TWI755921B - 用於積體電路的低電壓位準移位器 - Google Patents

用於積體電路的低電壓位準移位器 Download PDF

Info

Publication number
TWI755921B
TWI755921B TW109138543A TW109138543A TWI755921B TW I755921 B TWI755921 B TW I755921B TW 109138543 A TW109138543 A TW 109138543A TW 109138543 A TW109138543 A TW 109138543A TW I755921 B TWI755921 B TW I755921B
Authority
TW
Taiwan
Prior art keywords
voltage
pmos transistor
level shifter
vddl
terminal
Prior art date
Application number
TW109138543A
Other languages
English (en)
Other versions
TW202127798A (zh
Inventor
梅杰
錢曉州
曉萬 陳
朱瑤華
Original Assignee
美商超捷公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商超捷公司 filed Critical 美商超捷公司
Publication of TW202127798A publication Critical patent/TW202127798A/zh
Application granted granted Critical
Publication of TWI755921B publication Critical patent/TWI755921B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • H03K19/017Modifications for accelerating switching in field-effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018521Interface arrangements of complementary type, e.g. CMOS
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/185Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using dielectric elements with variable dielectric constant, e.g. ferro-electric capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • H03K3/356113Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Logic Circuits (AREA)

Abstract

揭示一種經改良之位準移位器。該位準移位器對於VDDL能夠使用相對低的電壓,諸如0.75 V,實現低於1 ns的切換時間。該經改良之位準移位器包括耦合級和位準轉換級。亦揭示一種相關的位準移位方法。

Description

用於積體電路的低電壓位準移位器
[優先權主張] 本申請案主張2019年11月28日申請、標題為「用於集成電路的低電壓電平移位器」之中國專利申請案第201911192206.8號及2020年4月2日申請、標題為「Low Voltage Level Shifter For Integrated Circuit」之美國專利申請案第16/838,847號的優先權。
揭示一種能夠以高速和低操作電壓操作的經改良之位準移位器。
位準移位器是積體電路中的重要部件。位準移位器將來自第一電壓域的數位信號轉換成第二電壓域,當積體電路的不同部分在不同的電壓域內工作時,這是必不可少的功能。
圖1描繪了位準移位器100(包括現有技術中已知的位準移位器)的概念性操作。在該示例中,在電壓域101(V1 )中,「1」由1V表示而「0」由0V表示,並且在電壓域102(V2 )中,「1」由2.5V表示而「0」由0V表示。位準移位器100將來自電壓域101的「1」(1V)轉換為電壓域102中的「1」(2.5V),並將來自電壓域101的「0」(0V)轉換為電壓域102中的「0」(0V)。利用其他電壓來表示「1」和「0」的其他電壓域是已知的,並且本領域普通技術人員將理解,圖1和本文中提供的電壓值僅僅是示例。
現在將參考圖2至圖4描述位準移位器100的實施方案。首先,圖2描繪了反相器201和202,其中反相器201接收INPUT作為信號並產生A作為輸出(它是INPUT的補碼),並且反相器202接收A作為輸入並產生A-BAR作為輸出(它是A的補碼並且邏輯上與INPUT相同)。這裡,A和A-BAR的「1」值將分別具有電壓VDDL,其可以為例如1V。VDDL可以是低電壓核心電源電壓。
圖3描繪了現有技術的位準移位器300,其是位準移位器100的示例。位準移位器300包括NMOS電晶體301和302、PMOS電晶體303和304及反相器305。來自圖2的信號A被設置成NMOS電晶體301的閘極,並且來自圖2的信號A-BAR被設置成NMOS電晶體302的閘極。
當A為高位準時,NMOS電晶體301將導通,而電晶體302將截止。到反相器305的輸入將通過NMOS電晶體301被拉至接地,這也將打開到PMOS電晶體304的閘極。反相器305的被標記為OUTPUT的輸出將會是高位準,其在這裡將是電壓VDDH,其可以是例如2.5V。VDDH可以是高電壓核心電源電壓。
當A為低位準時,NMOS電晶體301將截止,而NMOS電晶體302將導通。PMOS電晶體303將導通,因為其閘極將通過NMOS電晶體302被拉至接地,這將使反相器305的輸入通過PMOS電晶體303被拉高。然後OUTPUT將會是低位準。
現有技術的位準移位器300具有顯著的局限性。具體地,位準移位器300不能以小於約0.5 ns的切換時間工作。在最壞的情況下,切換時間可以高達1 ns或更長。這是由於每個電晶體的電流驅動能力中的固有可變性。此外,如果由於圖2中的低電源電壓VDDL太低而導致A和A-BAR的峰值電壓太低(即,不足以分別完全打開NMOS電晶體301、302),則位準移位器300可能完全失效。
圖4描繪了現有技術的位準移位器400,其是位準移位器100的另一示例,並且具有比位準移位器300更短的切換時間。位準移位器400包括NMOS電晶體401和402;PMOS電晶體403、404、405和406;以及反相器407。來自圖2的信號A被設置成NMOS電晶體401的閘極和PMOS電晶體405的閘極,而來自圖2的信號A-BAR被設置成NMOS電晶體402的閘極和PMOS電晶體406的閘極。
當A為高位準時,NMOS電晶體401將導通,電晶體402將截止,PMOS電晶體405將截止,而PMOS電晶體406將導通。到反相器407的輸入將通過NMOS電晶體401被拉至接地,這也將拉低PMOS電晶體404的閘極,從而導通PMOS電晶體404,這又將使PMOS電晶體403的閘極通過PMOS電晶體404和406被拉高至VDDH。反相器407的被標記為OUTPUT的輸出將會是高位準,其在這裡將是電壓VDDH,其可以是例如2.5V。
當A為低位準時,NMOS電晶體401將截止,NMOS電晶體402將導通,PMOS電晶體405將導通,而PMOS電晶體406將截止。PMOS電晶體403將導通,因為其閘極將通過NMOS電晶體402被拉至接地,這將使到反相器407的輸入通過PMOS電晶體403和405被拉高至VDDH。然後OUTPUT將會是低位準。
雖然位準移位器400具有比位準移位器300更快的切換時間,但是位準移位器400仍然是受限的。具體地,它無法將切換時間降低到1 ns以下。此外,如果由於圖2中的低電源電壓VDDL太低而導致A和A-BAR的峰值電壓太低,則位準移位器400可能完全失效。
申請人最近在2019年8月9日提交且標題為「用於集成電路的改進的電平移位器」的中國專利申請第201910733363.9號中提出一種經改良之位準移位器。現在將參考圖5至圖7描述這個設計。
圖5描繪了位準移位器500,其包括耦合級600和位準移位級700。當位準移位器500接收「0」作為輸入時(其中「0」為第一電壓),它輸出「0」,即第一電壓,以及當它接收第一電壓域(VDDL)的「1」(其為第二電壓)作為輸入時,它輸出第二電壓域(VDDH)的「1」,其為與第一電壓或第二電壓不同的第三電壓。
圖6描繪了耦合級600,其包括第一電路621和第二電路622,該兩個電路由低電壓電源610供電,該低電壓電源輸出電壓VDDL。第一電路621包括NMOS電晶體602;PMOS電晶體604、606和608;以及電容器610。第二電路622包括NMOS電晶體601;PMOS電晶體603、605和607;以及電容器609。來自圖2的信號A被設置成NMOS電晶體601、PMOS電晶體603和PMOS電晶體608的閘極,而來自圖2的信號A-BAR被設置成NMOS電晶體602、PMOS電晶體604和PMOS電晶體607的閘極。
現在將描述第一電路621的操作。當A為高位準時,A-BAR為低位準,以及NMOS電晶體602截止,PMOS電晶體604導通,而PMOS電晶體608截止。因為NMOS電晶體602截止且PMOS電晶體608截止,所以電壓AA將會是浮動的,並且在啟動之後在初始狀態下將是大約0V,因為在沒有任何電源的情況下電容器610上的任何殘餘電荷將消散。
當A從高位準切換到低位準時,A-BAR將從低位準切換到高位準,NMOS電晶體602將打開,PMOS電晶體604將關斷,而PMOS電晶體608將打開。PMOS電晶體606也將打開,因為其閘極將通過NMOS電晶體602被拉至接地。電容器610將開始充電,並且被標記為AA的節點將接近電壓VDDL,因為PMOS電晶體606和608是導通的,並且因此節點AA通過PMOS電晶體606和608的串聯連接耦合到提供VDDL的電源。上面已經被描述為使NMOS電晶體602的源極連接至接地,然而,這並不意味著以任何方式進行限制,並且在不超出範圍的情況下,在整個文件中可以利用與VDDH相關的任何返回電壓來代替接地。第一電壓,即第二電壓域中的「0」,是接近返回電壓的電壓。
當A接著從低位準切換到高位準時,A-BAR將從高位準切換到低位準。NMOS電晶體602將被關斷,PMOS電晶體604將被打開,而PMOS電晶體608將被關斷,因為A被設置成PMOS電晶體608的閘極。PMOS電晶體606的閘極將處於節點AA的電壓下(其將始於VDDL)並且將截止。因為A將電容器610的頂板從低位準驅動到高位準(其為VDDL),所以節點AA將被電容器610驅動到2*VDDL。
當A接著從高位準切換到低位準時,PMOS電晶體608將打開,NMOS電晶體602將打開,從而將PMOS電晶體606的閘極拉至接地並打開PMOS電晶體606,這將節點AA拉至電壓VDDL。因此,節點AA響應於A從低位準切換到高位準,從VDDL轉變到2*VDDL,並且節點AA響應於A從高位準切換至低位準,從2*VDDL轉變到VDDL。
現在將描述第二電路622的操作。當A為低位準時,A-BAR將會是高位準,NMOS電晶體601截止,PMOS電晶體603導通,而PMOS電晶體607截止。因為NMOS電晶體601截止且PMOS電晶體607截止,所以電壓AA-BAR將會是浮動的,並且在啟動之後在初始狀態下將是大約0V,因為在沒有任何電源的情況下電容器609上的任何殘餘電荷將消散。
當A從低位準切換到高位準時,A-BAR將從高位準切換到低位準,NMOS電晶體601將打開,PMOS電晶體603將關斷,而PMOS電晶體607將打開。PMOS電晶體605也將打開,因為其閘極將通過NMOS電晶體601被拉至接地。電容器609的底板將通過PMOS電晶體607和605被拉至VDDL,並且被標記為AA-BAR的節點將獲得電壓VDDL。
當A接著從高位準切換到低位準時,A-BAR將從低位準切換到高位準,NMOS電晶體601將被關斷,PMOS電晶體603將被打開,而PMOS電晶體607將被關斷。PMOS電晶體605的閘極將通過PMOS電晶體603處於電壓AA-BAR(其將始於VDDL)並且因此將截止。因為A-BAR將電容器609的頂板從低位準驅動為高位準(其為VDDL),所以AA-BAR將被電容器609驅動至2*VDDL。
當A接著從低位準切換到高位準時,A-BAR將從高位準切換到低位準,PMOS電晶體607將打開,以及NMOS電晶體601將打開,從而將PMOS電晶體605的閘極拉至接地並打開PMOS電晶體605,這將節點AA-BAR通過PMOS電晶體605和607拉至電壓VDDL。因此,節點AA-BAR響應於A-BAR從低位準切換到高位準,從VDDL轉變到2*VDDL,並且節點AA-BAR響應於A-BAR從高位準切換至低位準,從2*VDDL轉變到VDDL。
圖7描繪了位準移位級700,其包括NMOS電晶體701、702、703和704、PMOS電晶體705和706以及輸出電壓VDDH的高電源710。來自圖2的信號A被設置成NMOS電晶體701的閘極和NMOS電晶體704的一個端子。來自圖2的信號A-BAR被設置成NMOS電晶體702的閘極和NMOS電晶體703的一個端子。來自圖5的節點AA被設置成NMOS電晶體703的閘極,而來自圖5的節點AA-BAR被設置成NMOS電晶體704的閘極。如上所示,節點AA將在VDDL和2*VDDL之間振盪,並且節點AA-BAR將在2*VDDL和VDDL之間振盪。
當A從1(VDDL)切換到0時,A-BAR將從0切換到1(VDDL),AA將為VDDL,並且AA-BAR將為2*VDDL。NMOS電晶體701將截止,NMOS電晶體702將導通,NMOS電晶體703將截止(因為AA和A-BAR兩者將均為VDDL),而NMOS電晶體704將導通。這將通過電晶體702和704將節點OUTPUT拉至接地,並打開PMOS電晶體705,這將確保PMOS電晶體706截止。
當A從0切換到1(VDDL)時,A-BAR將從1切換到0,AA將為2*VDDL,並且AA-BAR將為VDDL。NMOS電晶體701將導通,NMOS電晶體702將截止,NMOS電晶體703將導通,而NMOS電晶體704將截止(因為A和AA-BAR兩者將均為VDDL),而NMOS電晶體704將截止。PMOS電晶體706的閘極將通過NMOS電晶體701和703被拉至接地,這將打開PMOS電晶體706並使得OUPUT被拉至VDDH,因此關斷PMOS電晶體705。
值得注意的是,當A從1切換到0時,NMOS電晶體702和704能夠比位準移位器300和400更快地將節點OUTPUT拉至接地,因為NMOS電晶體704的過載電壓為兩倍高。具體地,下拉NMOS電晶體704的Vgs為2*VDDL,而NMOS電晶體302的Vgs和位準移位器400中的NMOS電晶體402的Vgs僅為VDDL。因此,位準移位器700中的OUTPUT可以比在位準移位器400中更快地被拉至「0」。
類似地,當A從0切換到1時,NMOS電晶體701和703能夠比位準移位器300和400更快地將PMOS電晶體706的閘極拉至接地,因為NMOS電晶體703的過載電壓為兩倍高。因此,OUTPUT在很短的時間內被拉至VDDH。具體地,下拉NMOS電晶體703的Vgs為2*VDDL,而位準移位器300中的NMOS電晶體301的Vgs和位準移位器400中的NMOS電晶體401的Vgs各自僅為VDDL。因此,PMOS電晶體706的閘極將被快速下拉至「0」,並且OUTPUT將比在位準移位器300和400中更快地被上拉至VDDH。
也就是說,位準移位器500能夠比位準移位器300和400更快地切換,這意味著位準移位器500所需的切換時間小於位準移位器300和400所需的切換時間。
申請人已經進行了實驗以比較位準移位器500與現有技術的位準移位器300和400的移位速度。對於條件VDDL=0.94 V至1.26 V、VDDH=1.4 V至2.75 V及溫度=-40℃至160℃,當A從0切換到1時,位準移位器500快3.5倍,以及當A從1切換到0時,位準移位器500快5.7倍。因此,位準移位器500在切換時間方面比位準移位器300和400快至少3.5倍。
然而,甚至圖5至圖7的改良設計也具有一些缺點。具體地,該設計在可用電源電壓為0.8 V或更低的系統中不能良好地工作,因為位準移位級700需要使用2.5 V電源電壓的電晶體。也就是說,如果VDDL相對較小(諸如,0.75 V),則位準移位器500不能良好地工作。
此外,圖5至圖7的設計是相對複雜的,並且在半導體晶粒內需要相對顯著量的空間。例如,存在NMOS電晶體701和702以便在待機模式期間維持功能性。
需要的是一種改良的位準移位設計,該設計能夠將其切換時間降低到0.5 ns之下,同時使用低至0.75 V的VDDL。
本發明揭示一種經改良之位準移位器。位準移位器能夠實現低於1 ns的切換時間,同時對於VDDL仍使用相對低的電壓,諸如,0.75 V-1.26 V。該經改良之位準移位器包括耦合級和位準轉換級。
圖8描繪位準移位器800,其包括耦合級900和位準移位級1000。當位準移位器800接收「0」作為輸入時(其中「0」為第一電壓),它輸出「0」,即第一電壓,以及當它接收第一電壓域(VDDL)的「1」(其為第二電壓)作為輸入時,它輸出第二電壓域(VDDH,範圍在1.4 V和2.75 V之間)的「1」,其為與第一電壓或第二電壓不同的第三電壓。
圖9描繪耦合級900,其包括第一電路910和第二電路920,該兩個電路由低電壓電源930(VDDL)供電,該低電壓電源的範圍在0.75 V和約1.26 V之間。第一電路910包括PMOS電晶體912和電容器911。第二電路920包括PMOS電晶體922和電容器921。PMOS電晶體912的閘極連接至電容器911的第一端子,PMOS電晶體912的汲極連接至低電壓電源930,以及PMOS電晶體912的源極連接至PMOS電晶體912的本體和連接至電容器911的第二端子(表示為節點CC)。PMOS電晶體922的閘極連接至電容器921的第一端子,PMOS電晶體922的汲極連接至低電壓電源930,以及PMOS電晶體922的源極連接至PMOS電晶體922的本體和連接至電容器921的第二端子(表示為節點CC-BAR)。
此處的信號C和C_BAR分別為VDDL功率域電壓並且分別被設置成PMOS電晶體912和922的閘極。
現在將描述在待機模式期間的耦合級900的操作。
當上電時,VDDL從低位準升至高位準(即從0至0.75 V~1.26 V),C將從低位準升至高位準(VDDL),而C-BAR保持低位準狀態(0V)。節點CC將通過電容器911耦合從低位準升至高位準(VDDL-VD),其中VD為來自PMOS電晶體912中的寄生二極管的正向電壓。因為沒有通過PMOS電晶體912的電流,所以VD將非常小(~20 mV)。信號C-BAR保持低位準狀態,並且PMOS電晶體922打開,因此節點CC-BAR處的電壓將從低位準升至高位準(VDDL)。因此,電容器911大部分被放電且具有橫跨其的小電壓(VD),並且電容器921利用橫跨其的VDDL的電壓充電。
接著,將描述在激活模式期間的耦合級900的操作。
當C從高位準切換至低位準時,信號C方面的變化將通過電容器911耦合,使得節點CC立即從高位準(VDDL-VD)切換至低位準(~0V),然後上升至高位準(VDDL),因為PMOS電晶體912打開。C-BAR從低位準切換至高位準,並且信號C-BAR方面的變化將通過電容器921耦合,使得節點CC-BAR立即從高位準(VDDL)切換至更高位準(~2*VDDL),然後隨著電容器921通過PMOS電晶體922放電直到PMOS電晶體922的源極上的電壓降至PMOS電晶體922的閾值從而使其關斷,而降至VDDL+Vth922。Vth922為PMOS電晶體922的閾值電壓。
當C從低位準切換至高位準時,信號C方面的變化將通過電容器911耦合,使得節點CC立即從高位準(VDDL)切換至更高位準(~2*VDDL),然後隨著電容器911通過PMOS電晶體912放電直到PMOS電晶體912的源極上的電壓降至PMOS電晶體912的閾值從而使其關斷,而降至高位準(VDDL+Vth912)。Vth912是PMOS電晶體912的閾值電壓。C-BAR將從高位準切換至低位準,並且信號C-BAR方面的變化將通過電容器921耦合,使得節點CC-BAR立即從高位準(VDDL+Vth922)切換至低位準(Vth922),然後上升到VDDL,因為PMOS電晶體922此時打開。
圖10描繪位準移位級1000,其包括NMOS電晶體1001、1002、1003和1004、PMOS電晶體1005和1006以及輸出電壓VDDH的高電源1007。與位準移位器500中的位準移位級700不同,位準移位級1000能夠在VDDL低至0.75 V時工作。 信號C被設置成NMOS電晶體1001的閘極。信號C-BAR被設置成NMOS電晶體1002的閘極。來自圖9的節點CC被設置成NMOS電晶體1003的閘極,而來自圖9的節點CC-BAR被設置成NMOS電晶體1004的閘極。
當C從高位準(VDDL)切換至低位準時,C-BAR將從低位準切換至高位準(VDDL),NMOS電晶體1001將截止,NMOS電晶體1002將導通,NMOS電晶體1003將導通,而NMOS電晶體1004將導通。節點OUT將通過電晶體1004和1002被拉至接地,從而打開PMOS電晶體1005。然後PMOS電晶體1006的閘極將通過PMOS電晶體1005被拉高,而PMOS電晶體1006將截止。
當C從低位準切換到高位準(VDDL)時,C-BAR將從高位準切換到低位準。NMOS電晶體1001將導通,NMOS電晶體1002將截止,NMOS電晶體1003將導通,而NMOS電晶體1004將導通。PMOS電晶體1006的閘極將通過NMOS電晶體1003和1001被拉至接地,這將打開PMOS電晶體1006並使得OUPUT被拉至VDDH,因此關斷PMOS電晶體1005。
值得注意的是,當C從高位準切換到低位準時,NMOS電晶體1002和1004能夠比現有技術的位準移位器300和400更快地將節點OUTPUT拉至接地,因為NMOS電晶體1004的過載電壓(CC-BAR)為兩倍高(即,2*VDDL)。具體地,下拉NMOS電晶體1004的Vgs為2*VDDL,而NMOS電晶體302的Vgs和位準移位器400中的NMOS電晶體402的Vgs僅為VDDL。因此,位準移位級1000中的OUTPUT可以比在位準移位器400中更快地被拉至「0」。
類似地,當C從低位準切換到高位準時,NMOS電晶體1003和1001能夠比位準移位器300和400更快地將PMOS電晶體1006的閘極拉至接地,因為NMOS電晶體1003的過載電壓(CC)為兩倍高(即,2*VDDL)。因此,OUT在很短的時間內被拉至VDDH。具體地,下拉NMOS電晶體1003的Vgs為2*VDDL,而位準移位器300中的NMOS電晶體301的Vgs和位準移位器400中的NMOS電晶體401的Vgs各自僅為VDDL。因此,OUT將比位準移位器300和400中更快地被下拉至接地並上拉至VDDH。
也就是說,位準移位器800能夠比位準移位器300和400更快地切換,這意味著位準移位器800所需的切換時間小於位準移位器300和400所需的切換時間。此外,位準移位器800能夠以低至0.75 V的VDDL工作。
圖11描繪位準移位方法1100,其可使用位準移位器800來實現。第一步是接收第一電壓域之輸入,其中第一電壓域中的「0」為第一電壓(例如,0V),並且第一電壓域中的「1」為第二電壓(例如,低至0.75 V,優選地為0.75 V至1.26 V)(步驟1101)。第二步是產生等於第二電壓的兩倍的切換電壓(步驟1102)。第三步是使用切換電壓產生第二電壓域之輸出,其中第二電壓域中的「0」為第一電壓並且當輸入為「0」時產生,以及第二電壓域中的「1」為第三電壓(例如,2.75 V)並且當輸入為「1」時產生(步驟1103)。
申請人已經進行了實驗以比較位準移位器800與現有技術的位準移位器300和400的移位速度。對於條件VDDL=0.75 V至1.26 V、VDDH=1.4 V至2.75 V及溫度=-40℃至160℃,當A(其被重新標記為C)從0切換到1時,位準移位器800快3倍,以及當A(其被重新標記為C)從1切換到0時,位準移位器800快5倍。因此,位準移位器800在切換時間方面比位準移位器300和400快至少3倍。
當VDDL大於0.87 V時,位準移位器800不如位準移位器500快。然而,位準移位器800在半導體晶粒上需要比位準移位器500顯著地更少的空間,並且具有更簡單的設計。此外,當VDDL低至0.75 V時,位準移位器800比位準移位器500表現得更好。
應當指出,如本文中所使用的,術語「在…上方」和「在…上」兩者包容地包含「直接在…上」(之間未設置中間材料、元件或空間)和「間接在…上」(之間設置有中間材料、元件或空間)。類似地,術語「相鄰」包括「直接相鄰」(之間沒有設置中間材料、元件或空間)和「間接相鄰」(之間設置有中間材料、元件或空間),「安裝到」包括「直接安裝到」(之間沒有設置中間材料、元件或空間)和「間接安裝到」(之間設置有中間材料、元件或空間),以及「電耦合至」包括「直接電耦合至」(之間沒有將元件電連接在一起的中間材料或元件)和「間接電耦合至」(之間有將元件電連接在一起的中間材料或元件)。例如,「在基板上方」形成元件可包括在之間沒有中間材料/元件的情況下在基板上直接形成元件,以及在之間有一個或多個中間材料/元件的情況下在基板上間接形成元件。
100:位準移位器 101:電壓域 102:電壓域 201:反相器 202:反相器 300:位準移位器 301:NMOS電晶體 302:NMOS電晶體 303:PMOS電晶體 304:PMOS電晶體 305:反相器 400:位準移位器 401:NMOS電晶體 402:NMOS電晶體 403:PMOS電晶體 404:PMOS電晶體 405:PMOS電晶體 406:PMOS電晶體 407:反相器 500:位準移位器 600:耦合級 601:NMOS電晶體 602:NMOS電晶體 603:PMOS電晶體 604:PMOS電晶體 605:PMOS電晶體 606:PMOS電晶體 607:PMOS電晶體 608:PMOS電晶體 609:電容器 610:低電壓電源、電容器 621:第一電路 622:第二電路 700:位準移位級 701:NMOS電晶體 702:NMOS電晶體 703:NMOS電晶體 704:NMOS電晶體 705:PMOS電晶體 706:PMOS電晶體 710:高電源 800:位準移位器 900:耦合級 910:第一電路 911:電容器 912:PMOS電晶體 920:第二電路 921:電容器 922:PMOS電晶體 930:低電壓電源 1000:位準移位級 1001:NMOS電晶體 1002:NMOS電晶體 1003:NMOS電晶體 1004:NMOS電晶體 1005:PMOS電晶體 1006:PMOS電晶體 1007:高電源 1100:位準移位方法 1101:步驟 1102:步驟 1103:步驟
圖1描繪現有技術的位準移位器。
圖2描繪現有技術的一組反相器。
圖3描繪現有技術的位準移位器。
圖4描繪另一現有技術的位準移位器。
圖5描繪申請人最近提出的位準移位器。
圖6描繪圖5的位準移位器的耦合級。
圖7描繪圖5的位準移位器的位準移位電路。
圖8描繪經改良之位準移位器。
圖9描繪圖8的經改良之位準移位器的耦合級。
圖10描繪圖8的經改良之位準移位器的位準移位電路。
圖11描繪執行位準移位的方法。
600:耦合級
601:NMOS電晶體
602:NMOS電晶體
603:PMOS電晶體
604:PMOS電晶體
605:PMOS電晶體
606:PMOS電晶體
607:PMOS電晶體
608:PMOS電晶體
609:電容器
610:低電壓電源、電容器
621:第一電路
622:第二電路

Claims (6)

  1. 一種用於接收第一電壓域之輸入並產生第二電壓域之輸出的位準移位器,其中所述第一電壓域中的「0」為第一電壓,並且所述第一電壓域中的「1」為第二電壓,以及所述第二電壓域中的「0」為所述第一電壓,並且所述第二電壓域中的「1」為不同於所述第二電壓的第三電壓,所述位準移位器包括:第一電源,提供所述第三電壓;第一PMOS電晶體,包括耦接到所述第一電源的第一端子、閘極、及第二端子;第二PMOS電晶體,包括耦接到所述第一電源的第一端子、耦接到所述第一PMOS電晶體之所述第二端子的閘極、及耦接到所述第一PMOS電晶體之所述閘極並耦接到用於提供所述輸出之輸出節點的第二端子;第一NMOS電晶體,包括耦接到所述第一PMOS電晶體之所述第二端子的第一端子、被配置為接收第一信號的閘極、及第二端子;第二NMOS電晶體,包括耦接到所述第一NMOS電晶體之所述第二端子的第一端子、被配置為接收所述輸入的閘極、及耦接到所述第一電壓的第二端子;第三NMOS電晶體,包括耦接到所述輸出節點的第一端子、被耦接以接收第二信號的閘極、及第二端子;以及第四NMOS電晶體,包括耦接到所述第三NMOS電晶體之所述第二端子的第一端子、被配置為接收所述輸入之補碼的閘極、及耦接到所述第一電壓的第二端子; 其中當所述輸入處於所述第二電壓時,所述第一信號為所述第二電壓的兩倍,並且當所述輸入處於所述第一電壓時,所述第一信號為所述第二電壓;其中當所述輸入處於所述第一電壓時,所述第二信號為所述第二電壓的兩倍,並且當所述輸入處於所述第二電壓時,所述第二信號為所述第二電壓;以及其中當所述輸入為所述第一電壓時,所述輸出為所述第一電壓,並且當所述輸入為所述第二電壓時,所述輸出為所述第三電壓;其中,所述第一信號係由第一電路產生,所述第一電路包括第三PMOS電晶體,包括耦接到第二電源的第一端子、閘極、第二端子、及本體;以及第一電容器,包括耦接到所述第三PMOS電晶體之所述閘極的第一端子、及耦接到所述第三PMOS電晶體之所述第二端子和所述第三PMOS電晶體之所述本體的第二端子。
  2. 如請求項1之位準移位器,其中,所述第二電源提供所述第二電壓。
  3. 如請求項1之位準移位器,其中,所述第二信號係由第二電路產生,所述第二電路包括:第四PMOS電晶體,包括耦接到所述第二電源的第一端子、閘極、第二端子、及本體;以及第二電容器,包括耦接到所述第四PMOS電晶體之所述閘極的第一端子、及耦接到所述第四PMOS電晶體之所述第二端子和所述第四PMOS電晶體之所述本體的第二端子。
  4. 如請求項1之位準移位器,其中,所述第二電壓在0.75伏與1.26伏之間。
  5. 如請求項2之位準移位器,其中,所述第二電壓在0.75伏與1.26伏之間。
  6. 如請求項3之位準移位器,其中,所述第二電壓在0.75伏與1.26伏之間。
TW109138543A 2019-11-28 2020-11-05 用於積體電路的低電壓位準移位器 TWI755921B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201911192206.8A CN112865778A (zh) 2019-11-28 2019-11-28 用于集成电路的低电压电平移位器
CN201911192206.8 2019-11-28
US16/838,847 2020-04-02
US16/838,847 US11038495B1 (en) 2019-11-28 2020-04-02 Low voltage level shifter for integrated circuit
PCT/US2020/026543 WO2021107974A1 (en) 2019-11-28 2020-04-03 Low-voltage level shifter for integrated circuit
WOPCT/US20/26543 2020-04-03

Publications (2)

Publication Number Publication Date
TW202127798A TW202127798A (zh) 2021-07-16
TWI755921B true TWI755921B (zh) 2022-02-21

Family

ID=75995602

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109138543A TWI755921B (zh) 2019-11-28 2020-11-05 用於積體電路的低電壓位準移位器

Country Status (7)

Country Link
US (1) US11038495B1 (zh)
EP (1) EP4066381B1 (zh)
JP (1) JP7438353B2 (zh)
KR (1) KR20220062637A (zh)
CN (1) CN112865778A (zh)
TW (1) TWI755921B (zh)
WO (1) WO2021107974A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050285658A1 (en) * 2004-06-29 2005-12-29 Schulmeyer Kyle C Level shifter with reduced duty cycle variation
US20110181338A1 (en) * 2010-01-28 2011-07-28 Chris Olson Dual path level shifter
US8629692B1 (en) * 2012-06-28 2014-01-14 Nxp, B.V. State definition and retention circuit
US8847661B2 (en) * 2012-09-05 2014-09-30 Lsis Co., Ltd. Level shift device
TW201806319A (zh) * 2016-03-09 2018-02-16 台灣積體電路製造股份有限公司 使用升壓電路的位準位移器
TW201838338A (zh) * 2017-04-11 2018-10-16 晶豪科技股份有限公司 位準移位電路及整合電路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4327411B2 (ja) 2001-08-31 2009-09-09 株式会社ルネサステクノロジ 半導体装置
US6650168B1 (en) * 2002-09-30 2003-11-18 Taiwan Semiconductor Manufacturing Company High-speed level shifter using zero-threshold MOSFETS
US6864718B2 (en) 2003-02-20 2005-03-08 Taiwan Semiconductor Manufacturing Company Charge pump level converter (CPLC) for dual voltage system in very low power application
US8847761B1 (en) 2004-10-01 2014-09-30 Emc Corporation Anonymous transaction tokens
US20060290404A1 (en) * 2005-06-23 2006-12-28 Ati Technologies Inc. Apparatus and methods for voltage level conversion
KR20070013086A (ko) * 2005-07-25 2007-01-30 삼성전자주식회사 반도체 메모리 소자의 레벨 쉬프터 회로
DE102008056130A1 (de) 2008-11-06 2010-05-12 Micronas Gmbh Pegelschieber mit Kaskodenschaltung und dynamischer Toransteuerung
CN102035534A (zh) 2010-12-31 2011-04-27 东南大学 一种亚阈值区域低静态功耗的电容型逻辑电平转换器
CN103297034B (zh) 2012-02-28 2017-12-26 恩智浦美国有限公司 电压电平移位器
US9306553B2 (en) 2013-03-06 2016-04-05 Qualcomm Incorporated Voltage level shifter with a low-latency voltage boost circuit
US9780790B2 (en) 2015-02-18 2017-10-03 Microsemi SoC Corporation High speed level shifter circuit
US10050524B1 (en) * 2017-11-01 2018-08-14 Stmicroelectronics International N.V. Circuit for level shifting a clock signal using a voltage multiplier
KR102613516B1 (ko) * 2019-01-24 2023-12-13 삼성전자주식회사 레벨 시프터 및 그 동작 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050285658A1 (en) * 2004-06-29 2005-12-29 Schulmeyer Kyle C Level shifter with reduced duty cycle variation
US20110181338A1 (en) * 2010-01-28 2011-07-28 Chris Olson Dual path level shifter
US8629692B1 (en) * 2012-06-28 2014-01-14 Nxp, B.V. State definition and retention circuit
US8847661B2 (en) * 2012-09-05 2014-09-30 Lsis Co., Ltd. Level shift device
TW201806319A (zh) * 2016-03-09 2018-02-16 台灣積體電路製造股份有限公司 使用升壓電路的位準位移器
TW201838338A (zh) * 2017-04-11 2018-10-16 晶豪科技股份有限公司 位準移位電路及整合電路

Also Published As

Publication number Publication date
WO2021107974A1 (en) 2021-06-03
EP4066381B1 (en) 2023-10-25
JP2023503976A (ja) 2023-02-01
CN112865778A (zh) 2021-05-28
JP7438353B2 (ja) 2024-02-26
US20210167762A1 (en) 2021-06-03
KR20220062637A (ko) 2022-05-17
TW202127798A (zh) 2021-07-16
US11038495B1 (en) 2021-06-15
EP4066381A1 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
TWI433442B (zh) 電壓轉換電路
JP3504172B2 (ja) 交差型電圧レベルシフト回路
US7683668B1 (en) Level shifter
JPH0440798B2 (zh)
JPH07202650A (ja) レベルシフタ回路
US9780790B2 (en) High speed level shifter circuit
JP3702159B2 (ja) 半導体集積回路装置
US20060214718A1 (en) Voltage level shifter
JP3652793B2 (ja) 半導体装置の電圧変換回路
TWI755921B (zh) 用於積體電路的低電壓位準移位器
JP4724575B2 (ja) レベル変換回路
TWI739695B (zh) 轉壓器
WO2023073904A1 (ja) レベルシフト回路
TWI746062B (zh) 用於積體電路的改良的電位移位器
US10804902B1 (en) Level shifter for integrated circuit
JP2004228879A (ja) レベルシフト回路
US20090251193A1 (en) Level shifter and circuit using the same
KR100907017B1 (ko) 반도체 메모리 장치의 레벨 회로
CN112350710A (zh) 用于集成电路的改进的电平移位器
US8502559B2 (en) Level translator
US20030062924A1 (en) Voltage translation circuit using a controlled transmission PMOS transistor
TWI431938B (zh) 形成信號位準轉換器的方法及其結構
KR100604658B1 (ko) 전압레벨 쉬프터
KR100719679B1 (ko) 레벨 쉬프터
JPH05268027A (ja) 入力回路