PL218876B1 - Wyizolowana cząsteczka dwuniciowego RNA, sposób wytwarzania cząsteczki dwuniciowego RNA, zastosowanie cząsteczki dwuniciowego RNA do wytwarzania leku do modulowania działania genu związanego z patogenem, genu związanego z nowotworem, oraz genu związanego z chorobą autoimmunologiczną, sposób in vitro kierowania miejscowo specyficznymi interferencjami RNA w komórce, zastosowanie sposobu in vitro do ustalania działania genu w komórce oraz do modulowania działania genu w komórce, środek farmaceutyczny, komórka eukariotyczna transfekowana cząsteczką RNA lub cząsteczką DNA kodującą tę cząsteczkę RNA, oraz zastosowanie komórki eukariotycznej w procedurach analitycznych oraz w procedurach preparatywnych - Google Patents

Wyizolowana cząsteczka dwuniciowego RNA, sposób wytwarzania cząsteczki dwuniciowego RNA, zastosowanie cząsteczki dwuniciowego RNA do wytwarzania leku do modulowania działania genu związanego z patogenem, genu związanego z nowotworem, oraz genu związanego z chorobą autoimmunologiczną, sposób in vitro kierowania miejscowo specyficznymi interferencjami RNA w komórce, zastosowanie sposobu in vitro do ustalania działania genu w komórce oraz do modulowania działania genu w komórce, środek farmaceutyczny, komórka eukariotyczna transfekowana cząsteczką RNA lub cząsteczką DNA kodującą tę cząsteczkę RNA, oraz zastosowanie komórki eukariotycznej w procedurach analitycznych oraz w procedurach preparatywnych

Info

Publication number
PL218876B1
PL218876B1 PL365784A PL36578401A PL218876B1 PL 218876 B1 PL218876 B1 PL 218876B1 PL 365784 A PL365784 A PL 365784A PL 36578401 A PL36578401 A PL 36578401A PL 218876 B1 PL218876 B1 PL 218876B1
Authority
PL
Poland
Prior art keywords
rna
target
dsrna
stranded
gene
Prior art date
Application number
PL365784A
Other languages
English (en)
Other versions
PL365784A1 (pl
Inventor
Thomas Tuschl
Sayda Elbashir
Winfried Lendeckel
Matthias Wilm
Original Assignee
Europaisches Lab Für Molekularbiologie Embl
Max Planck Ges Zur Förderung Der Wissenschaften E V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40529293&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=PL218876(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from PCT/US2001/010188 external-priority patent/WO2001075164A2/en
Application filed by Europaisches Lab Für Molekularbiologie Embl, Max Planck Ges Zur Förderung Der Wissenschaften E V filed Critical Europaisches Lab Für Molekularbiologie Embl
Publication of PL365784A1 publication Critical patent/PL365784A1/pl
Publication of PL218876B1 publication Critical patent/PL218876B1/pl

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1079Screening libraries by altering the phenotype or phenotypic trait of the host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised

Description

Opis wynalazku
Przedmiotem wynalazku są wyizolowana cząsteczka dwuniciowego RNA, sposób wytwarzania cząsteczki dwuniciowego RNA, zastosowanie cząsteczki dwuniciowego RNA do wytwarzania leku do modulowania działania genu związanego z patogenem, genu związanego z nowotworem, oraz genu związanego z chorobą autoimmunologiczną, sposób in vitro kierowania miejscowo specyficznymi interferencjami RNA w komórce, zastosowanie sposobu in vitro do ustalania działania genu w komórce, oraz do modulowania działania genu w komórce, środek farmacetyczny, komórka eukariotyczna transfekowana cząsteczką RNA lub cząsteczką DNA kodującą tę cząsteczkę RNA, oraz zastosowanie komórki eukariotycznej w procedurach analitycznych oraz w procedurach preparatywnych.
Określenie „interferencja RNA (RNAi) stworzono po odkryciu, że po wstrzyknięciu dsRNA do nicienia C. elegans prowadzi do specyficznego wyciszania genów o sekwencji w wysokim stopniu homologicznej do wprowadzonego dsRNA (Fire i in., 1998). Następnie RNAi obserwowano u owadów, żab (Oelgeschlager i in., 2000) oraz innych zwierząt włącznie z myszami (Svoboda i in., 2000; Wianny i Zernicka-Goetz, 2000) i prawdopodobnie występuje ona także u ludzi. RNAi jest ściśle związana z mechanizmem posttranskrypcyjnego wyciszania genów (PTGS) w kosupresji w roślinach oraz tłumieniu u grzybów (Catalanotto i in., 2000; Cogoni i Macino, 1999; Dalmay i in., 2000; Ketting i Plasterk, 2000; Mourrain i in., 2000; Smardon i in., 2000), a niektóre składniki maszynerii RNAi są także potrzebne do posttranskrypcyjnego wyciszania przez kosupresję (Catalanotto i in., 2000; Dernburg i in., 2000; Ketting i Plasterk, 2000). Temat ten omawiano także ostatnio w pracach przeglądowych (Bass, 2000; Bosher i Labouesse, 2000; Fire, 1999; Plasterk i Ketting, 2000; Sharp, 1999; Sijen i Kooter, 2000), patrz także cały numer Plant Molecular Biology, tom 43, numer 2/3, (2000).
W roślinach, oprócz PTGS, wprowadzone transgeny mogą także prowadzić do transkrypcyjnego wyciszania genów w wyniku kierowanej przez RNA metylacji cytozyn w DNA (patrz pozycje literaturowe w Wassenegger, 2000). Docelowe miejsca w genomie zaledwie o 30 pz są metylowane w roślinach w sposób kierowany przez RNA (Pelissier, 2000). Metylacja DNA zachodzi także u ssaków.
Naturalną funkcją RNAi i kosupresji wydaje się być ochrona genomu przed inwazją mobilnych elementów genetycznych, takich jak retrotranspozony i wirusy, które, gdy stają się aktywne, wytwarzają obarczony aberacjami RNA lub dsRNA w komórce gospodarzu (Jensen i in., 1999; Ketting i in., 1999; Ratcliff i in., 1999; Tabara i in., 1999). Specyficzna degradacja mRNA przeciwdziała replikacji transpozonów i wirusów, jednakże niektóre wirusy są zdolne do przezwyciężenia tego procesu lub zapobiegania mu przez ekspresję białek hamujących PTGS (Lucy i in., 2000; Voinnet i in., 2000).
DsRNA uruchamia specyficzną degradację homologicznych RNA tylko w regionie identyczności z dsRNA (Zamore i in., 2000). DsRNA ulega obróbce do fragmentów RNA o 21- do 23-nt i docelowe miejsca cięcia RNA są regularnie oddzielone od siebie przez 21- do 23-nt. Zasugerowano zatem, że 21- do 23-nt fragmenty są kierującymi RNA w rozpoznawaniu miejsca docelowego (Zamore i in., 2000). Te krótkie RNA wykryto także w ekstraktach otrzymanych z komórek D. melanogaster Schneider 2, które były transfekowane dsRNA przed lizą komórek (Hammond i in., 2000), jednakże frakcje wykazujące specyficzną względem sekwencji aktywność nukleazową zawierały także dużą frakcję resztkowych dsRNA. Rola 21- - 23-nt fragmentów w kierowaniu cięciem mRNA została ponadto potwierdzona przez obserwację, że 21- - 23-nt fragmenty wyizolowane z poddanego obróbce dsRNA są zdolne, w pewnym stopniu, kierować degradacją mRNA (Zamore i in., 2000). Cząsteczki RNA podobnych wielkości także gromadzą się w tkance roślinnej wykazującej PTGS (Hamilton i Baulcombe, 1999).
Zastosowano ustalony in vitro układ Drosophila (Tuschl i in., 1999; Zamore i in., 2000), aby dokładniej zbadać mechanizm RNAi. Wykazano, że krótkie 21- i 22-nt RNA, gdy zostaną sparowane zasadami z jednoniciowymi wiszącymi 3'-końcami, działają jako RNA kierujące specyficzną względem sekwencji degradacją mRNA. Krótkie dsRNA o długości 30 pz nie są zdolne do kierowania RNAi w tym układzie, gdyż nie ulegają one już obróbce do 21- i 22-nt RNA. Ponadto zdefiniowano docelowe miejsca rozszczepiania RNA względem 21- i 22-nt krótkich interferujących RNA (siRNA) oraz dostarczono dowodu, że skierowanie obróbki dsRNA decyduje o tym, czy sensowny czy też antysensowny RNA może zostać pocięty przez wytworzenie kompleksu endonukleazowego siRNP. Ponadto siRNA mogą być także istotnymi narzędziami do modulacji transkrypcji, np. wyciszania genów ssaczych przez kierowanie metylacją DNA.
Dalsze doświadczenia w układach in vivo hodowli komórek ludzkich (komórki HeLa) wykazują, że cząsteczki dwuniciowego RNA o długości korzystnie 19-23 nukleotydów wykazują aktywność RNAi.
PL 218 876 B1
Celem leżącym u podstaw wynalazku jest dostarczenie nowych środków zdolnych do kierowania miejscowo specyficzną interferencją RNA, które to środki mają ulepszoną skuteczność i bezpieczeństwo w porównaniu z istniejącymi dotychczas środkami.
Rozwiązanie tego problemu zapewnia poniżej określona wyizolowana cząsteczka dwuniciowego RNA.
Tak więc wynalazek dotyczy wyizolowanej cząsteczki dwuniciowego RNA, w której każda nić RNA ma długość 19-23 nukleotydów, oraz w której co najmniej jedna nić ma jednoniciowy wiszący 3'-koniec o długości 1-3 nukleotydów, przy czym ta cząsteczka RNA jest zdolna do miejscowo specyficznej interferencji RNA.
Korzystnia jest cząsteczka RNA, w której każda nić ma długość 20-22 nukleotydów.
Korzystna jest cząsteczka RNA, w której jednoniciowy wiszący 3'-koniec jest stabilizowany względem degradacji.
Korzystna jest cząsteczka RNA, która zawiera co najmniej jeden zmodyfikowany analog nukleotydu.
Korzystnie zmodyfikowany analog nukleotydu jest wybrany spośród rybonukleotydów ze zmodyfikowaną resztą cukrową lub szkieletem.
Korzystniej analog nukleotydu jest rybonukleotydem ze zmodyfikowaną resztą cukrową, przy czym grupa 2'-OH jest zastąpiona grupą wybraną spośród H, OR, R, atomu chlorowca, SH, SR, NH2, NHR, NR2 i CN, gdzie R oznacza C1-C6 alkil, C1-C6 alkenyl lub C1-C6 alkinyl, a atom chlorowca oznacza F, Cl, Br lub I.
Ponadto korzystniej analog nukleotydu jest rybonukleotydem ze zmodyfikowanym szkieletem zawierającym grupę tiofosforanową.
Korzystna jest cząsteczka RNA mająca sekwencję o identyczności co najmniej 70% z wcześniej ustaloną docelową cząsteczką mRNA.
Wynalazek dotyczy także sposobu wytwarzania określonej powyżej cząsteczki dwuniciowego RNA, który charakteryzuje się tym, że (a) syntetyzuje się dwie nici RNA, każda o długości 19-23 nukleotydów, a ponadto co najmniej jedna nić ma jednoniciowy wiszący 3'-koniec o długości 1-3 nukleotydów, przy czym te nici RNA są zdolne do utworzenia cząsteczki dwuniciowego RNA, oraz (b) łączy się zsyntetyzowane nici RNA w warunkach, w których tworzona jest cząsteczka dwuniciowego RNA, zdolna do miejscowo specyficznej interferencji RNA.
Korzystnie w sposobie według wynalazku nici RNA syntetyzuje się chemicznie.
Ponadto korzystnie w sposobie według wynalazku nici RNA syntetyzuje się enzymatycznie.
Wynalazek dotyczy także zastosowania określonej powyżej cząsteczki dwuniciowego RNA do wytwarzania leku do modulowania działania genu związanego z patogenem.
Korzystnie w odniesieniu do powyższego zastosowania gen związany z patogenem jest genem wirusowym.
Wynalazek dotyczy także zastosowania określonej powyżej cząsteczki dwuniciowego RNA do wytwarzania leku do modulowania działania genu związanego z nowotworem.
Wynalazek dotyczy także zastosowania określonej powyżej cząsteczki dwuniciowego RNA do wytwarzania leku do modulowania działania genu związanego z chorobą autoimmunologiczną.
Ponadto wynalazek dotyczy sposobu in vitro kierowania miejscowo specyficznymi interferencjami RNA w komórce, który charakteryzuje się tym, że (a) kontaktuje się tę komórkę z określoną powyżej cząsteczką dwuniciowego RNA w warunkach, w których mogą zachodzić miejscowo specyficzne interferencje RNA, oraz (b) kieruje się miejscowo specyficzną interferencją RNA wywieraną przez dwuniciowy RNA na docelowym kwasie nukleinowym zawierającym część sekwencji zasadniczo odpowiadającą dwuniciowemu RNA.
Korzystnie w sposobie według wynalazku kontaktowanie obejmuje wprowadzenie tej cząsteczki dwuniciowego RNA do docelowej komórki, w której może zajść miejscowo specyficzna interferencja RNA.
Korzystnie w sposobie według wynalazku wprowadzenie obejmuje dostarczenie z użyciem nośnika lub iniekcję.
Ponadto wynalazek dotyczy zastosowania określonego powyżej sposobu in vitro kierowania miejscowo specyficznymi interferencjami RNA w komórce, do ustalania działania genu w komórce.
PL 218 876 B1
Ponadto wynalazek dotyczy zastosowania określonego powyżej sposobu in vitro kierowania miejscowo specyficznymi interferencjami RNA w komórce do modulowania działania genu w komórce.
Korzystnie w odniesieniu do powyższych zastosowań sposobu in vitro gen jest związany ze stanem patologicznym.
Ponadto wynalazek dotyczy środka farmaceutycznego zawierającego substancję czynną oraz farmaceutycznie dopuszczalny nośnik, którego cechą jest to, że jako substancję czynną zawiera co najmniej jedną określoną powyżej cząsteczkę dwuniciowego RNA.
Korzystnie środek farmaceutyczny według wynalazku jest przeznaczony do zastosowań diagnostycznych.
Korzystnie środek farmaceutyczny według wynalazku jest przeznaczony do zastosowań terapeutycznych.
Wynalazek ponadto dotyczy komórki eukariotycznej transfekowanej określoną powyżej cząsteczką RNA lub cząsteczką DNA kodującą tę cząsteczkę RNA.
Korzystnie komórka eukariotyczna według wynalazku jest komórką ssaczą.
Korzystnie komórka eukariotyczna według wynalazku jest komórką ludzką.
Korzystnie komórka eukariotyczna według wynalazku jest transfekowana ponadto co najmniej jednym egzogennym docelowym kwasem nukleinowym kodującym docelowe białko lub wariant lub zmutowaną postać docelowego białka, przy czym ten egzogenny docelowy kwas nukleinowy różni się od endogennego genu docelowego na poziomie kwasu nukleinowego, tak że ekspresja egzogennego docelowego kwasu nukleinowego jest zasadniczo mniej hamowana przez cząsteczkę dwuniciowego RNA niż ekspresja endogennego genu docelowego.
Korzystnie w odniesieniu do komórki eukariotycznej według wynalazku egzogenny docelowy kwas nukleinowy jest zfuzowany z kolejną sekwencją kwasu nukleinowego kodującą wykrywalny peptyd lub polipeptyd.
Wynalazek dotyczy także zastosowania określonej powyżej komórki eukariotycznej w procedurach analitycznych.
Korzystne jest zastosowanie określonej powyżej komórki eukariotycznej do analizy profili ekspresji genów.
Korzystnie jest zastosowanie określonej powyżej komórki eukariotycznej do analizy proteomu.
Korzystnie w odniesieniu do określonych powyżej zastosowań komórki eukariotycznej prowadzi się analizę wariantu lub zmutowanej postaci docelowego białka kodowanego przez egzogenny docelowy kwas nukleinowy.
Korzystniejsze jest zastosowanie określonej powyżej komórki eukariotycznej do identyfikacji domen funkcjonalnych docelowego białka.
Korzystnie w odniesieniu do określonych powyżej zastosowań komórki eukariotycznej prowadzi się porównanie co najmniej dwóch komórek, wybranych spośród:
(i) kontrolnej komórki bez zahamowania docelowego genu;
(ii) komórki z zahamowaniem docelowego genu oraz (iii) komórki z zahamowaniem docelowego genu oraz komplementacją docelowego genu przez egzogenny docelowy kwas nukleinowy.
Korzystnie w odniesieniu do określonych powyżej zastosowań komórki eukariotycznej analiza obejmuje analizę funkcjonalną i/lub fenotypową.
Korzystne jest zastosowanie komórki eukariotycznej do wyodrębniania białek lub kompleksów białkowych z komórek eukariotycznych.
Jeszcze korzystne jest zastosowanie komórki eukariotycznej do wyodrębniania wysokocząsteczkowych kompleksów białkowych, które mogą dodatkowo zawierać kwasy nukleinowe.
Wynalazek dotyczy także zastosowania określonej powyżej komórki eukariotycznej w procedurach preparatywnych.
W odniesieniu do określonych powyżej zastosowań korzystne jest zastosowanie komórki eukariotycznej w procedurze identyfikacji i/lub charakteryzacji środków farmakologicznych.
Jak podano powyżej, co najmniej jedna nić ma jednoniciowy wiszący 3'-koniec o długości 1-3 nukleotydów, a korzystnie o długości dwóch nukleotydów. Druga nić może mieć tępe końce lub mieć jednoniciowy wiszący 3'-koniec o długości do sześciu nukleotydów. Także, jeżeli obie nici dsRNA mają długość dokładnie 21- lub 22-nt, możliwe jest obserwowanie pewnej interferencji RNA gdy oba końce są tępe (0 nt w jednoniciowym wiszącym 3' końcu). Cząsteczka RNA jest korzystnie syntetyczną cząsteczką RNA zasadniczo wolną od zanieczyszczeń występujących w ekstraktach komórkowych,
PL 218 876 B1 np. z embrionów Drosophila. Ponadto cząsteczka RNA jest korzystnie zasadniczo wolna od jakichkolwiek nie miejscowo specyficznych zanieczyszczeń, w szczególności nie miejscowo specyficznych cząsteczek RNA np. od zanieczyszczeń występujących w ekstraktach komórkowych.
Wyizolowane cząsteczki dwuniciowego RNA, w których każda nić RNA ma długość 19 - 23 nukleotydów, oraz w których co najmniej jedna nić ma jednoniciowy wiszący 3'-koniec o długości 1 - 3 nukleotydów, stosuje się do kierowania RNAi, w komorkach ssaczych, w szczególności w komórkach ludzkich.
Nieoczekiwanie stwierdzono, że syntetyczne krótkie cząsteczki dwuniciowego RNA, z jednoniciowym wiszącym 3'-końcem, są specyficznymi względem sekwencji mediatorami RNAi i pośredniczą w wydajnym rozszczepianiu docelowego RNA, przy czym miejsce rozszczepienia jest umiejscowione w pobliżu środka regionu obejmującego krótki kierujący RNA.
Korzystnie każda nić cząsteczki RNA ma długość 20 - 22 nukleotydów (lub 20 - 23 nukleotydów w komórkach ssaczych), przy czym długość każdej nici może być taka sama lub różna. Długość jednoniciowego wiszącego 3'-końca wynosi 1-3 nukleotydy, przy czym długość jednoniciowego wiszącego końca może być taka sama lub różna dla każdej nici. Nici RNA korzystnie zawierają grupy 3'-hydroksylowe. Na 5'-końcu korzystnie znajduje się grupa fosforanowa, difosforanowa, trifosforanowa lub hydroksylowa. Najskuteczniejsze dsRNA składają się z dwu nici 21-nt, które są sparowane tak, że 1 - 3, w szczególności 2-nt jednoniciowe wiszące 3'-końce są obecne na obu końcach dsRNA.
Reakcja rozszczepiania docelowego RNA kierowana przez siRNA jest wysoce specyficzna względem sekwencji. Jednakże, nie wszystkie pozycje siRNA w równym stopniu uczestniczą w rozpoznawaniu docelowego RNA. Błędnie sparowane zasady w centrum dupleksu siRNA mają decydujące znaczenie i zasadniczo znoszą rozszczepianie docelowego RNA. W odróżnieniu od tego, 3' nukleotyd nici siRNA (np. pozycja 21), który jest komplementarny do jednoniciowego docelowego RNA, nie wpływa na specyficzność rozpoznania docelowego RNA. Ponadto sekwencja niesparowanego 2-nt jednoniciowego wiszącego 3'-końca nici siRNA o tej samej polarności, co docelowy RNA, nie jest wymagana do rozszczepiania docelowego RNA, gdyż tylko antysensowna nić siRNA pośredniczy w rozpoznaniu docelowego RNA. Zatem z nukleotydów jednoniciowego wiszącego końca tylko przedostatnia pozycja antysensownego siRNA (np. pozycja 20) wymaga dopasowania z docelowym sensownym mRNA.
Nieoczekiwanie, cząsteczki dwuniciowego RNA według wynalazku wykazują wysoką stabilność in vivo w surowicy lub w podłożu hodowlanym dla hodowli komórkowych. W celu dalszego wzmocnienia stabilności, jednoniciowe wiszące 3'-końce można stabilizować przed degradacją, np. można je wybrać tak, by składały się one z nukleotydów purynowych, w szczególności nukleotydów adenozynowych lub guanozynowych. Alternatywnie, podstawienie nukleotydów pirymidynowych zmodyfikowanymi analogami, np. podstawienie urydyny w 2-nt jednoniciowych wiszących 3'-końcach 2'-deoksytymidyną jest tolerowane i nie wpływa na wydajność interferencji RNA. Brak grupy 2'-hydroksylowej w istotny sposób zwiększa odporność na nukleazę jednoniciowego końca w podłożu do hodowli tkankowych.
Jak podano powyżej, cząsteczka RNA może zawierać co najmniej jeden zmodyfikowany analog nukleotydu. Analogi nukleotydu mogą być umiejscowione w pozycjach, w których nie wpływa to zasadniczo na miejscowo specyficzną aktywność, np. aktywność kierującą RNAi, np. w regionie 5'-końca i/lub 3'-końca cząsteczki dwuniciowego RNA. W szczególności jednoniciowe wiszące końce mogą być stabilizowane przez wprowadzenie analogów nukleotydów.
Korzystne analogi nukleotydów wybiera się spośród rybonukleotydów ze zmodyfikowaną resztą cukrową lub szkieletem. Należy zauważyć, że odpowiednie są także rybonukleotydy ze zmodyfikowaną zasadą nukleinową, tj. rybonukleotydy zawierające nie występującą naturalnie zasadę nukleinową zamiast naturalnie występującej zasady nukleinowej, takie jak urydyny lub cytydyny zmodyfikowane w pozycji 5, np. 5-(2-amino)propylourydyna, 5-bromourydyna; adenozyny i guanozyny zmodyfikowane w pozycji 8, np. 8-bromoguanozyna; deazanukleotydy, np. 7-deazaadenozyna; O- i N-alkilowane nukleotydy, np. N6-metyloadenozyna. W korzystnych rybonukleotydach ze zmodyfikowaną resztą cukrową grupa 2'-OH jest zastąpiona grupą wybraną spośród H, OR, R, atomu chlorowca, SH, SR, NH2, NHR, NR2 i CN, przy czym R oznacza C1-C6 alkil, C1-C6 alkenyl lub C1-C6 alkinyl, a atom chlorowca oznacza F, Cl, Br lub I. W korzystnych rybonukleotydach ze zmodyfikowanym szkieletem grupa fosfoestrowa łącząca przyległe rybonukleotydy jest zastąpiona zmodyfikowaną grupą, np. grupą tiofosforanową. Należy zauważyć, że powyższe modyfikacje mogą być połączone.
PL 218 876 B1
Sekwencja cząsteczki dwuniciowego RNA według wynalazku wykazuje wystarczającą identyczność z docelową cząsteczką kwasu nukleinowego aby kierowała ona miejscowo specyficzną RNAi. Korzystnie sekwencja wykazuje co najmniej 70% identyczność z wymaganą docelową cząsteczką w dwuniciowej części cząsteczki RNA. Korzystniej identyczność wynosi co najmniej 85%, a najkorzystniej 100% w dwuniciowej części cząsteczki RNA. Identyczność cząsteczki dwuniciowego RNA z wyznaczoną wcześniej docelową cząsteczką kwasu nukleinowego, np. docelową cząsteczką mRNA, można wyznaczyć w następujący sposób.
I = - x 100
L gdzie I oznacza procent identyczności, n oznacza liczbę identycznych nukleotydów w dwuniciowej części dsRNA i docelowej sekwencji, a L oznacza długość pokrywających się sekwencji dwuniciowej części dsRNA i docelowej sekwencji.
Alternatywnie identyczność cząsteczki dwuniciowego RNA z docelową sekwencją można także zdefiniować z uwzględnieniem jednoniciowych wiszących 3'-końców, w szczególności jednoniciowego wiszącego końca o długości 1-3 nukleotydów. W tym przypadku identyczność sekwencji z sekwencją docelową wynosi co najmniej 70%, a korzystniej co najmniej 85%. Przykładowo, nukleotydy od jednoniciowego wiszącego 3'-końca oraz do 2 nukleotydów z 5'- i/lub 3'-końca dwuniciowego fragmentu mogą być zmodyfikowane bez istotnej utraty aktywności.
Cząsteczkę dwuniciowego RNA według wynalazku można wytwarzać sposobem obejmującym etapy:
(a) syntezy dwu nici RNA, każdej o długości 19-23 nukleotydów, a ponadto co najmniej jedna nić ma wiszący jednoniciowy 3'-koniec o długości 1-3 nukleotydów, przy czym te nici RNA są zdolne do utworzenia cząsteczki dwuniciowego RNA, (b) połączenia zsyntetyzowanych nici RNA w warunkach, w których tworzona jest cząsteczka dwuniciowego RNA, która jest zdolna do pośredniczenia w miejscowo specyficznej interferencji RNA.
Sposoby syntezy cząsteczek RNA są znane. W tym kontekście odnoszą się one szczególnie do metod syntezy chemicznej opisanych w Verma i Eckstein (1998).
Jednoniciowe RNA można także wytwarzać przez enzymatyczną transkrypcję z syntetycznych matryc DNA lub z plazmidów DNA wyizolowanych ze zrekombinowanych bakterii. Zazwyczaj stosuje się fagowe polimerazy RNA, takie jak polimeraza RNA T7, T3 lub SP6 (Milligan i Uhlenbeck (1989)).
Jak podano powyżej, sposób in vitro kierowania miejscowo specyficznymi interferencjami RNA w komórce, polega na tym, że:
(a) kontaktuje się komórkę z cząsteczką dwuniciowego RNA według wynalazku w warunkach, w których mogą wystąpić miejscowo specyficzne interferencje RNA oraz (b) kieruje się miejscowo specyficzną interferencją RNA wywołaną przez dwuniciowy RNA na docelowym kwasie nukleinowym mającym część sekwencji zasadniczo odpowiadającą dwuniciowemu RNA.
Korzystnie etap kontaktowania (a) obejmuje wprowadzenie cząsteczki dwuniciowego RNA do docelowej komórki, np. wyizolowanej komórki docelowej, np. w hodowli komórkowej, do organizmu jednokomórkowego lub komórki docelowej lub większej liczby komórek docelowych w organizmie wielokomórkowym. Korzystniej, etap wprowadzenia obejmuje dostarczanie z użyciem nośnika, np. przez nośniki liposomowe, albo przez iniekcję.
Sposób in vitro według wynalazku można stosować do ustalania funkcji genu w komórce lub organizmie lub nawet do modulowania funkcji genu w komórce lub organizmie, przez zdolność pośredniczenia w interferencji RNA. Komórka jest korzystnie komórką eukariotyczną lub linią komórkową, np. komórką roślinną lub komórką zwierzęcą, taką jak ssacza komórka, np. komórka embrionalna, macierzysta komórka pluripotentna, komórka nowotworowa, np. komórka potworniaka złośliwego lub komórka zakażona wirusem. Organizm jest korzystnie organizmem eukariotycznym, np. rośliną lub zwierzęciem, takim jak ssak, w szczególności człowiek.
Docelowy gen, do którego skierowana jest cząsteczka RNA według wynalazku, może być związany ze stanem patologicznym. Przykładowo, gen może być genem związanym z patogenem, np. genem wirusowym, genem związanym z nowotworem lub genem związanym z chorobą autoimmunologiczną. Docelowy gen może także być genem heterologicznym wyrażanym w zrekombinowanej komórce lub genetycznie zmienionym organizmie. Przez ustalenie lub modulację, w szczególności zahamowanie działania takiego genu, można uzyskać cenne informacje oraz korzyści terapeutyczne w dziedzinie rolnictwa lub medycyny albo weterynarii.
PL 218 876 B1 dsRNA zazwyczaj podaje się jako środek farmaceutyczny. Podawanie można prowadzić znanymi sposobami, w których kwas nukleinowy wprowadza się do żądanej komórki docelowej in vitro lub in vivo. Często stosowane techniki transferu obejmują zastosowanie fosforanu wapnia, DEAEdekstranu, elektroporację oraz mikroiniekcję i metody wirusowe (Graham, F. L. i van der Eb, A. J. (1973) Virol. 52, 456; McCutchan, J. H. i Pagano, J. S. (1968), J. Natl. Cancer Inst. 41, 351; Chu, G. i in. (1987), Nucl. Acids Res. 15, 1311; Fraley, R. i in. (1980), J. Biol. Chem. 255, 10431; Capecchi, M. R. (1980), Cell 22, 479). Niedawnym dodatkiem do tego arsenału technik wprowadzania DNA do komórek jest zastosowanie kationowych liposomów (Felgner, P. L. i in. (1987), Proc. Natl. Acad. Sci USA 84, 7413). Dostępnymi w handlu preparatami kationowych lipidów są np. Tfx 50 (Promega) lub Lipofectamin 2000 (Life Technologies).
Jak podano powyżej, środek farmaceutyczny zawiera jako substancję czynną co najmniej jedną cząsteczkę dwuniciowego RNA, jak opisano powyżej, oraz nośnik farmaceutyczny. Środek można stosować w celach diagnostycznych i terapeutycznych w medycynie ludzi oraz w weterynarii.
Do zastosowań diagnostycznych i terapeutycznych, środek może być w postaci roztworu, np. roztworu do iniekcji, kremu, maści, tabletki, zawiesiny, itp. Środek można podawać w jakikolwiek odpowiedni sposób, np. drogą iniekcji, doustnie, miejscowo, donosowo, doodbytniczo, itp. Nośnikiem może być jakikolwiek odpowiedni nośnik farmaceutyczny. Korzystnie, stosuje się nośnik, który jest zdolny do zwiększenia wydajności wchodzenia cząsteczek RNA do komórek docelowych. Odpowiednimi przykładami takich nośników są liposomy, w szczególności kationowe liposomy. Kolejny korzystny sposób podawania stanowi iniekcja.
Kolejnym korzystnym zastosowaniem sposobu RNAi jest funkcjonalna analiza komórek eukariotycznych lub organizmów eukariotycznych, z wyjątkiem ludzi, korzystnie ssaczych komórek lub organizmów, a najkorzystniej komórek ludzkich, np. linii komórkowych, takich jak HeLa lub 293, albo gryzoni, np. szczurów i myszy. Przez transfekcję odpowiednich cząsteczek dwuniciowego RNA, które są homologiczne do wcześniej wyznaczonego genu docelowego lub cząsteczek DNA kodujących odpowiednią cząsteczkę dwuniciowego RNA, można uzyskać specyficzny fenotyp nokaut w komórce docelowej, np. w hodowli komórkowej lub w organizmie docelowym. Nieoczekiwanie stwierdzono, że obecność krótkich cząsteczek dwuniciowego RNA nie wywołuje odpowiedzi interferonowej z komórki gospodarza lub organizmu gospodarza.
Komórka eukariotyczna według wynalazku wykazuje fenotyp nokaut specyficzny dla docelowego genu, obejmujący co najmniej częściowy niedobór ekspresji co najmniej jednego endogennego genu docelowego, przy czym ta komórka jest transfekowana co najmniej jedną cząsteczką dwuniciowego RNA, zdolną do hamowania ekspresji co najmniej jednego endogennego docelowego genu, lub DNA kodującym co najmniej jedną cząsteczkę dwuniciowego RNA zdolną do hamowania ekspresji co najmniej jednego endogennego docelowego genu. Należy podkreślić, że wynalazek pozwala na miejscowo specyficzny nokaut kilku różnych endogennych genów ze względu na specyficzność RNAi.
Genowo specyficzne znokautowane fenotypy komórek, w szczególności komórek ludzkich, można stosować w procedurach analitycznych, np. w funkcjonalnej i/lub fenotypowej analizie złożonych procesów fizjologicznych, takich jak analiza profili ekspresji genów i/lub proteomów. Przykładowo, można otrzymać znokautowane fenotypy ludzkich genów w hodowlach komórkowych, co do których uważa się, że są regulatorami procesu alternatywnego składania. Pośród tych genów są szczególnie członkowie rodziny czynnika splicingowego SR, np. ASF/SF2, SC35, SRp20, SRp40 lub SRp55. Ponadto, można analizować wpływ białek SR na profile mRNA wcześniej ustalonych alternatywnie złożonych genów, takich jak CD44. Korzystnie analizę prowadzi się metodami o dużej rozdzielczości stosując chipy oparte na oligonukleotydach.
Przy zastosowaniu technologii nokaut opartych na RNAi, można zahamować ekspresję endogennego genu docelowego w komórce docelowej lub organizmie docelowym. Endogenny gen może zostać skomplementowany przez egzogenny docelowy kwas nukleinowy kodujący docelowe białko lub wariant albo zmutowaną postać docelowego białka, np. gen lub cDNA, który może być dodatkowo zfuzowany z kolejną sekwencją kwasu nukleinowego kodującą wykrywalny peptyd lub polipeptyd, np. znacznik powinowactwa, w szczególności wielokrotny znacznik powinowactwa. Warianty lub zmutowane postacie docelowego genu różnią się od endogennego docelowego genu tym, że kodują one produkt genu, który różni się od endogennego produktu genu na poziomie aminokwasowym przez podstawienia, insercje i/lub delecje jednego lub większej liczby aminokwasów. Warianty lub zmutowane postacie mogą mieć taką samą aktywność biologiczną jak endogenny gen docelowy. Z drugiej strony, wariant lub zmutowany gen docelowy może także wykazywać aktywność biologiczną, która
PL 218 876 B1 różni się od aktywności biologicznej endogennego genu docelowego, np. częściowo zniesioną aktywność, całkowicie zniesioną aktywność lub podwyższoną aktywność itd.
Komplementację można osiągnąć przez koekspresję polipeptydu kodowanego przez egzogenny kwas nukleinowy, np. białka fuzyjnego zawierającego białko docelowe i znacznik powinowactwa oraz cząsteczki dwuniciowego RNA w celu nokautu endogennego genu w komórce docelowej. Taką koekspresję można osiągnąć przez zastosowanie odpowiedniego wektora ekspresyjnego, wyrażającego zarówno polipeptyd kodowany przez egzogenny kwas nukleinowy, np. białko docelowe zmodyfikowane znacznikiem, jak i cząsteczkę dwuniciowego RNA, albo wariantowo przez zastosowanie połączenia wektorów ekspresyjnych. Białka i kompleksy białkowe, które są syntetyzowane de novo w komórce docelowej, będą zawierać produkt egzogennego genu, np. zmodyfikowane białko fuzyjne. Aby zapobiec tłumieniu ekspresji produktu egzogennego genu przez cząsteczkę dupleksową RNAi, sekwencja nukleotydowa kodująca egzogenny kwas nukleinowy może zostać zmieniona na poziomie DNA (z lub bez wywoływania mutacji na poziomie aminokwasowym) w części sekwencji, która jest homologiczna z cząsteczką dwuniciowego RNA. Alternatywnie, endogenny gen docelowy może zostać skomplementowany przez odpowiednie sekwencje nukleotydowe z innych gatunków, np. z myszy.
Korzystnym zastosowaniem dla komórki według wynalazku jest analiza profili ekspresji genów i/lub proteomów. W szczególnie korzystnej postaci prowadzi się analizę wariantu lub zmutowanej postaci jednego lub kilku docelowych białek, przy czym te warianty lub zmutowane postacie ponownie wprowadza się do komórki przez egzogenny docelowy kwas nukleinowy, jak opisano powyżej. Połączenie nokautu endogennego genu i ratunku przez zastosowanie zmutowanego, np. częściowo wydeletowanego egzogennego docelowego kwasu nukleinowego ma zalety w porównaniu z zastosowaniem komórki nokaut. Sposób ten jest ponadto szczególnie odpowiedni do identyfikacji funkcjonalnych domen docelowego białka. W kolejnej korzystnej postaci przeprowadza się porównanie, np. profili ekspresji genów i/lub proteomów i/lub charakterystyki fenotypowej co najmniej dwóch komórek wybranych spośród:
(i) kontrolnej komórki bez zahamowania docelowego genu, (ii) komórki z zahamowaniem docelowego genu oraz (iii) komórki z zahamowaniem docelowego genu oraz komplementacją genu docelowego przez egzogenny docelowy kwas nukleinowy.
Sposób i komórka według wynalazku są także odpowiednie w procedurze identyfikacji i/lub charakteryzacji środków farmakologicznych, np. identyfikacji nowych środków farmakologicznych ze zbioru badanych substancji i/lub charakteryzacji mechanizmów działania i/lub skutków ubocznych znanych środków farmakologicznych.
Ponadto metodę nokautu komplementacji RNA można stosować do celów preparatywnych, np. do oczyszczania przez powinowactwo białek lub kompleksów białkowych z komórek eukariotycznych, w szczególności komórek ssaczych, a zwłaszcza komórek ludzkich. W tej postaci wynalazku, egozgenny docelowy kwas nukleinowy korzystnie koduje białko docelowe, które jest zfuzowane ze znacznikiem powinowactwa.
Metodę preparatywną można stosować do oczyszczania kompleksów białkowych o dużej masie cząsteczkowej, które korzystnie mają masę > 150 kD, korzystniej > 500 kD, oraz które ewentualnie mogą zawierać kwasy nukleinowe, takie jak RNA. Konkretne przykłady stanowi heterotrimeryczny kompleks białkowy składający się z białek 20 kD, 60 kD i 90 kD cząstki U4/U6 snRNP, czynnik składania SF3b z 17S U2 snRNP składający się z pięciu białek o masach cząsteczkowych 14, 49, 120, 145 i 155 kD oraz cząstka tri-snRNP 25S U4/U6/U5, zawierająca cząsteczki U4, U5 i U6 snRNA, oraz około 30 białek, które mają masę cząsteczkową około 1,7 MD.
Metoda ta jest odpowiednia do funkcjonalnej analizy proteomu w komórkach ssaczych, w szczególności w komórkach ludzkich.
Wynalazek jest dokładniej wyjaśniony na poniższych figurach i w przykładach.
Opisy figur
Figura 1: Dwuniciowy RNA o zaledwie 38 pz może kierować RNAi (A) Graficzne przedstawienie dsRNA stosowanego do skierowania do Pp-luc mRNA. Otrzymano trzy serie dsRNA o tępych końcach pokrywających zakres 29-504 pz. Pozycję pierwszego nukleotydu w nici sensownej dsRNA wskazano względem kodonu start Pp-luc mRNA (p1).
(B) Test interferencji RNA (Tuschl i in., 1999). Stosunek aktywności docelowej Pp-luc do kontrolnej Rr-luc normalizowano względem kontrolnego buforu (czarny słupek). DsRNA (5 nM) wstępnie inkubowano w lizacie Drosophila przez 15 minut w 25°C przed dodaniem mRNA Pp-luc i Rr-luc z czaPL 218 876 B1 peczką z 7-metyloguanozyny (~50 pM). Inkubację kontynuowano przez kolejną godzinę, a następnie analizowano za pomocą podwójnego testu lucyferazy (Promega). Dane stanowią średnie z co najmniej czterech niezależnych doświadczeń ± odchylenie standardowe.
Figura 2: dsRNA o długości 29 pz nie ulega obróbce do 21- do 23-nt fragmentów
Przebieg w czasie powstawania 21- do 23-meru przez obróbkę wewnętrznie znakowanych 32P dsRNA (5 nM) w lizacie Drosophila. Wskazano długość i źródło dsRNA. Znacznik wielkości RNA (M) naniesiono w lewej ścieżce i wskazano wielkości fragmentów. Podwójne prążki w czasie zero wynikają z niecałkowicie zdenaturowanego dsRNA.
Figura 3: Krótkie dsRNA rozszczepiają docelowy mRNA tylko raz (A) Elektroforeza na żelu denaturującym stabilnych 5' produktów rozszczepiania wytworzonych w ciągu 1 godzinnej inkubacji 10 nM sensownego lub antysensownego RNA znakowanego w cza32 peczce 32P z użyciem 10 nM dsRNA serii p133 w lizacie Drosophila. Znaczniki długości wytworzono przez częściowe trawienie nukleazą T1 i częściową hydrolizę zasadową (OH) znakowanego w czapeczce RNA. Regiony do których skierowano dsRNA wskazano przez czarne paski na obu stronach. Wskazano 20- do 23-nt rozdzielające dominujące miejsca rozszczepiania dla dsRNA o długości 111 pz. Pozioma strzałka wskazuje niespecyficzne rozszczepianie nie wynikające z RNAi.
(B) Pozycja miejsc rozszczepiania na sensownym i antysensownym docelowym RNA. Sekwencje 177-nt sensownych i 180-nt antysensownych docelowych RNA z czapeczką przedstawiono w antyrównoległej orientacji, tak, że sekwencje komplementarne są naprzeciw siebie. Regiony, do których były skierowane różne dsRNA, wskazano jako słupki o różnej barwie, umiejscowione pomiędzy seksowną i antysensowną sekwencją docelową. Miejsca rozszczepiania wskazano kółkami: duże kółka dla silnego rozszczepiania, małe kółka dla słabego rozszczepiania. Grupę fosforanową znakowaną 32 radioaktywnie 32P wskazano gwiazdką.
Figura 4: Fragmenty RNA o długości 21- i 22-nt wytwarza się według mechanizmu podobnego do działania RNazy III (A) Sekwencje RNA o długości ~21-nt po obróbce dsRNA.
Fragmenty RNA o długości ~21-nt wytworzone przez obróbkę dsRNA bezpośrednio sklonowano i zsekwencjonowano. Oligorybonukleotydy pochodzące z nici sensownej dsRNA wskazano jako niebieskie linie, pochodzące z nici antysensownej wskazano jako czerwone linie. Grube słupki zastosowano, gdy te same sekwencje były obecne w wielu klonach, a numer po prawej stronie wskazuje częstość. Miejsca rozszczepiania docelowego RNA kierowanego przez dsRNA wskazano jako pomarańczowe kółka, duże kółka dla silnego rozszczepiania, małe kółka dla słabego rozszczepiania (patrz fig. 3B). Kółka na górze nici sensownej oznaczają miejsca rozszczepiania w sensownej nici docelowej, a kółka na dole dsRNA wskazują miejsca rozszczepiania w antysensownej nici docelowej. W ~21-nt fragmentach pochodzących z 3'-końców dsRNA zidentyfikowano do pięciu dodatkowych nukleotydów. Nukleotydy te były losowymi kombinacjami głównie reszt C, G lub A i najprawdopodobniej zostały dodane w sposób niezależny od matrycy podczas transkrypcji T7 nici stanowiących dsRNA.
(B) Dwuwymiarowa analiza TLC składu nukleotydowego ~21-nt RNA. ~21-nt RNA wytworzono przez inkubację wewnętrznie znakowanego radioaktywnie dsRNA Pp-luc o długości 504 pz w lizacie
Drosophila, oczyszczono na żelu, a następnie strawiono do mononukleotydów z użyciem nukleazy P1 (górny rząd) lub rybonukleazy T2 (dolny rząd). dsRNA był wewnętrznie znakowany radioaktywnie 32 przez transkrypcję w obecności jednego ze wskazanych a- p trifosforanów nukleozydów. Radioaktywność wykrywano metodą luminescencyjnego obrazowania. 5'-Monofosforany nukleozydów, 3'-monofosforany nukleozydów, 5',3'-difosforany nukleozydów oraz nieorganiczny fosforan wskazano odpowiednio jako pN, Np, pNp, i pi. Czarne kółka wskazują plamy absorbujące w UV z nie radioaktywnych nukleotydów nośnikowych. 3',5'-Bisfosforany (czerwone kółka) zidentyfikowano przez wspólną migrację ze znakowanymi radioaktywnie wzorcami otrzymanymi przez 5'-fosforylację 3'-mono-fosforanów nukleozydów kinazą polinukleotydową T4 i γ- p-ATP.
Figura 5: Syntetyczne RNA o długości 21- i 22-nt pośredniczą w rozszczepianiu docelowego
RNA (A) Graficzne przedstawienie kontrolnego dsRNA o długości 52 pz i syntetycznych dsRNA o długości 21- i 22-nt. Nić sensowną krótkich interferujących RNA (siRNA) o długości 21 i 22-nt zaznaczono na niebiesko, a nić antysensowną na czerwono. Sekwencje siRNA wyprowadzono ze sklonowanych fragmentów dsRNA o długości 52 i 111 pz (fig. 4A), z wyjątkiem antysensownej nici o długości 22 nt dupleksu 5. siRNA w dupleksie 6 i 7 były unikalne dla reakcji obróbki dsRNA o długości 111 pz. Dwa nukleotydy wiszące w postaci jednoniciowego 3'-końca zaznaczone na zielono są obecne
PL 218 876 B1 w sekwencjach syntetycznych nici antysensownych dupleksów 1 i 3. Obie nici kontrolnego dsRNA o długości 52 pz otrzymano przez transkrypcję in vitro i frakcja transkryptów może zawierać nie zależną od matrycy addycję nukleotydu na 3'-końcu. Miejsca rozszczepiania docelowego. RNA kierowanego przez dupleksy siRNA wskazano jako pomarańczowe kółka (patrz legenda do fig. 4A) i wyznaczono je w sposób przedstawiony na fig. 5B.
(B) Pozycja miejsc rozszczepiania na sensownym i antysensownym docelowym RNA. Docelowe sekwencje RNA opisano jak na fig. 3B. Kontrolny dsRNA o długości 52 pz (10 nM) lub dupleksy RNA 1-7 o długości 21 i 22 nt (100 nM) inkubowano z docelowym RNA przez 2,5 godziny w 25°C w lizacie Drosophila. Stabilne 5'-produkty rozszczepiania rozdzielono na żelu. Miejsca rozszczepiania wskazano na fig. 5A. Region, do którego skierowany był dsRNA o długości 52 pz albo sensowna (s) lub antysensowna (as) nić, zaznaczono jako czarne słupki z boku żelu. Wszystkie miejsca rozszczepiania są zlokalizowane w regionie identyczności dsRNA. Do precyzyjnego wyznaczenia miejsc rozszczepiania nici antysensownej zastosowano żel o niższym stężeniu procentowym.
Fig. 6: Długie jednoniciowe wiszące 3'-końce na krótkich dsRNA hamują RNAi (A) Graficzne przedstawienie konstruktów dsRNA o długości 52 pz. Wydłużenia 3'-końca nici sensownej i antysensownej zaznaczono odpowiednio kolorem niebieskim i czerwonym. Obserwowane miejsca rozszczepiania na docelowych RNA przedstawiono jako pomarańczowe kółka analogicznie do fig. 4A, przy czym wyznaczono je jak pokazano na fig. 6B.
(B) Pozycja miejsc rozszczepiania na sensownym i antysensownym docelowym RNA. Docelowe sekwencje RNA opisano jak na fig. 3B. DsRNA (10 nM) inkubowano z docelowym RNA przez
2,5 godziny w 25°C w lizacie Drosophila. Stabilne 5'-produkty rozszczepiania rozdzielono na żelu. Główne miejsca rozszczepiania wskazano poziomą strzałką oraz przedstawiono je także na fig. 6A. Region, do którego skierowany był dsRNA o długości 52 pz wskazano jako czarne słupki po obu stronach żelu.
Figura 7: Proponowany model RNAi
Przewiduje się, że RNAi zaczyna się od obróbki dsRNA (nić sensowna na czarno, nić antysensowna na czerwono) głównie do krótkich interferujących RNA (siRNA) o długości 21 i 22 nt. Krótkie jednoniciowe wiszące 3'-końcowe nukleotydy, gdy są obecne na dsRNA, mogą być korzystne dla obróbki krótkich dsRNA. Białka obróbki dsRNA, które nie zostały scharakteryzowane, przedstawiono jako zielone i niebieskie owalne kształty i są one złożone na dsRNA w sposób asymetryczny. W tym modelu, jest to zilustrowane przez wiązanie hipotetycznego niebieskiego białka lub domeny białkowej z nicią siRNA w kierunku 3' do 5', podczas gdy hipotetyczne zielone białko lub domena białkowa zawsze jest związana z przeciwległą nicią siRNA. Te białka lub podzestawy pozostają związane z dupleksem siRNA i zabezpieczają jego orientację wyznaczoną przez kierunek reakcji obróbki dsRNA. Tylko sekwencja siRNA związana z niebieskim białkiem jest zdolna do kierowania rozszczepianiem docelowego RNA. Kompleks endonukleazowy jest określany jako kompleks małej interferującej rybonukleoproteiny lub siRNP. Przypuszcza się tutaj, że endonukleaza rozszczepiająca dsRNA może także rozszczepić docelowy RNA, prawdopodobnie przez tymczasowe przemieszczenie biernej nici siRNA nie wykorzystywanej do rozpoznania docelowej sekwencji. Następnie docelowy RNA jest rozszczepiany w centrum rozpoznanego regionu przez komplementarny do sekwencji kierujący siRNA.
Figura 8: Konstrukty reporterowe i dupleksy siRNA (a) Przedstawiono regiony genów reporterowych lucyferazy ze świetlika (Photinus pyralis) (Ppluc) lub Renilla reniformis (Rr-luc) z plazmidów pGL2-Control, pGL-3-Control i pRL-TK (Promega). Wskazano elementy regulatorowe SV40, promotor kinazy tymidynowej HSV oraz dwa introny (linie). Sekwencja lucyferazy GL3 jest w 95% identyczna z GL2, ale RL jest całkowicie niepodobna do obydwu z nich. Ekspresja lucyferazy z pGL2 jest około dziesięciokrotnie niższa niż z pGL3 w transfekowanych komórkach ssaczych. Region do którego skierowane były dupleksy siRNA wskazano jako czarny słupek poniżej regionu kodującego genów lucyferazy.
(b) Przedstawiono sekwencje sensowną (górna) i antysensowną (dolna) dupleksów siRNA skierowanych do GL2, GL3 i RL lucyferazy. Dupleksy GL2 i GL3 siRNA różnią się tylko trzema jednonukleotydowymi podstawieniami (zaznaczonymi na szaro). W celu niespecyficznej kontroli zsyntetyzowano dupleks z odwróconą sekwencją GL2, invGL2. Dwunukleotydowy jednoniciowy wiszący 3'-koniec 2'-deoksytymidyny wskazano jako TT; uGL2 jest podobna do GL2 siRNA, ale zawiera rybourydynowe jednoniciowe wiszące 3'-końce.
PL 218 876 B1
Figura 9: Interferencja RNA przez dupleksy siRNA
Stosunek docelowej do kontrolnej lucyferazy normalizowano względem kontroli buforowej (bu, czarne słupki); szare słupki wskazują stosunek lucyferazy Photinus pyralis (Pp-luc) GL2 lub GL3 do lucyferazy Renilla reniformis (Rr-luc) RL (lewa oś), białe słupki wskazują stosunek RL do GL2 lub GL3 (prawa oś). Panele a, c, e, g oraz i opisują doświadczenia przeprowadzone z połączeniem plazmidów reporterowych pGL2-Control i pRL-TK, panele b, d, f, h oraz j z plazmidami reporterowymi pGL3Control i pRL-TK. Linię komórkową zastosowaną do doświadczenia interferencji wskazano na górze każdego wykresu. Stosunki Pp-luc/Rr-luc dla kontroli buforowej (bu) wahały się odpowiednio pomiędzy 0,5 a 10 dla pGL2/pRL oraz pomiędzy 0,03 a 1 dla pGL3/pRL, przed normalizacją oraz pomiędzy różnymi badanymi liniami komórkowymi. Wykreślone dane są średnią z trzech niezależnych doświadczeń ± S.D.
Figura 10: Wpływ 21-nt siRNA, 50-pz i 500-pz dsRNA na ekspresję lucyferazy w komórkach
HeLa
Dokładną długość długich dsRNA wskazano poniżej słupków. Panele a, c i e opisują doświadczenia wykonane z plazmidami reporterowymi pGL2-Control i pRL-TK, panele b, d i f z plazmidami reporterowymi pGL3-Control i pRL-TK. Dane są średnią z dwóch niezależnych doświadczeń ± S.D. (a), (b) Absolutna ekspresja Pp-luc, wykreślona w jednostkach umownych luminescencji (skrót j.u.).
(c), (d) ekspresja Rr-luc, wykreślona w arbitralnych jednostkach luminescencji. (e), (f) Stosunek normalizowanej docelowej do kontrolnej lucyferazy. Stosunki aktywności lucyferazy dla dupleksów siRNA normalizowano względem kontroli buforowej (bu, czarne słupki); stosunki luminescencji dla 50- lub 500-pz dsRNA normalizowano względem odpowiednich stosunków obserwowanych dla 50- i 500-pz dsRNA z humanizowanym GFP (hG, czarne słupki). Należy podkreślić, że ogólne różnice sekwencji dsRNA o długości pomiędzy 49 a 484 pz skierowanych do GL2 i GL3 są niewystarczające do nadania specyficzności pomiędzy celami GL2 i GL3 (43-nt nieprzerwana identyczność w segmencie 49 pz, 239-nt najdłuższa nieprzerwana identyczność w segmencie 484 pz).
Figura 11: Zmienność jednoniciowych wiszących 3'-końców w dupleksach 21-nt siRNA (A) Zarys strategii doświadczalnej. Przedstawiono sensowny docelowy mRNA z czapeczką i poliadenylowany oraz przedstawiono względne pozycje sensownych i antysensownych siRNA. Otrzymano osiem serii dupleksów, zgodnie z ośmioma różnymi nićmi antysensownymi. Sekwencje siRNA oraz liczbę nukleotydów jednoniciowego wiszącego końca zmieniano w etapach jednonukleotydowych. (B) Normalizowana względna luminescencja docelowej lucyferazy (Photinus pyralis, Pp-luc) do kontrolnej lucyferazy (Renilla reniformis, Rr-luc) w lizacie embrionów D. melanogaster w obecności 5 nM dsRNA o tępych końcach. Stosunki luminescencji wyznaczone w obecności dsRNA normalizowano względem stosunku uzyskanego dla kontroli buforowej (bu, czarny słupek). Normalizowane stosunki niższe niż 1 wskazują specyficzną interferencję. (C-J) Normalizowane stosunki interferencji dla ośmiu serii 21-nt dupleksów siRNA. Sekwencję dupleksów siRNA przedstawiono powyżej wykresów słupkowych. Każdy wykres przedstawia stosunek interferencji dla zestawu dupleksów utworzonych przed dany wiodący antysensowny siRNA i 5 różnych sensownych siRNA. Liczbę nukleotydów jednoniciowego wiszącego końca (jednoniciowy wiszący 3'-koniec, liczby dodatnie; jednoniciowy wiszący 5'-ko-niec, liczby ujemne) wskazano na osi x. Punkty danych są średnią z co najmniej trzech niezależnych doświadczeń, słupki błędów przedstawiają odchylenia standardowe.
Figura 12: Zmienność długości nici sensownej w dupleksach siRNA (A) Graficzne przedstawienie doświadczenia. Trzy antysensowne nici o długości 21 nt sparowano z ośmioma sensownymi siRNA. siRNA różniły się długością na 3'-końcu. Jednoniciowy wiszący 3'-koniec antysensownego siRNA miał długość 1 nt (B), 2 nt (C) lub 3 nt (D), podczas gdy jednoniciowy wiszący koniec sensownego siRNA różnił się dla każdej serii. Wskazano sekwencje dupleksów siRNA i odpowiadające im stosunki interferencji.
Figura 13: Zmienność długości dupleksów siRNA z zachowanymi dwunukleotydowymi jednoniciowymi wiszącymi 3'-końcami (A) Graficzne przedstawienie doświadczenia. Dupleks siRNA o długości 21-nt ma sekwencję identyczną do przedstawionej na fig. 11H lub 12C. Dupleksy siRNA były wydłużone na 3'-stronie sensownego siRNA (B) lub 5'-stronie sensownego siRNA (C). Wskazano sekwencje dupleksów siRNA i odpowiadające im stosunki interferencji.
Figura 14: Podstawienie grup 2'-hydroksylowych reszt rybozy w siRNA
PL 218 876 B1
Grupy 2'-hydroksylowe (OH) w niciach dupleksów siRNA zostały zastąpione przez 2'-deoksy (d) lub 2'-O-metyl (Me). Dwu i czteronukleotydowe podstawienia 2'-deoksy na 3'-końcach wskazano odpowiednio jako 2-nt d i 4-nt d. Reszty urydyny zastąpiono 2'-deoksytymidyną.
Figura 15: Mapowanie rozszczepiania sensownego i antysensownego RNA przez dupleksy siRNA o długości 21-nt z jednoniciowymi wiszącymi 3'-końcami o długości 2-nt (A) Graficzne przedstawienie znakowanych w czapeczce 32p (gwiazdka) sensownych i antysensownych docelowych RNA oraz dupleksów siRNA. Pozycję rozszczepiania sensownego i antysensownego docelowego RNA wskazano przez trójkąty odpowiednio na górze i poniżej dupleksów siRNA. (B) Mapowanie miejsc rozszczepiania docelowego RNA. Po dwóch godzinach inkubacji 10 nM docelowego RNA z 100 nM dupleksu siRNA w lizacie embrionów D. melanogaster, znakowany w 5'-czapeczce substrat i 5'-produkty rozszczepiania rozdzielono na żelu do sekwencjonowania. Znaczniki długości wytworzono przez częściowe strawienie RNazą T1 (T1) i częściową hydrolizę zasadową (OH-) docelowych RNA. Grube linie po lewej stronie obrazów wskazują region pokrywany przez nici siRNA 1 i 5 o tej samej orientacji co docelowa.
Figura 16: 5'-koniec kierującego siRNA definiuje pozycję rozszczepiania docelowego RNA (A, B) Graficzne przedstawienie strategii doświadczalnej. Antysensowny siRNA był taki sam we wszystkich dupleksach siRNA, ale nić sensowna różniła się od 18- do 25-nt przez zmiany na 3'-końcu (A) lub od 18- do 23-nt przez zmiany na 5'-końcu (B). Pozycję rozszczepiania sensownego i antysensownego docelowego RNA wskazano trójkątami odpowiednio nad i poniżej dupleksów siRNA. (C, D) Analiza rozszczepiania docelowego RNA przy zastosowaniu znakowanych w czapeczce sensownych (górny panel) lub antysensownych (dolny panel) docelowych RNA. Pokazano tylko 5'-produkty rozszczepiania znakowane w czapeczce. Przedstawiono sekwencje dupleksów siRNA oraz długość sensownych nici siRNA oznaczono na górze panelu. Linia kontrolna oznaczona kreską w panelu (C) przedstawia docelowy RNA inkubowany przy braku siRNA. Znaczniki opisano dla fig. 15. Strzałki w (D), dolny panel, wskazują miejsca rozszczepiania docelowego RNA różniące się o 1 nt.
Figura 17: Zmienność sekwencji jednoniciowych wiszących 3'-końców dupleksów siRNA
Zmieniano sekwencję i skład dwunukleotydowego jednoniciowego wiszącego 3'-końca (NN, szary) jak wskazano (T, 2'- deoksytymidyna, dG, 2'-deoksyguanozyna; gwiazdka, dupleks siRNA typu dzikiego). Normalizowane stosunki interferencji wyznaczono jak opisano dla fig. 11. Sekwencja typu dzikiego jest taka sama jak przedstawiona na fig. 14.
Figura 18: Specyficzność rozpoznawania docelowej sekwencji
Przedstawiono sekwencje błędnie sparowanych dupleksów siRNA, zmodyfikowane segmenty sekwencji lub pojedyncze nukleotydy wyróżniono na szaro. Dupleks referencyjny (ref.) oraz dupleksy siRNA od 1 do 7 zawierały dwunukleotydowe jednoniciowe wiszące końce 2'-deoksytymidyny. Wydajność wyciszania przez zmodyfikowany tymidyną dupleks referencyny była porównywalna z sekwencją typu dzikiego (fig. 17). Normalizowane stosunki interferencji wyznaczono w sposób opisany dla fig. 11.
Figura 19: Zmienność długości dupleksów siRNA z ustalonymi 2-nt jednoniciowymi wiszącymi 3'-końcami
Dupleksy siRNA wydłużano po 3'-stronie sensownego siRNA (A) lub 5'-stronie sensownego siRNA (B). Wskazano sekwencje dupleksów siRNA i odpowiednie stosunki interferencji. Dla komórek HeLa SS6, dupleksy siRNA (0,84 μg) skierowane do GL2 lucyferazy transfekowano razem z plazmidami pGL2-Control i pRL-TK. Dla porównania przedstawiono aktywności RNAi in vitro dupleksów siRNA badane w lizacie D. melanogaster.
P r z y k ł a d 1
Interferencja RNA pośredniczona przez małe syntetyczne cząsteczki RNA
1.1. Procedury doświadczalne
1.1.1 RNAi in vitro
RNAi in vitro i preparaty lizatów wykonano w sposób wcześniej opisany (Tuschl i in., 1999; Zamore i in., 2000). Dla optymalnej regeneracji ATP krytyczne jest zastosowanie świeżo rozpuszczonej kinazy kreatynowej (Roche). Testy translacji RNAi (fig. 1) prowadzono z dsRNA w stężeniu 5 nM oraz przy wydłużonym czasie wstępnej inkubacji 15 minut w 25°C przed dodaniem transkrybowanych in vitro, z czapeczką i poliadenylowanych reporterowych mRNA Pp-luc i Rr-luc. Inkubację kontynuowano przez 1 godzinę i względną ilość białka Pp-luc i IB Rr-luc analizowano za pomocą podwójnego testu lucyferazy (Promega) w luminometrze Monolight 3010C (PharMingen).
PL 218 876 B1
1.1.2 Synteza RNA
Do transkrypcji in vitro RNA z matryc PCR niosących sekwencje promotorowe T7 lub SP6 zastosowano znane procedury, patrz przykładowo (Tuschl i in., 1998). Syntetyczny RNA otrzymano stosując fosforoamidyny Expedite RNA (Proligo). 3'-adaptorowy oligonukleotyd zsyntetyzowano stosując dimetoksytritylo-1,4-benzenodimetanolo-sukcynylo-aminopropylo-CPG. Oligorybonukleotydy odbezpieczano w 3 ml mieszaniny 32% amoniak/etanol (3/1) przez 4 godziny w 55°C (Expedite RNA) lub 16 godzin w 55°C (3'- i 5'-adaptorowe DNA/RNA chimeryczne oligonukleotydy), a następnie desililowano i oczyszczono na żelu jak wcześniej opisano (Tuschl i in., 1993). Transkrypty RNA do otrzymywania dsRNA zawierające jednoniciowe wiszące 3'-końce wytworzono z matryc PCR, które zawierały promotor T7 w sensownym kierunku i promotor SP6 w antysensownym kierunku. Matrycę do transkrypcji dla sensownego i antysensownego docelowego RNA amplifikowano metodą PCR z użyciem GCGTAATACGACTCACTATAGAACAATTGCTTTTACAG (podkreślony promotor T7) jako startera 5' i ATTTAGGTGACACTATAGGCATAAAGAATTGAAGA (podkreślony promotor SP6) jako startera 3', oraz linearyzowanego plazmidu Pp-luc (sekwencja pGEM-luc) (Tuschl i in., 1999) jako matrycy; transkrybowany z T7 sensowny RNA miał długość 177 nt z sekwencją Pp-luc pomiędzy pozycjami 113-273 względem kodonu start oraz 17-nt dopełnieniem sekwencji promotora SP6 na 3'-końcu. Transkrypty do wytworzenia dsRNA z tępymi końcami otrzymano przez transkrypcję z dwóch różnych produktów PCR, które zawierały tylko pojedynczą sekwencję promotorową.
Hybrydyzację dsRNA przeprowadzono stosując ekstrakcję mieszaniną fenol/chloroform. Sensowny i antysensowny RNA w równomolowych stężeniach (50 nM do 10 μM, zależnie od długości dostępnej ilości) w 0,3 M NaOAc (pH 6) inkubowano przez 30 sekund w 90°C, a następnie wyekstrahowano w temperaturze pokojowej równą objętością mieszaniny fenol/chloroform, po czym wyekstrahowano chloroformem w celu usunięcia pozostałego fenolu. Powstały dsRNA wytrącono przez dodanie 2,5-3 objętości etanolu. Osad rozpuszczono w buforze lizującym (100 mM KCl, 30 mM HEPESKOH, pH 7,4, 2 mM Mg(OAc)2) i jakość dsRNA weryfikowano znaną metodą elektroforezy na żelu agarozowym w buforze 1 x TAE. DsRNA o długości 52 pz z 17-nt i 20-nt jednoniciowym wiszącym 3'-końcem (fig. 6) hybrydyzowano drogą inkubacji przez 1 minutę w 95°C, a następnie szybkie ochłodzenie do 70°C i powolne chłodzenie do temperatury pokojowej przez okres trzech godzin (reakcja hybrydyzacji w objętości 50 μ!, stężenie nici 1 pM, 300 mM NaCl, 10 mM Tris-HCl, pH 7,5). Następnie dsRNA wyekstrahowano mieszaniną fenol/chloroform, wytrącano etanolem i rozpuszczano w buforze lizującym.
Transkrypcję wewnętrznie znakowanych 32P RNA stosowanych do otrzymywania dsRNA (fig. 2 i 4) prowadzono stosując 1 mM ATP, CTP, GTP, 0,1 lub 0,2 mM UTP oraz 0,2-0, 3 μM-32p-UTP (3000 Ci/mmol) lub w odpowiednim stosunku znakowane radioaktywnie trójfosforany nukleozydów, inne niż UTP. Znakowanie czapeczki w docelowych RNA prowadzono jak opisano poprzednio. Docelowe RNA były oczyszczane na żelu po znakowaniu czapeczki.
1.1.3 Mapowanie miejsc rozszczepiania
Znane reakcje RNAi prowadzono przez wstępną inkubację 10 nM dsRNA przez 15 minut, a następnie dodawano 10 nM znakowanego w czapeczce docelowego RNA. Reakcję zatrzymywano po godz. (fig. 2A) lub 2,5 godz. inkubacji (fig. 5B i 6B) przez podziałanie proteinazą K (Tuschl i in., 1999). Następnie próbki analizowano w 8 lub 10% żelach do sekwencjonowania. 21- i 22-nt syntetyczne dupleksy RNA zastosowano w końcowym stężeniu 100 nM (fig. 5B).
1.1.4 Klonowanie ~21-nt RNA
21-nt RNA otrzymano przez inkubację znakowanego radioaktywnie dsRNA w lizacie Drosophila przy braku docelowego RNA (reakcja 200 μ!, 1 godz. inkubacji, 50 nM dsP111 lub 100 nM dsP52 lub dsP39). Następnie mieszaninę reakcyjną potraktowano proteinazą K (Tuschl i in., 1999) i produkty obróbki dsRNA rozdzielono w 15% denaturującym żelu poliakrylamidowym. Wycięto prążek zawierający zakres wielkości co najmniej 18 do 24 nukleotydów, wyeluowano w 0,3 M NaCl przez noc w 4°C w silikonowanych probówkach. RNA odzyskano przez wytrącanie etanolem i defosforylowano (reakcja 30 μΧ 30 minut, 50°C, 10 U fosfatazy alkalicznej, Roche). Reakcję zatrzymano przez ekstrakcję mieszaniną fenol/chloroform i RNA wytrącono etanolem. Następnie 3'-adaptorowy oligonukleotyd (pUUUaaccgcatccttctcx: duże litery, RNA; małe litery, DNA; p, fosforan; x, 4-hydroksymetylobenzyl) zligowano z defosforylowanym ~21-nt RNA (reakcja 20 μ^ 30 minut, 37°C, 5 μΜ 3'-adapter, 50 mM Tris-HCl, pH 7,6, 10 mM MgCl2, 0,2 mM ATP, 0,1 mg/ml acetylowana BSA, 15% DMSO, 25 U ligazy RNA T4, Amersham-Pharmacia) (Pan i Uhlenbeck, 1992). Reakcję ligacji zatrzymano przez dodanie równej objętości mieszaniny zatrzymującej 8 M mocznik/50 mM EDTA i bezpośrednio naniesiono na
PL 218 876 B1
15% żel. Wydajności ligacji były wyższe niż 50%. Produkt ligacji odzyskano z żelu i 5'-fosforylowano (reakcja 20 μ|, 30 minut, 37°C, 2 mM ATP, 5 U kinazy polinukleotydowej T4, NEB). Reakcje fosforylacji zatrzymano przez ekstrakcję mieszaniną fenol/chloroform i RNA odzyskano przez wytrącenie etanolem. Następnie 5'-adapter (tactaatacgactcactAAA: duże litery, RNA; małe litery, DNA) zligowano z fosforylowanym produktem ligacji jak opisano powyżej. Nowy produkt ligacji oczyszczono w żelu i wyeluowano z bloczku żelu w obecności startera do odwrotnej transkrypcji (GACTAGCTGGAATTCAAGGATGCGGTTAAA: wytłuszczono miejsce dla Eco RI) zastosowanego jako nośnik. Po odwrotnej transkrypcji (reakcja 15 μ|, 30 minut, 42°C, 150 U odwrotnej transkryptazy Super-script II, Life Technologies) przeprowadzono PCR stosując jako starter 5' CAGCCAACGGAATTCATACGACTCACTAAA (wytłuszczono miejsce dla Eco RI) oraz starter 3' RT. Produkt PCR oczyszczono przez ekstrakcję mieszaniną fenol/chloroform i wytrącono etanolem. Następnie produkt PCR strawiono Eco RI (NEB) i konkatameryzowano z użyciem ligazy DNA T4 (wysokie stężenie, NEB). Konkatamery o wielkości z zakresu 200-800 pz rozdzielono w żelu agarozowym o niskim punkcie topnienia, odzyskano z żelu przez zwykłą procedurę rozpuszczenia i ekstrakcji fenolem oraz wytrącono etanolem. Niesparowane końce wypełniono przez inkubację z polimerazą Taq w zwykłych warunkach przez 15 minut w 72°C i produkt DNA bezpośrednio wligowano do wektora pCR2. 1-TOPO stosując zestaw do klonowania TOPO TA (Invitrogen). Kolonie przeszukiwano metodą PCR z użyciem odwrotnych starterów do sekwencjonowania M13-20 i M13. Produkty PCR bezpośrednio zsekwencjonowano w zwykły sposób (Sequence Laboratories Gottingen GmbH, Niemcy). Średnio otrzymano cztery do pięciu 21-merowych sekwencji na klon.
1.1.5 Analiza 2D-TLC
Trawienie nukleazą P1 znakowanych radioaktywnie, oczyszczonych na żelu siRNA i 2D-TLC prowadzono w opisany sposób (Zamore i in., 2000). Trawienie nukleazą T2 przeprowadzono w 10 μl reakcjach przez 3 godziny w 50°C w 10 mM octanie amonu (pH 4,5) stosując 2 μ9^ nośnikowego tRNA i 30 U rybonukleazy T2 (Life Technologies). Migrację nie radioaktywnych wzorców wyznaczono przez cieniowanie UV. Tożsamość nukleozydo-3',5'-disfosforanów potwierdzono przez wspólną migrację produktów trawienia T2 z wzorcami otrzymanymi przez 5'-32p-fosforylację dostępnych w han_32 _ dlu 3'-monofosforanów nuklezydów z użyciem γ_ p_ATP i kinazy polinukelotydowej T4 (dane nie prezentowane).
1.2 Wyniki i dyskusja
1.2.1 Długość wymagana do obróbki dsRNA do 21- i 22-nt fragmentów RNA
Lizaty otrzymane z syncytialnych embrionów D. melanogaster przeprowadzają RNAi in vitro dostarczając nowe narzędzie do biochemicznej analizy mechanizmu RNAi (Tuschl i in., 1999; Zamore i in., 2000). In vitro i in vivo analiza długości dsRNA wymaganej do RNAi ujawniła, że krótkie dsRNA (< 150 pz) są mniej skuteczne niż dłuższe dsRNA w degradacji docelowego mRNA (Caplen i in., 2000; Hammond i in., 2000; Ngo i in., 1998); Tuschl i in., 1999). Powody zmniejszenia wydajności degradacji mRNA nie są zrozumiałe. Zatem zbadano dokładne wymagania długości dsRNA do degradacji RNA w optymalizowanych lizatach Drosophila (Zamore i in., 2000). Zsyntetyzowano kilka serii dsRNA i skierowano je przeciw reporterowemu RNA lucyferazy świetlika (Pp-luc). Specyficzną supresję ekspresji docelowego RNA monitorowano w podwójnym teście lucyferazy (Tuschl i in., 1999) (fig. 1A i 1B). Stwierdzono specyficzne zahamowanie ekspresji docelowego RNA dla dsRNA zaledwie o 38 pz, ale dsRNA o 29-36 pz nie były skuteczne w tym procesie. Efekt ten był niezależny od pozycji docelowej sekwencji i stopień hamowania ekspresji mRNA Pp-luc był skorelowany z długością dsRNA, tj. długie dsRNA były skuteczniejsze niż krótkie dsRNA.
Zasugerowano, że 21- do 23-nt fragmenty RNA wytworzone przez obróbkę dsRNA pośredniczą w interferencji RNA i kosupresji (Hamilton i Baulcombe, 1999; Hammond i in., 2000; Zamore i in., 2000). Zanalizowano zatem szybkość tworzenia 21- do 23-nt fragmentów dla grupy dsRNA o wielkości w zakresie 501-29 pz. Tworzenie 21- - 23-nt fragmentów w lizacie Drosophila (fig. 2) było łatwo wykrywalne dla dsRNA o długości 39 - 501 pz, ale było istotnie opóźnione dla dsRNA o długości 29 pz. Ta obserwacja zgadza się z rolą 21- - 23-nt fragmentów w kierowaniu rozszczepianiem mRNA i dostarcza wyjaśnienie dla braku RNAi przez dsRNA o długości 30 pz. Zależność tworzenia 21- - 23-merów od długości prawdopodobnie odzwierciedla istotny biologicznie mechanizm kontrolny zapobiegający niepożądanej aktywacji RNAi przez krótkie struktury wewnątrzcząsteczkowe ze sparowanymi zasadami normalnych komórkowych RNA.
1.2.2 DsRNA o długości 39 pz pośredniczy w rozszczepianiu docelowego RNA w pojedynczym miejscu
PL 218 876 B1
Dodanie dsRNA i docelowego RNA z 5'-czapeczką do lizatu Drosophila wywołuje specyficzną dla sekwencji degradację docelowego RNA (Tuschl i in., 1999). Docelowy mRNA jest rozszczepiany tylko w regionie identyczności dsRNA i wiele z docelowych miejsc rozszczepiania było rozdzielonych przez 21-23 nt (Zamore i in., 2000). Zatem oczekiwano, że liczba miejsc rozszczepiania dla danego dsRNA mniej więcej odpowiada długości dsRNA podzielonej przez 21. Zmapowano docelowe miejsca rozszczepiania na sensownym i antysensownym docelowym RNA, który był znakowany radioaktywnie w 5'-czapeczce (Zamore i in., 2000) (fig. 3A i 3B). Trwałe 5'-produkty rozszczepiania rozdzielono na żelu do sekwencjonowania i pozycję rozszczepiania wyznaczono przez porównanie z drabinką z częściowego trawienia RNazą T1 i alkalicznej hydrolizy docelowego RNA.
Zgodnie z wcześniejszą obserwacją (Zamore i in., 2000), wszystkie docelowe miejsca rozszczepiania RNA były umiejscowione w regionie identyczności dsRNA. Sensowny i antysensowny docelowy RNA był rozszczepiany tylko raz przez dsRNA o długości 39 pz. Każde miejsce rozszczepiania było umiejscowione 10 nt od 5'-końca regionu pokrytego przez dsRNA (fig. 3B). DsRNA o długości 52 pz, który dzieli taki sam 5'-koniec z dsRNA o długości 39 pz, wytwarza to samo miejsce rozszczepiania na nici sensownej, umiejscowione 10 nt od 5'-końca regionu identyczności z dsRNA, dodatkowo do dwóch słabszych miejsc rozszczepiania 23 i 24 nt w dół od pierwszego. Nić antysensowna była rozszczepiana tylko raz, również 10 nt od 5'-końca regionu pokrytego przez odpowiadający mu dsRNA. Mapowanie miejsc rozszczepiania dla dsRNA o długości 38-49 pz przedstawione na fig. 1 pokazuje, że pierwsze i dominujące miejsce rozszczepiania było zawsze umiejscowione 7- do 10-nt w dół regionu pokrytego przez dsRNA (dane nie prezentowane). Sugeruje to, że punkt rozszczepiania docelowego RNA jest zdeterminowany przez koniec dsRNA i może sugerować, że obróbka do 0 21- do 23merów zaczyna się od końców dupleksu.
Miejsca rozszczepiania na sensownym i antysensownym docelowym RNA dla dłuższego dsRNA o długości 111 pz były znacznie częstsze niż przewidywane i większość z nich występowała w zgrupowaniach rozdzielonych przez 20- do 23-nt (fig. 3A i 3B). Tak jak dla krótszych dsRNA, pierwsze miejsce rozszczepiania na docelowej nici sensownej było umiejscowione 10 nt od 5'-końca regionu pokrytego przez dsRNA, a pierwsze miejsce rozszczepiania na nici docelowej antysensownej było umiejscowione 9 nt od 5'-końca regionu pokrytego przez dsRNA. Nie jest jasne co powoduje to nieuporządkowane rozszczepianie, ale możliwe jest, że dłuższe dsRNA mogą być obrabiane nie tylko od końców, ale także wewnętrznie lub istnieją pewne determinanty specyficzności dla obróbki dsRNA, które jeszcze nie zostały zrozumiane. Pewne nieregularności odległości 21- do 23-nt zostały wcześniej zauważone (Zamore i in., 2000). Aby lepiej zrozumieć molekularne podstawy obróbki dsRNA i rozpoznawania RNA, zdecydowano się zanalizować sekwencje fragmentów 21- do 23-nt wytworzonych przez obróbkę dsRNA o długości 39, 52 i 111 pz w lizacie Drosophila.
1.2.3 dsRNA ulega obróbce do RNA o długości 21 i 22 nt według mechanizmu typu RNazy III
Aby scharakteryzować fragmenty 21-23-nukleotydowe RNA zbadano 5'- i 3'-końce fragmentów RNA. Utlenienie nadjodanem oczyszczonych w żelu 21- do 23-nt RNA, a następnie β-eliminacja ujawniły obecność końcowych grup 2' i 3'-hydroksylowych. 21- do 23-mery odpowiadały także na traktowanie fosfatazą alkaliczną, co wskazywało na obecność 5'-końcowej grupy fosforanowej. Obecność końców 5'-fosforanowego i 3'-hydroksylowego sugeruje, że dsRNA może ulegać obróbce z wykorzystaniem aktywności enzymatycznej podobnej do RNazy III E. coli (prace przeglądowe, patrz (Dunn, 1982; Nicholson, 1999; Robertson, 1990; Robertson, 1982)).
Bezpośrednie klonowanie 21- do 23-nt fragmentów RNA przeprowadzono przez ligację 3'- i 5'-adapterowego oligonukleotydu do oczyszczonych 21- do 23-merów z użyciem ligazy RNA T4. Produkty ligacji poddano odwrotnej trankrypcji, amplifikowanej PCR, konkatameryzowano, sklonowano i zsekwencjonowano. Ponad 220 krótkich RNA zsekwencjonowano z reakcji obróbki dsRNA o długości 39, 52 i 111 pz (fig. 4A). Stwierdzono następujący rozkład długości: 1% 18 nt, 5% 19 nt, 12% 20 nt, 45% 21 nt, 28% 22 nt, 6% 23 nt i 2% 24 nt. Analiza sekwencji 5'-końcowego nukleotydu obrabianych fragmentów wykazała, że oligonukleotydy z 5'-guanozyną były mniej reprezentowane. To odchylenie zostało najprawdopodobniej wprowadzone przez ligazę RNA T4, która odróżnia 5'-fosforylowaną guanozynę jako oligonukleotyd donorowy; nie zaobserwowano istotnych odchyleń na 3'-końcu. Wiele z ~21-nt fragmentów pochodziło z 3'-końców sensownej lub antysensownej nici dupleksów, włącznie z 3'-nukleotydami pochodzącymi z niezależnej od matrycy addycji nukleotydów podczas syntezy RNA z użyciem polimerazy RNA T7. Należy podkreślić, że sklonowano także istotną liczbę endogennych RNA ~21 nt Drosophila, niektóre z LTR i nie-LTR retrotranspozonów (dane nie prezentowane). Jest to zgodne z możliwą rolą RNAi w wyciszaniu transpozonów.
PL 218 876 B1 ~21 nt RNA występują w zebranych grupach (fig. 4A), które pokrywają całe sekwencje dsRNA. Najwidoczniej reakcja obróbki przecina dsRNA zostawiając lepkie 3'-końce, co jest inną charakterystyczną cechą rozszczepiania RNazą III. W przypadku dsRNA o długości 39 pz znaleziono dwa skupiska ~21 nt RNA dla każdej nici stanowiącej dsRNA-włącznie z jednoniciowymi wiszącymi 3'-końcami, ale tylko jedno miejsce rozszczepiania wykryto na sensownej i antysensownej nici docelowej (fig. 3A i 3B). Gdyby ~21 nt fragmenty były obecne jako jednoniciowy kierujący RNA w kompleksie pośredniczącym w degradacji mRNA, możnaby założyć, że istnieją co najmniej dwa docelowe miejsca rozszczepiania, ale to nie występowało. Sugeruje to, że ~21 nt RNA mogą być obecne w formie dwuniciowej w kompleksie endonukleazowym, ale że tylko jedna z nici może być użyta do rozpoznania i rozszczepiania docelowego RNA. Używanie tylko jednej z ~21 nt nici do rozszczepiania docelowego RNA można łatwo wyznaczyć przez orientację, w której ~21 nt dupleks jest związany z kompleksem nukleazowym. Orientacja ta jest definiowana przez kierunek, w którym jest obrabiany oryginalny dsRNA.
~21-merowe skupiska dla dsRNA o długości 52 pz i 111 pz są znacznie gorzej zdefiniowane w porównaniu z dsRNA o długości 39 pz. Skupiska są rozrzucone w obszarach 25- do 30-nt, najprawdopodobniej reprezentujących kilka różnych subpopulacji ~21 nt dupleksów, a zatem pośredniczącym w rozszczepianiu docelowego RNA w kilku sąsiadujących miejscach. Te regiony nadal są głównie rozdzielone przez przerwy 20 do 23 nt. Reguły decydujące o tym, jak normalne dsRNA mogą być obrabiane do ~21-nt fragmentów, nie są dotychczas dobrze rozumiane, ale wcześniej obserwowano, że około 21- do 23-nt przerwa pomiędzy miejscami rozszczepiania może zostać zmieniona przez serię urydyn (Zamore i in., 2000). Specyficzność rozszczepiania dsRNA przez RNazę III z E. coli wydaje się być głównie kontrolowana przez antydeterminanty, tj. wykluczanie pewnych specyficznych par zasad w danych pozycjach względem miejsca rozszczepiania (Zhang i Nicholson, 1997).
Aby zbadać czy w obrabianych ~21-nt fragmentach były obecne modyfikacje cukru, zasady lub czapeczki, inkubowano znakowany radioaktywnie dsRNA Ppluc o długości 505 pz w lizacie przez 1 godzinę, wyizolowano produkty ~21-nt i strawiono nukleazami P1 lub T2 do mononukleotydów. Następnie mieszaninę nukleotydową analizowano metodą cienkowarstwowej chromatografii 2D (fig. 4B). Żaden z czterech naturalnych rybonukleotydów nie był modyfikowany, co wskazało trawienie P1 lub T2. Wcześniej analizowano przeprowadzanie adenozyny w inozynę w -21-nt fragmentach (po 2 godzinach inkubacji) i wykryto niewielki stopień (< 0,7%) deaminacji (Zamore i in., 2000); krótsza inkubacja w lizacie (1 godzina) zmniejszyła tą frakcję inozyny do ledwie wykrywalnych poziomów. RNaza T2, która rozszczepia 3' stronę wiązania fosfodiestrowego, wytwarza 3'-fosforan i 3',5'-difosforan nukleozydu, co wskazuje na obecność 5'-końcowego monofosforanu. Wykryto wszystkie cztery 35'-difosforany nukleozydu, co wskazuje na to, że wiązanie międzynukleotydowe zostało rozszczepione z niewielką specyficznością dla sekwencji lub przy braku tej specyficzności. W skrócie, -21-nt fragmenty były niezmodyfikowane i wytwarzane z dsRNA, tak, że 5'-monofosforany i 3'-hydroksyle były obecne na 5'- końcu.
1.2.4 Syntetyczne 21- i 22-nt RNA pośredniczą w rozszczepianiu docelowego RNA
Analiza produktów obróbki dsRNA wskazała, że ~21-nt fragmenty są wytwarzane w reakcji o wszystkich cechach charakterystycznych dla reakcji rozszczepiania RNazą III (Dunn, 1982; Nicholson, 1999; Robertson, 1990; Robertson, 1982). RNaza III wykonuje dwa nierównomierne cięcia w obu niciach dsRNA, zostawiając jednoniciowe wiszące 3'-końce o długości około 2 nt. Chemicznie zsyntetyzowano 21- i 22-nt RNA, o sekwencji identycznej z pełnymi sklonowanymi fragmentami -21-nt i zbadano ich zdolność do kierowania degradacją docelowego RNA (fig. 5A i 5B). 21- i 22-nt dupleksy RNA inkubowano w stężeniach 100 nM w lizacie, dziesięciokrotnie wyższych stężeniach niż dla kontrolnego dsRNA o długości 52 pz. W tych warunkach rozszczepianie docelowego RNA było łatwo wykrywalne. Obniżenie stężenia 21- i 22-nt dupleksów z 100 do 10 nM nadal wywoływało rozszczepianie docelowego RNA. Jednakże podwyższenie stężenia dupleksu z 100 nM do 1000 nM nie zwiększało dalej rozszczepiania docelowego RNA, prawdopodobnie ze względu na limitujący czynnik białkowy w lizacie.
W odróżnieniu od dsRNA o długości 29 lub 30 pz, które nie kierowały RNAi, 21- i 22-nt dsRNA z jednoniciowymi wiszącymi 3'-końcami o długości 2 do 4 nt kierowały wydają degradacją docelowego RNA (dupleksy 1, 3, 4, 6, fig. 5A i 5B). 21- lub 22-nt dsRNA z tępymi końcami (dupleksy 2, 5 i 7, fig. 5A i 5B) miały obniżoną zdolność degradacji docelowego RNA, co wskazuje, że jednoniciowe wiszące 3'-końce są krytyczne do rekonstytucji kompleksu RNA-nukleaza białkowa. Jednoniciowe wiszące końce mogą być niezbędne do wiązania z wysokim powinowactwem ~21-nt dupleksu ze składPL 218 876 B1 nikami białka. Pomimo, że 5'-końcowy fosforan był obecny po obróbce dsRNA, nie był on wymagany do kierowania rozszczepianiem docelowego RNA i brak go było w krótkich syntetycznych RNA.
Syntetyczne 21- i 22-nt dupleksy pośredniczą w rozszczepianiu sensownych, a także antysensownych docelowych RNA w regionie pokrywanym przez krótki dupleks. Jest to ważny wynik, jeśli się weźmie pod uwagę, że dsRNA o długości 39 pz, który tworzy dwie pary podzbiorów fragmentów ~21-nt (fig. 2), rozszczepiał sensowny i antysensowny docelowy RNA tylko raz, a nie dwa razy. Zinterpretowano ten wynik sugerując, że tylko jedna z dwóch nici obecna w dupleksie ~21-nt jest zdolna do pośredniczenia w rozszczepianiu docelowego RNA, oraz że orientacja ~21-nt dupleksu w kompleksie nukleazowym jest wyznaczona przez początkowy kierunek obróbki dsRNA. Jednakże obecność perfekcyjnie obrobionego ~21-nt dupleksu w systemie in vitro pozwala na wytworzenie aktywnego, specyficznego dla sekwencji kompleksu nukleazowego z dwoma możliwymi orientacjami symetrycznego dupleksu RNA. Powoduje to rozszczepianie sensownego, a także antysensownego docelowego RNA w regionie identyczności z 21-nt dupleksem RNA.
Docelowe miejsce rozszczepiania jest umiejscowione 11 lub 12 nt w dół od pierwszego nukleotydu, który jest komplementarny do 21- lub 22-nt sekwencji kierującej, tj. miejsce rozszczepiania leży w pobliżu centrum regionu pokrytego przez 21- lub 22-nt RNA (fig. 4A i 4B). Przesunięcie nici sensownej dupleksu 22-nt o dwa nukleotydy (porównaj dupleksy 1 i 3 na fig. 5A) przesuwało miejsce rozszczepiania tylko antysensownego docelowego RNA o dwa nukleotydy. Przesunięcie obu nici sensownej i antysensownej o dwa nukleotydy przesuwało obydwa miejsca rozszczepiania o dwa nukleotydy (porównaj dupleksy 1 i 4). Przewiduje się, że możliwe będzie zaprojektowanie pary 21- lub 22-nt RNA tak, aby rozszczepić docelowy RNA w prawie dowolnej danej pozycji.
Specyficzność rozszczepiania docelowego RNA kierowanego przez 21- i 22-nt RNA wydaje się być bardzo dobra, gdyż nie wykryto nieprawidłowych miejsc rozszczepiania (fig. 5B). Należy jednak zauważyć, że nukleotydy obecne w jednoniciowym wiszącym 3'-końcu 21- i 22-nt dupleksu RNA mogą uczestniczyć w mniejszym stopniu w rozpoznaniu substratu niż nukleotydy w pobliżu miejsca rozszczepiania. Jest to oparte na obserwacji, że najbliższy 3'-końca nukleotyd w jednoniciowym wiszącym 3' końcu aktywnych dupleksów 1 lub 3 (fig. 5A) nie jest komplementarny do docelowego RNA. Można teraz łatwo wykonać szczegółową analizę specyficzności RNAi z użyciem syntetycznych 21- i 22-ny RNA.
W oparciu o potwierdzenie, że syntetyczne 21- i 22-nt RNA z jednoniciowymi wiszącymi 3'-końcami pośredniczą w interferencji RNA, zaproponowano nazwanie ~21-nt RNA „krótkimi interferującymi RNA lub siRNA, a odpowiedni kompleks RNA-białko „cząstką małej interferującej rybonukleoproteiny lub siRNP.
1.2.5 Jednoniciowe wiszące 3'-końce o długości 20 nt na krótkich dsRNA hamują RNAi
Wykazano, że krótkie dsRNA o tępych końcach wydają się ulegać obróbce od końców dsRNA. Podczas badania zależności RNAi od długości dsRNA, zanalizowano także dsRNA z jednoniciowymi wiszącymi 3'-końcami o 17- do 20-nt i stwierdzono z zaskoczeniem, że były one słabsze niż dsRNA z tępymi końcami. Hamujące działanie długich 3'-końców było szczególnie widoczne w przypadku dsRNA o długości do 100 pz, ale był mniej dramatyczny dla dłuższych dsRNA. Efekt ten nie wynikał z wadliwego tworzenia dsRNA, co stwierdzono na podstawie analizy w żelu natywnym (dane nie prezentowane). Zbadano, czy działanie hamujące długich jednoniciowych wiszących 3'-końców może być wykorzystane jako narzędzie do skierowania obróbki dsRNA do tylko jednego z dwóch końców krótkiego dupleksu RNA.
Zsyntetyzowano cztery kombinacje modelowego dsRNA o długości 52 pz, z tępymi końcami, z wydłużeniem 3'-końca tylko na nici sensownej, z wydłużeniem 3'-końca tylko na nici antysensownej oraz z dwoma wydłużeniami 3'-końca na obu niciach, po czym zmapowano miejsca rozszczepiania docelowego RNA po inkubacji w lizacie (fig. 6A i 6B). Pierwsze i dominujące miejsce rozszczepiania docelowej nici sensownej było tracone, gdy 3'-koniec nici antysensownej dupleksu był wydłużany i na odwrót, silne miejsce rozszczepiania docelowej nici antysensownej było tracone, gdy 3'-koniec nici sensownej dupleksu był wydłużany. Wydłużenia 3'-końca na obu niciach sprawiały, że dsRNA o długości 52 pz był praktycznie nieaktywny. Jednym wytłumaczeniem inaktywacji dsRNA przez ~20-nt wydłużenia na 3'-końcach może być asocjacja białek wiążących jednoniciowy RNA, która może zakłócać asocjację jednego z czynników obróbki dsRNA na tym końcu. Wynik ten zgadza się także z modelem, w którym tylko jedna nić dupleksu siRNA w złożonym siRNP jest zdolna do kierowania rozszczepianiem docelowego RNA. Orientacja nici kierującej rozszczepianiem RNA jest zdefiniowana przez kierunek reakcji obróbki dsRNA. Jest prawdopodobne, że obecność lepkich 3'-końców może ułatwiać
PL 218 876 B1 składanie kompleksu obróbki. Blok na 3'-końcu nici sensownej pozwala tylko na obróbkę dsRNA z przeciwstawnego 3'-końca nici antysensowej. Powoduje to z koleji tworzenie kompleksów siRNP, w których tylko nić antysensowna dupleksu siRNA jest zdolna do kierowania rozszczepianiem sensownego docelowego RNA. To samo dotyczy odwrotnej sytuacji.
Słabiej wyrażony efekt hamujący długich wydłużeń 3'-końca w przypadku dłuższych dsRNA (> 500 pz, dane nie prezentowane) sugeruje, że długie dsRNA mogą także zawierać wewnętrzne sygnały obróbki dsRNA lub mogą wspólnie ulegać obróbce ze względu na połączenie wielu czynników rozszczepiających.
1.2.6 Model kierowanego dsRNA rozszczepiania mRNA
Nowe dane biochemiczne uaktualniają model, zgodnie z którym dsRNA skierowuje mRNA do rozłożenia (fig. 7). Dwuniciowy RNA ulega najpierw obróbce do krótkich dupleksów RNA głównie o długości 21 i 22 nt oraz z lepkimi 3'-końcami podobnie do reakcji typu RNazy III (Dunn, 1982; Nicholson, 1999; Robertson, 1982). W oparciu o 21- do 23-nt długość fragmentów obrabianego RNA wcześniej przypuszczano, że aktywność typu RNazy III może uczestniczyć w RNAi (Bass, 2000). Ta hipoteza jest dalej potwierdzona przez obecność 5'-fosforanów i 3'-hydroksyli na końcu siRNA, co obserwowano dla produktów reakcji RNazy III (Dunn, 1982; Nicholson, 1999). Wykazano, że bakteryjna RNaza III i eukariotyczne homologi Rnt1p z S. cerevisiae i Pac1p z S. pombe działają w obróbce rybosomalnego RNA, a także snRNA i snoRNA (patrz np. Chanfreau i in., 2000).
Niewiele wiadomo na temat biochemii homologów RNazy III z roślin, zwierząt lub ludzi. Zidentyfikowano dwie rodziny enzymów RNazy III, głównie przez analizę sekwencji z użyciem baz danych lub klonowanie cDNA. Pierwsza rodzina RNazy III jest reprezentowana przez białko drosha z D. melanogaster o długości 1327 (Acc. AF116572). C-koniec składa się z dwóch domen RNazy III i jednej domeny wiążącej dsRNA, a N-koniec ma nieznaną funkcję. Bliskie homologi znaleziono także w C. elegans (Acc. AF160248) i u ludzi (Acc. AF189011) (Filippov i in., 2000; Wu i in., 2000). Ludzką RNazę III typu drosha ostatnio sklonowano i scharakteryzowano (Wu i in., 2000). Gen ten jest wszechobecnie eksprymowany w tkankach ludzkich i liniach komórkowych, a białko jest umiejscowione w jądrze i jąderku komórki. W oparciu o wyniki wywnioskowane z badań z hamowaniem antysensownym zaproponowano rolę tego białka w obróbce rRNA. Druga klasa jest reprezentowana przez gen K12H4.8 C. elegans (Acc. S44849) kodujący białko o długości 1822 aminokwasów. Białko to ma N-końcowy motyw helikazy RNA, po którym występują dwie domeny katalityczne RNazy III i motyw wiązania dsRNA, podobny do rodziny drosha RNazy III. Istnieją bliskie homologi S. pombe (Acc. Q09884), A. thaliana (Acc. AF187317), D. melanogaster (Acc. AE003740) i ludzki (Acc. AB028449) (Filippov i in., 2000; Jacobsen i in., 1999; Matsuda i in., 2000). Możliwe, że K12H4.8 RNaza III/helikaza jest prawdopodobnym kandydatem białka związanego z RNAi.
Genetyczne przeszukiwanie C. elegans zidentyfikowało rde-1 i rde-4 jako istotne dla aktywacji RNAi bez efektu uruchomienia transpozonów lub kosupresji (Dernburg i in., 2000; Grishok i in., 2000; Ketting i Plasterk, 2000; Tabara i in., 1999). Doprowadziło to do hipotezy, że te geny są istotne do obróbki dsRNA, ale nie są związane z degradacją docelowego mRNA. Funkcja obu genów jak dotychczas nie jest znana, produkt genu rdel jest członkiem rodziny białek podobnych do króliczego białka eIF2C (Tabara i in., 1999), a sekwencji rde-4 jak dotychczas nie opisano. Wykonana w przyszłości biochemiczna charakteryzacja tych białek powinna wyjaśnić ich molekularną funkcję.
Obróbka dupleksów siRNA wydaje się zaczynać od końców zarówno dsRNA z tępymi końcami, jak i dsRNA z krótkimi (1-5 nt) jednoniciowymi wiszącymi 3'-końcami i postępuje w około 21- do 23-nt. Długie (-20 nt) lepkie 3'-końce na krótkich dsRNA hamują RNAi, prawdopodobnie przez oddziaływanie z białkami wiążącymi jednoniciowy RNA. Zahamowanie RNAi przez jednoniciowe regiony flankujące krótkie dsRNA oraz brak tworzenia siRNA z krótkich dsRNA o długości 30 pz może wyjaśniać dlaczego regiony tworzące struktury często znajdywane w mRNA nie prowadzą do uaktywnienia RNAi.
Bez wiązania się z teorią sądzi się, że białka obróbki dsRNA, lub ich podzbiór, pozostają związane z dupleksem siRNA po reakcji obróbki. Orientacja dupleksu siRNA względem tych białek determinuje, która z dwóch komplementarnych nici działa w kierowaniu degradacją docelowego RNA. Chemicznie syntetyzowane dupleksy siRNA kierują rozszczepianiem zarówno sensownego, jak i antysensownego RNA, gdyż są one zdolne do związania się z czynnikami białkowymi w którejkolwiek z dwóch możliwych orientacji.
Niezwykłe odkrycie, że 21- i 22-nt syntetyczne dupleksy siRNA można stosować do wydajnej degradacji mRNA, dostarcza nowych narzędzi do specyficznej dla sekwencji regulacji ekspresji genów w genomice funkcjonalnej, a także w badaniach biomedycznych. siRNA mogą być skuteczne w ukłaPL 218 876 B1 dach ssaczych, gdzie długie dsRNA nie mogą być stosowane ze względu na aktywację odpowiedzi PKR (Clemens, 1997). Jako takie, dupleksy siRNA stanowią nową alternatywę dla terapii sekwencjami antysensownymi lub rybozymami.
P r z y k ł a d 2
Interferencja RNA w ludzkich hodowlach tkankowych
2.1 Metody
2.1.1 Otrzymywanie RNA
21-nt RNA zsyntetyzowano stosując amidofosforyny Expedite RNA i amidofosforyn tymidyny (Proligo, Niemcy). Syntetyczne oligonukleotydy odbezpieczono i oczyszczono na żelu (przykład 1), następnie oczyszczano na kolumnach Sep Pak C18 (Wate rs , Milord, MA, USA) (Tuschl, 1993). Sekwencje siRNA skierowane do lucyferazy GL2 (Acc. X65324) i GL3 (Acc. U47296) odpowiadały regionom kodującym 153-173 względem pierwszego nukleotydu kodonu start, siRNA skierowane do RL (Acc. AF025846) odpowiadały regionowi 119-129 po kodonie start. Dłuższe RNA były transkrybowane polimerazą RNA T7 z produktów PCR, następnie oczyszczane na żelu i na kolumnach Sep-Pak. dsRNA GL2 lub GL3 o długości 49 i 484 pz odpowiadały odpowiednio pozycjom 113-161 i 113-596, względem startu translacji; dsRNA RL o długości 50 i 501 pz odpowiadały odpowiednio pozycjom 118-167 i 118-618. Matryce do PCR do syntezy dsRNA skierowanych do humanizowanego GFP (hG) zamplifikowano z pAD3 (Kehlenbach, 1998), przy czym dsRNA hG o długości 50 i 501 pz odpowiadały odpowiednio pozycjom 118-167 i 118-618 względem kodonu start.
Do hybrydyzacji siRNA 20 μΜ pojedyncze nici inkubowano w buforze do hybrydyzacji (100 mM octan potasu, 30 mM HEPESKOH, pH 7,4, 2 mM octan magnezu) przez 1 minutę w 90°C, a następnie przez 1 godzinę w 37°C. Etap inkubacji w 37°C przedłużono na noc w przypadku dsRNA o długości 50 i 500 pz, a te reakcje hybrydyzacji przeprowadzano przy stężeniach nici odpowiednio 8,4 μM i 0,8 4 μM.
2.1.2 Hodowla komórkowa
Komórki S2 namnażano w podłożu Schneider'a Drosophila (Life Technolgies) uzupełnionym 10% FBS, 100 jednostek/ml penicyliny i 100 μg/ml streptomycyny w 25°C. Komórki 293, NIH/3T3, HeLa S3, COS-7 hodowano w 37°C w podłożu Eagla w modyfikacji Dulbecco, uzupełnionym 10% FBS, 100 jednostek/ml penicyliny i 100 μg/ml streptomycyny. Komórki regularnie pasażowano aby utrzymać wzrost wykładniczy. 24 godziny przed transfekcją przy około 80% konfluencji, komórki ssa5 cze trypsynizowano i rozcieńczono 1:5 w świeżym podłożu bez antybiotyków (1-3 x 105 komórek/ml) i przeniesiono do 24-studzienkowych płytek (500 μl/studzienkę). Komórki S2 nie były trypsynizowane przed podzieleniem. Transfekcję przeprowadzono z użyciem odczynnika Lipofectamine 2000 (Life Technologies), w sposób opisany przez producenta dla linii komórkowych przylegających. Na studzienkę dodano 1,0 μg pGL2-Control (Promega) lub pGL3-Control (Promega), 0,1 μg pRL-TK (Promega) i 0,28 μg dupleksu siRNA lub dsRNA, formułowanych w liposomach; końcowa objętość wynosiła 600 μl na studzienkę. Komórki inkubowano 20 godzin po transfekcji i miały one wtedy zdrowy w ygląd. Następnie monitorowano ekspresję lucyferazy za pomocą podwójnego testu lucyferazy (Promega). Wydajności transfekcji wyznaczono metodą mikroskopii fluorescencyjnej dla ssaczych linii komórkowych po kotransfekcji 1,1 μg pAD3 kodującego hGFP i 0,28 μg invGL2 w GL2 siRNA i wynosiły one 70-90%. Plazmidy reporterowe amplifikowano w XL-1 Blue (Stratagene) i oczyszczono z użyciem zestawu Qiagen EndoFree Maxi Plasmid.
2.2 Wyniki i dyskusja
Aby zbadać czy siRNA są także zdolne do kierowania RNAi w hodowli komórkowej, zsyntetyzowano 21-nt dupleksy siRNA z symetrycznymi 2-nt jednoniciowymi wiszącymi 3'-końcami skierowane przeciw genom reporterowym lucyferaz Renilla reniformis i dwu wariantom sekwencji ze świetlika (Photinus pyralis, GL2 i GL3) (fig. 8a, b). Dupleksy siRNA kotransfekowano z połączeniami plazmidów reporterowych pGL2/pRL lub pGL3/pRL do komórek D. melanogaster Schneider S2 lub ssaczych komórek z użyciem kationowych liposomów. Aktywności lucyferazy oznaczono 20 godzin po transfekcji. We wszystkich zbadanych liniach komórkowych zaobserwowano specyficzne obniżenie ekspresji genów reporterowych w obecności ich pokrewnych dupleksów siRNA (fig. 9a-j). Co ciekawe, absolutne poziomy ekspresji lucyferazy nie były zmienione przez nie spokrewnione siRNA, co wskazywało na brak szkodliwych skutków ubocznych 21-nt dupleksów RNA (np. fig. 10a-d dla komórek HeLa). W komórkach D. melanogaster S2 (fig. 9a, b), specyficzne zahamowanie lucyferaz było całkowite. W komórkach ssaczych, gdzie geny reporterowe były 50- do 100-krotnie silniej wyrażane, specyficzna supresja była mniej pełna (fig. 9c-j). Ekspresja GL2 była obniżona 3- do 12-krotnie, ekspresja GL39- do
PL 218 876 B1
25-krotnie, a ekspresja RL 1- do 3-krotnie, w odpowiedzi na ich pokrewne siRNA. Dla komórek 293, hamowanie lucyferazy RL przez siRNA RL było nieskuteczne, jednakże docelowe geny GL2 i GL3 odpowiadały specyficznie (fig. 9i, j). Brak zmniejszenia ekspresji RL w komórkach 293 może wynikać z jego 5- do 20-krotnie wyższej ekspresji w porównaniu z jakąkolwiek inną badaną ssaczą linią komórkową i/lub z ograniczonej dostępności sekwencji docelowej ze względu na drugorzędową strukturę RNA lub związane białka. Niemniej jednak, specyficzne zahamowanie lucyferazy GL2 i GL3 przez ich pokrewne dupleksy siRNA wskazywało, że RNAi działa także w komórkach 293.
Dwunukleotydowy jednoniciowy wiszący 3'-koniec we wszystkich dupleksach siRNA, z wyjątkiem uGL2, składał się z (2'-deoksy)tymidyny. Podstawienie urydyny tymidyną w jednoniciowym wiszącym 3'-końcu było dobrze tolerowane w in vitro systemie D. melanogaster, a sekwencja jednoniciowego wiszącego końca nie była krytyczna dla rozpoznania docelowego RNA. Tymidynowy jednoniciowy wiszący koniec wybrano, gdyż uważa się, że zwiększa on odporność siRNA na nukleazę w podłożu do hodowli tkankowych oraz w transfekowanych komórkach. Faktycznie, GL2 siRNA zmodyfikowany tymidyną był nieznacznie silniejszy niż niezmodyfikowany uGL2 siRNA we wszystkich badanych liniach komórkowych (fig. 9a, c, e, g, i). Niewykluczone, że dalsze modyfikacje nukleotydów jednoniciowego wiszącego 3'-końca mogą dostarczyć dodatkowe korzystne efekty względem dostarczania i stabilności dupleksów siRNA.
W doświadczeniach kotransfekcji zastosowano 25 nM dupleksy siRNA, w odniesieniu do końcowej objętości podłoża do hodowli tkankowych (fig. 9, 10). Podwyższenie stężenia siRNA do 100 nM nie wzmocniło efektów specyficznego wyciszania, ale zaczęło wpływać na wydajność transfekcji ze względu na współzawodnictwo w zamykaniu w liposomie pomiędzy plazmidowym DNA i siRNA (dane nie prezentowane). Obniżenie stężenia siRNA do 1,5 nM nie obniżyło specyficznego efektu wyciszania (dane nie prezentowane), pomimo, że siRNA były wtedy tylko 2- do 20- krotnie bardziej stężone niż plazmidy DNA. Oznacza to, że siRNA są nadzwyczaj silnymi czynnikami pośredniczącymi w wyciszaniu genów oraz, że siRNA są skuteczne w stężeniach, które są kilka rzędów wielkości niższe niż stężenia stosowane w zwykłych doświadczeniach kierowania do genów sekwencji antysensownych lub rybozymów.
Aby monitorować wpływ dłuższych dsRNA na komórki ssacze, otrzymano dsRNA o długości 50 i 500 pz, pokrewne genom reporterowym. Jako niespecyficzną kontrolę zastosowano dsRNA z humanizowanego GFP (hG) (Kehlenbach, 1998). Gdy dsRNA kotransfekowano w identycznych ilościach (nie stężeniach) z dupleksami siRNA, ekspresja genu reporterowego była silnie i niespecyficznie obniżona. Efekt ten przedstawiono dla komórek HeLa jako reprezentatywnego przykładu (fig. 10a-d). Absolutne aktywności lucyferazy były obniżone niespecyficznie odpowiednio 10- do 20-krotnie przez kotransfekcję dsRNA o długości 50 pz i 20- do 200-krotnie przez kotransfekcję dsRNA o długości 500 pz. Podobne niespecyficzne efekty obserwowano dla komórek COS-7 i ŃIH/3T3. Dla komórek 293 obserwowano 10- do 20-krotne niespecyficzne obniżenie tylko dla dsRNA o długości 500 pz. Niespecyficzne obniżenie ekspresji genu reporterowego przez dsRNA > 30 pz przewidywano jako część odpowiedzi interferonowej.
Zaskakująco, pomimo silnego niespecyficznego obniżenia ekspresji genu reporterowego, powtarzalnie wykryto specyficzne dla sekwencji wyciszanie kierowane dsRNA. Jednakże efekty specyficznego wyciszania były widoczne tylko gdy względne aktywności genu reporterowego normalizowano względem kontroli hG dsRNA (fig. 10e, f). Zaobserwowano 2- do 10-krotne specyficzne obniżenie w odpowiedzi na pokrewny dsRNA, także w trzech innych badanych liniach komórek ssaczych (dane nie prezentowane). Efekty specyficznego wyciszania dsRNA (356-1662 pz) wcześniej opisano w komórkach CHO-K1, ale ilości dsRNA wymagane do wykrycia 2- do 4-krotnego specyficznego obniżenia, były około 20-krotnie wyższe niż w naszych doświadczeniach (Ui-Tei, 2000). Także komórki CHO-K1 wydają się wykazywać niedobór odpowiedzi interferonowej. W innej pracy komórki 293, NIH/3T3 i BHK-21 badano pod względem RNAi stosując połączenia reporterowe lucyferaza/lacZ i dsRNA specyficzny lacZ o długości 829 pz lub niespecyficzny GFP o długości 717 pz (Caplen, 2000). Niemożność wykrycia RNAi w tym przypadku może wynikać z mniejszej czułości testu reporterowego lucyferaza/lacZ oraz różnic długości pomiędzy docelowym i kontrolnym dsRNA. Reasumując, wyniki te wskazują, że RNAi jest aktywna w komórkach ssaczych, że efekt wyciszania jest trudny do wykrycia, gdy system interferonu jest aktywowany przez dsRNA > 30 pz.
W skrócie, po raz pierwszy wykazano wyciszanie genów kierowane siRNA w komórkach ssaczych. Zastosowanie krótkich siRNA niesie wielką nadzieję inaktywacji funkcji genu w hodowli komórek ludzkich oraz opracowania genowo specyficznych środków terapeutycznych.
PL 218 876 B1
P r z y k ł a d 3
Specyficzne hamowanie ekspresji genu przez interferencję RNA
3.1 Materiały i Metody
3.1.1 Otrzymywanie RNA i test RNAi
Chemiczną syntezę RNA, hybrydyzację i testy RNAi oparte na lucyferazie przeprowadzono w sposób opisany w przykładach 1 lub 2 lub wcześniejszych publikacjach (Tuschl i in., 1999; Zamore i in., 2000). Wszystkie dupleksy siRNA były skierowane przeciw lucyferazie świetlika, a sekwencja mRNA lucyferazy pochodziła z pGEM-luc (GenBank nr dostępu X65316) jak opisano (Tuschl i in.,
1999). Dupleksy siRNA inkubowano w reakcji D. melanogaster RNAi/translacja przez 15 minut przed dodaniem mRNA. Oparte na translacji testy RNAi przeprowadzono co najmniej w trzech powtórzeniach.
W celu zmapowania rozszczepiania sensownego docelowego RNA wytworzono 177-nt transkrypt odpowiadający sekwencji lucyferazy świetlika pomiędzy pozycjami 113-273 względem kodonu start, a dalej 17-nt dopełnienie sekwencji promotora SP6. W celu zmapowania rozszczepiania antysensownego docelowego RNA wytworzono 166-nt transkrypt z matrycy, którą amplifikowano z sekwencji plazmidu metodą PCR z zastosowaniem 5'-startera TAATACGACTCACTATAGAGCCCATATCGTTTCATA (podkreślony promotor T7) i 3'-startera AGAGGATGGAACCGCTGG. Sekwencja docelowa odpowiada dopełnieniu sekwencji lucyferazy świetlika pomiędzy pozycjami 50-215 względem kodonu start. Znakowanie transferazy guanylanowej przeprowadzono w sposób wcześniej opisany (Zamore i in., 2000). W celu zmapowania rozszczepiania docelowego RNA 100 nM dupleksu siRNA inkubowano z 5 do 10 nM docelowego RNA w lizacie embrionów D. melanogaster w zwykłych warunkach (Zamore i in., 2000) przez 2 godziny w 25°C. Reakcję zatrzymano przez dodanie 8 objętości buforu proteinazy K (200 mM Tris-HCl pH 7,5, 25 mM EDTA, 300 mM NaCl, 2% wag./obj. dodecylosiarczan sodu). Proteinazę K (E. M. Merck, rozpuszczoną w wodzie) dodano do końcowego stężenia 0,6 mg/ml. Następnie reakcje inkubowano przez 15 minut w 65°C, wyekstrahowano mieszaniną fenol/chloroform/alkohol izoamylowy (25:24:1) i wytrącono trzema objętościami etanolu. Próbki umieszczonej na 6% żelach do sekwencjonowania. Wzorce wielkości wytworzono przez częściowe rozszczepianie RNazą T1 i częściową hydrolizę zasadową znakowanych w czapeczce sensownych lub antysensownych docelowych RNA.
3.2 Wyniki
3.2.1 Zmienność jednoniciowych wiszących 3'-końców w dupleksach 21-nt siRNA
Jak opisano powyżej, dupleksy siRNA mające 2 lub 3 niesparowane nukleotydy na 3'-końcu są bardziej skuteczne w kierowaniu degradacją docelowego RNA niż odpowiednie dupleksy z tępymi końcami. Aby przeprowadzić pełniejszą analizę funkcji końcowych nukleotydów zsyntetyzowano pięć 21-nt sensownych siRNA, z których każdy był dłuższy o jeden nukleotyd względem docelowego RNA oraz osiem 21-nt antysensownych siRNA, z których każdy był dłuższy o jeden nukleotyd względem docelowego RNA (fig. 11A). Przez połączenie sensownych i antysensownych siRNA, otrzymano osiem serii dupleksów siRNA z syntetycznymi jednoniciowymi wiszącymi końcami pokrywającymi zakres od 7-nt jednoniciowego wiszącego 3'-końca do 4-nt jednoniciowego wiszącego 5'-końca. Interferencję dupleksów siRNA zmierzono z użyciem podwójnego układu testowego lucyferazy (Tuschl i in., 1999; Zamore i in., 2000). Dupleksy siRNA były skierowane przeciw mRNA lucyferazy świetlika, a mRNA lucyferazy Renilla reniformis zastosowano jako wewnętrzną kontrolę. Stosunek luminescencji aktywności lucyferazy docelowej do kontrolnej wyznaczono w obecności dupleksu siRNA i normalizowano względem stosunku obserwowanego przy braku dsRNA. Dla porównania, stosunki interferencji dla długich dsRNA (39-504 pz) przedstawiono na fig. 11B. Stosunki interferencji wyznaczono w stężeniach 5 nM dla dłuższych dsRNA (fig. 11A) i 100 nM dla dupleksów siRNA (fig. 11C-J). Wybrano 100 nM stężenia siRNA, H gdyż całkowita obróbka 5 nM dsRNA o długości 504 pz wytworzy całkowite 120 nM stężenie dupleksów siRNA.
Zdolność 21-nt dupleksów siRNA do kierowania RNAi zależy od liczby nukleotydów jednoniciowego wiszącego końca lub tworzonych par zasad. Dupleksy z czterema do sześciu nukleotydami jednoniciowego wiszącego 3'-końca nie były zdolne do kierowania RNAi (fig. 11C-F), tak jak dupleksy z dwoma lub większą liczbą nukleotydów jednoniciowego wiszącego 5'-końca (fig. 11G-J). Dupleksy z 2-nt jednoniciowymi wiszącymi 3'-końcami były najskuteczniejsze w kierowaniu interferencją RNA, jednak wydajność wyciszania była także zależna od sekwencji i obserwowano do 12-krotne różnice dla różnych dupleksów siRNA z 2-nt jednoniciowymi wiszącymi 3'-końcami (porównaj fig. 11D-H). Dupleksy z tępymi końcami, z 1-nt jednoniciowym wiszącym 5'-końcem lub 1- do 3-nt jednoniciowym
PL 218 876 B1 wiszącym 3'-końcem były czasami funkcjonalne. Niewielki efekt wyciszania obserwowany dla dupleksu siRNA z 7-nt jednoniciowym wiszącym 3'-końcem (fig. 11C) może wynikać raczej z efektu antysensownego długiego jednoniciowego wiszącego 3'-końca niż z RNAi. Porównanie wydajności RNAi pomiędzy długimi dsRNA (fig. 11B) i najskuteczniejszymi 21-nt dupleksami siRNA (fig. 11E, G, H) wskazuje, że pojedynczy dupleks siRNA w stężeniu 100 nM może być tak skuteczny jak 5 nM dsRNA o długości 504 pz.
3.2.2 Zmienność długości sensownego siRNA sparowanego z niezmiennym 21-nt antysensownym siRNA
Aby zbadać wpływ długości siRNA na RNAi otrzymano trzy serie dupleksów siRNA przez połączenie trzech 21-nt nici antysensownych z ośmioma 18- do 25-nt nićmi sensownymi. Jednoniciowy wiszący 3'-koniec antysensownego siRNA miał ustaloną długość 1, 2 lub 3 nt dla każdej serii dupleksów siRNA, podczas gdy sensowny siRNA różnił się na swoim 3'-końcu (fig. 12A). Niezależnie od długości sensownego siRNA stwierdzono, że dupleksy z 2-nt w jednoniciowym wiszącym 3'-końcu antysensownego siRNA (fig. 12C) były bardziej aktywne niż te z 1- lub 3-nt jednoniciowym wiszącym 3'-końcem (fig. 12B, D). W pierwszej serii z 1-nt jednoniciowym wiszącym 3'-końcem antysensownego siRNA, dupleksy z 21- i 22-nt sensownymi siRNA, niosące odpowiednio 1- i 2-nt wiszący 3'-koniec sensownego siRNA, były najbardziej aktywne. Dupleksy z 19-25-nt sensownymi siRNA były także zdolne do kierowania RNAi, ale w mniejszym stopniu. Podobnie, w drugiej serii z 2-nt jednoniciowym wiszącym końcem antysensownego siRNA, 21-nt dupleks siRNA z 2-nt jednoniciowym wiszącym 3'-końcem był najbardziej aktywny i jakiekolwiek inne połączenie z 18- do 25-nt sensownym siRNA było aktywne w istotnym stopniu. W ostatniej serii z 3-nt jednoniciowym wiszącym 3'-końcem antysensownego siRNA, tylko dupleks z 20-nt sensownym siRNA i 2-nt sensownym jednoniciowym wiszącym 3'-końcem był zdolny do zmniejszenia ekspresji docelowego RNA. Reasumując, wyniki te wskazują, że ważne są długość siRNA, a także długość jednoniciowego wiszącego 3'-końca oraz, że dupleksy 21-nt siRNA z 2-nt jednoniciowym wiszącym 3'-końcem są optymalne dla RNAi.
3.2.3 -Zmienność długości dupleksów siRNA ze stałym dwunukleotydowym jednoniciowym wiszącym 3'-końcem.
Następnie zbadano wpływ równoczesnego zmieniania długości obu nici siRNA przez utrzymanie symetrycznych 2-nt jednoniciowych wiszących 3'-końców (fig. 13A). Otrzymano dwie serie dupleksów siRNA zawierające 21-nt dupleks siRNA z fig. 11H jako odniesienie. Długość dupleksów zmieniano w zakresie 20-25 pz przez wydłużanie sparowanego segmentu na 3'-końcu sensownego siRNA (fig. 13B) lub 3'-końcu antysensownego siRNA (fig. 13C). Dupleksy o długości 20-23 pz wywoływały specyficzną represję aktywności docelowej lucyferazy, ale 21-nt dupleks siRNA był co najmniej ośmiokrotnie bardziej wydajny niż którykolwiek z innych dupleksów. 24- i 25-nt dupleksy siRNA nie wywołały jakiejkolwiek wykrywalnej interferencji. Efekty specyficzne dla sekwencji były mniejsze, gdyż zmiany na obu końcach dupleksu wywołały podobne efekty.
3.2.4 2'-Deoksy- i 2'-O-metylo-modyfikowane dupleksy siRNA
Aby ocenić istotność reszt rybozy w siRNA dla RNAi, zbadano 21-nt dupleksy siRNA z 2-nt jednoniciowymi wiszącymi 3'-końcami z 2'-deoksy- lub 2'-O-metylo-modyfikowanymi nićmi (fig. 14). Podstawienie 2-nt jednoniciowych wiszących 3'-końców przez 2'-deoksynukleotydy nie wywołało żadnego efektu, a nawet w wyniku zastąpienia dwóch dodatkowych rybonukleotydów przyległych do jednoniciowych wiszących końców w regionie sparowanym uzyskano znacząco aktywne siRNA. Zatem 8 z 42 nt dupleksu siRNA zastąpiono przez reszty DNA bez utraty aktywności. Jednakże całkowite podstawienie jednej lub obu nici siRNA przez reszty 2'-deoksy zniosło RNAi, tak jak podstawienie resztami 2'-O-metylowanymi.
3.2.5 Definicja miejsc rozszczepiania docelowego RNA
Pozycje rozszczepiania docelowego RNA wcześniej wyznaczono dla 22-nt dupleksów siRNA oraz dupleksu 21-nt/22-nt. Stwierdzono, że pozycja rozszczepiania docelowego RNA była umiejscowiona w centrum regionu pokrytego przez dupleks siRNA, 11 lub 12 nt w dół od pierwszego nukleotydu komplementarnego do 21- lub 22-nt kierującej sekwencji siRNA. Pięć różnych 21-nt dupleksów siRNA z 2-nt jednoniciowym wiszącym 3'-końcem (fig. 15A) inkubowano ze znakowanym w 5'-czapeczce sensownym lub antysensownym docelowym RNA w lizacie D. melanogaster (Tuschl i in., 1999; Zamore i in., 2000). 5'-produkty rozszczepiania rozdzielano na żelach do sekwencjonowania (fig. 15B). Ilość rozszczepionego sensownego docelowego RNA korelowała z wydajnością dupleksów siRNA wyznaczoną w teście opartym na translacji, a dupleksy siRNA 1, 2 i 4 (fig. 15B i 11H, G, E) rozszczepiały docelowy RNA szybciej niż dupleksy 3 i 5 (fig. 15B i 11F, D). Warto zauważyć, że suma radioakPL 218 876 B1 tywności 5'-produktu rozszczepiania i wejściowego docelowego RNA nie były stałe w czasie oraz 5'-produkty rozszczepiania nie nagromadzały się. Przypuszczalnie produkty rozszczepiania, gdy zostaną już uwolnione z kompleksu siRNA-endonukleaza, są szybko rozkładane ze względu na brak zarówno ogona poli(A), jak i 5'-czapeczki.
Miejsca rozszczepiania dla obydwu sensownego i antysensownego docelowego RNA były umiejscowione w środku regionu pokrytego przez dupleksy siRNA. Miejsca rozszczepiania dla każdego docelowego dupleksu wytworzone przez pięć różnych dupleksów różniły się o 1-nt zgodnie z 1-nt przesunięciem dupleksów wzdłuż docelowych sekwencji. Docelowe sekwencje były rozszczepiane precyzyjnie 11-nt w dół od pozycji docelowej komplementarnej do najbliższego 3'-końca nukleotydu komplementarnego do sekwencji kierującego siRNA (fig. 15A, B).
Aby stwierdzić, czy 5'- czy 3'-koniec kierującego siRNA kieruje rozszczepianiem docelowego RNA opracowano strategię doświadczalną wyjaśnioną na fig. 16A i B. 21-nt antysensowny siRNA, który w tym badaniu był niezmienny, sparowano z sensownymi siRNA, które były zmodyfikowane na swoich 5' - lub 3'-końcach. Pozycję rozszczepiania sensownego lub antysensownego docelowego RNA wyznaczono w sposób opisany powyżej. Zmiany 3'-końca sensownego siRNA, monitorowane dla
1- nt jednoniciowego wiszącego 5'-końca do 6-nt jednoniciowego wiszącego 3'-końca nie wpłynęły na pozycję rozszczepiania ani sensownego ani antysensownego RNA (fig. 16C). Zmiany na 5'-końcu sensownego siRNA nie wpłynęły na rozszczepianie docelowego sensownego RNA (fig. 16D, górna część), co przewidywano, gdyż antysensowny siRNA nie był zmieniony. Jednakże rozszczepianie antysensownego docelowego RNA było zmieniane i silnie zależało od 5'-końca sensownego siRNA (fig. 16D, dolna część). Antysensowny docelowy RNA był rozszczepiany tylko wtedy, gdy sensowny siRNA miał długość 20- lub 21-nt oraz pozycja rozszczepiania różniła się o 1-nt, co sugerowało, że 5'-koniec siRNA rozpoznającego docelowy RNA kieruje rozszczepianiem docelowego RNA. Pozycja była umiejscowiona pomiędzy 10 a 11 nukleotydem licząc w górę od docelowego nukleotydu sparowanego z najbliższym 5'-końca nukelotydem kierującego siRNA (patrz także fig. 15A).
3.2.6 Efekty sekwencji i podstawienia 2'-deoksy w jednoniciowym wiszącym 3'-końcu
Dwunukleotydowy jednoniciowy wiszący 3'-koniec jest korzystny dla działania siRNA. Próbowano stwierdzić, czy sekwencja nukleotydowa jednoniciowego wiszącego końca wpływa na rozpoznanie docelowego RNA lub czy jest to tylko cecha wymagana do odtworzenia kompleksu endonukleazy (RISC lub siRNP). Zsyntetyzowano sensowne i antysensowne siRNA z AA, CC, GG, UU i UG jednoniciowymi wiszącymi 3'-końcami i włączono modyfikacje 2'-deoksy TdG i TT. SiRNA typu dzikiego zawierały AA w sensownym jednoniciowym wiszącym 3'-końcu i UG w antysensownym jednoniciowym wiszącym 3'-końcu (AA/UG). Wszystkie dupleksy siRNA były funkcjonalne w teście interferencji i obniżały ekspresję docelowego RNA co najmniej pięciokrotnie (fig. 17). Najskuteczniejsze dupleksy siRNA, które obniżały ekspresję docelowego RNA ponad dziesięciokrotnie, miały sekwencje typu NN/UG, NN/UU, NN/TdG, i NN/TT (N, dowolny nukleotyd). Dupleksy siRNA z antysensownym siRNA zawierającym jednoniciowy wiszący 3'-koniec AA, CC lub GG były dwu- do czterokrotnie mniej aktywne w porównaniu z sekwencją typu dzikiego UG lub zmutowaną UU. To obniżenie wydajności RNAi prawdopodobnie wynika z wpływu przedostatniego nukleotydu 3' na zależne od sekwencji rozpoznanie docelowego RNA, gdyż zmiana 3'-końcowego nukleotydu z G do U nie wywołała żadnego efektu.
Zmiany sekwencji jednoniciowego wiszącego 3'-końca sensownego siRNA nie ujawniły jakichkolwiek efektów zależnych od sekwencji, co przewidywano, gdyż sensowny siRNA nie może U wpływać na rozpoznanie sensownego docelowego mRNA.
3.2.7 Specyficzność rozpoznawania docelowej sekwencji
Aby zbadać specyficzność rozpoznawania docelowej sekwencji wprowadzono zmiany w sekwencji sparowanych segmentów dupleksów siRNA i wyznaczono wydajność wyciszania. Zmiany w sekwencji wprowadzono przez odwrócenie krótkich segmentów o długości 3- lub 4-nt lub przez mutacje punktowe (fig. 18). Zmiany w sekwencji jednej nici siRNA kompensowano w komplementarnej nici siRNA aby zapobiec zaburzeniom sparowanej struktury dupleksu siRNA. Sekwencją wszystkich
2- nt jednoniciowych wiszących 3'-końców było TT (T, 2'-deoksytymidyna), w celu zmniejszenia kosztów syntezy. Dupleks siRNA referencyjny TT/TT był porównywalny w RNAi z dupleksem siRNA typu dzikiego AA/UG (fig. 17). Zdolność do kierowania rozkładem reporterowego mRNA oznaczono za pomocą opartego na translacji testu luminescencji. Dupleksy siRNA z odwróconymi segmentami sekwencji wykazały radykalnie obniżoną zdolność rozszczepiania docelowego reporterowego mRNA lucyferazy świetlika (fig. 18). Zmiany sekwencji umiejscowione pomiędzy 3'-końcem i środkiem antysensownego siRNA całkowicie znosiły rozpoznawanie docelowego RNA, ale mutanty w pobliżu
PL 218 876 B1
5'-końca antysensownego siRNA wykazywały niewielki stopień wyciszania. Transwersja A/U pary zasad umiejscowionej bezpośrednio naprzeciw przewidywanego miejsca rozszczepiania docelowego RNA lub jeden nukelotyd od przewidywanego miejsca przeciwdziałała rozszczepianiu docelowego RNA, co wskazywało, że pojedyncza mutacja w centrum dupleksu siRNA rozróżnia pomiędzy błędnie sparowanymi docelowymi sekwencjami.
3.3 Dyskusja siRNA są cennymi czynnikami do inaktywacji ekspresji genów, nie tylko w komórkach owadzich, ale także w komórkach ssaczych, z dużymi możliwościami zastosowań terapeutycznych. Systematycznie zanalizowano determinanty strukturalne dupleksów siRNA wymaganych do wywoływania wydajnego rozkładania docelowego RNA w lizacie embrionów D. melanogaster, co dostarcza zasad projektowania najsilniejszych dupleksów siRNA. Perfekcyjny dupleks siRNA jest zdolny wyciszyć ekspresję genu z wydajnością porównywalną do dsRNA o długości 500 pz, pod warunkiem, że stosuje się porównywalne ilości całkowitego RNA.
3.4 Wskazówki dla użytkownika siRNA
Skutecznie wyciszające dupleksy siRNA korzystnie składają się z 21-nt antysensownych siRNA i powinny być wybrane tak by tworzyły podwójną helisę o długości 19 pz z 2-nt jednoniciowymi wiszącymi 3'-końcami. Podstawienia 2'-deoksy rybonukleotydów w 2-nt jednoniciowym wiszącym 3'-koń-cu nie wpływają na RNAi, ale pomagają zmniejszyć koszty syntezy RNA i mogą zwiększyć odporność na RNAzę dupleksów siRNA. Jednakże bardziej rozległe modyfikacje 2'-deoksy lub 2'-O-metylo zmniejszają zdolność siRNA do kierowania RNAi, prawdopodobnie przez interferencję z wiązaniem białka przy składaniu siRNAP.
Rozpoznanie docelowego RNA jest procesem wysoce specyficznym względem sekwencji, kierowanym przez siRNA komplementarny do docelowego RNA. Najbliższy 3'-końca nukelotyd kierującego siRNA nie wpływa na specyficzność rozpoznania docelowego RNA, podczas gdy przedostatni nukleotyd jednoniciowego wiszącego 3'-końca wpływa na rozszczepianie docelowego RNA i błędne sparowanie ogranicza RNAi dwu- do czterokrotnie. Koniec 5' kierującego siRNA także wydaje się być bardziej skłonny do rozpoznania docelowego RNA przy błędnym parowaniu, w porównaniu z 3'-końcem. Nukleotydy w centrum siRNA, umiejscowione naprzeciw miejsca rozszczepiania docelowego RNA, są ważnymi determinantami specyficzności oraz nawet pojedyncze zmiany nukleotydowe zmniejszają RNAi do niewykrywalnego poziomu. Sugeruje to, że dupleksy siRNA mogą być zdolne do rozróżniania pomiędzy zmutowanymi lub polimorficznymi allelami w doświadczeniach skierowania do genu, co może się stać istotną cechą do przyszłych zastosowań terapeutycznych.
Zasugerowano, że sensowne i antysensowne siRNA, gdy są związane ze składnikami białkowymi kompleksu endonukleazy lub kompleksu w który jest on zaangażowany, odgrywają różne role; względna orientacja dupleksu siRNA w tym kompleksie wyznacza, która nić może być użyta do rozpoznania docelowego RNA. Syntetyczne dupleksy siRNA wykazują podwójną symetrię w odniesieniu do podwójnie-helikalnej struktury, ale nie w odniesieniu do sekwencji. Związanie dupleksów siRNA z białkami RNAi w lizacie D. melanogaster prowadzi do wytworzenia dwóch asymetrycznych kompleksów. W takich hipotetycznych kompleksach, środowisko chiralne różni się dla sensownego i antysensownego siRNA, podobnie jak ich funkcja. Przewidywania tego oczywiście nie stosuje się do palindromicznych sekwencji siRNA lub do białek RNAi, które mogą wiązać się jako homodimery. Aby zminimalizować efekty sekwencyjne, które mogą wpływać na stosunek sensownych i antysensownych skierowanych siRNP, sugeruje się zastosowanie sekwencji siRNA z identycznymi sekwencjami jednoniciowych wiszących 3'-końców. Zaleca się dostosowanie sekwencji jednoniciowego wiszącego końca sensownego siRNA do antysensownego jednoniciowego wiszącego 3'-końca, gdyż sensowny siRNA nie ma docelowego RNA w typowych doświadczeniach wyciszania. Asymetria w odtwarzaniu sensownych i antysensownych rozszczepiających siRNP może być (częściowo) odpowiedzialna za zmienność wydajności RNAi obserwowaną dla różnych 21-nt dupleksów siRNA z 2-nt jednoniciowymi wiszącymi 3'-końcami, stosowanych w tym badaniu (fig. 14). Alternatywnie, sekwencja nukleotydowa w miejscu docelowym i/lub dostępność struktury docelowego RNA może odpowiadać za zmienność wydajności tych dupleksów siRNA.
PL 218 876 B1
Literatura
Bass, B. L. (2000). Double-stranded RNA as a template for gene silencing. Cell 101, 235-238.
Bosher, J. M. i Labouesse, M. (2000). RNA interference: genetic wand and genetic watchdog. Nat. Cell Biol. 2, E31-36.
Caplen, N. J., Fleenor, J., Fire, A. i Morgan, R. A. (2000). dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95-105.
Catalanotto, C., Azzalin, G., Macino, G. i Cogoni, C. (2000). Gene silencing in worms and fungi.
Nature 404, 245.
Chanfreau, G., Buckie, M. i Jacquier, A. (2000). Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae RNase III. Proc. Natl. Acad. Sci. USA 97, 3142-3147.
Clemens, M. J. (1997). PKR-a protein kinase regulated by double-stranded RNA. Int. J. Biochem. Cell Biol. 29, 945-949.
Cogoni, C. i Macino, G. (1999). Homology-dependent gene silencing in plants and fungi: a number of variations on the same theme. Curr. Opin. Microbiol. 2, 657-662.
Dalmay, T., Hamilton, A., Rudd, S., Angell, S. i Baulcombe, D. C. (2000). An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543-553.
Dernburg, A. F., Zalevsky, J., Colaiacovo, M. P. i Villeneuve, A. M. (2000). Transgene-mediated cosuppression in the C. elegans germ line. Genes & Dev. 14, 1578-1583.
Dunn, J. J. (1982). Ribonuclease III. W The enzymes, tom 15, część B, P. D. Boyer, red. (New York: Academic Press), str. 485-499.
Filippov, V., Solovyev, V., Filippova, M. i Gill, S. S. (2000). A novel type of RNase III family proteins in eukaryotes. Gene 245, 213-221.
Fire, A. (1999). RNA-triggered gene silencing. Trends Genet. 15, 358-363.
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. i Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
Grishok, A., Tabara, H. i Mello, C. C. (2000). Genetic requirements for inheritance of RNAi in
C. elegans. Science 287, 2494-2497.
Hamilton, A. J. i Baulcombe, D. C. (1999). A species of smali anti-sense RNA in posttranscriptional gene silencing in plants. Science 286, 950-952.
Hammond, S. M., Bernstein, E., Beach, D. i Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293-296.
Jacobsen, S. E., Running, M. P. i M., M. E. (1999). Disruption of an RNA helicase/RNase III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126, 5231-5243.
Jensen, S., Gassama, M. P. i Heidmann, T. (1999). Taming of trans-posable elements by homology-dependent gene silencing. Nat. Genet. 21, 209-212.
Kehlenbach, R. H., Dickmanns, A. & Gerace, L. (1998). Nucleocytoplasmic shuttling factors including Ran and CRM1 mediate nuclear export of NFAT In vitro. J. Cell Biol. 141, 0 863-874.
Kennerdell, J. R. i Carthew, R. W. (1998). Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017-1026.
Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. I Plasterk, R. H. (1999). Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133-141.
Ketting, R. F. i Plasterk, R. H. (2000). A genetic link between co-suppression and RNA interference in C. elegans. Nature 404, 296-298.
Lucy, A. P., Guo, H. S., Li, W. X. i Ding, S. W. (2000). Suppression of post-transcriptional gene silencing by a plant viral protein localized in the nucleus. EMBO J. 19, 1672-1680.
Matsuda, S., Ichigotani, Y., Okuda, T., Irimura, T., Nakatsugawa, S. i Hamaguchi, M. (2000). Molecular cloning and characterization of a novel human gene (HERNA) which encodes a putative RNA-helicase. Biochim. Biophys. Acta 31, 1-2.
Milligan, J.F. i Uhlenbeck, O.C. (1989). Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51-62.
Mourrain, P., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J. B., Jouette, D., Lacombe, A. M., Nikic, S., Picault, N., Remoue, K., Sanial, M., Vo, T. A. i Vaucheret, H. (2000). Arabidopsis
PL 218 876 B1
SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533-542.
Ngo, H., Tschudi, C., Gull, K. i Ullu, E. (1998). Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 95, 14687-14692.
Nicholson, A. W. (1999). Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol. Rev. 23, 371-390.
Oelgeschlager, M., Larrain, J., Geissert, D. i De Robertis, E. M. (2000). The evolutionary conserved BMP-binding protein Twisted gastrulation promotes BMP signalling. Nature 405, 757-763.
Pan, T. i Uhlenbeck, O. C. (1992). In vitro selection of RNAs that undergo autolytic cleavage with Pb2+. Biochemistry 31, 3887-3895.
Pelissier, T. i Wassenegger, M. (2000). A DNA target of 30 bp is sufficient for RNA-directed methylation. RNA 6, 55-65.
Plasterk, R. H. i Ketting, R. F. (2000). The silence of the genes. Curr. Opin. Genet. Dev. 10, 562-567.
Ratcliiff, F. G., MacFarlane, S. A. i Baulcombe, D. C. (1999). Gene Silencing without DNA. RNA-mediated crossprotection between viruses. Plant Cell 11, 1207-1216.
Robertson, H. D. (1990). Escherichia coli ribonuclease III. Methods Enzymol. 181, 189-202.
Robertson, H. D. (1982). Escherichia coli ribonuclease III cleavage sites. Cell 30, 669-672.
Romaniuk, E., McLaughlin, L. W., Neilson, T. i Romaniuk, P. J. (1982). The effect of acceptor oligoribonucleotide sequence on the T4 RNA ligase reaction. Eur J Biochem 125, 639-643.
Sharp, P. A. (1999). RNAi and double-strand RNA. Genes & Dev. 13, 139-141.
Sijen, T. i Kooter, J. M. (2000). Post-transcriptional gene-silencing: RNAs on the attack or on the defense? Bioessays 22, 520-531.
Smardon, A., Spoerke, J., Stacey, S., Klein, M., Mackin, N. i Maine, E. (2000). EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C.
elegans. Curr. Biol. 10, 169-178.
Svoboda, P., Stein, P., Hayashi, H. i Schultz, R. M. (2000). Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127, 4147-4156.
Tabara, H., Sarkissian, M., Kelly, W. G., Fleenor, J., Grishok, A., Timmons, L., Fire, A. i Mello, C. C. (1999). The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99,
123-132.
Tuschl, T., Ng, M. M., Pieken, W., Benseler, F. i Eckstein, F. (1993). Importance of exocyclic base functional groups of central core guanosines for hammerhead ribozyme activity. Biochemistry 32,
11658-11668.
Tuschl, T., Sharp, P. A. i Bartel, D. P. (1998). Selection in vitro of novel ribozymes from a partially randomized U2 and U6 snRNA library. EMBO J. 17, 2637-2650.
Tuschl, T., Zamore, P. D., Lehmann, R. , Bartel, D. P. i Sharp, P. A. (1999). Targeted mRNA degradation by doublestranded RNA in vitro. Genes & Dev. 13, 3191-3197.
Ui-Tel, K., Zenno, S., Miyata, Y. & Saigo, K. (2000). Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Letters 479, 79-82.
Verma, S. i Eckstein, F. (1999). Modified oligonucleotides: Synthesis and strategy for users. Annu. Rev. Biochem. 67, 99-134.
Voinnet O., Lederer, C. i Baulcombe, D. C. (2000). A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103, 157-167.
Wassenegger, M. (2000). RNA-directed DMA methylation. Plant Mol. Biol. 43, 203-220.
Wianny, F. i Zernicka-Goetz, M. (2000). Specific interference with gene function by doublestranded RNA in early mouse development. Nat. Cell Biol. 2, 70-75.
Wu, H., Xu, H., Miraglia, L. J. i Crooke, S. T. (2000). Humań RNase III is a 160 kDa Protein Involved in Preribosomal RNA Processing. J. Biol. Chem. 17, 17.
Yang, D., Lu, H. and Erickson, J.W. (2000) Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in drosophilia embryos. Curr. Biol., 10, 1191-1200.
Zamore, P. D., Tuschl, T., Sharp, P. A. i Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33.
Zhang, K. i Nicholson, A. W. (1997). Regulation of ribonuclease III processing by double-helical sequence antideter- minants. Proc. Natl. Acad. Sci. USA 94, 13437-13441.

Claims (40)

1. Wyizolowana cząsteczka dwuniciowego RNA, w której każda nić RNA ma długość 19-23 nukleotydów, oraz w której co najmniej jedna nić ma jednoniciowy wiszący 3'-koniec o długości 1-3 nukleotydów, przy czym ta cząsteczka RNA jest zdolna do miejscowo specyficznej interferencji RNA.
2. Cząsteczka RNA według zastrz. 1, w której każda nić ma długość 20 - 22 nukleotydów.
3. Cząsteczka RNA według zastrz. 1 albo 2, w której jednoniciowy wiszący 3'-koniec jest stabilizowany względem degradacji.
4. Cząsteczka RNA według zastrz. 1-3, która zawiera co najmniej jeden zmodyfikowany analog nukleotydu.
5. Cząsteczka RNA według zastrz. 4, w której zmodyfikowany analog nukleotydu jest wybrany spośród rybonukleotydów ze zmodyfikowaną resztą cukrową lub szkieletem.
6. Cząsteczka RNA według zastrz. 4 albo 5, w której analog nukleotydu jest rybonukleotydem ze zmodyfikowaną resztą cukrową, przy czym grupa 2'-OH jest zastąpiona grupą wybraną spośród H, OR, R, atomu chlorowca, SH, SR, NH2, NHR, NR2 i CN, gdzie R oznacza C1-C6 alkil, C1-C6 alkenyl lub C1-C6 alkinyl, a atom chlorowca oznacza F, Cl, Br lub I.
7. Cząsteczka RNA według zastrz. 4 albo 5, w której analog nukleotydu jest rybonukleotydem ze zmodyfikowanym szkieletem zawierającym grupę tiofosforanową.
8. Cząsteczka RNA według zastrz. 1-7, mająca sekwencję o identyczności co najmniej 70% z wcześniej ustaloną docelową cząsteczką mRNA.
9. Sposób wytwarzania cząsteczki dwuniciowego RNA określonej w zastrz. 1-8, znamienny tym, że (a) syntetyzuje się dwie nici RNA, każda o długości 19-23 nukleotydów, a ponadto co najmniej jedna nić ma jednoniciowy wiszący 3'-koniec o długości 1-3 nukleotydów, przy czym te nici RNA są zdolne do utworzenia cząsteczki dwuniciowego RNA, oraz (b) łączy się zsyntetyzowane nici RNA w warunkach, w których tworzona jest cząsteczka dwuniciowego RNA, zdolna do miejscowo specyficznej interferencji RNA.
10. Sposób według zastrz. 9, znamienny tym, że nici RNA syntetyzuje się chemicznie.
11. Sposób według zastrz. 9, znamienny tym, że nici RNA syntetyzuje się enzymatycznie.
12. Zastosowanie cząsteczki dwuniciowego RNA określonej w zastrz. 1-8 do wytwarzania leku do modulowania działania genu związanego z patogenem.
13. Zastosowanie według zastrz. 12, w którym gen związany z patogenem jest genem wirusowym.
14. Zastosowanie cząsteczki dwuniciowego RNA określonej w zastrz. 1-8 do wytwarzania leku do modulowania działania genu związanego z nowotworem.
15. Zastosowanie cząsteczki dwuniciowego RNA określonej w zastrz. 1-8 do wytwarzania leku do modulowania działania genu związanego z chorobą autoimmunologiczną.
16. Sposób in vitro kierowania miejscowo specyficznymi interferencjami RNA w komórce, znamienny tym, że (a) kontaktuje się tę komórkę z cząsteczką dwuniciowego RNA określoną w zastrz. 1-8 w warunkach, w których mogą zachodzić miejscowo specyficzne interferencje RNA, oraz (b) kieruje się miejscowo specyficzną interferencją RNA wywieraną przez dwuniciowy RNA na docelowym kwasie nukleinowym mającym część sekwencji zasadniczo odpowiadającą dwuniciowemu RNA.
17. Sposób według zastrz. 16, znamienny tym, że kontaktowanie obejmuje wprowadzenie tej cząsteczki dwuniciowego RNA do docelowej komórki, w której może zajść miejscowo specyficzna interferencja RNA.
18. Sposób według zastrz. 17, znamienny tym, że wprowadzenie obejmuje dostarczenie z użyciem nośnika lub iniekcję.
19. Zastosowanie sposobu in vitro określonego w zastrz. 16-18, do ustalania działania genu w komórce.
20. Zastosowanie sposobu in vitro określonego w zastrz. 16-18, do modulowania działania genu w komórce.
21. Zastosowanie według zastrz. 19 albo 20, w którym gen jest związany ze stanem patologicznym.
PL 218 876 B1
22. Środek farmaceutyczny zawierający substancję czynną oraz farmaceutycznie dopuszczalny nośnik, znamienny tym, że jako substancję czynną zawiera co najmniej jedną cząsteczkę dwuniciowego RNA określoną w zastrz. 1-8.
23. Środek według zastrz. 22, znamienny tym, że jest przeznaczony do zastosowań diagnostycznych.
24. Środek według zastrz. 22, znamienny tym, że jest przeznaczony do zastosowań terapeutycznych.
25. Komórka eukariotyczna transfekowana cząsteczką RNA określoną w zastrz. 1-8 lub cząsteczką DNA kodującą tę cząsteczkę RNA.
26. Komórka według zastrz. 25, będąca komórką ssaczą.
27. Komórka według zastrz. 26, będąca komórką ludzką.
28. Komórka według zastrz. 25-27, transfekowana ponadto co najmniej jednym egzogennym docelowym kwasem nukleinowym kodującym docelowe białko lub wariant lub zmutowaną postać docelowego białka, przy czym ten egzogenny docelowy kwas nukleinowy różni się od endogennego genu docelowego na poziomie kwasu nukleinowego, tak że ekspresja egzogennego docelowego kwasu nukleinowego jest zasadniczo mniej hamowana przez cząsteczkę dwuniciowego RNA niż ekspresja endogennego genu docelowego.
29. Komórka według zastrz. 28, gdzie egzogenny docelowy kwas nukleinowy jest zfuzowany z kolejną sekwencją kwasu nukleinowego kodującą wykrywalny peptyd lub polipeptyd.
30. Zastosowanie komórki eukariotycznej określonej w zastrz. 25-29 w procedurach analitycznych.
31. Zastosowanie według zastrz. 30, do analizy profili ekspresji genów.
32. Zastosowanie według zastrz. 30, do analizy proteomu.
33. Zastosowanie według zastrz. 30-32, w którym prowadzi się analizę wariantu lub zmutowanej postaci docelowego białka kodowanego przez egzogenny docelowy kwas nukleinowy.
34. Zastosowanie według zastrz. 33 do identyfikacji domen funkcjonalnych docelowego białka.
35. Zastosowanie według zastrz. 30-34, w którym prowadzi się porównanie co najmniej dwóch komórek wybranych spośród:
(i) kontrolnej komórki bez zahamowania docelowego genu;
(ii) komórki z zahamowaniem docelowego genu oraz (iii) komórki z zahamowaniem docelowego genu oraz komplementacją docelowego genu przez egzogenny docelowy kwas nukleinowy.
36. Zastosowanie według zastrz. 30-35, w którym analiza obejmuje analizę funkcjonalną i/lub fenotypową.
37. Zastosowanie według zastrz. 36 do wyodrębniania białek lub kompleksów białkowych z komórek eukariotycznych.
38. Zastosowanie według zastrz. 37 do wyodrębniania wysokocząsteczkowych kompleksów białkowych, które mogą dodatkowo zawierać kwasy nukleinowe.
39. Zastosowanie komórki eukariotycznej określonej w zastrz. 25-29 w procedurach preparatywnych.
40. Zastosowanie według zastrz. 30-39 w procedurze identyfikacji i/lub charakteryzacji środków farmakologicznych.
PL365784A 2000-12-01 2001-11-29 Wyizolowana cząsteczka dwuniciowego RNA, sposób wytwarzania cząsteczki dwuniciowego RNA, zastosowanie cząsteczki dwuniciowego RNA do wytwarzania leku do modulowania działania genu związanego z patogenem, genu związanego z nowotworem, oraz genu związanego z chorobą autoimmunologiczną, sposób in vitro kierowania miejscowo specyficznymi interferencjami RNA w komórce, zastosowanie sposobu in vitro do ustalania działania genu w komórce oraz do modulowania działania genu w komórce, środek farmaceutyczny, komórka eukariotyczna transfekowana cząsteczką RNA lub cząsteczką DNA kodującą tę cząsteczkę RNA, oraz zastosowanie komórki eukariotycznej w procedurach analitycznych oraz w procedurach preparatywnych PL218876B1 (pl)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00126325 2000-12-01
US27966101P 2001-03-30 2001-03-30
PCT/US2001/010188 WO2001075164A2 (en) 2000-03-30 2001-03-30 Rna sequence-specific mediators of rna interference
PCT/EP2001/013968 WO2002044321A2 (en) 2000-12-01 2001-11-29 Rna interference mediating small rna molecules

Publications (2)

Publication Number Publication Date
PL365784A1 PL365784A1 (pl) 2005-01-10
PL218876B1 true PL218876B1 (pl) 2015-02-27

Family

ID=40529293

Family Applications (1)

Application Number Title Priority Date Filing Date
PL365784A PL218876B1 (pl) 2000-12-01 2001-11-29 Wyizolowana cząsteczka dwuniciowego RNA, sposób wytwarzania cząsteczki dwuniciowego RNA, zastosowanie cząsteczki dwuniciowego RNA do wytwarzania leku do modulowania działania genu związanego z patogenem, genu związanego z nowotworem, oraz genu związanego z chorobą autoimmunologiczną, sposób in vitro kierowania miejscowo specyficznymi interferencjami RNA w komórce, zastosowanie sposobu in vitro do ustalania działania genu w komórce oraz do modulowania działania genu w komórce, środek farmaceutyczny, komórka eukariotyczna transfekowana cząsteczką RNA lub cząsteczką DNA kodującą tę cząsteczkę RNA, oraz zastosowanie komórki eukariotycznej w procedurach analitycznych oraz w procedurach preparatywnych

Country Status (28)

Country Link
US (25) US20040259247A1 (pl)
EP (3) EP1873259B1 (pl)
JP (5) JP4095895B2 (pl)
KR (2) KR100909681B1 (pl)
CN (1) CN100523215C (pl)
AT (1) ATE373724T2 (pl)
AU (3) AU2002235744B8 (pl)
BR (1) BRPI0115814B8 (pl)
CA (1) CA2429814C (pl)
CY (1) CY1119062T1 (pl)
CZ (2) CZ308053B6 (pl)
DE (1) DE60130583T3 (pl)
DK (2) DK2813582T3 (pl)
ES (2) ES2215494T5 (pl)
HK (4) HK1110631A1 (pl)
HU (1) HU230458B1 (pl)
IL (3) IL155991A0 (pl)
LT (1) LTPA2021005I1 (pl)
MX (1) MXPA03004836A (pl)
NO (2) NO333713B1 (pl)
NZ (1) NZ525888A (pl)
PL (1) PL218876B1 (pl)
PT (1) PT1407044E (pl)
RU (2) RU2322500C2 (pl)
SI (1) SI1407044T2 (pl)
TR (1) TR200401292T3 (pl)
WO (1) WO2002044321A2 (pl)
ZA (1) ZA200303929B (pl)

Families Citing this family (1199)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023569A1 (en) * 1992-05-11 1993-11-25 Ribozyme Pharmaceuticals, Inc. Method and reagent for inhibiting viral replication
US20030206887A1 (en) * 1992-05-14 2003-11-06 David Morrissey RNA interference mediated inhibition of hepatitis B virus (HBV) using short interfering nucleic acid (siNA)
US5639647A (en) * 1994-03-29 1997-06-17 Ribozyme Pharmaceuticals, Inc. 2'-deoxy-2'alkylnucleotide containing nucleic acid
US9096636B2 (en) 1996-06-06 2015-08-04 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds and their use in gene modulation
US7812149B2 (en) 1996-06-06 2010-10-12 Isis Pharmaceuticals, Inc. 2′-Fluoro substituted oligomeric compounds and compositions for use in gene modulations
US5898031A (en) 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
US20040219569A1 (en) * 1999-07-06 2004-11-04 Fruma Yehiely Gene identification method
US20110003879A1 (en) * 2005-03-11 2011-01-06 Vincent Mark D Antisense oligonucleotides targeted to the coding region of thymidylate synthase and uses thereof
AUPP249298A0 (en) 1998-03-20 1998-04-23 Ag-Gene Australia Limited Synthetic genes and genetic constructs comprising same I
KR101085210B1 (ko) 1998-03-20 2011-11-21 커먼웰쓰 사이언티픽 앤드 인더스트리얼 리서치 오가니제이션 유전자 발현 조절방법
AU3751299A (en) * 1998-04-20 1999-11-08 Ribozyme Pharmaceuticals, Inc. Nucleic acid molecules with novel chemical compositions capable of modulating gene expression
AU776150B2 (en) 1999-01-28 2004-08-26 Medical College Of Georgia Research Institute, Inc. Composition and method for (in vivo) and (in vitro) attenuation of gene expression using double stranded RNA
DE19956568A1 (de) * 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
US7601494B2 (en) 1999-03-17 2009-10-13 The University Of North Carolina At Chapel Hill Method of screening candidate compounds for susceptibility to biliary excretion
EP2270148A3 (en) 1999-04-09 2011-06-08 Kyowa Hakko Kirin Co., Ltd. Method for controlling the activity of immunologically functional molecule
US6656698B1 (en) * 1999-06-30 2003-12-02 Millennium Pharmaceuticals, Inc. 12832, a novel human kinase-like molecule and uses thereof
US6423885B1 (en) 1999-08-13 2002-07-23 Commonwealth Scientific And Industrial Research Organization (Csiro) Methods for obtaining modified phenotypes in plant cells
US8128922B2 (en) 1999-10-20 2012-03-06 Johns Hopkins University Superior molecular vaccine linking the translocation domain of a bacterial toxin to an antigen
GB9925459D0 (en) * 1999-10-27 1999-12-29 Plant Bioscience Ltd Gene silencing
US7829693B2 (en) * 1999-11-24 2010-11-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a target gene
DE10100586C1 (de) 2001-01-09 2002-04-11 Ribopharma Ag Verfahren zur Hemmung der Expression eines Ziegens
DE10160151A1 (de) * 2001-01-09 2003-06-26 Ribopharma Ag Verfahren zur Hemmung der Expression eines vorgegebenen Zielgens
US7179796B2 (en) * 2000-01-18 2007-02-20 Isis Pharmaceuticals, Inc. Antisense modulation of PTP1B expression
US8202979B2 (en) * 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
US20080039414A1 (en) * 2002-02-20 2008-02-14 Sima Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US20050032733A1 (en) * 2001-05-18 2005-02-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SiNA)
US8273866B2 (en) 2002-02-20 2012-09-25 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SINA)
US20070026394A1 (en) * 2000-02-11 2007-02-01 Lawrence Blatt Modulation of gene expression associated with inflammation proliferation and neurite outgrowth using nucleic acid based technologies
US8202846B2 (en) 2000-03-16 2012-06-19 Cold Spring Harbor Laboratory Methods and compositions for RNA interference
JP2003526367A (ja) * 2000-03-16 2003-09-09 ジェネティカ インコーポレイテッド Rna干渉の方法とrna干渉組成物
US20030084471A1 (en) * 2000-03-16 2003-05-01 David Beach Methods and compositions for RNA interference
DK2360253T3 (da) * 2000-03-30 2014-06-16 Whitehead Biomedical Inst Fremgangsmåde til fremstilling af knockdown-celler eller knockdown-organismer ved hjælp af RNA-sekvensspecifikke formidlere af RNA-interferens og anvendelser deraf
CA2404890C (en) * 2000-03-30 2013-11-19 Whitehead Institute For Biomedical Research Rna sequence-specific mediators of rna interference
US7662791B2 (en) * 2000-08-02 2010-02-16 University Of Southern California Gene silencing using mRNA-cDNA hybrids
US20080242627A1 (en) * 2000-08-02 2008-10-02 University Of Southern California Novel rna interference methods using dna-rna duplex constructs
AU2001278117A1 (en) * 2000-08-03 2002-02-18 Johns Hopkins University Molecular vaccine linking an endoplasmic reticulum chaperone polypeptide to an antigen
US20080032942A1 (en) * 2000-08-30 2008-02-07 Mcswiggen James RNA interference mediated treatment of Alzheimer's disease using short interfering nucleic acid (siNA)
US20030190635A1 (en) * 2002-02-20 2003-10-09 Mcswiggen James A. RNA interference mediated treatment of Alzheimer's disease using short interfering RNA
US20020165192A1 (en) * 2000-09-19 2002-11-07 Kerr William G. Control of NK cell function and survival by modulation of ship activity
WO2009042910A2 (en) * 2007-09-26 2009-04-02 University Of South Florida Ship inhibition to direct hematopoietic stem cells and induce extramedullary hematopoiesis
US7691821B2 (en) 2001-09-19 2010-04-06 University Of South Florida Inhibition of SHIP to enhance stem cell harvest and transplantation
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
BRPI0115814B8 (pt) 2000-12-01 2021-05-25 Europaeisches Laboratorium Fuer Molekularbiologie Embl moléculas de rna de filamento duplo, seu método de preparação e composição farmacêutica compreendendo as mesmas
US7767802B2 (en) 2001-01-09 2010-08-03 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
US8546143B2 (en) 2001-01-09 2013-10-01 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a target gene
EP1229134A3 (en) * 2001-01-31 2004-01-28 Nucleonics, Inc Use of post-transcriptional gene silencing for identifying nucleic acid sequences that modulate the function of a cell
EP1627061B1 (en) * 2001-05-18 2009-08-12 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF GENE EXPRESSION USING CHEMICALLY MODIFIED SHORT INTERFERING NUCLEIC ACID (siNA)
US20050014172A1 (en) 2002-02-20 2005-01-20 Ivan Richards RNA interference mediated inhibition of muscarinic cholinergic receptor gene expression using short interfering nucleic acid (siNA)
US20050239731A1 (en) * 2001-05-18 2005-10-27 Sirna Therapeutics, Inc. RNA interference mediated inhibition of MAP kinase gene expression using short interfering nucleic acid (siNA)
US20030175950A1 (en) * 2001-05-29 2003-09-18 Mcswiggen James A. RNA interference mediated inhibition of HIV gene expression using short interfering RNA
US20050159380A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of angiopoietin gene expression using short interfering nucleic acid (siNA)
US20050159382A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of polycomb group protein EZH2 gene expression using short interfering nucleic acid (siNA)
US20050176664A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cholinergic muscarinic receptor (CHRM3) gene expression using short interfering nucleic acid (siNA)
US20050137155A1 (en) * 2001-05-18 2005-06-23 Sirna Therapeutics, Inc. RNA interference mediated treatment of Parkinson disease using short interfering nucleic acid (siNA)
US20050287128A1 (en) * 2001-05-18 2005-12-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of TGF-beta and TGF-beta receptor gene expression using short interfering nucleic acid (siNA)
US20050233344A1 (en) * 2001-05-18 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of platelet derived growth factor (PDGF) and platelet derived growth factor receptor (PDGFR) gene expression using short interfering nucleic acid (siNA)
US20050267058A1 (en) * 2001-05-18 2005-12-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (sINA)
WO2002097114A2 (en) * 2001-05-29 2002-12-05 Sirna Therapeutics, Inc. Nucleic acid treatment of diseases or conditions related to levels of ras, her2 and hiv
US20060142225A1 (en) * 2001-05-18 2006-06-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cyclin dependent kinase-2 (CDK2) gene expression using short interfering nucleic acid (siNA)
US20050256068A1 (en) 2001-05-18 2005-11-17 Sirna Therapeutics, Inc. RNA interference mediated inhibition of stearoyl-CoA desaturase (SCD) gene expression using short interfering nucleic acid (siNA)
US20070270579A1 (en) * 2001-05-18 2007-11-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050124569A1 (en) * 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of CXCR4 gene expression using short interfering nucleic acid (siNA)
US20050079610A1 (en) * 2001-05-18 2005-04-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Fos gene expression using short interfering nucleic acid (siNA)
US20050164967A1 (en) * 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of platelet-derived endothelial cell growth factor (ECGF1) gene expression using short interfering nucleic acid (siNA)
US20050222066A1 (en) * 2001-05-18 2005-10-06 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050158735A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of proliferating cell nuclear antigen (PCNA) gene expression using short interfering nucleic acid (siNA)
US20050176025A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of B-cell CLL/Lymphoma-2 (BCL-2) gene expression using short interfering nucleic acid (siNA)
US20050159378A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Myc and/or Myb gene expression using short interfering nucleic acid (siNA)
US20050187174A1 (en) * 2001-05-18 2005-08-25 Sirna Therapeutics, Inc. RNA interference mediated inhibition of intercellular adhesion molecule (ICAM) gene expression using short interfering nucleic acid (siNA)
US20050176666A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of GPRA and AAA1 gene expression using short interfering nucleic acid (siNA)
US20050048529A1 (en) * 2002-02-20 2005-03-03 Sirna Therapeutics, Inc. RNA interference mediated inhibition of intercellular adhesion molecule (ICAM) gene expression using short interfering nucleic acid (siNA)
US20060211642A1 (en) * 2001-05-18 2006-09-21 Sirna Therapeutics, Inc. RNA inteference mediated inhibition of hepatitis C virus (HVC) gene expression using short interfering nucleic acid (siNA)
US7109165B2 (en) * 2001-05-18 2006-09-19 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US20050159381A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of chromosome translocation gene expression using short interfering nucleic acid (siNA)
US20050261219A1 (en) * 2001-05-18 2005-11-24 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA)
US20050196767A1 (en) * 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of GRB2 associated binding protein (GAB2) gene expression using short interfering nucleic acis (siNA)
US20050159379A1 (en) * 2001-05-18 2005-07-21 Sirna Therapeutics, Inc RNA interference mediated inhibition of gastric inhibitory polypeptide (GIP) and gastric inhibitory polypeptide receptor (GIPR) gene expression using short interfering nucleic acid (siNA)
US7517864B2 (en) 2001-05-18 2009-04-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050209180A1 (en) * 2001-05-18 2005-09-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hepatitis C virus (HCV) expression using short interfering nucleic acid (siNA)
US20050191618A1 (en) * 2001-05-18 2005-09-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of human immunodeficiency virus (HIV) gene expression using short interfering nucleic acid (siNA)
US20090299045A1 (en) * 2001-05-18 2009-12-03 Sirna Therapeutics, Inc. RNA Interference Mediated Inhibition Of Interleukin and Interleukin Gene Expression Using Short Interfering Nucleic Acid (siNA)
US20050282188A1 (en) * 2001-05-18 2005-12-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20060148743A1 (en) * 2001-05-18 2006-07-06 Vasant Jadhav RNA interference mediated inhibition of histone deacetylase (HDAC) gene expression using short interfering nucleic acid (siNA)
US20050233996A1 (en) * 2002-02-20 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hairless (HR) gene expression using short interfering nucleic acid (siNA)
US20050124566A1 (en) * 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of myostatin gene expression using short interfering nucleic acid (siNA)
US20050203040A1 (en) * 2001-05-18 2005-09-15 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular cell adhesion molecule (VCAM) gene expression using short interfering nucleic acid (siNA)
US20080161256A1 (en) * 2001-05-18 2008-07-03 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050176663A1 (en) * 2001-05-18 2005-08-11 Sima Therapeutics, Inc. RNA interference mediated inhibition of protein tyrosine phosphatase type IVA (PRL3) gene expression using short interfering nucleic acid (siNA)
US20050233997A1 (en) * 2001-05-18 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of matrix metalloproteinase 13 (MMP13) gene expression using short interfering nucleic acid (siNA)
US20050136436A1 (en) * 2001-05-18 2005-06-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of G72 and D-amino acid oxidase (DAAO) gene expression using short interfering nucleic acid (siNA)
US20050143333A1 (en) * 2001-05-18 2005-06-30 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (SINA)
US20080188430A1 (en) * 2001-05-18 2008-08-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hypoxia inducible factor 1 (HIF1) gene expression using short interfering nucleic acid (siNA)
US20070093437A1 (en) * 2001-05-18 2007-04-26 Sirna Therapeutics, Inc. Rna interference mediated inhibition of xiap gene expression using short interfering nucleic acid (sina)
US20050164224A1 (en) * 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cyclin D1 gene expression using short interfering nucleic acid (siNA)
US9994853B2 (en) 2001-05-18 2018-06-12 Sirna Therapeutics, Inc. Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference
WO2005014811A2 (en) * 2003-08-08 2005-02-17 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF XIAP GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20050176024A1 (en) * 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of epidermal growth factor receptor (EGFR) gene expression using short interfering nucleic acid (siNA)
US20050182007A1 (en) * 2001-05-18 2005-08-18 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (SINA)
US20050153914A1 (en) * 2001-05-18 2005-07-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of MDR P-glycoprotein gene expression using short interfering nucleic acid (siNA)
US20040219671A1 (en) * 2002-02-20 2004-11-04 Sirna Therapeutics, Inc. RNA interference mediated treatment of parkinson disease using short interfering nucleic acid (siNA)
US20050119212A1 (en) * 2001-05-18 2005-06-02 Sirna Therapeutics, Inc. RNA interference mediated inhibition of FAS and FASL gene expression using short interfering nucleic acid (siNA)
US20070042983A1 (en) * 2001-05-18 2007-02-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050288242A1 (en) * 2001-05-18 2005-12-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of RAS gene expression using short interfering nucleic acid (siNA)
US20050196781A1 (en) * 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of STAT3 gene expression using short interfering nucleic acid (siNA)
US20050196765A1 (en) * 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of checkpoint Kinase-1 (CHK-1) gene expression using short interfering nucleic acid (siNA)
US20050148530A1 (en) 2002-02-20 2005-07-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20040198682A1 (en) * 2001-11-30 2004-10-07 Mcswiggen James RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (siNA)
US20050054596A1 (en) * 2001-11-30 2005-03-10 Mcswiggen James RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20040019001A1 (en) * 2002-02-20 2004-01-29 Mcswiggen James A. RNA interference mediated inhibition of protein typrosine phosphatase-1B (PTP-1B) gene expression using short interfering RNA
US20050164968A1 (en) * 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of ADAM33 gene expression using short interfering nucleic acid (siNA)
US8008472B2 (en) 2001-05-29 2011-08-30 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of human immunodeficiency virus (HIV) gene expression using short interfering nucleic acid (siNA)
US20050019915A1 (en) * 2001-06-21 2005-01-27 Bennett C. Frank Antisense modulation of superoxide dismutase 1, soluble expression
CA2790034A1 (en) 2001-06-21 2003-01-03 Isis Pharmaceuticals, Inc. Antisense modulation of superoxide dismutase 1, soluble expression
DE10133858A1 (de) * 2001-07-12 2003-02-06 Aventis Pharma Gmbh Synthetische doppelsträngige Oligonucleotide zur gezielten Hemmung der Genexpression
BR0211111A (pt) 2001-07-12 2004-06-22 Univ Massachusetts Molécula de ácido nucleico isolada, vetor, célula hospedeira, transgene, precursor de rna engenheirado, animal transgênico não humano, e, método de induzir a interferência de ácido ribonucleico de um gene alvo em uma célula
EP1409506B1 (en) 2001-07-23 2012-05-09 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for rnai mediated inhibition of gene expression in mammals
US10590418B2 (en) * 2001-07-23 2020-03-17 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for RNAi mediated inhibition of gene expression in mammals
US20090247606A1 (en) * 2001-08-28 2009-10-01 Sirna Therapeutics, Inc. RNA Interference Mediated Inhibition of Adenosine A1 Receptor (ADORA1) Gene Expression Using Short Interfering Nucleic Acid (siNA)
US20030198627A1 (en) * 2001-09-01 2003-10-23 Gert-Jan Arts siRNA knockout assay method and constructs
US7745418B2 (en) 2001-10-12 2010-06-29 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting viral replication
DE10163098B4 (de) 2001-10-12 2005-06-02 Alnylam Europe Ag Verfahren zur Hemmung der Replikation von Viren
WO2003035083A1 (de) * 2001-10-26 2003-05-01 Ribopharma Ag Medikament zur behandlung einer fibrotischen erkrankung durch rna interferenz
JP2005506087A (ja) * 2001-10-26 2005-03-03 リボファーマ アーゲー プラス鎖rnaウイルスによる感染症を処置するための2本鎖リボ核酸の使用
WO2003035870A1 (de) * 2001-10-26 2003-05-01 Ribopharma Ag Medikament zur behandlung eines pankreaskarzinoms
DE10230996A1 (de) * 2001-10-26 2003-07-17 Ribopharma Ag Medikament zur Behandlung eines Pankreaskarzinoms
US20040063654A1 (en) * 2001-11-02 2004-04-01 Davis Mark E. Methods and compositions for therapeutic use of RNA interference
AU2002348163A1 (en) * 2001-11-02 2003-05-19 Intradigm Corporation Therapeutic methods for nucleic acid delivery vehicles
IL161733A0 (en) * 2001-11-02 2005-11-20 Insert Therapeutics Inc Methods and compositions for therapeutic use of rna interference
ES2401326T3 (es) * 2001-11-21 2013-04-18 Astellas Pharma Inc. Procedimiento para inhibir la expresión génica
US20050075304A1 (en) * 2001-11-30 2005-04-07 Mcswiggen James RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20070203333A1 (en) * 2001-11-30 2007-08-30 Mcswiggen James RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20040138163A1 (en) * 2002-05-29 2004-07-15 Mcswiggen James RNA interference mediated inhibition of vascular edothelial growth factor and vascular edothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US7294504B1 (en) 2001-12-27 2007-11-13 Allele Biotechnology & Pharmaceuticals, Inc. Methods and compositions for DNA mediated gene silencing
KR101166214B1 (ko) * 2002-01-17 2012-07-16 더 유니버시티 오브 브리티쉬 콜롬비아 아이지에프비피-2 및 아이지에프비피-5를 억제하는 양특이성 안티센스 올리고뉴클레오티드 및 그 사용방법
DE10202419A1 (de) * 2002-01-22 2003-08-07 Ribopharma Ag Verfahren zur Hemmung der Expression eines durch eine Chromosomen-Aberration entstandenen Zielgens
GB0201477D0 (en) * 2002-01-23 2002-03-13 Novartis Forschungsstiftung Methods of obtaining isoform specific expression in mammalian cells
EP3415625A1 (en) 2002-02-01 2018-12-19 Life Technologies Corporation Double-stranded oligonucleotides
US20060009409A1 (en) 2002-02-01 2006-01-12 Woolf Tod M Double-stranded oligonucleotides
WO2003064621A2 (en) * 2002-02-01 2003-08-07 Ambion, Inc. HIGH POTENCY siRNAS FOR REDUCING THE EXPRESSION OF TARGET GENES
US20050096289A1 (en) * 2002-02-07 2005-05-05 Hans Prydz Methods and compositions for modulating tissue factor
IL163547A0 (en) * 2002-02-12 2005-12-18 Quark Biotech Inc Use of the axl receptor for diagnosis and treatment of renal disease
WO2003068961A2 (en) * 2002-02-13 2003-08-21 Axordia Limited Method to modify differentiation of pluripotential stem cells
ES2312753T5 (es) 2002-02-14 2012-12-13 City Of Hope Procedimientos para producir moléculas de ARN de interferencia en células de mamífero y usos terapéuticos para tales moléculas
AU2003207708A1 (en) 2002-02-20 2003-09-09 Sirna Therapeutics, Inc. Rna interference mediated inhibition of map kinase genes
US7700760B2 (en) 2002-02-20 2010-04-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular cell adhesion molecule (VCAM) gene expression using short interfering nucleic acid (siNA)
US20050096284A1 (en) * 2002-02-20 2005-05-05 Sirna Therapeutics, Inc. RNA interference mediated treatment of polyglutamine (polyQ) repeat expansion diseases using short interfering nucleic acid (siNA)
US7928218B2 (en) 2002-02-20 2011-04-19 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of polycomb group protein EZH2 gene expression using short interfering nucleic acid (siNA)
US7897757B2 (en) * 2002-02-20 2011-03-01 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of protein tyrosine phosphatase-1B (PTP-1B) gene expression using short interfering nucleic acid (siNA)
US7897752B2 (en) 2002-02-20 2011-03-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of telomerase gene expression using short interfering nucleic acid (siNA)
US20090137509A1 (en) * 2002-02-20 2009-05-28 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF PROLIFERATION CELL NUCLEAR ANTIGEN (PCNA) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US9181551B2 (en) 2002-02-20 2015-11-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US20090253774A1 (en) 2002-02-20 2009-10-08 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF PLATELET DERIVED GROWTH FACTOR (PDGF) AND PLATELET DERIVED GROWTH FACTOR RECEPTOR (PDGFR) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US9657294B2 (en) 2002-02-20 2017-05-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
WO2003106476A1 (en) * 2002-02-20 2003-12-24 Sirna Therapeutics, Inc Nucleic acid mediated inhibition of enterococcus infection and cytolysin toxin activity
JP2005517437A (ja) * 2002-02-20 2005-06-16 サーナ・セラピューティクス・インコーポレイテッド 短干渉核酸(siNa)を用いる表皮成長因子レセプター遺伝子発現のRNA干渉媒介性阻害
US8067575B2 (en) 2002-02-20 2011-11-29 Merck, Sharp & Dohme Corp. RNA interference mediated inhibition of cyclin D1 gene expression using short interfering nucleic acid (siNA)
US7683166B2 (en) * 2002-02-20 2010-03-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA)
US20090192105A1 (en) 2002-02-20 2009-07-30 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF INTERCELLULAR ADHESION MOLECULE (ICAM) GENE EXPRESSION USING SHORT INTERFERING NUCELIC ACID (siNA)
US8258288B2 (en) 2002-02-20 2012-09-04 Sirna Therapeutics, Inc. RNA interference mediated inhibition of respiratory syncytial virus (RSV) expression using short interfering nucleic acid (siNA)
US20090253773A1 (en) 2002-02-20 2009-10-08 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF TNF AND TNF RECEPTOR GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
WO2003070966A2 (en) * 2002-02-20 2003-08-28 Sirna Therapeutics, Inc RNA INTERFERENCE MEDIATED TARGET DISCOVERY AND TARGET VALIDATION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20090233983A1 (en) * 2002-02-20 2009-09-17 Sirna Therapeutics Inc. RNA Interference Mediated Inhibition of Protein Tyrosine Phosphatase-1B (PTP-1B) Gene Expression Using Short Interfering RNA
US7897753B2 (en) 2002-02-20 2011-03-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of XIAP gene expression using short interfering nucleic acid (siNA)
US7691999B2 (en) * 2002-02-20 2010-04-06 Sirna Therapeutics, Inc. RNA interference mediated inhibition of NOGO and NOGO receptor gene expression using short interfering nucleic acid (siNA)
US7910724B2 (en) * 2002-02-20 2011-03-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Fos gene expression using short interfering nucleic acid (siNA)
EP1495041A4 (en) * 2002-02-20 2006-02-01 Sirna Therapeutics Inc RNA interferon-mediated inhibition of gene expression of G72 and D-amino acid oxidase (DAAO) using short-term interfering nucleic acid (siNA)
US20090093439A1 (en) * 2002-02-20 2009-04-09 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF CHROMOSOME TRANSLOCATION GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7795422B2 (en) 2002-02-20 2010-09-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hypoxia inducible factor 1 (HIF1) gene expression using short interfering nucleic acid (siNA)
US7893248B2 (en) 2002-02-20 2011-02-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Myc and/or Myb gene expression using short interfering nucleic acid (siNA)
US20090099117A1 (en) 2002-02-20 2009-04-16 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF MYOSTATIN GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US8013143B2 (en) * 2002-02-20 2011-09-06 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of CXCR4 gene expression using short interfering nucleic acid (siNA)
US8232383B2 (en) * 2002-02-20 2012-07-31 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US20100240730A1 (en) * 2002-02-20 2010-09-23 Merck Sharp And Dohme Corp. RNA Interference Mediated Inhibition of Gene Expression Using Chemically Modified Short Interfering Nucleic Acid (siNA)
AU2003220136A1 (en) * 2002-02-20 2003-09-09 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF TGF-BETA AND TGF-BETA RECEPTOR GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7928219B2 (en) 2002-02-20 2011-04-19 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (SINA)
AU2003217550A1 (en) * 2002-02-20 2003-09-09 Ribozyme Pharmaceuticals, Incorporated RNA INTERFERENCE MEDIATED INHIBITION OF TNF AND TNF RECEPTOR SUPERFAMILY GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20090247613A1 (en) * 2002-02-20 2009-10-01 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF B-CELL CLL/LYMPHOMA-2 (BCL2) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
AU2003213005A1 (en) * 2002-02-20 2003-09-09 Sirna Therapeutics, Inc RNA INTERFERENCE MEDIATED INHIBITION OF PROTEIN KINASE C ALPHA (PKC-ALPHA) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7667029B2 (en) * 2002-02-20 2010-02-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of checkpoint kinase-1 (CHK-1) gene expression using short interfering nucleic acid (siNA)
US7928220B2 (en) 2002-02-20 2011-04-19 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of stromal cell-derived factor-1 (SDF-1) gene expression using short interfering nucleic acid (siNA)
US7667030B2 (en) 2002-02-20 2010-02-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of matrix metalloproteinase 13 (MMP13) gene expression using short interfering nucleic acid (siNA)
ATE519774T1 (de) * 2002-02-20 2011-08-15 Sirna Therapeutics Inc Durch eine störung der rna vermittelte inhibierung der genexpression des hepatitis c virus (hcv) mit kurzer, störender nukleinsäure (short interfering nucleic acid, sina)
US7935812B2 (en) 2002-02-20 2011-05-03 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of hepatitis C virus (HCV) expression using short interfering nucleic acid (siNA)
US7683165B2 (en) * 2002-02-20 2010-03-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA)
US7662952B2 (en) * 2002-02-20 2010-02-16 Sirna Therapeutics, Inc. RNA interference mediated inhibition of GRB2 associated binding protein (GAB2) gene expression using short interfering nucleic acid (siNA)
US7678897B2 (en) 2002-02-20 2010-03-16 Sirna Therapeutics, Inc. RNA interference mediated inhibition of platelet-derived endothelial cell growth factor (ECGF1) gene expression using short interfering nucleic acid (siNA)
US20090306182A1 (en) * 2002-02-20 2009-12-10 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF MAP KINASE GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20060111312A1 (en) * 2002-02-22 2006-05-25 The John Hopkins University Antigene locks and therapeutic uses thereof
US7332276B2 (en) * 2002-03-01 2008-02-19 Celltech R&D, Inc. Methods to increase or decrease bone density
EP1572923A4 (en) * 2002-03-06 2007-10-31 Rigel Pharmaceuticals Inc NEW METHOD FOR THE INTRODUCTION AND INTRA-CELLULAR SYNTHESIS OF SIRNA MOLECULES
US7274703B2 (en) * 2002-03-11 2007-09-25 3Com Corporation Stackable network units with resiliency facility
CA2479530A1 (en) * 2002-03-20 2003-10-02 Massachusetts Institute Of Technology Hiv therapeutic
US7357928B2 (en) 2002-04-08 2008-04-15 University Of Louisville Research Foundation, Inc. Method for the diagnosis and prognosis of malignant diseases
MXPA04010283A (es) * 2002-04-18 2005-08-18 Acuity Pharmaceuticals Inc Medios y metodos para la modulacion especifica de genes objetivo en el cns y el ojo y metodos para su identificacion.
CA2524569C (en) 2002-05-03 2013-10-22 Duke University A method of regulating gene expression
US7199107B2 (en) * 2002-05-23 2007-04-03 Isis Pharmaceuticals, Inc. Antisense modulation of kinesin-like 1 expression
JP2006506961A (ja) 2002-05-23 2006-03-02 セプティア, インコーポレイテッド Rna干渉によるptp1bシグナル導入の調節
AU2003237686A1 (en) * 2002-05-24 2003-12-12 Max-Planck Gesellschaft Zur Forderung Der Wissenschaften E.V. Rna interference mediating small rna molecules
AU2003276666A1 (en) * 2002-06-12 2003-12-31 Ambion, Inc. Methods and compositions relating to polypeptides with rnase iii domains that mediate rna interference
US20100075423A1 (en) * 2002-06-12 2010-03-25 Life Technologies Corporation Methods and compositions relating to polypeptides with rnase iii domains that mediate rna interference
US20040248094A1 (en) * 2002-06-12 2004-12-09 Ford Lance P. Methods and compositions relating to labeled RNA molecules that reduce gene expression
EP1513538A4 (en) * 2002-06-14 2007-08-22 Mirus Bio Corp Novel methods for introducing polynucleotides into cells
WO2004001044A1 (en) * 2002-06-21 2003-12-31 Sinogenomax Company Ltd. Randomised dna libraries and double-stranded rna libraries, use and method of production thereof
CA2491034A1 (en) * 2002-06-26 2004-01-08 The Penn State Research Foundation Methods and materials for treating human papillomavirus infections
EP2338478B1 (en) 2002-06-28 2014-07-23 Protiva Biotherapeutics Inc. Method for producing liposomes
EP2314690A1 (en) 2002-07-10 2011-04-27 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. RNA-interference by single-stranded RNA molecules
US7148342B2 (en) 2002-07-24 2006-12-12 The Trustees Of The University Of Pennyslvania Compositions and methods for sirna inhibition of angiogenesis
SI3222724T1 (sl) 2002-08-05 2019-03-29 Silence Therapeutics Gmbh Nadaljnje nove oblike molekul interferenčne RNA
US20080274989A1 (en) 2002-08-05 2008-11-06 University Of Iowa Research Foundation Rna Interference Suppression of Neurodegenerative Diseases and Methods of Use Thereof
AU2015264957B2 (en) * 2002-08-05 2017-10-26 Silence Therapeutics Gmbh Further novel forms of interfering rna molecules
DK1389637T3 (da) 2002-08-05 2012-09-03 Silence Therapeutics Ag Interfererende RNA-molekyler med stumpe ender
AU2012216354B2 (en) * 2002-08-05 2016-01-14 Silence Therapeutics Gmbh Further novel forms of interfering RNA molecules
US20050042646A1 (en) 2002-08-05 2005-02-24 Davidson Beverly L. RNA interference suppresion of neurodegenerative diseases and methods of use thereof
ES2665274T5 (es) * 2002-08-05 2021-06-30 Silence Therapeutics Gmbh Nuevas formas adicionales de moléculas de ARN de interferencia
US20040241854A1 (en) 2002-08-05 2004-12-02 Davidson Beverly L. siRNA-mediated gene silencing
JP4483581B2 (ja) * 2002-08-06 2010-06-16 東レ株式会社 腎疾患治療又は予防剤及び腎疾患の診断方法
US20060211637A1 (en) * 2002-08-06 2006-09-21 Intradigm Corporation Methods of down regulating target gene expression in vivo by introduction of interfering rna
US8729036B2 (en) 2002-08-07 2014-05-20 University Of Massachusetts Compositions for RNA interference and methods of use thereof
US20040029275A1 (en) * 2002-08-10 2004-02-12 David Brown Methods and compositions for reducing target gene expression using cocktails of siRNAs or constructs expressing siRNAs
WO2004019973A1 (en) 2002-08-14 2004-03-11 Atugen Ag Use of protein kinase n beta
WO2004018676A2 (en) * 2002-08-21 2004-03-04 The University Of British Columbia Rnai probes targeting cancer-related proteins
US7956176B2 (en) * 2002-09-05 2011-06-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US20060287269A1 (en) * 2002-09-09 2006-12-21 The Regents Of The University Of California Short interfering nucleic acid hybrids and methods thereof
US20080260744A1 (en) 2002-09-09 2008-10-23 Omeros Corporation G protein coupled receptors and uses thereof
US20040138119A1 (en) * 2002-09-18 2004-07-15 Ingo Tamm Use of hepatitis B X-interacting protein (HBXIP) in modulation of apoptosis
WO2004027063A1 (en) * 2002-09-19 2004-04-01 Institut National De La Sante Et De La Recherche Medicale-Inserm Use of sirnas for gene silencing in antigen presenting cells
WO2004029212A2 (en) 2002-09-25 2004-04-08 University Of Massachusetts In vivo gene silencing by chemically modified and stable sirna
US20040242518A1 (en) * 2002-09-28 2004-12-02 Massachusetts Institute Of Technology Influenza therapeutic
US20060160759A1 (en) * 2002-09-28 2006-07-20 Jianzhu Chen Influenza therapeutic
KR20050084607A (ko) * 2002-09-28 2005-08-26 매사추세츠 인스티튜트 오브 테크놀로지 인플루엔자 치료제
US20060240425A1 (en) * 2002-09-30 2006-10-26 Oncotherapy Science, Inc Genes and polypeptides relating to myeloid leukemia
US7422853B1 (en) * 2002-10-04 2008-09-09 Myriad Genetics, Inc. RNA interference using a universal target
JP5449639B2 (ja) 2002-11-01 2014-03-19 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア HIF−1アルファのsiRNA阻害に関する組成物及び方法
US7892793B2 (en) * 2002-11-04 2011-02-22 University Of Massachusetts Allele-specific RNA interference
US9150605B2 (en) 2002-11-05 2015-10-06 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2′-modified nucleosides for use in gene modulation
US9150606B2 (en) 2002-11-05 2015-10-06 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2'-modified nucleosides for use in gene modulation
AU2003287464A1 (en) * 2002-11-05 2004-06-03 Isis Pharmaceuticals, Inc. 2'-fluoro substituted oligomeric compounds and compositions for use in gene modulations
US8604183B2 (en) 2002-11-05 2013-12-10 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2′-modified nucleosides for use in gene modulation
WO2004041889A2 (en) 2002-11-05 2004-05-21 Isis Pharmaceuticals, Inc. Polycyclic sugar surrogate-containing oligomeric compounds and compositions for use in gene modulation
DE10322662A1 (de) * 2002-11-06 2004-10-07 Grünenthal GmbH Wirksame und stabile DNA-Enzyme
US9879266B2 (en) 2002-11-14 2018-01-30 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US9719094B2 (en) 2002-11-14 2017-08-01 Thermo Fisher Scientific Inc. RNAi targeting SEC61G
US9839649B2 (en) 2002-11-14 2017-12-12 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
JP2006507841A (ja) * 2002-11-14 2006-03-09 ダーマコン, インコーポレイテッド 機能的siRNAおよび超機能的siRNA
US7250496B2 (en) 2002-11-14 2007-07-31 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory genes and uses thereof
US7592442B2 (en) * 2002-11-14 2009-09-22 Dharmacon, Inc. siRNA targeting ribonucleotide reductase M2 polypeptide (RRM2 or RNR-R2)
US9228186B2 (en) 2002-11-14 2016-01-05 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US7655785B1 (en) 2002-11-14 2010-02-02 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory oligonucleotides and uses thereof
US20100113307A1 (en) * 2002-11-14 2010-05-06 Dharmacon, Inc. siRNA targeting vascular endothelial growth factor (VEGF)
US7951935B2 (en) 2002-11-14 2011-05-31 Dharmacon, Inc. siRNA targeting v-myc myelocytomatosis viral oncogene homolog (MYC)
US7977471B2 (en) 2002-11-14 2011-07-12 Dharmacon, Inc. siRNA targeting TNFα
US9719092B2 (en) 2002-11-14 2017-08-01 Thermo Fisher Scientific Inc. RNAi targeting CNTD2
US9771586B2 (en) 2002-11-14 2017-09-26 Thermo Fisher Scientific Inc. RNAi targeting ZNF205
US10011836B2 (en) 2002-11-14 2018-07-03 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US7781575B2 (en) 2002-11-14 2010-08-24 Dharmacon, Inc. siRNA targeting tumor protein 53 (p53)
US7691998B2 (en) * 2002-11-14 2010-04-06 Dharmacon, Inc. siRNA targeting nucleoporin 62kDa (Nup62)
US8198427B1 (en) 2002-11-14 2012-06-12 Dharmacon, Inc. SiRNA targeting catenin, beta-1 (CTNNB1)
US7635770B2 (en) * 2002-11-14 2009-12-22 Dharmacon, Inc. siRNA targeting protein kinase N-3 (PKN-3)
US20080268457A1 (en) * 2002-11-14 2008-10-30 Dharmacon, Inc. siRNA targeting forkhead box P3 (FOXP3)
WO2006006948A2 (en) 2002-11-14 2006-01-19 Dharmacon, Inc. METHODS AND COMPOSITIONS FOR SELECTING siRNA OF IMPROVED FUNCTIONALITY
US20090227780A1 (en) * 2002-11-14 2009-09-10 Dharmacon, Inc. siRNA targeting connexin 43
US7612196B2 (en) 2002-11-14 2009-11-03 Dharmacon, Inc. siRNA targeting cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B)
US10920226B2 (en) * 2002-11-14 2021-02-16 Thermo Fisher Scientific Inc. siRNA targeting LDHA
US20090005548A1 (en) * 2002-11-14 2009-01-01 Dharmacon, Inc. siRNA targeting nuclear receptor interacting protein 1 (NRIP1)
US7619081B2 (en) * 2002-11-14 2009-11-17 Dharmacon, Inc. siRNA targeting coatomer protein complex, subunit beta 2 (COPB2)
US8163896B1 (en) 2002-11-14 2012-04-24 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory genes and uses thereof
CA2506619A1 (en) 2002-11-18 2004-08-19 Thomas W. Hodge Cell lines and host nucleic acid sequences related to infectious disease
US7064337B2 (en) 2002-11-19 2006-06-20 The Regents Of The University Of California Radiation detection system for portable gamma-ray spectroscopy
DE10254214A1 (de) * 2002-11-20 2004-06-09 Beiersdorf Ag Oligoribonukleotide zur Behandlung von degenerativen Hauterscheinungen durch RNA-Interferenz
WO2004047764A2 (en) * 2002-11-22 2004-06-10 University Of Massachusetts Modulation of hiv replication by rna interference
CN1742086B (zh) * 2002-11-22 2010-05-12 生物智囊团株式会社 Rna干扰的目标碱基序列的搜索方法
JP4526228B2 (ja) * 2002-11-22 2010-08-18 隆 森田 RNAiによる新規治療法および治療剤
US7829694B2 (en) 2002-11-26 2010-11-09 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US20130130231A1 (en) 2002-11-26 2013-05-23 Isaac Bentwich Bioinformatically detectable group of novel viral regulatory genes and uses thereof
US7605249B2 (en) 2002-11-26 2009-10-20 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US7217807B2 (en) 2002-11-26 2007-05-15 Rosetta Genomics Ltd Bioinformatically detectable group of novel HIV regulatory genes and uses thereof
US7696334B1 (en) 2002-12-05 2010-04-13 Rosetta Genomics, Ltd. Bioinformatically detectable human herpesvirus 5 regulatory gene
EP1585756B1 (en) * 2002-11-26 2010-04-21 University of Massachusetts Delivery of sirnas
US7618948B2 (en) * 2002-11-26 2009-11-17 Medtronic, Inc. Devices, systems and methods for improving and/or cognitive function through brain delivery of siRNA
CN1301263C (zh) * 2002-12-18 2007-02-21 北京昭衍新药研究中心 一组抗hiv感染及防治艾滋病的核苷酸序列及其应用
US9498530B2 (en) 2002-12-24 2016-11-22 Rinat Neuroscience Corp. Methods for treating osteoarthritis pain by administering a nerve growth factor antagonist and compositions containing the same
CA2511598C (en) 2002-12-24 2016-09-13 Rinat Neuroscience Corp. Anti-ngf antibodies and methods using same
JP4742023B2 (ja) * 2003-01-03 2011-08-10 ゲンシア コーポレーション 脱毛に関与する遺伝子の、siRNA転写後遺伝子サイレンシング
EP1604010B1 (en) 2003-01-16 2010-08-11 The Trustees of The University of Pennsylvania COMPOSITIONS AND METHODS FOR siRNA INHIBITION OF ICAM-1
US7629323B2 (en) * 2003-01-21 2009-12-08 Northwestern University Manipulation of neuronal ion channels
US20060178297A1 (en) * 2003-01-28 2006-08-10 Troy Carol M Systems and methods for silencing expression of a gene in a cell and uses thereof
US20040147027A1 (en) * 2003-01-28 2004-07-29 Troy Carol M. Complex for facilitating delivery of dsRNA into a cell and uses thereof
US7994149B2 (en) 2003-02-03 2011-08-09 Medtronic, Inc. Method for treatment of Huntington's disease through intracranial delivery of sirna
US7732591B2 (en) 2003-11-25 2010-06-08 Medtronic, Inc. Compositions, devices and methods for treatment of huntington's disease through intracranial delivery of sirna
US20040248839A1 (en) * 2003-02-05 2004-12-09 University Of Massachusetts RNAi targeting of viruses
FR2850971B1 (fr) * 2003-02-10 2006-08-11 Aventis Pharma Sa Oligonucleotide antisens inhibant l'expression de la proteine ob-rgrp et procede de detection de composes modifiant l'interaction entre la famille de la proteine ob-rgrp et le recepteur de la leptine
US20070104688A1 (en) 2003-02-13 2007-05-10 City Of Hope Small interfering RNA mediated transcriptional gene silencing in mammalian cells
US20040162235A1 (en) * 2003-02-18 2004-08-19 Trubetskoy Vladimir S. Delivery of siRNA to cells using polyampholytes
CA2516454A1 (en) 2003-02-19 2004-09-02 Rinat Neuroscience Corp. Methods for treating pain by administering a nerve growth factor antagonist and an nsaid and compositions containing the same
WO2004076664A2 (en) * 2003-02-21 2004-09-10 University Of South Florida Vectors for regulating gene expression
EP1611231A4 (en) * 2003-02-21 2008-08-13 Penn State Res Found RNA-INTERFERING COMPOSITIONS AND METHODS THEREOF
AU2004214954A1 (en) * 2003-02-27 2004-09-10 Alnylam Pharmaceuticals, Inc. Methods and constructs for evaluation of RNAi targets and effector molecules
CA2517259A1 (en) * 2003-02-27 2004-09-10 National Institute Of Advanced Industrial Science And Technology Induction of methylation of cpg sequences by dsrnas in mammalian cells
JP2006520611A (ja) * 2003-03-05 2006-09-14 セネスコ テクノロジーズ,インコーポレイティド eIF−5A1の発現を抑制するための、アンチセンス・オリゴヌクレオチド又はsiRNAの使用
WO2004078941A2 (en) * 2003-03-06 2004-09-16 Oligo Engine, Inc. Modulation of gene expression using dna-rna hybrids
ATE479752T1 (de) 2003-03-07 2010-09-15 Alnylam Pharmaceuticals Inc Therapeutische zusammensetzungen
AU2004220525B2 (en) * 2003-03-12 2011-03-31 Vasgene Therapeutics, Inc. Nucleic acid compounds for inhibiting angiogenesis and tumor growth
EP1606406B2 (en) 2003-03-21 2013-11-27 Santaris Pharma A/S SHORT INTERFERING RNA (siRNA) ANALOGUES
JP4605799B2 (ja) * 2003-04-02 2011-01-05 ダーマコン, インコーポレイテッド Rna干渉において使用するための修飾ポリヌクレオチド
US20040198640A1 (en) * 2003-04-02 2004-10-07 Dharmacon, Inc. Stabilized polynucleotides for use in RNA interference
ATE536408T1 (de) * 2003-04-02 2011-12-15 Dharmacon Inc Modifizierte polynukleotide zur verwendung bei rna-interferenz
EP1631669A2 (en) 2003-04-09 2006-03-08 Biodelivery Sciences International, Inc. Cochleate compositions directed against expression of proteins
CA2521464C (en) 2003-04-09 2013-02-05 Alnylam Pharmaceuticals, Inc. Irna conjugates
US20070270360A1 (en) * 2003-04-15 2007-11-22 Sirna Therapeutics, Inc. Rna Interference Mediated Inhibition of Severe Acute Respiratory Syndrome (Sars) Gene Expression Using Short Interfering Nucleic Acid
US8796436B2 (en) 2003-04-17 2014-08-05 Alnylam Pharmaceuticals, Inc. Modified iRNA agents
US7851615B2 (en) 2003-04-17 2010-12-14 Alnylam Pharmaceuticals, Inc. Lipophilic conjugated iRNA agents
EP1625138A4 (en) 2003-04-17 2010-06-23 Alnylam Pharmaceuticals Inc PROTECTED MONOMERS
EP2664672A1 (en) 2003-04-17 2013-11-20 Alnylam Pharmaceuticals Inc. Modified iRNA agents
US7723509B2 (en) 2003-04-17 2010-05-25 Alnylam Pharmaceuticals IRNA agents with biocleavable tethers
US8017762B2 (en) 2003-04-17 2011-09-13 Alnylam Pharmaceuticals, Inc. Modified iRNA agents
AU2004233043A1 (en) * 2003-04-18 2004-11-04 The Trustees Of The University Of Pennsylvania Compositions and methods for siRNA inhibition of angiopoietin 1 and 2 and their receptor Tie2
WO2005032595A2 (en) * 2003-04-23 2005-04-14 Georgetown University Methods and compositions for the inhibition of stat5 in prostate cancer cells
EP1644048B1 (en) * 2003-05-05 2015-04-29 Johns Hopkins University Anti-cancer dna vaccine employing plasmids encoding signal sequence, mutant oncoprotein antigen, and heat shock protein
EP1623032A2 (en) 2003-05-09 2006-02-08 University of Pittsburgh of the Commonwealth System of Higher Education Small interfering rna libraries and methods of synthesis and use
WO2004101756A2 (en) 2003-05-09 2004-11-25 Diadexus, Inc. Ovr110 antibody compositions and methods of use
AU2003241409A1 (en) * 2003-05-12 2005-01-21 Potomac Pharmaceuticals, Inc. Gene expression suppression agents
WO2004104199A2 (en) * 2003-05-15 2004-12-02 Oligo Engine, Inc. Modulation of gene expression using dna-dna hybrids
JP2006525811A (ja) * 2003-05-16 2006-11-16 ロゼッタ インファーマティクス エルエルシー Rna干渉の方法と組成物
WO2004100990A1 (ja) 2003-05-19 2004-11-25 Genecare Research Institute Co., Ltd. 癌細胞に対するアポトーシス誘導剤
JP4505749B2 (ja) 2003-05-30 2010-07-21 日本新薬株式会社 Bcl−2の発現抑制をするオリゴ二本鎖RNAとそれを含有する医薬組成物
WO2004105774A1 (ja) * 2003-05-30 2004-12-09 Nippon Shinyaku Co., Ltd. オリゴ核酸担持複合体、当該複合体を含有する医薬組成物
US7750144B2 (en) 2003-06-02 2010-07-06 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of RNA silencing
WO2005001043A2 (en) * 2003-06-02 2005-01-06 University Of Massachusetts METHODS AND COMPOSITIONS FOR ENHANCING THE EFFICACY AND SPECIFICITY OF FNAi
DK1633767T3 (en) 2003-06-02 2019-03-25 Univ Massachusetts METHODS AND COMPOSITIONS FOR MANAGING THE EFFECT OF RNA SILENCING
EP2241572A3 (en) 2003-06-03 2011-04-06 Eli Lilly And Company Modulation of survivin expression
US20050019918A1 (en) * 2003-06-03 2005-01-27 Hidetoshi Sumimoto Treatment of cancer by inhibiting BRAF expression
US7595306B2 (en) * 2003-06-09 2009-09-29 Alnylam Pharmaceuticals Inc Method of treating neurodegenerative disease
US8575327B2 (en) 2003-06-12 2013-11-05 Alnylam Pharmaceuticals, Inc. Conserved HBV and HCV sequences useful for gene silencing
EP1486564A1 (de) * 2003-06-13 2004-12-15 Ribopharma AG SiRNA mit erhöhter Stabilität in Serum
ES2905724T3 (es) 2003-06-13 2022-04-11 Alnylam Europe Ag Acido ribonucleico bicatenario con elevada eficacia en un organismo
US20060241072A1 (en) * 2003-06-20 2006-10-26 Isis Pharmaceuticals, Inc. Oligomeric compounds for use in gene modulation
EP1644475A4 (en) * 2003-06-20 2009-06-03 Isis Pharmaceuticals Inc DOUBLE-STRAND COMPOSITIONS WITH A 3'-ENDO-MODIFIED STRING FOR USE IN GENE MODULATION
AU2004257167B2 (en) * 2003-07-03 2012-03-29 The Trustees Of The University Of Pennsylvania Inhibition of Syk kinase expression
US20050136430A1 (en) * 2003-07-15 2005-06-23 California Institute Of Technology Inhibitor nucleic acids
US20050256071A1 (en) * 2003-07-15 2005-11-17 California Institute Of Technology Inhibitor nucleic acids
WO2005007196A2 (en) * 2003-07-16 2005-01-27 Protiva Biotherapeutics, Inc. Lipid encapsulated interfering rna
US20050079614A1 (en) * 2003-07-21 2005-04-14 Reinhart Brenda J. RNAs able to modulate chromatin silencing
US7683036B2 (en) 2003-07-31 2010-03-23 Regulus Therapeutics Inc. Oligomeric compounds and compositions for use in modulation of small non-coding RNAs
US7888497B2 (en) 2003-08-13 2011-02-15 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory oligonucleotides and uses thereof
EP1664274A4 (en) * 2003-08-13 2010-06-30 Univ Illinois SILENCING OF THE EXPRESSION OF THE TGF-BETA-RECEPTOR TYPE II BY SIRNA
US7825235B2 (en) * 2003-08-18 2010-11-02 Isis Pharmaceuticals, Inc. Modulation of diacylglycerol acyltransferase 2 expression
WO2005035759A2 (en) * 2003-08-20 2005-04-21 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF HYPOXIA INDUCIBLE FACTOR 1 (HIF1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20050136437A1 (en) * 2003-08-25 2005-06-23 Nastech Pharmaceutical Company Inc. Nanoparticles for delivery of nucleic acids and stable double-stranded RNA
BRPI0413146A (pt) * 2003-08-28 2006-10-03 Novartis Ag dúplex rna interferindo tendo extremidades-embotadas e modificações-3
US8501705B2 (en) * 2003-09-11 2013-08-06 The Board Of Regents Of The University Of Texas System Methods and materials for treating autoimmune and/or complement mediated diseases and conditions
US8680063B2 (en) 2003-09-12 2014-03-25 University Of Massachusetts RNA interference for the treatment of gain-of-function disorders
EP3760234B1 (en) * 2003-09-12 2023-11-01 University of Massachusetts Rna interference for the treatment of gain-of-function disorders
EP2256201A3 (en) 2003-09-18 2012-07-04 Isis Pharmaceuticals, Inc. Modulation of eIF4E expression
AU2004276823A1 (en) * 2003-09-22 2005-04-07 Merck And Co., Inc Synthetic lethal screen using RNA interference
WO2005033310A1 (de) * 2003-10-01 2005-04-14 Grünenthal GmbH Pim-1-spezifische dsrna-verbindungen
CA2541852A1 (en) * 2003-10-07 2005-05-12 Quark Biotech, Inc. Bone morphogenetic protein (bmp) 2a and uses thereof
WO2005035769A2 (en) 2003-10-09 2005-04-21 E. I. Du Pont De Nemours And Company Gene silencing by using micro-rna molecules
WO2005045032A2 (en) * 2003-10-20 2005-05-19 Sima Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF EARLY GROWTH RESPONSE GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
EP1694838A2 (en) * 2003-10-23 2006-08-30 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF GPRA AND AAA1 GENE EXPRESSION USING SHORT NUCLEIC ACID (siNA)
EP1682661A2 (en) * 2003-10-23 2006-07-26 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using short interfering nucleic acid (sina)
WO2005042708A2 (en) 2003-10-27 2005-05-12 Rosetta Inpharmatics Llc METHOD OF DESIGNING siRNAS FOR GENE SILENCING
US8227434B1 (en) 2003-11-04 2012-07-24 H. Lee Moffitt Cancer Center & Research Institute, Inc. Materials and methods for treating oncological disorders
WO2005047504A1 (en) * 2003-11-07 2005-05-26 The Board Of Trustees Of The University Of Illinois Induction of cellular senescence by cdk4 disruption for tumor suppression and regression
EP1697515A4 (en) * 2003-11-12 2008-02-06 Austin Research Inst CONJUGATE DNA-EXCIPIENT
JP2005168485A (ja) * 2003-11-20 2005-06-30 Tsutomu Suzuki siRNAの設計方法
US7807646B1 (en) * 2003-11-20 2010-10-05 University Of South Florida SHIP-deficiency to increase megakaryocyte progenitor production
US7763592B1 (en) 2003-11-20 2010-07-27 University Of South Florida SHIP-deficiency to increase megakaryocyte progenitor production
US20050208658A1 (en) * 2003-11-21 2005-09-22 The University Of Maryland RNA interference mediated inhibition of 11beta hydroxysteriod dehydrogenase-1 (11beta HSD-1) gene expression
US20100145038A1 (en) * 2003-11-24 2010-06-10 Merck & Co., Inc. RNA INTERFERENCE MEDIATED INHIBITION OF GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
EP3427585A1 (en) * 2003-11-26 2019-01-16 University of Massachusetts Sequence-specific inhibition of small rna function
WO2005053725A2 (en) * 2003-11-26 2005-06-16 The Queen's University Of Belfast Cancer treatment
EP1689414A4 (en) 2003-12-04 2009-04-08 Univ South Florida Res Foundat POLYNUCLEOTIDES FOR REDUCING GENE EXPRESSION OF THE RESPIRATORY SYNCYTIAL VIRUS
US20050234000A1 (en) * 2003-12-12 2005-10-20 Mitchell Gordon S SiRNA delivery into mammalian nerve cells
WO2005068630A1 (ja) * 2003-12-16 2005-07-28 National Institute Of Advanced Industrial Science And Technology 干渉用二重鎖rna
US20060134787A1 (en) 2004-12-22 2006-06-22 University Of Massachusetts Methods and compositions for enhancing the efficacy and specificity of single and double blunt-ended siRNA
AU2004308484A1 (en) * 2003-12-23 2005-07-14 The Trustees Of The University Of Pennsylvania Compositions and methods for combined therapy of disease
US20070161586A1 (en) * 2004-01-16 2007-07-12 Takeda Pharmaceutical Company Limited Drug for preventing and treating atherosclerosis
EP1758998B1 (en) 2004-01-30 2010-12-15 Quark Pharmaceuticals, Inc. Oligoribonucleotides and methods of use thereof for treatment of fibrotic conditions and other diseases
WO2005073378A1 (en) * 2004-01-30 2005-08-11 Santaris Pharma A/S MODIFIED SHORT INTERFERING RNA (MODIFIED siRNA)
US20070269889A1 (en) * 2004-02-06 2007-11-22 Dharmacon, Inc. Stabilized siRNAs as transfection controls and silencing reagents
CA2554212A1 (en) * 2004-02-10 2005-08-25 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using multifunctional short interfering nucleic acid (multifunctional sina)
US20060019914A1 (en) 2004-02-11 2006-01-26 University Of Tennessee Research Foundation Inhibition of tumor growth and invasion by anti-matrix metalloproteinase DNAzymes
US20050273868A1 (en) * 2004-02-17 2005-12-08 University Of Massachusetts Methods and compositions for enhancing RISC activity in vitro and in vivo
WO2005079533A2 (en) * 2004-02-17 2005-09-01 University Of Massachusetts Methods and compositions for mediating gene silencing
EP1566202A1 (en) * 2004-02-23 2005-08-24 Sahltech I Göteborg AB Use of resistin antagonists in the treatment of rheumatoid arthritis
WO2005082458A1 (en) * 2004-02-23 2005-09-09 Genzyme Corporation Muc1 antagonist enhancement of death receptor ligand-induced apoptosis
EP1958964A3 (en) 2004-02-24 2009-01-07 The Government of the United States of America, as represented by The Secretary, Department of Health and Human Services RAB9A, RAB11A, and modulators thereof related to infectious disease
US7691823B2 (en) * 2004-03-05 2010-04-06 University Of Massachusetts RIP140 regulation of glucose transport
US8569474B2 (en) 2004-03-09 2013-10-29 Isis Pharmaceuticals, Inc. Double stranded constructs comprising one or more short strands hybridized to a longer strand
US20050202075A1 (en) * 2004-03-12 2005-09-15 Pardridge William M. Delivery of genes encoding short hairpin RNA using receptor-specific nanocontainers
EP1735009A4 (en) 2004-03-12 2011-03-30 Alnylam Pharmaceuticals Inc RNAI AGENTS TARGETING THE VASCULAR ENDOTHELIUM GROWTH FACTOR (VEGF)
US20070265220A1 (en) 2004-03-15 2007-11-15 City Of Hope Methods and compositions for the specific inhibition of gene expression by double-stranded RNA
WO2005089287A2 (en) * 2004-03-15 2005-09-29 City Of Hope Methods and compositions for the specific inhibition of gene expression by double-stranded rna
US20050208090A1 (en) * 2004-03-18 2005-09-22 Medtronic, Inc. Methods and systems for treatment of neurological diseases of the central nervous system
US20050272682A1 (en) * 2004-03-22 2005-12-08 Evers Bernard M SiRNA targeting PI3K signal transduction pathway and siRNA-based therapy
US7851452B2 (en) * 2004-03-22 2010-12-14 The Trustees Of The University Of Pennsylvania Methods of use of bcl-6-derived nucleotides to induce apoptosis
AU2005231692B2 (en) * 2004-03-26 2011-01-27 Curis, Inc. RNA interference modulators of Hedgehog signaling and uses thereof
US7872117B2 (en) * 2004-03-26 2011-01-18 Van Andel Research Institute c-met siRNA adenovirus vectors inhibit cancer cell growth, invasion and tumorigenicity
JPWO2005095647A1 (ja) * 2004-03-31 2008-02-21 タカラバイオ株式会社 siRNAのスクリーニング方法
JP2005312428A (ja) * 2004-03-31 2005-11-10 Keio Gijuku Skp−2発現抑制を利用した癌の治療
KR101147147B1 (ko) * 2004-04-01 2012-05-25 머크 샤프 앤드 돔 코포레이션 Rna 간섭의 오프 타겟 효과 감소를 위한 변형된폴리뉴클레오타이드
AU2005230684B2 (en) * 2004-04-05 2011-10-06 Alnylam Pharmaceuticals, Inc. Process and reagents for oligonucleotide synthesis and purification
US8193332B2 (en) 2004-04-09 2012-06-05 Genecare Research Institute Co., Ltd. Cancer cell-specific apoptosis-inducing agents that target chromosome stabilization-associated genes
US20060078902A1 (en) * 2004-04-15 2006-04-13 Michaeline Bunting Method and compositions for RNA interference
US20060014289A1 (en) * 2004-04-20 2006-01-19 Nastech Pharmaceutical Company Inc. Methods and compositions for enhancing delivery of double-stranded RNA or a double-stranded hybrid nucleic acid to regulate gene expression in mammalian cells
CA2557532A1 (en) 2004-04-23 2005-11-10 Angela M. Christiano Inhibition of hairless protein mrna
AU2005325262B2 (en) 2004-04-27 2011-08-11 Alnylam Pharmaceuticals, Inc. Single-stranded and double-stranded oligonucleotides comprising a 2-arylpropyl moiety
AU2005247319B2 (en) 2004-04-28 2011-12-01 Molecules For Health, Inc. Methods for treating or preventing restenosis and other vascular proliferative disorders
JP4584987B2 (ja) 2004-04-30 2010-11-24 アルニラム ファーマスーティカルズ インコーポレイテッド C5修飾ピリミジンを含むオリゴヌクレオチド
US20060040882A1 (en) * 2004-05-04 2006-02-23 Lishan Chen Compostions and methods for enhancing delivery of nucleic acids into cells and for modifying expression of target genes in cells
US20050260214A1 (en) * 2004-05-12 2005-11-24 Simon Michael R Composition and method for introduction of RNA interference sequences into targeted cells and tissues
US7605250B2 (en) * 2004-05-12 2009-10-20 Dharmacon, Inc. siRNA targeting cAMP-specific phosphodiesterase 4D
US20110117088A1 (en) * 2004-05-12 2011-05-19 Simon Michael R Composition and method for introduction of rna interference sequences into targeted cells and tissues
US20060030003A1 (en) * 2004-05-12 2006-02-09 Simon Michael R Composition and method for introduction of RNA interference sequences into targeted cells and tissues
WO2005110464A2 (en) * 2004-05-14 2005-11-24 Oregon Health & Science University Irx5 inhibition as treatment for hyperproliferative disorders
US7687616B1 (en) 2004-05-14 2010-03-30 Rosetta Genomics Ltd Small molecules modulating activity of micro RNA oligonucleotides and micro RNA targets and uses thereof
EP1784501B1 (en) 2004-05-14 2015-11-18 Rosetta Genomics Ltd VIRAL AND VIRUS ASSOCIATED MicroRNAS AND USES THEREOF
US10508277B2 (en) 2004-05-24 2019-12-17 Sirna Therapeutics, Inc. Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference
AU2005287383B2 (en) * 2004-05-25 2011-09-22 Chimeros, Inc. Self-assembling nanoparticle drug delivery system
US7795419B2 (en) * 2004-05-26 2010-09-14 Rosetta Genomics Ltd. Viral and viral associated miRNAs and uses thereof
AU2005250432B2 (en) 2004-05-28 2011-09-15 Asuragen, Inc. Methods and compositions involving microRNA
US8394947B2 (en) 2004-06-03 2013-03-12 Isis Pharmaceuticals, Inc. Positionally modified siRNA constructs
EP1602926A1 (en) * 2004-06-04 2005-12-07 University of Geneva Novel means and methods for the treatment of hearing loss and phantom hearing
WO2005121348A1 (en) * 2004-06-07 2005-12-22 Protiva Biotherapeutics, Inc. Lipid encapsulated interfering rna
CA2569645C (en) * 2004-06-07 2014-10-28 Protiva Biotherapeutics, Inc. Cationic lipids and methods of use
US20060008907A1 (en) * 2004-06-09 2006-01-12 The Curators Of The University Of Missouri Control of gene expression via light activated RNA interference
US20090215860A1 (en) * 2004-06-17 2009-08-27 The Regents Of The University Of California Compositions and methods for regulating gene transcription
US20060051815A1 (en) * 2004-06-25 2006-03-09 The J. David Gladstone Institutes Methods of treating smooth muscle cell disorders
JP2008504840A (ja) 2004-06-30 2008-02-21 アルニラム ファーマスーティカルズ インコーポレイテッド 非リン酸骨格結合を含むオリゴヌクレオチド
WO2006002538A1 (en) * 2004-07-02 2006-01-12 Protiva Biotherapeutics, Inc. Immunostimulatory sirna molecules and uses therefor
CA2576293C (en) 2004-07-12 2016-10-04 Nicola J. Mabjeesh Agents capable of downregulating an msf-a-dependent hif-1alpha and use thereof in cancer treatment
WO2006112869A2 (en) * 2004-07-19 2006-10-26 Baylor College Of Medicine Modulation of cytokine signaling regulators and applications for immunotherapy
EP1828215A2 (en) 2004-07-21 2007-09-05 Alnylam Pharmaceuticals Inc. Oligonucleotides comprising a modified or non-natural nucleobase
CA2573671A1 (en) * 2004-07-21 2006-02-23 Medtronic, Inc. Methods for reducing or preventing localized fibrosis using sirna
EP1778310A2 (en) * 2004-07-21 2007-05-02 Medtronic, Inc. Medical devices and methods for reducing localized fibrosis
WO2007001324A2 (en) 2004-07-23 2007-01-04 The University Of North Carolina At Chapel Hill Methods and materials for determining pain sensitivity and predicting and treating related disorders
US7632932B2 (en) 2004-08-04 2009-12-15 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising a ligand tethered to a modified or non-natural nucleobase
CA2576233C (en) 2004-08-10 2016-03-15 Alnylam Pharmaceuticals, Inc. Conjugate comprising an antagomir and a ligand
WO2006020557A2 (en) * 2004-08-10 2006-02-23 Immusol, Inc. Methods of using or identifying agents that inhibit cancer growth
US20060063181A1 (en) * 2004-08-13 2006-03-23 Green Pamela J Method for identification and quantification of short or small RNA molecules
CN101123994B (zh) 2004-08-16 2012-11-14 夸克医药公司 Rtp801的抑制剂的治疗性用途
US20070021366A1 (en) * 2004-11-19 2007-01-25 Srivastava Satish K Structural-based inhibitors of the glutathione binding site in aldose reductase, methods of screening therefor and methods of use
CN105251024A (zh) * 2004-08-23 2016-01-20 西伦蒂斯私人股份公司 眼病的治疗
RU2410430C2 (ru) * 2004-08-31 2011-01-27 Силентис С.А.У. Способы и композиции для ингибирования экспрессии рецептора p2х7
WO2006026738A2 (en) 2004-08-31 2006-03-09 Qiagen North American Holdings, Inc. Methods and compositions for rna amplification and detection using an rna-dependent rna-polymerase
US7884086B2 (en) * 2004-09-08 2011-02-08 Isis Pharmaceuticals, Inc. Conjugates for use in hepatocyte free uptake assays
JP2008512500A (ja) 2004-09-10 2008-04-24 ソマジェニックス インコーポレーティッド ウィルス遺伝子発現を効率的に阻害する低分子干渉rnaおよびその使用方法
WO2006033965A2 (en) * 2004-09-16 2006-03-30 The Trustees Of The University Of Pennsylvania Nadph oxidase inhibition pharmacotherapies for obstructive sleep apnea syndrome and its associated morbidities
FI20041204A0 (fi) 2004-09-16 2004-09-16 Riikka Lund Menetelmät immuunivälitteisiin sairauksiin liittyvien uusien kohdegeenien hyödyntämiseksi
CA2580707C (en) 2004-09-24 2014-07-08 Alnylam Pharmaceuticals, Inc. Rnai modulation of apob and uses thereof
MX2007003795A (es) 2004-09-28 2007-07-11 Quark Biotech Inc Oligoribonucleotidos y metodos de uso de los mismos para tratamiento de la alopecia, insuficiencia renal aguda y otras enfermedades.
US20090028862A1 (en) * 2004-09-30 2009-01-29 Arndt Gregory M Emmprin antagonists and uses thereof
WO2006047495A2 (en) 2004-10-21 2006-05-04 Venganza Inc Methods and materials for conferring resistance to pests and pathogens of plants
US20060110440A1 (en) * 2004-10-22 2006-05-25 Kiminobu Sugaya Method and system for biasing cellular development
US7790878B2 (en) * 2004-10-22 2010-09-07 Alnylam Pharmaceuticals, Inc. RNAi modulation of RSV, PIV and other respiratory viruses and uses thereof
JP4704435B2 (ja) * 2004-10-22 2011-06-15 ニューレジェニクス リミテッド ニューロン再生
US20060089324A1 (en) * 2004-10-22 2006-04-27 Sailen Barik RNAi modulation of RSV, PIV and other respiratory viruses and uses thereof
SG158921A1 (en) * 2004-10-27 2010-02-26 Schering Corp Compositions and methods for short interfering nucleic acid inhibition of nav1.8
SG156690A1 (en) 2004-10-27 2009-11-26 Univ Vanderbilt Mammalian genes involved in infection
US8293253B2 (en) * 2004-10-28 2012-10-23 Idexx Laboratories, Inc. Compositions for controlled delivery of pharmaceutically active compounds
US20060094676A1 (en) * 2004-10-29 2006-05-04 Ronit Lahav Compositions and methods for treating cancer using compositions comprising an inhibitor of endothelin receptor activity
WO2007001448A2 (en) 2004-11-04 2007-01-04 Massachusetts Institute Of Technology Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
ES2534304T3 (es) 2004-11-12 2015-04-21 Asuragen, Inc. Procedimientos y composiciones que implican miARN y moléculas inhibidoras de miARN
US20060105052A1 (en) * 2004-11-15 2006-05-18 Acar Havva Y Cationic nanoparticle having an inorganic core
WO2006055635A2 (en) * 2004-11-15 2006-05-26 Mount Sinai School Of Medicine Of New York University Compositions and methods for altering wnt autocrine signaling
WO2006053430A1 (en) * 2004-11-17 2006-05-26 Protiva Biotherapeutics, Inc. Sirna silencing of apolipoprotein b
WO2006055727A2 (en) * 2004-11-18 2006-05-26 The Board Of Trustees Of The University Of Illinois MULTICISTRONIC siRNA CONSTRUCTS TO INHIBIT TUMORS
KR101330229B1 (ko) * 2004-11-19 2013-11-15 가부시키가이샤 진케어켄큐쇼 암세포 특이적 세포증식 억제제
US7923206B2 (en) * 2004-11-22 2011-04-12 Dharmacon, Inc. Method of determining a cellular response to a biological agent
US7923207B2 (en) 2004-11-22 2011-04-12 Dharmacon, Inc. Apparatus and system having dry gene silencing pools
US7935811B2 (en) 2004-11-22 2011-05-03 Dharmacon, Inc. Apparatus and system having dry gene silencing compositions
ATE539758T1 (de) * 2004-11-24 2012-01-15 Alnylam Pharmaceuticals Inc Rnai-modulation des bcr-abl-fusionsgens und dessen verwendungen
WO2006060454A2 (en) * 2004-12-02 2006-06-08 B-Bridge International, Inc. Methods of designing small interfering rnas, antisense polynucleotides, and other hybridizing polynucleotides
US20060165667A1 (en) * 2004-12-03 2006-07-27 Case Western Reserve University Novel methods, compositions and devices for inducing neovascularization
US7361752B2 (en) * 2004-12-14 2008-04-22 Alnylam Pharmaceuticals, Inc. RNAi modulation of MLL-AF4 and uses thereof
KR100967868B1 (ko) 2004-12-17 2010-07-05 베쓰 이스라엘 디코니스 메디칼 센터 박테리아 매개 유전자 침묵을 위한 조성물 및 이것을이용하는 방법
GB0427916D0 (en) * 2004-12-21 2005-01-19 Astrazeneca Ab Method
TWI386225B (zh) 2004-12-23 2013-02-21 Alcon Inc 用於治療眼睛病症的結締組織生長因子(CTGF)RNA干擾(RNAi)抑制技術
US20060142228A1 (en) 2004-12-23 2006-06-29 Ambion, Inc. Methods and compositions concerning siRNA's as mediators of RNA interference
ES2548515T3 (es) 2004-12-27 2015-10-19 Silence Therapeutics Gmbh Complejos lipídicos recubiertos con PEG y su uso
CN101124339A (zh) * 2004-12-30 2008-02-13 托德·M·豪泽 使用自我保护寡核苷酸调节基因表达的组合物和方法
CA2594040A1 (en) * 2005-01-06 2006-07-13 The Johns Hopkins University Rna interference that blocks expression of pro-apoptotic proteins potentiates immunity induced by dna and transfected dendritic cell vaccines
JP2008526883A (ja) 2005-01-07 2008-07-24 ディアデクサス インコーポレーテッド Ovr110抗体組成物および使用方法
JP5081630B2 (ja) * 2005-01-07 2012-11-28 アルナイラム ファーマシューティカルズ, インコーポレイテッド RSVのRNAi調節及びその治療上の使用方法
EP1841464B1 (en) * 2005-01-24 2012-06-27 Alnylam Pharmaceuticals Inc. Rnai modulation of the nogo-l or nogo-r gene and uses thereof
JP2008528004A (ja) * 2005-01-26 2008-07-31 ザ ジョンズ ホプキンス ユニバーシティー 突然変異癌タンパク質抗原およびカルレティキュリンをコードするプラスミドを用いる抗癌dnaワクチン
TW200639253A (en) * 2005-02-01 2006-11-16 Alcon Inc RNAi-mediated inhibition of ocular targets
JP2008530084A (ja) * 2005-02-14 2008-08-07 株式会社Hvc戦略研究所 癌の転移を予防するための薬剤
ATE526421T1 (de) 2005-02-14 2011-10-15 Univ Iowa Res Found Verfahren und reagenzien zur behandlung und diagnose von altersbedingter makuladegeneration
US8859749B2 (en) 2005-03-08 2014-10-14 Qiagen Gmbh Modified short interfering RNA
JP2008533050A (ja) 2005-03-11 2008-08-21 アルコン,インコーポレイテッド 緑内障を処置するためのフリッツルド関連蛋白質―1のrnai媒介性阻害
GB0505081D0 (en) * 2005-03-14 2005-04-20 Genomica Sau Downregulation of interleukin-12 expression by means of rnai technology
US8999943B2 (en) * 2005-03-14 2015-04-07 Board Of Regents, The University Of Texas System Antigene oligomers inhibit transcription
JP4585342B2 (ja) * 2005-03-18 2010-11-24 株式会社資生堂 不全角化を抑制する物質のスクリーニング方法、同方法によりスクリーニングされた物質及び不全角化を抑制する方法
EP1877556B1 (en) * 2005-03-25 2011-09-14 Medtronic, Inc. Use of anti-tnf or anti-il1 rnai to suppress pro- inflammatory cytokine actions locally to treat pain
EP1866414B9 (en) * 2005-03-31 2012-10-03 Calando Pharmaceuticals, Inc. Inhibitors of ribonucleotide reductase subunit 2 and uses thereof
WO2006113743A2 (en) * 2005-04-18 2006-10-26 Massachusetts Institute Of Technology Compositions and methods for rna interference with sialidase expression and uses thereof
US7902352B2 (en) 2005-05-06 2011-03-08 Medtronic, Inc. Isolated nucleic acid duplex for reducing huntington gene expression
EP1885854B1 (en) 2005-05-06 2012-10-17 Medtronic, Inc. Methods and sequences to suppress primate huntington gene expression
WO2007008300A2 (en) * 2005-05-31 2007-01-18 ECOLE POLYTECHNIQUE FéDéRALE DE LAUSANNE Triblock copolymers for cytoplasmic delivery of gene-based drugs
US20070048293A1 (en) * 2005-05-31 2007-03-01 The Trustees Of The University Of Pennsylvania Manipulation of PTEN in T cells as a strategy to modulate immune responses
CN101213300B (zh) * 2005-06-01 2013-01-23 聚加转染股份有限公司 用于rna干扰的寡核苷酸及其生物学应用
AU2006252456A1 (en) * 2005-06-01 2006-12-07 Duke University Method of inhibiting intimal hyperplasia
CN100445381C (zh) * 2005-06-10 2008-12-24 中国人民解放军军事医学科学院基础医学研究所 带有单链polyA尾巴的siRNA分子制备方法和应用
US20100266574A1 (en) * 2005-06-10 2010-10-21 Orna Mor Oligoribonucleotides and Methods of Use Thereof for Treatment of Fibrotic Conditions and Other Diseases
WO2006138145A1 (en) 2005-06-14 2006-12-28 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
US7838503B2 (en) * 2005-06-15 2010-11-23 Children's Medical Center Corporation Methods for extending the replicative lifespan of cells
FI20050640A0 (fi) * 2005-06-16 2005-06-16 Faron Pharmaceuticals Oy Yhdisteitä amiinioksidaasista riippuvien sairauksien tai häiriöiden hoitoon tai estoon
US7868159B2 (en) * 2005-06-23 2011-01-11 Baylor College Of Medicine Modulation of negative immune regulators and applications for immunotherapy
WO2007002718A2 (en) * 2005-06-27 2007-01-04 Alnylam Pharmaceuticals, Inc. Rnai modulation of hif-1 and theraputic uses thereof
US9133517B2 (en) 2005-06-28 2015-09-15 Medtronics, Inc. Methods and sequences to preferentially suppress expression of mutated huntingtin
CN101273130B (zh) 2005-07-07 2012-05-30 耶路撒冷希伯来大学伊森姆研究发展公司 用于下调h19的核酸物质及其使用方法
US8703769B2 (en) 2005-07-15 2014-04-22 The University Of North Carolina At Chapel Hill Use of EGFR inhibitors to prevent or treat obesity
EP1910528A2 (de) * 2005-07-25 2008-04-16 Technische Universität Dresden Rna-abhängige rna-polymerase, verfahren und kits zur amplifikation und / oder markierung von rna
US20070111227A1 (en) * 2005-07-28 2007-05-17 Green Pamela J Small regulatory RNAs and methods of use
US7919583B2 (en) 2005-08-08 2011-04-05 Discovery Genomics, Inc. Integration-site directed vector systems
US20070213257A1 (en) * 2005-08-12 2007-09-13 Nastech Pharmaceutical Company Inc. Compositions and methods for complexes of nucleic acids and peptides
AU2006279280A1 (en) 2005-08-18 2007-02-22 Alnylam Pharmaceuticals, Inc. Methods and compositions for treating neurological disease
US20070054873A1 (en) * 2005-08-26 2007-03-08 Protiva Biotherapeutics, Inc. Glucocorticoid modulation of nucleic acid-mediated immune stimulation
EP1937312B1 (en) * 2005-08-30 2016-06-29 Ionis Pharmaceuticals, Inc. Chimeric oligomeric compounds for modulation of splicing
WO2007030167A1 (en) * 2005-09-02 2007-03-15 Nastech Pharmaceutical Company Inc. Modification of double-stranded ribonucleic acid molecules
US20090221673A1 (en) * 2005-09-13 2009-09-03 Rigby William F C Compositions and Methods for Regulating RNA Translation via CD154 CA-Dinucleotide Repeat
CA2620387C (en) 2005-09-20 2018-09-18 Basf Plant Science Gmbh Methods for controlling gene expression using ta-sirna
FR2890859B1 (fr) * 2005-09-21 2012-12-21 Oreal Oligonucleotide d'arn double brin inhibant l'expression de la tyrosinase
US8933043B2 (en) * 2005-09-30 2015-01-13 St. Jude Children's Research Hospital Methods for regulation of p53 translation and function
US8168584B2 (en) 2005-10-08 2012-05-01 Potentia Pharmaceuticals, Inc. Methods of treating age-related macular degeneration by compstatin and analogs thereof
US8080534B2 (en) 2005-10-14 2011-12-20 Phigenix, Inc Targeting PAX2 for the treatment of breast cancer
WO2007048046A2 (en) * 2005-10-20 2007-04-26 Protiva Biotherapeutics, Inc. Sirna silencing of filovirus gene expression
GB0521351D0 (en) * 2005-10-20 2005-11-30 Genomica Sau Modulation of TRPV expression levels
GB0521716D0 (en) * 2005-10-25 2005-11-30 Genomica Sau Modulation of 11beta-hydroxysteriod dehydrogenase 1 expression for the treatment of ocular diseases
WO2007049690A1 (ja) * 2005-10-27 2007-05-03 National University Corporation NARA Institute of Science and Technology Singarの発現または機能の抑制による神経軸索の形成・伸長と神経再生への応用
EP1941059A4 (en) 2005-10-28 2010-11-03 Alnylam Pharmaceuticals Inc COMPOSITIONS AND METHODS FOR INHIBITING THE EXPRESSION OF THE HUNTINGTIN GENE
EP2395012B8 (en) * 2005-11-02 2018-06-06 Arbutus Biopharma Corporation Modified siRNA molecules and uses thereof
WO2007056326A2 (en) * 2005-11-04 2007-05-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of nav1.8 gene
WO2007051316A1 (en) * 2005-11-07 2007-05-10 British Columbia Cancer Agency Inhibition of autophagy genes in cancer chemotherapy
US20100069461A1 (en) 2005-11-09 2010-03-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of factor v leiden mutant gene
AU2006336624B2 (en) * 2005-11-17 2010-11-25 Board Of Regents, The University Of Texas System Modulation of gene expression by oligomers targeted to chromosomal DNA
US8603991B2 (en) 2005-11-18 2013-12-10 Gradalis, Inc. Individualized cancer therapy
US8916530B2 (en) 2005-11-18 2014-12-23 Gradalis, Inc. Individualized cancer therapy
US20080125384A1 (en) * 2005-11-21 2008-05-29 Shuewi Yang Simultaneous silencing and restoration of gene function
JP4901753B2 (ja) * 2005-11-24 2012-03-21 学校法人自治医科大学 プロヒビチン2(phb2)のミトコンドリア機能
WO2007070682A2 (en) 2005-12-15 2007-06-21 Massachusetts Institute Of Technology System for screening particles
DE602006014026D1 (de) * 2005-12-22 2010-06-10 Opko Ophthalmics Llc Zusammensetzungen und verfahren zur regulierung eines komplementsystems
AR057252A1 (es) * 2005-12-27 2007-11-21 Alcon Mfg Ltd Inhibicion de rho quinasa mediada por arni para el tratamiento de trastornos oculares
EP1976567B1 (en) 2005-12-28 2020-05-13 The Scripps Research Institute Natural antisense and non-coding rna transcripts as drug targets
US8673873B1 (en) * 2005-12-28 2014-03-18 Alcon Research, Ltd. RNAi-mediated inhibition of phosphodiesterase type 4 for treatment of cAMP-related ocular disorders
EP1973574B1 (en) * 2005-12-30 2014-04-02 Institut Gustave Roussy Use of inhibitors of scinderin and/or of ephrin-a1 for treating tumors
CA2637254A1 (en) * 2006-01-17 2007-07-26 Biolex Therapeutics, Inc. Compositions and methods for humanization and optimization of n-glycans in plants
US20090060921A1 (en) * 2006-01-17 2009-03-05 Biolex Therapeutics, Inc. Glycan-optimized anti-cd20 antibodies
US20120208824A1 (en) 2006-01-20 2012-08-16 Cell Signaling Technology, Inc. ROS Kinase in Lung Cancer
EP3360965A1 (en) 2006-01-20 2018-08-15 Cell Signaling Technology, Inc. Translocation and mutant ros kinase in human non-small cell lung carcinoma
US7825099B2 (en) 2006-01-20 2010-11-02 Quark Pharmaceuticals, Inc. Treatment or prevention of oto-pathologies by inhibition of pro-apoptotic genes
NL2000439C2 (nl) 2006-01-20 2009-03-16 Quark Biotech Therapeutische toepassingen van inhibitoren van RTP801.
US20070259827A1 (en) * 2006-01-25 2007-11-08 University Of Massachusetts Compositions and methods for enhancing discriminatory RNA interference
WO2007085485A2 (en) * 2006-01-27 2007-08-02 Santaris Pharma A/S Lna modified phosphorothiolated oligonucleotides
US8229398B2 (en) * 2006-01-30 2012-07-24 Qualcomm Incorporated GSM authentication in a CDMA network
EP1989307B1 (en) * 2006-02-08 2012-08-08 Quark Pharmaceuticals, Inc. NOVEL TANDEM siRNAS
US7910566B2 (en) 2006-03-09 2011-03-22 Quark Pharmaceuticals Inc. Prevention and treatment of acute renal failure and other kidney diseases by inhibition of p53 by siRNA
FI20060246A0 (fi) 2006-03-16 2006-03-16 Jukka Westermarck Uusi kasvua stimuloiva proteiini ja sen käyttö
US20100056441A1 (en) * 2006-03-17 2010-03-04 Costa Robert H Method for Inhibiting Angiogenesis
DK2002004T3 (en) 2006-03-23 2015-11-30 Roche Innovation Ct Copenhagen As LITTLE INTERNAL SEGMENTED INTERFERENCE RNA
BRPI0709147A2 (pt) * 2006-03-24 2011-06-28 Novartis Ag composições de dsrna e métodos para tratamento de infecção por hpv
FR2898908A1 (fr) 2006-03-24 2007-09-28 Agronomique Inst Nat Rech Procede de preparation de cellules aviaires differenciees et genes impliques dans le maintien de la pluripotence
US20070238691A1 (en) * 2006-03-29 2007-10-11 Senesco Technologies, Inc. Inhibition of HIV replication and expression of p24 with eIF-5A
WO2007115168A2 (en) 2006-03-31 2007-10-11 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of eg5 gene
CA2648099C (en) 2006-03-31 2012-05-29 The Brigham And Women's Hospital, Inc System for targeted delivery of therapeutic agents
US20090226446A1 (en) * 2006-04-06 2009-09-10 Deutsches Krebsforschungszentrum Stiftung Des Offentilchen Rechts Method to Inhibit the Propagation of an Undesired Cell Population
ATE460922T1 (de) * 2006-04-07 2010-04-15 Chimeros Inc Zusammensetzungen und verfahren zur behandlung von b-zellen-malignomen
EP2010226B1 (en) 2006-04-07 2014-01-15 The Research Foundation of State University of New York Transcobalamin receptor polypeptides, nucleic acids, and modulators thereof, and related methods of use in modulating cell growth and treating cancer and cobalamin deficiency
US9044461B2 (en) 2006-04-07 2015-06-02 The Research Foundation Of State University Of New York Transcobalamin receptor polypeptides, nucleic acids, and modulators thereof, and related methods of use in modulating cell growth and treating cancer and cobalamin deficiency
EP2371957A1 (en) * 2006-04-12 2011-10-05 Isis Pharmaceuticals, Inc. Compositions and their uses directed to hepcidin
WO2007120842A2 (en) * 2006-04-13 2007-10-25 Cornell Research Foundation, Inc. Methods and compositions for targeting c-rel
US8969295B2 (en) * 2006-04-14 2015-03-03 Massachusetts Institute Of Technology Identifying and modulating molecular pathways that mediate nervous system plasticity
EP2447360A1 (en) 2006-04-14 2012-05-02 Cell Signaling Technology, Inc. Gene defects and mutant ALK kinase in human solid tumors
US7691824B2 (en) * 2006-04-28 2010-04-06 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a gene from the JC virus
GB0608838D0 (en) 2006-05-04 2006-06-14 Novartis Ag Organic compounds
NZ572666A (en) 2006-05-11 2010-11-26 Alnylam Pharmaceuticals Inc Compositions comprising double stranded rna and methods for inhibiting expression of the pcsk9 gene
CA2652280C (en) 2006-05-15 2014-01-28 Massachusetts Institute Of Technology Polymers for functional particles
US20090130212A1 (en) * 2006-05-15 2009-05-21 Physical Pharmaceutica, Llc Composition and improved method for preparation of small particles
US20070269892A1 (en) * 2006-05-18 2007-11-22 Nastech Pharmaceutical Company Inc. FORMULATIONS FOR INTRACELLULAR DELIVERY dsRNA
EP2023937B1 (en) * 2006-05-19 2011-10-12 Alnylam Pharmaceuticals Inc. Rnai modulation of aha and therapeutic uses thereof
EP2021352A4 (en) * 2006-05-19 2009-10-28 Scripps Research Inst TREATMENT OF PROTEIN MISCONDUCT
WO2007137220A2 (en) * 2006-05-22 2007-11-29 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of ikk-b gene
US9273356B2 (en) 2006-05-24 2016-03-01 Medtronic, Inc. Methods and kits for linking polymorphic sequences to expanded repeat mutations
US20070275923A1 (en) * 2006-05-25 2007-11-29 Nastech Pharmaceutical Company Inc. CATIONIC PEPTIDES FOR siRNA INTRACELLULAR DELIVERY
GB0610542D0 (en) * 2006-05-26 2006-07-05 Medical Res Council Screening method
US8598333B2 (en) * 2006-05-26 2013-12-03 Alnylam Pharmaceuticals, Inc. SiRNA silencing of genes expressed in cancer
WO2007141796A2 (en) 2006-06-09 2007-12-13 Quark Pharmaceuticals, Inc. Therapeutic uses of inhibitors of rtp801l
US7915399B2 (en) * 2006-06-09 2011-03-29 Protiva Biotherapeutics, Inc. Modified siRNA molecules and uses thereof
JP2009540011A (ja) * 2006-06-12 2009-11-19 エクセジェニックス、インク.ディー/ビー/エー オプコ ヘルス、インク. 血管新生のsiRNA阻害のための組成物及び方法
WO2007147067A2 (en) * 2006-06-14 2007-12-21 Rosetta Inpharmatics Llc Methods and compositions for regulating cell cycle progression
WO2007150030A2 (en) 2006-06-23 2007-12-27 Massachusetts Institute Of Technology Microfluidic synthesis of organic nanoparticles
US8124752B2 (en) * 2006-07-10 2012-02-28 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the MYC gene
GB0613753D0 (en) 2006-07-11 2006-08-23 Norwegian Radium Hospital Res Method
NZ574046A (en) 2006-07-13 2012-09-28 Univ Iowa Res Found Methods and reagents for treatment and diagnosis of vascular disorders and age-related macular degeneration
JP4756271B2 (ja) * 2006-07-18 2011-08-24 独立行政法人産業技術総合研究所 ガン細胞の老化、アポトーシス誘導剤
KR101670085B1 (ko) 2006-07-21 2016-10-28 사일런스 테라퓨틱스 게엠베하 단백질 키나아제 3의 발현을 억제하기 위한 수단
US20080039415A1 (en) * 2006-08-11 2008-02-14 Gregory Robert Stewart Retrograde transport of sirna and therapeutic uses to treat neurologic disorders
US20100330105A1 (en) * 2006-08-22 2010-12-30 John Hopkins University Anticancer Combination Therapies
DE102006039479A1 (de) 2006-08-23 2008-03-06 Febit Biotech Gmbh Programmierbare Oligonukleotidsynthese
US7872118B2 (en) * 2006-09-08 2011-01-18 Opko Ophthalmics, Llc siRNA and methods of manufacture
WO2008036776A2 (en) * 2006-09-19 2008-03-27 Asuragen, Inc. Mir-15, mir-26, mir -31,mir -145, mir-147, mir-188, mir-215, mir-216 mir-331, mmu-mir-292-3p regulated genes and pathways as targets for therapeutic intervention
WO2008036741A2 (en) * 2006-09-19 2008-03-27 Asuragen, Inc. Mir-200 regulated genes and pathways as targets for therapeutic intervention
US20090209478A1 (en) 2006-09-21 2009-08-20 Tomoko Nakayama Compositions and methods for inhibiting expression of the hamp gene
WO2008036825A2 (en) 2006-09-22 2008-03-27 Dharmacon, Inc. Duplex oligonucleotide complexes and methods for gene silencing by rna interference
AU2007306542B2 (en) * 2006-10-11 2013-08-01 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Influenza targets
WO2008063760A2 (en) * 2006-10-18 2008-05-29 The University Of Texas M.D. Anderson Cancer Center Methods for treating cancer targeting transglutaminase
JP2010507387A (ja) * 2006-10-25 2010-03-11 クアーク・ファーマスーティカルス、インコーポレイテッド 新規のsiRNAおよびその使用方法
EP2061901A2 (en) 2006-10-31 2009-05-27 Noxxon Pharma AG Methods for detection of a single- or double-stranded nucleic acid molecule
WO2008053487A2 (en) 2006-11-01 2008-05-08 The Medical Research Fund At The Tel-Aviv Sourasky Medical Center Adipocyte-specific constructs and methods for inhibiting platelet-type 12 lipoxygenase expression
US9375440B2 (en) 2006-11-03 2016-06-28 Medtronic, Inc. Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US8324367B2 (en) 2006-11-03 2012-12-04 Medtronic, Inc. Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US8758998B2 (en) 2006-11-09 2014-06-24 Gradalis, Inc. Construction of bifunctional short hairpin RNA
US8906874B2 (en) 2006-11-09 2014-12-09 Gradalis, Inc. Bi-functional shRNA targeting Stathmin 1 and uses thereof
US8252526B2 (en) 2006-11-09 2012-08-28 Gradalis, Inc. ShRNA molecules and methods of use thereof
US8034921B2 (en) * 2006-11-21 2011-10-11 Alnylam Pharmaceuticals, Inc. IRNA agents targeting CCR5 expressing cells and uses thereof
US7988668B2 (en) 2006-11-21 2011-08-02 Medtronic, Inc. Microsyringe for pre-packaged delivery of pharmaceuticals
US7819842B2 (en) 2006-11-21 2010-10-26 Medtronic, Inc. Chronically implantable guide tube for repeated intermittent delivery of materials or fluids to targeted tissue sites
EP2087912B1 (en) * 2006-11-22 2017-05-10 The University of Tokyo Sirna carrier using disulfide-bridged polymeric micelle
US20080199475A1 (en) 2006-11-27 2008-08-21 Patrys Limited Novel glycosylated peptide target in neoplastic cells
WO2008067283A2 (en) 2006-11-27 2008-06-05 Diadexus, Inc. Ovr110 antibody compositions and methods of use
WO2008067373A2 (en) * 2006-11-28 2008-06-05 Alcon Research, Ltd. RNAi-MEDIATED INHIBITION OF AQUAPORIN 1 FOR TREATMENT OF IOP-RELATED CONDITIONS
WO2008067526A2 (en) * 2006-11-30 2008-06-05 University Of Southern California Usc Stevens Compositions and methods of sphingosine kinase inhibitors in radiation therapy of various cancers
WO2008073920A2 (en) * 2006-12-08 2008-06-19 Asuragen, Inc. Mir-21 regulated genes and pathways as targets for therapeutic intervention
DK2104737T3 (da) * 2006-12-08 2013-05-27 Asuragen Inc Funktioner og formål for let-7 mikro-RNAer
EA200900782A1 (ru) * 2006-12-14 2009-12-30 Новартис Аг Композиции и способы, предназначенные для лечения мышечных и сердечно-сосудистых нарушений
US20090175827A1 (en) * 2006-12-29 2009-07-09 Byrom Mike W miR-16 REGULATED GENES AND PATHWAYS AS TARGETS FOR THERAPEUTIC INTERVENTION
US7754698B2 (en) * 2007-01-09 2010-07-13 Isis Pharmaceuticals, Inc. Modulation of FR-alpha expression
US9896511B2 (en) 2007-01-10 2018-02-20 The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services Antibodies that bind to TL1A and methods of treating inflammatory or autoimmune disease comprising administering such antibodies
US9068003B2 (en) 2007-01-10 2015-06-30 The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services Antibodies that bind to TL1A and methods of treating inflammatory or autoimmune disease comprising administering such antibodies
CA2675967A1 (en) * 2007-01-16 2008-07-24 Yissum Research Development Company Of The Hebrew University Of Jerusale M Nucleic acid constructs and methods for specific silencing of h19
AU2007344641B2 (en) 2007-01-16 2014-05-22 The University Of Queensland Method of inducing an immune response
US20080171906A1 (en) * 2007-01-16 2008-07-17 Everaerts Frank J L Tissue performance via hydrolysis and cross-linking
WO2008088836A2 (en) * 2007-01-16 2008-07-24 The Burnham Institute For Medical Research Compositions and methods for treatment of colorectal cancer
CA2712073A1 (en) * 2007-01-17 2008-07-24 Institut De Recherches Cliniques De Montreal Nucleoside and nucleotide analogues with quaternary carbon centers and methods of use
CN101641010A (zh) 2007-01-26 2010-02-03 路易斯维尔大学研究基金会公司 用作疫苗的外来体组分的修饰
US20100196403A1 (en) * 2007-01-29 2010-08-05 Jacob Hochman Antibody conjugates for circumventing multi-drug resistance
US20100183696A1 (en) * 2007-01-30 2010-07-22 Allergan, Inc Treating Ocular Diseases Using Peroxisome Proliferator-Activated Receptor Delta Antagonists
US8507200B2 (en) 2007-02-09 2013-08-13 Northwestern University Particles for detecting intracellular targets
EP2134830A2 (en) 2007-02-09 2009-12-23 Massachusetts Institute of Technology Oscillating cell culture bioreactor
DE102007008596B4 (de) * 2007-02-15 2010-09-02 Friedrich-Schiller-Universität Jena Biologisch wirksame Moleküle auf Grundlage von PNA und siRNA, Verfahren zu deren zellspezifischen Aktivierung sowie Applikationskit zur Verabreichung
WO2008103643A1 (en) * 2007-02-20 2008-08-28 Monsanto Technology, Llc Invertebrate micrornas
JP2010518880A (ja) 2007-02-26 2010-06-03 クアーク・ファーマスーティカルス、インコーポレイテッド Rtp801のインヒビター及びその疾患の治療における使用
WO2008104978A2 (en) * 2007-02-28 2008-09-04 Quark Pharmaceuticals, Inc. Novel sirna structures
US20080299659A1 (en) * 2007-03-02 2008-12-04 Nastech Pharmaceutical Company Inc. Nucleic acid compounds for inhibiting apob gene expression and uses thereof
WO2008109034A2 (en) * 2007-03-02 2008-09-12 The Trustees Of The University Of Pennsylvania Modulating pdx-1 with pcif1, methods and uses thereof
US20100055784A1 (en) * 2007-03-02 2010-03-04 Mdrna, Inc. Nucleic acid compounds for inhibiting wnt gene expression and uses thereof
US9085638B2 (en) 2007-03-07 2015-07-21 The Johns Hopkins University DNA vaccine enhancement with MHC class II activators
US20080260765A1 (en) * 2007-03-15 2008-10-23 Johns Hopkins University HPV DNA Vaccines and Methods of Use Thereof
DK2129680T3 (en) 2007-03-21 2015-08-10 Brookhaven Science Ass Llc COMBINED hairpin ANTISENSE COMPOSITIONS AND METHODS FOR MODULATING EXPRESSION OF
US7812002B2 (en) 2007-03-21 2010-10-12 Quark Pharmaceuticals, Inc. Oligoribonucleotide inhibitors of NRF2 and methods of use thereof for treatment of cancer
PE20090064A1 (es) * 2007-03-26 2009-03-02 Novartis Ag Acido ribonucleico de doble cadena para inhibir la expresion del gen e6ap humano y composicion farmaceutica que lo comprende
WO2008121604A2 (en) * 2007-03-29 2008-10-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a gene from the ebola
WO2008124634A1 (en) 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Polymer-encapsulated reverse micelles
WO2008124639A2 (en) 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Poly (amino acid) targeting moieties
AU2008236566A1 (en) * 2007-04-09 2008-10-16 Chimeros, Inc. Self-assembling nanoparticle drug delivery system
CA2678055C (en) 2007-04-10 2016-02-16 Qiagen Gmbh Rna interference tags
EP2146691A2 (en) * 2007-04-17 2010-01-27 Baxter International Inc. Nucleic acid microparticles for pulmonary delivery
WO2008131419A2 (en) 2007-04-23 2008-10-30 Alnylam Pharmaceuticals, Inc. Glycoconjugates of rna interference agents
WO2008143774A2 (en) * 2007-05-01 2008-11-27 University Of Massachusetts Methods and compositions for locating snp heterozygosity for allele specific diagnosis and therapy
US20100291042A1 (en) 2007-05-03 2010-11-18 The Brigham And Women's Hospital, Inc. Multipotent stem cells and uses thereof
JP5296328B2 (ja) * 2007-05-09 2013-09-25 独立行政法人理化学研究所 1本鎖環状rnaおよびその製造方法
EP2162137B1 (en) * 2007-05-15 2016-11-23 Dart NeuroScience LLC Methods of treating cognitive disorders by inhibition of gpr12
JP2010527243A (ja) * 2007-05-15 2010-08-12 ヘリコン セラピューティクス,インコーポレイテッド 低分子干渉RNA(siRNA)を用いた記憶形成に関わる遺伝子の同定方法
US20090131354A1 (en) * 2007-05-22 2009-05-21 Bader Andreas G miR-126 REGULATED GENES AND PATHWAYS AS TARGETS FOR THERAPEUTIC INTERVENTION
CA2687850C (en) 2007-05-22 2017-11-21 Mdrna, Inc. Oligomers for therapeutics
WO2008151049A2 (en) 2007-05-30 2008-12-11 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
EP2572712A3 (en) 2007-06-01 2013-11-20 The Trustees Of Princeton University Treatment of viral infections by modulation of host cell metabolic pathways
EP2172547B1 (en) 2007-06-11 2016-01-06 Takara Bio Inc. Method for expression of specific gene
AR066984A1 (es) * 2007-06-15 2009-09-23 Novartis Ag Inhibicion de la expresion de la subunidad alfa del canal epitelial de sodio (enac) por medio de arni (arn de interferencia)
US20100273854A1 (en) * 2007-06-15 2010-10-28 Hagar Kalinski Compositions and methods for inhibiting nadph oxidase expression
ES2474176T3 (es) 2007-06-27 2014-07-08 Quark Pharmaceuticals, Inc. Composiciones y métodos para inhibir la expresión de genes pro-apopt�ticos
EP2172226A4 (en) 2007-06-29 2010-06-30 Stelic Institute Regenerative Medicine METHOD FOR FIXING AND EXPRESSING A PHYSIOLOGICALLY ACTIVE SUBSTANCE
EP2164966A2 (en) * 2007-07-05 2010-03-24 Novartis Ag Dsrna for treating viral infection
AU2008273713B2 (en) * 2007-07-10 2014-07-03 Neurim Pharmaceuticals (1991) Ltd. CD44 splice variants in neurodegenerative diseases
US8828960B2 (en) * 2007-07-17 2014-09-09 Idexx Laboratories, Inc. Amino acid vitamin ester compositions for controlled delivery of pharmaceutically active compounds
JP2009033986A (ja) * 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd RNA干渉による遺伝子発現抑制のためのターゲット遺伝子としてのcar遺伝子の使用
US9526707B2 (en) 2007-08-13 2016-12-27 Howard L. Elford Methods for treating or preventing neuroinflammation or autoimmune diseases
US8501929B2 (en) * 2007-08-17 2013-08-06 Biochrom Pharma Inc. PTHrP, its isoforms and antagonist thereto in the diagnosis and treatment of disease
US20100286378A1 (en) * 2007-08-27 2010-11-11 Boston Biomedical, Inc. Composition of Asymmetric RNA Duplex As MicroRNA Mimetic or Inhibitor
JP2010536392A (ja) * 2007-08-30 2010-12-02 ヴィレックス メディカル コーポレイション 抗原性組成物および核酸の標的化送達におけるその使用
WO2009032364A1 (en) * 2007-08-31 2009-03-12 Ghc Research Development Corporation Activation of nuclear factor-kappa b
WO2009033027A2 (en) 2007-09-05 2009-03-12 Medtronic, Inc. Suppression of scn9a gene expression and/or function for the treatment of pain
EP2207570A2 (en) * 2007-09-14 2010-07-21 Nitto Denko Corporation Drug carriers
JP5049713B2 (ja) * 2007-09-14 2012-10-17 株式会社コナミデジタルエンタテインメント ゲームシステム並びにこれを構成するゲーム装置及び課題報知装置
US8361714B2 (en) 2007-09-14 2013-01-29 Asuragen, Inc. Micrornas differentially expressed in cervical cancer and uses thereof
JP5723154B2 (ja) 2007-09-19 2015-05-27 アプライド バイオシステムズ リミテッド ライアビリティー カンパニー RNAiにおけるオフターゲット表現型の影響を減少させるためのSiRNA配列非依存性修飾フォーマットおよびその安定化型
EP2197454A4 (en) * 2007-09-25 2012-07-04 Idexx Lab Inc PHARMACEUTICAL COMPOSITIONS FOR THE ADMINISTRATION OF OLIGONUCLEOTIDES
EP2436376B1 (en) 2007-09-28 2014-07-09 BIND Therapeutics, Inc. Cancer cell targeting using nanoparticles
US20120082659A1 (en) * 2007-10-02 2012-04-05 Hartmut Land Methods And Compositions Related To Synergistic Responses To Oncogenic Mutations
CN101815521B (zh) 2007-10-03 2014-12-10 夸克制药公司 新siRNA结构
EP2205746A4 (en) * 2007-10-04 2010-12-22 Univ Texas MODULATION OF GENE EXPRESSION WITH AGRNA AND GAPS WITH ANTISENSE TRANSCRIPTS AS A TARGET
ES2627292T3 (es) 2007-10-12 2017-07-27 Massachusetts Institute Of Technology Nanotecnología de vacunas
EP3072963B1 (en) 2007-10-18 2020-04-01 Cell Signaling Technology, Inc. Translocation and mutant ros kinase in human non-small cell lung carcinoma
US8097712B2 (en) * 2007-11-07 2012-01-17 Beelogics Inc. Compositions for conferring tolerance to viral disease in social insects, and the use thereof
US20100098664A1 (en) * 2007-11-28 2010-04-22 Mathieu Jean-Francois Desclaux Lentiviral vectors allowing RNAi mediated inhibition of GFAP and vimentin expression
JP2011505144A (ja) * 2007-11-30 2011-02-24 ベイラー カレッジ オブ メディシン 樹状細胞ワクチン組成物およびその使用
WO2009070805A2 (en) 2007-12-01 2009-06-04 Asuragen, Inc. Mir-124 regulated genes and pathways as targets for therapeutic intervention
EP2268664B1 (en) 2007-12-03 2017-05-24 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Doc1 compositions and methods for treating cancer
CA2708153C (en) 2007-12-04 2017-09-26 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugates as delivery agents for oligonucleotides
CA2708171C (en) * 2007-12-04 2018-02-27 Alnylam Pharmaceuticals, Inc. Folate conjugates
EP2245159A2 (en) 2007-12-10 2010-11-03 Alnylam Pharmaceuticals Inc. Compositions and methods for inhibiting expression of factor vii gene
US8614311B2 (en) 2007-12-12 2013-12-24 Quark Pharmaceuticals, Inc. RTP801L siRNA compounds and methods of use thereof
WO2009074990A2 (en) * 2007-12-12 2009-06-18 Quark Pharmaceuticals, Inc. Rtp801l sirna compounds and methods of use thereof
NZ585784A (en) * 2007-12-13 2012-09-28 Alnylam Pharmaceuticals Inc siRNAs for the treatment and prevention of respiratory syncytial virus (RSV) infection
WO2009079399A2 (en) * 2007-12-14 2009-06-25 Alnylam Pharmaceuticals, Inc. Method of treating neurodegenerative disease
US7845686B2 (en) * 2007-12-17 2010-12-07 S & B Technical Products, Inc. Restrained pipe joining system for plastic pipe
KR100949791B1 (ko) * 2007-12-18 2010-03-30 이동기 오프-타겟 효과를 최소화하고 RNAi 기구를 포화시키지않는 신규한 siRNA 구조 및 그 용도
WO2009086156A2 (en) * 2007-12-21 2009-07-09 Asuragen, Inc. Mir-10 regulated genes and pathways as targets for therapeutic intervention
EP2242854A4 (en) * 2008-01-15 2012-08-15 Quark Pharmaceuticals Inc COMPOUNDS AND USES THEREOF
BRPI0907008A2 (pt) * 2008-01-31 2015-07-07 Alnylam Pharmaceuticals Inc Métodos otimizados para liberação de dsrna alvejando o gene pcsk9
EP2260110B1 (en) * 2008-02-08 2014-11-12 Asuragen, INC. miRNAs DIFFERENTIALLY EXPRESSED IN LYMPH NODES FROM CANCER PATIENTS
US8188060B2 (en) 2008-02-11 2012-05-29 Dharmacon, Inc. Duplex oligonucleotides with enhanced functionality in gene regulation
CA2715289C (en) 2008-02-11 2019-12-24 Rxi Pharmaceuticals Corporation Modified rnai polynucleotides and uses thereof
US7977321B2 (en) * 2008-02-12 2011-07-12 University Of Tennessee Research Foundation Small interfering RNAs targeting feline herpes virus
US8288525B2 (en) * 2008-02-12 2012-10-16 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of CD45 gene
JP2011515072A (ja) * 2008-02-13 2011-05-19 エラン ファーマ インターナショナル リミテッド α−シヌクレインキナーゼ
DE102009043743B4 (de) 2009-03-13 2016-10-13 Friedrich-Schiller-Universität Jena Zellspezifisch wirksame Moleküle auf Grundlage von siRNA sowie Applikationskits zu deren Herstellung und Verwendung
WO2009103067A2 (en) * 2008-02-14 2009-08-20 The Children's Hospital Of Philadelphia Compositions and methods to treat asthma
WO2009111658A2 (en) * 2008-03-05 2009-09-11 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of eg5 and vegf genes
EP2268832A2 (en) * 2008-03-06 2011-01-05 Asuragen, INC. Microrna markers for recurrence of colorectal cancer
CN102036689B (zh) * 2008-03-17 2014-08-06 得克萨斯系统大学董事会 神经肌肉突触维持和再生中涉及的微小rna的鉴定
JP2011517404A (ja) * 2008-03-20 2011-06-09 クォーク・ファーマシューティカルズ・インク RTP801を阻害するための新規なsiRNA化合物
US20090253780A1 (en) * 2008-03-26 2009-10-08 Fumitaka Takeshita COMPOSITIONS AND METHODS RELATED TO miR-16 AND THERAPY OF PROSTATE CANCER
EP2105145A1 (en) * 2008-03-27 2009-09-30 ETH Zürich Method for muscle-specific delivery lipid-conjugated oligonucleotides
US9040492B2 (en) * 2008-03-31 2015-05-26 National Institute Of Advanced Industrial Science And Technology Double-stranded lipid-modified RNA having high RNA interference effect
TWI348916B (en) * 2008-04-03 2011-09-21 Univ Nat Taiwan A novel treatment tool for cancer: rna interference of bcas2
US20090258928A1 (en) * 2008-04-08 2009-10-15 Asuragen, Inc. Methods and compositions for diagnosing and modulating human papillomavirus (hpv)
US8309614B2 (en) * 2008-04-11 2012-11-13 Cedars-Sinai Medical Center Poly(beta malic acid) with pendant leu-leu-leu tripeptide for effective cytoplasmic drug delivery
WO2009126933A2 (en) 2008-04-11 2009-10-15 Alnylam Pharmaceuticals, Inc. Site-specific delivery of nucleic acids by combining targeting ligands with endosomolytic components
US8278287B2 (en) * 2008-04-15 2012-10-02 Quark Pharmaceuticals Inc. siRNA compounds for inhibiting NRF2
PL2279254T3 (pl) 2008-04-15 2017-11-30 Protiva Biotherapeutics Inc. Nowe preparaty lipidowe do dostarczania kwasów nukleinowych
US7875711B2 (en) * 2008-04-17 2011-01-25 Alnylam Pharamaceuticals, Inc. Compositions and methods for inhibiting expression of XBP-1 gene
US20090285861A1 (en) * 2008-04-17 2009-11-19 Tzyy-Choou Wu Tumor cell-based cancer immunotherapeutic compositions and methods
USRE48948E1 (en) 2008-04-18 2022-03-01 Warsaw Orthopedic, Inc. Clonidine compounds in a biodegradable polymer
KR20100137006A (ko) 2008-04-21 2010-12-29 티슈 리제너레이션 쎄라퓨틱스, 인코포레이티드 생물학적 또는 화학적 물질에 대한 예방 또는 치료를 위한 유전적으로 변형된 인간 탯줄 혈관주위 세포
US8324366B2 (en) 2008-04-29 2012-12-04 Alnylam Pharmaceuticals, Inc. Compositions and methods for delivering RNAI using lipoproteins
US8173616B2 (en) * 2008-05-02 2012-05-08 The Brigham And Women's Hospital, Inc. RNA-induced translational silencing and cellular apoptosis
EP2285960B1 (en) 2008-05-08 2015-07-08 Asuragen, INC. Compositions and methods related to mir-184 modulation of neovascularization or angiogenesis
US20090291073A1 (en) * 2008-05-20 2009-11-26 Ward Keith W Compositions Comprising PKC-theta and Methods for Treating or Controlling Ophthalmic Disorders Using Same
WO2009146417A1 (en) * 2008-05-30 2009-12-03 Sigma-Aldrich Co. Compositions and methods for specifically silencing a target nucleic acid
EP2297322A1 (en) 2008-06-04 2011-03-23 The Board of Regents of The University of Texas System Modulation of gene expression through endogenous small rna targeting of gene promoters
WO2009147684A2 (en) 2008-06-06 2009-12-10 Quark Pharmaceuticals, Inc. Compositions and methods for treatment of ear disorders
US20090305611A1 (en) * 2008-06-06 2009-12-10 Flow International Corporation Device and method for improving accuracy of a high-pressure fluid jet apparatus
US20110053226A1 (en) * 2008-06-13 2011-03-03 Riboxx Gmbh Method for enzymatic synthesis of chemically modified rna
US8361510B2 (en) * 2008-06-16 2013-01-29 Georgia Tech Research Corporation Nanogels for cellular delivery of therapeutics
TWI455944B (zh) 2008-07-01 2014-10-11 Daiichi Sankyo Co Ltd 雙股多核苷酸
US20110184046A1 (en) * 2008-07-11 2011-07-28 Dinah Wen-Yee Sah Compositions And Methods For Inhibiting Expression Of GSK-3 Genes
US8309791B2 (en) 2008-07-16 2012-11-13 Recombinectics, Inc. Method for producing a transgenic pig using a hyper-methylated transposon
US8815818B2 (en) 2008-07-18 2014-08-26 Rxi Pharmaceuticals Corporation Phagocytic cell delivery of RNAI
US8039658B2 (en) * 2008-07-25 2011-10-18 Air Products And Chemicals, Inc. Removal of trace arsenic impurities from triethylphosphate (TEPO)
US8212019B2 (en) * 2008-07-30 2012-07-03 University Of Massachusetts Nucleic acid silencing sequences
WO2010021718A1 (en) 2008-08-19 2010-02-25 Nektar Therapeutics Complexes of small-interfering nucleic acids
EP3081648A1 (en) 2008-08-25 2016-10-19 Excaliard Pharmaceuticals, Inc. Antisense oligonucleotides directed against connective tissue growth factor and uses thereof
WO2011028218A1 (en) 2009-09-02 2011-03-10 Alnylam Pharmaceuticals, Inc. Process for triphosphate oligonucleotide synthesis
WO2010030963A2 (en) * 2008-09-15 2010-03-18 Children's Medical Center Corporation Modulation of bcl11a for treatment of hemoglobinopathies
US8796443B2 (en) 2008-09-22 2014-08-05 Rxi Pharmaceuticals Corporation Reduced size self-delivering RNAi compounds
EP2342616A2 (en) 2008-09-23 2011-07-13 Alnylam Pharmaceuticals Inc. Chemical modifications of monomers and oligonucleotides with cycloaddition
EP3109321B1 (en) 2008-09-25 2019-05-01 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of serum amyloid a gene
US8592570B2 (en) * 2008-10-06 2013-11-26 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of an RNA from West Nile virus
US8802646B2 (en) * 2008-10-08 2014-08-12 Trustees Of Dartmouth College Method for selectively inhibiting the activity of ACAT1 in the treatment of alzheimer's disease
US9388414B2 (en) 2008-10-08 2016-07-12 Trustees Of Dartmouth College Method for selectively inhibiting ACAT1 in the treatment of neurodegenerative diseases
US9149492B2 (en) 2008-10-08 2015-10-06 Trustees Of Dartmouth College Method for selectively inhibiting ACAT1 in the treatment of alzheimer's disease
WO2010042292A1 (en) * 2008-10-08 2010-04-15 Trustees Of Dartmouth College Method for selectively inhibiting the activity of acat1 in the treatment of alzheimer's disease
US9388413B2 (en) 2008-10-08 2016-07-12 Trustees Of Dartmouth College Method for selectively inhibiting ACAT1 in the treatment of neurodegenerative diseases
US9139554B2 (en) 2008-10-09 2015-09-22 Tekmira Pharmaceuticals Corporation Amino lipids and methods for the delivery of nucleic acids
US8343497B2 (en) 2008-10-12 2013-01-01 The Brigham And Women's Hospital, Inc. Targeting of antigen presenting cells with immunonanotherapeutics
US8343498B2 (en) 2008-10-12 2013-01-01 Massachusetts Institute Of Technology Adjuvant incorporation in immunonanotherapeutics
US8591905B2 (en) 2008-10-12 2013-11-26 The Brigham And Women's Hospital, Inc. Nicotine immunonanotherapeutics
US8277812B2 (en) 2008-10-12 2012-10-02 Massachusetts Institute Of Technology Immunonanotherapeutics that provide IgG humoral response without T-cell antigen
JP2012505657A (ja) * 2008-10-15 2012-03-08 ソマジェニックス インク. 遺伝子発現の阻害のためのショートヘアピンrna
US9458472B2 (en) * 2008-10-15 2016-10-04 Massachusetts Institute Of Technology Detection and destruction of cancer cells using programmed genetic vectors
NO2937418T3 (pl) 2008-10-20 2018-03-17
WO2010048590A1 (en) * 2008-10-23 2010-04-29 Alnylam Pharmaceuticals, Inc. Methods and compositions for prevention or treatment of rsv infection using modified duplex rna molecules
US20110190380A1 (en) * 2008-10-23 2011-08-04 Elena Feinstein Methods for delivery of sirna to bone marrow cells and uses thereof
EP4241767A3 (en) 2008-11-10 2023-11-01 Arbutus Biopharma Corporation Novel lipids and compositions for the delivery of therapeutics
WO2010056737A2 (en) * 2008-11-11 2010-05-20 Mirna Therapeutics, Inc. Methods and compositions involving mirnas in cancer stem cells
MX2011004891A (es) * 2008-11-13 2011-10-06 Modgene Llc Modificacion de la carga de beta amiloide en el tejido no cerebral.
WO2010059226A2 (en) 2008-11-19 2010-05-27 Rxi Pharmaceuticals Corporation Inhibition of map4k4 through rnai
JP2012509331A (ja) 2008-11-21 2012-04-19 アイシス ファーマシューティカルズ, インコーポレーテッド がんの治療のための併用療法
MX2011005429A (es) 2008-11-24 2011-06-21 Univ Northwestern Composiciones de nanoparticulas de arn polivalentes.
EP2191834A1 (en) * 2008-11-26 2010-06-02 Centre National De La Recherche Scientifique (Cnrs) Compositions and methods for treating retrovirus infections
JP5816556B2 (ja) 2008-12-03 2015-11-18 アークトゥラス・セラピューティクス・インコーポレイテッドArcturus Therapeutics,Inc. 治療剤のためのunaオリゴマー構造
NZ593743A (en) 2008-12-04 2012-07-27 Opko Ophthalmics Llc Compositions and methods for selective inhibition of pro-angiogenic vegf isoforms
US20100291188A1 (en) * 2008-12-04 2010-11-18 Musc Foundation For Research Development Periostin Inhibitory Compositions for Myocardial Regeneration, Methods of Delivery, and Methods of Using Same
CN114835812A (zh) 2008-12-09 2022-08-02 霍夫曼-拉罗奇有限公司 抗-pd-l1抗体及它们用于增强t细胞功能的用途
CA2746514C (en) 2008-12-10 2018-11-27 Alnylam Pharmaceuticals, Inc. Gnaq targeted dsrna compositions and methods for inhibiting expression
EP2356236B1 (en) * 2008-12-11 2015-07-29 Xiangxue Group (Hong Kong) Company Limited siRNA COMPOSITIONS AND METHODS FOR POTENTLY INHIBITING VIRAL INFECTION
WO2010067882A1 (ja) * 2008-12-12 2010-06-17 株式会社クレハ 癌及び喘息治療のための医薬組成物
EP2370175A2 (en) 2008-12-16 2011-10-05 Bristol-Myers Squibb Company Methods of inhibiting quiescent tumor proliferation
WO2010080452A2 (en) 2008-12-18 2010-07-15 Quark Pharmaceuticals, Inc. siRNA COMPOUNDS AND METHODS OF USE THEREOF
US20110268772A1 (en) 2008-12-26 2011-11-03 Samyang Corporation Pharmaceutical composition containing an anionic drug and a production method thereof
US9493774B2 (en) 2009-01-05 2016-11-15 Rxi Pharmaceuticals Corporation Inhibition of PCSK9 through RNAi
US20100233270A1 (en) 2009-01-08 2010-09-16 Northwestern University Delivery of Oligonucleotide-Functionalized Nanoparticles
WO2010083532A1 (en) * 2009-01-19 2010-07-22 The Research Foundaton Of State University Of New York Fatty acid binding proteins as drug targets for modulation of endocannabinoids
WO2010084134A1 (en) * 2009-01-20 2010-07-29 Vib Vzw Phd2 inhibition for blood vessel normalization, and uses thereof
WO2010083615A1 (en) 2009-01-26 2010-07-29 Protiva Biotherapeutics, Inc. Compositions and methods for silencing apolipoprotein c-iii expression
SG173182A1 (en) * 2009-02-03 2011-09-29 Hoffmann La Roche Compositions and methods for inhibiting expression of ptp1b genes
WO2010090762A1 (en) 2009-02-04 2010-08-12 Rxi Pharmaceuticals Corporation Rna duplexes with single stranded phosphorothioate nucleotide regions for additional functionality
CA2744236C (en) 2009-02-12 2021-03-16 Cell Signaling Technology, Inc. Mutant ros expression in human cancer
JP2012518401A (ja) * 2009-02-24 2012-08-16 リボックス・ゲーエムベーハー 低分子干渉rnaの改善された設計
EP2403863B1 (en) 2009-03-02 2013-08-28 Alnylam Pharmaceuticals Inc. Nucleic acid chemical modifications
BRPI1009271A8 (pt) * 2009-03-19 2016-02-10 Merck Sharp & Dohme Molécula de ácido nucleico interferente curto de filamento duplo, composição farmacêutica, e, método para tratar um indivíduo humano que sofre de uma condição que é mediada pela ação, ou pela perda de ação, de bach1
CA2753388C (en) 2009-03-23 2016-11-29 Quark Pharmaceuticals, Inc. Endo180 antibody to treat cancer and fibrotic disease
US20100239632A1 (en) 2009-03-23 2010-09-23 Warsaw Orthopedic, Inc. Drug depots for treatment of pain and inflammation in sinus and nasal cavities or cardiac tissue
WO2010120874A2 (en) 2009-04-14 2010-10-21 Chimeros, Inc. Chimeric therapeutics, compositions, and methods for using same
EP2421972A2 (en) * 2009-04-24 2012-02-29 The Board of Regents of The University of Texas System Modulation of gene expression using oligomers that target gene regions downstream of 3' untranslated regions
US8367350B2 (en) 2009-04-29 2013-02-05 Morehouse School Of Medicine Compositions and methods for diagnosis, prognosis and management of malaria
US8933049B2 (en) * 2009-05-05 2015-01-13 Medical Diagnostic Laboratories, Llc Repressor on IFN-λ promoter and siRNA against ZEB1 and BLIMP-1 to increase IFN-λ gene activity
WO2010128465A1 (en) 2009-05-05 2010-11-11 Beeologics, Llc Prevention and treatment of nosema disease in bees
WO2010129791A1 (en) 2009-05-06 2010-11-11 University Of Medicine And Dentistry Of New Jersey Rna targeting in alpha-synucleinopathies
EP2429657A2 (en) * 2009-05-15 2012-03-21 F. Hoffmann-La Roche AG Compositions and methods for inhibiting expression of glucocorticoid receptor (gcr) genes
WO2011005363A2 (en) * 2009-05-18 2011-01-13 Ensysce Biosciences, Inc. Carbon nanotubes complexed with multiple bioactive agents and methods related thereto
WO2011019423A2 (en) 2009-05-20 2011-02-17 Schering Corporation Modulation of pilr receptors to treat microbial infections
WO2010135669A1 (en) * 2009-05-22 2010-11-25 Sabiosciences Corporation Arrays and methods for reverse genetic functional analysis
CA2764158A1 (en) 2009-06-01 2010-12-09 Halo-Bio Rnai Therapeutics, Inc. Polynucleotides for multivalent rna interference, compositions and methods of use thereof
US20120083519A1 (en) * 2009-06-03 2012-04-05 Djillali Sahali Methods For Diagnosing And Treating A Renal Disease In An Individual
WO2010141928A2 (en) 2009-06-05 2010-12-09 University Of Florida Research Foundation, Inc. Isolation and targeted suppression of lignin biosynthetic genes from sugarcane
DK3276004T3 (da) 2009-06-08 2020-04-06 Quark Pharmaceuticals Inc Fremgangsmåder til behandling af kronisk nyresygdom
WO2010144058A1 (en) 2009-06-10 2010-12-16 Temasek Life Sciences Laboratory Limited Virus induced gene silencing (vigs) for functional analysis of genes in cotton.
HUE056773T2 (hu) 2009-06-10 2022-03-28 Arbutus Biopharma Corp Továbbfejlesztett lipid készítmény
US9051567B2 (en) 2009-06-15 2015-06-09 Tekmira Pharmaceuticals Corporation Methods for increasing efficacy of lipid formulated siRNA
MX2011013421A (es) 2009-06-15 2012-03-16 Alnylam Pharmaceuticals Inc Arnds formulado con lipido de direccionamiento del gen pcsk9.
US20100323018A1 (en) * 2009-06-17 2010-12-23 Massachusetts Institute Of Technology Branched DNA/RNA monomers and uses thereof
US20100324124A1 (en) * 2009-06-17 2010-12-23 Massachusetts Institute Of Technology Compositions and methods relating to DNA-based particles
GB0910723D0 (en) * 2009-06-22 2009-08-05 Sylentis Sau Novel drugs for inhibition of gene expression
US9018187B2 (en) 2009-07-01 2015-04-28 Protiva Biotherapeutics, Inc. Cationic lipids and methods for the delivery of therapeutic agents
US8569256B2 (en) 2009-07-01 2013-10-29 Protiva Biotherapeutics, Inc. Cationic lipids and methods for the delivery of therapeutic agents
EP2449114B9 (en) 2009-07-01 2017-04-19 Protiva Biotherapeutics Inc. Novel lipid formulations for delivery of therapeutic agents to solid tumors
EP2454371B1 (en) 2009-07-13 2021-01-20 Somagenics, Inc. Chemical modification of small hairpin rnas for inhibition of gene expression
US8716464B2 (en) * 2009-07-20 2014-05-06 Thomas W. Geisbert Compositions and methods for silencing Ebola virus gene expression
JP5589077B2 (ja) 2009-07-20 2014-09-10 ブリストル−マイヤーズ スクイブ カンパニー 増殖性疾患の相乗的処置のための抗ctla4抗体と多様な治療レジメンとの組み合わせ
JP5883384B2 (ja) 2009-08-13 2016-03-15 ザ ジョンズ ホプキンス ユニバーシティー 免疫機能を調節する方法
AP3574A (en) 2009-08-14 2016-02-08 Alnylam Pharmaceuticals Inc Lipid formulated compositions and methods for inhibiting expression of a gene from the ebola virus
NZ599005A (en) 2009-08-24 2014-11-28 Phigenix Inc Targeting pax2 for the treatment of breast cancer
US20120263709A1 (en) 2009-09-10 2012-10-18 Schering Corporation Use of il-33 antagonists to treat fibrotic diseases
EP2295543A1 (en) 2009-09-11 2011-03-16 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Method for the preparation of an influenza virus
WO2011032100A1 (en) 2009-09-11 2011-03-17 Government Of The U.S.A., As Represented By The Secretary, Department Of Health And Human Services Inhibitors of kshv vil6 and human il6
WO2011034798A1 (en) 2009-09-15 2011-03-24 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of eg5 and vegf genes
WO2011035065A1 (en) 2009-09-17 2011-03-24 Nektar Therapeutics Monoconjugated chitosans as delivery agents for small interfering nucleic acids
WO2011038031A1 (en) 2009-09-22 2011-03-31 Alnylam Pharmaceuticals, Inc. Dual targeting sirna agents
CA2775092A1 (en) * 2009-09-23 2011-03-31 Protiva Biotherapeutics, Inc. Compositions and methods for silencing genes expressed in cancer
US20150025122A1 (en) 2009-10-12 2015-01-22 Larry J. Smith Methods and Compositions for Modulating Gene Expression Using Oligonucleotide Based Drugs Administered in vivo or in vitro
US8962584B2 (en) 2009-10-14 2015-02-24 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Compositions for controlling Varroa mites in bees
EP2494075B1 (en) 2009-10-30 2018-04-04 Northwestern University Templated nanoconjugates
JP5723378B2 (ja) 2009-11-03 2015-05-27 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. トランスサイレチン(ttr)を阻害する脂質製剤化組成物及び方法
US9799416B2 (en) * 2009-11-06 2017-10-24 Terrapower, Llc Methods and systems for migrating fuel assemblies in a nuclear fission reactor
US8901097B2 (en) 2009-11-08 2014-12-02 Quark Pharmaceuticals, Inc. Methods for delivery of siRNA to the spinal cord and therapies arising therefrom
WO2011062997A2 (en) 2009-11-17 2011-05-26 Musc Foundation For Research Development Human monoclonal antibodies to human nucleolin
TW201124160A (en) 2009-11-26 2011-07-16 Quark Pharmaceuticals Inc SiRNA compounds comprising terminal substitutions
CA2783372C (en) 2009-12-07 2019-07-16 Muthiah Manoharan Compositions for nucleic acid delivery
EP2862929B1 (en) 2009-12-09 2017-09-06 Quark Pharmaceuticals, Inc. Compositions and methods for treating diseases, disorders or injury of the CNS
KR101692063B1 (ko) * 2009-12-09 2017-01-03 닛토덴코 가부시키가이샤 hsp47 발현의 조절
EP2509421B1 (en) 2009-12-10 2020-02-05 Cedars-Sinai Medical Center Drug delivery of temozolomide for systemic based treatment of cancer
EP2336171A1 (en) 2009-12-11 2011-06-22 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Novel targets for the treatment of proliferative diseases
US8691227B2 (en) 2009-12-17 2014-04-08 Merck Sharp & Dohme Corp. Methods of treating multiple sclerosis, rheumatoid arthritis and inflammatory bowel disease using agonists antibodies to PILR-α
US8293718B2 (en) 2009-12-18 2012-10-23 Novartis Ag Organic compositions to treat HSF1-related diseases
ES2749426T3 (es) 2009-12-18 2020-03-20 Univ British Columbia Métodos y composiciones para administración de ácidos nucleicos
CA2785258A1 (en) 2009-12-23 2011-06-30 Gradalis, Inc. Furin-knockdown and gm-csf-augmented (fang) cancer vaccine
EP2516645A1 (en) 2009-12-23 2012-10-31 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Influenza targets
US20130023578A1 (en) 2009-12-31 2013-01-24 Samyang Biopharmaceuticals Corporation siRNA for inhibition of c-Met expression and anticancer composition containing the same
TW201124159A (en) * 2010-01-07 2011-07-16 Univ Nat Cheng Kung Small interference RNA molecule and applications thereof
WO2011084193A1 (en) 2010-01-07 2011-07-14 Quark Pharmaceuticals, Inc. Oligonucleotide compounds comprising non-nucleotide overhangs
EP2524039B1 (en) * 2010-01-11 2017-11-29 CuRNA, Inc. Treatment of sex hormone binding globulin (shbg) related diseases by inhibition of natural antisense transcript to shbg
WO2011088058A1 (en) * 2010-01-12 2011-07-21 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expressions of factor vii and pten genes
DE102010004957A1 (de) 2010-01-14 2011-07-21 Universitätsklinikum Jena, 07743 Biologisch wirksame Moleküle zur Beeinflussung von Virus-, Bakterien-, Parasiten-infizierten Zellen und/oder Tumorzellen und Verfahren zu deren Anwendung
US9198972B2 (en) 2010-01-28 2015-12-01 Alnylam Pharmaceuticals, Inc. Monomers and oligonucleotides comprising cycloaddition adduct(s)
WO2011094580A2 (en) 2010-01-28 2011-08-04 Alnylam Pharmaceuticals, Inc. Chelated copper for use in the preparation of conjugated oligonucleotides
WO2011094546A2 (en) 2010-01-29 2011-08-04 St. Jude Children's Research Hospital Oligonucleotides which inhibit p53 induction in response to cellular stress
CN102770767A (zh) 2010-02-10 2012-11-07 诺瓦提斯公司 用于肌肉生长的方法和组合物
US9186370B2 (en) 2010-03-19 2015-11-17 University Of South Alabama Methods and compositions for the treatment of cancer
WO2011119871A1 (en) 2010-03-24 2011-09-29 Rxi Phrmaceuticals Corporation Rna interference in ocular indications
EP2550002B1 (en) 2010-03-24 2019-05-08 Phio Pharmaceuticals Corp. Rna interference in dermal and fibrotic indications
US9080171B2 (en) 2010-03-24 2015-07-14 RXi Parmaceuticals Corporation Reduced size self-delivering RNAi compounds
US8455455B1 (en) 2010-03-31 2013-06-04 Protiva Biotherapeutics, Inc. Compositions and methods for silencing genes involved in hemorrhagic fever
WO2011123621A2 (en) 2010-04-01 2011-10-06 Alnylam Pharmaceuticals Inc. 2' and 5' modified monomers and oligonucleotides
US10913767B2 (en) 2010-04-22 2021-02-09 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising acyclic and abasic nucleosides and analogs
WO2011133868A2 (en) 2010-04-22 2011-10-27 Alnylam Pharmaceuticals, Inc. Conformationally restricted dinucleotide monomers and oligonucleotides
US9725479B2 (en) 2010-04-22 2017-08-08 Ionis Pharmaceuticals, Inc. 5′-end derivatives
WO2011133658A1 (en) 2010-04-22 2011-10-27 Boston Medical Center Corporation Compositions and methods for targeting and delivering therapeutics into cells
BR112012027547B1 (pt) 2010-04-29 2022-06-14 Ionis Pharmaceuticals, Inc Oligonucleotídeo modificado de fita simples, composição, e seus usos para tratar amiloidose transtirretina, reduzir os seus sintomas e para reduzir a expressão de mrna ou de proteína de transtirretina
US20110269807A1 (en) 2010-04-30 2011-11-03 Allergan, Inc. Novel treatment for age related macular degeneration and ocular ischemic disease associated with complement activation by targeting 5-lipoxygenase
CA2805267C (en) 2010-05-04 2019-07-30 The Brigham And Women's Hospital, Inc. Detection and treatment of fibrosis
US8563243B2 (en) * 2010-05-12 2013-10-22 University Of South Carolina Methods for affecting homology-directed DNA double stranded break repair
CA2798323A1 (en) 2010-05-26 2011-12-01 Selecta Biosciences, Inc. Dose selection of adjuvanted synthetic nanocarriers
EP2390327A1 (en) 2010-05-27 2011-11-30 Sylentis S.A. siRNA and their use in methods and compositions for the treatment and/or prevention of eye conditions
DE102010022937A1 (de) 2010-06-04 2011-12-08 Universitätsklinikum Jena Zellspezifisch aktivierbare biologisch wirksame Moleküle auf Grundlage von siRNA, Verfahren zu deren Aktivierung sowie Applikationskit zur Verabreichung
US20130236968A1 (en) 2010-06-21 2013-09-12 Alnylam Pharmaceuticals, Inc. Multifunctional copolymers for nucleic acid delivery
US9045755B2 (en) 2010-06-24 2015-06-02 Quark Pharmaceuticals, Inc. Double stranded RNA compounds to RhoA and use thereof
WO2012000104A1 (en) 2010-06-30 2012-01-05 Protiva Biotherapeutics, Inc. Non-liposomal systems for nucleic acid delivery
US20130202652A1 (en) 2010-07-30 2013-08-08 Alnylam Pharmaceuticals, Inc. Methods and compositions for delivery of active agents
US20130323269A1 (en) 2010-07-30 2013-12-05 Muthiah Manoharan Methods and compositions for delivery of active agents
WO2012019132A2 (en) 2010-08-06 2012-02-09 Cell Signaling Technology, Inc. Anaplastic lymphoma kinase in kidney cancer
WO2012027206A1 (en) 2010-08-24 2012-03-01 Merck Sharp & Dohme Corp. SINGLE-STRANDED RNAi AGENTS CONTAINING AN INTERNAL, NON-NUCLEIC ACID SPACER
WO2012041959A1 (en) 2010-09-30 2012-04-05 University Of Zurich Treatment of b-cell lymphoma with microrna
WO2013052006A1 (en) * 2010-10-07 2013-04-11 Agency For Science, Technology And Research (A*Star) Parp-1 inhibitors
WO2012051491A1 (en) 2010-10-14 2012-04-19 The United States Of America, As Represented By The Secretary National Institutes Of Health Compositions and methods for controlling neurotropic viral pathogenesis by micro-rna targeting
ES2732929T3 (es) 2010-10-22 2019-11-26 Olix Pharmaceuticals Inc Moléculas de ácido nucleico que inducen interferencia de ARN y usos de las mismas
US9260471B2 (en) 2010-10-29 2016-02-16 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acids (siNA)
WO2012071436A1 (en) 2010-11-24 2012-05-31 Genentech, Inc. Method of treating autoimmune inflammatory disorders using il-23r loss-of-function mutants
US20130324591A1 (en) 2010-12-06 2013-12-05 Quark Pharmaceuticals, Inc. Double stranded oligonucleotide compounds comprising positional modifications
US10202615B2 (en) 2010-12-10 2019-02-12 Vanderbilt University Mammalian genes involved in toxicity and infection
US8575328B2 (en) * 2010-12-14 2013-11-05 The United States Of America, As Represented By The Secretary Of Agriculture Formicidae (ant) control using double-stranded RNA constructs
US9623041B2 (en) 2010-12-30 2017-04-18 Cedars-Sinai Medical Center Polymalic acid-based nanobiopolymer compositions
CN103547288B (zh) 2011-01-10 2016-03-16 密执安大学评议会 干细胞因子抑制剂
WO2012099755A1 (en) 2011-01-11 2012-07-26 Alnylam Pharmaceuticals, Inc. Pegylated lipids and their use for drug delivery
DE102011009470A1 (de) 2011-01-21 2012-08-09 Friedrich-Schiller-Universität Jena Biologisch wirksame Nukleotid-Moleküle zur gezielten Abtötung von Zellen, Verwendung derselben sowie Applikationskit
KR101697396B1 (ko) 2011-02-02 2017-01-17 엑스칼리아드 파마슈티컬즈, 인코포레이티드 결합 조직 성장 인자(ctgf)를 표적으로 하는 안티센스 화합물을 사용하여 켈로이드 또는 비후성 흉터를 치료하는 방법
CN103459598B (zh) 2011-02-03 2016-08-10 米尔纳医疗股份有限公司 Mir-124的合成模拟物
JP6132775B2 (ja) * 2011-03-03 2017-05-24 クォーク ファーマシューティカルズ インコーポレーティッドQuark Pharmaceuticals,Inc. Toll様受容体経路のオリゴヌクレオチド修飾因子
US9796979B2 (en) 2011-03-03 2017-10-24 Quark Pharmaceuticals Inc. Oligonucleotide modulators of the toll-like receptor pathway
WO2012125554A2 (en) * 2011-03-11 2012-09-20 Board Of Regents Of The University Of Nebraska Compositions and methods for the treatment of cancer
CA2830407C (en) 2011-03-15 2021-08-31 University Of Utah Research Foundation Methods of diagnosing and treating vascular associated maculopathy and symptoms thereof
WO2012135696A2 (en) * 2011-04-01 2012-10-04 University Of South Alabama Methods and compositions for the diagnosis, classification, and treatment of cancer
JP2014511877A (ja) 2011-04-12 2014-05-19 ザ・ガバメント・オブ・ザ・ユナイテッド・ステイツ・オブ・アメリカ・アズ・リプリゼンテッド・バイ・ザ・セクレタリー・デパートメント・オブ・ヘルス・アンド・ヒューマン・サービシーズ ポロ様キナーゼ1ポロ−ボックスドメインのペプチド模倣リガンド及び使用方法
CA2832972C (en) 2011-04-13 2019-04-30 Isis Pharmaceuticals, Inc. Antisense modulation of ptp1b expression
WO2012142622A1 (en) 2011-04-15 2012-10-18 Molecular Transfer, Inc. Agents for improved delivery of nucleic acids to eukaryotic cells
US8716257B2 (en) * 2011-04-15 2014-05-06 Sutter West Bay Hospitals CMV gene products promote cancer stem cell growth
EP2714094B1 (en) 2011-06-02 2016-02-24 The University of Louisville Research Foundation, Inc. Anti-nucleolin agent-conjugated nanoparticles
SG10201800715PA (en) 2011-06-21 2018-02-27 Alnylam Pharmaceuticals Inc Angiopoietin-like 3 (angptl3) irna compostions and methods of use thereof
EP2723756B1 (en) 2011-06-21 2020-03-11 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibition of expression of apolipoprotein c-iii (apoc3) genes
EP2723351B1 (en) 2011-06-21 2018-02-14 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibition of expression of protein c (proc) genes
EP2723861A4 (en) 2011-06-21 2014-12-10 Alnylam Pharmaceuticals Inc COMPOSITIONS AND METHODS FOR INHIBITING HEPCIDINE ANTIMICROBIAL PEPTIDE (HAMP) OR THE ASSOCIATED GENE EXPRESSION
WO2013001372A2 (en) 2011-06-30 2013-01-03 University Of Oslo Methods and compositions for inhibition of activation of regulatory t cells
US20140227293A1 (en) 2011-06-30 2014-08-14 Trustees Of Boston University Method for controlling tumor growth, angiogenesis and metastasis using immunoglobulin containing and proline rich receptor-1 (igpr-1)
CN103813805B (zh) 2011-07-06 2017-02-22 索兰徳特医院 Egfr靶向疗法
WO2013006861A1 (en) 2011-07-07 2013-01-10 University Of Georgia Research Foundation, Inc. Sorghum grain shattering gene and uses thereof in altering seed dispersal
US8853181B2 (en) 2011-07-21 2014-10-07 Albert Einstein College Of Medicine Of Yeshiva University Fidgetin-like 2 as a target to enhance wound healing
US9120858B2 (en) 2011-07-22 2015-09-01 The Research Foundation Of State University Of New York Antibodies to the B12-transcobalamin receptor
DE102011118024A1 (de) 2011-08-01 2013-02-07 Technische Universität Dresden Inhibitor der Expression der Pro-Caspase 1
CA2847726C (en) 2011-09-06 2023-04-04 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. The mirna-212/132 family as a therapeutic target
CA2847888A1 (en) 2011-09-09 2013-03-14 Biomed Realty, L.P. Methods and compositions for controlling assembly of viral proteins
US9644241B2 (en) 2011-09-13 2017-05-09 Interpace Diagnostics, Llc Methods and compositions involving miR-135B for distinguishing pancreatic cancer from benign pancreatic disease
WO2013049328A1 (en) 2011-09-27 2013-04-04 Alnylam Pharmaceuticals, Inc. Di-aliphatic substituted pegylated lipids
US9951349B2 (en) 2011-09-27 2018-04-24 Yale University Compositions and methods for transient expression of recombinant RNA
CN107266391B (zh) 2011-10-18 2020-04-17 迪克纳制药公司 胺阳离子脂质及其用途
US20140323549A1 (en) 2011-11-08 2014-10-30 Quark Pharmaceuticals, Inc. Methods and compositions for treating diseases, disorders or injury of the nervous system
EP2725103A3 (en) * 2011-11-14 2016-01-06 Silenseed Ltd Methods and compositions for treating prostate cancer
SG11201402392QA (en) 2011-11-18 2014-06-27 Alnylam Pharmaceuticals Inc Rnai agents, compositions and methods of use thereof for treating transthyretin (ttr) associated diseases
WO2013082529A1 (en) 2011-12-02 2013-06-06 Yale University Enzymatic synthesis of poly(amine-co-esters) and methods of use thereof for gene delivery
SG11201403756PA (en) 2012-01-01 2014-11-27 Qbi Entpr Ltd Endo180-targeted particles for selective delivery of therapeutic and diagnostic agents
WO2013103401A1 (en) * 2012-01-06 2013-07-11 University Of South Alabama Methods and compositions for the treatment of cancer
CN104302768A (zh) 2012-01-09 2015-01-21 诺华股份有限公司 治疗β-联蛋白相关疾病的有机组合物
CN104080912A (zh) 2012-01-12 2014-10-01 夸克制药公司 用于治疗听力和平衡障碍的组合疗法
WO2013112458A1 (en) 2012-01-24 2013-08-01 Beth Israel Deaconess Medical Center, Inc. Novel chrebp isoforms and methods using the same
EP2825209B1 (en) 2012-03-14 2018-08-29 University of Central Florida Research Foundation, Inc. Neurofibromatoses therapeutic agents and screening for same
KR20140136488A (ko) 2012-03-15 2014-11-28 큐알엔에이, 인크. 뇌 유래 신경영양 인자(bdnf)에 대한 천연 안티센스 전사체의 저해에 의한 뇌 유래 신경영양 인자(bdnf)관련 질환의 치료
DK2838998T3 (en) 2012-04-18 2018-01-15 Cell Signaling Technology Inc EGFR AND ROS1 IN CANCER
EP3919620A1 (en) 2012-05-02 2021-12-08 Sirna Therapeutics, Inc. Short interfering nucleic acid (sina) compositions
WO2013166043A1 (en) 2012-05-02 2013-11-07 Children's Hospital Medical Center Rejuvenation of precursor cells
JP6139671B2 (ja) 2012-05-22 2017-05-31 オリックス ファーマシューティカルズ インコーポレイテッドOlix Pharmaceuticals Inc. 細胞内貫通能を持ってrna干渉を誘導する核酸分子およびその用途
DK2867368T3 (da) 2012-07-06 2022-01-31 Roussy Inst Gustave Samtidig detektering af kannibalisme og senescens som prognostisk markør for cancer
WO2014018375A1 (en) 2012-07-23 2014-01-30 Xenon Pharmaceuticals Inc. Cyp8b1 and uses thereof in therapeutic and diagnostic methods
EP3441467A3 (en) * 2012-08-31 2019-04-24 The General Hospital Corporation Biotin complexes for treatment and diagnosis of alzheimer's disease
AU2012389270B2 (en) 2012-09-05 2018-11-08 Sylentis S.A.U. siRNA and their use in methods and compositions for the treatment and/or prevention of eye conditions
GB201215857D0 (en) 2012-09-05 2012-10-24 Sylentis Sau siRNA and their use in methods and compositions for the treatment and/or prevention of eye conditions
EP2895608B1 (en) 2012-09-12 2018-12-05 Quark Pharmaceuticals, Inc. Double-stranded oligonucleotide molecules to p53 and methods of use thereof
JP6364009B2 (ja) 2012-09-12 2018-07-25 クォーク ファーマシューティカルズ インコーポレーティッドQuark Pharmaceuticals,Inc. P53に対する二本鎖オリゴヌクレオチド分子、およびその使用方法
DK2897620T3 (da) 2012-09-21 2020-08-17 Intensity Therapeutics Inc Fremgangsmåde til behandling af cancer
EP3795694A3 (en) * 2012-10-02 2021-06-23 The General Hospital Corporation d/b/a Massachusetts General Hospital Methods relating to dna-sensing pathway related conditions
WO2014055825A1 (en) 2012-10-04 2014-04-10 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services A formulation of mycobacterial components as an adjuvant for inducing th17 responses
WO2014068072A1 (en) 2012-10-31 2014-05-08 Institut Gustave-Roussy Identification, assessment and therapy of essential thrombocythemia with resistance to jak2 inhibitors
CN105051192B (zh) * 2012-11-13 2020-04-17 科迪艾克生物科学公司 治疗剂的递送
DE102012022596B4 (de) 2012-11-15 2017-05-04 Friedrich-Schiller-Universität Jena Neue zellspezifisch wirksame Nukleotid-Moleküle und Applikationskit zu deren Anwendung
EP3660033B9 (en) 2012-11-15 2022-06-22 Apellis Pharmaceuticals, Inc. Long-acting compstatin analogs and related compositions and methods
SG10202110062SA (en) 2012-11-27 2021-11-29 Childrens Medical Center Targeting Bcl11a Distal Regulatory Elements for Fetal Hemoglobin Reinduction
US9970002B2 (en) 2012-12-12 2018-05-15 Massachusetts Institute Of Technology Compositions and methods for functional nucleic acid delivery
WO2014095088A1 (en) 2012-12-21 2014-06-26 Sykehuset Sørlandet Hf Egfr targeted therapy of neurological disorders and pain
US9206423B2 (en) * 2012-12-30 2015-12-08 The Regents Of The University Of California Methods of modulating compliance of the trabecular meshwork
US10258682B2 (en) 2013-01-16 2019-04-16 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Attenuated chlamydia vaccine
DE102013003869B4 (de) 2013-02-27 2016-11-24 Friedrich-Schiller-Universität Jena Verfahren zur gezielten Abtötung von Zellen durch zur mRNA-Anbindung ausgerichtete Nukleotid-Moleküle sowie Nukleotid-Moleküle und Applikationskit für solche Verwendung
KR102205278B1 (ko) 2013-03-14 2021-01-22 다이서나 파마수이티컬, 인크. 음이온성 약제를 제형화하는 방법
WO2014152391A1 (en) 2013-03-15 2014-09-25 Apellis Pharmaceuticals, Inc. Cell-penetrating compstatin analogs and uses thereof
WO2014150751A2 (en) * 2013-03-15 2014-09-25 Novartis Ag Biomarkers associated with brm inhibition
EP2968263A2 (en) * 2013-03-15 2016-01-20 Genentech, Inc. Treating th2-mediated diseases by inhibition of bromodomain-comprising proteins brd7 and brd9
CA2918194C (en) 2013-03-27 2022-12-06 The General Hospital Corporation Methods and agents for treating alzheimer's disease
WO2014186798A1 (en) 2013-05-17 2014-11-20 Amplimmune, Inc. Receptors for b7-h4
AU2014302038B2 (en) 2013-06-25 2019-11-14 Epiaxis Therapeutics Pty Ltd Methods and compositions for modulating cancer stem cells
TW201534578A (zh) 2013-07-08 2015-09-16 Daiichi Sankyo Co Ltd 新穎脂質
WO2015006554A1 (en) 2013-07-10 2015-01-15 The Regents Of The University Of Michigan Therapeutic antibodies and uses thereof
EP3030663B1 (en) 2013-07-19 2019-09-04 Monsanto Technology LLC Compositions and methods for controlling leptinotarsa
US10711106B2 (en) 2013-07-25 2020-07-14 The University Of Chicago High aspect ratio nanofibril materials
WO2015015498A1 (en) 2013-07-31 2015-02-05 Qbi Enterprises Ltd. Methods of use of sphingolipid polyalkylamine oligonucleotide compounds
CN105452465B (zh) 2013-07-31 2019-06-21 奇比艾企业有限公司 鞘脂-聚烷基胺-寡核苷酸化合物
US9670492B2 (en) 2013-08-28 2017-06-06 Ionis Pharmaceuticals, Inc. Modulation of prekallikrein (PKK) expression
MX2016003182A (es) 2013-09-11 2017-03-31 Arsia Therapeutics Inc Formulaciones de proteínas líquidas que contienen líquidos iónicos.
CA2923765C (en) 2013-09-18 2021-06-29 University Of Canberra Stem cell modulation ii
EP3052464B1 (en) 2013-10-04 2020-04-15 Novartis AG 3'end caps for rna-interferring agents for use in rna interference
WO2015050871A2 (en) 2013-10-04 2015-04-09 Novartis Ag Organic compounds to treat hepatitis b virus
EP2865758A1 (en) 2013-10-22 2015-04-29 Sylentis, S.A.U. siRNA and their use in methods and compositions for inhibiting the expression of the ORAI1 gene
EP2865756A1 (en) 2013-10-22 2015-04-29 Sylentis, S.A.U. siRNA and their use in methods and compositions for inhibiting the expression of the FLAP gene.
EP2865757A1 (en) 2013-10-22 2015-04-29 Sylentis, S.A.U. siRNA and their use in methods and compositions for inhibiting the expression of the PDK1 gene.
WO2015070158A1 (en) 2013-11-11 2015-05-14 Sirna Therapeutics, Inc. Systemic delivery of myostatin short interfering nucleic acids (sina) conjugated to a lipophilic moiety
EP3071590A4 (en) 2013-11-21 2017-07-19 SeNA Research, Inc. Methods for structural determination of selenium derivatized nucleic acid complexes
US10934550B2 (en) 2013-12-02 2021-03-02 Phio Pharmaceuticals Corp. Immunotherapy of cancer
AU2014360314B2 (en) 2013-12-06 2018-04-26 Dicerna Pharmaceuticals, Inc. Methods and compositions for the specific inhibition of transthyretin (TTR) by double-stranded RNA
CN104830906B (zh) 2014-02-12 2018-09-04 北京维通达生物技术有限公司 一种重编程获得功能性人肝脏实质细胞的方法
WO2015132303A1 (en) 2014-03-04 2015-09-11 Sylentis Sau Sirnas and their use in methods and compositions for the treatment and/or prevention of eye conditions
JP6681837B2 (ja) 2014-03-11 2020-04-15 セレクティスCellectis 同種移植に適合するt細胞を作製するための方法
DK3119887T3 (da) * 2014-03-20 2019-05-20 Oommen Varghese Forbedrede korte interfererende ribonukleinsyremolekyler
CN106460025A (zh) 2014-03-25 2017-02-22 阿克丘勒斯治疗公司 在基因沉默中具有降低的脱靶效应的una寡聚物
US9856475B2 (en) 2014-03-25 2018-01-02 Arcturus Therapeutics, Inc. Formulations for treating amyloidosis
WO2015148582A1 (en) 2014-03-25 2015-10-01 Arcturus Therapeutics, Inc. Transthyretin allele selective una oligomers for gene silencing
EP3420809A1 (en) 2014-04-01 2019-01-02 Monsanto Technology LLC Compositions and methods for controlling insect pests
SG10201906520RA (en) 2014-04-01 2019-09-27 Biogen Ma Inc Compositions for modulating sod-1 expression
BR112016024565A2 (pt) 2014-04-25 2018-01-23 Children's Medical Center Corporation composições e métodos de tratar hemoglobinopatias
US11279934B2 (en) 2014-04-28 2022-03-22 Phio Pharmaceuticals Corp. Methods for treating cancer using nucleic acids targeting MDM2 or MYCN
HUE052709T2 (hu) 2014-05-01 2021-05-28 Ionis Pharmaceuticals Inc Módosított antiszensz oligonukleotidok konjugátumai és azok alkalmazása PKK expressziójának módosítására
WO2015168674A1 (en) 2014-05-02 2015-11-05 Research Institute At Nationwide Children's Hospital Compositions and methods for anti-lyst immunomodulation
CA2948844C (en) 2014-05-12 2020-06-30 The Johns Hopkins University Engineering synthetic brain penetrating gene vectors
WO2015175545A1 (en) 2014-05-12 2015-11-19 The Johns Hopkins University Highly stable biodegradable gene vector platforms for overcoming biological barriers
US10100308B2 (en) 2014-05-29 2018-10-16 Trustees Of Dartmouth College Method for selectively inhibiting ACAT1 in the treatment of neurodegenerative diseases
TR201908550T4 (tr) 2014-06-04 2019-07-22 Exicure Inc Profilaktik veya terapötik uygulamalar için lipozomal sferik nükleik asitler tarafından immün modülatörlerin çok değerlikli teslimi.
CN104120127B (zh) * 2014-07-01 2016-09-21 清华大学 分离的寡核苷酸及其应用
WO2016018887A1 (en) 2014-07-29 2016-02-04 Monsanto Technology Llc Compositions and methods for controlling insect pests
WO2016019126A1 (en) 2014-07-30 2016-02-04 The Research Foundation For The State University Of New York System and method for delivering genetic material or protein to cells
WO2016023974A1 (de) 2014-08-14 2016-02-18 Friedrich-Schiller-Universität Jena Peptid zur verwendung in der reduktion von nebenwirkungen in form von immunstimulatorischen reaktionen/effekten
CN107106517A (zh) 2014-08-25 2017-08-29 堪培拉大学 用于调节癌干细胞的组合物及其用途
EP3185957B1 (en) 2014-08-29 2022-06-01 Alnylam Pharmaceuticals, Inc. Patisiran for use in treating transthyretin mediated amyloidosis
CN107073294A (zh) 2014-09-05 2017-08-18 阿克赛医药公司 使用靶向tyr或mmp1的核酸治疗老化和皮肤病症的方法
EP3194581A4 (en) 2014-09-15 2018-04-25 Children's Medical Center Corporation Methods and compositions to increase somatic cell nuclear transfer (scnt) efficiency by removing histone h3-lysine trimethylation
ES2927649T3 (es) 2014-09-25 2022-11-08 Cold Spring Harbor Laboratory Tratamiento del síndrome de Rett
MX2017004306A (es) 2014-10-01 2017-12-20 Eagle Biologics Inc Formulaciones de polisacáridos y ácido nucleico que contienen agentes de reducción de viscosidad.
WO2016057693A1 (en) 2014-10-10 2016-04-14 Alnylam Pharmaceuticals, Inc. Methods and compositions for inhalation delivery of conjugated oligonucleotide
WO2016057898A1 (en) 2014-10-10 2016-04-14 Idera Pharmaceuticals, Inc. Treatment of cancer using tlr9 agonist with checkpoint inhibitors
JOP20200115A1 (ar) 2014-10-10 2017-06-16 Alnylam Pharmaceuticals Inc تركيبات وطرق لتثبيط التعبير الجيني عن hao1 (حمض أوكسيداز هيدروكسيلي 1 (أوكسيداز جليكولات))
US10538762B2 (en) * 2014-10-14 2020-01-21 The Board Of Regents Of The University Of Texas System Allele selective inhibition of mutant C9orf72 foci expression by duplex RNAS targeting the expanded hexanucleotide repeat
WO2016061642A1 (en) 2014-10-22 2016-04-28 Katholieke Universiteit Leuven Ku Leuven Research & Development Modulating adipose tissue and adipogenesis
JOP20200092A1 (ar) 2014-11-10 2017-06-16 Alnylam Pharmaceuticals Inc تركيبات iRNA لفيروس الكبد B (HBV) وطرق لاستخدامها
AU2015346281B2 (en) 2014-11-12 2021-12-02 Nmc, Inc. Transgenic plants with engineered redox sensitive modulation of photosynthetic antenna complex pigments and methods for making the same
CN113846101A (zh) 2014-11-17 2021-12-28 阿尔尼拉姆医药品有限公司 载脂蛋白C3(APOC3)iRNA组合物及其使用方法
WO2016081621A1 (en) 2014-11-18 2016-05-26 Yale University Formulations for targeted release of agents under low ph conditions and methods of use thereof
CN107106493A (zh) 2014-11-21 2017-08-29 西北大学 球形核酸纳米颗粒缀合物的序列特异性细胞摄取
US20190002876A1 (en) * 2014-12-09 2019-01-03 The Board Of Regents Of The University Of Texas System Compositions and methods for treatment of friedreich's ataxia
US10264976B2 (en) 2014-12-26 2019-04-23 The University Of Akron Biocompatible flavonoid compounds for organelle and cell imaging
US20180002702A1 (en) * 2014-12-26 2018-01-04 Nitto Denko Corporation Methods and compositions for treating malignant tumors associated with kras mutation
US10792299B2 (en) 2014-12-26 2020-10-06 Nitto Denko Corporation Methods and compositions for treating malignant tumors associated with kras mutation
US10968449B2 (en) 2015-01-22 2021-04-06 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
JP6830441B2 (ja) 2015-04-01 2021-02-17 アークトゥラス・セラピューティクス・インコーポレイテッドArcturus Therapeutics,Inc. 治療上のunaオリゴマーおよびその使用
MX2017013102A (es) 2015-04-13 2018-02-23 Alnylam Pharmaceuticals Inc Composiciones de ácido ribonucleico de interferencia (arni) de angiopoyetina-tipo 3 (angptl3) y método de uso de las mismas.
US20180126014A1 (en) 2015-04-15 2018-05-10 Yale University Compositions for enhancing delivery of agents across the blood brain barrier and methods of use thereof
EP3291839A1 (en) 2015-05-05 2018-03-14 The University of Louisville Research Foundation, Inc. Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and mri and/or x-ray contrast agents
WO2016182917A1 (en) 2015-05-08 2016-11-17 Children's Medical Center Corporation Targeting bcl11a enhancer functional regions for fetal hemoglobin reinduction
CA3026154A1 (en) 2015-06-03 2016-12-08 The University Of Queensland Mobilizing agents and uses therefor
AU2016275046B2 (en) 2015-06-10 2022-07-28 Board Of Regents, The University Of Texas System Use of exosomes for the treatment of disease
WO2017002928A1 (ja) 2015-06-30 2017-01-05 岸本 忠三 新規な肺疾患治療剤および/またはそのスクリーニング方法
US10808247B2 (en) 2015-07-06 2020-10-20 Phio Pharmaceuticals Corp. Methods for treating neurological disorders using a synergistic small molecule and nucleic acids therapeutic approach
CA2991598A1 (en) 2015-07-06 2017-01-12 Rxi Pharmaceuticals Corporation Nucleic acid molecules targeting superoxide dismutase 1 (sod1)
EP4092119A3 (en) 2015-07-10 2023-03-22 Ionis Pharmaceuticals, Inc. Modulators of diacyglycerol acyltransferase 2 (dgat2)
WO2017015671A1 (en) 2015-07-23 2017-01-26 Arcturus Therapeutics, Inc. Compositions for treating amyloidosis
ES2842300T3 (es) 2015-07-31 2021-07-13 Alnylam Pharmaceuticals Inc Composiciones de ARNi de transtiretina (TTR) y métodos para su uso para el tratamiento o la prevención de enfermedades asociadas con TTR
CA2995995A1 (en) 2015-08-24 2017-03-02 Halo-Bio Rnai Therapeutics, Inc. Polynucleotide nanoparticles for the modulation of gene expression and uses thereof
MA44908A (fr) 2015-09-08 2018-07-18 Sylentis Sau Molécules d'arnsi et leur utilisation dans des procédés et des compositions pour inhiber l'expression du gène nrarp
GB201516685D0 (en) * 2015-09-21 2015-11-04 Varghese Oommen P And Oommen Oommen P Nucleic acid molecules with enhanced activity
CN108601823A (zh) 2015-09-23 2018-09-28 麻省理工学院 用于改性树枝状聚合物纳米颗粒疫苗递送的组合物和方法
US10383935B2 (en) 2015-09-23 2019-08-20 Regents Of The University Of Minnesota Methods of making and using live attenuated viruses
US10086063B2 (en) 2015-09-23 2018-10-02 Regents Of The University Of Minnesota Methods of making and using live attenuated viruses
JP2018535655A (ja) 2015-09-29 2018-12-06 アムジエン・インコーポレーテツド Asgr阻害剤
JOP20210043A1 (ar) * 2015-10-01 2017-06-16 Arrowhead Pharmaceuticals Inc تراكيب وأساليب لتثبيط تعبير جيني للـ lpa
JP6968787B2 (ja) 2015-10-07 2021-11-17 アペリス・ファーマシューティカルズ・インコーポレイテッドApellis Pharmaceuticals, Inc. 投与レジメン
US11021707B2 (en) 2015-10-19 2021-06-01 Phio Pharmaceuticals Corp. Reduced size self-delivering nucleic acid compounds targeting long non-coding RNA
CA3005411C (en) 2015-11-16 2024-01-09 Olix Pharmaceuticals, Inc. Treatment of age-related macular degeneration using rna complexes that target myd88 or tlr3
WO2017095751A1 (en) 2015-12-02 2017-06-08 Partikula Llc Compositions and methods for modulating cancer cell metabolism
EP3386544B1 (en) 2015-12-10 2020-11-25 Fibrogen, Inc. Methods for treatment of motor neuron diseases
CN108366964B (zh) 2015-12-18 2022-04-08 三养控股公司 制备含阴离子药物的聚合物胶束的方法
BR102017001164A2 (pt) 2016-01-26 2019-03-06 Embrapa - Empresa Brasileira De Pesquisa Agropecuária Composições de rna de fita dupla para controle de diaphorina citri e métodos de uso.
CA3011894A1 (en) 2016-01-31 2017-08-03 University Of Massachusetts Branched oligonucleotides
WO2017134526A1 (en) 2016-02-02 2017-08-10 Olix Pharmaceuticals, Inc. Treatment of angiogenesis-associated diseases using rna complexes that target angpt2 and pdgfb
JP6944942B2 (ja) 2016-02-02 2021-10-06 オリックス ファーマシューティカルズ,インコーポレーテッド IL4Rα、TRPA1、またはF2RL1を標的とするRNA複合体を用いたアトピー性皮膚炎および喘息の治療
US20170360815A1 (en) 2016-02-25 2017-12-21 Applied Biological Laboratories, Inc. Compositions and methods for protecting against airborne pathogens and irritants
SG11201806868TA (en) 2016-02-25 2018-09-27 Applied Biological Laboratories Inc Compositions and methods for protecting against airborne pathogens and irritants
WO2017147594A1 (en) 2016-02-26 2017-08-31 Yale University COMPOSITIONS AND METHODS OF USING piRNAS IN CANCER DIAGNOSTICS AND THERAPEUTICS
WO2017151623A1 (en) 2016-03-01 2017-09-08 Alexion Pharmaceuticals, Inc. Biodegradable activated polymers for therapeutic delivery
EP3423568A4 (en) 2016-03-04 2019-11-13 University Of Louisville Research Foundation, Inc. METHOD AND COMPOSITIONS FOR EX-VIVO REPRODUCTION OF VERY SMALL EMBRYONAL STEM CELLS (VSELS)
TWI783434B (zh) 2016-03-07 2022-11-11 美商愛羅海德製藥公司 治療性化合物之標靶性配體
AU2017234163B2 (en) 2016-03-15 2023-01-19 Mersana Therapeutics, Inc. NaPi2b-targeted antibody-drug conjugates and methods of use thereof
MA45328A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Compositions acide nucléique-polypeptide et utilisations de celles-ci
MA45469A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques de bêta-caténine et leurs utilisations
MA45349A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques egfr et leurs utilisations
MA45470A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques kras et leurs utilisations
US20190117799A1 (en) 2016-04-01 2019-04-25 The Brigham And Women's Hospital, Inc. Stimuli-responsive nanoparticles for biomedical applications
EP3440090B1 (en) 2016-04-06 2022-09-28 Ohio State Innovation Foundation Rna ligand-displaying exosomes for specific delivery of therapeutics to cell by rna nanotechnology
CA3020487C (en) 2016-04-11 2022-05-31 Olix Pharmaceuticals, Inc. Treatment of idiopathic pulmonary fibrosis using rna complexes that target connective tissue growth factor
AU2017250017B2 (en) * 2016-04-14 2022-12-22 Benitec IP Holdings Inc. Reagents for treatment of oculopharyngeal muscular dystrophy (OPMD) and use thereof
WO2017189870A1 (en) 2016-04-27 2017-11-02 Massachusetts Institute Of Technology Stable nanoscale nucleic acid assemblies and methods thereof
WO2017197128A1 (en) 2016-05-11 2017-11-16 Yale University Poly(amine-co-ester) nanoparticles and methods of use thereof
KR101916652B1 (ko) 2016-06-29 2018-11-08 올릭스 주식회사 작은 간섭 rna의 rna 간섭효과 증진용 화합물 및 이의 용도
SG11201811600PA (en) 2016-06-30 2019-01-30 Oncorus Inc Pseudotyped oncolytic viral delivery of therapeutic polypeptides
RU2627179C1 (ru) * 2016-07-28 2017-08-03 федеральное государственное бюджетное учреждение "Федеральный научно-исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи" Министерства здравоохранения Российской Федерации ТЕСТ-СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ РНК ИНТЕРФЕРОНА λ, ИНТЕРЛЕЙКИНА IL23 И ПРОТИВОВИРУСНОГО БЕЛКА MxA
WO2018020012A1 (en) 2016-07-29 2018-02-01 Danmarks Tekniske Universitet Methods for decoupling cell growth from production of biochemicals and recombinant polypeptides
CA3032320A1 (en) 2016-08-03 2018-02-08 H. Lee Moffitt Cancer Center And Research Institute, Inc. Tlr9 targeted therapeutics
US11364304B2 (en) 2016-08-25 2022-06-21 Northwestern University Crosslinked micellar spherical nucleic acids
HUE059718T2 (hu) 2016-09-02 2022-12-28 Dicerna Pharmaceuticals Inc 4'-foszfát analógok és azokat tartalmazó oligonukleotidok
TW202320855A (zh) 2016-09-02 2023-06-01 美商愛羅海德製藥公司 標靶性配體
EP3516062A1 (en) 2016-09-21 2019-07-31 Alnylam Pharmaceuticals, Inc. Myostatin irna compositions and methods of use thereof
JP7129702B2 (ja) * 2016-09-29 2022-09-02 国立大学法人 東京医科歯科大学 オーバーハングを有する二本鎖核酸複合体
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
US11135307B2 (en) 2016-11-23 2021-10-05 Mersana Therapeutics, Inc. Peptide-containing linkers for antibody-drug conjugates
WO2018107096A1 (en) 2016-12-08 2018-06-14 University Of Utah Research Foundation Staufen1 agents and associated methods
US20200085758A1 (en) 2016-12-16 2020-03-19 The Brigham And Women's Hospital, Inc. Co-delivery of nucleic acids for simultaneous suppression and expression of target genes
CA3045045A1 (en) 2017-01-10 2018-07-19 Zhen Li Alpha-1 antitrypsin (aat) rnai agents, compositions including aat rnai agents, and methods of use
JP7424728B2 (ja) * 2017-02-10 2024-01-30 オリック パルマセゥティカルズ インコーポレイテッド Rna干渉のための長鎖の二本鎖rna
WO2018152523A1 (en) * 2017-02-20 2018-08-23 Northwestern University Use of trinucleotide repeat rnas to treat cancer
DE102017103383A1 (de) 2017-02-20 2018-08-23 aReNA-Bio GbR (vertretungsberechtigter Gesellschafter: Dr. Heribert Bohlen, 50733 Köln) System und Verfahren zur Zelltyp-spezifischen Translation von RNA-Molekülen in Eukaryoten
US20180271996A1 (en) 2017-02-28 2018-09-27 Mersana Therapeutics, Inc. Combination therapies of her2-targeted antibody-drug conjugates
US11261441B2 (en) 2017-03-29 2022-03-01 Bluebird Bio, Inc. Vectors and compositions for treating hemoglobinopathies
US11040107B2 (en) 2017-04-07 2021-06-22 Apellis Pharmaceuticals, Inc. Dosing regimens and related compositions and methods
CN110945128B (zh) 2017-04-14 2023-11-03 代表亚利桑那大学的亚利桑那董事会 用于治疗肺纤维化的组合物和方法
US11324820B2 (en) 2017-04-18 2022-05-10 Alnylam Pharmaceuticals, Inc. Methods for the treatment of subjects having a hepatitis b virus (HBV) infection
WO2018209270A1 (en) 2017-05-11 2018-11-15 Northwestern University Adoptive cell therapy using spherical nucleic acids (snas)
WO2018218135A1 (en) 2017-05-25 2018-11-29 The Children's Medical Center Corporation Bcl11a guide delivery
EP3642341A4 (en) * 2017-06-23 2021-06-16 University Of Massachusetts TWO-DAY SELF-RELEASING SIRNA AND RELATED PROCEDURES
BR112019023650A2 (pt) 2017-07-06 2020-06-02 Arrowhead Pharmaceuticals, Inc. Agentes rnai para inibir a expressão de alfa-enac e métodos de uso
CA3069451A1 (en) 2017-07-13 2019-01-17 Alnylam Pharmaceuticals, Inc. Methods for inhibition of hao1 (hydroxyacid oxidase 1 (glycolate oxidase)) gene expression
US11104700B2 (en) 2017-07-17 2021-08-31 Oxford University Innovation Limited Oligonucleotides
US11110114B2 (en) 2017-07-17 2021-09-07 Oxford University Innovation Limited Dinucleotides
SG11201912178VA (en) 2017-09-11 2020-01-30 Arrowhead Pharmaceuticals Inc Rnai agents and compositions for inhibiting expression of apolipoprotein c-iii (apoc3)
KR20200089656A (ko) 2017-09-19 2020-07-27 알닐람 파마슈티칼스 인코포레이티드 트랜스타이레틴(ttr) 매개 아밀로이드증을 치료하기 위한 조성물 및 방법
WO2019068326A1 (en) 2017-10-05 2019-04-11 Université D'aix-Marseille INHIBITORS OF LSD1 FOR THE TREATMENT AND PREVENTION OF CARDIOMYOPATHIES
EP4197544A1 (en) 2017-10-20 2023-06-21 Dicerna Pharmaceuticals, Inc. Methods for treating hepatitis b infection
EP3713644A1 (en) 2017-11-20 2020-09-30 University of Georgia Research Foundation, Inc. Compositions and methods for modulating hif-2& x391; to improve muscle generation and repair
WO2019104289A1 (en) 2017-11-27 2019-05-31 Mersana Therapeutics, Inc. Pyrrolobenzodiazepine antibody conjugates
RU2020121752A (ru) 2017-12-01 2021-12-30 ТЕХАССКАЯ УНИВЕРСИТЕТСКАЯ СИСТЕМА А энд М Средство для лечения синдрома ангельмана на основе антисмысловой нуклеиновой кислоты
CN111902148A (zh) 2017-12-06 2020-11-06 艾维迪提生物科学公司 治疗肌萎缩和强直性肌营养不良的组合物和方法
EP3728281A1 (en) 2017-12-21 2020-10-28 Alnylam Pharmaceuticals Inc. Chirally-enriched double-stranded rna agents
WO2019126691A1 (en) 2017-12-21 2019-06-27 Mersana Therapeutics, Inc. Pyrrolobenzodiazepine antibody conjugates
US10960086B2 (en) 2017-12-28 2021-03-30 Augusta University Research Institute, Inc. Aptamer compositions and methods of use thereof
US11865081B2 (en) 2017-12-29 2024-01-09 Virogin Biotech Canada Ltd. Oncolytic viral delivery of therapeutic polypeptides
MX2020007066A (es) 2018-01-05 2020-09-09 Dicerna Pharmaceuticals Inc Reduccion de la expresion de beta-catenina e ido para potenciar la inmunoterapia.
WO2019143621A1 (en) 2018-01-16 2019-07-25 Dicerna Pharmaceuticals, Inc. Compositions and methods for inhibiting aldh2 expression
PE20211197A1 (es) 2018-02-09 2021-07-01 Genentech Inc Oligonucleotidos para modular la expresion de tmem106b
EP3790991A1 (en) 2018-05-07 2021-03-17 Roche Innovation Center Copenhagen A/S Massively parallel discovery methods for oligonucleotide therapeutics
AU2019266548A1 (en) 2018-05-10 2021-01-07 Complement Therapeutics Limited Methods for assessing macular degeneration
WO2019241734A1 (en) * 2018-06-14 2019-12-19 University Of Utah Research Foundation Staufen1 regulating agents and associated methods
AR114551A1 (es) 2018-08-13 2020-09-16 Alnylam Pharmaceuticals Inc COMPOSICIONES DE AGENTES DE ARNhd CONTRA EL VIRUS DE HEPATITIS B (HBV) Y MÉTODOS PARA SU USO
EP4043015A1 (en) 2018-09-04 2022-08-17 H. Lee Moffitt Cancer Center And Research Institute, Inc. Delta-tocotrienol for treating cancer
WO2020051507A1 (en) 2018-09-06 2020-03-12 The Broad Institute, Inc. Nucleic acid assemblies for use in targeted delivery
KR20210084546A (ko) 2018-10-29 2021-07-07 메르사나 테라퓨틱스, 인코포레이티드 펩티드 함유 링커를 갖는 시스테인 조작된 항체-약물 접합체
CN113692444A (zh) 2019-02-12 2021-11-23 迪克纳制药公司 用于抑制cyp27a1的表达的方法和组合物
BR112021018739A2 (pt) 2019-03-29 2022-05-03 Dicerna Pharmaceuticals Inc Composições e métodos para o tratamento de doenças ou distúrbios associados a kras
JP2022526419A (ja) 2019-04-04 2022-05-24 ディセルナ ファーマシューティカルズ インコーポレイテッド 中枢神経系における遺伝子発現を阻害するための組成物及び方法
US11814464B2 (en) 2019-04-29 2023-11-14 Yale University Poly(amine-co-ester) polymers and polyplexes with modified end groups and methods of use thereof
BR112021021686A2 (pt) 2019-05-03 2022-03-22 Dicerna Pharmaceuticals Inc Moléculas inibidoras de ácido nucleico de fita dupla com fitas senso curtas
US20200369759A1 (en) 2019-05-23 2020-11-26 Fibrogen, Inc. Methods of treatment of muscular dystrophies
MX2022000045A (es) 2019-06-26 2022-04-20 Biorchestra Co Ltd Nanoparticulas micelares y sus usos.
EP4021496A1 (en) 2019-08-30 2022-07-06 Yale University Compositions and methods for delivery of nucleic acids to cells
US20220378920A1 (en) 2019-09-10 2022-12-01 Daiichi Sankyo Company, Limited CONJUGATE OF GalNAc-OLIGONUCLEOTIDE FOR DELIVERY TO LIVER AND MANUFACTURING METHOD THEREOF
CA3153026A1 (en) 2019-10-02 2021-04-08 Weimin Wang Chemical modifications of small interfering rna with minimal fluorine content
US11017851B1 (en) 2019-11-26 2021-05-25 Cypress Semiconductor Corporation Silicon-oxide-nitride-oxide-silicon based multi level non-volatile memory device and methods of operation thereof
WO2021130266A1 (en) 2019-12-24 2021-07-01 F. Hoffmann-La Roche Ag Pharmaceutical combination of a therapeutic oligonucleotide targeting hbv and a tlr7 agonist for treatment of hbv
MX2022007909A (es) 2019-12-24 2022-07-21 Hoffmann La Roche Combinacion farmaceutica de agentes antivirales que actuan sobre hbv y/o un inmunomodulador para el tratamiento de hbv.
JP2023511274A (ja) 2020-01-14 2023-03-17 シンセカイン インコーポレイテッド Il2オルソログおよび使用法
US20210222128A1 (en) 2020-01-22 2021-07-22 Massachusetts Institute Of Technology Inducible tissue constructs and uses thereof
US11642407B2 (en) 2020-02-28 2023-05-09 Massachusetts Institute Of Technology Identification of variable influenza residues and uses thereof
MX2022011550A (es) 2020-03-18 2023-01-04 Dicerna Pharmaceuticals Inc Composiciones y métodos para inhibir la expresión de angptl3.
EP4121063A1 (en) 2020-03-19 2023-01-25 Avidity Biosciences, Inc. Compositions and methods of treating facioscapulohumeral muscular dystrophy
CA3177180A1 (en) 2020-03-27 2021-09-30 Avidity Biosciences, Inc. Compositions and methods of treating muscle dystrophy
WO2021216920A1 (en) 2020-04-22 2021-10-28 Iovance Biotherapeutics, Inc. Systems and methods for coordinating manufacturing of cells for patient-specific immunotherapy
AU2021293780A1 (en) 2020-06-19 2023-02-02 Yale University Poly(amine-co-ester) polymers with modified end groups and enhanced pulmonary delivery
WO2021255262A1 (en) 2020-06-19 2021-12-23 Sylentis Sau siRNA AND COMPOSITIONS FOR PROPHYLACTIC AND THERAPEUTIC TREATMENT OF VIRUS DISEASES
US20220031633A1 (en) 2020-07-28 2022-02-03 Yale University Poly(amine-co-ester) polymeric particles for selective pulmonary delivery
IL300286A (en) 2020-08-04 2023-04-01 Dicerna Pharmaceuticals Inc Compounds and methods for inhibiting PLP1 expression
EP4192505A1 (en) 2020-08-04 2023-06-14 Dicerna Pharmaceuticals, Inc. Systemic delivery of oligonucleotides
TW202221120A (zh) 2020-08-04 2022-06-01 美商黛瑟納製藥公司 用於治療代謝症候群之組成物及方法
KR20230043912A (ko) 2020-08-05 2023-03-31 다이서나 파마수이티컬, 인크. Lpa 발현을 저해하기 위한 조성물 및 방법
EP4192955A1 (en) 2020-08-05 2023-06-14 F. Hoffmann-La Roche AG Oligonucleotide treatment of hepatitis b patients
US20230265214A1 (en) 2020-08-31 2023-08-24 Yale University Compositions and methods for delivery of nucleic acids to cells
EP3964204A1 (en) 2020-09-08 2022-03-09 Université d'Aix-Marseille Lsd1 inhibitors for use in the treatment and prevention of fibrosis of tissues
WO2022058447A1 (en) 2020-09-16 2022-03-24 The University Of Manchester Complementome assay
CA3200234A1 (en) 2020-11-25 2022-06-02 Daryl C. Drummond Lipid nanoparticles for delivery of nucleic acids, and related methods of use
CN117295753A (zh) 2020-12-04 2023-12-26 基那奥生物公司 用于将核酸递送到细胞的组合物和方法
EP4015634A1 (en) 2020-12-15 2022-06-22 Sylentis, S.A.U. Sirna and compositions for prophylactic and therapeutic treatment of virus diseases
BR112023017737A2 (pt) 2021-03-04 2023-10-03 Alnylam Pharmaceuticals Inc Composições de irna de angiopoietina-semelhantes 3 (angptl3) e métodos de uso das mesmas
WO2022211740A1 (en) 2021-03-31 2022-10-06 Carmine Therapeutics Pte. Ltd. Extracellular vesicles loaded with at least two different nucleic acids
EP4323518A2 (en) 2021-04-12 2024-02-21 Boehringer Ingelheim International GmbH Compositions and methods for inhibiting ketohexokinase (khk)
KR20230171431A (ko) 2021-04-14 2023-12-20 다이서나 파마수이티컬, 인크. Pnpla3 발현을 조절하기 위한 조성물 및 방법
CA3213775A1 (en) 2021-04-19 2022-10-27 Utsav SAXENA Compositions and methods for inhibiting nuclear receptor subfamily 1 group h member 3 (nr1h3) expression
AR125992A1 (es) 2021-05-28 2023-08-30 Novo Nordisk As Composiciones y métodos para inhibir la expresión del componente 1 de reducción de amidoxima mitocondrial (marc1)
CA3221923A1 (en) 2021-05-29 2022-12-08 1Globe Health Institute Llc Short duplex dna as a novel gene silencing technology and use thereof
EP4347829A1 (en) 2021-05-29 2024-04-10 1Globe Health Institute LLC Asymmetric short duplex dna as a novel gene silencing technology and use thereof
TW202315943A (zh) 2021-06-23 2023-04-16 麻薩諸塞大學 用於治療子癇前症及其它血管新生病症的最佳化抗flt1寡核苷酸化合物
AU2022323090A1 (en) 2021-08-03 2024-02-01 Alnylam Pharmaceuticals, Inc. Transthyretin (ttr) irna compositions and methods of use thereof
WO2023021046A1 (en) 2021-08-16 2023-02-23 Vib Vzw Oligonucleotides for modulating synaptogyrin-3 expression
KR20240046843A (ko) 2021-08-25 2024-04-11 노보 노르디스크 에이/에스 알파-1 항트립신 발현을 억제하기 위한 조성물 및 방법
AU2022349065A1 (en) 2021-09-21 2024-04-04 The Johns Hopkins University Dendrimer conjugates of small molecule biologics for intracellular delivery
AU2022384619A1 (en) 2021-11-11 2024-04-11 F. Hoffmann-La Roche Ag Pharmaceutical combinations for treatment of hbv
US20240043846A1 (en) 2021-11-19 2024-02-08 Kist (Korea Institute Of Science And Technology) Therapeutic Compounds for Red Blood Cell-Mediated Delivery of an Active Pharmaceutical Ingredient to a Target Cell
AR127843A1 (es) 2021-12-01 2024-03-06 Dicerna Pharmaceuticals Inc Composiciones y métodos para modular la expresión de apoc3
WO2023118546A2 (en) 2021-12-23 2023-06-29 Boehringer Ingelheim International Gmbh METHODS AND MOLECULES FOR RNA INTERFERENCE (RNAi)
WO2023159189A1 (en) 2022-02-18 2023-08-24 Yale University Branched poly(amine-co-ester) polymers for more efficient nucleic expression
GB202203627D0 (en) 2022-03-16 2022-04-27 Univ Manchester Agents for treating complement-related disorders
WO2023192872A1 (en) 2022-03-28 2023-10-05 Massachusetts Institute Of Technology Rna scaffolded wireframe origami and methods thereof
GB202204884D0 (en) 2022-04-04 2022-05-18 Fondo Ricerca Medica S R I Sirna targeting kcna1
WO2023201043A1 (en) 2022-04-15 2023-10-19 Dicerna Pharmaceuticals, Inc. Compositions and methods for modulating scap activity
WO2023220349A1 (en) 2022-05-12 2023-11-16 Dicerna Pharmaceuticals, Inc. Compositions and methods for inhibiting mapt expression
US20230416743A1 (en) 2022-05-13 2023-12-28 Dicerna Pharmaceuticals, Inc. Compositions and methods for inhibiting snca expression
TW202400193A (zh) 2022-06-24 2024-01-01 丹麥商諾佛 儂迪克股份有限公司 抑制跨膜絲胺酸蛋白酶6(tmprss6)表現的組成物及方法
WO2024040041A1 (en) 2022-08-15 2024-02-22 Dicerna Pharmaceuticals, Inc. Regulation of activity of rnai molecules
WO2024081736A2 (en) 2022-10-11 2024-04-18 Yale University Compositions and methods of using cell-penetrating antibodies

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2003006A (en) * 1933-04-11 1935-05-28 Michelson Barnett Samuel Water tank cover
US4469863A (en) * 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US5208149A (en) * 1983-10-20 1993-05-04 The Research Foundation Of State University Of New York Nucleic acid constructs containing stable stem and loop structures
GB8704365D0 (en) * 1987-02-25 1987-04-01 Exxon Chemical Patents Inc Zeolite l preparation
US5712257A (en) * 1987-08-12 1998-01-27 Hem Research, Inc. Topically active compositions of mismatched dsRNAs
IE66830B1 (en) 1987-08-12 1996-02-07 Hem Res Inc Topically active compositions of double-stranded RNAs
US5703055A (en) * 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
ATE269870T1 (de) * 1989-10-24 2004-07-15 Isis Pharmaceuticals Inc 2'-modifizierte oligonukleotide
US5457189A (en) * 1989-12-04 1995-10-10 Isis Pharmaceuticals Antisense oligonucleotide inhibition of papillomavirus
WO1991010671A1 (en) 1990-01-11 1991-07-25 Isis Pharmaceuticals, Inc. Compositions and methods for detecting and modulating rna activity and gene expression
US5670633A (en) * 1990-01-11 1997-09-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5514577A (en) * 1990-02-26 1996-05-07 Isis Pharmaceuticals, Inc. Oligonucleotide therapies for modulating the effects of herpes viruses
PL169576B1 (pl) * 1990-10-12 1996-08-30 Max Planck Gesellschaft Sposób wytwarzania czasteczki RNA o aktywnosci katalitycznej PL PL
FR2675803B1 (fr) 1991-04-25 1996-09-06 Genset Sa Oligonucleotides fermes, antisens et sens et leurs applications.
WO1994008003A1 (en) * 1991-06-14 1994-04-14 Isis Pharmaceuticals, Inc. ANTISENSE OLIGONUCLEOTIDE INHIBITION OF THE ras GENE
FR2685346B1 (fr) * 1991-12-18 1994-02-11 Cis Bio International Procede de preparation d'arn double-brin, et ses applications.
EP0635023B1 (en) 1992-03-05 2002-02-06 Isis Pharmaceuticals, Inc. Covalently cross-linked oligonucleotides
US5792751A (en) * 1992-04-13 1998-08-11 Baylor College Of Medicine Tranformation of cells associated with fluid spaces
US20030068301A1 (en) * 1992-05-14 2003-04-10 Kenneth Draper Method and reagent for inhibiting hepatitis B virus replication
US20040054156A1 (en) * 1992-05-14 2004-03-18 Kenneth Draper Method and reagent for inhibiting hepatitis B viral replication
US5693535A (en) * 1992-05-14 1997-12-02 Ribozyme Pharmaceuticals, Inc. HIV targeted ribozymes
US20030206887A1 (en) * 1992-05-14 2003-11-06 David Morrissey RNA interference mediated inhibition of hepatitis B virus (HBV) using short interfering nucleic acid (siNA)
US20030171311A1 (en) * 1998-04-27 2003-09-11 Lawrence Blatt Enzymatic nucleic acid treatment of diseases or conditions related to hepatitis C virus infection
NZ255028A (en) 1992-07-02 1997-03-24 Hybridon Inc Antisense oligonucleotides resistant to nucleolytic degradation
US5652355A (en) 1992-07-23 1997-07-29 Worcester Foundation For Experimental Biology Hybrid oligonucleotide phosphorothioates
AU6080294A (en) 1992-12-31 1994-08-15 Texas Biotechnology Corporation Antisense molecules directed against genes of the (raf) oncogene family
US6056704A (en) 1993-03-03 2000-05-02 Ide; Masatake Foot-pressure massage stand
EP0616026A1 (en) 1993-03-19 1994-09-21 The Procter & Gamble Company Concentrated cleaning compositions
HUT74597A (en) * 1993-06-23 1997-01-28 Genesys Pharma Inc Antisense oligonucleotides and therapeutic use thereof in human immunodeficiency virus infection
FR2710074B1 (fr) 1993-09-15 1995-12-08 Rhone Poulenc Rorer Sa Gène GRB3-3, ses variants et leurs utilisations.
US5624803A (en) * 1993-10-14 1997-04-29 The Regents Of The University Of California In vivo oligonucleotide generator, and methods of testing the binding affinity of triplex forming oligonucleotides derived therefrom
US5801154A (en) * 1993-10-18 1998-09-01 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of multidrug resistance-associated protein
EP0743859A4 (en) 1993-11-16 1998-10-21 Genta Inc CHEMICAL OLIGONUCLEOSIDE COMPOUNDS
US5908779A (en) * 1993-12-01 1999-06-01 University Of Connecticut Targeted RNA degradation using nuclear antisense RNA
US5578716A (en) * 1993-12-01 1996-11-26 Mcgill University DNA methyltransferase antisense oligonucleotides
WO1995030746A1 (en) * 1994-05-10 1995-11-16 The General Hospital Corporation Antisense inhibition of hepatitis c virus
US6057153A (en) * 1995-01-13 2000-05-02 Yale University Stabilized external guide sequences
US5674683A (en) 1995-03-21 1997-10-07 Research Corporation Technologies, Inc. Stem-loop and circular oligonucleotides and method of using
US5624808A (en) * 1995-03-28 1997-04-29 Becton Dickinson And Company Method for identifying cells committed to apoptosis by determining cellular phosphotyrosine content
EP1489184A1 (en) 1995-06-07 2004-12-22 Inex Pharmaceutical Corp. Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
CA2239976A1 (en) * 1995-09-20 1997-03-27 Paul A. Zamecnik Antisense oligonucleotide chemotherapy for benign hyperplasia or cancer of the prostate
US5998203A (en) * 1996-04-16 1999-12-07 Ribozyme Pharmaceuticals, Inc. Enzymatic nucleic acids containing 5'-and/or 3'-cap structures
AU725262B2 (en) 1996-02-14 2000-10-12 Isis Pharmaceuticals, Inc. Sugar-modified gapped oligonucleotides
BR9708701A (pt) 1996-04-17 2000-01-04 Hoechst Marion Roussel De Gmbh Inibidores anti-sense de expressão do fator de crescimento endotelial vascular.
DE19618797C2 (de) 1996-05-10 2000-03-23 Bertling Wolf Vehikel zum Transport molekularer Substanz
US20040266706A1 (en) 2002-11-05 2004-12-30 Muthiah Manoharan Cross-linked oligomeric compounds and their use in gene modulation
US5898031A (en) 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
DE19631919C2 (de) 1996-08-07 1998-07-16 Deutsches Krebsforsch Anti-Sinn-RNA mit Sekundärstruktur
US6225290B1 (en) * 1996-09-19 2001-05-01 The Regents Of The University Of California Systemic gene therapy by intestinal cell transformation
ATE329015T1 (de) * 1996-10-04 2006-06-15 Derek Nigel John Hart Enzyme mit s-adenosyl-l-homocystein-hydrolase- ähnlicher aktivität.
US5814500A (en) * 1996-10-31 1998-09-29 The Johns Hopkins University School Of Medicine Delivery construct for antisense nucleic acids and methods of use
ATE352614T1 (de) 1996-12-12 2007-02-15 Yissum Res Dev Co Synthetische antisense oligodeoxynukleotide und diese enthaltende pharmazeutische zusammensetzungen
US20030064945A1 (en) * 1997-01-31 2003-04-03 Saghir Akhtar Enzymatic nucleic acid treatment of diseases or conditions related to levels of epidermal growth factor receptors
GB9703146D0 (en) * 1997-02-14 1997-04-02 Innes John Centre Innov Ltd Methods and means for gene silencing in transgenic plants
US6218142B1 (en) * 1997-03-05 2001-04-17 Michael Wassenegger Nucleic acid molecules encoding polypeptides having the enzymatic activity of an RNA-directed RNA polymerase (RDRP)
GB9710475D0 (en) 1997-05-21 1997-07-16 Zeneca Ltd Gene silencing
JP4236812B2 (ja) 1997-09-12 2009-03-11 エクシコン エ/エス オリゴヌクレオチド類似体
WO1999014346A2 (en) 1997-09-19 1999-03-25 Sequitur, Inc. SENSE mRNA THERAPY
GB9720148D0 (en) 1997-09-22 1997-11-26 Innes John Centre Innov Ltd Gene silencing materials and methods
US6506559B1 (en) * 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
US6475726B1 (en) * 1998-01-09 2002-11-05 Cubist Pharmaceuticals, Inc. Method for identifying validated target and assay combinations for drug development
AUPP249298A0 (en) * 1998-03-20 1998-04-23 Ag-Gene Australia Limited Synthetic genes and genetic constructs comprising same I
KR101085210B1 (ko) 1998-03-20 2011-11-21 커먼웰쓰 사이언티픽 앤드 인더스트리얼 리서치 오가니제이션 유전자 발현 조절방법
JP5015373B2 (ja) 1998-04-08 2012-08-29 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション 改良表現型を得るための方法及び手段
US20040214330A1 (en) * 1999-04-07 2004-10-28 Waterhouse Peter Michael Methods and means for obtaining modified phenotypes
AU3751299A (en) 1998-04-20 1999-11-08 Ribozyme Pharmaceuticals, Inc. Nucleic acid molecules with novel chemical compositions capable of modulating gene expression
AR020078A1 (es) 1998-05-26 2002-04-10 Syngenta Participations Ag Metodo para alterar la expresion de un gen objetivo en una celula de planta
GB9827152D0 (en) 1998-07-03 1999-02-03 Devgen Nv Characterisation of gene function using double stranded rna inhibition
US6429308B1 (en) 1998-11-24 2002-08-06 Hisamitsu Pharmaceutical Co., Inc. HIV infection inhibitors
AU1830000A (en) 1998-11-30 2000-06-19 Ribogene, Inc. Methods and compositions for identification of inhibitors of ribosome assembly
US6939712B1 (en) 1998-12-29 2005-09-06 Impedagen, Llc Muting gene activity using a transgenic nucleic acid
AU776150B2 (en) * 1999-01-28 2004-08-26 Medical College Of Georgia Research Institute, Inc. Composition and method for (in vivo) and (in vitro) attenuation of gene expression using double stranded RNA
DE19956568A1 (de) * 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
WO2000063364A2 (en) 1999-04-21 2000-10-26 American Home Products Corporation Methods and compositions for inhibiting the function of polynucleotide sequences
US20040002153A1 (en) * 1999-07-21 2004-01-01 Monia Brett P. Modulation of PTEN expression via oligomeric compounds
GB9925459D0 (en) * 1999-10-27 1999-12-29 Plant Bioscience Ltd Gene silencing
GB9927444D0 (en) 1999-11-19 2000-01-19 Cancer Res Campaign Tech Inhibiting gene expression
DE10160151A1 (de) 2001-01-09 2003-06-26 Ribopharma Ag Verfahren zur Hemmung der Expression eines vorgegebenen Zielgens
DE10100586C1 (de) * 2001-01-09 2002-04-11 Ribopharma Ag Verfahren zur Hemmung der Expression eines Ziegens
US7829693B2 (en) * 1999-11-24 2010-11-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a target gene
RU2164944C1 (ru) * 1999-12-09 2001-04-10 Институт молекулярной биологии им. В.А. Энгельгардта РАН Способ изменения генетических свойств организма
US8202979B2 (en) * 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
AU2001260114A1 (en) 2000-03-14 2001-09-24 Syngenta Participations Ag Protoporphyrinogen oxidase ("protox") genes
US20030084471A1 (en) 2000-03-16 2003-05-01 David Beach Methods and compositions for RNA interference
JP2003526367A (ja) 2000-03-16 2003-09-09 ジェネティカ インコーポレイテッド Rna干渉の方法とrna干渉組成物
CA2404890C (en) 2000-03-30 2013-11-19 Whitehead Institute For Biomedical Research Rna sequence-specific mediators of rna interference
DK2360253T3 (da) 2000-03-30 2014-06-16 Whitehead Biomedical Inst Fremgangsmåde til fremstilling af knockdown-celler eller knockdown-organismer ved hjælp af RNA-sekvensspecifikke formidlere af RNA-interferens og anvendelser deraf
US20100305186A1 (en) 2000-05-30 2010-12-02 Johnson & Johnson Research Pty Limited Methods for mediating gene suppression
US7033801B2 (en) 2000-12-08 2006-04-25 Invitrogen Corporation Compositions and methods for rapidly generating recombinant nucleic acid molecules
BRPI0115814B8 (pt) 2000-12-01 2021-05-25 Europaeisches Laboratorium Fuer Molekularbiologie Embl moléculas de rna de filamento duplo, seu método de preparação e composição farmacêutica compreendendo as mesmas
JP2004532616A (ja) 2000-12-28 2004-10-28 ジョンソン・アンド・ジョンソン・リサーチ・ピー・ティー・ワイ・リミテッド 二本鎖rna仲介遺伝子抑制
WO2003035869A1 (de) 2001-10-26 2003-05-01 Ribopharma Ag Verwendung einer doppelsträngigen ribonukleinsäure zur gezielten hemmung der expression eines vorgegebenen zielgens
US7423142B2 (en) * 2001-01-09 2008-09-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
EP1229134A3 (en) * 2001-01-31 2004-01-28 Nucleonics, Inc Use of post-transcriptional gene silencing for identifying nucleic acid sequences that modulate the function of a cell
JP2004532022A (ja) * 2001-03-26 2004-10-21 サーナ・セラピューティクス・インコーポレイテッド B型肝炎ウイルスおよびc型肝炎ウイルスの複製のオリゴヌクレオチド媒介性阻害
WO2002097114A2 (en) * 2001-05-29 2002-12-05 Sirna Therapeutics, Inc. Nucleic acid treatment of diseases or conditions related to levels of ras, her2 and hiv
US20040019001A1 (en) * 2002-02-20 2004-01-29 Mcswiggen James A. RNA interference mediated inhibition of protein typrosine phosphatase-1B (PTP-1B) gene expression using short interfering RNA
US20040006035A1 (en) * 2001-05-29 2004-01-08 Dennis Macejak Nucleic acid mediated disruption of HIV fusogenic peptide interactions
DE50101770D1 (de) 2001-06-01 2004-04-29 Mobilkom Austria Ag & Co Kg Wi Verfahren zur Bestimmung des Standortes einer Mobilstation in einem Mobilfunksystem
US20030140362A1 (en) * 2001-06-08 2003-07-24 Dennis Macejak In vivo models for screening inhibitors of hepatitis B virus
EP2386637B1 (en) 2001-09-28 2018-05-16 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Microrna molecules
DE10163098B4 (de) 2001-10-12 2005-06-02 Alnylam Europe Ag Verfahren zur Hemmung der Replikation von Viren
US20040121348A1 (en) * 2001-10-26 2004-06-24 Ribopharma Ag Compositions and methods for treating pancreatic cancer
DE10230997A1 (de) * 2001-10-26 2003-07-17 Ribopharma Ag Medikament zur Erhöhung der Wirksamkeit eines Rezeptor-vermittelt Apoptose in Tumorzellen auslösenden Arzneimittels
JP2005506087A (ja) * 2001-10-26 2005-03-03 リボファーマ アーゲー プラス鎖rnaウイルスによる感染症を処置するための2本鎖リボ核酸の使用
DE10154113A1 (de) 2001-11-03 2003-05-15 Opel Adam Ag Frontstruktur eines Kraftfahrzeuges
DE10202419A1 (de) * 2002-01-22 2003-08-07 Ribopharma Ag Verfahren zur Hemmung der Expression eines durch eine Chromosomen-Aberration entstandenen Zielgens
WO2003064621A2 (en) 2002-02-01 2003-08-07 Ambion, Inc. HIGH POTENCY siRNAS FOR REDUCING THE EXPRESSION OF TARGET GENES
ES2312753T5 (es) * 2002-02-14 2012-12-13 City Of Hope Procedimientos para producir moléculas de ARN de interferencia en células de mamífero y usos terapéuticos para tales moléculas
EP1572923A4 (en) * 2002-03-06 2007-10-31 Rigel Pharmaceuticals Inc NEW METHOD FOR THE INTRODUCTION AND INTRA-CELLULAR SYNTHESIS OF SIRNA MOLECULES
CA2479530A1 (en) * 2002-03-20 2003-10-02 Massachusetts Institute Of Technology Hiv therapeutic
US20030180756A1 (en) * 2002-03-21 2003-09-25 Yang Shi Compositions and methods for suppressing eukaryotic gene expression
US20040053876A1 (en) * 2002-03-26 2004-03-18 The Regents Of The University Of Michigan siRNAs and uses therof
AU2003237686A1 (en) 2002-05-24 2003-12-12 Max-Planck Gesellschaft Zur Forderung Der Wissenschaften E.V. Rna interference mediating small rna molecules
AU2003273995A1 (en) 2002-06-05 2003-12-22 Invitrogen Corporation Methods and compositions for synthesis of nucleic acid molecules using multiple recognition sites
AU2003276666A1 (en) 2002-06-12 2003-12-31 Ambion, Inc. Methods and compositions relating to polypeptides with rnase iii domains that mediate rna interference
EP2314690A1 (en) 2002-07-10 2011-04-27 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. RNA-interference by single-stranded RNA molecules
SI3222724T1 (sl) 2002-08-05 2019-03-29 Silence Therapeutics Gmbh Nadaljnje nove oblike molekul interferenčne RNA
US20040241854A1 (en) * 2002-08-05 2004-12-02 Davidson Beverly L. siRNA-mediated gene silencing
US8729036B2 (en) * 2002-08-07 2014-05-20 University Of Massachusetts Compositions for RNA interference and methods of use thereof
US20040137471A1 (en) * 2002-09-18 2004-07-15 Timothy Vickers Efficient reduction of target RNA's by single-and double-stranded oligomeric compounds
WO2004029212A2 (en) 2002-09-25 2004-04-08 University Of Massachusetts In vivo gene silencing by chemically modified and stable sirna
US8604183B2 (en) 2002-11-05 2013-12-10 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2′-modified nucleosides for use in gene modulation
JP2006507841A (ja) 2002-11-14 2006-03-09 ダーマコン, インコーポレイテッド 機能的siRNAおよび超機能的siRNA
AU2003295539A1 (en) 2002-11-15 2004-06-15 University Of Massachusetts Allele-targeted rna interference
WO2004047764A2 (en) * 2002-11-22 2004-06-10 University Of Massachusetts Modulation of hiv replication by rna interference
WO2004063375A1 (en) 2003-01-15 2004-07-29 Hans Prydz OPTIMIZING siRNA BY RNAi ANTISENSE
US20040224328A1 (en) * 2003-01-15 2004-11-11 Hans Prydz siRNA screening method
EP2314687B1 (en) 2003-01-17 2017-12-27 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Inducible small interfering rna (sirna) expression constructs for targeted gene silencing
WO2004065600A2 (en) 2003-01-17 2004-08-05 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Rna interference by palindromic or modified rna molecules
KR20050115231A (ko) 2003-02-10 2005-12-07 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 포유동물 세포의 조절
CN1750752A (zh) * 2003-02-19 2006-03-22 联邦科学和工业研究组织 使用短dsRNA序列在植物中进行有效的基因沉默
DK1633767T3 (en) 2003-06-02 2019-03-25 Univ Massachusetts METHODS AND COMPOSITIONS FOR MANAGING THE EFFECT OF RNA SILENCING
US6998203B2 (en) * 2003-08-01 2006-02-14 Intel Corporation Proximity correcting lithography mask blanks
JP5081630B2 (ja) 2005-01-07 2012-11-28 アルナイラム ファーマシューティカルズ, インコーポレイテッド RSVのRNAi調節及びその治療上の使用方法
CN103649396B (zh) 2011-07-08 2016-09-14 因特瓦产品有限责任公司 用于缝制车辆内装部件的方法以及由该方法形成的部件

Also Published As

Publication number Publication date
US8329463B2 (en) 2012-12-11
RU2322500C2 (ru) 2008-04-20
PL365784A1 (pl) 2005-01-10
US20110306651A1 (en) 2011-12-15
WO2002044321A2 (en) 2002-06-06
CZ308053B6 (cs) 2019-11-27
US20040259248A1 (en) 2004-12-23
JP4095895B2 (ja) 2008-06-04
US20110020234A1 (en) 2011-01-27
US8933044B2 (en) 2015-01-13
CZ2011452A3 (pl) 2003-10-15
US20040259247A1 (en) 2004-12-23
US20040229266A1 (en) 2004-11-18
US20080269147A1 (en) 2008-10-30
AU2002235744B2 (en) 2007-04-19
DE60130583T2 (de) 2008-06-12
DK1407044T4 (en) 2017-12-04
KR100909681B1 (ko) 2009-07-29
JP2007111053A (ja) 2007-05-10
US20170327822A1 (en) 2017-11-16
US20200299693A1 (en) 2020-09-24
DE60130583D1 (de) 2007-10-31
HUP0302557A3 (en) 2005-12-28
JP6325974B2 (ja) 2018-05-16
US20110112283A1 (en) 2011-05-12
BR0115814A (pt) 2004-03-23
AU2010212438A1 (en) 2010-09-09
LTPA2021005I1 (pl) 2021-06-10
IL155991A0 (en) 2003-12-23
US20070093445A1 (en) 2007-04-26
MXPA03004836A (es) 2005-09-08
US20110054159A1 (en) 2011-03-03
DE60130583T3 (de) 2018-03-22
KR20040012686A (ko) 2004-02-11
RU2007131270A (ru) 2009-02-27
US20100316703A1 (en) 2010-12-16
US20110014123A1 (en) 2011-01-20
US20100292456A1 (en) 2010-11-18
US20050234007A1 (en) 2005-10-20
US20150141492A1 (en) 2015-05-21
ATE373724T2 (de) 2007-10-15
US7078196B2 (en) 2006-07-18
ES2215494T1 (es) 2004-10-16
US9567582B2 (en) 2017-02-14
ES2215494T5 (es) 2017-12-28
US8765930B2 (en) 2014-07-01
CA2429814C (en) 2014-02-18
JP6189576B2 (ja) 2017-08-30
EP2348133B1 (en) 2014-07-16
US8362231B2 (en) 2013-01-29
EP1407044B2 (en) 2017-11-15
TR200401292T3 (tr) 2004-07-21
JP2004526422A (ja) 2004-09-02
NO335426B1 (no) 2014-12-15
AU3574402A (en) 2002-06-11
CN1568373A (zh) 2005-01-19
IL207727A (en) 2014-04-30
IL155991A (en) 2013-06-27
EP1407044A2 (en) 2004-04-14
US20050026278A1 (en) 2005-02-03
AU2010212438B2 (en) 2013-05-09
WO2002044321A3 (en) 2003-10-23
US20130125259A1 (en) 2013-05-16
SI1407044T1 (sl) 2008-04-30
CZ302719B6 (cs) 2011-09-21
ES2728168T3 (es) 2019-10-22
US8993745B2 (en) 2015-03-31
US20110070162A1 (en) 2011-03-24
NZ525888A (en) 2006-04-28
CN100523215C (zh) 2009-08-05
US8853384B2 (en) 2014-10-07
RU2470073C2 (ru) 2012-12-20
CA2429814A1 (en) 2002-06-06
JP2015061534A (ja) 2015-04-02
US8895718B2 (en) 2014-11-25
KR100872437B1 (ko) 2008-12-05
US8796016B2 (en) 2014-08-05
DK1407044T3 (da) 2008-01-28
US7056704B2 (en) 2006-06-06
JP2009284915A (ja) 2009-12-10
JP5749892B2 (ja) 2015-07-15
HU230458B1 (hu) 2016-07-28
KR20080069602A (ko) 2008-07-28
EP1873259A1 (en) 2008-01-02
HK1204798A1 (en) 2015-12-04
US8372968B2 (en) 2013-02-12
CZ20031839A3 (cs) 2003-10-15
EP1873259B1 (en) 2012-01-25
SI1407044T2 (en) 2018-03-30
US20050234006A1 (en) 2005-10-20
US20110027883A1 (en) 2011-02-03
AU2002235744B8 (en) 2007-06-28
US20100010207A1 (en) 2010-01-14
CY1119062T1 (el) 2018-01-10
HUP0302557A2 (hu) 2003-10-28
JP4494392B2 (ja) 2010-06-30
US8778902B2 (en) 2014-07-15
US20110065109A1 (en) 2011-03-17
HK1110631A1 (en) 2008-07-18
US8445237B2 (en) 2013-05-21
NO20032464L (no) 2003-07-21
BRPI0115814B1 (pt) 2019-10-15
AU2007203385A1 (en) 2007-08-09
AU2007203385B2 (en) 2010-05-20
AU2010212438A2 (en) 2010-09-23
EP2348133A1 (en) 2011-07-27
US20110065773A1 (en) 2011-03-17
ES2215494T3 (es) 2008-04-01
JP2010131031A (ja) 2010-06-17
NO20032464D0 (no) 2003-05-30
NO20130246L (no) 2003-07-21
ZA200303929B (en) 2004-07-19
NO333713B1 (no) 2013-09-02
HK1139433A1 (en) 2010-09-17
BRPI0115814B8 (pt) 2021-05-25
US10633656B2 (en) 2020-04-28
US8895721B2 (en) 2014-11-25
US20090155174A1 (en) 2009-06-18
DK2813582T3 (en) 2017-07-31
HK1139181A1 (en) 2010-09-10
EP1407044B1 (en) 2007-09-19
PT1407044E (pt) 2008-01-02

Similar Documents

Publication Publication Date Title
US20200299693A1 (en) Rna interference mediating small rna molecules
EP2813582B1 (en) RNA interference mediating small RNA molecules
AU2002235744A1 (en) RNA interference mediating small RNA molecules