TWI739695B - 轉壓器 - Google Patents

轉壓器 Download PDF

Info

Publication number
TWI739695B
TWI739695B TW109145735A TW109145735A TWI739695B TW I739695 B TWI739695 B TW I739695B TW 109145735 A TW109145735 A TW 109145735A TW 109145735 A TW109145735 A TW 109145735A TW I739695 B TWI739695 B TW I739695B
Authority
TW
Taiwan
Prior art keywords
type transistor
node
terminal
input signal
output
Prior art date
Application number
TW109145735A
Other languages
English (en)
Other versions
TW202147778A (zh
Inventor
黃智揚
Original Assignee
力旺電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力旺電子股份有限公司 filed Critical 力旺電子股份有限公司
Application granted granted Critical
Publication of TWI739695B publication Critical patent/TWI739695B/zh
Publication of TW202147778A publication Critical patent/TW202147778A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1697Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0038Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0433Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and one or more separate select transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/24Bit-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3404Convergence or correction of memory cell threshold voltages; Repair or recovery of overerased or overprogrammed cells
    • G11C16/3409Circuits or methods to recover overerased nonvolatile memory cells detected during erase verification, usually by means of a "soft" programming step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • H01L29/42328Gate electrodes for transistors with a floating gate with at least one additional gate other than the floating gate and the control gate, e.g. program gate, erase gate or select gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2216/00Indexing scheme relating to G11C16/00 and subgroups, for features not directly covered by these groups
    • G11C2216/02Structural aspects of erasable programmable read-only memories
    • G11C2216/10Floating gate memory cells with a single polysilicon layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Volatile Memory (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)
  • Dc-Dc Converters (AREA)
  • Logic Circuits (AREA)
  • Read Only Memory (AREA)
  • Debugging And Monitoring (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

本發明為一種轉壓器,包括:一反閘、一交叉耦合電路、一負載電路與一暫態驅動電路。反閘連接於第一電源電壓與一接地電壓之間,反閘接收一輸入信號並產生一反相輸入信號。交叉耦合電路連接於一第二電源電壓、一第一節點與一第二節點,且經由該第二節點輸出該輸出信號。負載電路連接於該接地電壓、該第一節點、該第二節點、該輸入信號與該反相輸入信號。暫態驅動電路的多個輸入端連接於該第一節點、該第二節點、該輸入信號與該反相輸入信號。暫態驅動電路的多個輸出端連接於該第一節點與該第二節點。在該輸出信號為一第一準位或者一第二準位的穩態區間,該暫態驅動電路未動作。在該輸出信號由該第一準位轉換為該第二準位的暫態區間,該暫態驅動電路提供一電壓驅動路徑以驅動該輸出信號至該第二準位。

Description

轉壓器
本發明是有關於一種轉壓器(level shifter),且特別是有關於一種具增強驅動能力(enhance driving ability)的轉壓器。
轉壓器可接收信號範圍較小的輸入信號,並將其對應地轉換為信號範圍較大的輸出信號,是介面電路(interface circuit)中的重要構築方塊。譬如說,在IC晶片中,將特定的信號由核心電壓(core voltage)的信號範圍轉換至輸出入電壓(IO voltage)的信號範圍。基本上,核心電壓的信號範圍可以是0到1.02伏特,而輸出入電壓的信號範圍為0到5.75伏特。為了在兩種信號範圍間進行轉換,就需要使用到轉壓器,用以將0到1.02伏特的輸入信號轉換為0到5.75伏特的輸出信號。
請參考第1A圖至第1C圖,其所繪示為習知轉壓器。其中,轉壓器可將信號範圍介於電源電壓VDD1至接地電壓GND的輸入信號IN與反相輸入信號ZIN轉為信號範圍在電源電壓VDD2至接地電壓GND間的輸出信號OUT。其中,電源電壓VDD1可為例如1.02伏特,電源電壓VDD2可為例如5.75伏特,接地電壓GND為0伏特。亦即,電源電壓VDD2大於電源電壓VDD1,且電源電壓VDD1大於接地電壓GND。
如第1A圖所示,轉壓器100包括一反閘(NOT gate)110、一交叉耦合電路(cross-coupled circuit)112與一負載電路(load circuit)114。其中,交叉耦合電路112包括一P型電晶體MP1與一P型電晶體MP2。負載電路114包括一N型電晶體MN1與一N型電晶體MN2。
反閘110連接於電源電壓VDD1與接地電壓GND之間。其中,反閘110的輸入端接收輸入信號IN,反閘110的輸出端產生反相輸入信號ZIN。
交叉耦合電路112連接於電源電壓VDD2、節點a與節點b。其中,P型電晶體MP1的源極端連接至電源電壓VDD2,P型電晶體MP1的汲極端連接至節點a,P型電晶體MP1的閘極端連接至節點b。P型電晶體MP2的源極端連接至電源電壓VDD2,P型電晶體MP2的汲極端連接至節點b,P型電晶體MP2的閘極端連接至節點a,輸出信號OUT可經由節點b產生。
負載電路114連接於接地電壓GND、節點a與節點b。其中,N型電晶體MN1的汲極端連接至節點a,N型電晶體MN1的源極端連接至接地電壓GND,N型電晶體MN1的閘極端接收輸入信號IN。N型電晶體MN2的汲極端連接至節點b,N型電晶體MN2的源極端連接至接地電壓GND,N型電晶體MN2的閘極端接收反相輸入信號ZIN。
當轉壓器100的輸入信號IN為高準位的電源電壓VDD1且反相的輸入信號ZIN為低準位的接地電壓GND時,N型電晶體MN1與P型電晶體MP2為開啟(turn on),N型電晶體MN2與P型電晶體MP1為關閉(turn off)。因此,節點b的電壓為電源電壓VDD2,所以輸出信號OUT為高準位的電源電壓VDD2。也就是說,轉壓器100將高準位的電源電壓VDD1轉換為另一高準位的電源電壓VDD2。
再者,當轉壓器100的輸入信號IN為低準位的接地電壓GND且反相的輸入信號ZIN為高準位的電源電壓VDD1,N型電晶體MN1與P型電晶體MP2為關閉(turn off),N型電晶體MN2與P型電晶體MP1為開啟(turn on)。因此,節點b的電壓為接地電壓GND,所以輸出信號OUT為低準位的接地電壓GND。也就是說,轉壓器100將低準位的接地電壓GND轉換相同低準位的接地電壓GND。
如第1B圖所示,轉壓器120包括一反閘110、一交叉耦合電路112與一負載電路134。其中,反閘110與交叉耦合電路112的結構相同於第1A圖,此處不再贅述。
負載電路134連接於接地電壓GND、節點a與節點b。負載電路134包括一N型電晶體MN1、一N型電晶體MN2、一N型電晶體MN3與一N型電晶體MN4。N型電晶體MN3的汲極端連接至節點a,N型電晶體MN3的閘極端接收一偏壓電壓Vbias,N型電晶體MN4的汲極端連接至節點b,N型電晶體MN4的閘極端接收偏壓電壓Vbias,N型電晶體MN1的汲極端連接N型電晶體MN3的源極端,N型電晶體MN1的源極端連接至接地電壓GND,N型電晶體MN1的閘極端接收輸入信號IN,N型電晶體MN2汲極端連接至N型電晶體MN4的源極端,N型電晶體MN2的源極端連接至接地電壓GND,N型電晶體MN2的閘極端接收反相輸入信號ZIN。其中,偏壓電壓Vbias讓N型電晶體MN3與P型電晶體MN4開啟。
除N型電晶體MN3與N型電晶體MN4的差異外,轉壓器120的其餘部分與轉壓器100的操作方式完全相同,於此不再贅述。
如第1C圖所示,轉壓器150包括一反閘110、一交叉耦合電路162與一負載電路114。其中,反閘110與負載電路114的結構相同於第1A圖,此處不再贅述。
交叉耦合電路162連接於電源電壓VDD2、節點a與節點b。交叉耦合電路162包括一P型電晶體MP1、一P型電晶體MP2、一P型電晶體MP3與一P型電晶體MP4。P型電晶體MP1的源極端連接至電源電壓VDD2,P型電晶體MP1的閘極端連接至節點b,P型電晶體MP2的源極端連接至P型電晶體MP1的汲極端,P型電晶體MP2的閘極端接收輸入信號IN,P型電晶體MP2的汲極端連接至節點a,P型電晶體MP3的源極端連接至電源電壓VDD2,P型電晶體MP3的閘極端連接至節點a,P型電晶體MP4的源極端連接至P型電晶體MP3的汲極端,P型電晶體MP4的閘極端接收反相輸入信號ZIN,P型電晶體MP4的汲極端連接至節點b。
當轉壓器150的輸入信號IN為高準位的電源電壓VDD1且反相的輸入信號ZIN為低準位的接地電壓GND時,N型電晶體MN1、P型電晶體MP3與P型電晶體MP4為開啟(turn on),N型電晶體MN2、P型電晶體MP1與P型電晶體MP2為關閉(turn off)。因此,節點b的電壓為電源電壓VDD2,亦即輸出信號OUT為高準位的電源電壓VDD2。也就是說,轉壓器150將高準位的電源電壓VDD1轉換為另一高準位的電源電壓VDD2。
再者,當轉壓器150的輸入信號IN為低準位的接地電壓GND且反相的輸入信號ZIN為高準位的電源電壓VDD1時,N型電晶體MN1、P型電晶體MP3與P型電晶體MP4為關閉(turn off),N型電晶體MN2、P型電晶體MP1與P型電晶體MP2為開啟(turn on)。因此,節點b的電壓為接地電壓GND,亦即輸出信號OUT為低準位的接地電壓GND。也就是說,轉壓器100將低準位的接地電壓GND轉換相同低準位的接地電壓GND。
眾所周知,現今CMOS製程可針對元件的電壓操作範圍提供不同的製程。舉例來說,利用中電壓元件(medium voltage device,MV device)製程可製造出電壓應力(voltage stress)較高的電晶體,製作完成之電晶體適用於中壓操作(medium voltage operation)。另外,利用低電壓元件(low voltage device,LV device)製程可製造出運算速度較快但電壓應力較低的電晶體,製作完成之電晶體適用於低壓操作(low voltage operation)。舉例來說,於中壓操作時,電晶體的閘極與源極之間所能承受的電壓應力範圍約在3.0V~10V之間;於低壓操作時,電晶體的閘極與源極之間所能承受的電壓應力範圍約在0.8V~2.0V之間。
由於中電壓元件(MV device)製程所製造出的N型電晶體MN1與N型電晶體MN2,其臨限電壓(threshold voltage)與電源電壓VDD1非常接近。換言之,負載電路114中的N型電晶體MN1或N型電晶體MN2的閘極接收到電源電壓VDD1時,N型電晶體MN1或N型電晶體MN2無法完全開啟,造成N型電晶體MN1或N型電晶體MN2的驅動能力不足,使得轉壓器的操作速度無法提昇。
本發明提出一種轉壓器,將信號範圍在一第一電源電壓至一接地電壓間的一輸入信號轉換為信號範圍在一第二電源電壓至該接地電壓間的一輸出信號。該轉壓器包括:一第一反閘,該第一反閘的輸入端接收該輸入信號,該第一反閘的輸出端產生一反相輸入信號;一交叉耦合電路,連接於該第二電源電壓、一第一節點與一第二節點,且經由該第二節點輸出該輸出信號;一負載電路,連接於該接地電壓、該第一節點、該第二節點、該輸入信號與該反相輸入信號;以及,一暫態驅動電路,該暫態驅動電路的多個輸入端連接於該第 一節點、該第二節點、該輸入信號與該反相輸入信號,該暫態驅動電路的多個輸出端連接於該第一節點與該第二節點。在該輸出信號為一第一準位或者一第二準位的穩態區間,該暫態驅動電路未動作。在該輸出信號由該第一準位轉換為該第二準位的暫態區間,該暫態驅動電路提供一電壓驅動路徑以驅動該輸出信號至該第二準位。
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:
100,120,150,200,400,450,500,550,600,650:轉壓器
110,260,312,322,324,332,342,344,413,415:反閘
112,162,262:交叉耦合電路
114,134,264:負載電路
210,210A,210B:暫態驅動電路
220,220A,220B:輸出上拉電路
230,230A,230B:輸出下拉電路
310,330,350,360:組合邏輯電路
314,334:反及閘
316,318,336,338:負載元件
320,340:驅動級
410,510,610:驅動電路
412,414:自動偏壓電路
416,418,516,518,616,618:電壓偏壓開關
第1A圖至第1C圖為習知轉壓器;第2A圖至第2C圖為本發明轉壓器的第一實施例及其相關信號示意圖;第3A圖與第3B圖為暫態驅動電路的二個範例;第4A圖與第4B圖為本發明轉壓器的第二實施例與第三實施例;第5A圖與第5B圖為本發明轉壓器的第四實施例與第五實施例;以及第6A圖與第6B圖為本發明轉壓器的第六實施例與第七實施例。
請參照第2A圖至第2C圖,其所繪示為本發明轉壓器的第一實施例及其相關信號示意圖。轉壓器200可將信號範圍介於電源電壓VDD1至接地電壓GND的輸入信號IN與反相輸入信號ZIN轉為信號範圍在電源電壓VDD2至接地電壓GND間的輸出信號OUT。其中,電源電壓VDD1可為例如1.02伏特,電源 電壓VDD2可為例如5.75伏特,接地電壓GND為0伏特。在其他實施例中,在滿足電源電壓VDD1小於電源電壓VDD2條件下,電源電壓VDD1和電源電壓VDD2可以是任意的電壓準位。
轉壓器200包括一反閘260、一交叉耦合電路262、一負載電路264與一暫態驅動電路(transient state driving circuit)210。
反閘260連接於電源電壓VDD1與接地電壓GND之間。反閘260的輸入端接收輸入信號IN,反閘260的輸出端產生反相輸入信號ZIN。交叉耦合電路262連接於電源電壓VDD2、節點a與節點b。負載電路264連接於接地電壓GND、輸入信號IN、反相輸入信號ZIN、節點a與節點b。其中,反閘260、交叉耦合電路262與負載電路264的電路結構與運作原理類似於第1A圖至第1C圖的轉壓器100、120、150中對應的反閘、交叉耦合電路與負載電路,其詳細運作原理不再贅述。
再者,暫態驅動電路210的輸入端連接至輸入信號IN、反相輸入信號ZIN、節點a、節點b,暫態驅動電路210的輸出端連接至節點a、節點b。
如第2B圖所示,暫態驅動電路210包括輸出上拉電路(output pull-up circuit)220與輸出下拉電路(output pull-down circuit)230。輸出上拉電路220的輸入端連接至節點a、節點b與輸入信號IN,輸出上拉電路220的輸出端連接至節點a與節點b。輸出下拉電路230的輸入端連接至節點a、節點b與反相輸入信號ZIN,輸出下拉電路230的輸出端連接至節點a與節點b。
根據本發明的實施例,暫態驅動電路210會在轉壓器220的輸出信號OUT準位轉換的暫態期間(transient state period)運作,用以驅動輸出信號OUT快速地到達預定的準位。以下說明之。
如第2C圖所示,於時間點t1之前,輸入信號IN為低準位的接地電壓GND,反相輸入信號ZIN為高準位的電源電壓VDD1、節點b(輸出信號OUT)為低準位的接地電壓GND,節點a為高準位的電源電壓VDD2。
於時間點t1,輸入信號IN轉換為高準位的電源電壓VDD1,反相輸入信號ZIN轉換為低準位的接地電壓GND。此時,節點b(輸出信號OUT)開始要轉換為高準位的電源電壓VDD2,節點a開始要轉換為低準位的接地電壓GND。
時間點t1至時間點t2之間為節點b(輸出信號OUT)由低準位轉換為高準位的暫態期間T1。在暫態期間T1,暫態驅動電路210動作。此時,可藉由暫態驅動電路210中的輸出上拉電路220提供一上拉路徑(pull-up path)將節點b(輸出信號OUT)快速地上拉至高準位的電源電壓VDD2。在一些實施例中,可更提供一下拉路徑(pull-down path)以將節點a快速地下拉至低準位的接地電壓GND。
於時間點t2至時間點t3,節點b(輸出信號OUT)維持在高準位的穩態期間(steady state period)。在穩態期間,暫態驅動電路210未動作。亦即,輸出上拉電路220與輸出下拉電路230皆未動作。
於時間點t3,輸入信號IN轉換為低準位的接地電壓GND,反相輸入信號ZIN轉換為高準位的電源電壓VDD1。此時,節點b(輸出信號OUT)要開始轉換為低準位的接地電壓GND,節點a要開始轉換為高準位的電源電壓VDD2。
時間點t3至時間點t4之間為節點b(輸出信號OUT)由高準位轉換為低準位的暫態期間T2。在暫態期間T2,暫態驅動電路210動作。此時,可藉由暫態驅動電路210中的輸出下拉電路230提供一下拉路徑(pull-down path),將節點b(輸出信號OUT)快速地下拉至低準位的接地電壓GND。在一些實施例中,可更提供一上拉路徑(pull-up path)以將節點a快速地上拉至高準位的電源電壓VDD2。
於時間點t4至時間點t5,節點b(輸出信號OUT)維持在低準位的穩態期間(steady state period)。在穩態期間,暫態驅動電路210不動作。亦即,輸出上拉電路220與輸出下拉電路230皆未動作。
之後,時間點t5至時間點t8,轉壓器200的運作相同於時間點t1至時間點t4的運作,此處不再贅述。
請參照第3A圖,其所繪示為暫態驅動電路的第一個範例。暫態驅動電路210A包括輸出上拉電路220A與輸出下拉電路230A。其中,暫態驅動電路210A中的所有電子元件皆為中壓元件(MV device)。
如第3A圖所示,輸出上拉電路220A包括:組合邏輯電路(combinational logic circuit)310與驅動級(driving stage)320。組合邏輯電路310包括:反閘312、反及閘314、電流源Is、P型電晶體MPa、N型電晶體MNa與負載元件(loading component)316。驅動級320包括:反閘322、反閘324、P型電晶體MPb與N型電晶體MNc。其中,電流源Is為一弱電流源(weak current source),負載元件316具有三個端點,其包括N型電晶體MNb。
組合邏輯電路310中,反閘312的輸入端連接至節點a。反及閘314的二個輸入端分別連接至節點b與反閘312的輸出端。P型電晶體MPa的源極端接收電源電壓VDD2,P型電晶體MPa的閘極端連接至反及閘314的輸出端,P型電晶體MPa的汲極端產生控制信號C1。電流源Is連接於P型電晶體MPa的源極端與P型電晶體MPa的汲極端之間。N型電晶體MNb的汲極端連接至P型電晶體MPa的汲極端,N型電晶體MNb的閘極端接收輸入信號IN。N型電晶體MNa的汲極端連接至N型電晶體MNb的源極端,N型電晶體MNa的閘極連接至反及閘314的輸出端,N型電晶體MNa的源極接收接地電壓GND。
驅動級320中,反閘322的輸入端接收控制信號C1。反閘324的輸入端連接至反閘322的輸出端。P型電晶體MPb的源極端接收電源電壓VDD2,P型電晶體MPb的閘極端連接至反閘324的輸出端,P型電晶體MPb的汲極端連接至節點b。N型電晶體MNc的汲極端連接至節點a,N型電晶體MNc的閘極端連接至反閘322的輸出端,N型電晶體MNc的源極端接收接地電壓GND。
在一些實施例中,當不須加快上拉節點a的電壓時,可省略電晶體MNc。
如第3A圖所示,輸出下拉電路230A包括:組合邏輯電路330與驅動級340。組合邏輯電路330包括:反閘332、反及閘334、電流源Is、P型電晶體MPc、N型電晶體MNd與負載元件336。驅動級340包括:反閘342、反閘344、P型電晶體MPd與N型電晶體MNf。其中,電流源Is為一弱電流源,且負載元件336具有三個端點,其包括:N型電晶體MNe。
基本上,輸出下拉電路230A與輸出上拉電路220A有相同的電路架構,其詳細連接關係不再贅述。相較於輸出上拉電路220A,輸出下拉電路230A的反閘332輸入端連接至節點b,反及閘334的輸入端連接至節點a以及反閘332的輸出端,N型電晶體MNe的閘極端接收反相輸入信號ZIN,P型電晶體MPd的汲極端連接至節點a,N型電晶體MNf的汲極端連接至節點b。同理,在一些實施例中,當不須加快下拉節點a的電壓時,可省略電晶體MPd。
以下利用第2C圖的信號圖來介紹第3A圖的暫態驅動電路210A之運作。
於時間點t1之前的穩態期間,輸入信號IN為低準位,反相輸入信號ZIN為高準位,節點b(輸出信號OUT)為低準位,節點a為高準位。
詳細而言,在輸出上拉電路220A的組合邏輯電路310中,P型電晶體MPa與N型電晶體MNb關閉(turn off),所以控制信號C1被電流源Is充電(charge)至高準位的電源電壓VDD2。在輸出上拉電路220A的驅動級320中,由於控制信號C1為高準位,P型電晶體MPb與N型電晶體MNc關閉(turn off)。
在輸出下拉電路230A的組合邏輯電路330中,N型電晶體MNd關閉(turn off),P型電晶體MPc開啟(turn on),所以控制信號C2被上拉(pull up)至高準位的電源電壓VDD2。在輸出下拉電路230A的驅動級340中,由於控制信號C2為高準位,P型電晶體MPd與N型電晶體MNf關閉(turn off)。
換句話說,在時間點t1之前的穩態期間,節點b(輸出信號OUT)為低準位,暫態驅動電路210A的輸出上拉電路220A與輸出下拉電路230A皆未動作。
於時間點t1至時間點t2之間的暫態期間T1,輸入信號IN為高準位,反相輸入信號ZIN為低準位,節點b(輸出信號OUT)由低準位轉換至高準位,節點a由高準位轉換為低準位。
詳細而言,在輸出上拉電路220A的組合邏輯電路310中,N型電晶體MNb與N型電晶體MNa開啟(turn on),且P型電晶體MPa關閉(turn off),所以控制信號C1被下拉(pull-down)至低準位的接地電壓GND。在輸出上拉電路220A的驅動級320中,由於控制信號C1為低準位,P型電晶體MPb與N型電晶體MNc開啟(turn on),P型電晶體MPb形成上拉路徑將節點b(輸出信號OUT)從低準位的接地電壓GND上拉至高準位的電源電壓VDD2,N型電晶體MNc則形成下拉路徑將節點a從高準位的電源電壓VDD2下拉至低準位的接地電壓GND。
在輸出下拉電路230A的組合邏輯電路330中,控制信號C2仍維持在高準位的電源電壓VDD2,所以輸出級340的P型電晶體MPd與N型電晶體MNf保持關閉(turn off)。
換句話說,在節點b(輸出信號OUT)由低準位轉換至高準位的暫態期間T1,暫態驅動電路210A中的輸出下拉電路230A未動作,並藉由輸出上拉電路220A動作,將節點b(輸出信號OUT)上拉至電源電壓VDD2,並將節點a下拉至接地電壓GND。
當然,在某些實施例中,如果輸出上拉電路220A缺少電晶體MNc時,則節點a仍會以較慢的速度下降至接地電壓GND。
於時間點t2至時間點t3之間的穩態期間,輸入信號IN為高準位,反相輸入信號ZIN為低準位,節點b(輸出信號OUT)為高準位,節點a為低準位。
詳細而言,在輸出上拉電路220A的組合邏輯電路310中,N型電晶體MNa關閉(turn off),P型電晶體MPa開啟(turn on),所以控制信號C1被上拉(pull up)至高準位的電源電壓VDD2。在輸出上拉電路220A的驅動級320中,由於控制信號C1為高準位,P型電晶體MPb與N型電晶體MNc關閉(turn off)。
在輸出下拉電路230A的組合邏輯電路330中,P型電晶體MPc與N型電晶體MNe關閉(turn off),所以控制信號C2被電流源Is充電(charge)至高準位的電源電壓VDD2。在輸出下拉電路230A的驅動級340中,由於控制信號C2為高準位,P型電晶體MPd與N型電晶體MNf關閉(turn off)。
換句話說,在節點b(輸出信號OUT)為高準位的穩態期間,暫態驅動電路210A的輸出上拉電路220A與輸出下拉電路230A皆未動作。
於時間點t3至時間點t4之間暫態期間T2,輸入信號IN為低準位,反相輸入信號ZIN為高準位,節點b(輸出信號OUT)為高準位,節點a為低準位。
詳細而言,在輸出上拉電路220A的組合邏輯電路310中,控制信號C1仍維持在至高準位的電源電壓VDD2,所以輸出級320的P型電晶體MPb與N型電晶體MNc關閉(turn off)。
在輸出下拉電路230A的組合邏輯電路330中,N型電晶體MNe與N型電晶體MNd開啟(turn on),且P型電晶體MPc關閉,所以控制信號C2被下拉(pull-down)至低準位的接地電壓GND。在輸出下拉電路230A的驅動級340中,由於控制信號C2為低準位,P型電晶體MPd與N型電晶體MNf開啟(turn on),P型電晶體MPd形成上拉路徑將節點a上拉至電源電壓VDD2,N型電晶體MNf形成下拉路徑將節點b(輸出信號OUT)下拉至接地電壓GND。
換句話說,在節點b(輸出信號OUT)由高準位轉換至低準位的暫態期間T2,暫態驅動電路210A的輸出上拉電路220A未動作,輸出下拉電路230A動作,並將節點b(輸出信號OUT)下拉至接地電壓GND,將節點a上拉至電源電壓VDD2。
當然,在某些實施例中,如果輸出下拉電路230A缺少電晶體MPd時,則節點a仍會以較慢的速度上升至電源電壓VDD2。
請參照第3B圖,其所繪示為暫態驅動電路210的第二個範例。暫態驅動電路210B包括輸出上拉電路220B與輸出下拉電路230B。相較於第3A圖,其差異在於組合邏輯電路350中的負載元件318、組合邏輯電路360中的負載元件338。以下僅介紹負載元件318和負載元件338的連接關係。
負載元件318具有四個端點,並包括N型電晶體MNw與N型電晶體MNx。其中,N型電晶體MNw可為中壓元件(MV device),N型電晶體MNx可為低壓元件(LV device)。N型電晶體MNw的汲極端連接至P型電晶體MPa的汲極端,N型電晶體MNw的閘極端接收一偏壓電壓Vb。N型電晶體MNx的汲極端連接至N型電晶體MNw的源極端,N型電晶體MNx的閘極端接收輸入信號IN,N型電晶體MNx的源極端連接至N型電晶體MNa的汲極端。
負載元件338具有四個端點,並包括N型電晶體MNy與N型電晶體MNz。其中,N型電晶體MNy可為中壓元件(MV device),N型電晶體MNz可為低壓元件(LV device)。N型電晶體MNy的汲極端連接至P型電晶體MPc的汲極端,N型電晶體MNy的閘極端接收偏壓電壓Vb。N型電晶體MNz的汲極端連接至N型電晶體MNy的源極端,N型電晶體MNz的閘極端接收反相輸入信號ZIN,N型電晶體MNz的源極端連接至N型電晶體MNd的汲極端。
再者,如第3B圖所示之暫態驅動電路210B,其運作關係相同於第3A圖所示之暫態驅動電路210A。在輸出信號OUT為高準位或者低準位的穩態區間,暫態驅動電路210B的輸出上拉電路220B與輸出下拉電路230B皆未動作。在輸出信號OUT由低準位轉換至高準位的暫態期間T1,暫態驅動電路210B的輸出上拉電路220B動作,輸出下拉電路230B未動作,並將輸出信號OUT上拉至電源電壓VDD2。在輸出信號OUT由高準位轉換至低準位的暫態期間T2,暫態驅動電路210B的輸出上拉電路220B未動作,輸出下拉電路230B動作,並將輸出信號OUT下拉至接地電壓GND。
在暫態驅動電路210的第二個範例中,利用低壓元件(LV device)的N型電晶體MNx與N型電晶體MNz可加快負載元件318與338的運作速度。然 而,由於N型電晶體MNx與N型電晶體MNz所能承受的電壓應力較低,所以N型電晶體MNx與N型電晶體MNz分別連接中壓元件(MV device)的N型電晶體MNw與N型電晶體MNy,用以防止N型電晶體MNx與N型電晶體MNz損毀。
由以上的說明可知,本發明提出一種具備增強驅動能力的轉壓器200,轉壓器200包括一暫態驅動電路210。在暫態驅動電路210的二個範例中,暫態驅動電路210A和暫態驅動電路210B可於輸出信號OUT準位轉換的暫態期間動作,並提供一電壓驅動路徑(voltage driving path)連接至節點b,使得節點b(輸出信號OUT)快速地到達預定的準位。其中,電壓驅動路徑可為上拉路徑或者下拉路徑。
除了利用上述暫態驅動電路210來組成具備增強驅動能力的轉壓器200之外。也可以利用原生電晶體(native transistor)來組成驅動電路,使得轉壓器具有較佳的驅動能力。其中,原生電晶體為一種具初始導電特性(already-on)的電晶體,其臨限電壓Vt非常低,大約在-0.3伏特至+0.3伏特之間。
請參照第4A圖,其所繪示為本發明轉壓器的第二實施例。轉壓器400包括一反閘130、一交叉耦合電路112、一負載電路114與一驅動電路(driving circuit)410。
反閘130連接於電源電壓VDD1與接地電壓GND之間。反閘130的輸入端接收輸入信號IN,反閘130的輸出端產生反相輸入信號ZIN。交叉耦合電路112連接於電源電壓VDD2、節點a與節點b。負載電路114連接於接地電壓GND、節點c與節點d。其中,反閘130、交叉耦合電路112與負載電路114的電路結構與運作原理相同於第1A圖的轉壓器100,其詳細運作原理不再贅述。
再者,驅動電路410連接至輸入信號IN、反相輸入信號ZIN、節點a、節點b、節點c、節點d。驅動電路410包括自動偏壓電路(auto bias circuit)412、414以及電壓偏壓開關(voltage bias switch)416、418。其中,自動偏壓電路412包括一反閘413與一N型電晶體MN3。自動偏壓電路414包括一反閘415與一N型電晶體MN4。電壓偏壓開關416包括一P型電晶體MPx。電壓偏壓開關418包括一P型電晶體MPy。其中,N型電晶體MN3與N型電晶體MN4為原生電晶體(native transistor),且可為中壓元件(MV device)。於此實施例中,P型電晶體MPx、P型電晶體MPy、反閘413和反閘415可為低壓元件(LV device)。
在自動偏壓電路412中,N型電晶體MN3的汲極端連接至節點a,N型電晶體MN3的源極端連接至節點c,反閘413的輸入端連接至節點c,反閘413的輸出端連接至N型電晶體MN3的閘極端。再者,在自動偏壓電路414中,N型電晶體MN4的汲極端連接至節點b,N型電晶體MN4的源極端連接至節點d,反閘415的輸入端連接至節點d,反閘415的輸出端連接至N型電晶體MN4的閘極端。
在電壓偏壓開關416中,P型電晶體MPx的第一汲/源極端(drain/source terminal)連接至節點d,P型電晶體MPx的第二汲/源極端接收輸入信號IN,P型電晶體MPx的閘極端接收接地電壓GND。再者,在電壓偏壓開關418中,P型電晶體MPy的第一汲/源極端連接至節點c,P型電晶體MPy的第二汲/源極端接收反相輸入信號ZIN,P型電晶體MPy的閘極端接收接地電壓GND。
當轉壓器400的輸入信號IN為高準位的電源電壓VDD1且反相的輸入信號ZIN為低準位的接地電壓GND時,N型電晶體MN1、N型電晶體MN3、P型電晶體MP2、P型電晶體MPx開啟(turn on),N型電晶體MN2、N型電晶體 MN4、P型電晶體MP1、P型電晶體MPy關閉(turn off)。因此,節點b的電壓為電源電壓VDD2,亦即輸出信號OUT為高準位的電源電壓VDD2。
當轉壓器400的輸入信號IN為低準位的接地電壓GND且反相的輸入信號ZIN為高準位的電源電壓VDD1時,N型電晶體MN1、N型電晶體MN3、P型電晶體MP2、P型電晶體MPx關閉(turn off),N型電晶體MN2、N型電晶體MN4、P型電晶體MP1、P型電晶體MPy開啟(turn on)。因此,節點b的電壓為接地電壓GND,亦即輸出信號OUT為低準位的接地電壓GND。
由以上的說明可知,轉壓器400的驅動電路410可以根據輸入信號IN與反相輸入信號ZIN的準位來關閉(turn on)原生電晶體MN3或者MN4,讓節點a或者節點b的電壓更快速地到達電源電壓VDD2,並且可以防止漏電流的產生。
請參照第4B圖,其所繪示為本發明轉壓器的第三實施例。轉壓器450包括一反閘130、一交叉耦合電路162、一負載電路114與一驅動電路410。
相較於第二實施例的轉壓器400,其差異在於利用交叉耦合電路162來組成轉壓器450。再者,第4B圖中的交叉耦合電路162的電路結構相同於第1C圖中的交叉耦合電路162。基本上,第二實施例的轉壓器400與第三實施例的轉壓器450之運作原理類似,此處不再贅述。
請參照第5A圖,其所繪示為本發明轉壓器的第四實施例。轉壓器500包括一反閘130、一交叉耦合電路112、一負載電路114與一驅動電路510。其中,反閘130、交叉耦合電路112與負載電路114相同於第二實施例,其詳細運作原理不再贅述。
驅動電路510連接至節點a、節點b、節點c、節點d。驅動電路510包括自動偏壓電路412、414以及電壓偏壓開關516、518。其中,自動偏壓電路 412、414包含電路元件及其連接關係與第4A圖所示的自動偏壓電路412、414相同,於此不再贅述。
電壓偏壓開關516包括一P型電晶體MPx。P型電晶體MPx的源極端接收電源電壓VDD1,P型電晶體MPx的汲極端連接至節點c,P型電晶體MPx的閘極端連接至節點d。再者,電壓偏壓開關518包括一P型電晶體MPy。P型電晶體MPy的源極端接收電源電壓VDD1,P型電晶體MPy的汲極連接至節點d,P型電晶體MPy的閘極端連接至節點c。於此實施例中,P型電晶體MPx、P型電晶體MPy可為低壓元件(LV device)。
當轉壓器500的輸入信號IN為高準位的電源電壓VDD1且反相的輸入信號ZIN為低準位的接地電壓GND時,N型電晶體MN1、N型電晶體MN3、P型電晶體MP2、P型電晶體MPy開啟(turn on),N型電晶體MN2、N型電晶體MN4、P型電晶體MP1、P型電晶體MPx關閉(turn off)。因此,節點b的電壓為電源電壓VDD2,亦即輸出信號OUT為高準位的電源電壓VDD2。
當轉壓器500的輸入信號IN為低準位的接地電壓GND且反相的輸入信號ZIN為高準位的電源電壓VDD1時,N型電晶體MN1、N型電晶體MN3、P型電晶體MP2、P型電晶體MPy關閉(turn off),N型電晶體MN2、N型電晶體MN4、P型電晶體MP1、P型電晶體MPx開啟(turn on)。因此,節點b的電壓為接地電壓GND,亦即輸出信號OUT為低準位的接地電壓GND。
請參照第5B圖,其所繪示為本發明轉壓器的第五實施例。轉壓器550包括一反閘130、一交叉耦合電路162、一負載電路114與一驅動電路510。
相較於第四實施例的轉壓器500,其差異在於利用交叉耦合電路162來組成轉壓器550。再者,交叉耦合電路162的電路結構相同於第1C圖。基本 上,第四實施例的轉壓器500與第五實施例的轉壓器550之運作原理類似,此處不再贅述。
請參照第6A圖,其所繪示為本發明轉壓器的第六實施例。轉壓器600包括一反閘130、一交叉耦合電路112、一負載電路114與一驅動電路610。其中,反閘130、交叉耦合電路112與負載電路114相同於第二實施例,其詳細運作原理不再贅述。
驅動電路610連接至節點a、節點b、節點c、節點d。驅動電路610包括:自動偏壓電路412、414以及電壓偏壓開關616、618。其中,自動偏壓電路412、414包含電路元件及其連接關係與第4A圖所示的自動偏壓電路412、414相同,於此不再贅述。
電壓偏壓開關616包括一P型電晶體MPx。P型電晶體MPx的源極端接收電源電壓VDD1,P型電晶體MPx的汲極端連接至節點c,P型電晶體MPx的閘極端連接至節點b。再者,電壓偏壓開關618包括一P型電晶體MPy。P型電晶體MPy的源極端接收電源電壓VDD1,P型電晶體MPy的汲極連接至節點d,P型電晶體MPy的閘極端連接至節點a。於此實施例中,P型電晶體MPx和P型電晶體MPy可為中壓元件(MV device)。
基本上,第6A圖的轉壓器600其運作原理相同於第5A圖的轉壓器500。其差異在於第5A圖之轉壓器500中,P型電晶體MPx和P型電晶體MPy的閘極端分別連接於節點d與節點c,且P型電晶體MPx和P型電晶體MPy係根據接地電壓GND而開啟,根據電源電壓VDD1而關閉。於第6A圖之轉壓器600中,P型電晶體MPx和P型電晶體MPy的閘極端分別連接於節點b與節點a,且P型電晶體MPx和P型電晶體MPy係根據接地電壓GND而開啟,根據電源電壓VDD2而關閉。
請參照第6B圖,其所繪示為本發明轉壓器的第七實施例。轉壓器650包括一反閘130、一交叉耦合電路162、一負載電路114與一驅動電路610。
相較於第六實施例的轉壓器600,其差異在於利用交叉耦合電路162來組成轉壓器650。再者,交叉耦合電路162的電路結構相同於第1C圖。基本上,第六實施例的轉壓器600與第七實施例的轉壓器650之運作原理類似,此處不再贅述。
由以上的說明可知,本發明利用轉壓器中的驅動電路來控制原生電晶體,讓節點a或者節點b的電壓更快速地到達電源電壓VDD2,並且可以防止漏電流的產生。
綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。
200:轉壓器
210:暫態驅動電路
260:反閘
262:交叉耦合電路
264:負載電路

Claims (17)

  1. 一種轉壓器,將信號範圍在一第一電源電壓至一接地電壓間的一輸入信號轉換為信號範圍在一第二電源電壓至該接地電壓間的一輸出信號,該轉壓器包括:一第一反閘,該第一反閘的一輸入端接收該輸入信號,該第一反閘的一輸出端產生一反相輸入信號;一交叉耦合電路,包括:一第一P型電晶體、一第二P型電晶體一第三P型電晶體與一第四P型電晶體,其中該第三P型電晶體的一源極端接收該第二電源電壓,該第三P型電晶體的一閘極端連接至一第一節點,該第四P型電晶體的一源極端連接至該第三P型電晶體的一汲極端,該第四P型電晶體的一汲極端連接至一第二節點,該第四P型電晶體的一閘極端接收該反相輸入信號,該第一P型電晶體的一源極端接收該第二電源電壓,該第一P型電晶體的一閘極端連接至該第二節點,該第二P型電晶體的一源極端連接至該第一P型電晶體的一汲極端,該第二P型電晶體的一汲極端連接至該第一節點,該第二P型電晶體的一閘極端接收該輸入信號,且該第二節點輸出該輸出信號;一負載電路,連接於該接地電壓、該第一節點、該第二節點、該輸入信號與該反相輸入信號;以及一暫態驅動電路,該暫態驅動電路的多個輸入端連接於該第一節點、該第二節點、該輸入信號與該反相輸入信號,該暫態驅動電路的多個輸出端連接於該第一節點與該第二節點; 其中,在該輸出信號為一第一準位或者一第二準位的穩態區間,該暫態驅動電路未動作;以及,在該輸出信號由該第一準位轉換為該第二準位的暫態區間,該暫態驅動電路提供一第一電壓驅動路徑以驅動該輸出信號至該第二準位。
  2. 如請求項1所述之轉壓器,其中該負載電路包括:一第一N型電晶體,該第一N型電晶體的一汲極端連接至該第一節點,該第一N型電晶體的一源極端接收該接地電壓,該第一N型電晶體的一閘極端接收該輸入信號;以及一第二N型電晶體,該第二N型電晶體的一汲極端連接至該第二節點,該第二N型電晶體的一源極端接收該接地電壓,該第二N型電晶體的一閘極端接收該反相輸入信號。
  3. 如請求項1所述之轉壓器,其中該負載電路包括:一第一N型電晶體,該第一N型電晶體的一源極端接收該接地電壓,該第一N型電晶體的一閘極端接收該輸入信號;一第二N型電晶體,該第二N型電晶體的一源極端接收該接地電壓,該第二N型電晶體的一閘極端接收該反相輸入信號;一第三N型電晶體,該第三N型電晶體的一汲極端連接至該第一節點,該第三N型電晶體的一源極端連接至該第一N型電晶體的一汲極端,該第三N型電晶體的一閘極端接收一偏壓電壓;以及一第四N型電晶體,該第四N型電晶體的一汲極端連接至該第二節點,該第四N型電晶體的一源極端連接至該第二N型電晶體的一汲極端,該第四N型電晶體的一閘極端接收該偏壓電壓。
  4. 如請求項1所述之轉壓器,其中該暫態驅動電路包括:一輸出上拉電路,該輸出上拉電路的多個輸入端連接至該第一節點、該第二節點與該輸入信號;其中,該第一準位為一低準位且該第二準位為一高準位。
  5. 如請求項4所述之轉壓器,其中該輸出上拉電路包括:一組合邏輯電路,該組合邏輯電路連接至該第一節點、該第二節點與該輸入信號,該組合邏輯電路產生一控制信號;以及一驅動級,連接至該第一節點與該第二節點,該驅動級用以接收該控制信號,並根據該控制信號驅動該輸出信號。
  6. 如請求項5所述之轉壓器,其中該組合邏輯電路包括:一第二反閘,該第二反閘的一輸入端連接至該第一節點;一反及閘,該反及閘的二輸入端連接至該第二節點與該第二反閘的一輸出端;一第一P型電晶體,該第一P型電晶體的一源極端接收該第二電源電壓,該第一P型電晶體的一汲極端產生該控制信號,該第一P型電晶體的一閘極端連接至該反及閘的一輸出端;一電流源,該電流源連接至該第一P型電晶體的該源極端與該汲極端之間;一第一N型電晶體,該第一N型電晶體的一源極端接收該接地電壓,該第一N型電晶體的一閘極端連接至該反及閘的該輸出端;以及一負載元件,該負載元件的一第一端點連接至該第一P型電晶體的該汲極端,該負載元件的一第二端點連接至該第一N型電晶體的該汲極端,該負載元件的一第三端點接收該輸入信號。
  7. 如請求項6所述之轉壓器,其中該驅動級包括:一第三反閘,該第三反閘的一輸入端接收該控制信號; 一第四反閘,該四反閘的一輸入端連接至該第三反閘的一輸出端;一第二P型電晶體,該第二P型電晶體的一源極端接收該第二電源電壓,該第二P型電晶體的一汲極端連接至該第二節點,該第二P型電晶體的一閘極端連接至該第四反閘的一輸出端。
  8. 如請求項7所述之轉壓器,其中該驅動級更包括:一第二N型電晶體,該第二N型電晶體的一源極端接收該接地電壓,該第二N型電晶體的一汲極端連接至該第一節點,該第二N型電晶體的一閘極端連接至該第三反閘的該輸出端;其中,該驅動級更提供一第二電壓驅動路徑以將該第一節點的電壓準位轉換至該低準位。
  9. 如請求項6所述之轉壓器,其中該負載元件包括:一第三N型電晶體,該第三N型電晶體的一汲極端連接至該第一P型電晶體的該汲極端,該第三N型電晶體的一源極端連接至該第一N型電晶體的該汲極端,該第三N型電晶體的一閘極端接收該輸入信號。
  10. 如請求項6所述之轉壓器,其中該負載元件包括:一第三N型電晶體與一第四N型電晶體,該第三N型電晶體的一汲極端連接至該第一P型電晶體的該汲極端,該第三N型電晶體的一源極端連接至該第四N型電晶體的該汲極端,該第四N型電晶體的一源極端接收該接地電壓,該第三N型電晶體的一閘極端接收一偏壓電壓,該第四N型電晶體的一閘極端接收該輸入信號。
  11. 一種轉壓器,將信號範圍在一第一電源電壓至一接地電壓間的一輸入信號轉換為信號範圍在一第二電源電壓至該接地電壓間的一輸出信號,該轉壓器包括: 一第一反閘,該第一反閘的一輸入端接收該輸入信號,該第一反閘的一輸出端產生一反相輸入信號;一交叉耦合電路,連接於該第二電源電壓、一第一節點與一第二節點,且經由該第二節點輸出該輸出信號;一負載電路,連接於該接地電壓、該第一節點、該第二節點、該輸入信號與該反相輸入信號;以及一暫態驅動電路,該暫態驅動電路的多個輸入端連接於該第一節點、該第二節點、該輸入信號與該反相輸入信號,該暫態驅動電路的多個輸出端連接於該第一節點與該第二節點;其中,在該輸出信號為一第一準位或者一第二準位的穩態區間,該暫態驅動電路未動作;以及,在該輸出信號由該第一準位轉換為該第二準位的暫態區間,該暫態驅動電路提供一第一電壓驅動路徑以驅動該輸出信號至該第二準位;其中,該暫態驅動電路包括:一輸出下拉電路,該輸出下拉電路的多個輸入端連接至該第一節點、該第二節點與該反相輸入信號;其中,該第一準位為一高準位且該第二準位為一低準位。
  12. 如請求項11所述之轉壓器,其中該輸出下拉電路包括:一組合邏輯電路,該組合邏輯電路連接至該第一節點、該第二節點與該反相輸入信號,該組合邏輯電路產生一控制信號;以及一驅動級,連接至該第一節點與該第二節點,該驅動級用以接收該控制信號,並根據該控制信號驅動該輸出信號。
  13. 如請求項12所述之轉壓器,其中該組合邏輯電路包括:一第二反閘,該第二反閘的一輸入端連接至該第二節點; 一反及閘,該反及閘的二輸入端連接至該第一節點與該第二反閘的一輸出端;一第一P型電晶體,該第一P型電晶體的一源極端接收該第二電源電壓,該第一P型電晶體的一汲極端產生該控制信號,該第一P型電晶體的一閘極端連接至該反及閘的一輸出端;一電流源,該電流源連接至該第一P型電晶體的該源極端與該汲極端之間;一第一N型電晶體,該第一N型電晶體的一源極端接收該接地電壓,該第一N型電晶體的一閘極端連接至該反及閘的該輸出端;以及一負載元件,該負載元件的一第一端點連接至該第一P型電晶體的該汲極端,該負載元件的一第二端點連接至該第一N型電晶體的該汲極端,該負載元件的一第三端點接收該反相輸入信號。
  14. 如請求項13所述之轉壓器,其中該驅動級包括:一第三反閘,該第三反閘的一輸入端接收該控制信號;一第四反閘,該四反閘的一輸入端連接至該第三反閘的一輸出端;一第二P型電晶體,該第二P型電晶體的一源極端接收該第二電源電壓,該第二P型電晶體的一汲極端連接至該第一節點,該第二P型電晶體的一閘極端連接至該第四反閘的一輸出端。
  15. 如請求項14所述之轉壓器,其中該驅動級更包括:一第二N型電晶體,該第二N型電晶體的一源極端接收該接地電壓,該第二N型電晶體的一汲極端連接至該第二節點,該第二N型電晶體的一閘極端連接至該第三反閘的該輸出端;其中,該驅動級更提供一第二電壓驅動路徑以將該第一節點的電壓準位轉換至該高準位。
  16. 如請求項13所述之轉壓器,其中該負載元件包括:一第三N型電晶體,該第三N型電晶體的一汲極端連接至該第一P型電晶體的該汲極端,該第三N型電晶體的一源極端連接至該第一N型電晶體的該汲極端,該第三N型電晶體的一閘極端接收該輸入信號。
  17. 如請求項13所述之轉壓器,其中該負載元件包括:一第三N型電晶體與一第四N型電晶體,該第三N型電晶體的一汲極端連接至該第一P型電晶體的該汲極端,該第三N型電晶體的一源極端連接至該第四N型電晶體的該汲極端,該第四N型電晶體的一源極端接收該接地電壓,該第三N型電晶體的一閘極端接收一偏壓電壓,該第四N型電晶體的一閘極端接收該輸入信號。
TW109145735A 2020-06-14 2020-12-23 轉壓器 TWI739695B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063038895P 2020-06-14 2020-06-14
US63/038,895 2020-06-14

Publications (2)

Publication Number Publication Date
TWI739695B true TWI739695B (zh) 2021-09-11
TW202147778A TW202147778A (zh) 2021-12-16

Family

ID=78778172

Family Applications (5)

Application Number Title Priority Date Filing Date
TW109145735A TWI739695B (zh) 2020-06-14 2020-12-23 轉壓器
TW110101206A TWI751883B (zh) 2020-06-14 2021-01-13 電源箝制電路
TW110118645A TWI761215B (zh) 2020-06-14 2021-05-24 運用於非揮發性記憶體的寫入電壓產生器
TW110118846A TWI782541B (zh) 2020-06-14 2021-05-25 可編程的非揮發性記憶體之記憶胞陣列
TW110120256A TWI807335B (zh) 2020-06-14 2021-06-03 記憶體裝置及操作記憶體裝置之方法

Family Applications After (4)

Application Number Title Priority Date Filing Date
TW110101206A TWI751883B (zh) 2020-06-14 2021-01-13 電源箝制電路
TW110118645A TWI761215B (zh) 2020-06-14 2021-05-24 運用於非揮發性記憶體的寫入電壓產生器
TW110118846A TWI782541B (zh) 2020-06-14 2021-05-25 可編程的非揮發性記憶體之記憶胞陣列
TW110120256A TWI807335B (zh) 2020-06-14 2021-06-03 記憶體裝置及操作記憶體裝置之方法

Country Status (3)

Country Link
US (3) US11508425B2 (zh)
CN (3) CN113809091B (zh)
TW (5) TWI739695B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230013681A (ko) * 2021-07-16 2023-01-27 삼성전자주식회사 비휘발성 메모리 장치
TWI839100B (zh) * 2023-02-01 2024-04-11 億而得微電子股份有限公司 小面積高效率唯讀記憶體陣列及其操作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002290A (en) * 1997-12-23 1999-12-14 Sarnoff Corporation Crisscross voltage level shifter
JP2004228879A (ja) * 2003-01-22 2004-08-12 Nec Micro Systems Ltd レベルシフト回路
US20070164789A1 (en) * 2006-01-17 2007-07-19 Cypress Semiconductor Corp. High Speed Level Shift Circuit with Reduced Skew and Method for Level Shifting
TW200830082A (en) * 2007-01-04 2008-07-16 Elite Semiconductor Esmt Level shifter
US20090243654A1 (en) * 2008-03-31 2009-10-01 Fujitsu Microelectronics Limited Level converter
US7696804B2 (en) * 2007-03-31 2010-04-13 Sandisk 3D Llc Method for incorporating transistor snap-back protection in a level shifter circuit
TW201025858A (en) * 2008-09-04 2010-07-01 Qualcomm Inc CMOS level shifter circuit design
TW201507358A (zh) * 2013-08-07 2015-02-16 Richtek Technology Corp 電壓準位轉換電路
US9484922B2 (en) * 2014-04-10 2016-11-01 Freescale Semiconductor, Inc. Voltage level shifter module
CN206595982U (zh) * 2017-01-03 2017-10-27 奕力科技股份有限公司 电平移位器

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3477622D1 (en) * 1984-11-30 1989-05-11 Ibm Memory using conventional cells to perform a ram or an associative memory function
DE69518970T2 (de) * 1994-12-20 2001-03-01 Sharp K.K., Osaka Nichtflüchtiger Speicher und dessen Herstellungsverfahren
US6590453B2 (en) * 2001-09-21 2003-07-08 Silicon Storage Technology, Inc. Folded cascode high voltage operational amplifier with class AB source follower output stage
JP4199591B2 (ja) * 2003-05-16 2008-12-17 エルピーダメモリ株式会社 セルリークモニタ回路及びモニタ方法
US7057958B2 (en) * 2003-09-30 2006-06-06 Sandisk Corporation Method and system for temperature compensation for memory cells with temperature-dependent behavior
US7244652B2 (en) * 2004-09-06 2007-07-17 United Microelectronics Corp. Method of forming a split programming virtual ground SONOS memory
US7169668B2 (en) * 2005-01-09 2007-01-30 United Microelectronics Corp. Method of manufacturing a split-gate flash memory device
TWI265626B (en) * 2005-08-19 2006-11-01 Powerchip Semiconductor Corp Non-volatile memory and manufacturing method and operating method thereof
US7412617B2 (en) * 2006-04-06 2008-08-12 Mediatek Inc. Phase frequency detector with limited output pulse width and method thereof
TW200818402A (en) * 2006-10-03 2008-04-16 Powerchip Semiconductor Corp Non-volatile memory, fabricating method and operating method thereof
ITRM20060652A1 (it) * 2006-12-06 2008-06-07 Micron Technology Inc Compensazione di temperatura di segnali di memoria impiegando segnali digitali
US7450424B2 (en) * 2007-01-31 2008-11-11 Skymedi Corporation Method for reading a memory array with a non-volatile memory structure
US8574980B2 (en) * 2007-04-27 2013-11-05 Texas Instruments Incorporated Method of forming fully silicided NMOS and PMOS semiconductor devices having independent polysilicon gate thicknesses, and related device
US7585738B2 (en) * 2007-04-27 2009-09-08 Texas Instruments Incorporated Method of forming a fully silicided semiconductor device with independent gate and source/drain doping and related device
US20090040794A1 (en) * 2007-08-08 2009-02-12 Advanced Analogic Technologies, Inc. Time-Multiplexed Multi-Output DC/DC Converters and Voltage Regulators
US8362615B2 (en) * 2007-08-29 2013-01-29 Macronix International Co., Ltd. Memory and manufacturing method thereof
US7879706B2 (en) * 2007-10-31 2011-02-01 Macronix International Co., Ltd. Memory and manufacturing method thereof
GB2486701B (en) * 2010-12-23 2013-01-09 Wolfson Microelectronics Plc Charge pump circuit
US9337192B2 (en) * 2011-09-24 2016-05-10 Taiwan Semiconductor Manufacturing Company, Ltd. Metal gate stack having TaAlCN layer
TWI473433B (zh) * 2011-10-21 2015-02-11 Macronix Int Co Ltd 時鐘積體電路
US9338036B2 (en) * 2012-01-30 2016-05-10 Nvidia Corporation Data-driven charge-pump transmitter for differential signaling
US8940604B2 (en) * 2012-03-05 2015-01-27 Stmicroelectronics (Rousset) Sas Nonvolatile memory comprising mini wells at a floating potential
US8658495B2 (en) * 2012-03-08 2014-02-25 Ememory Technology Inc. Method of fabricating erasable programmable single-poly nonvolatile memory
US8941167B2 (en) 2012-03-08 2015-01-27 Ememory Technology Inc. Erasable programmable single-ploy nonvolatile memory
EP2639817A1 (en) * 2012-03-12 2013-09-18 eMemory Technology Inc. Method of fabricating a single-poly floating-gate memory device
US8735958B1 (en) * 2012-12-27 2014-05-27 Macronix International Co., Ltd. Multi-layer polysilicon suppression of implant species penetration
US9614105B2 (en) * 2013-04-22 2017-04-04 Cypress Semiconductor Corporation Charge-trap NOR with silicon-rich nitride as a charge trap layer
US9111625B2 (en) 2013-08-09 2015-08-18 Samsung Electronics Co., Ltd. Adaptive dual voltage write driver with dummy resistive path tracking
US9236453B2 (en) * 2013-09-27 2016-01-12 Ememory Technology Inc. Nonvolatile memory structure and fabrication method thereof
US9230616B2 (en) * 2014-01-09 2016-01-05 Micron Technology, Inc. Memory devices, memory device operational methods, and memory device implementation methods
US9209198B2 (en) * 2014-05-12 2015-12-08 Macronix International Co., Ltd. Memory cell and manufacturing method thereof
KR102242561B1 (ko) * 2014-10-02 2021-04-20 삼성전자주식회사 저항성 메모리 장치, 저항성 메모리 시스템 및 저항성 메모리 장치의 동작방법
TWI593052B (zh) * 2015-01-07 2017-07-21 力旺電子股份有限公司 半導體元件及其製造方法
SG10201503305PA (en) * 2015-04-27 2016-11-29 Globalfoundries Sg Pte Ltd Lateral high voltage transistor
TWI578325B (zh) * 2015-08-18 2017-04-11 力旺電子股份有限公司 反熔絲型一次編程的記憶胞及其相關的陣列結構
US9847133B2 (en) * 2016-01-19 2017-12-19 Ememory Technology Inc. Memory array capable of performing byte erase operation
US9853039B1 (en) * 2016-12-13 2017-12-26 Cypress Semiconductor Corporation Split-gate flash cell formed on recessed substrate
US9882566B1 (en) * 2017-01-10 2018-01-30 Ememory Technology Inc. Driving circuit for non-volatile memory
CN110416214B (zh) * 2018-04-28 2021-07-20 无锡华润上华科技有限公司 Otp存储器件及其制作方法、电子装置
US10734398B2 (en) * 2018-08-29 2020-08-04 Taiwan Semiconductor Manufacturing Co., Ltd. Flash memory structure with enhanced floating gate
US10797064B2 (en) * 2018-09-19 2020-10-06 Ememory Technology Inc. Single-poly non-volatile memory cell and operating method thereof
US10692575B1 (en) * 2019-03-28 2020-06-23 2X Memory Technology Corp. Method for self-terminated writing with quasi-constant voltage across resistive-type memory element and circuit thereof
US11508719B2 (en) 2019-05-13 2022-11-22 Ememory Technology Inc. Electrostatic discharge circuit
US10930346B1 (en) * 2019-11-28 2021-02-23 Winbond Electronics Corp. Resistive memory with self-termination control function and self-termination control method
CN110855131B (zh) * 2019-12-09 2021-10-15 成都芯源系统有限公司 一种同步整流器件的驱动电路

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002290A (en) * 1997-12-23 1999-12-14 Sarnoff Corporation Crisscross voltage level shifter
JP2004228879A (ja) * 2003-01-22 2004-08-12 Nec Micro Systems Ltd レベルシフト回路
US20070164789A1 (en) * 2006-01-17 2007-07-19 Cypress Semiconductor Corp. High Speed Level Shift Circuit with Reduced Skew and Method for Level Shifting
TW200830082A (en) * 2007-01-04 2008-07-16 Elite Semiconductor Esmt Level shifter
US7696804B2 (en) * 2007-03-31 2010-04-13 Sandisk 3D Llc Method for incorporating transistor snap-back protection in a level shifter circuit
US20090243654A1 (en) * 2008-03-31 2009-10-01 Fujitsu Microelectronics Limited Level converter
TW201025858A (en) * 2008-09-04 2010-07-01 Qualcomm Inc CMOS level shifter circuit design
TW201507358A (zh) * 2013-08-07 2015-02-16 Richtek Technology Corp 電壓準位轉換電路
US9484922B2 (en) * 2014-04-10 2016-11-01 Freescale Semiconductor, Inc. Voltage level shifter module
CN206595982U (zh) * 2017-01-03 2017-10-27 奕力科技股份有限公司 电平移位器

Also Published As

Publication number Publication date
TWI807335B (zh) 2023-07-01
TW202147570A (zh) 2021-12-16
US11551738B2 (en) 2023-01-10
US11508425B2 (en) 2022-11-22
TWI782541B (zh) 2022-11-01
CN113809091B (zh) 2024-02-13
CN113870910A (zh) 2021-12-31
CN113809091A (zh) 2021-12-17
TW202147761A (zh) 2021-12-16
TW202147778A (zh) 2021-12-16
US20210391434A1 (en) 2021-12-16
TWI761215B (zh) 2022-04-11
TWI751883B (zh) 2022-01-01
US20210390996A1 (en) 2021-12-16
US20210391010A1 (en) 2021-12-16
CN113808638A (zh) 2021-12-17
US11309007B2 (en) 2022-04-19
TW202147324A (zh) 2021-12-16
TW202213727A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
US7061299B2 (en) Bidirectional level shifter
US7521970B2 (en) High voltage tolerant input buffer
JP4870391B2 (ja) レベルシフタ及びレベルシフティング方法
US6791391B2 (en) Level shifting circuit
EP2965425B1 (en) Voltage level shifter with a low-latency voltage boost circuit
TWI739695B (zh) 轉壓器
TWI692204B (zh) 轉壓器
WO2023073904A1 (ja) レベルシフト回路
JP2007235815A (ja) レベル変換回路
TWM616390U (zh) 低功率電壓位準移位器
JP2010166457A (ja) レベルシフト回路およびそれを備えた半導体装置
TWM598009U (zh) 具輸出控制電路之電位轉換器
JP4588436B2 (ja) レベルシフタ回路
KR100719678B1 (ko) 레벨 쉬프터
TWM586017U (zh) 低功率電位轉換器
TWI755921B (zh) 用於積體電路的低電壓位準移位器
TWI741964B (zh) 轉壓器
TWM565921U (zh) 電壓位準移位器
TWI789242B (zh) 電位轉換電路
US8502559B2 (en) Level translator
TWM627595U (zh) 降低功耗之電位轉換電路
TWM598007U (zh) 高性能電壓位準轉換器
TWM643260U (zh) 高效能電位轉換器電路
TWM657360U (zh) 減少競爭現象之電位轉換電路
TWM645482U (zh) 高速低功率損耗電位轉換器