EP3410440B1 - Single-poly-speicheranordnung mit einem geteilten, tief dotierten bereich und löschspannungen - Google Patents

Single-poly-speicheranordnung mit einem geteilten, tief dotierten bereich und löschspannungen Download PDF

Info

Publication number
EP3410440B1
EP3410440B1 EP18185124.7A EP18185124A EP3410440B1 EP 3410440 B1 EP3410440 B1 EP 3410440B1 EP 18185124 A EP18185124 A EP 18185124A EP 3410440 B1 EP3410440 B1 EP 3410440B1
Authority
EP
European Patent Office
Prior art keywords
voltage
erase
line
memory
memory cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18185124.7A
Other languages
English (en)
French (fr)
Other versions
EP3410440A1 (de
Inventor
Tsung-Mu Lai
Wen-Hao Ching
Chen-Hao Po
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
eMemory Technology Inc
Original Assignee
eMemory Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by eMemory Technology Inc filed Critical eMemory Technology Inc
Publication of EP3410440A1 publication Critical patent/EP3410440A1/de
Application granted granted Critical
Publication of EP3410440B1 publication Critical patent/EP3410440B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0433Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and one or more separate select transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0441Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates
    • G11C16/0458Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates comprising two or more independent floating gates which store independent data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/12Programming voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/20Initialising; Data preset; Chip identification
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/24Bit-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/065Differential amplifiers of latching type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/10Decoders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • H01L29/42328Gate electrodes for transistors with a floating gate with at least one additional gate other than the floating gate and the control gate, e.g. program gate, erase gate or select gate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/60Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the control gate being a doped region, e.g. single-poly memory cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components

Definitions

  • This invention relates to a memory array, and more particularly, a memory array with memory cells sharing one deep doped region.
  • An electrically rewritable nonvolatile memory is a type of memory that retains information it stores even when no power is supplied to memory blocks and allows on-board rewriting of a program. Due to the wide range of applications for various uses, there is a growing need for a nonvolatile memory to be embedded in the same chip with the main circuit, especially for personal electronic devices having strict requirements for circuit area.
  • a nonvolatile memory cell of prior art comprises one floating gate transistor for retaining data, and one or two select transistors for enabling the floating gate transistor to perform corresponding operations.
  • the floating gate may be controlled by coupling elements for program operations and erase operations. Since memory cells in different memory pages should be controlled independently, memory cells in different memory pages are usually disposed in isolated regions. However, due to the spacing rule of the manufacture, the spare area between different isolated regions can significantly increase the circuit area. Furthermore, since no elements are allowed to be disposed on the spare area, the increased circuit area is simply wasted. Therefore, how to reduce the circuit area and use the circuit area more efficiently has become an issue to be solved.
  • WO 2011/096978 discloses a 5-transistor non-volatile memory (NVM) cell that facilitates an increase in the voltage difference between the floating gate of a programmed NVM cell in an NVM cell array and the floating gate of a non-programmed NVM cell in the array.
  • NVM non-volatile memory
  • each memory cell may include a floating gate transistor for storing the data, two passing gate transistors for selecting the memory cell for corresponding operations, a control transistor, and an erase transistor. By applying different voltages to the control transistor and the erase transistor, the memory cell can be programmed or erased accordingly.
  • US 2014/177338 also discloses 5-element non-volatile memory cell having a floating gate transistor, two selection transistors, a control capacitor, and an erase capacitor.
  • the memory cell can be programmed or erased according to the voltages applied to the transistors and capacitors.
  • US 2013/234227 discloses an erasable programmable single-poly nonvolatile memory cell having a floating gate transistor, a selection transistor, an erase gate region, and a control gate region.
  • the program operations and erase operations are also performed by mainly applying corresponding voltages through the erase gate regions and the control gate regions.
  • the present invention aims at providing a memory array with small chip area without violating the spacing rule of the manufacturing process.
  • the claimed memory array includes a plurality of memory pages, each memory page includes a plurality of memory cells, and each memory cell includes a floating gate module, a control element, and an erase element.
  • the floating gate module includes a floating gate transistor.
  • the floating gate module can control the floating gate transistor according to a source line, a bit line and a word line.
  • the floating gate transistor has a first terminal, a second terminal and a floating gate.
  • the control element has a body terminal coupled to a control line, a first terminal coupled to the body terminal, a second terminal coupled to the body terminal, and a control terminal coupled to the floating gate.
  • the erase element has a body terminal for receiving a first voltage during a program operation and a program inhibit of the memory cell and receiving a second voltage during an erase operation of the memory cell, a first terminal coupled to an erase line, a second terminal coupled to the first terminal of the erase element or being floating, and a control terminal coupled to the floating gate.
  • the floating gate module is disposed in a first well, the erase element is disposed in a second well, and the control element is disposed in a third well.
  • the first well, the second well and the third well are disposed in a deep doped region.
  • Memory cells of the plurality of memory pages are all disposed in the deep doped region.
  • the control line is at the first voltage during the program operation, and the erase line is at the second voltage during the erase operation.
  • FIG. 1 shows a memory array 10 according to one embodiment of the present invention.
  • the memory array 10 includes M memory pages MP1 to MPM.
  • Each memory page MP1 to MPM includes N memory cells.
  • the memory page MP1 includes memory cells 100 1,1 to 100 1,N
  • the memory page MPM includes memory cells 100 M,1 to 100 M,N .
  • M and N are positive integers.
  • memory cells in the same memory page may be coupled to a same control line, a same erase line, and a same word line, but may be coupled to different source lines and different bit lines.
  • the memory cells 100 1,1 to 100 1,N in the same memory page MP1 are coupled to the same control line CL1, the same erase line EL1, and the same word line WL1.
  • the memory cell 100 1,1 is coupled to a source line SL1 and a bit line BL1 while the memory cell 100 1,N is coupled to a source line SLN and a bit line BLN.
  • memory cells in different memory pages but in the same column may be coupled to different control lines, different erase lines, and different word lines, but may be coupled to a same source line and a same bit line.
  • the memory cells 100 1,1 and 100 M,1 are disposed in the same column but in different memory pages MP1 and MPM.
  • the memory cells 100 1,1 and 100 M,1 are coupled to the same source line SL1 and the same bit line BL1.
  • the memory cell 100 1,1 is coupled to the control line CL1, the erase line EL1, and the word line WL1 while the memory cell 100 M,1 is coupled to the control line CLM, the erase line ELM, and the word line WLM.
  • each memory cell includes a floating gate module 110, a control element 120, and an erase element 130.
  • the floating gate module 110 includes a floating gate 112, a source transistor 114, and a bit transistor 116.
  • the floating gate module 110 can control the floating gate transistor 112 according to a source line, a bit line and a word line.
  • the floating gate transistor 112 has a first terminal, a second terminal and a floating gate.
  • the source transistor 114 has a first terminal, a second terminal, and a control terminal.
  • the first terminal of the source transistor 114 is coupled to a corresponding source line.
  • the first terminal of the source transistor 114 of the memory cell 100 1,1 may be coupled to the source line SL1
  • the first terminal of the source transistor 114 of the memory cell 100 1,N may be coupled to the source line SLN.
  • the second terminal of the source transistor 114 is coupled to the first terminal of the floating gate transistor 112, and the control terminal of the source transistor 114 is coupled to a corresponding word line WL1.
  • the control terminal of the source transistor 114 of the memory cell 100 1,1 may be coupled to the word line WL1, and the control terminal of the source transistor 114 of the memory cell 100 M,1 may be coupled to the word line WLM.
  • the bit transistor 116 has a first terminal, a second terminal, and a control terminal.
  • the first terminal of the bit transistor 116 is coupled to the second terminal of the floating gate transistor 112, the second terminal of the bit transistor 116 is coupled to a corresponding bit line, and the control terminal of the bit transistor 116 is coupled to a corresponding word line.
  • the second terminal of the bit transistor 116 of the memory cell 100 1,1 may be coupled to the bit line BL1
  • the second terminal of the bit transistor 116 of the memory cell 100 1,N may be coupled to the bit line BLN.
  • the control terminal of the bit transistor 116 of the memory cell 100 1,1 may be coupled to the word line WL1, and the control terminal of the bit transistor 116 of the memory cell 100 M,1 may be coupled to the word line WLM.
  • the control element 120 has a first terminal coupled to the body terminal, a second terminal coupled to the body terminal, a control terminal coupled to the floating gate of the floating gate transistor 112, and a body terminal coupled to a corresponding control line.
  • the body terminal of the control element 120 of the memory cell 100 1,1 may be coupled to the control line CL1
  • the body terminal of the control element 120 of the memory cell 100 M,1 may be coupled to the control line CLM.
  • the erase element 130 has a first terminal, a second terminal, a control terminal, and a body terminal.
  • the first terminal 134 of the erase element 130 is coupled to a corresponding erase line.
  • the first terminal of the erase element 130 of the memory cell 100 1,1 is coupled to the erase line EL1
  • the first terminal of the erase element 130 of the memory cell 100 M,1 is coupled to the erase line ELM.
  • the second terminal 136 of the erase element 130 is coupled to the first terminal of the erase element 130 or floating
  • the control terminal 138 of the erase element 130 is coupled to the floating gate of the floating gate transistor 112
  • the body terminal 132 of the erase element 130 is coupled to a well bias line WBL.
  • FIG. 2 shows a layout of the memory array 10 according to one embodiment of the present invention.
  • the floating gate module 110 of the memory cell 110 1,1 can be disposed in an active region AAF1 of a first P-well PW1
  • the erase element 130 of the memory cell 110 1,1 can be disposed in an active region AAE1 of a first N-well NW1
  • the control element 120 of the memory cell 110 1,1 can be disposed in an active region AAC1 of a second P-well PW2.
  • the first P-well PW1, the first N-well NW1 and the second P-well PW2 are disposed in the same deep doped region DR.
  • the deep doped region DR can be a deep N-well or an N-type buried layer.
  • FIG. 3 shows a section view of the erase elements 130 according to the layout in FIG. 2 .
  • the erase element 130 has a structure similar to a P-type metal-oxide-semiconductor transistor. That is, the body terminal 132 of the erase element 130 is at the N-well NW, and the first terminal 134 and the second terminal 136 are two P-type doped regions P+ disposed in the N-well NW.
  • the well bias line WBL is coupled to the body terminal 132 directly. However, in some embodiments, the well bias line WBL may also be coupled to the N-well NW through a contact or an N-type doped region in the N-well NW.
  • the floating gate of the floating gate transistor 112 is coupled to the control terminal 138 of the erase element 130 forming a gate structure. Since the erase line EL is coupled to the first terminal 134 of the erase element 130, the memory cells 110 1,1 to 110 1,N , ..., and 110 M,1 to 110 M,N can function correctly even with the their body terminals 132 of the erase elements 130 coupled to the same well bias line WBL. That is, the memory cells 110 1,1 to 110 1,N , ..., and 110 M,1 to 110 M,N can be disposed in the same deep doped region DR, which is coupled to the same well bias line WBL.
  • the floating gate module 110 of the memory cell 110 1,N can be disposed in an active region AAF2 of a third P-well PW3, the erase element 130 of the memory cell 110 1,N can be disposed in an active region AAE2 of a second N-well NW2, and the control element 120 of the memory cell 110 1,N can be disposed in the active region AAC1 of the second P-well PW2; however, the third P-well PW3 and the second N-well NW2 are still disposed in the same deep doped region DR.
  • the floating gate modules, the control elements, and the erase elements of the memory cells 110 M,1 to 110 M,N may be disposed in different wells as shown in FIG. 2
  • the different wells of the memory cells 110 M,1 to 110 M,N can still be disposed in the same deep doped region DR.
  • memory cells 110 1,1 to 110 1,N , ..., and 110 M,1 to 110 M,N of the M memory pages MP1 to MPM can all be disposed in the same deep doped region DR. Since different memory pages MP1 to MPM in the memory array 10 are disposed in one deep doped region DR, the spacing rules between deep doped regions will no longer be used to limit the circuit area of the memory array 10, and the circuit area of the memory array 10 can be reduced significantly.
  • the control elements 120 of the memory cells in the same memory page can be disposed in the same second P-well PW2.
  • the floating gate modules 110 of the memory cells 110 1,1 to 110 1,N can be disposed in two different P-wells PW1 and PW3, which are disposed in opposite sides of the second P-well PW2.
  • the erase elements 130 of the memory cells 110 1,1 to 110 1,N can be disposed in two different N-wells NW1 and NW2, which are disposed in opposite sides of the second P-well PW2. Therefore, the layout of the memory array 10 will not extend to one single direction, and the layout of the memory array 10 can be more flexible.
  • the floating gate modules 110 of the memory cells in the same memory page can also be disposed in one P-well and the erase elements 130 of the memory cells in the same memory page can be disposed in one N-well according to the system requirements.
  • FIG. 4 shows voltages of the signals during a program operation of the memory cell 100 1,1 in the memory array 10.
  • the first voltage VPP is substantially equal to the second voltage VEE.
  • the first voltage VPP is greater than the third voltage VEE', the third voltage VEE' is greater than the fourth voltage VINH1, and the fourth voltage VINH1 is greater than the fifth voltage VSS.
  • the first voltage VPP is greater than the sixth voltage VPP', and the sixth voltage VPP' is greater than the fifth voltage VSS.
  • the difference between the third voltage VEE' and the fifth voltage VSS is greater than half of the difference between the first voltage VPP and the fifth voltage VSS.
  • the difference between the fourth voltage VINH1 and the fifth voltage VSS is smaller than half of the difference between the first voltage VPP and the fifth voltage VSS, and the difference between the sixth voltage VPP' and the fifth voltage VSS is smaller than half of the difference between the first voltage VPP and the fifth voltage VSS.
  • the first voltage VPP is 18V
  • the second voltage VEE is in a range between 17V and 18V
  • the fifth voltage VSS is 0V
  • the third voltage VEE' may be 13V
  • the fourth voltage VINH1 may be 6V
  • the sixth voltage VPP' may also be 6V.
  • the control line CL1 is at the first voltage VPP
  • the erase line EL1 is at the third voltage VEE'
  • the word line WL1 is at the fourth voltage VINH1
  • the source line SL is at the fifth voltage VSS
  • the bit line BL is at the fifth voltage VSS.
  • control element 120 of the memory cell 100 1,1 is coupled to a high voltage by the control line CL1.
  • the source transistor 114 and the bit transistor 116 are turned on so the first terminal and the second terminal of the floating gate transistor 112 of the memory cell 100 1,1 are pulled down to a low voltage. Therefore, the high voltage difference applied to the floating gate transistor 112 will induce FN (Fowler Nordheim) electron tunneling injection to the floating gate, and the memory cell 100 1,1 can be programmed.
  • the voltage of the well bias line WBL should not be smaller than the greatest voltage of all the signals. In this case, the well bias line WBL would be at the first voltage VPP.
  • the memory cell 100 1,N may perform a program inhibit operation during the program operation of the memory cell 100 1,1 .
  • the control line CL1 is at the first voltage VPP
  • the erase line EL1 is at the third voltage VEE'
  • the word line WL1 is at the fourth voltage VINH1
  • the source line SLN is at a fourth voltage VINH1
  • the bit line BLN is at the fourth voltage VINH1.
  • the memory cell 100 1,N is coupled to the same control line CL1, the erase line EL1, and the word line WL1 as the memory cell 100 1,1 , the memory cell 100 1,N will not be programmed due to the effect of channel boost caused by the source transistor 114 and the bit transistor 116 of the memory cell 100 1,N . That is, the voltages of the first terminal and the second terminal of the floating gate transistor 112 are boosted to a voltage level higher than the fourth voltage VINH1, so the floating gate of the memory cell 100 1,N is not able to capture enough electrons and the memory cell 100 1,N will not be programmed. Also, since the control line CL1 is at the first voltage VPP, the well bias line WBL is still at the first voltage VPP during the program inhibit operation of the memory cell 100 1,N .
  • a control line CLM coupled to an unselected memory cell 100 M,1 in an unselected memory page MPM is at the sixth voltage VPP'
  • an erase line ELM coupled to the unselected memory cell 100 M,1 is at the third voltage VEE'
  • a word line WLM coupled to the unselected memory cell 100 M,1 is at the fourth voltage VINH1.
  • the erase line ELM can be at the third voltage VEE' during the program operation of the memory cell 100 1,1 , and the difference between the third voltage VEE' and the fifth voltage VSS can be slightly greater than half of the difference between the first voltage VPP and the fifth voltage VSS. In this case, the erase element 130 will not breakdown and the memory cell 100 M,1 will not be programmed unexpectedly.
  • the voltage of the control line CLM should not be too low; otherwise, the memory cell 100 M,1 may be unstable. Therefore, the control line CLM is at the sixth voltage VPP' during the program operation of the memory cell 100 1,1 , and the difference between the sixth voltage VPP' and the fifth voltage VSS can be slightly smaller than half of the difference between the first voltage VPP and the fifth voltage VSS. In this case, the erase element 130 can remain stable.
  • the word line may be at the fourth voltage VINH1 for reducing the gate-induced drain leakage (GIDL) current.
  • GIDL gate-induced drain leakage
  • the source line SLN and the bit line BLN coupled to the memory cell 100 M,N are at the fourth voltage VINH1.
  • the big voltage difference may cause GIDL currents at the source transistor 114 and the bit transistor 116 of the memory cell 100 M,N .
  • the word line WLM at the fourth voltage VINH1 can avoid the GIDL currents efficiently while not affecting the operations of other memory cells.
  • FIG. 5 shows voltages of the signals during an erase operation of the memory cell 100 1,1 in the memory array 10.
  • the erase line EL1 is at the second voltage VEE
  • the word line WL1 is at the fourth voltage VINH1 or the fifth voltage VSS
  • the source line SL1 is at the fourth voltage VINH1
  • the bit line BL1 is at the fourth voltage VINH1
  • the control line CL1 is at the fifth voltage VSS.
  • the high voltage of the erase line EL1 can cause FN electron tunneling ejection so the memory cell 100 1,1 can be erased.
  • the erase line EL1 since the erase line EL1 has the greatest voltage, that is, the second voltage VEE, among all the signals during the erase operation of the memory cell 100 1,1 , the well bias line WBL would be at the second voltage VEE.
  • the memory array 10 can be erased by page. That is, memory cells at the same memory page, such as the memory cells 100 1,1 to 100 1,N in the memory page MP1, will be erased at the same time.
  • the source lines SL1 to SLN and the bit lines BL1 to BLN coupled to the memory cells 100 1,1 to 100 1,N may all be at a same rather low voltage.
  • the source lines SL1 to SLN and the bit lines BL1 to BLN may all be at the fourth voltage VINH1 or at the fifth voltage VSS.
  • the difference between the fourth voltage VINH1 and the fifth voltage VSS can be smaller than half of the difference between the second voltage VEE and the fifth voltage VSS.
  • the erase line ELM can be at the third voltage VEE'.
  • the difference between the third voltage VEE' and the fifth voltage VSS can be slightly greater than half of the difference between the second voltage VEE and the fifth voltage VSS.
  • the voltage of the erase line ELM is not high enough to erase the memory cell 100 M,1 and is not low enough to make the erase element 130 breakdown.
  • the control line CLM is at the sixth voltage VPP' so that the memory cell 100 M,1 will not be programmed or erased unexpectedly by the erase line ELM.
  • the difference between the sixth voltage VPP' and the fifth voltage VSS is smaller than half of the difference between the second voltage VEE and the fifth voltage VSS.
  • the word line WLM, the source line SL1, and the bit line BL1 can be at approximate voltages so that the memory cell 100 M,1 will not be programmed or erased unexpectedly by the erase line ELM while the GIDL current can be prevented.
  • the word line WLM, the source line SL1, and the bit line BL1 can be at the fourth voltage VINH1.
  • the memory array can be erased by sector. That is, memory cells in the memory array can all be erased at the same time.
  • FIG. 6 shows a memory array 20 according to one embodiment of the present invention.
  • the memory arrays 10 and 20 have similar structures. The difference between these two is in that the memory cells 200 1,1 to 200 1,N , ..., and 200 M,1 to 200 M,N are all coupled to the same erase line EL0, so the memory cells 200 1,1 to 200 1,N , ..., and 200 M,1 to 200 M,N in the memory array 20 will all be erased at the same time.
  • FIG. 7 shows voltages of the signals during an erase operation of the memory cell 200 1,1 in the memory array 20.
  • the erase line EL0 is at the second voltage VEE
  • the control line CL1 is at the fifth voltage VSS
  • the source line SL1 and the bit line BL1 are both at the fourth voltage VINH1 or at the fifth voltage VSS
  • the word line is at the fourth voltage VINH1 or at the fifth voltage VSS.
  • the high voltage of the erase line EL0 can cause FN electron tunneling ejection so the memory cell 200 1,1 can be erased. Since the memory cells 200 1,1 to 200 1,N , ..., and 200 M,1 to 200 M,N in the memory array 20 are erased at the same time, voltages of the signals received by all the memory cells 200 1,1 to 200 1,N , ..., and 200 M,1 to 200 M,N can be the same.
  • the memory array 20 can be operated with the same principle as the memory array 10 during the program operation and the program inhibit operation as shown in FIG. 4 .
  • the memory cells 200 1,1 to 200 1,N , ..., and 200 M,1 to 200 M,N of the memory array 20 can all be disposed in the same deep doped region. Since different memory pages MP1 to MPM in the memory array 20 are disposed in one deep doped region, the spacing rules between deep doped regions will no longer be used to limit the circuit area of the memory array 20, and the circuit area of the memory array 20 can be reduced significantly. In addition, since all the memory cells 200 1,1 to 200 1,N , ..., and 200 M,1 to 200 M,N of the memory array 20 are coupled to the same erase line, the driving circuit for providing the erase line can be simplified, which can further reduce the chip area required by the memory array 20.
  • FIG. 8 shows a memory array 30 according to an example not covered by the claims.
  • the memory array 30 has the similar structure as the memory array 10. The difference between these two is in that each of the memory cells 300 1,1 to 300 1,N , ..., and 300 M,1 to 300 M,N has a floating gate module 310, a control element 120 and an erase element 130.
  • the floating gate module 310 includes a floating gate 312 and a source transistor 314.
  • the floating gate transistor 312 has a first terminal, a second terminal, and a floating gate.
  • the second terminal of the floating gate transistor 312 is coupled to a corresponding bit line.
  • the second terminal of the floating gate transistor 312 of the memory cell 300 1,1 is coupled to the bit line BL1
  • the second terminal of the floating gate transistor 312 of the memory cell 300 1,N is coupled to the bit line BLN.
  • the floating gate of the floating gate transistor 312 is coupled to the control element 120 and the erase element 130.
  • the source transistor 314 has a first terminal, a second terminal, and a control terminal.
  • the first terminal of the source transistor 314 is coupled to a corresponding source line.
  • the first terminal of the source transistor 314 of the memory cell 300 1,1 can be coupled to the source line SL1
  • the first terminal of the source transistor 314 of the memory cell 300 1,N can be coupled to the source line SLN.
  • the second terminal of the source transistor 314 is coupled to the first terminal of the floating gate transistor 112, and the control terminal of the source transistor 314 is coupled to a corresponding word line.
  • the control terminal of the source transistor 314 of the memory cell 300 1,1 can be coupled to the word line WL1
  • the control terminal of the source transistor 314 of the memory cell 300 M,1 can be coupled to the word line WLM.
  • FIG. 9 shows voltages of the signals during a program operation of the memory cell 300 1,1 in the memory array 30.
  • the control line CL1 is at the first voltage VPP
  • the erase line EL1 is at the third voltage VEE'
  • the word line WL1 is at the fourth voltage VINH1
  • the source line SL1 is at the fifth voltage VSS
  • the bit line BL1 is at the fifth voltage VSS.
  • control element 120 of the memory cell 300 1,1 is coupled to a high voltage by the control line CL1.
  • the source transistor 314 is turned on so the first terminal and the second terminal of the floating gate transistor 312 of the memory cell 300 1,1 are pulled down to a low voltage. Therefore, the high voltage difference applied to the floating gate transistor 312 will induce FN (Fowler Nordheim) electron tunneling injection to the floating gate, and the memory cell 300 1,1 can be programmed.
  • the voltage of the well bias line WBL should not be smaller than the greatest voltage of all the signals. In this case, the well bias line WBL would be the first voltage VPP.
  • the memory cell 300 1,N may perform a program inhibit operation during the program operation of the memory cell 300 1,1 .
  • the control line CL1 is at the first voltage VPP
  • the erase line EL1 is at the third voltage VEE'
  • the word line WL1 is at the fourth voltage VINH1
  • the source line SLN is at a seventh voltage VINH2
  • the bit line BLN is at the seventh voltage VINH2.
  • the bit line BLN Since the second terminal of the floating gate transistor 312 is coupled to the corresponding bit line, the bit line BLN may have to be at a rather high voltage to prevent the memory cell 300 1,N from being programmed. In this case, the bit line BLN can be at the seventh voltage VINH2.
  • the difference between the seventh voltage VINH2 and the fifth voltage VSS must be smaller than the source/drain junction breakdown voltage of the floating gate transistor 312. For example, if the source/drain junction breakdown voltage of the floating gate transistor 312 is 9V, the seventh voltage VINH2 may be 8V.
  • the memory cell 300 1,N is coupled to the same control line CL1, the erase line EL1, and the word line WL1 as the memory cell 300 1,1 , the memory cell 300 1,N will not be programmed due to the rather high voltages at the first terminal and the second terminal of the floating gate transistor 312 of the memory cell 300 1,N . Also, since the control line CL1 is at the first voltage VPP, the well bias line WBL is still at the first voltage VPP during the program inhibit operation of the memory cell 300 1,N .
  • a control line CLM coupled to an unselected memory cell 300 M,1 in an unselected memory page MPM is at a sixth voltage VPP'
  • an erase line ELM coupled to the unselected memory cell 300 M,1 is at the third voltage VEE'
  • a word line WLM coupled to the unselected memory cell 300 M,1 is at the fourth voltage VINH1.
  • the difference between the sixth voltage VPP' and the fifth voltage VSS is smaller than half of the difference between the first voltage VPP and the fifth voltage VSS.
  • the erase line ELM is at the third voltage VEE' during the program operation of the memory cell 300 1,1 , the erase element 130 will not breakdown and the memory cell 300 M,1 will not be programmed unexpectedly. Also, the control line CLM is at the sixth voltage VPP' to ensure that the memory cell 300 M,1 is not programmed.
  • the word line may be at the fourth voltage VINH1 for reducing the gate-induced drain leakage (GIDL) current.
  • GIDL gate-induced drain leakage
  • the source line SLN and the bit line BLN coupled to the memory cell 300 M,N are at the seventh voltage VINH2.
  • the word line WLM is at the fifth voltage VSS, the big reverse voltage difference may cause GIDL currents at the source transistor 314 of the memory cell 300 M,N .
  • the word line WLM at the fourth voltage VINH1 can avoid the GIDL currents efficiently while not affecting the operations of other memory cells.
  • FIG. 10 shows voltages of the signals during an erase operation of the memory cell 300 1,1 in the memory array 30.
  • the erase line EL1 is at the second voltage VEE
  • the control line CL1 is at a fifth voltage VSS
  • the source line and the bit line are both at the fourth voltage VINH1 or at the fifth voltage VSS
  • the word line is at the fourth voltage VINH1 or at the fifth voltage VSS.
  • the high voltage of the erase line EL1 can cause FN electron tunneling ejection so the memory cell 300 1,1 can be erased.
  • the erase line EL1 since the erase line EL1 has the greatest voltage, that is, the second voltage VEE, among all the signals during the erase operation of the memory cell 300 1,1 , the well bias line WBL would be at the second voltage VEE.
  • the erase line ELM should not be too high.
  • the well bias line WBL is at the second voltage VEE, the voltage of the erase line ELM cannot be too low; otherwise, the erase element 130 of the memory cell memory cell 300 M,1 may breakdown. Therefore, in FIG. 10 , the erase line ELM can be at the third voltage VEE'.
  • the voltage of the erase line ELM is not high enough to erase the memory cell 300 M,1 and is not low enough to make the erase element 130 breakdown.
  • the control line CLM can be at a sixth voltage VPP'.
  • the difference between the sixth voltage VPP' and the fifth voltage VSS is smaller than half of the difference between the second voltage VEE and the fifth voltage VSS.
  • the word line WLM, the source line SL1, and the bit line BL1 can be at approximate voltages so that the memory cell 300 M,1 will not be programmed or erased unexpectedly by the erase line ELM while the GIDL current can be prevented.
  • the word line WLM, the source line SL1, and the bit line BL1 can be at the fourth voltage VINH1. Since the erase line EL1 coupled to the memory cell 300 1,1 is at an even higher voltage, the second voltage VEE, and the control line CL1 coupled to the memory cell 300 1,1 is at a low voltage, the fifth voltage VSS, the memory cell 300 1,1 can still be erased normally even with the source line SL1 and the bit line BL1 being at the fourth voltage VINH1.
  • the memory array 30 can be erased by page. That is, memory cells at the same memory page, such as the memory cells 300 1,1 to 300 1,N in the memory page MP1, will be erased at the same time.
  • the source lines SL1 to SLN and the bit lines BL1 to BLN coupled to the memory cells 300 1,1 to 300 1,N may all be at the fourth voltage VINH1 during the erase operation.
  • the memory array can be erased by sector. That is, memory cells in the memory array can all be erased at the same time.
  • FIG. 11 shows a memory array 400 according to another example not covered by the claims.
  • the memory arrays 400 and 300 have similar structures. The difference between these two is in that the memory cells 400 1,1 to 400 1,N , ..., and 400 M,1 to 400 M,N are all coupled to the same erase line EL0 so the memory cells 400 1,1 to 400 1,N , ..., and 400 M,1 to 400 M,N in the memory array 40 will all be erased at the same time.
  • FIG. 12 shows voltages of the signals during an erase operation of the memory cell 400 1,1 in the memory array 40.
  • the erase line EL0 is at the second voltage VEE
  • the control line CL1 is at the fifth voltage VSS
  • the source line SL1 and the bit line BL1 are both at the fourth voltage VINH1 or at the fifth voltage VSS
  • the word line is at the fourth voltage VINH1 or at the fifth voltage VSS.
  • the high voltage of the erase line EL0 can cause FN electron tunneling ejection so the memory cell 400 1,1 can be erased.
  • the memory array 40 can be operated with the same principle as the memory array 30 during the program operation and the program inhibit operation as shown in FIG. 9 .
  • the memory cells 400 1,1 to 400 1,N , ..., and 400 M,1 to 400 M,N of the memory array 40 can all be disposed in the same deep doped region. Since different memory pages MP1 to MPM in the memory array 40 are disposed in one deep doped region, the spacing rules between deep doped regions will no longer be used to limit the circuit area of the memory array 40, and the circuit area of the memory array 20 can be reduced significantly.
  • the memory cells of different memory pages in a memory array can all be disposed in the same deep doped region. Since different memory pages in the memory array are disposed in one deep doped region, the spacing rules between deep doped regions will no longer be used to limit the circuit area of the memory array, and the circuit area of the memory array can be reduced significantly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)
  • Logic Circuits (AREA)
  • Electronic Switches (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Claims (7)

  1. Speicher, welcher umfasst:
    eine Speicheranordnung (10, 20), die mehrere Speicherseiten (MP1 bis MPM) umfasst, worin jede Speicherseite (MP1 bis MPM) mehrere Speicherzellen (1001,1 bis 100M,N, 2001,1 bis 200M,N) umfasst, worin jede Speicherzelle (1001,1 bis 100M,N, 2001,1 bis 200M,N) umfasst:
    ein Floating-Gate-Modul (110), das umfasst:
    einen Floating-Gate-Transistor (112) mit einem ersten Anschluss, einem zweiten Anschluss und einem Floating-Gate;
    einen Quellentransistor (114) mit einem ersten Anschluss, der mit einer Quellenleitung (SL1 bis SLN) gekoppelt ist, einem zweiten Anschluss, der mit dem ersten Anschluss des Floating-Gate-Transistors (112) gekoppelt ist, und einem Steueranschluss, der mit einer Wortleitung (WL1 bis WLM) gekoppelt ist; und
    einen Bittransistor (116) mit einem ersten Anschluss, der mit dem zweiten Anschluss des Floating-Gate-Transistors (112) gekoppelt ist, einem zweiten Anschluss, der mit einer Bitleitung (BL1 bis BLN) gekoppelt ist, und einem Steueranschluss;
    einen Steuertransistor (120) mit einem Körperanschluss, der mit einer Steuerleitung (CL1 bis CLM) gekoppelt ist, einem ersten Anschluss, der mit dem Körperanschluss gekoppelt ist, einem zweiten Anschluss, der mit dem Körperanschluss gekoppelt ist, und einem Steueranschluss, der mit dem Floating-Gate gekoppelt ist; und
    einen Löschtransistor (130) mit einem Körperanschluss (132), einem ersten Anschluss (134), der mit einer Löschleitung (EL1 bis ELM) gekoppelt ist, einem zweiten Anschluss (136), der mit dem ersten Anschluss (134) des Löschtransistors (130) gekoppelt ist oder erdfrei ist, und einem Steueranschluss (138), der mit dem Floating-Gate gekoppelt ist; worin
    ein Lösch- und Programmier-Schaltkreis für eine Speicherzelle ausgestaltet ist, Spannungen an den entsprechenden Körperanschluss des entsprechenden Löschtransistors (130) der Speicherzelle (1001,1, 2001,1), an die entsprechende Steuerleitung (CL1), an die entsprechende Löschleitung (EL1, EL0), an die entsprechende Wortleitung (WL1), an die entsprechende Quellenleitung (SL1), und an die entsprechende Bitleitung (BL1) anzulegen;
    worin:
    das Floating-Gate-Modul (110) in einer ersten Wanne (PW1) angeordnet ist;
    der Löschtransistor (130) in einer zweiten Wanne (NW1, NW2) angeordnet ist;
    der Steuertransistor (120) in einer dritten Wanne (PW2, PW3) angeordnet ist;
    die erste Wanne (PW1), die zweite Wanne (NW1, NW2) und die dritte Wanne (PW2, PW3) in einem tief dotierten Bereich (DR) angeordnet sind;
    Speicherzellen (1001,1 bis 100M,N, 2001,1 bis 200M,N) der mehreren Speicherseiten (MP1 bis MPM) alle in dem tief dotierten Bereich (DR) angeordnet sind;
    der Lösch- und Programmier-Schaltkreis für eine Speicherzelle ausgestaltet ist, an den entsprechenden Körperanschluss des entsprechenden Löschtransistors (130) der Speicherzelle (1001,1, 2001,1) anzulegen:
    eine erste Spannung (VPP), während eines Programmiervorgangs und einer Programmierunterbrechung der Speicherzelle (1001,1, 2001,1); und
    eine zweite Spannung (VEE), während eines Löschvorgangs der Speicherzelle (1001,1, 2001,1);
    der Lösch- und Programmier-Schaltkreis weiter ausgestaltet ist, während des Programmiervorgangs der Speicherzelle die erste Spannung (VPP) an die entsprechende Steuerleitung (CL1) der Speicherzelle (1001,1, 2001,1) anzulegen;
    der Lösch- und Programmier-Schaltkreis weiter ausgestaltet ist, während des Löschvorgangs der Speicherzelle die zweite Spannung (VEE) an die entsprechende Löschleitung (EL1, EL0) der Speicherzelle (1001,1, 2001,1) anzulegen;
    Speicherzellen (1001,1 bis 1001,N) in verschiedenen Speicherseiten (MP1 bis MPM) mit verschiedenen Steuerleitungen (CL1 bis CLM), verschiedenen Wortleitungen (WL1 bis WLM), und verschiedenen Löschleitungen (EL1 bis ELM) gekoppelt sind;
    der Lösch- und Programmier-Schaltkreis während des Löschvorgangs der Speicherzelle (1001,1) weiter ausgestaltet ist, anzulegen:
    die zweite Spannung (VEE) an die entsprechende Löschleitung (EL1);
    eine fünfte Spannung (VSS) an die entsprechende Steuerleitung (CL1); und
    eine vierte Spannung (VINH1) oder die fünfte Spannung (VSS) an die entsprechende Quellenleitung (SL1) und die entsprechende Bitleitung (BL1) während die vierte Spannung (VINH1) oder die fünfte Spannung (VSS) an die entsprechende Wortleitung (WL1) entsprechend angelegt wird;
    die zweite Spannung (VEE) größer ist als die vierte Spannung (VINH1), und die vierte Spannung (VINH1) größer ist als die fünfte Spannung (VSS); und
    eine Differenz zwischen der vierten Spannung (VINH1) und der fünften Spannung (VSS) kleiner ist als eine halbe Differenz zwischen der zweiten Spannung (VEE) und der fünften Spannung (VSS);
    dadurch gekennzeichnet, dass während des Löschvorgangs der Speicherzelle (1001,1):
    der Lösch- und Programmier-Schaltkreis weiter ausgestaltet ist, eine dritte Spannung (VEE') an eine Löschleitung (ELM) anzulegen, die mit einer nicht ausgewählten Speicherzelle (100M,1) in einer nicht ausgewählten Seite (MPM) gekoppelt ist;
    der Lösch- und Programmier-Schaltkreis weiter ausgestaltet ist, eine sechste Spannung (VPP') an eine Steuerleitung (CLM) anzulegen, die mit der nicht ausgewählten Speicherzelle (100M,1) gekoppelt ist;
    die zweite Spannung (VEE) größer ist als die dritte Spannung (VEE'), die dritte Spannung größer ist als die sechste Spannung (VPP'), und die sechste Spannung (VPP') größer ist als die fünfte Spannung (VSS);
    eine Differenz zwischen der dritten Spannung (VEE') und der fünften Spannung (VSS) größer ist als die halbe Differenz zwischen der zweiten Spannung (VEE) und der fünften Spannung (VSS); und
    eine Differenz zwischen der sechsten Spannung (VPP') und der fünften Spannung (VSS) kleiner ist als die halbe Differenz zwischen der zweiten Spannung (VEE) und der fünften Spannung (VSS); und
    der Steueranschluss des entsprechenden Bittransistors und der Steueranschluss des entsprechenden Quellentransistors für jede Speicherzelle mit der entsprechenden Wortleitung gekoppelt sind.
  2. Speicher nach Anspruch 1, dadurch gekennzeichnet, dass:
    Speicherzellen (1001,1 bis 1001,N, 2001,1 bis 2001,N) in einer gleichen Speicherseite (MP1) mit einer gleichen Steuerleitung (CL1), einer gleichen Löschleitung (EL1, EL0), und einer gleichen Wortleitung (WL1) gekoppelt sind; und
    worin die Speicherzellen (1001,1 bis 1001,N, 2001,1 bis 2001,N) in der gleichen Speicherseite (MP1) mit verschiedenen Quellenleitungen (SL1 bis SLN) und verschiedenen Bitleitungen (BL1 bis BLN) gekoppelt sind.
  3. Speicher nach Anspruch 1, dadurch gekennzeichnet, dass während des Programmiervorgang der Speicherzelle (1001,1, 2001,1):
    der Lösch- und Programmier-Schaltkreis ausgestaltet ist, die erste Spannung (VPP) an die entsprechende Steuerleitung (CL1) anzulegen;
    der Lösch- und Programmier-Schaltkreis ausgestaltet ist, die dritte Spannung (VEE') an die entsprechende Löschleitung (EL1, EL0) anzulegen;
    der Lösch- und Programmier-Schaltkreis ausgestaltet ist, die vierte Spannung (VINH1) an die entsprechende Wortleitung (WL1) anzulegen;
    der Lösch- und Programmier-Schaltkreis ausgestaltet ist, die fünfte Spannung (VSS) an die entsprechende Quellenleitung (SL1) anzulegen;
    der Lösch- und Programmier-Schaltkreis ausgestaltet ist, die fünfte Spannung (VSS) an die entsprechende Bitleitung (BL1) anzulegen;
    die erste Spannung (VPP) größer ist als die dritte Spannung (VEE'), die dritte Spannung (VEE') größer ist als die vierte Spannung (VINH1), und die vierte Spannung (VINH1) größer ist als die fünfte Spannung (VSS);
    eine Differenz zwischen der dritten Spannung (VEE') und der fünften Spannung (VSS) größer ist als eine halbe Differenz zwischen der ersten Spannung (VPP) und der fünften Spannung (VSS); und
    eine Differenz zwischen der vierten Spannung (VINH1) und der fünften Spannung (VSS) kleiner ist als die halbe Differenz zwischen der ersten Spannung (VPP) und der fünften Spannung (VSS).
  4. Speicher nach Anspruch 3, dadurch gekennzeichnet, dass während des Programmiervorgangs der Speicherzelle (1001,1, 2001,1):
    der Lösch- und Programmier-Schaltkreis weiter ausgestaltet ist, die sechste Spannung (VPP') an eine Steuerleitung (CLM) anzulegen die mit einer nicht ausgewählten Speicherzelle (100M,1, 200M,1) in einer nicht ausgewählten Speicherseite (MPM) gekoppelt ist;
    der Lösch- und Programmier-Schaltkreis weiter ausgestaltet ist, die dritte Spannung (VEE') an eine Löschleitung (ELM, EL0) anzulegen, die mit der nicht ausgewählten Speicherzelle (100M,1, 200M,1) gekoppelt ist; und
    der Lösch- und Programmier-Schaltkreis weiter ausgestaltet ist, die vierte Spannung (VINH1) an einer Wortleitung (WLM) anzulegen, die mit der nicht ausgewählten Speicherzelle (100M,1, 200M,1) gekoppelt ist;
    worin die dritte Spannung (VEE') größer ist als die sechste Spannung (VPP'), und die sechste Spannung (VPP') größer ist als die fünfte Spannung (VSS); worin
    eine Differenz zwischen der sechsten Spannung (VPP') und der fünften Spannung (VSS) kleiner ist als die halbe Differenz zwischen der ersten Spannung (VPP) und der fünften Spannung (VSS).
  5. Speicher nach Anspruch 3, dadurch gekennzeichnet, dass während des Programmierunterbrechungsvorgangs der Speicherzelle (1001,N, 2001,N):
    der Lösch- und Programmier-Schaltkreis weiter ausgestaltet ist, die erste Spannung (VPP) an die entsprechende Steuerleitung (CL1) anzulegen;
    der Lösch- und Programmier-Schaltkreis weiter ausgestaltet ist, die dritte Spannung (VEE') an die entsprechende Löschleitung (EL1) anzulegen;
    der Lösch- und Programmier-Schaltkreis weiter ausgestaltet ist, die vierte Spannung (VINH1) an die entsprechende Wortleitung (WL1) anzulegen;
    der Lösch- und Programmier-Schaltkreis weiter ausgestaltet ist, die vierte Spannung (VINH1) an die entsprechende Quellenleitung (SLN) anzulegen; und
    der Lösch- und Programmier-Schaltkreis weiter ausgestaltet ist, die vierte Spannung (VINH1) an die entsprechende Bitleitung (BLN) anzulegen.
  6. Speicher nach Anspruch 1, dadurch gekennzeichnet, dass:
    der tief dotierte Bereich (DR) eine tiefe N-Wanne oder eine vergrabene N-Typ-Schicht ist;
    die erste Wanne (PW1) und die dritte Wanne (PW2, PW3) P-Wannen sind, die in dem tief dotierten Bereich (DR) angeordnet sind; und
    die zweite Wanne (NW1, NW2) eine N-Wanne ist, die in dem tief dotierten Bereich (DR) angeordnet ist.
  7. Speicher nach Anspruch 1, dadurch gekennzeichnet, dass:
    Steuerelemente (120) der Speicherzellen (1001,1 bis 100M,N, 2001,1 bis 200M,N) in der gleichen Speicherseite (MP1 bis MPM) in der gleichen dritten Wanne (PW2, PW3) angeordnet sind.
EP18185124.7A 2016-01-19 2016-11-30 Single-poly-speicheranordnung mit einem geteilten, tief dotierten bereich und löschspannungen Active EP3410440B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662280683P 2016-01-19 2016-01-19
EP16201335.3A EP3196885B1 (de) 2016-01-19 2016-11-30 Single-poly-speicheranordnung mit einem geteilten, tief dotierten bereich

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP16201335.3A Division EP3196885B1 (de) 2016-01-19 2016-11-30 Single-poly-speicheranordnung mit einem geteilten, tief dotierten bereich
EP16201335.3A Division-Into EP3196885B1 (de) 2016-01-19 2016-11-30 Single-poly-speicheranordnung mit einem geteilten, tief dotierten bereich

Publications (2)

Publication Number Publication Date
EP3410440A1 EP3410440A1 (de) 2018-12-05
EP3410440B1 true EP3410440B1 (de) 2020-05-13

Family

ID=56137184

Family Applications (6)

Application Number Title Priority Date Filing Date
EP16175005.4A Active EP3196883B1 (de) 2016-01-19 2016-06-17 Zur durchführung einer byte-lösch-operation fähige speichermatrix
EP16193920.2A Active EP3196884B1 (de) 2016-01-19 2016-10-14 Schwebegate nichtflüchtige speicherstruktur
EP16200527.6A Active EP3197051B1 (de) 2016-01-19 2016-11-24 Antriebsschaltung für nichtflüchtigen speicher
EP16201335.3A Active EP3196885B1 (de) 2016-01-19 2016-11-30 Single-poly-speicheranordnung mit einem geteilten, tief dotierten bereich
EP18185124.7A Active EP3410440B1 (de) 2016-01-19 2016-11-30 Single-poly-speicheranordnung mit einem geteilten, tief dotierten bereich und löschspannungen
EP17152172.7A Active EP3196886B1 (de) 2016-01-19 2017-01-19 Stromschaltkreis

Family Applications Before (4)

Application Number Title Priority Date Filing Date
EP16175005.4A Active EP3196883B1 (de) 2016-01-19 2016-06-17 Zur durchführung einer byte-lösch-operation fähige speichermatrix
EP16193920.2A Active EP3196884B1 (de) 2016-01-19 2016-10-14 Schwebegate nichtflüchtige speicherstruktur
EP16200527.6A Active EP3197051B1 (de) 2016-01-19 2016-11-24 Antriebsschaltung für nichtflüchtigen speicher
EP16201335.3A Active EP3196885B1 (de) 2016-01-19 2016-11-30 Single-poly-speicheranordnung mit einem geteilten, tief dotierten bereich

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17152172.7A Active EP3196886B1 (de) 2016-01-19 2017-01-19 Stromschaltkreis

Country Status (5)

Country Link
US (13) US9847133B2 (de)
EP (6) EP3196883B1 (de)
JP (4) JP6122531B1 (de)
CN (10) CN106981311B (de)
TW (11) TWI578322B (de)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9965267B2 (en) 2015-11-19 2018-05-08 Raytheon Company Dynamic interface for firmware updates
US9847133B2 (en) 2016-01-19 2017-12-19 Ememory Technology Inc. Memory array capable of performing byte erase operation
US9633734B1 (en) * 2016-07-14 2017-04-25 Ememory Technology Inc. Driving circuit for non-volatile memory
CN107768373B (zh) * 2016-08-15 2022-05-10 华邦电子股份有限公司 存储元件及其制造方法
US9882566B1 (en) * 2017-01-10 2018-01-30 Ememory Technology Inc. Driving circuit for non-volatile memory
TWI652683B (zh) * 2017-10-13 2019-03-01 力旺電子股份有限公司 用於記憶體的電壓驅動器
US10332597B2 (en) * 2017-11-08 2019-06-25 Globalfoundries Singapore Pte. Ltd. Floating gate OTP/MTP structure and method for producing the same
JP7143326B2 (ja) 2017-12-20 2022-09-28 タワー パートナーズ セミコンダクター株式会社 半導体装置
KR102422839B1 (ko) * 2018-02-23 2022-07-19 에스케이하이닉스 시스템아이씨 주식회사 수평 커플링 구조 및 단일층 게이트를 갖는 불휘발성 메모리 소자
KR102385951B1 (ko) * 2018-02-23 2022-04-14 에스케이하이닉스 시스템아이씨 주식회사 프로그램 효율이 증대되는 원 타임 프로그래머블 메모리 및 그 제조방법
US10522202B2 (en) * 2018-04-23 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device and compensation method therein
US10964708B2 (en) * 2018-06-26 2021-03-30 Micron Technology, Inc. Fuse-array element
CN108986866B (zh) * 2018-07-20 2020-12-11 上海华虹宏力半导体制造有限公司 一种读高压传输电路
TWI659502B (zh) * 2018-08-02 2019-05-11 旺宏電子股份有限公司 非揮發性記憶體結構
CN110828464A (zh) * 2018-08-08 2020-02-21 旺宏电子股份有限公司 非易失性存储器结构
US11176969B2 (en) 2018-08-20 2021-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. Memory circuit including a first program device
DE102019120605B4 (de) 2018-08-20 2022-06-23 Taiwan Semiconductor Manufacturing Company, Ltd. Speicherschaltung und verfahren zu deren herstellung
CN109147851B (zh) * 2018-08-31 2020-12-25 上海华力微电子有限公司 一种锁存电路
KR20200031894A (ko) * 2018-09-17 2020-03-25 에스케이하이닉스 주식회사 메모리 모듈 및 이를 포함하는 메모리 시스템
US10797064B2 (en) * 2018-09-19 2020-10-06 Ememory Technology Inc. Single-poly non-volatile memory cell and operating method thereof
CN109524042B (zh) * 2018-09-21 2020-03-17 浙江大学 一种基于反型模式阻变场效应晶体管的与非型存储阵列
TWI708253B (zh) 2018-11-16 2020-10-21 力旺電子股份有限公司 非揮發性記憶體良率提升的設計暨測試方法
CN111342541B (zh) * 2018-12-19 2021-04-16 智原微电子(苏州)有限公司 电源切换电路
KR20200104669A (ko) * 2019-02-27 2020-09-04 삼성전자주식회사 집적회로 소자
US10924112B2 (en) * 2019-04-11 2021-02-16 Ememory Technology Inc. Bandgap reference circuit
US11508719B2 (en) 2019-05-13 2022-11-22 Ememory Technology Inc. Electrostatic discharge circuit
CN112086115B (zh) * 2019-06-14 2023-03-28 力旺电子股份有限公司 存储器系统
CN112131037B (zh) * 2019-06-24 2023-11-14 华邦电子股份有限公司 存储器装置
JP2021048230A (ja) * 2019-09-18 2021-03-25 キオクシア株式会社 半導体記憶装置
US11521980B2 (en) * 2019-11-14 2022-12-06 Ememory Technology Inc. Read-only memory cell and associated memory cell array
US11139006B1 (en) * 2020-03-12 2021-10-05 Ememory Technology Inc. Self-biased sense amplification circuit
US11217281B2 (en) * 2020-03-12 2022-01-04 Ememory Technology Inc. Differential sensing device with wide sensing margin
JP6887044B1 (ja) * 2020-05-22 2021-06-16 ウィンボンド エレクトロニクス コーポレーション 半導体記憶装置および読出し方法
TWI739695B (zh) * 2020-06-14 2021-09-11 力旺電子股份有限公司 轉壓器
US11373715B1 (en) * 2021-01-14 2022-06-28 Elite Semiconductor Microelectronics Technology Inc. Post over-erase correction method with auto-adjusting verification and leakage degree detection
TWI819457B (zh) * 2021-02-18 2023-10-21 力旺電子股份有限公司 多次編程非揮發性記憶體的記憶胞陣列
US11854647B2 (en) * 2021-07-29 2023-12-26 Micron Technology, Inc. Voltage level shifter transition time reduction
US11972800B2 (en) * 2021-12-16 2024-04-30 Ememory Technology Inc. Non-volatile memory cell and non-volatile memory cell array
US12014783B2 (en) 2022-01-10 2024-06-18 Ememory Technology Inc. Driving circuit for non-volatile memory

Family Cites Families (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617652A (en) 1979-01-24 1986-10-14 Xicor, Inc. Integrated high voltage distribution and control systems
JP2685966B2 (ja) 1990-06-22 1997-12-08 株式会社東芝 不揮発性半導体記憶装置
US5331590A (en) 1991-10-15 1994-07-19 Lattice Semiconductor Corporation Single poly EE cell with separate read/write paths and reduced product term coupling
JP3180608B2 (ja) 1994-03-28 2001-06-25 松下電器産業株式会社 電源選択回路
JP3068752B2 (ja) 1994-08-29 2000-07-24 松下電器産業株式会社 半導体装置
US5648669A (en) * 1995-05-26 1997-07-15 Cypress Semiconductor High speed flash memory cell structure and method
US5742542A (en) * 1995-07-03 1998-04-21 Advanced Micro Devices, Inc. Non-volatile memory cells using only positive charge to store data
US5640344A (en) * 1995-07-25 1997-06-17 Btr, Inc. Programmable non-volatile bidirectional switch for programmable logic
US6005806A (en) * 1996-03-14 1999-12-21 Altera Corporation Nonvolatile configuration cells and cell arrays
JP4659662B2 (ja) 1997-04-28 2011-03-30 ペグレ・セミコンダクターズ・リミテッド・ライアビリティ・カンパニー 半導体装置及びその製造方法
FR2767219B1 (fr) * 1997-08-08 1999-09-17 Commissariat Energie Atomique Dispositif memoire non volatile programmable et effacable electriquement compatible avec un procede de fabrication cmos/soi
JP3037236B2 (ja) * 1997-11-13 2000-04-24 日本電気アイシーマイコンシステム株式会社 レベルシフタ回路
US5959889A (en) * 1997-12-29 1999-09-28 Cypress Semiconductor Corp. Counter-bias scheme to reduce charge gain in an electrically erasable cell
DE19808525A1 (de) 1998-02-27 1999-09-02 Siemens Ag Integrierte Schaltung
JP2000021183A (ja) 1998-06-30 2000-01-21 Matsushita Electric Ind Co Ltd 半導体不揮発性メモリ
US5999451A (en) 1998-07-13 1999-12-07 Macronix International Co., Ltd. Byte-wide write scheme for a page flash device
JP3344331B2 (ja) 1998-09-30 2002-11-11 日本電気株式会社 不揮発性半導体記憶装置
JP2000276889A (ja) 1999-03-23 2000-10-06 Toshiba Corp 不揮発性半導体メモリ
WO2001017030A1 (en) * 1999-08-27 2001-03-08 Macronix America, Inc. Non-volatile memory structure for twin-bit storage and methods of making same
JP2001068650A (ja) * 1999-08-30 2001-03-16 Hitachi Ltd 半導体集積回路装置
KR100338772B1 (ko) * 2000-03-10 2002-05-31 윤종용 바이어스 라인이 분리된 비휘발성 메모리 장치의 워드라인 드라이버 및 워드 라인 드라이빙 방법
US6370071B1 (en) * 2000-09-13 2002-04-09 Lattice Semiconductor Corporation High voltage CMOS switch
KR20040068552A (ko) * 2001-11-27 2004-07-31 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 반도체 디바이스
TW536818B (en) 2002-05-03 2003-06-11 Ememory Technology Inc Single-poly EEPROM
US6621745B1 (en) * 2002-06-18 2003-09-16 Atmel Corporation Row decoder circuit for use in programming a memory device
US6774704B2 (en) 2002-10-28 2004-08-10 Tower Semiconductor Ltd. Control circuit for selecting the greater of two voltage signals
US7038947B2 (en) * 2002-12-19 2006-05-02 Taiwan Semiconductor Manufacturing Co., Ltd. Two-transistor flash cell for large endurance application
CN1224106C (zh) * 2003-03-05 2005-10-19 力旺电子股份有限公司 只读存储器及其制作方法
JP2004326864A (ja) 2003-04-22 2004-11-18 Toshiba Corp 不揮発性半導体メモリ
FR2856185A1 (fr) 2003-06-12 2004-12-17 St Microelectronics Sa Memoire flash programmable par mot
US6963503B1 (en) 2003-07-11 2005-11-08 Altera Corporation. EEPROM with improved circuit performance and reduced cell size
JP2005051227A (ja) * 2003-07-17 2005-02-24 Nec Electronics Corp 半導体記憶装置
US7169667B2 (en) * 2003-07-30 2007-01-30 Promos Technologies Inc. Nonvolatile memory cell with multiple floating gates formed after the select gate
US7081774B2 (en) * 2003-07-30 2006-07-25 Semiconductor Energy Laboratory Co., Ltd. Circuit having source follower and semiconductor device having the circuit
US7145370B2 (en) 2003-09-05 2006-12-05 Impinj, Inc. High-voltage switches in single-well CMOS processes
US20050134355A1 (en) 2003-12-18 2005-06-23 Masato Maede Level shift circuit
US20050205969A1 (en) * 2004-03-19 2005-09-22 Sharp Laboratories Of America, Inc. Charge trap non-volatile memory structure for 2 bits per transistor
US7580311B2 (en) * 2004-03-30 2009-08-25 Virage Logic Corporation Reduced area high voltage switch for NVM
US7629640B2 (en) * 2004-05-03 2009-12-08 The Regents Of The University Of California Two bit/four bit SONOS flash memory cell
EP1610343B1 (de) * 2004-06-24 2007-12-19 STMicroelectronics S.r.l. Verbesserter Seitenspeicher für eine programmierbare Speichervorrichtung
US6992927B1 (en) 2004-07-08 2006-01-31 National Semiconductor Corporation Nonvolatile memory cell
US7209392B2 (en) * 2004-07-20 2007-04-24 Ememory Technology Inc. Single poly non-volatile memory
KR100633332B1 (ko) * 2004-11-09 2006-10-11 주식회사 하이닉스반도체 음의 전압 공급회로
KR100642631B1 (ko) * 2004-12-06 2006-11-10 삼성전자주식회사 전압 발생회로 및 이를 구비한 반도체 메모리 장치
US7369438B2 (en) 2004-12-28 2008-05-06 Aplus Flash Technology, Inc. Combo memory design and technology for multiple-function java card, sim-card, bio-passport and bio-id card applications
US7193265B2 (en) 2005-03-16 2007-03-20 United Microelectronics Corp. Single-poly EEPROM
US7263001B2 (en) 2005-03-17 2007-08-28 Impinj, Inc. Compact non-volatile memory cell and array system
US7288964B2 (en) 2005-08-12 2007-10-30 Ememory Technology Inc. Voltage selective circuit of power source
JP4800109B2 (ja) 2005-09-13 2011-10-26 ルネサスエレクトロニクス株式会社 半導体装置
JP2007149997A (ja) 2005-11-29 2007-06-14 Nec Electronics Corp 不揮発性メモリセル及びeeprom
US7382658B2 (en) 2006-01-26 2008-06-03 Mosys, Inc. Non-volatile memory embedded in a conventional logic process and methods for operating same
US7391647B2 (en) * 2006-04-11 2008-06-24 Mosys, Inc. Non-volatile memory in CMOS logic process and method of operation thereof
US20070247915A1 (en) * 2006-04-21 2007-10-25 Intersil Americas Inc. Multiple time programmable (MTP) PMOS floating gate-based non-volatile memory device for a general-purpose CMOS technology with thick gate oxide
US7773416B2 (en) * 2006-05-26 2010-08-10 Macronix International Co., Ltd. Single poly, multi-bit non-volatile memory device and methods for operating the same
JP4901325B2 (ja) 2006-06-22 2012-03-21 ルネサスエレクトロニクス株式会社 半導体装置
US7768059B2 (en) 2006-06-26 2010-08-03 Ememory Technology Inc. Nonvolatile single-poly memory device
US20070296034A1 (en) 2006-06-26 2007-12-27 Hsin-Ming Chen Silicon-on-insulator (soi) memory device
TWI373127B (en) * 2006-06-26 2012-09-21 Ememory Technology Inc Nonvolatile single-poly memory device
JP5005970B2 (ja) 2006-06-27 2012-08-22 株式会社リコー 電圧制御回路及び電圧制御回路を有する半導体集積回路
CN100508169C (zh) * 2006-08-02 2009-07-01 联华电子股份有限公司 单层多晶硅可电除可程序只读存储单元的制造方法
US7586792B1 (en) * 2006-08-24 2009-09-08 National Semiconductor Corporation System and method for providing drain avalanche hot carrier programming for non-volatile memory applications
KR100805839B1 (ko) * 2006-08-29 2008-02-21 삼성전자주식회사 고전압 발생기를 공유하는 플래시 메모리 장치
US7483310B1 (en) * 2006-11-02 2009-01-27 National Semiconductor Corporation System and method for providing high endurance low cost CMOS compatible EEPROM devices
KR100781041B1 (ko) * 2006-11-06 2007-11-30 주식회사 하이닉스반도체 플래시 메모리 장치 및 그 소거 동작 제어 방법
JP4863844B2 (ja) * 2006-11-08 2012-01-25 セイコーインスツル株式会社 電圧切替回路
US8378407B2 (en) 2006-12-07 2013-02-19 Tower Semiconductor, Ltd. Floating gate inverter type memory cell and array
US7755941B2 (en) * 2007-02-23 2010-07-13 Panasonic Corporation Nonvolatile semiconductor memory device
US7436710B2 (en) 2007-03-12 2008-10-14 Maxim Integrated Products, Inc. EEPROM memory device with cell having NMOS in a P pocket as a control gate, PMOS program/erase transistor, and PMOS access transistor in a common well
JP4855514B2 (ja) * 2007-03-16 2012-01-18 富士通セミコンダクター株式会社 電源スイッチ回路及び半導体集積回路装置
US7663916B2 (en) 2007-04-16 2010-02-16 Taiwan Semicondcutor Manufacturing Company, Ltd. Logic compatible arrays and operations
US7903465B2 (en) * 2007-04-24 2011-03-08 Intersil Americas Inc. Memory array of floating gate-based non-volatile memory cells
JP4455621B2 (ja) * 2007-07-17 2010-04-21 株式会社東芝 エージングデバイス
US8369155B2 (en) * 2007-08-08 2013-02-05 Hynix Semiconductor Inc. Operating method in a non-volatile memory device
JP2009049182A (ja) 2007-08-20 2009-03-05 Toyota Motor Corp 不揮発性半導体記憶素子
US7700993B2 (en) * 2007-11-05 2010-04-20 International Business Machines Corporation CMOS EPROM and EEPROM devices and programmable CMOS inverters
KR101286241B1 (ko) 2007-11-26 2013-07-15 삼성전자주식회사 최대 전압 선택회로
US7968926B2 (en) 2007-12-19 2011-06-28 Taiwan Semiconductor Manufacturing Company, Ltd. Logic non-volatile memory cell with improved data retention ability
US8576628B2 (en) * 2008-01-18 2013-11-05 Sharp Kabushiki Kaisha Nonvolatile random access memory
US7639536B2 (en) 2008-03-07 2009-12-29 United Microelectronics Corp. Storage unit of single-conductor non-volatile memory cell and method of erasing the same
US7800426B2 (en) 2008-03-27 2010-09-21 Taiwan Semiconductor Manufacturing Co., Ltd. Two voltage input level shifter with switches for core power off application
JP5266443B2 (ja) * 2008-04-18 2013-08-21 インターチップ株式会社 不揮発性メモリセル及び不揮発性メモリセル内蔵データラッチ
US8344443B2 (en) 2008-04-25 2013-01-01 Freescale Semiconductor, Inc. Single poly NVM devices and arrays
US8218377B2 (en) * 2008-05-19 2012-07-10 Stmicroelectronics Pvt. Ltd. Fail-safe high speed level shifter for wide supply voltage range
US7894261B1 (en) 2008-05-22 2011-02-22 Synopsys, Inc. PFET nonvolatile memory
US8295087B2 (en) * 2008-06-16 2012-10-23 Aplus Flash Technology, Inc. Row-decoder and select gate decoder structures suitable for flashed-based EEPROM operating below +/− 10v BVDS
KR101462487B1 (ko) * 2008-07-07 2014-11-18 삼성전자주식회사 플래시 메모리 장치 및 그것의 프로그램 방법
US7983081B2 (en) 2008-12-14 2011-07-19 Chip.Memory Technology, Inc. Non-volatile memory apparatus and method with deep N-well
US8189390B2 (en) * 2009-03-05 2012-05-29 Mosaid Technologies Incorporated NAND flash architecture with multi-level row decoding
US8319528B2 (en) * 2009-03-26 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having interconnected transistors and electronic device including semiconductor device
KR101020298B1 (ko) 2009-05-28 2011-03-07 주식회사 하이닉스반도체 레벨 시프터 및 반도체 메모리 장치
CN101650972B (zh) * 2009-06-12 2013-05-29 东信和平科技股份有限公司 智能卡的非易失性存储器数据更新方法
JP2011009454A (ja) * 2009-06-25 2011-01-13 Renesas Electronics Corp 半導体装置
FR2952227B1 (fr) 2009-10-29 2013-09-06 St Microelectronics Rousset Dispositif de memoire du type electriquement programmable et effacable, a deux cellules par bit
EP2323135A1 (de) * 2009-11-12 2011-05-18 SiTel Semiconductor B.V. Verfahren und Vorrichtung zur Emulierung einer bytefähigen programmierbaren Funktion in einem sektorfähigen löschbaren Speicher
KR101071190B1 (ko) * 2009-11-27 2011-10-10 주식회사 하이닉스반도체 레벨 쉬프팅 회로 및 이를 이용한 비휘발성 반도체 메모리 장치
IT1397229B1 (it) * 2009-12-30 2013-01-04 St Microelectronics Srl Dispositivo di memoria ftp programmabile e cancellabile a livello di cella
WO2011097592A1 (en) * 2010-02-07 2011-08-11 Zeno Semiconductor , Inc. Semiconductor memory device having electrically floating body transistor, and having both volatile and non-volatile functionality and method
US8284600B1 (en) 2010-02-08 2012-10-09 National Semiconductor Corporation 5-transistor non-volatile memory cell
KR101676816B1 (ko) * 2010-02-11 2016-11-18 삼성전자주식회사 플래시 메모리 장치 및 그것의 프로그램 방법
WO2011118076A1 (ja) 2010-03-23 2011-09-29 シャープ株式会社 半導体装置、アクティブマトリクス基板、及び表示装置
KR101653262B1 (ko) * 2010-04-12 2016-09-02 삼성전자주식회사 멀티-비트 메모리의 프로그램 방법 및 그것을 이용한 데이터 저장 시스템
US8217705B2 (en) 2010-05-06 2012-07-10 Micron Technology, Inc. Voltage switching in a memory device
US8258853B2 (en) * 2010-06-14 2012-09-04 Ememory Technology Inc. Power switch circuit for tracing a higher supply voltage without a voltage drop
US8958245B2 (en) 2010-06-17 2015-02-17 Ememory Technology Inc. Logic-based multiple time programming memory cell compatible with generic CMOS processes
US8355282B2 (en) 2010-06-17 2013-01-15 Ememory Technology Inc. Logic-based multiple time programming memory cell
US9042174B2 (en) 2010-06-17 2015-05-26 Ememory Technology Inc. Non-volatile memory cell
US8279681B2 (en) 2010-06-24 2012-10-02 Semiconductor Components Industries, Llc Method of using a nonvolatile memory cell
US20120014183A1 (en) * 2010-07-16 2012-01-19 Pavel Poplevine 3 transistor (n/p/n) non-volatile memory cell without program disturb
US8044699B1 (en) * 2010-07-19 2011-10-25 Polar Semiconductor, Inc. Differential high voltage level shifter
KR101868332B1 (ko) * 2010-11-25 2018-06-20 삼성전자주식회사 플래시 메모리 장치 및 그것을 포함한 데이터 저장 장치
US8461899B2 (en) * 2011-01-14 2013-06-11 Stmicroelectronics International N.V. Negative voltage level shifter circuit
JP5685115B2 (ja) * 2011-03-09 2015-03-18 セイコーインスツル株式会社 電源切換回路
DE112012002622B4 (de) * 2011-06-24 2017-01-26 International Business Machines Corporation Aufzeichnungseinheit für lineare Aufzeichnung zum Ausführen optimalen Schreibens beim Empfangen einer Reihe von Befehlen, darunter gemischte Lese- und Schreibbefehle, sowie Verfahren und Programm für dessen Ausführung
US9455021B2 (en) 2011-07-22 2016-09-27 Texas Instruments Incorporated Array power supply-based screening of static random access memory cells for bias temperature instability
KR20130022743A (ko) * 2011-08-26 2013-03-07 에스케이하이닉스 주식회사 고전압 생성회로 및 이를 구비한 반도체 장치
US8999785B2 (en) * 2011-09-27 2015-04-07 Tower Semiconductor Ltd. Flash-to-ROM conversion
CN103078618B (zh) * 2011-10-26 2015-08-12 力旺电子股份有限公司 电压开关电路
JP2013102119A (ja) 2011-11-07 2013-05-23 Ememory Technology Inc 不揮発性メモリーセル
US8508971B2 (en) 2011-11-08 2013-08-13 Wafertech, Llc Semiconductor device with one-time programmable memory cell including anti-fuse with metal/polycide gate
US9165661B2 (en) * 2012-02-16 2015-10-20 Cypress Semiconductor Corporation Systems and methods for switching between voltages
US9048137B2 (en) 2012-02-17 2015-06-02 Flashsilicon Incorporation Scalable gate logic non-volatile memory cells and arrays
US8941167B2 (en) 2012-03-08 2015-01-27 Ememory Technology Inc. Erasable programmable single-ploy nonvolatile memory
TWI467744B (zh) * 2012-03-12 2015-01-01 Vanguard Int Semiconduct Corp 單層多晶矽可電抹除可程式唯讀記憶裝置
US8787092B2 (en) 2012-03-13 2014-07-22 Ememory Technology Inc. Programming inhibit method of nonvolatile memory apparatus for reducing leakage current
US9390799B2 (en) * 2012-04-30 2016-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Non-volatile memory cell devices and methods, having a storage cell with two sidewall bit cells
TWI469328B (zh) 2012-05-25 2015-01-11 Ememory Technology Inc 具可程式可抹除的單一多晶矽層非揮發性記憶體
TWI498901B (zh) * 2012-06-04 2015-09-01 Ememory Technology Inc 利用程式化禁止方法減少漏電流的非揮發性記憶體裝置
US9729145B2 (en) * 2012-06-12 2017-08-08 Infineon Technologies Ag Circuit and a method for selecting a power supply
KR101334843B1 (ko) * 2012-08-07 2013-12-02 주식회사 동부하이텍 전압 출력 회로 및 이를 이용한 네거티브 전압 선택 출력 장치
KR102038041B1 (ko) 2012-08-31 2019-11-26 에스케이하이닉스 주식회사 전원 선택 회로
CN104521146B (zh) * 2012-09-06 2017-09-22 松下知识产权经营株式会社 半导体集成电路
US9130553B2 (en) 2012-10-04 2015-09-08 Nxp B.V. Low/high voltage selector
JP5556873B2 (ja) * 2012-10-19 2014-07-23 株式会社フローディア 不揮発性半導体記憶装置
JP6053474B2 (ja) * 2012-11-27 2016-12-27 株式会社フローディア 不揮発性半導体記憶装置
JP2014116547A (ja) 2012-12-12 2014-06-26 Renesas Electronics Corp 半導体装置
JP6078327B2 (ja) * 2012-12-19 2017-02-08 ルネサスエレクトロニクス株式会社 半導体装置
US8963609B2 (en) * 2013-03-01 2015-02-24 Arm Limited Combinatorial circuit and method of operation of such a combinatorial circuit
US9275748B2 (en) * 2013-03-14 2016-03-01 Silicon Storage Technology, Inc. Low leakage, low threshold voltage, split-gate flash cell operation
KR102095856B1 (ko) * 2013-04-15 2020-04-01 삼성전자주식회사 반도체 메모리 장치 및 그것의 바디 바이어스 방법
US9197200B2 (en) 2013-05-16 2015-11-24 Dialog Semiconductor Gmbh Dynamic level shifter circuit
US9362374B2 (en) * 2013-06-27 2016-06-07 Globalfoundries Singapore Pte. Ltd. Simple and cost-free MTP structure
US9520404B2 (en) 2013-07-30 2016-12-13 Synopsys, Inc. Asymmetric dense floating gate nonvolatile memory with decoupled capacitor
CN103456359A (zh) * 2013-09-03 2013-12-18 苏州宽温电子科技有限公司 基于串联晶体管型的改进的差分架构Nor flash存储单元
US9236453B2 (en) * 2013-09-27 2016-01-12 Ememory Technology Inc. Nonvolatile memory structure and fabrication method thereof
US9019780B1 (en) * 2013-10-08 2015-04-28 Ememory Technology Inc. Non-volatile memory apparatus and data verification method thereof
KR20150042041A (ko) * 2013-10-10 2015-04-20 에스케이하이닉스 주식회사 전압발생기, 집적회로 및 전압 발생 방법
FR3012673B1 (fr) * 2013-10-31 2017-04-14 St Microelectronics Rousset Memoire programmable par injection de porteurs chauds et procede de programmation d'une telle memoire
KR102072767B1 (ko) * 2013-11-21 2020-02-03 삼성전자주식회사 고전압 스위치 및 그것을 포함하는 불휘발성 메모리 장치
US9159425B2 (en) * 2013-11-25 2015-10-13 Stmicroelectronics International N.V. Non-volatile memory with reduced sub-threshold leakage during program and erase operations
KR102157875B1 (ko) * 2013-12-19 2020-09-22 삼성전자주식회사 불휘발성 메모리 장치 및 그것을 포함한 메모리 시스템
JP6235901B2 (ja) * 2013-12-27 2017-11-22 ルネサスエレクトロニクス株式会社 半導体装置
US9331699B2 (en) 2014-01-08 2016-05-03 Micron Technology, Inc. Level shifters, memory systems, and level shifting methods
KR20160132405A (ko) * 2014-03-12 2016-11-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
CN103943570A (zh) * 2014-03-20 2014-07-23 上海华力微电子有限公司 一种一次性编程存储器中金属硅化物掩膜的制备方法
US9508396B2 (en) * 2014-04-02 2016-11-29 Ememory Technology Inc. Array structure of single-ploy nonvolatile memory
JP5745136B1 (ja) * 2014-05-09 2015-07-08 力晶科技股▲ふん▼有限公司 不揮発性半導体記憶装置とその書き込み方法
FR3021806B1 (fr) * 2014-05-28 2017-09-01 St Microelectronics Sa Procede de programmation d'une cellule memoire non volatile comprenant une grille de transistor de selection partagee
FR3021804B1 (fr) * 2014-05-28 2017-09-01 Stmicroelectronics Rousset Cellule memoire non volatile duale comprenant un transistor d'effacement
JP6286292B2 (ja) 2014-06-20 2018-02-28 株式会社フローディア 不揮発性半導体記憶装置
US20160006348A1 (en) 2014-07-07 2016-01-07 Ememory Technology Inc. Charge pump apparatus
US9431111B2 (en) * 2014-07-08 2016-08-30 Ememory Technology Inc. One time programming memory cell, array structure and operating method thereof
CN104112472B (zh) * 2014-07-22 2017-05-03 中国人民解放军国防科学技术大学 兼容标准cmos工艺的超低功耗差分结构非易失性存储器
CN104361906B (zh) * 2014-10-24 2017-09-19 中国人民解放军国防科学技术大学 基于标准cmos工艺的超低功耗非易失性存储器
US9514820B2 (en) * 2014-11-19 2016-12-06 Stmicroelectronics (Rousset) Sas EEPROM architecture wherein each bit is formed by two serially connected cells
JP6340310B2 (ja) 2014-12-17 2018-06-06 ルネサスエレクトロニクス株式会社 半導体集積回路装置およびウェラブル装置
TWI546903B (zh) * 2015-01-15 2016-08-21 聯笙電子股份有限公司 非揮發性記憶體單元
JP6457829B2 (ja) 2015-02-05 2019-01-23 ルネサスエレクトロニクス株式会社 半導体装置
CN104900266B (zh) * 2015-06-10 2018-10-26 上海华虹宏力半导体制造有限公司 Eeprom存储单元门极控制信号产生电路
US9799395B2 (en) 2015-11-30 2017-10-24 Texas Instruments Incorporated Sense amplifier in low power and high performance SRAM
US9847133B2 (en) 2016-01-19 2017-12-19 Ememory Technology Inc. Memory array capable of performing byte erase operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
TW201727838A (zh) 2017-08-01
JP2017130247A (ja) 2017-07-27
US20170206975A1 (en) 2017-07-20
CN106981492B (zh) 2020-10-20
CN108320772B (zh) 2020-07-10
JP6285001B2 (ja) 2018-02-28
US10038003B2 (en) 2018-07-31
TW201828302A (zh) 2018-08-01
EP3196883B1 (de) 2019-09-04
TWI587455B (zh) 2017-06-11
US10096368B2 (en) 2018-10-09
TW201727649A (zh) 2017-08-01
JP6122531B1 (ja) 2017-04-26
CN108154898A (zh) 2018-06-12
US20170207230A1 (en) 2017-07-20
CN106981307B (zh) 2020-04-07
JP2017130646A (ja) 2017-07-27
JP2017139045A (ja) 2017-08-10
EP3196883A1 (de) 2017-07-26
CN108206186A (zh) 2018-06-26
US20170207228A1 (en) 2017-07-20
US9805776B2 (en) 2017-10-31
US9812212B2 (en) 2017-11-07
CN106981311A (zh) 2017-07-25
EP3196885B1 (de) 2019-03-27
EP3197051B1 (de) 2020-01-15
US10262746B2 (en) 2019-04-16
CN107017023A (zh) 2017-08-04
TWI613654B (zh) 2018-02-01
TW201740374A (zh) 2017-11-16
US10255980B2 (en) 2019-04-09
TWI621123B (zh) 2018-04-11
US20170206941A1 (en) 2017-07-20
CN106981304B (zh) 2020-02-07
US20170206976A1 (en) 2017-07-20
EP3196886B1 (de) 2021-03-31
US9786340B2 (en) 2017-10-10
CN106981309B (zh) 2020-02-14
JP6566975B2 (ja) 2019-08-28
EP3197051A1 (de) 2017-07-26
TW201727651A (zh) 2017-08-01
EP3196884B1 (de) 2021-08-04
US9792993B2 (en) 2017-10-17
CN107017023B (zh) 2020-05-05
TW201830665A (zh) 2018-08-16
US9847133B2 (en) 2017-12-19
EP3196886A1 (de) 2017-07-26
CN106981307A (zh) 2017-07-25
CN106981492A (zh) 2017-07-25
US20170206969A1 (en) 2017-07-20
JP6392379B2 (ja) 2018-09-19
US20170206970A1 (en) 2017-07-20
EP3196885A1 (de) 2017-07-26
TW201727632A (zh) 2017-08-01
CN106981311B (zh) 2019-08-30
TWI578322B (zh) 2017-04-11
CN106981299B (zh) 2019-10-18
CN108154898B (zh) 2021-02-02
TW201824520A (zh) 2018-07-01
TWI613672B (zh) 2018-02-01
EP3410440A1 (de) 2018-12-05
CN108320772A (zh) 2018-07-24
US9653173B1 (en) 2017-05-16
US9941011B2 (en) 2018-04-10
TWI613659B (zh) 2018-02-01
CN106981304A (zh) 2017-07-25
TWI646665B (zh) 2019-01-01
US20180190357A1 (en) 2018-07-05
CN108206186B (zh) 2020-10-13
US20170206968A1 (en) 2017-07-20
US20180261294A1 (en) 2018-09-13
TW201822212A (zh) 2018-06-16
JP2018101767A (ja) 2018-06-28
TW201737256A (zh) 2017-10-16
TWI641115B (zh) 2018-11-11
TWI614763B (zh) 2018-02-11
CN106981309A (zh) 2017-07-25
US20170206945A1 (en) 2017-07-20
CN106981299A (zh) 2017-07-25
TW201801084A (zh) 2018-01-01
EP3196884A1 (de) 2017-07-26
TWI630615B (zh) 2018-07-21
US9520196B1 (en) 2016-12-13
TWI618072B (zh) 2018-03-11
US10121550B2 (en) 2018-11-06

Similar Documents

Publication Publication Date Title
EP3410440B1 (de) Single-poly-speicheranordnung mit einem geteilten, tief dotierten bereich und löschspannungen
US10431309B2 (en) Semiconductor memory device with memory cells each including a charge accumulation layer and a control gate
US9805806B2 (en) Non-volatile memory cell and method of operating the same
US7755135B2 (en) EEPROM having single gate structure
US20030071301A1 (en) Method for erasing a nonvolatile memory cell formed in a body region of a substrate
JP2006228275A (ja) 半導体記憶装置及びその書き込み方法
JP5305856B2 (ja) 不揮発性半導体メモリ
JP5853853B2 (ja) 半導体記憶装置及びその駆動方法
JP5483826B2 (ja) 不揮発性半導体記憶装置及びその書き込み方法
US7382653B2 (en) Electrically rewritable non-volatile semiconductor memory device
CN107256721B (zh) 多次可擦写的单层多晶硅非挥发性存储器及其存储方法
JP2007066355A (ja) 不揮発性半導体記憶装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3196885

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190125

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G11C 16/10 20060101ALI20200214BHEP

Ipc: H01L 27/11558 20170101ALI20200214BHEP

Ipc: G11C 16/26 20060101ALI20200214BHEP

Ipc: G11C 16/14 20060101ALI20200214BHEP

Ipc: G11C 16/04 20060101AFI20200214BHEP

Ipc: G11C 16/16 20060101ALI20200214BHEP

Ipc: G11C 16/12 20060101ALI20200214BHEP

Ipc: G11C 16/30 20060101ALI20200214BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20200309

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3196885

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016036617

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1271288

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200914

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200913

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200813

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200813

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1271288

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016036617

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231106

Year of fee payment: 8

Ref country code: DE

Payment date: 20231108

Year of fee payment: 8