignant conditions and to prevent progression to a neoplastic or malignant state, including but not limited to those disorders described above.
  • Such uses are indicated in conditions known or suspected of preceding progression to neoplasia or cancer, in particular, where non-neoplastic cell growth consisting of hyperplasia, metaplasia, or most particularly, dysplasia has occurred (for review of such abnormal growth conditions, see Robbins and Angell, 1976, Basic Pathology, 2d Ed., W. B. Saunders Co., Philadelphia, pp. 68-79.)
  • Hyperplasia is a form of controlled cell proliferation, involving an increase in cell number in a tissue or organ, without significant alteration in structure or function.
  • Hyperplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention include, but are not limited to, angiofollicular mediastinal lymph node hyperplasia, angiolymphoid hyperplasia with eosinophilia, a typical melanocytic hyperplasia, basal cell hyperplasia, benign giant lymph node hyperplasia, cementum hyperplasia, congenital adrenal hyperplasia, congenital sebaceous hyperplasia, cystic hyperplasia, cystic hyperplasia of the breast, denture hyperplasia, ductal hyperplasia, endometrial hyperplasia, fibromuscular hyperplasia, focal epithelial hyperplasia, gingival
  • Metaplasia is a form of controlled cell growth in which one type of adult or fully differentiated cell substitutes for another type of adult cell.
  • Metaplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention include, but are not limited to, agnogenic myeloid metaplasia, apocrine metaplasia, a typical metaplasia, autoparenchymatous metaplasia, connective tissue metaplasia, epithelial metaplasia, intestinal metaplasia, metaplastic anemia, metaplastic ossification, metaplastic polyps, myeloid metaplasia, primary myeloid metaplasia, secondary myeloid metaplasia, squamous metaplasia, squamous metaplasia of amnion, and symptomatic myeloid metaplasia.
  • Dysplasia is frequently a forerunner of cancer, and is found mainly in the epithelia; it is the most disorderly form of non-neoplastic cell growth, involving a loss in individual cell uniformity and in the architectural orientation of cells. Dysplastic cells often have abnormally large, deeply stained nuclei, and exhibit pleomorphism. Dysplasia characteristically occurs where there exists chronic irritation or inflammation.
  • Dysplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention include, but are not limited to, anhidrotic ectodermal dysplasia, anterofacial dysplasia, asphyxiating thoracic dysplasia, atriodigital dysplasia, bronchopulmonary dysplasia, cerebral dysplasia, cervical dysplasia, chondroectodermal dysplasia, cleidocranial dysplasia, congenital ectodermal dysplasia, craniodiaphysial dysplasia, craniocarpotarsal dysplasia, craniometaphysial dysplasia, dentin dysplasia, diaphysial dysplasia, ectodermal dysplasia, enamel dysplasia, encephalo-ophthalmic dysplasia, dysplasia
  • Additional pre-neoplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention include, but are not limited to, benign dysproliferative disorders (e.g., benign tumors, fibrocystic conditions, tissue hypertrophy, intestinal polyps, colon polyps, and esophageal dysplasia), leukoplakia, keratoses, Bowen's disease, Farmer's Skin, solar cheilitis, and solar keratosis.
  • benign dysproliferative disorders e.g., benign tumors, fibrocystic conditions, tissue hypertrophy, intestinal polyps, colon polyps, and esophageal dysplasia
  • leukoplakia keratoses
  • Bowen's disease Farmer's Skin
  • solar cheilitis solar cheilitis
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to diagnose and/or prognose disorders associated with the tissue(s) in which the polypeptide of the invention is expressed.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention conjugated to a toxin or a radioactive isotope, as described herein may be used to treat cancers and neoplasms, including, but not limited to, those described herein.
  • albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention conjugated to a toxin or a radioactive isotope, as described herein may be used to treat acute myelogenous leukemia.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may affect apoptosis, and therefore, would be useful in treating a number of diseases associated with increased cell survival or the inhibition of apoptosis.
  • diseases associated with increased cell survival or the inhibition of apoptosis include cancers (such as follicular lymphomas, carcinomas with p53 mutations, and hormone-dependent tumors, including, but not limited to colon cancer, cardiac tumors, pancreatic cancer, melanoma, retinoblastoma, glioblastoma, lung cancer, intestinal cancer, testicular cancer, stomach cancer, neuroblastoma, myxoma, myoma, lymphoma, endothelioma, osteoblastoma, osteoclastoma, osteosarcoma, chondrosarcoma, adenoma, breast cancer, prostate cancer, Kaposi's sarcoma and ovarian cancer); autoimmune disorders such as, multiple sclerosis, Sjogren's syndrome, Hashimoto's thyroidit
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are used to inhibit growth, progression, and/or metastasis of cancers, in particular those listed above.
  • Additional diseases or conditions associated with increased cell survival that could be diagnosed, prognosed, prevented, and/or treated by fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention, include, but are not limited to, progression, and/or metastases of malignancies and related disorders such as leukemia (including acute leukemias (e.g., acute lymphocytic leukemia, acute myelocytic leukemia (including myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia)) and chronic leukemias (e.g., chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia)), polycythemia vera, lymphomas (e.g., Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, and
  • Diseases associated with increased apoptosis that could be diagnosed, prognosed, prevented, and/or treated by fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention, include AIDS; neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, retinitis pigmentosa, cerebellar degeneration and brain tumor or prior associated disease); autoimmune disorders (such as, multiple sclerosis, Sjogren's syndrome, Hashimoto's thyroiditis, biliary cirrhosis, Behcet's disease, Crohn's disease, polymyositis, systemic lupus erythematosus and immune-related glomerulonephritis and rheumatoid arthritis) myelodysplastic syndromes (such as aplastic anemia), graft v.
  • neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral s
  • ischemic injury such as that caused by myocardial infarction, stroke and reperfusion injury
  • liver injury e.g., hepatitis related liver injury, ischemia/reperfusion injury, cholestosis (bile duct injury) and liver cancer
  • toxin-induced liver disease such as that caused by alcohol
  • septic shock cachexia and anorexia.
  • Hyperproliferative diseases and/or disorders that could be diagnosed, prognosed, prevented, and/or treated by fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention, include, but are not limited to, neoplasms located in the liver, abdomen, bone, breast, digestive system, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous system (central and peripheral), lymphatic system, pelvis, skin, soft tissue, spleen, thorax, and urogenital tract.
  • neoplasms located in the liver, abdomen, bone, breast, digestive system, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous system (central and peripheral), lymphatic system
  • hyperproliferative disorders can also be diagnosed, prognosed, prevented, and/or treated by fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention.
  • hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.
  • Another preferred embodiment utilizes polynucleotides encoding albumin fusion proteins of the invention to inhibit aberrant cellular division, by gene therapy using the present invention, and/or protein fusions or fragments thereof.
  • the present invention provides a method for treating cell proliferative disorders by inserting into an abnormally proliferating cell a polynucleotide encoding an albumin fusion protein of the present invention, wherein said polynucleotide represses said expression.
  • polynucleotides of the present invention is a DNA construct comprising a recombinant expression vector effective in expressing a DNA sequence encoding said polynucleotides.
  • the DNA construct encoding the fusion protein of the present invention is inserted into cells to be treated utilizing a retrovirus, or more preferably an adenoviral vector (See G J. Nabel, et. al., PNAS 1999 96: 324-326, which is hereby incorporated by reference).
  • the viral vector is defective and will not transform non-proliferating cells, only proliferating cells.
  • the polynucleotides of the present invention inserted into proliferating cells either alone, or in combination with or fused to other polynucleotides can then be modulated via an external stimulus (i.e. magnetic, specific small molecule, chemical, or drug administration, etc.), which acts upon the promoter upstream of said polynucleotides to induce expression of the encoded protein product.
  • an external stimulus i.e. magnetic, specific small molecule, chemical, or drug administration, etc.
  • the beneficial therapeutic affect of the present invention may be expressly modulated (i.e. to increase, decrease, or inhibit expression of the present invention) based upon said external stimulus.
  • Polynucleotides of the present invention may be useful in repressing expression of oncogenic genes or antigens.
  • repressing expression of the oncogenic genes is intended the suppression of the transcription of the gene, the degradation of the gene transcript (pre-message RNA), the inhibition of splicing, the destruction of the messenger RNA, the prevention of the post-translational modifications of the protein, the destruction of the protein, or the inhibition of the normal function of the protein.
  • polynucleotides of the present invention may be administered by any method known to those of skill in the art including, but not limited to transfection, electroporation, microinjection of cells, or in vehicles such as liposomes, lipofectin, or as naked polynucleotides, or any other method described throughout the specification.
  • the polynucleotide of the present invention may be delivered by known gene delivery systems such as, but not limited to, retroviral vectors (Gilboa, J. Virology 44:845 (1982); Hocke, Nature 320:275 (1986); Wilson, et al., Proc. Natl. Acad. Sci. U.S.A.
  • vaccinia virus system Chokrabarty et al., Mol. Cell Biol. 5:3403 (1985) or other efficient DNA delivery systems (Yates et al., Nature 313:812 (1985)) known to those skilled in the art.
  • vaccinia virus system Chokrabarty et al., Mol. Cell Biol. 5:3403 (1985) or other efficient DNA delivery systems (Yates et al., Nature 313:812 (1985)) known to those skilled in the art.
  • retrovirus or adenoviral (as described in the art and elsewhere herein) delivery system known to those of skill in the art. Since host DNA replication is required for retroviral DNA to integrate and the retrovirus will be unable to self replicate due to the lack of the retrovirus genes needed for its life cycle. Utilizing such a retroviral delivery system for polynucleotides of the present invention will target said gene and constructs to abnormally proliferating cells and will spare the non-dividing normal cells.
  • the polynucleotides of the present invention may be delivered directly to cell proliferative disorder/disease sites in internal organs, body cavities and the like by use of imaging devices used to guide an injecting needle directly to the disease site.
  • the polynucleotides of the present invention may also be administered to disease sites at the time of surgical intervention.
  • cell proliferative disease any human or animal disease or disorder, affecting any one or any combination of organs, cavities, or body parts, which is characterized by single or multiple local abnormal proliferations of cells, groups of cells, or tissues, whether benign or malignant.
  • any amount of the polynucleotides of the present invention may be administered as long as it has a biologically inhibiting effect on the proliferation of the treated cells. Moreover, it is possible to administer more than one of the polynucleotide of the present invention simultaneously to the same site.
  • biologically inhibiting is meant partial or total growth inhibition as well as decreases in the rate of proliferation or growth of the cells. The biologically inhibitory dose may be determined by assessing the effects of the polynucleotides of the present invention on target malignant or abnormally proliferating cell growth in tissue culture, tumor growth in animals and cell cultures, or any other method known to one of ordinary skill in the art.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention of the present invention are useful in inhibiting the angiogenesis of proliferative cells or tissues, either alone, as a protein fusion, or in combination with other polypeptides directly or indirectly, as described elsewhere herein.
  • said anti-angiogenesis effect may be achieved indirectly, for example, through the inhibition of hematopoietic, tumor-specific cells, such as tumor-associated macrophages (See Joseph I B, et al. J Natl Cancer Inst, 90(21):1648-53 (1998), which is hereby incorporated by reference).
  • Albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be useful in inhibiting proliferative cells or tissues through the induction of apoptosis.
  • These fusion protieins and/or polynucleotides may act either directly, or indirectly to induce apoptosis of proliferative cells and tissues, for example in the activation of a death-domain receptor, such as tumor necrosis factor (TNF) receptor-1, CD95 (Fas/APO-1), TNF-receptor-related apoptosis-mediated protein (TRAMP) and TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 and -2 (See Schulze-Osthoff K, et.al., Eur J Biochem 254(3):439-59 (1998), which is hereby incorporated by reference).
  • TNF tumor necrosis factor
  • TRAMP TNF-receptor-related apopto
  • these fusion proteins and/or polynucleotides may induce apoptosis through other mechanisms, such as in the activation of other proteins which will activate apoptosis, or through stimulating the expression of these proteins, either alone or in combination with small molecule drugs or adjuviants, such as apoptonin, galectins, thioredoxins, anti-inflammatory proteins (See for example, Mutat Res 400(1-2):447-55 (1998), Med Hypotheses. 50(5):423-33 (1998), Chem Biol Interact. Apr 24;111-112:23-34 (1998), J Mol Med. 76(6):402-12 (1998), Int J Tissue React;20(1):3-15 (1998), which are all hereby incorporated by reference).
  • small molecule drugs or adjuviants such as apoptonin, galectins, thioredoxins, anti-inflammatory proteins
  • Albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention are useful in inhibiting the metastasis of proliferative cells or tissues. Inhibition may occur as a direct result of administering these albumin fusion proteins and/or polynucleotides, or indirectly, such as activating the expression of proteins known to inhibit metastasis, for example alpha 4 integrins, (See, e.g., Curr Top Microbiol Immunol 1998;231:125-41, which is hereby incorporated by reference). Such thereapeutic affects of the present invention may be achieved either alone, or in combination with small molecule drugs or adjuvants.
  • the invention provides a method of delivering compositions containing the albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention to targeted cells expressing the a polypeptide bound by, that binds to, or associates with an albumin fuison protein of the invention.
  • Albumin fusion proteins of the invention may be associated with with heterologous polypeptides, heterologous nucleic acids, toxins, or prodrugs via hydrophobic, hydrophilic, ionic and/or covalent interactions.
  • Albumin fusion proteins of the invention are useful in enhancing the immunogenicity and/or antigenicity of proliferating cells or tissues, either directly, such as would occur if the albumin fusion proteins of the invention ‘vaccinated’ the immune response to respond to proliferative antigens and immunogens, or indirectly, such as in activating the expression of proteins known to enhance the immune response (e.g. chemokines), to said antigens and immunogens.
  • proteins known to enhance the immune response e.g. chemokines
  • Albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to treat, prevent, diagnose, and/or prognose disorders of the renal system.
  • Renal disorders which can be diagnosed, prognosed, prevented, and/or treated with compositions of the invention include, but are not limited to, kidney failure, nephritis, blood vessel disorders of kidney, metabolic and congenital kidney disorders, urinary disorders of the kidney, autoimmune disorders, sclerosis and necrosis, electrolyte imbalance, and kidney cancers.
  • Kidney diseases which can be diagnosed, prognosed, prevented, and/or treated with compositions of the invention include, but are not limited to, acute kidney failure, chronic kidney failure, atheroembolic renal failure, end-stage renal disease, inflammatory diseases of the kidney (e.g., acute glomerulonephritis, postinfectious glomerulonephritis, rapidly progressive glomerulonephritis, nephrotic syndrome, membranous glomerulonephritis, familial nephrotic syndrome, membranoproliferative glomerulonephritis I and II, mesangial proliferative glomerulonephritis, chronic glomerulonephritis, acute tubulointerstitial nephritis, chronic tubulointerstitial nephritis, acute post-streptococcal glomerulonephritis (PSGN), pyelonephritis, lupus nephriti
  • compositions of the invention can be used to diagnose, prognose, prevent, and/or treat metabolic and congenital disorders of the kidney (e.g., uremia, renal amyloidosis, renal osteodystrophy, renal tubular acidosis, renal glycosuria, nephrogenic diabetes insipidus, cystinuria, Fanconi's syndrome, renal fibrocystic osteosis (renal rickets), Hartnup disease, Bartter's syndrome, Liddle's syndrome, polycystic kidney disease, medullary cystic disease, medullary sponge kidney, Alport's syndrome, nail-patella syndrome, congenital nephrotic syndrome, CRUSH syndrome, horseshoe kidney, diabetic nephropathy, nephrogenic diabetes insipidus, analgesic nephropathy, kidney stones, and membranous nephropathy), and autoimmune disorders of the kidney (e.g., systemic lup
  • compositions of the invention can also be used to diagnose, prognose, prevent, and/or treat sclerotic or necrotic disorders of the kidney (e.g., glomerulosclerosis, diabetic nephropathy, focal segmental glomerulosclerosis (FSGS), necrotizing glomerulonephritis, and renal papillary necrosis), cancers of the kidney (e.g., nephroma, hypemephroma, nephroblastoma, renal cell cancer, transitional cell cancer, renal adenocarcinoma, squamous cell cancer, and Wilm's tumor), and electrolyte imbalances (e.g., nephrocalcinosis, pyuria, edema, hydronephritis, proteinuria, hyponatremia, hypernatremia, hypokalemia, hyperkalemia, hypocalcemia, hypercalcemia, hypophosphatemia, and hyperphosphatemia).
  • sclerotic or necrotic disorders of the kidney
  • compositions of the invention may be administered using any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, biolistic injectors, particle accelerators, gelfoam sponge depots, other commercially available depot materials, osmotic pumps, oral or suppositorial solid pharmaceutical formulations, decanting or topical applications during surgery, aerosol delivery. Such methods are known in the art.
  • Compositions of the invention may be administered as part of a Therapeutic, described in more detail below. Methods of delivering polynucleotides of the invention are described in more detail herein.
  • Albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to treat, prevent, diagnose, and/or prognose cardiovascular disorders, including, but not limited to, peripheral artery disease, such as limb ischemia.
  • Cardiovascular disorders include, but are not limited to, cardiovascular abnormalities, such as arterio-arterial fistula, arterioyenous fistula, cerebral arterioyenous malformations, congenital heart defects, pulmonary atresia, and Scimitar Syndrome.
  • cardiovascular abnormalities such as arterio-arterial fistula, arterioyenous fistula, cerebral arterioyenous malformations, congenital heart defects, pulmonary atresia, and Scimitar Syndrome.
  • Congenital heart defects include, but are not limited to, aortic coarctation, cor triatriatum, coronary vessel anomalies, crisscross heart, dextrocardia, patent ductus arteriosus, Ebstein's anomaly, Eisenmenger complex, hypoplastic left heart syndrome, levocardia, tetralogy of fallot, transposition of great vessels, double outlet right ventricle, tricuspid atresia, persistent truncus arteriosus, and heart septal defects, such as aortopulmonary septal defect, endocardial cushion defects, Lutembacher's Syndrome, trilogy of Fallot, ventricular heart septal defects.
  • Cardiovascular disorders also include, but are not limited to, heart disease, such as arrhythmias, carcinoid heart disease, high cardiac output, low cardiac output, cardiac tamponade, endocarditis (including bacterial), heart aneurysm, cardiac arrest, congestive heart failure, congestive cardiomyopathy, paroxysmal dyspnea, cardiac edema, heart hypertrophy, congestive cardiomyopathy, left ventricular hypertrophy, right ventricular hypertrophy, post-infarction heart rupture, ventricular septal rupture, heart valve diseases, myocardial diseases, myocardial ischemia, pericardial effusion, pericarditis (including constrictive and tuberculous), pneumopericardium, postpericardiotomy syndrome, pulmonary heart disease, rheumatic heart disease, ventricular dysfunction, hyperemia, cardiovascular pregnancy complications, Scimitar Syndrome, cardiovascular syphilis, and cardiovascular tuberculosis.
  • heart disease such as arrhythmias, carcinoid heart disease
  • Arrhythmias include, but are not limited to, sinus arrhythmia, atrial fibrillation, atrial flutter, bradycardia, extrasystole, Adams-Stokes Syndrome, bundle-branch block, sinoatrial block, long QT syndrome, parasystole, Lown-Ganong-Levine Syndrome, Mahaim-type pre-excitation syndrome, Wolff-Parkinson-White syndrome, sick sinus syndrome, tachycardias, and ventricular fibrillation.
  • Tachycardias include paroxysmal tachycardia, supraventricular tachycardia, accelerated idioventricular rhythm, atrioventricular nodal reentry tachycardia, ectopic atrial tachycardia, ectopic junctional tachycardia, sinoatrial nodal reentry tachycardia, sinus tachycardia, Torsades de Pointes, and ventricular tachycardia.
  • Heart valve diseases include, but are not limited to, aortic valve insufficiency, aortic valve stenosis, hear murmurs, aortic valve prolapse, mitral valve prolapse, tricuspid valve prolapse, mitral valve insufficiency, mitral valve stenosis, pulmonary atresia, pulmonary valve insufficiency, pulmonary valve stenosis, tricuspid atresia, tricuspid valve insufficiency, and tricuspid valve stenosis.
  • Myocardial diseases include, but are not limited to, alcoholic cardiomyopathy, congestive cardiomyopathy, hypertrophic cardiomyopathy, aortic subvalvular stenosis, pulmonary subvalvular stenosis, restrictive cardiomyopathy, Chagas cardiomyopathy, endocardial fibroelastosis, endomyocardial fibrosis, Kearns Syndrome, myocardial reperfusion injury, and myocarditis.
  • Myocardial ischemias include, but are not limited to, coronary disease, such as angina pectoris, coronary aneurysm, coronary arteriosclerosis, coronary thrombosis, coronary vasospasm, myocardial infarction and myocardial stunning.
  • coronary disease such as angina pectoris, coronary aneurysm, coronary arteriosclerosis, coronary thrombosis, coronary vasospasm, myocardial infarction and myocardial stunning.
  • Cardiovascular diseases also include vascular diseases such as aneurysms, angiodysplasia, angiomatosis, bacillary angiomatosis, Hippel-Lindau Disease, Klippel-Trenaunay-Weber Syndrome, Sturge-Weber Syndrome, angioneurotic edema, aortic diseases, Takayasu's Arteritis, aortitis, Leriche's Syndrome, arterial occlusive diseases, arteritis, enarteritis, polyarteritis nodosa, cerebrovascular disorders, diabetic angiopathies, diabetic retinopathy, embolisms, thrombosis, erythromelalgia, hemorrhoids, hepatic veno-occlusive disease, hypertension, hypotension, ischemia, peripheral vascular diseases, phlebitis, pulmonary veno-occlusive disease, Raynaud's disease, CREST syndrome
  • Aneurysms include, but are not limited to, dissecting aneurysms, false aneurysms, infected aneurysms, ruptured aneurysms, aortic aneurysms, cerebral aneurysms, coronary aneurysms, heart aneurysms, and iliac aneurysms.
  • Arterial occlusive diseases include, but are not limited to, arteriosclerosis, intermittent claudication, carotid stenosis, fibromuscular dysplasias, mesenteric vascular occlusion, Moyamoya disease, renal artery obstruction, retinal artery occlusion, and thromboangiitis obliterans.
  • Cerebrovascular disorders include, but are not limited to, carotid artery diseases, cerebral amyloid angiopathy, cerebral aneurysm, cerebral anoxia, cerebral arteriosclerosis, cerebral arterioyenous malformation, cerebral artery diseases, cerebral embolism and thrombosis, carotid artery thrombosis, sinus thrombosis, Wallenberg's syndrome, cerebral hemorrhage, epidural hematoma, subdural hematoma, subaraxhnoid hemorrhage, cerebral infarction, cerebral ischemia (including transient), subclavian steal syndrome, periventricular leukomalacia, vascular headache, cluster headache, migraine, and vertebrobasilar insufficiency.
  • Embolisms include, but are not limited to, air embolisms, amniotic fluid embolisms, cholesterol embolisms, blue toe syndrome, fat embolisms, pulmonary embolisms, and thromoboembolisms.
  • Thrombosis include, but are not limited to, coronary thrombosis, hepatic vein thrombosis, retinal vein occlusion, carotid artery thrombosis, sinus thrombosis, Wallenberg's syndrome, and thrombophlebitis.
  • Ischemic disorders include, but are not limited to, cerebral ischemia, ischemic colitis, compartment syndromes, anterior compartment syndrome, myocardial ischemia, reperfusion injuries, and peripheral limb ischemia.
  • Vasculitis includes, but is not limited to, aortitis, arteritis, Behcet's Syndrome, Churg-Strauss Syndrome, mucocutaneous lymph node syndrome, thromboangiitis obliterans, hypersensitivity vasculitis, Schoenlein-Henoch purpura, allergic cutaneous vasculitis, and Wegener's granulomatosis.
  • Albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be administered using any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, biolistic injectors, particle accelerators, gelfoam sponge depots, other commercially available depot materials, osmotic pumps, oral or suppositorial solid pharmaceutical formulations, decanting or topical applications during surgery, aerosol delivery. Such methods are known in the art. Methods of delivering polynucleotides are described in more detail herein.
  • Albumin fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be used to treat, prevent, diagnose, and/or prognose diseases and/or disorders of the respiratory system.
  • Diseases and disorders of the respiratory system include, but are not limited to, nasal vestibulitis, nonallergic rhinitis (e.g., acute rhinitis, chronic rhinitis, atrophic rhinitis, vasomotor rhinitis), nasal polyps, and sinusitis, juvenile angiofibromas, cancer of the nose and juvenile papillomas, vocal cord polyps, nodules (singer's nodules), contact ulcers, vocal cord paralysis, laryngoceles, pharyngitis (e.g., viral and bacterial), tonsillitis, tonsillar cellulitis, parapharyngeal abscess, laryngitis, laryngoceles, and throat cancers (e.g., cancer of the nasopharynx, tonsil cancer, larynx cancer), lung cancer (e.g., squamous cell carcinoma, small cell (oat cell) carcinoma, large cell carcinoma, and adenocarcino
  • Additional diseases and disorders of the respiratory system include, but are not limited to bronchiolitis, polio (poliomyelitis), croup, respiratory syncytial viral infection, mumps, erythema infectiosum (fifth disease), roseola infantum, progressive rubella panencephalitis, german measles, and subacute sclerosing panencephalitis), fungal pneumonia (e.g., Histoplasmosis, Coccidioidomycosis, Blastomycosis, fungal infections in people with severely suppressed immune systems (e.g., cryptococcosis, caused by Cryptococcus neoformans ; aspergillosis, caused by Aspergillus spp.; candidiasis, caused by Candida; and mucormycosis)), Pneumocystis carinii (pneumocystis pneumonia), a typical pneumonias (e.g., Mycoplasma and Chlamycosis
  • angiogenesis is stringently regulated and spatially and temporally delimited. Under conditions of pathological angiogenesis such as that characterizing solid tumor growth, these regulatory controls fail. Unregulated angiogenesis becomes pathologic and sustains progression of many neoplastic and non-neoplastic diseases.
  • a number of serious diseases are dominated by abnormal neovascularization including solid tumor growth and metastases, arthritis, some types of eye disorders, and psoriasis. See, e.g., reviews by Moses et al., Biotech. 9:630-634 (1991); Folkman et al., N. Engl. J. Med., 333:1757-1763 (1995); Auerbach et al., J. Microvasc. Res. 29:401-411 (1985); Folkman, Advances in Cancer Research, eds. Klein and Weinhouse, Academic Press, New York, pp. 175-203 (1985); Patz, Am. J. Opthalmol.
  • the present invention provides for treatment of diseases or disorders associated with neovascularization by administration of fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention.
  • Malignant and metastatic conditions which can be treated with the polynucleotides and polypeptides, or agonists or antagonists of the invention include, but are not limited to, malignancies, solid tumors, and cancers described herein and otherwise known in the art (for a review of such disorders, see Fishman et al., Medicine, 2d Ed., J. B.
  • the present invention provides a method of treating an angiogenesis-related disease and/or disorder, comprising administering to an individual in need thereof a therapeutically effective amount of an albumin fusion protein of the invention and/or polynucleotides encoding an albumin fusion protein of the invention.
  • fusion proteins of the invention and/or polynucleotides encoding albumin fusion proteins of the invention may be utilized in a variety of additional methods in order to therapeutically treat a cancer or tumor.
US09/833,245 1999-03-12 2001-04-12 Albumin fusion proteins Abandoned US20040010134A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09/833,245 US20040010134A1 (en) 2000-04-12 2001-04-12 Albumin fusion proteins
US10/472,964 US20070032414A1 (en) 1999-03-12 2002-03-26 Human secreted proteins
US10/472,965 US20070026454A1 (en) 1999-03-12 2002-03-26 Human secreted proteins
US10/868,184 US20070048818A1 (en) 1999-03-12 2004-06-16 Human secreted proteins
US11/264,096 US20060084794A1 (en) 2001-04-12 2005-11-02 Albumin fusion proteins
US11/545,766 US20070099833A1 (en) 2001-04-12 2006-10-11 Albumin fusion proteins
US12/570,397 US20100286048A1 (en) 2001-04-12 2009-09-30 Albumin Fusion Proteins

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US22935800P 2000-04-12 2000-04-12
US19938400P 2000-04-25 2000-04-25
US25693100P 2000-12-21 2000-12-21
US09/833,245 US20040010134A1 (en) 2000-04-12 2001-04-12 Albumin fusion proteins

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US95008201A Continuation-In-Part 1999-03-12 2001-09-12
US10/868,184 Continuation-In-Part US20070048818A1 (en) 1999-03-12 2004-06-16 Human secreted proteins
US11/264,096 Division US20060084794A1 (en) 2001-04-12 2005-11-02 Albumin fusion proteins

Publications (1)

Publication Number Publication Date
US20040010134A1 true US20040010134A1 (en) 2004-01-15

Family

ID=27394014

Family Applications (23)

Application Number Title Priority Date Filing Date
US09/832,501 Abandoned US20030199043A1 (en) 2000-04-12 2001-04-12 Albumin fusion proteins
US09/833,245 Abandoned US20040010134A1 (en) 1999-03-12 2001-04-12 Albumin fusion proteins
US09/833,041 Expired - Lifetime US6994857B2 (en) 2000-04-12 2001-04-12 Albumin fusion proteins
US09/833,117 Abandoned US20030171267A1 (en) 2000-04-12 2001-04-12 Albumin fusion proteins
US09/833,118 Expired - Lifetime US6905688B2 (en) 2000-04-12 2001-04-12 Albumin fusion proteins
US09/832,929 Expired - Lifetime US6926898B2 (en) 2000-04-12 2001-04-12 Albumin fusion proteins
US11/078,663 Expired - Lifetime US7507414B2 (en) 2000-04-12 2005-03-14 Albumin fusion proteins
US11/078,914 Expired - Lifetime US7482013B2 (en) 2000-04-12 2005-03-14 Albumin fusion proteins
US11/927,602 Active 2024-07-29 US10080785B2 (en) 2000-04-12 2007-10-29 Albumin fusion proteins
US11/927,555 Abandoned US20090285816A9 (en) 2000-04-12 2007-10-29 Albumin Fusion Proteins
US11/927,610 Abandoned US20080269127A1 (en) 2000-04-12 2007-10-29 Albumin Fusion Proteins
US11/927,617 Abandoned US20080269128A1 (en) 2000-04-12 2007-10-29 Albumin Fusion Proteins
US11/927,607 Abandoned US20080269126A1 (en) 2000-04-12 2007-10-29 Albumin Fusion Proteins
US11/927,600 Expired - Fee Related US9821039B2 (en) 2000-04-12 2007-10-29 Albumin fusion proteins
US11/927,583 Abandoned US20120141415A1 (en) 2000-04-12 2007-10-29 Albumin Fusion Proteins
US11/927,593 Abandoned US20080261877A1 (en) 2000-04-12 2007-10-29 Albumin Fusion Proteins
US11/929,677 Expired - Fee Related US7785599B2 (en) 2000-04-12 2007-10-30 Albumin fusion proteins
US12/365,878 Abandoned US20110280830A9 (en) 2000-04-12 2009-02-04 Albumin Fusion Proteins
US13/212,879 Abandoned US20120252732A1 (en) 2000-04-12 2011-08-18 Albumin fusion proteins
US13/464,248 Expired - Fee Related US8946156B2 (en) 2000-04-12 2012-05-04 Albumin Fusion Proteins
US13/855,454 Expired - Fee Related US9849162B2 (en) 2000-04-12 2013-04-02 Treatment with factor VII-albumin fusion protein
US13/855,434 Expired - Lifetime US9775888B2 (en) 2000-04-12 2013-04-02 Treatment with factor ix-albumin fusion protein
US15/850,371 Abandoned US20180200346A1 (en) 2000-04-12 2017-12-21 Albumin fusion proteins

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/832,501 Abandoned US20030199043A1 (en) 2000-04-12 2001-04-12 Albumin fusion proteins

Family Applications After (21)

Application Number Title Priority Date Filing Date
US09/833,041 Expired - Lifetime US6994857B2 (en) 2000-04-12 2001-04-12 Albumin fusion proteins
US09/833,117 Abandoned US20030171267A1 (en) 2000-04-12 2001-04-12 Albumin fusion proteins
US09/833,118 Expired - Lifetime US6905688B2 (en) 2000-04-12 2001-04-12 Albumin fusion proteins
US09/832,929 Expired - Lifetime US6926898B2 (en) 2000-04-12 2001-04-12 Albumin fusion proteins
US11/078,663 Expired - Lifetime US7507414B2 (en) 2000-04-12 2005-03-14 Albumin fusion proteins
US11/078,914 Expired - Lifetime US7482013B2 (en) 2000-04-12 2005-03-14 Albumin fusion proteins
US11/927,602 Active 2024-07-29 US10080785B2 (en) 2000-04-12 2007-10-29 Albumin fusion proteins
US11/927,555 Abandoned US20090285816A9 (en) 2000-04-12 2007-10-29 Albumin Fusion Proteins
US11/927,610 Abandoned US20080269127A1 (en) 2000-04-12 2007-10-29 Albumin Fusion Proteins
US11/927,617 Abandoned US20080269128A1 (en) 2000-04-12 2007-10-29 Albumin Fusion Proteins
US11/927,607 Abandoned US20080269126A1 (en) 2000-04-12 2007-10-29 Albumin Fusion Proteins
US11/927,600 Expired - Fee Related US9821039B2 (en) 2000-04-12 2007-10-29 Albumin fusion proteins
US11/927,583 Abandoned US20120141415A1 (en) 2000-04-12 2007-10-29 Albumin Fusion Proteins
US11/927,593 Abandoned US20080261877A1 (en) 2000-04-12 2007-10-29 Albumin Fusion Proteins
US11/929,677 Expired - Fee Related US7785599B2 (en) 2000-04-12 2007-10-30 Albumin fusion proteins
US12/365,878 Abandoned US20110280830A9 (en) 2000-04-12 2009-02-04 Albumin Fusion Proteins
US13/212,879 Abandoned US20120252732A1 (en) 2000-04-12 2011-08-18 Albumin fusion proteins
US13/464,248 Expired - Fee Related US8946156B2 (en) 2000-04-12 2012-05-04 Albumin Fusion Proteins
US13/855,454 Expired - Fee Related US9849162B2 (en) 2000-04-12 2013-04-02 Treatment with factor VII-albumin fusion protein
US13/855,434 Expired - Lifetime US9775888B2 (en) 2000-04-12 2013-04-02 Treatment with factor ix-albumin fusion protein
US15/850,371 Abandoned US20180200346A1 (en) 2000-04-12 2017-12-21 Albumin fusion proteins

Country Status (10)

Country Link
US (23) US20030199043A1 (fr)
EP (21) EP2298355A3 (fr)
JP (9) JP2003530839A (fr)
AU (7) AU2001274809A1 (fr)
BE (1) BE2016C059I2 (fr)
CA (8) CA2405709A1 (fr)
DK (2) DK2236152T3 (fr)
ES (2) ES2529300T3 (fr)
FR (1) FR16C0043I2 (fr)
WO (7) WO2001079442A2 (fr)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030027264A1 (en) * 1997-09-18 2003-02-06 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030125247A1 (en) * 2000-04-12 2003-07-03 Rosen Craig A. Albumin fusion proteins
US20030143654A1 (en) * 2000-05-12 2003-07-31 Matthias Grell F-box containing protein
US20030211513A1 (en) * 2000-06-08 2003-11-13 Henry Yue Intracellular signaling proteins
US20040082761A1 (en) * 2001-12-18 2004-04-29 Duggan Brendan M. Cell adhesion proteins
US20050054570A1 (en) * 2001-12-21 2005-03-10 Rosen Craig A. Albumin fusion proteins
US20050079546A1 (en) * 2003-05-01 2005-04-14 Dasa Lipovsek Serum albumin scaffold-based proteins and uses thereof
US20050100991A1 (en) * 2001-04-12 2005-05-12 Human Genome Sciences, Inc. Albumin fusion proteins
US20050123955A1 (en) * 2000-05-23 2005-06-09 Turner C. A.Jr. Novel human thrombospondin-like proteins and polynucleotides encoding the same
US20050186664A1 (en) * 2001-12-21 2005-08-25 Rosen Craig A. Albumin fusion proteins
US20050196407A1 (en) * 2000-12-05 2005-09-08 Young John A.T. Receptor for B. anthracis toxin
WO2005082400A1 (fr) * 2004-02-27 2005-09-09 Leangene Ab Proteines therapeutiques traitant des etats medicaux associes a l'obesite et/ou la resistance a l'insuline
US6946134B1 (en) 2000-04-12 2005-09-20 Human Genome Sciences, Inc. Albumin fusion proteins
US20050239167A1 (en) * 1992-01-31 2005-10-27 Aventis Behring L.L.C. Fusion polypeptides of human serum albumin and a therapeutically active polypeptide
US20050244931A1 (en) * 2001-04-12 2005-11-03 Human Genome Sciences, Inc. Albumin fusion proteins
US20050281772A1 (en) * 2004-06-17 2005-12-22 Bromley Philip J Compositions for mucosal delivery of agents
EP1617875A1 (fr) * 2004-04-27 2006-01-25 Seoul National University Industry Foundation Nouvelle utilisation de la proteine 3 multifonctionnelle interagissant avec l'aminoacyl-tarn synthase (aim3) comme suppresseur tumoral
WO2006039504A2 (fr) * 2004-10-01 2006-04-13 Cell Ionix, Inc. Procede et formule s'appliquant a la stimulation, au ciblage, a la liberation, a la circulation et a la reagregation des cellules souches
US20060084794A1 (en) * 2001-04-12 2006-04-20 Human Genome Sciences, Inc. Albumin fusion proteins
US20060166329A1 (en) * 2001-10-05 2006-07-27 Human Genome Sciences Inc. Albumin fusion proteins
US20070053903A1 (en) * 2005-05-12 2007-03-08 Zeren Gao Methods of using pHHLA2 to co-stimulate T-cells
US20070141061A1 (en) * 2003-09-05 2007-06-21 Hudson Lindsey J Protein involved in carcinoma
US7329729B1 (en) * 2000-06-21 2008-02-12 Amgen Inc. Secreted epithelial colon stromal-1 molecules and uses thereof
US20080226662A1 (en) * 2000-04-28 2008-09-18 The Johns Hopkins University Dendritic cell co-stimulatory molecules
US7507413B2 (en) 2001-04-12 2009-03-24 Human Genome Sciences, Inc. Albumin fusion proteins
US7550432B2 (en) 1995-12-30 2009-06-23 Novozymes Biopharma Uk Limited Recombinant fusion proteins to growth hormone and serum albumin
US20090176317A1 (en) * 2006-04-20 2009-07-09 Mayo Foundation For Medical Education And Research Soluble B7-H1
US20090215084A1 (en) * 2006-01-05 2009-08-27 Mayo Foundation For Medical Education And Research B7-h1 and b7-h4 in cancer
US20090240666A1 (en) * 2008-03-19 2009-09-24 Sony Ericsson Mobile Communications Japan, Inc. Mobile terminal device and computer program
US20100015642A1 (en) * 2006-01-05 2010-01-21 Kwon Eugene D B7-h1 and survivin in cancer
US20110020325A1 (en) * 2008-02-29 2011-01-27 Kwon Eugene D Methods for reducing granulomatous inflammation
US20110195068A1 (en) * 2008-08-25 2011-08-11 Solomon Langermann Pd-1 antagonists and methods of use thereof
US20110200620A1 (en) * 2004-10-06 2011-08-18 Lieping Chen B7-h1 and methods of diagnosis, prognosis, and treatment of cancer
EP2359842A1 (fr) 2004-07-14 2011-08-24 University of Utah Research Foundation Compositions et utilisations liees a des netrines
US8039589B1 (en) 2002-10-04 2011-10-18 Mayo Foundation For Medical Education And Research B7-DC variants
US8153595B2 (en) 2007-07-13 2012-04-10 The Johns Hopkins University B7-DC variants immunogenic compositions and methods of use thereof
WO2012140627A1 (fr) 2011-04-15 2012-10-18 Compugen Ltd. Polypeptides et polynucléotides et leurs utilisations pour un traitement de troubles liés au système immunitaire et du cancer
US20120322075A1 (en) * 2009-10-26 2012-12-20 Externautics S.P.A. Lung Tumor Markers and Methods of Use Thereof
US20120329986A1 (en) * 2009-11-17 2012-12-27 Universite De Montreal Heteropeptides useful for reducing nonspecific adsorption
US8460927B2 (en) 1999-11-30 2013-06-11 Mayo Foundation For Medical Education And Research B7-H1 antibodies and method of use
US8709416B2 (en) 2008-08-25 2014-04-29 Amplimmune, Inc. Compositions of PD-1 antagonists and methods of use
US8765915B2 (en) 2006-02-06 2014-07-01 Csl Behring Gmbh Modified coagulation factor VIIa with extended half-life
US20150051378A1 (en) * 2002-04-18 2015-02-19 The General Hospital Corporation Drg11-responsive (dragon) gene family
US9212228B2 (en) 2005-11-24 2015-12-15 Ganymed Pharmaceuticals Ag Monoclonal antibodies against claudin-18 for treatment of cancer
US9512232B2 (en) 2012-05-09 2016-12-06 Ganymed Pharmaceuticals Ag Antibodies against Claudin 18.2 useful in cancer diagnosis
US9775785B2 (en) 2004-05-18 2017-10-03 Ganymed Pharmaceuticals Ag Antibody to genetic products differentially expressed in tumors and the use thereof
US10167336B2 (en) 2013-03-14 2019-01-01 Mayo Foundation For Medical Education And Research Methods and materials for treating cancer
US10259875B2 (en) 2013-10-01 2019-04-16 Mayo Foundation For Medical Education And Research Methods for treating cancer in patients with elevated levels of BIM
US10302653B2 (en) 2014-05-22 2019-05-28 Mayo Foundation For Medical Education And Research Distinguishing antagonistic and agonistic anti B7-H1 antibodies
US10414824B2 (en) 2002-11-22 2019-09-17 Ganymed Pharmaceuticals Ag Genetic products differentially expressed in tumors and the use thereof
US10517875B2 (en) 2014-07-23 2019-12-31 Mayo Foundation for Medical Engineering and Research Targeting DNA-PKcs and B7-H1 to treat cancer
US10656156B2 (en) 2012-07-05 2020-05-19 Mepur Ravindranath Diagnostic and therapeutic potential of HLA-E monospecific monoclonal IgG antibodies directed against tumor cell surface and soluble HLA-E
US10767164B2 (en) 2017-03-30 2020-09-08 The Research Foundation For The State University Of New York Microenvironments for self-assembly of islet organoids from stem cells differentiation
US10800847B2 (en) 2012-01-11 2020-10-13 Dr. Mepur Ravindranath Anti-HLA class-IB antibodies mimic immunoreactivity and immunomodulatory functions of intravenous immunoglobulin (IVIG) useful as therapeutic IVIG mimetics and methods of their use
US10875923B2 (en) 2015-10-30 2020-12-29 Mayo Foundation For Medical Education And Research Antibodies to B7-H1

Families Citing this family (585)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057287A (en) 1994-01-11 2000-05-02 Dyax Corp. Kallikrein-binding "Kunitz domain" proteins and analogues thereof
WO2001034626A1 (fr) * 1999-11-05 2001-05-17 Human Genome Sciences, Inc. 28 proteines secretees humaines
WO2002018435A1 (fr) * 2000-08-28 2002-03-07 Human Genome Sciences, Inc. 18 protéines humaines sécrétées
WO2002016388A1 (fr) * 2000-08-18 2002-02-28 Human Genome Sciences, Inc. 21 proteines humaines secretees
US20020137890A1 (en) 1997-03-31 2002-09-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
EP0892047A3 (fr) * 1997-07-09 2000-03-08 Hoechst Marion Roussel Deutschland GmbH Semaphorine L humaine et murine
DE69933216T2 (de) * 1998-06-15 2007-09-20 GTC Biotherapeutics, Inc., Framingham Erythropoietin-analog-menschliches serum-albumin fusionsprotein
US20050181482A1 (en) * 2004-02-12 2005-08-18 Meade Harry M. Method for the production of an erythropoietin analog-human IgG fusion proteins in transgenic mammal milk
US20040199099A1 (en) * 1998-07-10 2004-10-07 Matson James R Hemofiltration systems, methods and devices used to treat inflammatory mediator related disease
WO2000022112A1 (fr) 1998-10-13 2000-04-20 The University Of Georgia Research Foundation, Inc. Peptides bioactifs stabilises, procedes d'identification, synthese et utilisation
US20030190740A1 (en) 1998-10-13 2003-10-09 The University Of Georgia Research Foundation, Inc Stabilized bioactive peptides and methods of identification, synthesis, and use
DE60044514D1 (de) * 1999-05-05 2010-07-15 Phylogica Ltd Isolierung von biologischen Modulatoren aus Bibliotheken mit biologisch vielvältigen Genfragmenten
US6946129B1 (en) 1999-06-08 2005-09-20 Seattle Genetics, Inc. Recombinant anti-CD40 antibody and uses thereof
EP1224285A4 (fr) * 1999-10-29 2004-12-08 Human Genome Sciences Inc 27 proteines humaines secretees
JP2003513663A (ja) * 1999-11-05 2003-04-15 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド 24個のヒト分泌タンパク質
AU1472701A (en) * 1999-11-12 2001-06-06 Human Genome Sciences, Inc. 28 human secreted proteins
JP2003518075A (ja) 1999-12-24 2003-06-03 ジェネンテック・インコーポレーテッド 生理活性化合物の消失半減期延長のための方法及び組成物
US7534417B2 (en) 2000-02-24 2009-05-19 Agensys, Inc. 103P2D6: tissue specific protein highly expressed in various cancers
US7291122B2 (en) * 2000-03-24 2007-11-06 Immunocept, L.L.C. Hemofiltration methods for treatment of diseases in a mammal
US6787040B2 (en) * 2000-05-16 2004-09-07 Immunocept, L.L.C. Method and system for colloid exchange therapy
DE60132699T2 (de) 2000-06-06 2009-01-29 Bristol-Myers Squibb Co. Nukleinsäuren und polypeptide, die sich auf b7 beziehen und ihre verwendungen zur immunmodulierung
AU2001229509A1 (en) * 2000-08-18 2002-03-04 Human Genome Sciences, Inc. 11 human secreted proteins
AU2001232810A1 (en) * 2000-08-18 2002-03-04 Human Genome Sciences, Inc. 23 human secreted proteins
AU2001229563A1 (en) * 2000-09-20 2002-04-02 Human Genome Sciences, Inc. 21 human secreted proteins
CA2421147A1 (fr) * 2000-09-29 2002-04-11 Human Genome Sciences, Inc. 24 proteines humaines secretees
WO2002031111A2 (fr) * 2000-10-12 2002-04-18 Hyseq, Inc. Acides nucleiques et polypeptides
US6531297B2 (en) * 2000-10-20 2003-03-11 Applera Corporation Isolated human drug-metabolizing proteins, nucleic acid molecules encoding human drug-metabolizing proteins, and uses thereof
US6949371B2 (en) 2000-10-20 2005-09-27 Applera Corporation Isolated human drug-metabolizing proteins, nucleic acid molecules encoding human drug-metabolizing proteins, and uses thereof
FR2815964A1 (fr) * 2000-10-30 2002-05-03 Inst Nat Sante Rech Med Proteine recepteur de la renine et/ou de la prorenine, acide nucleique codant pour ce recepteur et leur applications
WO2002046227A2 (fr) 2000-12-07 2002-06-13 Eli Lilly And Company Proteines hybrides glp-1
US20030148920A1 (en) * 2000-12-27 2003-08-07 Steven Rosen Sulfatases and methods of use thereof
JP4344519B2 (ja) * 2000-12-28 2009-10-14 旭化成ファーマ株式会社 NF−κB活性化遺伝子
CA2433469A1 (fr) * 2001-02-23 2002-09-06 Human Genome Sciences, Inc. 83 proteines secretees humaines
CA2441006A1 (fr) * 2001-03-08 2002-09-19 Hyseq, Inc. Methodes et materiels se rapportant a des polypeptides et a des polynucleotides apparentes a la fibuline
EP2280030A3 (fr) 2001-04-10 2011-06-15 Agensys, Inc. Acides nucléiques et protéines correspondantes utiles dans la détection et le traitement des différents cancers
US7250495B2 (en) 2001-06-20 2007-07-31 Genentech, Inc. PRO20044 polypeptides
EP1405077A2 (fr) * 2001-07-06 2004-04-07 Geneprot, Inc. Peptides associes au carcinome
US8129504B2 (en) 2001-08-30 2012-03-06 Biorexis Technology, Inc. Oral delivery of modified transferrin fusion proteins
US7176278B2 (en) 2001-08-30 2007-02-13 Biorexis Technology, Inc. Modified transferrin fusion proteins
DE10251673A1 (de) 2001-11-09 2003-07-10 Hoffmann La Roche Alström-Syndrom-Gen, Genvarianten, codiertes Protein und Verfahren zur Diagnose des Alström-Syndroms
KR100406760B1 (ko) * 2001-11-16 2003-11-21 신코엠 주식회사 반도체 메모리 장치
WO2003051921A1 (fr) 2001-12-17 2003-06-26 Applied Research Systems Ars Holding N.V. Mutants de chimiokines agissant en tant qu'antagonistes de chimiokines
US20080194481A1 (en) * 2001-12-21 2008-08-14 Human Genome Sciences, Inc. Albumin Fusion Proteins
US20060253913A1 (en) * 2001-12-21 2006-11-09 Yue-Jin Huang Production of hSA-linked butyrylcholinesterases in transgenic mammals
KR101271635B1 (ko) * 2001-12-21 2013-06-12 휴먼 게놈 사이언시즈, 인코포레이티드 알부민 융합 단백질
US7081446B2 (en) * 2002-01-31 2006-07-25 The Trustees Of Columbia University In The City Of New York Long-acting follicle stimulating hormone analogues and uses thereof
US20060241027A1 (en) * 2002-02-07 2006-10-26 Hans-Peter Hauser Hiv inhibiting proteins
JP2005530484A (ja) * 2002-02-07 2005-10-13 デルタ バイオテクノロジー リミテッド アルブミン融合抗血管形成ペプチド
US20050222023A1 (en) * 2002-02-07 2005-10-06 Hans-Peter Hauser Albumin-fused kunitz domain peptides
DE10205520A1 (de) * 2002-02-08 2003-08-14 Aventis Behring Gmbh Inhibitorischer, monoklonaler Antikörper gegen die den Blutgerinnungsfaktor VII aktivierende Protease
WO2003072714A2 (fr) * 2002-02-21 2003-09-04 Wyeth Domaine follistatine contenant des proteines
WO2003075742A2 (fr) * 2002-03-05 2003-09-18 Merck & Co., Inc. Marqueur biologique indiquant l'efficacite des medicaments coupe-faim
US20030191056A1 (en) * 2002-04-04 2003-10-09 Kenneth Walker Use of transthyretin peptide/protein fusions to increase the serum half-life of pharmacologically active peptides/proteins
US20070015230A1 (en) * 2002-04-15 2007-01-18 Hammond David J Identification and characterization of analytes from whole blood
CA2482529A1 (fr) * 2002-04-15 2003-10-30 American National Red Cross Procede de detection de ligands et de cibles dans un melange
US7141381B2 (en) 2002-04-25 2006-11-28 Bristol-Myers Squibb Company Human leucine-rich repeat-containing proteins specifically expressed in the nervous system
GB0210464D0 (en) 2002-05-08 2002-06-12 Svanborg Catharina Therapeutic treatment
PT1531850E (pt) * 2002-06-07 2012-05-07 Zymogenetics Inc Utilização de il-21 e anticorpo monoclonal para tratar cancros sólidos
DK1531791T3 (da) 2002-06-07 2010-11-01 Dyax Corp Forebyggelse og begrænsning af iskæmi
US7153829B2 (en) 2002-06-07 2006-12-26 Dyax Corp. Kallikrein-inhibitor therapies
US7132100B2 (en) 2002-06-14 2006-11-07 Medimmune, Inc. Stabilized liquid anti-RSV antibody formulations
US7425618B2 (en) 2002-06-14 2008-09-16 Medimmune, Inc. Stabilized anti-respiratory syncytial virus (RSV) antibody formulations
US8029803B2 (en) 2002-06-20 2011-10-04 Paladin Labs, Inc. Chimeric antigens for eliciting an immune response
CN101172091B (zh) * 2007-09-25 2011-04-27 北京美福源生物医药科技有限公司 含人血清白蛋白与皮肤细胞生长因子的融合蛋白护肤产品制备工艺和用途
CN1241946C (zh) * 2002-07-01 2006-02-15 美国福源集团 对多种细胞具刺激增生作用的人血清白蛋白重组融合蛋白
WO2004005340A1 (fr) * 2002-07-03 2004-01-15 Nexgen Biotechnologies, Inc. Polypeptide de fusion comprenant le facteur de croissance epidermique et de l'albumine serique humaine
AU2003247806B2 (en) * 2002-07-08 2009-11-12 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
WO2004009626A1 (fr) * 2002-07-22 2004-01-29 Yamanouchi Pharmaceutical Co., Ltd. Nouveau gene associe a l'arthrite rhumatoide
GB0217033D0 (en) 2002-07-23 2002-08-28 Delta Biotechnology Ltd Gene and polypeptide sequences
EP1529108A2 (fr) * 2002-08-07 2005-05-11 ZLB Behring GmbH Facteur neurotrophique ciliaire hybride avec l'albumine
WO2004014315A2 (fr) * 2002-08-13 2004-02-19 Arbios Systems, Inc. Therapie d'echange de plasma selectif
ES2395014T3 (es) 2002-08-28 2013-02-07 Dyax Corp. Métodos para conservar órganos y tejidos
US20050271660A1 (en) 2002-09-06 2005-12-08 Alexion Pharmaceuticals, Inc. Nebulization of monoclonal antibodies for treating pulmonary diseases
US9415102B2 (en) 2002-09-06 2016-08-16 Alexion Pharmaceuticals, Inc. High concentration formulations of anti-C5 antibodies
EP1545611B1 (fr) * 2002-09-06 2016-11-09 Alexion Pharmaceuticals, Inc. Procede de traitement de l'asthme mettant en oeuvre des anticorps en complement du constituant c5
MXPA05002991A (es) * 2002-09-18 2005-10-05 Univ Montreal Ct Hospitalier Chum Analogos de ghrh.
DE60322259D1 (de) * 2002-12-20 2008-08-28 Geneos Oy Asthma-empfindlichkeitsort
CA2511522A1 (fr) * 2002-12-26 2004-07-15 Takeda Pharmaceutical Company Limited Nouvelles proteines et leur utilisation
CA2513213C (fr) * 2003-01-22 2013-07-30 Human Genome Sciences, Inc. Proteines hybrides d'albumine
AU2004210936C1 (en) * 2003-02-11 2010-12-02 Takeda Pharmaceutical Company Limited Diagnosis and treatment of Multiple Sulfatase Deficiency and other using a Formylglycine Generating Enzyme (FGE)
US7381410B2 (en) * 2003-03-12 2008-06-03 Vasgene Therapeutics, Inc. Polypeptide compounds for inhibiting angiogenesis and tumor growth
AU2004220459B2 (en) * 2003-03-12 2010-08-05 Vasgene Therapeutics, Inc. Polypeptide compounds for inhibiting angiogenesis and tumor growth
US20070041987A1 (en) * 2003-03-19 2007-02-22 Daniel Carter Fragments or polymers of albumin with tunable vascular residence time for use in therapeutic delivery and vaccine development
BRPI0409554A (pt) * 2003-04-04 2006-04-25 Univ Lausanne peptacorpo de fusão isolado e recombinante, seqüência de dna, vetor, célula hospedeira, composição farmacêutica e seu uso, kits, método para a produção do peptacorpo de fusão e seqüência de intensificador
KR20120035234A (ko) 2003-04-11 2012-04-13 메디뮨 엘엘씨 재조합 il?9 항체 및 그의 용도
WO2004094589A2 (fr) * 2003-04-18 2004-11-04 Incyte Corporation Proteines secretees
US6987270B2 (en) 2003-05-07 2006-01-17 General Electric Company Method to account for event losses due to positron range in positron emission tomography and assay of positron-emitting isotopes
JP4817233B2 (ja) * 2003-06-30 2011-11-16 学校法人日本大学 細胞外基質沈着タンパク質
CA2532250A1 (fr) 2003-07-15 2005-02-03 Barros Research Institute Antigene eimeria tenella utilise dans l'immunotherapie de la coccidiose
US8007805B2 (en) * 2003-08-08 2011-08-30 Paladin Labs, Inc. Chimeric antigens for breaking host tolerance to foreign antigens
EP1694360B1 (fr) 2003-11-04 2010-08-04 Novartis Vaccines and Diagnostics, Inc. Utilisation d'anticorps antagonistes anti-cd40 pour le traitement de maladies autoimmunes et inflammatoires et le rejet d'organes transplantes
CN1938333A (zh) * 2003-12-03 2007-03-28 达尔塔生物技术有限公司 白介素-11融合蛋白
CN100379762C (zh) * 2003-12-08 2008-04-09 中国人民解放军军事医学科学院生物工程研究所 人血清白蛋白与白细胞介素2的融合蛋白及其编码基因
US9050378B2 (en) 2003-12-10 2015-06-09 Board Of Regents, The University Of Texas System N2S2 chelate-targeting ligand conjugates
US7371381B2 (en) 2003-12-12 2008-05-13 Amgen Inc. Anti-galanin antibodies and uses thereof
GB0329681D0 (en) 2003-12-23 2004-01-28 Delta Biotechnology Ltd Gene expression technique
GB0329722D0 (en) 2003-12-23 2004-01-28 Delta Biotechnology Ltd Modified plasmid and use thereof
EP1712619A4 (fr) * 2003-12-24 2008-01-02 Takeda Pharmaceutical Substance destinee a la prevention et au traitement du cancer
MXPA06009072A (es) * 2004-02-09 2007-03-29 Human Genome Sciences Inc Proteinas de fusion de albumina.
ATE458834T1 (de) * 2004-03-03 2010-03-15 Evotec Neurosciences Gmbh Diagnostische und therapeutische verwendung des mal2-gens und proteins bei neurodegenerativen krankheiten
CA2558439A1 (fr) * 2004-03-11 2005-10-06 Kythera Biopharmaceuticals, Inc. Compositions et methodes permettant de prevenir et de traiter des maladies de la peau et des cheveux
US20050201959A1 (en) * 2004-03-11 2005-09-15 Vvii Newco 2003, Inc. Methods and compositions for altering skin coloration
KR20070034465A (ko) 2004-03-12 2007-03-28 바스진 테라퓨틱스, 인크. 혈관형성 및 종양 성장을 억제하기 위한 폴리펩티드 화합물
JP2007532666A (ja) * 2004-04-14 2007-11-15 アヴィリッド インコーポレーテッド ウイルス核酸を対象とした修飾ヌクレアーゼを用いた組成物及びウイルス性疾患の予防並びに治療方法
PL1745078T3 (pl) * 2004-04-23 2009-12-31 Conjuchem Biotechnologies Inc Sposób oczyszczania koniugatów albumin
WO2005121758A1 (fr) * 2004-06-03 2005-12-22 Ciphergen Biosystems, Inc. Biomarqueurs pour l'arteriopathie peripherique (ap)
CN101018874A (zh) * 2004-08-13 2007-08-15 千年药品公司 用于鉴定、评估、预防和治疗前列腺癌的基因、组合物、试剂盒和方法
US7700720B2 (en) 2004-09-21 2010-04-20 Medimmune, Llc Antibodies against and methods for producing vaccines for respiratory syncytial virus
ES2529451T3 (es) 2004-09-23 2015-02-20 Vasgene Therapeutics, Inc. Compuestos polipeptídicos para inhibir la angiogénesis y el crecimiento tumoral
US7235530B2 (en) * 2004-09-27 2007-06-26 Dyax Corporation Kallikrein inhibitors and anti-thrombolytic agents and uses thereof
WO2006042197A2 (fr) * 2004-10-11 2006-04-20 The Board Of Trustees Of The Leland Standford Junior University Utilisation de del-1 dans une regeneration de cheveux, d'os et de cartilage
CN101080420A (zh) 2004-10-25 2007-11-28 免疫系统密钥有限公司 胸腺特异性蛋白质
KR100583350B1 (ko) * 2004-11-03 2006-06-05 (주)넥스젠 Fas-1 도메인을 함유하는 융합 단백질을 이용한상피세포재생인자의 생산 방법
PT1809663E (pt) * 2004-11-09 2008-10-02 Ares Trading Sa Um cesto para cultivo de marisco
EP1831375B1 (fr) 2004-12-23 2014-07-16 Novozymes Biopharma DK A/S Technique d'expression genetique
JP5855326B2 (ja) 2005-01-06 2016-02-09 ノヴォ ノルディスク アー/エス 抗kir組み合わせ治療および方法
US20060178301A1 (en) * 2005-02-04 2006-08-10 Mathias Jurs Albumin-fused ciliary neurotrophic factor
AU2006214121B9 (en) 2005-02-15 2013-02-14 Duke University Anti-CD19 antibodies and uses in oncology
US20110230407A1 (en) * 2005-03-14 2011-09-22 Alexander Yuzhakov Hepatocyte growth factor pathway activators in demyelinating diseases and central nervous system trauma
JP2008537488A (ja) * 2005-03-23 2008-09-18 ワイス Gdf−8モジュレート物質の検出
CA2601086A1 (fr) * 2005-03-23 2006-10-12 Wyeth Detection d'une reponse immunitaire contre les agents de modulation gdf-8
ES2357550T3 (es) 2005-04-18 2011-04-27 Novo Nordisk A/S Variantes de la il-21.
US7833979B2 (en) * 2005-04-22 2010-11-16 Amgen Inc. Toxin peptide therapeutic agents
ES2417065T3 (es) 2005-04-26 2013-08-05 Trion Pharma Gmbh Combinación de anticuerpos con glucocorticoides para el tratamiento del cáncer
US9585932B2 (en) 2005-04-29 2017-03-07 Peter C. Dowling Use of EPO-derived peptide fragments for the treatment of neurodegenerative disorders
US9345745B2 (en) 2005-04-29 2016-05-24 Bo Wang Methods for treating inflammatory disorders and traumatic brain injury using stabilized non-hematopoietic EPO short peptides
WO2007052154A2 (fr) 2005-04-29 2007-05-10 University Of Medicine And Dentistry Of New Jersey Peptide court derive d'erythropoietine et ses mimetiques utilises comme modulateurs immuno / inflammatoires
EP2221316A1 (fr) 2005-05-05 2010-08-25 Duke University Traitements des maladies auto-immunes par des anticorps anti-cd19
SI1907000T2 (sl) 2005-06-08 2020-07-31 Dana-Farber Cancer Institute Postopki in sestavki za zdravljenje persistentne HIV infekcije z inhibicijo programiranih celični smrtnih 1 (PD-1) poti
WO2007014167A2 (fr) * 2005-07-22 2007-02-01 Five Prime Therapeutics, Inc. Compositions et procedes pour le traitement de maladies epitheliales avec des facteurs de croissance
US8323666B2 (en) * 2005-08-01 2012-12-04 Allergan, Inc. Botulinum toxin compositions
DK1919503T3 (en) 2005-08-10 2014-12-15 Macrogenics Inc Identification and preparation of antibodies with variant fc regions and methods of use thereof
US8008453B2 (en) 2005-08-12 2011-08-30 Amgen Inc. Modified Fc molecules
EP1917276B1 (fr) * 2005-08-26 2018-03-21 Ares Trading S.A. Procede de preparation d'interferon beta glycosyle
US7713715B2 (en) * 2005-09-06 2010-05-11 University Of Tennessee Research Foundation Method for diagnosing infections
US7855279B2 (en) * 2005-09-27 2010-12-21 Amunix Operating, Inc. Unstructured recombinant polymers and uses thereof
US7846445B2 (en) * 2005-09-27 2010-12-07 Amunix Operating, Inc. Methods for production of unstructured recombinant polymers and uses thereof
US20090099031A1 (en) * 2005-09-27 2009-04-16 Stemmer Willem P Genetic package and uses thereof
EP1929073A4 (fr) * 2005-09-27 2010-03-10 Amunix Inc Produits pharmaceutiques proteiques et utilisations de ceux-ci
US20080274096A1 (en) * 2005-10-03 2008-11-06 Astrazeneca Ab Fusion Proteins Having a Modulated Half-Life in Plasma
US8168592B2 (en) * 2005-10-21 2012-05-01 Amgen Inc. CGRP peptide antagonists and conjugates
BRPI0619586A2 (pt) * 2005-12-09 2018-08-28 Seattle Genetics Inc método para o tratamento ou prevenção de um distúrbio associado com cd40
AU2006323925B2 (en) * 2005-12-09 2012-08-02 Ares Trading S.A. Method for purifying FSH or a FSH mutant
US20130172274A1 (en) 2005-12-20 2013-07-04 Duke University Methods and compositions for delivering active agents with enhanced pharmacological properties
US8841255B2 (en) 2005-12-20 2014-09-23 Duke University Therapeutic agents comprising fusions of vasoactive intestinal peptide and elastic peptides
WO2007071068A1 (fr) * 2005-12-22 2007-06-28 Conjuchem Biotechnologies Inc. Procede de production de conjugues d'albumine preformes et agent therapeutique
EP2025762A3 (fr) 2006-01-17 2009-09-30 Health Research Inc. Analyse de suivi hétéroduplex
US20070248646A1 (en) * 2006-02-16 2007-10-25 Ali Hafezi-Moghadam Use of azurocidin inhibitors in prevention and treatment of ocular vascular leakage
EP1999148B8 (fr) 2006-03-06 2014-03-05 Medlmmune, LLC Anticorps humanisés dirigés contre l'antigène cd22 et leur utilisation à des fins thérapeutiques en oncologie, ainsi que dans le cadre de transplantations et de maladies auto-immunes
SG170837A1 (en) 2006-04-05 2011-05-30 Abbott Biotech Ltd Antibody purification
EP2007885B1 (fr) * 2006-04-11 2010-07-21 CSL Behring GmbH Procede permettant une meilleure recuperation in vivo de polypeptides therapeutiques
AU2007258609B2 (en) * 2006-06-07 2013-01-24 Human Genome Sciences, Inc. Albumin fusion proteins
AU2013202566C1 (en) * 2006-06-14 2018-07-12 Csl Behring Gmbh Proteolytically cleavable fusion protein comprising a blood coagulation factor
US7939632B2 (en) 2006-06-14 2011-05-10 Csl Behring Gmbh Proteolytically cleavable fusion proteins with high molar specific activity
EP1867660A1 (fr) * 2006-06-14 2007-12-19 CSL Behring GmbH Protéine de fusion qui peut être clivée protéolyticalement et qui contient un facteur de la coagulation sanguine
JP5800458B2 (ja) * 2006-06-14 2015-10-28 ツェー・エス・エル・ベーリング・ゲー・エム・ベー・ハー 血液凝固因子を有するタンパク質分解によって切断可能な融合タンパク質
CA2657277C (fr) * 2006-07-13 2015-11-24 Upperton Limited Procede de fabrication de particules d'un materiau proteique
EP2046826B1 (fr) 2006-07-24 2011-09-14 Biorexis Pharmaceutical Corporation Protéines de fusion d'extendine
WO2008019036A2 (fr) * 2006-08-04 2008-02-14 Pharmathene Inc. Butyrylcholinestérase recombinante à demi-vie longue
CN103230598A (zh) * 2006-09-06 2013-08-07 费斯生物制药公司 融合肽治疗组合物
AU2007292903B2 (en) 2006-09-08 2012-03-29 Ambrx, Inc. Modified human plasma polypeptide or Fc scaffolds and their uses
US10925977B2 (en) 2006-10-05 2021-02-23 Ceil>Point, LLC Efficient synthesis of chelators for nuclear imaging and radiotherapy: compositions and applications
AR063384A1 (es) * 2006-10-25 2009-01-28 Amgen Inc Agentes terapeuticos a base de peptidos derivados de toxinas
CN101553501A (zh) 2006-10-26 2009-10-07 诺沃-诺迪斯克有限公司 Il-21变种
JP5588175B2 (ja) 2006-11-07 2014-09-10 メルク・シャープ・アンド・ドーム・コーポレーション Pcsk9のアンタゴニスト
EP2114999A2 (fr) 2006-12-12 2009-11-11 Biorexis Pharmaceutical Corporation Bibliothèques de protéines hybrides de transferrine
EP2557090A3 (fr) 2006-12-19 2013-05-29 Ablynx N.V. Séquences d'acides aminés dirigées contre les GPCR et polypeptides les comprenant pour le traitement de maladies et de troubles liés au GPCR
WO2008074840A2 (fr) 2006-12-19 2008-06-26 Ablynx N.V. Séquences d'acides aminés dirigées contre une métalloprotéinase de la famille adam et polypeptides les comprenant à des fins de traitement de maladies et troubles liés à adam
AU2007338298B2 (en) * 2006-12-22 2013-02-07 Csl Behring Gmbh Modified coagulation factors with prolonged in vivo half-life
EP1935430A1 (fr) * 2006-12-22 2008-06-25 CSL Behring GmbH Facteurs de coagulation modifiés avec une demi-vie in vivo prolongée
EP2450366A1 (fr) 2007-01-30 2012-05-09 Epivax, Inc. Épitopes de lymphocytes t régulateurs, compositions et utilisations de ceux-ci
EP2526962B1 (fr) 2007-02-12 2019-08-14 CSL Behring GmbH Application thérapeutique d'inhibiteurs de la sérine protéase de type Kazal
CA2680832A1 (fr) 2007-03-27 2008-10-02 Merck & Co., Inc. Procede de detection de pcsk9 secretee, autogeneree
EP2703011A3 (fr) 2007-05-07 2014-03-26 MedImmune, LLC Anticorps anti-ICOS et leur utilisation dans le traitement de l'oncologie, la transplantation et les maladies auto-immunes
NZ741494A (en) 2007-05-14 2022-11-25 Kyowa Kirin Co Ltd Methods of reducing eosinophil levels
AU2008262490B2 (en) * 2007-05-22 2011-11-17 Amgen Inc. Compositions and methods for producing bioactive fusion proteins
EP1997830A1 (fr) 2007-06-01 2008-12-03 AIMM Therapeutics B.V. Molécules à liaison spécifiques RSV et leur moyen de fabrication
US20100268055A1 (en) * 2007-07-19 2010-10-21 Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University Self-Anchoring MEMS Intrafascicular Neural Electrode
CA2695374A1 (fr) * 2007-08-15 2009-02-19 Amunix, Inc. Compositions et procedes d'amelioration de la production de polypeptides recombines
SI2195023T1 (en) 2007-08-29 2018-07-31 Sanofi Humanized anti-CXCR5 antibodies, their derivatives and their uses
JP2009055838A (ja) * 2007-08-31 2009-03-19 Nipro Corp 融合タンパク質、該融合タンパク質に関連する遺伝子、ベクター、形質転換体及び抗炎症性医薬組成物
MX2010003099A (es) * 2007-09-21 2010-05-17 Univ California Interferon de objetivo demuestra actividades potentes apoptoticas y antitumorales.
EP2050764A1 (fr) 2007-10-15 2009-04-22 sanofi-aventis Nouveau format d'anticorps bispécifique polyvalent
AU2008314687A1 (en) * 2007-10-22 2009-04-30 Merck Serono S.A. Method for purifying Fc-fusion proteins
JP2011500757A (ja) * 2007-10-22 2011-01-06 メルク セローノ ソシエテ アノニム Fc含有タンパク質の精製方法
EP2225275A4 (fr) 2007-11-28 2013-04-03 Medimmune Llc Formulation de protéine
US8092804B2 (en) 2007-12-21 2012-01-10 Medimmune Limited Binding members for interleukin-4 receptor alpha (IL-4Rα)-173
EP3211010A1 (fr) 2007-12-21 2017-08-30 Medimmune Limited Éléments de liaison pour le récepteur alpha interleukin-4 (il-4r) - 173
US20100311072A1 (en) * 2008-01-28 2010-12-09 Bristol-Myers Squibb Company Fluorescence polarization binding assay for characterizing glucokinase ligands
AR070315A1 (es) 2008-02-07 2010-03-31 Merck & Co Inc Anticuerpos 1b20 antagonistas de pcsk9
AR070316A1 (es) 2008-02-07 2010-03-31 Merck & Co Inc Antagonistas de pcsk9 (proproteina subtilisina-kexina tipo 9)
ES2563553T3 (es) 2008-04-01 2016-03-15 Novo Nordisk A/S Conjugados de insulina-albúmina
WO2009124931A2 (fr) 2008-04-07 2009-10-15 Ablynx Nv Séquences d'acides aminés dirigées contre les voies notch et leurs utilisations
WO2009133208A1 (fr) 2008-05-02 2009-11-05 Novartis Ag Molécules de liaison à base de fibronectine améliorées et leurs utilisations
ES2654336T3 (es) * 2008-06-24 2018-02-13 Csl Behring Gmbh Factor VIII, factor de von Willebrand o sus complejos con semivida in vivo prolongada
AU2013202564B2 (en) * 2008-06-24 2015-09-17 Csl Behring Gmbh Factor VIII, von Willebrand factor or complexes thereof with prolonged in vivo half-life
EP3412300A1 (fr) 2008-06-27 2018-12-12 Duke University Agents thérapeutiques comprenant des peptides de type élastine
CN102149379A (zh) * 2008-07-10 2011-08-10 安吉翁生物医药有限公司 调节肝细胞生长因子(分散因子)活性的方法和肝细胞生长因子(分散因子)活性的小分子调节剂组合物
CA2731617A1 (fr) 2008-07-22 2010-01-28 Maria Joao Saraiva Sequences d'acides amines dirigees contre des recepteurs de desactiveurs multicibles et polypeptides
PL2328616T3 (pl) 2008-08-05 2015-10-30 Novartis Ag Kompozycje i sposoby dla przeciwciał celujących białko dopełniacza C5
MX2011002478A (es) 2008-09-07 2011-04-05 Glyconex Inc Anticuerpo anti-glucoesfingolipido tipo i extendido, derivados del mismo y su uso.
US20110293605A1 (en) 2008-11-12 2011-12-01 Hasige Sathish Antibody formulation
WO2010059315A1 (fr) * 2008-11-18 2010-05-27 Merrimack Pharmaceuticals, Inc. Lieurs de sérum-albumine humaine et conjugués de ceux-ci
MX2011005691A (es) 2008-11-28 2011-07-20 Univ Emory Metodos para el tratamiento de infecciones y tumores.
PE20120341A1 (es) 2008-12-09 2012-04-24 Genentech Inc Anticuerpos anti-pd-l1 y su uso para mejorar la funcion de celulas t
US8748115B2 (en) 2008-12-12 2014-06-10 Merck Sharp & Dohme Corp. PCSK9 immunoassay
WO2010080833A1 (fr) 2009-01-06 2010-07-15 Dyax Corp. Traitement de la mucosite par des inhibiteurs de kallikréine
US8323634B2 (en) 2009-01-16 2012-12-04 Teva Pharmaceutical Industries Ltd. Stable formulations of highly concentrated recombinant human albumin-human granulocyte colony stimulating factor
WO2010087927A2 (fr) 2009-02-02 2010-08-05 Medimmune, Llc Anticorps contre le virus respiratoire syncytial et procédés permettant de produire des vaccins contre le virus respirateur syncytial
US8716448B2 (en) 2009-02-03 2014-05-06 Amunix Operating Inc. Coagulation factor VII compositions and methods of making and using same
US8703717B2 (en) * 2009-02-03 2014-04-22 Amunix Operating Inc. Growth hormone polypeptides and methods of making and using same
CN102348715B (zh) 2009-02-03 2017-12-08 阿穆尼克斯运营公司 延伸重组多肽和包含该延伸重组多肽的组合物
US8680050B2 (en) * 2009-02-03 2014-03-25 Amunix Operating Inc. Growth hormone polypeptides fused to extended recombinant polypeptides and methods of making and using same
EP2396347B1 (fr) 2009-02-11 2017-04-12 Albumedix A/S Variants et conjugés de l'albumine
US8734796B2 (en) 2009-03-20 2014-05-27 Amgen Inc. Carrier immunoglobulins
WO2010128142A1 (fr) 2009-05-07 2010-11-11 Novozymes Biopharma Dk A/S Procédé de purification de l'albumine
EP2258398A1 (fr) * 2009-05-26 2010-12-08 Araclón Biotech, S. L. Conjugués d'albumine-peptide d'amyloide et leurs utilisations
US11512326B2 (en) * 2009-05-26 2022-11-29 University Of Florida Research Foundation, Incorporated Small angiotensin peptide expression system in mammalian cells
PT2440228T (pt) 2009-06-08 2018-12-24 Amunix Operating Inc Polipéptidos de regulação da glicose e métodos de preparação e utilização dos mesmos
US9849188B2 (en) 2009-06-08 2017-12-26 Amunix Operating Inc. Growth hormone polypeptides and methods of making and using same
CN101628346B (zh) * 2009-07-25 2012-05-16 大连理工大学 一种减缓碳纤维复合材料手工制孔出口速度的方法及其缓冲装置
WO2011020024A2 (fr) 2009-08-13 2011-02-17 The Johns Hopkins University Méthodes de modulation de la fonction immunitaire
CA2770609A1 (fr) 2009-08-20 2011-02-24 Csl Behring Gmbh Facteurs de coagulation fusionnes a de l'albumine pour l'administration non intraveineuse dans le cadre de la therapie et du traitement prophylactique des troubles hemostatiques
US20110202016A1 (en) * 2009-08-24 2011-08-18 Arsenal Medical, Inc. Systems and methods relating to polymer foams
US9044580B2 (en) 2009-08-24 2015-06-02 Arsenal Medical, Inc. In-situ forming foams with outer layer
US9173817B2 (en) 2009-08-24 2015-11-03 Arsenal Medical, Inc. In situ forming hemostatic foam implants
US10420862B2 (en) 2009-08-24 2019-09-24 Aresenal AAA, LLC. In-situ forming foams for treatment of aneurysms
US8451450B2 (en) * 2009-09-14 2013-05-28 Bio-Rad Laboratories, Inc. Near real time optical phase conjugation
UY32917A (es) 2009-10-02 2011-04-29 Boehringer Ingelheim Int Moléculas de unión a dll-4
US20110172398A1 (en) 2009-10-02 2011-07-14 Boehringer Ingelheim International Gmbh Bispecific binding molecules for anti-angiogenesis therapy
US8568726B2 (en) 2009-10-06 2013-10-29 Medimmune Limited RSV specific binding molecule
WO2011044368A1 (fr) 2009-10-07 2011-04-14 Macrogenics, Inc. Polypeptides contenant une région fc qui présentent une fonction d'effecteur améliorée due à des modifications de l'étendue de la fucosylation, et leurs méthodes d'utilisation
JP2013509191A (ja) 2009-10-30 2013-03-14 メルク・シャープ・エンド・ドーム・コーポレイション Ax1およびax189pcsk9アンタゴニストおよびバリアント
CN102741280B (zh) 2009-10-30 2015-12-02 诺维信生物制药丹麦公司 白蛋白变体
WO2011051327A2 (fr) 2009-10-30 2011-05-05 Novartis Ag Petites protéines à chaîne unique de type anticorps
WO2011053783A2 (fr) 2009-10-30 2011-05-05 Merck Sharp & Dohme Corp. Antagonistes et variants ax213 et ax132 pcsk9
WO2011051466A1 (fr) 2009-11-02 2011-05-05 Novartis Ag Molécules de liaison anti-idiotypiques à base de fibronectine et leurs utilisations
WO2011069164A2 (fr) 2009-12-06 2011-06-09 Biogen Idec Ma Inc. Polypeptides chimériques et hybrides de facteur viii-fc, et procédés d'utilisation de ceux-ci
AR079321A1 (es) 2009-12-08 2012-01-18 Teva Pharma Fusiones de albumina y polipeptido butirilcolinesterasa (bche) para el tratamiento del abuso de cocaina
EP2513145B1 (fr) 2009-12-14 2018-01-24 Ablynx N.V. Domaines variables uniques de liaison anti-ox40l, construits et application therapeutique
WO2011084145A2 (fr) 2009-12-21 2011-07-14 Pharmathene, Inc. Butyrylcholinestérases recombinantes et produits de troncature de ceux-ci
RS57870B1 (sr) 2010-01-06 2018-12-31 Dyax Corp Proteini koji vezuju kalikrein plazme
AR079944A1 (es) 2010-01-20 2012-02-29 Boehringer Ingelheim Int Anticuerpo neutralizante de la actividad de un anticoagulante
CN106139158A (zh) 2010-01-22 2016-11-23 诺沃—诺迪斯克保健股份有限公司 体内功效延长的生长激素
EP2525833A2 (fr) 2010-01-22 2012-11-28 Novo Nordisk Health Care AG Composés stables d'hormone de croissance
WO2011092233A1 (fr) 2010-01-29 2011-08-04 Novartis Ag Conjugaison de levures pour produire des combinaisons de liants à base de fibronectine à haute affinité
US9120855B2 (en) 2010-02-10 2015-09-01 Novartis Ag Biologic compounds directed against death receptor 5
WO2011100460A2 (fr) * 2010-02-11 2011-08-18 Ecole Polytechnique Federale De Lausanne Administration et co-administration de ligands de ccr7 en immunothérapie
PE20130527A1 (es) 2010-03-03 2013-05-09 Boehringer Ingelheim Int Polipeptidos de union a a-beta biparatopicos
EP2371857A1 (fr) 2010-04-01 2011-10-05 CSL Behring GmbH Inhibiteurs de facteur XII pour traiter la maladie de poumon interstitiel
US10233228B2 (en) 2010-04-09 2019-03-19 Albumedix Ltd Albumin derivatives and variants
BR112012028326A2 (pt) 2010-05-06 2017-03-21 Novartis Ag anticorpo multivalente isolado, anticorpos biparatópicos isolados, ácido nucleico, vetor, composição farmacêutica, método de obtenção dos referidos anticorpos, bem como uso do dos mesmos
EP4234698A3 (fr) 2010-05-06 2023-11-08 Novartis AG Compositions et procédés d'utilisation d'anticorps thérapeutiques dirigés contre la protéine 6 liée à la lipoprotéine de basse densité (lrp6)
EP3546483A1 (fr) 2010-05-20 2019-10-02 Ablynx N.V. Matériaux biologiques associés à her3
KR20230156435A (ko) 2010-07-09 2023-11-14 바이오버라티브 테라퓨틱스 인크. 인자 ix 폴리펩티드 및 이들의 사용 방법
EP3508573A1 (fr) 2010-07-09 2019-07-10 Bioverativ Therapeutics Inc. Systèmes de traitement de facteur viii et procédés associés
WO2012019061A2 (fr) 2010-08-05 2012-02-09 Stem Centrx, Inc. Nouveaux effecteurs et leurs procédés d'utilisation
EP2600901B1 (fr) 2010-08-06 2019-03-27 ModernaTX, Inc. Compositions pharmaceutiques a base d'acides nucléiques modifiés et leur utilisation medicale
US9517257B2 (en) 2010-08-10 2016-12-13 Ecole Polytechnique Federale De Lausanne (Epfl) Erythrocyte-binding therapeutics
CN108117586A (zh) 2010-08-10 2018-06-05 洛桑聚合联合学院 红细胞结合性治疗剂
US9850296B2 (en) 2010-08-10 2017-12-26 Ecole Polytechnique Federale De Lausanne (Epfl) Erythrocyte-binding therapeutics
EA036314B1 (ru) 2010-08-20 2020-10-26 Новартис Аг Выделенные антитела к рецептору эпидермального фактора роста-3 (her3) и их фрагменты, фармацевтическая композиция, содержащая эти антитела и фрагменты, и их применение для лечения рака
AU2011293127B2 (en) 2010-08-27 2016-05-12 Abbvie Stemcentrx Llc Notum protein modulators and methods of use
WO2012031273A2 (fr) 2010-09-03 2012-03-08 Stem Centrx, Inc. Nouveaux modulateurs et leurs procédés d'utilisation
US20120225081A1 (en) 2010-09-03 2012-09-06 Boehringer Ingelheim International Gmbh Vegf-binding molecules
WO2012040518A2 (fr) 2010-09-22 2012-03-29 Amgen Inc. Immunoglobulines porteuses et leur utilisation
WO2012050925A2 (fr) * 2010-09-28 2012-04-19 Amylin Pharmaceuticals, Inc. Leptines hautement solubles
ES2737960T3 (es) 2010-10-01 2020-01-17 Modernatx Inc Nucleósidos, nucleótidos y ácidos nucleicos modificados y sus usos
US8892184B2 (en) 2010-10-18 2014-11-18 Siemens Medical Solutions Usa, Inc. Systems and methods for reducing interference in a dual modality imaging system
US8853490B2 (en) * 2010-10-26 2014-10-07 Pioneer Hi Bred International Inc Antifungal proteins and methods of use
EP2635598A1 (fr) 2010-11-01 2013-09-11 Novozymes Biopharma DK A/S Variants d'albumine
JP6167040B2 (ja) 2010-11-05 2017-07-19 ザイムワークス,インコーポレイテッド Fcドメイン中に突然変異を有する、安定したヘテロ二量体抗体の設計
EP2638068B1 (fr) 2010-11-08 2018-12-26 Novartis AG Polypeptides se liant aux récepteurs de cxcr2
US9095606B1 (en) 2010-11-13 2015-08-04 Sirbal Ltd. Molecular and herbal combinations for treating psoriasis
US9066974B1 (en) 2010-11-13 2015-06-30 Sirbal Ltd. Molecular and herbal combinations for treating psoriasis
US20130245233A1 (en) 2010-11-24 2013-09-19 Ming Lei Multispecific Molecules
MX356400B (es) 2010-12-08 2018-05-28 Abbvie Stemcentrx Llc Moduladores novedosos y metodos de uso.
EP2660600B1 (fr) 2010-12-28 2018-08-08 Sumitomo Dainippon Pharma Co., Ltd. Médicament de diagnostic et procédé de diagnostic pour la maladie d'alzheimer
US20120171195A1 (en) 2011-01-03 2012-07-05 Ravindranath Mepur H Anti-hla-e antibodies, therapeutic immunomodulatory antibodies to human hla-e heavy chain, useful as ivig mimetics and methods of their use
KR102107695B1 (ko) 2011-01-06 2020-05-07 다이액스 코포레이션 혈장 칼리크레인 결합 단백질
SA112330278B1 (ar) 2011-02-18 2015-10-09 ستيم سينتركس، انك. مواد ضابطة جديدة وطرق للاستخدام
CA2828405A1 (fr) 2011-02-28 2012-09-07 Istituto Di Ricovero E Cura A Carattere Scientifico Materno-Infantile Bu Rlo Garofolo - Ospedale Di Alta Specializzazione E Di Rilievo Nazionale Molecules induisant l'apoptose et leurs utilisations
EP2681245B1 (fr) 2011-03-03 2018-05-09 Zymeworks Inc. Conception et constructions d'échafaudage hétéromultimère multivalent
EP2683397B1 (fr) 2011-03-09 2017-08-09 CSL Behring GmbH Inhibiteurs du facteur xii destinés à être administrés avec des procédures médicales comprenant le contact avec des surfaces artificielles
EP2497489A1 (fr) 2011-03-09 2012-09-12 CSL Behring GmbH Inhibiteur du facteur XII pour le traitement de la pénombre ischémique cérébrale et l'ischémie d'autres organes
PL3235508T3 (pl) 2011-03-16 2021-07-12 Sanofi Kompozycje zawierające białko podobne do przeciwciała z podwójnym regionem v
EP2686340A2 (fr) 2011-03-16 2014-01-22 Amgen Inc. Inhibiteurs puissants et sélectifs de nav1.3 et nav1.7
US9340584B2 (en) 2011-03-29 2016-05-17 The General Hospital Corporation Engineered thioredoxin-like fold proteins
AP2013007046A0 (en) 2011-03-30 2013-08-31 Boehringer Ingelheim Int Anticoagulant antidotes
AU2012236099A1 (en) 2011-03-31 2013-10-03 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
US9527925B2 (en) 2011-04-01 2016-12-27 Boehringer Ingelheim International Gmbh Bispecific binding molecules binding to VEGF and ANG2
US20130078247A1 (en) 2011-04-01 2013-03-28 Boehringer Ingelheim International Gmbh Bispecific binding molecules binding to dii4 and ang2
EP2515112B1 (fr) * 2011-04-22 2015-08-12 Sysmex Corporation Procédé de détection électrochimique d'analytes
WO2012149197A2 (fr) 2011-04-27 2012-11-01 Abbott Laboratories Procédé de contrôle du profil de galactosylation de protéines exprimées de manière recombinante
UA117218C2 (uk) 2011-05-05 2018-07-10 Мерк Патент Гмбх Поліпептид, спрямований проти il-17a, il-17f та/або il17-a/f
CN104011072B (zh) 2011-05-05 2018-10-12 阿尔布梅迪克斯医疗有限公司 白蛋白变体
US9561274B2 (en) 2011-06-07 2017-02-07 University Of Hawaii Treatment and prevention of cancer with HMGB1 antagonists
US9244074B2 (en) 2011-06-07 2016-01-26 University Of Hawaii Biomarker of asbestos exposure and mesothelioma
WO2012170969A2 (fr) 2011-06-10 2012-12-13 Biogen Idec Ma Inc. Composés pro-coagulants et leurs procédés d'utilisation
WO2012172495A1 (fr) 2011-06-14 2012-12-20 Novartis Ag Compositions et procédés de ciblage du tem8 par des anticorps
US20160145589A1 (en) 2011-06-24 2016-05-26 Green Cross Corporation Composition and formulation comprising recombinant human iduronate-2-sulfatase and preparation method thereof
CN110551223A (zh) 2011-06-28 2019-12-10 英伊布里克斯有限合伙公司 丝氨酸蛋白酶抑制蛋白融合多肽及其使用方法
MX2014000031A (es) 2011-07-01 2014-07-09 Bayer Ip Gmbh Polipeptidos de fusion de relaxina y usos de los mismos.
BR112014000042A2 (pt) 2011-07-05 2017-02-21 Novozymes Biopharma Dk As composição, meio de cultura celular, uso de uma composição, e, método para cultivar células
WO2013009539A1 (fr) 2011-07-08 2013-01-17 Amylin Pharmaceuticals, Inc. Polypeptides manipulés présentant une durée d'action accrue et une immunogénicité réduite
CA2840944A1 (fr) 2011-07-08 2013-01-17 Bayer Intellectual Property Gmbh Proteines de fusion liberant de la relaxine et leurs utilisations
US9353172B2 (en) 2011-07-18 2016-05-31 Arts Biologics A/S Long acting biologically active luteinizing hormone (LH) compound
CA2841185C (fr) 2011-07-22 2021-05-25 Csl Behring Gmbh Anticorps monoclonaux inhibiteurs anti-facteur xii/xiia et leurs utilisations
US20130058947A1 (en) 2011-09-02 2013-03-07 Stem Centrx, Inc Novel Modulators and Methods of Use
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
EP3682905B1 (fr) 2011-10-03 2021-12-01 ModernaTX, Inc. Nucléosides, nucléotides et acides nucléiques modifiés et leurs utilisations
US10598653B2 (en) 2011-11-01 2020-03-24 Bionomics Inc. Methods of blocking cancer stem cell growth
AU2012332590B2 (en) 2011-11-01 2016-10-20 Bionomics, Inc. Anti-GPR49 antibodies
US8993831B2 (en) * 2011-11-01 2015-03-31 Arsenal Medical, Inc. Foam and delivery system for treatment of postpartum hemorrhage
CA2853951A1 (fr) 2011-11-01 2013-05-10 Bionomics, Inc. Anticorps et procedes de traitement du cancer
US9221907B2 (en) 2011-11-01 2015-12-29 Bionomics Inc. Anti-GPR49 monoclonal antibodies
PL2773671T3 (pl) 2011-11-04 2022-01-24 Zymeworks Inc. Projekt stabilnego przeciwciała heterodimerycznego z mutacjami w domenie fc
EP3252075A1 (fr) 2011-11-04 2017-12-06 Novartis AG Constructions de protéine 6 liée à la lipoprotéine de basse densité (lrp6) prolongeant leur demi-vie
EP2780364A2 (fr) 2011-11-18 2014-09-24 Eleven Biotherapeutics, Inc. Protéines ayant une demi-vie et d'autres propriétés améliorées
WO2013084148A2 (fr) 2011-12-05 2013-06-13 Novartis Ag Anticorps pour le récepteur 3 du facteur de croissance épidermique (her3) dirigé contre le domaine ii de her3
EA036739B1 (ru) 2011-12-05 2020-12-15 Новартис Аг Антитела к рецептору эпидермального фактора роста 3 (her3)
EP2791160B1 (fr) 2011-12-16 2022-03-02 ModernaTX, Inc. Compositions de mrna modifiés
CA2859493A1 (fr) 2011-12-21 2013-06-27 Novartis Ag Compositions et procedes pour des anticorps ciblant le facteur p
JP6127063B2 (ja) 2011-12-22 2017-05-10 ツェー・エス・エル・ベーリング・ゲー・エム・ベー・ハー 中枢神経系の続発性浮腫の治療のためのc1インヒビターの使用
US20130177574A1 (en) 2012-01-11 2013-07-11 Paul I. Terasaki Foundation Laboratory ANTI-HLA CLASS-Ib ANTIBODIES MIMIC IMMUNOREACTIVITY AND IMMUNOMODULATORY FUNCTIONS OF INTRAVENOUS IMMUNOGLOBULIN (IVIg) USEFUL AS THERAPEUTIC IVIg MIMETICS AND METHODS OF THEIR USE
NZ626945A (en) 2012-01-12 2016-10-28 Biogen Ma Inc Chimeric factor viii polypeptides and uses thereof
EP2623110A1 (fr) 2012-01-31 2013-08-07 CSL Behring GmbH Inhibiteurs de facteur XII pour le traitement de troubles inflammatoires neurologiques
US9458223B2 (en) * 2012-02-15 2016-10-04 Csl Behring Gmbh Von willebrand factor variants having improved factor VIII binding affinity
KR20190094480A (ko) 2012-02-15 2019-08-13 바이오버라티브 테라퓨틱스 인크. 재조합 인자 viii 단백질
CN111548418A (zh) 2012-02-15 2020-08-18 比奥贝拉蒂治疗公司 因子viii组合物及其制备和使用方法
ES2781773T3 (es) 2012-02-15 2020-09-07 Ecole Polytechnique Fed Lausanne Epfl Productos terapéuticos de unión a los eritrocitos
EP3093293A1 (fr) 2012-02-24 2016-11-16 Stemcentrx, Inc. Anticorps anti dll3 et procédés d'utilisation
MX349192B (es) 2012-02-27 2017-07-18 Boehringer Ingelheim Int Polipeptidos de union a cx3cr1.
AU2013234299B2 (en) 2012-03-16 2017-06-22 Albumedix Ltd. Albumin variants
GB201204868D0 (en) * 2012-03-20 2012-05-02 San Raffaele Centro Fond Peptides
US9592289B2 (en) 2012-03-26 2017-03-14 Sanofi Stable IgG4 based binding agent formulations
US9550819B2 (en) 2012-03-27 2017-01-24 Ngm Biopharmaceuticals, Inc. Compositions and methods of use for treating metabolic disorders
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9303079B2 (en) 2012-04-02 2016-04-05 Moderna Therapeutics, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
AU2013243948A1 (en) 2012-04-02 2014-10-30 Moderna Therapeutics, Inc. Modified polynucleotides for the production of proteins associated with human disease
US9067990B2 (en) 2013-03-14 2015-06-30 Abbvie, Inc. Protein purification using displacement chromatography
US9334319B2 (en) 2012-04-20 2016-05-10 Abbvie Inc. Low acidic species compositions
WO2013158273A1 (fr) 2012-04-20 2013-10-24 Abbvie Inc. Procédés de modulation de la distribution de variant de lysine c-terminal
JP2015516813A (ja) 2012-04-27 2015-06-18 シトムクス セラピューティクス,インコーポレイティド 上皮成長因子受容体を結合する活性化可能抗体及びその使用方法
WO2013166290A1 (fr) 2012-05-04 2013-11-07 Abbvie Biotherapeutics Inc. Dosage de biomarqueurs de p21
US9328174B2 (en) 2012-05-09 2016-05-03 Novartis Ag Chemokine receptor binding polypeptides
JP6351572B2 (ja) 2012-05-10 2018-07-04 ザイムワークス,インコーポレイテッド Fcドメインに突然変異を有する免疫グロブリン重鎖のヘテロ多量体構築物
WO2013176754A1 (fr) 2012-05-24 2013-11-28 Abbvie Inc. Nouvelle purification d'anticorps au moyen de chromatographie à interaction hydrophobe
WO2013177386A1 (fr) 2012-05-24 2013-11-28 Abbvie Biotherapeutics Inc. Biomarqueurs destinés à prédire la réponse à une thérapie par un agoniste du récepteur tweak (tweakr)
JP6117347B2 (ja) 2012-05-30 2017-04-19 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 生物農薬および殺虫剤を含む組成物
ES2703754T3 (es) 2012-05-30 2019-03-12 Bayer Cropscience Ag Composición que comprende un agente de control biológico y un fungicida seleccionado de metalaxilo y metalaxil-M
JP6181162B2 (ja) 2012-05-30 2017-08-16 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 生物的防除剤及び殺虫剤を含んでいる組成物
HUE044560T2 (hu) 2012-05-30 2019-11-28 Bayer Cropscience Ag Biológiai kontroll szert és aminosav- vagy fehérje- bioszintézis inhibitorok, ATP elõállítás inhibitorok és sejtfal szintézis inhibitorok körébõl választott gombaölõ szert tartalmazó kompozíció
NZ701724A (en) 2012-05-30 2016-11-25 Bayer Cropscience Ag Compositions comprising a biological control agent and an insecticide
NZ742943A (en) 2012-05-30 2019-04-26 Bayer Cropscience Ag Compositions comprising a biological control agent and a fungicide from the group consisting of inhibitors of the respiratory chain at complex i or ii
WO2013178648A1 (fr) 2012-05-30 2013-12-05 Bayer Cropscience Ag Composition comprenant un agent de régulation biologique et un fongicide sélectionné parmi les inhibiteurs de la biosynthèse de l'ergostérol
BR112014029123A2 (pt) 2012-05-30 2017-06-27 Bayer Cropscience Ag composições compreendendo um agente de controle biológico e um inseticida
PT2854549T (pt) 2012-05-30 2018-11-28 Bayer Cropscience Ag Composição que compreende um agente de controlo biológico e fluopicolida
EP3488700B1 (fr) 2012-05-30 2020-12-16 Bayer CropScience Aktiengesellschaft Compositions comprenant un agent de contrôle biologique et un fongicide
PT2854547T (pt) 2012-05-30 2018-11-16 Bayer Cropscience Ag Composição que compreende um agente de controlo biológico e trifloxistrobina
EP3363289A3 (fr) 2012-05-30 2018-10-17 Bayer CropScience Aktiengesellschaft Compositions comprenant un agent de contrôle biologique et un insecticide
AU2013270683A1 (en) 2012-06-08 2014-12-11 Biogen Ma Inc. Chimeric clotting factors
EP2858659B1 (fr) 2012-06-08 2019-12-25 Bioverativ Therapeutics Inc. Composés pro-coagulants
KR101380740B1 (ko) 2012-06-29 2014-04-11 쉐어 휴먼 제네텍 세러피스, 인코포레이티드 이듀로네이트-2-설파타제의 정제
US9150841B2 (en) 2012-06-29 2015-10-06 Shire Human Genetic Therapies, Inc. Cells for producing recombinant iduronate-2-sulfatase
PT2882450T (pt) 2012-07-11 2020-02-19 Bioverativ Therapeutics Inc Complexo de fator viii com xten e a proteína fator de von willebrand, e utilizações do mesmo
CN104768571B (zh) 2012-07-13 2018-11-09 酵活有限公司 多价异多聚体支架设计和构建体
WO2014036520A1 (fr) 2012-08-30 2014-03-06 Merrimack Pharmaceuticals, Inc. Polythérapies comprenant des agents anti-erbb3
KR20150043523A (ko) 2012-09-02 2015-04-22 애브비 인코포레이티드 단백질 불균일성의 제어 방법
US9512214B2 (en) 2012-09-02 2016-12-06 Abbvie, Inc. Methods to control protein heterogeneity
AU2013331000B2 (en) 2012-10-18 2018-04-19 Bioverativ Therapeutics Inc. Methods of using a fixed dose of a clotting factor
GB2512156A (en) 2012-11-08 2014-09-24 Novozymes Biopharma Dk As Albumin variants
MX369276B (es) 2012-11-13 2019-11-04 Biontech Ag Agentes para tratamiento de enfermedades cancerosas que expresan claudina.
EP4074834A1 (fr) 2012-11-26 2022-10-19 ModernaTX, Inc. Arn à terminaison modifiée
WO2014084859A1 (fr) 2012-11-30 2014-06-05 Novartis Ag Molécules et procédés pour la modulation d'activités de tmem16a
PL2928921T3 (pl) 2012-12-05 2021-06-28 Novartis Ag Kompozycje i sposoby dla przeciwciał celujących w epo
JP6426107B2 (ja) 2012-12-20 2018-11-21 アムジエン・インコーポレーテツド Apj受容体アゴニストおよびその使用
CA2896793A1 (fr) 2013-01-15 2014-07-24 Teva Pharmaceutical Industries Ltd. Formulations d'albu-bche, leur preparation et leurs utilisations
KR101503907B1 (ko) * 2013-01-17 2015-03-20 서울대학교산학협력단 흉막폐렴균과 마이코플라즈마 하이오뉴모니아 감염 질환 예방을 위한 재조합 단백질 백신
CA2899170C (fr) 2013-01-30 2022-08-02 Ngm Biopharmaceuticals, Inc. Compositions et methodes d'utilisation servant au traitement de desordres metaboliques
US9161966B2 (en) 2013-01-30 2015-10-20 Ngm Biopharmaceuticals, Inc. GDF15 mutein polypeptides
JP2016511244A (ja) 2013-02-11 2016-04-14 バイエル クロップサイエンス エルピーBayer Cropscience Lp ストレプトミセス(Streptomyces)属に基づく生物的防除剤及び別の生物的防除剤を含んでいる組成物
SI3889173T1 (sl) 2013-02-15 2023-11-30 Bioverativ Therapeutics Inc. Optimiran gen dejavnika VIII
EP2956002B1 (fr) 2013-02-16 2017-09-06 Albumedix A/S Modèle pharmacocinétique animal
US10441631B2 (en) 2013-02-28 2019-10-15 Csl Behring Gmbh Therapeutic agent for amniotic fluid embolism
USRE48805E1 (en) 2013-03-06 2021-11-02 Vision Global Holdings Ltd. Method for cancer targeting treatment and detection of arginine using albumin-binding arginine deiminase fusion protein
US9255262B2 (en) * 2013-03-06 2016-02-09 Vision Global Holdings Ltd. Albumin-binding arginine deminase and the use thereof
JP6636334B2 (ja) 2013-03-08 2020-01-29 ツェー・エス・エル・ベーリング・ゲー・エム・ベー・ハー 遠隔虚血再灌流傷害の治療および予防
CA2940513C (fr) 2013-03-11 2023-08-15 University Of Florida Research Foundation, Inc. Delivrance d'une proteine a domaine de recrutement des caspases (card) en tant que therapie pour inflammation oculaire
SG11201507230PA (en) 2013-03-12 2015-10-29 Abbvie Inc Human antibodies that bind human tnf-alpha and methods of preparing the same
TW201446792A (zh) 2013-03-12 2014-12-16 Amgen Inc Nav1.7之強效及選擇性抑制劑
EP2968587A2 (fr) 2013-03-13 2016-01-20 Bristol-Myers Squibb Company Domaines d'échafaudage à base de fibronectine liés à une sérum albumine ou fragment se liant à celle-ci
WO2014159813A1 (fr) 2013-03-13 2014-10-02 Moderna Therapeutics, Inc. Molécules polynucléotidiques à longue durée de vie
CN105246916A (zh) 2013-03-14 2016-01-13 诺华股份有限公司 针对notch 3的抗体
WO2014159579A1 (fr) 2013-03-14 2014-10-02 Abbvie Inc. Anticorps anti-tnfα ayant mutés et leurs procédés d'utilisation
WO2014151878A2 (fr) 2013-03-14 2014-09-25 Abbvie Inc. Procédés pour la modulation des profils de glycosylation de protéines de traitements à base de protéines recombinantes au moyen de monosaccharides et d'oligosaccharides
US9017687B1 (en) 2013-10-18 2015-04-28 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same using displacement chromatography
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
AU2014228938B2 (en) 2013-03-15 2019-05-02 Bioverativ Therapeutics Inc. Factor IX polypeptide formulations
US20160051673A1 (en) 2013-03-29 2016-02-25 Alexion Pharmaceuticals, Inc. Compositions and methods for increasing the serum half-life of a therapeutic agent targeting complement c5
US11045523B2 (en) 2013-04-05 2021-06-29 Novo Nordisk Healthcare Ag Formulation of growth hormone albumin-binder conjugate
EP2796145B1 (fr) 2013-04-22 2017-11-01 CSL Ltd. Un complexe covalent de facteur von willebrand et de faktor viii conjugé par un pont disulfure
AR096601A1 (es) 2013-06-21 2016-01-20 Novartis Ag Anticuerpos del receptor 1 de ldl oxidado similar a lectina y métodos de uso
UY35620A (es) 2013-06-21 2015-01-30 Novartis Ag Anticuerpos del receptor 1 de ldl oxidado similar a lectina y métodos de uso
ES2897746T3 (es) 2013-06-28 2022-03-02 Csl Behring Gmbh Terapia combinada con un inhibidor del Factor XII y un inhibidor de C1
CN104342420B (zh) * 2013-07-30 2017-09-15 惠觅宙 一种重组长效人透明质酸酶、其编码基因、生产方法及应用
TW202003554A (zh) 2013-08-14 2020-01-16 美商百歐維拉提夫治療公司 因子viii-xten融合物及其用途
EP4108254A1 (fr) 2013-08-14 2022-12-28 Bioverativ Therapeutics Inc. Protéines de facteur viii de recombinaison
CA2920835A1 (fr) 2013-08-20 2015-02-26 Anutra Medical, Inc. Systeme de remplissage de seringue et procede associe
EP3892294A1 (fr) 2013-08-28 2021-10-13 AbbVie Stemcentrx LLC Procédés et compositions de conjugaison d'anticorps spécifique à un site
EP3338793A1 (fr) 2013-08-28 2018-06-27 AbbVie Stemcentrx LLC Nouveaux modulateurs sez6 et procédés d'utilisation
EP3903599A1 (fr) 2013-09-25 2021-11-03 Bioverativ Therapeutics Inc. Procédés d'inactivation de virus sur colonne
CN103468662A (zh) * 2013-09-29 2013-12-25 惠觅宙 一种重组人透明质酸酶、其生产纯化方法、制剂及使用方法与应用
WO2015048744A2 (fr) 2013-09-30 2015-04-02 Moderna Therapeutics, Inc. Polynucléotides codant des polypeptides de modulation immunitaire
CA2926218A1 (fr) 2013-10-03 2015-04-09 Moderna Therapeutics, Inc. Polynucleotides codant pour un recepteur de lipoproteines de faible densite
US9598667B2 (en) 2013-10-04 2017-03-21 Abbvie Inc. Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins
WO2015057403A2 (fr) * 2013-10-17 2015-04-23 Tarix Pharmaceuticals Ltd. Compositions et méthodes de traitement d'une maladie inflammatoire chronique de l'intestin
US9085618B2 (en) 2013-10-18 2015-07-21 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same
US9181337B2 (en) 2013-10-18 2015-11-10 Abbvie, Inc. Modulated lysine variant species compositions and methods for producing and using the same
US8946395B1 (en) 2013-10-18 2015-02-03 Abbvie Inc. Purification of proteins using hydrophobic interaction chromatography
US9540440B2 (en) 2013-10-30 2017-01-10 Cytomx Therapeutics, Inc. Activatable antibodies that bind epidermal growth factor receptor and methods of use thereof
US10988745B2 (en) 2013-10-31 2021-04-27 Resolve Therapeutics, Llc Therapeutic nuclease-albumin fusions and methods
EP3063171B1 (fr) * 2013-11-01 2019-07-24 University Of Oslo Variants d'albumine et utilisations de ceux-ci
WO2015070014A1 (fr) 2013-11-08 2015-05-14 Biogen Idec Ma Inc. Composé de fusion procoagulant
WO2015073884A2 (fr) 2013-11-15 2015-05-21 Abbvie, Inc. Compositions de protéines de liaison génétiquement glycomodifiées
WO2015089283A1 (fr) 2013-12-11 2015-06-18 Cytomx Therapeutics, Inc. Anticorps qui se lient à des anticorps activables et leurs procédés d'utilisation
US8986691B1 (en) 2014-07-15 2015-03-24 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US8980273B1 (en) 2014-07-15 2015-03-17 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
WO2015104711A1 (fr) 2014-01-09 2015-07-16 Hadasit Medical Research Services And Development Ltd. Compositions cellulaires améliorées et procédés pour la thérapie du cancer
SI3091997T1 (sl) 2014-01-10 2022-10-28 Bioverativ Therapeutics Inc. Himerni proteini faktorja VIII in njihova uporaba
US10953101B2 (en) 2014-02-21 2021-03-23 École Polytechnique Fédérale De Lausanne (Epfl) Glycotargeting therapeutics
US10946079B2 (en) 2014-02-21 2021-03-16 Ecole Polytechnique Federale De Lausanne Glycotargeting therapeutics
JP6744227B2 (ja) 2014-02-21 2020-08-19 エコール・ポリテクニーク・フェデラル・ドゥ・ローザンヌ(ウペエフエル)Ecole Polytechnique Federale de Lausanne (EPFL) 糖標的化治療剤
US10046056B2 (en) 2014-02-21 2018-08-14 École Polytechnique Fédérale De Lausanne (Epfl) Glycotargeting therapeutics
WO2015138628A1 (fr) 2014-03-11 2015-09-17 University Of Florida Research Foundation, Inc. Utilisation de la protéine m013 exprimée par un vecteur aav comme agent thérapeutique anti-inflammatoire
WO2015140591A1 (fr) 2014-03-21 2015-09-24 Nordlandssykehuset Hf Anticorps anti-cd14 et leurs utilisations
WO2015160618A1 (fr) 2014-04-16 2015-10-22 Bayer Cropscience Lp Compositions comprenant de la ningnanmycine et un agent de lutte biologique
WO2015164615A1 (fr) 2014-04-24 2015-10-29 University Of Oslo Anticorps anti-gluten et leurs utilisations
WO2015173633A2 (fr) 2014-05-02 2015-11-19 Cerenis Therapeutics Holding Sa Marqueurs de thérapie hdl
CN105198999A (zh) * 2014-05-27 2015-12-30 上海生物制品研究所有限责任公司 一种融合蛋白、其制备方法及其应用
USD774182S1 (en) 2014-06-06 2016-12-13 Anutra Medical, Inc. Anesthetic delivery device
USD763433S1 (en) 2014-06-06 2016-08-09 Anutra Medical, Inc. Delivery system cassette
USD750768S1 (en) 2014-06-06 2016-03-01 Anutra Medical, Inc. Fluid administration syringe
EP4257152A3 (fr) 2014-06-10 2023-12-06 Amgen Inc. Polypeptides d'apéline
PL3157548T3 (pl) 2014-06-18 2022-01-17 Csl Behring Gmbh Terapia z zastosowaniem inhibitora czynnika xii w zaburzeniu neurotraumatycznym
EP3157947A1 (fr) 2014-06-23 2017-04-26 Novartis AG Polypeptide de fusion hsa-gdf-15 et son utilisation
EP3160496B1 (fr) 2014-06-24 2021-03-03 Novo Nordisk As Protéines de fusion mic-1 et utilisations associées
WO2016004113A1 (fr) 2014-06-30 2016-01-07 Biogen Ma Inc. Gène du facteur ix optimisé
WO2016018931A1 (fr) 2014-07-30 2016-02-04 Ngm Biopharmaceuticals, Inc. Compositions et méthodes d'utilisation pour le traitement de troubles métaboliques
EP3194437B1 (fr) 2014-08-07 2021-01-20 Novartis AG Anticorps contre la protéine analogue à l'angiopoïétine 4 et leur utilisation
KR20240056627A (ko) 2014-08-07 2024-04-30 노파르티스 아게 안지오포이에틴-유사 4 항체 및 사용 방법
TWI563001B (en) 2014-08-22 2016-12-21 Univ Nat Cheng Kung Disintegrin variants and pharmaceutical uses thereof
MX2017003452A (es) 2014-09-17 2017-07-28 Bayer Cropscience Lp Composiciones que comprenden celulas recombinantes de bacillus y otro agente de control biologico.
US9616114B1 (en) 2014-09-18 2017-04-11 David Gordon Bermudes Modified bacteria having improved pharmacokinetics and tumor colonization enhancing antitumor activity
EP3197481A1 (fr) 2014-09-26 2017-08-02 Bayer Pharma Aktiengesellschaft Dérivés d'adrénomédulline stabilisés et leur utilisation
MA41044A (fr) 2014-10-08 2017-08-15 Novartis Ag Compositions et procédés d'utilisation pour une réponse immunitaire accrue et traitement contre le cancer
PL3207130T3 (pl) 2014-10-14 2020-02-28 Halozyme, Inc. Kompozycje deaminazy adenozyny 2 (ada2), jej warianty i sposoby ich zastosowania
MA40835A (fr) 2014-10-23 2017-08-29 Biogen Ma Inc Anticorps anti-gpiib/iiia et leurs utilisations
AU2015339130C1 (en) 2014-10-31 2021-03-18 Ngm Biopharmaceuticals, Inc. Compositions and methods of use for treating metabolic disorders
US20160130324A1 (en) * 2014-10-31 2016-05-12 Shire Human Genetic Therapies, Inc. C1 Inhibitor Fusion Proteins and Uses Thereof
MA40861A (fr) 2014-10-31 2017-09-05 Biogen Ma Inc Anticorps anti-glycoprotéines iib/iiia
GB201420139D0 (en) 2014-11-12 2014-12-24 Ucl Business Plc Factor IX gene therapy
UY36449A (es) 2014-12-19 2016-07-29 Novartis Ag Composiciones y métodos para anticuerpos dirigidos a bmp6
SG11201705019PA (en) * 2014-12-23 2017-07-28 Merz Pharma Gmbh & Co Kgaa Botulinum toxin prefilled container
JP6773679B2 (ja) * 2015-03-30 2020-10-21 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. Fcガンマ受容体に対する結合が低下した重鎖定常領域
JP2016204292A (ja) * 2015-04-21 2016-12-08 国立大学法人 熊本大学 Bmp7変異体とアルブミンとの融合体、及び該融合体を含む腎疾患治療剤
PL3288965T3 (pl) * 2015-04-29 2019-11-29 Mediolanum Farm S P A Rozpuszczalny chimeryczny receptor interleukiny-10 i jego zastosowanie terapeutyczne
WO2016195723A1 (fr) * 2015-06-03 2016-12-08 Beller Pharmaceuticals LLC Méthodes de traitement d'états médiés par la substance p
KR20180014714A (ko) 2015-06-05 2018-02-09 노파르티스 아게 골 형태형성 단백질 9 (bmp9)를 표적화하는 항체 및 그에 대한 방법
JP2018524067A (ja) * 2015-06-11 2018-08-30 アットウィル メディカル ソルーションズ インコーポレイテッド アンチトロンビン−ヘパリン組成物を利用する医療機器、システムおよび方法
JOP20200312A1 (ar) 2015-06-26 2017-06-16 Novartis Ag الأجسام المضادة للعامل xi وطرق الاستخدام
ES2852002T3 (es) * 2015-07-30 2021-09-10 Endor Tech S L Factor estimulante de colonias para su uso en el tratamiento del cáncer de páncreas o de colon
US11236159B2 (en) 2015-08-03 2022-02-01 Novartis Ag Methods of treating FGF21-associated disorders
JP6909203B2 (ja) 2015-08-03 2021-07-28 バイオベラティブ セラピューティクス インコーポレイテッド 第ix因子融合タンパク質及びそれらの製造方法及び使用方法
WO2017024198A1 (fr) * 2015-08-06 2017-02-09 The Trustees Of The University Of Pennsylvania Glp-1 et son utilisation dans des compositions pour traiter des maladies métaboliques
JP7007261B2 (ja) 2015-08-20 2022-01-24 アルブミディクス リミティド アルブミン変異体及びコンジュゲート
US10654912B2 (en) 2015-09-08 2020-05-19 Jcr Pharmaceuticals Co., Ltd. Human serum albumin mutant
LT3347377T (lt) 2015-09-09 2021-05-25 Novartis Ag Užkrūčio liaukos stromos limfopoetiną (tslp) rišantys antikūnai ir antikūnų panaudojimo būdai
US10000561B2 (en) 2015-09-09 2018-06-19 Novartis Ag Thymic stromal lymphopoietin (TSLP)-binding molecules and methods of using the molecules
KR20180049080A (ko) * 2015-09-11 2018-05-10 더 보드 오브 트러스티스 오브 더 리랜드 스탠포드 쥬니어 유니버시티 생물학적으로 관련된 직교 사이토카인/수용체 쌍
SI3383425T1 (sl) 2015-12-04 2020-11-30 Boehringer Ingelheim International Gmbh Biparatopični polipeptidi, ki antagonizirajo WNT-signaliziranje v tumorskih celicah
BR112018011622A2 (pt) 2015-12-11 2018-11-27 Dyax Corp método para tratar ataque de angioedema hereditário (hae) ou reduzir a taxa de ataque de hae
JP2019506844A (ja) 2015-12-18 2019-03-14 ノバルティス アーゲー CD32bを標的とする抗体およびその使用方法
WO2017109706A1 (fr) 2015-12-22 2017-06-29 Novartis Ag Méthodes de traitement ou d'amélioration de troubles métaboliques à l'aide du facteur-15 de croissance et de différenciation (gdf-15)
CN108473569B (zh) 2016-01-11 2022-11-22 苏黎世大学 针对人白介素-2的免疫刺激性人源化单克隆抗体及其融合蛋白
US20210198368A1 (en) 2016-01-21 2021-07-01 Novartis Ag Multispecific molecules targeting cll-1
JP7217630B2 (ja) 2016-02-01 2023-02-03 バイオベラティブ セラピューティクス インコーポレイテッド 最適化第viii因子遺伝子
EP3431508A4 (fr) 2016-03-14 2019-08-14 JCR Pharmaceuticals Co., Ltd. Protéine de fusion albumine sérique-hormone de croissance 20k
EP3432925A4 (fr) 2016-03-22 2019-11-06 Bionomics Limited Administration d'un anticorps monoclonal anti-lgr5
PE20190126A1 (es) 2016-03-31 2019-01-17 Ngm Biopharmaceuticals Inc Proteinas de union y metodos de uso de las mismas
WO2017173494A1 (fr) 2016-04-06 2017-10-12 Csl Limited Méthode de traitement de l'athérosclérose
CN109071647B (zh) 2016-04-27 2022-11-22 诺华股份有限公司 抗生长分化因子15的抗体及其用途
DK3458478T3 (da) 2016-05-18 2021-03-22 Boehringer Ingelheim Int Anti-pd-1- og anti-lag3-antistoffer til cancerbehandling
CN110381988A (zh) 2016-06-15 2019-10-25 诺华股份有限公司 使用骨形态发生蛋白6(bmp6)的抑制剂治疗疾病的方法
CA3029887A1 (fr) * 2016-07-08 2018-01-11 CSL Behring Lengnau AG Administration sous-cutanee de facteur ix a action prolongee chez des humains
WO2018014260A1 (fr) 2016-07-20 2018-01-25 Nanjing Legend Biotech Co., Ltd. Protéines de liaison antigènes multi-spécifiques et leurs procédés d'utilisation
CN109562149A (zh) 2016-08-05 2019-04-02 德国杰特贝林生物制品有限公司 C1酯酶抑制剂的药物制剂
AU2017316513A1 (en) 2016-08-23 2019-03-28 Csl Behring Gmbh Method of preventing acute attacks of hereditary angioedema associated with C1 esterase inhibitor deficiency
WO2018068201A1 (fr) 2016-10-11 2018-04-19 Nanjing Legend Biotech Co., Ltd. Anticorps à domaine unique et ses variants contre ctla-4
WO2018082758A1 (fr) 2016-11-04 2018-05-11 Aarhus Universitet Identification et traitement de tumeurs caractérisées par une surexpression du récepteur fc néonatal
US11324804B2 (en) * 2016-11-18 2022-05-10 Sepsia Therapeutics, S.L. Combined CD6 and imipenem therapy for treatment of infectious diseases and related inflammatory processes
WO2018096396A1 (fr) 2016-11-22 2018-05-31 University Of Oslo Variants d'albumine et leurs utilisations
CA3044838A1 (fr) 2016-12-02 2018-06-07 Bioverativ Therapeutics Inc. Procedes d'induction de tolerance immunitaire a des facteurs de coagulation
IL266972B2 (en) 2016-12-02 2024-04-01 Bioverativ Therapeutics Inc Methods for the treatment of hemophilic arthritis with the help of chimeric blood coagulation factors
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
EP3562840A1 (fr) 2016-12-16 2019-11-06 Biogen MA Inc. Facteur 11 de différenciation de croissance activé protéolytiquement stabilisé
EP3360898A1 (fr) 2017-02-14 2018-08-15 Boehringer Ingelheim International GmbH Molécules bispécifiques présentant une immunoréactivité par rapport à tnf-related apoptosis-inducing ligand receptor 2 et à cadherin 17 pour le traitement du cancer
GB2605925B (en) 2016-12-23 2023-02-22 Harvard College Gene editing of PCSK9
EP3559047A1 (fr) 2016-12-23 2019-10-30 Novartis AG Anticorps de facteur xi et méthodes d'utilisation
JP7110199B2 (ja) 2016-12-23 2022-08-01 ノバルティス アーゲー 抗第XI/XIa因子抗体による処置法
EP3568411B1 (fr) 2017-01-13 2024-03-06 Pietro P. Sanna Procédés et compositions pour le traitement de l'hyperactivité hpa
TW201831521A (zh) 2017-01-31 2018-09-01 美商生物化學醫療公司 因子ix融合蛋白以及其製備方法及使用方法
CA3052911A1 (fr) 2017-02-08 2018-08-16 Novartis Ag Anticorps mimetiques du fgf21 et leurs utilisations
MA50141A (fr) 2017-04-20 2020-07-29 Novo Nordisk As Procédés de purification de protéines de fusion d'albumine
TWI710377B (zh) 2017-05-23 2020-11-21 丹麥商諾佛 儂迪克股份有限公司 Mic-1化合物及其用途
MY200744A (en) 2017-05-31 2024-01-13 Boehringer Ingelheim Int Gmbh Polypeptides antagonizing wnt signaling in tumor cells
WO2018229715A1 (fr) 2017-06-16 2018-12-20 Novartis Ag Compositions comprenant des anticorps anti-cd32b et procédés d'utilisation correspondants
WO2018232176A1 (fr) 2017-06-16 2018-12-20 The University Of Chicago Compositions et procédés d'induction d'une tolérance immunitaire
MX2019014651A (es) 2017-06-29 2020-02-07 CSL Behring Lengnau AG Regimen de dosificacion de 21 dias para proteinas de fusion que comprenden el factor ix y albumina humana para el tratamiento profilactico de hemofilia y metodos del mismo.
US20210346513A1 (en) 2017-08-04 2021-11-11 Amgen Inc. Method of conjugation of cys-mabs
KR20200035130A (ko) 2017-08-09 2020-04-01 바이오버라티브 테라퓨틱스 인크. 핵산 분자 및 이의 용도
US11485781B2 (en) 2017-08-17 2022-11-01 Massachusetts Institute Of Technology Multiple specificity binders of CXC chemokines
CA3075686A1 (fr) 2017-09-15 2019-03-21 Cedars-Sinai Medical Center Procedes pour ameliorer la fonction d'organes chez des patients ayant subi une transplantation d'organe
WO2019075519A1 (fr) * 2017-10-18 2019-04-25 Csl Limited Variants d'albumine sériques humains et leurs utilisations
US20210040205A1 (en) 2017-10-25 2021-02-11 Novartis Ag Antibodies targeting cd32b and methods of use thereof
WO2019113642A1 (fr) 2017-12-15 2019-06-20 Csl Limited Utilisation d'un inhibiteur de fxiia dans le traitement d'une fibrose rénale et/ou d'une maladie rénale chronique
WO2019129054A1 (fr) 2017-12-27 2019-07-04 信达生物制药(苏州)有限公司 Triacorps, son procédé de préparation et son utilisation
CA3082280A1 (fr) 2017-12-28 2019-07-04 Nanjing Legend Biotech Co., Ltd. Anticorps a domaine unique et leurs variants diriges contre tigit
US11246908B2 (en) * 2018-01-10 2022-02-15 The Johns Hopkins University Compositions comprising albumin-FMS-like tyrosine kinase 3 ligand fusion proteins and uses thereof
EP3740507A4 (fr) 2018-01-15 2022-08-24 Nanjing Legend Biotech Co., Ltd. Anticorps à domaine unique et des variants de celui-ci dirigés contre pd-1
CA3090136A1 (fr) 2018-02-01 2019-08-08 Bioverativ Therapeutics, Inc. Utilisation de vecteurs lentiviraux exprimant le facteur viii
PL3765525T3 (pl) 2018-03-13 2023-12-27 Zymeworks Bc Inc. Koniugaty biparatopowe przeciwciało anty-her2 – lek i sposoby stosowania
JP2021518426A (ja) * 2018-03-13 2021-08-02 ホスピタル クリニック デ バルセロナ 感染症及び関連炎症プロセスの処置のための細菌結合ペプチド
MX2020009975A (es) 2018-03-28 2020-10-12 Bristol Myers Squibb Co Proteinas de fusion interleucina-2/receptor alfa de interleucina-2 y metodos de uso.
WO2019185040A1 (fr) 2018-03-30 2019-10-03 Nanjing Legend Biotech Co., Ltd. Anticorps à domaine unique contre lag-3 et leurs utilisations
KR102119197B1 (ko) * 2018-04-23 2020-06-05 주식회사 엘베이스 세포에서의 자가포식작용 억제용 조성물, 및 이를 포함하는 종양성 질환의 예방 또는 치료용, 또는 항암제 내성 억제용 약학적 조성물
JP2021523741A (ja) 2018-05-14 2021-09-09 ウェアウルフ セラピューティクス, インコーポレイテッド 活性化可能なインターロイキン12ポリペプチド及びその使用方法
CA3100007A1 (fr) 2018-05-14 2019-11-21 Werewolf Therapeutics, Inc. Polypeptides d'interleukine 2 activables et procedes d'utilisation associes
WO2019222682A1 (fr) 2018-05-18 2019-11-21 Bioverativ Therapeutics Inc. Procédés de traitement de l'hémophilie a
EP3569618A1 (fr) 2018-05-19 2019-11-20 Boehringer Ingelheim International GmbH Antagonisation d'anticorps cd73
AR126019A1 (es) 2018-05-30 2023-09-06 Novartis Ag Anticuerpos frente a entpd2, terapias de combinación y métodos de uso de los anticuerpos y las terapias de combinación
CA3098420A1 (fr) 2018-06-01 2019-12-05 Novartis Ag Molecules de liaison dirigees contre bcma et leurs utilisations
PE20210632A1 (es) 2018-07-03 2021-03-23 Bristol Myers Squibb Co Formulaciones de fgf-21
BR112021002017A2 (pt) 2018-08-09 2021-05-11 Bioverativ Therapeutics Inc. moléculas de ácido nucleico e usos das mesmas para terapia genética não viral
US10842885B2 (en) 2018-08-20 2020-11-24 Ucl Business Ltd Factor IX encoding nucleotides
JP2021535142A (ja) 2018-08-31 2021-12-16 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. Cd3/c20二重特異性抗体のサイトカイン放出症候群を軽減する投与戦略
JP2022500427A (ja) * 2018-09-17 2022-01-04 国立大学法人京都大学 肝傷害又は肝不全の処置のための抗c5剤の投与
MX2021003543A (es) 2018-09-27 2021-06-23 Xilio Dev Inc Polipeptidos de citocinas enmascaradas.
UY38407A (es) 2018-10-15 2020-05-29 Novartis Ag Anticuerpos estabilizadores de trem2
BR112021008200A2 (pt) * 2018-10-29 2021-12-14 Spin Therapeutics Llc Composições e métodos para distúrbios de alfa-1-antitripsina
GB201818477D0 (en) 2018-11-13 2018-12-26 Emstopa Ltd Tissue plasminogen activator antibodies and method of use thereof
WO2020109978A1 (fr) 2018-11-26 2020-06-04 Novartis Ag Polypeptides de fusion de lpl-gpihbp1
TW202039855A (zh) 2018-12-06 2020-11-01 美商百歐維拉提夫治療公司 表現因子ix之慢病毒載體的用途
CN114144433A (zh) 2019-03-22 2022-03-04 反射制药有限公司 用于目标蛋白的多价d-肽化合物
JP2022521353A (ja) 2019-03-22 2022-04-06 リフレクション ファーマシューティカルズ, インコーポレイテッド Vegfのためのd-ペプチド性化合物
CN113874392A (zh) 2019-03-28 2021-12-31 丹尼斯科美国公司 工程化抗体
SG11202110406SA (en) 2019-04-11 2021-10-28 Angion Biomedica Corp Solid forms of (e)-3-[2-(2-thienyl)vinyl]-1h-pyrazole
SG11202112541RA (en) 2019-05-14 2021-12-30 Werewolf Therapeutics Inc Separation moieties and methods and use thereof
UY38701A (es) 2019-05-21 2020-12-31 Novartis Ag Moléculas de unión a cd19, conjugados, composiciones que las comprenden y usos de las mismas
EP3972993A1 (fr) 2019-05-21 2022-03-30 Novartis AG Domaines de cd58 variants et leurs utilisations
JP2022532928A (ja) 2019-05-24 2022-07-20 サノフイ 全身性硬化症を治療するための方法
EP3986918A1 (fr) 2019-06-18 2022-04-27 Bayer Aktiengesellschaft Analogues d'adrénomédulline pour stabilisation à long terme et leur utilisation
TW202122414A (zh) 2019-09-06 2021-06-16 瑞士商諾華公司 治療性融合蛋白
EP4031578A1 (fr) 2019-09-18 2022-07-27 Novartis AG Anticorps d'entpd2, polythérapies, et procédés d'utilisation des anticorps et des polythérapies
TW202124446A (zh) 2019-09-18 2021-07-01 瑞士商諾華公司 與entpd2抗體之組合療法
US20210113634A1 (en) 2019-09-30 2021-04-22 Bioverativ Therapeutics Inc. Lentiviral vector formulations
WO2021075526A1 (fr) 2019-10-17 2021-04-22 Jcrファーマ株式会社 Procédé de production d'une protéine de fusion de sérum-albumine et d'hormone de croissance
EP4059512A4 (fr) 2019-10-30 2023-12-06 JCR Pharmaceuticals Co., Ltd. Composition pharmaceutique aqueuse contenant une protéine de fusion d'albumine sérique et d'hormone de croissance
EP4069200A1 (fr) 2019-12-04 2022-10-12 Albumedix Ltd Procédés et compositions produites par ceux-ci
KR20220127249A (ko) 2019-12-13 2022-09-19 신테카인, 인크. Il-2 오르토로그 및 사용 방법
US20210181200A1 (en) * 2019-12-17 2021-06-17 Women's College Hospital Ovarian cancer biomarker and methods of using same
US20230203191A1 (en) 2020-03-30 2023-06-29 Danisco Us Inc Engineered antibodies
AU2021276332A1 (en) 2020-05-19 2022-11-17 Boehringer Ingelheim International Gmbh Binding molecules for the treatment of cancer
EP4232476A2 (fr) 2020-10-21 2023-08-30 Boehringer Ingelheim International GmbH Molécules agonistes de liaison à trkb pour le traitement de maladies oculaires
KR20230104651A (ko) 2020-11-06 2023-07-10 노파르티스 아게 Cd19 결합 분자 및 이의 용도
WO2022166720A1 (fr) * 2021-02-05 2022-08-11 华南理工大学 Protéine de fusion à base d'albumine sérique, et nano-ensemble, son procédé de préparation et son application
IL305301A (en) 2021-02-19 2023-10-01 Us Health Single domain antibodies neutralizing SARS CoV-2
EP4355778A1 (fr) 2021-06-17 2024-04-24 Boehringer Ingelheim International GmbH Nouvelles molécules de liaison tri-spécifiques
CN114133458B (zh) * 2021-12-08 2023-11-14 福州大学 一种在人血清白蛋白内部融合多肽的方法
WO2023209568A1 (fr) 2022-04-26 2023-11-02 Novartis Ag Anticorps multispécifiques ciblant il-13 et il-18
US20240052065A1 (en) 2022-07-15 2024-02-15 Boehringer Ingelheim International Gmbh Binding molecules for the treatment of cancer
WO2024015953A1 (fr) 2022-07-15 2024-01-18 Danisco Us Inc. Procédés de production d'anticorps monoclonaux
WO2024083843A1 (fr) 2022-10-18 2024-04-25 Confo Therapeutics N.V. Séquences d'acides aminés dirigées contre le récepteur de la mélanocortine 4 et polypeptides les comprenant pour le traitement de maladies et de troubles liés à mc4r

Citations (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264731A (en) * 1977-05-27 1981-04-28 The Regents Of The University Of California DNA Joining method
US4440859A (en) * 1977-05-27 1984-04-03 The Regents Of The University Of California Method for producing recombinant bacterial plasmids containing the coding sequences of higher organisms
US4447538A (en) * 1978-04-19 1984-05-08 Regents Of The University Of California Microorganism containing gene for human chorionic somatomammotropin
US4450103A (en) * 1982-03-01 1984-05-22 Cetus Corporation Process for recovering human IFN-β from a transformed microorganism
US4462940A (en) * 1982-09-23 1984-07-31 Cetus Corporation Process for the recovery of human β-interferon-like polypeptides
US4492684A (en) * 1983-06-08 1985-01-08 Connaught Laboratories Limited Slow release injectable insulin composition
US4499188A (en) * 1982-05-05 1985-02-12 Cetus Corporation Bacterial production of heterologous polypeptides under the control of a repressible promoter-operator
US4652525A (en) * 1978-04-19 1987-03-24 The Regents Of The University Of California Recombinant bacterial plasmids containing the coding sequences of insulin genes
US4835260A (en) * 1987-03-20 1989-05-30 Genetics Institute, Inc. Erythropoietin composition
US4840934A (en) * 1983-01-25 1989-06-20 Eleanor Roosevelt Institute For Cancer Research, Inc. Therapeutic method using T cell growth factor
US4908433A (en) * 1984-04-25 1990-03-13 Sloan-Kettering Institute For Cancer Research Uses of interleukin-2
US4908434A (en) * 1984-04-25 1990-03-13 Sloan-Kettering Institute For Cancer Research Process for preparing purified interleukin-2
US4914026A (en) * 1983-04-07 1990-04-03 Chiron Corporation Alpha factor leader sequence directed secretion of insulin
US4916212A (en) * 1984-05-30 1990-04-10 Novo Industri A/S DNA-sequence encoding biosynthetic insulin precursors and process for preparing the insulin precursors and human insulin
US4925919A (en) * 1984-04-25 1990-05-15 Roland Mertelsmann Purified interleukin 2
US4929442A (en) * 1986-09-26 1990-05-29 Exovir, Inc. Compositions suitable for human topical application including a growth factor and/or related materials
US4999339A (en) * 1988-03-28 1991-03-12 Cetus Corporation Combination therapy of IL-2 and DTIC for the treatment of melanoma
US5002764A (en) * 1986-08-12 1991-03-26 Schering Corporation Treatment of actinic keratoses with alpha2 interferon
US5010003A (en) * 1983-04-25 1991-04-23 Genentech, Inc. Use of yeast homologous signals to secrete heterologous proteins
US5015575A (en) * 1983-04-07 1991-05-14 Chiron Corporation Hybrid DNA synthesis of insulin
US5028422A (en) * 1986-05-27 1991-07-02 Schering Corporation Treatment of basal cell carcinoma intralesionally with recombinant human alpha interferon
US5096885A (en) * 1988-04-15 1992-03-17 Genentech, Inc. Human growth hormone formulation
US5096707A (en) * 1988-04-15 1992-03-17 The United States Of America As Represented By The Department Of Health And Human Services Flavone-8-acetic acid and interleukin-2 in a method of treating certain cancers
US5102872A (en) * 1985-09-20 1992-04-07 Cetus Corporation Controlled-release formulations of interleukin-2
US5106954A (en) * 1989-07-26 1992-04-21 Behringwerke Aktiengesellschaft Erythropoietin (epo) peptides
US5126129A (en) * 1988-05-23 1992-06-30 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health & Human Services Cancer therapy using interleukin-2 and flavone compounds
US5128126A (en) * 1989-04-11 1992-07-07 Boehringer Ingelheim International Gmbh Use of pharmaceutical compositions containing at least one cytokine for the systemic treatment of preneoplastic lesions
US5208018A (en) * 1990-03-19 1993-05-04 Brigham And Women's Hospital Treatment of cachexia with interleukin 2
US5219565A (en) * 1990-04-17 1993-06-15 Roussel Uclaf Treatment of primary cancers of the pleura
US5304473A (en) * 1991-06-11 1994-04-19 Eli Lilly And Company A-C-B proinsulin, method of manufacturing and using same, and intermediates in insulin production
US5322930A (en) * 1990-08-07 1994-06-21 Scios Nova Inc. Expression of recombinant polypeptides with improved purification
US5395922A (en) * 1989-03-03 1995-03-07 Novo Nordisk A/S Yeast processing system
US5409815A (en) * 1988-02-16 1995-04-25 The Green Cross Corporation DNA's encoding signal peptides
US5503993A (en) * 1987-12-02 1996-04-02 The Green Cross Corporation Method of preparing foreign protein in yeast, recombinant DNA, transformant
US5508031A (en) * 1986-11-21 1996-04-16 Cetus Oncology Corporation Method for treating biological damage using a free-radial scavenger and interleukin-2
US5512549A (en) * 1994-10-18 1996-04-30 Eli Lilly And Company Glucagon-like insulinotropic peptide analogs, compositions, and methods of use
US5521086A (en) * 1993-09-16 1996-05-28 Cephalon, Inc. Secretion sequence for the production of a heterologous protein in yeast
US5602232A (en) * 1993-02-25 1997-02-11 Schering Corporation Method for producing metal-interferon-α crystals
US5618698A (en) * 1983-12-13 1997-04-08 Kirin-Amgen, Inc. Production of erythropoietin
US5618676A (en) * 1981-02-25 1997-04-08 Genentech, Inc. Expression of polypeptides in yeast
US5625041A (en) * 1990-09-12 1997-04-29 Delta Biotechnology Limited Purification of proteins
US5629286A (en) * 1994-03-31 1997-05-13 Brewitt; Barbara Homeopathic dilutions of growth factors
US5637504A (en) * 1987-04-09 1997-06-10 Delta Biotechnology Limited Stable yeast 2 μm vector
US5639642A (en) * 1994-06-16 1997-06-17 Novo Nordisk A/S Synthetic leader peptide sequences
US5641663A (en) * 1985-11-06 1997-06-24 Cangene Corporation Expression system for the secretion of bioactive human granulocyte macrophage colony stimulating factor (GM-CSF) and other heterologous proteins from steptomyces
US5726038A (en) * 1993-07-08 1998-03-10 Novo Nordisk A/S DNA construct encoding the YAP3 signal peptide
US5728707A (en) * 1995-07-21 1998-03-17 Constantia Gruppe Treatment and prevention of primary and metastatic neoplasms with salts of aminoimidazole carboxamide
US5728553A (en) * 1992-09-23 1998-03-17 Delta Biotechnology Limited High purity albumin and method of producing
US5739007A (en) * 1986-08-29 1998-04-14 Delta Biotechnology Limited Hybrid GAL10/pgk yeast promoter
US5741815A (en) * 1995-06-02 1998-04-21 Lai; Ching-San Methods for in vivo reduction of nitric oxide levels and compositions useful therefor
US5763394A (en) * 1988-04-15 1998-06-09 Genentech, Inc. Human growth hormone aqueous formulation
US5766620A (en) * 1995-10-23 1998-06-16 Theratech, Inc. Buccal delivery of glucagon-like insulinotropic peptides
US5767097A (en) * 1996-01-23 1998-06-16 Icn Pharmaceuticals, Inc. Specific modulation of Th1/Th2 cytokine expression by ribavirin in activated T-lymphocytes
US5908830A (en) * 1996-10-31 1999-06-01 Merck & Co., Inc. Combination therapy for the treatment of diabetes and obesity
US5912229A (en) * 1996-03-01 1999-06-15 Novo Nordisk Als Use of a pharmaceutical composition comprising an appetite-suppressing peptide
US6017545A (en) * 1998-02-10 2000-01-25 Modi; Pankaj Mixed micellar delivery system and method of preparation
US6030961A (en) * 1997-03-11 2000-02-29 Bar-Ilan Research & Development Co., Ltd. Oxyalkylene phosphate compounds and uses thereof
US6031004A (en) * 1997-12-08 2000-02-29 Bristol-Myers Squibb Company Salts of metformin and method
US6045788A (en) * 1996-02-28 2000-04-04 Cornell Research Foundation, Inc. Method of stimulation of immune response with low doses of IL-2
US6048724A (en) * 1991-11-05 2000-04-11 Transkaryotic Therapies Inc. Method of producing clonal cell strains which express exogenous DNA encoding glucagon-like peptide 1
US6054489A (en) * 1996-10-15 2000-04-25 Loyola University Of Chicago Method for the enhancement of lymphocyte activity against tumors
US6063373A (en) * 1989-09-19 2000-05-16 Maxim Pharmaceuticals, Inc. Enhanced activation of NK cells using an NK cell activator and a hydrogen peroxide scavenger or inhibitor
US6069135A (en) * 1989-09-21 2000-05-30 Hyal Pharmaceutical Corporation Use of hyaluronic acid or its derivatives to enhance delivery of therapeutic agents
US6071923A (en) * 1994-09-16 2000-06-06 Bar-Ilan University Retinoyloxy aryl-substituted alkylene butyrates useful for the treatment of cancer and other proliferative diseases
US6080877A (en) * 1996-05-22 2000-06-27 Neuromedica, Inc. Taxanes
US6172046B1 (en) * 1997-09-21 2001-01-09 Schering Corporation Combination therapy for eradicating detectable HCV-RNA in patients having chronic Hepatitis C infection
US6171828B1 (en) * 1996-03-04 2001-01-09 Suntory Limited Method for culturing microorganisms having a methanol metabolic pathway
US6191102B1 (en) * 1996-11-05 2001-02-20 Eli Lilly And Company Use of GLP-1 analogs and derivatives administered peripherally in regulation of obesity
US6193997B1 (en) * 1998-09-27 2001-02-27 Generex Pharmaceuticals Inc. Proteinic drug delivery system using membrane mimetics
US6201072B1 (en) * 1997-10-03 2001-03-13 Macromed, Inc. Biodegradable low molecular weight triblock poly(lactide-co- glycolide) polyethylene glycol copolymers having reverse thermal gelation properties
US6214863B1 (en) * 1992-11-10 2001-04-10 Aventis Pharma S.A. Antitumor compositions containing taxane derivatives
US6214547B1 (en) * 1997-01-24 2001-04-10 Novo Nordisk A/S Synthetic leader peptide sequences
US6217893B1 (en) * 1997-04-18 2001-04-17 Pharma Biotech Sustained-release compositions and method for preparing same
US6221958B1 (en) * 1993-01-06 2001-04-24 Societe De Conseils De Recherches Et D'applications Scientifiques, Sas Ionic molecular conjugates of biodegradable polyesters and bioactive polypeptides
US6221378B1 (en) * 1998-02-10 2001-04-24 Generex Pharmaceuticals Incorporated Mixed micellar delivery system and method of preparation
US20010002394A1 (en) * 1992-03-19 2001-05-31 Suad Efendic Use of a peptide
US6242479B1 (en) * 1998-12-17 2001-06-05 Loma Linda University Medical Center Use of γ-tocopherol and its oxidative metabolite LLU-α in the treatment of disease
US6340742B1 (en) * 1999-07-02 2002-01-22 Roche Diagnostics Gmbh Erythropoietin conjugates
US6346543B1 (en) * 1998-08-17 2002-02-12 Aventis Pharma S.A. Use of a taxoid to treat abnormal cell proliferation in the brain
US6348192B1 (en) * 1999-05-11 2002-02-19 Bayer Corporation Interleukin-2 mutein expressed from mammalian cells
US6348327B1 (en) * 1991-12-06 2002-02-19 Genentech, Inc. Non-endocrine animal host cells capable of expressing variant proinsulin and processing the same to form active, mature insulin and methods of culturing such cells
US20020037841A1 (en) * 2000-05-15 2002-03-28 Apollon Papadimitriou Erythropoietin composition
US20020048571A1 (en) * 1999-07-19 2002-04-25 Jeno Gyuris Chimeric polypeptides of serum albumin and uses related thereto
US6387365B1 (en) * 1995-05-19 2002-05-14 Schering Corporation Combination therapy for chronic hepatitis C infection
US6514500B1 (en) * 1999-10-15 2003-02-04 Conjuchem, Inc. Long lasting synthetic glucagon like peptide {GLP-!}
US6569832B1 (en) * 1999-11-12 2003-05-27 Novo Nordisk A/S Inhibition of beta cell degeneration
US20040063635A1 (en) * 2002-07-01 2004-04-01 Zailin Yu Recombinant human albumin fusion proteins with long-lasting biological effects
US20040121426A1 (en) * 2002-12-18 2004-06-24 Palo Alto Research Center Incorporated Process for preparing albumin protein conjugated oligonucleotide probes

Family Cites Families (429)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
DE2449885C3 (de) 1974-10-21 1980-04-30 Biotest-Serum-Institut Gmbh, 6000 Frankfurt Verfahren zur Herstellung von chemisch modifizierten haltbaren Hämoglobinpräparaten sowie das nach diesem Verfahren hergestellte modifizierte Hämoglobinpräparat
US4002531A (en) 1976-01-22 1977-01-11 Pierce Chemical Company Modifying enzymes with polyethylene glycol and product produced thereby
US4363877B1 (en) 1977-09-23 1998-05-26 Univ California Recombinant dna transfer vectors
US4407948A (en) 1977-09-23 1983-10-04 The Regents Of The University Of California Purification of nucleotide sequences suitable for expression in bacteria
US4283489A (en) 1977-09-23 1981-08-11 The Regents Of The University Of California Purification of nucleotide sequences suitable for expression in bacteria
US4366246A (en) 1977-11-08 1982-12-28 Genentech, Inc. Method for microbial polypeptide expression
US4263428A (en) 1978-03-24 1981-04-21 The Regents Of The University Of California Bis-anthracycline nucleic acid function inhibitors and improved method for administering the same
US5514567A (en) * 1979-01-30 1996-05-07 Juridical Foundation, Japanese Foundation For Cancer Research DNA and recombinant plasmid
US5326859A (en) 1979-10-30 1994-07-05 Juridical Foundation, Japanese Foundation For Cancer Research DNA and recombinant plasmid
US4342832A (en) 1979-07-05 1982-08-03 Genentech, Inc. Method of constructing a replicable cloning vehicle having quasi-synthetic genes
AU538665B2 (en) 1979-10-30 1984-08-23 Juridical Foundation, Japanese Foundation For Cancer Research Human interferon dna
US4444887A (en) 1979-12-10 1984-04-24 Sloan-Kettering Institute Process for making human antibody producing B-lymphocytes
US4530901A (en) 1980-01-08 1985-07-23 Biogen N.V. Recombinant DNA molecules and their use in producing human interferon-like polypeptides
ES498343A0 (es) 1980-01-08 1983-09-01 Biogen Nv Un metodo de producir un polipeptido que exhibe actividad inmunologica o biologica del interferon de leucocitos humanos.
EP0041313B1 (fr) 1980-04-03 1990-09-12 Biogen, Inc. Séquences d'ADN, molécules d'ADN recombinant et procédé pour la production de l'interféron de fibroblaste humain
DE3023787A1 (de) 1980-06-25 1982-01-21 Studiengesellschaft Kohle mbH, 4330 Mülheim Verfahren zur erhoehung der inkorporation und der expression von genetischem material in die kerne von intakten zellen mit hilfe von liposomen
US6610830B1 (en) 1980-07-01 2003-08-26 Hoffman-La Roche Inc. Microbial production of mature human leukocyte interferons
FR2490675B1 (fr) 1980-09-25 1985-11-15 Genentech Inc Production microbienne d'interferon de fibroplaste humain
EP0052322B1 (fr) 1980-11-10 1985-03-27 Gersonde, Klaus, Prof. Dr. Méthode de préparation de vésicules lipidiques par traitement aux ultra-sons, utilisation de ce procédé et l'appareillage ainsi utilisé
US4456748A (en) 1981-02-23 1984-06-26 Genentech, Inc. Hybrid human leukocyte interferons
WO1982002715A1 (fr) 1981-02-04 1982-08-19 Sugano Haruo Gene d'interferon (beta)humain
IE52535B1 (en) 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
JPS57149228A (en) 1981-03-11 1982-09-14 Ajinomoto Co Inc Novel erythropoietin and its preparation
US4873191A (en) 1981-06-12 1989-10-10 Ohio University Genetic transformation of zygotes
US4792602A (en) 1981-06-19 1988-12-20 Cornell Research Foundation, Inc. Adaptors, and synthesis and cloning of proinsulin genes
US4714681A (en) 1981-07-01 1987-12-22 The Board Of Reagents, The University Of Texas System Cancer Center Quadroma cells and trioma cells and methods for the production of same
US4474893A (en) 1981-07-01 1984-10-02 The University of Texas System Cancer Center Recombinant monoclonal antibodies
US4485045A (en) 1981-07-06 1984-11-27 Research Corporation Synthetic phosphatidyl cholines useful in forming liposomes
IL66614A (en) 1981-08-28 1985-09-29 Genentech Inc Method of constructing a dna sequence encoding a polypeptide,microbial production of human serum albumin,and pharmaceutical compositions comprising it
AU561343B2 (en) 1981-10-19 1987-05-07 Genentech Inc. Human immune interferon by recombinant dna
EP0079739A3 (fr) 1981-11-12 1984-08-08 The Upjohn Company Nucléotides basés sur l'albumine, leur réplication et utilisation, et plasmides à utiliser à cet effet
EP0091527A3 (fr) 1981-12-14 1984-07-25 The President And Fellows Of Harvard College Séquences d'ADN, molécules d'ADN recombinant et procédé de préparation de polypeptides du genre de sérumalbumine humaine
JPS58118008A (ja) 1982-01-06 1983-07-13 Nec Corp デ−タ処理装置
IT1167610B (it) 1982-01-19 1987-05-13 Cetus Corp Interfreron ibrido multiclasse, composizione farmaceutica che lo contiene e procedimento di produzione
DE3374837D1 (en) 1982-02-17 1988-01-21 Ciba Geigy Ag Lipids in the aqueous phase
US4775622A (en) 1982-03-08 1988-10-04 Genentech, Inc. Expression, processing and secretion of heterologous protein by yeast
US4670393A (en) * 1982-03-22 1987-06-02 Genentech, Inc. DNA vectors encoding a novel human growth hormone-variant protein
US4778879A (en) 1982-04-20 1988-10-18 Sloan-Kettering Institute For Cancer Research Highly purified human interleukin 2 and method
US6936694B1 (en) 1982-05-06 2005-08-30 Intermune, Inc. Manufacture and expression of large structural genes
DE3218121A1 (de) 1982-05-14 1983-11-17 Leskovar, Peter, Dr.-Ing., 8000 München Arzneimittel zur tumorbehandlung
EP0102324A3 (fr) 1982-07-29 1984-11-07 Ciba-Geigy Ag Lipides et composés tensio-actifs en phase aqueuse
US4716111A (en) 1982-08-11 1987-12-29 Trustees Of Boston University Process for producing human antibodies
US4992271A (en) 1982-09-23 1991-02-12 Cetus Corporation Formulation for lipophilic IL-2 proteins
US4588585A (en) 1982-10-19 1986-05-13 Cetus Corporation Human recombinant cysteine depleted interferon-β muteins
FI82266C (fi) 1982-10-19 1991-02-11 Cetus Corp Foerfarande foer framstaellning av il-2 -mutein.
US4966843A (en) * 1982-11-01 1990-10-30 Cetus Corporation Expression of interferon genes in Chinese hamster ovary cells
US4741900A (en) 1982-11-16 1988-05-03 Cytogen Corporation Antibody-metal ion complexes
DE3382547D1 (de) 1983-01-12 1992-05-27 Chiron Corp Sekretorische expression in eukaryoten.
NZ207394A (en) 1983-03-08 1987-03-06 Commw Serum Lab Commission Detecting or determining sequence of amino acids
GB8308235D0 (en) 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4518584A (en) 1983-04-15 1985-05-21 Cetus Corporation Human recombinant interleukin-2 muteins
WO1984004330A1 (fr) 1983-04-22 1984-11-08 Amgen Secretion de polypeptides exogenes a partir de levure
NZ207926A (en) 1983-04-25 1988-04-29 Genentech Inc Use of yeast #a#-factor to assist in expression of proteins heterologus to yeast
US4544545A (en) 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
US4576813A (en) 1983-07-05 1986-03-18 Monsanto Company Heat recovery from concentrated sulfuric acid
HUT35524A (en) 1983-08-02 1985-07-29 Hoechst Ag Process for preparing pharmaceutical compositions containing regulatory /regulative/ peptides providing for the retarded release of the active substance
JPS6087792A (ja) 1983-09-23 1985-05-17 ジェネックス・コーポレイション 雑種制御領域
ATE59966T1 (de) 1983-09-26 1991-02-15 Ehrenfeld Udo Mittel und erzeugnis fuer die diagnose und therapie von tumoren sowie zur behandlung von schwaechen der zelligen und humoralen immunabwehr.
US4518564A (en) * 1983-10-03 1985-05-21 Jeneric Industries, Inc. Gallium and silver free, palladium based dental alloys for porcelain-fused-to-metal restorations
US4615885A (en) 1983-11-01 1986-10-07 Terumo Kabushiki Kaisha Pharmaceutical composition containing urokinase
GB8334102D0 (en) 1983-12-21 1984-02-01 Searle & Co Interferons with cysteine pattern
US4703008A (en) 1983-12-13 1987-10-27 Kiren-Amgen, Inc. DNA sequences encoding erythropoietin
US4855238A (en) 1983-12-16 1989-08-08 Genentech, Inc. Recombinant gamma interferons having enhanced stability and methods therefor
GB8334261D0 (en) 1983-12-22 1984-02-01 Bass Plc Fermentation processes
JPS60136596A (ja) 1983-12-26 1985-07-20 Suntory Ltd ペプチド及びこれを有効成分とする利尿剤
CA1213537A (fr) 1984-05-01 1986-11-04 Canadian Patents And Development Limited - Societe Canadienne Des Brevets Et D'exploitation Limitee Methode d'expression de polypeptides
FR2564106B1 (fr) * 1984-05-09 1988-04-22 Transgene Sa Vecteurs d'expression du facteur ix, cellules transformees par ces vecteurs et procede de preparation du facteur ix.
EP0172619A1 (fr) 1984-06-20 1986-02-26 Takeda Chemical Industries, Ltd. Transformateur et son utilisation
US4736866A (en) 1984-06-22 1988-04-12 President And Fellows Of Harvard College Transgenic non-human mammals
US5908763A (en) 1984-07-06 1999-06-01 Novartis Corporation DNA encoding GM-CSF and a method of producing GM-CSF protein
JPS6147500A (ja) 1984-08-15 1986-03-07 Res Dev Corp Of Japan キメラモノクロ−ナル抗体及びその製造法
US5807715A (en) 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
EP0173494A3 (fr) 1984-08-27 1987-11-25 The Board Of Trustees Of The Leland Stanford Junior University Récepteurs chimériques par liaison et expression de l'ADN
US4716217A (en) 1984-08-31 1987-12-29 University Patents, Inc. Hybrid lymphoblastoid-leukocyte human interferons
US4734491A (en) 1984-08-31 1988-03-29 University Patents, Inc. DNA sequences encoding hybrid lymphoblastoid-leukocyte human interferons
GB8422238D0 (en) 1984-09-03 1984-10-10 Neuberger M S Chimeric proteins
US4959314A (en) * 1984-11-09 1990-09-25 Cetus Corporation Cysteine-depleted muteins of biologically active proteins
US5049386A (en) 1985-01-07 1991-09-17 Syntex (U.S.A.) Inc. N-ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)Alk-1-YL-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4897355A (en) 1985-01-07 1990-01-30 Syntex (U.S.A.) Inc. N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4946787A (en) 1985-01-07 1990-08-07 Syntex (U.S.A.) Inc. N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4970300A (en) * 1985-02-01 1990-11-13 New York University Modified factor VIII
GB8504099D0 (en) 1985-02-18 1985-03-20 Wellcome Found Physiologically active substances
FR2579224B1 (fr) 1985-03-25 1987-05-22 Genetica Procede de preparation microbiologique de la serum-albumine humaine
ATE63757T1 (de) 1985-03-28 1991-06-15 Chiron Corp Expression durch verwendung von fusionsgenen fuer proteinproduktion.
US4751180A (en) 1985-03-28 1988-06-14 Chiron Corporation Expression using fused genes providing for protein product
CA1319120C (fr) 1985-04-01 1993-06-15 John Henry Kenten Lignee cellulaire myelomateuse transformee et expression d'un gene codant pour un polypeptide d'eucaryote a l'aide de cette lignee
GR860984B (en) 1985-04-17 1986-08-18 Zymogenetics Inc Expression of factor vii and ix activities in mammalian cells
GB8510219D0 (en) 1985-04-22 1985-05-30 Bass Plc Isolation of fermentation products
AU5890286A (en) 1985-06-17 1986-12-24 Genex Corp. Cloned human serum albumin gene
US4980286A (en) 1985-07-05 1990-12-25 Whitehead Institute For Biomedical Research In vivo introduction and expression of foreign genetic material in epithelial cells
US4810643A (en) 1985-08-23 1989-03-07 Kirin- Amgen Inc. Production of pluripotent granulocyte colony-stimulating factor
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
JPS6296086A (ja) 1985-10-21 1987-05-02 Agency Of Ind Science & Technol 複合プラスミド
US5139941A (en) 1985-10-31 1992-08-18 University Of Florida Research Foundation, Inc. AAV transduction vectors
EP0247091B1 (fr) 1985-11-01 1993-09-29 Xoma Corporation Assemblage modulaire de genes d'anticorps, anticorps ainsi prepares et utilisation
US5576195A (en) 1985-11-01 1996-11-19 Xoma Corporation Vectors with pectate lyase signal sequence
CA1295566C (fr) 1987-07-21 1992-02-11 Robert T. Garvin Caracterisation et structure de genes pour protease a et protease b de streptomyces griseus
GB8601597D0 (en) 1986-01-23 1986-02-26 Wilson R H Nucleotide sequences
FR2594846B1 (fr) 1986-02-21 1989-10-20 Genetica Procede de preparation de la serum albumine humaine mature
EP0237019A3 (fr) 1986-03-14 1988-03-09 Toray Industries, Inc. Interféron conjugué et sa préparation à partir d'un gène recombinant
IT1203758B (it) 1986-03-27 1989-02-23 Univ Roma Vettori di clonazione e di espressione di geni eterologhi in lieviti e lieviti trasformati con tali vettori
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
DK179286D0 (da) 1986-04-18 1986-04-18 Nordisk Gentofte Insulinpraeparat
US4765980A (en) 1986-04-28 1988-08-23 International Minerals & Chemical Corp. Stabilized porcine growth hormone
US4859609A (en) 1986-04-30 1989-08-22 Genentech, Inc. Novel receptors for efficient determination of ligands and their antagonists or agonists
IT1204400B (it) * 1986-06-20 1989-03-01 Sclavo Spa Composizioni farmaceutiche contenente una calcitonina
GB8615701D0 (en) 1986-06-27 1986-08-06 Delta Biotechnology Ltd Stable gene integration vector
IT1196484B (it) 1986-07-11 1988-11-16 Sclavo Spa Vettore ad espressione e secrezione in lieviti,utile per la preparazione di proteine eterologhe
GR871067B (en) 1986-07-18 1987-11-19 Chugai Pharmaceutical Co Ltd Process for producing stable pharmaceutical preparation containing granulocyte colony stimulating factor
US4857467A (en) 1986-07-23 1989-08-15 Phillips Petroleum Company Carbon and energy source markers for transformation of strains of the genes Pichia
US4801575A (en) 1986-07-30 1989-01-31 The Regents Of The University Of California Chimeric peptides for neuropeptide delivery through the blood-brain barrier
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
JPH01502669A (ja) 1987-03-13 1989-09-14 アムジエン・インコーポレーテツド 精製された血小板由来の成長因子及びその精製方法
EP0288307B1 (fr) 1987-04-22 1996-09-04 Chiron Corporation Préparation par recombinaison de polypeptides de la chaîne A de PDGF
US5258498A (en) 1987-05-21 1993-11-02 Creative Biomolecules, Inc. Polypeptide linkers for production of biosynthetic proteins
US5489425A (en) 1987-06-24 1996-02-06 The Dow Chemical Company Functionalized polyamine chelants
US4994560A (en) 1987-06-24 1991-02-19 The Dow Chemical Company Functionalized polyamine chelants and radioactive rhodium complexes thereof for conjugation to antibodies
GB8717430D0 (en) 1987-07-23 1987-08-26 Celltech Ltd Recombinant dna product
AR247761A1 (es) 1987-07-28 1995-03-31 Gist Brocades Nv Metodo para producir un polipeptido en una celula hospedante de kluyveromyces, dicha celula hospedante transformada y secuencia a adn empleada
JP2627899B2 (ja) 1987-08-19 1997-07-09 株式会社 ビタミン研究所 遺伝子封入リポソームの製法
SE459586B (sv) 1987-09-14 1989-07-17 Mta Szegedi Biolog Koezponti Strukturgen som kodar foer autentiskt humant serum albumin och foerfarande foer dess framstaellning
US5336603A (en) * 1987-10-02 1994-08-09 Genentech, Inc. CD4 adheson variants
PT88641B (pt) 1987-10-02 1993-04-30 Genentech Inc Metodo para a preparacao de uma variante de adesao
GB8725529D0 (en) * 1987-10-30 1987-12-02 Delta Biotechnology Ltd Polypeptides
JPH0811074B2 (ja) 1987-10-30 1996-02-07 財団法人化学及血清療法研究所 プレアルブミンをコードする遺伝子を組込んだ組換えプラスミドおよびこれを用いたプレアルブミンの製法
PT89484B (pt) 1988-01-22 1994-03-31 Gen Hospital Corp Genes clonados codificadores de proteinas de fusao ig-cd4 e sua utilizacao
JPH01215289A (ja) 1988-02-22 1989-08-29 Toa Nenryo Kogyo Kk 遺伝子組換えによる正常ヒト血清アルブミンaの製造方法
US5066489A (en) 1988-03-28 1991-11-19 Cetus Corporation Combination therapy of IL-2 and DTIC for the treatment of melanoma
US5061488A (en) 1988-04-15 1991-10-29 The United States Of America As Represented Department Of Health & Human Services Flavone-8-acetic acid and interleukin-2 for cancer therapy
GB8809129D0 (en) 1988-04-18 1988-05-18 Celltech Ltd Recombinant dna methods vectors and host cells
IL89992A0 (en) 1988-04-25 1989-12-15 Phillips Petroleum Co Expression of human serum albumin in methylotrophic yeasts
PT90959B (pt) 1988-06-24 1995-05-04 Dow Chemical Co Processo para a preparacao de quelantes macrociclicos bifuncionais, de seus complexos e seus conjugados com anticorpos
US5756065A (en) 1988-06-24 1998-05-26 The Dow Chemical Company Macrocyclic tetraazacyclododecane conjugates and their use as diagnostic and therapeutic agents
WO1989012631A1 (fr) 1988-06-24 1989-12-28 The Dow Chemical Company Agents de chelation bifonctionnels macrocycliques, leurs complexes et leurs conjugues anticorps
US5274119A (en) 1988-07-01 1993-12-28 The Dow Chemical Company Vicinal diols
JP3092811B2 (ja) 1988-07-23 2000-09-25 デルタ バイオテクノロジー リミテッド ペプチドおよびdna配列
US4925648A (en) 1988-07-29 1990-05-15 Immunomedics, Inc. Detection and treatment of infectious and inflammatory lesions
FR2649991B2 (fr) 1988-08-05 1994-03-04 Rhone Poulenc Sante Utilisation de derives stables du plasmide pkd1 pour l'expression et la secretion de proteines heterologues dans les levures du genre kluyveromyces
FR2635115B1 (fr) 1988-08-05 1992-04-03 Rhone Poulenc Sante Procede de preparation de la serum albumine humaine a partir d'une levure
US5601819A (en) 1988-08-11 1997-02-11 The General Hospital Corporation Bispecific antibodies for selective immune regulation and for selective immune cell binding
JP3771253B2 (ja) 1988-09-02 2006-04-26 ダイアックス コープ. 新規な結合タンパク質の生成と選択
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
US5260202A (en) 1988-09-07 1993-11-09 Delta Biotechnology Limited Fermentation method
JPH02227079A (ja) 1988-10-06 1990-09-10 Tonen Corp ヒト血清アルブミン断片
US5349052A (en) 1988-10-20 1994-09-20 Royal Free Hospital School Of Medicine Process for fractionating polyethylene glycol (PEG)-protein adducts and an adduct for PEG and granulocyte-macrophage colony stimulating factor
US5298243A (en) 1988-10-20 1994-03-29 Denki Kagaku Kogyo Kabushiki Kaisha Colony stimulating factor-gelatin conjugate
US5759802A (en) 1988-10-26 1998-06-02 Tonen Corporation Production of human serum alubumin A
JPH02117384A (ja) 1988-10-26 1990-05-01 Tonen Corp 酵母宿主によるヒト血清アルブミンaの製造
US5342604A (en) 1988-10-31 1994-08-30 The Dow Chemical Company Complexes possessing ortho ligating functionality
US5696239A (en) 1988-10-31 1997-12-09 The Dow Chemical Company Conjugates possessing ortho ligating functionality and complexes thereof
US5256410A (en) 1988-12-01 1993-10-26 Schering Corporation Treatment of squamous cell carcinoma intralesionally with recombinant human alpha interferon
US4975271A (en) 1988-12-19 1990-12-04 Vipont Pharmaceutical, Inc. Muscosal delivery systems for treatment of periodontal disease
EP0401384B1 (fr) 1988-12-22 1996-03-13 Kirin-Amgen, Inc. Facteur de stimulation de colonies de granulocytes modifies chimiquement
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5096815A (en) 1989-01-06 1992-03-17 Protein Engineering Corporation Generation and selection of novel dna-binding proteins and polypeptides
US5198346A (en) 1989-01-06 1993-03-30 Protein Engineering Corp. Generation and selection of novel DNA-binding proteins and polypeptides
US5116964A (en) * 1989-02-23 1992-05-26 Genentech, Inc. Hybrid immunoglobulins
US5705363A (en) 1989-03-02 1998-01-06 The Women's Research Institute Recombinant production of human interferon τ polypeptides and nucleic acids
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
US5693622A (en) 1989-03-21 1997-12-02 Vical Incorporated Expression of exogenous polynucleotide sequences cardiac muscle of a mammal
WO1990011092A1 (fr) 1989-03-21 1990-10-04 Vical, Inc. Expression de sequences de polynucleotides exogenes chez un vertebre
US5231020A (en) 1989-03-30 1993-07-27 Dna Plant Technology Corporation Genetic engineering of novel plant phenotypes
US5328470A (en) 1989-03-31 1994-07-12 The Regents Of The University Of Michigan Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor
EP0395918A3 (fr) 1989-04-13 1991-10-23 Vascular Laboratory, Inc. Complexe d'activateur de plasminogène de pro-urokinase pure liée de manière covalente par un pont disulfure à de la sérum albumine humaine
US5324844A (en) 1989-04-19 1994-06-28 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
EP0394827A1 (fr) 1989-04-26 1990-10-31 F. Hoffmann-La Roche Ag Polypeptides chimériques de CD4-immunoglobuline
US5766883A (en) * 1989-04-29 1998-06-16 Delta Biotechnology Limited Polypeptides
ATE92107T1 (de) 1989-04-29 1993-08-15 Delta Biotechnology Ltd N-terminale fragmente von menschliches serumalbumin enthaltenden fusionsproteinen.
GB8909916D0 (en) * 1989-04-29 1989-06-14 Delta Biotechnology Ltd Polypeptides
US5332671A (en) 1989-05-12 1994-07-26 Genetech, Inc. Production of vascular endothelial cell growth factor and DNA encoding same
DE69024261T2 (de) 1989-05-24 1996-07-18 Merck & Co Inc Reinigung und Charakterisierung eines von einem Glioma abstammenden Wachstumsfaktors
US5808003A (en) 1989-05-26 1998-09-15 Perimmune Holdings, Inc. Polyaminocarboxylate chelators
DE69021335T2 (de) 1989-06-09 1996-04-11 Gropep Pty Ltd Wachstumshormonfusionsproteine.
JPH0327320A (ja) 1989-06-26 1991-02-05 Ajinomoto Co Inc ヒトb細胞分化因子医薬組成物
WO1991000360A1 (fr) 1989-06-29 1991-01-10 Medarex, Inc. Reactifs bispecifiques pour le traitement du sida
US5413923A (en) 1989-07-25 1995-05-09 Cell Genesys, Inc. Homologous recombination for universal donor cells and chimeric mammalian hosts
FR2650598B1 (fr) 1989-08-03 1994-06-03 Rhone Poulenc Sante Derives de l'albumine a fonction therapeutique
CU22222A1 (es) 1989-08-03 1995-01-31 Cigb Procedimiento para la expresion de proteinas heterologicas producidas de forma fusionada en escherichia coli, su uso, vectores de expresion y cepas recombinantes
GB8927480D0 (en) 1989-12-05 1990-02-07 Delta Biotechnology Ltd Mutant fungal strain detection and new promoter
US5073627A (en) * 1989-08-22 1991-12-17 Immunex Corporation Fusion proteins comprising GM-CSF and IL-3
US5436146A (en) 1989-09-07 1995-07-25 The Trustees Of Princeton University Helper-free stocks of recombinant adeno-associated virus vectors
IE66494B1 (en) 1989-09-26 1996-01-10 Immunex Corp Granulocyte-colony stimulating factor receptors
CA2067194C (fr) 1989-10-05 2003-03-18 Glenn Kawasaki Synthese sans cellules et isolement de nouveaux genes et polypeptides
FR2653020B1 (fr) 1989-10-17 1993-03-26 Roussel Uclaf Utilisation d'un polypeptide ayant l'activite de l'interleukine 2 humaine pour la preparation de compositions pharmaceutiques destinees au traitement des leucemies.
GB8924021D0 (en) 1989-10-25 1989-12-13 Celltech Ltd Recombinant dna method and vectors for the use therein
DK0452457T3 (da) 1989-11-03 1998-03-02 Univ Vanderbilt Fremgangsmåde til in vivo fjernelse af funktionelle fremmede gener
US5676954A (en) 1989-11-03 1997-10-14 Vanderbilt University Method of in vivo delivery of functioning foreign genes
US5580560A (en) * 1989-11-13 1996-12-03 Novo Nordisk A/S Modified factor VII/VIIa
US5173408A (en) 1989-11-13 1992-12-22 Lange Louis George Iii Mammalian pancreatic cholesterol esterase
GB8928874D0 (en) 1989-12-21 1990-02-28 Celltech Ltd Humanised antibodies
JPH03201987A (ja) 1989-12-29 1991-09-03 Tonen Corp ヒト血清アルブミン断片
US5116944A (en) 1989-12-29 1992-05-26 Neorx Corporation Conjugates having improved characteristics for in vivo administration
US5780225A (en) 1990-01-12 1998-07-14 Stratagene Method for generating libaries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules
WO1991010737A1 (fr) 1990-01-11 1991-07-25 Molecular Affinities Corporation Production d'anticorps utilisant des librairies de genes
WO1991010741A1 (fr) 1990-01-12 1991-07-25 Cell Genesys, Inc. Generation d'anticorps xenogeniques
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5545618A (en) 1990-01-24 1996-08-13 Buckley; Douglas I. GLP-1 analogs useful for diabetes treatment
EP0439442B1 (fr) * 1990-01-25 1996-03-06 Washington University Protéine hybride, facteur X-LACI
JPH04211375A (ja) 1990-02-05 1992-08-03 Ajinomoto Co Inc 合成遺伝子及びそれを用いたヒト血清アルブミンの製造法
US5747334A (en) 1990-02-15 1998-05-05 The University Of North Carolina At Chapel Hill Random peptide library
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
WO1991018088A1 (fr) 1990-05-23 1991-11-28 The United States Of America, Represented By The Secretary, United States Department Of Commerce Vecteurs eucaryotiques a base de virus adeno-associes (aav)
US5766897A (en) * 1990-06-21 1998-06-16 Incyte Pharmaceuticals, Inc. Cysteine-pegylated proteins
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
DK0538300T3 (da) 1990-07-10 1994-10-10 Boehringer Ingelheim Int O-Glycosyleret IFN-alfa
US5225341A (en) 1990-07-19 1993-07-06 The Regents Of The University Of California Biologically safe plant transformation system using a ds transposon
US5071872A (en) 1990-08-14 1991-12-10 The Ohio State University Research Foundation Method for improving interleukin-2 activity using aci-reductone compounds
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
ES2108048T3 (es) 1990-08-29 1997-12-16 Genpharm Int Produccion y utilizacion de animales inferiores transgenicos capaces de producir anticuerpos heterologos.
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5391183A (en) * 1990-09-21 1995-02-21 Datascope Investment Corp Device and method sealing puncture wounds
IT1242149B (it) 1990-09-27 1994-02-16 Consiglio Nazionale Ricerche Sequenza di nucleotidi codificante per una proteina umana con proprieta' regolative dell'angiogenesi
US5698426A (en) 1990-09-28 1997-12-16 Ixsys, Incorporated Surface expression libraries of heteromeric receptors
WO1992005793A1 (fr) 1990-10-05 1992-04-16 Medarex, Inc. Immunostimulation ciblee induite par des reactifs bispecifiques
JPH07108232B2 (ja) 1990-10-09 1995-11-22 エム・ディ・リサーチ株式会社 ペプチド又は蛋白質の製造方法
ATE160379T1 (de) 1990-10-29 1997-12-15 Chiron Corp Bispezifische antikörper, verfahren zu ihrer herstellung und deren verwendungen
FR2668368B1 (fr) 1990-10-30 1995-03-10 Roussel Uclaf Utilisation d'un polypeptide ayant l'activite de l'interleukine 2 humaine pour preparer une composition pharmaceutique destinee au traitement des tumeurs malignes epitheliales.
US5173414A (en) 1990-10-30 1992-12-22 Applied Immune Sciences, Inc. Production of recombinant adeno-associated virus vectors
JPH0638771A (ja) 1990-10-31 1994-02-15 Tonen Corp ヒトプロテインジスルフィドイソメラーゼ遺伝子の発現方法および該遺伝子との共発現によるポリペプチドの製造方法
US5353535A (en) 1990-11-05 1994-10-11 Plumly George W Floor type advertising apparatus
EP0513336B1 (fr) 1990-11-29 2003-11-12 Institut National De La Recherche Agronomique (Inra) Nouveaux variants derives des interferons de type i, leur procede de production, et leurs applications
EP0564531B1 (fr) 1990-12-03 1998-03-25 Genentech, Inc. Methode d'enrichissement pour des variantes de l'hormone de croissance avec des proprietes de liaison modifiees
US5272080A (en) * 1991-02-19 1993-12-21 Pharmavene, Inc. Production of butyrylcholinesterase
US5833982A (en) 1991-02-28 1998-11-10 Zymogenetics, Inc. Modified factor VII
US5272070A (en) * 1991-03-08 1993-12-21 Board Of Regents, The University Of Texas System Method for the preparation of cell lines producing Man3 GlcNac 2 asparagine-linked gylcans and cell lines produced thereby
CA2062659A1 (fr) 1991-03-12 1992-09-13 Yasutaka Igari Composition a liberation prolongee d'erythropoietine
US5811396A (en) 1991-03-14 1998-09-22 The United States Of America As Represented By The Department Of Health And Human Services TRK tyrosine kinase receptor is the physiological receptor for nerve growth factor
CA2064331C (fr) 1991-03-28 2003-02-18 Marvin L. Bayne Sous-unite c du facteur de croissance des cellules endotheliales des vaisseaux
EP0580737B1 (fr) 1991-04-10 2004-06-16 The Scripps Research Institute Banques de recepteurs heterodimeres utilisant des phagemides
US5374617A (en) 1992-05-13 1994-12-20 Oklahoma Medical Research Foundation Treatment of bleeding with modified tissue factor in combination with FVIIa
EP0509841A3 (en) 1991-04-18 1993-08-18 Tonen Corporation Co-expression system of protein disulfide isomerase gene and useful polypeptide gene and process for producing the polypeptide using its system
CA2058820C (fr) 1991-04-25 2003-07-15 Kotikanyad Sreekrishna Cassettes d'expression et vecteurs pour la secretion de serum albumine humaine dans des cellules pichia pastoris
US5330901A (en) 1991-04-26 1994-07-19 Research Corporation Technologies, Inc. Expression of human serum albumin in Pichia pastoris
AP257A (en) 1991-04-26 1993-06-03 Surface Active Ltd A method of releasing an antigen from an antibody and methods for their use in diagnosis and therapy.
FR2676070B1 (fr) 1991-04-30 1994-09-30 Rhone Poulenc Rorer Sa Promoteur de levure et son utilisation.
US5646012A (en) * 1991-04-30 1997-07-08 Rhone-Poulenc Rorer S.A. Yeast promoter and use thereof
DE69233482T2 (de) 1991-05-17 2006-01-12 Merck & Co., Inc. Verfahren zur Verminderung der Immunogenität der variablen Antikörperdomänen
CA2110799A1 (fr) 1991-06-14 1992-12-23 Arnold H. Horwitz Fragments d'anticorps d'origine microbienne, et conjugues
FR2677996B1 (fr) 1991-06-21 1993-08-27 Rhone Poulenc Rorer Sa Vecteurs de clonage et/ou d'expression preparation et utilisation.
US5851795A (en) 1991-06-27 1998-12-22 Bristol-Myers Squibb Company Soluble CTLA4 molecules and uses thereof
US5844095A (en) 1991-06-27 1998-12-01 Bristol-Myers Squibb Company CTLA4 Ig fusion proteins
US5223408A (en) 1991-07-11 1993-06-29 Genentech, Inc. Method for making variant secreted proteins with altered properties
JPH05292972A (ja) 1991-07-29 1993-11-09 Tonen Corp 改良された酵母発現系
US5723719A (en) 1991-08-08 1998-03-03 Health Research Inc. Transgenic mouse as model for diseases involving dopaminergic dysfunction
DE4126968A1 (de) 1991-08-14 1993-02-18 Detlev Prof Dr Med Ganten Transgene ratten, die in ihrem genom mindestens ein menschliches gen enthalten, das an der blutdruckregulation beteiligt ist
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
US5641670A (en) 1991-11-05 1997-06-24 Transkaryotic Therapies, Inc. Protein production and protein delivery
US6270989B1 (en) 1991-11-05 2001-08-07 Transkaryotic Therapies, Inc. Protein production and delivery
ATE168014T1 (de) * 1991-11-08 1998-07-15 Somatogen Inc Hämoglobine als arzneimittelabgabesystem
US5786883A (en) * 1991-11-12 1998-07-28 Pilkington Barnes Hind, Inc. Annular mask contact lenses
ES2227512T3 (es) 1991-12-02 2005-04-01 Medical Research Council Produccion de anticuerpos contra auto-antigenos a partir de repertorios de segmentos de anticuerpos fijados en un fago.
US5540923A (en) * 1991-12-06 1996-07-30 Landsforeningen Til Kraeftens Bekaemplse Interferon proteins
US5428139A (en) 1991-12-10 1995-06-27 The Dow Chemical Company Bicyclopolyazamacrocyclophosphonic acid complexes for use as radiopharmaceuticals
WO1993014200A1 (fr) 1992-01-07 1993-07-22 Tsi Corporation Modeles d'animaux transgeniques utilises pour tester des traitements potentiels relatifs a la maladie d'alzheimer
GB9200417D0 (en) * 1992-01-09 1992-02-26 Bagshawe Kenneth D Cytotoxic drug therapy
FR2686620B1 (fr) * 1992-01-27 1995-06-23 Rhone Poulenc Rorer Sa Serum-albumine humaine, preparation et utilisation.
FR2686901A1 (fr) 1992-01-31 1993-08-06 Rhone Poulenc Rorer Sa Nouveaux polypeptides antithrombotiques, leur preparation et compositions pharmaceutiques les contenant.
FR2686900B1 (fr) * 1992-01-31 1995-07-21 Rhone Poulenc Rorer Sa Nouveaux polypeptides ayant une activite de stimulation des colonies de granulocytes, leur preparation et compositions pharmaceutiques les contenant.
FR2686899B1 (fr) * 1992-01-31 1995-09-01 Rhone Poulenc Rorer Sa Nouveaux polypeptides biologiquement actifs, leur preparation et compositions pharmaceutiques les contenant.
ATE239506T1 (de) 1992-03-05 2003-05-15 Univ Texas Verwendung von immunokonjugate zur diagnose und/oder therapie der vaskularisierten tumoren
US5230886A (en) 1992-03-18 1993-07-27 Trustees Of Boston University Tumor cell suppression
US5733743A (en) 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US5573905A (en) 1992-03-30 1996-11-12 The Scripps Research Institute Encoded combinatorial chemical libraries
US5460954A (en) 1992-04-01 1995-10-24 Cheil Foods & Chemicals, Inc. Production of human proinsulin using a novel vector system
US5229109A (en) 1992-04-14 1993-07-20 Board Of Regents, The University Of Texas System Low toxicity interleukin-2 analogues for use in immunotherapy
ATE182651T1 (de) 1992-06-09 1999-08-15 Hoppe Ag Riegel und türschloss
US5686268A (en) * 1992-06-19 1997-11-11 Pfizer Inc. Fused proteins
US5505931A (en) 1993-03-04 1996-04-09 The Dow Chemical Company Acid cleavable compounds, their preparation and use as bifunctional acid-labile crosslinking agents
JP3269504B2 (ja) 1992-07-08 2002-03-25 三菱ウェルファーマ株式会社 ヒト血清アルブミンの製造方法
FR2694294B1 (fr) * 1992-07-30 1994-09-09 Rhone Poulenc Rorer Sa Promoteur de levure et son utilisateur.
ATE359824T1 (de) 1992-07-31 2007-05-15 Genentech Inc Wässrige formulierung enthaltend menschliches wachstumshormon
US5602307A (en) 1992-08-12 1997-02-11 Baylor College Of Medicine Non-human animal having predefined allele of a cellular adhesion gene
DE4226971C2 (de) * 1992-08-14 1997-01-16 Widmar Prof Dr Tanner Modifizierte Pilzzellen und Verfahren zur Herstellung rekombinanter Produkte
US5639641A (en) 1992-09-09 1997-06-17 Immunogen Inc. Resurfacing of rodent antibodies
US5731490A (en) 1992-09-29 1998-03-24 The Ontario Cancer Institute Mutant mouse lacking the expression of interferon regulatory factor 1 (IRF-1)
WO1994008599A1 (fr) * 1992-10-14 1994-04-28 The Regents Of The University Of Colorado Appariement d'ions de medicaments pour ameliorer l'efficacite et l'administration
TW402639B (en) 1992-12-03 2000-08-21 Transkaryotic Therapies Inc Protein production and protein delivery
US5478745A (en) 1992-12-04 1995-12-26 University Of Pittsburgh Recombinant viral vector system
US5441050A (en) 1992-12-18 1995-08-15 Neoprobe Corporation Radiation responsive surgical instrument
US5489743A (en) 1993-01-19 1996-02-06 Amgen Inc. Transgenic animal models for thrombocytopenia
US5593972A (en) 1993-01-26 1997-01-14 The Wistar Institute Genetic immunization
FR2701953B1 (fr) 1993-02-22 1995-05-24 Centre Nat Rech Scient Protéine de fusion multi-VIP et procédé de préparation de VIP recombinant.
US5780021A (en) 1993-03-05 1998-07-14 Georgetown University Method for treating type 1 diabetes using α-interferon and/or β-i
US5869445A (en) 1993-03-17 1999-02-09 University Of Washington Methods for eliciting or enhancing reactivity to HER-2/neu protein
HU219682B (hu) * 1993-05-21 2001-06-28 Novo Nordisk A/S. Módosított VII faktor
DE69434447T2 (de) 1993-06-07 2006-05-18 Vical, Inc., San Diego Für die gentherapie verwendbare plasmide
US5621039A (en) * 1993-06-08 1997-04-15 Hallahan; Terrence W. Factor IX- polymeric conjugates
GB9317618D0 (en) 1993-08-24 1993-10-06 Royal Free Hosp School Med Polymer modifications
US5643575A (en) 1993-10-27 1997-07-01 Enzon, Inc. Non-antigenic branched polymer conjugates
US5459031A (en) 1993-11-05 1995-10-17 Amgen Inc. Methods for controlling sialic acid derivatives in recombinant glycoproteins
WO1995015982A2 (fr) 1993-12-08 1995-06-15 Genzyme Corporation Procede de generation d'anticorps specifiques
PT1231268E (pt) 1994-01-31 2005-11-30 Univ Boston Bancos de anticorpos policlonais
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5837458A (en) 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US5834252A (en) 1995-04-18 1998-11-10 Glaxo Group Limited End-complementary polymerase reaction
US5932780A (en) 1994-02-28 1999-08-03 Yissum Research Development Company Of Hebrew University Of Jerusalem Transgenic non-human animal assay system for anti-cholinesterase substances
GB9404270D0 (en) 1994-03-05 1994-04-20 Delta Biotechnology Ltd Yeast strains and modified albumins
US6608182B1 (en) 1994-03-08 2003-08-19 Human Genome Sciences, Inc. Human vascular endothelial growth factor 2
US5646113A (en) 1994-04-07 1997-07-08 Genentech, Inc. Treatment of partial growth hormone insensitivity syndrome
FR2719593B1 (fr) 1994-05-06 1996-05-31 Rhone Poulenc Rorer Sa Nouveaux polypeptides biologiquement actifs, leur préparation et composition pharmaceutique les contenant.
GB9411356D0 (en) 1994-06-07 1994-07-27 Delta Biotechnology Ltd Yeast strains
US5516637A (en) 1994-06-10 1996-05-14 Dade International Inc. Method involving display of protein binding pairs on the surface of bacterial pili and bacteriophage
US5985660A (en) 1994-06-15 1999-11-16 Systemix, Inc. Method of identifying biological response modifiers involved in dendritic and/or lymphoid progenitor cell proliferation and/or differentiation
US5623054A (en) 1994-06-23 1997-04-22 The General Hospital Corporation Crucifer AFT proteins and uses thereof
JPH0851982A (ja) 1994-08-11 1996-02-27 Asahi Glass Co Ltd ヒト血清アルブミンをコードする改変された遺伝子
US5574008A (en) 1994-08-30 1996-11-12 Eli Lilly And Company Biologically active fragments of glucagon-like insulinotropic peptide
FR2726471B1 (fr) * 1994-11-07 1997-01-31 Pf Medicament Procede pour ameliorer l'immunogenicite d'un compose immunogene ou d'un haptene et application a la preparation de vaccins
FR2726576B1 (fr) 1994-11-07 1997-01-31 Pf Medicament Production de peptides analogues de peptides hydrophobes, peptide recombinant, sequence d'adn correspondante
EP0792278B1 (fr) 1994-11-07 2007-06-13 Human Genome Sciences, Inc. Polypeptide gamma appartenant a la famille des facteurs de necrose tumorale (fnt)
AT403167B (de) 1994-11-14 1997-11-25 Immuno Ag Selektion und expression von fremdproteinen mittels eines selektions-amplifikations-systems
US5695750A (en) 1994-11-25 1997-12-09 The United States Of America As Represented By The Secretary Of The Army Compositions for use to deactivate organophosphates
CA2205572A1 (fr) * 1994-12-12 1996-06-20 Beth Israel Hospital Association Cytokines chimeres et emplois de celles-ci
US5652224A (en) 1995-02-24 1997-07-29 The Trustees Of The University Of Pennsylvania Methods and compositions for gene therapy for the treatment of defects in lipoprotein metabolism
US5928939A (en) 1995-03-01 1999-07-27 Ludwig Institute For Cancer Research Vascular endothelial growth factor-b and dna coding therefor
US5837281A (en) * 1995-03-17 1998-11-17 Takeda Chemical Industries, Ltd. Stabilized interface for iontophoresis
TW426523B (en) 1995-04-06 2001-03-21 Hoffmann La Roche Interferon solution
CA2219361C (fr) 1995-04-27 2012-02-28 Abgenix, Inc. Anticorps humains derives d'une xenosouris immunisee
EP2017337A1 (fr) 1995-04-27 2009-01-21 Human Genome Sciences, Inc. Récepteur du facteur onconécrosant humain
EP0823941A4 (fr) 1995-04-28 2001-09-19 Abgenix Inc Anticorps humains derives de xeno-souris immunisees
US5480640A (en) 1995-05-02 1996-01-02 Schering Corporation Alpha interferon for treating prostate cancer
MX9708537A (es) 1995-05-05 1998-02-28 Human Genome Sciences Inc Quimiocina beta-8 quimiocina beta-1 y proteina-4 inflamatoria de los macrofagos, humanas.
US5728915A (en) 1995-05-08 1998-03-17 Children's Hospital, Inc. Transgenic mice which express simian SV 40 T-antigen under control of the retinoblastoma gene promoter
US5705151A (en) 1995-05-18 1998-01-06 National Jewish Center For Immunology & Respiratory Medicine Gene therapy for T cell regulation
US6001625A (en) 1995-05-19 1999-12-14 The United States Of America As Represented By The Secretary Of The Army Site-directed mutagenesis of esterases
US5804162A (en) 1995-06-07 1998-09-08 Alliance Pharmaceutical Corp. Gas emulsions stabilized with fluorinated ethers having low Ostwald coefficients
US5811097A (en) 1995-07-25 1998-09-22 The Regents Of The University Of California Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling
JP2000507917A (ja) 1995-11-02 2000-06-27 シェーリング コーポレイション 持続的低用量サイトカイン注入治療
US6048964A (en) 1995-12-12 2000-04-11 Stryker Corporation Compositions and therapeutic methods using morphogenic proteins and stimulatory factors
GB9526733D0 (en) * 1995-12-30 1996-02-28 Delta Biotechnology Ltd Fusion proteins
US6087129A (en) * 1996-01-19 2000-07-11 Betagene, Inc. Recombinant expression of proteins from secretory cell lines
US6110707A (en) * 1996-01-19 2000-08-29 Board Of Regents, The University Of Texas System Recombinant expression of proteins from secretory cell lines
US6150337A (en) 1996-01-23 2000-11-21 Icn Pharmaceuticals, Inc. Specific modulation of Th1/Th2 cytokine expression by Ribavirin in activated T-lymphocytes
JP2978435B2 (ja) 1996-01-24 1999-11-15 チッソ株式会社 アクリロキシプロピルシランの製造方法
DE19639601A1 (de) 1996-02-28 1997-09-04 Bayer Ag Parapockenviren, die Fremd-DNA enthalten, ihre Herstellung und ihre Verwendung in Impfstoffen
WO1997033904A1 (fr) 1996-03-12 1997-09-18 Human Genome Sciences, Inc. Recepteurs contenant un domaine de mort cellulaire
AU5711196A (en) 1996-03-14 1997-10-01 Human Genome Sciences, Inc. Apoptosis inducing molecule i
JP2000506865A (ja) 1996-03-14 2000-06-06 ジ イミューン リスポンス コーポレイション インターフェロンをコードする遺伝子の標的を定めた送達
CA2248136A1 (fr) * 1996-03-21 1997-09-25 Human Genome Sciences, Inc. Facteur i, ii et iii de liaison de steroides specifique a l'endometre humain
CA2248868A1 (fr) 1996-03-22 1997-09-25 Human Genome Sciences, Inc. Molecule ii inductrice d'apoptose
US6204022B1 (en) * 1996-04-12 2001-03-20 Pepgen Corporation And University Of Florida Low-toxicity human interferon-alpha analogs
EP1854481B1 (fr) * 1996-04-23 2014-07-16 Chugai Seiyaku Kabushiki Kaisha Médicament pour le traitement ou la prévention des accidents vasculaires cérébraux/de l'oedème cérébral, contenant comme principe actif un inhibiteur de la fixation de l'IL-8
US6300065B1 (en) * 1996-05-31 2001-10-09 Board Of Trustees Of The University Of Illinois Yeast cell surface display of proteins and uses thereof
CA2257118C (fr) * 1996-06-11 2002-12-10 Boehringer Mannheim Gmbh Proteases recombinees de coagulation sanguine
AU733322B2 (en) 1996-07-15 2001-05-10 Chugai Seiyaku Kabushiki Kaisha Novel VEGF-like factor
WO1998007880A1 (fr) 1996-08-16 1998-02-26 Human Genome Sciences, Inc. Endokine alpha humaine
WO1998006842A1 (fr) 1996-08-16 1998-02-19 Schering Corporation Antigenes de surface de cellules mammaliennes et reactifs qui y sont lies
ES2251740T3 (es) 1996-08-23 2006-05-01 Ludwig Institute For Cancer Research Factor de crecimiento de celulas de endotelio vascular d recombinante (vegf-d).
WO1998012344A1 (fr) * 1996-09-18 1998-03-26 Human Genome Sciences, Inc. Genes de type recepteurs du facteur de necrose tumorale humain
US6225290B1 (en) 1996-09-19 2001-05-01 The Regents Of The University Of California Systemic gene therapy by intestinal cell transformation
US5994112A (en) 1996-10-09 1999-11-30 Incyte Pharmaceuticals, Inc. Human protein tyrosine kinase
US5916771A (en) 1996-10-11 1999-06-29 Abgenix, Inc. Production of a multimeric protein by cell fusion method
AU4988697A (en) 1996-10-24 1998-05-15 Vion Pharmaceuticals, Inc. Monophosphate prodrugs of beta-l-fd4c and beta-l-fddc as potent antiviral agents
ATE302272T1 (de) 1996-10-25 2005-09-15 Human Genome Sciences Inc Neutrokin alpha
JPH10134761A (ja) 1996-10-30 1998-05-22 Ebara Corp イオン注入装置及びイオン注入方法
GB9623205D0 (en) * 1996-11-07 1997-01-08 Eurand Int Novel pharmaceutical compositions
EP1500329B1 (fr) 1996-12-03 2012-03-21 Amgen Fremont Inc. Les anticorps humains qui lient en particulier l'alpha de TNF humain
US5833994A (en) 1997-01-08 1998-11-10 Paracelsian, Inc. Use of the AH receptor and AH receptor ligands to treat or prevent cytopathicity of viral infection
DE69834027D1 (de) 1997-01-14 2006-05-18 Human Genome Sciences Inc Tumor-nekrose-faktor rezeptor 5
ATE362982T1 (de) 1997-01-28 2007-06-15 Human Genome Sciences Inc ßDEATH-DOMAINß-ENTHALTENDER REZEPTOR 4 (DR4), EIN MITGLIED DER TNF-REZEPTOR SUPERFAMILIE, WELCHER AN TRAIL (APO-2L) BINDET
JP2001508783A (ja) 1997-01-29 2001-07-03 ポリマスク・ファーマシューティカルズ・パブリック・リミテッド・カンパニー Peg化法
GB2324529A (en) 1997-02-21 1998-10-28 Merck & Co Inc A combinatorial library based on a tetrapeptide substituted with aminomethylcoumarin for characterizing proteases
WO1999019339A1 (fr) * 1997-10-09 1999-04-22 Human Genome Sciences, Inc. 53 proteines secretees humaines
US7026447B2 (en) * 1997-10-09 2006-04-11 Human Genome Sciences, Inc. 53 human secreted proteins
CN100387621C (zh) 1997-04-14 2008-05-14 麦可麦脱股份公司 抗人抗原受体的新的生产方法及其用途
US6235883B1 (en) 1997-05-05 2001-05-22 Abgenix, Inc. Human monoclonal antibodies to epidermal growth factor receptor
WO1998050347A1 (fr) 1997-05-05 1998-11-12 The Regents Of The University Of California Naphtols utilisables dans des methodes antivirales
AU7705198A (en) 1997-05-30 1998-12-30 Human Genome Sciences, Inc. Human tumor necrosis factor receptor tr10
US6071743A (en) 1997-06-02 2000-06-06 Subsidiary No. 3, Inc. Compositions and methods for inhibiting human immunodeficiency virus infection by down-regulating human cellular genes
EP0988371A4 (fr) 1997-06-11 2002-11-04 Human Genome Sciences Inc Recepteur humain tr9 du facteur de necrose tumorale
GB9713412D0 (en) 1997-06-26 1997-08-27 Delta Biotechnology Ltd Improved protein expression strains
US5858719A (en) 1997-07-17 1999-01-12 Incyte Pharmaceuticals, Inc. Polynucleotides encoding human ATP binding-cassette transport protein and methods of use
US6472373B1 (en) 1997-09-21 2002-10-29 Schering Corporation Combination therapy for eradicating detectable HCV-RNA in antiviral treatment naive patients having chronic hepatitis C infection
ATE206618T1 (de) 1997-09-21 2001-10-15 Schering Corp Kombinationstherapie zur entfernung von nachweisbarer hcv-rns in patienten mit chronischer hepatitis c-infektion
EP1992633A1 (fr) 1997-11-03 2008-11-19 Human Genome Sciences, Inc. VEGI, inhibiteur angionèse et croissance de la tumeur
WO1999029732A2 (fr) * 1997-12-08 1999-06-17 Lexigen Pharmaceuticals Corporation Proteines de fusion heterodymeres utiles en therapie immune ciblee et a une stimulation immune generale
DE19813802A1 (de) 1998-03-27 1999-11-11 Retro Tech Gmbh Anti-virale Wirkung von Propolis durch Inhibition viraler Nukleinsäure Polymerasen
GB9806631D0 (en) 1998-03-28 1998-05-27 Safeglass Europ Limited Safetyglass
US6251868B1 (en) 1998-04-30 2001-06-26 Teijin Limited Method for treating a human immunodeficiency virus infection
JP5281726B2 (ja) * 1998-05-15 2013-09-04 メルク・シャープ・アンド・ドーム・コーポレーション 慢性C型肝炎感染を有する、抗ウイルス処置を受けていない患者における、リバビリンおよびインターフェロンαを含む併用療法
CN1119352C (zh) 1998-05-15 2003-08-27 中国科学院上海生物化学研究所 人血清白蛋白在毕赤酵母中的表达与纯化
US5970300A (en) * 1998-06-01 1999-10-19 Xerox Corporation Apparatus for applying scents to paper in a printer/copier
DE69933216T2 (de) * 1998-06-15 2007-09-20 GTC Biotherapeutics, Inc., Framingham Erythropoietin-analog-menschliches serum-albumin fusionsprotein
CN1105727C (zh) 1998-06-17 2003-04-16 上海海济医药生物工程有限公司 重组人血清白蛋白的生产方法
MXPA00012842A (es) 1998-06-24 2004-06-22 Univ Emory Uso de 3'-azido-2',3'-didesoxiuridina en combinacion de drogas adicionales contra el vih para la manufactura de un medicamento para el tratamiento del vih.
GB9817084D0 (en) 1998-08-06 1998-10-07 Wood Christopher B A method for promoting extra-heptic production of proteins for the correction of hypoalbuminaemia,anaemia,thrombocytopenia and/or coagulation disorders
US20030190669A1 (en) * 1998-12-30 2003-10-09 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
GB9902000D0 (en) 1999-01-30 1999-03-17 Delta Biotechnology Ltd Process
DK1187852T3 (da) 1999-05-19 2007-11-26 Merck Patent Gmbh Ekspression og eksport af interferon-alpha-proteiner som Fc-fusionsproteiner
US7144574B2 (en) * 1999-08-27 2006-12-05 Maxygen Aps Interferon β variants and conjugates
AU1573601A (en) 1999-10-21 2001-04-30 Monsanto Company Post-translational modification of recombinant proteins produced in plants
US20050100991A1 (en) 2001-04-12 2005-05-12 Human Genome Sciences, Inc. Albumin fusion proteins
CA2405709A1 (fr) 2000-04-12 2001-10-25 Human Genome Sciences, Inc. Proteines fusionnees a l'albumine
US6946134B1 (en) 2000-04-12 2005-09-20 Human Genome Sciences, Inc. Albumin fusion proteins
US7101561B2 (en) * 2000-12-01 2006-09-05 Innogenetics N.V. Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
WO2002046227A2 (fr) * 2000-12-07 2002-06-13 Eli Lilly And Company Proteines hybrides glp-1
US7070973B2 (en) 2000-12-26 2006-07-04 Board Of Regents Of The University Of Nebraska Butyrylcholinesterase variants and methods of use
US20050244931A1 (en) * 2001-04-12 2005-11-03 Human Genome Sciences, Inc. Albumin fusion proteins
US20050054051A1 (en) * 2001-04-12 2005-03-10 Human Genome Sciences, Inc. Albumin fusion proteins
US20060084794A1 (en) * 2001-04-12 2006-04-20 Human Genome Sciences, Inc. Albumin fusion proteins
US20030143191A1 (en) 2001-05-25 2003-07-31 Adam Bell Chemokine beta-1 fusion proteins
JP2004537580A (ja) 2001-08-10 2004-12-16 エピックス メディカル, インコーポレイテッド 延長された循環半減期を有するポリペプチド結合体
WO2003030821A2 (fr) 2001-10-05 2003-04-17 Human Genome Sciences, Inc. Proteines de fusion d'albumine
EP2292271A3 (fr) * 2001-10-10 2011-09-14 BioGeneriX AG Remodelage et glycoconjugation des anticorps
EP1458860A2 (fr) 2001-12-21 2004-09-22 Nexia Biotechnologies, Inc. Production de butyrylcholinesterases par des mammiferes transgeniques
US20080194481A1 (en) 2001-12-21 2008-08-14 Human Genome Sciences, Inc. Albumin Fusion Proteins
AU2002364587A1 (en) * 2001-12-21 2003-07-30 Human Genome Sciences, Inc. Albumin fusion proteins
KR101271635B1 (ko) * 2001-12-21 2013-06-12 휴먼 게놈 사이언시즈, 인코포레이티드 알부민 융합 단백질
US20080167238A1 (en) 2001-12-21 2008-07-10 Human Genome Sciences, Inc. Albumin Fusion Proteins
CA2471363C (fr) * 2001-12-21 2014-02-11 Human Genome Sciences, Inc. Proteines hybrides d'albumine
MXPA04012496A (es) * 2002-06-21 2005-09-12 Novo Nordisk Healthcare Ag Glicoformos del factor vii pegilados.
CA2513213C (fr) * 2003-01-22 2013-07-30 Human Genome Sciences, Inc. Proteines hybrides d'albumine
DK2266630T3 (en) * 2003-02-27 2014-03-17 Baxter Int Device for calibration by a method for validating inactivation of pathogens in a biological fluid by irradiation
MXPA06009072A (es) 2004-02-09 2007-03-29 Human Genome Sciences Inc Proteinas de fusion de albumina.
US20060051859A1 (en) * 2004-09-09 2006-03-09 Yan Fu Long acting human interferon analogs
US7436410B2 (en) * 2005-04-01 2008-10-14 Seiko Epson Corporation System and method for programming a controller
JP2009504157A (ja) 2005-08-12 2009-02-05 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド アルブミン融合タンパク質
US7438904B1 (en) 2005-10-04 2008-10-21 University Of Kentucky Research Foundation High-activity mutants of butyrylcholinesterase for cocaine hydrolysis and method of generating the same
US8008257B2 (en) 2005-10-20 2011-08-30 University Of Ottawa Heart Institute ANF fusion proteins
EP1816201A1 (fr) * 2006-02-06 2007-08-08 CSL Behring GmbH Facteur de coagulation VIIa modifié ayant une stabilité 'half-life' améliorée
AU2007258609B2 (en) 2006-06-07 2013-01-24 Human Genome Sciences, Inc. Albumin fusion proteins
WO2012170969A2 (fr) * 2011-06-10 2012-12-13 Biogen Idec Ma Inc. Composés pro-coagulants et leurs procédés d'utilisation

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905143A (en) * 1919-09-12 1999-05-18 Delta Biotechnology Limited Purification of proteins
US4440859A (en) * 1977-05-27 1984-04-03 The Regents Of The University Of California Method for producing recombinant bacterial plasmids containing the coding sequences of higher organisms
US4264731A (en) * 1977-05-27 1981-04-28 The Regents Of The University Of California DNA Joining method
US4447538A (en) * 1978-04-19 1984-05-08 Regents Of The University Of California Microorganism containing gene for human chorionic somatomammotropin
US4652525A (en) * 1978-04-19 1987-03-24 The Regents Of The University Of California Recombinant bacterial plasmids containing the coding sequences of insulin genes
US5618676A (en) * 1981-02-25 1997-04-08 Genentech, Inc. Expression of polypeptides in yeast
US5856123A (en) * 1981-02-25 1999-01-05 Washington Research Foundation Expression of polypeptides in yeast
US4450103A (en) * 1982-03-01 1984-05-22 Cetus Corporation Process for recovering human IFN-β from a transformed microorganism
US4499188A (en) * 1982-05-05 1985-02-12 Cetus Corporation Bacterial production of heterologous polypeptides under the control of a repressible promoter-operator
US4462940A (en) * 1982-09-23 1984-07-31 Cetus Corporation Process for the recovery of human β-interferon-like polypeptides
US4840934A (en) * 1983-01-25 1989-06-20 Eleanor Roosevelt Institute For Cancer Research, Inc. Therapeutic method using T cell growth factor
US5015575A (en) * 1983-04-07 1991-05-14 Chiron Corporation Hybrid DNA synthesis of insulin
US4914026A (en) * 1983-04-07 1990-04-03 Chiron Corporation Alpha factor leader sequence directed secretion of insulin
US5010003A (en) * 1983-04-25 1991-04-23 Genentech, Inc. Use of yeast homologous signals to secrete heterologous proteins
US4492684A (en) * 1983-06-08 1985-01-08 Connaught Laboratories Limited Slow release injectable insulin composition
US5618698A (en) * 1983-12-13 1997-04-08 Kirin-Amgen, Inc. Production of erythropoietin
US4925919A (en) * 1984-04-25 1990-05-15 Roland Mertelsmann Purified interleukin 2
US4908433A (en) * 1984-04-25 1990-03-13 Sloan-Kettering Institute For Cancer Research Uses of interleukin-2
US4908434A (en) * 1984-04-25 1990-03-13 Sloan-Kettering Institute For Cancer Research Process for preparing purified interleukin-2
US4916212A (en) * 1984-05-30 1990-04-10 Novo Industri A/S DNA-sequence encoding biosynthetic insulin precursors and process for preparing the insulin precursors and human insulin
US5102872A (en) * 1985-09-20 1992-04-07 Cetus Corporation Controlled-release formulations of interleukin-2
US5641663A (en) * 1985-11-06 1997-06-24 Cangene Corporation Expression system for the secretion of bioactive human granulocyte macrophage colony stimulating factor (GM-CSF) and other heterologous proteins from steptomyces
US5028422A (en) * 1986-05-27 1991-07-02 Schering Corporation Treatment of basal cell carcinoma intralesionally with recombinant human alpha interferon
US5002764A (en) * 1986-08-12 1991-03-26 Schering Corporation Treatment of actinic keratoses with alpha2 interferon
US5739007A (en) * 1986-08-29 1998-04-14 Delta Biotechnology Limited Hybrid GAL10/pgk yeast promoter
US4929442A (en) * 1986-09-26 1990-05-29 Exovir, Inc. Compositions suitable for human topical application including a growth factor and/or related materials
US5508031A (en) * 1986-11-21 1996-04-16 Cetus Oncology Corporation Method for treating biological damage using a free-radial scavenger and interleukin-2
US4835260A (en) * 1987-03-20 1989-05-30 Genetics Institute, Inc. Erythropoietin composition
US5637504A (en) * 1987-04-09 1997-06-10 Delta Biotechnology Limited Stable yeast 2 μm vector
US5503993A (en) * 1987-12-02 1996-04-02 The Green Cross Corporation Method of preparing foreign protein in yeast, recombinant DNA, transformant
US5409815A (en) * 1988-02-16 1995-04-25 The Green Cross Corporation DNA's encoding signal peptides
US4999339A (en) * 1988-03-28 1991-03-12 Cetus Corporation Combination therapy of IL-2 and DTIC for the treatment of melanoma
US5763394A (en) * 1988-04-15 1998-06-09 Genentech, Inc. Human growth hormone aqueous formulation
US5096707A (en) * 1988-04-15 1992-03-17 The United States Of America As Represented By The Department Of Health And Human Services Flavone-8-acetic acid and interleukin-2 in a method of treating certain cancers
US5096885A (en) * 1988-04-15 1992-03-17 Genentech, Inc. Human growth hormone formulation
US5126129A (en) * 1988-05-23 1992-06-30 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health & Human Services Cancer therapy using interleukin-2 and flavone compounds
US5395922A (en) * 1989-03-03 1995-03-07 Novo Nordisk A/S Yeast processing system
US5128126A (en) * 1989-04-11 1992-07-07 Boehringer Ingelheim International Gmbh Use of pharmaceutical compositions containing at least one cytokine for the systemic treatment of preneoplastic lesions
US5106954A (en) * 1989-07-26 1992-04-21 Behringwerke Aktiengesellschaft Erythropoietin (epo) peptides
US6063373A (en) * 1989-09-19 2000-05-16 Maxim Pharmaceuticals, Inc. Enhanced activation of NK cells using an NK cell activator and a hydrogen peroxide scavenger or inhibitor
US6069135A (en) * 1989-09-21 2000-05-30 Hyal Pharmaceutical Corporation Use of hyaluronic acid or its derivatives to enhance delivery of therapeutic agents
US5208018A (en) * 1990-03-19 1993-05-04 Brigham And Women's Hospital Treatment of cachexia with interleukin 2
US5219565A (en) * 1990-04-17 1993-06-15 Roussel Uclaf Treatment of primary cancers of the pleura
US5322930A (en) * 1990-08-07 1994-06-21 Scios Nova Inc. Expression of recombinant polypeptides with improved purification
US5625041A (en) * 1990-09-12 1997-04-29 Delta Biotechnology Limited Purification of proteins
US5304473A (en) * 1991-06-11 1994-04-19 Eli Lilly And Company A-C-B proinsulin, method of manufacturing and using same, and intermediates in insulin production
US6048724A (en) * 1991-11-05 2000-04-11 Transkaryotic Therapies Inc. Method of producing clonal cell strains which express exogenous DNA encoding glucagon-like peptide 1
US6348327B1 (en) * 1991-12-06 2002-02-19 Genentech, Inc. Non-endocrine animal host cells capable of expressing variant proinsulin and processing the same to form active, mature insulin and methods of culturing such cells
US20010002394A1 (en) * 1992-03-19 2001-05-31 Suad Efendic Use of a peptide
US5728553A (en) * 1992-09-23 1998-03-17 Delta Biotechnology Limited High purity albumin and method of producing
US6034221A (en) * 1992-09-23 2000-03-07 Delta Biotechnology Limited High purity albumin
US6214863B1 (en) * 1992-11-10 2001-04-10 Aventis Pharma S.A. Antitumor compositions containing taxane derivatives
US6239167B1 (en) * 1992-11-10 2001-05-29 Aventis Pharma S.A. Antitumor compositions containing taxane derivatives
US6221958B1 (en) * 1993-01-06 2001-04-24 Societe De Conseils De Recherches Et D'applications Scientifiques, Sas Ionic molecular conjugates of biodegradable polyesters and bioactive polypeptides
US5602232A (en) * 1993-02-25 1997-02-11 Schering Corporation Method for producing metal-interferon-α crystals
US5726038A (en) * 1993-07-08 1998-03-10 Novo Nordisk A/S DNA construct encoding the YAP3 signal peptide
US5521086A (en) * 1993-09-16 1996-05-28 Cephalon, Inc. Secretion sequence for the production of a heterologous protein in yeast
US5629286A (en) * 1994-03-31 1997-05-13 Brewitt; Barbara Homeopathic dilutions of growth factors
US5639642A (en) * 1994-06-16 1997-06-17 Novo Nordisk A/S Synthetic leader peptide sequences
US6071923A (en) * 1994-09-16 2000-06-06 Bar-Ilan University Retinoyloxy aryl-substituted alkylene butyrates useful for the treatment of cancer and other proliferative diseases
US5512549A (en) * 1994-10-18 1996-04-30 Eli Lilly And Company Glucagon-like insulinotropic peptide analogs, compositions, and methods of use
US6387365B1 (en) * 1995-05-19 2002-05-14 Schering Corporation Combination therapy for chronic hepatitis C infection
US5741815A (en) * 1995-06-02 1998-04-21 Lai; Ching-San Methods for in vivo reduction of nitric oxide levels and compositions useful therefor
US5728707A (en) * 1995-07-21 1998-03-17 Constantia Gruppe Treatment and prevention of primary and metastatic neoplasms with salts of aminoimidazole carboxamide
US5861406A (en) * 1995-07-21 1999-01-19 Constantia Gruppe Treatment and prevention of neoplasms with salts of aminoimidazole carboxamide and 5-amino or substituted amino 1,2,3-triazoles
US5766620A (en) * 1995-10-23 1998-06-16 Theratech, Inc. Buccal delivery of glucagon-like insulinotropic peptides
US5863555A (en) * 1995-10-23 1999-01-26 Theratech, Inc. Buccal delivery of glucagon-like insulinotropic peptides
US6063772A (en) * 1996-01-23 2000-05-16 Icn Pharmaceuticals, Inc. Specific modulation of Th1/Th2 cytokine expression by ribavirin in activated T-lymphocytes
US5767097A (en) * 1996-01-23 1998-06-16 Icn Pharmaceuticals, Inc. Specific modulation of Th1/Th2 cytokine expression by ribavirin in activated T-lymphocytes
US6045788A (en) * 1996-02-28 2000-04-04 Cornell Research Foundation, Inc. Method of stimulation of immune response with low doses of IL-2
US5912229A (en) * 1996-03-01 1999-06-15 Novo Nordisk Als Use of a pharmaceutical composition comprising an appetite-suppressing peptide
US6171828B1 (en) * 1996-03-04 2001-01-09 Suntory Limited Method for culturing microorganisms having a methanol metabolic pathway
US6080877A (en) * 1996-05-22 2000-06-27 Neuromedica, Inc. Taxanes
US6054489A (en) * 1996-10-15 2000-04-25 Loyola University Of Chicago Method for the enhancement of lymphocyte activity against tumors
US5908830A (en) * 1996-10-31 1999-06-01 Merck & Co., Inc. Combination therapy for the treatment of diabetes and obesity
US6191102B1 (en) * 1996-11-05 2001-02-20 Eli Lilly And Company Use of GLP-1 analogs and derivatives administered peripherally in regulation of obesity
US6583111B1 (en) * 1996-11-05 2003-06-24 Eli Lilly And Company Use of GLP-1 analogs and derivative adminstered peripherally in regulation of obesity
US6214547B1 (en) * 1997-01-24 2001-04-10 Novo Nordisk A/S Synthetic leader peptide sequences
US6030961A (en) * 1997-03-11 2000-02-29 Bar-Ilan Research & Development Co., Ltd. Oxyalkylene phosphate compounds and uses thereof
US6217893B1 (en) * 1997-04-18 2001-04-17 Pharma Biotech Sustained-release compositions and method for preparing same
US6172046B1 (en) * 1997-09-21 2001-01-09 Schering Corporation Combination therapy for eradicating detectable HCV-RNA in patients having chronic Hepatitis C infection
US6201072B1 (en) * 1997-10-03 2001-03-13 Macromed, Inc. Biodegradable low molecular weight triblock poly(lactide-co- glycolide) polyethylene glycol copolymers having reverse thermal gelation properties
US6031004A (en) * 1997-12-08 2000-02-29 Bristol-Myers Squibb Company Salts of metformin and method
US6221378B1 (en) * 1998-02-10 2001-04-24 Generex Pharmaceuticals Incorporated Mixed micellar delivery system and method of preparation
US6231882B1 (en) * 1998-02-10 2001-05-15 Generex Pharmaceuticals Inc. Mixed micellar delivery system and method of preparation
US6017545A (en) * 1998-02-10 2000-01-25 Modi; Pankaj Mixed micellar delivery system and method of preparation
US6346543B1 (en) * 1998-08-17 2002-02-12 Aventis Pharma S.A. Use of a taxoid to treat abnormal cell proliferation in the brain
US6193997B1 (en) * 1998-09-27 2001-02-27 Generex Pharmaceuticals Inc. Proteinic drug delivery system using membrane mimetics
US6242479B1 (en) * 1998-12-17 2001-06-05 Loma Linda University Medical Center Use of γ-tocopherol and its oxidative metabolite LLU-α in the treatment of disease
US6348192B1 (en) * 1999-05-11 2002-02-19 Bayer Corporation Interleukin-2 mutein expressed from mammalian cells
US6340742B1 (en) * 1999-07-02 2002-01-22 Roche Diagnostics Gmbh Erythropoietin conjugates
US20020048571A1 (en) * 1999-07-19 2002-04-25 Jeno Gyuris Chimeric polypeptides of serum albumin and uses related thereto
US6514500B1 (en) * 1999-10-15 2003-02-04 Conjuchem, Inc. Long lasting synthetic glucagon like peptide {GLP-!}
US20030108568A1 (en) * 1999-10-15 2003-06-12 BRIDON Dominique P. Long lasting synthetic glucagon-like peptide {GLP-1}
US20030108567A1 (en) * 1999-10-15 2003-06-12 BRIDON Dominique P. Long lasting synthetic glucagon-like peptide {GLP-1}
US6569832B1 (en) * 1999-11-12 2003-05-27 Novo Nordisk A/S Inhibition of beta cell degeneration
US20020037841A1 (en) * 2000-05-15 2002-03-28 Apollon Papadimitriou Erythropoietin composition
US20040063635A1 (en) * 2002-07-01 2004-04-01 Zailin Yu Recombinant human albumin fusion proteins with long-lasting biological effects
US20040121426A1 (en) * 2002-12-18 2004-06-24 Palo Alto Research Center Incorporated Process for preparing albumin protein conjugated oligonucleotide probes

Cited By (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060105429A1 (en) * 1992-01-31 2006-05-18 Aventis Behring L.L.C. Fusion polypeptides of human serum albumin and a therapeutically active polypeptide
US20050239167A1 (en) * 1992-01-31 2005-10-27 Aventis Behring L.L.C. Fusion polypeptides of human serum albumin and a therapeutically active polypeptide
US8642542B2 (en) 1995-12-30 2014-02-04 Novozymes Biopharma Dk A/S Recombinant fusion proteins to growth hormone and serum albumin
US7550432B2 (en) 1995-12-30 2009-06-23 Novozymes Biopharma Uk Limited Recombinant fusion proteins to growth hormone and serum albumin
US20100261650A1 (en) * 1995-12-30 2010-10-14 Human Genome Sciences, Inc. Recombinant fusion proteins to growth hormone and serum albumin
US20030077732A1 (en) * 1997-09-18 2003-04-24 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030027264A1 (en) * 1997-09-18 2003-02-06 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US20030166113A1 (en) * 1997-09-18 2003-09-04 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US8460927B2 (en) 1999-11-30 2013-06-11 Mayo Foundation For Medical Education And Research B7-H1 antibodies and method of use
US6946134B1 (en) 2000-04-12 2005-09-20 Human Genome Sciences, Inc. Albumin fusion proteins
US9821039B2 (en) 2000-04-12 2017-11-21 Albumedix A/S Albumin fusion proteins
US20030125247A1 (en) * 2000-04-12 2003-07-03 Rosen Craig A. Albumin fusion proteins
US6905688B2 (en) 2000-04-12 2005-06-14 Human Genome Sciences, Inc. Albumin fusion proteins
US20080267962A1 (en) * 2000-04-12 2008-10-30 Human Genome Sciences, Inc. Albumin Fusion Proteins
US9775888B2 (en) 2000-04-12 2017-10-03 Albumedix A/S Treatment with factor ix-albumin fusion protein
US20080269125A1 (en) * 2000-04-12 2008-10-30 Human Genome Sciences, Inc. Albumin Fusion Proteins
US7482013B2 (en) 2000-04-12 2009-01-27 Human Genome Sciences, Inc. Albumin fusion proteins
US20030171267A1 (en) * 2000-04-12 2003-09-11 Rosen Craig A. Albumin fusion proteins
US9849162B2 (en) 2000-04-12 2017-12-26 Albumedix A/S Treatment with factor VII-albumin fusion protein
US20050266533A1 (en) * 2000-04-12 2005-12-01 Human Genome Sciences, Inc. Albumin fusion proteins
US10080785B2 (en) 2000-04-12 2018-09-25 Novozymes Biopharma Dk A/S Albumin fusion proteins
US20090285816A9 (en) * 2000-04-12 2009-11-19 Human Genome Sciences, Inc. Albumin Fusion Proteins
US6994857B2 (en) 2000-04-12 2006-02-07 Human Genome Sciences, Inc. Albumin fusion proteins
US9370565B2 (en) 2000-04-28 2016-06-21 The Johns Hopkins University Dendritic cell co-stimulatory molecules
US8053558B2 (en) 2000-04-28 2011-11-08 The Johns Hopkins University Dendritic cell co-stimulatory molecules
US8053414B2 (en) 2000-04-28 2011-11-08 The Johns Hopkins University Methods of using B7-DC molecules to induce or enhance an immune response
US20080241175A1 (en) * 2000-04-28 2008-10-02 The Johns Hopkins University Dendritic Cell Co-Stimulatory Molecules
US20080226662A1 (en) * 2000-04-28 2008-09-18 The Johns Hopkins University Dendritic cell co-stimulatory molecules
US20030143654A1 (en) * 2000-05-12 2003-07-31 Matthias Grell F-box containing protein
US20050123955A1 (en) * 2000-05-23 2005-06-09 Turner C. A.Jr. Novel human thrombospondin-like proteins and polynucleotides encoding the same
US20030211513A1 (en) * 2000-06-08 2003-11-13 Henry Yue Intracellular signaling proteins
US7329729B1 (en) * 2000-06-21 2008-02-12 Amgen Inc. Secreted epithelial colon stromal-1 molecules and uses thereof
US20110151579A1 (en) * 2000-06-21 2011-06-23 Amgen, Inc. Secreted Epithelial Stromal-1 Molecules and Uses Thereof
US20050196407A1 (en) * 2000-12-05 2005-09-08 Young John A.T. Receptor for B. anthracis toxin
US7435418B2 (en) * 2000-12-05 2008-10-14 Wisconsin Alumni Research Foundation Receptor for B. anthracis toxin
US20100249026A1 (en) * 2001-04-12 2010-09-30 Human Genome Sciences, Inc. Albumin fusion proteins
US7507413B2 (en) 2001-04-12 2009-03-24 Human Genome Sciences, Inc. Albumin fusion proteins
US20050100991A1 (en) * 2001-04-12 2005-05-12 Human Genome Sciences, Inc. Albumin fusion proteins
US20050244931A1 (en) * 2001-04-12 2005-11-03 Human Genome Sciences, Inc. Albumin fusion proteins
US20060084794A1 (en) * 2001-04-12 2006-04-20 Human Genome Sciences, Inc. Albumin fusion proteins
US20060166329A1 (en) * 2001-10-05 2006-07-27 Human Genome Sciences Inc. Albumin fusion proteins
US20040082761A1 (en) * 2001-12-18 2004-04-29 Duggan Brendan M. Cell adhesion proteins
US7238660B2 (en) 2001-12-21 2007-07-03 Human Genome Sciences, Inc. Albumin fusion proteins
US20080167239A1 (en) * 2001-12-21 2008-07-10 Human Genome Sciences, Inc. Albumin Fusion Proteins
US7189690B2 (en) 2001-12-21 2007-03-13 Human Genome Sciences, Inc. Albumin fusion proteins
US20060276396A1 (en) * 2001-12-21 2006-12-07 Human Genome Sciences, Inc. Albumin fusion proteins
US20070244047A1 (en) * 2001-12-21 2007-10-18 Human Genome Sciences, Inc. Albumin fusion proteins
US20080213886A1 (en) * 2001-12-21 2008-09-04 Human Genome Sciences, Inc. Albumin fusion proteins
US20090099073A1 (en) * 2001-12-21 2009-04-16 Human Genome Sciences, Inc. Albumin Fusion Proteins
US9296809B2 (en) 2001-12-21 2016-03-29 Human Genome Sciences, Inc. Albumin fusion proteins
US8252739B2 (en) 2001-12-21 2012-08-28 Human Genome Sciences, Inc. Albumin fusion proteins
US9221896B2 (en) 2001-12-21 2015-12-29 Human Genome Sciences, Inc. Albumin fusion proteins
US8211439B2 (en) 2001-12-21 2012-07-03 Human Genome Sciences, Inc. Albumin fusion proteins comprising insulin polypeptides
US8513189B2 (en) 2001-12-21 2013-08-20 Human Genome Sciences, Inc. Albumin fusion proteins
US20080153751A1 (en) * 2001-12-21 2008-06-26 Human Genome Sciences, Inc. Albumin Fusion Proteins
US7799759B2 (en) 2001-12-21 2010-09-21 Human Genome Sciences, Inc. Albumin fusion proteins
US8071539B2 (en) 2001-12-21 2011-12-06 Human Genome Sciences, Inc. Albumin fusion proteins
US7847079B2 (en) 2001-12-21 2010-12-07 Human Genome Sciences, Inc. Albumin fusion proteins
US20070259815A1 (en) * 2001-12-21 2007-11-08 Human Genome Sciences, Inc. Albumin fusion proteins
US20050054570A1 (en) * 2001-12-21 2005-03-10 Rosen Craig A. Albumin fusion proteins
US8012464B2 (en) 2001-12-21 2011-09-06 Human Genome Sciences, Inc. G-CSF-albumin fusion proteins
US20080146503A1 (en) * 2001-12-21 2008-06-19 Human Genome Sciences, Inc. Albumin Fusion Proteins
US20050186664A1 (en) * 2001-12-21 2005-08-25 Rosen Craig A. Albumin fusion proteins
US7977306B2 (en) 2001-12-21 2011-07-12 Human Genome Sciences, Inc. Albumin fusion proteins
US8993517B2 (en) 2001-12-21 2015-03-31 Human Genome Sciences, Inc. Albumin fusion proteins
US20150051378A1 (en) * 2002-04-18 2015-02-19 The General Hospital Corporation Drg11-responsive (dragon) gene family
US9193783B2 (en) 2002-04-18 2015-11-24 The General Hospital Corporation DRG11-responsive (dragon) polypeptides
US9475868B2 (en) 2002-04-18 2016-10-25 The General Hospital Corporation Antibodies that specifically bind to DRG11-responsive (DRAGON) proteins
US9644027B2 (en) 2002-04-18 2017-05-09 The General Hospital Corporation Antibodies that specifically bind to DRG11-responsive (DRAGON) proteins
US9868782B2 (en) 2002-04-18 2018-01-16 The General Hospital Corporation DRG11-responsive (DRAGON) gene family
US9416177B2 (en) 2002-04-18 2016-08-16 The General Hospital Corporation Antibodies that specifically bind to DRG11-responsive (dragon) proteins
US9637539B2 (en) * 2002-04-18 2017-05-02 The General Hospital Corporation Antibodies that specifically bind to DRG11-responsive (dragon) proteins
US8039589B1 (en) 2002-10-04 2011-10-18 Mayo Foundation For Medical Education And Research B7-DC variants
US8273864B2 (en) 2002-10-04 2012-09-25 Mayo Foundation For Medical Education And Research Nucleic acid molecules encoding B7-DC variants
US10414824B2 (en) 2002-11-22 2019-09-17 Ganymed Pharmaceuticals Ag Genetic products differentially expressed in tumors and the use thereof
US20050079546A1 (en) * 2003-05-01 2005-04-14 Dasa Lipovsek Serum albumin scaffold-based proteins and uses thereof
US20070141061A1 (en) * 2003-09-05 2007-06-21 Hudson Lindsey J Protein involved in carcinoma
WO2005082400A1 (fr) * 2004-02-27 2005-09-09 Leangene Ab Proteines therapeutiques traitant des etats medicaux associes a l'obesite et/ou la resistance a l'insuline
EP1617875A1 (fr) * 2004-04-27 2006-01-25 Seoul National University Industry Foundation Nouvelle utilisation de la proteine 3 multifonctionnelle interagissant avec l'aminoacyl-tarn synthase (aim3) comme suppresseur tumoral
EP1617875A4 (fr) * 2004-04-27 2007-10-10 Seoul Nat Univ Ind Foundation Nouvelle utilisation de la proteine 3 multifonctionnelle interagissant avec l'aminoacyl-tarn synthase (aim3) comme suppresseur tumoral
US9775785B2 (en) 2004-05-18 2017-10-03 Ganymed Pharmaceuticals Ag Antibody to genetic products differentially expressed in tumors and the use thereof
US20110117184A1 (en) * 2004-06-17 2011-05-19 Philip James Bromley Compositions for mucosal delivery of agents
US8414914B2 (en) 2004-06-17 2013-04-09 Virun, Inc. Compositions for mucosal delivery of agents
US7906140B2 (en) 2004-06-17 2011-03-15 Virun, Inc. Compositions for mucosal delivery of agents
US20050281772A1 (en) * 2004-06-17 2005-12-22 Bromley Philip J Compositions for mucosal delivery of agents
US8252323B2 (en) 2004-06-17 2012-08-28 Virun, Inc. Compositions for mucosal delivery of agents
EP2359842A1 (fr) 2004-07-14 2011-08-24 University of Utah Research Foundation Compositions et utilisations liees a des netrines
WO2006039504A2 (fr) * 2004-10-01 2006-04-13 Cell Ionix, Inc. Procede et formule s'appliquant a la stimulation, au ciblage, a la liberation, a la circulation et a la reagregation des cellules souches
WO2006039504A3 (fr) * 2004-10-01 2007-01-25 Cell Ionix Inc Procede et formule s'appliquant a la stimulation, au ciblage, a la liberation, a la circulation et a la reagregation des cellules souches
US20110200620A1 (en) * 2004-10-06 2011-08-18 Lieping Chen B7-h1 and methods of diagnosis, prognosis, and treatment of cancer
US9803015B2 (en) 2004-10-06 2017-10-31 Mayo Foundation For Medical Education And Research Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target
US8747833B2 (en) 2004-10-06 2014-06-10 Mayo Foundation For Medical Education And Research B7-H1 and methods of diagnosis, prognosis, and treatment of cancer
US11242387B2 (en) 2004-10-06 2022-02-08 Mayo Foundation For Medical Education And Research Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target
US11939378B2 (en) 2004-10-06 2024-03-26 Mayo Foundation For Medical Education And Research Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target
US20070053903A1 (en) * 2005-05-12 2007-03-08 Zeren Gao Methods of using pHHLA2 to co-stimulate T-cells
US10738108B2 (en) 2005-11-24 2020-08-11 Astellas Pharma Inc. Monoclonal antibodies against claudin-18 for treatment of cancer
US9751934B2 (en) 2005-11-24 2017-09-05 Ganymed Pharmaceuticals Ag Monoclonal antibodies against claudin-18 for treatment of cancer
US11739139B2 (en) 2005-11-24 2023-08-29 Astellas Pharma Inc. Monoclonal antibodies against Claudin-18 for treatment of cancer
US9499609B2 (en) 2005-11-24 2016-11-22 Ganymed Pharmaceuticals Ag Monoclonal antibodies against claudin-18 for treatment of cancer
US10017564B2 (en) 2005-11-24 2018-07-10 Ganymed Pharmaceuticals Gmbh Monoclonal antibodies against claudin-18 for treatment of cancer
US10174104B2 (en) 2005-11-24 2019-01-08 Ganymed Pharmaceuticals Gmbh Monoclonal antibodies against claudin-18 for treatment of cancer
US9212228B2 (en) 2005-11-24 2015-12-15 Ganymed Pharmaceuticals Ag Monoclonal antibodies against claudin-18 for treatment of cancer
US20090215084A1 (en) * 2006-01-05 2009-08-27 Mayo Foundation For Medical Education And Research B7-h1 and b7-h4 in cancer
US20100015642A1 (en) * 2006-01-05 2010-01-21 Kwon Eugene D B7-h1 and survivin in cancer
US8765915B2 (en) 2006-02-06 2014-07-01 Csl Behring Gmbh Modified coagulation factor VIIa with extended half-life
US20090176317A1 (en) * 2006-04-20 2009-07-09 Mayo Foundation For Medical Education And Research Soluble B7-H1
US8153595B2 (en) 2007-07-13 2012-04-10 The Johns Hopkins University B7-DC variants immunogenic compositions and methods of use thereof
US8445447B2 (en) 2007-07-13 2013-05-21 The Johns Hopkins University B7-DC variants immunogenic compositions and methods of use thereof
US20110020325A1 (en) * 2008-02-29 2011-01-27 Kwon Eugene D Methods for reducing granulomatous inflammation
US20090240666A1 (en) * 2008-03-19 2009-09-24 Sony Ericsson Mobile Communications Japan, Inc. Mobile terminal device and computer program
US20110195068A1 (en) * 2008-08-25 2011-08-11 Solomon Langermann Pd-1 antagonists and methods of use thereof
US8709416B2 (en) 2008-08-25 2014-04-29 Amplimmune, Inc. Compositions of PD-1 antagonists and methods of use
US20120322075A1 (en) * 2009-10-26 2012-12-20 Externautics S.P.A. Lung Tumor Markers and Methods of Use Thereof
US8680233B2 (en) * 2009-11-17 2014-03-25 Valorisation-Recherche, Limited Partnership Heteropeptides useful for reducing nonspecific adsorption
US20120329986A1 (en) * 2009-11-17 2012-12-27 Universite De Montreal Heteropeptides useful for reducing nonspecific adsorption
WO2012140627A1 (fr) 2011-04-15 2012-10-18 Compugen Ltd. Polypeptides et polynucléotides et leurs utilisations pour un traitement de troubles liés au système immunitaire et du cancer
US10800847B2 (en) 2012-01-11 2020-10-13 Dr. Mepur Ravindranath Anti-HLA class-IB antibodies mimic immunoreactivity and immunomodulatory functions of intravenous immunoglobulin (IVIG) useful as therapeutic IVIG mimetics and methods of their use
US9512232B2 (en) 2012-05-09 2016-12-06 Ganymed Pharmaceuticals Ag Antibodies against Claudin 18.2 useful in cancer diagnosis
US10053512B2 (en) 2012-05-09 2018-08-21 Ganymed Pharmaceuticals Ag Antibodies against claudin 18.2 useful in cancer diagnosis
US11976130B2 (en) 2012-05-09 2024-05-07 Astellas Pharma Inc. Antibodies against claudin 18.2 useful in cancer diagnosis
US10656156B2 (en) 2012-07-05 2020-05-19 Mepur Ravindranath Diagnostic and therapeutic potential of HLA-E monospecific monoclonal IgG antibodies directed against tumor cell surface and soluble HLA-E
US10167336B2 (en) 2013-03-14 2019-01-01 Mayo Foundation For Medical Education And Research Methods and materials for treating cancer
US10259875B2 (en) 2013-10-01 2019-04-16 Mayo Foundation For Medical Education And Research Methods for treating cancer in patients with elevated levels of BIM
US11136393B2 (en) 2013-10-01 2021-10-05 Mayo Foundation For Medical Education And Research Methods for treating cancer in patients with elevated levels of Bim
US10302653B2 (en) 2014-05-22 2019-05-28 Mayo Foundation For Medical Education And Research Distinguishing antagonistic and agonistic anti B7-H1 antibodies
US10517875B2 (en) 2014-07-23 2019-12-31 Mayo Foundation for Medical Engineering and Research Targeting DNA-PKcs and B7-H1 to treat cancer
US11504376B2 (en) 2014-07-23 2022-11-22 Mayo Foundation For Medical Education And Research Targeting DNA-PKCS and B7-H1 to treat cancer
US10875923B2 (en) 2015-10-30 2020-12-29 Mayo Foundation For Medical Education And Research Antibodies to B7-H1
US10767164B2 (en) 2017-03-30 2020-09-08 The Research Foundation For The State University Of New York Microenvironments for self-assembly of islet organoids from stem cells differentiation

Also Published As

Publication number Publication date
US20180200346A1 (en) 2018-07-19
US20080131399A1 (en) 2008-06-05
EP1276849A4 (fr) 2004-06-09
WO2001079442A2 (fr) 2001-10-25
AU2001264563A1 (en) 2001-10-30
US7482013B2 (en) 2009-01-27
US20090285816A9 (en) 2009-11-19
WO2001079480A1 (fr) 2001-10-25
EP2311872A1 (fr) 2011-04-20
US20100189686A1 (en) 2010-07-29
US10080785B2 (en) 2018-09-25
US20080261877A1 (en) 2008-10-23
US20080269126A1 (en) 2008-10-30
EP2298355A2 (fr) 2011-03-23
ES2529300T3 (es) 2015-02-18
JP2003530846A (ja) 2003-10-21
DK2236152T3 (da) 2014-07-07
EP1983055A1 (fr) 2008-10-22
US20050266533A1 (en) 2005-12-01
JP2003530839A (ja) 2003-10-21
JP2003530838A (ja) 2003-10-21
EP1832599A3 (fr) 2007-11-21
CA2405709A1 (fr) 2001-10-25
US6926898B2 (en) 2005-08-09
AU2001259066A1 (en) 2001-10-30
US20030199043A1 (en) 2003-10-23
CA2405525A1 (fr) 2001-10-25
WO2001079444A3 (fr) 2002-05-23
US20110280830A9 (en) 2011-11-17
EP1276849A2 (fr) 2003-01-22
DK2216409T3 (en) 2015-01-05
JP2004506407A (ja) 2004-03-04
EP1276856A4 (fr) 2004-06-09
AU2001262942A1 (en) 2001-10-30
EP2216409B1 (fr) 2014-12-03
US20080269125A1 (en) 2008-10-30
US20030219875A1 (en) 2003-11-27
EP1276756A4 (fr) 2004-06-09
US20120141415A1 (en) 2012-06-07
AU2001266557A1 (en) 2001-10-23
WO2001079480A9 (fr) 2003-09-18
FR16C0043I2 (fr) 2020-04-10
US8946156B2 (en) 2015-02-03
US9849162B2 (en) 2017-12-26
EP2357008A1 (fr) 2011-08-17
WO2001077137A9 (fr) 2002-05-02
EP2236152A1 (fr) 2010-10-06
FR16C0043I1 (fr) 2016-12-09
EP2216409A1 (fr) 2010-08-11
EP2298355A3 (fr) 2011-06-29
US20040171123A1 (en) 2004-09-02
CA2405557C (fr) 2013-09-24
US20140010798A1 (en) 2014-01-09
US9821039B2 (en) 2017-11-21
CA2405557A1 (fr) 2001-10-25
EP2267026A1 (fr) 2010-12-29
BE2016C059I2 (fr) 2020-08-20
US20080269128A1 (en) 2008-10-30
EP1276756A1 (fr) 2003-01-22
WO2001077137A1 (fr) 2001-10-18
WO2001079443A2 (fr) 2001-10-25
EP2275557A1 (fr) 2011-01-19
EP1274719A2 (fr) 2003-01-15
EP1278544A4 (fr) 2004-08-18
EP1274719A4 (fr) 2004-05-19
EP2295456A1 (fr) 2011-03-16
US7507414B2 (en) 2009-03-24
WO2001079258A1 (fr) 2001-10-25
EP2206720A1 (fr) 2010-07-14
ES2484966T3 (es) 2014-08-12
CA2405912A1 (fr) 2001-10-18
US20120141449A1 (en) 2012-06-07
US20140004095A1 (en) 2014-01-02
US6905688B2 (en) 2005-06-14
AU2001259063A1 (en) 2001-10-30
WO2001079258A9 (fr) 2002-02-28
US20120252732A1 (en) 2012-10-04
EP1278767A4 (fr) 2003-11-12
CA2747325A1 (fr) 2001-10-25
CA2405550A1 (fr) 2001-10-25
CA2405701A1 (fr) 2001-10-25
WO2001079271A1 (fr) 2001-10-25
EP1278767A1 (fr) 2003-01-29
EP1274720A4 (fr) 2004-08-18
WO2001079442A3 (fr) 2002-06-06
EP1832599A2 (fr) 2007-09-12
JP2014057589A (ja) 2014-04-03
EP1274720A1 (fr) 2003-01-15
EP1278544A2 (fr) 2003-01-29
US20050266532A1 (en) 2005-12-01
EP2067488A1 (fr) 2009-06-10
CA2405563A1 (fr) 2001-10-25
US9775888B2 (en) 2017-10-03
US20080267962A1 (en) 2008-10-30
JP2003530852A (ja) 2003-10-21
JP2003530847A (ja) 2003-10-21
AU2001261024A1 (en) 2001-10-30
EP1803730A1 (fr) 2007-07-04
US20030171267A1 (en) 2003-09-11
US7785599B2 (en) 2010-08-31
US6994857B2 (en) 2006-02-07
US20070287173A9 (en) 2007-12-13
US20080269127A1 (en) 2008-10-30
JP2003531590A (ja) 2003-10-28
US20130266553A1 (en) 2013-10-10
WO2001079271A9 (fr) 2002-02-28
EP2213743A1 (fr) 2010-08-04
US20030125247A1 (en) 2003-07-03
WO2001079443A3 (fr) 2002-02-21
EP1276856A1 (fr) 2003-01-22
EP2236152B1 (fr) 2014-06-04
JP2011217750A (ja) 2011-11-04
WO2001079444A2 (fr) 2001-10-25
AU2001274809A1 (en) 2001-10-30

Similar Documents

Publication Publication Date Title
US6946134B1 (en) Albumin fusion proteins
US6994857B2 (en) Albumin fusion proteins
US7507413B2 (en) Albumin fusion proteins
US20060084794A1 (en) Albumin fusion proteins
US20060166329A1 (en) Albumin fusion proteins
EP2474318A1 (fr) Protéines de fusion d'albumine
AU2010227035A1 (en) Albumin fusion proteins
US20090075880A1 (en) Albumin Fusion Proteins

Legal Events

Date Code Title Description
AS Assignment

Owner name: HUMAN GENOME SCIENCES, INC., MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROSEN, CRAIG A.;HASELTINE, WILLIAM A.;REEL/FRAME:012587/0368

Effective date: 20010808

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION