JP2005051227A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2005051227A
JP2005051227A JP2004204545A JP2004204545A JP2005051227A JP 2005051227 A JP2005051227 A JP 2005051227A JP 2004204545 A JP2004204545 A JP 2004204545A JP 2004204545 A JP2004204545 A JP 2004204545A JP 2005051227 A JP2005051227 A JP 2005051227A
Authority
JP
Japan
Prior art keywords
diffusion region
gate electrode
selection
cell
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004204545A
Other languages
English (en)
Inventor
Koji Kanamori
宏治 金森
Teiichiro Nishisaka
禎一郎 西坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2004204545A priority Critical patent/JP2005051227A/ja
Priority to US10/892,553 priority patent/US7268385B2/en
Publication of JP2005051227A publication Critical patent/JP2005051227A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0441Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates
    • G11C16/0458Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates comprising two or more independent floating gates which store independent data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0491Virtual ground arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • H01L29/7923Programmable transistors with more than two possible different levels of programmation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/42Simultaneous manufacture of periphery and memory cells
    • H10B41/49Simultaneous manufacture of periphery and memory cells comprising different types of peripheral transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】
回路規模の縮減に好適とされ、安定な回路動作を得る半導体記憶装置の提供。
【解決手段】
拡散領域(107A/107B)と、浮遊ゲート(106)と、第3の拡散領域(121)と、選択ゲート電極(103)と、選択ゲート電極と立体交差し選択ゲート電極に直交する向きにコントロールゲート電極(111)を有し、選択ゲート直下の半導体基板表層に形成され、2つの拡散領域(107A、121)を結ぶ通路をなすチャネルは、半導体基板を上からみたときの形状として、一つの拡散領域(121)側から一つの方向に沿って延在されている第1の経路(131)を有し、第1経路の端部が曲折され、第1の方向に対して直交する方向に沿って他の拡散領域(例えば107A)側に延在される第2の経路(132)を有する。
【選択図】
図1

Description

本発明は、半導体記憶装置に関し、特に、書き換え可能な不揮発性の半導体記憶装置に関する。
この種の従来の半導体記憶装置として、1セルあたり2ビット情報を記憶する不揮発性半導体記憶装置として、図22に模式的に示すようなセルトランジスタが知られている。基板11の表面に設けられた拡散領域12A、12Bの間のチャネル形成領域の基板上に、絶縁膜13とコントロールゲート電極15、その両側に絶縁膜14とワード線電極16が設けられている。
この種のメモリセルとして、例えば、下記非特許文献1、下記特許文献1〜5等が参照される。ゲート電極の直下の電荷捕獲膜に左右、独立に二つのビットを記憶することができるメモリとして、下記特許文献6〜9が参照される。
また1セルあたり2ビットを記憶するメモリセルの別の構成として、図23に示すような構成が提案されている。例えば下記特許文献9の記載によれば、基板上、酸化シリコン膜、窒化シリコン膜、酸化シリコン膜をこの順に積層した誘電体膜(「ONO(oxide nitride oxide)膜」という)をゲート絶縁膜14として備えたMONOS(Metal−ONO−Silicon)構造の不揮発性メモリは、ゲート電極直下の酸化シリコン膜で挟まれた電荷捕獲膜(窒化シリコン膜)に1セルあたり2ビットのデータを記憶することができる。電荷捕獲膜を有し1セルあたり2ビットの記憶ノードを有するEEPROM(Electrically Erasable and Programmable ROM)メモリセルにおいて、2個の個別ビット、すなわち左側ノードNode1と右側ノードNode2が電荷捕獲膜内の空間的に離れた領域に形成される。2個のビット(記憶ノード)の読み出しは、それが書き込まれたときの方向とは逆方向の読み出しで行われる。例えば、ONO膜14中の電荷捕獲膜のNode2の書き込みは、ゲート電極16とドレイン拡散領域12Bに書き込み用の正電圧を印加しソース拡散領域12Aを接地させて、十分に加速されたホット・エレクトロンがONO膜14内の電荷捕獲膜のドレイン拡散領域12Bに隣接した領域に注入される。そして、記憶ビットの読み出しは、書き込みとは逆方向に行われ、ゲート電極16とソース拡散領域12Aにそれぞれ正電圧を印加し、ドレイン拡散領域12Bを接地して読み出しを行う。またメモリセルの消去は、例えばゲート電極16に適切な消去電圧を印加し、Node2の消去を行うには、ドレイン拡散領域12Bに、Node1の消去を行うにはソース拡散領域12Aに消去用電圧を印加し電荷捕獲膜から電子を排出させる。このように、所定のゲート電圧、ドレイン、ソースの電圧設定により、ゲート電極の直下の電荷捕獲膜に左右、独立に二つのビットを記憶することができる。
次に、下記非特許文献1に記載されている2ビットセルMONOSメモリデバイスについて詳細に説明する。
下記非特許文献1には、図24(A)乃至図24(C)に示すような1セル2ビット構成のMONOSメモリの断面図と等価回路と、書きこみ、消去、読み出し動作時のバイアス条件が開示されている。
メモリセルは、基板表面に設けられた不純物拡散領域の対(ビット線の対)と、拡散領域の間の基板表面上の酸化シリコン膜の上に設けられたコントロールゲート(control gate)CGと、基板表面上の酸化シリコン膜の両側に設けられるONO膜の上に、コントロールゲートと直交する方向に延在されているワード線(world line)WLと、を備えており、ソース・サイド・ホットエレクトロン・インジェクションでノードへの書きこみ(Program)が行われ、ホットホールインジェクションで消去が行われる。
下記非特許文献1によれば、コントロールゲートCG[I+2n]の右側(right hand side)の、ワード線WL[j]の下の各記憶サイトは、並列にプログラムされる。ビット線BL[I+2n-1]はグランド電位とされ、ビット線BL[I+2n]は5.0Vにバイアスされ、ワード線WL[j]は9.0Vにバイアスされる。コントロールゲートCG[I+2n]は、ソース・サイド・ホットエレクトロン・インジェクションを誘起/抑制するために1.0V/0.0Vにバイアスされる。コントロールゲートの右側に記憶された情報は、図24(C)のバイアス条件により生じるホットホール注入で消去される。また読み出し時には、ビット線BL[I+2n-1]は1.5V、ビット線BL[I+2n]は0.0Vにバイアスされ、ワード線WL[j]はVreadにバイアスされ、コントロールゲートCG[I+2n]は、1.5Vにバイアスされる。コントロールゲートCG[I+2n]の左側(left hand side)に対する記憶サイトをプログラム/消去するには、ビット線BL[I+2n-1]、BL[I+2n]のバイアス条件は交換される。メモリセルの各ビットは、図24(C)に示されるように、リーバースリードを適用することで読み出しが行われる。
"A novel 2-bit/cell MONOS memory device with a wrapped -control-gate structure that applies source-side hot-electron injection," 2002 Symposium on VLSI technology Digest of a Technical Papers, p206-207. 特開2001−230332号公報(第19頁、第27図) 特開2002−26149号公報(第16頁、第23図) 特開2001−357681号公報(第6−7頁、第2図、第3図) 米国特許第6,399,441号明細書 米国特許第6,388,293号明細書 米国特許第6,011,725号明細書 米国特許第6,256,231号明細書 特開2001−156189号公報(第2頁、第1図) 特表2001−512290公報(第45−47頁、第2図)
次に、図25を参照して、上記非特許文献1に記載されているメモリセルの書き込み(Program)動作について検討する。以下は、本願発明者らの研究結果に基づき解析結果を示したものである。
図25(A)は、上記非特許文献1に記載されているメモリセルの構成を示す図である。図25(A)において、201は半導体基板、202はN+拡散領域(単に「拡散領域」ともいう)、203はゲート絶縁膜、204はONO膜、205はコントロールゲート(電極)、206はワード線(電極)である。ノード1(Node1)に、書き込み(Program)を行う場合、ビット線BL1に5V、BL2に0Vの電圧を印加する。またワード線206には、9Vの電圧を印加する(VWL=9V)。このとき、コントロールゲート205には、1Vの電圧を印加し(VCG=1.0V)、チャネルにながれる電流を低く抑えている。すなわち、チャネル抵抗が高くなるため、図25(B)に示すように、電界を集中させ、ONO膜204中へ電子を注入させる。最大電界点は、ワード線206とコントロールゲート205の境界に発生する。この電界が集中した箇所で、ソース拡散領域(BL2)から移動してきた電子が、最大電界強度付近で加速され、高いエネルギーを持つ。加速された電子は、ワード線206の正電界に吸い上げられ、ワード線206と、コントロールゲート205の境界部分より、少しドレイン拡散領域(BL1)側に寄ったONO膜204中にトラップされる。なお、逆側の記憶ノードに書き込むときは、上述のソースとドレインのバイアス電圧を交換することで実現できる。
ここで、ONO膜204中の電子トラップ箇所(図25(A)において、Node1で指示される黒丸で示す)は、ワード線電極206とコントロールゲート電極205との境界付近であって、ドレイン拡散領域202(BL1)から一定距離離れた箇所に存在している。
上記したように、Program動作では、ソースサイド・インジェクション現象を利用している。
次に、図26を参照して、上記非特許文献1に記載されているメモリセルの読み出し動作(Read動作)について検討する。以下では、第1のノード(Node1)には電子がトラップされていず、第2のノード(Node2)に電子がトラップされている場合について説明する。
第1のノード(Node1)の読み出しを行う場合、ビット線BL2に1.5V、BL1に0Vの電圧を印加する。すなわち、読み出しを行うノード側の拡散領域202をソースにして読み出しを行う。第1のノード(Node1)には、電子がトラップされていないため、メモリセルには、読み出し電流が流れるはずであるが、第2のノード(Node2)にトラップされている電子がチャネル表面のポテンシャルに影響し、チャネル電流が流れにくくなる。
この問題を回避するためには、ビット線BL2には、比較的高い電圧を印加して、空乏層207を伸ばし、第2のノード(Node2)にトラップされた電子の影響を見えなくしなければならない。
また、ワード線電極206とコントロールゲート電極205の境界付近に位置する電子トラップ領域と、ビット線拡散領域との距離(本明細書では、この距離を「トラップスペース」という)(図26参照)は、製造ばらつきの影響を受ける。
例えばトラップスペースが大きいと、BL拡散領域202に、大きな電圧を印加する必要がある。例えばトラップスペースが0.1um程度になると、2〜3Vの電圧が必要になる。
そして製造ばらつきにより、トラップスペースの距離がばらつくと、チャネル電流が変動するため、安定な回路動作を得ることが困難になる。
次に、トラップスペースとチャネル電流の関係について本願発明者らによる解析結果を基に説明する。
図27(A)は、第1のノード(Node1)、第2のノード(Node2)ともに、電子がトラップされていない状態でのメモリセルトランジスタの電圧−電流(V−I)特性である。この場合、通常のトランジスタの特性を示している。なお、図27の電圧−電流(V−I)特性は、本願発明者らが試作したデバイスの実測図である。
一方、図27(B)には、第2のノード(Node2)のみに電子トラップされた場合、第2のノード(Node2)側にドレイン電圧(図中の横軸)を印加したときの、チャネル電流(図中の縦軸)特性を示す。また、コントロールゲートとワード線には同一電圧Vgが印加されている。
このメモリセルのトラップスペースは、およそ0.03〜0.05umと推定している。このように、トラップスペースが、小さい場合には、ドレインに1.5V程度の電圧でも十分な電流を確保することが出来る。
しかしながら、図27(C)に示すように、トラップスペースが長くなった場合を疑似的に作り出すと、もはや、メモリセルのチャネル電流を確保することは困難である。すなわち、コントロールゲートとワード線の電圧Vgを4Vとした場合に相当する状態を疑似的に作り出すと、ドレイン電圧1.5Vでわずかなチャネル電流が流れるだけであり、Vg=3Vでは全く流れない。
このように、メモリセル電流は、トラップスペースの長さに大きく依存し、製造ばらつきの影響を強く受けてしまうことがわかる。
次に、図28を参照して、上記非特許文献1に記載されているメモリセルの消去(Erase動作)について説明する。消去動作は、ホット・ホール注入現象を利用し、電子トラップ領域にトラップされた電子をホールで中和することにより消去させるものである。
第1のノード(Node1)にトラップされた電子を中和する場合、ビット拡散領域(BL1)端子に、高電圧(例えばVBN=7.0V)を印加すると、N型拡散領域202とP型シリコン基板201の接合部で、バンド間トンネリング現象でホット・ホールが発生する。このホール(正孔)は、ワード線206のポテンシャルに引き寄せられて、ONO膜204中へ注入される。
ホールは、BL1端子のN型拡散領域202のポテンシャルに逆らうように、第2のノード(Node2)側へ拡散していくが、ワード線206のポテンシャルに引き寄せられてONO膜204中へ注入されるホールは、実際には、ほんの一部である。
更に、トラップスペースが長すぎる場合、発生したホールは、シリコン基板201中を拡散して広がるため、中和現象が起きにくくなる。
上記の通り、上記非特許文献1に記載された構成の従来の半導体記憶装置の課題をまとめると、次の通りである。
(A)リード時のメモリセル電流が、製造ばらつきの影響を受けやすいトラップスペース長に依存し、安定な特性を得ることができない。
(B)消去特性がトラップスペース長に依存し、消去特性が不安定である。
(C)製造ばらつきを受けにくい、トラップスペース長を実現する手法がない。
したがって、本発明の主たる目的は、安定な回路動作を得るとともに、回路規模の縮減に好適とされる半導体記憶装置を提供することにある。
上記目的を達成する本発明の一のアスペクトに係る半導体記憶装置は、半導体基板上に設けられた絶縁膜と前記絶縁膜の上に設けられた導電膜とを含むゲートと、前記半導体基板表層に設けられた第1及び第2の拡散領域と、を少なくとも有し、前記ゲート直下の前記半導体基板表層に形成され、ソース、ドレインとなる二つの前記拡散領域を結ぶ通路をなすチャネルは、前記半導体基板を上からみたときの形状として、一方の前記拡散領域側から、前記ゲートの平面形状に関連して規定される一の方向に沿って延在されている第1の経路と、前記一の方向に沿って延在された前記第1経路の端部が曲折されてなり、前記一の方向に対して所定の角度をなす方向に沿って他方の前記拡散領域側に延在されている第2の経路とを有する。
本発明において、前記ゲートは、前記半導体基板上に、浮遊ゲートに隣接して設けられる、選択ゲートである。本発明によれば、ソース、ドレイン拡散領域の間の通路をなすチャネルに流れる電流(チャネル電流)が選択ゲートに例えば平行に流れ、選択ゲートの中央下から、選択ゲートに直交する方向に流れる。
本発明において、半導体基板表層には、該二つの拡散領域の一つ(「第2の拡散領域」という)と対向し、ゲートを間に挟んで配設されている第3の拡散領域を備え、第2の拡散領域とゲートの間の基板上、及び、ゲートと第3の拡散領域の間の基板上に、それぞれ絶縁膜を介して設けられる第1及び第2の導電膜よりなる第1及び第2の浮遊ゲートと、第1及び第2の浮遊ゲートの上に絶縁膜を介して共通に設けられる第3の導電膜よりなるコントロールゲートと、を有し、コントロールゲートはワード線をなし、第2の拡散領域と第3の拡散領域とは、それぞれ対応するビット線に接続されている。
本発明において、単位セルは、基板表面に設けられた第1の拡散領域と、前記第1の拡散領域に隣接する基板上の第1の領域に設けられた第1の絶縁膜と、前記第1の絶縁膜の上に設けられ、浮遊ゲートをなす第1のゲート電極と、前記第1のゲート電極の上に設けられた第2の絶縁膜と、前記第2の絶縁膜の上に設けられ、コントロールゲートをなす第2のゲート電極と、前記第1の領域に隣接する前記基板上の第2の領域に設けられた第3の絶縁膜と、前記第3の絶縁膜の上に設けられ、選択ゲートをなす第3のゲート電極と、で一つの単位セルを構成しており、前記第2のゲート電極は、前記第3のゲート電極と立体交差し、前記第3のゲート電極の延在部に位置する、前記基板表面の第3の領域には、第2の拡散領域が設けられている。
本発明において、2ビット情報を記憶するセルは、基板表面に互いに離間して配設される2列の第1及び第2の拡散領域と、前記第1及び第2の拡散領域の列の間の領域に、基板上に、第1の絶縁膜を介して配設される選択ゲート電極と、前記選択ゲート電極の長手方向の一端又は両端に位置する領域に、基板表面に設けられた引き出し拡散領域と、を備え、前記第1の拡散領域と前記選択ゲートとの間の第1の領域、及び、前記第2の拡散領域と前記選択ゲートとの間の第2の領域に、第2及び第3絶縁膜を介して第1及び第2の浮遊ゲート電極が設けられ、前記第1及び第2の浮遊ゲート電極と前記選択ゲート電極を覆う第4の絶縁膜を介して立体交差してワード線電極をなすコントロールゲート電極と、前記第1の拡散領域と、前記第1の浮遊ゲート、前記コントロールゲート電極、前記選択ゲート電極と、前記引き出し拡散領域とで、第1の単位セルを構成し、前記第2の拡散領域と、前記第2の浮遊ゲートと、前記コントロールゲート電極、前記選択ゲート電極と、前記引き出し拡散領域と、で第2の単位セルを構成している。
本発明の他のアスペクトに係る半導体記憶装置において、メモリセルアレイのレイアウトは、基板表面のメモリセルエリアにおいて一の方向に沿って互いに平行に延在され互いに離間して配設されている複数列の拡散領域を備え、複数列の前記拡散領域のそれぞれは、基板上層の配線層に設けられ、対応するビット線に電気的に接続され、前記基板表面において、前記複数列の拡散領域の長手方向の両端から、離間した位置に、前記一の方向に直交する方向に延在された引き出し拡散領域を備え、二つの前記拡散領域の列の間の領域の基板上に絶縁膜を介して配設される選択ゲート電極と、前記選択ゲート電極の長手方向の一端又は両端に位置する側の領域に、前記選択ゲート電極と交差して、基板表面に設けられている引き出し拡散領域と、を備え、二つの列の前記拡散領域の間の前記選択ゲート電極について、一つの列の前記拡散領域と前記選択ゲート電極の間の第1の領域、及び、前記選択ゲート電極と、他の列の前記拡散領域との間の第2の領域に、それぞれ、絶縁膜を介して第1及び第2の浮遊ゲート電極が設けられ、前記第1及び第2の浮遊ゲート電極と前記選択ゲート電極を覆う第4の絶縁膜を介して立体交差してワード線電極をなすコントロールゲート電極と、前記第1の拡散領域と、前記第1の浮遊ゲート、前記コントロールゲート電極、前記選択ゲート電極と、前記引き出し拡散領域とで、第1の単位セルを構成し、前記第2の拡散領域と、前記第2の浮遊ゲートと、前記コントロールゲート電極、前記選択ゲート電極と、前記引き出し拡散領域と、で第2の単位セルを構成している。
本発明において、セルへの書き込みは、選択されたワード線(コントロールゲート)を正電圧とし、選択されたセルの選択ゲートにしきい値電圧(Vt)またはしきい値電圧(Vt)よりも所定電圧高い電圧を与え、前記セルの拡散領域に接続するビット線に正電圧を印加することで、引き出し拡散領域を電子供給源とし、セルの浮遊ゲートへの書き込みが行われる。
本発明において、セルのコントロールゲート電極を負電圧とし、該セルの拡散領域に接続するビット線に所定の正電圧を与え、該セルの選択ゲート電極に正電圧を印加し、該セルの消去が行われる。
本発明において、読み出し対象のセルの選択ゲートに正電圧を印加し、前記セルの拡散領域に接続するビット線に接地電位を印加し、コントロールゲートに正電圧を印加することで、前記引き出し拡散領域をドレイン側にして読み出す。
さらに、本発明によれば、前記選択ゲートの両側の浮遊ゲートのサイドウォールをマスクにイオン注入を行い、セルフアラインで基板表面に拡散領域を形成しており、製造ばらつきの影響を受けにくく、安定したサイズが確保される。
本発明によれば、選択ゲートのチャネルをソースにしてソースサイド・インジェクションを行うことにより、非対象記憶ノードを介することなく対象記憶ノードへの書き込みを行う構成とされており、この結果、非対象記憶ノードの影響を受けることなく、デバイス特性の信頼性を向上するという効果を奏する。
さらに、本発明によれば、選択ゲートのチャネルをドレインにして読み出すことで、非対象記憶ノードを介することなく、対象記憶ノードの読み出しを行う書き込みを行う構成とされており、実質的に1ビットセルとして機能するため、特段に安定なメモリセル電流を確保することができる。
このように、本発明によれば、2ビットセルにおいて、1ビット単位に書き込み/読み出しを可能とし、セルの小型化を図りながら、動作の安定化を図ることができる。
さらに、本発明によれば、選択ゲート電極のチャネルに正電位を加えることで、ホールの拡散を防止し、電子トラップ領域にホールが注入されるため、効率的な消去を実現し、また耐性を向上する。
本発明によれば、自己整合型のメモリセル構成とされており、製造工程を容易化している。
本発明を実施するための最良の形態について以下に説明する。図1は、本発明のメモリセルトランジスタの原理を説明するための図である。図1を参照して、本発明の構成及び動作原理について説明する。本実施形態において、一つの単位セル(1ビット情報を記憶する)は、基板11の表面に設けられた第1の拡散領域12Aと、第1の拡散領域12Aに隣接する基板上の第1の領域に設けられた第1の絶縁膜14Aと、第1の絶縁膜14Aの上に設けられた導電膜よりなり電荷蓄積手段をなす第1の浮遊ゲート(フローティングゲート)16Aと、第1の浮遊ゲート16Aの上に設けられた第2の絶縁膜17Aと、第2の絶縁膜17Aの上に設けられた導電膜よりなるコントロールゲート18Aと、第1の領域に隣接する基板11上の第2の領域に設けられた第2の絶縁膜14Cと、第2の絶縁膜14Cの上に設けられた導電膜よりなる選択ゲート15と、から構成されており、基板表面の選択ゲート15の延在される方向(図の垂直方向)の第3の領域に、拡散領域(不図示)を有する。選択ゲート15は、該第3の領域の拡散領域と絶縁膜を介して交差して延在されている。また、コントロールゲート18Aは、選択ゲート15と立体交差して配置されている。
そして、本発明の実施の形態によれば、好ましくは、上記した一つの単位セルと線対称に別の単位セルが配置される。すなわち、2ビット情報をそれぞれ独立に記憶する二つの単位セルとして、図1を参照すると、基板表面に互いに離間して設けられた第1、及び第2の拡散領域12A、12Bと、第1の拡散領域12Aに隣接する基板上の第1の領域に設けられた第1の絶縁膜(トンネル絶縁膜)14Aと、第1の絶縁膜14Aの上に設けられた導電膜よりなり電荷蓄積ノード(Node1)をなす第1の浮遊ゲート16Aと、第1の浮遊ゲート16Aの上に設けられた第2の絶縁膜17Aと、第2の絶縁膜17Aの上に設けられた導電膜よりなる第1のコントロールゲート18Aと、第1の領域に隣接する基板11上の第2の領域に設けられた第3の絶縁膜14Cと、第3の絶縁膜14Cの上に設けられた導電膜よりなる選択ゲート15と、第2の拡散領域12Bに隣接する基板上の第3の領域に設けられた第4の絶縁膜(トンネル絶縁膜)14Bと、第4の絶縁膜14Bの上に設けられた導電膜よりなり電荷蓄積ノード(Node2)をなす第2の浮遊ゲート16Bと、第2の浮遊ゲート16Bの上に設けられた第5の絶縁膜17Bと、第5の絶縁膜17Bの上に設けられた導電膜よりなる第2のコントロールゲート18Bと、で2ビットのセルを構成し、第1、第2の浮遊ゲート上の第1及び第2のコントロールゲート18A、18Bは共通接続されてワード線電極を構成する。また、選択ゲート15は、ワード線電極に直交する方向(図に垂直方向)に延在されており、基板表面に、選択ゲート15の長手方向と交差して設けられる第3の拡散領域(図示されない)を有する。
本発明において、セルへの書き込みは、選択されたコントロールゲート18A、18Bを第1の正電圧とし、選択されたセルの選択ゲートに、しきい値電圧(Vt)(あるいはVt+α、α>0)を与え、第3の拡散領域を0Vとし、2ビットセルのうち、書き込み対象のセルの浮遊ゲートに近い方の拡散領域に接続するビット線に第3の正電圧を印加することで、第3の拡散領域を電子供給源とし、チャネル上の絶縁膜(トンネル絶縁膜)を通して、当該セルの浮遊ゲートに、電子が注入(チャネルホットエレクトロン注入)され、書き込みが行われる。
本発明において、セルの消去は、コントロールゲート18A、18Bに所定の負電圧を印加して、選択ゲート15に正電圧を与え(基板に正電圧を与え)、記憶ノードをなす浮遊ゲートから電子を引き抜くことで、セルの消去を行う。
本発明において、セルの読み出しは、第3の拡散領域に、正電圧を印加し、読み出し対象のセルのコントロールゲート18A、18Bに正電圧を印加し、2ビットセルのうち、読み出し対象のセルの浮遊ゲートに近い方の拡散領域に0Vを印加し、選択ゲート電極には正電圧を印加することで、第3の拡散領域をドレイン側にして読み出す。
本発明においては、2ビットセルのうち、対象記憶ノードNode1(浮遊ゲート)への書き込みを行う場合、選択ゲートの延在部側の拡散領域をソースにして、ソースサイド・インジェクションを行うことにより、非対象記憶ノードNode2を介することなく、対象記憶ノードNode1への書き込みを行う構成とされており、安定な書き込み特性を得ることができる。すなわち、選択ゲート15を共有する二つの単位セルよりなる2ビットセルにおいて、一方の単位セルのノードをプログラムするとき、二つの単位セルのそれぞれの拡散領域12A、12B間に、チャネル電流は流れず、他方の単位セルのノードがプログラムされるということはない。
本発明によれば、記憶ノードの読み出し時に、選択ゲート延在部側の拡散領域をドレインにして読み出すことで、非対象記憶ノードを介することなく、対象記憶ノードの読み出しを行う構成とされている。
このように、本発明においては、2ビットセルを、実質的に、1ビット単位にそれぞれ書き込み/読み出しが行われる、二つの単位セルとして、独立に機能させることができる。このため、安定なメモリセル電流を確保することができる。
上記した形態についてさらに詳細に説明すべく、本発明の実施例について図面を参照して詳細に説明する。図2は、本発明の第1の実施例のメモリセルアレイにおけるメモリセルトランジスタの断面を模式的に示す図である。図3は、本発明の第1の実施例のメモリセルアレイのレイアウト構成の一部を模式的に示す図である。なお、図2は、図3のA−A線の断面を模式的に示す図である。
図2を参照すると、P型シリコン基板101表面に設けられたN+拡散領域の対107A、107Bは、基板表面を図の垂直方向に延在されて配設されており、ビット線を形成している(「ビット拡散領域」ともいう)。一対のN+拡散領域107A、107Bの間の基板上に設けられた酸化シリコン膜102と、酸化シリコン膜102の上に設けられた導電膜(例えば多結晶シリコン)よりなる選択ゲート電極103を備え、選択ゲート電極103の上には、酸化シリコン膜104が設けられている。
酸化シリコン膜102と、選択ゲート電極103、及び酸化シリコン膜104の積層体よりなる選択ゲート構造の両側の側壁には、酸化シリコン膜102、浮遊ゲート電極106、絶縁膜(酸化シリコン膜108、窒化シリコン膜109、酸化シリコン膜110よりなるONO膜)を介して、導電膜よりなるコントロールゲート電極111が設けられている。ONO膜は、高絶縁性を有し、比誘電率が高く、薄膜化に好適とされる。なお、本発明において、浮遊ゲート電極106とコントロールゲート電極111間に配設される絶縁膜がONO膜に限定されるものでないことは勿論である。
コントロールゲート電極111は、選択ゲート電極103の長手方向と直交する方向に延在されており、選択ゲート電極103と立体交差する。すなわち、コントロールゲート電極111は、選択ゲート電極103との交差部において、選択ゲート電極103上層に設けられた酸化シリコン膜110上面に当接している。
一つの単位セルは、図2において破線で示すように、一つの拡散領域107Aと、該拡散領域107Aに隣接する基板上の酸化シリコン膜102(トンネル絶縁膜)の上に設けられた導電膜(例えば多結晶シリコン)よりなる浮遊ゲート電極106と、浮遊ゲート電極106上に、絶縁膜(108、109、110)を介して設けられたコントロールゲート電極111と、選択ゲート(絶縁膜102と選択ゲート電極103)からなる。なお、図2において、コントロールゲート電極111は、多結晶シリコン表面に、高融点金属シリサイドを設け、低抵抗化する構成としてもよいことは勿論である。
本実施例において、2ビットセルは、一つの選択ゲートを共通として二つの単位セルを線対称として配置することで構成される。すなわち、図2において、2ビットセルの他方の単位セルは、一つの拡散領域107Bと、該拡散領域107Bに隣接する基板上の酸化シリコン膜102(トンネル絶縁膜)の上に設けられた導電膜(例えば多結晶シリコン)よりなる浮遊ゲート電極106と、浮遊ゲート電極106上に絶縁膜108、109、110を介して設けられたコントロールゲート電極111と、選択ゲート(絶縁膜102と選択ゲート電極103)からなる。
後述するように、単位セルの浮遊ゲート106に酸化シリコン膜102を介して電荷(電子)を注入させることで、プログラムする場合、図3に示すように、選択ゲート電極103の延在部に位置する拡散領域121(「引き出し拡散領域」ともいう)を、ソース、すなわち電子供給源として、ドレインをなす拡散領域107Aに正電圧を与え、ソースサイド・インジェクションにて、チャネルホットエレクトロンを、酸化シリコン膜102を介して浮遊ゲート106に注入することで行われる。
本実施例において、選択ゲート電極103を共有する二つの単位セル(Unit Cell)において、一方の単位セルの記憶ノードをプログラムするとき、他方の単位セルの記憶ノードがプログラムされるということはない。その理由は、本実施例においては、二つの単位セルのそれぞれの拡散領域107A、107B間に、チャネル電流が流れないためである。
図3を参照すると、選択ゲート電極103との関係でセルトランジスタのソース又はドレイン拡散領域となる二つの拡散領域107A、121を有し、選択ゲート電極103直下の基板表層に形成され、ソースとドレインをなす拡散領域107Aと、拡散領域121とを結ぶ通路をなすチャネルは、基板を上からみたときの形状として、選択ゲート103の平面形状に関連して規定される一つの方向(図3では長手方向)に沿って、一つの拡散領域121側から延在されている第1の経路131を有し、一つの拡散領域121側から延在された第1経路131の端部は曲折されており、第1の方向に対して所定の角度(例えば直角)をなす第2の方向に沿って他の拡散領域107A側にまで延在されている第2の経路132を有する。
すなわち、本発明によれば、ソース、ドレインをなす拡散領域121、107Aの間の通路をなすチャネルに流れる電流(チャネル電流)は、選択ゲート103に平行に流れ、選択ゲート103の配線幅の概ね中央下から、選択ゲート103に直交する方向(コントロールゲート電極111の長手方向)に流れる。一方、コントロールゲート電極111についてみると、拡散領域107Aと拡散領域121の通路をなすチャネルに流れる電流(チャネル電流)は、コントロールゲート電極111に例えば平行に流れ、コントロールゲート電極111の長手方向に直交する方向(選択ゲート電極103の長手方向)に流れる。
同様にして、2ビットセルを構成する他方の単位セルについても、選択ゲート103直下の基板表層に形成され、ソースとドレインをなす二つの拡散領域107B、121を結ぶ通路をなすチャネルは、基板を上からみたときの形状として、選択ゲート電極103の長手方向に沿って、一つの拡散領域121側から延在されている第1の経路を有し、第1経路の端部が曲折され第1の方向に対して所定の角度(直角)をなす第2の方向に沿って延在され他の前記拡散領域107B側に至る第2の経路を有する。
次に、図2及び図3を参照して説明した、本実施例の半導体記憶装置の製造方法の一例について説明する。図4乃至図12は、本発明の製造方法の一実施例を製造工程順に示した工程断面図である。
P型半導体基板101上に酸化シリコン膜102を形成する。酸化シリコン膜102は、熱酸化により、例えば膜厚10nm程度堆積する。酸化シリコン膜102の上に、例えば膜厚100nm程度のポリシリコン(多結晶シリコン)103を形成する(図4(A)参照)。多結晶シリコンは、リンドープポリシリコンや砒素不純物のイオン注入などの方法により、N型化しておくことが望ましい。また、P型シリコン基板101には、ホウ素イオンなどを注入して必要な表面濃度にしておくことが好ましい。なお、図3の拡散領域121を、例えば埋め込みN+拡散領域とする場合、予めP型半導体基板101表面に形成しておく。
多結晶シリコン103上に、酸化シリコン膜104をCVD(化学気相成長)法等で形成する。その後、フォトマスクを用い、酸化シリコン膜104及び多結晶シリコン膜103を選択的に除去し、選択ゲートを形成する(図4(B)参照)。
こののち、基板全面に、酸化シリコン膜105をCVD(化学気相成長)または熱酸化により形成する(図4(C)参照)。
次に、多結晶シリコン膜をCVD法により基板全面に堆積し、エッチバックにより、酸化シリコン膜105で覆われた選択ゲート側壁に、サイドウオール状の浮遊ゲート電極106を形成する(図5(A)参照)。多結晶シリコン膜は、リンまたは砒素不純物を含有したN型であることが好ましい。サイドウオールの幅は、堆積された多結晶シリコン膜の厚さにおおむね等しい。
次に、形成した選択ゲートと浮遊ゲートをマスクとして、イオン注入を行い、セルフアラインで基板表面に、N+拡散領域107を形成する(図5(B)参照)。例えばAsイオンをドース量1015cm−2で注入する。イオン注入後、必要に応じて、窒素雰囲気での熱処理を施しても良い。Asのイオン注入において、埋め込みN+拡散領域(図3の121)を覆う領域上は、マスクが設けられる。
つづいて、基板全面に、酸化シリコン膜108を例えば増速酸化によって形成する(図5(C)参照)。ボトム酸化膜をなす酸化シリコン膜108は十分に厚く形成される。すなわち、熱酸化によってシリコン中の高濃度不純物(例えばAs等)により酸化速度が増加し(酸化増速拡散)、図5(C)に示すように、Asイオンを注入した拡散領域107上の酸化シリコン膜108の膜厚は増大する。あるいは、CVD+EB(電子ビーム照射により誘起される基板表面の反応を用いるCVD、「EBCVD」ともいう)を用いて酸化シリコン膜108を形成してもよい。
つづいて、被着した酸化シリコン膜108を覆うように窒化シリコン膜109を形成し、その上に酸化シリコン膜110を形成する(図6参照)。
つづいて、酸化シリコン膜110の上に多結晶シリコン膜111を形成する。さらに、ワード線をなす多結晶シリコン膜111の上面に、WSiなどの低抵抗材を被着する(図7参照)。あるいは、高融点金属シリサイドプロセスを適用することも可能である。
図8乃至図12は、図7のA、B、C線にそれぞれ沿って基板断面をみた場合の製造工程を順に示した図であり、それぞれの図において、(A)、(B)、(C)は、選択ゲート、浮遊ゲート、拡散領域に対応している。
図8を参照すると、WSi112上に設けられているフォトレジスト117は、ワード線をパターン形成するためのものである。
フォトレジスト117をマスクとして例えばドライエッチング法により、成膜したWSi112、ポリシリコン111、ONO膜(110、109、108)を選択除去し、コントロールゲートを形成する(図9参照)。すなわち、酸化シリコン膜104をストッパとして、エッチングでパタン形成する。その後、フォトレジスト117を剥離する。
つづいて、メモリセルアレイ領域の周辺ゲート(不図示)の作成(例えばLDD(Lightly Doped Drain)領域作成)のためにメモリセルアレイ領域をマスクで覆い、その後、マスクを除去して、コントロールゲート電極111の長手方向の両側に、酸化シリコン膜のサイドウオール113を形成する。つづいて、層間絶縁膜114を形成する(図10参照)。その後、周辺ゲートのソース、ドレイン拡散領域を作成する。
つづいて、図11(C)に示すように、層間絶縁膜114に、WSi112に達するまでのコンタクト孔115を形成する(図11)。
その後、コンタクト孔115に、Al配線116を形成する(図12参照)。
次に、本発明の一実施例のメモリセルアレイの構成について説明する。図13は、本発明の一実施例のメモリセルアレイの構成を示す図である。
図13を参照すると、本実施例において、メモリセルアレイは、基板表面(表層)の一の方向に沿って延在され互いに離間して配設されており、コンタクトによりビット線に接続される複数列のN+拡散領域107(「ビット拡散領域」ともいう)が設けられている。また基板表面において、複数列の拡散領域107の長手方向の両端から離間した位置に、一の方向に直交する方向に沿って延在された埋め込みN+拡散領域121(図3の121に対応する)が設けられている。基板上に絶縁膜(不図示)を介して設けられ、拡散領域107の長手方向に直交する方向に延在された複数本のワード線電極122が設けられている。基板上に、絶縁膜(不図示)を介して設けられ拡散領域107の列の間に一の方向に沿って延在された選択ゲート電極103が設けられており、選択ゲート電極103は、不図示の絶縁膜を介して埋め込みN+拡散領域121と立体交差している。
図13に示す例では、メモリセル拡散領域エリア(「メモリセルエリア」ともいう)100の両側に、Yスイッチ(「選択トランジスタ」、あるいは「バンク選択トランジスタ」ともいう)200A、200Bが設けられている。
Yスイッチ200Aは、第2アルミ配線層に配設されるグローバルビット線GBL1に、ソース又はドレインとなる一方の拡散領域がコンタクト/ビアホールを介して接続され、ゲート電極がそれぞれ選択線SL1、SL2とされ、ドレイン又はソースとなる他方の拡散領域が第1アルミ配線層の対応するビット線123にコンタクトを介して接続されている第1、第2の選択トランジスタ(「バンク選択トランジスタ」ともいう)Tr1、Tr2を備えている。
Yスイッチ200Bは、第2アルミ配線層に配設されるグローバルビット線GBL2に、ソース又はドレインとなる一方の拡散領域がコンタクト/ビアホールを介して接続され、ゲート電極がそれぞれ選択線SL3、SL4とされ、ドレイン又はソースとなる他方の拡散領域が第1アルミ配線層の対応するビット線123にコンタクトを介して接続されている第3、第4の選択トランジスタ(「バンク選択トランジスタ」ともいう)Tr3、Tr4を備えている。基板表面の拡散領域107と対応する第1アルミ配線層のビット線123とは、コンタクトを介して接続されている。
第1、第2の選択トランジスタTr1、Tr2に接続される第2、第4のビット線は、Yスイッチ200A側からメモリセルエリア100をYスイッチ200B側に延在され、第3、第4の選択トランジスタTr3、Tr4に接続される第1、第3のビット線には、Yスイッチ200B側からメモリセルエリア100をYスイッチ200A側に延在されている。
図13に示す例では、メモリセルアレイは、ワード線電極122を8段を単位に一つの組を構成しており、二つの組が設けられている。なお、本発明において、メモリセルアレイの構成は、8段のワード線を単位とする2組の構成に限定されるものでないことは勿論である。
ワード線電極122群の両側には、埋め込みN+拡散領域121が設けられている。ワード線電極122群の2組に対しては、3本の埋め込みN+拡散領域121が設けられている。メモリセルアレイの各組(サブアレイ)の両側に埋め込みN+拡散領域121を設けることで、後述するように、読み出し電流を増加させている。
メモリセルエリア100の基板上を、拡散領域107の間に沿って配置されている選択ゲート電極103は、メモリセルエリア100の両側に配設された二つの選択ゲート端子124(SG1、SG2)に交互に接続されている。メモリセルエリア100の両側に配設された第1、第2の選択ゲート端子SG1、SG2と、メモリセルエリア100の選択ゲート電極103とは、同一導電材料よりなり、図4(B)の製造工程において、同時にパタン形成される。図13に示すレイアウトでは、第1、第2の選択ゲート端子SG1、SG2は、メモリセルエリア100の一側の埋め込みN+拡散領域121とYスイッチ200Aの間、及び、メモリセルエリア100の他側の埋め込みN+拡散領域121とYスイッチ200Bの間に、それぞれ、ワード線122の長手方向に並行に配設されている。第1の選択ゲート端子SG1から、選択ゲート電極103が、拡散領域107の間の領域を、第2の選択ゲート端子SG2側に、メモリセルエリア100の端部、及び埋め込みN+拡散領域121を超えて延在されており、第2の選択ゲート端子SG2から、選択ゲート電極103が、拡散領域107の間の領域を、第1の選択ゲート端子SG1側に、メモリセルエリア100の端部、及び埋め込みN+拡散領域121を超えて延在されている。なお、図13において、N+拡散領域121は、埋め込み型の拡散領域に限定されるものでないことは勿論である。
次に、本発明の一実施例におけるプログラム動作について説明する。図14は、選択されたセルのノード(浮遊ゲート)へのプログラム動作を説明するための図である。図13に示した構成において、「セル」で指示したセル(楕円で示す)に対応するワード線122が選択され、ビット線123の拡散領域107と選択ゲート103の間の浮遊ゲートに書き込みを行う場合の、電子の流れ(図13の書き込み電流方向の矢線と逆向き)が示されている。
図13及び図14を参照すると、拡散領域107(ビット線BL2)に書き込み電圧5Vを印加し(Vd=5V)、選択ゲート電極103に、電圧VtまたはVt+α(Vtはしきい値電圧、α≧0)を印加し(Vsg=Vt)、選択ワード線W5(コントロールゲート電極)を9Vとする(Vcg=9V)。
書込みに用いられる電子(ホットエレクトロン)eは、埋め込みN+拡散領域121から、選択ゲート電極103直下のチャネル領域を走行し、浮遊ゲート直下の酸化シリコン膜102(トンネル酸化膜)から浮遊ゲート106に注入される。
図17及び図18は、図13において、ワード線(WL2)、ビット線(BL2)で選択される一つのセル(2ビットセルの1方の単位セル)への書き込みを行う場合の、書き込み電流のパス、及び、メモリセルアレイを等価回路で表したものである。
書き込み電流パスは、グローバルビット線GBL1から選択トランジスタTr1を介してビット線BL2に接続され、選択されたワード線WL2(VWL2=9V)に接続される書き込みセル(トランジスタ)のドレインに概ね5Vが印加され、セルトランジスタのソース側の拡散領域は、選択ゲート電極103直下のチャネルを介して埋め込みN+拡散領域121に接続されている。
書き込み電流は、書き込み対象のセルから選択ゲートチャネルを介して3本の埋め込みN+拡散領域121(埋め込みN+拡散領域121の電圧VSBLは0Vとされる)に流れる。すなわち、電子は、図17の左右両側の埋め込みN+拡散領域121及びメモリセル拡散層エリア100の真中の埋め込みN+拡散領域121から、書き込み対象セルに、ソースサイドインジェクションで注入される。
図18に示す等価回路では、ワード線にコントロールゲート電極が接続されたフローティングゲートトランジスタと、選択ゲート103をゲート電極とする選択トランジスタとを有し、選択ゲートのチャネル構造を、選択ゲート103をゲート電極とし、埋め込みN+拡散領域121(VSBL=0V)の間に沿って8段直列に接続されているパストランジスタで表している。
VGBL1はグローバルビット線GBL1の電圧であり、5Vに設定される。
VSL1は、ビット線BL2に接続されるYスイッチ(選択トランジスタ)Tr1のゲートに接続されるバンク選択線SL1の電圧であり、Hレベルである。ビット線BL2には、オン状態のトランジスタTr1を介して、グローバルビット線GBL1の電圧VGBL1=5Vが供給される。
VSG1、VSG2は、選択ゲート端子SG1、SG2の電圧であり、VSG1=0V、VSG2=Vt(Vt+α)である。
VSL2は、Yスイッチ(選択トランジスタ)Tr2のゲートに接続される選択線SL2の電圧でLレベルである(非選択)。
VSBLは、埋め込みN+拡散層121に供給する電圧であり、0Vである。
VGBL2は、グローバルビット線GBL2の電圧であり、0V(非選択)である。
VSL3は選択線SL3の電圧でLレベル、VSL4は選択線SL4の電圧でLレベルである。
書き込み電流パスは、グローバルビット線GBL1から選択トランジスタTr1を介してビット線BL2に接続され、選択されたワード線WL2(VWL2=9V)に接続される書き込みセル(トランジスタ)のドレインに概ね5Vが印加され、セルトランジスタのソース側の拡散領域は、選択ゲート端子SG2に共通接続されるパストランジスタを介して埋め込みN+拡散領域121に接続されている。
電流は、書き込みセルから選択ゲートチャネルを介してメモリセル領域の両側の埋め込みN+拡散層121(電圧VSBL=0V)に流れる。すなわち、電子は、両側の埋め込みN+拡散層121から書き込みセルにソースサイド・インジェクションで注入される。
次に、本発明の一実施例のメモリセルアレイにおける消去(Erase)動作について説明する。図15は、本発明の一実施例における消去動作を説明するための図である。
本発明の一実施例において、消去は、一括で行うことが出来る。すなわち、ワード線に、−9V、選択ゲート電極103に消去電圧3Vを印加することで、浮遊ゲート106内の電子は選択ゲート側に移動する。
次に、本発明の一実施例のメモリセルアレイにおける読み出し(Read)動作について説明する。図16は、本発明の一実施例における読み出し動作を説明するための図である。
図16を参照すると、埋め込みN+拡散領域121に、読み出し電圧(Vread)、例えば1Vを印加する。読み出し対象のセルの選択ゲート電極103に3Vを印加し、読み出し対象のセルのドレイン拡散領域に0Vを印加し、読み出し対象のセルを選択するワード線(コントロールゲート)を5Vとする。
図19及び図20は、ワード線WL2、ビット線BL2の一つのセルへからの読み出しを行う場合の読み出し電流のパス、及び、メモリセルアレイの等価回路を表したものである。ワード線WL2に選択され、ビット線BL2に接続されるセルの読み出し電流(ビット線から、選択トランジスタを介してグローバルビット線配線までの電流経路)が示されている。
第2の選択ゲート端子SG2には、3V程度の電圧(VSG2=3V)を印加する。第1の選択ゲート端子SG1は0Vとする(非選択)。ビット線BL2に0Vを印加し、拡散領域107を0Vとする。ワード線WL2(コントロールゲート)には、例えば5V(VWL2=5V)を印加する。
選択セルの閾値が5V以上に書き込まれている場合、記憶ノード直下のチャネルはオフ状態にあり、チャネル電流は流れない。
選択セルが書き込まれていない場合、チャネルはオンし、図の破線で示された経路、ビット線BL2から、オン状態の選択トランジスタTr1を介してグローバルビット線配線GBL1までの電流経路を介して、図示されないセンス回路に流れる。
埋め込みN+型拡散領域121をドレインにして読み出す場合、図示されないセンス回路を、メモリセルのドレイン側に接続すると、漏れ電流を誤検出する可能性が有る。本実施例のように、メモリセルのソース側に接続するほうが、感度良く読み出すことができる。
また、読み出しにおいては、読み出しセルの選択ゲート電極103(選択ゲート端子SG2に接続する)に隣接する選択ゲート電極(選択ゲート端子SG1に接続する)を0Vにすることで、隣接ビット線への漏れ電流はなくなり、回路設計を容易化する。
図20は、図19に示したメモリセルアレイの等価回路で表したものであり、セルのリード動作を説明するための図である。
グローバルビット線GBL1の電圧VGBL1はLレベルである。
ビット線BL2に接続されるバンク選択トランジスタTr1のゲートに接続される選択線SL1の電圧VSL1はHレベルである。VSL2は、選択トランジスタTr2のゲートに接続される選択線SL2の電圧で0Vである(非選択)。
VSG1、VSG2は、選択ゲート端子SG1、SG2の電圧である。
VSBLは、埋め込みN+拡散層121に供給する電圧であり、Vread(1〜2V)である。
選択ワード線WL2は3V(VWL2=5V)とする。
VGBL2はグローバルビット線GBL2の電圧であり0Vである。VSL3は選択線SL3の電圧で0V、VSL4は選択線SL4の電圧で0Vである。
埋め込みN+拡散層から、選択ゲートチャネルを介して選択セルにチャネル電流が流れ、記憶ノードに書き込みが行われていない場合、ビット線を介して、選択トランジスタ、第2アルミ配線層のグローバルビット線に読み出し電流が流れる。
図21は、本発明の他の実施例のメモリセルアレイの構成を示す図である。図21に示すように、この実施例では、選択トランジスタ間には、複数のワード線122が設けられている。この実施例では、メモリセル拡散層エリア100に対して、その一側に設けられ、第2アルミ配線層のグローバルビット線GBL1と第1配線層のビット線123の接続を制御するYスイッチ(選択トランジスタ)Tr1のゲート電極をなす第1の選択線SL1が設けられており、メモリセル拡散層エリア100に他側に設けられ、第2アルミ配線層のグローバルビット線GBL2と第1配線層のビット線123の接続を制御するYスイッチ(バンク選択トランジスタ)Tr2のゲート電極をなす第2の選択線SL2が設けられている。第1の選択線SL1は、一側の複数の選択トランジスタに共通に設けられており、第2の選択線SL2は、他側の複数の選択トランジスタに共通に設けられている。
次に、図29を参照して、本発明の別の実施例の書き込み動作と読み出し動作について説明する。セルの浮遊ゲート106への書き込み時、選択ワード線をなすコントロールゲート電極111に約9V程度の高電圧(Vcg=9V)、該セルに対応する2本の拡散層のうちドレインとする拡散層(ビット線N+拡散層)107Bに約5V(Vd=5V)、ソースとする拡散層(ビット線N+拡散層)107Aを0V(Vs=0V)、選択ゲート電極103の電圧(Vsg)をおおよそ選択ゲートのしきい値電圧Vt程度にすることで、書き込みを行う。電子eは、ソースの拡散層107Aから供給され、浮遊ゲート106下のチャネルはデータ状態によらずコントロールゲート電極111の電圧Vcgによってオンとなり、選択ゲートのチャネルで電流が絞られる。このとき、選択ゲートのチャネル抵抗が他の領域に比べて高いため、選択ゲートのチャネルに電界が集中する。電界の集中する選択ゲートのチャネルで電子が加速され、浮遊ゲート106のソース(拡散層107A)側から電子を注入することで、書き込みが行われる。このとき、ソース、ドレインに用いる拡散層は、選択ゲートの反転層を利用したソース線よりも、抵抗が低いため、ビット位置によるセルのソース−ドレイン間に印加される電圧ばらつきを低減できる。これは、メモリセルアレイ内でのビット位置による書き込み特性のばらつきを抑制できることを示しており、その結果、書き込みの遅いビットを減少させ、メモリブロックの書き込み時間を高速化できる。
セルの読み出し動作は、選択ワード線をなすコントロールゲート電極111に約5V、セルの選択ゲート電極103に約3V、ドレインとする選択ゲートの共通拡散層(図13の埋め込み拡散層121)に約1.4V、ソースとする拡散層107(ビット線N+拡散層)を0Vとして読み出しを行う。
一方、図14を参照して説明したように、書き込み動作時、選択ワード線をなすコントロールゲート電極111に約9V程度の高電圧、ドレインとする拡散層107(ビット線N+拡散層)に約5V、選択ゲート電極103の電圧(Vsg)を、おおよそ選択ゲートのしきい値Vt程度、ソースとする選択ゲートの共通拡散層(図13の埋め込み拡散層121)を0Vとすることで書き込みを行う場合、電子は、選択ゲートの共通拡散層(図13の埋め込み拡散層121)から供給され、選択ゲートの反転層を通って浮遊ゲートのエッジまで到達する。このとき、選択ゲートと浮遊ゲートのギャップ部分の抵抗が高く設定されているため、浮遊ゲートのソース側エッジに電界が集中する。この電界集中で、電子を加速して浮遊ゲートへ電子を注入することで書き込みを行っている。この場合、各メモリセルの位置によって、電子の供給源(ソースとする埋め込み拡散層121)からの距離が異なる。書き込みの際の電子を供給するソース線に、選択ゲートによる反転層を用いているが、反転層のシート抵抗は、3.5KΩ/□と比較的高い。選択ゲートのチャネル抵抗によって、メモリセルアレイにおけるセルの位置に応じて各セルに対するソース抵抗値が異なることになる。電子供給源から遠いセルほどソース抵抗が高くなり、ギャップへの電界集中が低くなり、書き込みが遅くなる。本実施例によれば、この書き込みの速度の低下を改善している。
次に、本発明のさらに別の実施例について説明する。本実施例においては、1つのメモリセルエリア内のビット線(「ローカルビット線」ともいう)を選択するバンク選択トランジスタを、隣接するメモリセルブロック間で共用し、隣接するメモリセルブロックの選択・非選択をメモリセルの選択ゲートによって行うようにしたものである。図30は、本実施例の構成を示す図である。メモリセルブロック(メモリセルエリア)のビット線をメモリセルブロックの両サイドで交互に引き出し、選択トランジスタ(バンク選択トランジスタ)(Tr1、Tr2:Tr3、Tr4)に接続する。図30に示すように、メモリセルブロックの左側に位置しゲート電極が選択信号線(バンク選択信号)に接続されたバンク選択トランジスタTr1のソースとドレイン電極の一方は、コンタクトを介して、第1アルミ配線層のビット線BL2に接続されており、バンク選択トランジスタTr1のソースとドレイン電極の他方は、コンタクト/ビアホールを介して第2アルミ配線層のグローバルビット線GBL1に接続されるとともに、選択トランジスタTr1の左側に設けられる不図示のメモリセルブロック(メモリセルエリア)側に延長されるビット線(第1アルミ配線層)にコンタクトを介して接続されている。また、メモリセルブロックの右側に位置しゲート電極が選択信号線(バンク選択信号)に接続されたバンク選択トランジスタTr3のソースとドレイン電極の一方は、コンタクトを介して第1アルミ配線層のビット線BL3が接続され、バンク選択トランジスタTr3のソースとドレイン電極の他方は、コンタクト/ビアホールを介して第2アルミ配線層のグローバルビット線GBL2に接続されるとともに、選択トランジスタTr3の右側に設けられる不図示のメモリセルブロック(メモリセルエリア)側に延長されるビット線(第1アルミ配線層)にもコンタクトを介して接続されている。バンク選択トランジスタTr2、Tr4も同様の構成とされる。バンク選択トランジスタ(Tr1、Tr2:Tr3、Tr4)は、バンク選択信号に基づき、隣接するメモリセルブロックわたる任意のビット線を選択する。
本実施例においても、前述したように、メモリセルの選択ゲート(図13の選択ゲート端子124参照)は、メモリセルブロック毎に独立して設けられており、メモリセルブロック毎に、選択が可能である。バンク選択トランジスタによって、隣接するメモリセルブロックにまたがる任意のビット線を選択し、メモリセルの選択ゲートによって、いずれかのメモリセルブロックを選択することで、任意のメモリセルブロックの任意のビット線を一意に選択できる。例えば、図30において、バンク選択信号VSL1=Hにより、バンク選択トランジスタTr1がオンし、バンク選択トランジスタTr1に接続されるビット線BL2と、図示されない左側のメモリセルブロックのビット線も同時に選択されることになるが、不図示の左側のメモリセルブロックの選択ゲート端子(図13の124)の電圧VSG1、VSG2を非活性電位とすることで、図13のメモリセルブロックのビット線BL2のみが選択される。この場合、読み出し電流が、ビット線BL2、グローバルビット線GBL1から、不図示のセンスアンプに供給される。書き込み時にも、同様に隣接するメモリセルブロックにまたがる任意のビット線を選択し、メモリセルの選択ゲートによってメモリセルブロックが選択される。すなわち、バンク選択トランジスタと選択ゲートにより、任意のメモリセルブロックの任意のビット線を一意に選択できる。
かかる構成の本実施例によれば、任意のビット線の選択に、バンク選択トランジスタだけではなく、メモリセルの選択ゲートを利用することで、バンク選択トランジスタ数を削減することができる。そして、メモリセルブロック当たりのバンク選択トランジスタ数を削減することができることから、チップサイズを縮減することができる。
一方、かかる本実施例の構成をとらない場合、バンク選択トランジスタのみで任意のビット線を一意に選択する構成とされ、メモリセルブロックの両サイドにそれぞれ2系統、計4系統のバンク選択トランジスタが必要となり、チップサイズが大となる。
以上本発明を上記実施例に即して説明したが、本発明は、上記実施例の構成にのみ限定されるものでなく、本願特許請求の範囲の請求項の発明の範囲内で当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
本発明の一実施の形態によるメモリセルの構成を模式的に示す図である。 本発明の一実施例のメモリセルアレイにおけるセルの断面を模式的に示す図である。 本発明の一実施例のメモリセルアレイのレイアウト構成を模式的に示す図である。 (A)乃至(C)は、本発明の製造方法の一実施例を工程順に説明する図である。 (A)乃至(C)は、本発明の製造方法の一実施例を工程順に説明する図である。 本発明の製造方法の一実施例を工程順に説明する図である。 本発明の製造方法の一実施例を工程順に説明する図である。 (A)乃至(C)は、本発明の製造方法の一実施例を工程順に説明する図であり、図6のA、B、Cで切断した断面を模式的に示す図である。 (A)乃至(C)は、本発明の製造方法の一実施例を工程順に説明する図であり、図6のA、B、Cで切断した断面を模式的に示す図である。 (A)乃至(C)は、本発明の製造方法の一実施例を工程順に説明する図であり、図6のA、B、Cで切断した断面を模式的に示す図である。 (A)乃至(C)は、本発明の製造方法の一実施例を工程順に説明する図であり、図6のA、B、Cで切断した断面を模式的に示す図である。 (A)乃至(C)は、本発明の製造方法の一実施例を工程順に説明する図であり、図6のA、B、Cで切断した断面を模式的に示す図である。 本発明に係るメモリセルアレイの一実施例の構成を示す図である。 本発明に係るメモリセルアレイの一実施例におけるプログラム時のバイアス及び動作を示す図である。 本発明に係るメモリセルアレイの一実施例における消去時のバイアス及び動作を示す図である。 本発明に係るメモリセルアレイの一実施例における読み出し時のバイアス及び動作を示す図である。 本発明に係るメモリセルアレイの一実施例におけるプログラム動作を示す図である。 本発明の一実施例におけるプログラム動作を示す図17の構成を、等価回路で示した図である。 本発明に係るメモリセルアレイの一実施例における読み出し動作を示す図である。 本発明の一実施例における読み出し動作を示す図19の構成を、等価回路で示した図である。 本発明に係るメモリセルアレイの他の実施例の構成を示す図である。 従来の1セルあたり2ビットを記憶するメモリを説明するための図である。 従来の1セルあたり2ビットを記憶するメモリを説明するための図である。 非特許文献1に記載された従来技術であり、(A)は断面図、(B)は等価回路、(C)はプログラム、消去、リードのバイアス条件一覧である。 従来の技術の課題を説明するための図であり、(A)は断面図、(B)は水平方向電界を示す図である。 従来の技術の課題を説明するための図である。 (A)乃至(C)は、トラップスペースとチャネル電流の関係の実測図である。 従来の技術の課題を説明するための図である。 本発明の別の実施例の書き込み動作を説明するための図である。 本発明の別の実施例のメモリセルアレイの構成を説明するための図である。
符号の説明
11 基板
12 拡散領域
13、14 絶縁膜
15 選択ゲート
16 浮遊ゲート
17 絶縁膜
18 コントロールゲート
100 メモリセル拡散領域エリア
101 P型シリコン基板
102 絶縁膜
103 多結晶シリコン膜(選択ゲート電極)
104 酸化シリコン膜
105 酸化シリコン膜
106 多結晶シリコン膜(浮遊ゲート電極)
107 N+拡散領域
108 酸化シリコン膜
109 窒化シリコン膜
110 酸化シリコン膜
111 多結晶シリコン膜(コントロールゲート電極)
112 WSi
113 酸化シリコン膜(側壁)
114 層間絶縁膜
115 コンタクト
116 配線(ワード線)
117 フォトレジスト
121 埋め込みN+拡散領域
122 ワード線
123 ビット線配線
124 選択ゲート端子
131 第1の経路
132 第2の経路
200 Yスイッチ(バンク選択トランジスタ)
201 半導体基板
202 N+拡散領域
203 ゲート絶縁膜
204 ONO膜
205 コントロールゲート電極
206 ワード線
207 空乏層

Claims (24)

  1. 半導体基板上に設けられた絶縁膜と前記絶縁膜の上に設けられた導電膜とを含むゲートと、
    前記半導体基板表層に設けられた第1及び第2の拡散領域と、
    を少なくとも有し、
    前記ゲート直下の前記半導体基板表層に形成され、ソース、ドレインとなる二つの前記拡散領域を結ぶ通路をなすチャネルは、前記半導体基板を上からみたときの形状として、
    一方の前記拡散領域側から、前記ゲートの平面形状に関連して規定される一の方向に沿って延在されている第1の経路と、
    前記一の方向に沿って延在された前記第1経路の端部が曲折されてなり、前記一の方向に対して所定の角度をなす方向に沿って他方の前記拡散領域側に延在されている第2の経路と、
    を有する、ことを特徴とする半導体記憶装置。
  2. 前記半導体基板表層には、前記第2の拡散領域と対向し前記ゲートを間に挟んで配設されている第3の拡散領域を備えている、ことを特徴とする請求項1記載の半導体記憶装置。
  3. 前記ゲートが、前記半導体基板上に設けられ記憶ノードをなす浮遊ゲートに隣接して配設される、選択ゲートである、ことを特徴とする請求項1記載の半導体記憶装置。
  4. 前記第2の拡散領域と前記ゲートの間の基板上、及び、前記ゲートと前記第3の拡散領域の間の基板上に、それぞれ絶縁膜を介して設けられる第1及び第2の導電膜よりなる第1及び第2の浮遊ゲートと、
    前記第1及び第2の浮遊ゲートの上に絶縁膜を介して共通に設けられる第3の導電膜よりなるコントロールゲートと、
    を有し、
    前記コントロールゲートはワード線をなし、
    前記第2の拡散領域と前記第3の拡散領域とは、それぞれ対応するビット線に接続されている、ことを特徴とする請求項2記載の半導体記憶装置。
  5. 半導体基板上に設けられた第1の絶縁膜と、前記第1の絶縁膜の上に設けられた導電膜よりなる浮遊ゲートと、前記浮遊ゲートの上に第2の絶縁膜を介して設けられた導電膜よりなるコントロールゲートと、
    を備え、
    前記半導体基板の表層に、第1及び第2の拡散領域を少なくとも有し、
    前記コントロールゲート直下の前記半導体基板表層に形成され、ソース、ドレインとなる二つの前記拡散領域を結ぶ通路をなすチャネルは、前記半導体基板を上からみたときの形状として、
    一方の前記拡散領域側から、前記コントロールゲートの平面形状に関連して規定される一の方向に沿って延在されている第1の経路と、
    前記一の方向に沿って延在された前記第1経路の端部が曲折されてなり、前記一の方向に対して所定の角度をなす方向に沿って他方の前記拡散領域側に延在されている第2の経路と、
    を有する、ことを特徴とする半導体記憶装置。
  6. 基板表面に設けられた第1の拡散領域と、
    前記第1の拡散領域に隣接する基板上の第1の領域に設けられた第1の絶縁膜と、
    前記第1の絶縁膜の上に設けられ、浮遊ゲートをなす第1のゲート電極と、
    前記第1のゲート電極の上に設けられた第2の絶縁膜と、
    前記第2の絶縁膜の上に設けられ、コントロールゲートをなす第2のゲート電極と、
    前記第1の拡散領域に隣接する前記基板上の第2の領域に設けられた第3の絶縁膜と、
    前記第3の絶縁膜の上に設けられ、選択ゲートをなす第3のゲート電極と、
    で一つの単位セルを構成し、
    前記第2のゲート電極は、前記第3のゲート電極と立体交差し、
    前記第3のゲート電極の延在部に位置する、前記基板表面の第3の領域には、第2の拡散領域が設けられている、ことを特徴とする半導体記憶装置。
  7. 基板表面に互いに離間して並設される第1及び第2の拡散領域と、
    前記第1及び第2の拡散領域の間の領域の基板上に第1の絶縁膜を介して配設される選択ゲート電極と、
    基板表面に、前記選択ゲート電極と交差する方向に延在して配設される第3の拡散領域と、
    を備え、
    前記第1の拡散領域と前記選択ゲートとの間の第1の領域、及び、前記第2の拡散領域と前記選択ゲートとの間の第2の領域に、それぞれ第2及び第3の絶縁膜を介して配設される第1及び第2の浮遊ゲート電極と、
    前記第1及び第2の浮遊ゲート電極と前記選択ゲート電極の上に第4の絶縁膜を介して配設されるコントロールゲート電極と、
    を有し、
    前記第1の拡散領域と、前記第1の浮遊ゲート、前記コントロールゲート電極、前記選択ゲート電極と、前記第3の拡散領域とで第1の単位セルを構成し、
    前記第2の拡散領域と、前記第2の浮遊ゲートと、前記コントロールゲート電極、前記選択ゲート電極と、前記第3の拡散領域とで第2の単位セルを構成している、ことを特徴とする半導体記憶装置。
  8. 前記選択ゲート電極直下の前記半導体基板表層に形成され、前記第3の拡散領域と、前記第1及び第2の拡散領域のうちの一方の拡散領域を結ぶ通路をなすチャネルが、前記半導体基板を上からみたときの形状として、
    前記第3の拡散領域側から、前記選択ゲート電極の長手方向に沿って延在されている第1の経路を有し、
    前記選択ゲート電極の長手方向に沿って延在された前記第1の経路は、選択された前記コントロールゲート電極直下で曲折されてなり、前記第1の経路に対して直交する方向に沿って延在され、前記第1及び第2の拡散領域のうちの前記一方の拡散領域に至る第2の経路を有する、ことを特徴とする請求項7記載の半導体記憶装置。
  9. 前記第1及び第2拡散領域が、前記選択ゲート及び浮遊ゲートをマスクとして自己整合で作製されたものである、ことを特徴とする請求項7記載の半導体記憶装置。
  10. 前記第4の絶縁膜が、酸化シリコン膜、窒化シリコン膜、及び酸化シリコン膜がこの順に積層されてなる積層誘電体膜よりなる、ことを特徴とする請求項7記載の半導体記憶装置。
  11. 基板表面のメモリセルエリアにおいて一の方向に沿って互いに平行に延在され互いに離間して配設されている複数本の拡散領域と、
    相隣る2本の前記拡散領域の間の領域の基板上に、絶縁膜を介して配設され、前記一の方向に沿って延在された選択ゲート電極と、
    を有し、
    複数本の前記拡散領域のそれぞれは、対応するビット線に接続され、
    前記基板表面において、複数本の前記拡散領域の長手方向の両端又は一端について、前記端部から離間した位置に、前記一の方向と直交する方向に延在されている引き出し拡散領域を備え、
    前記選択ゲート電極は、前記引き出し拡散領域と絶縁膜を介して交差し、
    相隣る2本の前記拡散領域の間の前記選択ゲート電極について、一つの前記拡散領域と前記選択ゲート電極の間の第1の領域、及び、前記選択ゲート電極と他の前記拡散領域との間の第2の領域に、それぞれ、絶縁膜を介して第1及び第2の浮遊ゲート電極が設けられ、
    前記第1及び第2の浮遊ゲート電極に対して、前記第1及び第2の浮遊ゲート電極の上に第4の絶縁膜を介して共通に設けられたコントロールゲート電極を有し、
    一つの前記拡散領域と、前記第1の浮遊ゲートと、前記コントロールゲート電極と、前記選択ゲート電極と、前記引き出し拡散領域とで第1の単位セルを構成し、
    他の前記拡散領域と、前記第2の浮遊ゲートと、前記コントロールゲート電極と、前記選択ゲート電極と、前記引き出し拡散領域とで第2の単位セルを構成している、ことを特徴とする半導体記憶装置。
  12. 前記メモリセルエリアの相対する二つの側のうち、第1の側と、前記第1の側に反対側の第2の側のそれぞれに、複数の選択トランジスタを備え、
    前記第1の側の選択トランジスタとして、少なくとも、
    第1の信号端子が第1のグローバルビット線に接続され、第2の信号端子が第1のビット線に接続され、制御端子が第1の選択信号に接続されている第1の選択トランジスタと、
    第1の信号端子が前記第1のグローバルビット線に接続され、第2の信号端子が第2のビット線に接続され、制御端子が第2の選択信号に接続されている第2の選択トランジスタと、
    を有し、
    前記第1及び第2ビット線は、それぞれに対応する、二つの前記拡散領域にそれぞれ電気的に接続され、
    前記第2の側の選択トランジスタとして、少なくとも、
    第1の信号端子が第2のグローバルビット線に接続され、第2の信号端子が第3のビット線に接続され、制御端子が第3の選択信号に接続されている第3の選択トランジスタと、
    第1の信号端子が前記第2のグローバルビット線に接続され、第2の信号端子が第4のビット線に接続され、制御端子が第4の選択信号に接続されている第4の選択トランジスタと、
    を有し、
    前記第3及び第4ビット線は、それぞれに対応する、二つの前記拡散領域にそれぞれ電気的に接続され、
    前記第1の側の選択トランジスタに接続されるビット線に対応する前記拡散領域の列と、前記第2の側の選択トランジスタに接続されるビット線に対応する前記拡散領域の列とが、交互に配設されている、ことを特徴とする請求項11記載の半導体記憶装置。
  13. 前記第1の側の選択トランジスタ群が配置される領域と、第1の前記引き出し拡散領域との間の基板上に、絶縁膜を介して、第1の前記引き出し拡散領域の長手方向に沿って配設されている、導電膜よりなる第1の選択ゲート端子を備え、
    前記第1の選択ゲート端子からは、前記第2の側に向けて、基板上に、絶縁膜を介して、第1群の前記選択ゲート電極が配設され、
    前記第2の側の選択トランジスタが配置される領域と、第2の前記引き出し拡散領域との間の基板上に、絶縁膜を介して、第2の前記引き出し拡散領域の長手方向に沿って配設されている、導電膜よりなる第2の選択ゲート端子を備え、
    前記第2の選択ゲート端子からは、前記第1の側に向けて、絶縁膜を介して第2群の前記選択ゲート電極が配設され、
    第1群の前記選択ゲート電極は、少なくとも前記第2の引き出し拡散領域まで延在されており、
    前記第2群の選択ゲート電極は、少なくとも前記第1の引き出し拡散領域まで延在されており、
    前記メモリセルエリアにおいて、前記第1群の選択ゲート電極と、前記第2群の選択ゲート電極とが、前記拡散領域を間に挟んで、交互に配設されている、ことを特徴とする請求項12記載の半導体記憶装置。
  14. メモリセルが複数の前記ワード線電極を単位に、複数組に分割されて構成され、
    相隣る組の間の領域において、前記引き出し拡散領域が設けられている、ことを特徴とする請求項11又は12記載の半導体記憶装置。
  15. 前記メモリセルエリアの相対する二つの側のうち第1の側に、第1の信号端子が、第1群のグローバルビット線のうち対応する一のグローバルビット線に接続され、第2の信号端子が、第1群のビット線のうち対応する一のビット線に接続され、制御端子が第1の選択信号に共通に接続される第1群の選択トランジスタを備え、
    前記第1の側に反対側の第2の側に、第1の信号端子が、第2群のグローバルビット線のうち対応する一のグローバルビット線に接続され、第2の信号端子が、第2群のビット線のうち対応する一のビット線に接続され、制御端子が第2の選択信号に共通に接続される第2群の選択トランジスタを備え、
    前記第1群の選択トランジスタに接続される第1群のビット線に対応する前記拡散領域と、前記第2群の選択トランジスタに接続される第2群のビット線に対応する前記拡散領域の列とが、交互に配設されている、ことを特徴とする請求項11記載の半導体記憶装置。
  16. 前記セルのコントロールゲート電極に所定の正電圧を印加し、
    前記セルの選択ゲート電極に、しきい値電圧(Vt)またはしきい値電圧(Vt)よりも所定電圧高い電圧を印加し、
    前記セルの前記拡散領域に接続するビット線に正電圧を印加し、
    前記引き出し拡散領域を電子供給源として、前記セルの浮遊ゲートへの書き込みが行われる、ことを特徴とする請求項11記載の半導体記憶装置。
  17. 前記セルのコントロールゲート電極に所定の負電圧を印加し、前記基板に正電圧を印加し、前記セルの消去が行われる、ことを特徴とする請求項11記載の半導体記憶装置。
  18. 前記セルのコントロールゲート電極に所定の負電圧を印加し、
    前記セルの拡散領域に接続するビット線に所定の正電圧を印加し、
    前記セルの選択ゲート電極に正電圧を印加し、前記セルの消去が行われる、ことを特徴とする請求項11記載の半導体記憶装置。
  19. 読み出し対象のセルの選択ゲート電極に所定の正電圧を印加し、
    前記セルの拡散領域に接続するビット線にグランド電位を印加し、
    前記セルのコントロールゲート電極に所定の正電圧を印加し、
    前記引き出し拡散領域をドレイン側にして、前記セルの読み出しが行われる、ことを特徴とする請求項11記載の半導体記憶装置。
  20. 前記セルの浮遊ゲートへの書き込み時は、前記相隣る2本の拡散領域をソース、ドレインとして用い、
    前記セルの読み出し時には、前記セルの選択ゲートの反転層をドレイン、前記相隣る2本の拡散領域の一方をソースとして用いる、ことを特徴とする請求項11記載の半導体記憶装置。
  21. 前記セルのコントロールゲート電極に所定の正電圧を印加し、
    前記セルに対応する2本の前記拡散層のうち、ドレインとする拡散層に所定の正電圧、ソースとする拡散層にグランド電位を印加し、
    前記セルの選択ゲート電極に、しきい値電圧(Vt)またはしきい値電圧(Vt)よりも所定電圧高い電圧を印加し、
    前記ソース拡散層を電子供給源として、前記セルの浮遊ゲートへの書き込みが行われる、ことを特徴とする請求項11記載の半導体記憶装置。
  22. 前記セルのコントロールゲート電極に所定の正電圧を印加し、
    前記セルの選択ゲート電極に所定の正電圧を印加し、
    ドレインとする前記選択ゲートの引き出し拡散領域に所定の正電圧、ソースとする拡散層をグランド電位として、前記セルからの読み出しが行われる、ことを特徴とする請求項21記載の半導体記憶装置。
  23. 前記選択トランジスタは、前記選択トランジスタを間にして相隣るメモリセルエリア間で共用され、一のメモリセルエリアのビット線に接続される前記選択トランジスタからは別のビット線が相隣る他のメモリセルエリアにまで延在され、
    前記選択トランジスタを共用する相隣るメモリセルエリアの選択と非選択の制御が、前記セルの選択ゲート電極によって行われる、ことを特徴とする請求項12記載の半導体記憶装置。
  24. 前記選択トランジスタは、前記選択トランジスタを間にして相隣る2つのメモリセルエリア間で共用され、一のメモリセルエリアのビット線が第2の信号端子に接続される前記選択トランジスタの前記グローバルビット線に接続される第1の信号端子側から別のビット線が、隣りのメモリセルエリアにまで延在され、
    前記選択トランジスタを共用する相隣る2つのメモリセルエリアの前記第1及び第2の選択ゲート端子に印加する電圧によって、前記相隣る2つのメモリセルエリアの選択と非選択が制御される、ことを特徴とする請求項13記載の半導体記憶装置。
JP2004204545A 2003-07-17 2004-07-12 半導体記憶装置 Pending JP2005051227A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004204545A JP2005051227A (ja) 2003-07-17 2004-07-12 半導体記憶装置
US10/892,553 US7268385B2 (en) 2003-07-17 2004-07-16 Semiconductor memory device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003275943 2003-07-17
JP2004204545A JP2005051227A (ja) 2003-07-17 2004-07-12 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2005051227A true JP2005051227A (ja) 2005-02-24

Family

ID=34117904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004204545A Pending JP2005051227A (ja) 2003-07-17 2004-07-12 半導体記憶装置

Country Status (2)

Country Link
US (1) US7268385B2 (ja)
JP (1) JP2005051227A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310562A (ja) * 2005-04-28 2006-11-09 Nec Electronics Corp 半導体記憶装置およびその製造方法
JP2006324343A (ja) * 2005-05-17 2006-11-30 Nec Electronics Corp 不揮発性半導体記憶装置
JP2007005448A (ja) * 2005-06-22 2007-01-11 Nec Electronics Corp 不揮発性半導体記憶装置
JP2007067013A (ja) * 2005-08-29 2007-03-15 Nec Electronics Corp 半導体記憶装置
JP2007073804A (ja) * 2005-09-08 2007-03-22 Nec Electronics Corp 半導体記憶装置およびその製造方法
JP2008034497A (ja) * 2006-07-27 2008-02-14 Renesas Technology Corp 半導体装置
US7411838B2 (en) 2006-02-09 2008-08-12 Nec Electronics Corporation Semiconductor memory device
US7515468B2 (en) 2005-11-17 2009-04-07 Samsung Electronics Co., Ltd. Nonvolatile memory device
US7557404B2 (en) 2006-02-09 2009-07-07 Samsung Electronics Co., Ltd. Nonvolatile memory devices and methods of forming the same
JP2009158574A (ja) * 2007-12-25 2009-07-16 Samsung Electronics Co Ltd 半導体記憶装置
US7580293B2 (en) 2006-02-09 2009-08-25 Nec Electronics Corporation Semiconductor memory device
US7990769B2 (en) 2008-08-27 2011-08-02 Samsung Electronics Co., Ltd. Method of programming and sensing memory cells using transverse channels and devices employing same
US8008705B2 (en) 2004-08-09 2011-08-30 Renesas Electronics Corporation Semiconductor storage device and method of manufacturing same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302850A (ja) * 2004-04-08 2005-10-27 Renesas Technology Corp 半導体記憶装置
JP2007115773A (ja) * 2005-10-18 2007-05-10 Nec Electronics Corp 半導体記憶装置およびその製造方法
JP4659677B2 (ja) * 2006-05-23 2011-03-30 Okiセミコンダクタ株式会社 半導体装置及びその製造方法
KR100760926B1 (ko) * 2006-10-11 2007-09-21 동부일렉트로닉스 주식회사 다중 비트셀을 구현하는 비휘발성 반도체 메모리 장치 및그 제조방법
US7635627B2 (en) * 2006-12-20 2009-12-22 Spansion Llc Methods for fabricating a memory device including a dual bit memory cell
US7931660B2 (en) * 2007-05-10 2011-04-26 Tyco Healthcare Group Lp Powered tacker instrument
US7968934B2 (en) * 2007-07-11 2011-06-28 Infineon Technologies Ag Memory device including a gate control layer
KR20100045856A (ko) * 2008-10-24 2010-05-04 삼성전자주식회사 비휘발성 메모리 소자 및 그 구동 방법
US10892266B2 (en) 2016-01-19 2021-01-12 Ememory Technology Inc. Nonvolatile memory structure and array
US9847133B2 (en) * 2016-01-19 2017-12-19 Ememory Technology Inc. Memory array capable of performing byte erase operation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768165B1 (en) * 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6348711B1 (en) 1998-05-20 2002-02-19 Saifun Semiconductors Ltd. NROM cell with self-aligned programming and erasure areas
KR100278661B1 (ko) * 1998-11-13 2001-02-01 윤종용 비휘발성 메모리소자 및 그 제조방법
US6256231B1 (en) * 1999-02-04 2001-07-03 Tower Semiconductor Ltd. EEPROM array using 2-bit non-volatile memory cells and method of implementing same
US6255166B1 (en) * 1999-08-05 2001-07-03 Aalo Lsi Design & Device Technology, Inc. Nonvolatile memory cell, method of programming the same and nonvolatile memory array
US6388293B1 (en) * 1999-10-12 2002-05-14 Halo Lsi Design & Device Technology, Inc. Nonvolatile memory cell, operating method of the same and nonvolatile memory array
JP4899241B2 (ja) 1999-12-06 2012-03-21 ソニー株式会社 不揮発性半導体記憶装置およびその動作方法
JP4834897B2 (ja) 2000-05-02 2011-12-14 ソニー株式会社 不揮発性半導体記憶装置およびその動作方法
JP2001357681A (ja) 2000-06-12 2001-12-26 Sony Corp 半導体記憶装置およびその駆動方法
US6917069B2 (en) * 2001-10-17 2005-07-12 Silicon Storage Technology, Inc. Semiconductor memory array of floating gate memory cells with buried bit-line and vertical word line transistor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8008705B2 (en) 2004-08-09 2011-08-30 Renesas Electronics Corporation Semiconductor storage device and method of manufacturing same
JP2006310562A (ja) * 2005-04-28 2006-11-09 Nec Electronics Corp 半導体記憶装置およびその製造方法
JP4679964B2 (ja) * 2005-05-17 2011-05-11 ルネサスエレクトロニクス株式会社 不揮発性半導体記憶装置
JP2006324343A (ja) * 2005-05-17 2006-11-30 Nec Electronics Corp 不揮発性半導体記憶装置
JP2007005448A (ja) * 2005-06-22 2007-01-11 Nec Electronics Corp 不揮発性半導体記憶装置
JP2007067013A (ja) * 2005-08-29 2007-03-15 Nec Electronics Corp 半導体記憶装置
JP2007073804A (ja) * 2005-09-08 2007-03-22 Nec Electronics Corp 半導体記憶装置およびその製造方法
US7515468B2 (en) 2005-11-17 2009-04-07 Samsung Electronics Co., Ltd. Nonvolatile memory device
US7411838B2 (en) 2006-02-09 2008-08-12 Nec Electronics Corporation Semiconductor memory device
US7580293B2 (en) 2006-02-09 2009-08-25 Nec Electronics Corporation Semiconductor memory device
US7557404B2 (en) 2006-02-09 2009-07-07 Samsung Electronics Co., Ltd. Nonvolatile memory devices and methods of forming the same
JP2008034497A (ja) * 2006-07-27 2008-02-14 Renesas Technology Corp 半導体装置
JP2009158574A (ja) * 2007-12-25 2009-07-16 Samsung Electronics Co Ltd 半導体記憶装置
US7990769B2 (en) 2008-08-27 2011-08-02 Samsung Electronics Co., Ltd. Method of programming and sensing memory cells using transverse channels and devices employing same

Also Published As

Publication number Publication date
US20050029577A1 (en) 2005-02-10
US7268385B2 (en) 2007-09-11

Similar Documents

Publication Publication Date Title
CN105895636B (zh) 电荷俘获非易失性存储器件及其制造方法和操作方法
JP2005051227A (ja) 半導体記憶装置
JP2004071646A (ja) 不揮発性半導体記憶装置及びその製造方法と制御方法
JP4899241B2 (ja) 不揮発性半導体記憶装置およびその動作方法
JP4834897B2 (ja) 不揮発性半導体記憶装置およびその動作方法
US7042045B2 (en) Non-volatile memory cell having a silicon-oxide nitride-oxide-silicon gate structure
JP4923321B2 (ja) 不揮発性半導体記憶装置の動作方法
KR100719382B1 (ko) 세 개의 트랜지스터들이 두 개의 셀을 구성하는 비휘발성메모리 소자
JP2006313911A (ja) マルチビット及びマルチレベル不揮発性メモリ素子、その動作方法及び製造方法
JP2001085547A (ja) 不揮発性半導体記憶装置及びその読み出し方法
JP2005005513A (ja) 不揮発性半導体メモリ装置およびその読み出し方法
US9209317B1 (en) Nonvolatile memory devices and methods of operating the same
US20080111181A1 (en) Nonvolatile memory devices, methods of operating the same and methods of forming the same
JP4547749B2 (ja) 不揮発性半導体記憶装置
KR20150121399A (ko) 전하 트랩층을 갖는 불휘발성 메모리소자 및 그 제조방법
US20060286750A1 (en) Method and system for forming straight word lines in a flash memory array
JP2005216471A (ja) 共通のドレインラインを備える不揮発性メモリセルアレイ及びその動作方法
TWI637487B (zh) 非易失性記憶體裝置的單位單元及非易失性記憶體裝置的單元陣列
JP2006222367A (ja) 不揮発性半導体メモリ装置、駆動方法、及び製造方法
KR100762262B1 (ko) 비휘발성 메모리 소자 및 그 형성방법
KR100706791B1 (ko) 비휘발성 기억 장치, 그 형성 방법 및 동작 방법
JP2004214506A (ja) 不揮発性半導体メモリ装置の動作方法
KR0147654B1 (ko) 과잉소거에 의한 읽기 오동작을 방지하는 불휘발성 기억장치 및 그 제조방법
KR20080111963A (ko) 비휘발성 메모리 소자 및 그 형성방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115