ES2215494T3 - Moleculas de rna pequeñas que median la interferencia de rna. - Google Patents

Moleculas de rna pequeñas que median la interferencia de rna. Download PDF

Info

Publication number
ES2215494T3
ES2215494T3 ES01985833T ES01985833T ES2215494T3 ES 2215494 T3 ES2215494 T3 ES 2215494T3 ES 01985833 T ES01985833 T ES 01985833T ES 01985833 T ES01985833 T ES 01985833T ES 2215494 T3 ES2215494 T3 ES 2215494T3
Authority
ES
Spain
Prior art keywords
rna
target
sirna
dsrna
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
ES01985833T
Other languages
English (en)
Other versions
ES2215494T1 (es
ES2215494T5 (es
Inventor
Thomas Tuschl
Sayda Elbashir
Winfried Lendeckel
Matthias Wilm
Reinhard Luhrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Europaisches Laboratorium fuer Molekularbiologie EMBL
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Original Assignee
Europaisches Laboratorium fuer Molekularbiologie EMBL
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40529293&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2215494(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from PCT/US2001/010188 external-priority patent/WO2001075164A2/en
Application filed by Europaisches Laboratorium fuer Molekularbiologie EMBL, Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Europaisches Laboratorium fuer Molekularbiologie EMBL
Publication of ES2215494T1 publication Critical patent/ES2215494T1/es
Publication of ES2215494T3 publication Critical patent/ES2215494T3/es
Application granted granted Critical
Publication of ES2215494T5 publication Critical patent/ES2215494T5/es
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1079Screening libraries by altering the phenotype or phenotypic trait of the host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Transplantation (AREA)
  • Communicable Diseases (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Molécula de RNA bicatenario aislada, en la cual cada cadena de RNA tiene una longitud de 19-25 nucleótidos, en la cual cada molécula de RNA es capaz de modificaciones de ácido nucleico específicas en cuanto a la diana.

Description

Moléculas de RNA pequeñas que median la interferencia de RNA.
La presente invención se refiere a características de secuencia y estructurales de moléculas de RNA bicatenario (ds) que se requieren para mediar la interferencia de RNA específica de la diana.
La expresión "interferencia de RNA" (RNAi) fue acuñada después del descubrimiento de que la inyección de dsRNA en el nematodo C. elegans conduce a silenciación específica de genes altamente homólogos en secuencia al dsRNA administrado (Fire et al., 1998). Se observó posteriormente también RNAi en insectos, ranas (Oelgeschlager et al., 2000) y otros animales con inclusión de ratones (Svoboda et al., 2000; Wianny y Zernicka-Goetz, 2000) y es probable que exista también en humanos. La RNAi está ligada estrechamente al mecanismo post-transcripcional de silenciación de genes (PTGS) de co-supresión en plantas y muerte en hongos (Catalanotto et al., 2000; Cogoni y Macino, 1999; Dalmay et al., 2000; Ketting y Plasterk, 2000; Mourrain et al., 2000; Smardon et al., 2000) y algunos componentes de la maquinaria de RNAi son necesarios también para la silenciación post-transcripcional por co-supresión (Catalanotto et al., 2000; Dernburg et al., 2000; Ketting y Plasterk, 2000). El tópico ha sido revisado también recientemente (Bass, 2000; Bosher y Labouesse, 2000; Fire, 1999; Plasterk y Ketting, 2000; Sharp, 1999; Sijen y Kooter, 2000), véase también el ejemplar completo de Plant Molecular Biology, vol. 43, número 2/3, (2000).
En las plantas, además de la PTGS, los transgenes introducidos pueden conducir también a silenciación transcripcional de genes por la vía de la metilación de las citosinas del DNA dirigida por RNA (véanse referencias en Wassenegger, 2000). Dianas genómicas tan cortas como 30 pb se metilan en las plantas de una manera dirigida por RNA (Pelissier, 2000). La metilación de DNA está presente también en los mamíferos.
La función natural de RNAi y la co-supresión parece ser la protección del genoma contra la invasión por elementos genéticos móviles tales como retro-transposones y virus que producen RNA o dsRNA aberrantes en la célula hospedadora cuando aquéllos se vuelven activos (Jensen et al., 1999; Ketting et al., 1999; Ratcliff et al., 1999; Tabara et al., 1999). La degradación específica de mRNA previene la replicación de transposones y virus, aunque algunos virus son capaces de resolver o prevenir este proceso por expresión de proteínas que suprimen la PTGS (Lucy et al., 2000; Voinnet et al., 2000).
El dsRNA desencadena la degradación específica de RNAs homólogos únicamente dentro de la región de identidad con el dsRNA (Zamore et al., 2000; Brenda L. Ban, 2000; Yang et al., 2000; Elbashir et al., 2001; WO 01/7516). El dsRNA se procesa a fragmentos de RNA de 21-23 nt y los sitios de escisión del RNA diana se espacian regularmente con distanciamiento de 21-23 nt. Por esta razón se ha sugerido que los fragmentos de 21-23 nt son los RNAs guía para reconocimiento de dianas (Zamore et al., 2000). Estos RNAs cortos se detectaron también en extractos preparados a partir de células Schneider 2 de D. melanogaster que se transfectaron con dsRNA antes de la lisis celular (Hammond et al., 2000); sin embargo, las fracciones que exhibían actividad de nucleasa específica de la secuencia contenían también una gran fracción de dsRNA residual. El papel de los fragmentos de 21-23 nt en el guiado de la escisión del mRNA está respaldado adicionalmente por la observación de que fragmentos de 21-23 nt aislados de dsRNA procesado son capaces, en cierto grado, de mediar la degradación específica del mRNA (Zamore et al., 2000). Moléculas de RNA de tamaño similar se acumulan también en tejido de plantas que exhibe PTGS (Hamilton y Baulcombe, 1999).
En este documento, los autores utilizan el sistema establecido in vitro de Drosophila (Tuschl et al., 1999; Zamore et al., 2000) para explorar adicionalmente el mecanismo de RNAi. Se demuestra que RNAs cortos de 21 y 22 nt, cuando se aparean sus bases con extremos 3' salientes, actúan como RNAs guía para la degradación de mRNA específica de la secuencia. Los dsRNAs cortos de 30 pb son incapaces de mediar RNAi en este sistema debido a que ya no se procesan a RNAs de 21 y 22 nt. Adicionalmente, se definieron los sitios de escisión de RNA diana con relación a los RNAs de interferencia cortos de 21 y 22 nt (siRNAs) que proporcionan evidencia de que la dirección del procesamiento de dsRNA determina si un RNA diana de sentido o antisentido puede ser escindido por el complejo de endonucleasas siRNP producido. Adicionalmente, los siRNAs pueden ser también herramientas importantes para modulación de la transcripción, v.g. por silenciación de genes de mamífero por metilación del DNA guía.
Experimentos ulteriores en sistemas de cultivo de células humanas in vivo (células HeLa) demuestran que moléculas de RNA bicatenario que tienen una longitud de preferiblemente 19-23 nucleótidos tienen actividad RNAi.
El objeto fundamental de la presente invención es proporcionar nuevos agentes capaces de mediar la interferencia de RNA específica de la diana, teniendo dichos agentes una eficacia y seguridad mejoradas en comparación con agentes de la técnica anterior.
La solución de este problema es proporcionada por una molécula de RNA bicatenario aislada, en la cual cada cadena de RNA tiene una longitud de 19-23 nucleótidos y en la cual al menos una cadena tiene un saliente 3' de 1-3 nucleótidos, siendo dicha molécula de RNA capaz de mediar la interferencia de RNA. Al menos una cadena tiene un saliente 3' de 1-3 nucleótidos y muy preferiblemente 2 nucleótidos. La otra cadena puede tener extremos romos o tiene saliente 3' de hasta 6 nucleótidos.
La molécula de RNA es preferiblemente una molécula de RNA sintética que está sustancialmente exenta de contaminantes existentes en extractos de células, v.g. de embriones de Drosophila. Adicionalmente, la molécula de RNA está con preferencia sustancialmente exenta de cualesquiera contaminantes no específicos de la diana, particularmente moléculas de RNA no específicas de la diana, v.g. de contaminantes existentes en extractos celulares.
Adicionalmente, la invención se refiere al uso de moléculas de RNA bicatenario aisladas, en donde cada cadena de RNA tiene una longitud de 19-23 nucleótidos y en donde al menos una cadena tiene un saliente 3' de 1-3 nucleótidos para mediar la RNAi en células de mamífero, particularmente en células humanas.
Sorprendentemente, se ha encontrado que las moléculas cortas sintéticas de RNA bicatenario con extremos 3' salientes, son mediadores de RNAi específicas de la secuencia y median la escisión eficiente del RNA diana, estando localizado el sitio de escisión cerca del centro de la región abarcada por el RNA guía corto.
Preferiblemente, cada cadena de la molécula de RNA tiene una longitud de 20-22 nucleótidos, pudiendo ser la longitud de cada cadena igual o diferente. La longitud del saliente 3' alcanza de 1 a 3 nucleótidos, pudiendo ser la longitud del saliente igual o diferente para cada cadena. Las cadenas de RNA tienen preferiblemente grupos 3' hidroxilo. El término 5' comprende preferiblemente un grupo fosfato, difosfato, trifosfato o hidroxilo. Los dsRNAs más eficaces están compuestos de cadenas de 21 nt que están apareadas de tal manera que están presentes en ambos extremos del dsRNA salientes 3' de 1-3, particularmente 2 nt.
La reacción de escisión del RNA diana guiada por siRNAs es altamente específica de la secuencia. Sin embargo, no todas las posiciones de un siRNA contribuyen por igual al reconocimiento de la diana. Los desapareamientos en el centro del dúplex de siRNA son sumamente críticos y anulan esencialmente la escisión del RNA diana. En contraste, el nucleótido 3' de la cadena de siRNA (v.g. la posición 21) que es complementario al RNA diana monocatenario, no contribuye a la especificidad del reconocimiento de la diana. Adicionalmente, la secuencia del saliente 3' de 2 nt no apareado de la cadena de siRNA con la misma polaridad que el RNA diana no es crítico para la escisión del RNA diana dado que únicamente la cadena de siRNA antisentido guía el reconocimiento de la diana. Así pues, de los nucleótidos salientes monocatenarios únicamente la posición penúltima del siRNA antisentido (v.g., la posición 20) precisa coincidir con el mRNA de sentido de la diana.
Sorprendentemente, las moléculas de RNA bicatenario de la presente invención exhiben una alta estabilidad in vivo en suero o en medio de crecimiento para cultivos celulares. Con objeto de mejorar adicionalmente la estabilidad, los salientes 3' pueden estabilizarse contra la degradación, v.g. pueden seleccionarse de tal manera que estén constituidos por nucleótidos de purina, particularmente nucleótidos de adenosina o guanosina. Alternativamente, la sustitución de los nucleótidos de pirimidina por análogos modificados, v.g. sustitución de salientes 3' de 2 nt de uridina por 2'-desoxitimidina es tolerada y no afecta a la eficiencia de la interferencia de RNA. La ausencia de un hidroxilo en posición 2' mejora significativamente la resistencia a las nucleasas del saliente en el medio de cultivo de tejido.
En una realización especialmente preferida de la presente invención, la molécula de RNA puede contener al menos un análogo de nucleótido modificado. Los análogos de nucleótidos pueden estar localizados en posiciones en las cuales la actividad específica de la diana, v.g. la actividad mediadora de RNAi no se ve afectada sustancialmente, v.g. en una región en el extremo 5' y/o el extremo 3' de la molécula de RNA bicatenario. Particularmente, los salientes pueden estar estabilizados por incorporación de análogos de nucleótidos modificados.
Los análogos de nucleótidos preferidos se seleccionan de ribonucleótidos modificados en el azúcar o la cadena principal. Debe anotarse, sin embargo, que también son adecuados ribonucleótidos modificados con nucleobases, es decir ribonucleótidos que contienen una nucleobase no existente naturalmente en lugar de una nucleobase existente naturalmente tales como uridinas o citidinas modificadas en la posición 5, v.g. 5-(2-amino)propil-uridina, 5-bromo-uridina; adenosinas y guanosinas modificadas en la posición 8, v.g. 8-bromo-guanosina; desaza-nucleótidos, v.g. 7-desaza-adenosina; nucleótidos alquilados en O y N, v.g. N6-metil-adenosina. En los ribonucleótidos preferidos modificados en el azúcar, el grupo 2'-OH está reemplazado por un grupo seleccionado de H, OR, R, halo, SH, SR, NH_{2}, NHR, NR_{2} o CN, en donde R es alquilo, alquenilo o alquinilo C_{1}-C_{6} y halo es F, Cl, Br o I. En los ribonucleótidos preferidos modificados en la cadena principal, el grupo fosfoéster que está conectado a los ribonucleótidos adyacentes se reemplaza por un grupo modificado, v.g. un grupo fosfotioato. Debe indicarse que las modificaciones anteriores pueden combinarse.
La secuencia de la molécula de RNA bicatenario de la presente invención debe tener una identidad suficiente con una molécula diana de ácido nucleico a fin de mediar la RNAi específica de la diana. Preferiblemente, la secuencia tiene una identidad de al menos 70% con la molécula diana deseada en la porción bicatenaria de la molécula de RNA. Más preferiblemente, la identidad es de al menos 85% y muy preferiblemente 100% en la porción bicatenaria de la molécula de RNA. La identidad de una molécula de RNA bicatenario con una molécula diana de ácido nucleico predeterminada, v.g. una molécula diana de mRNA, puede determinarse como sigue:
I = \frac{n}{L} \ \times \ 100
donde I es la identidad en porcentaje, n es el número de nucleótidos idénticos en la porción bicatenaria del dsRNA y la diana y L es la longitud de la superposición de secuencias de la porción bicatenaria del dsRNA y la diana.
\newpage
\global\parskip0.900000\baselineskip
Alternativamente, la identidad de la molécula de RNA bicatenario respecto a la secuencia diana puede definirse también incluyendo el saliente 3', particularmente un saliente que tiene una longitud de 1-3 nucleótidos. En este caso, la identidad de secuencia es preferiblemente al menos 70% y más preferiblemente al menos 85% de la secuencia diana. Por ejemplo, los nucleótidos del saliente 3' y hasta 2 nucleótidos del término 5' y/o 3' de la doble cadena pueden modificarse sin pérdida significativa de actividad.
La molécula de RNA bicatenario de la invención puede prepararse por un método que comprende los pasos:
(a)
sintetizar dos cadenas de RNA cada una de las cuales tiene una longitud de 19 a 23 nucleótidos, teniendo al menos una de ellas un saliente 3' de 1 a 3 nucleótidos, siendo dichas cadenas de RNA capaces de formar una molécula de RNA bicatenario,
(b)
combinar las cadenas de RNA sintetizadas en condiciones en las cuales se forma una molécula de RNA bicatenario, que es capaz de interferencia de RNA específica de la diana.
Métodos de síntesis de moléculas de RNA se conocen en la técnica. En este contexto, se hace referencia particularmente a los métodos de síntesis química que se describen en Verma y Eckstein (1998).
Los RNAs monocatenarios pueden prepararse también por transcripción enzimática a partir de moldes de DNA sintéticos o de plásmidos de DNA aislados de bacterias recombinantes. Típicamente, se utilizan RNA-polimerasas de fago tales como RNA-polimerasa T7, T3 o SP6 (Milligan y Uhlenbeck (1989)).
Un aspecto adicional de la presente invención se refiere a un método in vitro de mediación de las interferencias de RNA específicas de diana en una célula o un organismo, que comprende los pasos:
(a)
poner en contacto dicha célula o dicho organismo con la molécula de RNA bicatenario de una cualquiera de las reivindicaciones 1 a 8 en condiciones en las cuales pueden ocurrir interferencias de RNA específicas de la diana, y
(b)
mediar una interferencia de RNA específica de la diana efectuada por el RNA bicatenario hacia un ácido nucleico diana que tiene una porción de secuencia que corresponde sustancialmente al RNA bicatenario.
Preferiblemente, el paso de puesta en contacto (a) comprende introducir la molécula de RNA bicatenario en una célula diana, v.g. una célula diana aislada, v.g. en cultivo de células, un microorganismo unicelular o una célula diana o una pluralidad de células diana en un organismo multicelular. Más preferiblemente, el paso de introducción comprende un suministro mediado por un portador, v.g. por portadores liposómicos o por inyección.
El método in vitro de la invención puede utilizarse para determinar la función de un gen en una célula o un organismo o incluso para modular la función de un gen en una célula o un organismo, que es capaz de mediar la interferencia de RNA. La célula es preferiblemente una célula o una línea de células eucariota(s), v.g. una célula vegetal o una célula animal, tal como una célula de mamífero, v.g. una célula embrionaria, una célula madre pluripotencial, una célula tumoral, v.g. una célula de teratocarcinoma o una célula infectada por un virus. El organismo es preferiblemente un organismo eucariota, v.g. una planta o un animal, tal como un mamífero, particularmente un humano.
El gen diana al que está dirigida la molécula de RNA de la invención puede estar asociado con una condición patológica. Por ejemplo, el gen puede ser un gen asociado a un patógeno, v.g. un gen viral, un gen asociado a un tumor o un gen asociado a una enfermedad autoinmune. El gen diana puede ser también un gen heterólogo expresado en una célula recombinante o un organismo alterado genéticamente. Por determinación o modulación, particularmente, inhibición de la función de un gen de este tipo pueden obtenerse información valiosa y beneficios terapéuticos en el campo de la agricultura o en el campo de la medicina o la medicina veterinaria.
Otro aspecto de la presente invención se refiere al uso de una molécula de RNA bicatenario como se define en una de las reivindicaciones 1 a 8 para la fabricación de un medicamento para modular la función de un gen asociado a un patógeno. En realizaciones particularmente preferidas, el gen asociado a un patógeno es un gen viral, un gen asociado a un tumor o un gen asociado a una enfermedad autoinmune.
El dsRNA se administra usualmente como una composición farmacéutica. La administración puede realizarse por métodos conocidos, en los cuales se introduce un ácido nucleico en una célula diana deseada in vitro o in vivo. Técnicas de transferencia de genes utilizadas comúnmente incluyen fosfato de calcio, DEAE-dextrano, electroporación y microinyección, y métodos virales (Graham, F.L. y van der Eb, A.J. (1973) Virol. 52, 456; MeCutchan, J.H. and Pagano, J.S. (1968), J. Natl. Cancer Inst. 41, 351; Chu, G. et al (1987), Nucl. Acids Res. 15, 1311; Fraley, R. et al. (1980), J. Biol. Chem. 255, 10431; Capecchi, M.R. (1980), Cell 22, 479). Una adición reciente a este arsenal de técnicas para introducción de DNA en células es el uso de liposomas catiónicos (Felgner, P.L. et al., (1987), Proc. Natl. Acad. Sci. USA 84, 7413). Formulaciones de lípidos catiónicos disponibles comercialmente son v.g. Tfx 50 (Promega) o Lipofectamin 2000 (Life Technologies).
Así pues, la invención se refiere también a una composición farmacéutica que contiene como agente activo al menos una molécula de RNA bicatenario como se describe arriba y un vehículo farmacéutico. La composición puede utilizarse para aplicaciones de diagnóstico y terapéuticas en medicina humana o en medicina veterinaria.
\global\parskip1.000000\baselineskip
Para aplicaciones diagnósticas o terapéuticas, la composición puede encontrarse en forma de una solución, v.g. una solución inyectable, una crema, un ungüento, una tableta, una suspensión o análogas. La composición puede administrarse de cualquier modo adecuado, v.g. por inyección, por aplicación oral, tópica, nasal, rectal, etc. El vehículo puede ser cualquier vehículo farmacéutico adecuado. Preferiblemente, se utiliza un vehículo que es capaz de aumentar la eficacia de las moléculas de RNA para introducirse en las células diana. Ejemplos adecuados de vehículos de este tipo son liposomas, particularmente liposomas catiónicos. Un método de administración particularmente preferido es la inyección.
Una aplicación preferida adicional del método RNAi es un análisis funcional de células eucariotas, u organismos eucariotas no humanos, preferiblemente células u organismos de mamífero y muy preferiblemente células humanas, v.g. líneas de células tales como HeLa o 293 o de roedores, v.g. ratas y ratones. Por transfección con moléculas de RNA bicatenario adecuadas que son homólogas respecto a un gen diana predeterminado o moléculas de DNA que codifican una molécula de RNA bicatenario adecuada, puede obtenerse un fenotipo de desactivación específico en una célula diana, v.g. en cultivo de células o en un organismo diana. Sorprendentemente, se ha encontrado que la presencia de moléculas de RNA bicatenario cortas no da como resultado una respuesta de interferón por la célula hospedadora o el organismo hospedador.
Así, un objeto adicional de la invención es una célula eucariota o un organismo eucariota no humano transfectado con una molécula de RNA de la invención o una molécula de DNA que codifica dicha molécula de RNA. Debe indicarse que la presente invención permite una desactivación específica de la diana de varios genes endógenos diferentes debido a la especificidad de RNAi.
Adicionalmente, la presente invención se explica con mayor detalle en las figuras y los ejemplos siguientes.
Leyendas de las figuras
Figura 1: Un RNA bicatenario tan corto como 38 pb puede mediar la RNAi.
(A) Representación gráfica de dsRNAs utilizados para direccionar mRNA de Pp-luc. Se prepararon tres series de dsRNAs con extremos romos, que cubrían un intervalo de 29 a 504 pb. La posición del primer nucleótido de la cadena de sentido del dsRNA se indica con relación al codón de comienzo de mRNA Pp-luc (p1). (B) Ensayo de interferencia de RNA (Tuschl et al., 1999). Las relaciones de actividad de Pp-luc diana a Rr-luc de control se normalizaron para un tampón de control (barra negra). Los dsRNAs (5 nM) se preincubaron en lisado de Drosophila durante 15 min a 25ºC antes de la adición de Pp-luc con casquete 7-metil-guanosina y mRNAs Rr-luc (\sim 50 pM). La incubación se continuó durante una hora más y se analizó luego por el ensayo dual de luciferasa (Promega). Los datos son el valor medio de al menos 4 experimentos independientes \pm la desviación estándar.
Figura 2: Un dsRNA de 29 pb ya no se procesa para dar fragmentos de 21-23 nt. Evolución temporal de la formulación de 21-23 meros por procesamiento de dsRNAs marcados internamente con ^{32}P (5 nM) en el lisado de Drosophila. Se indican la longitud y la fuente del dsRNA. Se ha cargado un marcador de tamaños de RNA (M) en la pista de la izquierda y se indican los tamaños de los fragmentos. Las dobles bandas para tiempo cero se deben a dsRNA incompletamente desnaturalizado.
Figura 3: Los dsRNAs cortos escinden la diana de mRNA una sola vez.
(A) Electroforesis en gel desnaturalizador de los productos estables de escisión en 5' producidos por incubación durante 1 h de RNA sentido o antisentido marcado con ^{32}P, 10 nM en el casquete con dsRNAs 10 nM de la serie p133 en lisado de Drosophila. Se generaron marcadores de longitud por digestión parcial con nucleasa T1 e hidrólisis alcalina parcial (OH) del RNA diana marcado en el casquete. Las regiones direccionadas por los dsRNAs se indican como barras negras en ambos lados. Se muestra el espaciamiento de 20-23 nt entre los sitios de escisión predominantes para el dsRNA de 111 pb de longitud. La flecha horizontal indica escisión inespecífica no debida a RNAi. (B) Posición de los sitios de escisión en RNAs diana de sentido y antisentido. Las secuencias de los RNAs diana de sentido de 177 nt y antisentido de 180 nt con casquete se representan en orientación antiparalela de tal manera que las secuencias complementarias están enfrentadas una a otra. La región direccionada por los diferentes dsRNAs se indica por barras de diferentes colores posicionadas entre las secuencias diana de sentido y antisentido. Los sitios de escisión se indican por ciclos: círculo grande para escisión fuerte, círculo pequeño para escisión débil. El grupo fosfato radiomarcado con ^{32}P está marcado por un asterisco.
Figura 4: Los fragmentos de RNA de 21 y 22 nt se generan por un mecanismo semejante al de la RNasa III.
(A) Secuencias de RNAs de \sim21 nt después de procesamiento de dsRNA. Los fragmentos de RNA de \sim21 nt generados por procesamiento de dsRNA se clonaron y secuenciaron direccionalmente. Los oligorribonucleótidos originarios de la cadena de sentido del dsRNA se indican como líneas azules, y los originarios de la cadena antisentido como líneas rojas. Se utilizan barras gruesas si la misma secuencia estaba presente en clones múltiples, indicando el número a la derecha la frecuencia. Los sitios de escisión de RNA diana mediados por el dsRNA se indican como círculos anaranjados, el círculo grande para escisión fuerte y el círculo pequeño para escisión débil (véase la Figura 3B). Los círculos situados en la parte superior de la cadena de sentido indicaban sitios de escisión en el interior de la cadena de sentido y los círculos en la parte inferior del dsRNA indican sitios de escisión en la diana antisentido. Hasta cinco nucleótidos adicionales se identificaron en fragmentos de \sim 21 nt derivados de los extremos 3' del dsRNA. Estos nucleótidos son combinaciones aleatorias constituidas predominantemente por residuos C, G o A, y se añadieron muy probablemente sin molde durante la transcripción por T7 de las cadenas constitutivas del dsRNA. (B) Análisis bidimensional por TLC de la composición de nucleótidos de RNAs de \sim 21 nt. Los RNAs de \sim 21 nt se generaron por incubación de dsRNA Pp-luc de 504 pb radiomarcado internamente en lisado de Drosophila, se purificaron en gel y se digirieron luego a mononucleótidos con nucleasa P1 (fila superior) o ribonucleasa T2 (fila inferior). El dsRNA se sometió a radiomarcación internamente por transcripción en presencia de uno de los \alpha-^{32}P nucleósido-trifosfatos indicados. La radioactividad se detectó por fosfoluminiscencia. Los nucleósido-5'-monofosfatos, nucleósido-3'-monofosfatos, nucleósido-5',3'-difosfatos, y el fosfato inorgánico se indican como pN, Np, pNp, y p_{i}, respectivamente. Los círculos negros indican puntos de absorción UV a partir de nucleótidos portadores no radiactivos. Los 3',5'-bisfosfatos (círculos rojos) se identificaron por co-migración con patrones radiomarcados preparados por fosforilación en 5' de nucleósido 3'-monofosfatos de con polinucleótido-quinasa T4 y \gamma-^{32}P-ATP.
Figura 5: Los RNAs sintéticos de 21 y 22 nt median la escisión del RNA diana.
(A) Representación gráfica del dsRNA de control de 52 pb y los dsRNAs sintéticos de 21 y 22 nt. La cadena de sentido de RNAs interferentes cortos de 21 y 22 nt (siRNAs) se representa en color azul, y la cadena antisentido en color rojo. Las secuencias de los siRNAs se derivaron de los fragmentos clonados de dsRNAs de 52 y 111 pb (Figura 4A), excepto en lo que respecta a la cadena antisentido de 22 nt del dúplex 5. Los siRNAs en los dúplex 6 y 7 eran exclusivos de la reacción de procesamiento de dsRNA de 111 pb. Los dos nucleótidos 3' salientes indicados en verde están presentes en la secuencia de la cadena sintética antisentido de los dúplex 1 y 3. Ambas cadenas del dsRNA de control de 52 pb se prepararon por transcripción in vitro, y una fracción de los transcritos puede contener adición de nucleótido 3' sin molde. Los sitios de escisión de RNA diana dirigidos por los dúplex de siRNA se indican como círculos anaranjados (véase la leyenda a la Figura 4A) y se determinaron como se muestra en la Figura 5B. (B) Posición de los sitios de escisión en los RNAs diana de sentido y antisentido. Las secuencias de RNA diana son como se describe en la Figura 3B. El dsRNA de control de 52 pb (10 nM) o los dúplex de RNA de 21 y 22 nt 1-7 (100 nM) se incubaron con RNA diana durante 2,5 h a 25ºC en lisado de Drosophila. Los productos estables de escisión 5' se resolvieron en el gel. Los sitios de escisión se indican en la Figura 5A. La región direccionada por el dsRNA de 52 pb o las cadenas de sentido(s) o antisentido(as) se indican por las barras negras al lado del gel. Los sitios de escisión están localizados todos ellos dentro de la región de identidad de los dsRNAs. Para determinación precisa de los sitios de escisión de la cadena antisentido, se utilizó un gel de menor concentración.
Figura 6: Los salientes 3' largos en dsRNAs cortos inhiben la RNAi.
(A) Representación gráfica de constructos de dsRNA de 52 pb. Las extensiones 3' de la cadena de sentido y antisentido se indican en azul y rojo, respectivamente. Los sitios de escisión observados en los RNAs diana se representan como círculos anaranjados análogamente a la Figura 4A, y se determinaron como se muestra en la Figura 6B. (B) Posición de los sitios de escisión en RNAs diana de sentido y antisentido. Las secuencias de RNA diana son como se describe en la Figura 3B. Se incubó dsRNA (10 nM) con RNA diana durante 2,5 h a 25ºC en lisado de Drosophila. Los productos de escisión 5' estables se resolvieron en el gel. Los sitios de escisión principales se indican con una flecha horizontal y se representan también en la Figura 6A. La región direccionada por el dsRNA de 52 pb se representa como una barra negra a ambos lados del gel.
Figura 7: Modelo propuesto para la RNAi.
Se predice que la RNAi comienza con el procesamiento de dsRNA (cadena de sentido en negro, cadena antisentido en rojo) a RNAs interferentes cortos, predominantemente de 21 y 22 nt (siRNAs). Los nucleótidos 3' salientes cortos, en caso de estar presentes en el dsRNA, pueden ser beneficiosos para el procesamiento de los dsRNAs cortos. Las proteínas de procesamiento de dsRNA, que no están caracterizadas todavía, se representan como óvalos verdes y azules, y se ensamblan en el dsRNA de manera asimétrica. En el modelo de los autores, esto se ilustra uniendo una proteína o un dominio hipotético de proteína azul con la cadena de siRNA en dirección 3' a 5', en tanto que la proteína o dominio hipotético de proteína verde se une siempre a la cadena de siRNA opuesta. Estas proteínas o un subconjunto de las mismas se mantienen asociadas con el dúplex de siRNA y preservan su orientación como se determina por la dirección de la reacción de procesamiento del dsRNA. Únicamente la secuencia de siRNA asociada con la proteína azul es capaz de guiar la escisión del RNA diana. Se hace referencia al complejo con endonucleasa como un complejo interferente pequeño de ribonucleoproteína o siRNT. Se supone aquí, que la endonucleasa que escinde el dsRNA puede escindir también el RNA diana, probablemente por desplazamiento temporal de la cadena de siRNA pasiva no utilizada para el reconocimiento de la diana. El RNA diana se escinde luego en el centro de la región reconocida por el siRNA guía complementario de la secuencia.
Figura 8: Constructos informadores y dúplex de siRNA.
(a) Se ilustran las regiones de genes informadores de luciferasa de luciérnaga (Pp-luc) y pensamiento de mar (Rr-luc) de los plásmidos pGL2-Control, pGL-3-Control y pRL-TK (Promega). Se indican los elementos reguladores de SV40, el promotor HSV de timidina-quinasa y dos intrones (líneas). La secuencia de GL3-luciferasa es idéntica en un 95% a GL2, pero RL no tiene relación alguna con ambas. La expresión de luciferasa por pGL2 es aproximadamente 10 veces menor que la de pGL3 en células de mamífero transfectadas. La región direccionada por los dúplex de siRNA se indica como barra negra bajo la región codificante de los genes de luciferasa. (b) Se muestran las secuencias de sentido (arriba) y antisentido (abajo) de los dúplex de siRNA que direccionan las luciferasas GL2, GL3 y RL. Los dúplex de siRNA GL2 y GL3 difieren únicamente en 3 sustituciones simples de nucleótidos (recuadrados en gris). Como control inespecífico, se sintetizó un dúplex con la secuencia GL2 invertida, invGL2. El saliente 3' de 2 nucleótidos de la 2'-desoxitimidina se indica como TT; uGL2 es similar a siRNA de GL2, pero contiene salientes 3' de ribouridina.
Figura 9: Interferencia de RNA por dúplex siRNA.
Las relaciones de luciferasa diana de control se normalizaron a un control de tampón (bu, barras negras); las barras grises indican relaciones de luciferasa GL2 o GL3 de Photinus pyralis (Pp-luc) a luciferasa RL de Renilla reniformes (Rr-luc) (eje de la izquierda), las barras blancas indican relaciones de RL a GL2 o GL3 (eje de la derecha). Los paneles a, c, e, g, e i describen experimentos realizados con la combinación de los plásmidos informadores pGL2-control y pRL-TK, y los paneles b, d, f, h y j con los plásmidos informadores pGL3-Control y pRL-TK. La línea de células utilizada para el experimento de interferencia se indica en la parte superior de cada gráfico. Las relaciones de Pp-luc/Rr-luc para el control de tampón (bu) variaban entre 0,5 y 10 para pGL2/pRL y entre 0,03 y 1 para pGL3/pRL, respectivamente, antes de normalización y entre las diversas líneas de células ensayadas. Los datos representados gráficamente se promediaron a partir de tres experimentos independientes \pm S.D.
Figura 10: Efectos de sRNA de 21 nt, y dsRNAs de 50 pb y 500 pb sobre la expresión de luciferasa en células HeLa.
La longitud exacta de los dsRNAs largos se indica bajo las barras. Los paneles a, c y e describen experimentos realizados con los plásmidos informadores pGL2-Control y pRL-TK, y los paneles b, d y f con los plásmidos informadores pGL3-Control y pRL-TK. Se promediaron los datos de dos experimentos independientes \pm S.D. (a), (b) Expresión absoluta de Pp-luc, representada en unidades de luminiscencia arbitrarias. (c), (d) Expresión de Rr-luc, representada en unidades de luminiscencia arbitrarias. (e), (f) Relaciones de diana normalizada a luciferasa de control. Las relaciones de actividad de luciferasa para los dúplex siRNA se normalizaron a un control de tampón (bu, barras negras); las relaciones de luminiscencia para los dsRNAs de 50 ó 500 pb se normalizaron a las relaciones respectivas observadas para dsRNA de 50 y 500 pb a partir de GFP humanizada (hG, barras negras). Debe indicarse que las diferencias globales en secuencias entre los dsRNAs de 49 y 484 pb direccionados a GL2 y GL3 no son suficientes para conferir especificidad entre las dianas GL2 y GL3 (identidad ininterrumpida de 43 nt en segmento de 49 pb, identidad ininterrumpida máxima de 239 nt en segmento de 484 pb).
Figura 11: Variación del saliente 3' de los dúplex de siRNAs de 21 nt.
(A) Reseña de la estrategia experimental. Se representa el mRNA diana de sentido con casquete y poliadenilado y se muestran las posiciones relativas de los siRNAs de sentido y antisentido. Se prepararon ocho series de dúplex, de acuerdo con las ocho cadenas antisentido diferentes. Las secuencias de siRNA y el número de nucleótidos salientes se cambiaron en pasos de 1 nt. (B) Luminiscencia relativa normalizada de la luciferasa diana (Photinus pyralis, Pp-luc) a luciferasa de control (Renilla reniformes, Rr-luc) en un lisado de embrión de D. melanogaster en presencia de dsRNAs 5 nM con extremos romos. Las relaciones de luminiscencia determinadas en presencia de dsRNA se normalizaron a la relación obtenida para un control de tampón (bu, barra negra). Las relaciones normalizadas menores que 1 indican interferencia específica. (C-J) Relaciones de interferencia normalizadas para 8 series de dúplex de siRNA de 21 nucleótidos. Las secuencias de los dúplex de siRNA se representan encima de los gráficos de barras. Cada panel muestra la relación de interferencia para una serie de dúplex formada con un siRNA guía antisentido dado y 5 siRNAs de sentido diferentes. El número de nucleótidos salientes (saliente 3', números positivos; salientes 5', números negativos) se indica en el eje x. Los puntos de datos se promediaron a partir de al menos tres experimentos independientes, representando las barras de error las desviaciones estándar.
Figura 12: Variación de la longitud de la cadena de sentido de los dúplex de siRNA.
(A) Representación gráfica del experimento. Tres cadenas antisentido de 21 nt se aparearon con 8 siRNAs de sentido. Los siRNAs se cambiaron en longitud en su extremo 3'. El saliente 3' del siRNA antisentido era de 1 nt (B), 2 nt (C) o 3 nt (D), mientras que el saliente de siRNA de sentido variaba para cada serie. Se indican las secuencias de los dúplex de siRNA y las relaciones de interferencia correspondientes.
Figura 13: Variación de la longitud de los dúplex de siRNA con salientes 3' de 2-nt preservados.
(A) Representación gráfica del experimento. El dúplex de siRNA de 21 nt es idéntico en secuencia al representado en la Figura 11H o 12C. Los dúplex de siRNA se extendieron hasta el lado 3' del siRNA de sentido (B) o el lado 5' del siRNA de sentido (C). Se indican las secuencias de los dúplex de siRNA y las respectivas relaciones de interfe-
rencia.
Figura 14: Sustitución de los grupos 2'-hidroxilo de los residuos ribosa de siRNA.
Los grupos 2'-hidroxilo (OH) en las cadenas de los dúplex de siRNA se reemplazaron por 2'-desoxi (d) o 2'-O-metilo (Me). Las sustituciones 2'-desoxi de 2 nt y 4 nt en los extremos 3' se indican como 2-nt d y 4-nt d, respectivamente. Los residuos uridina se reemplazaron por 2'-desoxi-timidina.
\newpage
Figura 15: Mapeado de la escisión de RNA diana de sentido y antisentido por los dúplex de siRNA de 21 nt con salientes 3' de 2 nt.
(A) Representación gráfica de RNAs y dúplex de siRNA diana de sentido y antisentido marcados en el casquete con 32P (asterisco). La posición de la escisión del RNA diana de sentido y antisentido se indica por triángulos encima y debajo de los dúplex de siRNA, respectivamente. (B) Mapeado de los sitios de escisión de RNA diana. Después de 2 h de incubación de la diana 10 mM con dúplex de siRNA 100 nM en lisado de embrión de D. melanogaster, el sustrato con casquete 5' y los productos de escisión 5' se resolvieron en geles de secuenciación. Se generaron marcadores de longitud por digestión parcial con RNasa T1 (T1) e hidrólisis alcalina parcial (OH-) de los RNAs diana. Las líneas en negrita a la izquierda de las imágenes indican la región cubierta por las cadenas de siRNA 1 y 5 de la misma orientación que la diana.
Figura 16: El extremo 5' de un siRNA guía define la posición de la escisión del RNA diana.
(A, B) Representación gráfica de la estrategia experimental. El siRNA antisentido era el mismo en todos los dúplex de siRNA, pero la cadena de sentido variaba entre 18 y 25 nt por cambio del extremo 3' (A) o entre 18 y 23 nt por cambio en el extremo 5' (B). La posición de la escisión del RNA diana de sentido y antisentido se indica por triángulos encima y debajo de los dúplex de siRNA, respectivamente. (C, D) Análisis de la escisión del RNA diana utilizando RNAs diana de sentido (panel superior) o antisentido (panel inferior) marcados en el casquete. Se muestran únicamente los productos de escisión 5' marcados en el casquete. Se indican las secuencias de los dúplex de siRNA, y la longitud de las cadenas de siRNA de sentido está marcada encima del panel. La línea de control marcada con un guión en el panel (C) muestra el RNA diana incubado en ausencia de siRNAs. Los marcadores fueron como se describe en la Figura 15. Las flechas en (D), panel del fondo, indican los sitios de escisión del RNA diana que difieren en 1 nt.
Figura 17: Variación de la secuencia del saliente 3' de los dúplex de siRNA.
El saliente 3' de 2 nt (NN, en gris) se cambió en secuencia y composición como se indica (T, 2'-desoxitimidina, dG, 2'-desoxiguanosina; asterisco, dúplex de siRNA de tipo salvaje). Las relaciones de interferencia normalizadas se determinaron como se describe en la Figura 11. La secuencia de tipo salvaje es la misma que se representa en la Figura 14.
Figura 18: Especificidad de secuencia de reconocimiento de diana.
Se muestran las secuencias de los dúplex de siRNA desapareados, y los segmentos de secuencia modificados o nucleótidos simples están subrayados en gris. El dúplex de referencia (ref) y los dúplex de siRNA 1 a 7 contienen salientes 2'-desoxitimidina de 2-nt. La eficiencia de silenciación del dúplex de referencia modificado con timidina era comparable a la secuencia de tipo salvaje (Figura 17). Las relaciones de interferencia normalizadas se determinaron como se describe en la Figura 11.
Figura 19: Variación de la longitud de los dúplex de si-RNA con los salientes 3' de 2 nt preservados.
Los dúplex de siRNA se extendieron al lado 3' del siRNA de sentido (A) o al lado 5' del siRNA de sentido (B). Se indican las secuencias de los dúplex de siRNA y las relaciones de interferencia respectivas. Para las células HeLa SS6, se transfectaron dúplex de siRNA (0,84 \mug) direccionados a luciferasa GL2 junto con plásmidos pGL2-Control y pRL-TK. Para comparación, se indican las actividades in vitro de RNAi de los dúplex siRNA ensayados en lisado de D. melanogaster.
Ejemplo 1 Interferencia de RNA Mediada por RNAs Sintéticos Pequeños 1.1. Procedimientos Experimentales 1.1.1. RNAi in vitro
Se realizaron preparaciones in vitro de RNAi y de lisado como se ha descrito anteriormente (Tuschl et al., 1999; Zamore et al., 2000). Es crítico utilizar creatina-quinasa recién disuelta (Roche) para regeneración óptima de ATP. Los ensayos de traducción de RNAi (Fig. 1) se realizaron con concentraciones de dsRNA de 5 nM y un periodo de pre-incubación prolongado de 15 min a 25ºC antes de la adición de mRNAs informadores Pp-luc y Rr-luc transcritos in vitro, con casquete y poliadenilados. La incubación se continuó durante 1 h y la cantidad relativa de proteína Pp-luc y Rr-luc se analizó utilizando el ensayo de luciferasa dual (Promega) y un luminómetro Monolight 3010C (PharMingen).
1.1.2. Síntesis de RNA
Se utilizaron procedimientos estándar para transcripción in vitro de RNA a partir de moldes de PCR que llevaban secuencias promotoras T7 o SP6, véase por ejemplo (Tuschl, et al., 1998). Se preparó RNA sintético utilizando fosforamiditos de RNA Expedite (Proligo). El nucleótido del adaptador 3' se sintetizó utilizando dimetoxitritil-1,4-bencenodimetanol-succinil-aminopropil-CPG. Los oligorribonucleótidos se desprotegieron en 3 ml de amoniaco/etanol al 32% (3/1) durante 4 h a 55ºC (RNA Expedite) o 16 h a 55ºC (oligonucleótidos quiméricos DNA/RNA adaptador 3' y 5') y se desililaron luego y purificaron en gel como se ha descrito previamente (Tuschl et al., 1993). Se generaron transcritos de RNA para preparación de dsRNA que incluían salientes 3' largos a partir de moldes PCR que contenían un promotor T7 en dirección de sentido y un promotor SP6 en dirección antisentido. El molde de transcripción para el RNA diana de sentido y antisentido se amplificó por PCR con
GCGTAATACGACTCACTATAGAACAATTGCTTTTACAG (subrayado, promotor T7) como iniciador 5' y
ATTTAGGTGACACTATAGGCATAAAGAATTGAAGA (subrayado, promotor SP6) como iniciador 3' y el plásmido linealizado Pp-luc (secuencia pGEM-luc) (Tuschl et al., 1999) como molde; el RNA de sentido transcrito por T7 tenía una longitud de 17 nt con la secuencia Pp-luc entre las posiciones 113 y 273 con relación al codón de partida y seguido por 17 nt del complemento de la secuencia promotora SP6 en el extremo 3'. Se prepararon transcritos para la formación de dsRNA con extremos romos por transcripción a partir de dos productos PCR diferentes que contenían solamente una secuencia de promotor simple.
Se llevó a cabo la reasociación de dsRNA utilizando una extracción con fenol/cloroformo. Se incubaron concentraciones equimolares de RNA de sentido y antisentido (50 nM a 10 \muM, dependiendo de la longitud y cantidad disponibles) en NaOAc 0,3M (pH 6) durante 30 s a 90ºC y se extrajeron luego a la temperatura ambiente con un volumen igual de fenol/cloroformo, lo que fue seguido por una extracción con cloroformo para eliminar el fenol residual. El dsRNA resultante se precipitó por adición de 2,5-3 volúmenes de etanol. El pelet se disolvió en tampón de lisis (KCl 100 mM, HEPES-KOH 30 mM, pH 7,4, Mg(OAc)_{2} 2 mM) y la calidad del dsRNA se comprobó por electroforesis estándar en gel de agarosa en tampón TAE 1 x. Los dsRNAs de 52 pb con los salientes 3' de 17 nt y 20 nt (Figura 6) se reasociaron por incubación durante 1 min a 95ºC, se enfriaron luego rápidamente a 70ºC y se enfriaron a continuación lentamente hasta la temperatura ambiente durante un periodo de 3 h (reacción de reasociación de 50 \mul, concentración de la cadena 1 \muM, NaCl 300 mM, Tris-HCl 10 mM, pH 7,5). Los dsRNAs se extrajeron luego con fenol/cloroformo, se precipitaron con etanol y se disolvieron en tampón de lisis.
La transcripción del RNA radiomarcado internamente con ^{32}P utilizado para la preparación del dsRNA (Figuras 2 y 4) se realizó utilizando ATP, CTP, y GTP 1 mM, UTP 0,1 ó 0,2 mM, y ^{32}P-UTP 0,2-0,3 \muM (3000 Ci/mmol), o la relación respectiva para nucleósido-trifosfatos radiomarcados distintos de UTP. La marcación del casquete de los RNAs diana se realizó como se ha descrito previamente. Los RNAs diana se purificaron en gel después de la marcación del casquete.
1.1.3. Mapeado del Sitio de Escisión
Se llevaron a cabo reacciones RNAi estándar por pre-incubación de dsRNA 10 nM durante 15 min seguido por adición de RNA diana 10 nM marcado en el casquete. La reacción se paró después de 2 horas adicionales (Figura 2A) o incubación durante 2,5 h (Figura 5B y 6B) por tratamiento con proteinasa K (Tuschl et al., 1999). Las muestras se analizaron luego en geles de secuenciación al 8 o al 10%. Los dúplex de RNA sintéticos de 21 y 22 nt se utilizaron a una concentración final de 100 nM (Fig. 5B).
1.1.4. Clonación de RNAs de \sim21 nt
Los RNAs de 21 nt se produjeron por incubación de dsRNA radiomarcado en lisado de Drosophila en ausencia de RNA diana (reacción de 200 \mul, incubación durante 1 h, dsP111 50 nM, o dsP52 o dsP39 100 nM). La mezcla de reacción se trató subsiguientemente con proteinasa K (Tuschl et al., 1999) y los productos de procesamiento de dsRNA se separaron en un gel de poliamida desnaturalizante al 15%. Se cortó una banda que incluía un intervalo de tamaños de al menos 18 a 24 nt, se eluyó en NaCl 0,3M durante una noche a 4ºC y en tubos siliconizados. El RNA se recuperó por precipitación con etanol y se desfosforiló (reacción de 30 \mul, 30 min, 50ºC, 10 U de fosfatasa alcalina, Roche). La reacción se paró por extracción con fenol/cloroformo y el RNA se precipitó con etanol. El oligonucleótido adaptador 3' (pUUUaaccgcatccttctcx: mayúsculas, RNA; minúsculas, DNA; p, fosfato; x, 4-hidroximetilbencilo) se ligó luego al RNA de \sim 21 nt desfosforilado (reacción de 20 \mul, 30 min, 37ºC, adaptador 3' 5 \muM, Tris-HCl 50 mM, pH 7,6, MgCl_{2} 10 mM, ATP 0,2 mM, BSA acetilada 0,1 mg/ml, 15% DMSO, 21 U de RNA-ligasa T4, Amersham-Pharmacia) (Pan y Uhlenbeck, 1992). La reacción de ligación se paró por la adición de un volumen igual de mezcla de parada urea 8M/EDTA 50 mM y se cargó directamente en un gel al 15%. Los rendimientos de ligación eran mayores que 50%. El producto de ligación se recuperó del gel y se fosforiló en posición 5' (reacción de 20 \mul, 30 min, 37ºC, ATP 2 mM, 5 U de polinucleótido-quinasa T4, NEB). La reacción de fosforilación se paró por extracción con fenol/cloroformo y el RNA se recuperó por precipitación con etanol. A continuación, se ligó el adaptador 5' (tactaatacgactcactAAA: mayúsculas, RNA; minúsculas, DNA) al producto de ligación fosforilado como se ha descrito arriba. El nuevo producto de ligación se purificó en gel y se eluyó de la rodaja de gel en presencia del iniciador de transcripción inversa (GACTAGCTGGAATTCAAGGATGCGGTTAAA; negrita, sitio ecoRI) utilizado como vehículo. La transcripción inversa (reacción de 15 \mul, 30 min, 42ºC, 150 U de transcriptasa inversa Superscript II, Life Technologies) fue seguida por PCR utilizando un iniciador 5' CAGCCAACGGAATTCATACGACTCACTAAA (negrita, sitio EcoRI) y el iniciador 3'-RT. El producto PCR se purificó por extracción con fenol/cloroformo y se precipitó con etanol. El producto PCR se digirió luego con EcoRI (NEB) y se concatemerizó utilizando DNA-ligasa T4 (alta concentración, NEB). Los concatémeros de un intervalo de tamaños de 200 a 800 pb se separaron en un gel de agarosa de punto de fusión bajo, se recuperaron del gel por un procedimiento estándar de fusión y extracción con fenol, y se precipitaron con etanol. Los extremos no apareados se rellenaron por incubación con polimerasa Taq en condiciones estándar durante 15 min a 72ºC, y el producto DNA se ligó directamente al vector pCR2.1-TOPO utilizando el kit de clonación TOPO TA (Invitrogen). Se seleccionaron las colonias utilizando PCR y los iniciadores de secuenciación M13-20 y M13 Reverse. Los productos PCR se sometieron directamente a secuenciación especial (Sequence Laboratories Göttingen GmbH, Alemania). Como promedio, se obtuvieron por cada clon 4 a 5 secuencias 21-meras.
1.1.5. Análisis 2D-TLC
La digestión con la nucleasa P1 de siRNAs radiomarcados y purificados en gel y 2D-TLC se llevó a cabo como se ha descrito (Zamore et al., 2000). La digestión con nucleasa T2 se realizó en reacciones de 10 \mul durante 3 h a 50ºC en acetato de amonio 10 mM (pH 4,5) utilizando 2 \mug/\mul de tRNA portador y 30 U de ribonucleasa T2 (Life Technologies). La migración de los patrones no radiactivos se determinó por sombreado UV. La identidad de los nucleósido-3',5'-difosfatos se confirmó por comigración de los productos de digestión con T2 con patrones preparados por fosforilación con ^{32}P en posición 5' de nucleósido-3'-monofosfatos comerciales utilizando \gamma-32P-ATP y polinucleótido-quinasa T4 (datos no presentados).
1.2. Resultados y discusión 1.2.1. Requerimientos de Longitud para el Procesamiento de dsRNA a Fragmentos de RNA de 21 y 22 nt
Un lisado preparado a partir de embriones sincitiales de D. melanogaster resume la RNAi in vitro proporcionando una nueva herramienta para el análisis bioquímico del mecanismo de la RNAi (Tuschl et al., 1999; Zamore et al., 2000). El análisis in vitro e in vivo de los requerimientos de longitud de dsRNA para RNAi ha revelado que los dsRNA cortos (<150 pb) son menos eficaces que los dsRNAs más largos en la degradación del mRNA diana (Caplen et al., 2000; Hammond et al., 2000; Ngo et al., 1998); Tuschl et al., 1999). Las razones para la reducción en la eficiencia de la degradación del mRNA no se conocen. Por esta razón se examinó el requerimiento preciso de longitud de dsRNA para degradación de RNA diana en condiciones optimizadas en el lisado de Drosophila (Zamore et al., 2000). Se sintetizaron varias series de dsRNAs y dirigieron contra el RNA informador de luciferasa de luciérnaga (Pp-luc). La supresión específica de la expresión de RNA diana se monitorizó por el ensayo de luciferasa dual (Tuschl et al., 1999) (Figuras 1A y 1B). Se detectó la inhibición específica de la expresión de RNA diana para dsRNAs tan cortos como 38 pb, pero dsRNAs de 29 a 36 pb no eran eficaces en este proceso. El efecto era independiente de la posición de la diana y el grado de inhibición de la expresión de mRNA de Pp-luc estaba en correlación con la longitud del dsRNA, es decir que los dsRNAs largos eran más eficaces que los dsRNAs cortos.
Se ha sugerido que los fragmentos de RNA de 21-23 nt generados por el procesamiento de dsRNAs son los mediadores de la interferencia y cosupresión de RNA (Hamilton y Baulcombe, 1999; Hammond et al., 2000; Zamore et al., 2000). Por esta razón se analizó la tasa de formación de fragmentos de 21-23 nt para un subconjunto de dsRNAs de tamaño comprendido entre 501 y 29 pb. la formación de fragmentos de 21-23 nt en lisado de Drosophila (Figura 2) era ya detectable para dsRNAs de 39 a 501 pb de longitud pero se retardaba significativamente para el dsRNA de 29 pb. Esta observación es consistente con un papel de los fragmentos 21-23 nt en el seguimiento de la escisión del mRNA y proporciona una explicación de la falta de RNAi para los dsRNAs de 30 pb. La dependencia de la longitud de la formación de 21-23 meros refleja probablemente un mecanismo de control biológicamente relevante para prevenir la activación indeseada de RNAi por estructuras intramoleculares cortas apareadas en bases de RNAs celulares
regulares.
1.2.2. El dsRNA de 39 pb Media la Escisión de RNA en un Solo Sitio
La adición de dsRNA y RNA diana con casquete 5' al lisado de Drosophila da como resultado una degradación específica de la secuencia del RNA diana (Tuschl et al., 1999). El mRNA diana se escinde solamente en la región de identidad con el dsRNA y muchos de los sitios de escisión diana están separados por 21-23 nt (Zamore et al., 2000). Así, se esperaba que el número de sitios de escisión para un dsRNA dado correspondiera grosso modo a la longitud del dsDNA dividida por 21. Se mapearon los sitios de escisión diana en un RNA diana de sentido y antisentido que estaba radiomarcado con 5' en el casquete (Zamore et al., 2000) (Figuras 3A y 3B). Los productos estables escindidos en 5' se separaron en un gel de secuenciación y se determinó la posición de escisión por comparación con una RNasa T1 parcial y una escalera de hidrólisis alcalina a partir del RNA diana.
Consistentemente con la observación previa (Zamore et al., 2000), todos los sitios de escisión del RNA diana estaban localizados dentro de la región de identidad para el dsRNA. La diana de sentido o antisentido era escindida una sola vez por el dsRNA de 39 pb. Cada sitio de escisión estaba localizado a 10 nt del extremo 5' de la región cubierta por el dsRNA (Figura 3B). El dsRNA de 52 pb, que comparte el mismo extremo 5' con el dsRNA de 39 pb, produce el mismo sitio de escisión en la diana de sentido, localizado a 10 nt del extremo 5' de la región de identidad con el dsRNA, además de dos sitios de escisión más débiles situados 23 y 24 nt aguas abajo del primer sitio. La diana antisentido era escindida una sola vez, de nuevo a una distancia de 10 nt del extremo 5' de la región cubierta por su dsRNA respectivo. El mapeado de los sitios de escisión para los dsRNAs de 38 a 49 pb que se muestran en la Figura 1, demostró que el primer y predominante sitio de escisión estaba localizado siempre a una distancia de 7 a 10 nt aguas abajo de la región cubierta por el dsRNA (datos no presentados). Esto sugiere que el producto de escisión del RNA diana está determinado por el extremo del dsRNA y podría implicar que el procesamiento a 21-23 meros se inicie a partir de los extremos del dúplex.
Los sitios de escisión en la diana de sentido y antisentido para el dsRNA más largo de 111 pb eran mucho más frecuentes que lo previsto y la mayoría de ellos aparecen en agrupaciones separadas por 20 a 23 nt (Figuras 3A y 3B). Como en el caso de los dsRNAs más cortos, el primer sitio de escisión en la diana de sentido se encuentra a 10 nt del extremo 5' de la región abarcada por el dsRNA; y el primer sitio de escisión en la diana antisentido está localizado a 9 nt del extremo 5' de la región cubierta por el dsRNA. No está claro qué es lo que pueda causar esta escisión desordenada, pero una posibilidad podría ser que dsRNAs más largos pueden ser procesados no sólo a partir de los extremos sino también internamente, o que existen algunos determinantes de especificidad para procesamiento de dsRNA que no se conocen todavía. Algunas irregularidades respecto a la separación de 21 a 23 nt se observaron también previamente (Zamore et al., 2000). Para comprender mejor la base molecular del procesamiento del dsRNA y el reconocimiento del RNA diana, se decidió analizar las secuencias de los fragmentos de 21-23 nt generados por el procesamiento de dsRNAs de 39, 52 y 111 pb en el lisado de Drosophila.
1.2.3. El dsRNA se Procesa a RNAs de 21 y 22 nt por un Mecanismo Semejante a la RNasa III
Con objeto de caracterizar los fragmentos de RNA de 21-23 nt, se examinaron los términos 5' y 3' de los fragmentos de RNA. La oxidación con peryodato de RNAs de 21-23 nt purificados en gel, seguida por eliminación en \beta indicó la presencia de grupos hidroxilo terminales 2' y 3'. Los 21-23 meros eran sensibles también al tratamiento con fosfatasa alcalina, lo que indicaba la presencia de un grupo fosfato en el terminal 5'. La presencia de términos 5'-fosfato y 3'-hidroxilo sugiere que el dsRNA podría ser procesado por una actividad enzimática similar a la RNasa de E. coli (para revisiones, véase Dunn, 1982; Nicholson, 1999; Robertson, 1990; Robertson, 1982)).
La clonación direccional de fragmentos de RNA de 21-23 nt se realizó por ligación de un oligonucleótido con adaptadores 3' y 5' a los 21-23 meros purificados utilizando RNA-ligasa T4. Los productos de ligación se transcribieron inversamente, se amplificaron por PCR, se concatemerizaron, clonaron y secuenciaron. Más de 220 RNAs cortos se secuenciaron a partir de las reacciones de procesamiento de dsRNA de los dsRNAs de 39, 52 y 111 pb (Figura 4a). Se encontró la distribución de longitudes siguiente: 1% 18 nt, 5% 19 nt, 12% 20 nt, 45% 21 nt, 28% 22 nt, 6% 23 nt, y 2% 24 nt. El análisis de la secuencia del nucleótido del terminal 5' de los fragmentos procesados indicó que los oligonucleótidos con una guanosina en posición 5' estaban infrarrepresentados. Este sesgo fue introducido muy probablemente por la RNA-ligasa T4 que discrimina contra la guanosina fosforilada en 5' como oligonucleótido donante; no se apreció desviación significativa alguna de la secuencia en el extremo 3'. Muchos de los fragmentos de \sim21 nt derivados de los extremos 3' de la cadena de sentido o antisentido de los dúplex incluyen nucleótidos 3' que se derivan de la adición sin molde de nucleótidos durante la síntesis del RNA utilizando RNA-polimerasa T7. Es interesante que un número importante de RNAs endógenos de \sim21 nt procedentes de Drosophila se clonaron también, algunos de ellos a partir de retrotransposones LTR y distintos de LTR (datos no presentados). Esto es consistente con un posible papel para la RNAi en la silenciación de transposones.
Los RNAs de \sim21 nt aparecen en grupos arracimados (Figura 4a) que cubren las secuencias de dsRNA enteras. Aparentemente, la reacción de procesamiento corta el dsRNA dejando extremos 3' escalonados, otra característica de la escisión por RNasa III. Para el dsRNA de 39 pb, se encontraron dos racimos de RNAs de \sim21 nt procedentes de cada cadena constitutiva del dsRNA, con inclusión de extremos salientes 3', pero se detectó un solo sitio de escisión en la diana de sentido y antisentido (Figuras 3A y 3B). Si los fragmentos de \sim21 nt estuvieran presentes como RNAs de guía monocatenarios en un complejo que media la degradación de mRNA, podría suponerse que existen al menos dos sitios de escisión diana, pero este no era el caso. Ello sugiere que los RNAs de \sim21 nt pueden estar presentes en forma bicatenaria en el complejo de endonucleasa, pero que solamente una de las cadenas puede utilizarse para reconocimiento y escisión del RNA diana. El uso de una sola de las cadenas de \sim21 nt para escisión de la diana puede determinarse simplemente por la orientación en la que el dúplex de \sim21 nt está unido al complejo de nucleasa. Esta orientación está definida por la dirección en la que se procesó el dsRNA original.
Las agrupaciones de \sim21 meros para el dsRNA de 52 pb y 111 pb están menos bien definidas en comparación con el dsRNA de 39 pb. Las agrupaciones se extienden sobre regiones de 25 a 30 nt que representan muy probablemente varias subpoblaciones distintas de dúplex de \sim21 nt y por consiguiente guían la escisión de la diana en varios sitios próximos. Estas regiones de escisión están todavía separadas predominantemente por intervalos de 20 a 23 nt. Las reglas que determinan el grado de regularidad en que el dsRNA puede procesarse a fragmentos de \sim21 nt no se conocen todavía, pero se observó previamente que el espaciaciamiento de aprox. 21-23 nt de los sitios de escisión podría alterarse por una serie de uridinas (Zamore et al., 2000). La especificidad de escisión del dsRNA por RNasa III de E. coli parece estar controlada principalmente por antideterminantes, es decir por la exclusión de algunos pares de bases específicos en posiciones dadas con relación al sitio de escisión (Zhang y Nicholson, 1997).
Para ensayar si estaba presente modificación en el azúcar, la base o el casquete en los fragmentos de RNA procesados de \sim21 nt, se incubó dsRNA de Pp-luc de 505 pb radiomarcado en el lisado durante 1 h, se aislaron los productos de \sim21 nt, y se digirieron con nucleasa P1 o T2 para dar mononucleótidos. La mixtura de nucleótidos se analizó luego por cromatografía en capa fina bidimensional (Figura 4B). Ninguno los cuatro ribonucleótidos naturales se modificaron, como se indica por digestión con P1 o T2. Los autores de la invención analizaron previamente la conversión de adenosina en inosina en los fragmentos de \sim21 nt (después de una incubación de 2 h) y detectaron un pequeño grado de desaminación (<0,7%) (Zamore et al., 2000); una incubación más breve en el lisado (1 h) reducía esta fracción de inosina hasta niveles apenas detectables. La RNasa T2, que escinde en posición 3' del enlace fosfodiéster, producía nucleósido-3'-fosfato y nucleósido-3',5'-difosfato, indicando con ello la presencia de un monofosfato en posición terminal 5'. Los cuatro nucleósido-3',5'-difosfatos se detectaron y sugieren que el enlace internucleotídico se escindía con poca o ninguna especificidad de secuencia. En resumen, los fragmentos de \sim21 nt no están modificados y se generaron a partir de dsRNA de tal modo que estaban presentes 5'-monofosfatos y 3'-hidroxilos en el extremo 5'.
1.2.4. Los RNAs sintéticos de 21 y 22 nt Median la Escisión del RNA Diana
El análisis de los productos del procesamiento de dsRNA indicaba que los fragmentos de \sim21 nt son generados por una reacción con todas las características de una reacción de escisión por la RNasa III (Dunn, 1982; Nicholson, 1999; Robertson, 1990; Robertson, 1982). La RNasa III realiza dos cortes escalonados en ambas cadenas del dsRNA, dejando un saliente 3' de aproximadamente 2 nt. Los autores de la invención sintetizaron químicamente RNAs de 21 y 22 nt, idénticos en secuencia a algunos de los fragmentos de \sim21 nt clonados, y ensayaron los mismos respecto a su capacidad para mediar la degradación del RNA diana (Figuras 5A y 5B). Los dúplex de RNA de 21 y 22 nt se incubaron a concentraciones 100 nM en el lisado, concentraciones 10 veces mayores que el dsRNA de control de 52 pb. En estas condiciones, la escisión del RNA diana es fácilmente detectable. La reducción de la concentración de dúplex de 21 y 22 nt desde 100 a 10 nM causa todavía escisión del RNA diana. Sin embargo, el aumento de la concentración del dúplex desde 100 nM a 1000 nM, no aumenta ulteriormente la escisión de la diana, debido probablemente a un factor limitante proteínico existente en el lisado.
En contraste con los dsRNAs de 29 ó 30 pb que no mediaban la RNAi, los dsRNAs de 21 y 22 nt con extremos 3' salientes de 2 a 4 nt mediaban la degradación eficiente del RNA diana (dúplex 1, 3, 4, 6, Figuras 5A y 5B). Los dsRNAs de 21 ó 22 nt con extremos romos (dúplex 2, 5, y 7, Figuras 5A y 5B) se redujeron en su capacidad para degradar la diana e indicaban que los extremos salientes 3' son críticos para reconstitución del complejo RNA-proteína nucleasa. Los salientes monocatenarios pueden ser necesarios para unión de afinidad alta del dúplex de \sim21 nt a los componentes proteínicos. Un fosfato 5'-terminal, aunque estaba presente después del procesamiento con dsRNA, no era necesario para mediar la escisión del RNA diana y estaba ausente de los RNAs sintéticos cortos.
Los dúplex sintéticos de 21 y 22 nt guiaban la escisión de las dianas de sentido y antisentido en la región abarcada por el dúplex corto. Este es un resultado importante considerando que un dsRNA de 39 pb, que forma dos pares de racimos de fragmentos de \sim21 nt (Fig. 2), escindía la diana de sentido o antisentido una sola vez y no dos veces. Los autores interpretan este resultado sugiriendo que únicamente una de las dos cadenas presentes en el dúplex de \sim21 nt es capaz de guiar la escisión del RNA diana y que la orientación del dúplex de \sim21 nt en el complejo de nucleasa está determinada por la dirección inicial de procesamiento del dsRNA. Sin embargo, la presentación de un dúplex de \sim21 nt ya perfectamente procesado al sistema in vitro, no permite la formación del complejo de nucleasa activo específico de la secuencia con dos orientaciones posibles del dúplex de RNA simétrico. Esto da como resultado la escisión de la diana de sentido y antisentido dentro de la región de identidad con el dúplex de RNA de 21 nt.
El sitio de escisión de la diana está localizado 11 ó 12 nt aguas abajo del primer nucleótido que es complementario a la secuencia guía de 21 ó 22 nt, es decir, que el sitio de escisión está próximo al centro de la región abarcada por los RNAs de 21 ó 22 nt (Figuras 4A y 4B). El desplazamiento de la cadena de sentido de un dúplex de 22 nt por dos nucleótidos (compárense los dúplex 1 y 3 en la Figura 5A) desplazaba el sitio de escisión de la diana antisentido únicamente por dos nucleótidos. El desplazamiento tanto de la cadena de sentido como de la cadena antisentido por 2 nucleótidos desplazaba ambos sitios de escisión por dos nucleótidos (compárense los dúplex 1 y 4). Se predice que sería posible diseñar un par de RNAs de 21 ó 22 nt para escindir un RNA diana prácticamente en cualquier posición dada.
La especificidad de la escisión del RNA diana guiada por RNAs de 21 y 22 nt parece exquisita, dado que no se detecta sitio aberrante alguno (Figura 5B). Sin embargo, debe observarse que los nucleótidos presentes en el Saliente 3' del dúplex de RNA de 21 y 22 nt pueden contribuir menos al reconocimiento del sustrato que los nucleótidos cercanos al sitio de escisión. Esto está basado en la observación de que el nucleótido más próximo a 3' en el saliente 3' de los dúplex activos 1 ó 3 (Figura 5A) no es complementario a la diana. Un análisis detallado de la especificidad de la RNAi puede emprenderse ahora fácilmente utilizando RNAs sintéticos de 21 y 22 nt.
Basándose en la evidencia de que los RNAs sintéticos de 21 y 22 nt con salientes 3' median la interferencia del RNA, se propuso designar los RNAs de \sim21 nt como "RNAs de interferencia corta" o siRNAs, y el complejo RNA-proteína respectivo como una "partícula de ribonucleoproteína interferente pequeña" o siRNP.
1.2.5.3. Los Salientes 3' de 20 nt en los dsRNAs cortos inhiben la RNAi
Se ha demostrado que parecen procesarse dsRNAs cortos con extremos romos a partir de los extremos del dsRNA. Durante el estudio de la dependencia de la longitud del dsRNA en la RNAi realizado por los autores de la invención, se han analizado también dsRNAs con extremos 3' salientes de 17 a 20 nt y se ha encontrado de modo sorprendente que los mismos eran menos potentes que los dsRNAs de extremos romos. El efecto inhibidor de los extremos 3' largos era particularmente pronunciado para dsRNAs de hasta 100 pb, pero era menos espectacular para los dsRNAs más largos. El efecto no era debido a una formación imperfecta de dsRNA basada en el análisis de gel nativo (datos no representados). Se ensayó si el efecto inhibidor de los extremos 3' salientes largos podría utilizarse como herramienta para dirigir el procesamiento de dsRNA a uno solo de los dos extremos de un dúplex de RNA corto.
Se sintetizaron cuatro combinaciones del dsRNA molde de 52 pb, la extensión 3' con extremos romos solamente en la cadena de sentido, la extensión 3' solamente en la cadena antisentido, y la extensión 3' doble en ambas cadenas, y se mapearon los sitios de escisión del RNA diana después de incubación en el lisado (Figuras 6A y 6B). El sitio de escisión primero y predominante de la cadena de sentido se perdió cuando se extendía el extremo 3' de la cadena antisentido del dúplex, y viceversa, el sitio de escisión fuerte de la cadena antisentido se perdía cuando se extendía el extremo 3' de la cadena de sentido del dúplex. Las extensiones en 3' de ambas cadenas hacían que el dsRNA de 52 pb se volviera virtualmente inactivo. Una explicación para la desactivación del dsRNA por las extensiones 3' de \sim20 nt podría ser la asociación de proteínas de fijación de RNA monocatenarias que podrían interferir con la asociación de uno de los factores de procesamiento del dsRNA en este extremo. Este resultado es consistente también con el modelo de los autores de la invención en el cual una sola de las cadenas del dúplex de siRNA en el siRNP ensamblado es capaz de guiar la escisión del RNA diana. La orientación de la cadena que guía la escisión del RNA está definida por la dirección de la reacción de procesamiento del dsRNA. Es probable que la presencia de extremos 3' escalonados pueda facilitar el ensamblaje del complejo de procesamiento. Un bloque en el extremo 3' de la cadena de sentido permitirá únicamente el procesamiento de dsRNA desde el extremo 3' opuesto de la cadena antisentido. Esto genera a su vez complejos siRNP en los cuales únicamente la cadena antisentido del dúplex de siRNA es capaz de guiar la escisión del RNA de sentido diana. Lo mismo es cierto para la situación recíproca.
El efecto inhibidor menos pronunciado de extensiones 3' largas en el caso de dsRNAs más largos (\geq500 pb, datos no presentados) sugiere a los autores de la invención que los dsRNAs largos pueden contener también señales de procesamiento de dsRNA internas o pueden llegar a ser procesados cooperativamente debido a la asociación de factores de escisión múltiples.
1.2.6. Un Modelo para la Escisión de mRNA Dirigido por dsRNA
Los nuevos datos bioquímicos actualizan el modelo en cuanto al modo en que el dsRNA direcciona el mRNA para su destrucción (Figura 7). El RNA bicatenario se procesa primeramente a dúplex de RNA cortos que tienen predominantemente una longitud de 21 y 22 nt y con extremos escalonados 3' similares a una reacción análoga a la de la RNasa III (Dunn, 1982; Nicholson, 1999; Robertson, 1982). Basándose en la longitud de 21-23 nt de los fragmentos de RNA procesados, se ha especulado ya que puede estar implicada una actividad análoga a la de RNasa III en la RNAi (Bass, 2000). Esta hipótesis se ve respaldada adicionalmente por la presencia de 5'-fosfatos y 3'-hidroxilos en los términos de los siRNAs tal como se observa en los productos de reacción de RNasa III (Dunn, 1982; Nicholson, 1999). Se ha demostrado que la RNasa III bacteriana y los homólogos eucariotas Rnt1p en S. cerevisiae y Pac1p en S. pombe funcionan en el procesamiento del RNA ribosómico así como en snRNA y snoRNAs (véase por ejemplo Chanfreau et al., 2000).
Se sabe poco acerca de la bioquímica de los homólogos de la RNasa III de plantas, animales o humanos. Dos familias de enzimas RNasa III han sido identificadas predominante por análisis de la secuencia guiada por bases de datos o clonación de cDNAs. La primera familia de RNasa III está representada por la proteína drosha de 1327 aminoácidos de longitud de D. melanogaster (Acc. AF116572). El término C se compone de dos dominios de fijación de RNasa III y un solo dominio de fijación de dsRNA, y el término N tiene una función desconocida. Se encuentran también homólogos próximos en C. elegans (Acc. AF160248) y humanos (Acc. AF18911) (Filippov et al., 2000; Wu et al., 2000). La RNasa III humana semejante a drosha ha sido clonada y caracterizada recientemente (Wu et al., 2000). El gen se expresa ubicuamente en tejidos y líneas de células humanos(as), y la proteína está localizada en el núcleo y el nucléolo de la célula. Sobre la base de los resultados deducidos de estudios de inhibición antisentido, se sugirió un papel de esta proteína respecto al procesamiento del rRNA. La segunda clase está representada por el gen K12H4.8 de C. elegans (Acc. S44849) que codifica una proteína de 1822 aminoácidos de longitud. Esta proteína tiene un motivo de RNA helicasa N-terminal que va seguido por dos dominios catalíticos de RNasa III y un motivo de fijación de dsRNA, similar a la familia de RNasa III de drosha. Existen homólogos próximos en S. pombe (Acc. QO9884), A. thaliana (Acc. AF187317), D. melanogaster (Acc. AE003740) y humanos (Acc. AB028449) (Filippov et al., 2000; Jacobsen et al., 1999; Matsuda et al. 2000). Posiblemente, la RNasa III/helicasa K12H4.8 es el candidato probable que está implicado en la RNAi.
Selecciones genéticas en C. elegans identificaron rde-1 y rde-4 como esenciales para la activación de RNAi sin un efecto sobre la movilización o co-supresión de transposones (Dernburg et al., 2000; Grishok et al., 2000; Ketting y Plasterk, 2000; Tabara et al., 1999). Esto condujo a la hipótesis de que estos genes son importantes para el procesamiento de dsRNA pero no están implicados en la degradación de la diana mRNA. La función de ambos genes es todavía desconocida, siendo el producto del gen rde-1 un miembro de una familia de proteínas similares a la proteína elF2C de conejo (Tabara et al., 1999), y no habiéndose descrito todavía la secuencia de rde-4. La caracterización bioquímica futura de estas proteínas debería revelar su función molecular.
El procesamiento a los dúplex de siRNA parece iniciarse desde los extremos de ambos dsRNAs con extremos romos o dsRNAs con salientes 3' cortos (1-5 nt), y procede en pasos de aproximadamente 21-23 nt. Los extremos escalonados 3' largos (\sim20 nt) en dsRNAs cortos suprimen la RNAi, debido posiblemente a interacción con proteínas de fijación de RNA monocatenarias. La supresión de la RNAi por regiones monocatenarias flanqueantes de dsRNA corto y la ausencia de formación de siRNA a partir de dsRNAs cortos de 30 pb puede explicar por qué las regiones estructuradas que se encuentran frecuentemente en los mRNAs no conducen a la activación de la RNAi.
Sin pretender quedar ligados a la teoría, se supone que las proteínas de procesamiento de dsRNA o un subconjunto de éstas se mantienen asociadas con el dúplex de siRNA después de la reacción de procesamiento. La orientación del dúplex de siRNA con relación a estas proteínas determina cuál de las dos cadenas complementarias funciona como guía en la degradación del RNA diana. Los dúplex de siRNA sintetizados químicamente guían la escisión del RNA diana tanto de sentido como antisentido, dado que son capaces de asociarse con los componentes proteínicos en cualquiera de las dos orientaciones posibles.
El notable descubrimiento de que dúplex de siRNA sintéticos de 21 y 22 nt pueden utilizarse para degradación eficiente del mRNA proporciona nuevas herramientas para la regulación específica de secuencia de la expresión génica en genómica funcional así como en estudios biomédicos. Los siRNAs pueden ser eficaces en sistemas de mamífero en los que no puede utilizarse dsRNA largos debido a la activación de la respuesta PKR (Clemens, 1997). Como tales, los dúplex de siRNA representan una nueva alternativa a la terapéutica antisentido o con ribozimas.
Ejemplo 2 Interferencia de RNA en Cultivos de Tejido Humanos 2.1. Métodos 2.1.1. Preparación del RNA
Se sintetizaron químicamente RNAs de 21 nt utilizando RNA-fosforamiditos Expedite y timidina-fosforamidito (Proligo, Alemania). Se desprotegieron oligonucleótidos sintéticos y se purificaron en gel (Ejemplo 1), seguido por purificación con un cartucho SepPak C18 (Waters, Milford, MA, EE.UU.) (Tuschl, 1993). Las secuencias de siRNA direccionadas a GL2 (Acc. X65324) y luciferasa GL3 (Acc. U47296) correspondían a las regiones codificantes 153-173 con relación al primer nucleótido del codón de partida, y los siRNAs de direccionamiento de RL (Acc. AF025846) correspondían a la región 119-129 después del codón de partida. Los RNas más largos se transcribían con RNA-polimerasa a partir de productos PCR, seguido por purificación en gel y SepPak. Los dsRNAs de GL2 o GL3 de 49 y 484 pb correspondían a la posición 113-161 y 113-596, respectivamente, con relación al comienzo de la traducción; los dsRNAs de RL de 50 y 501 pb correspondían a las posiciones 118-167 y 118-618, respectivamente. Los moldes PCR para la síntesis de dsRNA que direccionaba GFP humanizada (hG) se amplificaron a partir de pAD3 (Kehlenbach, 1998), donde el dsRNA hG de 50 y 501 pb correspondía a las posiciones 118-167 y 118-618, respectivamente, con referencia al codón de partida.
Para la reasociación de siRNAs, se incubaron cadenas simples de 20 \muM en tampón de reasociación (acetato de potasio 100 mM, HEPES-KOH 30 mM a pH 7,4, acetato de magnesio 2 mM) durante 1 min a 90ºC seguido por 1 h a 37ºC. El paso de incubación a 37ºC se prolongó durante una noche para los dsRNAs de 50 y 500 pb y estas reacciones de reasociación se realizaron para concentraciones de cadena de 8,4 \muM y 0,84 \muM, respectivamente.
2.1.2 Cultivo de Células
Se prepararon células S2 en medio Drosophila de Schneider (Life Technologies) complementado con 10% FBS, 100 unidades/ml de penicilina y 100 \mug/ml de estreptomicina a 25ºC. Se cultivaron células 293, NIH/3T3, HeLa S3 y COS-7 a 37ºC en medio de Eagle modificado de Dulbecco complementado con 10% de FDS, 100 unidades/ml de penicilina y 100 \mug/ml de estreptomicina. Las células se sometieron a pasadas regularmente a fin de mantener el crecimiento exponencial. 24 h antes de la transfección a aprox. 80% de la confluencia, se tripsinizaron células de mamífero y se diluyeron en relación 1:5 con medio reciente sin antibióticos (1-3 x 10^{5} células/ml) y se transfirieron a placas de 24 pocillos (500 \mul/pocillo). Las células S2 no se tripsinizaron antes de la división. La transfección se llevó a cabo con reactivo Lipofectamine 2000 (Life Technologies) como ha sido descrito por el fabricante para líneas de células adherentes. Se aplicaron por pocillo 1,0 \mug de pGL2-Control (Promega) o pGL3-Control (Promega), 0,1 \mug de pRL-TK (Promega) y 0,28 \mug de dúplex de siRNA o dsRNA, formulado en liposomas; el volumen final era 600 \mul por pocillo. Las células se incubaron 20 h después de la transfección y parecían sanas después de ello. La expresión de luciferasa se monitorizó subsiguientemente con el ensayo de luciferasa Dual (Promega). Las eficiencias de transfección se determinaron por microscopía de fluorescencia para líneas de células de mamífero después de co-transfección de 1,1 \mug hGFP que codificaba pAD3 y 0,28 \mug de siRNA invGL2 inGL2 y eran 70-90%. Los plásmidos informa-
dores se amplificaron en XL-7 Blue (Stratagene) y se purificaron utilizando el kit Qiagen EndoFree Maxi Plasmid.
2.2. Resultados y Discusión
Para ensayar si los siRNAs son capaces también de mediar la RNAi en cultivo de tejido, se sintetizaron dúplex de siRNA de 21 nt con salientes 3' simétricos de 2 nt dirigidos contra los genes informadores que codifican el pensamiento de mar (Renilla reniformis) y dos variantes de secuencias de luciferasa de luciérnaga (Photinus pyralis, GL2 y GL3) (Fig. 8a, b). Los dúplex de siRNA se co-transfectaron con las combinaciones de plásmidos informadores pGL2/pRL o pGL3/pRL en células S2 Schneider de D. melanogaster o células de mamífero utilizando liposomas catiónicos. Las actividades de luciferasa se determinaron 20 h después de la transfección. En todas las líneas de células ensayadas, se observó una reducción específica de la expresión de los genes informadores en presencia de dúplex siRNA cognados (Fig. 9a-j). Es notable que los niveles de expresión de luciferasa absolutos no se veían afectados por los siRNAs no cognados, lo que indicaba la ausencia de efectos secundarios perjudiciales por los dúplex de RNA de 21 nt (v.g. Fig. 10 a-d para células HeLa). En las células S2 de D. melanogaster (Fig. 9a, b), la inhibición específica de las luciferasas era completa. En las células de mamífero, en las que los genes informadores se expresaban con intensidad de 50 a 100 veces mayor, la supresión específica era menos completa (Fig. 9c-j). La expresión de GL2 se reducía de 3 a 12 veces, la expresión de GL3 de 9 a 25 veces, y la expresión de RL de 1 a 3 veces, en respuesta a los siRNAs cognados. Para las células 293, el direccionamiento de RL-luciferasa por los siRNAs RL era ineficaz, aunque las dianas GL2 y GL3 respondían específicamente (Fig. 9i, j). La ausencia de reducción de la expresión de RL en las células 293 puede ser debida a su expresión de 5 a 20 veces mayor comparada con cualquier otra línea de células de mamífero ensayada y/o a la accesibilidad limitada de la secuencia diana debido a la estructura secundaria del RNA o de proteínas asociadas. Sin embargo, el direccionamiento específico de luciferasa GL2 y GL3 por los dúplex de siRNA cognados indicaba que la RNAi tiene lugar también en las células 293.
El saliente 3' de 2 nt en todos los dúplex de siRNA, excepto en el caso de uGL2, estaba compuesto por (2'-desoxi)-timidina. La sustitución de uridina por timidina en el saliente 3' era bien tolerada en el sistema de D. melanogaster in vitro y la secuencia del saliente no era crítica para el reconocimiento de la diana. Se seleccionó el saliente de timidina debido a que se supone que el mismo aumenta la resistencia de los siRNAs a las nucleasas en el medio de cultivo de tejidos y dentro de las células transfectadas. De hecho, el siRNA de GL2 modificado con timidina era ligeramente más potente que el siRNA uGL2 sin modificar en todas las líneas de células ensayadas (Fig. 9a, c, e, g, i). Puede imaginarse que modificaciones ulteriores de los nucleótidos del saliente 3' puedan proporcionar beneficios adicionales al suministro y la estabilidad de los dúplex de siRNA.
En experimentos de co-transfección, se utilizaron dúplex de siRNA de 25 nM con respecto al volumen final de medio de cultivo de tejido (Fig. 9, 10). El aumento de la concentración de siRNA a 100 nM no mejoraba los efectos de silenciación específicos, pero comenzaba a afectar las eficiencias de transfección debido a competencia para la encapsulación de liposomas entre el DNA plasmídico y el siRNA (datos no presentados). La disminución de la concentración de siRNA hasta 1,5 nM no reducía el efecto de silenciación específico (datos no presentados) aun cuando los siRNAs estaban ahora sólo 2 a 20 veces más concentrados que los plásmidos de DNA. Esto indica que los siRNAs son reactivos extraordinariamente potentes para mediar la silenciación de genes y que los siRNAs son eficaces a concentraciones que son varios órdenes de magnitud menores que las concentraciones aplicadas en los experimentos convencionales de direccionamiento de genes antisentido o de ribozima.
Con objeto de monitorizar el efecto de los dsRNAs más largos sobre las células de mamífero, se prepararon dsRNAs de 50 y 500 pb cognados a los genes informadores. Como control inespecífico, se utilizaron dsRNAs de GFP humanizada (hG) (Kehlenbach, 1998). Cuando se co-transfectaron dsRNAs, en cantidades (no concentraciones) idénticas a los dúplex de siRNA, la expresión de los genes informadores se redujo acusada e inespecíficamente. Este efecto se ilustra para las células HeLa como ejemplo representativo (Fig. 10a-d). Las actividades absolutas de luciferasa se redujeron inespecíficamente de 10 a 20 veces por dsRNA de 50 pb y de 20 a 200 veces por co-transfección con dsRNA de 500 pb, respectivamente. Se observaron efectos inespecíficos similares para las células COS-7 y NIH/3T3. Para las células 293, se observó únicamente una reducción inespecífica de 10 a 20 veces en el caso de los dsRNAs de 500 pb. La reducción inespecífica en la expresión de genes informadores por dsRNA >30 pb era de esperar como parte de la respuesta de interferones.
Sorprendentemente, a pesar de la fuerte disminución inespecífica en la expresión de genes informadores, los autores de la invención detectaron reproduciblemente una silenciación adicional específica de la secuencia, mediada por dsRNA. Sin embargo, los efectos de silenciación específicos, eran sólo aparentes cuando las actividades relativas de los genes informadores relativas se normalizaron para los controles de dsRNA hG (Fig. 10e, f). Se observó una reducción específica de 2 a 10 veces en respuesta al dsRNA cognado, al igual que en las otras 3 líneas de células de mamífero ensayadas (datos no presentados). Los efectos de silenciación específicos con dsRNAs (356-1662 pb) se consignaron previamente en células CHO-K1, pero las cantidades de dsRNA requeridas para detectar una reducción específica de 2 a 4 veces eran aproximadamente 20 veces mayores que en los experimentos realizados por los autores (Ui-Tei, 2000). Asimismo, las células CHO-K1 parecen ser deficientes en la respuesta de interferones. En otro informe, se ensayaron células 293, NIH/3T3 y BHK-21 respecto a RNAi utilizando combinaciones de informadores luciferasa/lacZ y 829 pb de dsRNA lacZ específico o gFP inespecífico de 717 pb (Caplen, 2000). El fallo en la detección de RNAi en este caso puede ser debido al ensayo informador luciferasa/lacZ menos sensible y a las diferencias de longitud del dsRNA diana y de control. Tomados en su conjunto, los resultados obtenidos por los autores indican que RNAi es activa en células de mamífero, pero que el efecto de silenciación es difícil de detectar, si el sistema de interferón está activado por dsRNA >30 pb.
En suma, se ha demostrado por primera vez la silenciación de genes mediada por siRNA en células de mamífero. El uso de siRNAs cortos se considera muy prometedor para la inactivación de la función de los genes en cultivos de tejido humanos y el desarrollo de terapéuticas específicas de genes.
Ejemplo 3 Inhibición Específica de la Expresión de Genes por Interferencia de RNA 3.1 Materiales y métodos 3.1.1 Preparación de RNA y ensayo de RNAi
Se realizaron ensayos de síntesis química de RNA, reasociación, y RNAi basada en luciferasa como se describe en los Ejemplos 1 ó 2 o en publicaciones previas (Tuschl et al., 1999; Zamore et al., 2000). Todos los dúplex de siRNA estaban dirigidos contra la luciferasa de luciérnaga, y la secuencia de mRNA de luciferasa se derivaba de pGEM-luc (GenBank Acc. X63316) como ha sido descrito (Tuschl et al., 1999). Los dúplex de siRNA se incubaron en una reacción RNAi/traducción de D. melanogaster durante 15 min antes de la adición de mRNAs. Los ensayos de RNAi basados en traducción se realizaron al menos por triplicado.
Para el mapeado de la escisión del RNA diana de sentido, se generó un transcrito de 177 nt, correspondiente a la secuencia de luciferasa de luciérnaga entre las posiciones 113 y 273 con relación al codón de partida, seguido por el complemento de 17 nt de la secuencia promotora SP6. Para el mapeado de la escisión de RNA diana antisentido, se produjo un transcrito de 166 nt a partir de un molde, que se amplificó a partir de la secuencia plasmídica por PCR utilizando el iniciador 5' TAATACGACTCACTATAGAGCCCATATCGTTTCATA (promotor T7 subrayado) y el iniciador 3' AGAGGATGGAACCGCTGG. La secuencia diana corresponde al complemento de la secuencia de luciferasa de luciérnaga entre las posiciones 50 y 215 con relación al codón de partida. La marcación con guanilil-transferasa se realizó como ha sido descrito previamente (Zamore et al., 2000). Para EL mapeado de la escisión del RNA diana, se incubaron 100 nM de dúplex de siRNA con RNA diana 5 a 10 nM en lisado de embrión de D. melanogaster en condiciones estándar (Zamore et al., 2000) durante 2 h a 25ºC. La reacción se paró por adición de 8 volúmenes de tampón de proteinasa K (Tris-HCl 200 nM, pH 7,5, EDTA 25 mM, NaCl 300 mM, dodecil-sulfato de sodio 2% p/v). La proteinasa K (E.M. Merck, disuelta en agua) se añadió a una concentración final de 0,6 mg/ml. Las reacciones se incubaron luego durante 15 min a 65ºC, se extrajeron con fenol/cloroformo/alcohol isoamílico (25:24:1) y se precipitaron con 3 volúmenes de etanol. Las muestras se localizaron en geles de secuenciación al 6%. Los patrones de longitud se generaron por digestión parcial con RNasa T1 e hidrólisis parcial con base de los RNAs diana de sentido o antisentido con casquete.
3.2. Resultados 3.2.1 Variación del saliente 3' en los dúplex de siRNAs de 21 nt
Como se ha descrito arriba, 2 ó 3 nucleótidos no apareados en el extremo 3' de los dúplex DE siRNA eran más eficientes en la degradación del RNA diana que los dúplex de extremos romos respectivos. Para realizar un análisis más exhaustivo de la función de los nucleótidos terminales, se sintetizaron 5 siRNAs de sentido de 21 nt, cada uno de los cuales era presentado por un solo nucleótido con relación al RNA diana, y 8 siRNAs antisentido de 21 nt, cada uno de los cuales era desplazado por un nucleótido con relación a la diana (Figura 11a). Por combinación de los siRNAs de sentido y antisentido, se generaron 8 series de dúplex de siRNA con extremos salientes sintéticos, que abarcaban un intervalo de salientes 3' de 7 nt a salientes 5' de 4 nt. La interferencia de los dúplex de siRNA se midió utilizando el sistema de ensayo dual de luciferasa (Tuschl et al., 1999; Zamore et al., 2000). Los dúplex de siRNA se dirigían contra mRNA de luciferasa de luciérnaga, y se utilizó mRNA de luciferasa de pensamiento de mar como control interno. La relación de luminiscencia de la actividad de luciferasa de la diana al control se determinó en presencia de dúplex de siRNA y se normalizó para la relación observada en ausencia de dsRNA. Para comparación, se muestran las relaciones de interferencia de dsRNAs largos (39 a 504 pb) en la Figura 11B. Las relaciones de interferencia se determinaron para concentraciones de 5 nM para dsRNAs largos (Figura 11A) y a 100 nM para dúplex de siRNA (Figura 11C-J). Se eligieron las concentraciones 100 nM de siRNAs debido a que el procesamiento completo del dsRNA 5 nM de 504 pb podría dar como resultado dúplex de siRNA totales de 120 nm.
La capacidad de los dúplex de siRNA de 21 nt para mediar la RNAi depende del número de nucleótidos salientes o pares de bases formados. Los dúplex con 4 a 6 nucleótidos salientes 3' eran incapaces de mediar la RNAi (Figura 11C-F), como lo eran los dúplex con dos o más nucleótidos salientes 5' (Figura 11G-J). Los dúplex con salientes 3' de 2 nt eran muy eficientes en la mediación de la interferencia de RNA, aunque la eficiencia de silenciación era también dependiente de la secuencia, y se observaron diferencias de hasta 12 veces para dúplex diferentes de siRNA con salientes 3' de 2 nt (compárense las Figuras 11D-H). Los dúplex con extremos romos que tenían salientes 5' de 1 nt o salientes 3' de 1 a 3 nt eran funcionales en algunos casos. El pequeño efecto de silenciación observado para dúplex de siRNA con saliente 3' de 7 nt (Figura 11C) puede ser debido a un efecto antisentido del saliente 3' largo más bien que a RNAi. La comparación de la eficiencia de RNAi entre dsRNAs largos (Figura 11B) y los dúplex de siRNA de 21 nt más efectivos (Fig. 11E, G, H) indica que un solo dúplex de siRNA a concentración 100 nm puede ser tan eficaz como un dsRNA de 504 pb 5 nM.
3.2.2 Variación de la longitud del siRNA de sentido apareado a un siRNA antisentido invariante de 21 nt
Con objeto de investigar el efecto de la longitud de siRNA sobre la RNAi, se prepararon tres series de dúplex de siRNA, combinando tres cadenas antisentido de 21 nt con 8 cadenas de sentido de 18 a 25 nt. El saliente 3' del siRNA antisentido se fijó a 1, 2, ó 3 nt en cada serie de dúplex de siRNA, mientras que el siRNA de sentido se varió en su extremo 3' (Figura 12A). Independientemente de la longitud del siRNA de sentido, se encontró que los dúplex con salientes 3' de 2 nt de siRNA antisentido (Figura 12C) eran más activos que aquéllos que tenían salientes 3' de 1 ó 3 nt (Figura 12B, D). En la primera serie, con saliente 3' de 1 nt de siRNA antisentido, los más activos eran los dúplex con siRNAs de sentido de 21 y 22 nt, que llevaban un saliente 3' de 1 y 2 nt de siRNA de sentido, respectivamente. Los dúplex con siRNAs de sentido de 19 a 25 nt eran también capaces de mediar RNA, pero en menor grado. Análogamente, en la segunda serie, con saliente de 2 nt de siRNA antisentido, el dúplex de siRNA de 21 nt con saliente 3' de 2 nt era el más activo, y cualquier otra combinación con siRNAs de sentido de 18 a 25 nt era activa en un grado significativo. En la último serie, con saliente 3' de siRNA antisentido de 3 nt, únicamente el dúplex con un siRNA de sentido de 20 nt y el saliente 3' de sentido de 2 nt era capaz de reducir la expresión del RNA diana. En conjunto, estos resultados indican que la longitud del siRNA así como la longitud del saliente 3' son importantes, y que los dúplex de si-RNAs de 21 nt con saliente 3' de 2 nt son óptimos para RNAi.
3.2.3 Variación de la longitud de los dúplex de siRNA con un saliente 3' constante de 2 nt
Se examinó luego el efecto del cambio simultáneo de la longitud de ambas cadenas de siRNA por mantenimiento de salientes 3' simétricos de 2 nt (Figura 13A). Se prepararon dos series de dúplex de siRNA que incluían el dúplex de siRNA de 21 nt de la Figura 11H como referencia. La longitud de los dúplex se varió entre 20 y 25 pb extendiendo el segmento de bases apareadas en el extremo 3' del siRNA se sentido (Figura 3B) o en el extremo 3' del siRNA antisentido (Figura 13C). Los dúplex de 20 a 23 pb causaban represión específica de la actividad de luciferasa diana, pero el dúplex de siRNA de 21 nt era al menos 8 veces más eficiente que cualquiera de los otros dúplex. Los dúplex de siRNA de 24 y n25 nt no daban como resultado interferencia detectable alguna. Los efectos específicos de la secuencia eran menores, dado que las variaciones en ambos extremos del dúplex producían efectos similares.
3.2.4 Dúplex de siRNA modificados con 2'-desoxi y 2'-O-metilo
Para evaluar la importancia de los residuos ribosa de siRNA para la RNAi, se examinaron dúplex con siRNAs de 21 nt y salientes 3' de 2 nt con cadenas modificadas con 2'-desoxi o 2'-O-metilo (Figura 14). La sustitución de los salientes 3' de 2 nt por 2'-desoxi-nucleótidos no tenía efecto alguno, e incluso el reemplazamiento de dos ribonucleótidos adicionales adyacentes a los salientes en la región apareada, producía siRNAs significativamente activos. Así, 8 de un total de 42 nt de un dúplex de siRNA se reemplazaron por residuos de DNA sin pérdida de actividad. Sin embargo, la sustitución completa de una o ambas cadenas de siRNA por residuos 2'-desoxi, anulaba la RNAi, como lo hacía la sustitución por residuos 2'-O-metilo.
3.2.5 Definición de los sitios de escisión del RNA diana
Se determinaron previamente las posiciones de escisión del RNA diana para dúplex de siRNA de 22 nt y para un dúplex de 21 nt/22 nt. Se encontró que la posición de la escisión del RNA diana estaba localizada en el centro de la región abarcada por el dúplex de siRNA, 11 ó 12 nt aguas abajo del primer nucleótido que era complementario a la secuencia guía de siRNA de 21 ó 22 nt. Se incubaron cinco dúplex de siRNA de 21 nt distintos con saliente 3' de 2 nt (Figura 15a) con RNA diana de sentido o antisentido marcado en el casquete 5' en lisado de D. melanogaster (Tuschl et al., 1999; Zamore et al., 2000). Los productos de escisión 5' se resolvieron en geles de secuenciación (Figura 15B). La cantidad de RNA diana de sentido escindida está correlacionada con la eficiencia de los dúplex de siRNA determinada en el ensayo basado en traducción, y los dúplex de siRNA 1, 2 y 4 (Figura 15B y 11H, G, E) escinden el RNA diana más rápidamente que los dúplex 3 y 5 (Figura 15B y 11F, D). Es notable que la suma de radiactividad del producto con escisión 5' y el RNA diana de entrada no se mantuviera constante a lo largo del tiempo, y los productos de escisión 5' no se acumulaban. Presumiblemente, los productos de escisión, una vez liberados del complejo siRNA-endonucleasa, se degradan rápidamente, debido a la ausencia de la cola poli(A) del casquete 5'.
Los sitios de escisión para los RNAs diana tanto de sentido como antisentido estaban localizados en el centro de la región abarcada por los dúplex de siRNA. Los sitios de escisión para cada diana producida por los 5 dúplex diferentes variaban en 1 nt de acuerdo con el desplazamiento de 1 nt de los dúplex a lo largo de las secuencias diana. Las dianas se escindían con precisión 11 nt aguas abajo de la posición de la diana complementaria al nucleótido más próximo a 3' del siRNA guía complementario de la secuencia (Figura 15A, B).
A fin de determinar si el extremo 5' o el 3' del siRNA guía establece la pauta para la escisión del RNA diana, se ideó la estrategia experimental reseñada en la Figura 16A y B. Un siRNA antisentido de 21 nt, que se mantenía invariable para este estudio, se apareó con si-RNAs de sentido que se modificaron en cualquiera de sus extremos 5' o 3'. La posición de la escisión del RNA diana se sentido y antisentido se determinó como se ha descrito arriba. Los cambios en el extremo 3' del siRNA de sentido, monitorizados para el saliente 5' de 1 nt hasta el saliente 3' de 6 nt, no afectaban a la posición de la escisión del RNA diana de sentido ni del RNA antisentido (Figura 16C). Los cambios en el extremo 5' del siRNA de sentido no afectaban a la escisión del RNA diana de sentido (Figura 16D, panel superior), como se esperaba, debido a que el siRNA antisentido se mantenía inalterado. Sin embargo, la escisión del RNA diana antisentido se veía afectada y era fuertemente dependiente del extremo 5' del siRNA de sentido (Figura 16D, panel inferior). La diana antisentido se escindía únicamente cuando el siRNA de sentido tenía un tamaño de 20 ó 21 nt, y la posición de escisión se diferenciaba en 1 nt, lo que sugería que el extremo 5' del siRNA que reconoce la diana establece la pauta para la escisión del RNA diana. La posición está localizada entre los nucleótidos 10 y 11 cuando se cuenta en dirección aguas arriba desde el nucleótido diana apareado al nucleótido más próximo a 5' del siRNA guía (véase también la Figura 15A).
3.2.6 Efectos de la secuencia y sustituciones con 2'-desoxi en el saliente 3'
Se prefiere un saliente 3' de 2 nt para la función de siRNA. Se deseaba conocer si la secuencia de los nucleótidos salientes contribuye al reconocimiento de la diana, o si es únicamente una característica requerida para reconstitución del complejo con endonucleasa (RSIC o siRNP). Se sintetizaron siRNAs de sentido y antisentido con salientes 3' AA, CC, GG, UU, y UG, e incluían las modificaciones con 2'-desoxi TdG y TT. Los siRNAs de tipo salvaje contenían AA en el saliente 3' de sentido y UG en el saliente 3' antisentido (AA/UG). Todos los dúplex de siRNA eran funcionales en el ensayo de interferencia y reducían la expresión de la diana al menos 5 veces (Figura 17). Los dúplex siRNA más eficientes que reducían la expresión de la diana más de 10 veces, eran del tipo de secuencia NN/UG, NN/UU, NN/TdG, y NN/TT (donde N es cualquier nucleótido). Los dúplex de siRNA con un saliente 3' de siRNA antisentido de AA, CC o GG eran menos activos por un factor de 2 a 4 cuando se comparaban con la secuencia de tipo salvaje UG o el mutante UU. Esta reducción en la eficiencia de RNAi es debida probablemente a la contribución del penúltimo nucleótido 3' para el reconocimiento de la diana específica de la secuencia, dado que el nucleótido 3'-terminal se cambió de G a U sin efecto alguno.
Los cambios en la secuencia del saliente 3' del siRNA de sentido no revelaron efecto alguno dependiente de la secuencia, como era de esperar, dado que el siRNA de sentido no debe contribuir a reconocimiento del mRNA diana de sentido.
3.2.7. Especificidad de secuencia de reconocimiento de la diana
Con objeto de examinar la especificidad de secuencia del reconocimiento de la diana, se introdujeron cambios de secuencia en los segmentos apareados de dúplex de siRNA y se determinó la eficiencia de silenciación. Los cambios de secuencia se introdujeron invirtiendo segmentos cortos 3 ó 4 nt de longitud o como mutaciones puntuales (Figura 18). Los cambios de secuencia en una cadena de siRNA se compensaban en la cadena de siRNA complementaria a fin de evitar perturbar la estructura del dúplex de siRNA de bases apareadas. La secuencia de todos los salientes 3' de 2 nt era TT (T, 2'-desoxitimidina) para reducir los costes de síntesis. El dúplex de siRNA de referencia TT/TT era comparable en RNAi al dúplex de siRNA de tipo salvaje AA/UG (Figura 17). La capacidad para mediar la destrucción del mRNA informador se cuantificó utilizando el ensayo de luminiscencia basado en traducción. Los dúplex de siRNAs con segmentos de secuencia invertidos exhibían una capacidad espectacularmente reducida para direccionamiento del informador luciferasa de luciérnaga (Figura 18). Los cambios de secuencia localizados entre el extremo 3' y el centro del siRNA antisentido anulaban por completo el reconocimiento del RNA diana, pero mutaciones próximas al extremo 5' del siRNA antisentido exhibían un pequeño grado de silenciación. La transversión del par de bases A/U localizado directamente opuesto al sitio de escisión predicho del RNA diana, o un solo nucleótido más allá del sitio, evitaba la escisión del RNA diana, indicando con ello que una sola mutación dentro del centro del dúplex de siRNA discrimina entre las dianas con apareamiento erróneo.
3.3 Discusión
Los siRNAs son reactivos valiosos para la desactivación de la expresión génica, no sólo en células de insecto, sino también en células de mamífero, con un gran potencial para aplicación terapéutica. Se han analizado sistemáticamente los determinantes estructurales de los dúplex de siRNA requeridos para promover una degradación eficiente del RNA diana en lisado de embrión de D. melanogaster, proporcionando así pautas para el diseño de dúplex de siRNA muy potentes. Un dúplex de siRNA perfecto es capaz de silenciar la expresión génica con una eficiencia comparable a un dsRNA de 500 pb, dado que se utilizan cantidades comparables de RNA total.
3.4 La guía del usuario de siRNA
Los dúplex siRNA de silenciación eficientes se componen preferiblemente de siRNAs antisentido de 21 nt, y deberían seleccionarse para formar una doble hélice de 19 pb con extremos salientes 3' de 2 nt. Las sustituciones con 2'-desoxi de los ribonucleótidos 3' salientes de 2 nt no afectan a la RNAi, pero contribuyen a reducir los costes de la síntesis de RNA y pueden mejorar la resistencia a las RNasas de los dúplex de siRNA. Sin embargo, modificaciones más extensas de 2'-desoxi y 2'-O-metilo, reducen la capacidad de los siRNAs para mediar la RNAi, probablemente por interferir con la asociación de proteínas para el ensamblaje de siRNAP.
El reconocimiento de la diana es un proceso altamente específico de la secuencia, mediado por la complementariedad de siRNA a la diana. El nucleótido más próximo al extremo 3' del siRNA guía no contribuye a la especificidad del reconocimiento de la diana, mientras que el penúltimo nucleótido del saliente 3' afecta a la escisión del RNA diana, y un desapareamiento reduce la RNAi 2 a 4 veces. El extremo 5' de un siRNA guía parece ser también más permisivo para el reconocimiento del RNA diana desapareado cuando se compara con el extremo 3'. Los nucleótidos situados en el centro del siRNA, localizados frente al sitio de escisión del RNA diana, son determinantes importantes de la especificidad, e incluso cambios simples de nucleótidos reducen la RNAi a nivel indetectable. Esto sugiere que los dúplex de siRNA pueden ser capaces de discriminar alelos mutantes o polimórficos en experimentos de direccionamiento de genes, lo que puede llegar a ser una característica importante para desarrollos terapéuticos futuros.
Se ha sugerido que los siRNAs de sentido y antisentido, cuando se asocian con los componentes proteínicos del complejo de endonucleasas o su complejo de compromiso, juegan papeles distintos; la orientación relativa del dúplex siRNA en este complejo define qué cadena puede utilizarse para reconocimiento de la diana. Los dúplex de siRNA sintéticos tienen simetría de diada con respecto a la estructura de la doble hélice, pero no con respecto a la secuencia. La asociación de dúplex de siRNA con las proteínas de RNAi en el lisado de D. melanogaster puede conducir a la formación de dos complejos asimétricos. En tales complejos hipotéticos, el entorno quiral es distinto para el siRNA de sentido y antisentido, de lo que se deriva su función. Evidentemente, la predicción no es aplicable a secuencias de siRNA palindrómicas, o a proteínas RNAi que podrían asociarse como homodímeros. Para minimizar los efectos de la secuencia, que pueden afectar a la relación de los siRNPs de direccionamiento de sentido y antisentido, los autores de la invención sugieren utilizar secuencias de siRNA con secuencias salientes 3' idénticas. Se recomienda ajustar la secuencia del saliente del siRNA de sentido a la del saliente 3' antisentido, dado que el siRNA de sentido no tiene una diana en experimentos de silenciación ("knock-down") típicos. La asimetría en la reconstitución de los siRNPs que se escinden con sentido y antisentido podría ser (parcialmente) responsable de la variación en la eficiencia de la RNAi observada para diversos dúplex de siRNA de 21 nt con salientes 3' de 2 nt utilizados en este estudio (Figura 14). Alternativamente, la secuencia de nucleótidos en el sitio diana y/o la accesibilidad de la estructura del RNA diana puede ser responsable de la variación en la eficiencia para estos dúplex de siRNA.
\vskip1.000000\baselineskip
Referencias
Bass, B. L. (2000). Double-stranded DNA as a template for gene silencing. Cell 101, 235-238.
Bosher, J. M., and Labouesse, M. (2000). RNA interference: genetic wand and genetic watchdog. Nat. Cell Biol. 2, E31-36.
Caplen, N. J., Fleenor, J., Fire, A., and Morgan, R. A. (2000). dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95-105.
Catalanotto, C., Azzalin, G., Macino, G., and Cogoni, C. (2000). Gene silencing in worms and fungi. Nature 404, 245.
Chanfreau, G., Buckle, M., and Jacquier, A. (2000). Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae RNase II I. Proc. Natl. Acad. Sci. USA 97, 3142-3147.
Clemens, M. J. (1997). PKR-a protein kinase regulated by double-stranded RNA. Int. J. Biochem. Cell Biol. 29, 945-949.
Cogoni, C., and Macino, G. (1999). Homology-dependent gene silencing in plants and fungi: a number of variations on the same theme. Curr. Opin. Microbiol. 2, 657-662.
Dalmay, T., Hamilton, A., Rudd, S., Angell, S., and Baulcombe, D. C. (2000). An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543-553.
Dernburg, A. F., Zalevsky, J., Colaiacovo, M. P., and Villeneuve, A. M. (2000). Transgene-mediated cosuppression in the C. elegans germ line. Genes & Dev. 14, 1578-1583.
Dunn, J. J. (1982). Ribonuclease III. In The enzymes, vol 15, part B, P. D. Boyer, ed. (New York: Academic Press), pp. 485-499.
Elbashir, S.M., Lendeckel, W. and Tusche, T. (2001). RNA interference is mediated by 21- and 22- nucleotide RNAs. Genes & Development 15, 188-200.
Filippov, V., Solovyev, V., Filippova, M., and Gill, S. S. (2000). A novel type of RNase III family proteins in eukaryotes. Gene 245, 213-221.
Fire, A. (1999). RNA-triggered gene silencing. Trends Genet. 15, 358-363.
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
Grishok, A., Tabara, H., and Mello, C. C. (2000). Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494-2497.
Hamilton, A. J., and Baulcombe, D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950-952.
Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293-296.
Jacobsen, S. E., Running, M. P., and M., M. E. (1999). Disruption of an RNA helicase/RNase III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126, 5231-5243.
Jensen, S., Gassama, M. P., and Heidmann, T. (1999). Taming of transposable elements by homology-dependent gene silencing. Nat. Genet. 21, 209-212.
Kehlenbach, R. H., Dickmanns, A. & Gerace, L. (1998). Nucleocytoplasmic shuttling factors including Ran and CRM1 mediate nuclear export of NFAT In vitro. J. Cell Biol. 141, 863-874.
Kennerdell, J. R., and Carthew, R. W. (1998). Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017-1026.
Ketting, R. F., Haverkamp, T. H., van Luenen, H. G., and Plasterk, R. H. (1999). Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133-141.
Ketting, R. F., and Plasterk, R. H. (2000). A genetic link between co-suppression and RNA interference in C. elegans. Nature 404, 296-298.
Lucy, A. P., Guo, H. S., Li, W. X., and Ding, S. W. (2000). Suppression of post-transcriptional gene silencing by a plant viral protein localized in the nucleus. EMBO J. 19, 1672-1680.
Matsuda, S., Ichigotani, Y., Okuda, T., Irimura, T., Nakatsugawa, S., and Hamaguchi, M. (2000). Molecular cloning and characterization of a novel human gene (HERNA) which encodes a putative RNA-helicase. Biochim. Biophys. Acta 31, 1-2.
Milligan, J.F., and Uhlenbeck, O.C. (1989). Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51-62.
Mourrain, P., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J. B., Jouette, D., Lacombe, A. M., Nikic, S., Picault, N., Remoue, K., Sanial, M., Vo, T. A., and Vaucheret, H. (2000). Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533-542.
Ngo, H., Tschudi, C., Gull, K., and Ullu, E. (1998). Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 95, 14687-14692.
Nicholson, A. W. (1999). Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol. Rev. 23, 371-390.
Oelgeschlager, M., Larrain, J., Geissert, D., and De Robertis, E. M. (2000). The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling. Nature 405, 757-763.
Pan, T., and Uhlenbeck, O. C. (1992). In vitro selection of RNAs that undergo autolytic cleavage with Pb2+. Biochemistry 31, 3887-3895.
Pelissier, T., and Wassenegger, M. (2000). A DNA target of 30 bp is sufficient for RNA-directed methylation. RNA 6, 55-65.
Plasterk, R. H., and Ketting, R. F. (2000). The silence of the genes. Curr. Opin. Genet. Dev. 10, 562-567.
Ratcliff, F. G., MacFarlane, S. A., and Baulcombe, D. C. (1999). Gene Silencing without DNA. RNA-mediated cross-protection between viruses. Plant Cell 11, 1207-1216.
Robertson, H. D. (1990). Escherichia coli ribonuclease III. Methods Enzymol. 181, 189-202.
Robertson, H. D. (1982). Escherichia coli ribonuclease III cleavage sites. Cell 30, 669-672.
Romaniuk, E., McLaughlin, L. W., Neilson, T., and Romaniuk, P. J. (1982). The effect of acceptor oligoribonucleotide sequence on the T4 RNA ligase reaction. Eur J Biochem 125, 639-643.
Sharp, P. A. (1999). RNAi and double-strand RNA. Genes & Dev. 13, 139-141.
Sijen, T., and Kooter, J. M. (2000). Post-transcriptional gene-silencing: RNAs on the attack or on the defense? Bioessays 22, 520-531.
Smardon, A., Spoerke, J., Stacey, S., Klein, M., Mackin, N., and Maine, E. (2000). EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr. Biol. 10, 169-178.
Svoboda, P., Stein, P., Hayashi, H., and Schultz, R. M. (2000). Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127, 4147-4156.
Tabara, H., Sarkissian, M., Kelly, W. G., Fleenor, J., Grishok, A., Timmons, L., Fire, A., and Mello, C. C. (1999). The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123-132.
Tuschl, T., Ng, M. M., Pieken, W., Benseler, F., and Eckstein, F. (1993). Importance of exocyclic base functional groups of central core guanosines for hammerhead ribozyme activity. Biochemistry 32, 11658-11668.
Tuschl, T., Sharp, P. A., and Bartel, D. P. (1998). Selection in vitro of novel ribozymes from a partially randomized U2 and U6 snRNA library. EMBO J. 17, 2637-2650.
Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P., and Sharp, P. A. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Dev. 13, 3191-3197.
Ui-Tei, K., Zenno, S., Miyata, Y. & Saigo, K. (2000). Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Letters 479, 79-82.
Verma, S., and Eckstein, F. (1999). Modified oligonucleotides: Synthesis and strategy for users. Annu. Rev. Biochem. 67, 99-134.
Voinnet, O., Lederer, C., and Baulcombe, D. C. (2000). A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103, 157-167.
Wassenegger, M. (2000). RNA-directed DNA methylation. Plant Mol. Biol. 43, 203-220.
Wianny, F., and Zernicka-Goetz, M. (2000). Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2, 70-75.
Wu, H., Xu, H., Miraglia, L. J., and Crooke, S. T. (2000). Human RNase III is a 160 kDa Protein Involved in Preribosomal RNA Processing. J. Biol. Chem. 17, 17.
Yang, D., Lu, H. and Erickson, J.W. (2000) Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in drosophilia embryos. Cuff. Biol., 10, 1191-1200.
Zamore, P. D., Tuschl, T., Sharp, P. A., and Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33.
Zhang, K., and Nicholson, A. W. (1997). Regulation of ribonuclease III processing by double-helical sequence antideterminants. Proc. Natl. Acad. Sci. USA 94, 13437-13441.

Claims (25)

1. Molécula de RNA bicatenario aislada, en la cual cada cadena de RNA tiene una longitud de 19 a 23 nucleótidos y en la cual al menos una cadena tiene un saliente 3' de 1 a 3 nucleótidos, en donde dicha molécula de RNA es capaz de interferencia de RNA específica de la diana.
2. La molécula de RNA de la reivindicación 1, en la cual cada cadena tiene una longitud de 20 a 22 nucleótidos.
3. La molécula de RNA de una cualquiera de las reivindicaciones 1 ó 2, en la cual el saliente 3' está estabilizado contra la degradación.
4. La molécula de RNA de una cualquiera de las reivindicaciones 1 a 3, que contiene al menos un análogo de nucleótido modificado.
5. La molécula de RNA de la reivindicación 4, en la cual el análogo de nucleótido modificado se selecciona de ribonucleótidos modificados en el azúcar o la cadena principal.
6. La molécula de RNA de acuerdo con la reivindicación 4 ó 5, en la cual el análogo de nucleótido es un ribonucleótido modificado en el azúcar, en donde el grupo 2'-OH está reemplazado por un grupo seleccionado de H, OR, R, halo, SH, SR, NH_{2}, NHR, NR_{2} o CN, en donde R es alquilo, alquenilo o alquinilo C_{1}-C_{6} y halo es F, Cl, Br o I.
7. La molécula de RNA de la reivindicación 4 ó 5, en donde el análogo de nucleótido es un ribonucleótido modificado en la cadena principal que contiene un grupo fosfotioato.
8. La molécula de RNA de una cualquiera de las reivindicaciones 1-7, que tiene una secuencia que tiene una identidad de al menos 70 por ciento con una molécula diana de mRNA predeterminada.
9. Un método de preparación de una molécula de RNA bicatenario de una cualquiera de las reivindicaciones 1 a 8, que comprende los pasos:
(a)
sintetizar dos cadenas de RNA cada una de las cuales tiene una longitud de 19 a 23 nucleótidos y al menos una que tiene un saliente 3' de 1 a 3 nucleótidos, en donde dichas cadenas de RNA son capaces de formar una molécula de RNA bicatenario,
(b)
combinar las cadenas de RNA sintetizadas en condiciones en las cuales se forma una molécula de RNA bicatenario, que es capaz de interferencia de RNA específica de la diana.
10. El método de la reivindicación 9, en donde las cadenas de RNA se sintetizan químicamente.
11. El método de la reivindicación 9, en donde las cadenas de RNA se sintetizan enzimáticamente.
12. Un método in vitro de mediación de interferencias de RNA específicas de la diana en una célula o un organismo, que comprende los pasos:
(a)
poner en contacto dicha célula o dicho organismo con la molécula de RNA bicatenario de una cualquiera de las reivindicaciones 1 a 8 en condiciones en las cuales pueden ocurrir interferencias de RNA específicas de la diana, y
(b)
mediar una interferencia de RNA específica de la diana efectuada por el RNA bicatenario hacia un ácido nucleico diana que tiene una porción de secuencia que corresponde sustancialmente al RNA bicatenario.
13. El método de la reivindicación 12, en donde dicha puesta en contacto comprende introducir dicha molécula de RNA bicatenario en una célula diana en la cual puede ocurrir interferencia de RNA específica de la diana.
14. El método de la reivindicación 13, en donde la introducción comprende suministro o inyección mediado por un vehículo.
15. Uso del método in vitro de una cualquiera de las reivindicaciones 12 a 14 para determinar la función de un gen en una célula o un organismo.
16. Uso del método in vitro de una cualquiera de las reivindicaciones 12 a 14 para modulación de la función de un gen en una célula o un organismo.
17. El uso de la reivindicación 15 ó 16, en el cual el gen está asociado con una condición patológica.
18. El uso de una molécula de RNA bicatenario de cualquiera de las reivindicaciones 1-8 para la fabricación de un medicamento para modular la función de un gen asociado a un patógeno.
19. El uso de la reivindicación 18, en el cual el gen asociado a un patógeno es un gen viral.
20. El uso de una molécula de RNA bicatenario de cualquiera de las reivindicaciones 1-8 para la fabricación de un medicamento para modular la función de un gen asociado a un tumor.
21. El uso de una molécula de RNA bicatenario de cualquiera de las reivindicaciones 1-8 para la fabricación de un medicamento para modular la función de un gen asociado a una enfermedad autoinmune.
22. Composición farmacéutica que contiene como agente activo al menos una molécula de RNA bicatenario de una cualquiera de las reivindicaciones 1 a 8 y un vehículo farmacéutico.
23. La composición de la reivindicación 22 para aplicaciones de diagnóstico.
24. La composición de la reivindicación 22 para aplicaciones terapéuticas.
25. Una célula eucariota o un organismo eucariota no humano transfectado con una molécula de RNA de una cualquiera de las reivindicaciones 1 a 8 o una molécula de DNA que codifica dicha molécula de RNA.
ES01985833.1T 2000-12-01 2001-11-29 Moléculas de RNA pequeñas que median la interferencia de RNA Expired - Lifetime ES2215494T5 (es)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
EP00126325 2000-12-01
EP00126325 2000-12-01
US27966101P 2001-03-30 2001-03-30
PCT/US2001/010188 WO2001075164A2 (en) 2000-03-30 2001-03-30 Rna sequence-specific mediators of rna interference
US279661P 2001-03-30
WOPCT/US01/10188 2001-03-30
PCT/EP2001/013968 WO2002044321A2 (en) 2000-12-01 2001-11-29 Rna interference mediating small rna molecules

Publications (3)

Publication Number Publication Date
ES2215494T1 ES2215494T1 (es) 2004-10-16
ES2215494T3 true ES2215494T3 (es) 2008-04-01
ES2215494T5 ES2215494T5 (es) 2017-12-28

Family

ID=40529293

Family Applications (2)

Application Number Title Priority Date Filing Date
ES17160119T Expired - Lifetime ES2728168T3 (es) 2000-12-01 2001-11-29 Moléculas pequeñas de ARN que median en la interferencia de ARN
ES01985833.1T Expired - Lifetime ES2215494T5 (es) 2000-12-01 2001-11-29 Moléculas de RNA pequeñas que median la interferencia de RNA

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES17160119T Expired - Lifetime ES2728168T3 (es) 2000-12-01 2001-11-29 Moléculas pequeñas de ARN que median en la interferencia de ARN

Country Status (28)

Country Link
US (25) US20040259247A1 (es)
EP (3) EP1873259B1 (es)
JP (5) JP4095895B2 (es)
KR (2) KR100872437B1 (es)
CN (1) CN100523215C (es)
AT (1) ATE373724T2 (es)
AU (3) AU2002235744B8 (es)
BR (1) BRPI0115814B8 (es)
CA (1) CA2429814C (es)
CY (1) CY1119062T1 (es)
CZ (2) CZ302719B6 (es)
DE (1) DE60130583T3 (es)
DK (2) DK1407044T4 (es)
ES (2) ES2728168T3 (es)
HK (4) HK1110631A1 (es)
HU (1) HU230458B1 (es)
IL (3) IL155991A0 (es)
LT (1) LTPA2021005I1 (es)
MX (1) MXPA03004836A (es)
NO (2) NO333713B1 (es)
NZ (1) NZ525888A (es)
PL (1) PL218876B1 (es)
PT (1) PT1407044E (es)
RU (2) RU2322500C2 (es)
SI (1) SI1407044T2 (es)
TR (1) TR200401292T3 (es)
WO (1) WO2002044321A2 (es)
ZA (1) ZA200303929B (es)

Families Citing this family (1213)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2135646A1 (en) * 1992-05-11 1993-11-25 Kenneth G. Draper Method and reagent for inhibiting viral replication
US20030206887A1 (en) * 1992-05-14 2003-11-06 David Morrissey RNA interference mediated inhibition of hepatitis B virus (HBV) using short interfering nucleic acid (siNA)
US5639647A (en) * 1994-03-29 1997-06-17 Ribozyme Pharmaceuticals, Inc. 2'-deoxy-2'alkylnucleotide containing nucleic acid
US7812149B2 (en) 1996-06-06 2010-10-12 Isis Pharmaceuticals, Inc. 2′-Fluoro substituted oligomeric compounds and compositions for use in gene modulations
US5898031A (en) 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
US9096636B2 (en) 1996-06-06 2015-08-04 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds and their use in gene modulation
US20040219569A1 (en) * 1999-07-06 2004-11-04 Fruma Yehiely Gene identification method
US20110003879A1 (en) * 2005-03-11 2011-01-06 Vincent Mark D Antisense oligonucleotides targeted to the coding region of thymidylate synthase and uses thereof
AUPP249298A0 (en) 1998-03-20 1998-04-23 Ag-Gene Australia Limited Synthetic genes and genetic constructs comprising same I
CA2513336A1 (en) 1998-03-20 1999-09-30 Benitec Australia Ltd. Control of gene expression in a non-human eukaryotic cell, tissue or organ
WO1999054459A2 (en) * 1998-04-20 1999-10-28 Ribozyme Pharmaceuticals, Inc. Nucleic acid molecules with novel chemical compositions capable of modulating gene expression
AU776150B2 (en) 1999-01-28 2004-08-26 Medical College Of Georgia Research Institute, Inc. Composition and method for (in vivo) and (in vitro) attenuation of gene expression using double stranded RNA
DE19956568A1 (de) 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
US7601494B2 (en) 1999-03-17 2009-10-13 The University Of North Carolina At Chapel Hill Method of screening candidate compounds for susceptibility to biliary excretion
ES2571230T3 (es) 1999-04-09 2016-05-24 Kyowa Hakko Kirin Co Ltd Procedimiento para controlar la actividad de una molécula inmunofuncional
US6656698B1 (en) * 1999-06-30 2003-12-02 Millennium Pharmaceuticals, Inc. 12832, a novel human kinase-like molecule and uses thereof
US6423885B1 (en) 1999-08-13 2002-07-23 Commonwealth Scientific And Industrial Research Organization (Csiro) Methods for obtaining modified phenotypes in plant cells
US8128922B2 (en) 1999-10-20 2012-03-06 Johns Hopkins University Superior molecular vaccine linking the translocation domain of a bacterial toxin to an antigen
GB9925459D0 (en) * 1999-10-27 1999-12-29 Plant Bioscience Ltd Gene silencing
DE10160151A1 (de) * 2001-01-09 2003-06-26 Ribopharma Ag Verfahren zur Hemmung der Expression eines vorgegebenen Zielgens
US7829693B2 (en) * 1999-11-24 2010-11-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a target gene
DE10100586C1 (de) 2001-01-09 2002-04-11 Ribopharma Ag Verfahren zur Hemmung der Expression eines Ziegens
US7179796B2 (en) * 2000-01-18 2007-02-20 Isis Pharmaceuticals, Inc. Antisense modulation of PTP1B expression
US8273866B2 (en) 2002-02-20 2012-09-25 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SINA)
US8202979B2 (en) * 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
US20080039414A1 (en) * 2002-02-20 2008-02-14 Sima Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US20050032733A1 (en) * 2001-05-18 2005-02-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SiNA)
WO2002081628A2 (en) * 2001-04-05 2002-10-17 Ribozyme Pharmaceuticals, Incorporated Modulation of gene expression associated with inflammation proliferation and neurite outgrowth, using nucleic acid based technologies
US20030084471A1 (en) * 2000-03-16 2003-05-01 David Beach Methods and compositions for RNA interference
EP1272630A2 (en) 2000-03-16 2003-01-08 Genetica, Inc. Methods and compositions for rna interference
US8202846B2 (en) 2000-03-16 2012-06-19 Cold Spring Harbor Laboratory Methods and compositions for RNA interference
DK2360253T3 (da) * 2000-03-30 2014-06-16 Whitehead Biomedical Inst Fremgangsmåde til fremstilling af knockdown-celler eller knockdown-organismer ved hjælp af RNA-sekvensspecifikke formidlere af RNA-interferens og anvendelser deraf
KR20080023768A (ko) 2000-03-30 2008-03-14 화이트헤드 인스티튜트 포 바이오메디칼 리서치 Rna 간섭의 rna 서열 특이적인 매개체
US20080242627A1 (en) * 2000-08-02 2008-10-02 University Of Southern California Novel rna interference methods using dna-rna duplex constructs
US7662791B2 (en) * 2000-08-02 2010-02-16 University Of Southern California Gene silencing using mRNA-cDNA hybrids
AU2001278117A1 (en) * 2000-08-03 2002-02-18 Johns Hopkins University Molecular vaccine linking an endoplasmic reticulum chaperone polypeptide to an antigen
US20030190635A1 (en) * 2002-02-20 2003-10-09 Mcswiggen James A. RNA interference mediated treatment of Alzheimer's disease using short interfering RNA
US20080032942A1 (en) * 2000-08-30 2008-02-07 Mcswiggen James RNA interference mediated treatment of Alzheimer's disease using short interfering nucleic acid (siNA)
US20020165192A1 (en) * 2000-09-19 2002-11-07 Kerr William G. Control of NK cell function and survival by modulation of ship activity
WO2009042910A2 (en) * 2007-09-26 2009-04-02 University Of South Florida Ship inhibition to direct hematopoietic stem cells and induce extramedullary hematopoiesis
US7691821B2 (en) * 2001-09-19 2010-04-06 University Of South Florida Inhibition of SHIP to enhance stem cell harvest and transplantation
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
WO2002044321A2 (en) 2000-12-01 2002-06-06 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Rna interference mediating small rna molecules
US8546143B2 (en) 2001-01-09 2013-10-01 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a target gene
US7767802B2 (en) 2001-01-09 2010-08-03 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
EP1229134A3 (en) * 2001-01-31 2004-01-28 Nucleonics, Inc Use of post-transcriptional gene silencing for identifying nucleic acid sequences that modulate the function of a cell
US20050159378A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Myc and/or Myb gene expression using short interfering nucleic acid (siNA)
US20050282188A1 (en) * 2001-05-18 2005-12-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050048529A1 (en) * 2002-02-20 2005-03-03 Sirna Therapeutics, Inc. RNA interference mediated inhibition of intercellular adhesion molecule (ICAM) gene expression using short interfering nucleic acid (siNA)
US20050191618A1 (en) * 2001-05-18 2005-09-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of human immunodeficiency virus (HIV) gene expression using short interfering nucleic acid (siNA)
US20050176664A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cholinergic muscarinic receptor (CHRM3) gene expression using short interfering nucleic acid (siNA)
US20050137155A1 (en) * 2001-05-18 2005-06-23 Sirna Therapeutics, Inc. RNA interference mediated treatment of Parkinson disease using short interfering nucleic acid (siNA)
US20050079610A1 (en) * 2001-05-18 2005-04-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Fos gene expression using short interfering nucleic acid (siNA)
US20050187174A1 (en) * 2001-05-18 2005-08-25 Sirna Therapeutics, Inc. RNA interference mediated inhibition of intercellular adhesion molecule (ICAM) gene expression using short interfering nucleic acid (siNA)
US20050164224A1 (en) * 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cyclin D1 gene expression using short interfering nucleic acid (siNA)
US20050222066A1 (en) * 2001-05-18 2005-10-06 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050153914A1 (en) * 2001-05-18 2005-07-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of MDR P-glycoprotein gene expression using short interfering nucleic acid (siNA)
US20050209180A1 (en) * 2001-05-18 2005-09-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hepatitis C virus (HCV) expression using short interfering nucleic acid (siNA)
US7109165B2 (en) * 2001-05-18 2006-09-19 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US20030175950A1 (en) * 2001-05-29 2003-09-18 Mcswiggen James A. RNA interference mediated inhibition of HIV gene expression using short interfering RNA
US20050203040A1 (en) * 2001-05-18 2005-09-15 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular cell adhesion molecule (VCAM) gene expression using short interfering nucleic acid (siNA)
US20050143333A1 (en) * 2001-05-18 2005-06-30 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (SINA)
US20050233344A1 (en) * 2001-05-18 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of platelet derived growth factor (PDGF) and platelet derived growth factor receptor (PDGFR) gene expression using short interfering nucleic acid (siNA)
EP1627061B1 (en) * 2001-05-18 2009-08-12 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF GENE EXPRESSION USING CHEMICALLY MODIFIED SHORT INTERFERING NUCLEIC ACID (siNA)
US20050159382A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of polycomb group protein EZH2 gene expression using short interfering nucleic acid (siNA)
US20080161256A1 (en) * 2001-05-18 2008-07-03 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
WO2005078097A2 (en) * 2004-02-10 2005-08-25 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF GENE EXPRESSION USING MULTIFUNCTIONAL SHORT INTERFERING NUCLEIC ACID (Multifunctional siNA)
US20050159381A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of chromosome translocation gene expression using short interfering nucleic acid (siNA)
US20070093437A1 (en) * 2001-05-18 2007-04-26 Sirna Therapeutics, Inc. Rna interference mediated inhibition of xiap gene expression using short interfering nucleic acid (sina)
US20040019001A1 (en) * 2002-02-20 2004-01-29 Mcswiggen James A. RNA interference mediated inhibition of protein typrosine phosphatase-1B (PTP-1B) gene expression using short interfering RNA
US20050261219A1 (en) * 2001-05-18 2005-11-24 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA)
US20050233996A1 (en) * 2002-02-20 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hairless (HR) gene expression using short interfering nucleic acid (siNA)
US20050196781A1 (en) * 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of STAT3 gene expression using short interfering nucleic acid (siNA)
US20040219671A1 (en) * 2002-02-20 2004-11-04 Sirna Therapeutics, Inc. RNA interference mediated treatment of parkinson disease using short interfering nucleic acid (siNA)
US20050287128A1 (en) * 2001-05-18 2005-12-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of TGF-beta and TGF-beta receptor gene expression using short interfering nucleic acid (siNA)
US20060211642A1 (en) * 2001-05-18 2006-09-21 Sirna Therapeutics, Inc. RNA inteference mediated inhibition of hepatitis C virus (HVC) gene expression using short interfering nucleic acid (siNA)
US20040198682A1 (en) * 2001-11-30 2004-10-07 Mcswiggen James RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (siNA)
US7517864B2 (en) 2001-05-18 2009-04-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20080188430A1 (en) * 2001-05-18 2008-08-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hypoxia inducible factor 1 (HIF1) gene expression using short interfering nucleic acid (siNA)
US20050182007A1 (en) * 2001-05-18 2005-08-18 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (SINA)
US20050054596A1 (en) * 2001-11-30 2005-03-10 Mcswiggen James RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050148530A1 (en) 2002-02-20 2005-07-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050233997A1 (en) * 2001-05-18 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of matrix metalloproteinase 13 (MMP13) gene expression using short interfering nucleic acid (siNA)
US20050124569A1 (en) * 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of CXCR4 gene expression using short interfering nucleic acid (siNA)
US20050176666A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of GPRA and AAA1 gene expression using short interfering nucleic acid (siNA)
US20050267058A1 (en) * 2001-05-18 2005-12-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (sINA)
US20030124513A1 (en) * 2001-05-29 2003-07-03 Mcswiggen James Enzymatic nucleic acid treatment of diseases or conditions related to levels of HIV
US20050158735A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of proliferating cell nuclear antigen (PCNA) gene expression using short interfering nucleic acid (siNA)
US20050176663A1 (en) * 2001-05-18 2005-08-11 Sima Therapeutics, Inc. RNA interference mediated inhibition of protein tyrosine phosphatase type IVA (PRL3) gene expression using short interfering nucleic acid (siNA)
US20050164968A1 (en) * 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of ADAM33 gene expression using short interfering nucleic acid (siNA)
WO2003070983A1 (en) * 2002-02-20 2003-08-28 Sirna Therapeutics, Inc RNA INTERFERENCE MEDIATED INHIBITION OF PROTEIN KINASE C ALPHA (PKC-ALPHA) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20050119212A1 (en) * 2001-05-18 2005-06-02 Sirna Therapeutics, Inc. RNA interference mediated inhibition of FAS and FASL gene expression using short interfering nucleic acid (siNA)
US20050256068A1 (en) 2001-05-18 2005-11-17 Sirna Therapeutics, Inc. RNA interference mediated inhibition of stearoyl-CoA desaturase (SCD) gene expression using short interfering nucleic acid (siNA)
WO2003070743A1 (en) * 2002-02-20 2003-08-28 Ribozyme Pharmaceuticals, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF G72 AND D-AMINO ACID OXIDASE (DAAO) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20050136436A1 (en) * 2001-05-18 2005-06-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of G72 and D-amino acid oxidase (DAAO) gene expression using short interfering nucleic acid (siNA)
US20050176024A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of epidermal growth factor receptor (EGFR) gene expression using short interfering nucleic acid (siNA)
US20050124566A1 (en) * 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of myostatin gene expression using short interfering nucleic acid (siNA)
US20050159380A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of angiopoietin gene expression using short interfering nucleic acid (siNA)
WO2005014811A2 (en) * 2003-08-08 2005-02-17 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF XIAP GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20070270579A1 (en) * 2001-05-18 2007-11-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050164967A1 (en) * 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of platelet-derived endothelial cell growth factor (ECGF1) gene expression using short interfering nucleic acid (siNA)
US20060142225A1 (en) * 2001-05-18 2006-06-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cyclin dependent kinase-2 (CDK2) gene expression using short interfering nucleic acid (siNA)
US20050288242A1 (en) * 2001-05-18 2005-12-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of RAS gene expression using short interfering nucleic acid (siNA)
US20050159379A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc RNA interference mediated inhibition of gastric inhibitory polypeptide (GIP) and gastric inhibitory polypeptide receptor (GIPR) gene expression using short interfering nucleic acid (siNA)
US20050196765A1 (en) * 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of checkpoint Kinase-1 (CHK-1) gene expression using short interfering nucleic acid (siNA)
US20070042983A1 (en) * 2001-05-18 2007-02-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US9994853B2 (en) 2001-05-18 2018-06-12 Sirna Therapeutics, Inc. Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference
US20050196767A1 (en) * 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of GRB2 associated binding protein (GAB2) gene expression using short interfering nucleic acis (siNA)
US20050014172A1 (en) 2002-02-20 2005-01-20 Ivan Richards RNA interference mediated inhibition of muscarinic cholinergic receptor gene expression using short interfering nucleic acid (siNA)
US20060148743A1 (en) * 2001-05-18 2006-07-06 Vasant Jadhav RNA interference mediated inhibition of histone deacetylase (HDAC) gene expression using short interfering nucleic acid (siNA)
US20050239731A1 (en) * 2001-05-18 2005-10-27 Sirna Therapeutics, Inc. RNA interference mediated inhibition of MAP kinase gene expression using short interfering nucleic acid (siNA)
US20050176025A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of B-cell CLL/Lymphoma-2 (BCL-2) gene expression using short interfering nucleic acid (siNA)
US20090299045A1 (en) * 2001-05-18 2009-12-03 Sirna Therapeutics, Inc. RNA Interference Mediated Inhibition Of Interleukin and Interleukin Gene Expression Using Short Interfering Nucleic Acid (siNA)
US8008472B2 (en) 2001-05-29 2011-08-30 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of human immunodeficiency virus (HIV) gene expression using short interfering nucleic acid (siNA)
US20050019915A1 (en) * 2001-06-21 2005-01-27 Bennett C. Frank Antisense modulation of superoxide dismutase 1, soluble expression
CA2790034A1 (en) 2001-06-21 2003-01-03 Isis Pharmaceuticals, Inc. Antisense modulation of superoxide dismutase 1, soluble expression
BR0211111A (pt) 2001-07-12 2004-06-22 Univ Massachusetts Molécula de ácido nucleico isolada, vetor, célula hospedeira, transgene, precursor de rna engenheirado, animal transgênico não humano, e, método de induzir a interferência de ácido ribonucleico de um gene alvo em uma célula
DE10133858A1 (de) * 2001-07-12 2003-02-06 Aventis Pharma Gmbh Synthetische doppelsträngige Oligonucleotide zur gezielten Hemmung der Genexpression
ATE556720T1 (de) * 2001-07-23 2012-05-15 Univ Leland Stanford Junior Verfahren und zusammensetzungen zur rnai vermittelten inhibierung der genexpression in säugetieren
US10590418B2 (en) 2001-07-23 2020-03-17 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for RNAi mediated inhibition of gene expression in mammals
US20090247606A1 (en) * 2001-08-28 2009-10-01 Sirna Therapeutics, Inc. RNA Interference Mediated Inhibition of Adenosine A1 Receptor (ADORA1) Gene Expression Using Short Interfering Nucleic Acid (siNA)
US20030198627A1 (en) * 2001-09-01 2003-10-23 Gert-Jan Arts siRNA knockout assay method and constructs
US7745418B2 (en) 2001-10-12 2010-06-29 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting viral replication
DE10163098B4 (de) 2001-10-12 2005-06-02 Alnylam Europe Ag Verfahren zur Hemmung der Replikation von Viren
WO2003035870A1 (de) * 2001-10-26 2003-05-01 Ribopharma Ag Medikament zur behandlung eines pankreaskarzinoms
DE10230996A1 (de) * 2001-10-26 2003-07-17 Ribopharma Ag Medikament zur Behandlung eines Pankreaskarzinoms
JP2005506087A (ja) * 2001-10-26 2005-03-03 リボファーマ アーゲー プラス鎖rnaウイルスによる感染症を処置するための2本鎖リボ核酸の使用
WO2003035083A1 (de) * 2001-10-26 2003-05-01 Ribopharma Ag Medikament zur behandlung einer fibrotischen erkrankung durch rna interferenz
AU2002348163A1 (en) * 2001-11-02 2003-05-19 Intradigm Corporation Therapeutic methods for nucleic acid delivery vehicles
US20040063654A1 (en) * 2001-11-02 2004-04-01 Davis Mark E. Methods and compositions for therapeutic use of RNA interference
EP2325193A3 (en) * 2001-11-02 2012-05-02 Insert Therapeutics, Inc. Methods and compositions for therapeutic use of RNA interference
CA2467936C (en) * 2001-11-21 2013-11-05 Mitsubishi Chemical Corporation Method of inhibiting gene expression
US20070203333A1 (en) * 2001-11-30 2007-08-30 Mcswiggen James RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20040138163A1 (en) * 2002-05-29 2004-07-15 Mcswiggen James RNA interference mediated inhibition of vascular edothelial growth factor and vascular edothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050075304A1 (en) * 2001-11-30 2005-04-07 Mcswiggen James RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US7294504B1 (en) 2001-12-27 2007-11-13 Allele Biotechnology & Pharmaceuticals, Inc. Methods and compositions for DNA mediated gene silencing
ATE402999T1 (de) * 2002-01-17 2008-08-15 Univ British Columbia Bispezifische antisense oligonukleotide die igfbp-2 und igfbp-5 inhibieren und deren verwendung
DE10202419A1 (de) 2002-01-22 2003-08-07 Ribopharma Ag Verfahren zur Hemmung der Expression eines durch eine Chromosomen-Aberration entstandenen Zielgens
GB0201477D0 (en) * 2002-01-23 2002-03-13 Novartis Forschungsstiftung Methods of obtaining isoform specific expression in mammalian cells
WO2003064625A2 (en) * 2002-02-01 2003-08-07 Sequitur, Inc. Oligonucleotide compositions with enhanced efficiency
US20030166282A1 (en) * 2002-02-01 2003-09-04 David Brown High potency siRNAS for reducing the expression of target genes
US20060009409A1 (en) 2002-02-01 2006-01-12 Woolf Tod M Double-stranded oligonucleotides
US20050096289A1 (en) * 2002-02-07 2005-05-05 Hans Prydz Methods and compositions for modulating tissue factor
AU2003223172A1 (en) * 2002-02-12 2003-09-04 Quark Biotech, Inc. Use of the axl receptor for diagnosis and treatment of renal disease
WO2003068961A2 (en) * 2002-02-13 2003-08-21 Axordia Limited Method to modify differentiation of pluripotential stem cells
ES2312753T5 (es) 2002-02-14 2012-12-13 City Of Hope Procedimientos para producir moléculas de ARN de interferencia en células de mamífero y usos terapéuticos para tales moléculas
US7662952B2 (en) * 2002-02-20 2010-02-16 Sirna Therapeutics, Inc. RNA interference mediated inhibition of GRB2 associated binding protein (GAB2) gene expression using short interfering nucleic acid (siNA)
US20100240730A1 (en) * 2002-02-20 2010-09-23 Merck Sharp And Dohme Corp. RNA Interference Mediated Inhibition of Gene Expression Using Chemically Modified Short Interfering Nucleic Acid (siNA)
US7683166B2 (en) 2002-02-20 2010-03-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA)
AU2003211058A1 (en) * 2002-02-20 2003-09-09 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED TARGET DISCOVERY AND TARGET VALIDATION USING SHORT INTERFERING NUCLEIC ACID (siNA)
AU2003220136A1 (en) * 2002-02-20 2003-09-09 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF TGF-BETA AND TGF-BETA RECEPTOR GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7897753B2 (en) 2002-02-20 2011-03-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of XIAP gene expression using short interfering nucleic acid (siNA)
US7928219B2 (en) 2002-02-20 2011-04-19 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (SINA)
US20090099117A1 (en) 2002-02-20 2009-04-16 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF MYOSTATIN GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
EP1478730A4 (en) * 2002-02-20 2006-01-25 Sirna Therapeutics Inc INTERFERENCE RNA-INDUCED INHIBITION OF THE GENE EXPRESSION OF SUPERFAMILY TFN AND TFN RECEPTOR SUPERFAMILY USING SHORT INTERFERENCE NUCLEIC ACID (SINA)
US7928218B2 (en) * 2002-02-20 2011-04-19 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of polycomb group protein EZH2 gene expression using short interfering nucleic acid (siNA)
US8232383B2 (en) * 2002-02-20 2012-07-31 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US7700760B2 (en) 2002-02-20 2010-04-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular cell adhesion molecule (VCAM) gene expression using short interfering nucleic acid (siNA)
US7795422B2 (en) 2002-02-20 2010-09-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hypoxia inducible factor 1 (HIF1) gene expression using short interfering nucleic acid (siNA)
US7691999B2 (en) * 2002-02-20 2010-04-06 Sirna Therapeutics, Inc. RNA interference mediated inhibition of NOGO and NOGO receptor gene expression using short interfering nucleic acid (siNA)
US20090137509A1 (en) * 2002-02-20 2009-05-28 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF PROLIFERATION CELL NUCLEAR ANTIGEN (PCNA) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20090093439A1 (en) * 2002-02-20 2009-04-09 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF CHROMOSOME TRANSLOCATION GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7667029B2 (en) * 2002-02-20 2010-02-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of checkpoint kinase-1 (CHK-1) gene expression using short interfering nucleic acid (siNA)
US9181551B2 (en) 2002-02-20 2015-11-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US8067575B2 (en) 2002-02-20 2011-11-29 Merck, Sharp & Dohme Corp. RNA interference mediated inhibition of cyclin D1 gene expression using short interfering nucleic acid (siNA)
US20090253774A1 (en) 2002-02-20 2009-10-08 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF PLATELET DERIVED GROWTH FACTOR (PDGF) AND PLATELET DERIVED GROWTH FACTOR RECEPTOR (PDGFR) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7683165B2 (en) 2002-02-20 2010-03-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA)
WO2003106476A1 (en) * 2002-02-20 2003-12-24 Sirna Therapeutics, Inc Nucleic acid mediated inhibition of enterococcus infection and cytolysin toxin activity
US20090253773A1 (en) 2002-02-20 2009-10-08 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF TNF AND TNF RECEPTOR GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7897752B2 (en) 2002-02-20 2011-03-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of telomerase gene expression using short interfering nucleic acid (siNA)
US7667030B2 (en) 2002-02-20 2010-02-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of matrix metalloproteinase 13 (MMP13) gene expression using short interfering nucleic acid (siNA)
EP1432724A4 (en) * 2002-02-20 2006-02-01 Sirna Therapeutics Inc RNA inhibition mediated inhibition of MAP KINASE GENES
US20050096284A1 (en) * 2002-02-20 2005-05-05 Sirna Therapeutics, Inc. RNA interference mediated treatment of polyglutamine (polyQ) repeat expansion diseases using short interfering nucleic acid (siNA)
US7928220B2 (en) 2002-02-20 2011-04-19 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of stromal cell-derived factor-1 (SDF-1) gene expression using short interfering nucleic acid (siNA)
US7897757B2 (en) * 2002-02-20 2011-03-01 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of protein tyrosine phosphatase-1B (PTP-1B) gene expression using short interfering nucleic acid (siNA)
US7910724B2 (en) * 2002-02-20 2011-03-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Fos gene expression using short interfering nucleic acid (siNA)
US20090247613A1 (en) * 2002-02-20 2009-10-01 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF B-CELL CLL/LYMPHOMA-2 (BCL2) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US9657294B2 (en) 2002-02-20 2017-05-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
GB2397062B (en) * 2002-02-20 2005-06-15 Sirna Therapeutics Inc RNA interference mediated inhibition of hepatitis c virus (HCV) gene expression using short interfering nucleic acid (siNA)
US20090233983A1 (en) * 2002-02-20 2009-09-17 Sirna Therapeutics Inc. RNA Interference Mediated Inhibition of Protein Tyrosine Phosphatase-1B (PTP-1B) Gene Expression Using Short Interfering RNA
US20090192105A1 (en) 2002-02-20 2009-07-30 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF INTERCELLULAR ADHESION MOLECULE (ICAM) GENE EXPRESSION USING SHORT INTERFERING NUCELIC ACID (siNA)
EP1501853A4 (en) * 2002-02-20 2005-11-16 Sirna Therapeutics Inc RNA INTERFERENCE MEDIATED INHIBITION OF GENE EXPRESSION OF AN EPIDERMAL GROWTH FACTOR RECEPTOR USING SHORT INTERFERING NUCLEIC ACIDS
US7678897B2 (en) 2002-02-20 2010-03-16 Sirna Therapeutics, Inc. RNA interference mediated inhibition of platelet-derived endothelial cell growth factor (ECGF1) gene expression using short interfering nucleic acid (siNA)
US8258288B2 (en) 2002-02-20 2012-09-04 Sirna Therapeutics, Inc. RNA interference mediated inhibition of respiratory syncytial virus (RSV) expression using short interfering nucleic acid (siNA)
US7893248B2 (en) 2002-02-20 2011-02-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Myc and/or Myb gene expression using short interfering nucleic acid (siNA)
US8013143B2 (en) * 2002-02-20 2011-09-06 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of CXCR4 gene expression using short interfering nucleic acid (siNA)
US20090306182A1 (en) * 2002-02-20 2009-12-10 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF MAP KINASE GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7935812B2 (en) 2002-02-20 2011-05-03 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of hepatitis C virus (HCV) expression using short interfering nucleic acid (siNA)
AU2003219900A1 (en) * 2002-02-22 2003-09-09 James R. Eshleman Antigene locks and therapeutic uses thereof
EP2277522B1 (en) * 2002-03-01 2012-11-21 UCB Manufacturing, Inc. Methods for increasing or decreasing bone density and identifying molecules
WO2003076592A2 (en) * 2002-03-06 2003-09-18 Rigel Pharmaceuticals, Inc. Novel method for delivery and intracellular synthesis of sirna molecules
US7274703B2 (en) * 2002-03-11 2007-09-25 3Com Corporation Stackable network units with resiliency facility
JP2005521393A (ja) * 2002-03-20 2005-07-21 マサチューセッツ インスティテュート オブ テクノロジー Hiv治療
US7357928B2 (en) 2002-04-08 2008-04-15 University Of Louisville Research Foundation, Inc. Method for the diagnosis and prognosis of malignant diseases
AU2003224087B2 (en) 2002-04-18 2009-03-05 Opko Pharmaceuticals, Llc. Means and methods for the specific inhibition of genes in cells and tissue of the CNS and/or eye
WO2003093441A2 (en) 2002-05-03 2003-11-13 Duke University A method of regulating gene expression
US20040009946A1 (en) 2002-05-23 2004-01-15 Ceptyr, Inc. Modulation of PTP1B expression and signal transduction by RNA interference
US7199107B2 (en) * 2002-05-23 2007-04-03 Isis Pharmaceuticals, Inc. Antisense modulation of kinesin-like 1 expression
AU2003237686A1 (en) * 2002-05-24 2003-12-12 Max-Planck Gesellschaft Zur Forderung Der Wissenschaften E.V. Rna interference mediating small rna molecules
WO2003106630A2 (en) * 2002-06-12 2003-12-24 Ambion, Inc. Methods and compositions relating to polypeptides with rnase iii domains that mediate rna interference
US20100075423A1 (en) * 2002-06-12 2010-03-25 Life Technologies Corporation Methods and compositions relating to polypeptides with rnase iii domains that mediate rna interference
US20040248094A1 (en) * 2002-06-12 2004-12-09 Ford Lance P. Methods and compositions relating to labeled RNA molecules that reduce gene expression
WO2003106636A2 (en) * 2002-06-14 2003-12-24 Mirus Corporation Novel methods for the delivery of polynucleotides to cells
WO2004001044A1 (en) * 2002-06-21 2003-12-31 Sinogenomax Company Ltd. Randomised dna libraries and double-stranded rna libraries, use and method of production thereof
JP2005537028A (ja) * 2002-06-26 2005-12-08 ザ ペン ステート リサーチ ファウンデーション ヒト乳頭腫ウイルス感染症を治療する方法及び材料
DK1519714T3 (da) 2002-06-28 2011-01-31 Protiva Biotherapeutics Inc Fremgangsmåde og apparat til fremstilling af liposomer
EP1520022B1 (en) * 2002-07-10 2015-07-22 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Rna-interference by single-stranded rna molecules
US7148342B2 (en) * 2002-07-24 2006-12-12 The Trustees Of The University Of Pennyslvania Compositions and methods for sirna inhibition of angiogenesis
EP1389637B1 (en) 2002-08-05 2012-05-30 Silence Therapeutics Aktiengesellschaft Blunt-ended interfering RNA molecules
US20040241854A1 (en) 2002-08-05 2004-12-02 Davidson Beverly L. siRNA-mediated gene silencing
PT2258847T (pt) * 2002-08-05 2017-06-22 Silence Therapeutics Gmbh Outras novas formas de moléculas de arn de interferência
AU2012216354B2 (en) * 2002-08-05 2016-01-14 Silence Therapeutics Gmbh Further novel forms of interfering RNA molecules
US20050042646A1 (en) 2002-08-05 2005-02-24 Davidson Beverly L. RNA interference suppresion of neurodegenerative diseases and methods of use thereof
DK3222724T3 (en) 2002-08-05 2018-12-03 Silence Therapeutics Gmbh ADDITIONALLY UNKNOWN FORMS OF INTERFERRING RNA MOLECULES
US20080274989A1 (en) 2002-08-05 2008-11-06 University Of Iowa Research Foundation Rna Interference Suppression of Neurodegenerative Diseases and Methods of Use Thereof
AU2015264957B2 (en) * 2002-08-05 2017-10-26 Silence Therapeutics Gmbh Further novel forms of interfering rna molecules
CA2501719C (en) * 2002-08-06 2013-02-05 Toray Industries, Inc. Remedy or preventive for kidney disease and method of diagnosing kidney disease
WO2004013310A2 (en) * 2002-08-06 2004-02-12 Intradigm Corporation Methods of down regulating target gene expression in vivo by introduction of interfering rna
US8729036B2 (en) 2002-08-07 2014-05-20 University Of Massachusetts Compositions for RNA interference and methods of use thereof
US20040029275A1 (en) * 2002-08-10 2004-02-12 David Brown Methods and compositions for reducing target gene expression using cocktails of siRNAs or constructs expressing siRNAs
CA2495072A1 (en) * 2002-08-14 2004-03-11 Atugen Ag Use of protein kinase n beta
AU2003258426B2 (en) * 2002-08-21 2008-04-10 The University Of British Columbia RNAi probes targeting cancer-related proteins
US7923547B2 (en) * 2002-09-05 2011-04-12 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US20060287269A1 (en) * 2002-09-09 2006-12-21 The Regents Of The University Of California Short interfering nucleic acid hybrids and methods thereof
US20080260744A1 (en) 2002-09-09 2008-10-23 Omeros Corporation G protein coupled receptors and uses thereof
US20040138119A1 (en) * 2002-09-18 2004-07-15 Ingo Tamm Use of hepatitis B X-interacting protein (HBXIP) in modulation of apoptosis
US20060257380A1 (en) * 2002-09-19 2006-11-16 Inst.Nat. De La Sante Et De La Recherche MED Use of sirnas for gene silencing in antigen presenting cells
AU2003282877B9 (en) 2002-09-25 2011-05-12 University Of Massachusetts In Vivo gene silencing by chemically modified and stable siRNA
US20040242518A1 (en) * 2002-09-28 2004-12-02 Massachusetts Institute Of Technology Influenza therapeutic
US20060160759A1 (en) * 2002-09-28 2006-07-20 Jianzhu Chen Influenza therapeutic
WO2004028471A2 (en) * 2002-09-28 2004-04-08 Massachusetts Institute Of Technology Influenza therapeutic
US20060240425A1 (en) * 2002-09-30 2006-10-26 Oncotherapy Science, Inc Genes and polypeptides relating to myeloid leukemia
US7422853B1 (en) * 2002-10-04 2008-09-09 Myriad Genetics, Inc. RNA interference using a universal target
AU2003291678B2 (en) 2002-11-01 2009-01-15 The Trustees Of The University Of Pennsylvania Compositions and methods for siRNA inhibition of HIF-1 alpha
US7892793B2 (en) 2002-11-04 2011-02-22 University Of Massachusetts Allele-specific RNA interference
AU2003291753B2 (en) 2002-11-05 2010-07-08 Isis Pharmaceuticals, Inc. Polycyclic sugar surrogate-containing oligomeric compounds and compositions for use in gene modulation
US9150606B2 (en) 2002-11-05 2015-10-06 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2'-modified nucleosides for use in gene modulation
EP1560840B1 (en) 2002-11-05 2015-05-06 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2'-modified nucleosides for use in gene modulation
US9150605B2 (en) 2002-11-05 2015-10-06 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2′-modified nucleosides for use in gene modulation
WO2004043978A2 (en) * 2002-11-05 2004-05-27 Isis Pharmaceuticals, Inc. 2'-methoxy substituted oligomeric compounds and compositions for use in gene modulations
DE10322662A1 (de) * 2002-11-06 2004-10-07 Grünenthal GmbH Wirksame und stabile DNA-Enzyme
US7951935B2 (en) 2002-11-14 2011-05-31 Dharmacon, Inc. siRNA targeting v-myc myelocytomatosis viral oncogene homolog (MYC)
US20080268457A1 (en) * 2002-11-14 2008-10-30 Dharmacon, Inc. siRNA targeting forkhead box P3 (FOXP3)
US7691998B2 (en) * 2002-11-14 2010-04-06 Dharmacon, Inc. siRNA targeting nucleoporin 62kDa (Nup62)
US7250496B2 (en) 2002-11-14 2007-07-31 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory genes and uses thereof
US8198427B1 (en) 2002-11-14 2012-06-12 Dharmacon, Inc. SiRNA targeting catenin, beta-1 (CTNNB1)
US10011836B2 (en) 2002-11-14 2018-07-03 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US9719094B2 (en) 2002-11-14 2017-08-01 Thermo Fisher Scientific Inc. RNAi targeting SEC61G
US7635770B2 (en) * 2002-11-14 2009-12-22 Dharmacon, Inc. siRNA targeting protein kinase N-3 (PKN-3)
US7619081B2 (en) 2002-11-14 2009-11-17 Dharmacon, Inc. siRNA targeting coatomer protein complex, subunit beta 2 (COPB2)
US9879266B2 (en) 2002-11-14 2018-01-30 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US7612196B2 (en) * 2002-11-14 2009-11-03 Dharmacon, Inc. siRNA targeting cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B)
US9839649B2 (en) 2002-11-14 2017-12-12 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US7592442B2 (en) 2002-11-14 2009-09-22 Dharmacon, Inc. siRNA targeting ribonucleotide reductase M2 polypeptide (RRM2 or RNR-R2)
US8163896B1 (en) 2002-11-14 2012-04-24 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory genes and uses thereof
WO2006006948A2 (en) * 2002-11-14 2006-01-19 Dharmacon, Inc. METHODS AND COMPOSITIONS FOR SELECTING siRNA OF IMPROVED FUNCTIONALITY
US9719092B2 (en) 2002-11-14 2017-08-01 Thermo Fisher Scientific Inc. RNAi targeting CNTD2
US20090227780A1 (en) * 2002-11-14 2009-09-10 Dharmacon, Inc. siRNA targeting connexin 43
US20090005548A1 (en) * 2002-11-14 2009-01-01 Dharmacon, Inc. siRNA targeting nuclear receptor interacting protein 1 (NRIP1)
US9771586B2 (en) 2002-11-14 2017-09-26 Thermo Fisher Scientific Inc. RNAi targeting ZNF205
US20100113307A1 (en) * 2002-11-14 2010-05-06 Dharmacon, Inc. siRNA targeting vascular endothelial growth factor (VEGF)
US7977471B2 (en) * 2002-11-14 2011-07-12 Dharmacon, Inc. siRNA targeting TNFα
US10920226B2 (en) * 2002-11-14 2021-02-16 Thermo Fisher Scientific Inc. siRNA targeting LDHA
US9228186B2 (en) 2002-11-14 2016-01-05 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US7781575B2 (en) 2002-11-14 2010-08-24 Dharmacon, Inc. siRNA targeting tumor protein 53 (p53)
US7655785B1 (en) 2002-11-14 2010-02-02 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory oligonucleotides and uses thereof
EP2305813A3 (en) * 2002-11-14 2012-03-28 Dharmacon, Inc. Fuctional and hyperfunctional sirna
US7927793B2 (en) 2002-11-18 2011-04-19 The United States Of America As Represented By The Department Of Health And Human Services Cell lines and host nucleic acid sequences related to infectious disease
US7064337B2 (en) 2002-11-19 2006-06-20 The Regents Of The University Of California Radiation detection system for portable gamma-ray spectroscopy
DE10254214A1 (de) * 2002-11-20 2004-06-09 Beiersdorf Ag Oligoribonukleotide zur Behandlung von degenerativen Hauterscheinungen durch RNA-Interferenz
AU2003298718A1 (en) * 2002-11-22 2004-06-18 University Of Massachusetts Modulation of hiv replication by rna interference
JP4526228B2 (ja) * 2002-11-22 2010-08-18 隆 森田 RNAiによる新規治療法および治療剤
CN101914532A (zh) * 2002-11-22 2010-12-15 生物智囊团株式会社 Rna干扰的目标碱基序列的搜索方法
US7696334B1 (en) 2002-12-05 2010-04-13 Rosetta Genomics, Ltd. Bioinformatically detectable human herpesvirus 5 regulatory gene
US7790867B2 (en) 2002-12-05 2010-09-07 Rosetta Genomics Inc. Vaccinia virus-related nucleic acids and microRNA
US20130130231A1 (en) 2002-11-26 2013-05-23 Isaac Bentwich Bioinformatically detectable group of novel viral regulatory genes and uses thereof
US7829694B2 (en) 2002-11-26 2010-11-09 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US7618948B2 (en) 2002-11-26 2009-11-17 Medtronic, Inc. Devices, systems and methods for improving and/or cognitive function through brain delivery of siRNA
US7605249B2 (en) 2002-11-26 2009-10-20 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
CA2506714A1 (en) * 2002-11-26 2004-06-10 University Of Massachusetts Delivery of sirnas
CN1301263C (zh) 2002-12-18 2007-02-21 北京昭衍新药研究中心 一组抗hiv感染及防治艾滋病的核苷酸序列及其应用
US9498530B2 (en) 2002-12-24 2016-11-22 Rinat Neuroscience Corp. Methods for treating osteoarthritis pain by administering a nerve growth factor antagonist and compositions containing the same
SI1575517T1 (sl) 2002-12-24 2012-06-29 Rinat Neuroscience Corp Protitelesa proti ĺ˝iväśnemu rastnemu dejavniku in metode njihove uporabe
WO2004063331A2 (en) * 2003-01-03 2004-07-29 Gencia Corporation SiRNA MEDIATED POST-TRANSRIPTIONAL GENE SILENCING OF GENES INVOLVED IN ALOPECIA
ATE477337T1 (de) * 2003-01-16 2010-08-15 Univ Pennsylvania Zusammensetzungen und verfahren zur sirna-hemmung von icam-1
US7629323B2 (en) * 2003-01-21 2009-12-08 Northwestern University Manipulation of neuronal ion channels
US20040147027A1 (en) * 2003-01-28 2004-07-29 Troy Carol M. Complex for facilitating delivery of dsRNA into a cell and uses thereof
US20060178297A1 (en) * 2003-01-28 2006-08-10 Troy Carol M Systems and methods for silencing expression of a gene in a cell and uses thereof
US7994149B2 (en) 2003-02-03 2011-08-09 Medtronic, Inc. Method for treatment of Huntington's disease through intracranial delivery of sirna
US7732591B2 (en) 2003-11-25 2010-06-08 Medtronic, Inc. Compositions, devices and methods for treatment of huntington's disease through intracranial delivery of sirna
US20040248839A1 (en) * 2003-02-05 2004-12-09 University Of Massachusetts RNAi targeting of viruses
FR2850971B1 (fr) * 2003-02-10 2006-08-11 Aventis Pharma Sa Oligonucleotide antisens inhibant l'expression de la proteine ob-rgrp et procede de detection de composes modifiant l'interaction entre la famille de la proteine ob-rgrp et le recepteur de la leptine
US20070104688A1 (en) 2003-02-13 2007-05-10 City Of Hope Small interfering RNA mediated transcriptional gene silencing in mammalian cells
US20040162235A1 (en) * 2003-02-18 2004-08-19 Trubetskoy Vladimir S. Delivery of siRNA to cells using polyampholytes
ATE491444T1 (de) 2003-02-19 2011-01-15 Rinat Neuroscience Corp Verfahren zur behandlung von schmerzen durch verabreichung eines nervenwachstumsfaktor- antagonisten und eines nsaid und diese enthaltende zusammensetzung
WO2005017127A2 (en) * 2003-02-21 2005-02-24 The Penn State Research Foundation Rna interference compositions and methods
WO2004076664A2 (en) * 2003-02-21 2004-09-10 University Of South Florida Vectors for regulating gene expression
WO2004076629A2 (en) 2003-02-27 2004-09-10 Nucleonics Inc. METHODS AND CONSTRUCTS FOR EVALUATION OF RNAi TARGETS AND EFFECTOR MOLECULES
CN1780913A (zh) * 2003-02-27 2006-05-31 独立行政法人产业技术总合研究所 哺乳动物细胞中dsRNA诱导CpG序列甲基化
NZ542665A (en) * 2003-03-05 2008-05-30 Senesco Technologies Inc Use of antisense oligonucleotides or siRNA to suppress expression of eIF-5A1
EP1604022A2 (en) * 2003-03-06 2005-12-14 Oligo Engine, Inc. Modulation of gene expression using dna-rna hybrids
EP2216407B1 (en) 2003-03-07 2016-01-13 Alnylam Pharmaceuticals, Inc. Therapeutic compositions
JP2006521111A (ja) * 2003-03-12 2006-09-21 バスジーン セラピューティクス, インコーポレイテッド 血管形成及び腫瘍増殖阻害用ポリペプチド化合物及びその応用
EP2141234B1 (en) 2003-03-21 2016-04-27 Roche Innovation Center Copenhagen A/S Short Interfering RNA (siRNA) Analogues
EP1608733B1 (en) * 2003-04-02 2011-12-07 Dharmacon, Inc. Modified polynucleotides for use in rna interference
US20040198640A1 (en) * 2003-04-02 2004-10-07 Dharmacon, Inc. Stabilized polynucleotides for use in RNA interference
ATE536408T1 (de) * 2003-04-02 2011-12-15 Dharmacon Inc Modifizierte polynukleotide zur verwendung bei rna-interferenz
CA2521464C (en) 2003-04-09 2013-02-05 Alnylam Pharmaceuticals, Inc. Irna conjugates
JP4789208B2 (ja) 2003-04-09 2011-10-12 バイオデリバリー サイエンシーズ インターナショナル インコーポレイティッド タンパク質発現に向けられた渦巻型組成物
US20070270360A1 (en) * 2003-04-15 2007-11-22 Sirna Therapeutics, Inc. Rna Interference Mediated Inhibition of Severe Acute Respiratory Syndrome (Sars) Gene Expression Using Short Interfering Nucleic Acid
US7723509B2 (en) 2003-04-17 2010-05-25 Alnylam Pharmaceuticals IRNA agents with biocleavable tethers
US7851615B2 (en) 2003-04-17 2010-12-14 Alnylam Pharmaceuticals, Inc. Lipophilic conjugated iRNA agents
AU2004232964B2 (en) 2003-04-17 2011-09-22 Alnylam Pharmaceuticals, Inc. Protected monomers
EP2666858A1 (en) 2003-04-17 2013-11-27 Alnylam Pharmaceuticals Inc. Modified iRNA agents
US8017762B2 (en) 2003-04-17 2011-09-13 Alnylam Pharmaceuticals, Inc. Modified iRNA agents
US8796436B2 (en) 2003-04-17 2014-08-05 Alnylam Pharmaceuticals, Inc. Modified iRNA agents
JP2006523464A (ja) * 2003-04-18 2006-10-19 ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア アンジオポエチン1、2、及びそれらの受容体TIE2のsiRNA阻害のための組成物及びその方法
WO2005032595A2 (en) * 2003-04-23 2005-04-14 Georgetown University Methods and compositions for the inhibition of stat5 in prostate cancer cells
WO2004098526A2 (en) * 2003-05-05 2004-11-18 Johns Hopkins University Anti-cancer dna vaccine employing plasmids encoding signal sequence, mutant oncoprotein antigen, and heat shock protein
EP1633784B1 (en) 2003-05-09 2011-07-13 Diadexus, Inc. Ovr110 antibody compositions and methods of use
JP2007502129A (ja) 2003-05-09 2007-02-08 ユニヴァーシティ オヴ ピッツバーグ オヴ ザ コモンウェルス システム オヴ ハイアー エデュケーション 短鎖干渉rnaライブラリーならびに合成および使用の方法
AU2003241409A1 (en) * 2003-05-12 2005-01-21 Potomac Pharmaceuticals, Inc. Gene expression suppression agents
WO2004104199A2 (en) * 2003-05-15 2004-12-02 Oligo Engine, Inc. Modulation of gene expression using dna-dna hybrids
JP2006525811A (ja) * 2003-05-16 2006-11-16 ロゼッタ インファーマティクス エルエルシー Rna干渉の方法と組成物
JP4299299B2 (ja) * 2003-05-19 2009-07-22 株式会社ジーンケア研究所 癌細胞に対するアポトーシス誘導剤
JP4505749B2 (ja) * 2003-05-30 2010-07-21 日本新薬株式会社 Bcl−2の発現抑制をするオリゴ二本鎖RNAとそれを含有する医薬組成物
JP4623426B2 (ja) * 2003-05-30 2011-02-02 日本新薬株式会社 オリゴ核酸担持複合体、当該複合体を含有する医薬組成物
ES2864206T3 (es) 2003-06-02 2021-10-13 Univ Massachusetts Métodos y composiciones para mejorar la eficacia y la especificidad del ARNi
US7750144B2 (en) * 2003-06-02 2010-07-06 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of RNA silencing
DK1633767T3 (en) * 2003-06-02 2019-03-25 Univ Massachusetts METHODS AND COMPOSITIONS FOR MANAGING THE EFFECT OF RNA SILENCING
BRPI0410886A (pt) * 2003-06-03 2006-07-04 Isis Pharmaceuticals Inc composto de filamento duplo, composição farmacêutica, sal farmaceuticamente aceitável, métodos de modificação do ácido nucleico que codifica a survivina humana, de inibição da expressão da suvivina em células ou tecidos, e de tratamento de uma condição associada com a expressão ou superexpressão da suvivina, e, oligonucleotìdeo de rnai de filamento único
US20050019918A1 (en) * 2003-06-03 2005-01-27 Hidetoshi Sumimoto Treatment of cancer by inhibiting BRAF expression
US7595306B2 (en) * 2003-06-09 2009-09-29 Alnylam Pharmaceuticals Inc Method of treating neurodegenerative disease
US8575327B2 (en) 2003-06-12 2013-11-05 Alnylam Pharmaceuticals, Inc. Conserved HBV and HCV sequences useful for gene silencing
AU2004263830B2 (en) 2003-06-13 2008-12-18 Alnylam Pharmaceuticals, Inc. Double-stranded ribonucleic acid with increased effectiveness in an organism
EP1486564A1 (de) * 2003-06-13 2004-12-15 Ribopharma AG SiRNA mit erhöhter Stabilität in Serum
EP1644475A4 (en) * 2003-06-20 2009-06-03 Isis Pharmaceuticals Inc DOUBLE-STRAND COMPOSITIONS WITH A 3'-ENDO-MODIFIED STRING FOR USE IN GENE MODULATION
WO2005044976A2 (en) * 2003-06-20 2005-05-19 Isis Pharmaceuticals, Inc. Oligomeric compounds for use in gene modulation
WO2005007623A2 (en) * 2003-07-03 2005-01-27 The Trustees Of The University Of Pennsylvania Inhibition of syk kinase expression
EP1649019A2 (en) * 2003-07-15 2006-04-26 California Institute Of Technology Improved inhibitor nucleic acids
US20050256071A1 (en) * 2003-07-15 2005-11-17 California Institute Of Technology Inhibitor nucleic acids
EP2567693B1 (en) * 2003-07-16 2015-10-21 Protiva Biotherapeutics Inc. Lipid encapsulated interfering RNA
WO2005010188A2 (en) * 2003-07-21 2005-02-03 Whitehead Institute For Biomedical Research Rnas able to modulate chromatin silencing
US7683036B2 (en) 2003-07-31 2010-03-23 Regulus Therapeutics Inc. Oligomeric compounds and compositions for use in modulation of small non-coding RNAs
US7888497B2 (en) 2003-08-13 2011-02-15 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory oligonucleotides and uses thereof
WO2005019422A2 (en) * 2003-08-13 2005-03-03 The Board Of Trustees Of The University Of Illinois Silencing of tgf-beta receptor type ii expression by sirna
US7825235B2 (en) * 2003-08-18 2010-11-02 Isis Pharmaceuticals, Inc. Modulation of diacylglycerol acyltransferase 2 expression
WO2005035759A2 (en) * 2003-08-20 2005-04-21 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF HYPOXIA INDUCIBLE FACTOR 1 (HIF1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20050136437A1 (en) * 2003-08-25 2005-06-23 Nastech Pharmaceutical Company Inc. Nanoparticles for delivery of nucleic acids and stable double-stranded RNA
WO2005021749A1 (en) * 2003-08-28 2005-03-10 Novartis Ag Interfering rna duplex having blunt-ends and 3’-modifications
US8501705B2 (en) * 2003-09-11 2013-08-06 The Board Of Regents Of The University Of Texas System Methods and materials for treating autoimmune and/or complement mediated diseases and conditions
EP2821085B1 (en) * 2003-09-12 2020-04-29 University of Massachusetts Rna interference for the treatment of gain-of-function disorders
US8680063B2 (en) 2003-09-12 2014-03-25 University Of Massachusetts RNA interference for the treatment of gain-of-function disorders
US7425544B2 (en) 2003-09-18 2008-09-16 Eli Lilly And Company Modulation of eIF4E expression
JP2007505634A (ja) * 2003-09-22 2007-03-15 ロゼッタ インファーマティクス エルエルシー Rna干渉を用いる合成致死スクリーニング
WO2005033310A1 (de) * 2003-10-01 2005-04-14 Grünenthal GmbH Pim-1-spezifische dsrna-verbindungen
JP2007517498A (ja) * 2003-10-07 2007-07-05 アステラス製薬株式会社 骨形態形成タンパク質(bmp)2a及びその使用
US20060218673A9 (en) 2003-10-09 2006-09-28 E.I. Du Pont De Nemours And Company Gene silencing
WO2005045032A2 (en) * 2003-10-20 2005-05-19 Sima Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF EARLY GROWTH RESPONSE GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
EP1675953A2 (en) * 2003-10-23 2006-07-05 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF RAS GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
EP1694838A2 (en) * 2003-10-23 2006-08-30 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF GPRA AND AAA1 GENE EXPRESSION USING SHORT NUCLEIC ACID (siNA)
US7962316B2 (en) 2003-10-27 2011-06-14 Merck Sharp & Dohme Corp. Method of designing siRNAs for gene silencing
US8227434B1 (en) 2003-11-04 2012-07-24 H. Lee Moffitt Cancer Center & Research Institute, Inc. Materials and methods for treating oncological disorders
WO2005047504A1 (en) * 2003-11-07 2005-05-26 The Board Of Trustees Of The University Of Illinois Induction of cellular senescence by cdk4 disruption for tumor suppression and regression
US20070258993A1 (en) * 2003-11-12 2007-11-08 The Austin Research Institute Dna-Carrier Conjugate
US7807646B1 (en) * 2003-11-20 2010-10-05 University Of South Florida SHIP-deficiency to increase megakaryocyte progenitor production
US7763592B1 (en) * 2003-11-20 2010-07-27 University Of South Florida SHIP-deficiency to increase megakaryocyte progenitor production
JP2005168485A (ja) * 2003-11-20 2005-06-30 Tsutomu Suzuki siRNAの設計方法
US20050208658A1 (en) * 2003-11-21 2005-09-22 The University Of Maryland RNA interference mediated inhibition of 11beta hydroxysteriod dehydrogenase-1 (11beta HSD-1) gene expression
US20100145038A1 (en) * 2003-11-24 2010-06-10 Merck & Co., Inc. RNA INTERFERENCE MEDIATED INHIBITION OF GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
GB2424887B (en) 2003-11-26 2008-05-21 Univ Massachusetts Sequence-specific inhibition of small RNA function
JP2007513611A (ja) * 2003-11-26 2007-05-31 ザ クイーンズ ユニヴァーシティ オブ ベルファスト 癌治療
WO2005056021A1 (en) 2003-12-04 2005-06-23 University Of South Florida Polynucleotides for reducing respiratory syncytial virus gene expression
WO2005059135A2 (en) * 2003-12-12 2005-06-30 Wisconsin Alumni Research Foundation Treatment of mammals by sirna delivery into mammalian nerve cells
JPWO2005068630A1 (ja) * 2003-12-16 2007-07-26 独立行政法人産業技術総合研究所 干渉用二重鎖rna
US20060134787A1 (en) 2004-12-22 2006-06-22 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of single and double blunt-ended siRNA
EP1711172A4 (en) * 2003-12-23 2008-07-16 Univ Pennsylvania COMPOSITIONS AND METHODS FOR COMBINATION THERAPY OF ILLNESSES
WO2005067971A1 (ja) * 2004-01-16 2005-07-28 Takeda Pharmaceutical Company Limited 動脈硬化の予防・治療用医薬
WO2005073378A1 (en) * 2004-01-30 2005-08-11 Santaris Pharma A/S MODIFIED SHORT INTERFERING RNA (MODIFIED siRNA)
EP2330111A3 (en) 2004-01-30 2011-08-17 Quark Pharmaceuticals, Inc. Oligoribonucleotides and methods of use thereof for treatment of fibrotic conditions and other diseases
WO2005078094A2 (en) * 2004-02-06 2005-08-25 Dharmacon, Inc. Stabilized rnas as transfection controls and silencing reagents
US20060019914A1 (en) 2004-02-11 2006-01-26 University Of Tennessee Research Foundation Inhibition of tumor growth and invasion by anti-matrix metalloproteinase DNAzymes
US20050273868A1 (en) * 2004-02-17 2005-12-08 University Of Massachusetts Methods and compositions for enhancing RISC activity in vitro and in vivo
WO2005079533A2 (en) * 2004-02-17 2005-09-01 University Of Massachusetts Methods and compositions for mediating gene silencing
EP1566202A1 (en) * 2004-02-23 2005-08-24 Sahltech I Göteborg AB Use of resistin antagonists in the treatment of rheumatoid arthritis
US20070202134A1 (en) * 2004-02-23 2007-08-30 Kufe Donald W Muc1 Antagonist Enhancement of Death Receptor Ligand-Induced Apoptosis
EP1958964A3 (en) 2004-02-24 2009-01-07 The Government of the United States of America, as represented by The Secretary, Department of Health and Human Services RAB9A, RAB11A, and modulators thereof related to infectious disease
WO2006074418A2 (en) 2005-01-07 2006-07-13 Diadexus, Inc. Ovr110 antibody compositions and methods of use
US7691823B2 (en) * 2004-03-05 2010-04-06 University Of Massachusetts RIP140 regulation of glucose transport
US8569474B2 (en) 2004-03-09 2013-10-29 Isis Pharmaceuticals, Inc. Double stranded constructs comprising one or more short strands hybridized to a longer strand
US7947659B2 (en) 2004-03-12 2011-05-24 Alnylam Pharmaceuticals, Inc. iRNA agents targeting VEGF
US20050202075A1 (en) * 2004-03-12 2005-09-15 Pardridge William M. Delivery of genes encoding short hairpin RNA using receptor-specific nanocontainers
US20070265220A1 (en) * 2004-03-15 2007-11-15 City Of Hope Methods and compositions for the specific inhibition of gene expression by double-stranded RNA
EP1742958B1 (en) * 2004-03-15 2017-05-17 City of Hope Methods and compositions for the specific inhibition of gene expression by double-stranded rna
US20050208090A1 (en) * 2004-03-18 2005-09-22 Medtronic, Inc. Methods and systems for treatment of neurological diseases of the central nervous system
US7851452B2 (en) * 2004-03-22 2010-12-14 The Trustees Of The University Of Pennsylvania Methods of use of bcl-6-derived nucleotides to induce apoptosis
US20050272682A1 (en) * 2004-03-22 2005-12-08 Evers Bernard M SiRNA targeting PI3K signal transduction pathway and siRNA-based therapy
US7872117B2 (en) * 2004-03-26 2011-01-18 Van Andel Research Institute c-met siRNA adenovirus vectors inhibit cancer cell growth, invasion and tumorigenicity
ES2707393T3 (es) * 2004-03-26 2019-04-03 Curis Inc Moduladores de interferencia de ARN de señalización de hedgehog y usos de los mismos
JP2005312428A (ja) * 2004-03-31 2005-11-10 Keio Gijuku Skp−2発現抑制を利用した癌の治療
JPWO2005095647A1 (ja) * 2004-03-31 2008-02-21 タカラバイオ株式会社 siRNAのスクリーニング方法
KR101147147B1 (ko) * 2004-04-01 2012-05-25 머크 샤프 앤드 돔 코포레이션 Rna 간섭의 오프 타겟 효과 감소를 위한 변형된폴리뉴클레오타이드
WO2005097817A2 (en) 2004-04-05 2005-10-20 Alnylam Pharmaceuticals, Inc. Process and reagents for oligonucleotide synthesis and purification
EP2495324B1 (en) 2004-04-09 2015-03-04 Genecare Research Institute Co., Ltd Cancer cell-specific apoptosis-inducing agents that target chromosome stabilization-associated genes
US20060078902A1 (en) * 2004-04-15 2006-04-13 Michaeline Bunting Method and compositions for RNA interference
MXPA06012076A (es) * 2004-04-20 2007-01-25 Nastech Pharm Co Metodos y composiciones para mejorar el suministro de arn bicatenario o un acido nucleico hibrido bicatenario para regular la expresion genetica en celulas de mamifero.
AU2005238034A1 (en) 2004-04-23 2005-11-10 The Trustees Of Columbia University In The City Of New York Inhibition of hairless protein mRNA
EP1768998A2 (en) 2004-04-27 2007-04-04 Alnylam Pharmaceuticals Inc. Single-stranded and double-stranded oligonucleotides comprising a 2-arylpropyl moiety
AU2005247319B2 (en) 2004-04-28 2011-12-01 Molecules For Health, Inc. Methods for treating or preventing restenosis and other vascular proliferative disorders
EP3034510A1 (en) 2004-04-30 2016-06-22 Alnylam Pharmaceuticals Inc. Oligonucleotides comprising a c5-modified pyrimidine
US20060040882A1 (en) * 2004-05-04 2006-02-23 Lishan Chen Compostions and methods for enhancing delivery of nucleic acids into cells and for modifying expression of target genes in cells
US20060030003A1 (en) * 2004-05-12 2006-02-09 Simon Michael R Composition and method for introduction of RNA interference sequences into targeted cells and tissues
US7605250B2 (en) 2004-05-12 2009-10-20 Dharmacon, Inc. siRNA targeting cAMP-specific phosphodiesterase 4D
US20110117088A1 (en) * 2004-05-12 2011-05-19 Simon Michael R Composition and method for introduction of rna interference sequences into targeted cells and tissues
US20050260214A1 (en) * 2004-05-12 2005-11-24 Simon Michael R Composition and method for introduction of RNA interference sequences into targeted cells and tissues
CA2566519C (en) 2004-05-14 2020-04-21 Rosetta Genomics Ltd. Micrornas and uses thereof
US7687616B1 (en) 2004-05-14 2010-03-30 Rosetta Genomics Ltd Small molecules modulating activity of micro RNA oligonucleotides and micro RNA targets and uses thereof
WO2005110464A2 (en) * 2004-05-14 2005-11-24 Oregon Health & Science University Irx5 inhibition as treatment for hyperproliferative disorders
US10508277B2 (en) 2004-05-24 2019-12-17 Sirna Therapeutics, Inc. Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference
JP2008500364A (ja) * 2004-05-25 2008-01-10 キメラコア, インコーポレイテッド 自己集合性ナノ粒子薬物送達システム
US7795419B2 (en) 2004-05-26 2010-09-14 Rosetta Genomics Ltd. Viral and viral associated miRNAs and uses thereof
EP2471923B1 (en) 2004-05-28 2014-08-20 Asuragen, Inc. Methods and compositions involving microRNA
US8394947B2 (en) 2004-06-03 2013-03-12 Isis Pharmaceuticals, Inc. Positionally modified siRNA constructs
EP1602926A1 (en) 2004-06-04 2005-12-07 University of Geneva Novel means and methods for the treatment of hearing loss and phantom hearing
AU2005252273B2 (en) * 2004-06-07 2011-04-28 Arbutus Biopharma Corporation Lipid encapsulated interfering RNA
ATE537263T1 (de) * 2004-06-07 2011-12-15 Protiva Biotherapeutics Inc Kationische lipide und verwendungsverfahren
US20060008907A1 (en) * 2004-06-09 2006-01-12 The Curators Of The University Of Missouri Control of gene expression via light activated RNA interference
WO2006085942A2 (en) * 2004-06-17 2006-08-17 The Regents Of The University Of California Compositions and methods for regulating gene transcription
US20060051815A1 (en) * 2004-06-25 2006-03-09 The J. David Gladstone Institutes Methods of treating smooth muscle cell disorders
CA2572151A1 (en) 2004-06-30 2006-08-24 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising a non-phosphate backbone linkage
CA2572439A1 (en) * 2004-07-02 2006-01-12 Protiva Biotherapeutics, Inc. Immunostimulatory sirna molecules and uses therefor
WO2006038208A2 (en) 2004-07-12 2006-04-13 Medical Research Fund Of Tel Aviv Sourasky Medical Center Agents capable of downregulating an msf-a - dependent hif-1α and use thereof in cancer treatment
WO2006112869A2 (en) * 2004-07-19 2006-10-26 Baylor College Of Medicine Modulation of cytokine signaling regulators and applications for immunotherapy
CA2573671A1 (en) * 2004-07-21 2006-02-23 Medtronic, Inc. Methods for reducing or preventing localized fibrosis using sirna
JP2008507341A (ja) * 2004-07-21 2008-03-13 メドトロニック,インコーポレイティド 限局性繊維症を低減するための医療装置及び方法
WO2006093526A2 (en) 2004-07-21 2006-09-08 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising a modified or non-natural nucleobase
WO2007001324A2 (en) 2004-07-23 2007-01-04 The University Of North Carolina At Chapel Hill Methods and materials for determining pain sensitivity and predicting and treating related disorders
EP1913011B1 (en) 2004-08-04 2016-11-02 Alnylam Pharmaceuticals Inc. Oligonucleotides comprising a ligand tethered to a modified or non-natural nucleobase
WO2006020557A2 (en) * 2004-08-10 2006-02-23 Immusol, Inc. Methods of using or identifying agents that inhibit cancer growth
EP2990410A1 (en) 2004-08-10 2016-03-02 Alnylam Pharmaceuticals Inc. Chemically modified oligonucleotides
US20060063181A1 (en) * 2004-08-13 2006-03-23 Green Pamela J Method for identification and quantification of short or small RNA molecules
MX2007002043A (es) 2004-08-16 2007-10-11 Quark Biotech Inc Usos terapeuticos de los inhibidores del rtp801.
AU2005276245C1 (en) 2004-08-23 2015-02-26 Sylentis S.A.U. Treatment of eye disorders characterized by an elevated introacular pressure by siRNAs
US20070021366A1 (en) * 2004-11-19 2007-01-25 Srivastava Satish K Structural-based inhibitors of the glutathione binding site in aldose reductase, methods of screening therefor and methods of use
EP1789551A2 (en) * 2004-08-31 2007-05-30 Sylentis S.A.U. Methods and compositions to inhibit p2x7 receptor expression
WO2006026738A2 (en) 2004-08-31 2006-03-09 Qiagen North American Holdings, Inc. Methods and compositions for rna amplification and detection using an rna-dependent rna-polymerase
US7884086B2 (en) * 2004-09-08 2011-02-08 Isis Pharmaceuticals, Inc. Conjugates for use in hepatocyte free uptake assays
WO2006031901A2 (en) 2004-09-10 2006-03-23 Somagenics, Inc. SMALL INTERFERING RNAs THAT EFFICIENTLY INHIBIT VIRAL GENE EXPRESSION AND METHODS OF USE THEREOF
FI20041204A0 (fi) 2004-09-16 2004-09-16 Riikka Lund Menetelmät immuunivälitteisiin sairauksiin liittyvien uusien kohdegeenien hyödyntämiseksi
WO2006033965A2 (en) * 2004-09-16 2006-03-30 The Trustees Of The University Of Pennsylvania Nadph oxidase inhibition pharmacotherapies for obstructive sleep apnea syndrome and its associated morbidities
NZ583290A (en) 2004-09-24 2011-05-27 Alnylam Pharmaceuticals Inc Rnai modulation of apob and uses thereof
CA2580126C (en) 2004-09-28 2014-08-26 Quark Biotech, Inc. Oligoribonucleotides and methods of use thereof for treatment of alopecia, acute renal failure and other diseases
WO2006039343A2 (en) * 2004-09-30 2006-04-13 Centocor, Inc. Emmprin antagonists and uses thereof
CA2584960A1 (en) 2004-10-21 2006-05-04 Charles L. Niblett Methods and materials for conferring resistance to pests and pathogens of plants
US20060110440A1 (en) * 2004-10-22 2006-05-25 Kiminobu Sugaya Method and system for biasing cellular development
US7790878B2 (en) * 2004-10-22 2010-09-07 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV, PIV and other respiratory viruses and uses thereof
US20060089324A1 (en) * 2004-10-22 2006-04-27 Sailen Barik RNAi modulation of RSV, PIV and other respiratory viruses and uses thereof
WO2006043014A1 (en) * 2004-10-22 2006-04-27 Neuregenix Limited Neuron regeneration
EP1812597A2 (en) 2004-10-27 2007-08-01 Vanderbilt University Mammalian genes involved in infection
CN102352355A (zh) * 2004-10-27 2012-02-15 先灵公司 抑制Nav1.8的短干扰核酸组合物和方法
AU2005302554A1 (en) * 2004-10-28 2006-05-11 Idexx Laboratories, Inc. Compositions for controlled delivery of pharmaceutically active compounds
US20060094676A1 (en) * 2004-10-29 2006-05-04 Ronit Lahav Compositions and methods for treating cancer using compositions comprising an inhibitor of endothelin receptor activity
US9492400B2 (en) 2004-11-04 2016-11-15 Massachusetts Institute Of Technology Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
ES2503765T3 (es) 2004-11-12 2014-10-07 Asuragen, Inc. Procedimientos y composiciones que implican miARN y moléculas inhibidoras de miARN
US20060105052A1 (en) * 2004-11-15 2006-05-18 Acar Havva Y Cationic nanoparticle having an inorganic core
JP2008520583A (ja) * 2004-11-15 2008-06-19 マウント シナイ スクール オブ メディスン オブ ニューヨーク ユニバーシティー Wnt自己分泌シグナル伝達を改変するための組成物および方法
EP2199298A1 (en) * 2004-11-17 2010-06-23 Protiva Biotherapeutics Inc. Sirna silencing of Apolipoprotein B
CA2587854C (en) * 2004-11-18 2014-01-21 The Board Of Trustees Of The University Of Illinois Multicistronic sirna constructs to inhibit tumors
EP1816194A4 (en) * 2004-11-19 2009-02-18 Genecare Res Inst Co Ltd CANCER-SPECIFIC PROLIFERATION INHIBITORS
US7923206B2 (en) * 2004-11-22 2011-04-12 Dharmacon, Inc. Method of determining a cellular response to a biological agent
US7923207B2 (en) 2004-11-22 2011-04-12 Dharmacon, Inc. Apparatus and system having dry gene silencing pools
US7935811B2 (en) 2004-11-22 2011-05-03 Dharmacon, Inc. Apparatus and system having dry gene silencing compositions
JP2008521401A (ja) * 2004-11-24 2008-06-26 アルナイラム ファーマシューティカルズ インコーポレイテッド BCR−ABL融合遺伝子のRNAi調節およびその使用方法
JP2008521909A (ja) * 2004-12-02 2008-06-26 ビー−ブリッジ インターナショナル,インコーポレーテッド 短鎖干渉rna、アンチセンスポリヌクレオチド、および他のハイブリッド形成化ポリヌクレオチドの設計方法
US20060165667A1 (en) * 2004-12-03 2006-07-27 Case Western Reserve University Novel methods, compositions and devices for inducing neovascularization
CA2590768A1 (en) * 2004-12-14 2006-06-22 Alnylam Pharmaceuticals, Inc. Rnai modulation of mll-af4 and uses thereof
KR100967868B1 (ko) 2004-12-17 2010-07-05 베쓰 이스라엘 디코니스 메디칼 센터 박테리아 매개 유전자 침묵을 위한 조성물 및 이것을이용하는 방법
GB0427916D0 (en) * 2004-12-21 2005-01-19 Astrazeneca Ab Method
TWI386225B (zh) 2004-12-23 2013-02-21 Alcon Inc 用於治療眼睛病症的結締組織生長因子(CTGF)RNA干擾(RNAi)抑制技術
US20060142228A1 (en) * 2004-12-23 2006-06-29 Ambion, Inc. Methods and compositions concerning siRNA's as mediators of RNA interference
EP1830888B1 (en) 2004-12-27 2015-08-05 Silence Therapeutics GmbH Lipid complexes coated with peg and their use
BRPI0519690A2 (pt) * 2004-12-30 2009-03-03 Todd M Hauser composiÇÕes e mÉtodos para modular a expressço de genes usando oligonucleotÍdeos autoprotegidos
AU2005322960A1 (en) * 2005-01-06 2006-07-13 The Johns Hopkins University RNA interference that blocks expression of pro-apoptotic proteins potentiates immunity induced by DNA and transfected dendritic cell vaccines
EP2230304B1 (en) * 2005-01-07 2012-03-28 Alnylam Pharmaceuticals Inc. RNAI modulation of RSV and therapeutic uses thereof
WO2006081192A2 (en) * 2005-01-24 2006-08-03 Alnylam Pharmaceuticals, Inc. Rnai modulation of the nogo-l or nogo-r gene and uses thereof
JP2008528004A (ja) * 2005-01-26 2008-07-31 ザ ジョンズ ホプキンス ユニバーシティー 突然変異癌タンパク質抗原およびカルレティキュリンをコードするプラスミドを用いる抗癌dnaワクチン
TW200639253A (en) * 2005-02-01 2006-11-16 Alcon Inc RNAi-mediated inhibition of ocular targets
US20080070857A1 (en) * 2005-02-14 2008-03-20 Jun Nishihira Pharmaceutical Agents for Preventing Metastasis of Cancer
CN103920142A (zh) 2005-02-14 2014-07-16 爱荷华大学研究基金会 治疗和诊断年龄相关性黄斑变性的方法和试剂
US8859749B2 (en) 2005-03-08 2014-10-14 Qiagen Gmbh Modified short interfering RNA
US7947660B2 (en) 2005-03-11 2011-05-24 Alcon, Inc. RNAi-mediated inhibition of frizzled related protein-1 for treatment of glaucoma
WO2006130201A1 (en) * 2005-03-14 2006-12-07 Board Of Regents, The University Of Texas System Antigene oligomers inhibit transcription
GB0505081D0 (en) * 2005-03-14 2005-04-20 Genomica Sau Downregulation of interleukin-12 expression by means of rnai technology
JP4585342B2 (ja) * 2005-03-18 2010-11-24 株式会社資生堂 不全角化を抑制する物質のスクリーニング方法、同方法によりスクリーニングされた物質及び不全角化を抑制する方法
EP1877556B1 (en) * 2005-03-25 2011-09-14 Medtronic, Inc. Use of anti-tnf or anti-il1 rnai to suppress pro- inflammatory cytokine actions locally to treat pain
CA2603730A1 (en) * 2005-03-31 2006-10-05 Calando Pharmaceuticals, Inc. Inhibitors of ribonucleotide reductase subunit 2 and uses thereof
US20090203055A1 (en) * 2005-04-18 2009-08-13 Massachusetts Institute Of Technology Compositions and methods for RNA interference with sialidase expression and uses thereof
EP1885854B1 (en) 2005-05-06 2012-10-17 Medtronic, Inc. Methods and sequences to suppress primate huntington gene expression
US7902352B2 (en) 2005-05-06 2011-03-08 Medtronic, Inc. Isolated nucleic acid duplex for reducing huntington gene expression
EP2298829B1 (en) * 2005-05-31 2017-09-20 École Polytechnique Fédérale de Lausanne (EPFL) Triblock copolymers for cytoplasmic delivery of gene-based drugs
US20070048293A1 (en) * 2005-05-31 2007-03-01 The Trustees Of The University Of Pennsylvania Manipulation of PTEN in T cells as a strategy to modulate immune responses
DK1888749T3 (en) 2005-06-01 2015-01-05 Polyplus Transfection Oligonucleotides for RNA interference and their biological applications
US20100286228A1 (en) * 2005-06-01 2010-11-11 Duke University Method of inhibiting intimal hyperplasia
CN100445381C (zh) * 2005-06-10 2008-12-24 中国人民解放军军事医学科学院基础医学研究所 带有单链polyA尾巴的siRNA分子制备方法和应用
WO2006131925A2 (en) * 2005-06-10 2006-12-14 Quark Pharmaceuticals, Inc. Oligoribonucleotides and methods of use thereof for treatment of fibrotic conditions and other diseases
WO2006138145A1 (en) 2005-06-14 2006-12-28 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
US7838503B2 (en) * 2005-06-15 2010-11-23 Children's Medical Center Corporation Methods for extending the replicative lifespan of cells
FI20050640A0 (fi) * 2005-06-16 2005-06-16 Faron Pharmaceuticals Oy Yhdisteitä amiinioksidaasista riippuvien sairauksien tai häiriöiden hoitoon tai estoon
CN101501055B (zh) * 2005-06-23 2016-05-11 贝勒医学院 负性免疫调节因子的调节和免疫疗法应用
CA2608964A1 (en) * 2005-06-27 2007-01-04 Alnylam Pharmaceuticals, Inc. Rnai modulation of hif-1 and therapeutic uses thereof
US9133517B2 (en) 2005-06-28 2015-09-15 Medtronics, Inc. Methods and sequences to preferentially suppress expression of mutated huntingtin
AU2006267841B2 (en) * 2005-07-07 2011-12-15 Yissum Research Development Company Of The Hebrew University Of Jerusalem Nucleic acid agents for downregulating H19, and methods of using same
WO2007011702A2 (en) 2005-07-15 2007-01-25 The University Of North Carolina At Chapel Hill Use of egfr inhibitors to prevent or treat obesity
CN101228268A (zh) * 2005-07-25 2008-07-23 德累斯顿工业大学 Rna扩增和/或rna标记用的rna依赖的rna聚合酶,方法及试剂盒
WO2007014370A2 (en) * 2005-07-28 2007-02-01 University Of Delaware Small regulatory rnas and methods of use
US7919583B2 (en) 2005-08-08 2011-04-05 Discovery Genomics, Inc. Integration-site directed vector systems
US20070213257A1 (en) * 2005-08-12 2007-09-13 Nastech Pharmaceutical Company Inc. Compositions and methods for complexes of nucleic acids and peptides
WO2007022506A2 (en) * 2005-08-18 2007-02-22 University Of Massachusetts Methods and compositions for treating neurological disease
US20070054873A1 (en) * 2005-08-26 2007-03-08 Protiva Biotherapeutics, Inc. Glucocorticoid modulation of nucleic acid-mediated immune stimulation
WO2007028065A2 (en) 2005-08-30 2007-03-08 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds for modulation of splicing
WO2007030167A1 (en) * 2005-09-02 2007-03-15 Nastech Pharmaceutical Company Inc. Modification of double-stranded ribonucleic acid molecules
US20090221673A1 (en) * 2005-09-13 2009-09-03 Rigby William F C Compositions and Methods for Regulating RNA Translation via CD154 CA-Dinucleotide Repeat
EP1931789B1 (en) 2005-09-20 2016-05-04 BASF Plant Science GmbH Methods for controlling gene expression using ta-siran
FR2890859B1 (fr) 2005-09-21 2012-12-21 Oreal Oligonucleotide d'arn double brin inhibant l'expression de la tyrosinase
WO2007041213A2 (en) * 2005-09-30 2007-04-12 St. Jude Children's Research Hospital Methods for regulation of p53 translation and function
US8168584B2 (en) 2005-10-08 2012-05-01 Potentia Pharmaceuticals, Inc. Methods of treating age-related macular degeneration by compstatin and analogs thereof
US8080534B2 (en) 2005-10-14 2011-12-20 Phigenix, Inc Targeting PAX2 for the treatment of breast cancer
GB0521351D0 (en) * 2005-10-20 2005-11-30 Genomica Sau Modulation of TRPV expression levels
WO2007048046A2 (en) * 2005-10-20 2007-04-26 Protiva Biotherapeutics, Inc. Sirna silencing of filovirus gene expression
GB0521716D0 (en) * 2005-10-25 2005-11-30 Genomica Sau Modulation of 11beta-hydroxysteriod dehydrogenase 1 expression for the treatment of ocular diseases
JP4952944B2 (ja) * 2005-10-27 2012-06-13 国立大学法人 奈良先端科学技術大学院大学 Singarの発現または機能の抑制による神経軸索の形成・伸長と神経再生への応用
CN101365801B (zh) 2005-10-28 2013-03-27 阿尔尼拉姆医药品有限公司 抑制亨廷顿基因表达的组合物和方法
US8101741B2 (en) * 2005-11-02 2012-01-24 Protiva Biotherapeutics, Inc. Modified siRNA molecules and uses thereof
AU2006311725B2 (en) * 2005-11-04 2011-11-24 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of NAV1.8 gene
CA2628477A1 (en) * 2005-11-07 2007-05-10 Bc Cancer Agency Inhibition of autophagy genes in cancer chemotherapy
CA2626690A1 (en) * 2005-11-09 2007-05-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of factor v leiden mutant gene
EP2641970B1 (en) * 2005-11-17 2014-12-24 Board of Regents, The University of Texas System Modulation of gene expression by oligomers targeted to chromosomal DNA
US8603991B2 (en) 2005-11-18 2013-12-10 Gradalis, Inc. Individualized cancer therapy
US8916530B2 (en) 2005-11-18 2014-12-23 Gradalis, Inc. Individualized cancer therapy
US20080125384A1 (en) * 2005-11-21 2008-05-29 Shuewi Yang Simultaneous silencing and restoration of gene function
JP4901753B2 (ja) * 2005-11-24 2012-03-21 学校法人自治医科大学 プロヒビチン2(phb2)のミトコンドリア機能
WO2007070682A2 (en) 2005-12-15 2007-06-21 Massachusetts Institute Of Technology System for screening particles
MX2008008302A (es) * 2005-12-22 2009-01-21 Exegenics Inc Composiciones y metodos para regular el sistema de complemento.
AR057252A1 (es) * 2005-12-27 2007-11-21 Alcon Mfg Ltd Inhibicion de rho quinasa mediada por arni para el tratamiento de trastornos oculares
WO2007087113A2 (en) * 2005-12-28 2007-08-02 The Scripps Research Institute Natural antisense and non-coding rna transcripts as drug targets
US8673873B1 (en) * 2005-12-28 2014-03-18 Alcon Research, Ltd. RNAi-mediated inhibition of phosphodiesterase type 4 for treatment of cAMP-related ocular disorders
EP1973574B1 (en) * 2005-12-30 2014-04-02 Institut Gustave Roussy Use of inhibitors of scinderin and/or of ephrin-a1 for treating tumors
US20090060921A1 (en) * 2006-01-17 2009-03-05 Biolex Therapeutics, Inc. Glycan-optimized anti-cd20 antibodies
CA2637252A1 (en) * 2006-01-17 2007-07-26 Biolex Therapeutics, Inc. Plants and plant cells having inhibited expression of .alpha.1,3-fucosyltransferase and .beta.1,2-xylosyltransferase
US20120208824A1 (en) 2006-01-20 2012-08-16 Cell Signaling Technology, Inc. ROS Kinase in Lung Cancer
EP3360965A1 (en) 2006-01-20 2018-08-15 Cell Signaling Technology, Inc. Translocation and mutant ros kinase in human non-small cell lung carcinoma
DOP2007000015A (es) 2006-01-20 2007-08-31 Quark Biotech Inc Usos terapéuticos de inhibidores de rtp801
US7825099B2 (en) 2006-01-20 2010-11-02 Quark Pharmaceuticals, Inc. Treatment or prevention of oto-pathologies by inhibition of pro-apoptotic genes
WO2007087451A2 (en) * 2006-01-25 2007-08-02 University Of Massachusetts Compositions and methods for enhancing discriminatory rna interference
EP1984382B1 (en) * 2006-01-27 2012-08-15 Santaris Pharma A/S Lna modified phosphorothiolated oligonucleotides
US8229398B2 (en) * 2006-01-30 2012-07-24 Qualcomm Incorporated GSM authentication in a CDMA network
WO2007091269A2 (en) * 2006-02-08 2007-08-16 Quark Pharmaceuticals, Inc. NOVEL TANDEM siRNAS
US7910566B2 (en) 2006-03-09 2011-03-22 Quark Pharmaceuticals Inc. Prevention and treatment of acute renal failure and other kidney diseases by inhibition of p53 by siRNA
FI20060246A0 (fi) 2006-03-16 2006-03-16 Jukka Westermarck Uusi kasvua stimuloiva proteiini ja sen käyttö
WO2007109609A2 (en) * 2006-03-17 2007-09-27 The Board Of Trustees Of The University Of Illinois Method for inhibiting angiogenesis
CA2644347C (en) 2006-03-23 2017-05-30 Santaris Pharma A/S Small internally segmented interfering rna
FR2898908A1 (fr) 2006-03-24 2007-09-28 Agronomique Inst Nat Rech Procede de preparation de cellules aviaires differenciees et genes impliques dans le maintien de la pluripotence
MX2008012173A (es) * 2006-03-24 2008-10-03 Novartis Ag Composiciones de arnds y métodos para el tratamiento de infecciones por el virus de papiloma humano (hpv).
WO2007115047A2 (en) * 2006-03-29 2007-10-11 Senesco Technologies, Inc. Inhibition of hiv replication and expression of p24 with eif-5a
KR101362681B1 (ko) 2006-03-31 2014-02-13 알닐람 파마슈티칼스 인코포레이티드 Eg5 유전자의 발현을 억제하는 조성물 및 억제 방법
JP2009534309A (ja) 2006-03-31 2009-09-24 マサチューセッツ インスティテュート オブ テクノロジー 治療剤の標的化送達のためのシステム
EP2007891A2 (en) * 2006-04-06 2008-12-31 DKFZ Deutsches Krebsforschungszentrum Method to inhibit the propagation of an undesired cell population
EP2010226B1 (en) 2006-04-07 2014-01-15 The Research Foundation of State University of New York Transcobalamin receptor polypeptides, nucleic acids, and modulators thereof, and related methods of use in modulating cell growth and treating cancer and cobalamin deficiency
ATE460922T1 (de) * 2006-04-07 2010-04-15 Chimeros Inc Zusammensetzungen und verfahren zur behandlung von b-zellen-malignomen
US9044461B2 (en) 2006-04-07 2015-06-02 The Research Foundation Of State University Of New York Transcobalamin receptor polypeptides, nucleic acids, and modulators thereof, and related methods of use in modulating cell growth and treating cancer and cobalamin deficiency
WO2007120883A2 (en) * 2006-04-12 2007-10-25 Isis Pharmaceuticals, Inc. Compositions and their uses directed to hepcidin
US20100055116A1 (en) * 2006-04-13 2010-03-04 Liou Hsiou-Chi Methods and Compositions for Targeting c-Rel
SI2450437T1 (sl) 2006-04-14 2017-12-29 Cell Signaling Technology Inc. Okvarjenost genov in mutantna ALK kinaza v človeških solidnih tumorjih
US8969295B2 (en) * 2006-04-14 2015-03-03 Massachusetts Institute Of Technology Identifying and modulating molecular pathways that mediate nervous system plasticity
EP2013222B1 (en) * 2006-04-28 2013-02-13 Alnylam Pharmaceuticals Inc. Compositions and methods for inhibiting expression of a gene from the jc virus
GB0608838D0 (en) 2006-05-04 2006-06-14 Novartis Ag Organic compounds
CN103614375A (zh) 2006-05-11 2014-03-05 阿尔尼拉姆医药品有限公司 抑制pcsk9基因表达的组合物和方法
JP5630998B2 (ja) 2006-05-15 2014-11-26 マサチューセッツ インスティテュート オブ テクノロジー 機能的粒子のためのポリマー
US20090130212A1 (en) * 2006-05-15 2009-05-21 Physical Pharmaceutica, Llc Composition and improved method for preparation of small particles
US20070269892A1 (en) * 2006-05-18 2007-11-22 Nastech Pharmaceutical Company Inc. FORMULATIONS FOR INTRACELLULAR DELIVERY dsRNA
MX2008014437A (es) * 2006-05-19 2008-11-27 Scripps Research Inst Tratamiento de desplegamiento de proteinas.
BRPI0712034A2 (pt) * 2006-05-19 2012-01-10 Alnylam Pharmaceuticals Inc modulação de rnai de aha e usos terapêuticos do mesmo
US7888498B2 (en) * 2006-05-22 2011-02-15 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of IKK-B gene
US9273356B2 (en) 2006-05-24 2016-03-01 Medtronic, Inc. Methods and kits for linking polymorphic sequences to expanded repeat mutations
US20070275923A1 (en) * 2006-05-25 2007-11-29 Nastech Pharmaceutical Company Inc. CATIONIC PEPTIDES FOR siRNA INTRACELLULAR DELIVERY
US8598333B2 (en) * 2006-05-26 2013-12-03 Alnylam Pharmaceuticals, Inc. SiRNA silencing of genes expressed in cancer
GB0610542D0 (en) * 2006-05-26 2006-07-05 Medical Res Council Screening method
US7915399B2 (en) * 2006-06-09 2011-03-29 Protiva Biotherapeutics, Inc. Modified siRNA molecules and uses thereof
EP2026843A4 (en) 2006-06-09 2011-06-22 Quark Pharmaceuticals Inc THERAPEUTIC USES OF RTP801L INHIBITORS
ES2390499T3 (es) * 2006-06-12 2012-11-13 Opko Pharmaceuticals, Llc Composiciones y métodos para la inhibición de la angiogénesis por sirna
US9200275B2 (en) * 2006-06-14 2015-12-01 Merck Sharp & Dohme Corp. Methods and compositions for regulating cell cycle progression
WO2007150030A2 (en) 2006-06-23 2007-12-27 Massachusetts Institute Of Technology Microfluidic synthesis of organic nanoparticles
US8124752B2 (en) * 2006-07-10 2012-02-28 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the MYC gene
GB0613753D0 (en) 2006-07-11 2006-08-23 Norwegian Radium Hospital Res Method
ATE551350T1 (de) 2006-07-13 2012-04-15 Univ Iowa Res Found Verfahren und reagenzien zur behandlung und diagnose von gefässerkrankungen und altersbedingter makuladegeneration
JP4756271B2 (ja) * 2006-07-18 2011-08-24 独立行政法人産業技術総合研究所 ガン細胞の老化、アポトーシス誘導剤
EP2546337A1 (en) * 2006-07-21 2013-01-16 Silence Therapeutics AG Means for inhibiting the expression of protein kinase 3
US20080039415A1 (en) * 2006-08-11 2008-02-14 Gregory Robert Stewart Retrograde transport of sirna and therapeutic uses to treat neurologic disorders
WO2008024844A2 (en) * 2006-08-22 2008-02-28 The Johns Hopkins University Anticancer combination therapies
DE102006039479A1 (de) 2006-08-23 2008-03-06 Febit Biotech Gmbh Programmierbare Oligonukleotidsynthese
US7872118B2 (en) * 2006-09-08 2011-01-18 Opko Ophthalmics, Llc siRNA and methods of manufacture
AU2007299748A1 (en) * 2006-09-19 2008-03-27 Asuragen, Inc. miR-15, miR-26, miR -31,miR -145, miR-147, miR-188, miR-215, miR-216 miR-331, mmu-miR-292-3p regulated genes and pathways as targets for therapeutic intervention
WO2008036741A2 (en) * 2006-09-19 2008-03-27 Asuragen, Inc. Mir-200 regulated genes and pathways as targets for therapeutic intervention
AU2007299629C1 (en) 2006-09-21 2012-05-10 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the HAMP gene
WO2008036841A2 (en) 2006-09-22 2008-03-27 Dharmacon, Inc. Tripartite oligonucleotide complexes and methods for gene silencing by rna interference
US20110150897A1 (en) * 2006-10-11 2011-06-23 Meyer Thomas F Influenza targets
WO2008063760A2 (en) * 2006-10-18 2008-05-29 The University Of Texas M.D. Anderson Cancer Center Methods for treating cancer targeting transglutaminase
JP2010507387A (ja) 2006-10-25 2010-03-11 クアーク・ファーマスーティカルス、インコーポレイテッド 新規のsiRNAおよびその使用方法
WO2008052774A2 (en) 2006-10-31 2008-05-08 Noxxon Pharma Ag Methods for detection of a single- or double-stranded nucleic acid molecule
CA2667971C (en) 2006-11-01 2017-04-18 Gary Weisinger Adipocyte-specific constructs and methods for inhibiting platelet-type 12 lipoxygenase expression
US9375440B2 (en) 2006-11-03 2016-06-28 Medtronic, Inc. Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US8324367B2 (en) 2006-11-03 2012-12-04 Medtronic, Inc. Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US8252526B2 (en) * 2006-11-09 2012-08-28 Gradalis, Inc. ShRNA molecules and methods of use thereof
US8906874B2 (en) 2006-11-09 2014-12-09 Gradalis, Inc. Bi-functional shRNA targeting Stathmin 1 and uses thereof
US8758998B2 (en) 2006-11-09 2014-06-24 Gradalis, Inc. Construction of bifunctional short hairpin RNA
US7819842B2 (en) 2006-11-21 2010-10-26 Medtronic, Inc. Chronically implantable guide tube for repeated intermittent delivery of materials or fluids to targeted tissue sites
US8034921B2 (en) * 2006-11-21 2011-10-11 Alnylam Pharmaceuticals, Inc. IRNA agents targeting CCR5 expressing cells and uses thereof
US7988668B2 (en) 2006-11-21 2011-08-02 Medtronic, Inc. Microsyringe for pre-packaged delivery of pharmaceuticals
WO2008062909A1 (fr) * 2006-11-22 2008-05-29 The University Of Tokyo Support d'arnsi sensible à l'environnement utilisant une micelle polymérique à pont disulfure
EP2101813B1 (en) 2006-11-27 2014-04-02 Patrys Limited Novel glycosylated peptide target in neoplastic cells
JP5391073B2 (ja) 2006-11-27 2014-01-15 ディアデクサス インコーポレーテッド Ovr110抗体組成物および使用方法
WO2008067373A2 (en) * 2006-11-28 2008-06-05 Alcon Research, Ltd. RNAi-MEDIATED INHIBITION OF AQUAPORIN 1 FOR TREATMENT OF IOP-RELATED CONDITIONS
WO2008067560A2 (en) * 2006-11-30 2008-06-05 University Of Southern California Compositions and methods of sphingosine kinase inhibitors for use thereof in cancer therapy
CN101675165A (zh) * 2006-12-08 2010-03-17 奥斯瑞根公司 Let-7微小rna的功能和靶标
CA2671294A1 (en) * 2006-12-08 2008-06-19 Asuragen, Inc. Mir-21 regulated genes and pathways as targets for therapeutic intervention
US20100280094A1 (en) * 2006-12-14 2010-11-04 Novartis Ag Compositions and methods to treat muscular & cardiovascular disorders
US20090175827A1 (en) * 2006-12-29 2009-07-09 Byrom Mike W miR-16 REGULATED GENES AND PATHWAYS AS TARGETS FOR THERAPEUTIC INTERVENTION
US7754698B2 (en) * 2007-01-09 2010-07-13 Isis Pharmaceuticals, Inc. Modulation of FR-alpha expression
US9896511B2 (en) 2007-01-10 2018-02-20 The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services Antibodies that bind to TL1A and methods of treating inflammatory or autoimmune disease comprising administering such antibodies
CA2925983A1 (en) 2007-01-16 2008-07-24 The University Of Queensland Method of inducing an immune response
US20080171906A1 (en) * 2007-01-16 2008-07-17 Everaerts Frank J L Tissue performance via hydrolysis and cross-linking
US20090074785A1 (en) * 2007-01-16 2009-03-19 Smith Jeffrey W Compositions and methods for treatment of colorectal cancer
ATE548454T1 (de) * 2007-01-16 2012-03-15 Yissum Res Dev Co Nukleinsäurewirkstoffe zur stilllegung von h19 zwecks behandlung rheumatoider arthritis
WO2008087558A2 (en) * 2007-01-17 2008-07-24 Institut De Recherches Cliniques De Montreal Nucleoside and nucleotide analogues with quaternary carbon centers and methods of use
CA2676143A1 (en) 2007-01-26 2008-07-31 University Of Louisville Research Foundation, Inc. Modification of exosomal components for use as a vaccine
US20100196403A1 (en) * 2007-01-29 2010-08-05 Jacob Hochman Antibody conjugates for circumventing multi-drug resistance
WO2008094860A2 (en) * 2007-01-30 2008-08-07 Allergan, Inc. Treating ocular diseases using peroxisome proliferator-activated receptor delta antagonists
CA2691066C (en) 2007-02-09 2018-07-31 Northwestern University Particles for detecting intracellular targets
WO2008098165A2 (en) 2007-02-09 2008-08-14 Massachusetts Institute Of Technology Oscillating cell culture bioreactor
DE102007008596B4 (de) * 2007-02-15 2010-09-02 Friedrich-Schiller-Universität Jena Biologisch wirksame Moleküle auf Grundlage von PNA und siRNA, Verfahren zu deren zellspezifischen Aktivierung sowie Applikationskit zur Verabreichung
EP2115141A4 (en) 2007-02-20 2010-08-04 Monsanto Technology Llc INVERTEBRA MICRO-RNA
WO2008106102A2 (en) 2007-02-26 2008-09-04 Quark Pharmaceuticals, Inc. Inhibitors of rtp801 and their use in disease treatment
US20100292301A1 (en) * 2007-02-28 2010-11-18 Elena Feinstein Novel sirna structures
US9018163B2 (en) * 2007-03-02 2015-04-28 The Trustees Of The University Of Pennsylvania Modulating PDX-1 with PCIF1, methods and uses thereof
WO2008109357A1 (en) * 2007-03-02 2008-09-12 Mdrna, Inc. Nucleic acid compounds for inhibiting apob gene expression and uses thereof
CA2679339A1 (en) * 2007-03-02 2008-09-12 Mdrna, Inc. Nucleic acid compounds for inhibiting wnt gene expression and uses thereof
US9085638B2 (en) 2007-03-07 2015-07-21 The Johns Hopkins University DNA vaccine enhancement with MHC class II activators
US20080260765A1 (en) * 2007-03-15 2008-10-23 Johns Hopkins University HPV DNA Vaccines and Methods of Use Thereof
US7812002B2 (en) 2007-03-21 2010-10-12 Quark Pharmaceuticals, Inc. Oligoribonucleotide inhibitors of NRF2 and methods of use thereof for treatment of cancer
JP5759673B2 (ja) 2007-03-21 2015-08-05 ブルックヘブン サイエンス アソシエイツ,エルエルシー 組み合わされたヘアピン−アンチセンス組成物および発現を調節するための方法
PE20090064A1 (es) * 2007-03-26 2009-03-02 Novartis Ag Acido ribonucleico de doble cadena para inhibir la expresion del gen e6ap humano y composicion farmaceutica que lo comprende
EP2905336A1 (en) 2007-03-29 2015-08-12 Alnylam Pharmaceuticals Inc. Compositions and methods for inhibiting expression of a gene from the ebola
WO2008124634A1 (en) 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Polymer-encapsulated reverse micelles
WO2008124632A1 (en) 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Amphiphilic compound assisted nanoparticles for targeted delivery
CA2683063A1 (en) * 2007-04-09 2008-10-16 Chimeros, Inc. Self-assembling nanoparticle drug delivery system
JP5258874B2 (ja) 2007-04-10 2013-08-07 キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング Rna干渉タグ
JP5744513B2 (ja) * 2007-04-17 2015-07-08 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated 肺送達のための核酸微小粒子
US8877917B2 (en) * 2007-04-23 2014-11-04 Alnylam Pharmaceuticals, Inc. Glycoconjugates of RNA interference agents
WO2008143774A2 (en) * 2007-05-01 2008-11-27 University Of Massachusetts Methods and compositions for locating snp heterozygosity for allele specific diagnosis and therapy
WO2008137115A1 (en) 2007-05-03 2008-11-13 The Brigham And Women's Hospital, Inc. Multipotent stem cells and uses thereof
JP5296328B2 (ja) * 2007-05-09 2013-09-25 独立行政法人理化学研究所 1本鎖環状rnaおよびその製造方法
KR20100029079A (ko) * 2007-05-15 2010-03-15 헬리콘 테라퓨틱스 인코퍼레이티드 Gpr12의 저해로 인지 질환을 치료하는 방법
US20090053140A1 (en) * 2007-05-15 2009-02-26 Roderick Euan Milne Scott METHODS OF IDENTIFYING GENES INVOLVED IN MEMORY FORMATION USING SMALL INTERFERING RNA(siRNA)
US20090131354A1 (en) * 2007-05-22 2009-05-21 Bader Andreas G miR-126 REGULATED GENES AND PATHWAYS AS TARGETS FOR THERAPEUTIC INTERVENTION
US8314227B2 (en) 2007-05-22 2012-11-20 Marina Biotech, Inc. Hydroxymethyl substituted RNA oligonucleotides and RNA complexes
AU2008259907B2 (en) 2007-05-30 2014-12-04 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
CN101820757A (zh) 2007-06-01 2010-09-01 普林斯顿大学托管委员会 通过调节宿主细胞代谢途径治疗病毒感染
EP2172547B1 (en) * 2007-06-11 2016-01-06 Takara Bio Inc. Method for expression of specific gene
US20100273854A1 (en) * 2007-06-15 2010-10-28 Hagar Kalinski Compositions and methods for inhibiting nadph oxidase expression
AR066984A1 (es) * 2007-06-15 2009-09-23 Novartis Ag Inhibicion de la expresion de la subunidad alfa del canal epitelial de sodio (enac) por medio de arni (arn de interferencia)
ES2474176T3 (es) 2007-06-27 2014-07-08 Quark Pharmaceuticals, Inc. Composiciones y métodos para inhibir la expresión de genes pro-apopt�ticos
EP3895737A1 (en) * 2007-06-29 2021-10-20 Stelic Institute Of Regenerative Medicine, Stelic Institute & Co. Method of fixing and expressing physiologically active substance
US20100184823A1 (en) * 2007-07-05 2010-07-22 Mark Aron Labow dsRNA For Treating Viral Infection
CN101821407B (zh) 2007-07-10 2013-09-18 纽瑞姆制药(1991)有限公司 神经退行性疾病中的cd44剪接变体
US8828960B2 (en) * 2007-07-17 2014-09-09 Idexx Laboratories, Inc. Amino acid vitamin ester compositions for controlled delivery of pharmaceutically active compounds
JP2009033986A (ja) * 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd RNA干渉による遺伝子発現抑制のためのターゲット遺伝子としてのcar遺伝子の使用
US9526707B2 (en) 2007-08-13 2016-12-27 Howard L. Elford Methods for treating or preventing neuroinflammation or autoimmune diseases
US8501929B2 (en) * 2007-08-17 2013-08-06 Biochrom Pharma Inc. PTHrP, its isoforms and antagonist thereto in the diagnosis and treatment of disease
US9328345B2 (en) 2007-08-27 2016-05-03 1 Globe Health Institute Llc Compositions of asymmetric interfering RNA and uses thereof
NZ584306A (en) * 2007-08-30 2012-10-26 Paladin Labs Inc Antigenic compositions and use of same in the targeted delivery of nucleic acids
WO2009032364A1 (en) * 2007-08-31 2009-03-12 Ghc Research Development Corporation Activation of nuclear factor-kappa b
WO2009033027A2 (en) 2007-09-05 2009-03-12 Medtronic, Inc. Suppression of scn9a gene expression and/or function for the treatment of pain
WO2009036332A1 (en) 2007-09-14 2009-03-19 Asuragen, Inc. Micrornas differentially expressed in cervical cancer and uses thereof
JP5049713B2 (ja) * 2007-09-14 2012-10-17 株式会社コナミデジタルエンタテインメント ゲームシステム並びにこれを構成するゲーム装置及び課題報知装置
US8003621B2 (en) * 2007-09-14 2011-08-23 Nitto Denko Corporation Drug carriers
EP2548962B1 (en) 2007-09-19 2016-01-13 Applied Biosystems, LLC Sirna sequence-independent modification formats for reducing off-target phenotypic effects in rnai, and stabilized forms thereof
WO2009042625A1 (en) * 2007-09-25 2009-04-02 Idexx Laboratories, Inc. Pharmaceutical compositions for administering oligonucleotides
EP2644594B1 (en) 2007-09-28 2017-08-23 Pfizer Inc Cancer Cell Targeting Using Nanoparticles
US20120082659A1 (en) * 2007-10-02 2012-04-05 Hartmut Land Methods And Compositions Related To Synergistic Responses To Oncogenic Mutations
CN103898110A (zh) * 2007-10-03 2014-07-02 夸克制药公司 新siRNA结构
EP2205746A4 (en) * 2007-10-04 2010-12-22 Univ Texas MODULATION OF GENE EXPRESSION WITH AGRNA AND GAPS WITH ANTISENSE TRANSCRIPTS AS A TARGET
AU2008314647B2 (en) 2007-10-12 2013-03-21 Massachusetts Institute Of Technology Vaccine nanotechnology
ES2576650T3 (es) 2007-10-18 2016-07-08 Cell Signaling Technology, Inc. Translocación y ROS quinasa mutante en el carcinoma pulmonar no microcítico humano
US8097712B2 (en) * 2007-11-07 2012-01-17 Beelogics Inc. Compositions for conferring tolerance to viral disease in social insects, and the use thereof
US20100098664A1 (en) * 2007-11-28 2010-04-22 Mathieu Jean-Francois Desclaux Lentiviral vectors allowing RNAi mediated inhibition of GFAP and vimentin expression
EP2222344A4 (en) * 2007-11-30 2012-11-07 Baylor College Medicine DENDRITIC CELL VACCINE COMPOSITIONS AND USES THEREOF
WO2009070805A2 (en) 2007-12-01 2009-06-04 Asuragen, Inc. Mir-124 regulated genes and pathways as targets for therapeutic intervention
WO2010070380A2 (en) 2007-12-03 2010-06-24 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health Of Human Services, National Institutes Of Health Doc1 compositions and methods for treating cancer
CA3043911A1 (en) 2007-12-04 2009-07-02 Arbutus Biopharma Corporation Targeting lipids
CA2708171C (en) * 2007-12-04 2018-02-27 Alnylam Pharmaceuticals, Inc. Folate conjugates
AU2008335202A1 (en) 2007-12-10 2009-06-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of Factor VII gene
US20110105584A1 (en) * 2007-12-12 2011-05-05 Elena Feinstein Rtp80il sirna compounds and methods of use thereof
US8614311B2 (en) 2007-12-12 2013-12-24 Quark Pharmaceuticals, Inc. RTP801L siRNA compounds and methods of use thereof
US20090238772A1 (en) 2007-12-13 2009-09-24 Alnylam Pharmaceuticals, Inc. Methods and compositions for prevention or treatment of rsv infection
US20090176729A1 (en) * 2007-12-14 2009-07-09 Alnylam Pharmaceuticals, Inc. Method of treating neurodegenerative disease
US7845686B2 (en) * 2007-12-17 2010-12-07 S & B Technical Products, Inc. Restrained pipe joining system for plastic pipe
KR100949791B1 (ko) * 2007-12-18 2010-03-30 이동기 오프-타겟 효과를 최소화하고 RNAi 기구를 포화시키지않는 신규한 siRNA 구조 및 그 용도
US20090192114A1 (en) * 2007-12-21 2009-07-30 Dmitriy Ovcharenko miR-10 Regulated Genes and Pathways as Targets for Therapeutic Intervention
WO2009090639A2 (en) * 2008-01-15 2009-07-23 Quark Pharmaceuticals, Inc. Sirna compounds and methods of use thereof
AU2009241591A1 (en) * 2008-01-31 2009-11-05 Alnylam Pharmaceuticals, Inc. Optimized methods for delivery of DSRNA targeting the PCSK9 gene
US20090263803A1 (en) * 2008-02-08 2009-10-22 Sylvie Beaudenon Mirnas differentially expressed in lymph nodes from cancer patients
US8188060B2 (en) 2008-02-11 2012-05-29 Dharmacon, Inc. Duplex oligonucleotides with enhanced functionality in gene regulation
CN102016036B (zh) 2008-02-11 2015-04-08 阿克赛医药公司 经修饰的RNAi多核苷酸及其用途
US7977321B2 (en) * 2008-02-12 2011-07-12 University Of Tennessee Research Foundation Small interfering RNAs targeting feline herpes virus
EP2250266A2 (en) 2008-02-12 2010-11-17 Alnylam Pharmaceuticals Inc. Compositions and methods for inhibiting expression of cd45 gene
DE102009043743B4 (de) 2009-03-13 2016-10-13 Friedrich-Schiller-Universität Jena Zellspezifisch wirksame Moleküle auf Grundlage von siRNA sowie Applikationskits zu deren Herstellung und Verwendung
EP2247748A2 (en) * 2008-02-13 2010-11-10 Elan Pharma International Limited Alpha-synuclein kinase
WO2009103067A2 (en) * 2008-02-14 2009-08-20 The Children's Hospital Of Philadelphia Compositions and methods to treat asthma
AU2009221775B2 (en) 2008-03-05 2015-05-07 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of Eg5 and VEGF genes
US20090233297A1 (en) * 2008-03-06 2009-09-17 Elizabeth Mambo Microrna markers for recurrence of colorectal cancer
CN102036689B (zh) * 2008-03-17 2014-08-06 得克萨斯系统大学董事会 神经肌肉突触维持和再生中涉及的微小rna的鉴定
US20110028531A1 (en) * 2008-03-20 2011-02-03 Elena Feinstein Novel sirna compounds for inhibiting rtp801
EP2271757A2 (en) * 2008-03-26 2011-01-12 Asuragen, INC. Compositions and methods related to mir-16 and therapy of prostate cancer
EP2105145A1 (en) * 2008-03-27 2009-09-30 ETH Zürich Method for muscle-specific delivery lipid-conjugated oligonucleotides
JP5906508B2 (ja) * 2008-03-31 2016-04-20 国立研究開発法人産業技術総合研究所 Rna干渉効果が高い2本鎖脂質修飾rna
TWI348916B (en) * 2008-04-03 2011-09-21 Univ Nat Taiwan A novel treatment tool for cancer: rna interference of bcas2
US20090258928A1 (en) * 2008-04-08 2009-10-15 Asuragen, Inc. Methods and compositions for diagnosing and modulating human papillomavirus (hpv)
JP5788312B2 (ja) 2008-04-11 2015-09-30 アルニラム ファーマスーティカルズ インコーポレイテッドAlnylam Pharmaceuticals, Inc. 標的リガンドをエンドソーム分解性成分と組み合わせることによる核酸の部位特異的送達
ES2710463T3 (es) * 2008-04-11 2019-04-25 Cedars Sinai Medical Center Acido poli(beta málico) con tripéptido colgante Leu-Leu-Leu para la administración eficaz del fármaco citoplasmático
HUE034483T2 (en) 2008-04-15 2018-02-28 Protiva Biotherapeutics Inc New lipid preparations for introducing a nucleic acid
US8278287B2 (en) * 2008-04-15 2012-10-02 Quark Pharmaceuticals Inc. siRNA compounds for inhibiting NRF2
WO2009129465A2 (en) * 2008-04-17 2009-10-22 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of xbp-1 gene
US20090285861A1 (en) * 2008-04-17 2009-11-19 Tzyy-Choou Wu Tumor cell-based cancer immunotherapeutic compositions and methods
USRE48948E1 (en) 2008-04-18 2022-03-01 Warsaw Orthopedic, Inc. Clonidine compounds in a biodegradable polymer
AU2009240738B2 (en) 2008-04-21 2014-09-11 Tissue Regeneration Therapeutics, Inc. Genetically modified human umbilical cord perivascular cells for prophylaxis against or treatment of biological or chemical agents
US8324366B2 (en) 2008-04-29 2012-12-04 Alnylam Pharmaceuticals, Inc. Compositions and methods for delivering RNAI using lipoproteins
US8173616B2 (en) * 2008-05-02 2012-05-08 The Brigham And Women's Hospital, Inc. RNA-induced translational silencing and cellular apoptosis
US8258111B2 (en) 2008-05-08 2012-09-04 The Johns Hopkins University Compositions and methods related to miRNA modulation of neovascularization or angiogenesis
US20090291073A1 (en) * 2008-05-20 2009-11-26 Ward Keith W Compositions Comprising PKC-theta and Methods for Treating or Controlling Ophthalmic Disorders Using Same
WO2009146417A1 (en) * 2008-05-30 2009-12-03 Sigma-Aldrich Co. Compositions and methods for specifically silencing a target nucleic acid
CA2726052A1 (en) 2008-06-04 2009-12-10 The Board Of Regents Of The University Of Texas System Modulation of gene expression through endogenous small rna targeting of gene promoters
US20090305611A1 (en) * 2008-06-06 2009-12-10 Flow International Corporation Device and method for improving accuracy of a high-pressure fluid jet apparatus
US8431692B2 (en) 2008-06-06 2013-04-30 Quark Pharmaceuticals, Inc. Compositions and methods for treatment of ear disorders
EP2235177B1 (en) * 2008-06-13 2012-07-18 RiboxX GmbH Method for enzymatic synthesis of chemically modified rna
WO2010005741A1 (en) * 2008-06-16 2010-01-14 Georgia Tech Research Corporation Nanogels for cellular delivery of therapeutics
TWI455944B (zh) 2008-07-01 2014-10-11 Daiichi Sankyo Co Ltd 雙股多核苷酸
US20110184046A1 (en) * 2008-07-11 2011-07-28 Dinah Wen-Yee Sah Compositions And Methods For Inhibiting Expression Of GSK-3 Genes
WO2010008562A2 (en) 2008-07-16 2010-01-21 Recombinetics Methods and materials for producing transgenic animals
WO2010008582A2 (en) 2008-07-18 2010-01-21 Rxi Pharmaceuticals Corporation Phagocytic cell drug delivery system
US8039658B2 (en) * 2008-07-25 2011-10-18 Air Products And Chemicals, Inc. Removal of trace arsenic impurities from triethylphosphate (TEPO)
US8212019B2 (en) * 2008-07-30 2012-07-03 University Of Massachusetts Nucleic acid silencing sequences
EP2326351B1 (en) 2008-08-19 2017-12-27 Nektar Therapeutics Conjugates of small-interfering nucleic acids
US8252762B2 (en) * 2008-08-25 2012-08-28 Excaliard Pharmaceuticals, Inc. Antisense oligonucleotides directed against connective tissue growth factor and uses thereof
WO2011028218A1 (en) 2009-09-02 2011-03-10 Alnylam Pharmaceuticals, Inc. Process for triphosphate oligonucleotide synthesis
ES2738980T3 (es) * 2008-09-15 2020-01-28 Childrens Medical Ct Corp Modulación de BCL11A para el tratamiento de hemoglobinopatías
EP3336188B1 (en) 2008-09-22 2020-05-06 Phio Pharmaceuticals Corp. Reduced size self-delivering rnai compounds
EP3587434A1 (en) 2008-09-23 2020-01-01 Alnylam Pharmaceuticals Inc. Chemical modifications of monomers and oligonucleotides with click components for conjugation with ligands
EP3109321B1 (en) 2008-09-25 2019-05-01 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of serum amyloid a gene
EP2344638A1 (en) * 2008-10-06 2011-07-20 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of an rna from west nile virus
WO2010042292A1 (en) * 2008-10-08 2010-04-15 Trustees Of Dartmouth College Method for selectively inhibiting the activity of acat1 in the treatment of alzheimer's disease
US8802646B2 (en) * 2008-10-08 2014-08-12 Trustees Of Dartmouth College Method for selectively inhibiting the activity of ACAT1 in the treatment of alzheimer's disease
US9388414B2 (en) 2008-10-08 2016-07-12 Trustees Of Dartmouth College Method for selectively inhibiting ACAT1 in the treatment of neurodegenerative diseases
US9149492B2 (en) 2008-10-08 2015-10-06 Trustees Of Dartmouth College Method for selectively inhibiting ACAT1 in the treatment of alzheimer's disease
US9388413B2 (en) 2008-10-08 2016-07-12 Trustees Of Dartmouth College Method for selectively inhibiting ACAT1 in the treatment of neurodegenerative diseases
EP2350043B9 (en) 2008-10-09 2014-08-20 TEKMIRA Pharmaceuticals Corporation Improved amino lipids and methods for the delivery of nucleic acids
US8343498B2 (en) 2008-10-12 2013-01-01 Massachusetts Institute Of Technology Adjuvant incorporation in immunonanotherapeutics
US8591905B2 (en) 2008-10-12 2013-11-26 The Brigham And Women's Hospital, Inc. Nicotine immunonanotherapeutics
US8277812B2 (en) 2008-10-12 2012-10-02 Massachusetts Institute Of Technology Immunonanotherapeutics that provide IgG humoral response without T-cell antigen
US8343497B2 (en) 2008-10-12 2013-01-01 The Brigham And Women's Hospital, Inc. Targeting of antigen presenting cells with immunonanotherapeutics
US8283460B2 (en) * 2008-10-15 2012-10-09 Somagenics, Inc. Short hairpin RNAs for inhibition of gene expression
US9458472B2 (en) * 2008-10-15 2016-10-04 Massachusetts Institute Of Technology Detection and destruction of cancer cells using programmed genetic vectors
SI2344639T1 (sl) 2008-10-20 2015-09-30 Alnylam Pharmaceuticals, Inc. Sestavki in postopki inhibicije izražanja transtiretina
US20110190380A1 (en) * 2008-10-23 2011-08-04 Elena Feinstein Methods for delivery of sirna to bone marrow cells and uses thereof
US20100168205A1 (en) * 2008-10-23 2010-07-01 Alnylam Pharmaceuticals, Inc. Methods and Compositions for Prevention or Treatment of RSV Infection Using Modified Duplex RNA Molecules
SG10201901089TA (en) 2008-11-10 2019-03-28 Arbutus Biopharma Corp Novel lipids and compositions for the delivery of therapeutics
WO2010056737A2 (en) * 2008-11-11 2010-05-20 Mirna Therapeutics, Inc. Methods and compositions involving mirnas in cancer stem cells
MX2011004891A (es) * 2008-11-13 2011-10-06 Modgene Llc Modificacion de la carga de beta amiloide en el tejido no cerebral.
WO2010059226A2 (en) 2008-11-19 2010-05-27 Rxi Pharmaceuticals Corporation Inhibition of map4k4 through rnai
JP2012509331A (ja) 2008-11-21 2012-04-19 アイシス ファーマシューティカルズ, インコーポレーテッド がんの治療のための併用療法
EP3335705A1 (en) 2008-11-24 2018-06-20 Northwestern University Polyvalent rna-nanoparticle compositions
EP2191834A1 (en) * 2008-11-26 2010-06-02 Centre National De La Recherche Scientifique (Cnrs) Compositions and methods for treating retrovirus infections
CN102239259A (zh) 2008-12-03 2011-11-09 玛瑞纳生物技术有限公司 UsiRNA复合物
JP5832293B2 (ja) 2008-12-04 2015-12-16 オプコ ファーマシューティカルズ、エルエルシー 血管新生促進vegfイソ型を選択的に抑制する組成物および方法
US20100291188A1 (en) * 2008-12-04 2010-11-18 Musc Foundation For Research Development Periostin Inhibitory Compositions for Myocardial Regeneration, Methods of Delivery, and Methods of Using Same
CN102245640B (zh) 2008-12-09 2014-12-31 霍夫曼-拉罗奇有限公司 抗-pd-l1抗体及它们用于增强t细胞功能的用途
NZ593618A (en) 2008-12-10 2013-02-22 Alnylam Pharmaceuticals Inc Gnaq targeted dsrna compositions and methods for inhibiting expression
US8664188B2 (en) * 2008-12-11 2014-03-04 Xiangxue Group (Hong Kong) Company Limited siRNA compositions and methods for potently inhibiting viral infection
EP2377934A4 (en) * 2008-12-12 2012-09-26 Kureha Corp PHARMACEUTICAL COMPOSITION FOR THE TREATMENT OF TUMOR AND ASTHMA
WO2010077894A2 (en) 2008-12-16 2010-07-08 Bristol-Myers Squibb Company Methods of inhibiting quiescent tumor proliferation
WO2010080452A2 (en) 2008-12-18 2010-07-15 Quark Pharmaceuticals, Inc. siRNA COMPOUNDS AND METHODS OF USE THEREOF
AU2009330859B2 (en) 2008-12-26 2013-06-20 Samyang Holdings Corporation Pharmaceutical composition containing an anionic drug, and a production method therefor
US9493774B2 (en) 2009-01-05 2016-11-15 Rxi Pharmaceuticals Corporation Inhibition of PCSK9 through RNAi
US20100233270A1 (en) 2009-01-08 2010-09-16 Northwestern University Delivery of Oligonucleotide-Functionalized Nanoparticles
US8980820B2 (en) * 2009-01-19 2015-03-17 The Research Foundation For The State University Of New York Fatty acid binding proteins as drug targets for endocannabinoids
AU2010206143A1 (en) * 2009-01-20 2011-08-25 Life Sciences Research Partners Vzw PHD2 inhibition for blood vessel normalization, and uses thereof
US9023820B2 (en) 2009-01-26 2015-05-05 Protiva Biotherapeutics, Inc. Compositions and methods for silencing apolipoprotein C-III expression
AU2010211133A1 (en) * 2009-02-03 2011-07-21 F. Hoffmann-La Roche Ag Compositions and methods for inhibiting expression of PTP1B genes
US9745574B2 (en) 2009-02-04 2017-08-29 Rxi Pharmaceuticals Corporation RNA duplexes with single stranded phosphorothioate nucleotide regions for additional functionality
SI2881402T1 (sl) 2009-02-12 2017-12-29 Cell Signaling Technology, Inc. Ekspresija mutantnega ros pri humanem raku jeter
CN102333869A (zh) * 2009-02-24 2012-01-25 里博克斯艾克斯有限公司 小干扰rna的改进设计
AU2010221419B2 (en) 2009-03-02 2015-10-01 Alnylam Pharmaceuticals, Inc. Nucleic acid chemical modifications
JP2012520684A (ja) * 2009-03-19 2012-09-10 メルク・シャープ・エンド・ドーム・コーポレイション 低分子干渉核酸(siNA)を用いたBTBandCNCHomology1(塩基性ロイシンジッパー転写因子1)(Bach1)遺伝子発現のRNA干渉媒介性阻害
US20100239632A1 (en) 2009-03-23 2010-09-23 Warsaw Orthopedic, Inc. Drug depots for treatment of pain and inflammation in sinus and nasal cavities or cardiac tissue
WO2010111198A1 (en) 2009-03-23 2010-09-30 Quark Pharmaceuticals, Inc. Compounds compositions and methods of treating cancer and fibrotic diseases
WO2010120874A2 (en) 2009-04-14 2010-10-21 Chimeros, Inc. Chimeric therapeutics, compositions, and methods for using same
WO2010124231A2 (en) * 2009-04-24 2010-10-28 The Board Of Regents Of The University Of Texas System Modulation of gene expression using oligomers that target gene regions downstream of 3' untranslated regions
US8367350B2 (en) 2009-04-29 2013-02-05 Morehouse School Of Medicine Compositions and methods for diagnosis, prognosis and management of malaria
US8933049B2 (en) * 2009-05-05 2015-01-13 Medical Diagnostic Laboratories, Llc Repressor on IFN-λ promoter and siRNA against ZEB1 and BLIMP-1 to increase IFN-λ gene activity
EP2427180B1 (en) 2009-05-05 2016-04-13 Beeologics Inc. Prevention and treatment of nosema disease in bees
WO2010129791A1 (en) 2009-05-06 2010-11-11 University Of Medicine And Dentistry Of New Jersey Rna targeting in alpha-synucleinopathies
CA2759838A1 (en) * 2009-05-15 2010-11-18 F. Hoffmann-La Roche Ag Compositions and methods for inhibiting expression of glucocorticoid receptor (gcr) genes
US20120114710A1 (en) * 2009-05-18 2012-05-10 Lynn Kirkpatrick Carbon nanotubes complexed with multiple bioactive agents and methods related thereto
EP2432499A2 (en) 2009-05-20 2012-03-28 Schering Corporation Modulation of pilr receptors to treat microbial infections
US20100304995A1 (en) * 2009-05-22 2010-12-02 Li Shen Arrays and Methods for Reverse Genetic Functional Analysis
CN102575252B (zh) 2009-06-01 2016-04-20 光环生物干扰疗法公司 用于多价rna干扰的多核苷酸、组合物及其使用方法
US20120083519A1 (en) * 2009-06-03 2012-04-05 Djillali Sahali Methods For Diagnosing And Treating A Renal Disease In An Individual
CA2764503A1 (en) 2009-06-05 2010-12-09 University Of Florida Research Foundation, Inc. Isolation and targeted suppression of lignin biosynthetic genes from sugarcane
US8637482B2 (en) 2009-06-08 2014-01-28 Quark Pharmaceuticals, Inc. Methods for treating chronic kidney disease
HUE056773T2 (hu) 2009-06-10 2022-03-28 Arbutus Biopharma Corp Továbbfejlesztett lipid készítmény
WO2010144058A1 (en) 2009-06-10 2010-12-16 Temasek Life Sciences Laboratory Limited Virus induced gene silencing (vigs) for functional analysis of genes in cotton.
US9051567B2 (en) 2009-06-15 2015-06-09 Tekmira Pharmaceuticals Corporation Methods for increasing efficacy of lipid formulated siRNA
US8273869B2 (en) 2009-06-15 2012-09-25 Alnylam Pharmaceuticals, Inc. Lipid formulated dsRNA targeting the PCSK9 gene
US20100324124A1 (en) * 2009-06-17 2010-12-23 Massachusetts Institute Of Technology Compositions and methods relating to DNA-based particles
US20100323018A1 (en) * 2009-06-17 2010-12-23 Massachusetts Institute Of Technology Branched DNA/RNA monomers and uses thereof
GB0910723D0 (en) 2009-06-22 2009-08-05 Sylentis Sau Novel drugs for inhibition of gene expression
US8569256B2 (en) 2009-07-01 2013-10-29 Protiva Biotherapeutics, Inc. Cationic lipids and methods for the delivery of therapeutic agents
WO2011000107A1 (en) 2009-07-01 2011-01-06 Protiva Biotherapeutics, Inc. Novel lipid formulations for delivery of therapeutic agents to solid tumors
US9018187B2 (en) 2009-07-01 2015-04-28 Protiva Biotherapeutics, Inc. Cationic lipids and methods for the delivery of therapeutic agents
US8871730B2 (en) 2009-07-13 2014-10-28 Somagenics Inc. Chemical modification of short small hairpin RNAs for inhibition of gene expression
WO2011011447A1 (en) 2009-07-20 2011-01-27 Protiva Biotherapeutics, Inc. Compositions and methods for silencing ebola virus gene expression
AU2009350151B2 (en) 2009-07-20 2015-07-16 Bristol-Myers Squibb Company Combination of anti-CTLA4 antibody with diverse therapeutic regimens for the synergistic treatment of proliferative diseases
WO2011020024A2 (en) 2009-08-13 2011-02-17 The Johns Hopkins University Methods of modulating immune function
AP2015008874A0 (en) 2009-08-14 2015-11-30 Alnylam Pharmaceuticals Inc Lipid formulated compositions and methods for inhibiting expression of a gene from the ebola virus
CN102481379A (zh) 2009-08-24 2012-05-30 菲吉尼克斯公司 靶向pax2用于治疗乳腺癌
ES2655079T3 (es) 2009-09-10 2018-02-16 Merck Sharp & Dohme Corp. Uso de antagonistas de IL-33 para tratar enfermedades fibróticas
EP2295543A1 (en) 2009-09-11 2011-03-16 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Method for the preparation of an influenza virus
WO2011032100A1 (en) 2009-09-11 2011-03-17 Government Of The U.S.A., As Represented By The Secretary, Department Of Health And Human Services Inhibitors of kshv vil6 and human il6
WO2011034798A1 (en) 2009-09-15 2011-03-24 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of eg5 and vegf genes
US8916693B2 (en) 2009-09-17 2014-12-23 Nektar Therapeutics Monoconjugated chitosans as delivery agents for small interfering nucleic acids
US9187746B2 (en) 2009-09-22 2015-11-17 Alnylam Pharmaceuticals, Inc. Dual targeting siRNA agents
US9222086B2 (en) * 2009-09-23 2015-12-29 Protiva Biotherapeutics, Inc. Compositions and methods for silencing genes expressed in cancer
US20150025122A1 (en) 2009-10-12 2015-01-22 Larry J. Smith Methods and Compositions for Modulating Gene Expression Using Oligonucleotide Based Drugs Administered in vivo or in vitro
US8962584B2 (en) 2009-10-14 2015-02-24 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Compositions for controlling Varroa mites in bees
CN102666879B (zh) 2009-10-30 2016-02-24 西北大学 模板化的纳米缀合物
US9101643B2 (en) 2009-11-03 2015-08-11 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of transthyretin (TTR)
US9799416B2 (en) * 2009-11-06 2017-10-24 Terrapower, Llc Methods and systems for migrating fuel assemblies in a nuclear fission reactor
CN102666856B (zh) 2009-11-08 2016-04-06 夸克制药公司 定向至RhoA靶基因的双链RNA化合物在制造治疗神经性疼痛的药物中的用途
US9260517B2 (en) 2009-11-17 2016-02-16 Musc Foundation For Research Development Human monoclonal antibodies to human nucleolin
JP2013511990A (ja) 2009-11-26 2013-04-11 クォーク ファーマシューティカルズ インコーポレーティッド 末端置換を含むsiRNA化合物
WO2011071860A2 (en) 2009-12-07 2011-06-16 Alnylam Pharmaceuticals, Inc. Compositions for nucleic acid delivery
CN106701758B (zh) * 2009-12-09 2020-02-07 日东电工株式会社 Hsp47表达的调节
WO2011072091A1 (en) 2009-12-09 2011-06-16 Quark Pharmaceuticals, Inc. Methods and compositions for treating diseases, disorders or injury of the cns
WO2011072240A1 (en) 2009-12-10 2011-06-16 Cedars-Sinai Medical Center Drug delivery of temozolomide for systemic based treatment of cancer
EP2336171A1 (en) 2009-12-11 2011-06-22 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Novel targets for the treatment of proliferative diseases
WO2011084357A1 (en) 2009-12-17 2011-07-14 Schering Corporation Modulation of pilr to treat immune disorders
AU2010330814B2 (en) 2009-12-18 2017-01-12 Acuitas Therapeutics Inc. Methods and compositions for delivery of nucleic acids
KR101605932B1 (ko) * 2009-12-18 2016-03-24 노파르티스 아게 Hsf1-관련 질환을 치료하기 위한 유기 조성물
SG181823A1 (en) 2009-12-23 2012-07-30 Max Planck Gesellschaft Influenza targets
SG10201606680QA (en) 2009-12-23 2016-10-28 Gradalis Inc Furin-knockdown and gm-csf-augmented (fang) cancer vaccine
US20130023578A1 (en) 2009-12-31 2013-01-24 Samyang Biopharmaceuticals Corporation siRNA for inhibition of c-Met expression and anticancer composition containing the same
TW201124159A (en) * 2010-01-07 2011-07-16 Univ Nat Cheng Kung Small interference RNA molecule and applications thereof
WO2011084193A1 (en) 2010-01-07 2011-07-14 Quark Pharmaceuticals, Inc. Oligonucleotide compounds comprising non-nucleotide overhangs
US9200277B2 (en) * 2010-01-11 2015-12-01 Curna, Inc. Treatment of sex hormone binding globulin (SHBG) related diseases by inhibition of natural antisense transcript to SHBG
WO2011088058A1 (en) * 2010-01-12 2011-07-21 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expressions of factor vii and pten genes
DE102010004957A1 (de) 2010-01-14 2011-07-21 Universitätsklinikum Jena, 07743 Biologisch wirksame Moleküle zur Beeinflussung von Virus-, Bakterien-, Parasiten-infizierten Zellen und/oder Tumorzellen und Verfahren zu deren Anwendung
US9198972B2 (en) 2010-01-28 2015-12-01 Alnylam Pharmaceuticals, Inc. Monomers and oligonucleotides comprising cycloaddition adduct(s)
WO2011094580A2 (en) 2010-01-28 2011-08-04 Alnylam Pharmaceuticals, Inc. Chelated copper for use in the preparation of conjugated oligonucleotides
US8722641B2 (en) 2010-01-29 2014-05-13 St. Jude Children's Research Hospital Oligonucleotides which inhibit p53 induction in response to cellular stress
CN102770767A (zh) 2010-02-10 2012-11-07 诺瓦提斯公司 用于肌肉生长的方法和组合物
AU2011227050B2 (en) * 2010-03-19 2016-12-08 University Of South Alabama Methods and compositions for the treatment of cancer
RU2615143C2 (ru) 2010-03-24 2017-04-04 Адвирна Самодоставляющие PHKi соединения уменьшенного размера
CN106074591B (zh) 2010-03-24 2020-01-14 菲奥医药公司 眼部症候中的rna干扰
IL265674B2 (en) 2010-03-24 2024-05-01 Phio Pharm Corp Rana disorder in cutaneous and fibrotic symptoms
US8455455B1 (en) 2010-03-31 2013-06-04 Protiva Biotherapeutics, Inc. Compositions and methods for silencing genes involved in hemorrhagic fever
WO2011123621A2 (en) 2010-04-01 2011-10-06 Alnylam Pharmaceuticals Inc. 2' and 5' modified monomers and oligonucleotides
WO2011133658A1 (en) 2010-04-22 2011-10-27 Boston Medical Center Corporation Compositions and methods for targeting and delivering therapeutics into cells
US20130260460A1 (en) 2010-04-22 2013-10-03 Isis Pharmaceuticals Inc Conformationally restricted dinucleotide monomers and oligonucleotides
US9725479B2 (en) 2010-04-22 2017-08-08 Ionis Pharmaceuticals, Inc. 5′-end derivatives
US10913767B2 (en) 2010-04-22 2021-02-09 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising acyclic and abasic nucleosides and analogs
PT2563920T (pt) 2010-04-29 2017-05-26 Ionis Pharmaceuticals Inc Modulação da expressão de transtirretina
WO2011137363A1 (en) 2010-04-30 2011-11-03 Allergan, Inc. Novel treatment for age related macular degeneration and ocular ischemic disease associated with complement activation by targeting 5-lipoxygenase
AU2011248184B2 (en) 2010-05-04 2015-12-17 Board Of Regents, The University Of Texas System Detection and treatment of fibrosis
US8563243B2 (en) * 2010-05-12 2013-10-22 University Of South Carolina Methods for affecting homology-directed DNA double stranded break repair
EP2575773A4 (en) 2010-05-26 2014-06-25 Selecta Biosciences Inc SYNTHETIC NANOTRÄGERKOMBINATIONSIMPFSTOFFE
EP2390327A1 (en) 2010-05-27 2011-11-30 Sylentis S.A. siRNA and their use in methods and compositions for the treatment and/or prevention of eye conditions
DE102010022937A1 (de) 2010-06-04 2011-12-08 Universitätsklinikum Jena Zellspezifisch aktivierbare biologisch wirksame Moleküle auf Grundlage von siRNA, Verfahren zu deren Aktivierung sowie Applikationskit zur Verabreichung
US20130236968A1 (en) 2010-06-21 2013-09-12 Alnylam Pharmaceuticals, Inc. Multifunctional copolymers for nucleic acid delivery
CN103097534B (zh) 2010-06-24 2017-07-28 夸克制药公司 针对rhoa的双链rna化合物及其用途
WO2012000104A1 (en) 2010-06-30 2012-01-05 Protiva Biotherapeutics, Inc. Non-liposomal systems for nucleic acid delivery
US20130323269A1 (en) 2010-07-30 2013-12-05 Muthiah Manoharan Methods and compositions for delivery of active agents
US20130202652A1 (en) 2010-07-30 2013-08-08 Alnylam Pharmaceuticals, Inc. Methods and compositions for delivery of active agents
US20120101108A1 (en) 2010-08-06 2012-04-26 Cell Signaling Technology, Inc. Anaplastic Lymphoma Kinase In Kidney Cancer
JP6106085B2 (ja) 2010-08-24 2017-03-29 サーナ・セラピューティクス・インコーポレイテッドSirna Therapeutics,Inc. 内部非核酸スペーサーを含む一本鎖RNAi剤
WO2012041959A1 (en) 2010-09-30 2012-04-05 University Of Zurich Treatment of b-cell lymphoma with microrna
US20140315973A1 (en) * 2010-10-07 2014-10-23 Agency For Science, Technology And Research Parp-1 inhibitors
WO2012051491A1 (en) 2010-10-14 2012-04-19 The United States Of America, As Represented By The Secretary National Institutes Of Health Compositions and methods for controlling neurotropic viral pathogenesis by micro-rna targeting
CN103328633B (zh) * 2010-10-22 2018-07-10 成均馆大学校产学协力团 诱导rna干扰的核酸分子及其用途
ES2663009T3 (es) 2010-10-29 2018-04-10 Sirna Therapeutics, Inc. Inhibición de la expresión génica mediada por interferencia por ARN utilizando ácidos nucleicos de interferencia cortos (ANic)
WO2012071436A1 (en) 2010-11-24 2012-05-31 Genentech, Inc. Method of treating autoimmune inflammatory disorders using il-23r loss-of-function mutants
WO2012078536A2 (en) 2010-12-06 2012-06-14 Quark Pharmaceuticals, Inc. Double stranded oligonucleotide compounds comprising positional modifications
US10202615B2 (en) 2010-12-10 2019-02-12 Vanderbilt University Mammalian genes involved in toxicity and infection
US9617542B2 (en) * 2010-12-14 2017-04-11 The United States of America, as representd by The Secretary of Agriculture Lepidopteran moth control using double-stranded RNA constructs
US9623041B2 (en) 2010-12-30 2017-04-18 Cedars-Sinai Medical Center Polymalic acid-based nanobiopolymer compositions
DE112012000439T5 (de) 2011-01-10 2014-04-30 The Regents Of The University Of Michigan Stammzellfaktor-Inhibitor
US20150018408A1 (en) 2013-07-10 2015-01-15 The Regents Of The University Of Michigan Therapeutic antibodies and uses thereof
EP3202760B1 (en) 2011-01-11 2019-08-21 Alnylam Pharmaceuticals, Inc. Pegylated lipids and their use for drug delivery
DE102011009470A1 (de) 2011-01-21 2012-08-09 Friedrich-Schiller-Universität Jena Biologisch wirksame Nukleotid-Moleküle zur gezielten Abtötung von Zellen, Verwendung derselben sowie Applikationskit
JP6177692B2 (ja) 2011-02-02 2017-08-09 エクスカリアード・ファーマシューティカルズ,インク 結合組織増殖因子(ctgf)をターゲティングするアンチセンス化合物を用いた、ケロイドまたは肥厚性瘢痕の治療法
US9222085B2 (en) 2011-02-03 2015-12-29 Mirna Therapeutics, Inc. Synthetic mimics of MIR-124
SG193280A1 (en) 2011-03-03 2013-10-30 Quark Pharmaceuticals Inc Oligonucleotide modulators of the toll-like receptor pathway
US9796979B2 (en) 2011-03-03 2017-10-24 Quark Pharmaceuticals Inc. Oligonucleotide modulators of the toll-like receptor pathway
WO2012125554A2 (en) * 2011-03-11 2012-09-20 Board Of Regents Of The University Of Nebraska Compositions and methods for the treatment of cancer
RU2013145890A (ru) 2011-03-15 2015-04-20 Юниверсити Оф Юта Рисерч Фаундейшн Способы диагностики и лечения сосудисто-ассоциированной макулопатии и ее симптомов
WO2012135696A2 (en) * 2011-04-01 2012-10-04 University Of South Alabama Methods and compositions for the diagnosis, classification, and treatment of cancer
JP2014511877A (ja) 2011-04-12 2014-05-19 ザ・ガバメント・オブ・ザ・ユナイテッド・ステイツ・オブ・アメリカ・アズ・リプリゼンテッド・バイ・ザ・セクレタリー・デパートメント・オブ・ヘルス・アンド・ヒューマン・サービシーズ ポロ様キナーゼ1ポロ−ボックスドメインのペプチド模倣リガンド及び使用方法
AU2012242642A1 (en) 2011-04-13 2013-05-02 Ionis Pharmaceuticals, Inc. Antisense modulation of PTP1B expression
US8716257B2 (en) * 2011-04-15 2014-05-06 Sutter West Bay Hospitals CMV gene products promote cancer stem cell growth
CA2833269C (en) 2011-04-15 2020-04-14 Molecular Transfer, Inc. Agents for improved delivery of nucleic acids to eukaryotic cells
KR20140104344A (ko) 2011-05-20 2014-08-28 더 유나이티드 스테이츠 오브 어메리카, 애즈 리프리젠티드 바이 더 시크리터리, 디파트먼트 오브 헬쓰 앤드 휴먼 서비시스 T 세포 매개성 질병의 병증을 개선하기 위한 tl1a-dr3의 상호작용의 차단 및 그것의 항체
EP3011974B1 (en) 2011-06-02 2018-08-08 University Of Louisville Research Foundation, Inc. Anti-nucleolin agent-conjugated nanoparticles
WO2012177921A2 (en) 2011-06-21 2012-12-27 Alnylam Pharmaceuticals, Inc Compositions and methods for inhibiting hepcidin antimicrobial peptide (hamp) or hamp-related gene expression
KR20230084331A (ko) 2011-06-21 2023-06-12 알닐람 파마슈티칼스 인코포레이티드 아포리포단백질 c-iii(apoc3) 유전자의 발현 억제를 위한 조성물 및 방법
SG10201913683WA (en) 2011-06-21 2020-03-30 Alnylam Pharmaceuticals Inc Angiopoietin-like 3 (angptl3) irna compositions and methods of use thereof
EP2723351B1 (en) 2011-06-21 2018-02-14 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibition of expression of protein c (proc) genes
US20140227293A1 (en) 2011-06-30 2014-08-14 Trustees Of Boston University Method for controlling tumor growth, angiogenesis and metastasis using immunoglobulin containing and proline rich receptor-1 (igpr-1)
WO2013001372A2 (en) 2011-06-30 2013-01-03 University Of Oslo Methods and compositions for inhibition of activation of regulatory t cells
LT2729173T (lt) 2011-07-06 2016-10-10 Sykehuset Sorlandet Hf Egfr taikinių terapija
WO2013006861A1 (en) 2011-07-07 2013-01-10 University Of Georgia Research Foundation, Inc. Sorghum grain shattering gene and uses thereof in altering seed dispersal
US8853181B2 (en) 2011-07-21 2014-10-07 Albert Einstein College Of Medicine Of Yeshiva University Fidgetin-like 2 as a target to enhance wound healing
US9120858B2 (en) 2011-07-22 2015-09-01 The Research Foundation Of State University Of New York Antibodies to the B12-transcobalamin receptor
DE102011118024A1 (de) 2011-08-01 2013-02-07 Technische Universität Dresden Inhibitor der Expression der Pro-Caspase 1
WO2013034653A1 (en) 2011-09-06 2013-03-14 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. The mirna-212/132 family as a therapeutic target
AU2012305714A1 (en) 2011-09-09 2014-03-27 Biomed Realty, L.P. Methods and compositions for controlling assembly of viral proteins
WO2013040251A2 (en) 2011-09-13 2013-03-21 Asurgen, Inc. Methods and compositions involving mir-135b for distinguishing pancreatic cancer from benign pancreatic disease
AU2012315965A1 (en) 2011-09-27 2014-04-03 Alnylam Pharmaceuticals, Inc. Di-aliphatic substituted PEGylated lipids
WO2013049389A1 (en) 2011-09-27 2013-04-04 Yale University Compositions and methods for transient expression of recombinant rna
PT3597644T (pt) 2011-10-18 2021-11-03 Dicerna Pharmaceuticals Inc Lípidos catiónicos de amina e suas utilizações
EP2776565A1 (en) 2011-11-08 2014-09-17 Quark Pharmaceuticals, Inc. Methods and compositions for treating diseases, disorders or injury of the nervous system
US9006199B2 (en) 2011-11-14 2015-04-14 Silenseed Ltd. Methods and compositions for treating prostate cancer
WO2013075035A1 (en) 2011-11-18 2013-05-23 Alnylam Pharmaceuticals Rnai agents, compositions and methods of use thereof for treating transthyretin (ttr) associated diseases
WO2013082529A1 (en) 2011-12-02 2013-06-06 Yale University Enzymatic synthesis of poly(amine-co-esters) and methods of use thereof for gene delivery
CA2858336A1 (en) 2012-01-01 2013-07-04 Qbi Enterprises Ltd. Endo180-targeted particles for selective delivery of therapeutic and diagnostic agents
WO2013103401A1 (en) * 2012-01-06 2013-07-11 University Of South Alabama Methods and compositions for the treatment of cancer
AU2013208720A1 (en) 2012-01-09 2014-07-24 Arrowhead Research Corporation RNAi agents to treat Beta-Catenin related diseases
RU2014125496A (ru) 2012-01-12 2016-02-27 Кварк Фармасьютикалс, Инк. Комбинированная терапия для лечения нарушений слуха и равновесия
WO2013112458A1 (en) 2012-01-24 2013-08-01 Beth Israel Deaconess Medical Center, Inc. Novel chrebp isoforms and methods using the same
EP2825209B1 (en) 2012-03-14 2018-08-29 University of Central Florida Research Foundation, Inc. Neurofibromatoses therapeutic agents and screening for same
CN110438125A (zh) 2012-03-15 2019-11-12 科纳公司 通过抑制脑源神经营养因子(bdnf)的天然反义转录物治疗bdnf相关疾病
HUE037856T2 (hu) 2012-04-18 2018-09-28 Cell Signaling Technology Inc EGFR és ROS1 rákban
EP3919620A1 (en) 2012-05-02 2021-12-08 Sirna Therapeutics, Inc. Short interfering nucleic acid (sina) compositions
US9980942B2 (en) 2012-05-02 2018-05-29 Children's Hospital Medical Center Rejuvenation of precursor cells
CN108148838A (zh) 2012-05-22 2018-06-12 奥利克斯医药有限公司 具有细胞内穿透能力的诱导rna干扰的核酸分子及用途
US9726661B2 (en) 2012-07-06 2017-08-08 Institut Gustave-Roussy Simultaneous detection of cannibalism and senescence as prognostic marker for cancer
WO2014018375A1 (en) 2012-07-23 2014-01-30 Xenon Pharmaceuticals Inc. Cyp8b1 and uses thereof in therapeutic and diagnostic methods
EP3441467A3 (en) 2012-08-31 2019-04-24 The General Hospital Corporation Biotin complexes for treatment and diagnosis of alzheimer's disease
SG11201501385UA (en) 2012-09-05 2015-03-30 Sylentis Sau Sirna and their use in methods and compositions for the treatment and/or prevention of eye conditions
GB201215857D0 (en) 2012-09-05 2012-10-24 Sylentis Sau siRNA and their use in methods and compositions for the treatment and/or prevention of eye conditions
CN104619844A (zh) 2012-09-12 2015-05-13 夸克制药公司 靶向p53的双链寡核苷酸分子及其使用方法
AU2013315524B2 (en) 2012-09-12 2019-01-31 Quark Pharmaceuticals, Inc. Double-stranded oligonucleotide molecules to p53 and methods of use thereof
SG11201501850VA (en) 2012-09-21 2015-04-29 Intensity Therapeutics Inc Method of treating cancer
WO2014055624A1 (en) * 2012-10-02 2014-04-10 The General Hospital Corporation D/B/A Massachusetts General Hospital Methods relating to dna-sensing pathway related conditions
WO2014055825A1 (en) 2012-10-04 2014-04-10 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services A formulation of mycobacterial components as an adjuvant for inducing th17 responses
WO2014068072A1 (en) 2012-10-31 2014-05-08 Institut Gustave-Roussy Identification, assessment and therapy of essential thrombocythemia with resistance to jak2 inhibitors
WO2014076137A1 (en) * 2012-11-13 2014-05-22 Lötvall Jan Delivery of therapeutic agent
DE102012022596B4 (de) 2012-11-15 2017-05-04 Friedrich-Schiller-Universität Jena Neue zellspezifisch wirksame Nukleotid-Moleküle und Applikationskit zu deren Anwendung
EP3660033B9 (en) 2012-11-15 2022-06-22 Apellis Pharmaceuticals, Inc. Long-acting compstatin analogs and related compositions and methods
SG10202110062SA (en) 2012-11-27 2021-11-29 Childrens Medical Center Targeting Bcl11a Distal Regulatory Elements for Fetal Hemoglobin Reinduction
WO2014093688A1 (en) 2012-12-12 2014-06-19 1Massachusetts Institute Of Technology Compositions and methods for functional nucleic acid delivery
BR112015013849A2 (pt) 2012-12-21 2017-07-11 Sykehuset Soerlandet Hf terapia direcionada a egfr de distúrbios neurológicos e dor
US9206423B2 (en) * 2012-12-30 2015-12-08 The Regents Of The University Of California Methods of modulating compliance of the trabecular meshwork
US10258682B2 (en) 2013-01-16 2019-04-16 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Attenuated chlamydia vaccine
DE102013003869B4 (de) 2013-02-27 2016-11-24 Friedrich-Schiller-Universität Jena Verfahren zur gezielten Abtötung von Zellen durch zur mRNA-Anbindung ausgerichtete Nukleotid-Moleküle sowie Nukleotid-Moleküle und Applikationskit für solche Verwendung
KR102205278B1 (ko) 2013-03-14 2021-01-22 다이서나 파마수이티컬, 인크. 음이온성 약제를 제형화하는 방법
RU2015144185A (ru) * 2013-03-15 2017-04-26 Дженентек, Инк. Лечение заболеваний, опосредованных тh2, путем ингибирования бромодоменов
WO2014152391A1 (en) 2013-03-15 2014-09-25 Apellis Pharmaceuticals, Inc. Cell-penetrating compstatin analogs and uses thereof
WO2014150751A2 (en) * 2013-03-15 2014-09-25 Novartis Ag Biomarkers associated with brm inhibition
EP3708184A1 (en) 2013-03-27 2020-09-16 The General Hospital Corporation Methods and agents for treating alzheimer s disease
AU2014265142A1 (en) 2013-05-17 2015-12-24 Medimmune, Llc Receptors for B7-H4
JP6802063B2 (ja) 2013-06-25 2020-12-16 エピアクシス セラピューティクス プロプライエタリー リミテッド 癌幹細胞を調節するための方法および組成物
TW201534578A (zh) 2013-07-08 2015-09-16 Daiichi Sankyo Co Ltd 新穎脂質
EP3030663B1 (en) 2013-07-19 2019-09-04 Monsanto Technology LLC Compositions and methods for controlling leptinotarsa
US10711106B2 (en) 2013-07-25 2020-07-14 The University Of Chicago High aspect ratio nanofibril materials
CN105452465B (zh) 2013-07-31 2019-06-21 奇比艾企业有限公司 鞘脂-聚烷基胺-寡核苷酸化合物
EP3027223A1 (en) 2013-07-31 2016-06-08 QBI Enterprises Ltd. Methods of use of sphingolipid polyalkylamine oligonucleotide compounds
EP3715457A3 (en) * 2013-08-28 2020-12-16 Ionis Pharmaceuticals, Inc. Modulation of prekallikrein (pkk) expression
RU2675824C2 (ru) 2013-09-11 2018-12-25 Игл Байолоджикс, Инк. Жидкие белковые составы, содержащие ионные жидкости
AU2014324092B2 (en) 2013-09-18 2020-02-06 Epiaxis Therapeutics Pty Ltd Stem cell modulation II
CN105792832B (zh) 2013-10-04 2021-03-23 诺华股份有限公司 用于治疗乙肝病毒的有机化合物
CA3188691A1 (en) 2013-10-04 2015-04-09 Novartis Ag 3'end caps for rnai agents for use in rna interference
EP2865756A1 (en) 2013-10-22 2015-04-29 Sylentis, S.A.U. siRNA and their use in methods and compositions for inhibiting the expression of the FLAP gene.
EP2865758A1 (en) 2013-10-22 2015-04-29 Sylentis, S.A.U. siRNA and their use in methods and compositions for inhibiting the expression of the ORAI1 gene
EP2865757A1 (en) 2013-10-22 2015-04-29 Sylentis, S.A.U. siRNA and their use in methods and compositions for inhibiting the expression of the PDK1 gene.
EP3068407A1 (en) 2013-11-11 2016-09-21 Sirna Therapeutics, Inc. Systemic delivery of myostatin short interfering nucleic acids (sina) conjugated to a lipophilic moiety
EP3071590A4 (en) 2013-11-21 2017-07-19 SeNA Research, Inc. Methods for structural determination of selenium derivatized nucleic acid complexes
JP6772062B2 (ja) 2013-12-02 2020-10-21 フィオ ファーマシューティカルズ コーポレーションPhio Pharmaceuticals Corp. 癌の免疫療法
US10150965B2 (en) 2013-12-06 2018-12-11 Dicerna Pharmaceuticals, Inc. Methods and compositions for the specific inhibition of transthyretin (TTR) by double-stranded RNA
CN104830906B (zh) 2014-02-12 2018-09-04 北京维通达生物技术有限公司 一种重编程获得功能性人肝脏实质细胞的方法
US10011837B2 (en) 2014-03-04 2018-07-03 Sylentis Sau SiRNAs and their use in methods and compositions for the treatment and/or prevention of eye conditions
ES2978312T3 (es) 2014-03-11 2024-09-10 Cellectis Método para generar linfocitos T compatibles para trasplante alogénico
US20170137808A1 (en) * 2014-03-20 2017-05-18 Oommen Varghese Improved small interfering ribonucleic acid molecules
JP6771387B2 (ja) 2014-03-25 2020-10-21 アークトゥラス・セラピューティクス・インコーポレイテッドArcturus Therapeutics,Inc. 遺伝子サイレンシング用トランスサイレチン対立遺伝子選択的unaオリゴマー
CA2946719C (en) 2014-03-25 2023-09-26 Arcturus Therapeutics, Inc. Una oligomers having reduced off-target effects in gene silencing
US9856475B2 (en) 2014-03-25 2018-01-02 Arcturus Therapeutics, Inc. Formulations for treating amyloidosis
WO2015153800A2 (en) 2014-04-01 2015-10-08 Isis Pharmaceuticals, Inc. Compositions for modulating sod-1 expression
BR112016022711A2 (pt) 2014-04-01 2017-10-31 Monsanto Technology Llc composições e métodos para controle de pragas de inseto
SG10201809290SA (en) 2014-04-25 2019-01-30 Childrens Medical Ct Corp Compositions and Methods to Treating Hemoglobinopathies
US11279934B2 (en) 2014-04-28 2022-03-22 Phio Pharmaceuticals Corp. Methods for treating cancer using nucleic acids targeting MDM2 or MYCN
US10294477B2 (en) 2014-05-01 2019-05-21 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating PKK expression
EP3137054B1 (en) 2014-05-02 2021-07-07 Research Institute at Nationwide Children's Hospital Compositions and methods for anti-lyst immunomodulation
JP6763780B2 (ja) 2014-05-12 2020-09-30 ザ・ジョンズ・ホプキンス・ユニバーシティー 合成脳浸透遺伝子ベクターの操作
WO2015175545A1 (en) 2014-05-12 2015-11-19 The Johns Hopkins University Highly stable biodegradable gene vector platforms for overcoming biological barriers
WO2015184105A1 (en) 2014-05-29 2015-12-03 Trustees Of Dartmouth College Method for selectively inhibiting acat1 in the treatment of neurodegenerative diseases
CA2953216C (en) 2014-06-04 2020-12-22 Exicure, Inc. Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications
CN104120127B (zh) * 2014-07-01 2016-09-21 清华大学 分离的寡核苷酸及其应用
RU2021123470A (ru) 2014-07-29 2021-09-06 Монсанто Текнолоджи Ллс Композиции и способы борьбы с насекомыми-вредителями
US20170348402A1 (en) 2014-07-30 2017-12-07 The Research Foundation For The State University Of New York System and method for delivering genetic material or protein to cells
US20200230251A1 (en) 2014-08-14 2020-07-23 Friedrich-Schiller-Universitaet Jena Peptide for use in the reduction of side effects in the form of immunostimulatory reactions/effects
WO2016029262A1 (en) 2014-08-25 2016-03-03 University Of Canberra Compositions for modulating cancer stem cells and uses therefor
ES2928500T3 (es) 2014-08-29 2022-11-18 Alnylam Pharmaceuticals Inc Patisirán para su uso en el tratamiento de amiloidosis mediada por transtiretina
CN107073294A (zh) 2014-09-05 2017-08-18 阿克赛医药公司 使用靶向tyr或mmp1的核酸治疗老化和皮肤病症的方法
KR102473092B1 (ko) 2014-09-15 2022-12-01 칠드런'즈 메디컬 센터 코포레이션 히스톤 h3-리신 트리메틸화를 제거함으로써 체세포 핵 이식(scnt) 효율을 증가시키는 방법 및 조성물
AU2015320748A1 (en) 2014-09-25 2017-04-20 Cold Spring Harbor Laboratory Treatment of Rett Syndrome
KR102497368B1 (ko) 2014-10-01 2023-02-10 이글 바이올로직스 인코포레이티드 점도-저하제를 함유하는 폴리삭카라이드 및 핵산 제형
US20170304459A1 (en) 2014-10-10 2017-10-26 Alnylam Pharmaceuticals, Inc. Methods and compositions for inhalation delivery of conjugated oligonucleotide
WO2016057898A1 (en) 2014-10-10 2016-04-14 Idera Pharmaceuticals, Inc. Treatment of cancer using tlr9 agonist with checkpoint inhibitors
JOP20200115A1 (ar) 2014-10-10 2017-06-16 Alnylam Pharmaceuticals Inc تركيبات وطرق لتثبيط التعبير الجيني عن hao1 (حمض أوكسيداز هيدروكسيلي 1 (أوكسيداز جليكولات))
WO2016060919A1 (en) * 2014-10-14 2016-04-21 The Board Of Regents Of The University Of Texas System Allele selective inhibition of mutant c9orf72 foci expression by duplex rnas targeting the expanded hexanucleotide repeat
US20180009903A1 (en) 2014-10-22 2018-01-11 Katholieke Universiteit Leuven Ku Leuven Research & Development Modulating adipose tissue and adipogenesis
JOP20200092A1 (ar) 2014-11-10 2017-06-16 Alnylam Pharmaceuticals Inc تركيبات iRNA لفيروس الكبد B (HBV) وطرق لاستخدامها
EP3218497A1 (en) 2014-11-12 2017-09-20 NMC Inc. Transgenic plants with engineered redox sensitive modulation of photosynthetic antenna complex pigments and methods for making the same
AU2015350120B2 (en) 2014-11-17 2021-05-27 Alnylam Pharmaceuticals, Inc. Apolipoprotein C3 (APOC3) iRNA compositions and methods of use thereof
WO2016081621A1 (en) 2014-11-18 2016-05-26 Yale University Formulations for targeted release of agents under low ph conditions and methods of use thereof
AU2015349680A1 (en) 2014-11-21 2017-06-08 Northwestern University The sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates
WO2016094374A1 (en) * 2014-12-09 2016-06-16 The Board Of Regents Of The University Of Texas System Compositions and mentods for treatment of friedreich's ataxia
US10792299B2 (en) 2014-12-26 2020-10-06 Nitto Denko Corporation Methods and compositions for treating malignant tumors associated with kras mutation
US20180002702A1 (en) * 2014-12-26 2018-01-04 Nitto Denko Corporation Methods and compositions for treating malignant tumors associated with kras mutation
US10264976B2 (en) 2014-12-26 2019-04-23 The University Of Akron Biocompatible flavonoid compounds for organelle and cell imaging
EP3256589B1 (en) 2015-01-22 2021-12-22 Monsanto Technology LLC Compositions and methods for controlling leptinotarsa
JP6830441B2 (ja) 2015-04-01 2021-02-17 アークトゥラス・セラピューティクス・インコーポレイテッドArcturus Therapeutics,Inc. 治療上のunaオリゴマーおよびその使用
CN115927335A (zh) 2015-04-13 2023-04-07 阿尔尼拉姆医药品有限公司 类血管生成素3(ANGPTL3)iRNA组合物及其使用方法
WO2016168197A1 (en) 2015-04-15 2016-10-20 Yale University Compositions for enhancing delivery of agents across the blood brain barrier and methods of use thereof
EP3291839A1 (en) 2015-05-05 2018-03-14 The University of Louisville Research Foundation, Inc. Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and mri and/or x-ray contrast agents
US11572543B2 (en) 2015-05-08 2023-02-07 The Children's Medical Center. Corporation Targeting BCL11A enhancer functional regions for fetal hemoglobin reinduction
AU2016269839B2 (en) 2015-06-03 2021-07-08 The University Of Queensland Mobilizing agents and uses therefor
EP3307890A1 (en) 2015-06-10 2018-04-18 Board of Regents, The University of Texas System Use of exosomes for the treatment of disease
JP6983066B2 (ja) 2015-06-30 2021-12-17 忠三 岸本 新規な肺疾患治療剤および/またはそのスクリーニング方法
EP3862005A1 (en) 2015-07-06 2021-08-11 Phio Pharmaceuticals Corp. Nucleic acid molecules targeting superoxide dismutase 1 (sod1)
WO2017007825A1 (en) 2015-07-06 2017-01-12 Rxi Pharmaceuticals Corporation Methods for treating neurological disorders using a synergistic small molecule and nucleic acids therapeutic approach
AU2016294347B2 (en) 2015-07-10 2022-07-28 Ionis Pharmaceuticals, Inc. Modulators of diacyglycerol acyltransferase 2 (DGAT2)
WO2017015671A1 (en) 2015-07-23 2017-01-26 Arcturus Therapeutics, Inc. Compositions for treating amyloidosis
SI3329002T1 (sl) 2015-07-31 2021-02-26 Alnylam Pharmaceuticals, Inc. Sestavki transtiretin (TTR) IRNA in sestavki in postopki njihove uporabe za zdravljenje ali preprečevanje s TTR povezanih bolezni
US10633653B2 (en) 2015-08-14 2020-04-28 University Of Massachusetts Bioactive conjugates for oligonucleotide delivery
MX2018002090A (es) 2015-08-24 2018-09-12 Halo Bio Rnai Therapeutics Inc Nanoparticulas de polinucleótido para modulación de expresión génica y sus usos.
MA44908A (fr) 2015-09-08 2018-07-18 Sylentis Sau Molécules d'arnsi et leur utilisation dans des procédés et des compositions pour inhiber l'expression du gène nrarp
GB201516685D0 (en) * 2015-09-21 2015-11-04 Varghese Oommen P And Oommen Oommen P Nucleic acid molecules with enhanced activity
CA2999916C (en) 2015-09-23 2021-07-20 Massachusetts Institute Of Technology Compositions and methods for modified dendrimer nanoparticle vaccine delivery
US10086063B2 (en) 2015-09-23 2018-10-02 Regents Of The University Of Minnesota Methods of making and using live attenuated viruses
US10383935B2 (en) 2015-09-23 2019-08-20 Regents Of The University Of Minnesota Methods of making and using live attenuated viruses
US10358497B2 (en) 2015-09-29 2019-07-23 Amgen Inc. Methods of treating cardiovascular disease with an ASGR inhibitor
JOP20210043A1 (ar) 2015-10-01 2017-06-16 Arrowhead Pharmaceuticals Inc تراكيب وأساليب لتثبيط تعبير جيني للـ lpa
EP3359555B1 (en) 2015-10-07 2023-12-20 Apellis Pharmaceuticals, Inc. Dosing regimens
US11021707B2 (en) 2015-10-19 2021-06-01 Phio Pharmaceuticals Corp. Reduced size self-delivering nucleic acid compounds targeting long non-coding RNA
WO2017085550A1 (en) 2015-11-16 2017-05-26 Olix Pharmaceuticals, Inc. Treatment of age-related macular degeneration using rna complexes that target myd88 or tlr3
WO2017095751A1 (en) 2015-12-02 2017-06-08 Partikula Llc Compositions and methods for modulating cancer cell metabolism
EP3386544B1 (en) 2015-12-10 2020-11-25 Fibrogen, Inc. Methods for treatment of motor neuron diseases
CN108366964B (zh) 2015-12-18 2022-04-08 三养控股公司 制备含阴离子药物的聚合物胶束的方法
BR102017001164A2 (pt) 2016-01-26 2019-03-06 Embrapa - Empresa Brasileira De Pesquisa Agropecuária Composições de rna de fita dupla para controle de diaphorina citri e métodos de uso.
JP2019503394A (ja) 2016-01-31 2019-02-07 ユニバーシティ・オブ・マサチューセッツUniversity Of Massachusetts 分岐オリゴヌクレオチド
US10358648B2 (en) 2016-02-02 2019-07-23 Olix Pharmaceuticals, Inc. Treatment of atopic dermatitis and asthma using RNA complexes that target IL4Rα, TRPA1, or F2RL1
US10519449B2 (en) 2016-02-02 2019-12-31 Olix Pharmaceuticals, Inc. Treatment of angiogenesis-associated diseases using RNA complexes that target ANGPT2 and PDGFB
US20170360815A1 (en) 2016-02-25 2017-12-21 Applied Biological Laboratories, Inc. Compositions and methods for protecting against airborne pathogens and irritants
CA3014764A1 (en) 2016-02-25 2017-08-31 Applied Biological Laboratories, Inc. Compositions and methods for protecting against airborne pathogens and irritants
WO2017147594A1 (en) 2016-02-26 2017-08-31 Yale University COMPOSITIONS AND METHODS OF USING piRNAS IN CANCER DIAGNOSTICS AND THERAPEUTICS
US20210189062A1 (en) 2016-03-01 2021-06-24 Alexion Pharmaceuticals, Inc. Biodegradable activated polymers for therapeutic delivery
WO2017152073A1 (en) 2016-03-04 2017-09-08 University Of Louisville Research Foundation, Inc. Methods and compositions for ex vivo expansion of very small embryonic-like stem cells (vsels)
EP3426261A4 (en) 2016-03-07 2020-03-25 Arrowhead Pharmaceuticals, Inc. TARGETED LIGANDS FOR THERAPEUTIC CONNECTIONS
MX2018011204A (es) 2016-03-15 2019-03-07 Mersana Therapeutics Inc Conjugados de anticuerpo-farmaco dirigidos a napi2b y sus metodos de uso.
MA45469A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques de bêta-caténine et leurs utilisations
MA45328A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Compositions acide nucléique-polypeptide et utilisations de celles-ci
MA45470A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques kras et leurs utilisations
MA45349A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques egfr et leurs utilisations
US20190117799A1 (en) 2016-04-01 2019-04-25 The Brigham And Women's Hospital, Inc. Stimuli-responsive nanoparticles for biomedical applications
CN108602849B (zh) 2016-04-06 2022-10-21 俄亥俄州国家创新基金会 用于通过rna纳米技术将治疗剂特异性递送至细胞的rna配体展示外来体
JP7049262B2 (ja) 2016-04-11 2022-04-06 オリックス ファーマシューティカルズ,インコーポレーテッド 結合組織成長因子を標的とするrna複合体を用いた特発性肺胞線維症の治療
BR112018071186A8 (pt) 2016-04-14 2023-03-28 Benitec Biopharma Ltd Rna, pluralidade de rnas, construto de interferência por rna dirigida por dna, composição, método para inibir a expressão de uma proteína, método para tratar distrofia muscular oculofaríngea e kit
US11410746B2 (en) 2016-04-27 2022-08-09 Massachusetts Institute Of Technology Stable nanoscale nucleic acid assemblies and methods thereof
WO2017197128A1 (en) 2016-05-11 2017-11-16 Yale University Poly(amine-co-ester) nanoparticles and methods of use thereof
KR101916652B1 (ko) 2016-06-29 2018-11-08 올릭스 주식회사 작은 간섭 rna의 rna 간섭효과 증진용 화합물 및 이의 용도
EP3478321A4 (en) 2016-06-30 2020-04-22 Oncorus, Inc. PSEUDOTYPIZED ONCOLYTIC VIRAL ADMINISTRATION OF THERAPEUTIC POLYPEPTIDES
RU2627179C1 (ru) * 2016-07-28 2017-08-03 федеральное государственное бюджетное учреждение "Федеральный научно-исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи" Министерства здравоохранения Российской Федерации ТЕСТ-СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ РНК ИНТЕРФЕРОНА λ, ИНТЕРЛЕЙКИНА IL23 И ПРОТИВОВИРУСНОГО БЕЛКА MxA
EP3519582A1 (en) 2016-07-29 2019-08-07 Danmarks Tekniske Universitet Methods for decoupling cell growth from production of biochemicals and recombinant polypeptides
EP3496736A4 (en) 2016-08-03 2020-05-13 H. Lee Moffitt Cancer Center And Research Institute, Inc. THERAPEUTICS AGAINST TLR9
US11364304B2 (en) 2016-08-25 2022-06-21 Northwestern University Crosslinked micellar spherical nucleic acids
CN116832169A (zh) 2016-09-02 2023-10-03 箭头药业股份有限公司 靶向配体
CA3033756A1 (en) 2016-09-02 2018-03-08 Dicerna Pharmaceuticals, Inc. 4'-phosphate analogs and oligonucleotides comprising the same
EP3516062A1 (en) 2016-09-21 2019-07-31 Alnylam Pharmaceuticals, Inc. Myostatin irna compositions and methods of use thereof
JP7129702B2 (ja) * 2016-09-29 2022-09-02 国立大学法人 東京医科歯科大学 オーバーハングを有する二本鎖核酸複合体
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
US11135307B2 (en) 2016-11-23 2021-10-05 Mersana Therapeutics, Inc. Peptide-containing linkers for antibody-drug conjugates
EP3551641A4 (en) 2016-12-08 2021-01-13 University of Utah Research Foundation STAUFEN1 ACTIVE SUBSTANCES AND RELATED PROCEDURES
US20200085758A1 (en) 2016-12-16 2020-03-19 The Brigham And Women's Hospital, Inc. Co-delivery of nucleic acids for simultaneous suppression and expression of target genes
AU2018208505B2 (en) 2017-01-10 2024-03-07 Arrowhead Pharmaceuticals, Inc. Alpha-1 antitrypsin (AAT) RNAi agents, compositions including AAT RNAi agents, and methods of use
JP7424728B2 (ja) 2017-02-10 2024-01-30 オリック パルマセゥティカルズ インコーポレイテッド Rna干渉のための長鎖の二本鎖rna
US11613754B2 (en) * 2017-02-20 2023-03-28 Northwestern University Toxic RNAi active seed sequences for killing cancer cells
DE102017103383A1 (de) 2017-02-20 2018-08-23 aReNA-Bio GbR (vertretungsberechtigter Gesellschafter: Dr. Heribert Bohlen, 50733 Köln) System und Verfahren zur Zelltyp-spezifischen Translation von RNA-Molekülen in Eukaryoten
WO2018160538A1 (en) 2017-02-28 2018-09-07 Mersana Therapeutics, Inc. Combination therapies of her2-targeted antibody-drug conjugates
US11261441B2 (en) 2017-03-29 2022-03-01 Bluebird Bio, Inc. Vectors and compositions for treating hemoglobinopathies
CA3059304A1 (en) 2017-04-07 2018-10-11 Apellis Pharmaceuticals, Inc. Dosing regimens and related compositions and methods
EP3610018B1 (en) 2017-04-14 2023-06-07 Arizona Board of Regents on Behalf of the University of Arizona Compositions and methods for treating pulmonary fibrosis
US11324820B2 (en) 2017-04-18 2022-05-10 Alnylam Pharmaceuticals, Inc. Methods for the treatment of subjects having a hepatitis b virus (HBV) infection
US11433131B2 (en) 2017-05-11 2022-09-06 Northwestern University Adoptive cell therapy using spherical nucleic acids (SNAs)
WO2018218135A1 (en) 2017-05-25 2018-11-29 The Children's Medical Center Corporation Bcl11a guide delivery
WO2018236995A2 (en) * 2017-06-20 2018-12-27 Dana-Farber Cancer Institute, Inc. METHODS FOR MODULATING REGULATORY T LYMPHOCYTES, REGULATORY B LYMPHOCYTES AND IMMUNE RESPONSES USING AVRIL-TACI INTERACTION MODULATORS
EP3642341A4 (en) * 2017-06-23 2021-06-16 University Of Massachusetts TWO-DAY SELF-RELEASING SIRNA AND RELATED PROCEDURES
US10590416B2 (en) 2017-07-06 2020-03-17 Arrowhead Pharmaceuticals, Inc. RNAi agents for inhibiting expression of alpha-ENaC and methods of use
AU2018301829B2 (en) 2017-07-13 2024-08-01 Alnylam Pharmaceuticals, Inc. Methods for inhibition of HAO1 (hydroxyacid oxidase 1 (glycolate oxidase) gene expression
US11110114B2 (en) 2017-07-17 2021-09-07 Oxford University Innovation Limited Dinucleotides
US11104700B2 (en) 2017-07-17 2021-08-31 Oxford University Innovation Limited Oligonucleotides
JOP20200054A1 (ar) 2017-09-11 2020-03-10 Arrowhead Pharmaceuticals Inc عوامل RNAi وتركيبات لتثبيط تعبير صَميمُ البروتينِ الشَّحْمِيّ C-III (APOC3)
WO2019060442A1 (en) 2017-09-19 2019-03-28 Alnylam Pharmaceuticals, Inc. COMPOSITIONS AND METHODS FOR TREATMENT OF TRANSTHYRETIN MEDIATED AMYLOSIS (TTR)
WO2019068326A1 (en) 2017-10-05 2019-04-11 Université D'aix-Marseille INHIBITORS OF LSD1 FOR THE TREATMENT AND PREVENTION OF CARDIOMYOPATHIES
EP4197544A1 (en) 2017-10-20 2023-06-21 Dicerna Pharmaceuticals, Inc. Methods for treating hepatitis b infection
EP3713644B1 (en) 2017-11-20 2024-08-07 University of Georgia Research Foundation, Inc. Compositions and methods for modulating hif-2a to improve muscle generation and repair
EP3717021A1 (en) 2017-11-27 2020-10-07 Mersana Therapeutics, Inc. Pyrrolobenzodiazepine antibody conjugates
EP4328306A2 (en) * 2017-12-01 2024-02-28 The Texas A&M University System Angelman syndrome antisense treatment
MX2020005860A (es) 2017-12-06 2020-09-09 Avidity Biosciences Inc Composiciones y metodos de tratamiento de atrofia muscular y distrofia miotonica.
EP3728281A1 (en) 2017-12-21 2020-10-28 Alnylam Pharmaceuticals Inc. Chirally-enriched double-stranded rna agents
EP3727463A1 (en) 2017-12-21 2020-10-28 Mersana Therapeutics, Inc. Pyrrolobenzodiazepine antibody conjugates
US10960086B2 (en) 2017-12-28 2021-03-30 Augusta University Research Institute, Inc. Aptamer compositions and methods of use thereof
WO2019133847A1 (en) 2017-12-29 2019-07-04 Oncorus, Inc. Oncolytic viral delivery of therapeutic polypeptides
KR20200106513A (ko) 2018-01-05 2020-09-14 다이서나 파마수이티컬, 인크. 면역요법을 강화시키기 위하여 베타-카테닌 및 ido 발현의 감소
WO2019143621A1 (en) 2018-01-16 2019-07-25 Dicerna Pharmaceuticals, Inc. Compositions and methods for inhibiting aldh2 expression
KR20200108315A (ko) 2018-02-09 2020-09-17 제넨테크, 인크. Tmem106b의 발현을 조절하기 위한 올리고뉴클레오티드
EP3790991A1 (en) 2018-05-07 2021-03-17 Roche Innovation Center Copenhagen A/S Massively parallel discovery methods for oligonucleotide therapeutics
EP3791180A1 (en) 2018-05-10 2021-03-17 The University Of Manchester Methods for assessing macular degeneration
JP7512207B2 (ja) 2018-05-24 2024-07-08 サーナオミクス インコーポレイテッド 核酸治療薬のための調節可能な共カップリングポリペプチドナノ粒子送達系の組成物および方法
US11946046B2 (en) * 2018-06-14 2024-04-02 University Of Utah Research Foundation Staufen1 regulating agents and associated methods
BR112021001613A2 (pt) 2018-08-13 2021-05-04 Alnylam Pharmaceuticals, Inc. agentes de ácido ribonucleico de fita dupla, célula, composições farmacêuticas, métodos de inibição da expressão gênica, de inibição da replicação e de tratar um sujeito, métodos para reduzir o nível de um antígeno e para reduzir a carga viral e uso de um agente de dsrna
WO2020051231A1 (en) 2018-09-04 2020-03-12 H. Lee Moffitt Cancer Center & Research Institute Inc. Use of delta-tocotrienol for treating cancer
US20210317479A1 (en) 2018-09-06 2021-10-14 The Broad Institute, Inc. Nucleic acid assemblies for use in targeted delivery
JP2022513400A (ja) 2018-10-29 2022-02-07 メルサナ セラピューティクス インコーポレイテッド ペプチド含有リンカーを有するシステイン操作抗体-薬物コンジュゲート
BR112021015651A2 (pt) 2019-02-12 2021-10-05 Dicerna Pharmaceuticals, Inc. Métodos e composições para inibir a expressão de cyp27a1
JP2022527108A (ja) 2019-03-29 2022-05-30 ディセルナ ファーマシューティカルズ インコーポレイテッド Kras関連疾患または障害の治療のための組成物及び方法
EP3947683A1 (en) 2019-04-04 2022-02-09 Dicerna Pharmaceuticals, Inc. Compositions and methods for inhibiting gene expression in the central nervous system
US11814464B2 (en) 2019-04-29 2023-11-14 Yale University Poly(amine-co-ester) polymers and polyplexes with modified end groups and methods of use thereof
CN113795581A (zh) 2019-05-03 2021-12-14 迪克纳制药公司 具有缩短的有义链的双链核酸抑制剂分子
US20200369759A1 (en) 2019-05-23 2020-11-26 Fibrogen, Inc. Methods of treatment of muscular dystrophies
KR102658962B1 (ko) 2019-06-26 2024-04-23 주식회사 바이오오케스트라 미셀 나노입자 및 이의 용도
AU2020329155A1 (en) 2019-08-09 2022-03-10 University Of Massachusetts Chemically modified oligonucleotides targeting SNPs
JP2022546699A (ja) 2019-08-30 2022-11-07 イェール ユニバーシティー 核酸を細胞に送達するための組成物および方法
EP4029520A4 (en) 2019-09-10 2024-05-29 Daiichi Sankyo Company, Limited GALNAC-OLIGONUCLEOTIDE CONJUGATE FOR TARGETED DELIVERY TO THE LIVER AND METHOD FOR PRODUCING THE SAME
EP4038191A1 (en) 2019-10-02 2022-08-10 Dicerna Pharmaceuticals, Inc. Chemical modifications of small interfering rna with minimal fluorine content
US11017851B1 (en) 2019-11-26 2021-05-25 Cypress Semiconductor Corporation Silicon-oxide-nitride-oxide-silicon based multi level non-volatile memory device and methods of operation thereof
EP4081217A1 (en) 2019-12-24 2022-11-02 F. Hoffmann-La Roche AG Pharmaceutical combination of antiviral agents targeting hbv and/or an immune modulator for treatment of hbv
TW202137987A (zh) 2019-12-24 2021-10-16 瑞士商赫孚孟拉羅股份公司 用於治療hbv之靶向hbv的治療性寡核苷酸及tlr7促效劑之醫藥組合
MX2022008772A (es) 2020-01-14 2022-10-07 Synthekine Inc Ortologos de il2 y metodos de uso.
US20210222128A1 (en) 2020-01-22 2021-07-22 Massachusetts Institute Of Technology Inducible tissue constructs and uses thereof
US11642407B2 (en) 2020-02-28 2023-05-09 Massachusetts Institute Of Technology Identification of variable influenza residues and uses thereof
CN116096889A (zh) 2020-03-18 2023-05-09 迪克纳制药公司 用于抑制angptl3表达的组合物和方法
JP2023537798A (ja) 2020-03-19 2023-09-06 アビディティー バイオサイエンシーズ,インク. 顔面肩甲上腕型筋ジストロフィーを処置するための組成物および方法
US11446387B2 (en) 2020-03-27 2022-09-20 Avidity Biosciences, Inc. Compositions and methods of treating muscle dystrophy
CN115997008A (zh) 2020-04-22 2023-04-21 艾欧凡斯生物治疗公司 协调用于患者特异性免疫疗法的细胞的制造的系统和方法
WO2021255262A1 (en) 2020-06-19 2021-12-23 Sylentis Sau siRNA AND COMPOSITIONS FOR PROPHYLACTIC AND THERAPEUTIC TREATMENT OF VIRUS DISEASES
WO2021257262A1 (en) 2020-06-19 2021-12-23 Yale University Poly(amine-co-ester) polymers with modified end groups and enhanced pulmonary delivery
US20220031633A1 (en) 2020-07-28 2022-02-03 Yale University Poly(amine-co-ester) polymeric particles for selective pulmonary delivery
TW202221120A (zh) 2020-08-04 2022-06-01 美商黛瑟納製藥公司 用於治療代謝症候群之組成物及方法
AU2021321430A1 (en) 2020-08-04 2023-03-02 Dicerna Pharmaceuticals, Inc. Compositions and methods for inhibiting PLP1 expression
WO2022031433A1 (en) 2020-08-04 2022-02-10 Dicerna Pharmaceuticals, Inc. Systemic delivery of oligonucleotides
CA3190794A1 (en) 2020-08-05 2022-02-10 Soren Ottosen Oligonucleotide treatment of hepatitis b patients
KR20230043912A (ko) 2020-08-05 2023-03-31 다이서나 파마수이티컬, 인크. Lpa 발현을 저해하기 위한 조성물 및 방법
AU2021331785A1 (en) 2020-08-31 2023-03-30 Gennao Bio, Inc. Compositions and methods for delivery of nucleic acids to cells
EP3964204A1 (en) 2020-09-08 2022-03-09 Université d'Aix-Marseille Lsd1 inhibitors for use in the treatment and prevention of fibrosis of tissues
EP4214515A1 (en) 2020-09-16 2023-07-26 Complement Therapeutics Limited Complementome assay
EP4251170A1 (en) 2020-11-25 2023-10-04 Akagera Medicines, Inc. Lipid nanoparticles for delivery of nucleic acids, and related methods of use
CN117295753A (zh) 2020-12-04 2023-12-26 基那奥生物公司 用于将核酸递送到细胞的组合物和方法
EP4015634A1 (en) 2020-12-15 2022-06-22 Sylentis, S.A.U. Sirna and compositions for prophylactic and therapeutic treatment of virus diseases
IL305414A (en) 2021-03-04 2023-10-01 Alnylam Pharmaceuticals Inc Angiopoietin-like 3 (ANGPTL3) IRNA compositions and methods of using them
WO2022211740A1 (en) 2021-03-31 2022-10-06 Carmine Therapeutics Pte. Ltd. Extracellular vesicles loaded with at least two different nucleic acids
WO2022218941A2 (en) 2021-04-12 2022-10-20 Boehringer Ingelheim International Gmbh Compositions and methods for inhibiting ketohexokinase (khk)
MX2023012216A (es) 2021-04-14 2023-10-26 Dicerna Pharmaceuticals Inc Composiciones y metodos para modular la expresion de pnpla3.
WO2022223515A2 (en) 2021-04-19 2022-10-27 Novo Nordisk A/S Compositions and methods for inhibiting nuclear receptor subfamily 1 group h member 3 (nr1h3) expression
WO2022248665A1 (en) 2021-05-28 2022-12-01 Novo Nordisk A/S Compositions and methods for inhibiting mitochondria amidoxime reducing component 1 (marc1) expression
EP4347828A1 (en) 2021-05-29 2024-04-10 1Globe Health Institute LLC Short duplex dna as a novel gene silencing technology and use thereof
CN117858946A (zh) 2021-05-29 2024-04-09 强新科技国际研究院 作为新型基因沉默技术的非对称短双链体dna及其应用
CN117677699A (zh) 2021-06-23 2024-03-08 马萨诸塞大学 用于治疗先兆子痫和其他血管生成病症的优化抗flt1寡核苷酸化合物
KR20240042004A (ko) 2021-08-03 2024-04-01 알닐람 파마슈티칼스 인코포레이티드 트랜스티레틴(TTR) iRNA 조성물 및 이의 사용 방법
WO2023021046A1 (en) 2021-08-16 2023-02-23 Vib Vzw Oligonucleotides for modulating synaptogyrin-3 expression
US20230107967A1 (en) 2021-08-25 2023-04-06 Dicerna Pharmaceuticals, Inc. Compositions and methods for inhibiting alpha-1 antitrypsin expression
CN118043076A (zh) 2021-09-21 2024-05-14 约翰霍普金斯大学 用于细胞内递送的小分子生物制剂的树枝状大分子缀合物
MX2024005399A (es) 2021-11-11 2024-05-23 Hoffmann La Roche Combinaciones farmaceuticas para el tratamiento de hbv.
US20240043846A1 (en) 2021-11-19 2024-02-08 Kist (Korea Institute Of Science And Technology) Therapeutic Compounds for Red Blood Cell-Mediated Delivery of an Active Pharmaceutical Ingredient to a Target Cell
CN118355120A (zh) 2021-12-01 2024-07-16 迪克纳制药公司 用于调节apoc3表达的组合物和方法
WO2023118546A2 (en) 2021-12-23 2023-06-29 Boehringer Ingelheim International Gmbh METHODS AND MOLECULES FOR RNA INTERFERENCE (RNAi)
WO2023159189A1 (en) 2022-02-18 2023-08-24 Yale University Branched poly(amine-co-ester) polymers for more efficient nucleic expression
GB202203627D0 (en) 2022-03-16 2022-04-27 Univ Manchester Agents for treating complement-related disorders
WO2023192872A1 (en) 2022-03-28 2023-10-05 Massachusetts Institute Of Technology Rna scaffolded wireframe origami and methods thereof
GB202204884D0 (en) 2022-04-04 2022-05-18 Fondo Ricerca Medica S R I Sirna targeting kcna1
WO2023201369A1 (en) 2022-04-15 2023-10-19 Iovance Biotherapeutics, Inc. Til expansion processes using specific cytokine combinations and/or akti treatment
US20230374522A1 (en) 2022-04-15 2023-11-23 Dicerna Pharmaceuticals, Inc. Compositions and methods for modulating scap activity
TW202400792A (zh) 2022-05-12 2024-01-01 美商戴瑟納製藥股份有限公司 用於抑制mapt表現之組合物及方法
US20230416743A1 (en) 2022-05-13 2023-12-28 Dicerna Pharmaceuticals, Inc. Compositions and methods for inhibiting snca expression
WO2023230587A2 (en) 2022-05-25 2023-11-30 Akagera Medicines, Inc. Lipid nanoparticles for delivery of nucleic acids and methods of use thereof
TW202400193A (zh) 2022-06-24 2024-01-01 丹麥商諾佛 儂迪克股份有限公司 抑制跨膜絲胺酸蛋白酶6(tmprss6)表現的組成物及方法
WO2024040041A1 (en) 2022-08-15 2024-02-22 Dicerna Pharmaceuticals, Inc. Regulation of activity of rnai molecules
WO2024081736A2 (en) 2022-10-11 2024-04-18 Yale University Compositions and methods of using cell-penetrating antibodies
WO2024107993A1 (en) 2022-11-16 2024-05-23 Dicerna Pharmaceuticals, Inc. Stat3 targeting oligonucleotides and uses thereof
WO2024108217A1 (en) 2022-11-18 2024-05-23 Genkardia Inc. Methods and compositions for preventing, treating, or reversing cardiac diastolic dysfunction
WO2024112571A2 (en) 2022-11-21 2024-05-30 Iovance Biotherapeutics, Inc. Two-dimensional processes for the expansion of tumor infiltrating lymphocytes and therapies therefrom
GB202219829D0 (en) 2022-12-29 2023-02-15 Ivy Farm Tech Limited Genetically manipulated cells
WO2024151877A2 (en) 2023-01-11 2024-07-18 Engage Biologics Inc. Non-viral expression systems and methods of use thereof
WO2024175588A1 (en) 2023-02-21 2024-08-29 Vib Vzw Oligonucleotides for modulating synaptogyrin-3 expression
WO2024175586A2 (en) 2023-02-21 2024-08-29 Vib Vzw Inhibitors of synaptogyrin-3 expression
WO2024206405A2 (en) 2023-03-28 2024-10-03 Kist (Korea Institute Of Science And Technology) Therapeutic compounds for inhibiting and reducing the expression of cell surface proteins

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2003006A (en) * 1933-04-11 1935-05-28 Michelson Barnett Samuel Water tank cover
US4469863A (en) * 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US5208149A (en) * 1983-10-20 1993-05-04 The Research Foundation Of State University Of New York Nucleic acid constructs containing stable stem and loop structures
GB8704365D0 (en) * 1987-02-25 1987-04-01 Exxon Chemical Patents Inc Zeolite l preparation
US5712257A (en) * 1987-08-12 1998-01-27 Hem Research, Inc. Topically active compositions of mismatched dsRNAs
IE66830B1 (en) 1987-08-12 1996-02-07 Hem Res Inc Topically active compositions of double-stranded RNAs
US5703055A (en) * 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
ATE269870T1 (de) * 1989-10-24 2004-07-15 Isis Pharmaceuticals Inc 2'-modifizierte oligonukleotide
US5457189A (en) * 1989-12-04 1995-10-10 Isis Pharmaceuticals Antisense oligonucleotide inhibition of papillomavirus
CA2073500C (en) 1990-01-11 2008-03-25 Phillip Dan Cook Compositions and methods for detecting and modulating rna activity and gene expression
US5670633A (en) * 1990-01-11 1997-09-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5514577A (en) * 1990-02-26 1996-05-07 Isis Pharmaceuticals, Inc. Oligonucleotide therapies for modulating the effects of herpes viruses
WO1992007065A1 (en) * 1990-10-12 1992-04-30 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Modified ribozymes
FR2675803B1 (fr) 1991-04-25 1996-09-06 Genset Sa Oligonucleotides fermes, antisens et sens et leurs applications.
WO1994008003A1 (en) * 1991-06-14 1994-04-14 Isis Pharmaceuticals, Inc. ANTISENSE OLIGONUCLEOTIDE INHIBITION OF THE ras GENE
FR2685346B1 (fr) * 1991-12-18 1994-02-11 Cis Bio International Procede de preparation d'arn double-brin, et ses applications.
DE69331543T2 (de) 1992-03-05 2002-09-26 Isis Pharmaceutical, Inc. Kovalent vernetzte oligonukleotide
US5792751A (en) * 1992-04-13 1998-08-11 Baylor College Of Medicine Tranformation of cells associated with fluid spaces
US20030206887A1 (en) * 1992-05-14 2003-11-06 David Morrissey RNA interference mediated inhibition of hepatitis B virus (HBV) using short interfering nucleic acid (siNA)
US5693535A (en) * 1992-05-14 1997-12-02 Ribozyme Pharmaceuticals, Inc. HIV targeted ribozymes
US20030068301A1 (en) * 1992-05-14 2003-04-10 Kenneth Draper Method and reagent for inhibiting hepatitis B virus replication
US20040054156A1 (en) * 1992-05-14 2004-03-18 Kenneth Draper Method and reagent for inhibiting hepatitis B viral replication
US20030171311A1 (en) * 1998-04-27 2003-09-11 Lawrence Blatt Enzymatic nucleic acid treatment of diseases or conditions related to hepatitis C virus infection
NZ255028A (en) 1992-07-02 1997-03-24 Hybridon Inc Antisense oligonucleotides resistant to nucleolytic degradation
US5652355A (en) 1992-07-23 1997-07-29 Worcester Foundation For Experimental Biology Hybrid oligonucleotide phosphorothioates
WO1994015645A1 (en) 1992-12-31 1994-07-21 Texas Biotechnology Corporation Antisense molecules directed against genes of the raf oncogene family
US6056704A (en) 1993-03-03 2000-05-02 Ide; Masatake Foot-pressure massage stand
EP0616026A1 (en) 1993-03-19 1994-09-21 The Procter & Gamble Company Concentrated cleaning compositions
KR960703170A (ko) * 1993-06-23 1996-06-19 알버트 디. 프리센. 안티센스 올리고뉴클레오티드 및 인간면역결핍바이러스감염에서 그것의 치료적이용(antisense oligonucleotides and therapeutic use thereof in human immunodeficiency virus infection)
FR2710074B1 (fr) 1993-09-15 1995-12-08 Rhone Poulenc Rorer Sa Gène GRB3-3, ses variants et leurs utilisations.
US5624803A (en) * 1993-10-14 1997-04-29 The Regents Of The University Of California In vivo oligonucleotide generator, and methods of testing the binding affinity of triplex forming oligonucleotides derived therefrom
US5801154A (en) * 1993-10-18 1998-09-01 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of multidrug resistance-associated protein
WO1995013834A1 (en) 1993-11-16 1995-05-26 Genta, Incorporated Chimeric oligonucleoside compounds
US5908779A (en) * 1993-12-01 1999-06-01 University Of Connecticut Targeted RNA degradation using nuclear antisense RNA
US5578716A (en) * 1993-12-01 1996-11-26 Mcgill University DNA methyltransferase antisense oligonucleotides
EP0759979A4 (en) * 1994-05-10 1999-10-20 Gen Hospital Corp ANTISENSE OLIGONUCLEOTIDES INHIBITION OF HEPATITIS C VIRUS
US6057153A (en) * 1995-01-13 2000-05-02 Yale University Stabilized external guide sequences
US5674683A (en) 1995-03-21 1997-10-07 Research Corporation Technologies, Inc. Stem-loop and circular oligonucleotides and method of using
US5624808A (en) * 1995-03-28 1997-04-29 Becton Dickinson And Company Method for identifying cells committed to apoptosis by determining cellular phosphotyrosine content
CA2222328C (en) 1995-06-07 2012-01-10 Inex Pharmaceuticals Corporation Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
EP0851919A1 (en) * 1995-09-20 1998-07-08 University of Massachusetts Worcester Antisense oligonucleotide chemotherapy for benign hyperplasia or cancer of the prostate
US5998203A (en) * 1996-04-16 1999-12-07 Ribozyme Pharmaceuticals, Inc. Enzymatic nucleic acids containing 5'-and/or 3'-cap structures
AU725262B2 (en) 1996-02-14 2000-10-12 Isis Pharmaceuticals, Inc. Sugar-modified gapped oligonucleotides
WO1997039120A2 (en) 1996-04-17 1997-10-23 Aronex Pharmaceuticals, Inc. Antisense inhibitors of vascular endothelial growth factor (vefg/vpf) expression
DE19618797C2 (de) 1996-05-10 2000-03-23 Bertling Wolf Vehikel zum Transport molekularer Substanz
US20040266706A1 (en) 2002-11-05 2004-12-30 Muthiah Manoharan Cross-linked oligomeric compounds and their use in gene modulation
US5898031A (en) * 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
DE19631919C2 (de) 1996-08-07 1998-07-16 Deutsches Krebsforsch Anti-Sinn-RNA mit Sekundärstruktur
US6225290B1 (en) * 1996-09-19 2001-05-01 The Regents Of The University Of California Systemic gene therapy by intestinal cell transformation
EP0972015B1 (en) * 1996-10-04 2006-06-07 Derek Nigel John Hart Enzyme having s-adenosyl-l-homocysteine hydrolase (ahcy) type activity
US5814500A (en) * 1996-10-31 1998-09-29 The Johns Hopkins University School Of Medicine Delivery construct for antisense nucleic acids and methods of use
IL130162A (en) 1996-12-12 2008-03-20 Yissum Res Dev Co Synthetic antisense oligodeoxynucleotides and pharmaceutical compositions containing them
US20030064945A1 (en) * 1997-01-31 2003-04-03 Saghir Akhtar Enzymatic nucleic acid treatment of diseases or conditions related to levels of epidermal growth factor receptors
GB9703146D0 (en) * 1997-02-14 1997-04-02 Innes John Centre Innov Ltd Methods and means for gene silencing in transgenic plants
US6218142B1 (en) * 1997-03-05 2001-04-17 Michael Wassenegger Nucleic acid molecules encoding polypeptides having the enzymatic activity of an RNA-directed RNA polymerase (RDRP)
GB9710475D0 (en) 1997-05-21 1997-07-16 Zeneca Ltd Gene silencing
EP2341058A3 (en) 1997-09-12 2011-11-23 Exiqon A/S Oligonucleotide Analogues
EP2292771A3 (en) 1997-09-19 2011-07-27 Life Technologies Corporation Sense mRNA therapy
GB9720148D0 (en) * 1997-09-22 1997-11-26 Innes John Centre Innov Ltd Gene silencing materials and methods
US6506559B1 (en) * 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
US6475726B1 (en) * 1998-01-09 2002-11-05 Cubist Pharmaceuticals, Inc. Method for identifying validated target and assay combinations for drug development
CA2513336A1 (en) 1998-03-20 1999-09-30 Benitec Australia Ltd. Control of gene expression in a non-human eukaryotic cell, tissue or organ
AUPP249298A0 (en) * 1998-03-20 1998-04-23 Ag-Gene Australia Limited Synthetic genes and genetic constructs comprising same I
US20040214330A1 (en) * 1999-04-07 2004-10-28 Waterhouse Peter Michael Methods and means for obtaining modified phenotypes
EP2267138B1 (en) 1998-04-08 2016-06-08 Commonwealth Scientific and Industrial Research Organization Methods and means for obtaining modified phenotypes
WO1999054459A2 (en) 1998-04-20 1999-10-28 Ribozyme Pharmaceuticals, Inc. Nucleic acid molecules with novel chemical compositions capable of modulating gene expression
AR020078A1 (es) 1998-05-26 2002-04-10 Syngenta Participations Ag Metodo para alterar la expresion de un gen objetivo en una celula de planta
GB9827152D0 (en) 1998-07-03 1999-02-03 Devgen Nv Characterisation of gene function using double stranded rna inhibition
AU1408300A (en) 1998-11-24 2000-06-13 Hisamitsu Pharmaceutical Co. Inc. Hiv infection inhibitors
WO2000032619A1 (en) 1998-11-30 2000-06-08 Ribogene, Inc. Methods and compositions for identification of inhibitors of ribosome assembly
US6939712B1 (en) 1998-12-29 2005-09-06 Impedagen, Llc Muting gene activity using a transgenic nucleic acid
AU776150B2 (en) * 1999-01-28 2004-08-26 Medical College Of Georgia Research Institute, Inc. Composition and method for (in vivo) and (in vitro) attenuation of gene expression using double stranded RNA
DE19956568A1 (de) 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
CN1375004A (zh) 1999-04-21 2002-10-16 惠氏公司 抑制多核苷酸序列的功能的方法和组合物
US20040002153A1 (en) * 1999-07-21 2004-01-01 Monia Brett P. Modulation of PTEN expression via oligomeric compounds
GB9925459D0 (en) * 1999-10-27 1999-12-29 Plant Bioscience Ltd Gene silencing
GB9927444D0 (en) 1999-11-19 2000-01-19 Cancer Res Campaign Tech Inhibiting gene expression
US7829693B2 (en) * 1999-11-24 2010-11-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a target gene
DE10160151A1 (de) 2001-01-09 2003-06-26 Ribopharma Ag Verfahren zur Hemmung der Expression eines vorgegebenen Zielgens
DE10100586C1 (de) 2001-01-09 2002-04-11 Ribopharma Ag Verfahren zur Hemmung der Expression eines Ziegens
RU2164944C1 (ru) * 1999-12-09 2001-04-10 Институт молекулярной биологии им. В.А. Энгельгардта РАН Способ изменения генетических свойств организма
US8202979B2 (en) * 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
AU2001260114A1 (en) 2000-03-14 2001-09-24 Syngenta Participations Ag Protoporphyrinogen oxidase ("protox") genes
US20030084471A1 (en) * 2000-03-16 2003-05-01 David Beach Methods and compositions for RNA interference
EP1272630A2 (en) * 2000-03-16 2003-01-08 Genetica, Inc. Methods and compositions for rna interference
DK2360253T3 (da) 2000-03-30 2014-06-16 Whitehead Biomedical Inst Fremgangsmåde til fremstilling af knockdown-celler eller knockdown-organismer ved hjælp af RNA-sekvensspecifikke formidlere af RNA-interferens og anvendelser deraf
KR20080023768A (ko) 2000-03-30 2008-03-14 화이트헤드 인스티튜트 포 바이오메디칼 리서치 Rna 간섭의 rna 서열 특이적인 매개체
CA2410947A1 (en) 2000-05-30 2001-12-06 Johnson & Johnson Research Pty Limited Methods for mediating gene suppresion by using factors that enhance rnai
WO2003103600A2 (en) 2002-06-05 2003-12-18 Invitrogen Corporation Methods and compositions for synthesis of nucleic acid molecules using multiple recognition sites
WO2002044321A2 (en) * 2000-12-01 2002-06-06 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Rna interference mediating small rna molecules
CA2430886A1 (en) 2000-12-08 2002-08-08 Invitrogen Corporation Compositions and methods for rapidly generating recombinant nucleic acid molecules
EP1354038A2 (en) 2000-12-28 2003-10-22 J &amp; J Research Pty Ltd Double-stranded rna-mediated gene suppression
US7423142B2 (en) * 2001-01-09 2008-09-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
WO2003035869A1 (de) 2001-10-26 2003-05-01 Ribopharma Ag Verwendung einer doppelsträngigen ribonukleinsäure zur gezielten hemmung der expression eines vorgegebenen zielgens
EP1229134A3 (en) * 2001-01-31 2004-01-28 Nucleonics, Inc Use of post-transcriptional gene silencing for identifying nucleic acid sequences that modulate the function of a cell
CA2442092A1 (en) * 2001-03-26 2002-10-17 Ribozyme Pharmaceuticals, Inc. Oligonucleotide mediated inhibition of hepatitis b virus and hepatitis c virus replication
US20030124513A1 (en) * 2001-05-29 2003-07-03 Mcswiggen James Enzymatic nucleic acid treatment of diseases or conditions related to levels of HIV
US20040006035A1 (en) * 2001-05-29 2004-01-08 Dennis Macejak Nucleic acid mediated disruption of HIV fusogenic peptide interactions
US20040019001A1 (en) * 2002-02-20 2004-01-29 Mcswiggen James A. RNA interference mediated inhibition of protein typrosine phosphatase-1B (PTP-1B) gene expression using short interfering RNA
DE50101770D1 (de) 2001-06-01 2004-04-29 Mobilkom Austria Ag & Co Kg Wi Verfahren zur Bestimmung des Standortes einer Mobilstation in einem Mobilfunksystem
US20030140362A1 (en) * 2001-06-08 2003-07-24 Dennis Macejak In vivo models for screening inhibitors of hepatitis B virus
EP2428571B1 (en) * 2001-09-28 2018-07-18 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. MicroRNA molecules
DE10163098B4 (de) 2001-10-12 2005-06-02 Alnylam Europe Ag Verfahren zur Hemmung der Replikation von Viren
JP2005506087A (ja) * 2001-10-26 2005-03-03 リボファーマ アーゲー プラス鎖rnaウイルスによる感染症を処置するための2本鎖リボ核酸の使用
US20040121348A1 (en) * 2001-10-26 2004-06-24 Ribopharma Ag Compositions and methods for treating pancreatic cancer
DE10230997A1 (de) * 2001-10-26 2003-07-17 Ribopharma Ag Medikament zur Erhöhung der Wirksamkeit eines Rezeptor-vermittelt Apoptose in Tumorzellen auslösenden Arzneimittels
DE10154113A1 (de) 2001-11-03 2003-05-15 Opel Adam Ag Frontstruktur eines Kraftfahrzeuges
DE10202419A1 (de) * 2002-01-22 2003-08-07 Ribopharma Ag Verfahren zur Hemmung der Expression eines durch eine Chromosomen-Aberration entstandenen Zielgens
US20030166282A1 (en) 2002-02-01 2003-09-04 David Brown High potency siRNAS for reducing the expression of target genes
ES2312753T5 (es) * 2002-02-14 2012-12-13 City Of Hope Procedimientos para producir moléculas de ARN de interferencia en células de mamífero y usos terapéuticos para tales moléculas
WO2003076592A2 (en) * 2002-03-06 2003-09-18 Rigel Pharmaceuticals, Inc. Novel method for delivery and intracellular synthesis of sirna molecules
JP2005521393A (ja) * 2002-03-20 2005-07-21 マサチューセッツ インスティテュート オブ テクノロジー Hiv治療
US20030180756A1 (en) * 2002-03-21 2003-09-25 Yang Shi Compositions and methods for suppressing eukaryotic gene expression
US20040053876A1 (en) * 2002-03-26 2004-03-18 The Regents Of The University Of Michigan siRNAs and uses therof
AU2003237686A1 (en) 2002-05-24 2003-12-12 Max-Planck Gesellschaft Zur Forderung Der Wissenschaften E.V. Rna interference mediating small rna molecules
WO2003106630A2 (en) 2002-06-12 2003-12-24 Ambion, Inc. Methods and compositions relating to polypeptides with rnase iii domains that mediate rna interference
EP1520022B1 (en) 2002-07-10 2015-07-22 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Rna-interference by single-stranded rna molecules
US20040241854A1 (en) * 2002-08-05 2004-12-02 Davidson Beverly L. siRNA-mediated gene silencing
DK3222724T3 (en) 2002-08-05 2018-12-03 Silence Therapeutics Gmbh ADDITIONALLY UNKNOWN FORMS OF INTERFERRING RNA MOLECULES
US8729036B2 (en) * 2002-08-07 2014-05-20 University Of Massachusetts Compositions for RNA interference and methods of use thereof
AU2003273336A1 (en) * 2002-09-18 2004-04-08 Isis Pharmaceuticals, Inc. Efficient reduction of target rna's by single- and double-stranded oligomeric compounds
AU2003282877B9 (en) 2002-09-25 2011-05-12 University Of Massachusetts In Vivo gene silencing by chemically modified and stable siRNA
EP1560840B1 (en) 2002-11-05 2015-05-06 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2'-modified nucleosides for use in gene modulation
EP2305813A3 (en) 2002-11-14 2012-03-28 Dharmacon, Inc. Fuctional and hyperfunctional sirna
US20040214198A1 (en) 2002-11-15 2004-10-28 University Of Massachusetts Allele-targeted RNA interference
AU2003298718A1 (en) * 2002-11-22 2004-06-18 University Of Massachusetts Modulation of hiv replication by rna interference
WO2004063375A1 (en) 2003-01-15 2004-07-29 Hans Prydz OPTIMIZING siRNA BY RNAi ANTISENSE
US20040224328A1 (en) * 2003-01-15 2004-11-11 Hans Prydz siRNA screening method
WO2004065600A2 (en) 2003-01-17 2004-08-05 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Rna interference by palindromic or modified rna molecules
EP2314687B1 (en) 2003-01-17 2017-12-27 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Inducible small interfering rna (sirna) expression constructs for targeted gene silencing
WO2004076622A2 (en) 2003-02-10 2004-09-10 National Institute Of Advanced Industrial Science And Technology Regulation of gene expression by dna interference
US20040231016A1 (en) * 2003-02-19 2004-11-18 Commonwealth Scientific And Industrial Research Organization Efficient gene silencing in plants using short dsRNA sequences
DK1633767T3 (en) 2003-06-02 2019-03-25 Univ Massachusetts METHODS AND COMPOSITIONS FOR MANAGING THE EFFECT OF RNA SILENCING
US6998203B2 (en) * 2003-08-01 2006-02-14 Intel Corporation Proximity correcting lithography mask blanks
EP2230304B1 (en) 2005-01-07 2012-03-28 Alnylam Pharmaceuticals Inc. RNAI modulation of RSV and therapeutic uses thereof
WO2013009634A2 (en) 2011-07-08 2013-01-17 Inteva Products Llc. Method for stitching vehicle interior components and components formed from the method

Also Published As

Publication number Publication date
RU2007131270A (ru) 2009-02-27
US8372968B2 (en) 2013-02-12
HK1110631A1 (en) 2008-07-18
US20110027883A1 (en) 2011-02-03
HU230458B1 (hu) 2016-07-28
RU2322500C2 (ru) 2008-04-20
EP1873259B1 (en) 2012-01-25
AU2007203385B2 (en) 2010-05-20
AU2010212438A2 (en) 2010-09-23
ATE373724T2 (de) 2007-10-15
JP6189576B2 (ja) 2017-08-30
PL218876B1 (pl) 2015-02-27
JP4494392B2 (ja) 2010-06-30
US20110065773A1 (en) 2011-03-17
IL155991A (en) 2013-06-27
US20110020234A1 (en) 2011-01-27
US8933044B2 (en) 2015-01-13
AU2010212438B2 (en) 2013-05-09
NZ525888A (en) 2006-04-28
ES2215494T1 (es) 2004-10-16
US20100292456A1 (en) 2010-11-18
CY1119062T1 (el) 2018-01-10
JP2004526422A (ja) 2004-09-02
KR100909681B1 (ko) 2009-07-29
DE60130583D1 (de) 2007-10-31
CA2429814C (en) 2014-02-18
US10633656B2 (en) 2020-04-28
US8778902B2 (en) 2014-07-15
HUP0302557A3 (en) 2005-12-28
WO2002044321A3 (en) 2003-10-23
US7078196B2 (en) 2006-07-18
MXPA03004836A (es) 2005-09-08
US20110054159A1 (en) 2011-03-03
PL365784A1 (en) 2005-01-10
US20110306651A1 (en) 2011-12-15
NO20032464D0 (no) 2003-05-30
NO20130246L (no) 2003-07-21
EP2348133B1 (en) 2014-07-16
CZ302719B6 (cs) 2011-09-21
EP1407044B1 (en) 2007-09-19
ZA200303929B (en) 2004-07-19
HUP0302557A2 (hu) 2003-10-28
LTPA2021005I1 (es) 2021-06-10
PT1407044E (pt) 2008-01-02
US20100010207A1 (en) 2010-01-14
SI1407044T1 (sl) 2008-04-30
CA2429814A1 (en) 2002-06-06
AU2002235744B8 (en) 2007-06-28
CN100523215C (zh) 2009-08-05
US8853384B2 (en) 2014-10-07
HK1204798A1 (en) 2015-12-04
DK1407044T4 (en) 2017-12-04
US9567582B2 (en) 2017-02-14
JP6325974B2 (ja) 2018-05-16
EP1873259A1 (en) 2008-01-02
AU2007203385A1 (en) 2007-08-09
US20040259247A1 (en) 2004-12-23
US20110014123A1 (en) 2011-01-20
EP2348133A1 (en) 2011-07-27
US20100316703A1 (en) 2010-12-16
US8993745B2 (en) 2015-03-31
US20050026278A1 (en) 2005-02-03
KR100872437B1 (ko) 2008-12-05
JP2009284915A (ja) 2009-12-10
JP2015061534A (ja) 2015-04-02
US8895718B2 (en) 2014-11-25
CZ2011452A3 (es) 2003-10-15
US20150141492A1 (en) 2015-05-21
KR20040012686A (ko) 2004-02-11
CZ20031839A3 (cs) 2003-10-15
JP5749892B2 (ja) 2015-07-15
BRPI0115814B8 (pt) 2021-05-25
US20070093445A1 (en) 2007-04-26
DK1407044T3 (da) 2008-01-28
ES2728168T3 (es) 2019-10-22
ES2215494T5 (es) 2017-12-28
US8796016B2 (en) 2014-08-05
US8895721B2 (en) 2014-11-25
JP2007111053A (ja) 2007-05-10
NO20032464L (no) 2003-07-21
NO335426B1 (no) 2014-12-15
US20090155174A1 (en) 2009-06-18
US20110065109A1 (en) 2011-03-17
US20110070162A1 (en) 2011-03-24
EP1407044A2 (en) 2004-04-14
IL207727A (en) 2014-04-30
US20050234007A1 (en) 2005-10-20
SI1407044T2 (en) 2018-03-30
US20050234006A1 (en) 2005-10-20
US20040229266A1 (en) 2004-11-18
RU2470073C2 (ru) 2012-12-20
HK1139433A1 (en) 2010-09-17
DK2813582T3 (en) 2017-07-31
HK1139181A1 (en) 2010-09-10
US7056704B2 (en) 2006-06-06
KR20080069602A (ko) 2008-07-28
BRPI0115814B1 (pt) 2019-10-15
JP4095895B2 (ja) 2008-06-04
BR0115814A (pt) 2004-03-23
CZ308053B6 (cs) 2019-11-27
US8362231B2 (en) 2013-01-29
US20110112283A1 (en) 2011-05-12
IL155991A0 (en) 2003-12-23
JP2010131031A (ja) 2010-06-17
AU2010212438A1 (en) 2010-09-09
EP1407044B2 (en) 2017-11-15
TR200401292T3 (tr) 2004-07-21
US8765930B2 (en) 2014-07-01
US8445237B2 (en) 2013-05-21
NO333713B1 (no) 2013-09-02
US20170327822A1 (en) 2017-11-16
US20200299693A1 (en) 2020-09-24
US20080269147A1 (en) 2008-10-30
AU2002235744B2 (en) 2007-04-19
DE60130583T2 (de) 2008-06-12
AU3574402A (en) 2002-06-11
CN1568373A (zh) 2005-01-19
US20040259248A1 (en) 2004-12-23
DE60130583T3 (de) 2018-03-22
US20130125259A1 (en) 2013-05-16
US8329463B2 (en) 2012-12-11
WO2002044321A2 (en) 2002-06-06

Similar Documents

Publication Publication Date Title
ES2215494T3 (es) Moleculas de rna pequeñas que median la interferencia de rna.
ES2632957T3 (es) Moléculas pequeñas de ARN que median en la interferencia de ARN
AU2013201799B2 (en) Rna interference mediating small rna molecules