CZ20031839A3 - Interference RNA zpostředkovaná malými molekulami RNA - Google Patents

Interference RNA zpostředkovaná malými molekulami RNA Download PDF

Info

Publication number
CZ20031839A3
CZ20031839A3 CZ20031839A CZ20031839A CZ20031839A3 CZ 20031839 A3 CZ20031839 A3 CZ 20031839A3 CZ 20031839 A CZ20031839 A CZ 20031839A CZ 20031839 A CZ20031839 A CZ 20031839A CZ 20031839 A3 CZ20031839 A3 CZ 20031839A3
Authority
CZ
Czechia
Prior art keywords
target
rna
nucleotides
cell
gene
Prior art date
Application number
CZ20031839A
Other languages
English (en)
Other versions
CZ302719B6 (cs
Inventor
Thomas Tuschl
Sayda Elbashir
Winfried Lendeckel
Wilm Matthias
Original Assignee
MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40529293&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CZ20031839(A3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from PCT/US2001/010188 external-priority patent/WO2001075164A2/en
Application filed by MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. filed Critical MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Publication of CZ20031839A3 publication Critical patent/CZ20031839A3/cs
Publication of CZ302719B6 publication Critical patent/CZ302719B6/cs

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1079Screening libraries by altering the phenotype or phenotypic trait of the host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering nucleic acids [NA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Transplantation (AREA)
  • Analytical Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

Interference RNA zprostředkovaná malými molekulami RNA n
Oblast techniky
Popisují se sekvence a strukturální rysy molekul dvouřetězcové RNA ((ds)RNA) nutných pro zprostředkovaní cílově specifických úprav nukleové kyseliny, jako je interference RNA a/nebo metylace DNA.
Dosavadní stav techniky
Termín „interference RNA (RNAi) vznikl po objevu, kdy zavedení dsRNA do nematod C. elegans injekcí vede ke specifické zhášení genů, jejichž sekvence vykazuje vysokou homologii se sekvencí zavedené dsRNA (popisuje se v publikací Fire, A., Xu, S., Montgomery, M.K., Kostas, S. A. , Driver, S. E., and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nátuře 391. 806-811). RNAi bylo možné následně pozorovat u hmyzu, žab (popisuje se v publikaci Oelgeschlager, M., Larrin, J., Geissert, D., and De Robertis, E. M. (2000). The evolutionarily conserved BMP-bindíng protein Twisted gastrulation promotes BMP signalling. Nátuře 405, 757-763) a jiných zvířat, která zahrnují myši (popisuje se v publikaci Svoboda, P., Stein, P., Hayashi, H. and Schutz, R. M. (2000). Selective reduction of dormant maternal mRNAs in mouše oocytes by RNA interference. Development 127, 4147-4156, Wianny, F., and Zernicka-Goetz, M. (2000) . Specific interference with gene function by double-stranded RNA in early mouše development. Nat. Cell Biol. 2, 70-75) a je pravděpodobné, že také existuje u člověka. RNAi je také úzce spojena s post-transkripčním mechanizmem geny Uhášející (PTGS) ko-suprese v případě rostlin a hub (popisuje se v publikaci Catalanotto, C., Azzalin, G., Macino., and Cogoni, C. (2000). Gene silencing in worms and • · » · · · · · · <
(1999).
and Macino, fungi. Nátuře 404, 245, Cogoni
Homology-dependent gene silencing in plants and fungi: a Number of variations on the same theme. Curr. Opin. Microbiol. 2, 657-662, Dalmay, T., Hamilton, A., Rudd, S. Angell, S., and Baulcombe, D. C. (2000). An RNA-dependent RNA polymeraze gene in Arabidopsis is required for posttranscriptional gene silencsing mediated by a transgene but not by a virus. Cell 101, 543-553, Ketting, R., and Plasterk., R. H. (2000). A genetic link between co-suppression and RNA interference in C. elegans. Nátuře 404, 296-298, Mourrain, P., Beclin, C.,
Elmayan, T., Feuerbach, F. , Godon, C. , Morel, J. B., Joutte, D., Lacombe, A. M., Nokic, S., Picault, N.,
Sanial, M., Vo, T. A., and Vaucheret, H. (2000)
SGS2 and SGS3 Gnes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533-542, Smardon, A., Spoerke, J. , Stacey, S., Klein, M., Mackin, N., and Maine, E. (2000) . EGO-1 is related to RNA directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr. Biol. 10, 169-178) a některé složky systému RNAi jsou také nezbytné při post-transkripční zhášení ko-supresí (popisuje se v publikaci Catalanotto, C., Azzalin, G. , Macino., and Cogoni, C. (2000). Gene silencing in worms and fungi. Nátuře 404, 245, Cogoni and Macino, G.
(1999). Homology-dependent gene silencing in plants and fungi:
on the same theme. Curr. Opin. Dernburg, A.
Reraoue, K., Arabidopsis a Number of variations Microbiol. 2, 657-662,
F. , Zalevsky, J. , Colaiacovo, Μ. P., and Vileneuve, A. M. (2000). Transgenemadiated cosuppression in the C. elegans germ line. Genes & Dev. 14, 1578-1583, Ketting, R. , and Plasterk., R. H. (2000). A genetic link between co-suppression and RNA interference in C. elegans. Nátuře 404, 296-298). Předmětná věc se také popisuje v publikaci Bass, B. L. (2000). Doble-stranded RNA as a template for gene silencing. Cell 101, 235-238, Bosher, J.
M. and Labouesse, M. (2000) . RNA interference: genetic wand • · ··· ···· • · · · ··· · · Λ t» ·« and genetic watchdog. Nat. Cell Biol. 2, E31-36, Fire, A.
(1999). RNA-tiggered gene silencing. Trends Genet. 15, 358363, Plasterk, R. H. and Ketting, R. F. (2000) . The silence of the genes. Curr. Opin. Genet. Dev. 10, 562-567, Sharp, P. A.
(1999). RNAi and double-strand RNA. Genes. & Dev. 13. 139-141, Sijen, T., and Kooter, J. M. (2000). Post-transcriptional gene-silencing: RNAs on the attack or on the defense?
Bioessays 22, 520-531) a také v celém vydání Plant Molecular
Biology, vol. 43, issue 2/3, (2000).
V rostlinách, vedle PTGS, zavedené geny mohou také vést k transkripčnímu zhášení genů prostřednictvím metylace DNA cytozinů řízené pomocí RNA (popisuje se v publikaci Wassenegger, M.m (2000). RNA-directed DNA metylaton. Plant. Mol. Biol. 43, 203-220). Genomové cíle obsahující 30 párů baží jsou v případě rostlin metylovány způsobem řízeným RNA (popisuje se v publikaci Pelissier, T., and Wassenegger, M. (2000) . A DNA target of 30 bp is suffícient for RNA-directed methylation. RNA. 6, 55-65). K metylaci DNA také dochází u zvířat.
Přirozenou funkcí RNAi a ko-suprese je ochrana genomu proti invazi mobilních genetických elementů, jako jsou retrotranspozóny a viry, které produkují v hostitelské buňce, v případě jejich aktivace, aberující RNA nebo dsRNA (popisuje se v publikaci Jensen, S., Gassama, Μ. P., and Heidmann, T. (1999). Tamíng of trans-posable elements by homology-dependent gene silencing. Nat. Genet. 21, 209-212, Ketting, R. F.,
Haverkamp, T. H., van Luenen, H. G., and Plasterk, R. H. (1999). Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RnaseD. Cell 99, 133-141, Ratcliff, F.G., MacFarlane, S.
A., and Baulcombe, D. C. (1999). Gene silencing without DNA. RNA-mediated cross-protection between viruses. Plant Cell 11,
1207-1216, Tabara, H., Sarkissiean, M., Kelly, W. G., Fleenor, J., Grishok, A., Timmons, L., Fire, A., and Mello, C. C.
(1999). The erde-1 gene, sílencing in C. elegans
RNA interference, and transposon Cell 99, 123-132) . Specifická degradace mRNA brání replikaci transpozonu a viru, ačkoli některé viry jsou schopny obejít nebo zabránit uvedenému postupu expresí proteinů, které potlačují PTGS (popisuje se v publikaci Lucy, A. P., Guo, H. S., Li, W. X., and Ding, S. W. (2000) . Suppression of post-transcriptional gene sílencing by plant viral protein localized in the nucleus. EMBO J. 19, 1672-1680, Voinnet, 0., Lederee, C., and Baulcombe, D. C. (2000). A viral movement protein prevents spread o the gene sílencing signál in Nicotiana ben thamiana. Cell 103, 157167) .
Dvouřetězcové RNA způsobuje specifickou degradaci homologních RNA pouze v oblasti shodné s dsRNA (popisuje se v publikaci Zámoře, P. D., Bartel, D. P. (2000). RNAi: ATP-dependent cleavege of
Tuschl, T., Sharp, P. A. and Double-stranded RNA directs the mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33). Zpracováním dsRNA vznikají fragmenty RNA obsahující 21 až 23 nukleotidů a místa štěpení cílové RNA jsou obyčejně umístěná ve vzdálenosti 21 až 23 nukleotidů. To naznačuje, že fragmenty obsahující 21 až 23 nukleotidů (nt) jsou řídící RNA pro rozeznávání cíle (popisuje se v publikaci Zámoře, P. D., Tuschl, T., Sharp, P. A. and
Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33). Tyto detekovaly v extraktech připravených organizmu D. melanogaster, které, dříve než se lyžovaly, se transfekovaly dsRNA (popisuje se v publikaci Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000). An RNAdirected nuclease mediates post-transcriptional gene silening krátké RNA se také z buněk Schneider 2 in Drosophila cells. Nátuře 404, 293-296). Avšak frakce, které vykazují nukleázovou aktivitu specifickou pro sekvenci, také obsahovaly velkou část reziduální dsRNA. Úloha fragmentů obsahujících 21 až 23 nukleotidů při řízení štěpení mRNA je dále podpořena pozorováním, že tyto fragmenty izolované ze zpracované dsRNA jsou schopny v určitém rozsahu zprostředkovat specifickou degradaci mRNA (popisuje se v publikaci Zámoře, P. D., Tuschl, T., Sharp, P. A. and Bartei, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33) . Molekuly
RNA podobné velikosti se také hromadí ve tkáni rostlin, která vykazuje PTGS (popisuje se v publikaci Hamilton, A. J. , and Baulcombe, D. C. (1999). A species of smáli anti-sense RNA in posttranscriptional gene silencing in plants. Scince 86, 950952) .
Za účelem dalšího zkoumání mechanizmu RNAi se použil zavedený in vitro systém organizmu Drosophila (popisuje se v publikaci Tuschl, T., Ng, Μ. M., Pieken, W., Benseler, F., and Eckstein, F. (1993) . Importance of exocyclic base functional groups of centrál core guanosines for hammerhead ribozyme activity. Biochemistry 32, 11658-11668, Zámoře, P.
D., Tuschl, T., Sharp, P. A. and Bartei, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33). Ukázalo se, že krátké RNA vykazující 21 a 22 nukleotidů, když tvoří páry baží z přesahujícími 3'-konci, působí jako řídící RNA při degradaci mRNA, která je sekvenčně specifická. Krátké dsRNA obsahující 30 párů baží nejsou schopny zprostředkovat RNAi v tomto systému, protože už nejsou zpracovány na RNA obsahující 21 a 22 nukleotidů. Dále se definovala místa štěpení cílové RNA pokud jde o krátké interferující RNA (siRNA) vykazující 21 a 22 nukleotidů a potvrdilo se, že směr zpracování dsRNA stanoví, zda produkovaný endonukleázový komplexe siRNP štěpí 3',5' řetězec RNA nebo 5',3' řetězec RNA. siRNA může také být důležitým nástrojem transkripčních úprav, jako je například zhásínání savčích genů metylací DNA.
Další experimenty v lidských buněčných kulturách (buňky Helia) vykazují, že molekuly dvouřetězcové RNA, které s výhodou obsahují 19 až 25 nukleotidů, vykazují aktivitu RNAi. Na rozdíl od výsledků získaných v případě organizmu Drosophila, jsou také molekuly dvouřetězcové RNA vykazující délku 24 a 25 nukleotidů v těchto buňkách účinné při RNAi.
Podstata vynálezu
Předmětnou věcí vynálezu jsou nová činidla schopná zprostředkovat cílově specifickou interferenci RNA nebo jiné cílově specifické úpravy nukleové kyseliny, jako je metylace DNA. Uvedená činidla vykazují ve srovnání s činidly předchozího stavu techniky zlepšenou účinnost a bezpečnost.
Řešením uvedeného problému je izolovaná molekula dvouřetězcové RNA, kde každý řetězec RNA vykazuje délku 19 až 25 nukleotidů, zvláště 19 až 23 nukleotidů, a každá molekula RNA je schopna zprostředkovat cílově specifické úpravy nukleové kyseliny, zvláště interferenci RNA a/nebo metylaci DNA. Je výhodné, aby alespoň jeden řetězec měl přesah na 3' konci tvořený 1 až 5 nukleotidy, výhodněji 1 až 3 nukleotidy a nejvýhodněji 2 nukleotidy. Ostatní řetězce mohou být zakončeny tupým koncem nebo mají na 3'-konci přesah tvořený až 6 nukleotidy. V případě, že oba řetězce dsRNA vykazují přesně 21 nebo 22 nukleotidů, je možné pozorovat interferenci RNA v případě, že oba konce jsou tupé (přesah obsahuje 0 nukleotidů). Molekulou RNA je s výhodou syntetická molekula RNA, která v podstatě neobsahuje žádné nečistoty, které se vyskytují v buněčných extraktech, jako jsou například extrakty vytvořené s výhodou nečistoty, nečistoty
Drosophila. žádné cílově z embryí organizmu v podstatě neobsahuje zvláště molekuly cílově nespecifické vyskytující se v buněčných extraktech.
Molekula RNA nespecifické
RNA, například
Vynález dále popisuje použití izolovaných dvouřetězcových molekul RNA, kde každý řetězec RNA vykazuje délku 19 až 25 nukleotidů, při zprostředkování cílově specifických úprav nukleové kyseliny, zvláště RNAi v savčích buňkách, zvláště pak v lidských buňkách.
Překvapivě se zjistilo, že molekuly syntetické krátké dvouřetězcové RNA s přesahem na 3'-konci jsou sekvenčně specifickými mediátory RNAi a zprostředkovávají účinné štěpení cílové RNA, kde místo štěpení se nachází blízko centra oblasti pokryté řídící krátkou RNA.
Je výhodné, aby každý řetězec molekuly RNA měl délku 20 až 22 nukleotidů (nebo v případě savčích buněk 20 až 25 nukleotidů), kde délka každého řetězce může být stejná nebo rozdílná. Je výhodné, aby délka přesahu na 3'-konci byla 1 až 3 nukleotidy, kde délka přesahu může být v případě každého řetězce stejná nebo odlišná. Řetězce RNA s výhodou obsahují na 3'-konci hydroxylové skupiny. 5'-konec s výhodou obsahuje fosfátovou, difosfátovou, trifosfátovou nebo hydroxylovou skupinu. Nejúčinnější dsRNA se skládají ze dvou řetězců, které obsahují 21 nukleotidů, jenž se párují tak, že 1 až 3 nukleoidy, zvláště pak 2 nukleotidy přesahů na 3'konci, jsou přítomny na obou koncích dsRNA.
Štěpící reakce cílové RNA řízená siRNA je vysoce sekvenčně specifická. Ne ve všech polohách siRNA přispívá stejně k rozeznání cíle. Nejvíce rozhodující je nesprávné párování v centru duplexu siRNA, které v podstatě eliminuje štěpení • · ··· ···· ···· ··· ·· · ·· ·· cílové RNA. Naopak nukleotid 3'konce řetězce siRNA (například v poloze 21) , který je komplementární s jednořetězcovou cílovou RNA, nepřispívá ke specifitš rozeznávání cíle. Dále sekvence nepárovaných dvou nukleotidů přesahu 3' konce řetězce siRNA se stejnou polaritou, jako vykazuje cílová RNA, není rozhodující pro štěpení cílové RNA, protože rozeznání cíle řídí. pouze 5', 3'řetězec siRNA. Tak v případě nukleotidů jednořetězcového přesahu, je nutné, aby se pouze předposlední nukleotid 5',3'řetězce siRNA (například poloha 20) pároval s cílovým 3',5'řetězcem mRNA.
Překvapivě molekuly dvouřetězcové RNA podle vynálezu vykazují vysokou in vivo stabilitu v séru nebo v růstovém médiu, které je vhodné pro kultivaci buněk. Za účelem dále zvýšit stabilitu, se mohou přesahy na 3'-konci stabilizovat proti degradaci. Mohou se například vybrat tak, aby obsahovaly purinové nukleotidy, zvláště adenosin nebo guanosin. V jiném provedení vynálezu se toleruje substituce pyrimidinových nukleotidů upravenými analogy, například substituce 2 nukleotidů uridin v přesahu 3'-konce 2'-deoxytymidinem, a neovlivňuje účinnost interference RNA. Nepřítomnost 2'hydroxylu podstatně zesiluje rezistenci přesahu vůči nukleázám obsaženým v kultivačním médiu.
Ve zvláště výhodném provedení vynálezu molekula RNA může obsahovat alespoň jeden upravený nukleotidový analog. Nukleotidové anylogy se mohou vyskytovat v polohách, kde cílově specifická aktivita, například aktivita zprostředkovaná RNAi, není podstatně ovlivněna, například v oblasti 5'-konce a/nebo 3'-konce molekuly dvouřetězcové RNA. Přesahy se mohou zvláště stabilizovat začleněním upravených nukleotidových analogů.
♦ · ···· ·· ···· • · · « « « ♦ · · « · ·
Výhodné nukleotidové analogy se vybraly z ribonukleotidů s upravenou cukernou složkou nebo kostrou. Je nutné poznamenat, že ribonukleotidy s upravenou jadernou bází, to jsou ribonukleotidy obsahující místo přirozeně se vyskytujících jaderných bází umělé báze, jako jsou uridiny nebo cytosiny upravené v poloze 5, například 5—(2— amino)propyluridin, 5-bromouridin, adenosiny a guanosiny upravený v poloze 8, například 8-bromoguanosin, deázanukleotidů, například 7-deáza-adenosin. Vhodné jsou také 0alkylované nukleotidy a N-alkylované nukleotidy, například Νβmetyladenosin. Ve výhodných ribonukleotidech s upravenou cukernou složkou je 2'-hydroxyl nahrazen členem skupiny zahrnující vodík, OR, R, halohen, SH, SR, NH2, NHR, NR2 nebo CN, kde symbol R je alkyl obsahující jeden až šest uhlíků, alkenyl nebo alkynyl a halogenem je fluór, chlór, bróm nebo jód. Ve výhodných ribonukleotidech s upravenou kostrou je fosfoesterová skupina spojující sousední ribonukleotidy nahrazena upravenou skupinou například fosfothioátovou skupinou. Je nutné poznamenat, že shora v textu uvedené úpravy je možné kombinovat.
Sekvence molekuly dvouřetězcové RNA podle vynálezu musí vykazovat dostatečnou shodu s cílovou molekulou nukleové kyseliny, aby zprostředkovala cílově specifickou RNAi a/nebo metylaci DNA. Sekvence s výhodou vykazuje shodu alespoň 50 %, zvláště pak alespoň 70 %, s požadovanou cílovou molekulou ve dvouřetězcové části molekuly RNA. Výhodnější je, když shoda je alespoň 85 % a nej výhodněj ší je, když existuje 100 % shoda s dvouřetězcovou částí molekuly RNA. Shoda molekuly dvouřetězcové RNA s předem určenou cílovou molekulou nukleové kyseliny, například s molekulou cílové mRNA, se může stanovit následujícím výpočtem:
n
1=---- x 100 kde symbol I je shoda vyjádřená v procentech, symbol n je počet shodných nukleotidů v části dvouřetězcové dsRNA a cílové nukleové kyselině a symbol L je délka sekvence přesahu dvouřetězcové části dsRNA a cílové nukleové kyseliny.
V jiném případě identita molekuly dvouřetězcové RNA s cílovou sekvencí se může také definovat zahrnutím přesahu 3-konce, zvláště přesahu, který obsahuje 1 až 3 nukleotidy. V tomto případě shoda sekvence je s výhodou alespoň 50 %, výhodněji alespoň 70 % a nej výhodněji alespoň 85 % s cílovou sekvencí. Nukleotidy z přesahu 3'-konce a až dva nukleotidy z 5'-konce a/nebo 3'-konce dvoj jitého řetězce se mohou upravovat, aniž dojde k podstatné ztrátě aktivity.
Molekula dvouřetězcové RNA podle vynálezu se může připravit způsobem zahrnující:
(a) syntézu dvou řetězců RNA, kdy každý zahrnuje 19 až 25 nukleotidů, například 19 až 23 nukleotidů, kde uvedené řetězce RNA jsou schopny tvořit molekulu dvouřetězcové RNA, kde alespoň jeden řetězec má na 3'-konci přesah tvořený 1 až 5 nukleotidy, (b) kombinování syntetizovaných řetězců RNA za podmínek, kdy se tvoří molekula dvouřetězcové RNA, která je schopna zprostředkovat cílově specifické úpravy nukleové kyseliny, zvláště RNA interferenci a/nebo metylaci DNA.
Způsoby syntézy molekul RNA jsou dobře známy v oboru.
Zvláště se uplatňují metody chemické syntézy popsané v publikaci Verma, S., and Eckstein, F. (1999). Modified oligonucleotides: Synthesis and stratégy or users. Annu. rev. Biochem. 67, 99-134.
Jednořetězcová RNA se může také připravit enzymatickou transkripcí ze syntetických templátových DNA a z DNA plazmidů izolovaných z rekombinantních bakterií. V typickém případě se používají fágové RNA polymerázy, jako je RNA polymeráza T7, T3 nebo SP6 (popisuje se v publikaci Milligan, J. F., and Uhlenbeck, 0. C. (1989) . Synthesis of smáli RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51-62).
Další předmětná věc vynálezu popisuje způsob zprostředkování cílově specifických úprav nukleové kyseliny, zvláště RNA interference a/nebo metylace DNA, v buňce nebo v organizmu. Uvedený způsob zahrnuje:
(a) kontakt buňky a organizmu s molekulou dvouřetězcové RNA podle vynálezu za podmínek, kde se mohou objevit cílově specifické úpravy nukleové kyseliny a (b) zprostředkování cílově specifické úpravy cílové nukleové kyseliny, která má část sekvence v podstatě odpovídající uvedené sekvenci RNA, ovlivněné dvouřetězcovou RNA.
Kontakt popsaný v odstavci (a) zahrnuje zavedení molekuly dvouřetězcové RNA do cílové buňky, například izolované cílové buňky, do buněčné kultury, do jednobuněčného mikroorganizmu nebo do cílové buňky nebo do velkého množství cílových buněk vícebuněčného organizmu. Je výhodné, aby zaváděcí krok zahrnoval zavedení zprostředkované nosičem, například pomocí lipozomálních nosičů nebo injekcí.
Způsob podle vynálezu se může použít za účelem stanovení funkce genu v buňce nebo v organizmu nebo dokonce při úpravě funkce genu v buňce nebo v organizmu, který je schopen zprostředkovat RNA interferenci. Buňka zahrnuje s výhodou eukaryontní buňku nebo buněčnou linii, jako například rostlinnou nebo zvířecí buňku, jako je savčí buňka, například zárodečná buňka. Dále se může použít například víceúčelová
kmenová buňka, nádorová buňka, jako je například buňka teratokarcinomu, nebo buňka infikována virem. Organizmem je s výhodou eukaryontní organizmus, například rostlina nebo zvíře, jako je savec, zvláště pak člověk.
Cílový gen, vůči kterému je molekula RNA podle vynálezu řízena, může být spojován s patologickým stavem. Genem může být gen spojovaný s patogenem, například virový gen, gen spojovaný s nádorem nebo gen spojovaný s autoimunitním onemocněním. Cílovým genem může také být heterologní gen exprimovaný v rekombinantní buňce nebo geneticky pozměněný organizmus. Stanovením nebo úpravou, zvláště pak inhibici, funkce takového genu a je možné dosáhnout hodnotné informace a terapeutických účinků v oblasti zemědělství nebo medicíny nebo veterinární medicíny.
Dvouřetězcová RNA se obvykle aplikovala jako farmaceutický prostředek. Aplikaci je možné provést známými způsoby, kdy se nukleová kyselina zavede do požadovaného cílové buňky in vitro nebo in vivo. Běžně používané metody transferu genu používají fosforečnan vápenatý, DEAE-dextran, elektroporaci a mikroinjekce a virové metody (popisuje se v publikaci Graham, F. L. and van der Eb, A. J. (1973) Virol. 52, 456, McCutchan, J. H. and Pagano, J. S. (1968), J. Nati. Cancer Inst. 41, 351, Chu, G. et al., (1987), Nucl. Acids Res. 15, 1311, Fraley, R. et al. (1980), J. Biol. Chem. 255, 10431, Capecchi, M. R. (1980), cell 22, 479). Pro zavedení DNA do buněk se dále mohou použít kationické lipozomy (popisuje se v publikaci Felgner, P. L. et al. (1987), Proč. Nati. Acad. Sci USA 84, 7413). Běžně dostupné přípravky kationických lipidů jsou například Tfx 50 (od firmy Promega) nebo Lipofectamin2000 (od firmy Life Technologies).
• · · ·
Vynález dále popisuje farmaceutický prostředek obsahující jako aktivní činidlo alespoň jednu molekulu dvouřetězcové RNA, jak se popisuje shora v textu, a farmaceutický nosič. Prostředek je možné použít při diagnostických a terapeutických aplikacích v lidské nebo veterinární medicíně.
V případě diagnostické a terapeutické aplikace může být prostředek ve formě roztoku, například roztok, který se zavádí injekcí, ve formě krému, masti, tablet, suspenze a podobně. Prostředek je možné aplikovat libovolným vhodným způsobem, například injekcí, orálně, povrchově, nasálně, rektálně atd.. Nosičem může být libovolný vhodný farmaceutický nosič. Je výhodné použít nosič, který je schopný zvýšit účinnost vstupu molekul RNA do cílových buněk. Vhodné příklady takových nosičů jsou liposomy, zvláště kationické liposomy. Zvláště výhodný způsob aplikace je injekce.
Další výhodnou aplikací RNAi je funkční analýza eukaryontních buněk nebo eukaryontního organizmu, kterým není člověk, s výhodou savčích buněk nebo savců a nejvýhodněji lidských buněk, například buněčné linie, jako je HeLa nebo 293, nebo hlodavců, například krys a myší. Specifický genotyp cílové buňky, například v buněčné kultuře nebo v cílovém organizmu, vzniklý na základě zhášení genů, je možné získat transfekci vhodných molekul dvouřetězcové RNA, které jsou homologní s předem stanoveným cílovým genem nebo s molekulou DNA, která kóduje vhodnou molekulu dvouřetězcové RNA. Překvapivě se zjistilo, že přítomnost molekul krátké dvouřetězcové RNA nevede k interferonové odezvě ze strany hostitelské buňky nebo organizmu.
Předmětnou věcí podle vynálezu je eukaryontní buňka nebo eukaryontní organizmus, kterým není člověk, vykazující fenotyp vzniklý na základě zhasnutí cílového genu. Uvedený fenotyp • · · · zahrnuje alespoň částečně deficitní expresi alespoň jednoho endogenního cílového genu, kde uvedená buňka nebo organizmus se transfekuje alespoň jednou molekulou dvouřetězcové RNA schopnou inhibovat expresi alespoň jednoho endogenního cílového genu nebo je možná transfekce DNA kódující alespoň jednu molekulu dvouřetězcové RNA schopné inhibovat expresi alespoň jednoho endogenního cílového genu. Je nutné poznamenat, že vynález umožňuje cílově specifickou deaktivaci několika různých endogenních genů na základě specifity RNAi.
Fenotypy buněk nebo organizmu, kterým není člověk, zvláště pak lidských buněk nebo savců, kterým není člověk, způsobené deaktivací specifických genů, se mohou použít v analytických postupech, jako je například funkční a/nebo fenotypická analýza komplexních fyziologických postupů, jako je analýza profilů exprese genů a/nebo proteomů. Je možné například připravit fenotypy deaktivovaných lidských genů v buněčných kulturách, o nichž se předpokládá, že jsou pravděpodobně regulátory alternativních procesů sestřihu. Mezi tyto geny zvláště patří rodina faktoru sestřihu SR, jako například ASF/SF2, SC35, SRp20, SRp40 nebo SRp55. Může se zkoumat účinek proteinů SR na profily mRNA předem stanovených alternativně sestřižených genů, jako je CD44. Analýza se přednostně provádí metodou za použití čipů založených na oligonukleotidech.
Použitím technologie založené na deaktivaci genů pomocí RNAi je možné inhibovat expresi endogenního cílového genu v cílové buňce nebo organizmu. Endogenní gen může být doplněn exogenní cílovou nukleovou kyselinou kódující cílový protein nebo jeho variantu nebo jeho mutovanou formu, například gen nebo cDNA, která může fúzovat s další sekvencí nukleové kyseliny kódující detekovatelný peptid nebo polypeptid, například afinitní značení, zvláště pak vícenásobné afinitní značení. Varianty nebo mutované formy cílového genu se liší od » · · ·
endogenního cílového genu tím, že kódují genový produkt, který se liší od produktu endogenního genu substitucí, inzercí a/nebo delecí jedné nebo více aminokyselin. Varianty nebo mutované formy mohou vykazovat stejnou biologickou aktivitu jako endogenní cílový gen. Na druhou stranu varianta nebo mutovaný cílový gen mohou také mít biologickou aktivitu, která se liší od biologické aktivity endogenního cílového genu, například částečně deletovanou aktivitu, zcela deletovanou aktivitu, zesílenou aktivitu atd..
Komplementace je možné dosáhnout společnou expresí polypeptidu kódovaného exogenní nukleovou kyselinou, například fúzní protein obsahující cílový protein a afinitní značení a molekulu dvouřetězcové RNA vhodnou pro deaktivaci endogenního genu v cílové buňce. Tato společná exprese se provede použitím vhodného expresívního vektoru, který exprimuje polypeptid kódovaný exogenní nukleovou kyselinou, například cílový protein upravený značkou a molekulu dvouřetězcové RNA. V jiném případě lze použit kombinování expresívních vektorů. Proteiny a proteinové komplexy, které se nově syntetizují v cílové buňce, budou obsahovat exogenní produkt genu, například upravený fúzní protein. Za účelem zabránit potlačení exprese exogenního produktu genu duplexovou molekulou RNAi, je možné změnit nukleotidovou sekvenci kódující exogenní nukleovou kyselinu na úrovni DNA (může dojít k mutacím na úrovni aminokyselin nebo k ní dojít nemusí) v té části, která je homologní s molekulou dvouřetězcové RNA. V jiném případě endogenní cílový gen se může doplnit odpovídající nukleotidovou sekvencí z jiných živočišných druhů, například z myši.
Výhodné aplikace pro buňku nebo organizmus podle vynálezu je analýza profilů exprese genů a/nebo proteomů. Ve zvláště výhodném provedení vynálezu se provádí analýza varianty nebo mutované formy jednoho nebo více cílových proteinů, kde uvedená varianta nebo mutovaná forma jsou znovu zavedeny do buňky nebo organizmu exogenní cílovou nukleovou kyselinou, jak se popisuje shora v textu. Kombinace deaktivace endogenního genu a částečné aktivace použitím mutovaného, například částečně deletovaného exogenního cíle, je výhodné ve srovnání s použitím buňky s deaktivovanými geny. Tato metoda je zvláště vhodná při identifikaci funkčních oblastí cílového proteinu. Ve výhodném provedení vynálezu se provádí porovnání například profilů exprese genů a/nebo proteomů a/nebo fenotypické charakteristiky alespoň dvou buněk nebo organizmů. Tyto organizmy se vybraly ze skupiny zahrnující:
(i) kontrolní buňku nebo organizmus bez inhibice cílového genu, (ii) buňku nebo organizmus s inhibicí cílového genu a (iii) buňku nebo organizmus s inhibicí cílového genu plus komplementací cílového genu pomocí exogenní cílové nukleové kyseliny.
Způsob a buňka podle vynálezu jsou také vhodné při identifikaci a/nebo charakterizaci farmakologických činidel, například při identifikaci nových farmakologických činidel ze skupiny testovaných látek, a/nebo mechanizmů charakterizujících působení a/nebo vedlejší účinky známých farmaceutických činidel.
Vynález dále popisuje systém vhodný pro stanovení a/nebo charakterizaci farmaceutických činidel, které působí na alespoň jeden cílový protein. Uvedený systém zahrnuje:
(a) eukaryontní buňku nebo organizmus, kterým není člověk, schopný exprimovat alespoň jeden endogenní cílový gen kódující uvedený cílový protein, • ·
* « · · (b) alespoň jednu molekulu dvouřetězcové RNA schopnou inhibovat expresi uvedeného alespoň jednoho endogenního cílového genu a (c) testovanou látku nebo skupinu testovaných látek, kde jsou identifikovány a/nebo charakterizovány farmakologické vlastnosti uvedené testované látky nebo skupiny testovaných látek.
Systém popsaný shora v textu s výhodou obsahuje:
(d) alespoň jednu exogenní cílovou nukleovou kyselinu kódující cílový protein nebo jeho variantu nebo jeho mutovanou formu, kde uvedená exogenní cílová nukleová kyseliny se liší od endogenního cílového genu na úrovni nukleové kyseliny tak, že exprese exogenní cílové nukleové kyseliny je podstatně méně inhibována molekulou dvouřetězcové RNA než exprese endogenního cílového genu.
Způsob komplementace RNA s deaktivovanými geny je možné použít pro preparativní účely, například afinitní čištění proteinů nebo proteinových komplexů z eukaryontních buněk, zvláště savčích buněk a lidských buněk. V tomto provedení vynálezu exogenní cílová nukleová kyselina s výhodou kóduje cílový protein, který fúzuje s afinitním značením.
Preparativní metodu je možné použít při čištění proteinových komplexů s vysokou molekulovou hmotností, které s výhodou vykazují molekulovou hmotnost vyšší nebo rovnou 150 000 a výhodněji vyšší nebo rovnou 500 000 a které mohou obsahovat nukleové kyseliny, jako je RNA. Specifické příklady jsou heterotrimerické proteinové komplexy obsahující proteiny částic U4/U6 snRNP s molekulovou hmotností 20 000, 60 000 a 90 000, faktor sestřihu SF3b pocházející z 17S U2 snRNP obsahující 5 proteinů o molekulové hmotnosti 14 000, 49 000,
120 000, 145 000 a 155 000 a částice 25S U4/U6/U5 tri-snRNP ♦ * ··* 4 * » ···· * · · · · » » · « « • · · » » « • · · · · · * · · » · · « obsahující molekuly snRNA U4, U5 a U6 a přibližně 30 proteinů, které vykazují molekulovou hmotnost přibližně 1 700 000 000.
Tato metoda je vhodná pro funkční analýzu proteomu v savčích buňkách, zvláště v lidských buňkách.
Přehled obrázků na výkrese
Na obrázku č. 1 je zobrazena dvouřetězcové RNA obsahující 38 párů baží, která může zprostředkovat RNAi.
A) Grafické zobrazení dsRNA používané k cílení mRNA Pp-luc. Připravily se tři série dsRNA s tupými konci překrývající rozmezí 29 až 504 párů baží. Poloha prvního nukleotidu 3',5'řetězce dsRNA se stanoví ve vztahu ke startovacímu kodonu mRNA PP-luc (pl).
B) Zobrazení testu RNA interference (popisuje se v publikaci
Tuschl, T., Zámoře, P. D., Lehmann, R., Bartel, D. P. and Sharp, P. A. (1999). Targeted mRNA degradation by doublestranded RNA in vitro. Genes & Dev. 13, 3191-3197). Poměr aktivity cílového Pp-luc ku aktivitě kontrolního Rr-luc se normalizoval vůči kontrolnímu pufru (plný sloupec). Dvouřetězcové RNA (v koncentraci 5 nM) se předem inkubovaly v lyzátu organizmu Drosophila po dobu 15 minut při teplotě 25 °C a pak se přidaly mRNA Pp-luc s čepičkou 7-metylguanosin a Rr-luc (v koncentraci přibližně 50 pM). Inkubace pokračovala další hodinu a pak proběhla analýza duálním luciferázovým testem (od firmy Promega). Data jsou průměrné hodnoty alespoň ze čtyř nezávislých experimentů ± standardní odchylka.
Na obrázku č. 2 zobrazuje dsRNA obsahující 29 párů baží, která se dále nezpracovává na fragmenty obsahující 21 až 23 nukleotidů a časový průběh tvorby 21 až 23-méru při zpracování dsRNA (v koncentraci 5 nM) vnitřně značených pomocí 32P. Uvádí » · • a · «
se délka a zdroj dsRNA. Markér velikosti RNA (M) se nanesl do levé dráhy a označuje se velikost fragmentů. Dvojité pruhy v čase 0 jsou způsobeny neúplně denaturovanou dsRNA.
Na obrázku č. 3 je zobrazeno, že krátké dsRNA štěpí cílovou mRNA pouze jednou.
(A)
Denaturační gelové elektroforézy stabilně štěpených produktů připravených inkubací po dobu 1 hodiny 3',5'řetězce nebo 5',3'řetězce RNA s čepičkou značenou 32P v koncentraci 10 nM s 10 nM dsRNA sérií pl33 lyzátu organizmu Drosophila. Markéry délky se vytvořily částečným štěpením za použití nukleázy Tl a částečnou alkalickou hydrolýzou (OH) cílové RNA značená čepičkou. Oblasti cílené dsRNA jsou indikovány jako černé pruhy na obou stránách obrázku. Je také zobrazen mezerník obsahující 20 až 23 nukleotidů mezi převládajícími místy štěpení v případě dsRNA obsahující 111 párů baží.
(B)
Horizontální šipka způsobené RNAi.
Poloha míst štěpení označuje nespecifické štěpení na 3',5' řetězci a 5',3'řetězci cílové RNA. Sekvence 3',5'řetězce cílové RNA obsahující 177 nukleotidů s čepičkou a 5',3'řetězce cílové RNA obsahující 180 nukleotidů s čepičkou jsou reprezentovány v antiparalelní orientaci tak, že komplementární sekvence stojí proti sobě. Oblast cílená různými dsRNA je označena barevnými sloupci umístěnými mezi cílovou sekvencí 3',5' a 5',3' řetězců. Místa štěpení jsou označeny kroužky. Velký kruh znamená silné štěpení, malý kroužek znamená slabé štěpení. Fosfátová skupina značená hvězdičkou.
P je označena
Na obrázku č. 4 je zobrazena tvorba fragmentů RNA tvořených 21 a 22 nukleotidy mechanizmem podobným štěpení Rnázou III.
(A) klonovaly a pocházej ící
Sekvence RNA obsahující 21 nukleotidů po zpracování dsRNA. Fragmenty RNA obsahující přibližně 21 nukleotidů vytvořené zpracováním dsRNA se přímo sekvenovaly. Oligoribonukleotidy z pozitivního řetězce dsRNA jsou značeny jako modré linky. Oligoribonukleotidy pocházející z negativního řetězce jsou značeny jako červené linky. Silné linky se používají, jestliže ve více klonech jsou přítomny stejné sekvence, přičemž čísla na pravé straně obrázku značí frekvenci výskytu. Místa štěpení cílové RNA zprostředkovaná pomocí dsRNA jsou značena jako oranžové kroužky. Velké kroužky značí místa pro silné štěpení, malé kroužky značí místa pro slabá štěpení (zobrazeno na obrázku č. 3B) . Kroužky nad 3',5' řetězcem označovaly místa štěpení v 3',5'řetězce a kroužky na druhé straně dsRNA označují místa štěpení 5',3' řetězce. Až pět dalších nukleotidů se identifikovalo ve fragmentech obsahujících přibližně 21 nukleotidů získaných z 3' konce dsRNA. Tyto nukleotidy jsou náhodnou kombinací převážně zbytků C, G, nebo A a přidaly se s velkou pravděpodobností během T7 transkripce řetězce, které se skládají z dsRNA.
Na obrázku je zobrazena dvourozměrná analýza TLC složení nukleotidů RNA obsahujících přibližně 21 nukleotidů. mRNA obsahující 21 nukleotidů se vytvořila inkubací dsRNA Ppluc o velikosti 504 párů baží značená radioaktivně v lyzátu organizmu Drosophila, dále se čistila na gelu a pak se štěpila na mononukleotídy nukleázou PÍ (horní řádek) nebo ribonukleázou T2 (spodní řádek). Dvouřetězcové RNA se radioaktivně značila uvnitř transkripcí za přítomnosti jednoho nukleosídtrifosfátů. Radioaktivita zobrazením na základě detekce fosforu. Nukleosid-5'monofosfáty, nuklosid-3'-monofosfáty, nukleosid-5', 3 ' difosfáty a anorganický fosfát jsou značeny jako pN, Np, z uvedených a-32P se detekovala «· «»·»
·· v * · »· β · οιι · * pNp a pi. Černé kruhy označují body, které absorbují UV záření z neradioaktivních nosičových nukleotidů. 3', 5'bis-fosfáty (červený kruh) se identifikovaly společnou migrací s radioaktivně značenými standardy připravenými 5'-fosforylací nukleosid-3'-monofosfátů s polynukleotidovou kinázou T4 a y-32P-ATP.
Na obrázku č. 5 je znázorněno štěpení cílové RNA zprostředkované RNA obsahující 21 a 22 nukleotidy.
(A) Obrázek zobrazuje kontrolní dsRNA obsahující 52 párů baží a syntetickou dsRNA obsahující 21 a 22 nukleotidů. 3',5' řetězec obsahující 21 a 22 nukleotidů interferující RNA (siRNA) je označen modře, 5',3'řetězec je onačen červeně. Sekvence siRNA se získaly klonováním fragmentů dsRNA o velikosti 52 a 111 párů baží (zobrazeno na obrázku č. 4A) s výjimkou 5',3'řetězce duplexu 5, který obsahuje 22 nukleotidů. SiRNA v duplexu 6 a 7 vznikají pouze reakcí při zpracování dsRNA o velikosti 111 párů baží. Dva nukleotidy přesahu 3'konce označené zeleně jsou přítomny v sekvenci syntetického 5',3' řetězce duplexů 1 a 3. Oba řetězce kontrolní dsRNA obsahující 52 párů baží se připravily transkripcí in vitro a frakce transkriptů mohou obsahovat navíc nukleotidy na 3'-konci, které nejsou obsaženy v templátu. Místa štěpení cílové RNA řízená duplexy siRNA jsou značena jako oranžové kroužky (legenda k obrázku č. 4A) a jsou určeny v polohách zobrazených na obrázku č. 5.
(B) Poloha míst štěpení na pozitivní a negativní cílové RNA.
Cílové sekvence RNA jsou ty popsané na obrázku č. 3B. Kontrolní dsRNA obsahující 52 párů baží (10 nM) nebo duplexy RNA 1 až 7 obsahující 21 a 22 nukleotidů (v koncentraci 100 nM) se inkubovaly s cílovou RNA po dobu 2,5 hodiny při teplotě 25 °C v lyzátu organizmu
Drosophila. Stabilní produkty štěpené na 5'-konci se ·· ···· ···· ··· oddělily na gelu. Místa štěpení jsou uvedena na obrázku č. 5A. Oblast cílená dsRNA obsahující 52 párů baží nebo 3',5' (s) nebo 5' ,2' (as) řetězce jsou označeny černými sloupci na jedné straně gelu. Místa štěpení jsou všechna umístěna v oblasti, která je shodná s dsRNA. Za účelem přesného stanovaní míst štěpení 3 ',5' řetězce se použil méně koncentrovaný gel.
Obrázek č. inhibují RNAi.
Dlouhé přesahy na 3-konci krátké dsRNA (A) Obrázek zobrazuje konstrukce dsRNA obsahující 52 párů baží. Extenze 3-konce 3',5' a 5, 3 řetězce jsou označeny modře a červeně. Pozorovaná místa štěpení na cílové RNA jsou označena jako oranžové kroužky, podobně jako na obrázku č. 4A a byly stanoveny stejně, jak je zobrazeno na obrázku č. 6B.
(B) Obrázek zobrazuje polohu míst štěpení na 3,5 a 5,3' šetězci cílové RNA. Cílové sekvence RNA jsou stejné, jako se popisuje na obrázku č. 3B. Dvouřetězcová RNA (10 nM) se inkubovala s cílovou RNA po dobu 2,5 hodiny při teplotě 25 °C v lyzátu organizmu Drosophila. Hlavní místa štěpení jsou označena horizontální šipkou a také jsou uvedeny na obrázku 6A. Oblast cílená dsRNA obsahující 52 párů baží je značena černými tlustými čarami na obou stranách gelu.
Obrázek č. 7 zobrazuje navržený model RNAi zpracováním dsRNA řetězec je značen
Předpokládá se, že RNAi začíná (3', 5'řetězec je značen černě a 5,3' červeně) na převládající krátké interferující RNA obsahující 21 a 22 nukleotidů (siRNA). Nukleotidy krátkého přesahu 3konce, jestliže jsou přítomny v dsRNA, mohou být výhodné pro zpracování krátkých dsRNA. Proteiny zpracovávající dsRNA, které je nutné charakterizovat, jsou znázorněny jako zelené a
modré ovály a jsou uspořádány v dsRNA asymetricky. V našem modelu tuto skutečnost znázorňuje navázání hypotetického modrého proteinu nebo oblasti proteinu na řetězec siRNA ve směru od 3'konce k 5'konci, zatímco hypotetický zelený protein nebo oblast proteinu se vždy váže na opačný řetězec siRNA. Tyto proteiny nebo sada zůstává spojena s duplexem siRNA a chrání jeho orientaci, jak se stanoví směrem zpracování dsRNA. Pouze sekvence siRNA spojená s modrým proteinem je schopna řídit štěpení cílové RNA. Endonukleázový komplex se popisuje jako malý interferující ribonukleoproteinový komplex nebo siRNP. Předpokládá se, že endonukleázy, které štěpí dsRNA mohou také štěpit cílovou RNA, pravděpodobně dočasným nahrazením pasivního řetězce siRNA, kterého nelze použít při rozeznávání cíle. Cílová RNA se pak štěpí v centru oblasti rozeznávané siRNA komplementární s uvedenou sekvencí.
Na obrázku č. 8 jsou zobrazeny konstrukce reportéru a duplexy siRNA.
(A) Na obrázku jsou zobrazeny oblasti reportního genu luciférázy světlušek (Pp-luc) a Renilla reniformis (Rrluc) z plazmidů pGL2-Control, pGL-3-Control a pRL-TK (od firmy Promega). Označeny jsou regulační elementy SV40, promotor thymidinové kinázy HSV a dva introny (čáry). Sekvence luciférázy GL3 je s 95 % shodná s GL2, ale oblast RL je zcela odlišná. Exprese luciférázy z pGL2 je v transfekovaných savčích buňkách přibližně desetkrát menší než v případě luciferáza z pGL3. Oblast cílená duplexy siRNA je značena jako černá linka pod kódující oblastí genů luciférázy.
(B) Na obrázku jsou zobrazeny (horní) sekvence 3',5' a 5',3' řetězce (spodní) duplexů siRNA cílené na GL2, GL3 a RL luciférázy. Duplexy siRNA GL2 a GL3 se liší substitucí pouze 3 jednotlivých nukleotidů (v šedivém rámečku). Jako nespecifická kontrola se syntetizoval duplex s obrácenou • · · · · ···· • · · · ··· ·· · ·· ·· sekvencí GL2 (invGL2). Přesah 3'konce obsahující 2 nukleotidy 2'-deoxytymidin je označen jako TT. uGL2 je podobná GL2 siRNA, ale obsahuje ribo-uridinové přesahy 3'-konce.
Na obrázku č. 9 je zobrazena interference RNA pomocí duplexů siRNA. Poměry cílové kontrolní luciferázy se normalizovaly vůči kontrolnímu pufru (sloubce označené bu a černé sloupce). Šedé sloupce značí poměry (Pp-luc) GL2 organizmu Photinus pyralis nebo luciferáza GL3 Renilla reniformis (Rr-luc) (levá osa). Bílé sloupce indikují poměr RL ku GL2 ku GL3 (pravá osa) . Panely a, c, e, g, a i popisují experimenty provedené v kombinaci plazmidu pGL2-Control a reportního plazmidu pRL-TK. Panely a, c, e, g, a i popisují experimenty provedené kombinací plazmidu pGL3-Control a reportního plazmidu pRL-TK. Buněčná linie používaná v případě experimentu interference je označena na vrcholu každého grafu. Poměry Pp-luc/Rr-luc v případě kontroly tvořené pufrem (bu) kolísá mezi 0,5 a 10 v případě pGL/pRL a mezi 0,03 a 1 v případě pGL/pRL před normalizací a mezi různými testovanými buněčnými liniemi. Vynesená data jsou průměrné hodnoty tří nezávislých experimentů ± standardní odchylka.
Na obrázku č. 10 jsou zobrazeny účinky siRNA obsahující 21 nukleotidů, dsRNA obsahující 50 a 500 párů baží na expresi luciferázy v buňkách HeLa.
Přesná délka dsRNA je uvedena pod sloupci. Panely a, c a e popisují experimenty uskutečněné s plazmidem pGL2-Control a reportním plazmidem pRL-TK. Panely b, d a f popisují experimenty uskutečněné s plazmidem pGL2-Control a reportním plazmidem pRL-TK. Data jsou průměrné hodnoty dvou nezávislých experimentů ± standardní odchylka. Grafy (a), (b) zobrazují absolutní expresi Pp-luc, vynesenou v libovolných jednotkách luminiscence. Graf (c) , (d) znázorňuje expresi vynesenou v libovolných jednotkách luminiscence. Graf (e) , (f) znázorňuje poměr normalizovaného cíle ku kontrolní luciferáze. Poměry aktivity luciferázy v případě duplexů siRNA se normalizoval vůči kontrolnímu pufru (bu, černý sloupec). Poměry luminiscence v případě dsRNA obsahující 50 nebo 500 párů baží se normalizovaly vůči poměrům pozorovaným v případě dsRNA, která zahrnuje 50 a 500 bp, z humanizovaného GFP (hG, černé sloupce) . Mělo by se poznamenat, že všechny rozdíly v sekvencích mezi dsRNA obsahující 49 a 484 párů baží cílící GL2 a GL3 nejsou dostatečné k propůjčení specifity mezi cíly GL2 a GL3 (v segmentu obsahujícím 49 párů baží se shoduje 43 nukleotidů, 239 nukleotidů se shoduje v segmentu obsahujícím 484 párů baží).
Obrázek č. 11 znázorňuje různé přesahy 3'-konce duplexů siRNA obsahující 21 nukleotidů.
(A) Návrh strategie experimentu. Obrázek znázorňuje polyadenylovanou cílovou mRNA s čepičkou a relativní polohy v 3',5' a 5',3'řetězci siRNA. Připravilo se osm sérií duplexů podle osmi různých 5',3' řetězců. Sekvence siRNA a počet přesahujících nukleotidů se měnil v krocích po jednom nukleotidu.
(B) Obrázek znázorňuje normalizovanou relativní luminiscenci cílové luciferázy (Photinus pyralis, Pp-luc) vůči kontrolní luciferáze (Renila reniformis, Rr-luc) v lyzátu embryí organizmu D. melanogaster v přítomnosti 5 nM dsRNA s tupými konci.
v přítomnosti dsRNA se získanému pro kontrolní
Poměry luminiscence stanovené normalizovaly vůči poměru pufr (bu, černý sloupec). Normalizované poměry menší než 1 indikují specifickou interferenci.
normalizované
Obrázky (c) interference až (j) znázorňují poměry osmi sérií duplexů siRNA obsahujících 21 nukleotidů. Sekvence duplexů siRNA je znázorněna shora v textu ve sloupcových grafech. Každý panel ukazuje poměr interference v případě sady duplexů tvořených daným 5', 3'řetězcem siRNA a pěti různými 3',5'řetězci siRNA. Počet přesahujících nukleotidů (přesahy na 3'-konci, pozitivní čísla, přesahy na 5'konci, negativní čísla) jsou označeny na ose x. Vynesená data jsou průměrem alespoň 3 nezávislých experimentů. Chyby reprezentují standardní odchylky.
Obrázek č. 12 znázorňuje variace délky 3',5'řetězce duplexů siRNA.
Obrázek (A) znázorňuje experiment. Tři 5',3'řetězce obsahující 21 nukleotidů se párují s osmi 3',5'řetězci siRNA. V případě siRNA se změnila délka jejich 3'-konce. Přesah 3'-konce 5',3' řetězce siRNA tvoří 1 nukleotid (B) , 2 nukleotidy (C) nebo 3 nukleotidy (D), zatímco přesah 3',5'řetězce siRNA se mění v případě každé série. Jsou označeny sekvence duplexů siRNA a odpovídající poměry interference.
Obrázek č. 13 znázorňuje variace délky duplexů siRNA s chráněnými přesahy 3'-konce obsahující 2 nukleotidy.
Obrázek (A) znázorňuje experiment. Duplex siRNA obsahující 21 nukleotidů vykazuje shodnou sekvenci se sekvencí zobrazenou na obrázku č. 11H nebo 12C. Duplexy siRNA se prodloužily na 3'-konci 3',5'řetězce siRNA (B) nebo na 5'-konci 3',5'řetězce siRNA (C).
Obrázek č. 14 znázorňuje substituci 2'-hydroxylových skupin ribózových zbytků siRNA.
2'-hydroxylová skupiny (OH) v řetězcích duplexů siRNA se nahradily 2'-deoxyskupinou označenou (d) nebo 2'-O-metylovou skupinou označenou (Me). 2'-deoxyubstituce 2 a 4 nukleotidů na 3'-koncích jsou označeny jako 2-nt d respektive 4-nt d. Zbytek uridin je nahrazen 2'-deoxytymidinem.
• · ··· ···· ···· · · · ·· · ·· ··
Obrázek č. 15 zobrazuje mapováni štěpení 3',5' a
5',3'řetězců cílové RNA duplexy siRNA obsahující 21 nukleotidů s přesahy na 3'-konci obsahujícími 2 nukleotidy.
(A) Grafické znázornění 3',5' a 5',3'řetězců RNA a duplexů siRNA s čepičkou značenou 32P (hvězdička). Poloha štěpení 3',5' a 5',3'řetězců cílové RNA je označena trojúhelníky nad a pod duplexy siRNA.
(B) Mapování míst štěpení cílové RNA. Po dvou hodinách inkubace 10 nM cílové nukleové kyseliny se 100 nM duplexem siRNA v lyzátu embryí organizmu D. melanogaster se substrát značený na 5'-konci čepičkou a produkty štěpené na 5'-konci rozdělily v sekvenačních gelech. Markéry délky se vytvořily částečným štěpením za použití RNázy TI (TI) a částečnou alkalickou hydrolýzou (OH-) cílové RNA. Tlusté čáry na levé straně znázorňují oblast krytou řetězci siRNA 1 a 5 se stejnou orientací jako je cíl.
Obrázek č. 16 znázorňuje 5'-konec řídící siRNA, který definuje polohu štěpení cílové RNA.
Obrázky (A), (B) znázorňují strategii experimentu.
5',3'řetězec siRNA byl stejný jako ve všech duplexech siRNA, ale počet nukleotidů v 3',5' řetězci kolísal mezi 18 až 25 podle změn 3'-konce (A) nebo mezi 18 až 23 nukleotidy při změnách 5'-konce (B) . Poloha štěpení na 3 ',5' a 5',3'řetězcích cílové RNA je označena trojúhelníky nad a pod duplexy siRNA. Obrázek (C) a (D) zobrazuje analýzu štěpení cílové RNA za použití 3',5' (horní panel) nebo 5',3' řetězce (spodní panel) cílové RNA značené čepičkou. Jsou zobrazeny pouze produkty štěpení na 5'-konci značené čepičkou. Jsou označeny sekvence duplexů a délka 3',5' řetězců siRNA je uvedena v horní části panelu. Kontrolní dráha značená čárkami v panelu (C) ukazuje cílovou RNA inkubovanou v nepřítomnosti siRNA. Použití markéry jsou ty popsané na obrázku č. 15. Šipky ve spodní části panelu
D ukazují místa štěpení cílové RNA, které se liší o jeden nukleotid.
Obrázek č. 17 zobrazuje variace sekvence přesahu 3'-konce duplexů siRNA. Přesah na 3'-konci tvořený 2 nukleotidy (NN, v šedé barvě) se změnil sekvencí a uspořádáním, jak je uvedeno (T, 2'-deoxytymidin, dG, 2'-deoxyguanosin, hvězdička, duplex siRNA divokého typu). Normalizované poměry interferencí se stanovily způsobem popsaným na obrázku č. 11. Sekvence divokého typu je stejná, jako je znázorněno na obrázku č. 14.
Obrázek č. 18 znázorňuje sekvenční specifitu rozeznávání cíle. Sekvence nesprávně párovaných duplexů siRNA, upravených segmentů sekvence nebo jednotlivých nukleotidů jsou podtrženy šedou barvou. Referenční duplex (ref) a duplexy siRNA 1 až 7 obsahují 2'-deoxytymidinové přesahy v délce 2 nukleotidů. Účinnost deaktivace referenčního duplexu upraveného tymidinem je srovnatelná se sekvencí divokého typu (obrázek č. 17). Normalizované poměry interference jsou stejné jako ty uvedené na obrázku č. 11.
Obrázek č. 19 znázorňuje variace délky duplexů siRNA se zachovanými přesahy na 3'-konci obsahujícími 2 nukleotidy.
Duplexy siRNA se prodloužily ve směru 3'-konce 3 ',5'konce siRNA (A) nebo ve směru 5'-konce 3',5'řetězce siRNA (B). Označeny jsou sekvence duplexu siRNA a poměry interference. V případě buněk HeLa SS6 se duplexy siRNA (v množství 0,84 pg) cílených na luciferázu GL2 se transfekovaly spolu s plazmidy pGL2-Control a pRL-TK. Za účelem porovnání se označily aktivity RNAi in vitro duplexů siRNA testovaných v lyzátu organizmu D. melanogaster.
Příklady provedení vynálezu • « • · · · · ·
Příklad 1: Interference syntetickými
1.1. Experimentální postupy
1.1.1 RNAi in vitro
RNA
RNA zprostředkovaná malými
RNAi in vitro a příprava lyzátů se provedly postupem popsaným dříve v textu (popisuje se v publikaci Tuschl, T., Zámoře, P. D., Lehmann, R. , Bartel, D. P. and Sharp, P. A. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Dev. 13, 3191-3197, Zámoře, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33). Důležité je použití čerstvě rozpuštěné kreatinové kinázy (od firmy Roche) pro optimální regeneraci ATP. Testy translace RNAi (Obrázek č. 1) se provedly s dsRNA v koncentraci 5 nM. Prodloužila se doba pre-inkubace na 15 minut, probíhá při teplotě 25 °C a pak se přidala in vitro transkribovaná, polyadenylovaná mRNA Pp-luc s čepičkou a reportní mRNA Rr-luc. Inkubace pokračovala po dobu jedné hodiny a analyzovalo se relativní proteinu Pp-luc a Rr-luc za použití duálního luciferázového testu (od firmy Promega) a luminometru Monolight 3010C (PharMingen) .
1.1.2 Syntéza RNA
Za účelem in vitro transkripce RNA z PCR templátů, které nesou promotorové sekvence T7 nebo SP6 (popisuje se v publikaci Tuschl, T., Sharp, P. A. and Bartel, D. P. (1998). Selection in vitro of novel ribozymes from a partially randomized U2 and U6 snRNA library. EMBO J. 17, 2637-2650) se použily standardní postupy. Syntetická RNA se připravila použitím fosforamiditů expediční RNA (od firmy Proligo).
Oligonukelotidový 3adaptér se syntetizoval za použití dimetoxytrityl-1, 4-benzendimetanolsukcinylaminopropyl-CPG.
Z oligoribonukleotidů se odstranila ochrana ve 3 ml 32% směsi amoniak/etanol (v poměru 3/1) po dobu 4 hodin při teplotě 55°C (expediční RNA) nebo po dobu 16 hodin při teplotě 55 °C (chimérické oligonukleotidy 3'a 5'adaptorové DNA/RNA) a pak se odstranil silyl a provedla se izolace na gelu, jak se popisuje v publikaci Tuschl, T., Ng, Μ. M., Pieken, W., Benseler, F., and Eckstein, F. (1993). Importance of exocyclic base functional groups of centrál core guanosines for hammerhead ribozyme activity. Biochemistry 32, 11658-11668. Transkripty
RNA pro přípravu dsRNA zahrnující dlouhé přesahy 3-konce se vytvořily z PCR templátu, který obsahoval promotor T7 ve směru 3 -5 a promotor SP6 ve směru 5-3. Templáty transkripce pro 3',5' a 5, 3řetězce cílové RNA se amplifikovaly za použití 5-primeru GCGTAATACGACTCACTATAG AACAATTGCTTTTACAG (podtržený promotor T7) a 3'-primeru ATTTAGGTGACACTATAGGCATAAAGAATTGAAGA (podtržený promotor SP6) a linearizovaný plazmid Pp-luc se použil jako templát (popisuje se , Zámoře, P. D. , Lehmann, R., Bartel, D.
(sekvence pGEM-luc) v publikaci Tuschl, T P. and Sharp, P. A (1999:
Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Dev. 13, 3191-3197).
3,5'řetězec RNA přepsáný pomocí T7 obsahoval 177 nukleotidů se sekvencí Pp-luc mezi pozicemi 113 a 273 vztaženo ke startovacímu kodonu a pak následuje 17 nukleotidů doplňku sekvence promotoru SP6 na 3'-konci. Transkripty pro přípravu dsRNA s tupým koncem se připravily traskripcí ze dvou různých produktů PCR, které obsahují pouze jedinou promotorovou sekvenci.
Teplotní hybridizace dsRNA se provedla za použití extrakce směsí fenol/chloroform. Ekvimolární koncentrace 3,5 řetězce a 5',3' řetězce RNA (50 nM až 10 μΜ v závislosti na délce a dostupném množství) v 0,3 M NaOAc (pH 6) se inkubovaly po dobu • · * · · ·«·« * · ···· • · · · · * · ·· * • · ·»· · · · sekund při teplotě 90 °C a pak se extrahovala při teplotě místnosti se stejným objemem směsi fenol/chloroform a pak následuje extrakce chloroformem, aby se odstranil zbytkový fenol. Výsledná RNA se srážela přidáním 2,5 až 3 objemy etanolu. Pelet se rozpustil v lyzačním pufru (100 mM KC1, 30 ml HEPES-KOH, pH 7,4, 2 mM Mg(OAc)2 a kvalita dsRNA se ověřila standardní elektroforézou na agarózovém gelu v lx koncentrovaném pufru TAE. Dvouřetězcová RNA obsahující 52 párů baží s přesahy 3'-konců, které obsahují 17 a 20 nukleotidů (obrázek č. 6) se teplotně hybridizovaly inkubací po dobu 1 minuty při teplotě 95 °C. Směs se pak rychle ochladila na teplotu 70 °C a nechala se pomalu chladnout na teplotu místnosti po dobu 3 hodin (50 μί reakci pro teplotní hybridizaci, řetězec v koncentraci 1 μΜ, 300 mM NaCl, 10 mM Tris-HCl, pH 7,5). Dvouřetězcová RNA se pak extrahovala ve směsi fenol/chloroform, srážela se etanolem a rozpustila se v lyzačním pufru.
Transkripce RNA, která je vnitřně radioaktivně značená pomocí 32P a používá se pro přípravu dsRNA (obrázky č. 2 a 4), se provedly za použití lmM ATP, CTP, GTP, 0,1 nebo 0,2 mM UTP a 0,2 až 0,3 μΜ 32P-UTP (3 000 Ci/mmol) nebo příslušného poměru vhodného pro radioaktivně značený nukleosidtrifosfát jiný než UTP. Značení cílových RNA čepičko! se uskutečnilo způsobem popsaným shora v textu. Pak se cílová RNA se čistila na gelu.
1.1.3 Mapování míst štěpení
Standardní reakce RNA se provedly pre-inkubací 10 nM dsRNA po dobu 15 minut. Pak následuje přidání 10 nM cílové RNA značené čepičkou. Reakce se zastavila po uplynutí dalších 2 hodin (obrázek č. 2A) nebo 2,5 hodin inkubace (obrázek č. 5B a 6B) s porteinázou K (popisuje se v publikaci Tuschl, T., Zámoře, P. D., Lehmann, R., Bartel, D. P. and Sharp, P. A.
(1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Dev. 13, 3191-3197). Vzorky se pak analyzovaly na 8 nebo 10 % sekvenačním gelu. Duplexy syntetické RNA obsahující 21 a 22 nukleotidů se použily v konečné koncentraci 100 nM (zobrazeno na obrázku č. 5B) .
1.1.4 Klonování RNA obsahující přibližně 21 nukleotidů se oddělily na Vyřízl se pruh
RNA obsahující 21 nukleotidů se připravila inkubací radioaktivně značené dsRNA v lyzátu organizmu Drosophila v nepřítomnosti cílové RNA (objem reakční směsi je 200 μΐ, doba inkubace 1 hodina, 50 nM dsPlll nebo 100 nM dsP52 nebo dsP39). Reakční směs se následně ošetřila proteinázou K (popisuje se v publikaci Tuschl, T., Zámoře, P. D., Lehmann, R., Bartel, D. P. and Sharp, P. A. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Dev. 13, 3191-3197) a produkty zpracování dsRNA denaturačním 15 % polyakrylamidovém gelu.
zahrnující rozmezí velikostí alespoň 18 až 24 nukleotidů, eluoval se do 0,3 M NaCl v zkumavce potažené silikonem při teplotě 4°C přes noc. RNA se získala srážením etanolem a defosforylovala se (objem reakční směsi je 30 μΐ, doba inkubace je 30 minut, teplota reakce je 50 °C a použilo se 10 jednotek alkalické fosfatázy od firmy Roche). Rekace se zastavila extrakcí směsí fenol/chloroform a RNA se pak srážela etanolem. Oligonukleotid 3 adaptoru (pUUUaaccgcatccttctcx: velká písmena, RNA; malá písmena, DNA; p, fosfát; x, 4hydroxymetylbenzyl) se pak ligoval do defosforylované RNA obsahující přibližně 21 nukleotidů (objem reakční směsi je 20 μΐ, trvání reakce je 30 minut, teplota reakce je 37 °C, použil se 3'adapter v koncentraci 5 μΜ, 50 mM Tris-HCl, pH 7,6, 10 mM MgCl2, 0,2 mM ATP, 0,1 mg/ml acetylované BSA, 15 % DMSO, 25 jednotek RNA ligázy T4, (od firmy Amersham-Pharmacia) (popisuje se v publikaci Pan, T. and Uhlenbeck, O. C. (1992).
• · · · · · « « · • * « X · · · ·· · * · ·»
In vitro selection of RNAs that undergo autolytic cleavage with Pb2+. Biochemistry 31, 3887-3895). Ligační reakce se zastavila přidáním stejného objemu směsi 8 M močoviny/50 mM EDTA a nanesla se přímo do 15 % gelu. Výtěžek ligace byl vyšší než 50 %. Produkt ligace se získal z gelu a jeho 5'-konec se fosforyloval (objem reakce je 20 μΐ, reakční doba je 30 minut, reakční teplota je 37 °C, použil se 2mM ATP, 5 jednotek T4 polynukleotidové kinázy, NEB). Fosforylační reakce se zastavila extrakcí směsí fenol/chloroform a RNA se získala srážením v etanolu. 5'adapter (tactaatacgactcactAAA: velká písmena RNA; malá písmena, DNA) se ligoval do fosforylovaného ligačního produktu, jak se popisuje shora v textu. Nový ligační produkt se čistil na gelu a eluoval se z proužků gelu v přítomnosti primeru pro reverzní transkripci (GACTAGCTGGAATTCAAGGATGCGGTTAAA: zvýrazněné je místo rozeznávané restrikčním enzymem Eco RI) užívaného jako nosič. Po reverzní transkripci (objem reakční směsi je 15 μΐ, reakční doba je 30 minut, reakční teplota je 42 °C, použilo se 150 jednotek reverzní transkriptázy Superscript II od firmy Life Technologies) následuje PCR používající jako 5'primer sekvenci CAGCCAACGGAATTCATACGACTCACTAAA (zvýrazněné je místo rozeznávané restrikčním enzymem Eco RI) a 3'RT primer. Produkt PCR se čistil extrakcí směsí fenol/chloroform a pak se srážel etanolem. Produkt PCR se pak štěpil restrikčním enzymem Eco RI (NEB), za použití T4 DNA ligázy vznikaly kankatamery (ve vysoké koncentraci, NEB). Konkatamery v rozmezí velikostí 200 až 800 párů baží se oddělily na agarózovém gelu s nízkou teplotou tání. Z gelu se získaly standardní metodou roztavení gelu a fenolovou extrakcí a srážely se etanolem. Nespárované konce se vyplnily inkubací s Taq polymerázou za standardních podmínek po dobu 15 minut při teplotě 72 °C a produkt DNA se přímo ligoval do vektoru pCR2.1-TOPO za použití klonovací sady TOPO TA (Invitrogen). Kolonie se hodnotily za použití PCR a M13-20 a M13 reverzních sekvenačních primerů. Produkty PCR se ·· r • · · · e · * · 9 9 • 9 9 -» ·
9 9·
9999 999 99 ♦ * ··« • *· · • · í
9 9
9 * • 9 9 9
99 přímo sekvenovaly (sekvenování se provedlo na zakázku v instituci Sequence Laboratories Gottingen GmbH, Německo). Jeden klon v průměru obsahoval 4 až 5 21-merních sekvencí.
1.1.5 Analýza 2D-TLC
Štěpení nukleázou Pl radioaktivně značené na gelu izolované siRNA a analýza 2D-TLC se provedla způsobem popsaným v publikaci Zámoře, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33. Štěpení nukleázou T2 se provedlo v reakčním objemu 10 μΐ při teplotě 50 °C po dobu 3 hodiny v 10 mM acetátu sodném (hodnota pH je 4,5) za použití tRNA v koncentraci 2 pg/μΐ a 30 jednotek ribonukleázy T2 (od firmy Life Technologies). Migrace neradioaktivně značených standardů se stanovila stíněním UV záření. Identita nukleosid-35'difosfátů se potvrdila společnou migrací produktů štěpených T2 se standardy připravenými 5'-32P-fosforylací běžných nukleosid3'-monofosfátů za použití γ-32Ρ-ΑΤΡ a polynukleotidové kinázy T4 (data nejsou uvedena).
1.2 Výsledky a diskuze
1.2.1 Požadavky délky při zpracování dsRNA na fragmenty RNA obsahující 21 a 22 nukleotidů
Lyzáty připravené ze syncitiálních embryí organizmu D. melanogaster umožňují RNAi in vitro a poskytují nový nástroj biochemické analýzy mechanizmu RNAi (popisuje se v publikaci Zámoře, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33 a Tuschl, T., Zámoře, P. D., Lehmann, R., Bartel, D. P.
• · • · · · · · and Sharp, P. A. (1999). Targeted mRNA degradation by doublestranded RNA in vitro. Genes & Dev. 13, 3191-3197). Analýza in vitro a in vivo požadavků na délku dsRNA pro RNAi ukázala, že krátké dsRNA (kratší než 150 párů baží) jsou méně účinné než delší dsRNA při degradaci cílové mRNA (popisuje se v publikaci Caplen, N. J. , Fleenor, J. , Fire, A., and Morgan, R. A. (2000). dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference, gene 252, 95-105, Hammond, S. Μ., Bernstein, E.,
Beach, D. , and Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silening in Drosophila cells. Nátuře 404, 293-296, Ngo, H., Tschudi, C., Gull, K., and Ullu, E. (1998). Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proč. Nati. Acad. Sci. USA 95, 14687-14692 a Tuschl, T., Zámoře, P. D., Lehmann, R., Bartel, D. P. and Sharp, P. A. (1999) . Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Dev. 13, 3191-3197). Důvody snížené účinnosti při redukci mRNA nejsou známy. Proto se testovaly přesné požadavky na délku dsRNA při degradaci cílové RNA za optimalizovaných podmínek v lyzátu organizmu Drosophila (popisuje se v publikaci Zámoře, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000) . RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33). Syntetizovalo se několik sérií dsRNA a směrují se proti reportní RNA luciferáze světlušek (Pp-luc). Specifické potlačení exprese cílové RNA se sledovalo duálním luciferázovým testem (popisuje se v publikaci Tuschl, T., Zámoře, P. D., Lehmann, R., Bartel, D. P. and Sharp, P. A. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Dev. 13, 3191-3197) (zobrazeno na obrázku č. IA a 1B) . Detekovala se specifická inhibice exprese cílové RNA v případě dsRNA, která obsahuje 38 párů baží. Dvouřetězcová RNA obsahující 29 až 36 párů baží není v tomto procesu účinná.
• · · · ·
Účinek nezávisí na cílové poloze a stupni inhibice exprese mRNA Pp-luc vztažené k délce dsRNA. To znamená, že dlouhá dsRNA je účinnější ve srovnání s krátkou dsRNA.
Naznačuje se, že fragmenty RNA obsahující 21 až 23 nukleotidů vytvořené zpracováním dsRNA jsou mediátory interference RNA a ko-suprese (popisuje se v publikaci Hamilton, A. J., and Baulcombe, D. C. (1999). A species of smáli anti-sense RNA in posttranscriptional gene silencing in plants. Scince 86, 950-952, Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silening in Drosophila cells. Nátuře 404, 293-296 a Zámoře, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervale. Cell 101, 25-33). Proto se analyzovala rychlost tvorby fragmentů obsahující 21 až 23 nukleotidů pro sadu dsRNA, které obsahují 501 až 29 párů baží. Tvorba fragmentů obsahujících 21 až 23 nukleotidů v lyzátu organizmu Drosophila (zobrazeno na obrázku č. 2) byla snadno detekovatelná v případě dsRNA obsahující 30 až 501 párů baží, ale byla podstatně prodloužena v případě dsRNA obsahující 29 párů baží. Toto pozorování odpovídá úloze fragmentů obsahujícících 21 až 23 nukleotidů při řízení štěpení mRNA a poskytuje vysvětlení nedostatečné RNAi v případě dsRNA obsahující 30 párů baží. Závislost tvorby 21 až 23-méru na délce, pravděpodobně odráží biologicky relevantní řídící mechanizmus prevence nežádoucí aktivace RNAi krátkými intramolekulárními strukturami založeným na párování baží normální buněčné RNA.
1.2.2 Dvouřetězcové RNA obsahující 39 párů zprostředkovává štěpení cílové RNA v jediném místě baží • · · ·
Přidání dsRNA a cílové RNA, která obsahuje na svém 5'konci čepičku, do lyzátu organizmu Drosophyla vede ke sekvenčně specifické degradaci cílové RNA (popisuje se v publikaci Tuschl, T., Zámoře, P. D., Lehmann, R., Bartel, D. P. and Sharp, P. A. (1999) . Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Dev. 13, 3191-3197).
Cílová mRNA se štěpí pouze v oblasti identity s dsRNA. Řada cílových míst štěpení se oddělilo fragmenty obsahujícími 21 až 23 nukleotidů (popisuje se v publikaci Zámoře, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: Doublestranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33). Očekávalo se, že počet míst štěpení v případě dané dsRNA zhruba odpovídá délce dsRNA děleno 21. Mapovaly se cílová místa štěpení na pozitivní a negativní cílové RNA, která je radioaktivně značena na čepičce (popisuje se v publikaci Zámoře, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33) (zobrazeno na obrázcích 3A a 3B) . Stabilní produkty štěpení na 5'-konci se oddělily na sekvenačním gelu a polohy míst štěpení se určily porovnáním s žebříčkem vzniklým částeným štěpením RNázou TI a alkalickou hydrolýzou cílové RNA.
V souladu s předchozím pozorováním (popisuje se v publikaci Zámoře, P. D. , Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33) všechna místa štěpení cílové RNA se nacházejí v oblasti identity s dsRNA. 3',5' nebo 5', 3'řetězec cílové nukleové kyseliny se štěpil pouze jednou pomocí dsRNA, která obsahuje 39 párů baží. Každé místo štěpení se nachází 10 nukleotidů od 5' konce oblasti, kterou překrývá dsRNA (zobrazeno na obrázku č. 3B) . Dvouřetězcová RNA • · · · · · obsahující 52 párů baží, která sdílí stejný 5-konec s dsRNA obsahující 39 párů baží, produkuje vedle dvou míst slabšího štěpení, která leží 21 a 24 nukleotidů downstream od prvního místa, stejné místo štěpení na 3,5řetězci cíle lokalizované v poloze 10 nukletidů vzdálené od 5'-konce oblasti shodné s dsRNA. Nesmyslný cíl se štěpil pouze jednou opět v místě vzdáleném 10 nukleotidů od 5-konce oblasti pokryté dsRNA. Mapování míst štěpení v případě dsRNA obsahující 38 až 49 párů baží je zobrazeno na obrázku č. 1 a ukazuje, že první a převládající místo štěpení se také nachází 7 až 10 nukleotidů downstream od oblasti pokryté dsRNA (data nejsou zobrazena). To naznačuje, že místo štěpení cílové RNA je stanoveno koncem dsRNA a je možné předpokládat, že zpracování 21 až 23-méru začíná od konců duplexu.
Místa štěpení 3,5' a 5,3 řetězců cíle v případě dsRNA obsahující 111 párů baží jsou daleko častější než se očekávalo a většina z nich se vyskytuje v blocích oddělených 20 až 23 nukleotidy (zobrazeno na obrázku č. 3A a 3B). V případě kratší dsRNA první místo štěpení na 3',5'řetězci cíle je 10 nukleotidů od 5'-konce oblasti pokryté dsRNA a první místo štěpení na 5',3' řetězci cíle se nachází 9 nukleotidů od 5'konce oblasti pokryté dsRNA. Není jasné, co způsobuje toto nepravidelné štěpení. Jednou možností vysvětlení je, že delší dsRNA se zpracovává ne pouze od konce, ale také od prostředku, nebo existují některé determinanty specifity zpracování dsRNA, které nejsou zcela známy. Dříve se také zmiňovaly některé nepravidelnosti obsahující 21 až 23 nukleotidů (popisuje se v publikaci Zámoře, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33). Aby se lépe porozumělo molekulárním základům zpracování dsRNA a rozeznávání cílové RNA, analyzovaly se sekvence fragmentů obsahující 21 až 23 nukleotidů zpracováním dsRNA obsahující 39, 52 a 111 párů baží v lyzátu organizmu Drosophila.
1.2.3 Dvouřetězcová RNA se zpracovává za vzniku RNA obsahující 21 a 22 nukleotidů mechanizmem podobným štěpení RNázou III
Za účelem charakterizovat fragmenty RNA obsahující 21 až nukleotidů se testovaly 5'a 3'-konce fragmentů RNA. Oxidace jodistanem RNA izolovaných gelem obsahující 21 až 23 nukleotidů následovaná β-eliminací indikovala přítomnost terminálních 2' a 3'-hydroxylových skupin. 21 až 23-mery také odpovídají na aplikaci alkalické fosfatázy, což indikuje přítomnost fosfátové skupiny na 5'-konci. Přítomnost fosfátu na 5'konci a hydroxylu na 3'konci naznačuje, že dsRNA by mohla být zpracovávána enzymatickou aktivitou podobnou RNáze III organizmu E. coli (popisuje se v publikaci Dunn, J. J. (1982). Ribonuclease III. In the enzymes, vol 15, part B, P. D. Boyer ed. (New York: Academie Press), pp. 485-499, Nicholson, A. W. (1999). Function, mechanism and regualtion of bacterial ribonuclease. FEMS Microbiol. Rev. 23, 371-390, Robertson, H. D. (1990). Escherichia coli ribonuclease III. Methods Enzymol. 181, 189-202, Robertson, H. D. (1982). Escherichia coli ribonuclease III cleavage sites. Cell 30, 669-672)).
Řízené klonování fragmentů RNA obsahující 21 až 23 nukleotidů se provedlo ligací nukleotidu 3' a 5'adaptoru k izolovaným 21 až 23-mérům za použití T4 RNA ligázy. Ligační produkty se reverzně přepsaly, amplifikovaly se pomocí PCR, konkatamerizovaly se, klonovaly se a sekvenovaly se. Sekvenovalo se více jak 220 RNA, které se získaly zpracováním dsRNA obsahujících 39, 53 a 111 párů baží (zobrazeno na obrázku č. 4A). Zjistilo se, že rozložení délek je následující 1% 18 nukleotidů, 5 % 19 nukleotidů, 12 % 20 nukleotidů, 45 % nukleotidů, 28 % 22 nukleotidů, 6 % 23 nukleotidů a 2 % 24 nukleotidů. Analýza sekvence 5'-terminálních nukleotidů zpracovávaných fragmentů ukázala, že oligonukleotidy s 5'guanosinem jsou zastoupeny méně často. Tento trend s největší pravděpodobnosí způsobuje RNA ligáza T4, která potlačuje 5'fosforylovaný guanosin, jako donorový oligonukleotid. Na 3'konci se nepozoroval žádný podstatný trend, co se týká zastoupení sekvencí.
obsahuj ících
Rada pozitivního fragmentů přibližně 21 nukleotidů získaných z 3'konců nebo negativního řetězce duplexů zahrnují
3'nukleotidy, které se získaly adicí nukleotidů během syntézy RNA za použití RNA polymerázy T7. Také se klonoval podstatný počet endogenních RNA organizmu Drosophila obsahující přibližně 21 nukleotidů, některé z nich pochází z retrotranspozonů LTR a z transpozonů, které nejsou z LTR (data nejsou zobrazena). To odpovídá možné úloze RNAi při deaktivaci tranzpozonů.
RNA obsahující 21 nukleotidů se objevují v klustrovaných skupinách (zobrazeno na obrázku č. 4A) , které překrývají celé sekvence dsRNA. Reakce zjevně štěpí dsRNA, přičemž zanechává uspořádané 3'konce, což je další charakteristika štěpení RNázou III. V případě dsRNA o velikosti 39 párů baží se našli dva bloky RNA obsahující přibližně 21 nukleotidů z každého řetězce skládajícího se z dsRNA zahrnující překrývající se 3'konce. Jestliže fragmenty obsahující přibližně 21 nukleotidů byly přítomny jako jednořetězcové řídícé RNA v komplexu, který zprostředkovává degradaci mRNA, je možné předpokládat, že existují alespoň dvě cílená místa štěpení. Což není tento případ. To naznačuje, že RNA obsahující přibližně 21 nukleotidů může být přítomna ve formě dvouřetězcové RNA v endonukleázovém komplexu, ale pouze jeden ze řetězců se může použít pro rozeznávání a štěpení cílové RNA. Použití pouze jednoho z řetězců obsahujícího 21 nukleotidů pro cílené štěpení může být jednoduše určeno orientací, ve které je duplex obsahující 21 nukleotidů vázán k nukleázovému komplexu. Tato orientace je definována směrem, ve kterém se zpracovává původní dsRNA.
Klustery obsahující 21-mery pro dsRNA obsahující 52 párů baží a 111 párů baží jsou méně dobře definované, když se porovnávají s dsRNA obsahujícími 39 párů baží. Clustery jsou rozprostřeny do oblasti obsahující 25 až 30 nukleotidů, které s nějvětší pravděpodobností reprezentují několik odlišných suppopulací duplexů obsahujících přibližně 21 nukleotidů a proto řídí štěpení v několika místech, které leží blízko sebe. Tyto oblasti štěpení jsou stále odděleny intervaly 20 až 23 nukletidů. Pravidla určující jak je možné zpracovat běžnou dsRNA na fragmenty obsahující 21 nukleotidů nejsou ještě známa, ale už se pozorovalo, že místa štěpení obsahující přibližně 21 až 23 nukleotidů je možné změnit za použití uridinů (popisuje se v publikaci Zámoře, P. D., Tuschl, T., Sharp, P. A. and Bartei, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33). Specifita štěpení dsRNA pomocí RNázy III organizmu E. coli se jeví být hlavně řízena antideterminanty. To znamená, že jsou vyloučeny některé specifické páry baží v daných polohách vztažených k místu štěpení (popisuje se v publikaci Zhang, K., and Nicholson, A. W. (1997). Regulation of ribonuclease III processing by double-helical sequence antideterminants. Proč. Nati. Acad. Sci. USA 94, 13437-13441).
Aby se testovalo, zda ve zpracovaných fragmentech RNA obsahujících přibližně 21 nukleotidů jsou přítomny úpravy cukerné složky, báze nebo čepičky, inkubovaly se radioaktivně značené dsRNA Pp-luc obsahující 505 párů baží v lyzátu po dobu jedné hodiny, izolovaly se produkty obsahující přibližně 21 • · nukleotidů a mononukleotidy fosfodiesterové vazby, nukleosid-3',5'-difosfát, štěpily se nukleázou Pl nebo T2 na Směs nukleotidů se pak analyzovala chromatografií 2D na tenké vrstvě (zobrazeno na obrázku č. 4B) . Jak se ukázalo, na základě štěpení pomocí Pl nebo T2, nebyl upraven žádný ze čtyř přirozených ribonukleotidů. Dříve se analyzovala přeměna adenozinu na inozin ve fragmentech obsahujících přibližně 21 nukleotidů (po 2 hodinách inkubace) a detekoval se malý rozsah deaminace (menší než 0,7 %) (popisuje se v publikaci Zámoře, P. D. , Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33). Kratší inkubace v lyzátu (1 hodina) redukovala tuto inosinovou frakci na sotva detekovatelnou hladinu. RNáza T2, která štěpí 3'konec produkovala čímž se monofosfátu na 5'-konci. Detekovaly se všechny čtyři nukleosid-3',5'-difosfáty a naznačuje se, že internukleotidová vazba byla štěpena s malou nebo žádnou sekvenční specifitou. Lze shrnout, že fragmenty obsahující přibližně 21 nukleotidů nejsou upraveny a vytvořily se z dsRNA tak, že 5'-monofosfáty a 3'-hydroxyly byly přítomny na 5'-konci.
nukleosid-3'-fosfát a indikuje přítomnost
1.2.3 Štěpení cílové RNA zprostředkované syntetickými RNA, které obsahují 21 a 22 nukleotidů
Analýza produktů zpracování dsRNA ukazuje, že fragmenty obsahující přibližně 21 nukleotidů jsou vytvořeny reakcí se všemi charakteristikami v publikaci Dunn, J. enzymes,
Press),
J.
vol 15, part Β, P. D. Boyer ed. pp. 485-499, Nicholson, A. W mechanism and regualtion of bacterial štěpení RNázou III (popisuje se (1982). Ribonuclease III. In the (New York: Academie (1999). Function, ribonuclease. FEMS
Microbiol. Rev. 23, 371-390, Robertson, H.
D.
(1990).
Escherichia coli ribonuclease III. Methods Enzymol·. 181, 189202, Robertson, H. D. (1982). Escherichia coli ribonuclease III cleavage sites. Cell 30, 669-672). RNáza III štěpí oba řetězce dsRNA, přičemž vznikají dva přesahy na 3'koncích obsahující přibližně 2 nukleotidy. Chemicky se syntetizovaly RNA obsahující 21 a 22 nukleotidů, jejichž sekvence je shodná s některým z klonovaných fragmentů obsahující přibližně 21 nukleotidů a testovala jejich schopnost degradaci cílové RNA (zobrazeno na obrázcích
Duplexy RNA obsahující 21 a 22 nukleotidů se inkubovaly v koncentracích 100 nM v lyzátu v desetkrát vyšších koncentracích než kontrolní dsRNA obsahující 52 párů baží. Za uvedených podmínek štěpení cílové RNA je snadno detekovatelné. Snížení koncentrace duplexů obsahujících 21 a 22 nukleotidů ze 100 nM na 10 nM stále způsobuje štěpení cílové RNA. Zvýšením koncentrace duplexů ze 100 nM na 1 000 nM však dále nezvyšuje štěpení cíle, což je pravděpodobně způsobeno proteinového faktoru v lyzátu.
zprostředkovat č. 5A a 5B) .
omezením
Na rozdíl od dsRNA obsahující 29 nebo 30 párů baží, které nezprostředkovávaji RNAi, dsrNA obsahující 21 a 22 nukleotidů s přesahem na 3'koncích, jenž obsahují 2 až 4 nukleotidy, zprostředkovávají účinnou degradaci cílové RNA (duplexy 1, 3, 4. 6, zobrazeno na obrázku č. 5A a 5B) . U dvouřetězcové RNA obsahující 21 nebo 22 nukleotidů s tupými konci (duplexy 2, 5 a 7, zobrazeno na obrázcích 5A a 5B) se redukovala její schopnost degradovat cíl a ukazuje se, že přesahující 3'-konce jsou důležité při rekonstituci komplexu RNA-proteinová nukleáza. Jednořetězcové přesahy mohou být nutné k dosažení navázání s vysokou afinitou duplexu, který obsahuje přibližně 21 nukleotidů, na složky proteinu. Fosfát na 5'-konci, ačkoliv je přítomen po zpracování dsRNA, není nutný pro zprostředkování štěpení cílové RNA a krátké syntetické RNA ho neobsahuj í.
• *
Syntetické duplexy obsahující 21 a 22 nukleotidů, které řídí štěpení pozitivního stejně jako negativního cíle v oblasti pokryté krátkým duplexem. To je důležitý výsledek zvažující, že dsRNA obsahující 39 párů baží, která tvoří dva páry klustrů fragmentů obsahující přibližně 21 nukleotidů (zobrazeno na obrázku č. 2), štěpí 3',5' nebo 5', 3' řetězec cíle pouze jednou nebo dvakrát. Tento výsledek se dá interpretovat tak, že pouze jeden ze dvou řetězců přítomný v duplexu obsahujícím 21 nukleotidů je schopen řídit štěpení cílové RNA a orientace duplexu obsahujícího přibližně 21 nukleotidů v nukleázovém kopmplexu se stanoví počátečním směrem zpracování dsRNA. Prezentace už správně zpracovaného duplexu obsahujícího přibližně 21 nukleotidů systému in vitro však neumožní tvorbu aktivního nukleázového komplexu specifického pro sekvenci se dvěmi možnými orientacemi symetrického duplexu RNA. To vede ke štěpení 3',5' řetězce stejně jako 5',3' řetězce cíle v oblasti identity s duplexem RNA obsahujícím 21 nukleotidů.
Místo štěpení cíle se nachází 11 nebo 12 nukleotidů downstream od prvního nukleotidu, který je komplementární s řídící sekvencí obsahující 21 nebo 22 nukleotidů. To znamená že místo štěpení je blízko středu oblasti pokryté RNA obsahující 21 nebo 22 nukleotidů ( zobrazeno na obrázcích č. 4A a 4B) . Nahrazení 3',5' řetězce duplexu obsahujícího 22 nukleotidů dvěma nukleotidy (porovnání duplexů 1 a 3 na obrázku č. 5A) nahradilo místo štěpení pouze 5',3' řetězce dvěma nukleotidy. Nahrazení 3',5' a 5',3' řetězce dvěma nukleotidy posunolo obě místa štěpení o (porovnání duplexů 1 a 4). Předpoklád se, navrhnout pár RNA obsahující 21 nebo 22 nukleotidů, aby štěpily cílovou RNA skoro v libovolné dané poloze.
dva nukleotidy že bude možné
Specifita štěpení cílové RNA řízeného RNA, která obsahuje 21 a 22 nukleotidů, se jeví být vysoká, protože se neobjevilo žádné jiné místo štěpení (zobrazeno na obrázku č. 5B) . Mělo by se však poznamenat, že nukleotidy přítomné v přesahu 3'-konce duplexu RNA obsahujícím 21 a 22 nukleotidů mohou přispívat k rozeznávání substrátu méně než nukleoitdy vyskytující se blízko místa štěpení. Tato skutečnost je založena na pozorování, že nukleotid blíže 3'-konce v přesahu na 3'-konci aktivních duplexů 1 nebo 3 (zobrazeno na obrázku č. 5A) není komplementární s cílem. Nyní je možné provést velmi snadno detailní analýzu specifity RNA za použití syntetických RNA obsahujících 21 a 22 nukleotidů.
Na základě důkazu, že syntetické RNA obsahující 21 a 22 nukleotidů s přesahujícími 3'konci zprostředkovávají interferenci RNA, se navrhl název RNA, které obsahují přibližně 21 nukleotidů a to „krátké interferující RNA nebo „siRNA a pro komplex RNA-protein „krátká interferující ribonukleoproteinová částice nebo siRNP.
1.2.5 Přesahy 3'-konce obsahující 20 nukleotidů v krátkých dsRNA inhibuje RNAi
Ukázalo se, že zpracování krátkých dsRNA s tupým koncem se začíná na koncích. Během naší studie závislosti dsRNA při RNAi na délce se také provedla anlýza dsRNA s přesahy na 3'koncích, které obsahují 17 až 20 nukleotidů a zjistilo se, že jejich aktivita je nižší ve srovnání s dsRNA s tupými konci. Inhibiční účinek dlouhých 3'konců se už popsal v případě dsRNA obsahujících až 100 párů baží, ale je méně dramatický v případě delších dsRNA. Účinek není způsoben nesprávným uspořádáním dsRNA, což se zjistilo na základě gelové analýzy (data nejsou uvedena). Testovalo se, zda inhibiční účinek dlouhých přesahujících 3'-konců by se mohly použít, jako « » « v nástroj při přímém zpracování dsRNA na pouze jeden ze dvou konců krátkého RNA duplexu.
Syntetizovaly se čtyři kombinace modelu dsRNA obsahující 52 párů baží s tupými konci, prodloužení 3'-konce pouze pozitivního řetězce, prodloužení 3'-konce pouze negativního řetězce a prodloužení 3'-konce pouze obou řetězců, a po inkubaci v lyzátu se mapovala místa štěpení cílové RNA (zobrazeno na obrázku č. 6A a 6B). Když se prodloužil 3'-konec 5',3' řetězce duplexu, z 3',5' řetězce cíle se ztratilo první a převládající místo štěpení 3',5'řetězce cíle a naopak, když se prodloužil 3'-konec 3',5' řetězce duplexu ztratilo se silné štěpící místo 5',3' řetězce. Prosloužení 3'-konců obou řetězců vede k deaktivaci dsRNA obsahující 52 párů baží. Jedno vysvětlení deaktivace dsRNA prodloužením 3'konce nukleotidů je existence proteinů, které jednořetězcovou RNA a které mohou interferovat z faktorů zpracování dsRNA na 3'-konci. Stejný výsledek se získal i v našem modelu, kde pouze jeden z řetězců duplexu siRNA v siRNP je schopen řídit štěpení cílové RNA. Orientace řetězce, který řídí štěpení RNA se definuje směrem reakce zpracování dsRNA. Je pravděpodobné, že přítomnost upravených 3'-konců může umožnit uspořádání komplexu. Zablokování 3'konce 3',5' řetězce umožní pouze zpracování dsRNA od protilehlého 3'-konce 5',3' řetězce. To naopak tvoří komplexy siRNP, ve kterých pouze 5',3'řetězec duplexu siRNA je schopen řídit štěpení 3',5' řetězce cílové RNA. Stejně to probíhá v opačné situaci.
na přibližně se váží na s jedním
Slabší inhibični účinek dlouhého prosloužení 3'-konce v případě delších dsRNA (obsahují 500 párů baží nebo více, data nejsou uvedena) naznačuje, že dlouhá dsRNA může také obsahovat vnitřní signály zpracování dsRNA nebo se mohou zpracovat součinně na základě spojení více faktorů štěpení.
·· ··-»· * 4 ···» ···· · » ·
1.2.6 Model štěpení mRNA řízeného dsRNA
Na základě nových biochemických poznatků se vytvořil nový model znázorňující způsob cílení dsRNA na mRNA za účelem destrukce (zobrazeno na obrázku č. 7). Dvouřetězcová RNA se nejdříve zpracuje na krátké duplexy RNA s převládající délkou 21 a 22 nukleotidů a s upravenými 3'konci. Tento způsob odpovídá reakci podobné působení RNázy III (popisuje se v pbulikaci Dunn, J. J. (1982). Ribonuclease III. In the enzymes, vol 15, part B, P. D. Boyer ed. (New York: Academie (1999). Function, ribonuclease. FEMS
Press), pp. 485-499, Nicholson, A. W mechanism and regualtion of bacterial Microbiol. Rev. 23, 371-390, Robertson, H. D. (1990).
Escherichia coli ribonuclease III. Methods Enzymol. 181, 189202, Robertson, H. D. (1982). Escherichia coli ribonuclease III cleavage sites. Cell 30, 669-672). Na základě délky fragmentů zpracované RNA, které obsahují 21 až 23 nukleotidů, se spekuluje, že aktivita podobná RNáze III se podílí na RNAi (popisuje se v publikaci Bass, B. L. (2000) . Doble-stranded RNA as a template for gene silencing. Cell 101, 235-238,
Bosher, J. M. and Labouesse, M. (2000)). Tuto hypotézu dále podporuje skutečnost, že přítomnost 5'fosátů a 3 hydroxylů na koncích siRNA je možné také pozorovat u reakčních produktů RNázy III (popisuje se v publikaci Dunn, J. J. (1982). Ribonuclease III. In the enzymes, vol 15, part B, P. D. Boyer
485-499, Nicholson, A. W. regualtion of bacterial ed. (New York: Academie Press), pp.
(1999). Function, mechanism and ribonuclease. FEMS Microbiol. Rev. 23, 371-390, Robertson, H. D. (1990). Escherichia coli ribonuclease III. Methods Enzymol. 181, 189-202). Bakteriální RNáza III a její eukaryontní h Dunn, J. J. (1982). Ribonuclease III. In the enzymes, vol 15, part B, P. D. Boyer ed. (New York: Academie Press), pp. 485499, Nicholson, A. W. (1999). Function, mechanism and • · · · 4 regualtion of bacterial ribonuclease. FEMS Microbiol. Rev. 23, 371-390, Robertson, H. D. (1990). Escherichia coli ribonuclease III. Methods Enzymol. 181, 189-202). Ukázalo se, že bakteriání RNáza III a její eukaryontní homology Rntlp v organizmu S. cerevisiace a Paclp v organizmu S. pombe fungují při zpracování ribozomální RNA stejně dobře jako snRNA a snoRNA (popisuje se například v publikaci Chanfreau, G., Buckle, M., and Jacquier, A. (2000). Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae Rnase III. Proč. Nati. Acad. Sci. USA 97, 3142-3147).
Pouze málo je známo o biochemii homologů RNázy III pocházející z rostlin, zvířat nebo člověka. Stanovily se dvě rodiny enzymů RNázy III převážně sekvenční analýzou za použití databáze nebo klonováním cDNA. První rodina RNáz III je reprezentována proteinem drosha organizmu D. emlanogaster, který obsahuje 1 327 aminokyselin (přístupové číslo AF116572). C-konec je tvořen se dvou oblastí RNáz III a jedné oblasti vázající se na dsRNA, přičemž funkce N-konce není známa. Blízké homology je také možné najít u organizmu C. elegans (přístupové čílso AF160248) a u člověka (přístupové číslo AF189011) (popisuje se v publikaci Filippov, V., Solovyev, V., Filíppova, Μ. , and Gill, S. S. (2000). A novel type of Rnase III family proteíns in eukaryotes. Gene 245, 213-221, Wu, H.,
Xu, H., Miraglia, L. J. , and Crooke, S. T. (2000). Human Rnase III is a 160 kDa Protein Involved in Preribosomal RNA Processing. J. Biol. Chem. 17, 17). Lidská RNáza III podobná proteinu drosha se klonovala a charakterizovala (popsiuje se v publikaci Wu, H., Xu, H., Miraglia, L. J. , and Crooke, S. T. (2000) . Human Rnase III is a 160 kDa Protein Involved in Preribosomal RNA Processing. J. Biol. Chem. 17, 17). Gen se exprimuje v lidských tkáních a buněčných liniích a protein se nachází v jádru a jadérku buněk. Na základě výsledků získaných ve studii nesmyslné inhibice, je možné naznačit úlohu tohoto proteinu při zpracování rRNA. Druhá třída je reprezentována genem K12H4.8 organizmu C. elegans (přístupové číslo S44849) kódující protein obsahující 1 822 aminokyselin. Tento protein obsahuje motiv helikázy N-konce RNA, po kterém následují 2 katalytické oblasti RNázy III a motiv vhodný pro navázání dsRNA, což odpovídá rodině RNázy III drosha. V organizmech, jako je S. pombe (přístupové číslo Q09884), A. thaliana (přístupové číslo AF187317), D.melanogaster (přístupové číslo AE003740) a člověka (AB028449) existují blízké homology (popisuje se v publikaci Filippov, V., Solovyev, V.,
Filippova, M., and Gill, S. S. (2000). A novel type of Rnase III family proteins in eukaryotes. Gene 245, 213-221,
Jacobsen, S. E., Running, Μ. P., and Μ. , Μ. E. (1999).
Disruption of an RNA helicase/Rnase III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126, 5231-5243, Matsuda, S., Ichigotani, Y.,
Okuda, T., Irimura, T., Nakatsugawwa, S., and Hamaguchi, M. (2000). Molecular cloning and characterization of a novel human gene (HERNA) which encodes a putative RNA-helicase. Biochim. Biophis. Acta 31, 1-2). Komplex K12H4.8 RNáza
III/helikáza je pravděpodobný kandidát, který se podílí na RNAi.
Genetické testování organizmu C. elegans identifikovalo rde-1 a rde-4 jako podstatné při aktivaci RNAi, aniž dojde k účinku na mobilizaci nebo potlačení transpozónu (popisuje se v publikaci Dernburg, A. F. , Zalevsky, J., Colaiacovo, Μ. P., and Vileneuve, A. M. (2000). Transgene-madiated cosuppression in the C. elegans germ line. Genes & Dev. 14, 1578-1583,
Ketting, R., and Plasterk., R. H. (2000). A genetic link between co-suppression and RNA interference in C. elegans. Nátuře 404, 296-298, Grishok, A., Tabara, H., and Mello, C. C. (2000). Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494-497, Tabara, H., Sarkissiean, M., * ·· · · ·· ·· ····
Kelly, W. G., Fleenor, J. , Grishok, A., Timmons, L., Fire, A., and Mello, C. C. (1999) . The erde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123-132).
Tyto skutečnosti vedou k vyslovení hypotézy, že tyto geny jsou důležité při zpracování dsRNA, ale nepodílejí se na degradaci cílové mRNA. Funkce obou genů není známa. Produkt genu rde-1 je členem rodiny proteinů podobných králičímu proteinu elF2C (popisuje se v publikaci Tabara, H., Sarkissiean, M., Kelly, W. G., Fleenor, J., Grishok, A., Timmons, L., Fire, A., and
Mello, C. C. ( 1999) . The erde-1 gene, RNA interference, and
transposon silencing in C. elegans. Cell 99, 123-132) a
sekvence genu rde-4 není ještě popsána. Biochemická
charakterizace těchto proteinů by měla odhalit jejich
molekulární funkci.
Zpracování duplexů siRNA začíná od konců obou dsRNA
s tupými konci nebo dsRNA s krátkými přesahy na 3'-konci (1
5 nukleotidů) a probíhá v krocích přibližně 21 až 23
nukleotidů. Dlouhé upravené 3'-konce (obsahuj ící 20
nukleotidů) krátkých dsRNA potlačují RNAi, pravděpodobně prostřednictvím interakce s proteiny, které se váží na jednořetězcovou RNA. Potlačení RNAi jednořetězcovou oblastí, která lemuje krátkou dsRNA, a nedostatečná tvorba siRNA z krátkých dsRNA obsahující 30 párů baží může vysvětlit, proč strukturované oblasti, které se často vyskytují v mRNA, nevedou k aktivaci RNAi.
Předpokládá se, že proteiny zpracovávající dsRNA nebo jejich sada zůstávají spojeny s duplexem siRNA i po zpracování. Orientace duplexu siRNA vůči uvedeným proteinům určuje, který z komplementárních řetězců funguje při řízení degradace cílové RNA. Chemicky syntetizované duplexy siRNA řídí štěpení 3',5' stejně jako 5',3'řetězce cílové RNA, • · · · • · · · • · · · protože jsou schopny se spojit s komponenty proteinů v jedné ze dvou možných orientací.
Zjištění, že syntetické duplexy siRNA obsahující 21 a 22 nukleotidů se mohou použít při účinné degradaci mRNA poskytuje nový nástroj pro sekvenčně specifickou regulaci exprese genu při studiu funkce genů a biochemických studiích. siRNA může být účinná v savčích systémech, kde se dlouhá dsRNA nemůže použít k aktivaci odezvy PKR (popisuje se v publikaci Clemens, M. J. (1997). PKR-a protein kinase regulated by doublestranded RNA. Int. J. Biochem. Cell Biol. 29, 945-949). Jako takové tyto duplexy siRNA reprezentují nová terapeutická činidla, která jsou alternativou k nesmyslným nebo ribozymovým terapeutickýcm činidlům.
Příklad 2: Interference RNA v lidských tkáňových kulturách
2.1 Způsoby
2.1.1 Příprava RNA
RNA obsahující 21 nukleotidů se chemicky syntetizovaly za použití fosforamiditů expediční RNA a tymidinového fosforamiditu (od firmy Proligo, Německo). Ze syntetických oligonukleotidů se odstranily ochranné skupiny a oligonukleotidy se čistily na gelu (popisuje se v příkladu 1), pak následuje čištění pomocí kazety Pack C18 (Waters, Milford, MA, USA) (popisuje se v publikaci Tuschl, T., Ng, Μ. M., Pieken, W., Benseler, F., and Eckstein, F. (1993). Importance of exocyclic base functional groups of centrál core guanosines for hammerhead ribozyme activity. Biochemistry 32, 1165811668). Sekvence siRNA cílící luciferázu GL2 (přístupové číslo X65324) a GL3 (přístupové čílso U47296) odpovídaly kódujícím oblastem 153 až 173 vztaženo k prvnímu nukleotidu startovacího kodonu, siRNA cílící RL (přístupové číslo AF025846) odpovídá oblasti 119 až 129 po startovacím kodonu. Delší RNA se přepsaly RNA polymerázou T7 z produktů PCR, pak následuje čištění na gelu a Sep-Pak. Dvouřetězcové RNA GL2 nebo GL3 obsahující 40 a 484 párů baží odpovídalo poloze 113 až 161 a respektive 113 až 596, které se vztahují k počátku translace. Dvouřetězcová RNA RL obsahující 50 a 501 párů baží odpovídá poloze 118 až 167 a respektive 118 až 618. Templáty PCR vhodné pro syntézu dsRNA cílené na humanizovaný GFP (hG) se amplifikovaly z pAD3 (popisuje se v publikaci Kehlenbach, R. H., Dickmanns, A. & Gerace, L. (1998). Nucleocytoplasmic shuttling factors including Ran and CMR1 mediate nuclear export of NFAT In vitro. J. Cell Biol. 141, 863-874), kde dsRNA hG obsahující 50 a 501 párů baží odpovídá poloze 118 až 167 a repektive poloze 118 až 618 vztaženo ke startovacímu kodonu.
V případě teplotní hybridizace siRNA se jednotlivé řetězce v koncentraci 20 μΜ inkubovaly v hybrídizačním pufru (100 mM acetát draselný, 30 mM HEPES-KOH pří hodnotě pH 7,4, 2 mM acetát draselný) po dobu jedné minuty při teplotě 90 °C, pak následuje inkubace po dobu 1 hodiny při teplotě 37 °C. V případě dsRNA obsahující 50 a 500 párů baží se inkubace při teplotě 37 °C prodloužila přes noc a koncentrace řetězce v hybridízační reakcí byla 8,4 μΜ a 0,84 μΜ.
2.1.2 Buněčná kultura
Buňky S2 se pomnožily v Schneiderově kultivačním médiu vhodném pro kultivaci organizmu Drosophila (Life Tachnologies) doplněném 10 % FBS, penicilinem v koncentraci 100 jednotek/ml a streptomycinem v koncentraci 100 pg/ml, při teplotě 25 °C. Buňky 293, NIH/3T3, HeLaS3, COS-7 se nechaly růst při teplotě 37 °C v Dulbeccově upraveném Eagle kultivačním médiu doplněném % FBS, penicilinem v koncentraci 100 jednotek v 1 mililitru a streptomycinem v koncentraci 100 pg/ml. Buňky se pravidelně pasážovaly, aby se udržely v exponenciální fázi růstu. 24 hodin před transekcí se buňky z 80 % konfluentní ošetřily trypsinem a ředily se v poměru 1:5 čerstvým kultivačním médiem bez antibiotik (1 až 3 x 105 buněk/ml) a přenesly se na destičky obsahující 24 prohlubní (500 μΙ/ml). V případě buněk S2 se nepoužil trypsin. Transfekce se provedla činidlem Lipofectamin 2000 (od firmy Life Technology) postupem podle výrobce vhodným pro adherentní buněčné linie. Do jedné prohlubně se přidal 1 pg pGL2-Control (od firmy Promega) nebo pGL3-Control (od firmy Promega), 0,1 pg pRL-TK (od firmy Promega) a 0,28 pg duplexu siRNA nebo dsRNA, které tvoří lipozomy. Konečný objem směsi v jedné prohlubni je 600 pl. Buňky se po transfekči inkubovaly 20 hodin. Exprese luciferázy se následně sledovala duálním luciferázovým testem (Promega). Účinnost transfekce v případě savčí buněčné linie kotransfekované 1,1 pg pAD3 kódující hGFP a 0,28 pg invGL2 inGL2 siRNA se stanovila fluorescenční mikroskopií a byla 70 až 90 %. Reportní plazmidy se amplifikovaly v buňkách XL-1 Blue (Stratagene) a čistily se za použití Qíagen EndoFree Maxi Plasmid Kit.
2.2 Výsledky a diskuze
Za účelem testování, zda siRNA jsou také schopny zprostředkovat RNAi v tkáňových kulturách, se syntetizovaly duplexy siRNA obsahující 21 nukleotidů a symetrické přesahy na 3'-konci, které obsahují 2 nukleotidy. Duplexy jsou řízeny proti reportním genům pocházejícím z Renilla reniformis a dvoum sekvenčním variantám luciferázy světlušek (Photinus pyralis, GL2 a GL3) (zobrazeno na obrázku č. 8a, b) . Duplexy siRNA se transfekovaly společně s kombinacemi reportních plazmidů pGL2/pRL nebo Pgl3/pRL do buněk Schneider S2 organizmu D. melanogaster nebo do savčích buněk za použití kationických lipozomů. Aktivita luciferázy se stanovila 20 hodin po transfekci. Ve všech testovaných buněčných liniích se pozorovala specifická redukce exprese reportních genů v přítomnosti příbuzných duplexů siRNA (zobrazeno na obrázku
č. 9a až překvapivě
j). Absolutní síla exprese luciferázy zůstává neměnná, což indikuje nepřítomnost nežádoucích vedlejších účinků způsobených duplexy RNA obsahujících 21 nukleotidů (zobrazeno na obrázku č. 10a až d v případě buněk HeLa). V případě buněk S2 organizmu D. melanogaster (zobrazeno na obrázku č. 9a, b) byla specifická inhibice luciferáz úplná. V savčích buňkách, kde exprese reportních genů byla 50 až 100 násobně silnější, specifická suprese nebyla kompletní (zobrazeno na obrázku č. 9c až j). Exprese GL2 se redukovala 3 krát až 12 krát, exprese GL3 se redukovala 9 krát až 25 krát a exprese RL se redukovala 1 krát až 3 krát, jako odezva na příbuznou siRNA. V případě buněk 293 bylo cílení RL luciferázy pomocí siRNA RL neúčinné, ačkoli cíle GL2 a GL3 specificky odpovídaly (zobrazeno na obrázku nedochází k redukcí exprese RL způsobena jejích 5-ti až 20-ti násobně slnější expresí ve srovnání s libovolnou jinou testovanou buněčnou linií a/nebo limitovanou přístupností cílové sekvence způsobenou sekundární strukturou RNA nebo asociovanými proteiny. Specifické cílení luciferázy GL2 a GL3 příbuznými duplexy siRNA indikuje, že RNAi také funguje v buňkách 293.
Skutečnost, že 293, může být
č. 9i, j) v buňkách
Přesah na 3' konci ve všech duplexech siRNA obsahující 2 nukleotidy s výjimkou uGL2, se skládal z 2'-deoxytymidinu. Substituce uridinu thymidinem v přesahu 3'konce byla dobře tolerována v in vitro systému organizmu D. melanogaster a sekvence přesahu není pro rozeznávání cíle rozhodující. Vybral se tymidinový přesah, protože se předpokládá, že zesiluje rezistenci siRNA proti nukleázám obsaženým v kultivačním médiu určeným pro tkáňové kultury a v transekovaných buňkách. siRNA GL2 upravené tymidinem byly v testovaných buněčných liniích o trochu silnější ve srovnání s neupravenými siRNA uGL2 (zobrazeno na obrázku č. 9a, c, e, g, i) . Další úpravy nukleotidů obsažených v přesahu na 3'-konci mohou být výhodné při zavedení a stabilitě duplexů siRNA.
V ko-transfekčních expreimentech se použily duplexy siRNA v koncentraci 25 nM s ohledem na konečný objem kultivačního média vhodného pro tkáňové kultury (zobrazeno na obrázku č 9,10). Zvyšující se koncentrace siRNA až na hodnotu 100 nM nezesílila specifické účinky deaktivace, ale ovlivnila účinnost transfekce způsobenou kompeticí lipozomového pouzdření mezi plazmidovou DNA a siRNA (data nejsou uvedena). Snížení koncentrace siRNA na hodnotu 1,5 nM nesnížila specifický účinek zhasínání (data nejsou uvedena), dokonce ani v případě, kdy siRNA byla pouze 2 krát až 20 krát koncentrovaná ve srovnání s plazmidovou DNA. To ukazuje, že siRNA jsou velmi silná reakční činidla pro zprostředkování zhášení genu a že siRNA jsou účinné v koncentraci, které jsou o několik řádů nižší než jsou koncentrace aplikované u běžných experimentů, při kterých dochází k nesmyslnému cílení genů nebo cílení ribozymových genů.
Za účelem sledování účinku delších dsRNA na savčí buňky, se připravily dsRNA příbuzné reportních genů obsahující 50 a 500 párů baží. Jako nespecifické kontroly se použily dsRNA z humanizovaného Gfp (hG) (popisuje se v publikaci Kehlenbach, R. H., Dickmanns, A. & Gerace, L. (1998). Nucleocytoplasmic shuttling factors including Ran and CMR1 mediate nuclear export of NFAT In vitro. J. Cell Biol. 141, 863-874). V případě, že se dsRNA ko-transfekovaly ve shodném množství (nikoliv koncentracích) s duplexy siRNA, exprese reportního genu se silně a nespecificky snížila. Tento účinek se ilustroval jako příklad v buňkách HeLa (zobrazeno na obrázku 10 a až d) . Absolutní luciferázové aktivity se nespecificky snížily destekrát až dvacetkrát pomocí dsRNA obsahující 50 párů baží a 20 až 200 krát ko-transfekcí dsRNA obsahující 500 párů baží. Podobné nespecifické účinky se pozorovaly v případě buněk COS-7 a NIH/3T3. V případě buněk 293 se pozorovala 10-ti násobná až 20-ti násobná redukce pouze v případě dsRNA obsahující 500 párů baží. Nespecifické snížení exprese reportního genu pomocí dsrNA obsahujíc více jak 30 párů baží se očekává jako část interferonové odezvy.
Navzdory silnému nespecifickému zvýšení exprese reportního genu, je možné opakovatelně detekovat další sekvenčně specifickou deaktivaci účinky deaktivace jsou zprostředkovanou zjevné pouze, dsRNA. Specifické když se relativní aktivity reportního genu normalizovaly s kontrolami dsRNA hG
Ve třech dalších (zobrazeno testovaných (data nejsou uvedna). (obsahující 356 až 1 na obrázku č. lOe až f) .
savčích buněčných liniích se pozorovala dvojnásobné až desetinásobné snížení odezvy na příbuznou dsRNA Specifické deaktivační účinky dsRNA 662 párů baží) byly už zmiňovány v případě buněk CHO-Kl, ale množství dsRNA nutné pro detekci dvojnásobné až čtyřnásobné redukce bylo přibližně dvacetkrát vyšší než v našich experimentech (popisuje se v publikaci UiTei, K. , Zenno, S., Miyata, Y. & Saígo, K. (2000) . Sensitive assay of RNA interference in Drsophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Letters 479, 79-82). Také buňky CHO-Kl nevykazují silnou interferonovou odezvu. V jiné publikaci se popisuje testování RNAi v buňkách 293, NIH/3T3 a BHK-21 za použití reportních kombinací luciferáza/lac a dsRNA specifické pro lacZ obsahující 829 párů baží nebo dsRNA nespecifické pro GFP obsahující 717 párů baží (popisuje se v publikaci Caplen, N. J., Fleenor, J., Fire, A., and Morgan, R. A. (2000). dsRNA5Ί • · · · mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference, gene 252, 95-105, Hammond, S. Μ. , Bernstein, E., Beach, D. , and Hannon, G. J. (2000) ) . Selhání detekce RNAi může být v tomto případě způsobeno méně citlivým testem luciferáza/lacZ a rozdílem délky célové a kontrolní dsRNA. Uvedené výsledky ukazují, že účinek deaktivace není lehké detekovat, jestliže interferonový systém se aktivuje dsRNA, která obsahuje více jak 30 párů baží.
Poprvé se zprostředkovaná příslibem pro kulturách a činidel.
prokázala deaktivace genu v savčích buňkách siRNA. Použití krátkých siRNA je velkým deaktivaci funkce genu v lidských tkáňových pro vývoj genově specifických terapeutických
Příklad 3: Specifická inhibce genové exprese interferencí RNA
3.1 Materály a metody
3.1.1 Příprava RNA a test RNAi
Chemickou syntézu RNA, hybridizaci a testy RNAi založené na luciferáze je možné provést způsobem popsaným v příkladech 1 nebo 2 nebo v dříve zmiňovaných publikacích Tuschl, T., Zámoře, P. D., Lehmann, R., Bartei, D. P. and Sharp, P. A. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Dev. 13, 3191-3197 a Zámoře, P. D., Tuschl, T., Sharp, P. A. and Bartei, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33). Všechny duplexy siRNA jsou směrovány proti luciferáze světlušek a sekvence mRNA luciferázy se získaly z pGEM-luc (GenBank, přístupové číslo X65316), jak se popisuje v publikaci Tuschl, T., Zámoře, P.
• · · • · • · · ·
58 .......
D. , Lehmann, R., Bartel, D. P. and Sharp, P. A. (1999).
Targeted mRNA degradation by double-stranded RNA in vitro.
Genes & Dev. 13, 3191-3197. Duplexy siRNA se inkubovaly
v reakční směsi pro RNAi D. melanogaster/translaci po dobu 15
minut a pak se přidala mRNA. Testy RNAi založené na translaci se provedly alespoň třikrát.
Za účelem mapování štěpení pozitivní cílové RNA se vytvořil transkrípt obsahující 177 nukleotidů odpovídající luciferázy světlušek mezi polohami 113 až 273 sekvenci vstaženo k startovacímu kodonu, pak následuje doplněk obsahující 17 nukleotidů sekvence promotoru SP6. Za účelem se vytvoří
RNA mapování štěpení 5', 3' řetězce cílové transkrípt obsahující 166 nukleotidů z templátu, který se amplifikoval podle sekvence plazmidu použitím PCR pomocí 5'primeru TAATACGACTCACTATAGAGCCCATATCGTTTCATA (podtržen promotor T7) a 3'prímer AGAGGATGGAACCGCTGG. Cílová sekvence odpovídá doplňku sekvence luciferázy světlušek mezi polohami 50 až 215 vztaženo vůči startovacímu kodonu. Guanylyl tranferázové značení se provedlo způsobem, který se popisuje v publikaci Zámoře, P. D., Tuschl, T., Sharp,
A. and
Bartel, D. P. (2000). RNAi ΆΤΡ-dependent cleavege of
Double-stranded RNA directs the mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33). Za účelem mapování štěpení cílové RNA se duplex siRNA v koncentrací 100 nM inkuboval s cílovou RNA v koncentraci 5 až 10 nM v lyzátu embryí organizmu D. Melanogaster za standardních podmínek (popisuje se v publikaci Zámoře, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33) po dobu 2 odiny při teplotě 25 °C. Reakce se zastavila přidáním 8 objemů pufru proteinázy K (200 mM Tris-HCl pH 7,5, 25 mM EDTA, 300 mM NaCl, 2% (hmotnost/objem) dodecylsulfátu sodného). Přidala se proteináza K (rozpuštěná ve vodě, od firmy E.M. Merck) tak, aby její konečná koncentrace byla 0,6 mg/ml. Reakční směs se inkubovala po dobu 15 minut při teplotě 65 °C, extrahovala se směsí f enol/chlorof orm/isoamylalkohol (v poměru 25:24:1) a srážela se třemi objemy etanolu. Vzorky se nanesly na 6% sekvenační gely. Standardy délky se získaly částečním štěpením RNázou TI a částečnou bazickou hydrolýzou pozitivních nebo negativních RNA značených čepičkou.
3.2 Výsledky
3.2.1 Variace přesahu 3'-konce v duplexech siRNA obsahujících nukleotidů
Jak se popisuje shora v textu 2 nebo 3 nepárované nukleotidy na 3'-konci duplexů siRNA jsou účinnější při degradaci cílové RNA ve srovnání s duplexy s tupými konci. Za účelem uskutečnění obsáhlejší analýzy funkce terminálních nukelotidů se syntetizovalo pět pozitivních siRNA obsahujících 21 nukleotidů, každý je vyjádřen jedním nukleotidem vztaženým k cílové RNA, a 8 negativních siRNA obsahujících 21 nukleotidů, každý je vyjádřen jedním nukleotidem vztaženým k cíli (zobrazeno na obrázku č. 11A). Kombinováním 3',5'a 5', 3' řetězců siRNA se vytvořilo osm sérií duplexů siRNA se syntetickými přesahujícími konci, které pokrývají rozmezí 7 nukleotidů přesahu na 3'konci a 4 nukleotidy přesahu na 5'konci. Interference duplexů siRNA se měřila použitím duálního luciferázového testu (popisuje se v publikaci Tuschl, T., Zámoře, P. D. , Lehmann, R., Bartel, D. P. and Sharp, P. A. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Dev. 13, 3191-3197, Zámoře, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33). Duplexy siRNA jsou určeny pro RNA luciferázy světlušek a jako vnitřní kontrola se použila mRNA Renilla reniformis. Poměr luminiscence cílové a kontrolní luciferázové aktivity se stanovil na základě přítomnosti duplexu siRNA a normalizoval se vůči poměru pozorovanému za nepřítomnosti dsRNA. Za účelem srovnání jsou poměry interference dlouhých dsRNA (obsahují 39 až 504 párů baží) zobrazeny na obrázku č. 11B. Interferenční poměry se stanovily v koncentracích 5 nM v případě dlouhých dsRNA (zobrazeno na obrázku č. 11A) a v koncentraci 100 nM v případě duplexů siRNA (popisuje se na obrázku č. 11c až j). Koncentrace siRNA 100 nM se vybrala, protože úplné zpracování dsRNA obsahující 504 párů baží v koncentraci 5 nM povede k vytvoření 120 nM duplexů siRNA.
Schopnost duplexů siRNA obsahujících 21 nukleotidů zprostředkovat RNAi závisí na počtu přesahujících nukleotidů nebo vytvořených párů baží. přesahujícími nukleotidy
Duplexy se 3'-konce čtyřmi až šesti nejsou schopny zprostředkovat RNAi (zobrazeno na obrázku č. 11c až f) na rozdíl od duplexů se dvěma nebo více nukleotidy přesahu 5'konce (zobrazeno na obrázku č. lig až j). Duplexy s přesahy 3'-konce obsahující 2 nukleotidy byly při zprostředkování interference RNA nejúčinnější, ačkoliv účinnost zhášení genu je také závislá na sekvenci, siRNA s přesahy na 3-konci
V případě rozdílných duplexů obsahující 2 nukleotidy se pozoroval až 12-ti násobný rozdíl (porovnání je zobrazeno na obrázku č. lid až h). Duplexy s tupými konci obsahující 1 nukleotid v přesahu 5'-konce nebo 1 až 3 nukleotidy v přesahu 3'-konce, byly v některých případech funkční. V případě duplexu siRNA se 7 nukleotidy v přesahu 2'konce se pozoroval malý deaktivační účinek (zobrazeno na obrázku č. 11c), což může být způsobeno antisense účinkem dlouhého přesahu 3'konce, spíše než RNAi. Porovnání účinnosti RNAi mezi dlouhou dsRNA (obrázek č. 11B) a nejúčinnějšími duplexy siRNA obsahujícími 21 nukleotidů (zobrazeno na obrázku č. lle, g, h) • · indikuje, že jediný duplex siRNA v koncentraci 100 nM může být stejně účinný jako dsRNA obsahující 504 párů baží v koncentraci 5 nM.
3.2.2 Variace délky 3',5'řetězce siRNA párovanou s invariantou 5',3'řetězce siRNA obsahující 21 nukleotidů
Za účelem zkoumat účinek délky siRNA na RNAi, se připravily 3 série duplexů siRNA kombinováním tří 5', 3' řetězců obsahující 21 nukleotidů s osmi 3',5' řetězci obsahující 18 až 25 nukleotidů. Přesah 3'-konce 5',3'řetězce siRNA se fixoval na počtu 1, 2, nebo 3 nukleotidy v každé sérii duplexů siRNA, zatímco 3',5' řetězec siRNA na jejím 3'konci se měnil (zobrazeno na obrázku č. 12A). Nezávisle na délce 3',5'řetězce siRNA se zjistilo, že duplexy s 2 nukleotidy v přesahu 3'-konce 5',3'řetězce siRNA (zobrazeno na obrázku . 12c) jsou více aktivní než duplexy obsahující 1 nebo 3 nukleotidy v přesahu 3'-konce (zobrazeno na obrázku č. 12b, d) . V prvních sériích, které obsahují 1 nukleotid v přesahu 3'-konce 5',3'řetězce siRNA, duplexy s 3', 5'řetězcem siRNA obsahující 21 a 22 nukleotidů nesoucí 1 a 2 nukleotidy v přesahu 3'-konce 3',5'řetězce siRNA, byly nejvíce aktivní. Duplexy s 3',5'řetězcem siRNA obsahující 19 až 25 nukleotidů jsou také schopny zprostředkovat RNAi, ale v měnším rozsahu. Podobně ve druhých sériích se dvěma nukleotidy v přesahu 5',3'řetězce siRNA duplex siRNA obsahující 21 nukleotidů s přesahem 3'konce obsahujícím 2 nukleotidy byl nejvíce aktivní a libovolná jiná kombinace pozitivní siRNA obsahující 18 až 25 nukleotidů byla dostečně aktivní. V posledních sériích se 3 nukleotidy v přesahu 3'-konce 5',3'řetězce siRNA byl pouze duplex 3',5'řetězce siRNA obsahující 20 nukleotidů a 2 nukleotidy v přesahu 3'-konce schopen zeslabit expresi cílové RNA. Výsledky ukazují, že délky siRNA stejně jako délka přesahu 3'-konce jsou důležité a že duplexy siRNA obsahující • * · ···· ♦*· ·· nukleotidů s 2 nukleotidy v přesahu 3'konce jsou optimální pro RNAi.
3.2.3 Variace délky duplexů siRNA s konstantním konce obsahující 2 nukleotidy přesahem 3'Testoval se účinek současných změn délky obou řetězců siRNA udržováním symterických přesahů 3'-konce obsahující 2 nukleotidy (zobrazeno na obrázku č. 13A). Připravily se dvě série duplexů siRNA, které zahrnují duplex siRNA obsahující 21 nukleotidů zobrazených na obrázku č. 11H. Délka duplexů kolísá mezi 20 až 25 páry baží. Segment párů baží se prodlužuje na svém 3'-konci 3',5'řetězce siRNA (zobrazeno na obrázku č 13B) nebo na 3'-konci 5',3'řetězce siRNA (zobrazeno na obrázku č. 13c). Duplexy obsahující 20 až 23 párů baží způsobily specifickou represi cílové luciferázové aktivity, ale duplex siRNA obsahující 21 nukleotidů byl alespoň 8 krát účinnější než libovolný jiný duplex. Duplexy siRNA obsahující 24 a 25 nukleotidů nezpůsobují žádnou interferenci. Sekvenčně specifické účinky byly mizivé, protože variace obou konců duplexu vykazovaly podobné účinky.
3.2.4
Duplexy siRNA upravené 2'-deoxyskupinou a 2'-Ometylovou skupinou
Za účelem hodnocení důležitosti zbytků ribózy siRNA při RNAi se testovaly duplexy s siRNA obsahující 21 nukleotidů a 2 nukleotidy v přesahu 3'-konce s řetězci upravenými 2'deoxyskupinou nebo 2'-0-metyiovou skupinou (zobrazeno na obrázku č. 14). Substituce 2 nukleotidů přesahů 3'-konce 2'deoxynukleotidy neměla žádný účinek a dokonce nahrazením dvou dalších ribonukleotidů, které sousedí s přesahy v párované oblasti vznikly podstatně aktivní siRNA. Osm ze 42 nukleotidů duplexu siRNA se nahradilo zbytky DNA, aniž došlo ke ztrátě aktivity. Úplná substituce jednoho nebo obou řetězců siRNA zbytků s 2'-deoxyskupinou eliminovala RNAi stejně jako substituce zbytky s 2'-O-metylovou skupinou.
3.2.5 Definice míst štěpení cílové RNA
Polohy štěpení cílové RNA v případě duplexů siRNA obsahující 22 nukleotidů a 21 nukleotidů/22 nukleotidů byly už dříve stanovaný. Zjistilo se, že poloha štěpení cílové RNA se nachází ve středu oblasti pokryté duplexem siRNA, což je 11 nebo 12 nukleotidů downstream od prvního nukleotidu, který je komplementární s řídící sekvencí siRNA obsahující 21 nebo 22 nukleotidů. Pět rozdílných duplexů siRNA obsahující 21 nukleotidů s přesahem na 3'-konci obsahujícím 2 nukleotidy (zobrazeno na obrázku č. 5',3'řetězcem cílové RNA
15A) se inkubovalo s 3',5'nebo značenou na 5'-konci čepičkou v lyzátu organizmu D.melanogaster (popisuje se v publikaci Tuschl, T., Zámoře, P. D., Lehmann, R. , Bartel, D. P. and Sharp, P. A. (1999). Targeted mRNA degradation by doublestranded RNA in vitro. Genes & Dev. 13, 3191-3197, Zámoře, P.
D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000) . RNAi: Double-stranded RNA directs the ATP-dependent cleavege of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33). Produkty štěpení na 5'-konci se rozdělily na sekvenačním gelu (zobrazeno na obrázku č. 15B) . Množství štěpeného 3',5'řetězce cílové RNA koreluje s účinností duplexů siRNA stanovenou v testu založeném na translaci a duplexy siRNA 1, 2 a 4 (zobrazeno na obrázku č. 15B a 11H, G, E) štěpí cílovou RNA rychleji než duplexy 3 a 5 (zobrazeno na obrázku č. 15B a 11F, D). Součet radioaktivity produktu štěpení na 5'-konci a vstupující cílové RNA nebyl konstantní a produtky štěpení 5'konce se nehromadily. Produkty štěpení uvolněné z komplexu siRNA-endonukleáza se rychle degradují, což je způsobeno koncem póly(A) čepičky na 5'-konci.
• · • · · ·
Místa štěpení pro 3',5' a 5',3' řetězec cílové RNA se nachází ve středu oblasti pokryté duplexy siRNA. Místa štěpení každého cíle produkovaného 5 různými duplexy se liší jedním nukleotidem. Cíle se štěpily přesně 11 nukleotidů downstream cílové polohy komplementární s nukleotidem na 3'-konci sekvenčně komplementární řídící siRNA (zobrazeno na obrázku č. 15A, B).
Za účelem stanovit, zda 5'nebo 3'konec řídících siRNA udává měřítko pro štěpení cílové RNA, se navrhla strategie experimentů zobrazených na obrázku č. 16A a B. 5',3'řetězec siRNA obsahující 21 nukleotidů, které se pro účely této studie neměnily, se párovaly s 3',5' řetězcem siRNA, které se upravovaly na svém 5'nebo 3'konci. Poloha štěpení 3',5' a 5',3' řetězce cílové RNA se stanovila způsobem popsaným shora v textu. Změny na 3'-konci 3'5'řetězce siRNA se sledovaly v případě 1 nukleotidu přesahu na 5'-konci až 6 nukleotidů pesahu na 3'-konci neovlivnily polohu štěpení 3',5' ani 5',3'řetězce cílové RNA (zobrazeno na obrázku č. 16C). Změny na 5'-konci 3',5'řetětce siRNA neovlivňují štěpení 3',5'řetězce cílové RNA (zobrazeno na obrázku č. 16D, horní část), což se očekávalo, protože 5',3'řetězec siRNA zůstal beze změn. Štěpení 5',3'řetězce cílové RNA bylo ovlivněno a silně závisí na 5'-konci 3',5'řetězce siRNA (zobrazeno na obrázku č. 16D, spodní panel). 3',5'řetězec cíle se štěpil pouze, když 3',5'řetězec siRNA obsahoval 20 nebo 21 nukleotidů, přičemž poloha štěpení se liší jedním nukleotidem, což naznačuje, že 5'-konec sady siRNA rozeznávající cíl je měřítkem pro štěpení cílové RNA. Poloha štěpení se nachází mezi nukleotidem 10 a 11, kdy se počítá ve směru upstream od cílového nukleotidu, který tvoří pár s posledním nukleotidem na 5'-konci řídící siRNA (zobrazeno také na obrázku č. 15A) .
• « · »* • · · · · • · · *
3.2.6 • · · 4 · ·
Účinky sekvence a v přesahu 3'-konce substituce 2'-deoxyskupiny
Dva nukleotidy přesahu 3'-konce jsou výhodné pro fungování siRNA. Zkoumalo se, zda sekvence přesahujících nukleotidů se podílí na rozeznávání cíle nebo zda je pouze rysem nutným pro rekonstituci endonukleázového komplexu (RISC nebo siRNP). Syntetizovaly se 3',5'řetězec a 5',3'řetězec siRNA s přesahy ΆΑ, CC, GG, UU a UG na 3'-konci a zahrnovaly úpravy TdG a TT 2'-deoxyskupinou. siRNA divokého typu obsahoval AA v přesahu 3'-konce 3',5' řetězce a UG v v přesahu 3'-konce 5',3'řetězce (AA/UG). Všechny duplexy siRNA jsou v testu interference funkční a zeslabují expresi cíle alespoň 5 krát (zobrazeno na obrázku č. 17). Nejúčinější duplexy siRNA, které redukovaly cílovou expresi více jak desetkrát obsahovaly sekvenci typu NN/UG, NN/UU, NN/TdG a NN/TT (N, libovolný nukleotid). Duplexy siRNA s přesahem 3'-konce 5',3'řetězce siRNA AA, CC nebo GG byly 2 krát až 4 krát méně aktivní ve srovnání se sekvencí divokého typu UG nebo s mutantem UU. Toto snížení účinnosti RNAi je pravděpodobně způsobeno účastí předposledního nukleotidu na 3'-konci v sekvenčně specifickém rozeznávání cíle, přičemž 3'-terminální nukleotid se změnil z G na U bez jakéhokoliv účinku.
Změny v sekvenci přesahu 3'-konce v 3',5'řetězci siRNA neukázaly žádné účinky v závislosti na sekvenci, což se očekávalo, protože 3',5'řetězec siRNA se nesmí podílet na rozpoznávání 3',5'řetězci cílové mRNA.
3.2.7 Sekvenční specifita rozeznávání cíle
Za účelem testovat sekvenční specifitu rozeznávání cíle se zavedly změny sekvence do párovaných segmentů suplexů siRNA a stanovila se účinnost deaktivace. Změny sekvence se zavedly obrácením krátkých segmentů v délce 3 nebo 4 nukletidů nebo jako bodové mutace (zobrazeno na obrázku č. 18) . Změny sekvencí v jednom řetězci siRNA se kompenzují v komplementárním řetězci siRNA, aby se zabránilo porušení párování baží struktury duplexu siRNA. Sekvence všech přesahů 3'-konců s 2 nukleotidy byla TT (T, 2'-deoxytymidin), což snižuje náklady na syntézu. Referenční duplex siRNA obsahující sekvenci TT/TT působí srovnatelně při RNAi s duplexem siRNA divokého typu se sekvencí AA/UG (zobrazeno na obrázku č. 17). Schopnost zprostředkovat destrukci reportní mRNA se kvantifikovala použitím luminiscenčního testu založeného na translaci. Duplexy siRNA se segmenty s obrácenou sekvencí vykazovaly dramaticky sníženou schopnost cílit reportní gen lucierázy světlušek (zobrazeno na obrázku č. 18) . Změny sekvence lokalizované mezi 3'-koncem a středem 5',3'řetězce siRNA zcela ruší rozeznávání cílové sekvence, ale mutace blízko 5'-konci 5',3'řetězce siRNA vykazují nízký stupeň deaktivace. Transverze páru baží A/U lokalizovaných přímo proti předpokládanému místu štěpení cílové RNA nebo o jeden nukleotid dále od předpokládaného místa brání štěpení cílové RNA, což ukazuje, že jediná mutace v centru duplexu siRNA potlačuje nesprávné párování cílů.
3.3 Diskuze siRNA jsou dostupná reakční činidla pro deaktivaci exprese genu, ne pouze v hmyzích buňkách, ale také v savčích buňkách, s velkým potenciálem pro terapeutické aplikace. Systematicky jsme analyzovaly strukturní determinanty duplexů siRNA nutné k podpoře účinné degradace cílové RNA v lyzátu embryí organizmu D. melanogaster, což poskytuje pravidla pro vytvoření nejsilnějších duplexů siRNA. Správný duplex siRNA je schopen deaktivovat expresi genu s účinností srovnatelnou • · « <
φ · • * » ι»ι« · a · s dsRNA obsahující 500 párů baží, srovnatelné množství celkové RNA.
přičemž se používá
3.3 Použití siRNA
Duplexy siRNA účinné při dekativaci jsou s výhodou složeny z 3',5 řetězce siRNA obsahujícího 21 nukleotidů a měly by se vybrat tak, aby tvořily dvoušroubovici obsahující 19 párů baží s přesahem na 3'-koncích obsahujícími 2 nukleotidy. 2'-deoxy substituce 2 nukleotidů přesahujících ribonukleotidů na 3'konci neovlivňuje RNAi, ale pomáhá snižovat náklady syntézy RNA a může zesilovat rezistenci duplexů siRNA vůči RNázám. Rozsáhlejší úpravy 2'-deoxyskupinou nebo 2'-O-metylovou skupinou však snižují schopnost siRNA zprostředkovat RNAi pravděpodobně interferencí proteinem, se kterým se spojuje za účelem vytvoření siRNAP.
Rozeznání cíle je vysoce sekvenčně specifický proces zprostředkovaný siRNA komplementární s cílem. Nukleotid na samém 3'-konci řídící siRNA se nepodílí na specifitě rozeznávání cíle, zatímco předposlední nukleotid přesahu 3'konce ovlivňuje štěpení cílové RNA a nesprávné párování zeslabuje RNAi 2 krát až 4 krát. 5'-konec řídící siRNA ve srovnání s 3'-koncem se jeví být více permisivní pro nesprávné rozeznávání cílové RNA. Nukleotidy v centru siRNA lokalizované na druhé straně místa štěpení cílové RNA jsou důležitými determinanty specifity a dokonce změna jediného nukleotidu snižuje RNAi na nedetekovatelnou úroveň. To naznačuje, že duplexy siRNA jsou schopny potlačit mutanty nebo polymorfní alely v experimentech cílení genů, což se může stát důležitým rysem při vývoji terapeutických činidel.
3',5' a 5',3'řetězce siRNA, když jsou spojeny se složkami proteinu endonukleázového komplexu, mají odlišnou úlohu.
φ φ
Φ ·
Relativní orientace duplexu siRNA v tomto komplexu definuje, který řetězec je možné použít při rozeznávání cíle. Syntetické duplexy siRNA vykazují dvoj četnou symetrii s ohledem na dvoušroubovicovou strukturu, ale nikoli s ohledem na sekvenci. Spojení duplexů siRNA s proteiny RNAi v lyzátu organizmu D. melanogaster vede k vytvoření dvou asymterických komplexů. V takovém hypotetickém komplexu je chirální prostředí odlišné pro 3',5' a 5',3'řetězec siRNA vzhledem k jejich funkci. Předpověď obvykle neplatí v případě palindromických sekvencí siRNA nebo v případě proteinů RNAi, které se mohou spojovat jako homodiméry. Aby se minimalizovaly sekvenční účinky, které mohou ovlivnit poměr siRNP cílící 3',5' a 5',3' řetězec, navrhuje se použití sekvencí siRNA se shodnými sekvencemi přesahů 3'-konce. Doporučujeme upravit sekvenci přesahu 3',5' řetězce siRNA na sekvenci přesahu 3'konce 5',3'řetězce siRNA, protože 3',5' řetězec siRNA nemá v typických deaktivačních experimentech cíl. Asymetrie při rekonstituci siRNP může být (částečně) odpovědná za variace v účinnosti RNAi pozorované pro různé duplexy siRNA obsahující 21 nukleotidů s přesahy na 3-koncích obsahující 2 nukleotidy (zobrazeno na obrázku č. 14). V jiném případě nukleotidové sekvence v cílovém místě a/nebo přístupnost struktury cílové RNA může být zodpovědná za kolísání účinnosti v případě duplexů siRNA.

Claims (44)

  1. PATENTOVÉ NÁROKY
    1. Izolovaná molekula dvouřetězcové RNA, kde každý řetězec RNA obsahuje 19 až 25 nukleotidů a uvedená molekula RNA je schopná cílově specifických úprav nukleových kyselin.
  2. 2. Molekula RNA podle nároku 1, kde alespoň jeden řetězec má na 3'-konci přesah obsahující 1 až 5 nukleotidů.
  3. 3. Molekula RNA podle nároku 1 nebo 2 schopná cílově specifické RNA interference a/nebo metylace DNA.
  4. 4. Molekula RNA podle libovolného z nároků 1 až 3, kde každý řetězec obsahuje 19 až 23 nukleotidů, zvláště pak 20 až 22 nukleotidů.
  5. 5. Molekula RNA podle libovolného z nároků 2 až 4, kde přesah 3'-konce je tvořen 1 až 3 nukleotidy.
  6. 6. Molekula RNA podle libovolného z nároků 2 až 5, kde přesah 3'-konce je stabilizován proti degradaci.
  7. 7. Molekula RNA podle libovolného z nároků 1 až 6, která obsahuje alespoň jeden upravený nukleotidový analog.
  8. 8. Molekula RNA podle nároku 7, kde upravený nukleotidový analog se vybral z ribonukleotidů s upravenou cukernou složkou nebo s upravenou kostrou.
  9. 9. Molekula RNA podle nároku 7 nebo 8, kde nukleotidový analog je ribonukleotid s upravenou cukernou složkou, kde 2'-OH skupina se nahradila skupinou vybranou z vodíku, OR, R, • · ··· ···· • ··· · · · ·· · ·· ·· halogenu, SH, SR1, NH2, NHR, NR2 nebo CN, kde symbol R znamená alkyl obsahující 1 až 6 atomů uhlíku, alkenyl nebo alkynyl a halogenem je fluór, chlór, bróm nebo jód.
  10. 10. Molekula RNA podle nároku 7 nebo 8, kde nukleotidový analog je ribonukleotid s upravenou kostrou obsahující fosfothioátovou skupinu.
  11. 11. Molekula RNA podle libovolného z nároků 1 až 10, jejíž sekvence vykazuje alespoň 50 % shodu s předem stanovenou cílovou molekulou mRNA.
  12. 12. Molekula RNA podle nároku 11, kde shoda je alespoň 70 %.
  13. 13. Způsob přípravy molekuly dvouřetězcové RNA podle libovolného z nároků 1 až 12, vyznačuj ící se tím, že zahrnuje:
    (a) syntézu dvou řetězců RNA, kdy každý obsahuje 19 až 25 nukleotidů a uvedené řetězce RNA jsou schopny tvořit molekulu dvouřetězcové RNA, (b) kombinování syntetizovaných řetězců RNA za podmínek, kdy vzniká molekula dvouřetězcové RNA, která je schopna specificky pro cíl upravovat nukleové kyseliny.
  14. 14. Způsob podle nároku 13, vyznačující se tím, ž e řetězce RNA jsou syntetizovány chemickým způsobem.
  15. 15. Způsob podle nároku 13, vyznačující se tím, ž e řetězce RNA jsou syntetizovány enzymaticky.
  16. 16. Způsob zprostředkování cílově specifických úprav nukleových kyselin v buňce nebo organizmu, vyznačující se tím, že zahrnuje:
    • · · · · ···· ···· · · · ·· · · · ·· (a) kontakt uvedené buňky nebo organizmu s molekulou dvouřetězcové RNA podle libovolného z nároků 1 až 12 za podmínek, kdy se mohou objevit cílově specifické úpravy nukleových kyselin a (b) zprostředkování cílově specifické úpravy cílové nukleové kyseliny provedené dvouřetězcovou RNA, přičemž část . sekvence cílové nukleové kyseliny v podstatě odpovídá dvouřetězcové RNA.
  17. 17. Způsob podle nároku 16, vyznačující se tím, ž e úprava nukleové kyseliny je RNA interference a/nebo metylace DNA.
  18. 18. Způsob podle nároků 16 a 17, vyznačuj ící se tím, že uvedený kontakt zahrnuje zavedení uvedené molekuly dvouřetězcové RNA do cílové buňky, ve které dochází k cílově specifické úpravě nukleové kyseliny.
  19. 19. Způsob podle nároku 18, vyznačující se tím, ž e zavedení zahrnuje zavedení zprostředkované nosičem nebo injekci.
  20. 20. Použití způsobu podle libovolného z nároků 16 až 19 při stanovení funkce genu v buňce nebo v organizmu.
  21. 21. Použití způsobu podle libovolného z nároků 16 až 19 při úpravě funkce genu v buňce nebo v organizmu.
  22. 22. Použití podle nároku 20 nebo 21, kde gen je spojen s patologickým stavem.
  23. 23. Použití podle nároku 22, kde gen je asociovaný s patogenem.
    ·· · · · ···· ·· ····
    24. Použití podle n ároku 23, 72 kde • · · · ···· ··· ·· genem je virový gen. • · · · · • · · · · 25. Použití podle nároku 22, kde genem j e gen asociovaný s nádorem. 26. Použití podle nároku 22, kde genem je gen asociovaný s autoimunitním onemocněním.
  24. 27. Farmaceutický prostředek, vyznačuj ící se tím, že obsahuje jako aktivní činidlo alespoň jednu molekulu dvouřetězcové RNA podle libovolného z nároků 1 až 12 a farmaceutický nosič.
  25. 28. Prostředek podle nároku 27, vyznačuj ící se tím, ž e je vhodný pro diagnostické aplikace.
  26. 29. Prostředek podle nároku 27, vyznačuj ící se tím, ž e je vhdoný pro terapeutické aplikace.
  27. 30. Eukaryontní buňka nebo eukaryontní organizmus, kterým není člověk, vykazující fenotyp odpovídající inhibici exprese specifického cílového genu, kde uvedená buňka nebo organizmus se transfekovaly alespoň jednou molekulou dvouřetězcové RNA schopné inhibovat expresi endogenního cílového genu nebo DNA kódující alespoň jednu molekulu dvouřetězcové RNA schopné inhibovat expresi alespoň jednoho endogenního cílového genu.
  28. 31. Buňka nebo organizmus podle nároku 30, kterou je savčí buňka.
  29. 32. Buňka nebo organizmus podle nároku 31, kterou je lidská buňka.
  30. 33. Buňka nebo organizmus podle libovolného z nároků 30 až 32, která se dále transfekovala alespoň jednou exogenní cílovou nukleovou kyselinou, která kóduje cílový protein nebo jeho variantu nebo jeho mutovanou formu, kde uvedená exogenní cílová nukleová kyselina se liší od endogenního cílového genu na úrovni nukleové kyseliny tak, že exprese exogenní cílové nukleové kyseliny je podstatně méně inhibována molekulou dvouřetězcové RNA než exprese endogenního cílového genu.
  31. 34. Buňka nebo organizmus podle nároku 33, kde exogenní cílová nukleová kyselina se fúzuje s další sekvencí nukleové kyseliny, která kóduje detekovatelný peptid nebo polypeptid.
  32. 35. Použití buňky nebo organizmu podle libovolného z nároků 30 až 34 při analytických postupech.
  33. 36. Použití podle nároku 35 při analýze profilů exprese genu.
  34. 37. Použití podle nároku 35 při analýze proteomů.
  35. 38. Použití podle libovolného z nároků 35 až 37 při analýze varianty nebo mutantní formy cílového proteinu kódovaného exogenní cílovou nukleovou kyselinou.
  36. 39. Použití podle nároku 38 při určení funkčních oblastí cílového proteinu.
  37. 40. Použití podle libovolného z nároků 35 až 39 při porovnání alespoň dvou buněk nebo organizmu vybraných z (i) kontrolní buňky nebo kontrolního organizmu bez inhibice cílového genu, (ii) buňky nebo organizmu s inhibici cílového genu a
    7 4 · · ··· ···· ···· · · · ·· · ·· ·· (iii) buňky nebo organizmu s inhibici cílového genu plus komplementací cílového genu exogenní cílovou nukleovou kyselinou.
  38. 41. Použití podle libovolného z nároků 35 až 40, kde analýza zahrnuje funkční a/nebo fenotypickou analýzu.
  39. 42. Použití buňky podle libovolného z nároků 30 až 34 při preparativních postupech.
  40. 43. Použití podle nároku 41 při izolaci proteinů nebo proteinových komplexů z eukaryontních buněk.
  41. 44. Použití podle nároku 43 při izolaci proteinových komplexů s vysokou molekulovou hmotností, které mohou obsahovat nukleové kyseliny.
  42. 45. Použití podle libovolného z nároků 35 až 44 v postupu při určení a/nebo charakterizaci farmakologických činidel.
  43. 46. Systém pro určení a/nebo charakterizaci farmakologického činidla, které působí alespoň na jeden cílový protein, vyznačující se tím, že zahrnuje:
    (a) eukaryontní buňku nebo eukaryontní organizmus schopný exprimovat alespoň jeden cílový gen kódující alespoň jeden uvedený cílový protein, (b) alespoň jednu molekulu dvouřetězcové RNA schopnou inhibovat expresi alespoň jednoho uvedeného endogenního cílového genu a (c) testovanou látku nebo sadu testovaných látek, přičemž se stanoví a/nebo charakterizují farmakologické vlastnosti uvedené testované látky nebo uvedené sady.
  44. 47. Systém podle nároku 46, vyznačující se tím, ž e dále obsahuje:
    (d) alespoň jednu exogenní cílovou nukleovou kyselinu kódující cílový protein nebo jeho variantu nebo jeho mutovanou formu, kde uvedená exogenní cílová nukleová kyselina se liší od endogenního cílového genu na úrovni nukleové kyseliny tak, že exprese exogenní cílové nukleové kyseliny je podstatně méně inhibována molekulou dvouřetězcové RNA než exprese endogenního cílového genu.
CZ20031839A 2000-12-01 2001-11-29 Izolovaná molekula dvouretezcové RNA, zpusob její výroby a její použití CZ302719B6 (cs)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP00126325 2000-12-01
US27966101P 2001-03-30 2001-03-30
PCT/US2001/010188 WO2001075164A2 (en) 2000-03-30 2001-03-30 Rna sequence-specific mediators of rna interference

Publications (2)

Publication Number Publication Date
CZ20031839A3 true CZ20031839A3 (cs) 2003-10-15
CZ302719B6 CZ302719B6 (cs) 2011-09-21

Family

ID=40529293

Family Applications (2)

Application Number Title Priority Date Filing Date
CZ20031839A CZ302719B6 (cs) 2000-12-01 2001-11-29 Izolovaná molekula dvouretezcové RNA, zpusob její výroby a její použití
CZ2011452A CZ308053B6 (cs) 2000-12-01 2001-11-29 Izolovaná molekula dvouřetězcové RNA, způsob její výroby a její použití

Family Applications After (1)

Application Number Title Priority Date Filing Date
CZ2011452A CZ308053B6 (cs) 2000-12-01 2001-11-29 Izolovaná molekula dvouřetězcové RNA, způsob její výroby a její použití

Country Status (27)

Country Link
US (25) US20040259247A1 (cs)
EP (3) EP1873259B1 (cs)
JP (5) JP4095895B2 (cs)
KR (2) KR100872437B1 (cs)
CN (1) CN100523215C (cs)
AT (1) ATE373724T2 (cs)
AU (3) AU2002235744B8 (cs)
BR (1) BRPI0115814B8 (cs)
CA (1) CA2429814C (cs)
CY (1) CY1119062T1 (cs)
CZ (2) CZ302719B6 (cs)
DE (1) DE60130583T3 (cs)
DK (2) DK1407044T4 (cs)
ES (2) ES2728168T3 (cs)
HU (1) HU230458B1 (cs)
IL (3) IL155991A0 (cs)
LT (1) LTPA2021005I1 (cs)
MX (1) MXPA03004836A (cs)
NO (2) NO333713B1 (cs)
NZ (1) NZ525888A (cs)
PL (1) PL218876B1 (cs)
PT (1) PT1407044E (cs)
RU (2) RU2322500C2 (cs)
SI (1) SI1407044T2 (cs)
TR (1) TR200401292T3 (cs)
WO (1) WO2002044321A2 (cs)
ZA (1) ZA200303929B (cs)

Families Citing this family (1245)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023569A1 (en) * 1992-05-11 1993-11-25 Ribozyme Pharmaceuticals, Inc. Method and reagent for inhibiting viral replication
US20030206887A1 (en) * 1992-05-14 2003-11-06 David Morrissey RNA interference mediated inhibition of hepatitis B virus (HBV) using short interfering nucleic acid (siNA)
US5639647A (en) * 1994-03-29 1997-06-17 Ribozyme Pharmaceuticals, Inc. 2'-deoxy-2'alkylnucleotide containing nucleic acid
US5898031A (en) 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
US7812149B2 (en) 1996-06-06 2010-10-12 Isis Pharmaceuticals, Inc. 2′-Fluoro substituted oligomeric compounds and compositions for use in gene modulations
US9096636B2 (en) 1996-06-06 2015-08-04 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds and their use in gene modulation
US20040219569A1 (en) * 1999-07-06 2004-11-04 Fruma Yehiely Gene identification method
US20110003879A1 (en) * 2005-03-11 2011-01-06 Vincent Mark D Antisense oligonucleotides targeted to the coding region of thymidylate synthase and uses thereof
US6506559B1 (en) 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
ES2374534T3 (es) 1998-03-20 2012-02-17 Commonwealth Scientific And Industrial Research Organisation Control de la expresión de genes.
AUPP249298A0 (en) 1998-03-20 1998-04-23 Ag-Gene Australia Limited Synthetic genes and genetic constructs comprising same I
CA2326823A1 (en) * 1998-04-20 1999-10-28 Ribozyme Pharmaceuticals, Inc. Nucleic acid molecules with novel chemical compositions capable of modulating gene expression
EP2314700A1 (en) 1999-01-28 2011-04-27 Medical College of Georgia Research Institute, Inc Composition and method for in vivo and in vitro attenuation of gene expression using double stranded RNA
DE19956568A1 (de) 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
US7601494B2 (en) 1999-03-17 2009-10-13 The University Of North Carolina At Chapel Hill Method of screening candidate compounds for susceptibility to biliary excretion
EP3031917A1 (en) 1999-04-09 2016-06-15 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
US6656698B1 (en) * 1999-06-30 2003-12-02 Millennium Pharmaceuticals, Inc. 12832, a novel human kinase-like molecule and uses thereof
US6423885B1 (en) 1999-08-13 2002-07-23 Commonwealth Scientific And Industrial Research Organization (Csiro) Methods for obtaining modified phenotypes in plant cells
US8128922B2 (en) * 1999-10-20 2012-03-06 Johns Hopkins University Superior molecular vaccine linking the translocation domain of a bacterial toxin to an antigen
GB9925459D0 (en) * 1999-10-27 1999-12-29 Plant Bioscience Ltd Gene silencing
DE10160151A1 (de) * 2001-01-09 2003-06-26 Ribopharma Ag Verfahren zur Hemmung der Expression eines vorgegebenen Zielgens
US7829693B2 (en) * 1999-11-24 2010-11-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a target gene
DE10100586C1 (de) 2001-01-09 2002-04-11 Ribopharma Ag Verfahren zur Hemmung der Expression eines Ziegens
US7179796B2 (en) * 2000-01-18 2007-02-20 Isis Pharmaceuticals, Inc. Antisense modulation of PTP1B expression
US20080039414A1 (en) * 2002-02-20 2008-02-14 Sima Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US8202979B2 (en) * 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
US8273866B2 (en) 2002-02-20 2012-09-25 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SINA)
US20050032733A1 (en) * 2001-05-18 2005-02-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SiNA)
WO2002081628A2 (en) * 2001-04-05 2002-10-17 Ribozyme Pharmaceuticals, Incorporated Modulation of gene expression associated with inflammation proliferation and neurite outgrowth, using nucleic acid based technologies
US8202846B2 (en) 2000-03-16 2012-06-19 Cold Spring Harbor Laboratory Methods and compositions for RNA interference
WO2001068836A2 (en) 2000-03-16 2001-09-20 Genetica, Inc. Methods and compositions for rna interference
US20030084471A1 (en) * 2000-03-16 2003-05-01 David Beach Methods and compositions for RNA interference
BRPI0117339B1 (pt) * 2000-03-30 2016-03-15 Massachusetts Inst Technology método para identificar sítios alvos dentro de mrna que sejam eficientemente clivados pelo processo rnai, e método para identificar rnas de 21-23 nt que medeiam eficientemente rnai
PT1309726E (pt) 2000-03-30 2010-03-08 Whitehead Biomedical Inst Mediadores de interferência por rna específicos de sequência de rna
US7662791B2 (en) 2000-08-02 2010-02-16 University Of Southern California Gene silencing using mRNA-cDNA hybrids
US20080242627A1 (en) * 2000-08-02 2008-10-02 University Of Southern California Novel rna interference methods using dna-rna duplex constructs
ES2454640T3 (es) * 2000-08-03 2014-04-11 Johns Hopkins University Vacuna molecular que lleva unida un polipéptido de chaperona del retículo endoplasmático a un antígeno
US20080032942A1 (en) 2000-08-30 2008-02-07 Mcswiggen James RNA interference mediated treatment of Alzheimer's disease using short interfering nucleic acid (siNA)
US20030190635A1 (en) * 2002-02-20 2003-10-09 Mcswiggen James A. RNA interference mediated treatment of Alzheimer's disease using short interfering RNA
WO2009042910A2 (en) * 2007-09-26 2009-04-02 University Of South Florida Ship inhibition to direct hematopoietic stem cells and induce extramedullary hematopoiesis
US20020165192A1 (en) 2000-09-19 2002-11-07 Kerr William G. Control of NK cell function and survival by modulation of ship activity
US7691821B2 (en) * 2001-09-19 2010-04-06 University Of South Florida Inhibition of SHIP to enhance stem cell harvest and transplantation
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
CA2429814C (en) 2000-12-01 2014-02-18 Thomas Tuschl Rna interference mediating small rna molecules
US8546143B2 (en) 2001-01-09 2013-10-01 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a target gene
US7767802B2 (en) 2001-01-09 2010-08-03 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
US20020132257A1 (en) 2001-01-31 2002-09-19 Tony Giordano Use of post-transcriptional gene silencing for identifying nucleic acid sequences that modulate the function of a cell
US20050143333A1 (en) * 2001-05-18 2005-06-30 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (SINA)
US20070270579A1 (en) * 2001-05-18 2007-11-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050191618A1 (en) * 2001-05-18 2005-09-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of human immunodeficiency virus (HIV) gene expression using short interfering nucleic acid (siNA)
US7109165B2 (en) * 2001-05-18 2006-09-19 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US20050209180A1 (en) * 2001-05-18 2005-09-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hepatitis C virus (HCV) expression using short interfering nucleic acid (siNA)
US20040198682A1 (en) * 2001-11-30 2004-10-07 Mcswiggen James RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (siNA)
US20050054596A1 (en) * 2001-11-30 2005-03-10 Mcswiggen James RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050176664A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cholinergic muscarinic receptor (CHRM3) gene expression using short interfering nucleic acid (siNA)
US20050119212A1 (en) * 2001-05-18 2005-06-02 Sirna Therapeutics, Inc. RNA interference mediated inhibition of FAS and FASL gene expression using short interfering nucleic acid (siNA)
US20080161256A1 (en) * 2001-05-18 2008-07-03 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050267058A1 (en) * 2001-05-18 2005-12-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (sINA)
US20070042983A1 (en) * 2001-05-18 2007-02-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050153914A1 (en) * 2001-05-18 2005-07-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of MDR P-glycoprotein gene expression using short interfering nucleic acid (siNA)
US7517864B2 (en) 2001-05-18 2009-04-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
WO2003070983A1 (en) * 2002-02-20 2003-08-28 Sirna Therapeutics, Inc RNA INTERFERENCE MEDIATED INHIBITION OF PROTEIN KINASE C ALPHA (PKC-ALPHA) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20050256068A1 (en) * 2001-05-18 2005-11-17 Sirna Therapeutics, Inc. RNA interference mediated inhibition of stearoyl-CoA desaturase (SCD) gene expression using short interfering nucleic acid (siNA)
US20040219671A1 (en) * 2002-02-20 2004-11-04 Sirna Therapeutics, Inc. RNA interference mediated treatment of parkinson disease using short interfering nucleic acid (siNA)
US20050233344A1 (en) * 2001-05-18 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of platelet derived growth factor (PDGF) and platelet derived growth factor receptor (PDGFR) gene expression using short interfering nucleic acid (siNA)
US20050164967A1 (en) * 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of platelet-derived endothelial cell growth factor (ECGF1) gene expression using short interfering nucleic acid (siNA)
US20050176666A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of GPRA and AAA1 gene expression using short interfering nucleic acid (siNA)
US20050159382A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of polycomb group protein EZH2 gene expression using short interfering nucleic acid (siNA)
US20050196765A1 (en) * 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of checkpoint Kinase-1 (CHK-1) gene expression using short interfering nucleic acid (siNA)
US20050233997A1 (en) * 2001-05-18 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of matrix metalloproteinase 13 (MMP13) gene expression using short interfering nucleic acid (siNA)
US20050176024A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of epidermal growth factor receptor (EGFR) gene expression using short interfering nucleic acid (siNA)
US20040019001A1 (en) * 2002-02-20 2004-01-29 Mcswiggen James A. RNA interference mediated inhibition of protein typrosine phosphatase-1B (PTP-1B) gene expression using short interfering RNA
US20050164968A1 (en) * 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of ADAM33 gene expression using short interfering nucleic acid (siNA)
US20050124566A1 (en) * 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of myostatin gene expression using short interfering nucleic acid (siNA)
US20080188430A1 (en) * 2001-05-18 2008-08-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hypoxia inducible factor 1 (HIF1) gene expression using short interfering nucleic acid (siNA)
US20050196767A1 (en) * 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of GRB2 associated binding protein (GAB2) gene expression using short interfering nucleic acis (siNA)
US20050176663A1 (en) * 2001-05-18 2005-08-11 Sima Therapeutics, Inc. RNA interference mediated inhibition of protein tyrosine phosphatase type IVA (PRL3) gene expression using short interfering nucleic acid (siNA)
US20050124569A1 (en) * 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of CXCR4 gene expression using short interfering nucleic acid (siNA)
US20050239731A1 (en) * 2001-05-18 2005-10-27 Sirna Therapeutics, Inc. RNA interference mediated inhibition of MAP kinase gene expression using short interfering nucleic acid (siNA)
US20050182007A1 (en) * 2001-05-18 2005-08-18 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (SINA)
US9994853B2 (en) 2001-05-18 2018-06-12 Sirna Therapeutics, Inc. Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference
US20050159379A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc RNA interference mediated inhibition of gastric inhibitory polypeptide (GIP) and gastric inhibitory polypeptide receptor (GIPR) gene expression using short interfering nucleic acid (siNA)
US20060148743A1 (en) * 2001-05-18 2006-07-06 Vasant Jadhav RNA interference mediated inhibition of histone deacetylase (HDAC) gene expression using short interfering nucleic acid (siNA)
US20050288242A1 (en) * 2001-05-18 2005-12-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of RAS gene expression using short interfering nucleic acid (siNA)
US20070093437A1 (en) * 2001-05-18 2007-04-26 Sirna Therapeutics, Inc. Rna interference mediated inhibition of xiap gene expression using short interfering nucleic acid (sina)
WO2003070897A2 (en) * 2002-02-20 2003-08-28 Ribozyme Pharmaceuticals, Incorporated RNA INTERFERENCE MEDIATED INHIBITION OF TNF AND TNF RECEPTOR SUPERFAMILY GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
WO2005014811A2 (en) * 2003-08-08 2005-02-17 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF XIAP GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20050159378A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Myc and/or Myb gene expression using short interfering nucleic acid (siNA)
US20050164224A1 (en) * 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cyclin D1 gene expression using short interfering nucleic acid (siNA)
US20050148530A1 (en) 2002-02-20 2005-07-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050287128A1 (en) * 2001-05-18 2005-12-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of TGF-beta and TGF-beta receptor gene expression using short interfering nucleic acid (siNA)
US20050203040A1 (en) * 2001-05-18 2005-09-15 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular cell adhesion molecule (VCAM) gene expression using short interfering nucleic acid (siNA)
US20050233996A1 (en) * 2002-02-20 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hairless (HR) gene expression using short interfering nucleic acid (siNA)
US20050159380A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of angiopoietin gene expression using short interfering nucleic acid (siNA)
US20050187174A1 (en) * 2001-05-18 2005-08-25 Sirna Therapeutics, Inc. RNA interference mediated inhibition of intercellular adhesion molecule (ICAM) gene expression using short interfering nucleic acid (siNA)
US20060211642A1 (en) * 2001-05-18 2006-09-21 Sirna Therapeutics, Inc. RNA inteference mediated inhibition of hepatitis C virus (HVC) gene expression using short interfering nucleic acid (siNA)
US20050176025A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of B-cell CLL/Lymphoma-2 (BCL-2) gene expression using short interfering nucleic acid (siNA)
US20050158735A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of proliferating cell nuclear antigen (PCNA) gene expression using short interfering nucleic acid (siNA)
US20050196781A1 (en) * 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of STAT3 gene expression using short interfering nucleic acid (siNA)
US20050261219A1 (en) * 2001-05-18 2005-11-24 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA)
US20050282188A1 (en) * 2001-05-18 2005-12-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050014172A1 (en) 2002-02-20 2005-01-20 Ivan Richards RNA interference mediated inhibition of muscarinic cholinergic receptor gene expression using short interfering nucleic acid (siNA)
US20050137155A1 (en) * 2001-05-18 2005-06-23 Sirna Therapeutics, Inc. RNA interference mediated treatment of Parkinson disease using short interfering nucleic acid (siNA)
US20030124513A1 (en) * 2001-05-29 2003-07-03 Mcswiggen James Enzymatic nucleic acid treatment of diseases or conditions related to levels of HIV
US20090299045A1 (en) * 2001-05-18 2009-12-03 Sirna Therapeutics, Inc. RNA Interference Mediated Inhibition Of Interleukin and Interleukin Gene Expression Using Short Interfering Nucleic Acid (siNA)
US20030175950A1 (en) * 2001-05-29 2003-09-18 Mcswiggen James A. RNA interference mediated inhibition of HIV gene expression using short interfering RNA
US20060142225A1 (en) * 2001-05-18 2006-06-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cyclin dependent kinase-2 (CDK2) gene expression using short interfering nucleic acid (siNA)
US20050048529A1 (en) * 2002-02-20 2005-03-03 Sirna Therapeutics, Inc. RNA interference mediated inhibition of intercellular adhesion molecule (ICAM) gene expression using short interfering nucleic acid (siNA)
US20050222066A1 (en) * 2001-05-18 2005-10-06 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050159381A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of chromosome translocation gene expression using short interfering nucleic acid (siNA)
CA2526831C (en) * 2001-05-18 2012-07-31 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (sina)
US20050079610A1 (en) * 2001-05-18 2005-04-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Fos gene expression using short interfering nucleic acid (siNA)
US20050136436A1 (en) * 2001-05-18 2005-06-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of G72 and D-amino acid oxidase (DAAO) gene expression using short interfering nucleic acid (siNA)
US8008472B2 (en) 2001-05-29 2011-08-30 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of human immunodeficiency virus (HIV) gene expression using short interfering nucleic acid (siNA)
AU2002315393A1 (en) 2001-06-21 2003-01-08 Isis Pharmaceuticals, Inc. Antisense modulation of superoxide dismutase 1, soluble expression
US20050019915A1 (en) * 2001-06-21 2005-01-27 Bennett C. Frank Antisense modulation of superoxide dismutase 1, soluble expression
WO2003006477A1 (en) 2001-07-12 2003-01-23 University Of Massachusetts IN VIVO PRODUCTION OF SMALL INTERFERING RNAs THAT MEDIATE GENE SILENCING
DE10133858A1 (de) * 2001-07-12 2003-02-06 Aventis Pharma Gmbh Synthetische doppelsträngige Oligonucleotide zur gezielten Hemmung der Genexpression
US10590418B2 (en) * 2001-07-23 2020-03-17 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for RNAi mediated inhibition of gene expression in mammals
DK1409506T3 (da) 2001-07-23 2012-08-06 Univ Leland Stanford Junior Fremgangsmåder og sammensætninger til RNAi-formidlet inhibering af genekspression i pattedyr
US20090247606A1 (en) * 2001-08-28 2009-10-01 Sirna Therapeutics, Inc. RNA Interference Mediated Inhibition of Adenosine A1 Receptor (ADORA1) Gene Expression Using Short Interfering Nucleic Acid (siNA)
US20030198627A1 (en) * 2001-09-01 2003-10-23 Gert-Jan Arts siRNA knockout assay method and constructs
DE10163098B4 (de) * 2001-10-12 2005-06-02 Alnylam Europe Ag Verfahren zur Hemmung der Replikation von Viren
US7745418B2 (en) 2001-10-12 2010-06-29 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting viral replication
WO2003035870A1 (de) * 2001-10-26 2003-05-01 Ribopharma Ag Medikament zur behandlung eines pankreaskarzinoms
WO2003035083A1 (de) * 2001-10-26 2003-05-01 Ribopharma Ag Medikament zur behandlung einer fibrotischen erkrankung durch rna interferenz
DE10230996A1 (de) * 2001-10-26 2003-07-17 Ribopharma Ag Medikament zur Behandlung eines Pankreaskarzinoms
CN1608133A (zh) * 2001-10-26 2005-04-20 里伯药品公司 双链核糖核酸用于治疗正(+)链rna病毒感染的用途
US20040063654A1 (en) * 2001-11-02 2004-04-01 Davis Mark E. Methods and compositions for therapeutic use of RNA interference
EP2325193A3 (en) * 2001-11-02 2012-05-02 Insert Therapeutics, Inc. Methods and compositions for therapeutic use of RNA interference
JP2005508396A (ja) * 2001-11-02 2005-03-31 イントラディグム、コーポレイション 核酸送達ビヒクルのための治療方法
EP1445312B1 (en) * 2001-11-21 2012-12-26 Astellas Pharma Inc. Method of inhibiting gene expression
US20050075304A1 (en) * 2001-11-30 2005-04-07 Mcswiggen James RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20070203333A1 (en) * 2001-11-30 2007-08-30 Mcswiggen James RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20040138163A1 (en) * 2002-05-29 2004-07-15 Mcswiggen James RNA interference mediated inhibition of vascular edothelial growth factor and vascular edothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US7294504B1 (en) 2001-12-27 2007-11-13 Allele Biotechnology & Pharmaceuticals, Inc. Methods and compositions for DNA mediated gene silencing
AU2003237616B2 (en) * 2002-01-17 2007-07-05 The University Of British Columbia Bispecific antisense oligonucleotides that inhibit IGFBP-2 and IGFBP-5 and methods of using same
DE10202419A1 (de) 2002-01-22 2003-08-07 Ribopharma Ag Verfahren zur Hemmung der Expression eines durch eine Chromosomen-Aberration entstandenen Zielgens
GB0201477D0 (en) * 2002-01-23 2002-03-13 Novartis Forschungsstiftung Methods of obtaining isoform specific expression in mammalian cells
ATE556714T1 (de) 2002-02-01 2012-05-15 Life Technologies Corp Doppelsträngige oligonukleotide
US20060009409A1 (en) 2002-02-01 2006-01-12 Woolf Tod M Double-stranded oligonucleotides
WO2003064621A2 (en) * 2002-02-01 2003-08-07 Ambion, Inc. HIGH POTENCY siRNAS FOR REDUCING THE EXPRESSION OF TARGET GENES
US20050096289A1 (en) * 2002-02-07 2005-05-05 Hans Prydz Methods and compositions for modulating tissue factor
AU2003223172A1 (en) * 2002-02-12 2003-09-04 Quark Biotech, Inc. Use of the axl receptor for diagnosis and treatment of renal disease
WO2003068961A2 (en) * 2002-02-13 2003-08-21 Axordia Limited Method to modify differentiation of pluripotential stem cells
AU2003209128B2 (en) 2002-02-14 2008-05-15 City Of Hope Methods for producing interfering RNA molecules in mammalian cells and therapeutic uses for such molecules
US20090306182A1 (en) * 2002-02-20 2009-12-10 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF MAP KINASE GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20090099117A1 (en) 2002-02-20 2009-04-16 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF MYOSTATIN GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
AU2003216265A1 (en) * 2002-02-20 2003-09-09 Ribozyme Pharmaceuticals, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF G72 AND D-AMINO ACID OXIDASE (DAAO) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7691999B2 (en) 2002-02-20 2010-04-06 Sirna Therapeutics, Inc. RNA interference mediated inhibition of NOGO and NOGO receptor gene expression using short interfering nucleic acid (siNA)
US7935812B2 (en) 2002-02-20 2011-05-03 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of hepatitis C virus (HCV) expression using short interfering nucleic acid (siNA)
US8067575B2 (en) 2002-02-20 2011-11-29 Merck, Sharp & Dohme Corp. RNA interference mediated inhibition of cyclin D1 gene expression using short interfering nucleic acid (siNA)
US7897753B2 (en) 2002-02-20 2011-03-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of XIAP gene expression using short interfering nucleic acid (siNA)
US8232383B2 (en) * 2002-02-20 2012-07-31 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
JP2005517423A (ja) * 2002-02-20 2005-06-16 サーナ・セラピューティクス・インコーポレイテッド 短干渉核酸(siNA)を用いるTGF−ベータおよびTGF−ベータレセプター遺伝子の発現のRNA干渉媒介性阻害
US7667030B2 (en) 2002-02-20 2010-02-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of matrix metalloproteinase 13 (MMP13) gene expression using short interfering nucleic acid (siNA)
US7662952B2 (en) 2002-02-20 2010-02-16 Sirna Therapeutics, Inc. RNA interference mediated inhibition of GRB2 associated binding protein (GAB2) gene expression using short interfering nucleic acid (siNA)
US7897752B2 (en) 2002-02-20 2011-03-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of telomerase gene expression using short interfering nucleic acid (siNA)
US20050096284A1 (en) * 2002-02-20 2005-05-05 Sirna Therapeutics, Inc. RNA interference mediated treatment of polyglutamine (polyQ) repeat expansion diseases using short interfering nucleic acid (siNA)
US7683166B2 (en) 2002-02-20 2010-03-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA)
JP2005517450A (ja) * 2002-02-20 2005-06-16 サーナ・セラピューティクス・インコーポレイテッド 短干渉核酸(siNA)を用いるRNA干渉媒介性標的発見および標的評価
US9657294B2 (en) 2002-02-20 2017-05-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US7897757B2 (en) * 2002-02-20 2011-03-01 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of protein tyrosine phosphatase-1B (PTP-1B) gene expression using short interfering nucleic acid (siNA)
WO2003106476A1 (en) * 2002-02-20 2003-12-24 Sirna Therapeutics, Inc Nucleic acid mediated inhibition of enterococcus infection and cytolysin toxin activity
EP1432724A4 (en) 2002-02-20 2006-02-01 Sirna Therapeutics Inc INTERFERENCE MEDIATION INHIBITION OF GENE RNA FROM MAP KINASE
US7667029B2 (en) 2002-02-20 2010-02-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of checkpoint kinase-1 (CHK-1) gene expression using short interfering nucleic acid (siNA)
US20090253774A1 (en) 2002-02-20 2009-10-08 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF PLATELET DERIVED GROWTH FACTOR (PDGF) AND PLATELET DERIVED GROWTH FACTOR RECEPTOR (PDGFR) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7928220B2 (en) 2002-02-20 2011-04-19 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of stromal cell-derived factor-1 (SDF-1) gene expression using short interfering nucleic acid (siNA)
US7910724B2 (en) 2002-02-20 2011-03-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Fos gene expression using short interfering nucleic acid (siNA)
US8013143B2 (en) 2002-02-20 2011-09-06 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of CXCR4 gene expression using short interfering nucleic acid (siNA)
US20100240730A1 (en) * 2002-02-20 2010-09-23 Merck Sharp And Dohme Corp. RNA Interference Mediated Inhibition of Gene Expression Using Chemically Modified Short Interfering Nucleic Acid (siNA)
JP2005517437A (ja) * 2002-02-20 2005-06-16 サーナ・セラピューティクス・インコーポレイテッド 短干渉核酸(siNa)を用いる表皮成長因子レセプター遺伝子発現のRNA干渉媒介性阻害
US7678897B2 (en) 2002-02-20 2010-03-16 Sirna Therapeutics, Inc. RNA interference mediated inhibition of platelet-derived endothelial cell growth factor (ECGF1) gene expression using short interfering nucleic acid (siNA)
US20090247613A1 (en) * 2002-02-20 2009-10-01 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF B-CELL CLL/LYMPHOMA-2 (BCL2) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20090192105A1 (en) 2002-02-20 2009-07-30 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF INTERCELLULAR ADHESION MOLECULE (ICAM) GENE EXPRESSION USING SHORT INTERFERING NUCELIC ACID (siNA)
US20090233983A1 (en) * 2002-02-20 2009-09-17 Sirna Therapeutics Inc. RNA Interference Mediated Inhibition of Protein Tyrosine Phosphatase-1B (PTP-1B) Gene Expression Using Short Interfering RNA
US7795422B2 (en) 2002-02-20 2010-09-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hypoxia inducible factor 1 (HIF1) gene expression using short interfering nucleic acid (siNA)
US7700760B2 (en) 2002-02-20 2010-04-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular cell adhesion molecule (VCAM) gene expression using short interfering nucleic acid (siNA)
US20090137509A1 (en) * 2002-02-20 2009-05-28 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF PROLIFERATION CELL NUCLEAR ANTIGEN (PCNA) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20090093439A1 (en) * 2002-02-20 2009-04-09 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF CHROMOSOME TRANSLOCATION GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US8258288B2 (en) 2002-02-20 2012-09-04 Sirna Therapeutics, Inc. RNA interference mediated inhibition of respiratory syncytial virus (RSV) expression using short interfering nucleic acid (siNA)
US7928218B2 (en) 2002-02-20 2011-04-19 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of polycomb group protein EZH2 gene expression using short interfering nucleic acid (siNA)
US20090253773A1 (en) * 2002-02-20 2009-10-08 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF TNF AND TNF RECEPTOR GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US9181551B2 (en) 2002-02-20 2015-11-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
EP1430157B1 (en) * 2002-02-20 2011-08-10 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF HEPATITIS C VIRUS (HCV) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7893248B2 (en) 2002-02-20 2011-02-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Myc and/or Myb gene expression using short interfering nucleic acid (siNA)
US7928219B2 (en) 2002-02-20 2011-04-19 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (SINA)
US7683165B2 (en) 2002-02-20 2010-03-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA)
US20060111312A1 (en) * 2002-02-22 2006-05-25 The John Hopkins University Antigene locks and therapeutic uses thereof
EP1575481A4 (en) * 2002-03-01 2010-01-06 Celltech R & D Inc PROCESS FOR INCREASING OR REDUCING THE BONE DENSITY
WO2003076592A2 (en) * 2002-03-06 2003-09-18 Rigel Pharmaceuticals, Inc. Novel method for delivery and intracellular synthesis of sirna molecules
US7274703B2 (en) * 2002-03-11 2007-09-25 3Com Corporation Stackable network units with resiliency facility
US20040248296A1 (en) * 2002-03-20 2004-12-09 Beresford Paul J. HIV therapeutic
US7357928B2 (en) 2002-04-08 2008-04-15 University Of Louisville Research Foundation, Inc. Method for the diagnosis and prognosis of malignant diseases
WO2003087368A2 (en) 2002-04-18 2003-10-23 Lynkeus Bio Tech Gmbh Means and methods for the specific modulation of target genes in the cns and the eye and methods for their identification
EP1504126B1 (en) 2002-05-03 2014-02-26 Duke University A method of regulating gene expression
US7199107B2 (en) * 2002-05-23 2007-04-03 Isis Pharmaceuticals, Inc. Antisense modulation of kinesin-like 1 expression
JP2006506961A (ja) 2002-05-23 2006-03-02 セプティア, インコーポレイテッド Rna干渉によるptp1bシグナル導入の調節
WO2003099298A1 (en) * 2002-05-24 2003-12-04 Max-Planck Gesellschaft zur Förderung der Wissenschaften e.V. Rna interference mediating small rna molecules
GB2406169B (en) * 2002-06-12 2006-11-01 Ambion Inc Methods and compositions relating to labeled rna molecules that reduce gene expression
US20100075423A1 (en) * 2002-06-12 2010-03-25 Life Technologies Corporation Methods and compositions relating to polypeptides with rnase iii domains that mediate rna interference
US20040248094A1 (en) * 2002-06-12 2004-12-09 Ford Lance P. Methods and compositions relating to labeled RNA molecules that reduce gene expression
WO2003106636A2 (en) * 2002-06-14 2003-12-24 Mirus Corporation Novel methods for the delivery of polynucleotides to cells
EP1539951A1 (en) * 2002-06-21 2005-06-15 Sinogenomax Co., Ltd. Randomised dna libraries and double-stranded rna libraries, use and method of production thereof
US7704965B2 (en) * 2002-06-26 2010-04-27 The Penn State Research Foundation Methods and materials for treating human papillomavirus infections
WO2004002453A1 (en) 2002-06-28 2004-01-08 Protiva Biotherapeutics Ltd. Method and apparatus for producing liposomes
WO2004007718A2 (en) * 2002-07-10 2004-01-22 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Rna-interference by single-stranded rna molecules
US7148342B2 (en) 2002-07-24 2006-12-12 The Trustees Of The University Of Pennyslvania Compositions and methods for sirna inhibition of angiogenesis
AU2012216354B2 (en) * 2002-08-05 2016-01-14 Silence Therapeutics Gmbh Further novel forms of interfering RNA molecules
US20050042646A1 (en) 2002-08-05 2005-02-24 Davidson Beverly L. RNA interference suppresion of neurodegenerative diseases and methods of use thereof
AU2015264957B2 (en) * 2002-08-05 2017-10-26 Silence Therapeutics Gmbh Further novel forms of interfering rna molecules
EP2258847B2 (en) * 2002-08-05 2020-07-01 Silence Therapeutics GmbH Futher novel forms of interfering RNA molecules
US20080274989A1 (en) 2002-08-05 2008-11-06 University Of Iowa Research Foundation Rna Interference Suppression of Neurodegenerative Diseases and Methods of Use Thereof
US20040241854A1 (en) 2002-08-05 2004-12-02 Davidson Beverly L. siRNA-mediated gene silencing
EP1389637B1 (en) 2002-08-05 2012-05-30 Silence Therapeutics Aktiengesellschaft Blunt-ended interfering RNA molecules
JP4705370B2 (ja) * 2002-08-05 2011-06-22 サイレンス・セラピューティクス・アーゲー より新規形態の干渉rna分子
AU2003258100A1 (en) * 2002-08-06 2004-02-23 Intradigm Corporation Methods of down regulating target gene expression in vivo by introduction of interfering rna
AU2003252395A1 (en) * 2002-08-06 2004-03-11 Toray Industries, Inc. Remedy or preventive for kidney disease and method of diagnosing kidney disease
WO2004014933A1 (en) 2002-08-07 2004-02-19 University Of Massachusetts Compositions for rna interference and methods of use thereof
US20040029275A1 (en) * 2002-08-10 2004-02-12 David Brown Methods and compositions for reducing target gene expression using cocktails of siRNAs or constructs expressing siRNAs
ATE419865T1 (de) 2002-08-14 2009-01-15 Silence Therapeutics Ag Verwendung von protein-kinase-n-beta
KR101117673B1 (ko) * 2002-08-21 2012-03-07 더 유니버시티 오브 브리티쉬 콜롬비아 암-관련 단백질을 표적으로 하는 알엔에이아이 프로브
US7923547B2 (en) * 2002-09-05 2011-04-12 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US20060287269A1 (en) * 2002-09-09 2006-12-21 The Regents Of The University Of California Short interfering nucleic acid hybrids and methods thereof
US20080260744A1 (en) 2002-09-09 2008-10-23 Omeros Corporation G protein coupled receptors and uses thereof
US20040138119A1 (en) * 2002-09-18 2004-07-15 Ingo Tamm Use of hepatitis B X-interacting protein (HBXIP) in modulation of apoptosis
WO2004027063A1 (en) * 2002-09-19 2004-04-01 Institut National De La Sante Et De La Recherche Medicale-Inserm Use of sirnas for gene silencing in antigen presenting cells
WO2004029212A2 (en) 2002-09-25 2004-04-08 University Of Massachusetts In vivo gene silencing by chemically modified and stable sirna
US20060160759A1 (en) * 2002-09-28 2006-07-20 Jianzhu Chen Influenza therapeutic
US20040242518A1 (en) * 2002-09-28 2004-12-02 Massachusetts Institute Of Technology Influenza therapeutic
AU2003279010A1 (en) * 2002-09-28 2004-04-19 Massachusetts Institute Of Technology Compositions and methods for delivery of short interfering rna and short hairpin rna
US20060240425A1 (en) * 2002-09-30 2006-10-26 Oncotherapy Science, Inc Genes and polypeptides relating to myeloid leukemia
US7422853B1 (en) * 2002-10-04 2008-09-09 Myriad Genetics, Inc. RNA interference using a universal target
WO2005000194A2 (en) 2002-10-08 2005-01-06 Rinat Neuroscience Corp. Methods for treating post-surgical pain by administering an anti-nerve growth factor antagonist antibody and compositions containing the same
DK1556083T3 (da) 2002-10-08 2011-04-04 Rinat Neuroscience Corp Fremgangsmåde til behandling af post-operative smerter ved indgivelse af en antistof mod nervevækstfaktor og sammensætning indeholdende samme
NZ540779A (en) * 2002-11-01 2008-05-30 Univ Pennsylvania Compositions and methods for siRNA inhibition of HIF-1 alpha
US7892793B2 (en) 2002-11-04 2011-02-22 University Of Massachusetts Allele-specific RNA interference
US9150606B2 (en) 2002-11-05 2015-10-06 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2'-modified nucleosides for use in gene modulation
US9150605B2 (en) 2002-11-05 2015-10-06 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2′-modified nucleosides for use in gene modulation
AU2003291755A1 (en) 2002-11-05 2004-06-07 Isis Pharmaceuticals, Inc. Oligomers comprising modified bases for binding cytosine and uracil or thymine and their use
AU2003295388A1 (en) * 2002-11-05 2004-06-03 Isis Pharmaceuticals, Inc. 2'-substituted oligomeric compounds and compositions for use in gene modulations
AU2003291753B2 (en) 2002-11-05 2010-07-08 Isis Pharmaceuticals, Inc. Polycyclic sugar surrogate-containing oligomeric compounds and compositions for use in gene modulation
DE10322662A1 (de) * 2002-11-06 2004-10-07 Grünenthal GmbH Wirksame und stabile DNA-Enzyme
US9879266B2 (en) 2002-11-14 2018-01-30 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US10920226B2 (en) * 2002-11-14 2021-02-16 Thermo Fisher Scientific Inc. siRNA targeting LDHA
US7655785B1 (en) 2002-11-14 2010-02-02 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory oligonucleotides and uses thereof
US7635770B2 (en) 2002-11-14 2009-12-22 Dharmacon, Inc. siRNA targeting protein kinase N-3 (PKN-3)
US8163896B1 (en) 2002-11-14 2012-04-24 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory genes and uses thereof
WO2006006948A2 (en) 2002-11-14 2006-01-19 Dharmacon, Inc. METHODS AND COMPOSITIONS FOR SELECTING siRNA OF IMPROVED FUNCTIONALITY
US7592442B2 (en) * 2002-11-14 2009-09-22 Dharmacon, Inc. siRNA targeting ribonucleotide reductase M2 polypeptide (RRM2 or RNR-R2)
US7691998B2 (en) * 2002-11-14 2010-04-06 Dharmacon, Inc. siRNA targeting nucleoporin 62kDa (Nup62)
US20090005548A1 (en) * 2002-11-14 2009-01-01 Dharmacon, Inc. siRNA targeting nuclear receptor interacting protein 1 (NRIP1)
US9719094B2 (en) 2002-11-14 2017-08-01 Thermo Fisher Scientific Inc. RNAi targeting SEC61G
US7612196B2 (en) * 2002-11-14 2009-11-03 Dharmacon, Inc. siRNA targeting cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B)
US7781575B2 (en) 2002-11-14 2010-08-24 Dharmacon, Inc. siRNA targeting tumor protein 53 (p53)
US10011836B2 (en) 2002-11-14 2018-07-03 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US20090227780A1 (en) * 2002-11-14 2009-09-10 Dharmacon, Inc. siRNA targeting connexin 43
US7951935B2 (en) 2002-11-14 2011-05-31 Dharmacon, Inc. siRNA targeting v-myc myelocytomatosis viral oncogene homolog (MYC)
US7250496B2 (en) 2002-11-14 2007-07-31 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory genes and uses thereof
US8198427B1 (en) 2002-11-14 2012-06-12 Dharmacon, Inc. SiRNA targeting catenin, beta-1 (CTNNB1)
US20100113307A1 (en) * 2002-11-14 2010-05-06 Dharmacon, Inc. siRNA targeting vascular endothelial growth factor (VEGF)
US9771586B2 (en) 2002-11-14 2017-09-26 Thermo Fisher Scientific Inc. RNAi targeting ZNF205
EP2305812A3 (en) 2002-11-14 2012-06-06 Dharmacon, Inc. Fuctional and hyperfunctional sirna
US9719092B2 (en) 2002-11-14 2017-08-01 Thermo Fisher Scientific Inc. RNAi targeting CNTD2
US9228186B2 (en) 2002-11-14 2016-01-05 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US9839649B2 (en) 2002-11-14 2017-12-12 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US7977471B2 (en) * 2002-11-14 2011-07-12 Dharmacon, Inc. siRNA targeting TNFα
US20080268457A1 (en) * 2002-11-14 2008-10-30 Dharmacon, Inc. siRNA targeting forkhead box P3 (FOXP3)
US7619081B2 (en) 2002-11-14 2009-11-17 Dharmacon, Inc. siRNA targeting coatomer protein complex, subunit beta 2 (COPB2)
EP1613724A4 (en) 2002-11-18 2010-09-01 Us Gov Health & Human Serv CELL LINES AND NUCLEAR ACIDIC ACIDS IN CONNECTION WITH INFECTION DISEASES
US7064337B2 (en) 2002-11-19 2006-06-20 The Regents Of The University Of California Radiation detection system for portable gamma-ray spectroscopy
DE10254214A1 (de) * 2002-11-20 2004-06-09 Beiersdorf Ag Oligoribonukleotide zur Behandlung von degenerativen Hauterscheinungen durch RNA-Interferenz
AU2003284624B2 (en) * 2002-11-22 2010-06-03 Bio-Think Tank Co. Ltd Method for searching target base sequence of RNA interference, method for designing base sequence of polynucleotide for causing RNA interference, method for producing double-stranded polynucleotide, method for inhibiting gene expression, base sequence processing apparatus, program for running base sequence processing method on computer, recording medium, and base sequence processing system
WO2004047764A2 (en) * 2002-11-22 2004-06-10 University Of Massachusetts Modulation of hiv replication by rna interference
JP4526228B2 (ja) * 2002-11-22 2010-08-18 隆 森田 RNAiによる新規治療法および治療剤
US7696334B1 (en) 2002-12-05 2010-04-13 Rosetta Genomics, Ltd. Bioinformatically detectable human herpesvirus 5 regulatory gene
US7790867B2 (en) 2002-12-05 2010-09-07 Rosetta Genomics Inc. Vaccinia virus-related nucleic acids and microRNA
US7605249B2 (en) 2002-11-26 2009-10-20 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US20130130231A1 (en) 2002-11-26 2013-05-23 Isaac Bentwich Bioinformatically detectable group of novel viral regulatory genes and uses thereof
ES2343318T3 (es) * 2002-11-26 2010-07-28 University Of Massachusetts Administracion de arnsis.
US7829694B2 (en) 2002-11-26 2010-11-09 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US7618948B2 (en) * 2002-11-26 2009-11-17 Medtronic, Inc. Devices, systems and methods for improving and/or cognitive function through brain delivery of siRNA
CN1301263C (zh) 2002-12-18 2007-02-21 北京昭衍新药研究中心 一组抗hiv感染及防治艾滋病的核苷酸序列及其应用
US7569364B2 (en) 2002-12-24 2009-08-04 Pfizer Inc. Anti-NGF antibodies and methods using same
KR101410692B1 (ko) 2002-12-24 2014-06-24 리나트 뉴로사이언스 코프. 항-ngf 항체 및 그것을 이용하는 방법
US9498530B2 (en) 2002-12-24 2016-11-22 Rinat Neuroscience Corp. Methods for treating osteoarthritis pain by administering a nerve growth factor antagonist and compositions containing the same
US20070141009A1 (en) * 2003-01-03 2007-06-21 Shaharyar Khan Sirna mediated post-transriptional gene silencing of genes involved in alopecia
US20040220129A1 (en) 2003-01-16 2004-11-04 The Trustees Of The University Of Pennsylvania Compositions and methods for siRNA inhibition of ICAM-1
US7629323B2 (en) * 2003-01-21 2009-12-08 Northwestern University Manipulation of neuronal ion channels
US20040147027A1 (en) * 2003-01-28 2004-07-29 Troy Carol M. Complex for facilitating delivery of dsRNA into a cell and uses thereof
US20060178297A1 (en) * 2003-01-28 2006-08-10 Troy Carol M Systems and methods for silencing expression of a gene in a cell and uses thereof
US7732591B2 (en) 2003-11-25 2010-06-08 Medtronic, Inc. Compositions, devices and methods for treatment of huntington's disease through intracranial delivery of sirna
US7994149B2 (en) 2003-02-03 2011-08-09 Medtronic, Inc. Method for treatment of Huntington's disease through intracranial delivery of sirna
CA2514912A1 (en) * 2003-02-05 2004-08-26 University Of Massachusetts Rnai targeting of viruses
FR2850971B1 (fr) * 2003-02-10 2006-08-11 Aventis Pharma Sa Oligonucleotide antisens inhibant l'expression de la proteine ob-rgrp et procede de detection de composes modifiant l'interaction entre la famille de la proteine ob-rgrp et le recepteur de la leptine
US20070104688A1 (en) 2003-02-13 2007-05-10 City Of Hope Small interfering RNA mediated transcriptional gene silencing in mammalian cells
US20040162235A1 (en) * 2003-02-18 2004-08-19 Trubetskoy Vladimir S. Delivery of siRNA to cells using polyampholytes
KR20050111598A (ko) 2003-02-19 2005-11-25 리나트 뉴로사이언스 코퍼레이션 신경 성장 인자 길항제 및 nsaid를 투여함으로써통증을 치료하는 방법 및 그것을 함유하는 조성물
US20060269530A1 (en) * 2003-02-21 2006-11-30 The Penn State Research Foundation RNA interference compositions and methods
WO2004076664A2 (en) * 2003-02-21 2004-09-10 University Of South Florida Vectors for regulating gene expression
CA2517235A1 (en) * 2003-02-27 2004-09-10 Nucleonics Inc. Methods and constructs for evaluation of rnai targets and effector molecules
JPWO2004076663A1 (ja) * 2003-02-27 2006-06-08 独立行政法人産業技術総合研究所 哺乳動物細胞におけるdsRNAによるCpG配列へのメチル化誘導
JP2006520611A (ja) * 2003-03-05 2006-09-14 セネスコ テクノロジーズ,インコーポレイティド eIF−5A1の発現を抑制するための、アンチセンス・オリゴヌクレオチド又はsiRNAの使用
WO2004078941A2 (en) * 2003-03-06 2004-09-16 Oligo Engine, Inc. Modulation of gene expression using dna-rna hybrids
AU2004220556B2 (en) 2003-03-07 2009-05-07 Alnylam Pharmaceuticals, Inc. Therapeutic compositions
US7862816B2 (en) * 2003-03-12 2011-01-04 Vasgene Therapeutics, Inc. Polypeptide compounds for inhibiting angiogenesis and tumor growth
DK1606406T4 (da) 2003-03-21 2013-12-16 Santaris Pharma As Short Interfering RNA (siRNA) Analogues
US20040198640A1 (en) * 2003-04-02 2004-10-07 Dharmacon, Inc. Stabilized polynucleotides for use in RNA interference
ATE536408T1 (de) * 2003-04-02 2011-12-15 Dharmacon Inc Modifizierte polynukleotide zur verwendung bei rna-interferenz
WO2004090105A2 (en) * 2003-04-02 2004-10-21 Dharmacon, Inc. Modified polynucleotides for use in rna interference
CA2521464C (en) 2003-04-09 2013-02-05 Alnylam Pharmaceuticals, Inc. Irna conjugates
WO2004094345A2 (en) 2003-04-17 2004-11-04 Alnylam Pharmaceuticals Inc. Protected monomers
US20050013855A1 (en) 2003-04-09 2005-01-20 Biodelivery Sciences International, Inc. Cochleate compositions directed against expression of proteins
US20070270360A1 (en) * 2003-04-15 2007-11-22 Sirna Therapeutics, Inc. Rna Interference Mediated Inhibition of Severe Acute Respiratory Syndrome (Sars) Gene Expression Using Short Interfering Nucleic Acid
US8017762B2 (en) 2003-04-17 2011-09-13 Alnylam Pharmaceuticals, Inc. Modified iRNA agents
WO2004094595A2 (en) 2003-04-17 2004-11-04 Alnylam Pharmaceuticals Inc. MODIFIED iRNA AGENTS
US8796436B2 (en) 2003-04-17 2014-08-05 Alnylam Pharmaceuticals, Inc. Modified iRNA agents
US7851615B2 (en) 2003-04-17 2010-12-14 Alnylam Pharmaceuticals, Inc. Lipophilic conjugated iRNA agents
US7723509B2 (en) 2003-04-17 2010-05-25 Alnylam Pharmaceuticals IRNA agents with biocleavable tethers
MXPA05011221A (es) * 2003-04-18 2006-02-17 Univ Pennsylvania Composiciones y metodos para la inhibicion de angiopoyetina 1 y 2 y su receptor tie2 por arnsi.
WO2005032595A2 (en) * 2003-04-23 2005-04-14 Georgetown University Methods and compositions for the inhibition of stat5 in prostate cancer cells
US9701725B2 (en) * 2003-05-05 2017-07-11 The Johns Hopkins University Anti-cancer DNA vaccine employing plasmids encoding signal sequence, mutant oncoprotein antigen, and heat shock protein
JP2007502129A (ja) 2003-05-09 2007-02-08 ユニヴァーシティ オヴ ピッツバーグ オヴ ザ コモンウェルス システム オヴ ハイアー エデュケーション 短鎖干渉rnaライブラリーならびに合成および使用の方法
US7619068B2 (en) 2003-05-09 2009-11-17 Diadexus, Inc. Ovr110 antibody compositions and methods of use
AU2003241409A1 (en) * 2003-05-12 2005-01-21 Potomac Pharmaceuticals, Inc. Gene expression suppression agents
US20050148531A1 (en) * 2003-05-15 2005-07-07 Todd Hauser Modulation of gene expression using DNA-DNA hybrids
CA2525619A1 (en) * 2003-05-16 2005-03-03 Rosetta Inpharmatics, Llc Methods and compositions for rna interference
US20070243570A1 (en) * 2003-05-19 2007-10-18 Genecare Research Institute Co., Ltd Apoptosis Inducer for Cancer Cell
EP2251039A3 (en) 2003-05-30 2010-12-08 Nippon Shinyaku Co., Ltd. Oligo double-stranded rna inhibiting the expression of bcl-2 and pharmaceutical composition containing the same
KR20060063788A (ko) * 2003-05-30 2006-06-12 니뽄 신야쿠 가부시키가이샤 올리고 핵산 담지 복합체, 이 복합체를 함유하는 의약조성물
US7459547B2 (en) * 2003-06-02 2008-12-02 University Of Massachusetts Methods and compositions for controlling efficacy of RNA silencing
US8309704B2 (en) * 2003-06-02 2012-11-13 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of RNAi
US7750144B2 (en) 2003-06-02 2010-07-06 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of RNA silencing
EP2241572A3 (en) * 2003-06-03 2011-04-06 Eli Lilly And Company Modulation of survivin expression
US20050019918A1 (en) * 2003-06-03 2005-01-27 Hidetoshi Sumimoto Treatment of cancer by inhibiting BRAF expression
US7595306B2 (en) * 2003-06-09 2009-09-29 Alnylam Pharmaceuticals Inc Method of treating neurodegenerative disease
US8575327B2 (en) 2003-06-12 2013-11-05 Alnylam Pharmaceuticals, Inc. Conserved HBV and HCV sequences useful for gene silencing
EP1486564A1 (de) * 2003-06-13 2004-12-15 Ribopharma AG SiRNA mit erhöhter Stabilität in Serum
ES2905724T3 (es) 2003-06-13 2022-04-11 Alnylam Europe Ag Acido ribonucleico bicatenario con elevada eficacia en un organismo
EP1644475A4 (en) * 2003-06-20 2009-06-03 Isis Pharmaceuticals Inc DOUBLE-STRAND COMPOSITIONS WITH A 3'-ENDO-MODIFIED STRING FOR USE IN GENE MODULATION
WO2005044976A2 (en) * 2003-06-20 2005-05-19 Isis Pharmaceuticals, Inc. Oligomeric compounds for use in gene modulation
WO2005007623A2 (en) * 2003-07-03 2005-01-27 The Trustees Of The University Of Pennsylvania Inhibition of syk kinase expression
CN1849396A (zh) * 2003-07-15 2006-10-18 加州理工学院 改进的抑制剂核酸
US20050256071A1 (en) * 2003-07-15 2005-11-17 California Institute Of Technology Inhibitor nucleic acids
EP2567693B1 (en) * 2003-07-16 2015-10-21 Protiva Biotherapeutics Inc. Lipid encapsulated interfering RNA
US20050079614A1 (en) * 2003-07-21 2005-04-14 Reinhart Brenda J. RNAs able to modulate chromatin silencing
EP2530157B1 (en) 2003-07-31 2016-09-28 Regulus Therapeutics Inc. Oligomeric compounds and compositions for use in modulation of miRNAs
AU2004267425B2 (en) * 2003-08-13 2010-10-21 The Board Of Trustees Of The University Of Illinois Silencing of TGF-beta receptor type II expression by sIRNA
US7888497B2 (en) 2003-08-13 2011-02-15 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory oligonucleotides and uses thereof
US7825235B2 (en) * 2003-08-18 2010-11-02 Isis Pharmaceuticals, Inc. Modulation of diacylglycerol acyltransferase 2 expression
WO2005035759A2 (en) * 2003-08-20 2005-04-21 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF HYPOXIA INDUCIBLE FACTOR 1 (HIF1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20050136437A1 (en) * 2003-08-25 2005-06-23 Nastech Pharmaceutical Company Inc. Nanoparticles for delivery of nucleic acids and stable double-stranded RNA
KR20110007263A (ko) 2003-08-28 2011-01-21 노파르티스 아게 블런트-말단 및 3'-변형체를 갖는 간섭 rna 이중나선
US8501705B2 (en) * 2003-09-11 2013-08-06 The Board Of Regents Of The University Of Texas System Methods and materials for treating autoimmune and/or complement mediated diseases and conditions
US8680063B2 (en) 2003-09-12 2014-03-25 University Of Massachusetts RNA interference for the treatment of gain-of-function disorders
CA2579638C (en) * 2003-09-12 2016-04-19 University Of Massachusetts Rna interference targeting non-disease causing single nucleotide polymorphisms within a gene encoding a gain-of-function mutant huntingtin protein
NZ576775A (en) 2003-09-18 2010-12-24 Isis Pharmaceuticals Inc Modulation of eIF4E expression
JP2007505634A (ja) * 2003-09-22 2007-03-15 ロゼッタ インファーマティクス エルエルシー Rna干渉を用いる合成致死スクリーニング
WO2005033310A1 (de) * 2003-10-01 2005-04-14 Grünenthal GmbH Pim-1-spezifische dsrna-verbindungen
CA2541852A1 (en) * 2003-10-07 2005-05-12 Quark Biotech, Inc. Bone morphogenetic protein (bmp) 2a and uses thereof
CA2541914C (en) 2003-10-09 2012-07-24 E.I. Du Pont De Nemours And Company Gene silencing by using micro-rna molecules
WO2005045032A2 (en) * 2003-10-20 2005-05-19 Sima Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF EARLY GROWTH RESPONSE GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
EP1694838A2 (en) * 2003-10-23 2006-08-30 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF GPRA AND AAA1 GENE EXPRESSION USING SHORT NUCLEIC ACID (siNA)
JP2007522793A (ja) * 2003-10-23 2007-08-16 サーナ・セラピューティクス・インコーポレイテッド 短鎖干渉核酸(siNA)を用いた、RNA干渉を介したNOGO及び/又はNOGO受容体遺伝子発現の阻害
EP1692262B1 (en) 2003-10-27 2018-08-15 Merck Sharp & Dohme Corp. Method of designing sirnas for gene silencing
US8227434B1 (en) 2003-11-04 2012-07-24 H. Lee Moffitt Cancer Center & Research Institute, Inc. Materials and methods for treating oncological disorders
US20070275918A1 (en) * 2003-11-07 2007-11-29 The Board Of Trustees Of The University Of Illinois Induction of Cellular Senescence by Cdk4 Disruption for Tumor Suppression and Regression
WO2005047507A1 (en) * 2003-11-12 2005-05-26 The Austin Research Institute Dna-carrier conjugate
US7807646B1 (en) 2003-11-20 2010-10-05 University Of South Florida SHIP-deficiency to increase megakaryocyte progenitor production
JP2005168485A (ja) * 2003-11-20 2005-06-30 Tsutomu Suzuki siRNAの設計方法
US7763592B1 (en) 2003-11-20 2010-07-27 University Of South Florida SHIP-deficiency to increase megakaryocyte progenitor production
US20050208658A1 (en) * 2003-11-21 2005-09-22 The University Of Maryland RNA interference mediated inhibition of 11beta hydroxysteriod dehydrogenase-1 (11beta HSD-1) gene expression
US20100145038A1 (en) * 2003-11-24 2010-06-10 Merck & Co., Inc. RNA INTERFERENCE MEDIATED INHIBITION OF GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
GB2424887B (en) 2003-11-26 2008-05-21 Univ Massachusetts Sequence-specific inhibition of small RNA function
WO2005053725A2 (en) * 2003-11-26 2005-06-16 The Queen's University Of Belfast Cancer treatment
EP1689414A4 (en) * 2003-12-04 2009-04-08 Univ South Florida Res Foundat POLYNUCLEOTIDES FOR REDUCING GENE EXPRESSION OF THE RESPIRATORY SYNCYTIAL VIRUS
WO2005059135A2 (en) * 2003-12-12 2005-06-30 Wisconsin Alumni Research Foundation Treatment of mammals by sirna delivery into mammalian nerve cells
WO2005068630A1 (ja) * 2003-12-16 2005-07-28 National Institute Of Advanced Industrial Science And Technology 干渉用二重鎖rna
US20060134787A1 (en) * 2004-12-22 2006-06-22 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of single and double blunt-ended siRNA
WO2005062957A2 (en) * 2003-12-23 2005-07-14 The Trustees Of The University Of Pennsylvania Compositions and methods for combined therapy of disease
US20070161586A1 (en) * 2004-01-16 2007-07-12 Takeda Pharmaceutical Company Limited Drug for preventing and treating atherosclerosis
ATE491715T1 (de) 2004-01-30 2011-01-15 Quark Pharmaceuticals Inc Oligoribonukleotide und verfahren zu deren anwendung bei der behandlung von fibrotischen leiden und anderen krankheiten
EP1713912B1 (en) * 2004-01-30 2013-09-18 Santaris Pharma A/S Modified short interfering rna (modified sirna)
ATE447024T1 (de) * 2004-02-06 2009-11-15 Dharmacon Inc Stabilisierte rnas als transfektionskontrollen und silencing-reagentien
JP2007523649A (ja) 2004-02-10 2007-08-23 サーナ・セラピューティクス・インコーポレイテッド 多機能短鎖干渉核酸(多機能siNA)を用い、RNA干渉を介した遺伝子発現の阻害
WO2005078848A2 (en) 2004-02-11 2005-08-25 University Of Tennessee Research Foundation Inhibition of tumor growth and invasion by anti-matrix metalloproteinase dnazymes
WO2005079532A2 (en) * 2004-02-17 2005-09-01 University Of Massachusetts Methods and compositions for enhancing risc activity in vitro and in vivo
WO2005079533A2 (en) * 2004-02-17 2005-09-01 University Of Massachusetts Methods and compositions for mediating gene silencing
EP1566202A1 (en) * 2004-02-23 2005-08-24 Sahltech I Göteborg AB Use of resistin antagonists in the treatment of rheumatoid arthritis
EP1718367A1 (en) * 2004-02-23 2006-11-08 Genzyme Corporation Muc1 antagonist enhancement of death receptor ligand-induced apoptosis
AU2005226779B8 (en) 2004-02-24 2011-03-17 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Rab9A, Rab11A, and modulators thereof related to infectious disease
US7691823B2 (en) * 2004-03-05 2010-04-06 University Of Massachusetts RIP140 regulation of glucose transport
US8569474B2 (en) 2004-03-09 2013-10-29 Isis Pharmaceuticals, Inc. Double stranded constructs comprising one or more short strands hybridized to a longer strand
US20050202075A1 (en) * 2004-03-12 2005-09-15 Pardridge William M. Delivery of genes encoding short hairpin RNA using receptor-specific nanocontainers
EP2636739B1 (en) 2004-03-12 2014-12-10 Alnylam Pharmaceuticals Inc. iRNA agents targeting VEGF
US20070265220A1 (en) 2004-03-15 2007-11-15 City Of Hope Methods and compositions for the specific inhibition of gene expression by double-stranded RNA
CA2559955C (en) * 2004-03-15 2016-02-16 City Of Hope Methods and compositions for the specific inhibition of gene expression by double-stranded rna
US20050208090A1 (en) * 2004-03-18 2005-09-22 Medtronic, Inc. Methods and systems for treatment of neurological diseases of the central nervous system
US7851452B2 (en) * 2004-03-22 2010-12-14 The Trustees Of The University Of Pennsylvania Methods of use of bcl-6-derived nucleotides to induce apoptosis
US20050272682A1 (en) * 2004-03-22 2005-12-08 Evers Bernard M SiRNA targeting PI3K signal transduction pathway and siRNA-based therapy
US7872117B2 (en) * 2004-03-26 2011-01-18 Van Andel Research Institute c-met siRNA adenovirus vectors inhibit cancer cell growth, invasion and tumorigenicity
DK1730280T3 (en) * 2004-03-26 2019-02-04 Curis Inc RNA interference modulators for hedgehog signaling and applications thereof
JP2005312428A (ja) * 2004-03-31 2005-11-10 Keio Gijuku Skp−2発現抑制を利用した癌の治療
WO2005095647A1 (ja) * 2004-03-31 2005-10-13 Takara Bio Inc. siRNAのスクリーニング方法
KR101147147B1 (ko) * 2004-04-01 2012-05-25 머크 샤프 앤드 돔 코포레이션 Rna 간섭의 오프 타겟 효과 감소를 위한 변형된폴리뉴클레오타이드
EP2540734B1 (en) 2004-04-05 2016-03-30 Alnylam Pharmaceuticals, Inc. Process and reagents for oligonucleotide synthesis and purification
KR101637908B1 (ko) 2004-04-07 2016-07-11 리나트 뉴로사이언스 코프. 신경성장인자 길항제의 투여에 의한 골암 통증의 치료방법
JP4761389B2 (ja) 2004-04-09 2011-08-31 株式会社ジーンケア研究所 染色体安定化に関する遺伝子を標的とする癌細胞特異的アポトーシス誘導剤
US20060078902A1 (en) * 2004-04-15 2006-04-13 Michaeline Bunting Method and compositions for RNA interference
MXPA06012076A (es) * 2004-04-20 2007-01-25 Nastech Pharm Co Metodos y composiciones para mejorar el suministro de arn bicatenario o un acido nucleico hibrido bicatenario para regular la expresion genetica en celulas de mamifero.
AU2005238034A1 (en) 2004-04-23 2005-11-10 The Trustees Of Columbia University In The City Of New York Inhibition of hairless protein mRNA
AU2005325262B2 (en) * 2004-04-27 2011-08-11 Alnylam Pharmaceuticals, Inc. Single-stranded and double-stranded oligonucleotides comprising a 2-arylpropyl moiety
CA2564868C (en) 2004-04-28 2013-11-26 Molecules For Health, Inc. Methods for treating or preventing restenosis and other vascular proliferative disorders
US7674778B2 (en) 2004-04-30 2010-03-09 Alnylam Pharmaceuticals Oligonucleotides comprising a conjugate group linked through a C5-modified pyrimidine
US20060040882A1 (en) * 2004-05-04 2006-02-23 Lishan Chen Compostions and methods for enhancing delivery of nucleic acids into cells and for modifying expression of target genes in cells
US20060030003A1 (en) * 2004-05-12 2006-02-09 Simon Michael R Composition and method for introduction of RNA interference sequences into targeted cells and tissues
US20110117088A1 (en) * 2004-05-12 2011-05-19 Simon Michael R Composition and method for introduction of rna interference sequences into targeted cells and tissues
US20050260214A1 (en) * 2004-05-12 2005-11-24 Simon Michael R Composition and method for introduction of RNA interference sequences into targeted cells and tissues
US7605250B2 (en) * 2004-05-12 2009-10-20 Dharmacon, Inc. siRNA targeting cAMP-specific phosphodiesterase 4D
US7687616B1 (en) 2004-05-14 2010-03-30 Rosetta Genomics Ltd Small molecules modulating activity of micro RNA oligonucleotides and micro RNA targets and uses thereof
WO2005110464A2 (en) * 2004-05-14 2005-11-24 Oregon Health & Science University Irx5 inhibition as treatment for hyperproliferative disorders
WO2005111211A2 (en) 2004-05-14 2005-11-24 Rosetta Genomics Ltd. Micronas and uses thereof
US10508277B2 (en) 2004-05-24 2019-12-17 Sirna Therapeutics, Inc. Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference
CA2567741A1 (en) * 2004-05-25 2006-03-30 Chimeracore, Inc. Self-assembling nanoparticle drug delivery system
US7795419B2 (en) 2004-05-26 2010-09-14 Rosetta Genomics Ltd. Viral and viral associated miRNAs and uses thereof
EP2290068A3 (en) 2004-05-28 2012-01-04 Asuragen, Inc. Methods and compositions involving microRNA
US8394947B2 (en) 2004-06-03 2013-03-12 Isis Pharmaceuticals, Inc. Positionally modified siRNA constructs
EP1602926A1 (en) 2004-06-04 2005-12-07 University of Geneva Novel means and methods for the treatment of hearing loss and phantom hearing
ATE536418T1 (de) * 2004-06-07 2011-12-15 Protiva Biotherapeutics Inc Lipidverkapselte interferenz-rna
US7745651B2 (en) * 2004-06-07 2010-06-29 Protiva Biotherapeutics, Inc. Cationic lipids and methods of use
US20060008907A1 (en) * 2004-06-09 2006-01-12 The Curators Of The University Of Missouri Control of gene expression via light activated RNA interference
US20090215860A1 (en) * 2004-06-17 2009-08-27 The Regents Of The University Of California Compositions and methods for regulating gene transcription
US20060051815A1 (en) * 2004-06-25 2006-03-09 The J. David Gladstone Institutes Methods of treating smooth muscle cell disorders
JP2008504840A (ja) 2004-06-30 2008-02-21 アルニラム ファーマスーティカルズ インコーポレイテッド 非リン酸骨格結合を含むオリゴヌクレオチド
EP1773857A4 (en) * 2004-07-02 2009-05-13 Protiva Biotherapeutics Inc THE IMMUNE SYSTEM STIMULATING SIRNA MOLECULES AND APPLICATIONS THEREOF
CA2576293C (en) * 2004-07-12 2016-10-04 Nicola J. Mabjeesh Agents capable of downregulating an msf-a-dependent hif-1alpha and use thereof in cancer treatment
WO2006112869A2 (en) * 2004-07-19 2006-10-26 Baylor College Of Medicine Modulation of cytokine signaling regulators and applications for immunotherapy
CA2573671A1 (en) * 2004-07-21 2006-02-23 Medtronic, Inc. Methods for reducing or preventing localized fibrosis using sirna
AU2005328382C1 (en) 2004-07-21 2013-01-24 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising a modified or non-natural nucleobase
US7767652B2 (en) * 2004-07-21 2010-08-03 Medtronic, Inc. Medical devices and methods for reducing localized fibrosis
CA2579574A1 (en) 2004-07-23 2007-01-04 The University Of North Carolina At Chapel Hill Methods and materials for determining pain sensitivity and predicting and treating related disorders
CA2574603C (en) 2004-08-04 2014-11-04 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising a ligand tethered to a modified or non-natural nucleobase
WO2006020557A2 (en) * 2004-08-10 2006-02-23 Immusol, Inc. Methods of using or identifying agents that inhibit cancer growth
US7582744B2 (en) 2004-08-10 2009-09-01 Alnylam Pharmaceuticals, Inc. Chemically modified oligonucleotides
EP1789592A4 (en) * 2004-08-13 2009-12-23 Univ Delaware METHOD FOR IDENTIFYING AND QUANTIFYING SHORT OR SMALL ARN
KR100939274B1 (ko) 2004-08-16 2010-01-29 쿠아크 파마수티칼스 인코퍼레이티드 알티피801 억제제의 치료적 용도
EP1781787B1 (en) * 2004-08-23 2017-04-12 Sylentis S.A.U. Treatment of eye disorders characterized by an elevated intraocular pressure by sirnas
US20070021366A1 (en) * 2004-11-19 2007-01-25 Srivastava Satish K Structural-based inhibitors of the glutathione binding site in aldose reductase, methods of screening therefor and methods of use
WO2006026738A2 (en) 2004-08-31 2006-03-09 Qiagen North American Holdings, Inc. Methods and compositions for rna amplification and detection using an rna-dependent rna-polymerase
JP2008511302A (ja) * 2004-08-31 2008-04-17 シレンティス・エセ・ア・ウ P2x7レセプター発現を阻害する方法及び組成物
US7884086B2 (en) 2004-09-08 2011-02-08 Isis Pharmaceuticals, Inc. Conjugates for use in hepatocyte free uptake assays
US20090170794A1 (en) * 2004-09-10 2009-07-02 Somagenics Inc. Small interfering rnas that efficiently inhibit viral expression and methods of use thereof
US8569374B2 (en) * 2004-09-16 2013-10-29 The Trustees Of The University Of Pennsylvania NADPH oxidase inhibition pharmacotherapies for obstructive sleep apnea syndrome and its associated morbidities
FI20041204A0 (fi) 2004-09-16 2004-09-16 Riikka Lund Menetelmät immuunivälitteisiin sairauksiin liittyvien uusien kohdegeenien hyödyntämiseksi
NZ572403A (en) 2004-09-24 2010-03-26 Alnylam Pharmaceuticals Inc Rnai modulation of apob and uses thereof
PT1799269T (pt) 2004-09-28 2016-10-04 Quark Pharmaceuticals Inc Oligorribonucleótidos e métodos para uso dos mesmos para o tratamento da alopecia, insuficiência renal aguda e outras doenças
WO2006039343A2 (en) * 2004-09-30 2006-04-13 Centocor, Inc. Emmprin antagonists and uses thereof
US8148604B2 (en) 2004-10-21 2012-04-03 Venganza Inc. Methods and materials for conferring resistance to pests and pathogens of plants
US7592322B2 (en) * 2004-10-22 2009-09-22 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV, PIV and other respiratory viruses and uses thereof
EP1802755A1 (en) * 2004-10-22 2007-07-04 Neuregenix Limited Neuron regeneration
US20060110440A1 (en) * 2004-10-22 2006-05-25 Kiminobu Sugaya Method and system for biasing cellular development
US7790878B2 (en) * 2004-10-22 2010-09-07 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV, PIV and other respiratory viruses and uses thereof
WO2006047673A2 (en) 2004-10-27 2006-05-04 Vanderbilt University Mammalian genes involved in infection
AU2005299310A1 (en) * 2004-10-27 2006-05-04 Canji, Inc. Compositions and methods for short interfering nucleic acid inhibition of Nav1.8
EP1804771A2 (en) * 2004-10-28 2007-07-11 Idexx Laboratories, Inc. Compositions for controlled delivery of pharmaceutically active compounds
US20060094676A1 (en) * 2004-10-29 2006-05-04 Ronit Lahav Compositions and methods for treating cancer using compositions comprising an inhibitor of endothelin receptor activity
US9492400B2 (en) 2004-11-04 2016-11-15 Massachusetts Institute Of Technology Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
EP2284265B1 (en) 2004-11-12 2015-01-07 Asuragen, Inc. Methods and compositions involving miRNA and miRNA inhibitor molecules
US8809287B2 (en) * 2004-11-15 2014-08-19 Icahn School Of Medicine At Mount Sinai Compositions and methods for altering Wnt autocrine signaling
US20060105052A1 (en) * 2004-11-15 2006-05-18 Acar Havva Y Cationic nanoparticle having an inorganic core
EP1828219A4 (en) * 2004-11-17 2008-07-23 Protiva Biotherapeutics Inc ARNSI SILENCE OF APOLIPOPROTEIN B
EP1814899A4 (en) * 2004-11-18 2008-09-03 Univ Illinois MULTICISTRONIC INTERFERING RNA CONSTRUCTS FOR INHIBITING TUMORS
EP1816194A4 (en) * 2004-11-19 2009-02-18 Genecare Res Inst Co Ltd CANCER-SPECIFIC PROLIFERATION INHIBITORS
US7923207B2 (en) 2004-11-22 2011-04-12 Dharmacon, Inc. Apparatus and system having dry gene silencing pools
US7935811B2 (en) 2004-11-22 2011-05-03 Dharmacon, Inc. Apparatus and system having dry gene silencing compositions
US7923206B2 (en) * 2004-11-22 2011-04-12 Dharmacon, Inc. Method of determining a cellular response to a biological agent
US20060287264A1 (en) * 2004-11-24 2006-12-21 Philipp Hadwiger RNAi modulation of the BCR-ABL fusion gene and uses thereof
WO2006060454A2 (en) * 2004-12-02 2006-06-08 B-Bridge International, Inc. Methods of designing small interfering rnas, antisense polynucleotides, and other hybridizing polynucleotides
WO2006060779A2 (en) * 2004-12-03 2006-06-08 Case Western Reserve University Novel methods, compositions and devices for inducing neovascularization
AU2005316384B2 (en) * 2004-12-14 2012-02-09 Alnylam Pharmaceuticals, Inc. RNAi modulation of MLL-AF4 and uses thereof
ATE479740T1 (de) 2004-12-17 2010-09-15 Beth Israel Hospital Zusammensetzungen für bakteriell vermitteltes gen-silencing sowie verfahren zur verwendung davon
GB0427916D0 (en) * 2004-12-21 2005-01-19 Astrazeneca Ab Method
US20060142228A1 (en) * 2004-12-23 2006-06-29 Ambion, Inc. Methods and compositions concerning siRNA's as mediators of RNA interference
TWI386225B (zh) 2004-12-23 2013-02-21 Alcon Inc 用於治療眼睛病症的結締組織生長因子(CTGF)RNA干擾(RNAi)抑制技術
SG158175A1 (en) 2004-12-27 2010-01-29 Silence Therapeutics Ag Lipid complexes coated with peg and their use
WO2006074108A2 (en) * 2004-12-30 2006-07-13 Hauser Todd M Compositions and methods for modulating gene expression using self-protected oligonucleotides
AU2005322960A1 (en) * 2005-01-06 2006-07-13 The Johns Hopkins University RNA interference that blocks expression of pro-apoptotic proteins potentiates immunity induced by DNA and transfected dendritic cell vaccines
ATE462726T1 (de) 2005-01-07 2010-04-15 Diadexus Inc Ovr110-antikörperzusammensetzungen und verwendungsverfahren dafür
NZ556097A (en) * 2005-01-07 2009-12-24 Alnylam Pharmaceuticals Inc Rnai modulation of RSV and therapeutic uses thereof
US20060217324A1 (en) * 2005-01-24 2006-09-28 Juergen Soutschek RNAi modulation of the Nogo-L or Nogo-R gene and uses thereof
CA2595726A1 (en) * 2005-01-26 2006-08-03 The Johns Hopkins University Anti-cancer dna vaccine employing plasmids encoding mutant oncoprotein antigen and calreticulin
TW200639252A (en) * 2005-02-01 2006-11-16 Alcon Inc RNAi-mediated inhibition of ocular hypertension targets
US20080070857A1 (en) * 2005-02-14 2008-03-20 Jun Nishihira Pharmaceutical Agents for Preventing Metastasis of Cancer
ATE526421T1 (de) 2005-02-14 2011-10-15 Univ Iowa Res Found Verfahren und reagenzien zur behandlung und diagnose von altersbedingter makuladegeneration
US8859749B2 (en) 2005-03-08 2014-10-14 Qiagen Gmbh Modified short interfering RNA
CA2598234A1 (en) 2005-03-11 2006-09-21 Alcon, Inc. Rnai-mediated inhibition of frizzled related protein-1 for treatment of glaucoma
GB0505081D0 (en) * 2005-03-14 2005-04-20 Genomica Sau Downregulation of interleukin-12 expression by means of rnai technology
WO2006130201A1 (en) * 2005-03-14 2006-12-07 Board Of Regents, The University Of Texas System Antigene oligomers inhibit transcription
JP4585342B2 (ja) * 2005-03-18 2010-11-24 株式会社資生堂 不全角化を抑制する物質のスクリーニング方法、同方法によりスクリーニングされた物質及び不全角化を抑制する方法
EP1877556B1 (en) * 2005-03-25 2011-09-14 Medtronic, Inc. Use of anti-tnf or anti-il1 rnai to suppress pro- inflammatory cytokine actions locally to treat pain
DK1866414T3 (da) * 2005-03-31 2012-04-23 Calando Pharmaceuticals Inc Inhibitorer af ribonukleotidreduktase-underenhed 2 og anvendelser deraf.
US20090203055A1 (en) * 2005-04-18 2009-08-13 Massachusetts Institute Of Technology Compositions and methods for RNA interference with sialidase expression and uses thereof
EP1885854B1 (en) 2005-05-06 2012-10-17 Medtronic, Inc. Methods and sequences to suppress primate huntington gene expression
US7902352B2 (en) 2005-05-06 2011-03-08 Medtronic, Inc. Isolated nucleic acid duplex for reducing huntington gene expression
EP2298829B1 (en) * 2005-05-31 2017-09-20 École Polytechnique Fédérale de Lausanne (EPFL) Triblock copolymers for cytoplasmic delivery of gene-based drugs
WO2006130560A2 (en) * 2005-05-31 2006-12-07 The Trustees Of The University Of Pennsylvania Manipulation of pten in t cells as a strategy to modulate immune responses
DK1888749T3 (en) 2005-06-01 2015-01-05 Polyplus Transfection Oligonucleotides for RNA interference and their biological applications
EP1885739A4 (en) * 2005-06-01 2010-02-10 Univ Duke PROCESS FOR INHIBITING INTIMATE HYPERPLASIA
CN100445381C (zh) * 2005-06-10 2008-12-24 中国人民解放军军事医学科学院基础医学研究所 带有单链polyA尾巴的siRNA分子制备方法和应用
WO2006131925A2 (en) * 2005-06-10 2006-12-14 Quark Pharmaceuticals, Inc. Oligoribonucleotides and methods of use thereof for treatment of fibrotic conditions and other diseases
WO2006138145A1 (en) 2005-06-14 2006-12-28 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
US7838503B2 (en) * 2005-06-15 2010-11-23 Children's Medical Center Corporation Methods for extending the replicative lifespan of cells
FI20050640A0 (fi) * 2005-06-16 2005-06-16 Faron Pharmaceuticals Oy Yhdisteitä amiinioksidaasista riippuvien sairauksien tai häiriöiden hoitoon tai estoon
US7868159B2 (en) * 2005-06-23 2011-01-11 Baylor College Of Medicine Modulation of negative immune regulators and applications for immunotherapy
AU2006261732B2 (en) * 2005-06-27 2011-09-15 Alnylam Pharmaceuticals, Inc. RNAi modulation of HIF-1 and theraputic uses thereof
US9133517B2 (en) 2005-06-28 2015-09-15 Medtronics, Inc. Methods and sequences to preferentially suppress expression of mutated huntingtin
EP1915448B1 (en) 2005-07-07 2013-09-04 Yissum Research Development Company, of The Hebrew University of Jerusalem Nucleic acid agents for downregulating h19, and methods of using same
WO2007011702A2 (en) 2005-07-15 2007-01-25 The University Of North Carolina At Chapel Hill Use of egfr inhibitors to prevent or treat obesity
EP2204445B1 (de) * 2005-07-25 2013-01-02 RiboxX GmbH Verfahren und Kit zur primer-abhängigen Amplifikation heterologer viraler, eukaryontischer oder prokaryontischer RNA
WO2007014370A2 (en) * 2005-07-28 2007-02-01 University Of Delaware Small regulatory rnas and methods of use
US7919583B2 (en) 2005-08-08 2011-04-05 Discovery Genomics, Inc. Integration-site directed vector systems
US20070213257A1 (en) * 2005-08-12 2007-09-13 Nastech Pharmaceutical Company Inc. Compositions and methods for complexes of nucleic acids and peptides
RU2418068C2 (ru) * 2005-08-17 2011-05-10 Сирна Терапьютикс, Инк. Молекулы химически модифицированной короткой интерферирующей нуклеиновой кислоты, которые опосредуют интерференцию рнк
WO2007022506A2 (en) 2005-08-18 2007-02-22 University Of Massachusetts Methods and compositions for treating neurological disease
US20070054873A1 (en) * 2005-08-26 2007-03-08 Protiva Biotherapeutics, Inc. Glucocorticoid modulation of nucleic acid-mediated immune stimulation
WO2007028065A2 (en) * 2005-08-30 2007-03-08 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds for modulation of splicing
US20090018097A1 (en) * 2005-09-02 2009-01-15 Mdrna, Inc Modification of double-stranded ribonucleic acid molecules
US20090221673A1 (en) * 2005-09-13 2009-09-03 Rigby William F C Compositions and Methods for Regulating RNA Translation via CD154 CA-Dinucleotide Repeat
EP1931789B1 (en) 2005-09-20 2016-05-04 BASF Plant Science GmbH Methods for controlling gene expression using ta-siran
FR2890859B1 (fr) * 2005-09-21 2012-12-21 Oreal Oligonucleotide d'arn double brin inhibant l'expression de la tyrosinase
WO2007041213A2 (en) * 2005-09-30 2007-04-12 St. Jude Children's Research Hospital Methods for regulation of p53 translation and function
US8168584B2 (en) 2005-10-08 2012-05-01 Potentia Pharmaceuticals, Inc. Methods of treating age-related macular degeneration by compstatin and analogs thereof
US8080534B2 (en) 2005-10-14 2011-12-20 Phigenix, Inc Targeting PAX2 for the treatment of breast cancer
US7838658B2 (en) * 2005-10-20 2010-11-23 Ian Maclachlan siRNA silencing of filovirus gene expression
GB0521351D0 (en) * 2005-10-20 2005-11-30 Genomica Sau Modulation of TRPV expression levels
GB0521716D0 (en) * 2005-10-25 2005-11-30 Genomica Sau Modulation of 11beta-hydroxysteriod dehydrogenase 1 expression for the treatment of ocular diseases
US8076307B2 (en) * 2005-10-27 2011-12-13 National University Corporation NARA Institute of Science and Technology Formation/elongation of axon by inhibiting the expression or function of Singar and application to nerve regeneration
US7320965B2 (en) 2005-10-28 2008-01-22 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of Huntingtin gene
JP5336853B2 (ja) 2005-11-02 2013-11-06 プロチバ バイオセラピューティクス インコーポレイティッド 修飾siRNA分子およびその使用法
CA2626584A1 (en) * 2005-11-04 2007-05-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of nav1.8 gene
US8076308B2 (en) * 2005-11-07 2011-12-13 British Columbia Cancer Agency Inhibition of autophagy genes in cancer chemotherapy
WO2007056331A2 (en) 2005-11-09 2007-05-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of factor v leiden mutant gene
AU2006336624B2 (en) * 2005-11-17 2010-11-25 Board Of Regents, The University Of Texas System Modulation of gene expression by oligomers targeted to chromosomal DNA
US8916530B2 (en) * 2005-11-18 2014-12-23 Gradalis, Inc. Individualized cancer therapy
US8603991B2 (en) 2005-11-18 2013-12-10 Gradalis, Inc. Individualized cancer therapy
US20080125384A1 (en) * 2005-11-21 2008-05-29 Shuewi Yang Simultaneous silencing and restoration of gene function
JP4901753B2 (ja) * 2005-11-24 2012-03-21 学校法人自治医科大学 プロヒビチン2(phb2)のミトコンドリア機能
US9267937B2 (en) 2005-12-15 2016-02-23 Massachusetts Institute Of Technology System for screening particles
MX2008008302A (es) * 2005-12-22 2009-01-21 Exegenics Inc Composiciones y metodos para regular el sistema de complemento.
AR057252A1 (es) * 2005-12-27 2007-11-21 Alcon Mfg Ltd Inhibicion de rho quinasa mediada por arni para el tratamiento de trastornos oculares
US8673873B1 (en) * 2005-12-28 2014-03-18 Alcon Research, Ltd. RNAi-mediated inhibition of phosphodiesterase type 4 for treatment of cAMP-related ocular disorders
WO2007087113A2 (en) 2005-12-28 2007-08-02 The Scripps Research Institute Natural antisense and non-coding rna transcripts as drug targets
US8058252B2 (en) * 2005-12-30 2011-11-15 Institut Gustave Roussy Use of inhibitors of scinderin and/or ephrin-A1 for treating tumors
JP2009523432A (ja) * 2006-01-17 2009-06-25 バイオレックス セラピュティックス インク 植物中でのn−グリカンのヒト化及び最適化のための組成物及び方法
US20090060921A1 (en) * 2006-01-17 2009-03-05 Biolex Therapeutics, Inc. Glycan-optimized anti-cd20 antibodies
EP3936621A1 (en) 2006-01-20 2022-01-12 Cell Signaling Technology, Inc. Translocation and mutant ros kinase in human non-small cell lung carcinoma
US20120208824A1 (en) 2006-01-20 2012-08-16 Cell Signaling Technology, Inc. ROS Kinase in Lung Cancer
US7825099B2 (en) 2006-01-20 2010-11-02 Quark Pharmaceuticals, Inc. Treatment or prevention of oto-pathologies by inhibition of pro-apoptotic genes
DOP2007000015A (es) 2006-01-20 2007-08-31 Quark Biotech Inc Usos terapéuticos de inhibidores de rtp801
WO2007087451A2 (en) * 2006-01-25 2007-08-02 University Of Massachusetts Compositions and methods for enhancing discriminatory rna interference
CA2638837A1 (en) * 2006-01-27 2007-08-02 Santaris Pharma A/S Lna modified phosphorothiolated oligonucleotides
US8229398B2 (en) * 2006-01-30 2012-07-24 Qualcomm Incorporated GSM authentication in a CDMA network
EP1989307B1 (en) * 2006-02-08 2012-08-08 Quark Pharmaceuticals, Inc. NOVEL TANDEM siRNAS
US7910566B2 (en) 2006-03-09 2011-03-22 Quark Pharmaceuticals Inc. Prevention and treatment of acute renal failure and other kidney diseases by inhibition of p53 by siRNA
FI20060246A0 (fi) * 2006-03-16 2006-03-16 Jukka Westermarck Uusi kasvua stimuloiva proteiini ja sen käyttö
US20100056441A1 (en) * 2006-03-17 2010-03-04 Costa Robert H Method for Inhibiting Angiogenesis
EP2002004B1 (en) 2006-03-23 2015-10-14 Roche Innovation Center Copenhagen A/S Small internally segmented interfering rna
EP1999260A2 (en) * 2006-03-24 2008-12-10 Novartis AG Dsrna compositions and methods for treating hpv infection
FR2898908A1 (fr) 2006-03-24 2007-09-28 Agronomique Inst Nat Rech Procede de preparation de cellules aviaires differenciees et genes impliques dans le maintien de la pluripotence
WO2007115047A2 (en) * 2006-03-29 2007-10-11 Senesco Technologies, Inc. Inhibition of hiv replication and expression of p24 with eif-5a
KR101362681B1 (ko) 2006-03-31 2014-02-13 알닐람 파마슈티칼스 인코포레이티드 Eg5 유전자의 발현을 억제하는 조성물 및 억제 방법
EP2007435B1 (en) 2006-03-31 2019-12-18 Massachusetts Institute Of Technology System for targeted delivery of therapeutic agents
US20090226446A1 (en) * 2006-04-06 2009-09-10 Deutsches Krebsforschungszentrum Stiftung Des Offentilchen Rechts Method to Inhibit the Propagation of an Undesired Cell Population
DE602007005366D1 (de) * 2006-04-07 2010-04-29 Chimeros Inc Zusammensetzungen und verfahren zur behandlung von b-zellen-malignomen
US9044461B2 (en) 2006-04-07 2015-06-02 The Research Foundation Of State University Of New York Transcobalamin receptor polypeptides, nucleic acids, and modulators thereof, and related methods of use in modulating cell growth and treating cancer and cobalamin deficiency
EP2010226B1 (en) 2006-04-07 2014-01-15 The Research Foundation of State University of New York Transcobalamin receptor polypeptides, nucleic acids, and modulators thereof, and related methods of use in modulating cell growth and treating cancer and cobalamin deficiency
EP2371957A1 (en) * 2006-04-12 2011-10-05 Isis Pharmaceuticals, Inc. Compositions and their uses directed to hepcidin
CN101460634A (zh) * 2006-04-13 2009-06-17 康乃尔研究基金会有限公司 用于靶向c-rel的方法和组合物
DK2450437T3 (en) 2006-04-14 2017-09-11 Cell Signaling Technology Inc Gene defects and mutant ALK kinase in human solid tumors
JP2009533458A (ja) 2006-04-14 2009-09-17 マサチューセッツ インスティテュート オブ テクノロジー 神経系の可塑性を媒介する分子経路の同定および変調
WO2007127919A2 (en) * 2006-04-28 2007-11-08 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a gene from the jc virus
GB0608838D0 (en) 2006-05-04 2006-06-14 Novartis Ag Organic compounds
CA2651839C (en) 2006-05-11 2016-02-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the pcsk9 gene
CA2652280C (en) 2006-05-15 2014-01-28 Massachusetts Institute Of Technology Polymers for functional particles
WO2007133758A1 (en) * 2006-05-15 2007-11-22 Physical Pharmaceutica, Llc Composition and improved method for preparation of small particles
US20070269892A1 (en) * 2006-05-18 2007-11-22 Nastech Pharmaceutical Company Inc. FORMULATIONS FOR INTRACELLULAR DELIVERY dsRNA
EP2021352A4 (en) * 2006-05-19 2009-10-28 Scripps Research Inst TREATMENT OF POOR FOLDING OF PROTEINS
JP2009537153A (ja) * 2006-05-19 2009-10-29 アルニラム ファーマシューティカルズ, インコーポレイテッド AhaのRNAi調節およびその治療上の使用
EP2018443A4 (en) * 2006-05-22 2009-11-11 Alnylam Pharmaceuticals Inc COMPOSITIONS AND METHODS INHIBITING EXPRESSION OF IKK-B GENE
US9273356B2 (en) 2006-05-24 2016-03-01 Medtronic, Inc. Methods and kits for linking polymorphic sequences to expanded repeat mutations
US20070275923A1 (en) * 2006-05-25 2007-11-29 Nastech Pharmaceutical Company Inc. CATIONIC PEPTIDES FOR siRNA INTRACELLULAR DELIVERY
GB0610542D0 (en) * 2006-05-26 2006-07-05 Medical Res Council Screening method
US8598333B2 (en) * 2006-05-26 2013-12-03 Alnylam Pharmaceuticals, Inc. SiRNA silencing of genes expressed in cancer
US7915399B2 (en) 2006-06-09 2011-03-29 Protiva Biotherapeutics, Inc. Modified siRNA molecules and uses thereof
EP2026843A4 (en) 2006-06-09 2011-06-22 Quark Pharmaceuticals Inc THERAPEUTIC USES OF RTP801L INHIBITORS
EP2029746B1 (en) * 2006-06-12 2012-07-04 Exegenics, Inc., D/b/a Opko Health, Inc. Compositions and methods for sirna inhibition of angiogenesis
US9200275B2 (en) * 2006-06-14 2015-12-01 Merck Sharp & Dohme Corp. Methods and compositions for regulating cell cycle progression
US9381477B2 (en) 2006-06-23 2016-07-05 Massachusetts Institute Of Technology Microfluidic synthesis of organic nanoparticles
US8124752B2 (en) * 2006-07-10 2012-02-28 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the MYC gene
GB0613753D0 (en) * 2006-07-11 2006-08-23 Norwegian Radium Hospital Res Method
EP2479284B1 (en) 2006-07-13 2017-09-20 University of Iowa Research Foundation Methods and reagents for treatment and diagnosis of vascular disorders and age-related macular degeneration
JP4756271B2 (ja) * 2006-07-18 2011-08-24 独立行政法人産業技術総合研究所 ガン細胞の老化、アポトーシス誘導剤
JP2009544281A (ja) 2006-07-21 2009-12-17 サイレンス・セラピューティクス・アーゲー プロテインキナーゼ3の発現を阻害するための手段
US20080039415A1 (en) * 2006-08-11 2008-02-14 Gregory Robert Stewart Retrograde transport of sirna and therapeutic uses to treat neurologic disorders
US20100330105A1 (en) * 2006-08-22 2010-12-30 John Hopkins University Anticancer Combination Therapies
DE102006039479A1 (de) 2006-08-23 2008-03-06 Febit Biotech Gmbh Programmierbare Oligonukleotidsynthese
US7872118B2 (en) * 2006-09-08 2011-01-18 Opko Ophthalmics, Llc siRNA and methods of manufacture
JP2010504350A (ja) * 2006-09-19 2010-02-12 アシュラジェン インコーポレイテッド 治療的介入の標的としての、miR−200によって調節される遺伝子および経路
EP2145001A2 (en) * 2006-09-19 2010-01-20 Asuragen, Inc. Mir-15, mir-26, mir -31,mir -145, mir-147, mir-188, mir-215, mir-216 mir-331, mmu-mir-292-3p regulated genes and pathways as targets for therapeutic intervention
AU2007299629C1 (en) * 2006-09-21 2012-05-10 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the HAMP gene
US8252755B2 (en) 2006-09-22 2012-08-28 Dharmacon, Inc. Duplex oligonucleotide complexes and methods for gene silencing by RNA interference
JP2010505897A (ja) * 2006-10-11 2010-02-25 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ インフルエンザターゲット
WO2008063760A2 (en) * 2006-10-18 2008-05-29 The University Of Texas M.D. Anderson Cancer Center Methods for treating cancer targeting transglutaminase
JP2010507387A (ja) 2006-10-25 2010-03-11 クアーク・ファーマスーティカルス、インコーポレイテッド 新規のsiRNAおよびその使用方法
WO2008052774A2 (en) 2006-10-31 2008-05-08 Noxxon Pharma Ag Methods for detection of a single- or double-stranded nucleic acid molecule
EP2078079B1 (en) 2006-11-01 2011-05-04 The Medical Research and Infrastructure Fund of the Tel-Aviv Sourasky Medical Center Adipocyte-specific constructs and methods for inhibiting platelet-type 12 lipoxygenase expression
US9375440B2 (en) 2006-11-03 2016-06-28 Medtronic, Inc. Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US8324367B2 (en) 2006-11-03 2012-12-04 Medtronic, Inc. Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US8758998B2 (en) 2006-11-09 2014-06-24 Gradalis, Inc. Construction of bifunctional short hairpin RNA
US8906874B2 (en) 2006-11-09 2014-12-09 Gradalis, Inc. Bi-functional shRNA targeting Stathmin 1 and uses thereof
US8252526B2 (en) 2006-11-09 2012-08-28 Gradalis, Inc. ShRNA molecules and methods of use thereof
US8034921B2 (en) * 2006-11-21 2011-10-11 Alnylam Pharmaceuticals, Inc. IRNA agents targeting CCR5 expressing cells and uses thereof
US7988668B2 (en) 2006-11-21 2011-08-02 Medtronic, Inc. Microsyringe for pre-packaged delivery of pharmaceuticals
US7819842B2 (en) 2006-11-21 2010-10-26 Medtronic, Inc. Chronically implantable guide tube for repeated intermittent delivery of materials or fluids to targeted tissue sites
US8153110B2 (en) * 2006-11-22 2012-04-10 The University Of Tokyo Environment-responding siRNA carrier using disulfide-cross-linked polymeric micelle
WO2008152446A2 (en) 2006-11-27 2008-12-18 Patrys Limited Novel glycosylated peptide target in neoplastic cells
CA2670696A1 (en) 2006-11-27 2008-06-05 Diadexus, Inc. Ovr110 antibody compositions and methods of use
WO2008067373A2 (en) * 2006-11-28 2008-06-05 Alcon Research, Ltd. RNAi-MEDIATED INHIBITION OF AQUAPORIN 1 FOR TREATMENT OF IOP-RELATED CONDITIONS
WO2008067560A2 (en) * 2006-11-30 2008-06-05 University Of Southern California Compositions and methods of sphingosine kinase inhibitors for use thereof in cancer therapy
DK2104737T3 (da) * 2006-12-08 2013-05-27 Asuragen Inc Funktioner og formål for let-7 mikro-RNAer
EP2104735A2 (en) * 2006-12-08 2009-09-30 Asuragen, INC. Mir-21 regulated genes and pathways as targets for therapeutic intervention
CN102604951A (zh) * 2006-12-14 2012-07-25 诺瓦提斯公司 治疗肌肉和心血管病症的组合物和方法
CA2671270A1 (en) * 2006-12-29 2008-07-17 Asuragen, Inc. Mir-16 regulated genes and pathways as targets for therapeutic intervention
US7754698B2 (en) * 2007-01-09 2010-07-13 Isis Pharmaceuticals, Inc. Modulation of FR-alpha expression
US9896511B2 (en) 2007-01-10 2018-02-20 The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services Antibodies that bind to TL1A and methods of treating inflammatory or autoimmune disease comprising administering such antibodies
US20080171906A1 (en) * 2007-01-16 2008-07-17 Everaerts Frank J L Tissue performance via hydrolysis and cross-linking
CA2675964C (en) * 2007-01-16 2015-12-22 Yissum Research Development Company Of The Hebrew University Of Jerusalem H19 silencing nucleic acid agents for treating rheumatoid arthritis
EP3042959A1 (en) 2007-01-16 2016-07-13 The University of Queensland Method of inducing an immune response
US20090074785A1 (en) * 2007-01-16 2009-03-19 Smith Jeffrey W Compositions and methods for treatment of colorectal cancer
US8361988B2 (en) * 2007-01-17 2013-01-29 Institut De Recherches Cliniques De Montreal Nucleoside and nucleotide analogues with quaternary carbon centers and methods of use
WO2008092153A2 (en) 2007-01-26 2008-07-31 University Of Louisville Research Foundation, Inc. Modification of exosomal components for use as a vaccine
US20100196403A1 (en) * 2007-01-29 2010-08-05 Jacob Hochman Antibody conjugates for circumventing multi-drug resistance
WO2008094860A2 (en) * 2007-01-30 2008-08-07 Allergan, Inc. Treating ocular diseases using peroxisome proliferator-activated receptor delta antagonists
EP2121987B1 (en) 2007-02-09 2012-06-13 Northwestern University Particles for detecting intracellular targets
WO2008098165A2 (en) 2007-02-09 2008-08-14 Massachusetts Institute Of Technology Oscillating cell culture bioreactor
DE102007008596B4 (de) 2007-02-15 2010-09-02 Friedrich-Schiller-Universität Jena Biologisch wirksame Moleküle auf Grundlage von PNA und siRNA, Verfahren zu deren zellspezifischen Aktivierung sowie Applikationskit zur Verabreichung
WO2008103643A1 (en) 2007-02-20 2008-08-28 Monsanto Technology, Llc Invertebrate micrornas
US7872119B2 (en) 2007-02-26 2011-01-18 Quark Pharmaceuticals, Inc. Inhibitors of RTP801 and their use in disease treatment
WO2008104978A2 (en) * 2007-02-28 2008-09-04 Quark Pharmaceuticals, Inc. Novel sirna structures
WO2008109034A2 (en) * 2007-03-02 2008-09-12 The Trustees Of The University Of Pennsylvania Modulating pdx-1 with pcif1, methods and uses thereof
JP2010519913A (ja) * 2007-03-02 2010-06-10 エムディーアールエヌエー,インコーポレイテッド Wnt遺伝子の発現を抑制するための核酸化合物およびその使用
WO2008109357A1 (en) * 2007-03-02 2008-09-12 Mdrna, Inc. Nucleic acid compounds for inhibiting apob gene expression and uses thereof
US9085638B2 (en) 2007-03-07 2015-07-21 The Johns Hopkins University DNA vaccine enhancement with MHC class II activators
US20080260765A1 (en) * 2007-03-15 2008-10-23 Johns Hopkins University HPV DNA Vaccines and Methods of Use Thereof
US7812002B2 (en) 2007-03-21 2010-10-12 Quark Pharmaceuticals, Inc. Oligoribonucleotide inhibitors of NRF2 and methods of use thereof for treatment of cancer
WO2008116094A2 (en) 2007-03-21 2008-09-25 Brookhaven Science Associates, Llc Combined hairpin-antisense compositions and methods for modulating expression
PE20090064A1 (es) * 2007-03-26 2009-03-02 Novartis Ag Acido ribonucleico de doble cadena para inhibir la expresion del gen e6ap humano y composicion farmaceutica que lo comprende
AP2014007971A0 (en) 2007-03-29 2014-09-30 Alnylam Pharmaceuticals Inc Compositions and methods for inhibiting expressionof a gene from the ebola
WO2008124634A1 (en) 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Polymer-encapsulated reverse micelles
EP2144600A4 (en) 2007-04-04 2011-03-16 Massachusetts Inst Technology POLY (AMINIC ACID) TARGET MOLECULES
AU2008236566A1 (en) * 2007-04-09 2008-10-16 Chimeros, Inc. Self-assembling nanoparticle drug delivery system
JP5258874B2 (ja) 2007-04-10 2013-08-07 キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング Rna干渉タグ
US8808747B2 (en) * 2007-04-17 2014-08-19 Baxter International Inc. Nucleic acid microparticles for pulmonary delivery
CA2685127C (en) 2007-04-23 2019-01-08 Alnylam Pharmaceuticals, Inc. Glycoconjugates of rna interference agents
WO2008143774A2 (en) * 2007-05-01 2008-11-27 University Of Massachusetts Methods and compositions for locating snp heterozygosity for allele specific diagnosis and therapy
WO2008137115A1 (en) 2007-05-03 2008-11-13 The Brigham And Women's Hospital, Inc. Multipotent stem cells and uses thereof
JP5296328B2 (ja) * 2007-05-09 2013-09-25 独立行政法人理化学研究所 1本鎖環状rnaおよびその製造方法
BRPI0811625A2 (pt) * 2007-05-15 2014-11-11 Helicon Therapeutics Inc Métodos de tratamento de distúrbios cognitivos através da inibição da gpr12
MX2009012315A (es) * 2007-05-15 2009-12-03 Helicon Therapeutics Inc Metodos de identificacion de genes involucrados en la formacion de memoria utilizando arn pequeño de interferencia (arnip).
US20090131354A1 (en) * 2007-05-22 2009-05-21 Bader Andreas G miR-126 REGULATED GENES AND PATHWAYS AS TARGETS FOR THERAPEUTIC INTERVENTION
KR101750640B1 (ko) 2007-05-22 2017-06-23 아크투루스 쎄라퓨틱스, 인크. 치료제를 위한 올리고머
EP2826863B1 (en) 2007-05-30 2017-08-23 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
CA2687964A1 (en) 2007-06-01 2009-02-19 The Trustees Of Princeton University Treatment of viral infections by modulation of host cell metabolic pathways
EP2172547B1 (en) 2007-06-11 2016-01-06 Takara Bio Inc. Method for expression of specific gene
AR066984A1 (es) * 2007-06-15 2009-09-23 Novartis Ag Inhibicion de la expresion de la subunidad alfa del canal epitelial de sodio (enac) por medio de arni (arn de interferencia)
US20100273854A1 (en) * 2007-06-15 2010-10-28 Hagar Kalinski Compositions and methods for inhibiting nadph oxidase expression
HRP20140522T1 (hr) 2007-06-27 2014-08-15 Quark Pharmaceuticals, Inc. Pripravci i metode za inhibiranje izražaja proapoptotiäśkih gena
EP3895737A1 (en) 2007-06-29 2021-10-20 Stelic Institute Of Regenerative Medicine, Stelic Institute & Co. Method of fixing and expressing physiologically active substance
CA2692503C (en) * 2007-07-05 2013-09-24 Novartis Ag Dsrna for treating viral infection
ES2423182T3 (es) * 2007-07-10 2013-09-18 Neurim Pharmaceuticals (1991) Ltd. Variantes de unión CD44 en las enfermedades neurodegenerativas
US8828960B2 (en) * 2007-07-17 2014-09-09 Idexx Laboratories, Inc. Amino acid vitamin ester compositions for controlled delivery of pharmaceutically active compounds
JP2009033986A (ja) * 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd RNA干渉による遺伝子発現抑制のためのターゲット遺伝子としてのcar遺伝子の使用
US9526707B2 (en) 2007-08-13 2016-12-27 Howard L. Elford Methods for treating or preventing neuroinflammation or autoimmune diseases
US8501929B2 (en) * 2007-08-17 2013-08-06 Biochrom Pharma Inc. PTHrP, its isoforms and antagonist thereto in the diagnosis and treatment of disease
CN101842381A (zh) 2007-08-27 2010-09-22 波士顿生物医药公司 作为微小rna模拟物或抑制剂的不对称rna双链体的组合物
CN101842490B (zh) * 2007-08-30 2014-12-10 帕拉丁实验室公司 抗原组合物及其在核酸的靶向递送中的应用
US20090081789A1 (en) * 2007-08-31 2009-03-26 Greenville Hospital System Activation of nuclear factor kappa B
WO2009033027A2 (en) 2007-09-05 2009-03-12 Medtronic, Inc. Suppression of scn9a gene expression and/or function for the treatment of pain
WO2009036332A1 (en) 2007-09-14 2009-03-19 Asuragen, Inc. Micrornas differentially expressed in cervical cancer and uses thereof
AU2008298592A1 (en) * 2007-09-14 2009-03-19 Nitto Denko Corporation Drug carriers
JP5049713B2 (ja) * 2007-09-14 2012-10-17 株式会社コナミデジタルエンタテインメント ゲームシステム並びにこれを構成するゲーム装置及び課題報知装置
DK2548962T3 (en) 2007-09-19 2016-04-11 Applied Biosystems Llc Sirna sequence-independent modification formats to reduce off-target phenotype effects in RNAI and stabilized forms thereof
EP2197454A4 (en) * 2007-09-25 2012-07-04 Idexx Lab Inc PHARMACEUTICAL COMPOSITIONS FOR THE ADMINISTRATION OF OLIGONUCLEOTIDES
PL2644192T3 (pl) 2007-09-28 2017-09-29 Pfizer Inc. Ukierunkowanie na komórki nowotworowe z zastosowaniem nanocząstek
US20120082659A1 (en) * 2007-10-02 2012-04-05 Hartmut Land Methods And Compositions Related To Synergistic Responses To Oncogenic Mutations
WO2009044392A2 (en) * 2007-10-03 2009-04-09 Quark Pharmaceuticals, Inc. Novel sirna structures
JP2010539990A (ja) * 2007-10-04 2010-12-24 ボード オブ リージェンツ ザ ユニバーシティー オブ テキサス システム アンチセンス転写物を標的とするagRNAおよびギャップマーを用いた遺伝子発現の調節方法
CA2917512A1 (en) 2007-10-12 2009-04-23 Massachusetts Institute Of Technology Vaccine nanotechnology
DK2203558T3 (en) 2007-10-18 2016-06-27 Cell Signaling Technology Inc TRANSLOCATION AND mutant ROS kinase IN HUMAN NON-small cell lung carcinoma
US8097712B2 (en) 2007-11-07 2012-01-17 Beelogics Inc. Compositions for conferring tolerance to viral disease in social insects, and the use thereof
US20100098664A1 (en) * 2007-11-28 2010-04-22 Mathieu Jean-Francois Desclaux Lentiviral vectors allowing RNAi mediated inhibition of GFAP and vimentin expression
WO2009082593A2 (en) * 2007-11-30 2009-07-02 Baylor College Of Medicine Dendritic cell vaccine compositions and uses of same
US8071562B2 (en) 2007-12-01 2011-12-06 Mirna Therapeutics, Inc. MiR-124 regulated genes and pathways as targets for therapeutic intervention
WO2010070380A2 (en) 2007-12-03 2010-06-24 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health Of Human Services, National Institutes Of Health Doc1 compositions and methods for treating cancer
JP5519523B2 (ja) 2007-12-04 2014-06-11 アルニラム ファーマスーティカルズ インコーポレイテッド オリゴヌクレオチドの送達剤としての糖質コンジュゲート
EP2231194B1 (en) * 2007-12-04 2017-02-22 Alnylam Pharmaceuticals Inc. Folate-irna conjugates
AU2008335202A1 (en) 2007-12-10 2009-06-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of Factor VII gene
US8614311B2 (en) 2007-12-12 2013-12-24 Quark Pharmaceuticals, Inc. RTP801L siRNA compounds and methods of use thereof
US20110105584A1 (en) * 2007-12-12 2011-05-05 Elena Feinstein Rtp80il sirna compounds and methods of use thereof
EP2229459B1 (en) 2007-12-13 2014-08-27 Alnylam Pharmaceuticals, Inc. Methods and compositions for prevention or treatment of RSV infection
WO2009079399A2 (en) * 2007-12-14 2009-06-25 Alnylam Pharmaceuticals, Inc. Method of treating neurodegenerative disease
US7845686B2 (en) * 2007-12-17 2010-12-07 S & B Technical Products, Inc. Restrained pipe joining system for plastic pipe
KR100949791B1 (ko) * 2007-12-18 2010-03-30 이동기 오프-타겟 효과를 최소화하고 RNAi 기구를 포화시키지않는 신규한 siRNA 구조 및 그 용도
US20090192114A1 (en) * 2007-12-21 2009-07-30 Dmitriy Ovcharenko miR-10 Regulated Genes and Pathways as Targets for Therapeutic Intervention
WO2009090639A2 (en) * 2008-01-15 2009-07-23 Quark Pharmaceuticals, Inc. Sirna compounds and methods of use thereof
CA2713379A1 (en) * 2008-01-31 2009-11-05 Alnylam Pharmaceuticals, Inc. Optimized methods for delivery of dsrna targeting the pcsk9 gene
US20090263803A1 (en) * 2008-02-08 2009-10-22 Sylvie Beaudenon Mirnas differentially expressed in lymph nodes from cancer patients
US8188060B2 (en) 2008-02-11 2012-05-29 Dharmacon, Inc. Duplex oligonucleotides with enhanced functionality in gene regulation
AU2009213147A1 (en) 2008-02-11 2009-08-20 Rxi Pharmaceuticals Corp. Modified RNAi polynucleotides and uses thereof
US7977321B2 (en) * 2008-02-12 2011-07-12 University Of Tennessee Research Foundation Small interfering RNAs targeting feline herpes virus
WO2009137128A2 (en) 2008-02-12 2009-11-12 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of cd45 gene
WO2009103010A2 (en) * 2008-02-13 2009-08-20 Elan Pharmaceuticals, Inc. Alpha-synuclein kinase
DE102009043743B4 (de) 2009-03-13 2016-10-13 Friedrich-Schiller-Universität Jena Zellspezifisch wirksame Moleküle auf Grundlage von siRNA sowie Applikationskits zu deren Herstellung und Verwendung
WO2009103067A2 (en) * 2008-02-14 2009-08-20 The Children's Hospital Of Philadelphia Compositions and methods to treat asthma
BRPI0909779A2 (pt) 2008-03-05 2019-09-24 Alnylam Pharmaceuticals Inc composições e processos para a inibição da expressão dos genes eg5 e vegf
US20090233297A1 (en) * 2008-03-06 2009-09-17 Elizabeth Mambo Microrna markers for recurrence of colorectal cancer
JP5653899B2 (ja) * 2008-03-17 2015-01-14 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 神経筋シナプスの維持および再生に関与するマイクロrnaの同定
US20110028531A1 (en) * 2008-03-20 2011-02-03 Elena Feinstein Novel sirna compounds for inhibiting rtp801
US20090253780A1 (en) * 2008-03-26 2009-10-08 Fumitaka Takeshita COMPOSITIONS AND METHODS RELATED TO miR-16 AND THERAPY OF PROSTATE CANCER
EP2105145A1 (en) * 2008-03-27 2009-09-30 ETH Zürich Method for muscle-specific delivery lipid-conjugated oligonucleotides
KR20100131509A (ko) * 2008-03-31 2010-12-15 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Rna 간섭 효과가 높은 2본쇄 지질 수식 rna
TWI348916B (en) * 2008-04-03 2011-09-21 Univ Nat Taiwan A novel treatment tool for cancer: rna interference of bcas2
WO2009126726A1 (en) * 2008-04-08 2009-10-15 Asuragen, Inc Methods and compositions for diagnosing and modulating human papillomavirus (hpv)
US8575123B2 (en) 2008-04-11 2013-11-05 Tekmira Pharmaceuticals Corporation Site-specific delivery of nucleic acids by combining targeting ligands with endosomolytic components
US8309614B2 (en) * 2008-04-11 2012-11-13 Cedars-Sinai Medical Center Poly(beta malic acid) with pendant leu-leu-leu tripeptide for effective cytoplasmic drug delivery
WO2009144704A2 (en) * 2008-04-15 2009-12-03 Quark Pharmaceuticals, Inc. siRNA COMPOUNDS FOR INHIBITING NRF2
NZ588583A (en) 2008-04-15 2012-08-31 Protiva Biotherapeutics Inc Novel lipid formulations for nucleic acid delivery
WO2009129465A2 (en) * 2008-04-17 2009-10-22 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of xbp-1 gene
US20090285861A1 (en) * 2008-04-17 2009-11-19 Tzyy-Choou Wu Tumor cell-based cancer immunotherapeutic compositions and methods
USRE48948E1 (en) 2008-04-18 2022-03-01 Warsaw Orthopedic, Inc. Clonidine compounds in a biodegradable polymer
US9005599B2 (en) 2008-04-21 2015-04-14 Tissue Regeneration Therapeutics Inc. Genetically modified human umbilical cord perivascular cells for prophylaxis against or treatment of biological or chemical agents
US8324366B2 (en) 2008-04-29 2012-12-04 Alnylam Pharmaceuticals, Inc. Compositions and methods for delivering RNAI using lipoproteins
US8173616B2 (en) * 2008-05-02 2012-05-08 The Brigham And Women's Hospital, Inc. RNA-induced translational silencing and cellular apoptosis
EP2990487A1 (en) 2008-05-08 2016-03-02 Asuragen, INC. Compositions and methods related to mirna modulation of neovascularization or angiogenesis
US20090291073A1 (en) * 2008-05-20 2009-11-26 Ward Keith W Compositions Comprising PKC-theta and Methods for Treating or Controlling Ophthalmic Disorders Using Same
WO2009146417A1 (en) * 2008-05-30 2009-12-03 Sigma-Aldrich Co. Compositions and methods for specifically silencing a target nucleic acid
CA2726052A1 (en) 2008-06-04 2009-12-10 The Board Of Regents Of The University Of Texas System Modulation of gene expression through endogenous small rna targeting of gene promoters
JP5524189B2 (ja) * 2008-06-06 2014-06-18 クォーク ファーマシューティカルズ インコーポレーティッド 耳障害治療のための組成物および方法
US20090305611A1 (en) * 2008-06-06 2009-12-10 Flow International Corporation Device and method for improving accuracy of a high-pressure fluid jet apparatus
EP2235177B1 (en) * 2008-06-13 2012-07-18 RiboxX GmbH Method for enzymatic synthesis of chemically modified rna
US8361510B2 (en) * 2008-06-16 2013-01-29 Georgia Tech Research Corporation Nanogels for cellular delivery of therapeutics
TWI455944B (zh) 2008-07-01 2014-10-11 Daiichi Sankyo Co Ltd 雙股多核苷酸
WO2010006342A2 (en) 2008-07-11 2010-01-14 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of gsk-3 genes
US8309791B2 (en) 2008-07-16 2012-11-13 Recombinectics, Inc. Method for producing a transgenic pig using a hyper-methylated transposon
WO2010008582A2 (en) 2008-07-18 2010-01-21 Rxi Pharmaceuticals Corporation Phagocytic cell drug delivery system
US8039658B2 (en) * 2008-07-25 2011-10-18 Air Products And Chemicals, Inc. Removal of trace arsenic impurities from triethylphosphate (TEPO)
WO2010014857A2 (en) * 2008-07-30 2010-02-04 University Of Massachusetts Chromosome therapy
EP2326351B1 (en) 2008-08-19 2017-12-27 Nektar Therapeutics Conjugates of small-interfering nucleic acids
AU2009275387B2 (en) 2008-08-25 2010-07-08 Excaliard Pharmaceuticals, Inc. Antisense oligonucleotides directed against connective tissue growth factor and uses thereof
WO2011028218A1 (en) 2009-09-02 2011-03-10 Alnylam Pharmaceuticals, Inc. Process for triphosphate oligonucleotide synthesis
WO2010030963A2 (en) * 2008-09-15 2010-03-18 Children's Medical Center Corporation Modulation of bcl11a for treatment of hemoglobinopathies
WO2010033246A1 (en) 2008-09-22 2010-03-25 Rxi Pharmaceuticals Corporation Rna interference in skin indications
WO2010039548A2 (en) 2008-09-23 2010-04-08 Alnylam Pharmaceuticals, Inc. Chemical modifications of monomers and oligonucleotides with cycloaddition
US8546554B2 (en) 2008-09-25 2013-10-01 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of Serum Amyloid A gene
WO2010042547A1 (en) 2008-10-06 2010-04-15 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of an rna from west nile virus
US9149492B2 (en) 2008-10-08 2015-10-06 Trustees Of Dartmouth College Method for selectively inhibiting ACAT1 in the treatment of alzheimer's disease
US9388413B2 (en) 2008-10-08 2016-07-12 Trustees Of Dartmouth College Method for selectively inhibiting ACAT1 in the treatment of neurodegenerative diseases
WO2010042292A1 (en) * 2008-10-08 2010-04-15 Trustees Of Dartmouth College Method for selectively inhibiting the activity of acat1 in the treatment of alzheimer's disease
US8802646B2 (en) * 2008-10-08 2014-08-12 Trustees Of Dartmouth College Method for selectively inhibiting the activity of ACAT1 in the treatment of alzheimer's disease
US9388414B2 (en) 2008-10-08 2016-07-12 Trustees Of Dartmouth College Method for selectively inhibiting ACAT1 in the treatment of neurodegenerative diseases
PL2350043T3 (pl) 2008-10-09 2014-09-30 Tekmira Pharmaceuticals Corp Ulepszone aminolipidy i sposoby dostarczania kwasów nukleinowych
US8343498B2 (en) 2008-10-12 2013-01-01 Massachusetts Institute Of Technology Adjuvant incorporation in immunonanotherapeutics
US8591905B2 (en) 2008-10-12 2013-11-26 The Brigham And Women's Hospital, Inc. Nicotine immunonanotherapeutics
US8277812B2 (en) 2008-10-12 2012-10-02 Massachusetts Institute Of Technology Immunonanotherapeutics that provide IgG humoral response without T-cell antigen
US8343497B2 (en) 2008-10-12 2013-01-01 The Brigham And Women's Hospital, Inc. Targeting of antigen presenting cells with immunonanotherapeutics
US9458472B2 (en) * 2008-10-15 2016-10-04 Massachusetts Institute Of Technology Detection and destruction of cancer cells using programmed genetic vectors
JP2012505657A (ja) * 2008-10-15 2012-03-08 ソマジェニックス インク. 遺伝子発現の阻害のためのショートヘアピンrna
ES2656516T3 (es) 2008-10-20 2018-02-27 Alnylam Pharmaceuticals, Inc. Composiciones y métodos para inhibir la expresión de transtiretina
US20100168205A1 (en) * 2008-10-23 2010-07-01 Alnylam Pharmaceuticals, Inc. Methods and Compositions for Prevention or Treatment of RSV Infection Using Modified Duplex RNA Molecules
US20110190380A1 (en) * 2008-10-23 2011-08-04 Elena Feinstein Methods for delivery of sirna to bone marrow cells and uses thereof
CN105709229B (zh) 2008-11-10 2020-07-28 阿布特斯生物制药公司 用于递送治疗剂的新型脂质和组合物
US20100179213A1 (en) * 2008-11-11 2010-07-15 Mirna Therapeutics, Inc. Methods and Compositions Involving miRNAs In Cancer Stem Cells
JP2012508770A (ja) * 2008-11-13 2012-04-12 モッドジーン リミテッド ライアビリティ カンパニー 非脳組織におけるアミロイドβ負荷の変更
US9074211B2 (en) 2008-11-19 2015-07-07 Rxi Pharmaceuticals Corporation Inhibition of MAP4K4 through RNAI
EP2373308A2 (en) 2008-11-21 2011-10-12 Isis Pharmaceuticals, Inc. Combination therapy for the treatment of cancer
EP2365803B1 (en) 2008-11-24 2017-11-01 Northwestern University Polyvalent rna-nanoparticle compositions
EP2191834A1 (en) * 2008-11-26 2010-06-02 Centre National De La Recherche Scientifique (Cnrs) Compositions and methods for treating retrovirus infections
SG10201500318SA (en) 2008-12-03 2015-03-30 Arcturus Therapeutics Inc UNA Oligomer Structures For Therapeutic Agents
NZ593743A (en) 2008-12-04 2012-07-27 Opko Ophthalmics Llc Compositions and methods for selective inhibition of pro-angiogenic vegf isoforms
US20100291188A1 (en) * 2008-12-04 2010-11-18 Musc Foundation For Research Development Periostin Inhibitory Compositions for Myocardial Regeneration, Methods of Delivery, and Methods of Using Same
PT4209510T (pt) 2008-12-09 2024-04-02 Hoffmann La Roche Anticorpos anti-pm-l1 e a sua utilização para a melhoria do funcionamento das células t
CA2746514C (en) 2008-12-10 2018-11-27 Alnylam Pharmaceuticals, Inc. Gnaq targeted dsrna compositions and methods for inhibiting expression
CN102203254B (zh) * 2008-12-11 2013-07-10 香雪集团(香港)有限公司 有效抑制病毒感染的siRNA组合物及方法
JPWO2010067882A1 (ja) * 2008-12-12 2012-05-24 株式会社クレハ 癌及び喘息治療のための医薬組成物
EP2370175A2 (en) 2008-12-16 2011-10-05 Bristol-Myers Squibb Company Methods of inhibiting quiescent tumor proliferation
US20110288155A1 (en) 2008-12-18 2011-11-24 Elena Feinstein Sirna compounds and methods of use thereof
JP5592897B2 (ja) 2008-12-26 2014-09-17 サムヤン バイオファーマシューティカルズ コーポレイション アニオン性薬物含有薬剤学的組成物及びその製造方法
US9493774B2 (en) 2009-01-05 2016-11-15 Rxi Pharmaceuticals Corporation Inhibition of PCSK9 through RNAi
US20100233270A1 (en) 2009-01-08 2010-09-16 Northwestern University Delivery of Oligonucleotide-Functionalized Nanoparticles
WO2010083532A1 (en) * 2009-01-19 2010-07-22 The Research Foundaton Of State University Of New York Fatty acid binding proteins as drug targets for modulation of endocannabinoids
CA2750044A1 (en) * 2009-01-20 2010-07-29 Vib Vzw Phd2 inhibition for blood vessel normalization, and uses thereof
EP2405921A4 (en) 2009-01-26 2013-05-22 Protiva Biotherapeutics Inc COMPOSITIONS AND METHODS FOR INACTIVATION OF APOLIPOPROTEIN C-III EXPRESSION
CA2750459A1 (en) * 2009-02-03 2010-08-12 F. Hoffmann-La Roche Ag Compositions and methods for inhibiting expression of ptp1b genes
US9745574B2 (en) 2009-02-04 2017-08-29 Rxi Pharmaceuticals Corporation RNA duplexes with single stranded phosphorothioate nucleotide regions for additional functionality
EP2881402B1 (en) 2009-02-12 2017-05-10 Cell Signaling Technology, Inc. Mutant ROS expression in human liver cancer
EP2401375B1 (en) * 2009-02-24 2017-08-23 RiboxX GmbH Improved design of small-interfering rna
EP2669290A1 (en) 2009-03-02 2013-12-04 Alnylam Pharmaceuticals Inc. Nucleic Acid Chemical Modifications
WO2010107955A2 (en) * 2009-03-19 2010-09-23 Merck Sharp & Dohme Corp. RNA INTERFERENCE MEDIATED INHIBITION OF BTB AND CNC HOMOLOGY 1, BASIC LEUCINE ZIPPER TRANSCRIPTION FACTOR 1 (BACH 1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) SEQUENCE LISTING
US20100239632A1 (en) 2009-03-23 2010-09-23 Warsaw Orthopedic, Inc. Drug depots for treatment of pain and inflammation in sinus and nasal cavities or cardiac tissue
CA2753388C (en) 2009-03-23 2016-11-29 Quark Pharmaceuticals, Inc. Endo180 antibody to treat cancer and fibrotic disease
WO2010120874A2 (en) 2009-04-14 2010-10-21 Chimeros, Inc. Chimeric therapeutics, compositions, and methods for using same
US8815586B2 (en) * 2009-04-24 2014-08-26 The Board Of Regents Of The University Of Texas System Modulation of gene expression using oligomers that target gene regions downstream of 3′ untranslated regions
US8367350B2 (en) 2009-04-29 2013-02-05 Morehouse School Of Medicine Compositions and methods for diagnosis, prognosis and management of malaria
US8933049B2 (en) * 2009-05-05 2015-01-13 Medical Diagnostic Laboratories, Llc Repressor on IFN-λ promoter and siRNA against ZEB1 and BLIMP-1 to increase IFN-λ gene activity
EP2427180B1 (en) 2009-05-05 2016-04-13 Beeologics Inc. Prevention and treatment of nosema disease in bees
US9255266B2 (en) * 2009-05-06 2016-02-09 Rutgers, The State University Of New Jersey RNA targeting in alpha-synucleinopathies
BRPI1012769A2 (pt) * 2009-05-15 2018-01-30 Hoffmann La Roche composições e métodos para inibir expressão de genes de receptor de glicocorticóide (gcr)
CA2762524A1 (en) * 2009-05-18 2011-01-13 Ensysce Biosciences, Inc. Carbon nanotubes complexed with multiple bioactive agents and methods related thereto
EP2432499A2 (en) 2009-05-20 2012-03-28 Schering Corporation Modulation of pilr receptors to treat microbial infections
WO2010135669A1 (en) * 2009-05-22 2010-11-25 Sabiosciences Corporation Arrays and methods for reverse genetic functional analysis
JP5875976B2 (ja) 2009-06-01 2016-03-02 ヘイロー−バイオ アールエヌエーアイ セラピューティクス, インコーポレイテッド 多価rna干渉のためのポリヌクレオチド、組成物およびそれらの使用方法
WO2010140024A1 (en) * 2009-06-03 2010-12-09 Institut National De La Sante Et De La Recherche Medicale (Inserm) Methods for diagnosing and treating a renal disease in an individual
CN102458099B (zh) 2009-06-05 2015-08-19 佛罗里达大学研究基金公司 甘蔗木质素生物合成基因的分离和靶向抑制
EP2440214A4 (en) 2009-06-08 2013-07-31 Quark Pharmaceuticals Inc METHOD FOR THE TREATMENT OF CHRONIC KIDNEY DISEASES
EP2440666B1 (en) 2009-06-10 2017-03-01 Temasek Life Sciences Laboratory Limited Virus induced gene silencing (vigs) for functional analysis of genes in cotton
KR102374518B1 (ko) 2009-06-10 2022-03-16 알닐람 파마슈티칼스 인코포레이티드 향상된 지질 조성물
WO2010148013A2 (en) 2009-06-15 2010-12-23 Alnylam Pharmaceuticals, Inc. Lipid formulated dsrna targeting the pcsk9 gene
US9051567B2 (en) 2009-06-15 2015-06-09 Tekmira Pharmaceuticals Corporation Methods for increasing efficacy of lipid formulated siRNA
US20100324124A1 (en) * 2009-06-17 2010-12-23 Massachusetts Institute Of Technology Compositions and methods relating to DNA-based particles
US20100323018A1 (en) * 2009-06-17 2010-12-23 Massachusetts Institute Of Technology Branched DNA/RNA monomers and uses thereof
GB0910723D0 (en) 2009-06-22 2009-08-05 Sylentis Sau Novel drugs for inhibition of gene expression
US8569256B2 (en) 2009-07-01 2013-10-29 Protiva Biotherapeutics, Inc. Cationic lipids and methods for the delivery of therapeutic agents
CA2767127A1 (en) 2009-07-01 2011-01-06 Protiva Biotherapeutics, Inc. Novel lipid formulations for delivery of therapeutic agents to solid tumors
US9018187B2 (en) 2009-07-01 2015-04-28 Protiva Biotherapeutics, Inc. Cationic lipids and methods for the delivery of therapeutic agents
WO2011008730A2 (en) 2009-07-13 2011-01-20 Somagenics Inc. Chemical modification of small hairpin rnas for inhibition of gene expression
ES2629167T3 (es) 2009-07-20 2017-08-07 Bristol-Myers Squibb Company Combinación de anticuerpo anti-CTLA4 con etopósido para el tratamiento sinérgico de enfermedades proliferativas
WO2011011447A1 (en) 2009-07-20 2011-01-27 Protiva Biotherapeutics, Inc. Compositions and methods for silencing ebola virus gene expression
EP3381937A3 (en) 2009-08-13 2018-10-31 The Johns Hopkins University Methods of modulating immune function
EP2464336A4 (en) 2009-08-14 2013-11-20 Alnylam Pharmaceuticals Inc COMPOSITIONS FORMULATED IN LIPIDS AND METHODS OF INHIBITING THE EXPRESSION OF EBOLA VIRUS GENE
WO2011025556A1 (en) 2009-08-24 2011-03-03 Phigenix, Inc. Targeting pax2 for the treatment of breast cancer
EP2475388B1 (en) 2009-09-10 2017-11-08 Merck Sharp & Dohme Corp. Use of il-33 antagonists to treat fibrotic disease
WO2011032100A1 (en) 2009-09-11 2011-03-17 Government Of The U.S.A., As Represented By The Secretary, Department Of Health And Human Services Inhibitors of kshv vil6 and human il6
EP2295543A1 (en) 2009-09-11 2011-03-16 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Method for the preparation of an influenza virus
WO2011034798A1 (en) 2009-09-15 2011-03-24 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of eg5 and vegf genes
WO2011035065A1 (en) 2009-09-17 2011-03-24 Nektar Therapeutics Monoconjugated chitosans as delivery agents for small interfering nucleic acids
US9187746B2 (en) 2009-09-22 2015-11-17 Alnylam Pharmaceuticals, Inc. Dual targeting siRNA agents
WO2011038160A2 (en) * 2009-09-23 2011-03-31 Protiva Biotherapeutics, Inc. Compositions and methods for silencing genes expressed in cancer
US20150025122A1 (en) 2009-10-12 2015-01-22 Larry J. Smith Methods and Compositions for Modulating Gene Expression Using Oligonucleotide Based Drugs Administered in vivo or in vitro
US8962584B2 (en) 2009-10-14 2015-02-24 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Compositions for controlling Varroa mites in bees
AU2010313154B2 (en) 2009-10-30 2016-05-12 Northwestern University Templated nanoconjugates
US9101643B2 (en) 2009-11-03 2015-08-11 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of transthyretin (TTR)
US9799416B2 (en) * 2009-11-06 2017-10-24 Terrapower, Llc Methods and systems for migrating fuel assemblies in a nuclear fission reactor
US8901097B2 (en) 2009-11-08 2014-12-02 Quark Pharmaceuticals, Inc. Methods for delivery of siRNA to the spinal cord and therapies arising therefrom
US9260517B2 (en) 2009-11-17 2016-02-16 Musc Foundation For Research Development Human monoclonal antibodies to human nucleolin
CA2776568A1 (en) 2009-11-26 2011-06-03 Quark Pharmaceuticals, Inc. Sirna compounds comprising terminal substitutions
AU2010328336B2 (en) 2009-12-07 2017-03-02 Arbutus Biopharma Corporation Compositions for nucleic acid delivery
WO2011072091A1 (en) 2009-12-09 2011-06-16 Quark Pharmaceuticals, Inc. Methods and compositions for treating diseases, disorders or injury of the cns
KR101692063B1 (ko) * 2009-12-09 2017-01-03 닛토덴코 가부시키가이샤 hsp47 발현의 조절
WO2011072240A1 (en) 2009-12-10 2011-06-16 Cedars-Sinai Medical Center Drug delivery of temozolomide for systemic based treatment of cancer
EP2336171A1 (en) 2009-12-11 2011-06-22 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Novel targets for the treatment of proliferative diseases
EP2513308B1 (en) 2009-12-17 2017-01-18 Merck Sharp & Dohme Corp. Modulation of pilr to treat immune disorders
AU2010330814B2 (en) 2009-12-18 2017-01-12 Acuitas Therapeutics Inc. Methods and compositions for delivery of nucleic acids
US8293718B2 (en) 2009-12-18 2012-10-23 Novartis Ag Organic compositions to treat HSF1-related diseases
CA2784547A1 (en) 2009-12-23 2011-06-30 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Influenza targets
EP2515916B1 (en) 2009-12-23 2016-03-09 Gradalis, Inc. Furin-knockdown and gm-csf-augmented (fang) cancer vaccine
US20130023578A1 (en) 2009-12-31 2013-01-24 Samyang Biopharmaceuticals Corporation siRNA for inhibition of c-Met expression and anticancer composition containing the same
WO2011084193A1 (en) 2010-01-07 2011-07-14 Quark Pharmaceuticals, Inc. Oligonucleotide compounds comprising non-nucleotide overhangs
TW201124159A (en) * 2010-01-07 2011-07-16 Univ Nat Cheng Kung Small interference RNA molecule and applications thereof
EP2524039B1 (en) * 2010-01-11 2017-11-29 CuRNA, Inc. Treatment of sex hormone binding globulin (shbg) related diseases by inhibition of natural antisense transcript to shbg
WO2011088058A1 (en) * 2010-01-12 2011-07-21 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expressions of factor vii and pten genes
DE102010004957A1 (de) 2010-01-14 2011-07-21 Universitätsklinikum Jena, 07743 Biologisch wirksame Moleküle zur Beeinflussung von Virus-, Bakterien-, Parasiten-infizierten Zellen und/oder Tumorzellen und Verfahren zu deren Anwendung
WO2011100131A2 (en) 2010-01-28 2011-08-18 Alnylam Pharmacuticals, Inc. Monomers and oligonucleotides comprising cycloaddition adduct(s)
WO2011094580A2 (en) 2010-01-28 2011-08-04 Alnylam Pharmaceuticals, Inc. Chelated copper for use in the preparation of conjugated oligonucleotides
WO2011094546A2 (en) 2010-01-29 2011-08-04 St. Jude Children's Research Hospital Oligonucleotides which inhibit p53 induction in response to cellular stress
US20120296403A1 (en) 2010-02-10 2012-11-22 Novartis Ag Methods and compounds for muscle growth
AU2011227050B2 (en) * 2010-03-19 2016-12-08 University Of South Alabama Methods and compositions for the treatment of cancer
KR102453078B1 (ko) 2010-03-24 2022-10-11 피오 파마슈티칼스 코프. 진피 및 섬유증성 적응증에서의 rna 간섭
CN103200945B (zh) 2010-03-24 2016-07-06 雷克西制药公司 眼部症候中的rna干扰
US9080171B2 (en) 2010-03-24 2015-07-14 RXi Parmaceuticals Corporation Reduced size self-delivering RNAi compounds
US8455455B1 (en) 2010-03-31 2013-06-04 Protiva Biotherapeutics, Inc. Compositions and methods for silencing genes involved in hemorrhagic fever
US9102938B2 (en) 2010-04-01 2015-08-11 Alnylam Pharmaceuticals, Inc. 2′ and 5′ modified monomers and oligonucleotides
US20130260460A1 (en) 2010-04-22 2013-10-03 Isis Pharmaceuticals Inc Conformationally restricted dinucleotide monomers and oligonucleotides
WO2011133871A2 (en) 2010-04-22 2011-10-27 Alnylam Pharmaceuticals, Inc. 5'-end derivatives
WO2011133876A2 (en) 2010-04-22 2011-10-27 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising acyclic and abasic nucleosides and analogs
WO2011133658A1 (en) 2010-04-22 2011-10-27 Boston Medical Center Corporation Compositions and methods for targeting and delivering therapeutics into cells
SI2563920T1 (sl) 2010-04-29 2017-05-31 Ionis Pharmaceuticals, Inc. Modulacija izražanja transtiretina
US20110269807A1 (en) 2010-04-30 2011-11-03 Allergan, Inc. Novel treatment for age related macular degeneration and ocular ischemic disease associated with complement activation by targeting 5-lipoxygenase
CA2805267C (en) 2010-05-04 2019-07-30 The Brigham And Women's Hospital, Inc. Detection and treatment of fibrosis
US8563243B2 (en) * 2010-05-12 2013-10-22 University Of South Carolina Methods for affecting homology-directed DNA double stranded break repair
JP6324068B2 (ja) 2010-05-26 2018-05-23 セレクタ バイオサイエンシーズ インコーポレーテッドSelecta Biosciences,Inc. 合成ナノキャリア混合ワクチン
EP2390327A1 (en) 2010-05-27 2011-11-30 Sylentis S.A. siRNA and their use in methods and compositions for the treatment and/or prevention of eye conditions
DE102010022937A1 (de) 2010-06-04 2011-12-08 Universitätsklinikum Jena Zellspezifisch aktivierbare biologisch wirksame Moleküle auf Grundlage von siRNA, Verfahren zu deren Aktivierung sowie Applikationskit zur Verabreichung
WO2011163121A1 (en) 2010-06-21 2011-12-29 Alnylam Pharmaceuticals, Inc. Multifunctional copolymers for nucleic acid delivery
NZ604094A (en) 2010-06-24 2014-11-28 Quark Pharmaceuticals Inc Double stranded rna compounds to rhoa and use thereof
US9006417B2 (en) 2010-06-30 2015-04-14 Protiva Biotherapeutics, Inc. Non-liposomal systems for nucleic acid delivery
US20130323269A1 (en) 2010-07-30 2013-12-05 Muthiah Manoharan Methods and compositions for delivery of active agents
US20130202652A1 (en) 2010-07-30 2013-08-08 Alnylam Pharmaceuticals, Inc. Methods and compositions for delivery of active agents
US20120101108A1 (en) 2010-08-06 2012-04-26 Cell Signaling Technology, Inc. Anaplastic Lymphoma Kinase In Kidney Cancer
US9243246B2 (en) 2010-08-24 2016-01-26 Sirna Therapeutics, Inc. Single-stranded RNAi agents containing an internal, non-nucleic acid spacer
US8933051B2 (en) 2010-09-30 2015-01-13 University Of Zurich Treatment of B-cell lymphoma with microRNA
US20140315973A1 (en) * 2010-10-07 2014-10-23 Agency For Science, Technology And Research Parp-1 inhibitors
WO2012051491A1 (en) 2010-10-14 2012-04-19 The United States Of America, As Represented By The Secretary National Institutes Of Health Compositions and methods for controlling neurotropic viral pathogenesis by micro-rna targeting
DK2631291T3 (da) 2010-10-22 2019-06-11 Olix Pharmaceuticals Inc Nukleinsyremolekyler, der inducerer rna-interferens, og anvendelser deraf
EP3766975A1 (en) 2010-10-29 2021-01-20 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using short interfering nucleic acid (sina)
WO2012071436A1 (en) 2010-11-24 2012-05-31 Genentech, Inc. Method of treating autoimmune inflammatory disorders using il-23r loss-of-function mutants
SG190412A1 (en) 2010-12-06 2013-06-28 Quark Pharmaceuticals Inc Double stranded oligonucleotide compounds comprising threose modifications
US10202615B2 (en) 2010-12-10 2019-02-12 Vanderbilt University Mammalian genes involved in toxicity and infection
US8575328B2 (en) * 2010-12-14 2013-11-05 The United States Of America, As Represented By The Secretary Of Agriculture Formicidae (ant) control using double-stranded RNA constructs
US9623041B2 (en) 2010-12-30 2017-04-18 Cedars-Sinai Medical Center Polymalic acid-based nanobiopolymer compositions
AU2012205718B2 (en) 2011-01-10 2017-07-06 The Regents Of The University Of Michigan Stem cell factor inhibitor
US20150018408A1 (en) 2013-07-10 2015-01-15 The Regents Of The University Of Michigan Therapeutic antibodies and uses thereof
DK2663548T3 (en) 2011-01-11 2017-07-24 Alnylam Pharmaceuticals Inc PEGYLED LIPIDS AND THEIR USE FOR PHARMACEUTICAL SUPPLY
DE102011009470A1 (de) 2011-01-21 2012-08-09 Friedrich-Schiller-Universität Jena Biologisch wirksame Nukleotid-Moleküle zur gezielten Abtötung von Zellen, Verwendung derselben sowie Applikationskit
CN103635197A (zh) 2011-02-02 2014-03-12 埃克斯利尔德生物制药公司 使用靶向结缔组织生长因子(ctgf)的反义化合物治疗疤痕疙瘩或肥大性疤痕的方法
CN103459598B (zh) 2011-02-03 2016-08-10 米尔纳医疗股份有限公司 Mir-124的合成模拟物
EP2681315B1 (en) 2011-03-03 2017-05-03 Quark Pharmaceuticals, Inc. Oligonucleotide modulators of the toll-like receptor pathway
US9796979B2 (en) 2011-03-03 2017-10-24 Quark Pharmaceuticals Inc. Oligonucleotide modulators of the toll-like receptor pathway
WO2012125554A2 (en) * 2011-03-11 2012-09-20 Board Of Regents Of The University Of Nebraska Compositions and methods for the treatment of cancer
RU2013145890A (ru) 2011-03-15 2015-04-20 Юниверсити Оф Юта Рисерч Фаундейшн Способы диагностики и лечения сосудисто-ассоциированной макулопатии и ее симптомов
US9458456B2 (en) * 2011-04-01 2016-10-04 University Of South Alabama Methods and compositions for the diagnosis, classification, and treatment of cancer
AU2012242784B2 (en) 2011-04-12 2017-04-13 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Peptide mimetic ligands of polo-like kinase 1 polo box domain and methods of use
CA2832972C (en) 2011-04-13 2019-04-30 Isis Pharmaceuticals, Inc. Antisense modulation of ptp1b expression
WO2012142622A1 (en) 2011-04-15 2012-10-18 Molecular Transfer, Inc. Agents for improved delivery of nucleic acids to eukaryotic cells
US8716257B2 (en) * 2011-04-15 2014-05-06 Sutter West Bay Hospitals CMV gene products promote cancer stem cell growth
KR20140104344A (ko) 2011-05-20 2014-08-28 더 유나이티드 스테이츠 오브 어메리카, 애즈 리프리젠티드 바이 더 시크리터리, 디파트먼트 오브 헬쓰 앤드 휴먼 서비시스 T 세포 매개성 질병의 병증을 개선하기 위한 tl1a-dr3의 상호작용의 차단 및 그것의 항체
EP2714094B1 (en) 2011-06-02 2016-02-24 The University of Louisville Research Foundation, Inc. Anti-nucleolin agent-conjugated nanoparticles
KR102232287B1 (ko) 2011-06-21 2021-03-29 알닐람 파마슈티칼스 인코포레이티드 안지오포이에틴-유사 3(ANGPTL3) iRNA 조성물 및 그 사용 방법
US9228188B2 (en) 2011-06-21 2016-01-05 Alnylam Pharmaceuticals, Inc. Compositions and method for inhibiting hepcidin antimicrobial peptide (HAMP) or HAMP-related gene expression
KR102540778B1 (ko) 2011-06-21 2023-06-07 알닐람 파마슈티칼스 인코포레이티드 아포리포단백질 c-iii(apoc3) 유전자의 발현 억제를 위한 조성물 및 방법
US9068184B2 (en) 2011-06-21 2015-06-30 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibition of expression of protein C (PROC) genes
WO2013001372A2 (en) 2011-06-30 2013-01-03 University Of Oslo Methods and compositions for inhibition of activation of regulatory t cells
WO2013003697A1 (en) 2011-06-30 2013-01-03 Trustees Of Boston University Method for controlling tumor growth, angiogenesis and metastasis using immunoglobulin containing and proline rich receptor-1 (igpr-1)
ES2592628T3 (es) 2011-07-06 2016-11-30 Sykehuset Sorlandet Hf Terapia dirigida al receptor del factor de crecimiento epidérmico (EGFR)
WO2013006861A1 (en) 2011-07-07 2013-01-10 University Of Georgia Research Foundation, Inc. Sorghum grain shattering gene and uses thereof in altering seed dispersal
US8853181B2 (en) 2011-07-21 2014-10-07 Albert Einstein College Of Medicine Of Yeshiva University Fidgetin-like 2 as a target to enhance wound healing
US9120858B2 (en) 2011-07-22 2015-09-01 The Research Foundation Of State University Of New York Antibodies to the B12-transcobalamin receptor
DE102011118024A1 (de) 2011-08-01 2013-02-07 Technische Universität Dresden Inhibitor der Expression der Pro-Caspase 1
EP4008786A3 (en) 2011-09-06 2022-08-03 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. The mirna-212/132 family as a therapeutic target
AU2012305714A1 (en) 2011-09-09 2014-03-27 Biomed Realty, L.P. Methods and compositions for controlling assembly of viral proteins
US9644241B2 (en) 2011-09-13 2017-05-09 Interpace Diagnostics, Llc Methods and compositions involving miR-135B for distinguishing pancreatic cancer from benign pancreatic disease
WO2013049389A1 (en) 2011-09-27 2013-04-04 Yale University Compositions and methods for transient expression of recombinant rna
AU2012315965A1 (en) 2011-09-27 2014-04-03 Alnylam Pharmaceuticals, Inc. Di-aliphatic substituted PEGylated lipids
ES2745373T3 (es) 2011-10-18 2020-03-02 Dicerna Pharmaceuticals Inc Lípidos catiónicos de amina y uso de los mismos
WO2013070821A1 (en) 2011-11-08 2013-05-16 Quark Pharmaceuticals, Inc. Methods and compositions for treating diseases, disorders or injury of the nervous system
US9006199B2 (en) 2011-11-14 2015-04-14 Silenseed Ltd. Methods and compositions for treating prostate cancer
SMT202000308T1 (it) 2011-11-18 2020-07-08 Alnylam Pharmaceuticals Inc Agenti rnai, composizioni e loro metodi di utilizzo per il trattamento di malattie associate a transtiretina (ttr)
WO2013082529A1 (en) 2011-12-02 2013-06-06 Yale University Enzymatic synthesis of poly(amine-co-esters) and methods of use thereof for gene delivery
EP2797632A1 (en) 2012-01-01 2014-11-05 QBI Enterprises Ltd. Endo180-targeted particles for selective delivery of therapeutic and diagnostic agents
WO2013103401A1 (en) * 2012-01-06 2013-07-11 University Of South Alabama Methods and compositions for the treatment of cancer
WO2013105022A2 (en) 2012-01-09 2013-07-18 Novartis Ag Organic compositions to treat beta-catenin-related diseases
RU2014125496A (ru) 2012-01-12 2016-02-27 Кварк Фармасьютикалс, Инк. Комбинированная терапия для лечения нарушений слуха и равновесия
US20150126438A1 (en) 2012-01-24 2015-05-07 Beth Israel Deaconess Medical Center, Inc. Novel ChREBP Isoforms and Methods Using the Same
WO2013138463A1 (en) 2012-03-14 2013-09-19 University Of Central Florida Research Foundation, Inc. Neurofibromatoses therapeutic agents and screening for same
ES2694592T3 (es) 2012-03-15 2018-12-21 Curna, Inc. Tratamiento de enfermedades relacionadas con el factor neurotrófico derivado del cerebro (BDNF) por inhibición del transcrito antisentido natural de BDNF
WO2013158859A1 (en) 2012-04-18 2013-10-24 Cell Signaling Technology, Inc. Egfr and ros1 in cancer
US20150299696A1 (en) 2012-05-02 2015-10-22 Sirna Therapeutics, Inc. SHORT INTERFERING NUCLEIC ACID (siNA) COMPOSITIONS
WO2013166043A1 (en) 2012-05-02 2013-11-07 Children's Hospital Medical Center Rejuvenation of precursor cells
EP2853597B1 (en) 2012-05-22 2018-12-26 Olix Pharmaceuticals, Inc. Rna-interference-inducing nucleic acid molecule able to penetrate into cells, and use therefor
EP2867368B1 (en) 2012-07-06 2022-01-12 Institut Gustave Roussy Simultaneous detection of cannibalism and senescence as prognostic marker for cancer
WO2014018375A1 (en) 2012-07-23 2014-01-30 Xenon Pharmaceuticals Inc. Cyp8b1 and uses thereof in therapeutic and diagnostic methods
EP2890788A1 (en) 2012-08-31 2015-07-08 The General Hospital Corporation Biotin complexes for treatment and diagnosis of alzheimer's disease
GB201215857D0 (en) 2012-09-05 2012-10-24 Sylentis Sau siRNA and their use in methods and compositions for the treatment and/or prevention of eye conditions
KR102120060B1 (ko) 2012-09-05 2020-06-09 실렌티스 에스.에이.유. 눈 컨디션의 치료 및/또는 예방을 위한 조성물 및 방법에 있어서 siRNA 및 이의 용도
HK1210216A1 (en) 2012-09-12 2016-04-15 夸克制药公司 Double-stranded oligonucleotide molecules to p53 and methods of use thereof
AU2013315524B2 (en) 2012-09-12 2019-01-31 Quark Pharmaceuticals, Inc. Double-stranded oligonucleotide molecules to p53 and methods of use thereof
SG11201501850VA (en) 2012-09-21 2015-04-29 Intensity Therapeutics Inc Method of treating cancer
WO2014055624A1 (en) * 2012-10-02 2014-04-10 The General Hospital Corporation D/B/A Massachusetts General Hospital Methods relating to dna-sensing pathway related conditions
WO2014055825A1 (en) 2012-10-04 2014-04-10 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services A formulation of mycobacterial components as an adjuvant for inducing th17 responses
WO2014068072A1 (en) 2012-10-31 2014-05-08 Institut Gustave-Roussy Identification, assessment and therapy of essential thrombocythemia with resistance to jak2 inhibitors
ES2686129T3 (es) * 2012-11-13 2018-10-16 Codiak Biosciences, Inc. Administración de agentes terapéuticos
DE102012022596B4 (de) 2012-11-15 2017-05-04 Friedrich-Schiller-Universität Jena Neue zellspezifisch wirksame Nukleotid-Moleküle und Applikationskit zu deren Anwendung
WO2014078731A2 (en) 2012-11-15 2014-05-22 Apellis Pharmaceuticals, Inc. Cell-reactive, long-acting, or targeted compstatin analogs and related compositions and methods
PT2925864T (pt) 2012-11-27 2019-02-06 Childrens Medical Ct Corp Elementos reguladores distais de bcl11a como alvo para a reindução de hemoglobina fetal
US9970002B2 (en) 2012-12-12 2018-05-15 Massachusetts Institute Of Technology Compositions and methods for functional nucleic acid delivery
BR112015013849A2 (pt) 2012-12-21 2017-07-11 Sykehuset Soerlandet Hf terapia direcionada a egfr de distúrbios neurológicos e dor
US9206423B2 (en) * 2012-12-30 2015-12-08 The Regents Of The University Of California Methods of modulating compliance of the trabecular meshwork
WO2014113541A1 (en) 2013-01-16 2014-07-24 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Attenuated chlamydia vaccine
DE102013003869B4 (de) 2013-02-27 2016-11-24 Friedrich-Schiller-Universität Jena Verfahren zur gezielten Abtötung von Zellen durch zur mRNA-Anbindung ausgerichtete Nukleotid-Moleküle sowie Nukleotid-Moleküle und Applikationskit für solche Verwendung
JP6440679B2 (ja) 2013-03-14 2018-12-19 ダイセルナ ファーマシューティカルズ, インコーポレイテッドDicerna Pharmaceuticals, Inc. 陰イオン性薬剤を製剤化するための方法
WO2014150751A2 (en) * 2013-03-15 2014-09-25 Novartis Ag Biomarkers associated with brm inhibition
US10308687B2 (en) 2013-03-15 2019-06-04 Apellis Pharmaceuticals, Inc. Cell-penetrating compstatin analogs and uses thereof
US20160024504A1 (en) * 2013-03-15 2016-01-28 Constellation Pharmaceuticals, Inc. Treating th2-mediated diseases by inhibition of bromodomains
EP2978446B1 (en) 2013-03-27 2020-03-04 The General Hospital Corporation Anti-cd33 antibody for use in treating alzheimer's disease
AU2014265142A1 (en) 2013-05-17 2015-12-24 Medimmune, Llc Receptors for B7-H4
EP3013424B1 (en) 2013-06-25 2024-09-25 EpiAxis Therapeutics Pty Ltd Lsd inhibitors for modulating cancer stem cells
TW201534578A (zh) 2013-07-08 2015-09-16 Daiichi Sankyo Co Ltd 新穎脂質
CN105980567B (zh) 2013-07-19 2021-04-16 孟山都技术有限公司 用于控制叶甲属的组合物和方法
WO2015013510A1 (en) 2013-07-25 2015-01-29 Ecole Polytechnique Federale De Lausanne Epfl High aspect ratio nanofibril materials
WO2015015496A1 (en) 2013-07-31 2015-02-05 Qbi Enterprises Ltd. Sphingolipid-polyalkylamine-oligonucleotide compounds
US20160208247A1 (en) 2013-07-31 2016-07-21 Qbi Enterprises Ltd. Methods of use of sphingolipid polyalkylamine oligonucleotide compounds
EP3715457A3 (en) * 2013-08-28 2020-12-16 Ionis Pharmaceuticals, Inc. Modulation of prekallikrein (pkk) expression
IL312865B2 (en) 2013-09-11 2025-06-01 Eagle Biologics Inc Liquid protein formulations containing viscosity-lowering agents
JP6998657B2 (ja) 2013-09-18 2022-02-04 エピアクシス セラピューティクス プロプライエタリー リミテッド 幹細胞調節ii
CN105683163B (zh) 2013-10-04 2018-11-09 诺华股份有限公司 RNA干扰中使用的RNAi剂的3’端帽
EP3052107B1 (en) 2013-10-04 2018-05-02 Novartis AG Organic compounds to treat hepatitis b virus
EP2865757A1 (en) 2013-10-22 2015-04-29 Sylentis, S.A.U. siRNA and their use in methods and compositions for inhibiting the expression of the PDK1 gene.
EP2865758A1 (en) 2013-10-22 2015-04-29 Sylentis, S.A.U. siRNA and their use in methods and compositions for inhibiting the expression of the ORAI1 gene
EP2865756A1 (en) 2013-10-22 2015-04-29 Sylentis, S.A.U. siRNA and their use in methods and compositions for inhibiting the expression of the FLAP gene.
JP6672156B2 (ja) 2013-11-11 2020-03-25 サーナ・セラピューティクス・インコーポレイテッドSirna Therapeutics,Inc. 親油性部分にコンジュゲートされたミオスタチン低分子干渉核酸(siNA)の全身性送達
US10441637B2 (en) 2013-11-21 2019-10-15 Sena Research, Inc. Methods for structural determination of selenium derivatized nucleic acid complexes
US10934550B2 (en) 2013-12-02 2021-03-02 Phio Pharmaceuticals Corp. Immunotherapy of cancer
AU2014360314B2 (en) 2013-12-06 2018-04-26 Dicerna Pharmaceuticals, Inc. Methods and compositions for the specific inhibition of transthyretin (TTR) by double-stranded RNA
CN104830906B (zh) 2014-02-12 2018-09-04 北京维通达生物技术有限公司 一种重编程获得功能性人肝脏实质细胞的方法
WO2015132303A1 (en) 2014-03-04 2015-09-11 Sylentis Sau Sirnas and their use in methods and compositions for the treatment and/or prevention of eye conditions
AU2015228844B2 (en) 2014-03-11 2019-08-15 Cellectis Method for generating T-cells compatible for allogenic transplantation
WO2015140330A1 (en) * 2014-03-20 2015-09-24 Oommen Varghese Improved small interfering ribonucleic acid molecules
US9856475B2 (en) 2014-03-25 2018-01-02 Arcturus Therapeutics, Inc. Formulations for treating amyloidosis
WO2015148580A2 (en) 2014-03-25 2015-10-01 Arcturus Therapeutics, Inc. Una oligomers having reduced off-target effects in gene silencing
WO2015148582A1 (en) 2014-03-25 2015-10-01 Arcturus Therapeutics, Inc. Transthyretin allele selective una oligomers for gene silencing
CN110506752B (zh) 2014-04-01 2022-02-18 孟山都技术公司 用于控制虫害的组合物和方法
JP6622214B2 (ja) 2014-04-01 2019-12-18 バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. Sod−1発現を調節するための組成物
SG11201608482UA (en) 2014-04-25 2016-11-29 Childrens Medical Center Compositions and methods to treating hemoglobinopathies
US11279934B2 (en) 2014-04-28 2022-03-22 Phio Pharmaceuticals Corp. Methods for treating cancer using nucleic acids targeting MDM2 or MYCN
KR102366078B1 (ko) 2014-05-01 2022-02-21 아이오니스 파마수티컬즈, 인코포레이티드 Pkk 발현을 조절하는 조성물 및 방법
EP3137054B1 (en) 2014-05-02 2021-07-07 Research Institute at Nationwide Children's Hospital Compositions and methods for anti-lyst immunomodulation
CA2948844C (en) 2014-05-12 2020-06-30 The Johns Hopkins University Engineering synthetic brain penetrating gene vectors
WO2015175545A1 (en) 2014-05-12 2015-11-19 The Johns Hopkins University Highly stable biodegradable gene vector platforms for overcoming biological barriers
WO2015184105A1 (en) 2014-05-29 2015-12-03 Trustees Of Dartmouth College Method for selectively inhibiting acat1 in the treatment of neurodegenerative diseases
JP6581604B2 (ja) 2014-06-04 2019-09-25 イグジキュア, インコーポレーテッドExicure, Inc. 予防的または治療的適用のためのリポソーム球状核酸による免疫調節物質の多価送達
TW201620526A (zh) 2014-06-17 2016-06-16 愛羅海德研究公司 用於抑制α-1抗胰蛋白酶基因表現之組合物及方法
CN104120127B (zh) * 2014-07-01 2016-09-21 清华大学 分离的寡核苷酸及其应用
US10378012B2 (en) 2014-07-29 2019-08-13 Monsanto Technology Llc Compositions and methods for controlling insect pests
WO2016019126A1 (en) 2014-07-30 2016-02-04 The Research Foundation For The State University Of New York System and method for delivering genetic material or protein to cells
US20200230251A1 (en) 2014-08-14 2020-07-23 Friedrich-Schiller-Universitaet Jena Peptide for use in the reduction of side effects in the form of immunostimulatory reactions/effects
EP3183007B1 (en) 2014-08-19 2020-06-17 Northwestern University Protein/oligonucleotide core-shell nanoparticle therapeutics
WO2016029262A1 (en) 2014-08-25 2016-03-03 University Of Canberra Compositions for modulating cancer stem cells and uses therefor
HRP20221055T1 (hr) 2014-08-29 2022-12-23 Alnylam Pharmaceuticals, Inc. Patisiran za uporabu u liječenju amiloidoze posredovane transtiretinom
WO2016037071A2 (en) 2014-09-05 2016-03-10 Rxi Pharmaceuticals Corporation Methods for treating aging and skin disorders using nucleic acids targeting tyr or mmp1
JP6841753B2 (ja) 2014-09-15 2021-03-10 ザ チルドレンズ メディカル センター コーポレーション ヒストンh3−リジントリメチル化を除去することによって体細胞核移入(scnt)効率を増加させるための方法および組成物
WO2016049110A1 (en) 2014-09-25 2016-03-31 Cold Spring Harbor Laboratory Treatment of rett syndrome
AU2015325055B2 (en) 2014-10-01 2021-02-25 Eagle Biologics, Inc. Polysaccharide and nucleic acid formulations containing viscosity-lowering agents
US20170304459A1 (en) 2014-10-10 2017-10-26 Alnylam Pharmaceuticals, Inc. Methods and compositions for inhalation delivery of conjugated oligonucleotide
CA2964155A1 (en) 2014-10-10 2016-04-14 Idera Pharmaceuticals, Inc. Treatment of cancer using tlr9 agonist with checkpoint inhibitors
JOP20200115A1 (ar) 2014-10-10 2017-06-16 Alnylam Pharmaceuticals Inc تركيبات وطرق لتثبيط التعبير الجيني عن hao1 (حمض أوكسيداز هيدروكسيلي 1 (أوكسيداز جليكولات))
US10538762B2 (en) * 2014-10-14 2020-01-21 The Board Of Regents Of The University Of Texas System Allele selective inhibition of mutant C9orf72 foci expression by duplex RNAS targeting the expanded hexanucleotide repeat
EP3209794A1 (en) 2014-10-22 2017-08-30 Katholieke Universiteit Leuven KU Leuven Research & Development Modulating adipose tissue and adipogenesis
JOP20200092A1 (ar) 2014-11-10 2017-06-16 Alnylam Pharmaceuticals Inc تركيبات iRNA لفيروس الكبد B (HBV) وطرق لاستخدامها
UA124449C2 (uk) 2014-11-12 2021-09-22 Нмк, Інк. Трансгенна рослина з модифікованою редокс-залежною модуляцією пігментів фотосинтетичних антенних комплексів та спосіб її одержання
WO2016081444A1 (en) 2014-11-17 2016-05-26 Alnylam Pharmaceuticals, Inc. Apolipoprotein c3 (apoc3) irna compositions and methods of use thereof
WO2016081621A1 (en) 2014-11-18 2016-05-26 Yale University Formulations for targeted release of agents under low ph conditions and methods of use thereof
CA2968531A1 (en) 2014-11-21 2016-05-26 Northwestern University The sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates
US20190002876A1 (en) * 2014-12-09 2019-01-03 The Board Of Regents Of The University Of Texas System Compositions and methods for treatment of friedreich's ataxia
US10264976B2 (en) 2014-12-26 2019-04-23 The University Of Akron Biocompatible flavonoid compounds for organelle and cell imaging
US10792299B2 (en) 2014-12-26 2020-10-06 Nitto Denko Corporation Methods and compositions for treating malignant tumors associated with kras mutation
US20180002702A1 (en) * 2014-12-26 2018-01-04 Nitto Denko Corporation Methods and compositions for treating malignant tumors associated with kras mutation
MX395326B (es) 2015-01-22 2025-03-25 Monsanto Technology Llc Composiciones y métodos para controlar leptinotarsa.
EP3277289A4 (en) 2015-04-01 2018-12-05 Arcturus Therapeutics, Inc. Therapeutic una oligomers and uses thereof
JP6892433B2 (ja) 2015-04-03 2021-06-23 ユニバーシティ・オブ・マサチューセッツUniversity Of Massachusetts 十分に安定化された非対称sirna
EP3283631A1 (en) 2015-04-13 2018-02-21 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (angptl3) irna compositions and methods of use thereof
US20180126014A1 (en) 2015-04-15 2018-05-10 Yale University Compositions for enhancing delivery of agents across the blood brain barrier and methods of use thereof
WO2016179394A1 (en) 2015-05-05 2016-11-10 Malik Mohammad Tariq Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and mri and/or x-ray contrast agents
WO2016182917A1 (en) 2015-05-08 2016-11-17 Children's Medical Center Corporation Targeting bcl11a enhancer functional regions for fetal hemoglobin reinduction
AU2016269839B2 (en) 2015-06-03 2021-07-08 The University Of Queensland Mobilizing agents and uses therefor
WO2016201323A1 (en) 2015-06-10 2016-12-15 Board Of Regents, The University Of Texas System Use of exosomes for the treatment of disease
EP3318275B1 (en) * 2015-06-30 2025-04-02 Tadamitsu Kishimoto Novel therapeutic agent for pulmonary diseases and/or method for screening same
WO2017007825A1 (en) 2015-07-06 2017-01-12 Rxi Pharmaceuticals Corporation Methods for treating neurological disorders using a synergistic small molecule and nucleic acids therapeutic approach
EP3862005A1 (en) 2015-07-06 2021-08-11 Phio Pharmaceuticals Corp. Nucleic acid molecules targeting superoxide dismutase 1 (sod1)
KR102640776B1 (ko) 2015-07-10 2024-02-23 아이오니스 파마수티컬즈, 인코포레이티드 디아실글리세롤 아실전이효소 2(dgat2) 조절제
WO2017015671A1 (en) 2015-07-23 2017-01-26 Arcturus Therapeutics, Inc. Compositions for treating amyloidosis
DK3329002T3 (da) 2015-07-31 2021-01-11 Alnylam Pharmaceuticals Inc Transthyretin (ttr)-irna-sammensætninger og fremgangsmåder til anvendelse deraf til behandling eller forebyggelse af ttr-forbundne sygdomme
US10633653B2 (en) 2015-08-14 2020-04-28 University Of Massachusetts Bioactive conjugates for oligonucleotide delivery
MX2018002090A (es) 2015-08-24 2018-09-12 Halo Bio Rnai Therapeutics Inc Nanoparticulas de polinucleótido para modulación de expresión génica y sus usos.
MA44908A (fr) 2015-09-08 2018-07-18 Sylentis Sau Molécules d'arnsi et leur utilisation dans des procédés et des compositions pour inhiber l'expression du gène nrarp
GB201516685D0 (en) * 2015-09-21 2015-11-04 Varghese Oommen P And Oommen Oommen P Nucleic acid molecules with enhanced activity
US10383935B2 (en) 2015-09-23 2019-08-20 Regents Of The University Of Minnesota Methods of making and using live attenuated viruses
US10086063B2 (en) 2015-09-23 2018-10-02 Regents Of The University Of Minnesota Methods of making and using live attenuated viruses
US10548959B2 (en) 2015-09-23 2020-02-04 Massachusetts Institute Of Technology Compositions and methods for modified dendrimer nanoparticle delivery
EP4435105A3 (en) 2015-09-29 2025-05-14 Amgen Inc. Asgr inhibitors for reduzing cholesterol levels
JOP20210043A1 (ar) 2015-10-01 2017-06-16 Arrowhead Pharmaceuticals Inc تراكيب وأساليب لتثبيط تعبير جيني للـ lpa
BR112018006810A2 (pt) 2015-10-07 2018-10-23 Apellis Pharmaceuticals Inc regimes de dosagem
CN109563509B (zh) 2015-10-19 2022-08-09 菲奥医药公司 靶向长非编码rna的减小尺寸的自递送核酸化合物
EP4454637A3 (en) 2015-11-16 2025-01-08 Olix Pharmaceuticals, Inc. Treatment of age-related macular degeneration using rna complexes that target myd88 or tlr3
WO2017095751A1 (en) 2015-12-02 2017-06-08 Partikula Llc Compositions and methods for modulating cancer cell metabolism
ES2844899T3 (es) 2015-12-10 2021-07-23 Fibrogen Inc Métodos para el tratamiento de enfermedades de las neuronas motoras
PT3391875T (pt) 2015-12-18 2021-12-20 Samyang Holdings Corp Método para preparar micelas poliméricas contendo fármaco aniónico
BR102017001164A2 (pt) 2016-01-26 2019-03-06 Embrapa - Empresa Brasileira De Pesquisa Agropecuária Composições de rna de fita dupla para controle de diaphorina citri e métodos de uso.
AU2017210726B2 (en) 2016-01-31 2023-08-03 University Of Massachusetts Branched oligonucleotides
EP3411481A4 (en) 2016-02-02 2020-02-26 Olix Pharmaceuticals, Inc. TREATMENT OF DISEASES ASSOCIATED WITH ANGIOGENESIS USING ANGPT2 AND PDGFB TARGETED RNA COMPLEXES
EP3411480A4 (en) 2016-02-02 2020-01-22 Olix Pharmaceuticals, Inc. TREATMENT OF ATOPIC DERMATITIS AND ASTHMA USING RNA COMPLEXES THAT TARGET lL4R , TRPA1, OR F2RL1
US20170360815A1 (en) 2016-02-25 2017-12-21 Applied Biological Laboratories, Inc. Compositions and methods for protecting against airborne pathogens and irritants
JP7071933B2 (ja) 2016-02-25 2022-05-19 アプライド バイオロジカル ラボラトリーズ インコーポレイテッド 浮遊病原体および刺激物に対して防御するための組成物および方法
JP2019512014A (ja) 2016-02-26 2019-05-09 イェール ユニバーシティーYale University がん診断法および治療法におけるpiRNAを使用する組成物および方法
EP3423106B1 (en) 2016-03-01 2022-07-27 Alexion Pharmaceuticals, Inc. Biodegradable activated polymers for therapeutic delivery
US11072777B2 (en) 2016-03-04 2021-07-27 University Of Louisville Research Foundation, Inc. Methods and compositions for ex vivo expansion of very small embryonic-like stem cells (VSELs)
CA3011946A1 (en) 2016-03-07 2017-09-14 Arrowhead Pharmaceuticals, Inc. Targeting ligands for therapeutic compounds
MX2018011204A (es) 2016-03-15 2019-03-07 Mersana Therapeutics Inc Conjugados de anticuerpo-farmaco dirigidos a napi2b y sus metodos de uso.
MA45469A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques de bêta-caténine et leurs utilisations
MA45349A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques egfr et leurs utilisations
MA45328A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Compositions acide nucléique-polypeptide et utilisations de celles-ci
WO2017173453A1 (en) 2016-04-01 2017-10-05 The Brigham And Women's Hospital, Inc. Stimuli-responsive nanoparticles for biomedical applications
MA45470A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques kras et leurs utilisations
CN108602849B (zh) 2016-04-06 2022-10-21 俄亥俄州国家创新基金会 用于通过rna纳米技术将治疗剂特异性递送至细胞的rna配体展示外来体
CA3020487C (en) 2016-04-11 2022-05-31 Olix Pharmaceuticals, Inc. Treatment of idiopathic pulmonary fibrosis using rna complexes that target connective tissue growth factor
KR102353847B1 (ko) 2016-04-14 2022-01-21 베니텍 바이오파마 리미티드 안구인두 근이영양증(opmd)의 치료용 시약 및 이의 용도
US11410746B2 (en) 2016-04-27 2022-08-09 Massachusetts Institute Of Technology Stable nanoscale nucleic acid assemblies and methods thereof
WO2017197128A1 (en) 2016-05-11 2017-11-16 Yale University Poly(amine-co-ester) nanoparticles and methods of use thereof
KR101916652B1 (ko) 2016-06-29 2018-11-08 올릭스 주식회사 작은 간섭 rna의 rna 간섭효과 증진용 화합물 및 이의 용도
SG11201811600PA (en) 2016-06-30 2019-01-30 Oncorus Inc Pseudotyped oncolytic viral delivery of therapeutic polypeptides
RU2627179C1 (ru) * 2016-07-28 2017-08-03 федеральное государственное бюджетное учреждение "Федеральный научно-исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи" Министерства здравоохранения Российской Федерации ТЕСТ-СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ РНК ИНТЕРФЕРОНА λ, ИНТЕРЛЕЙКИНА IL23 И ПРОТИВОВИРУСНОГО БЕЛКА MxA
US20190367930A1 (en) 2016-07-29 2019-12-05 Danmarks Tekniske Universitet Methods for decoupling cell growth from production of biochemicals and recombinant polypeptides
US11123435B2 (en) 2016-08-03 2021-09-21 H. Lee Moffitt Cancer Center And Research Institute, Inc. TLR9 targeted therapeutics
US11364304B2 (en) 2016-08-25 2022-06-21 Northwestern University Crosslinked micellar spherical nucleic acids
SG10201912835QA (en) 2016-09-02 2020-02-27 Arrowhead Pharmaceuticals Inc Targeting ligands
ES2924806T3 (es) 2016-09-02 2022-10-11 Dicerna Pharmaceuticals Inc Análogos de 4'-fosfato y oligonucleótidos que comprenden el mismo
EP3516062A1 (en) 2016-09-21 2019-07-31 Alnylam Pharmaceuticals, Inc. Myostatin irna compositions and methods of use thereof
WO2018062510A1 (ja) * 2016-09-29 2018-04-05 国立大学法人東京医科歯科大学 オーバーハングを有する二本鎖核酸複合体
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
US11135307B2 (en) 2016-11-23 2021-10-05 Mersana Therapeutics, Inc. Peptide-containing linkers for antibody-drug conjugates
EP3551641A4 (en) 2016-12-08 2021-01-13 University of Utah Research Foundation STAUFEN1 AGENTS AND ASSOCIATED PROCESSES
WO2018112470A1 (en) 2016-12-16 2018-06-21 The Brigham And Women's Hospital, Inc. Co-delivery of nucleic acids for simultaneous suppression and expression of target genes
MX2019008252A (es) 2017-01-10 2019-09-06 Arrowhead Pharmaceuticals Inc Agentes de interferencia de acido ribonucleico (iarn) de alfa-1 antitripsina (aat), composiciones que incluyen agentes de iarn aat y metodos de uso.
EP3580339A4 (en) * 2017-02-10 2020-12-23 Research & Business Foundation Sungkyunkwan University LONG DOUBLE STRAND RNA FOR RNA INTERFERENCE
WO2018152523A1 (en) * 2017-02-20 2018-08-23 Northwestern University Use of trinucleotide repeat rnas to treat cancer
DE102017103383A1 (de) 2017-02-20 2018-08-23 aReNA-Bio GbR (vertretungsberechtigter Gesellschafter: Dr. Heribert Bohlen, 50733 Köln) System und Verfahren zur Zelltyp-spezifischen Translation von RNA-Molekülen in Eukaryoten
US20180271996A1 (en) 2017-02-28 2018-09-27 Mersana Therapeutics, Inc. Combination therapies of her2-targeted antibody-drug conjugates
US11261441B2 (en) 2017-03-29 2022-03-01 Bluebird Bio, Inc. Vectors and compositions for treating hemoglobinopathies
BR112019020955A2 (pt) 2017-04-07 2020-05-05 Apellis Pharmaceuticals Inc regimes de dosagem e composições e métodos relacionados
ES2957464T3 (es) 2017-04-14 2024-01-19 Univ Arizona Composiciones y métodos para tratar fibrosis pulmonar
US11324820B2 (en) 2017-04-18 2022-05-10 Alnylam Pharmaceuticals, Inc. Methods for the treatment of subjects having a hepatitis b virus (HBV) infection
US11433131B2 (en) 2017-05-11 2022-09-06 Northwestern University Adoptive cell therapy using spherical nucleic acids (SNAs)
US11788087B2 (en) 2017-05-25 2023-10-17 The Children's Medical Center Corporation BCL11A guide delivery
EP3642243A4 (en) * 2017-06-20 2021-04-28 Dana-Farber Cancer Institute, Inc. PROCESSES FOR MODULATION OF REGULATORY T-LYMPHOCYTES, REGULATORY B-LYMPHOCYTES AND IMMUNE RESPONSES USING MODULATORS OF THE AVRIL-TACI INTERACTION
CN110799647A (zh) 2017-06-23 2020-02-14 马萨诸塞大学 双尾自递送sirna及相关的方法
CN119662650A (zh) 2017-07-06 2025-03-21 箭头药业股份有限公司 用于抑制α-ENaC表达的RNAi剂及使用方法
JP7337044B2 (ja) 2017-07-13 2023-09-01 アルナイラム ファーマシューティカルズ, インコーポレイテッド Hao1(ヒドロキシ酸オキシダーゼ1(グリコール酸オキシダーゼ))遺伝子発現の阻害方法
US11104700B2 (en) 2017-07-17 2021-08-31 Oxford University Innovation Limited Oligonucleotides
US11110114B2 (en) 2017-07-17 2021-09-07 Oxford University Innovation Limited Dinucleotides
AU2018329190B2 (en) 2017-09-11 2025-08-14 Arrowhead Pharmaceuticals, Inc. RNAi agents and compositions for inhibiting expression of apolipoprotein C-III (APOC3)
AU2018336806B2 (en) 2017-09-19 2025-04-10 Alnylam Pharmaceuticals, Inc. Compositions and methods for treating transthyretin (TTR) mediated amyloidosis
WO2019068326A1 (en) 2017-10-05 2019-04-11 Université D'aix-Marseille INHIBITORS OF LSD1 FOR THE TREATMENT AND PREVENTION OF CARDIOMYOPATHIES
PE20220561A1 (es) 2017-10-20 2022-04-13 Dicerna Pharmaceuticals Inc Metodos para el tratamiento de infeccion de hepatitis b
EP3713644B1 (en) 2017-11-20 2024-08-07 University of Georgia Research Foundation, Inc. Compositions and methods for modulating hif-2a to improve muscle generation and repair
EP3717021A1 (en) 2017-11-27 2020-10-07 Mersana Therapeutics, Inc. Pyrrolobenzodiazepine antibody conjugates
SI3717646T1 (sl) * 2017-12-01 2025-08-29 The Texas A&M University System Antisense zdravljenje angelmanovega sindroma
SG11202005022YA (en) 2017-12-06 2020-06-29 Avidity Biosciences Inc Compositions and methods of treating muscle atrophy and myotonic dystrophy
JP2021507884A (ja) 2017-12-15 2021-02-25 アペリス・ファーマシューティカルズ・インコーポレイテッドApellis Pharmaceuticals,Inc. 投与レジメンならびに関連組成物および方法
CN111757757A (zh) 2017-12-21 2020-10-09 梅尔莎纳医疗公司 吡咯并苯并二氮呯抗体共轭物
WO2019126651A1 (en) 2017-12-21 2019-06-27 Alnylam Pharmaceuticals, Inc. Chirally-enriched double-stranded rna agents
US10960086B2 (en) 2017-12-28 2021-03-30 Augusta University Research Institute, Inc. Aptamer compositions and methods of use thereof
EP3731850A4 (en) 2017-12-29 2021-12-01 Oncorus, Inc. ONCOLYTIC VIRUS DELIVERY OF THERAPEUTIC POLYPEPTIDES
JP2021509669A (ja) 2018-01-05 2021-04-01 ディセルナ ファーマシューティカルズ インコーポレイテッド 免疫療法を強化するためのベータ−カテニン及びidoの発現の低減
MX2020007582A (es) 2018-01-16 2020-09-03 Dicerna Pharmaceuticals Inc Composiciones y metodos para inhibir la expresion de aldehido deshidrogenasa mitocondrial 2 (aldh2).
EP3749766A1 (en) 2018-02-09 2020-12-16 F.Hoffmann-La Roche Ag Oligonucleotides for modulating tmem106b expression
US12350284B2 (en) 2018-05-02 2025-07-08 The Children's Medical Center Corporation BCL11A microRNAs for treating hemoglobinopathies
JP2021522815A (ja) 2018-05-07 2021-09-02 ロシュ イノベーション センター コペンハーゲン エーエス 超並列シーケンシングを用いるlnaオリゴヌクレオチド治療法の品質管理法
JP7467355B2 (ja) 2018-05-10 2024-04-15 コンプリメント・セラピューティクス・リミテッド 黄斑変性症を評価するための方法
CA3101446A1 (en) 2018-05-24 2019-11-28 Sirnaomics, Inc. Composition and methods of controllable co-coupling polypeptide nanoparticle delivery system for nucleic acid therapeutics
JP2021527649A (ja) * 2018-06-14 2021-10-14 ユニバーシティー オブ ユタ リサーチ ファウンデーションUniversity of Utah Research Foundation Staufen1調節剤および関連する方法
KR20210043647A (ko) 2018-08-13 2021-04-21 알닐람 파마슈티칼스 인코포레이티드 B형 간염 바이러스 (HBV) dsRNA 제제 조성물 및 이의 사용 방법
EP3840759A4 (en) 2018-08-23 2022-06-01 University Of Massachusetts O-METHYL RICH FULLY STABILIZED OLIGONUCLEOTIDES
EP4043015A1 (en) 2018-09-04 2022-08-17 H. Lee Moffitt Cancer Center And Research Institute, Inc. Delta-tocotrienol for treating cancer
US20210317479A1 (en) 2018-09-06 2021-10-14 The Broad Institute, Inc. Nucleic acid assemblies for use in targeted delivery
BR112021008012A2 (pt) 2018-10-29 2021-11-03 Mersana Therapeutics Inc Conjugados de anticorpo de cisteína engenheirada-fármaco com ligantes contendo peptídeo
WO2020128816A2 (en) 2018-12-20 2020-06-25 Pfizer Inc. Pharmaceutical compositions and methods comprising a combination of a benzoxazole transthyretin stabilizer and an additional therapeutic agent
CN114144423B (zh) 2018-12-27 2025-04-04 圣诺制药公司 使用与免疫检查点抑制剂组合递送的siRNA沉默TGF-BETA 1和COX2以治疗癌症
JP2022523467A (ja) 2019-01-18 2022-04-25 ユニバーシティ・オブ・マサチューセッツ 動的な薬物動態を修飾するアンカー
BR112021015651A2 (pt) 2019-02-12 2021-10-05 Dicerna Pharmaceuticals, Inc. Métodos e composições para inibir a expressão de cyp27a1
CN113924365A (zh) 2019-03-29 2022-01-11 迪克纳制药公司 用于治疗kras相关疾病或病症的组合物和方法
JP2022526419A (ja) 2019-04-04 2022-05-24 ディセルナ ファーマシューティカルズ インコーポレイテッド 中枢神経系における遺伝子発現を阻害するための組成物及び方法
US11814464B2 (en) 2019-04-29 2023-11-14 Yale University Poly(amine-co-ester) polymers and polyplexes with modified end groups and methods of use thereof
WO2020226960A1 (en) 2019-05-03 2020-11-12 Dicerna Pharmaceuticals, Inc. Double-stranded nucleic acid inhibitor molecules with shortened sense strands
EP3974533A4 (en) * 2019-05-22 2023-11-08 Suzhou Ribo Life Science Co., Ltd. Nucleic acid, pharmaceutical composition, conjugate, preparation method, and use
US20200369759A1 (en) 2019-05-23 2020-11-26 Fibrogen, Inc. Methods of treatment of muscular dystrophies
WO2020261227A1 (en) 2019-06-26 2020-12-30 Biorchestra Co., Ltd. Micellar nanoparticles and uses thereof
US12024706B2 (en) 2019-08-09 2024-07-02 University Of Massachusetts Modified oligonucleotides targeting SNPs
WO2021034616A1 (en) 2019-08-16 2021-02-25 Children' S Hospital Medical Center Methods of treating a subject with a cdc42-specific inhibitor
EP4021496A1 (en) 2019-08-30 2022-07-06 Yale University Compositions and methods for delivery of nucleic acids to cells
JP7636333B2 (ja) 2019-09-10 2025-02-26 第一三共株式会社 肝臓送達用GalNAc-オリゴヌクレオチドコンジュゲートおよび製造方法
US12365894B2 (en) 2019-09-16 2025-07-22 University Of Massachusetts Branched lipid conjugates of siRNA for specific tissue delivery
US20220389430A1 (en) 2019-10-02 2022-12-08 Dicema Pharmaceuticals, Inc. Chemical modifications of small interfering rna with minimal fluorine content
US11017851B1 (en) 2019-11-26 2021-05-25 Cypress Semiconductor Corporation Silicon-oxide-nitride-oxide-silicon based multi level non-volatile memory device and methods of operation thereof
CN114846140A (zh) 2019-12-24 2022-08-02 豪夫迈·罗氏有限公司 用于治疗hbv的靶向hbv的治疗性寡核苷酸和tlr7激动剂的药物组合
JP2023509872A (ja) 2019-12-24 2023-03-10 エフ. ホフマン-ラ ロシュ アーゲー Hbvを標的とする抗ウイルス剤及び/又はhbvの処置のための免疫調節剤の医薬組合せ
JP2023510778A (ja) 2020-01-09 2023-03-15 ガイド セラピューティクス,エルエルシー ナノマテリアル
US20230076768A1 (en) 2020-01-14 2023-03-09 Synthekine, Inc. IL2 Orthologs and Methods of Use
WO2021150300A1 (en) 2020-01-22 2021-07-29 Massachusetts Institute Of Technology Inducible tissue constructs and uses thereof
WO2021173965A1 (en) 2020-02-28 2021-09-02 Massachusetts Institute Of Technology Identification of variable influenza residues and uses thereof
CN116096889A (zh) 2020-03-18 2023-05-09 迪克纳制药公司 用于抑制angptl3表达的组合物和方法
CA3172111A1 (en) 2020-03-19 2021-09-23 Barbora MALECOVA Compositions and methods of treating facioscapulohumeral muscular dystrophy
MX2022011880A (es) 2020-03-27 2022-10-20 Avidity Biosciences Inc Composiciones y metodos para tratar distrofia muscular.
CN115997008A (zh) 2020-04-22 2023-04-21 艾欧凡斯生物治疗公司 协调用于患者特异性免疫疗法的细胞的制造的系统和方法
WO2021255262A1 (en) 2020-06-19 2021-12-23 Sylentis Sau siRNA AND COMPOSITIONS FOR PROPHYLACTIC AND THERAPEUTIC TREATMENT OF VIRUS DISEASES
US20230233693A1 (en) 2020-06-19 2023-07-27 Yale University Poly(amine-co-ester) polymers with modified end groups and enhanced pulmonary delivery
MX2023000124A (es) * 2020-06-30 2023-03-08 Univ Court Univ Of Edinburgh Sistema de expresion de transgenes.
US20220031633A1 (en) 2020-07-28 2022-02-03 Yale University Poly(amine-co-ester) polymeric particles for selective pulmonary delivery
US20240084309A1 (en) 2020-08-04 2024-03-14 Dicerna Pharmaceuticals, Inc. Compositions and methods for inhibiting plp1 expression
IL300283A (en) 2020-08-04 2023-04-01 Dicerna Pharmaceuticals Inc Systemic administration of oligonucleotides
TW202221120A (zh) 2020-08-04 2022-06-01 美商黛瑟納製藥公司 用於治療代謝症候群之組成物及方法
KR20230043877A (ko) 2020-08-05 2023-03-31 에프. 호프만-라 로슈 아게 B형 간염 환자의 올리고뉴클레오티드 치료
CA3185348A1 (en) 2020-08-05 2022-02-10 Bob Dale Brown Compositions and methods for inhibiting lpa expression
AU2021331785A1 (en) 2020-08-31 2023-03-30 Gennao Bio, Inc. Compositions and methods for delivery of nucleic acids to cells
EP3964204A1 (en) 2020-09-08 2022-03-09 Université d'Aix-Marseille Lsd1 inhibitors for use in the treatment and prevention of fibrosis of tissues
WO2022058447A1 (en) 2020-09-16 2022-03-24 The University Of Manchester Complementome assay
TW202237841A (zh) 2020-11-13 2022-10-01 美商艾拉倫製藥股份有限公司 凝血因子V(F5)iRNA組成物及其使用方法
CA3200234A1 (en) 2020-11-25 2022-06-02 Daryl C. Drummond Lipid nanoparticles for delivery of nucleic acids, and related methods of use
CN117295753A (zh) 2020-12-04 2023-12-26 基那奥生物公司 用于将核酸递送到细胞的组合物和方法
EP4015634A1 (en) 2020-12-15 2022-06-22 Sylentis, S.A.U. Sirna and compositions for prophylactic and therapeutic treatment of virus diseases
EP4281080A4 (en) 2021-01-20 2025-09-24 Beam Therapeutics Inc NANOMATERIALS COMPRISING A BIODEGRADABLE ELEMENT
WO2022187435A1 (en) 2021-03-04 2022-09-09 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (angptl3) irna compositions and methods of use thereof
CN117202894A (zh) 2021-03-31 2023-12-08 胭脂红治疗私人有限公司 负载至少两个不同核酸的细胞外囊泡
IL307315A (en) 2021-04-12 2023-11-01 Boehringer Ingelheim Int Compositions and methods for inhibiting ketohexokinase (KHK)
AU2022258459A1 (en) 2021-04-14 2023-09-14 Dicerna Pharmaceuticals, Inc. Compositions and methods for modulating pnpla3 expression
EP4326872A2 (en) 2021-04-19 2024-02-28 Novo Nordisk A/S Compositions and methods for inhibiting nuclear receptor subfamily 1 group h member 3 (nr1h3) expression
MX2023013504A (es) 2021-05-28 2024-02-23 Novo Nordisk As Composiciones y métodos para inhibir la expresión del componente 1 de reducción de amidoxima mitocondrial (marc1).
EP4347828A1 (en) 2021-05-29 2024-04-10 1Globe Health Institute LLC Short duplex dna as a novel gene silencing technology and use thereof
JP2024520555A (ja) 2021-05-29 2024-05-24 1グローブ ヘルス インスティテュート エルエルシー 新規遺伝子サイレンシング技術としての非対称短鎖二重鎖dnaおよびその使用
AU2022299169A1 (en) 2021-06-23 2024-02-08 Beth Israel Deaconess Medical Center, Inc. Optimized anti-flt1 oligonucleotide compounds for treatment of preeclampsia and other angiogenic disorders
CN117795074A (zh) 2021-08-03 2024-03-29 阿尔尼拉姆医药品有限公司 转甲状腺素蛋白(TTR)iRNA组合物和其使用方法
US20250011793A1 (en) 2021-08-16 2025-01-09 Vib Vzw Oligonucleotides for Modulating Synaptogyrin-3 Expression
KR20240046843A (ko) 2021-08-25 2024-04-11 노보 노르디스크 에이/에스 알파-1 항트립신 발현을 억제하기 위한 조성물 및 방법
JP2024534501A (ja) 2021-09-21 2024-09-20 ザ・ジョンズ・ホプキンス・ユニバーシティー 細胞内送達のための小分子生物製剤のデンドリマーコンジュゲート
EP4430184A2 (en) 2021-11-11 2024-09-18 F. Hoffmann-La Roche AG Pharmaceutical combinations for treatment of hbv
US20240043846A1 (en) 2021-11-19 2024-02-08 Kist (Korea Institute Of Science And Technology) Therapeutic Compounds for Red Blood Cell-Mediated Delivery of an Active Pharmaceutical Ingredient to a Target Cell
JP2024543195A (ja) 2021-12-01 2024-11-19 ディセルナ ファーマシューティカルズ インコーポレイテッド Apoc3発現を調節するための組成物及び方法
WO2023118546A2 (en) 2021-12-23 2023-06-29 Boehringer Ingelheim International Gmbh METHODS AND MOLECULES FOR RNA INTERFERENCE (RNAi)
WO2023159189A1 (en) 2022-02-18 2023-08-24 Yale University Branched poly(amine-co-ester) polymers for more efficient nucleic expression
GB202203627D0 (en) 2022-03-16 2022-04-27 Univ Manchester Agents for treating complement-related disorders
US20230302423A1 (en) 2022-03-28 2023-09-28 Massachusetts Institute Of Technology Rna scaffolded wireframe origami and methods thereof
GB202204884D0 (en) 2022-04-04 2022-05-18 Fondo Ricerca Medica S R I Sirna targeting kcna1
US20230374522A1 (en) 2022-04-15 2023-11-23 Dicerna Pharmaceuticals, Inc. Compositions and methods for modulating scap activity
EP4507704A1 (en) 2022-04-15 2025-02-19 Iovance Biotherapeutics, Inc. Til expansion processes using specific cytokine combinations and/or akti treatment
PE20250834A1 (es) 2022-05-12 2025-03-21 Dicerna Pharmaceuticals Inc Composiciones y metodos para inhibir la expresion de mapt
IL316843A (en) 2022-05-13 2025-01-01 Dicerna Pharmaceuticals Inc Compounds and methods for inhibiting SNCA deactivation
IL317109A (en) 2022-05-25 2025-01-01 Akagera Medicines Inc Lipid nanoparticles for the delivery of nucleic acids and methods of using them
TWI868755B (zh) 2022-06-24 2025-01-01 丹麥商諾佛 儂迪克股份有限公司 抑制跨膜絲胺酸蛋白酶6(tmprss6)表現的組成物及方法
JP2025528020A (ja) 2022-07-20 2025-08-26 ビーム セラピューティクス インク. トリオールを含むナノ材料
WO2024040041A1 (en) 2022-08-15 2024-02-22 Dicerna Pharmaceuticals, Inc. Regulation of activity of rnai molecules
AU2023361162A1 (en) 2022-10-11 2025-05-29 Yale University Compositions and methods of using cell-penetrating antibodies
TW202430637A (zh) 2022-11-16 2024-08-01 美商戴瑟納製藥股份有限公司 Stat3靶向性寡核苷酸及其用途
EP4619524A1 (en) 2022-11-18 2025-09-24 Genkardia Inc. Methods and compositions for preventing, treating, or reversing cardiac diastolic dysfunction
CN120584182A (zh) 2022-11-21 2025-09-02 艾欧凡斯生物治疗公司 肿瘤浸润淋巴细胞扩增的二维过程及其疗法
GB202219829D0 (en) 2022-12-29 2023-02-15 Ivy Farm Tech Limited Genetically manipulated cells
WO2024151877A2 (en) 2023-01-11 2024-07-18 Engage Biologics Inc. Non-viral expression systems and methods of use thereof
WO2024175586A2 (en) 2023-02-21 2024-08-29 Vib Vzw Inhibitors of synaptogyrin-3 expression
WO2024175588A1 (en) 2023-02-21 2024-08-29 Vib Vzw Oligonucleotides for modulating synaptogyrin-3 expression
AU2024248253A1 (en) 2023-03-28 2025-10-09 K2B Therapeutics, Inc. Therapeutic compounds for inhibiting and reducing the expression of cell surface proteins
WO2024263649A1 (en) 2023-06-19 2024-12-26 Yale University Methods and compositions for enrichment and sequencing of expansion-specific rna transcripts
WO2025015189A1 (en) 2023-07-13 2025-01-16 Comanche Biopharma Corp. Formulations of nucleic acid compounds and uses thereof
WO2025012471A1 (en) 2023-07-13 2025-01-16 Hummingbird Bioscience Pte. Ltd. Methods for antibody production
TW202509209A (zh) 2023-07-13 2025-03-01 新加坡商蜂鳥生物科技私人有限公司 生產抗體的方法
WO2025029625A1 (en) 2023-07-28 2025-02-06 Dicerna Pharmaceuticals, Inc. Compositions and methods for programmed death ligand receptor (pd-l1) expression
WO2025054459A1 (en) 2023-09-08 2025-03-13 Dicerna Pharmaceuticals, Inc. Rnai oligonucleotide conjugates
WO2025101580A1 (en) 2023-11-06 2025-05-15 Yale University Half-antibodies and other antibody fragments for attachment to degradable polymer nanoparticles
EP4560020A1 (en) 2023-11-22 2025-05-28 Sylentis S.A.U. Sirna and compositions for prophylactic and therapeutic treatment of ocular retinal conditions
EP4560019A1 (en) 2023-11-22 2025-05-28 Sylentis S.A.U. Sirna and compositions for prophylactic and therapeutic treatment of ocular retinal conditions

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2003006A (en) * 1933-04-11 1935-05-28 Michelson Barnett Samuel Water tank cover
US4469863A (en) * 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US5208149A (en) * 1983-10-20 1993-05-04 The Research Foundation Of State University Of New York Nucleic acid constructs containing stable stem and loop structures
GB8704365D0 (en) * 1987-02-25 1987-04-01 Exxon Chemical Patents Inc Zeolite l preparation
US5712257A (en) * 1987-08-12 1998-01-27 Hem Research, Inc. Topically active compositions of mismatched dsRNAs
IE66830B1 (en) 1987-08-12 1996-02-07 Hem Res Inc Topically active compositions of double-stranded RNAs
US5703055A (en) * 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
DK0497875T3 (da) * 1989-10-24 2000-07-03 Gilead Sciences Inc 2'-modificerede oligonukleotider
US5457189A (en) * 1989-12-04 1995-10-10 Isis Pharmaceuticals Antisense oligonucleotide inhibition of papillomavirus
KR927003044A (ko) 1990-01-11 1992-12-17 크리스토퍼 케이. 미라벨리 Rna 활성과 유전자 발현을 검출하고 조절하는 조성물 및 그 방법
US5670633A (en) * 1990-01-11 1997-09-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5514577A (en) * 1990-02-26 1996-05-07 Isis Pharmaceuticals, Inc. Oligonucleotide therapies for modulating the effects of herpes viruses
DE69123979T2 (de) * 1990-10-12 1997-04-30 Max Planck Gesellschaft Abgeänderte ribozyme
FR2675803B1 (fr) 1991-04-25 1996-09-06 Genset Sa Oligonucleotides fermes, antisens et sens et leurs applications.
WO1994008003A1 (en) * 1991-06-14 1994-04-14 Isis Pharmaceuticals, Inc. ANTISENSE OLIGONUCLEOTIDE INHIBITION OF THE ras GENE
FR2685346B1 (fr) * 1991-12-18 1994-02-11 Cis Bio International Procede de preparation d'arn double-brin, et ses applications.
WO1993018052A1 (en) 1992-03-05 1993-09-16 Isis Pharmaceuticals, Inc. Covalently cross-linked oligonucleotides
US5792751A (en) * 1992-04-13 1998-08-11 Baylor College Of Medicine Tranformation of cells associated with fluid spaces
US20040054156A1 (en) * 1992-05-14 2004-03-18 Kenneth Draper Method and reagent for inhibiting hepatitis B viral replication
WO2002081494A1 (en) * 2001-03-26 2002-10-17 Sirna Therapeutics, Inc. Oligonucleotide mediated inhibition of hepatitis b virus and hepatitis c virus replication
US5693535A (en) * 1992-05-14 1997-12-02 Ribozyme Pharmaceuticals, Inc. HIV targeted ribozymes
US20030068301A1 (en) * 1992-05-14 2003-04-10 Kenneth Draper Method and reagent for inhibiting hepatitis B virus replication
US20030206887A1 (en) * 1992-05-14 2003-11-06 David Morrissey RNA interference mediated inhibition of hepatitis B virus (HBV) using short interfering nucleic acid (siNA)
US20030171311A1 (en) * 1998-04-27 2003-09-11 Lawrence Blatt Enzymatic nucleic acid treatment of diseases or conditions related to hepatitis C virus infection
RU94046425A (ru) * 1992-07-02 1997-03-20 Хайбрайдон Самостабилизированный олигонуклеотид и способ ингибирования генной экспрессии
US5652355A (en) 1992-07-23 1997-07-29 Worcester Foundation For Experimental Biology Hybrid oligonucleotide phosphorothioates
AU6080294A (en) 1992-12-31 1994-08-15 Texas Biotechnology Corporation Antisense molecules directed against genes of the (raf) oncogene family
US6056704A (en) 1993-03-03 2000-05-02 Ide; Masatake Foot-pressure massage stand
EP0616026A1 (en) 1993-03-19 1994-09-21 The Procter & Gamble Company Concentrated cleaning compositions
EP0705335A1 (en) * 1993-06-23 1996-04-10 Genesys Pharma Inc. Antisense oligonucleotides and therapeutic use thereof in human immunodeficiency virus infection
FR2710074B1 (fr) * 1993-09-15 1995-12-08 Rhone Poulenc Rorer Sa Gène GRB3-3, ses variants et leurs utilisations.
US5624803A (en) * 1993-10-14 1997-04-29 The Regents Of The University Of California In vivo oligonucleotide generator, and methods of testing the binding affinity of triplex forming oligonucleotides derived therefrom
US5801154A (en) * 1993-10-18 1998-09-01 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of multidrug resistance-associated protein
CA2176259A1 (en) 1993-11-16 1995-05-26 Lyle J. Arnold, Jr. Chimeric oligonucleoside compounds
US5908779A (en) * 1993-12-01 1999-06-01 University Of Connecticut Targeted RNA degradation using nuclear antisense RNA
US5578716A (en) 1993-12-01 1996-11-26 Mcgill University DNA methyltransferase antisense oligonucleotides
EP0759979A4 (en) * 1994-05-10 1999-10-20 Gen Hospital Corp THE ANTISENSE INHIBITION OF HEPATITIS C VIRUS
US6057153A (en) * 1995-01-13 2000-05-02 Yale University Stabilized external guide sequences
US5674683A (en) 1995-03-21 1997-10-07 Research Corporation Technologies, Inc. Stem-loop and circular oligonucleotides and method of using
US5624808A (en) * 1995-03-28 1997-04-29 Becton Dickinson And Company Method for identifying cells committed to apoptosis by determining cellular phosphotyrosine content
US5976567A (en) 1995-06-07 1999-11-02 Inex Pharmaceuticals Corp. Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
WO1997011170A1 (en) * 1995-09-20 1997-03-27 Worcester Foundation For Biomedical Research Antisense oligonucleotide chemotherapy for benign hyperplasia or cancer of the prostate
US5998203A (en) * 1996-04-16 1999-12-07 Ribozyme Pharmaceuticals, Inc. Enzymatic nucleic acids containing 5'-and/or 3'-cap structures
CZ243498A3 (cs) 1996-02-14 1999-09-15 Isis Pharmaceuticals, Inc. Oligonukleotidy s mezerou a modifikovaným cukrem
CA2251945A1 (en) 1996-04-17 1997-10-23 Aronex Pharmaceuticals, Inc. Antisense inhibitors of vascular endothelial growth factor (vefg/vpf) expression
DE19618797C2 (de) 1996-05-10 2000-03-23 Bertling Wolf Vehikel zum Transport molekularer Substanz
US20040266706A1 (en) 2002-11-05 2004-12-30 Muthiah Manoharan Cross-linked oligomeric compounds and their use in gene modulation
US5898031A (en) * 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
DE19631919C2 (de) 1996-08-07 1998-07-16 Deutsches Krebsforsch Anti-Sinn-RNA mit Sekundärstruktur
US6225290B1 (en) * 1996-09-19 2001-05-01 The Regents Of The University Of California Systemic gene therapy by intestinal cell transformation
ATE329015T1 (de) * 1996-10-04 2006-06-15 Derek Nigel John Hart Enzyme mit s-adenosyl-l-homocystein-hydrolase- ähnlicher aktivität.
US5814500A (en) * 1996-10-31 1998-09-29 The Johns Hopkins University School Of Medicine Delivery construct for antisense nucleic acids and methods of use
IL130162A (en) 1996-12-12 2008-03-20 Yissum Res Dev Co Synthetic antisense oligodeoxynucleotides and pharmaceutical compositions containing them
US20030064945A1 (en) * 1997-01-31 2003-04-03 Saghir Akhtar Enzymatic nucleic acid treatment of diseases or conditions related to levels of epidermal growth factor receptors
GB9703146D0 (en) * 1997-02-14 1997-04-02 Innes John Centre Innov Ltd Methods and means for gene silencing in transgenic plants
US6218142B1 (en) * 1997-03-05 2001-04-17 Michael Wassenegger Nucleic acid molecules encoding polypeptides having the enzymatic activity of an RNA-directed RNA polymerase (RDRP)
GB9710475D0 (en) 1997-05-21 1997-07-16 Zeneca Ltd Gene silencing
ATE293123T1 (de) 1997-09-12 2005-04-15 Exiqon As Bi- und tri-zyklische - nukleosid, nukleotid und oligonukleotid-analoga
US20030083272A1 (en) 1997-09-19 2003-05-01 Lahive & Cockfield, Llp Sense mrna therapy
GB9720148D0 (en) 1997-09-22 1997-11-26 Innes John Centre Innov Ltd Gene silencing materials and methods
US6506559B1 (en) * 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
US6475726B1 (en) * 1998-01-09 2002-11-05 Cubist Pharmaceuticals, Inc. Method for identifying validated target and assay combinations for drug development
ES2374534T3 (es) 1998-03-20 2012-02-17 Commonwealth Scientific And Industrial Research Organisation Control de la expresión de genes.
AUPP249298A0 (en) * 1998-03-20 1998-04-23 Ag-Gene Australia Limited Synthetic genes and genetic constructs comprising same I
NZ507093A (en) 1998-04-08 2003-08-29 Commw Scient Ind Res Org Methods and means for reducing the phenotypic expression of a nucleic acid of interest in a plant
US20040214330A1 (en) * 1999-04-07 2004-10-28 Waterhouse Peter Michael Methods and means for obtaining modified phenotypes
CA2326823A1 (en) 1998-04-20 1999-10-28 Ribozyme Pharmaceuticals, Inc. Nucleic acid molecules with novel chemical compositions capable of modulating gene expression
AR020078A1 (es) 1998-05-26 2002-04-10 Syngenta Participations Ag Metodo para alterar la expresion de un gen objetivo en una celula de planta
GB9827152D0 (en) 1998-07-03 1999-02-03 Devgen Nv Characterisation of gene function using double stranded rna inhibition
US6429308B1 (en) 1998-11-24 2002-08-06 Hisamitsu Pharmaceutical Co., Inc. HIV infection inhibitors
WO2000032619A1 (en) 1998-11-30 2000-06-08 Ribogene, Inc. Methods and compositions for identification of inhibitors of ribosome assembly
US6939712B1 (en) 1998-12-29 2005-09-06 Impedagen, Llc Muting gene activity using a transgenic nucleic acid
EP2314700A1 (en) * 1999-01-28 2011-04-27 Medical College of Georgia Research Institute, Inc Composition and method for in vivo and in vitro attenuation of gene expression using double stranded RNA
DE19956568A1 (de) 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
CA2370628A1 (en) 1999-04-21 2000-10-26 American Home Products Corporation Methods and compositions for inhibiting the function of polynucleotide sequences
US20040002153A1 (en) * 1999-07-21 2004-01-01 Monia Brett P. Modulation of PTEN expression via oligomeric compounds
GB9925459D0 (en) * 1999-10-27 1999-12-29 Plant Bioscience Ltd Gene silencing
GB9927444D0 (en) 1999-11-19 2000-01-19 Cancer Res Campaign Tech Inhibiting gene expression
DE10100586C1 (de) 2001-01-09 2002-04-11 Ribopharma Ag Verfahren zur Hemmung der Expression eines Ziegens
US7829693B2 (en) * 1999-11-24 2010-11-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a target gene
DE10160151A1 (de) 2001-01-09 2003-06-26 Ribopharma Ag Verfahren zur Hemmung der Expression eines vorgegebenen Zielgens
RU2164944C1 (ru) * 1999-12-09 2001-04-10 Институт молекулярной биологии им. В.А. Энгельгардта РАН Способ изменения генетических свойств организма
US8202979B2 (en) * 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
AU2001260114A1 (en) 2000-03-14 2001-09-24 Syngenta Participations Ag Protoporphyrinogen oxidase ("protox") genes
WO2001068836A2 (en) 2000-03-16 2001-09-20 Genetica, Inc. Methods and compositions for rna interference
US20030084471A1 (en) * 2000-03-16 2003-05-01 David Beach Methods and compositions for RNA interference
BRPI0117339B1 (pt) 2000-03-30 2016-03-15 Massachusetts Inst Technology método para identificar sítios alvos dentro de mrna que sejam eficientemente clivados pelo processo rnai, e método para identificar rnas de 21-23 nt que medeiam eficientemente rnai
PT1309726E (pt) 2000-03-30 2010-03-08 Whitehead Biomedical Inst Mediadores de interferência por rna específicos de sequência de rna
WO2001092513A1 (en) 2000-05-30 2001-12-06 Johnson & Johnson Research Pty Limited METHODS FOR MEDIATING GENE SUPPRESION BY USING FACTORS THAT ENHANCE RNAi
CA2429814C (en) 2000-12-01 2014-02-18 Thomas Tuschl Rna interference mediating small rna molecules
JP2004520047A (ja) 2000-12-08 2004-07-08 インヴィトロジェン コーポレーション 組換え型核酸分子を迅速に作製するための組成物と方法
WO2002059300A2 (en) 2000-12-28 2002-08-01 J & J Research Pty Ltd Double-stranded rna-mediated gene suppression
WO2003035869A1 (de) 2001-10-26 2003-05-01 Ribopharma Ag Verwendung einer doppelsträngigen ribonukleinsäure zur gezielten hemmung der expression eines vorgegebenen zielgens
US7423142B2 (en) * 2001-01-09 2008-09-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
US20020132257A1 (en) * 2001-01-31 2002-09-19 Tony Giordano Use of post-transcriptional gene silencing for identifying nucleic acid sequences that modulate the function of a cell
US20040006035A1 (en) * 2001-05-29 2004-01-08 Dennis Macejak Nucleic acid mediated disruption of HIV fusogenic peptide interactions
US20040019001A1 (en) * 2002-02-20 2004-01-29 Mcswiggen James A. RNA interference mediated inhibition of protein typrosine phosphatase-1B (PTP-1B) gene expression using short interfering RNA
US20030124513A1 (en) * 2001-05-29 2003-07-03 Mcswiggen James Enzymatic nucleic acid treatment of diseases or conditions related to levels of HIV
ATE262768T1 (de) 2001-06-01 2004-04-15 Mobilkom Austria Ag & Co Kg Verfahren zur bestimmung des standortes einer mobilstation in einem mobilfunksystem
US20030140362A1 (en) * 2001-06-08 2003-07-24 Dennis Macejak In vivo models for screening inhibitors of hepatitis B virus
WO2003029459A2 (en) * 2001-09-28 2003-04-10 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Micro-rna molecules
DE10163098B4 (de) 2001-10-12 2005-06-02 Alnylam Europe Ag Verfahren zur Hemmung der Replikation von Viren
DE10230997A1 (de) * 2001-10-26 2003-07-17 Ribopharma Ag Medikament zur Erhöhung der Wirksamkeit eines Rezeptor-vermittelt Apoptose in Tumorzellen auslösenden Arzneimittels
US20040121348A1 (en) * 2001-10-26 2004-06-24 Ribopharma Ag Compositions and methods for treating pancreatic cancer
CN1608133A (zh) * 2001-10-26 2005-04-20 里伯药品公司 双链核糖核酸用于治疗正(+)链rna病毒感染的用途
DE10154113A1 (de) 2001-11-03 2003-05-15 Opel Adam Ag Frontstruktur eines Kraftfahrzeuges
DE10202419A1 (de) * 2002-01-22 2003-08-07 Ribopharma Ag Verfahren zur Hemmung der Expression eines durch eine Chromosomen-Aberration entstandenen Zielgens
WO2003064621A2 (en) 2002-02-01 2003-08-07 Ambion, Inc. HIGH POTENCY siRNAS FOR REDUCING THE EXPRESSION OF TARGET GENES
AU2003209128B2 (en) * 2002-02-14 2008-05-15 City Of Hope Methods for producing interfering RNA molecules in mammalian cells and therapeutic uses for such molecules
WO2003076592A2 (en) * 2002-03-06 2003-09-18 Rigel Pharmaceuticals, Inc. Novel method for delivery and intracellular synthesis of sirna molecules
US20040248296A1 (en) * 2002-03-20 2004-12-09 Beresford Paul J. HIV therapeutic
US20030180756A1 (en) * 2002-03-21 2003-09-25 Yang Shi Compositions and methods for suppressing eukaryotic gene expression
US20040053876A1 (en) * 2002-03-26 2004-03-18 The Regents Of The University Of Michigan siRNAs and uses therof
WO2003099298A1 (en) 2002-05-24 2003-12-04 Max-Planck Gesellschaft zur Förderung der Wissenschaften e.V. Rna interference mediating small rna molecules
AU2003273995A1 (en) 2002-06-05 2003-12-22 Invitrogen Corporation Methods and compositions for synthesis of nucleic acid molecules using multiple recognition sites
GB2406169B (en) 2002-06-12 2006-11-01 Ambion Inc Methods and compositions relating to labeled rna molecules that reduce gene expression
WO2004007718A2 (en) 2002-07-10 2004-01-22 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Rna-interference by single-stranded rna molecules
US20040241854A1 (en) * 2002-08-05 2004-12-02 Davidson Beverly L. siRNA-mediated gene silencing
EP2258847B2 (en) 2002-08-05 2020-07-01 Silence Therapeutics GmbH Futher novel forms of interfering RNA molecules
WO2004014933A1 (en) 2002-08-07 2004-02-19 University Of Massachusetts Compositions for rna interference and methods of use thereof
WO2004027030A2 (en) 2002-09-18 2004-04-01 Isis Pharmaceuticals, Inc. Efficient reduction of target rna’s by single- and double-stranded oligomeric compounds
WO2004029212A2 (en) 2002-09-25 2004-04-08 University Of Massachusetts In vivo gene silencing by chemically modified and stable sirna
AU2003291755A1 (en) 2002-11-05 2004-06-07 Isis Pharmaceuticals, Inc. Oligomers comprising modified bases for binding cytosine and uracil or thymine and their use
EP2305812A3 (en) 2002-11-14 2012-06-06 Dharmacon, Inc. Fuctional and hyperfunctional sirna
WO2004046324A2 (en) 2002-11-15 2004-06-03 University Of Massachusetts Allele-targeted rna interference
WO2004047764A2 (en) * 2002-11-22 2004-06-10 University Of Massachusetts Modulation of hiv replication by rna interference
WO2004063375A1 (en) 2003-01-15 2004-07-29 Hans Prydz OPTIMIZING siRNA BY RNAi ANTISENSE
US20040224328A1 (en) * 2003-01-15 2004-11-11 Hans Prydz siRNA screening method
EP2314687B1 (en) 2003-01-17 2017-12-27 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Inducible small interfering rna (sirna) expression constructs for targeted gene silencing
WO2004065600A2 (en) 2003-01-17 2004-08-05 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Rna interference by palindromic or modified rna molecules
CA2515586A1 (en) 2003-02-10 2004-09-10 National Institute Of Advanced Industrial Science And Technology Regulation of gene expression by dna interference
WO2004073390A1 (en) * 2003-02-19 2004-09-02 Commonwealth Scientific And Industrial Research Organisation Efficient gene silencing in plants using short dsrna sequences
US7459547B2 (en) 2003-06-02 2008-12-02 University Of Massachusetts Methods and compositions for controlling efficacy of RNA silencing
US6998203B2 (en) * 2003-08-01 2006-02-14 Intel Corporation Proximity correcting lithography mask blanks
NZ556097A (en) 2005-01-07 2009-12-24 Alnylam Pharmaceuticals Inc Rnai modulation of RSV and therapeutic uses thereof
JP6348063B2 (ja) 2011-07-08 2018-06-27 インテヴァ プロダクツ, エルエルシーInteva Products, Llc 車両内装部材にステッチを施す方法

Also Published As

Publication number Publication date
ES2215494T1 (es) 2004-10-16
BRPI0115814B1 (pt) 2019-10-15
US20040229266A1 (en) 2004-11-18
ES2728168T3 (es) 2019-10-22
WO2002044321A3 (en) 2003-10-23
TR200401292T3 (tr) 2004-07-21
US20110065109A1 (en) 2011-03-17
KR100909681B1 (ko) 2009-07-29
CN1568373A (zh) 2005-01-19
HU230458B1 (hu) 2016-07-28
MXPA03004836A (es) 2005-09-08
US8765930B2 (en) 2014-07-01
US20110020234A1 (en) 2011-01-27
JP6189576B2 (ja) 2017-08-30
EP1873259B1 (en) 2012-01-25
US8895721B2 (en) 2014-11-25
US20100010207A1 (en) 2010-01-14
DE60130583T3 (de) 2018-03-22
US20070093445A1 (en) 2007-04-26
US10633656B2 (en) 2020-04-28
PL218876B1 (pl) 2015-02-27
LTPA2021005I1 (cs) 2021-06-10
ATE373724T2 (de) 2007-10-15
DE60130583T2 (de) 2008-06-12
US8853384B2 (en) 2014-10-07
JP2009284915A (ja) 2009-12-10
NO335426B1 (no) 2014-12-15
US20100316703A1 (en) 2010-12-16
US8372968B2 (en) 2013-02-12
CN100523215C (zh) 2009-08-05
CZ308053B6 (cs) 2019-11-27
CZ2011452A3 (cs) 2003-10-15
AU2010212438A1 (en) 2010-09-09
KR20080069602A (ko) 2008-07-28
ZA200303929B (en) 2004-07-19
BR0115814A (pt) 2004-03-23
RU2470073C2 (ru) 2012-12-20
NO20032464D0 (no) 2003-05-30
NO20130246L (no) 2003-07-21
ES2215494T5 (es) 2017-12-28
US20080269147A1 (en) 2008-10-30
JP5749892B2 (ja) 2015-07-15
CA2429814C (en) 2014-02-18
US20050026278A1 (en) 2005-02-03
US8329463B2 (en) 2012-12-11
JP4095895B2 (ja) 2008-06-04
US20050234007A1 (en) 2005-10-20
IL207727A (en) 2014-04-30
US20110027883A1 (en) 2011-02-03
US20170327822A1 (en) 2017-11-16
CZ302719B6 (cs) 2011-09-21
PL365784A1 (pl) 2005-01-10
JP6325974B2 (ja) 2018-05-16
US20150141492A1 (en) 2015-05-21
US20110054159A1 (en) 2011-03-03
US8445237B2 (en) 2013-05-21
EP1407044B1 (en) 2007-09-19
AU2007203385A1 (en) 2007-08-09
NO333713B1 (no) 2013-09-02
HUP0302557A3 (en) 2005-12-28
WO2002044321A2 (en) 2002-06-06
EP1407044A2 (en) 2004-04-14
US8933044B2 (en) 2015-01-13
JP2007111053A (ja) 2007-05-10
US8362231B2 (en) 2013-01-29
CY1119062T1 (el) 2018-01-10
US20090155174A1 (en) 2009-06-18
DE60130583D1 (de) 2007-10-31
US20040259248A1 (en) 2004-12-23
US20110070162A1 (en) 2011-03-24
DK1407044T3 (da) 2008-01-28
US20110065773A1 (en) 2011-03-17
RU2322500C2 (ru) 2008-04-20
AU2007203385B2 (en) 2010-05-20
AU2010212438A2 (en) 2010-09-23
US8993745B2 (en) 2015-03-31
HK1110631A1 (en) 2008-07-18
IL155991A (en) 2013-06-27
EP2348133B1 (en) 2014-07-16
NZ525888A (en) 2006-04-28
CA2429814A1 (en) 2002-06-06
US20110014123A1 (en) 2011-01-20
US8796016B2 (en) 2014-08-05
HK1204798A1 (en) 2015-12-04
US20110112283A1 (en) 2011-05-12
KR20040012686A (ko) 2004-02-11
HUP0302557A2 (hu) 2003-10-28
US9567582B2 (en) 2017-02-14
EP1873259A1 (en) 2008-01-02
JP2010131031A (ja) 2010-06-17
PT1407044E (pt) 2008-01-02
AU3574402A (en) 2002-06-11
SI1407044T2 (en) 2018-03-30
US20050234006A1 (en) 2005-10-20
ES2215494T3 (es) 2008-04-01
US20040259247A1 (en) 2004-12-23
AU2002235744B8 (en) 2007-06-28
US8778902B2 (en) 2014-07-15
AU2002235744B2 (en) 2007-04-19
US7078196B2 (en) 2006-07-18
US7056704B2 (en) 2006-06-06
US20200299693A1 (en) 2020-09-24
HK1139181A1 (en) 2010-09-10
IL155991A0 (en) 2003-12-23
US20130125259A1 (en) 2013-05-16
BRPI0115814B8 (pt) 2021-05-25
SI1407044T1 (sl) 2008-04-30
KR100872437B1 (ko) 2008-12-05
RU2007131270A (ru) 2009-02-27
US20110306651A1 (en) 2011-12-15
US20100292456A1 (en) 2010-11-18
JP2015061534A (ja) 2015-04-02
US8895718B2 (en) 2014-11-25
DK1407044T4 (en) 2017-12-04
EP1407044B2 (en) 2017-11-15
HK1139433A1 (en) 2010-09-17
EP2348133A1 (en) 2011-07-27
JP2004526422A (ja) 2004-09-02
NO20032464L (no) 2003-07-21
DK2813582T3 (en) 2017-07-31
JP4494392B2 (ja) 2010-06-30
AU2010212438B2 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
CZ20031839A3 (cs) Interference RNA zpostředkovaná malými molekulami RNA
EP2813582B1 (en) RNA interference mediating small RNA molecules
CN101654673B (zh) 介导rna干涉的小rna分子
HK1244027A1 (en) Rna interference mediating small rna molecules
HK1204798B (en) Rna interference mediating small rna molecules
HK1160495A (en) Rna interference mediating small rna molecules
AU2002235744A1 (en) RNA interference mediating small RNA molecules
HK1110631B (en) Rna interference mediated by 21 and 22nt rnas
HK1139433B (en) Rna interference mediating small rna molecules
HK1139432A (en) Rna interference mediating small rna molecules

Legal Events

Date Code Title Description
MK4A Patent expired

Effective date: 20211129