TWI692204B - 轉壓器 - Google Patents

轉壓器 Download PDF

Info

Publication number
TWI692204B
TWI692204B TW108121737A TW108121737A TWI692204B TW I692204 B TWI692204 B TW I692204B TW 108121737 A TW108121737 A TW 108121737A TW 108121737 A TW108121737 A TW 108121737A TW I692204 B TWI692204 B TW I692204B
Authority
TW
Taiwan
Prior art keywords
type transistor
driving path
output signal
selection circuit
selection
Prior art date
Application number
TW108121737A
Other languages
English (en)
Other versions
TW202010256A (zh
Inventor
賴子能
Original Assignee
力旺電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力旺電子股份有限公司 filed Critical 力旺電子股份有限公司
Publication of TW202010256A publication Critical patent/TW202010256A/zh
Application granted granted Critical
Publication of TWI692204B publication Critical patent/TWI692204B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5252Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising anti-fuses, i.e. connections having their state changed from non-conductive to conductive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/18Auxiliary circuits, e.g. for writing into memory
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/28Modifications for introducing a time delay before switching
    • H03K17/284Modifications for introducing a time delay before switching in field effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0016Arrangements for reducing power consumption by using a control or a clock signal, e.g. in order to apply power supply
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/0948Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET using CMOS or complementary insulated gate field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356017Bistable circuits using additional transistors in the input circuit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • H10B20/20Programmable ROM [PROM] devices comprising field-effect components

Abstract

一種轉壓器,具有一第一輸出端與一第二輸出端。當轉壓器的第一輸出端產生高準位的輸出信號且第二輸出端產生低準位的反向輸出信號後,第一輸出端與電源電壓端之間會連接一弱驅動路徑,且第二輸出端與電源電壓端之間會連接一強驅動路徑。反之,當轉壓器的第一輸出端產生低準位的輸出信號且第二輸出端產生高準位的反向輸出信號後,第一輸出端與電源電壓端之間會連接一強驅動路徑,且第二輸出端與電源電壓端之間會連接一弱驅動路徑。

Description

轉壓器
本發明係有關一種轉壓器,尤指一種具不對稱驅動路徑的轉壓器(level shifter with asymmetrical driving paths)。
請參考第1圖,其所繪示為習知轉壓器。此轉壓器100可將信號範圍介於電壓Vd至GND的輸入信號IN與反相輸入信號ZIN轉換為信號範圍在電壓Vp至GND間的輸出信號OUT與反相輸出信號ZOUT。其中,Vd為電源電壓(例如1.2V),Vp為另一電源電壓(例如5V),GND為接地電壓(例如0V)。其中,輸入信號IN與反相輸入信號ZIN為互補信號(complementary signals),且輸出信號OUT與反相輸出信號ZOUT為互補信號。
轉壓器100包括P型電晶體MP1、P型電晶體MP2、N型電晶體MN1與N型電晶體MN2,其中,P型電晶體MP1的源極接收電源電壓Vp,汲極連接至節點a,且閘極連接至節點b。另外,P型電晶體MP2的源極接收電源電壓Vp,汲極連接至節點b,且閘極連接至節點a。
再者,N型電晶體MN1的汲極連接至節點a,源極連接至接地端GND,且閘極接收輸入信號IN。另外,N型電晶體MN2汲極連接至節點b,源極連接至接地端GND,以及閘極接收反相的輸入信號ZIN。其中,節點b做為第一輸出端,用以產生輸出信號OUT。另外,節點a做為第二輸出端,用以產生反相輸出信號ZOUT。
當轉壓器100的輸入信號IN為第一高準位(亦即,1.2V的電源電壓Vd)且反相輸入信號ZIN為低準位(亦即,0V)時,N型電晶體MN1與P型電晶體MP2被開啟(turn on),N型電晶體MN2與P型電晶體MP1被斷開(turn off)。因此,輸出信號OUT為第二高準位(亦即,5V的電源電壓Vp),反相輸出信號ZOUT為低準位(亦即,0V)。
當轉壓器100的輸入信號IN為低準位(亦即,0V)且反相輸入信號ZIN為第一高準位(亦即,1.2V的電源電壓Vd)時,N型電晶體MN1與P型電晶體MP2被斷開(turn off),N型電晶體MN2與P型電晶體MP1被開啟(turn on)。因此,輸出信號OUT為低準位(亦即,0V),以及反相輸出信號ZOUT為第二高準位(亦即,5V的電源電壓Vp)。
另外,當輸入信號IN由第一高準位轉換為低準位(反相輸入信號ZIN由低準位轉換為第一高準位)的瞬間,N型電晶體MN1被斷開(turn off),N型電晶體MN2被開啟(turn on),P型電晶體MP1被開啟(turn on),但P型電晶體MP2持續開啟 尚未被斷開(turn off)。此時,轉壓器100會進入短暫的競爭期間(fighting period),直到P型電晶體MP2被斷開為止。
同理,當輸入信號IN由低準位轉換為第一高準位(反相輸入信號ZIN由第一高準位轉換為低準位)的瞬間,轉壓器100也會進入短暫的競爭期間(fighting period),直到P型電晶體MP1被斷開(turn off)為止。
一般來說,P型電晶體的驅動能力與其通道長度(channel length)與通道寬度(channel width)有關。如果P型電晶體具較寬的通道寬度且較短的通道長度時,則P型電晶體有較大的驅動強度(driving strength)。反之,如果P型電晶體具較窄的通道寬度且較長的通道長度時,則P型電晶體有較小的驅動強度。
再者,為了縮短轉壓器100的競爭期間(fighting period),在設計習知的轉壓器100時,需要考量轉壓器100的電源電壓Vp。一般來說,當電源電壓Vp較低(例如1.5V)時,P型電晶體MP1與P型電晶體MP2的驅動能力越強越好。反之,當電源電壓Vp較高(例如5V)時,P型電晶體MP1與P型電晶體MP2的驅動能力要越弱越好。
然而,如果設計的轉壓器100需要適用於寬範圍(wide range)的電源電壓Vp時,例如能夠操作於1.5V電源電壓Vp的轉壓器100也能夠操作於6V電源電壓Vp的轉壓器100,則轉壓器100將很難設計。
本發明係有關於一種轉壓器,包括一第一強驅動路徑;一第一弱驅動路徑;一第二強驅動路徑;一第二弱驅動路徑;一選擇模組,包括一第一選擇電路與一第二選擇電路;其中,該第一強驅動路徑連接於一電源電壓端與該第一選擇電路的一第一輸入端之間,該第一弱驅動路徑連接於該電源電壓端與該第一選擇電路的一第二輸入端之間,該第二強驅動路徑連接於該電源電壓端與該第二選擇電路的一第一輸入端之間,該第二弱驅動路徑連接於該電源電壓端與該第二選擇電路的一第二輸入端之間;一第一P型電晶體,具有一源極連接至該第二選擇電路的一輸出端,一汲極連接至一第一節點,一閘極連接至一第二節點;一第二P型電晶體,具有一源極連接至該第一選擇電路的一輸出端,一汲極連接至該第二節點,一閘極連接至該第一節點;其中,該第二節點產生一輸出信號,該第一節點產生一反相輸出信號;一第一N型電晶體,具有一汲極連接至該第一節點,一源極連接至一接地端,一閘極接收一輸入信號;一第二N型電晶體,具有一汲極連接至該第二節點,一源極連接至該接地端,一閘極接收一反相輸入信號;其中,當該輸入信號為一第一高準位時,該輸出信號為一第二高準位;且當該輸入信號為一低準位時,該輸出信號為該低準位;以及一時序控制器,接收該輸出信號與該反相輸出信號其中之一,或者接收該輸出信號與該反相輸出信號,該時 序控制器產生一控制信號組至該選擇模組用以控制該第一選擇電路與該第二選擇電路;其中,當該輸出信號轉換為該第二高準位且該反相輸出信號轉換為該低準位並經過一時間期間後,該第一選擇電路將該第一弱驅動路徑連接至該第二P型電晶體的該源極,該第二選擇電路將該第二強驅動路徑連接至該第一P型電晶體的該源極;其中,當該輸出信號轉換為該低準位且該反相輸出信號轉換為該第二高準位並經過該時間期間後,該第一選擇電路將該第一強驅動路徑連接至該第二P型電晶體的該源極,該第二選擇電路將該第二弱驅動路徑連接至該第一P型電晶體的該源極。
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:
100、200、300、400、500、600:轉壓器
205、305、405、505、605:切換電路
210、310、410、510、610:時序控制器
220、320、420、520:選擇模組
222、226、322、326、422、426、522、526:選擇電路
240、260、440、460:強驅動路徑
250、270、450、470:弱驅動路徑
第1圖為習知轉壓器。
第2A圖與第2B圖為本發明轉壓器的第一實施例及狀態圖。
第3A圖與第3B圖為本發明轉壓器的第二實施例及其相關信號示意圖。
第4A圖與第4B圖為本發明轉壓器的第三實施例及其相關信號示意圖。
第5圖為本發明轉壓器的第四實施例。
第6A圖與第6B圖為本發明轉壓器的第五實施例及其相關信號示意圖。
為了讓轉壓器適用於寬範圍(wide range)的電源電壓Vp,本發明提出一種具不對稱驅動路徑的轉壓器。請參照第2A圖與第2B圖,其所繪示為本發明轉壓器的第一實施例及其狀態圖(state diagram)。
如第2A圖所示,轉壓器200包括切換電路205、P型電晶體MP1、P型電晶體MP2、N型電晶體MN1與N型電晶體MN2。另外,切換電路(switching circuit)205包括:時序控制器(timing controller)210、選擇模組(selecting module)220、強驅動路徑(strong driving path)240、260以及弱驅動路徑(weak driving path)250、270。其中,強驅動路徑240、260具備強的驅動能力,弱驅動路徑250、270具備弱的驅動能力。再者,選擇模組220中更包括二個選擇電路(selecting circuit)222、226。
P型電晶體MP1的源極連接至選擇電路226,汲極連接至節點a,且閘極連接至節點b。另外,P型電晶體MP2的源極連接至選擇電路222,汲極連接至節點b,且閘極連接至節點a。
再者,N型電晶體MN1的汲極連接至節點a,源極連接至接地端GND,且閘極接收輸入信號IN。另外,N型電晶體MN2汲極連接至節點b,源極連接至接地端GND,以及閘極接收反相的輸入信號ZIN。其中,節點b做為第一輸出端,用以產生輸出信號OUT。另外,節點a做為第二輸出端,用以產生反相輸出信號ZOUT。
在切換電路205中,時序控制器210接收輸出信號OUT,並產生控制信號組。控制信號組包括二個選擇信號S1、S2。
強驅動路徑240與弱驅動路徑250連接於電源電壓Vp與選擇電路222之間,且選擇電路222連接至P型電晶體MP2的源極。另外,選擇模組220的選擇電路222更連接至時序控制器210,使得選擇電路222根據控制信號組中的選擇信號S1將強驅動路徑240或弱驅動路徑250連接至P型電晶體MP2的源極。
相同地,強驅動路徑260與弱驅動路徑270連接於電源電壓Vp與選擇電路226之間,且選擇電路226連接至P型電晶體MP1的源極。另外,選擇模組220的選擇電路226更連接至時序控制器210,使得選擇電路226根據控制信號組中的選擇信號S2將強驅動路徑260或弱驅動路徑270連接至P型電晶體MP1的源極。
如第2B圖所示,假設轉壓器200處於狀態(A)時,輸出信號OUT為低準位Lo,反相輸出信號ZOUT為第二高準位Hi2,強驅動路徑240連接至P型電晶體MP2的源極,弱驅動路 徑270連接至P型電晶體MP1的源極。另外,當輸入信號IN維持在低準位Lo且反相輸入信號ZIN維持在第一高準位Hi1時,轉壓器200會維持在狀態(A)。
當輸入信號IN轉換為第一高準位Hi1且反相輸入信號ZIN轉換為低準位Lo時,轉壓器200會由狀態(A)跳至狀態(B)。
於狀態(A)時,強驅動路徑240連接至P型電晶體MP2的源極,弱驅動路徑270連接至P型電晶體MP1的源極。因此,當輸入信號IN轉換為第一高準位Hi1使得N型電晶體MN1被開啟(turn on),由於P型電晶體MP1連接至弱驅動路徑270,所以反相輸出信號ZOUT快速地被下拉(pull-down)至低準位Lo。同時,反相輸入信號ZIN轉換為低準位Lo使得N型電晶體MN2被斷開(turn off),由於P型電晶體MP2連接至強驅動路徑240,所以輸出信號OUT快速地被上拉(pull-up)至第二高準位Hi2。因此,當輸出信號OUT為第二高準位Hi2且反相輸出信號ZOUT為低準位Lo時,轉壓器200跳至狀態(B)。此時,強驅動路徑240連接至P型電晶體MP2的源極,且弱驅動路徑270連接至P型電晶體MP1的源極。
基本上,狀態(B)為一暫時狀態(transient state)。轉壓器200會在跳至狀態(B)一個時間期間(time period)T後,跳至狀態(C)。再者,轉壓器200由狀態(B)跳至狀態(C)的過程,輸出信號OUT與反相輸出信號ZOUT皆不會改變。
根據本發明的實施例,當輸出信號OUT由低準位Lo轉換為第二高準位Hi2時,時序控制器210會在一個時間期間T後,改變控制信號組的選擇信號S1、S2,使得選擇電路222將弱驅動路徑250連接至P型電晶體MP2的源極,且使得選擇電路226將強驅動路徑260連接至P型電晶體MP1的源極。
換言之,當轉壓器200跳至狀態(C)時,輸出信號OUT仍維持在第二高準位Hi2,反相輸出信號ZOUT仍維持在低準位Lo,弱驅動路徑250連接至P型電晶體MP2的源極,且強驅動路徑260連接至P型電晶體MP1的源極。另外,當輸入信號IN維持在第一高準位Hi且反相輸入信號ZIN維持在低準位Lo時,轉壓器200會維持在狀態(C)。
當輸入信號IN轉換為低準位Lo且反相輸入信號ZIN轉換為第一高準位Hi1時,轉壓器200會由狀態(C)跳至狀態(D)。
於狀態(C)時,弱驅動路徑250連接至P型電晶體MP2的源極,強驅動路徑260連接至P型電晶體MP1的源極。因此,當反相輸入信號ZIN轉換為第一高準位Hi使得N型電晶體MN2被開啟(turn on),由於P型電晶體MP2連接至弱驅動路徑250,所以輸出信號OUT快速地被下拉(pull-down)至低準位Lo。同時,輸入信號IN轉換為低準位Lo使得N型電晶體MN1被斷開(turn off),由於P型電晶體MP1連接至強驅動路徑260,所以反相輸出信號ZOUT快速地被上拉(pull-up)至第二高準位 Hi2。因此,當輸出信號OUT為低準位Lo且反相輸出信號ZOUT為第二高準位Hi2時,轉壓器200跳至狀態(D)。此時,弱驅動路徑250連接至P型電晶體MP2的源極,且強驅動路徑260連接至P型電晶體MP1的源極。
相同地,狀態(D)為一暫時狀態(transient state)。轉壓器200會在跳至狀態(D)一個時間期間(time period)T後,跳至狀態(A)。再者,轉壓器200由狀態(D)跳至狀態(A)的過程,輸出信號OUT與反相輸出信號ZOUT皆不會改變。
根據本發明的實施例,當輸出信號OUT由第二高準位Hi2轉換為低準位Lo時,時序控制器210會在一個時間期間T後,改變控制信號組的選擇信號S1、S2,使得選擇電路222將強驅動路徑240連接至P型電晶體MP2的源極,且使得選擇電路226將弱驅動路徑270連接至P型電晶體MP1的源極。
換言之,當轉壓器200跳至狀態(A)時,輸出信號OUT仍維持在低準位Lo,反相輸出信號ZOUT仍維持在第二高準位Hi2,強驅動路徑240連接至P型電晶體MP2的源極,且弱驅動路徑270連接至P型電晶體MP1的源極。
相同地,當輸入信號IN為低準位Lo且反相輸入信號ZIN為第一高準位Hi1時,轉壓器200維持在狀態(A)。另外,當輸入信號IN轉換為第一高準位Hi1且反相輸入信號ZIN轉換為低準位Lo時,轉壓器200會由狀態(A)跳至狀態(B)。
由於輸出信號OUT與反相輸出信號ZOUT為互補信號。所以在此領域的技術人員可以簡單修改切換電路205中的時序控制器210,使得時序控制器210接收反相輸出信號ZOUT並產生控制信號組的選擇信號S1、S2。當然,切換電路205中的時序控制器210也可以接收輸出信號OUT與反相輸出信號ZOUT並產生控制信號組的選擇信號S1、S2。
請參照第3A圖與第3B圖,其所繪示為本發明轉壓器的第二實施例及其相關信號示意圖。轉壓器300包括切換電路305、P型電晶體MP1、P型電晶體MP2、N型電晶體MN1與N型電晶體MN2。其中,P型電晶體MP1、P型電晶體MP2、N型電晶體MN1與N型電晶體MN2的連接關係與第一實施例相同,此處不再贅述。
切換電路305包括:時序控制器310、選擇模組320、強驅動路徑240、260以及弱驅動路徑250、270。另外,選擇模組320中包括選擇電路322、326。其中,切換電路305的時序控制器310接收輸出信號OUT與反相輸出信號ZOUT,並產生控制信號組。控制信號組包括二個選擇信號S1、S2。
強驅動路徑240連接於電源電壓Vp與選擇電路322的第一輸入端(0)之間,弱驅動路徑250連接於電源電壓Vp與選擇電路322的第二輸入端(1)之間。選擇電路322的輸出端(O)連接至P型電晶體MP2的源極。因此,當選擇信號S1為第二高準位Hi2時,第二輸入端(1)連接至輸出端(O),使得弱驅動路徑 250連接至P型電晶體MP2的源極。當選擇信號S1為低準位時,第一輸入端(0)連接至輸出端(O),使得強驅動路徑240連接至P型電晶體MP2的源極。
強驅動路徑260連接於電源電壓Vp與選擇電路326的第一輸入端(0)之間,弱驅動路徑270連接於電源電壓Vp與選擇電路326的第二輸入端(1)之間。選擇電路326的輸出端(O)連接至P型電晶體MP1的源極。因此,當選擇信號S2為第二高準位Hi2時,第二輸入端(1)連接至輸出端(O),使得弱驅動路徑270連接至P型電晶體MP1的源極。當選擇信號S2為低準位時,第一輸入端(0)連接至輸出端(O),使得強驅動路徑260連接至P型電晶體MP1的源極。
根據本發明的第二實施例,時序控制器310可由延遲電路(delay circuit)來實現。舉例來說,時序控制器310接收輸出信號OUT,並將輸出信號OUT延遲一個時間期間T後,成為選擇信號S1。亦即,選擇信號S1落後(lag)輸出信號OUT一個時間期間T。另外,時序控制器310接收反相輸出信號ZOUT,並將反相輸出信號ZOUT延遲一個時間期間T後,成為選擇信號S2。亦即,選擇信號S2落後反相輸出信號ZOUT一個時間期間T。另外,時間期間T可設計在5ns~15ns之間。
如第3B圖所示,於時間點t1之前,轉壓器300處於狀態(A),輸出信號OUT為低準位Lo,反相輸出信號ZOUT為第二高準位Hi2。再者,由於選擇信號S1為低準位Lo,所以 強驅動路徑240連接至P型電晶體MP2的源極。另外,由於選擇信號S2為第二高準位Hi2,所以弱驅動路徑270連接至P型電晶體MP1的源極。
於時間點t1,輸出信號OUT轉換為第二高準位Hi2且反相輸出信號ZOUT轉換為低準位Lo。此時,轉壓器300由狀態(A)跳至狀態(B)。另外,由於選擇信號S1為低準位Lo,所以強驅動路徑240連接至P型電晶體MP2的源極。由於選擇信號S2為第二高準位Hi2,所以弱驅動路徑270連接至P型電晶體MP1的源極。
於時間點t2,亦即轉壓器300跳至狀態(B)的一個時間期間T後,由於選擇信號S1轉換為第二高準位Hi2,所以弱驅動路徑250連接至P型電晶體MP2的源極。由於且選擇信號S2轉換為低準位Lo,所以強驅動路徑260連接至P型電晶體MP1的源極。再者,輸出信號OUT維持在第二高準位Hi2且反相輸出信號ZOUT維持在低準位Lo。因此,轉壓器300由狀態(B)跳至狀態(C)。
於時間點t3,輸出信號OUT轉換為低準位Lo且反相輸出信號ZOUT轉換為第二高準位Hi2。此時,轉壓器300由狀態(C)跳至狀態(D)。另外,由於選擇信號S1為第二高準位Hi2,所以弱驅動路徑250連接至P型電晶體MP2的源極。由於選擇信號S2為低準位Lo,所以強驅動路徑260連接至P型電晶體MP1的源極。
於時間點t4,亦即轉壓器300跳至狀態(D)的一個時間期間T後,由於選擇信號S1轉換為低準位Lo,所以強驅動路徑240連接至P型電晶體MP2的源極。由於且選擇信號S2轉換為第二高準位Hi2,所以弱驅動路徑270連接至P型電晶體MP1的源極。再者,輸出信號OUT維持在低準位Lo且反相輸出信號ZOUT維持在第二高準位Hi2。因此,轉壓器300由狀態(D)跳至狀態(A)。
相同地,於時間點t5,轉壓器300由狀態(A)跳至狀態(B)。於時間點t6,轉壓器300由狀態(B)跳至狀態(C)。其詳細運作原理不再贅述。
另外,由於輸出信號OUT與反相輸出信號ZOUT為互補信號。所以在此領域的技術人員可以簡單修改切換電路305中的時序控制器310,使得時序控制器310僅接收輸出信號OUT並產生控制信號組的選擇信號S1、S2。當然,切換電路305中的時序控制器310也可以僅接收反相輸出信號ZOUT並產生控制信號組的選擇信號S1、S2。
請參照第4A圖與第4B圖,其所繪示為本發明轉壓器的第三實施例及其相關信號示意圖。轉壓器400包括切換電路405、P型電晶體MP1、P型電晶體MP2、N型電晶體MN1與N型電晶體MN2。其中,P型電晶體MP1、P型電晶體MP2、N型電晶體MN1與N型電晶體MN2的連接關係與第一實施例相同,此處不再贅述。
切換電路405包括:時序控制器410、選擇模組420、強驅動路徑440、460以及弱驅動路徑450、470。另外,選擇模組420中包括選擇電路422、426。其中,切換電路405的時序控制器410接收輸出信號OUT與反相輸出信號ZOUT,並產生控制信號組。控制信號組包括二個選擇信號S1、S2。
根據本發明的第三實施例,選擇電路422包括P型電晶體M1、M2與反相器424。反相器424接收選擇信號S1,並產生選擇信號S3。P型電晶體M1的源極為選擇電路422的第一輸入端,閘極接收選擇信號S1,汲極為選擇電路422的輸出端且連接至P型電晶體MP2的源極。P型電晶體M2的源極為選擇電路422的第二輸入端,閘極接收選擇信號S3,汲極連接至P型電晶體M1的汲極。
選擇電路426包括P型電晶體M4、M5與反相器428。反相器428接收選擇信號S2,並產生選擇信號S4。P型電晶體M4的源極為選擇電路426的第一輸入端,閘極接收選擇信號S2,汲極為選擇電路426的輸出端並連接至P型電晶體MP1的源極。P型電晶體M5的源極為選擇電路426的第二輸入端,閘極接收選擇信號S4,汲極連接至P型電晶體M4的汲極。
再者,強驅動路徑440為一條導線(conducting line),連接於電源電壓Vp與選擇電路422的第一輸入端之間。弱驅動路徑450包括一P型電晶體M3,其閘極接收一偏壓電壓Vbias1,源極接收電源電壓Vp,汲極連接至選擇電路422的第 二輸入端。強驅動路徑460為一條導線,連接於電源電壓Vp與選擇電路426的第一輸入端之間。弱驅動路徑470包括一P型電晶體M6,其閘極接收一偏壓電壓Vbias2,源極接收電源電壓Vp,汲極連接至選擇電路426的第二輸入端。
其中,弱驅動路徑450、470中的P型電晶體M3、M6,其具備較小的通道長寬比(channel aspect ratio)。再者,偏壓電壓Vbias1與Vbias2可為相同的電壓,例如接地電壓。或者,偏壓電壓Vbias1與Vbias2也可以是其他的信號,例如輸入信號IN可作為偏壓電壓Vbias1,反相輸入信號ZIN可作為偏壓電壓Vbias2。
根據本發明的第三實施例,時序控制器410可由延遲電路(delay circuit)來實現。舉例來說,時序控制器410接收輸出信號OUT,並將輸出信號OUT延遲一個時間期間T後,成為選擇信號S1。亦即,選擇信號S1落後輸出信號OUT一個時間期間T。另外,時序控制器410接收反相輸出信號ZOUT,並將反相輸出信號ZOUT延遲一個時間期間T後,成為選擇信號S2。亦即,選擇信號S2落後反相輸出信號ZOUT一個時間期間T。再者,選擇信號S1相同於選擇信號S4,選擇信號S2相同於選擇信號S3。另外,時間期間T可設計在5ns~15ns之間。
如第4B圖所示,於時間點t1之前,轉壓器400處於狀態(A),輸出信號OUT為低準位Lo,反相輸出信號ZOUT為第二高準位Hi2。再者,由於選擇信號S1為低準位Lo且選擇 信號S3為第二高準位Hi2,P型電晶體M1開啟(turn on)且P型電晶體M2斷開(turn off),所以強驅動路徑440連接至P型電晶體MP2的源極。另外,由於選擇信號S2為第二高準位Hi2且選擇信號S4為低準位Lo,P型電晶體M4斷開(turn off)且P型電晶體M5開啟(turn on),所以弱驅動路徑470連接至P型電晶體MP1的源極。
於時間點t1,輸出信號OUT轉換為第二高準位Hi2且反相輸出信號ZOUT轉換為低準位Lo。此時,轉壓器400由狀態(A)跳至狀態(B)。另外,由於選擇信號S1為低準位Lo且選擇信號S3為第二高準位Hi2,P型電晶體M1開啟(turn on)且P型電晶體M2斷開(turn off),所以強驅動路徑440連接至P型電晶體MP2的源極。由於選擇信號S2為第二高準位Hi2且選擇信號S4為低準位Lo,P型電晶體M4斷開(turn off)且P型電晶體M5開啟(turn on),所以弱驅動路徑470連接至P型電晶體MP1的源極。
於時間點t2,亦即轉壓器400跳至狀態(B)的一個時間期間T後,由於選擇信號S1轉換為第二高準位Hi2且選擇信號S3轉換為低準位Lo,P型電晶體M1斷開(turn off)且P型電晶體M2開啟(turn on),所以弱驅動路徑450連接至P型電晶體MP2的源極。由於且選擇信號S2轉換為低準位Lo且選擇信號S4轉換為第二高準位Hi2,P型電晶體M4開啟(turn on)且P型電晶體M5斷開(turn off),所以強驅動路徑460連接至P型電 晶體MP1的源極。再者,輸出信號OUT維持在第二高準位Hi2且反相輸出信號ZOUT維持在低準位Lo。因此,轉壓器400由狀態(B)跳至狀態(C)。
於時間點t3,輸出信號OUT轉換為低準位Lo且反相輸出信號ZOUT轉換為第二高準位Hi2。此時,轉壓器400由狀態(C)跳至狀態(D)。另外,由於選擇信號S1為第二高準位Hi2且選擇信號S3為低準位Lo,P型電晶體M1斷開(turn off)且P型電晶體M2開啟(turn on),所以弱驅動路徑450連接至P型電晶體MP2的源極。由於選擇信號S2為低準位Lo且選擇信號S4為第二高準位Hi2,P型電晶體M4開啟(turn on)且P型電晶體M5斷開(turn off),所以強驅動路徑460連接至P型電晶體MP1的源極。
於時間點t4,亦即轉壓器400跳至狀態(D)的一個時間期間T後,由於選擇信號S1轉換為低準位Lo且選擇信號S4為第二高準位Hi2,P型電晶體M1開啟(turn on)且P型電晶體M2斷開(turn off),所以強驅動路徑440連接至P型電晶體MP2的源極。由於且選擇信號S2轉換為第二高準位Hi2且選擇信號S4為低準位Lo,P型電晶體M4斷開(turn off)且P型電晶體M5開啟(turn on),所以弱驅動路徑470連接至P型電晶體MP1的源極。再者,輸出信號OUT維持在低準位Lo且反相輸出信號ZOUT維持在第二高準位Hi2。因此,轉壓器400由狀態(D)跳至狀態(A)。
相同地,於時間點t5,轉壓器400由狀態(A)跳至狀態(B)。於時間點t6,轉壓器400由狀態(B)跳至狀態(C)。其詳細運作原理不再贅述。
另外,由於輸出信號OUT與反相輸出信號ZOUT為互補信號。所以在此領域的技術人員可以簡單修改切換電路405中的時序控制器410,使得時序控制器410僅接收輸出信號OUT並產生控制信號組的選擇信號S1、S2。當然,切換電路405中的時序控制器410也可以僅接收反相輸出信號ZOUT並產生控制信號組的選擇信號S1、S2。
另外,在此領域的技術人員也可以將第三實施例中的反相器424、428設計於時序控制器410中。請參照第5圖,其所繪示為本發明轉壓器的第四實施例。相較於第三實施例,其差異在於切換電路505中的選擇模組520以及時序控制器510,其他的部分皆與第三實施例相同,其詳細電路以及運作方式此處不再贅述。
根據本發明的第四實施例,在轉壓器500中,時序控制器510可接收輸出信號OUT與反相輸出信號ZOUT,並產生控制信號組的四個選擇信號S1~S4至選擇模組520。再者,時序控制器510產生的選擇信號S1~S4之波形相同於第4B圖。亦即,時序控制器510接收輸出信號OUT,並將輸出信號OUT延遲一個時間期間T後,成為選擇信號S1。時序控制器510接收反相輸出信號ZOUT,並將反相輸出信號ZOUT延遲一個時間期間 T後,成為選擇信號S2。時序控制器510將選擇信號S1反相後,成為選擇信號S3。時序控制器510將選擇信號S2反相後,成為選擇信號S4。其中,時間期間T可設計在5ns~15ns之間。
相同地,在此領域的技術人員可以簡單修改切換電路505中的時序控制器510,使得時序控制器510僅接收輸出信號OUT並產生控制信號組的選擇信號S1~S4。當然,切換電路505中的延遲電路510也可以僅接收反相輸出信號ZOUT並產生控制信號組的選擇信號S1~S4。
由以上第一實施例至第四實施例可知,選擇電路會根據控制信號組來運作。以第三實施例為例,由於選擇信號S1、S3會在同一個時刻轉換準位,所以不論任何時刻,選擇電路422僅會選擇一條驅動路徑連接至其輸出端。因此,選擇電路422在強驅動路徑與弱驅動路徑轉換的過程,可能造成輸出信號OUT的不穩定。同理,由於選擇信號S2、S4會在同一個時刻轉換準位,所以可能造成反相輸出信號ZOUT的不穩定。
請參照第6A圖與第6B圖,其所繪示為本發明轉壓器的第五實施例及其相關信號示意圖。相較於第四實施例,其差異僅在於時序控制器510與時序控制器610輸出的控制信號組波形不同,其他電路連接關係則與第四實施例相同,此處不再贅述。
根據本發明的第五實施例,切換電路605內的時序控制器610可由延遲電路來實現。時序控制器610接收輸出信號OUT與反相輸出信號ZOUT,並產生控制信號組。控制信號組包 括四個選擇信號S1~S4。其中,於轉壓器600的狀態(B)與狀態(D)時,時序控制器610輸出的選擇信號S1、S3會短暫地處於相同準位(低準位);而選擇信號S2、S4會短暫地處於相同準位(低準位)。詳細說明如下。
如第6B圖所示,於時間點t1之前,轉壓器600處於狀態(A),輸出信號OUT為低準位Lo,反相輸出信號ZOUT為第二高準位Hi2。再者,由於選擇信號S1為低準位Lo且選擇信號S3為第二高準位Hi2,P型電晶體M1開啟(turn on)且P型電晶體M2斷開(turn off),所以強驅動路徑440連接至P型電晶體MP2的源極。另外,由於選擇信號S2為第二高準位Hi2且選擇信號S4為低準位Lo,P型電晶體M4斷開(turn off)且P型電晶體M5開啟(turn on),所以弱驅動路徑470連接至P型電晶體MP1的源極。
根據本發明的第五實施例,當轉壓器600在狀態(B)與狀態(D)的時間期間T被區分為第一區間Tp1與一第二區間Tp2。
於時間點t1,輸出信號OUT轉換為第二高準位Hi2且反相輸出信號ZOUT轉換為低準位Lo。此時,轉壓器600由狀態(A)跳至狀態(B)。另外,由於選擇信號S1為低準位Lo且選擇信號S3為第二高準位Hi2,P型電晶體M1開啟(turn on)且P型電晶體M2斷開(turn off),所以強驅動路徑440連接至P型電晶體MP2的源極。由於選擇信號S2為第二高準位Hi2且選擇信 號S4為低準位Lo,P型電晶體M4斷開(turn off)且P型電晶體M5開啟(turn on),所以弱驅動路徑470連接至P型電晶體MP1的源極。
於時間點t2,亦即轉壓器600跳至狀態(B)並經過第一區間Tp1後,由於選擇信號S1為低準位Lo且選擇信號S3轉換為低準位Lo,P型電晶體M1開啟(turn on)且P型電晶體M2開啟(turn on),所以強驅動路徑440與弱驅動路徑450皆連接至P型電晶體MP2的源極。由於且選擇信號S2轉換為低準位Lo且選擇信號S4轉換為低準位Lo,P型電晶體M4開啟(turn on)且P型電晶體M5開啟(turn on),所以強驅動路徑460與弱驅動路徑470皆連接至P型電晶體MP1的源極。再者,輸出信號OUT維持在第二高準位Hi2且反相輸出信號ZOUT維持在低準位Lo。
於時間點t3,亦即轉壓器600跳至狀態(B)並經過第一區間Tp1與第二區間Tp2後,由於選擇信號S1轉換為第二高準位Hi2且選擇信號S3轉換為低準位Lo,P型電晶體M1斷開(turn off)且P型電晶體M2開啟(turn on),所以弱驅動路徑450連接至P型電晶體MP2的源極。由於且選擇信號S2為低準位Lo且選擇信號S4轉換為第二高準位Hi2,P型電晶體M4開啟(turn on)且P型電晶體M5斷開(turn off),所以強驅動路徑460連接至P型電晶體MP1的源極。再者,輸出信號OUT維持在第二高準位Hi2且反相輸出信號ZOUT維持在低準位Lo。因此,轉壓器600由狀態(B)跳至狀態(C)。
於時間點t4,輸出信號OUT轉換為低準位Lo且反相輸出信號ZOUT轉換為第二高準位Hi2。此時,轉壓器600由狀態(C)跳至狀態(D)。另外,由於選擇信號S1為第二高準位Hi2且選擇信號S3為低準位Lo,P型電晶體M1斷開(turn off)且P型電晶體M2開啟(turn on),所以弱驅動路徑450連接至P型電晶體MP2的源極。由於選擇信號S2為低準位Lo且選擇信號S4為第二高準位Hi2,P型電晶體M4開啟(turn on)且P型電晶體M5斷開(turn off),所以強驅動路徑460連接至P型電晶體MP1的源極。
於時間點t5,亦即轉壓器600跳至狀態(D)並經過第一區間Tp1後,由於選擇信號S1轉換為低準位Lo且選擇信號S3為低準位Lo,P型電晶體M1開啟(turn on)且P型電晶體M2開啟(turn on),所以強驅動路徑440與弱驅動路徑450皆連接至P型電晶體MP2的源極。由於且選擇信號S2為低準位Lo且選擇信號S4轉換為低準位Lo,P型電晶體M4開啟(turn on)且P型電晶體M5開啟(turn on),所以強驅動路徑460與弱驅動路徑470皆連接至P型電晶體MP1的源極。再者,輸出信號OUT維持在低準位Lo且反相輸出信號ZOUT維持在第二高準位Hi2。
於時間點t6,亦即轉壓器600跳至狀態(D)並經過第一區間Tp1與第二區間Tp2後,由於選擇信號S1為低準位Lo且選擇信號S3轉換為第二高準位Hi2,P型電晶體M1開啟(turn on)且P型電晶體M2斷開(turn off),所以強驅動路徑440連接 至P型電晶體MP2的源極。由於且選擇信號S2轉換為第二高準位Hi2且選擇信號S4為低準位Lo,P型電晶體M4斷開(turn off)且P型電晶體M5開啟(turn on),所以弱驅動路徑470連接至P型電晶體MP1的源極。再者,輸出信號OUT維持在低準位Lo且反相輸出信號ZOUT維持在第二高準位Hi2。因此,轉壓器600由狀態(D)跳至狀態(A)。
相同地,於時間點t7,轉壓器600由狀態(A)跳至狀態(B)。其詳細運作原理不再贅述。
由以上的第一實施例至第五實施例說明可知,本發明提出一種具不對稱驅動路徑的轉壓器。當轉壓器的第一輸出端產生高準位的輸出信號且第二輸出端產生低準位的反向輸出信號後,第一輸出端與電源電壓端之間會連接一弱驅動路徑,且第二輸出端與電源電壓端之間會連接一強驅動路徑。反之,當轉壓器的第一輸出端產生低準位的輸出信號且第二輸出端產生高準位的反向輸出信號後,第一輸出端與電源電壓端之間會連接一強驅動路徑,且第二輸出端與電源電壓端之間會連接一弱驅動路徑。
綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。
200:轉壓器
205:切換電路
210:時序控制器
220:選擇模組
222、226:選擇電路
240、260:強驅動路徑
250、270:弱驅動路徑

Claims (8)

  1. 一種轉壓器,包括:一第一強驅動路徑;一第一弱驅動路徑;一第二強驅動路徑;一第二弱驅動路徑;一選擇模組,包括一第一選擇電路與一第二選擇電路;其中,該第一強驅動路徑連接於一電源電壓端與該第一選擇電路的一第一輸入端之間,該第一弱驅動路徑連接於該電源電壓端與該第一選擇電路的一第二輸入端之間,該第二強驅動路徑連接於該電源電壓端與該第二選擇電路的一第一輸入端之間,該第二弱驅動路徑連接於該電源電壓端與該第二選擇電路的一第二輸入端之間;一第一P型電晶體,具有一源極連接至該第二選擇電路的一輸出端,一汲極連接至一第一節點,一閘極連接至一第二節點;一第二P型電晶體,具有一源極連接至該第一選擇電路的一輸出端,一汲極連接至該第二節點,一閘極連接至該第一節點;其中,該第二節點產生一輸出信號,該第一節點產生一反相輸出信號;一第一N型電晶體,具有一汲極連接至該第一節點,一源極連接至一接地端,一閘極接收一輸入信號;一第二N型電晶體,具有一汲極連接至該第二節點,一源極連接至該接地端,一閘極接收一反相輸入信號;其中,當該輸入信 號為一第一高準位時,該輸出信號為一第二高準位;且當該輸入信號為一低準位時,該輸出信號為該低準位;以及一時序控制器,接收該輸出信號與該反相輸出信號其中之一,或者接收該輸出信號與該反相輸出信號,該時序控制器產生一控制信號組至該選擇模組用以控制該第一選擇電路與該第二選擇電路;其中,當該輸出信號轉換為該第二高準位且該反相輸出信號轉換為該低準位並經過一時間期間後,該第一選擇電路將該第一弱驅動路徑連接至該第二P型電晶體的該源極,該第二選擇電路將該第二強驅動路徑連接至該第一P型電晶體的該源極;其中,當該輸出信號轉換為該低準位且該反相輸出信號轉換為該第二高準位並經過該時間期間後,該第一選擇電路將該第一強驅動路徑連接至該第二P型電晶體的該源極,該第二選擇電路將該第二弱驅動路徑連接至該第一P型電晶體的該源極。
  2. 如申請專利範圍第1項所述之轉壓器,其中該第一選擇電路包括一第三P型電晶體與一第四P型電晶體;該第二選擇電路包括一第五P型電晶體與一第六P型電晶體;該第三P型電晶體的源極為該第一選擇電路的該第一輸入端;該第三P型電晶體的閘極接收一第一選擇信號;該第三P型電晶體的汲極為該第一選擇電路的該輸出端;該第五P型電晶體的源極為該第二選擇電路的該第一輸入端;該第五P型電晶體的閘極接收一第二選擇信號;該第五 P型電晶體的汲極為該第二選擇電路的該輸出端;該第四P型電晶體的源極為該第一選擇電路的該第二輸入端;該第四P型電晶體的閘極接收一第三選擇信號;該第四P型電晶體的汲極連接至該第三P型電晶體的該汲極;該第六P型電晶體的源極為該第二選擇電路的該第二輸入端;該第六P型電晶體的閘極接收一第四選擇信號;該第六P型電晶體的汲極連接至該第五P型電晶體的汲極。
  3. 如申請專利範圍第2項所述之轉壓器,其中該第一強驅動路徑為一第一導線連接於該電源電壓端與該第一選擇電路的該第一輸入端之間;該第二強驅動路徑為一第二導線連接於該電源電壓端與該第二選擇電路的該第一輸入端之間;該第一弱驅動路徑包括一第七P型電晶體,具有一源極連接至該電源電壓端,一汲極連接至該第一選擇電路的該第二輸入端,一閘極接收一第一偏壓;該第二弱驅動路徑包括一第八P型電晶體,具有一源極連接至該電源電壓端,一汲極連接至該第二選擇電路的該第二輸入端,一閘極接收一第二偏壓。
  4. 如申請專利範圍第3項所述之轉壓器,其中該第一偏壓與該第二偏壓為一接地電壓。
  5. 如申請專利範圍第3項所述之轉壓器,其中該輸入信號為該第一偏壓,該反相輸入信號為該第二偏壓。
  6. 如申請專利範圍第2項所述之轉壓器,其中時序控制器的控制信號組包括該第一選擇信號、該第二選擇信號、該第三選擇信號與該第四選擇信號;該第一選擇信號落後該輸出信號該時間期間;該第二選擇信號落後該反相輸出信號該時間期間;該第三選擇信號相同於該第二選擇信號;且該第四選擇信號相同於該第一選擇信號。
  7. 如申請專利範圍第2項所述之轉壓器,其中該時間期間區分為一第一區間與一第二區間;當該輸出信號轉換為該第二高準位且該反相輸出信號轉換為該低準位並經過該第一區間後,該第一選擇電路將該第一弱驅動路徑與該第一強驅動路徑連接至該第二P型電晶體的該源極,該第二選擇電路將該第二弱驅動路徑與該第二強驅動路徑連接至該第一P型電晶體的該源極;以及,當該輸出信號轉換為該第二高準位且該反相輸出信號轉換為該低準位並經過該第一區間與該第二區間後,該第一選擇電路將該第一弱驅動路徑連接至該第二P型電晶體的該源極,該第二選擇電路將該第二強驅動路徑連接至該第一P型電晶體的該源極。
  8. 如申請專利範圍第7項所述之轉壓器,其中該當該輸出信號轉換為該低準位且該反相輸出信號轉換為該第二高準位並經過該第一區間後,該第一選擇電路將該第一強驅動路徑與該第 一弱驅動路徑連接至該第二P型電晶體的該源極,該第二選擇電路將該第二強驅動路徑與該第二弱驅動路徑連接至該第一P型電晶體的該源極;以及,當該輸出信號轉換為該低準位且該反相輸出信號轉換為該第二高準位並經過該第一區間與該第二區間後,該第一選擇電路將該第一強驅動路徑連接至該第二P型電晶體的該源極,該第二選擇電路將該第二弱驅動路徑連接至該第一P型電晶體的該源極。
TW108121737A 2018-08-10 2019-06-21 轉壓器 TWI692204B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862716998P 2018-08-10 2018-08-10
US62/716,998 2018-08-10
US16/423,511 2019-05-28
US16/423,511 US10685727B2 (en) 2018-08-10 2019-05-28 Level shifter

Publications (2)

Publication Number Publication Date
TW202010256A TW202010256A (zh) 2020-03-01
TWI692204B true TWI692204B (zh) 2020-04-21

Family

ID=69406396

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108121737A TWI692204B (zh) 2018-08-10 2019-06-21 轉壓器
TW108127220A TWI687932B (zh) 2018-08-10 2019-07-31 記憶體單元及記憶體系統

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108127220A TWI687932B (zh) 2018-08-10 2019-07-31 記憶體單元及記憶體系統

Country Status (3)

Country Link
US (2) US10685727B2 (zh)
CN (2) CN110830027B (zh)
TW (2) TWI692204B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020132752A1 (de) * 2020-06-04 2021-12-09 Taiwan Semiconductor Manufacturing Co., Ltd. Speichervorrichtung mit verbessertem antifuse-lesestrom
US11094388B1 (en) * 2020-07-20 2021-08-17 Winbond Electronics Corp. Anti-fuse device and program method using the same
US11783905B2 (en) 2020-12-18 2023-10-10 Ememory Technology Inc. Anti-fuse memory device, memory array, and programming method of an anti-fuse memory device for preventing leakage current and program disturbance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233193B2 (en) * 2004-08-26 2007-06-19 Hynix Semiconductor Inc. High voltage switching circuit of a NAND type flash memory device
US20080265970A1 (en) * 2007-04-27 2008-10-30 Mosaid Technologies Incorporated Voltage level shifter and buffer using same
US7808294B1 (en) * 2007-10-15 2010-10-05 Netlogic Microsystems, Inc. Level shifter with balanced rise and fall times

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978870A (en) 1989-07-19 1990-12-18 Industrial Technology Research Institute CMOS digital level shifter circuit
US5148391A (en) 1992-02-14 1992-09-15 Micron Technology, Inc. Nonvolatile, zero-power memory cell constructed with capacitor-like antifuses operable at less than power supply voltage
US5870327A (en) * 1996-07-19 1999-02-09 Xilinx, Inc. Mixed mode RAM/ROM cell using antifuses
US6570805B2 (en) 2000-12-20 2003-05-27 Actel Corporation Antifuse memory cell and antifuse memory cell array
JP2010226703A (ja) * 2009-02-27 2010-10-07 Renesas Electronics Corp レベルシフト回路及びこれを備えたスイッチ回路
US8212758B2 (en) * 2009-05-11 2012-07-03 Himax Technologies Limited Source driver and display utilizing the source driver
KR101901664B1 (ko) * 2012-04-02 2018-10-01 삼성전자주식회사 멀티 리딩 모드를 갖는 퓨즈 데이터 리딩 회로
US9601499B2 (en) 2013-05-16 2017-03-21 Ememory Technology Inc. One-time programmable memory cell capable of reducing leakage current and preventing slow bit response, and method for programming a memory array comprising the same
US9508396B2 (en) * 2014-04-02 2016-11-29 Ememory Technology Inc. Array structure of single-ploy nonvolatile memory
US9432022B2 (en) * 2014-04-21 2016-08-30 Qualcomm Incorporated Wide-range level-shifter
US9362001B2 (en) 2014-10-14 2016-06-07 Ememory Technology Inc. Memory cell capable of operating under low voltage conditions
US9672935B2 (en) 2014-10-17 2017-06-06 Lattice Semiconductor Corporation Memory circuit having non-volatile memory cell and methods of using
KR102227554B1 (ko) 2014-11-18 2021-03-16 에스케이하이닉스 주식회사 안티퓨즈 오티피 셀어레이 및 그 동작방법
CN104505123B (zh) * 2014-12-05 2018-04-20 深圳市国微电子有限公司 一种反熔丝存储器的读取应用电路
US9627088B2 (en) * 2015-02-25 2017-04-18 Ememory Technology Inc. One time programmable non-volatile memory and read sensing method thereof
US9613714B1 (en) * 2016-01-19 2017-04-04 Ememory Technology Inc. One time programming memory cell and memory array for physically unclonable function technology and associated random code generating method
TWI584596B (zh) * 2016-06-15 2017-05-21 智原科技股份有限公司 轉壓器
JP2018006525A (ja) 2016-06-30 2018-01-11 ルネサスエレクトロニクス株式会社 半導体装置
US10276239B2 (en) 2017-04-27 2019-04-30 Ememory Technology Inc. Memory cell and associated array structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233193B2 (en) * 2004-08-26 2007-06-19 Hynix Semiconductor Inc. High voltage switching circuit of a NAND type flash memory device
US20080265970A1 (en) * 2007-04-27 2008-10-30 Mosaid Technologies Incorporated Voltage level shifter and buffer using same
US7808294B1 (en) * 2007-10-15 2010-10-05 Netlogic Microsystems, Inc. Level shifter with balanced rise and fall times

Also Published As

Publication number Publication date
US20200051651A1 (en) 2020-02-13
US10741267B2 (en) 2020-08-11
CN110827908A (zh) 2020-02-21
US20200052703A1 (en) 2020-02-13
TW202010256A (zh) 2020-03-01
CN110827908B (zh) 2021-08-17
CN110830027B (zh) 2023-03-24
US10685727B2 (en) 2020-06-16
TW202009941A (zh) 2020-03-01
TWI687932B (zh) 2020-03-11
CN110830027A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
TWI692204B (zh) 轉壓器
EP2965425B1 (en) Voltage level shifter with a low-latency voltage boost circuit
JP5719446B2 (ja) レベルシフト回路
KR20010049227A (ko) 레벨조정회로 및 이를 포함하는 데이터 출력회로
US9843325B2 (en) Level shifter and parallel-to-serial converter including the same
WO2022057366A1 (zh) 一种负压电平转换控制电路和方法
US10644703B2 (en) Level shifting circuit with conditional body biasing of transistors
TWI483550B (zh) 動態控制電位移位電路
TWI401890B (zh) 電壓位準轉換電路
US20130222036A1 (en) Voltage level converting circuit
US9191006B1 (en) Current-limited level shift circuit
JP4724575B2 (ja) レベル変換回路
TWI739695B (zh) 轉壓器
JP2988430B2 (ja) レベル変換回路
US20040239370A1 (en) Symmetric differential logic circuits
CN110518903B (zh) 一种电平移位电路
KR20170057101A (ko) 레벨 변환 디바이스 및 방법
TWM598009U (zh) 具輸出控制電路之電位轉換器
TWM586017U (zh) 低功率電位轉換器
TWM576366U (zh) 具輔助電路之位準轉換電路
TWM565921U (zh) 電壓位準移位器
US8502559B2 (en) Level translator
TWI533600B (zh) 差動轉單端轉換器裝置及方法
WO2022095503A1 (zh) 电平移位电路以及集成电路
TWI606683B (zh) 零靜功耗高低多端互補式多位準轉換器