WO2017133380A1 - 适配器和充电控制方法 - Google Patents

适配器和充电控制方法 Download PDF

Info

Publication number
WO2017133380A1
WO2017133380A1 PCT/CN2017/070517 CN2017070517W WO2017133380A1 WO 2017133380 A1 WO2017133380 A1 WO 2017133380A1 CN 2017070517 W CN2017070517 W CN 2017070517W WO 2017133380 A1 WO2017133380 A1 WO 2017133380A1
Authority
WO
WIPO (PCT)
Prior art keywords
adapter
charged
charging
current
output
Prior art date
Application number
PCT/CN2017/070517
Other languages
English (en)
French (fr)
Inventor
田晨
张加亮
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2016/073679 external-priority patent/WO2017133001A1/zh
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to KR1020187007677A priority Critical patent/KR102204603B1/ko
Priority to EP17746700.8A priority patent/EP3282550B1/en
Priority to JP2018512567A priority patent/JP6503138B2/ja
Priority to US15/562,011 priority patent/US10985595B2/en
Priority to AU2017215235A priority patent/AU2017215235B2/en
Priority to CN201780001423.7A priority patent/CN108141057B/zh
Priority to TW106124370A priority patent/TWI658675B/zh
Publication of WO2017133380A1 publication Critical patent/WO2017133380A1/zh
Priority to ZA2018/00935A priority patent/ZA201800935B/en
Priority to HK18109711.9A priority patent/HK1250285A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00038Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors
    • H02J7/00043Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors using switches, contacts or markings, e.g. optical, magnetic or barcode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/24Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices
    • H02J7/2434Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices with pulse modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to the field of charging and, more particularly, to an adapter and charging control method.
  • Embodiments of the present invention provide an adapter and a charging control method to reduce lithium deposition of a battery and improve the service life of the battery.
  • an adapter in a first aspect, is provided, the adapter supporting a first charging mode and a second charging mode, the adapter comprising: a power conversion unit for converting an input alternating current to obtain an output voltage of the adapter Outputting a current, the power conversion unit includes a secondary filtering unit; the control unit is connected to the secondary filtering unit, and the control unit controls the time when the adapter operates in the first charging mode
  • the stage filtering unit operates such that the adapter outputs a constant direct current, and in a case where the adapter operates in the second charging mode, the control unit controls the secondary filtering unit to stop operating, so that the adapter outputs an alternating current or Pulsating DC power.
  • a charging control method is provided, the method being applied to an adapter, the adapter comprising a power conversion unit, wherein the power conversion unit is configured to convert an input alternating current to obtain an output voltage and an output of the adapter Current, the power conversion unit includes a secondary filtering unit, the method comprising: controlling a secondary filtering unit of the adapter to operate such that the adapter outputs a constant direct current if the adapter operates in a first charging mode And in the case that the adapter operates in the second charging mode, the secondary filtering unit is controlled to stop working, so that the adapter outputs alternating current or pulsating direct current.
  • the adapter of the embodiment of the invention can output the alternating current or the pulsating direct current to charge the battery.
  • the lithium deposition phenomenon of the battery is reduced, the probability and intensity of the arc of the contact of the charging interface are reduced, and the life of the charging interface is improved.
  • the adapter of the embodiment of the invention can also flexibly switch between different charging modes.
  • FIG. 1 is a schematic structural view of a second adapter of one embodiment of the present invention.
  • FIGS. 2A and 2B are schematic views of a pulsation waveform according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a second adapter according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a second adapter according to still another embodiment of the present invention.
  • FIG. 5A is a schematic diagram of a connection manner between a second adapter and a device to be charged according to an embodiment of the present invention.
  • FIG. 5B is a schematic diagram of a fast charge communication process according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram showing the current waveform of the pulsating direct current.
  • Fig. 7 is a schematic diagram of pulsating direct current in a constant current mode according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a charging control method according to an embodiment of the present invention.
  • a first adapter for charging a device to be charged, such as a terminal, is mentioned in the related art.
  • the first adapter operates in a constant voltage mode. In the constant voltage mode, the voltage output by the first adapter is maintained substantially constant, such as 5V, 9V, 12V or 20V.
  • the voltage output by the first adapter is not suitable for direct loading to both ends of the battery, but needs to be converted by a conversion circuit in a device to be charged (such as a terminal) to obtain a battery expected in the device to be charged (such as a terminal). Charging voltage and / or charging current.
  • a conversion circuit is used to transform the voltage output by the first adapter to meet the expected battery Demand for charging voltage and / or charging current.
  • the conversion circuit can refer to a charge management module, such as an integrated circuit (IC). Used to manage the charging voltage and/or charging current of the battery during charging of the battery.
  • the conversion circuit has the function of a voltage feedback module and/or has the function of a current feedback module to enable management of the charging voltage and/or charging current of the battery.
  • the charging process of the battery may include one or more of a trickle charging phase, a constant current charging phase, and a constant voltage charging phase.
  • the conversion circuit can utilize a current feedback loop such that the current entering the battery during the trickle charge phase meets the magnitude of the charge current expected by the battery (eg, the first charge current).
  • the conversion circuit can utilize the current feedback loop such that the current entering the battery during the constant current charging phase meets the expected charging current of the battery (eg, the second charging current, which can be greater than the first charging current) .
  • the conversion circuit can utilize a voltage feedback loop such that the voltage applied across the battery during the constant voltage charging phase meets the expected charging voltage of the battery.
  • the conversion circuit when the voltage output by the first adapter is greater than the charging voltage expected by the battery, the conversion circuit may be configured to perform a step-down process on the voltage output by the first adapter, so that the charging voltage obtained after the step-down conversion satisfies the battery Expected charging voltage requirements. As still another example, when the voltage output by the first adapter is less than the charging voltage expected by the battery, the conversion circuit may be configured to perform a voltage boosting process on the voltage output by the first adapter, so that the charging voltage obtained after the boosting conversion satisfies the battery. The expected charging voltage requirement.
  • the conversion circuit for example, Buck is lowered.
  • the voltage circuit can perform a step-down process on the voltage outputted by the first adapter, so that the charging voltage obtained after the voltage reduction satisfies the charging voltage demand expected by the battery.
  • a conversion circuit (such as a boost voltage boosting circuit) can boost the voltage outputted by the first adapter so that the charging voltage obtained after boosting satisfies the charging voltage demand expected by the battery.
  • the conversion circuit is limited by the low conversion efficiency of the circuit, so that the electric energy of the unconverted portion is dissipated as heat. This part of the heat will be focused inside the device to be charged (such as the terminal).
  • the design space and heat dissipation space of the device to be charged (such as the terminal) are small (for example, the mobile terminal used by the user)
  • the physical size is getting thinner and lighter, and a large number of electronic components are densely arranged in the mobile terminal to improve the performance of the mobile terminal. This not only improves the design difficulty of the conversion circuit, but also causes the device to be charged (such as a terminal) to be focused.
  • the heat inside is difficult to remove in time, which in turn causes an abnormality in the device to be charged (such as a terminal).
  • the heat accumulated on the conversion circuit may cause thermal interference to the electronic components near the conversion circuit, causing abnormal operation of the electronic components.
  • the heat accumulated on the conversion circuit may shorten the life of the conversion circuit and nearby electronic components.
  • the heat accumulated on the circuit may cause thermal interference to the battery, which may cause abnormal battery charging and discharging.
  • the heat accumulated on the circuit which may cause the temperature of the device to be charged (such as the terminal) to rise, which affects the user's experience in charging.
  • the heat accumulated on the conversion circuit may cause a short circuit of the conversion circuit itself, so that the voltage outputted by the first adapter is directly loaded on both ends of the battery, causing charging abnormality. If the battery is in an overvoltage state for a long time, it may even cause The explosion of the battery jeopardizes user safety.
  • Embodiments of the present invention provide a second adapter whose output voltage is adjustable.
  • the second adapter is capable of acquiring status information of the battery.
  • the status information of the battery may include current battery information and/or voltage information of the battery.
  • the second adapter can adjust the output voltage of the second adapter itself according to the acquired state information of the battery to meet the demand of the charging voltage and/or the charging current expected by the battery. Further, during the constant current charging phase of the battery charging process, the voltage outputted by the second adapter can be directly loaded at both ends of the battery to charge the battery.
  • the second adapter may have the function of a voltage feedback module and the function of a current feedback module to enable management of the charging voltage and/or charging current of the battery.
  • the second adapter adjusts the output voltage of the second adapter according to the acquired state information of the battery, and the second adapter can obtain the state information of the battery in real time, and according to the real-time status information of the obtained battery each time.
  • the voltage output by the second adapter itself is adjusted to meet the expected charging voltage and/or charging current of the battery.
  • the second adapter adjusts the output voltage of the second adapter according to the state information of the battery acquired in real time.
  • the second adapter can obtain the current state of the battery at different times during the charging process as the battery voltage increases during the charging process. Status information, and adjust the output voltage of the second adapter itself in real time according to the current state information of the battery to meet the demand of the charging voltage and/or charging current expected by the battery.
  • the charging process of the battery may include one or more of a trickle charging phase, a constant current charging phase, and a constant voltage charging phase.
  • the second adapter can utilize current feedback during the trickle charge phase
  • the loop causes the current output by the second adapter during the trickle charge phase and the current entering the battery to meet the demand for the desired charging current of the battery (eg, the first charging current).
  • the second adapter can utilize the current feedback loop such that the current output by the second adapter during the constant current charging phase and the current entering the battery meets the demand for the charging current expected by the battery (eg, the second charging current, the second The charging current can be greater than the first charging current), and in the constant current charging phase, the second adapter can load the output charging voltage directly across the battery to charge the battery.
  • the second adapter can utilize a voltage feedback loop such that the voltage output by the second adapter during the constant voltage charging phase meets the demand for the charging voltage expected by the battery.
  • the voltage output by the second adapter may be processed in a manner similar to that of the first adapter, that is, through a conversion circuit in a device to be charged (eg, a terminal) to obtain a device to be charged (eg, The expected charging voltage and/or charging current of the battery within the terminal).
  • a conversion circuit in a device to be charged eg, a terminal
  • a device to be charged eg, The expected charging voltage and/or charging current of the battery within the terminal.
  • FIG. 1 is a schematic structural view of a second adapter of an embodiment of the present invention.
  • the second adapter 10 of FIG. 1 includes a power conversion unit 11 and a control unit 12.
  • the power conversion unit 11 is configured to convert the input alternating current to obtain an output voltage and an output current of the second adapter 10, and the power conversion unit 11 includes a secondary filtering unit;
  • the control unit 12 is connected to the secondary filtering unit. In the case where the second adapter 10 operates in the first charging mode, the control unit 12 controls the secondary filtering unit to operate such that the second adapter 10 outputs a constant direct current and operates in the second adapter. In the case of the second charging mode, the control unit 12 controls the secondary filtering unit to stop operating, so that the second adapter 10 outputs alternating current or pulsating direct current.
  • the first charging mode may be a constant voltage mode.
  • the foregoing second charging mode may be a constant current mode.
  • the lithium stripping phenomenon of the battery can be reduced, the probability and intensity of the arc of the contact of the charging interface can be reduced, and the life of the charging interface can be improved.
  • the second adapter of the inventive embodiment is also capable of flexible switching between different charging modes.
  • the second adapter can output alternating current or pulsating direct current (that is, the current of the pulsating waveform) in the second charging mode, where the pulsating waveform can be a complete pulsating waveform or a complete pulsating waveform can be cut.
  • the pulsation waveform obtained after peak processing.
  • the so-called peak clipping process may refer to filtering out a portion of the pulsation waveform that exceeds a certain threshold value, thereby achieving control of the peak value of the pulsation waveform.
  • the pulsation waveform is a complete pulsation waveform, in Figure 2B.
  • the pulsation waveform is a pulsation waveform after the peak clipping process.
  • the secondary filtering unit when the second adapter 10 operates in the first charging mode, the secondary filtering unit operates normally, and the primary coupled to the secondary current of the power conversion unit 11 is rectified and subjected to filtering by the secondary filtering unit, and then A constant direct current (or a current with a stable current value) is output.
  • the secondary filtering unit stops operating.
  • the current of the primary coupling of the power conversion unit 11 to the secondary may be directly output or output after simple processing.
  • the output current of the second adapter 10 may be an alternating current.
  • the current coupled to the secondary of the power conversion unit 11 may be rectified, and then the rectified current is simply processed and output.
  • the output current of the second adapter 10 is a pulsating direct current.
  • the second adapter 10 of the embodiment of the present invention can charge a device to be charged, such as a terminal.
  • the device to be charged used in the embodiment of the present invention may be a “communication terminal” (or simply “terminal”), including but not limited to being configured to be connected via a wire line (eg, via a public switched telephone network).
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • DSL digital cable
  • direct cable connection and/or another data connection/network
  • wireless local area networks wireless local area networks
  • WLAN wireless local area networks
  • digital television networks such as digital video broadcasting handheld (DVB-H) networks, satellite networks, amplitude modulation-frequency modulation (AM-FM) broadcast transmitters, and/or A device for receiving/transmitting a communication signal by a wireless interface of a communication terminal.
  • DVB-H digital video broadcasting handheld
  • AM-FM amplitude modulation-frequency modulation
  • Wireless communication terminals that are arranged to communicate over a wireless interface may be referred to as “wireless communication terminals,” “wireless terminals,” and/or “mobile terminals.”
  • mobile terminals include, but are not limited to, satellite or cellular telephones; personal communication system (PCS) terminals that can combine cellular radio telephones with data processing, fax, and data communication capabilities; may include radio telephones, pagers, the Internet/ Intranet access, web browser, memo pad, calendar, and/or personal digital assistant (PDA) for global positioning system (GPS) receivers; and conventional laptop and/or palm Receiver or other electronic device including a radiotelephone transceiver.
  • PCS personal communication system
  • PDA personal digital assistant
  • GPS global positioning system
  • the second adapter 10 may include a charging interface, but the type of the charging interface is not specifically limited in the embodiment of the present invention, and may be, for example, a Universal Serial Bus (USB) interface. It can be a standard USB interface, a micro USB interface, or a Type-C interface.
  • USB Universal Serial Bus
  • control unit 12 may also control the charging process to increase the intelligence of the second adapter.
  • the control unit 12 can be configured to perform bidirectional communication with a device to be charged (such as a terminal) to obtain an instruction or status information of a device to be charged (such as a terminal) (such as a current voltage of a battery of a device to be charged (such as a terminal), to be The temperature of the charging device (such as a terminal), etc., thereby controlling the charging process of the second adapter based on an instruction or status signal of the device to be charged (such as a terminal).
  • the control unit 12 may be a Microcontroller Unit (MCU), but the embodiment of the present invention is not limited thereto, and the control unit 12 may also be other types of chips or circuits.
  • MCU Microcontroller Unit
  • the capacitance in the secondary filtering unit is a solid capacitor. It should be understood that the number of the solid capacitors may be one or more.
  • the secondary filtering unit may include a plurality of solid capacitors, each of which may be connected to the secondary bus of the second adapter and the ground. Taking FIG. 3 as an example, the secondary filtering unit may include four solid capacitors, which are connected in parallel. It should be understood that the secondary filtering unit in FIG. 3 is only a specific example, and the number of the solid capacitors included in the secondary filtering unit may also be other values, which is not limited in the embodiment of the present invention. In the case where the total capacity of the capacitors in the secondary filtering unit is constant, by using a plurality of small capacitors connected in parallel, the equivalent resistance and the equivalent inductance of the capacitor can be effectively reduced, so that the direct current output from the secondary filtering unit is more stable.
  • the capacity and/or the number of capacitors in the secondary filtering unit may be determined based on the maximum current allowed to be output by the second adapter in the first charging mode, in the first charging mode, if it is desired to increase the allowable output of the second adapter.
  • the maximum current can increase the capacity and/or the number of capacitors in the secondary filtering unit.
  • the VBUS terminal of the second adapter may also be connected with some ceramic capacitors to filter out the output voltage of the second adapter and the clutter in the output current.
  • the control unit 12 can be connected to the secondary filtering unit through a MOS transistor.
  • the gate of the MOS transistor is connected to the control unit 12, the source of the MOS transistor is grounded, and the drain of the MOS transistor is One end of the capacitor in the stage filter unit is connected.
  • the control unit 12 can control the on and off of the MOS transistor by outputting a PWM signal. For example, when the PWM signal is at a high level, the source and the drain of the MOS transistor are turned on, and the secondary filter unit is in an active state when the PWM signal is low. At the level, the source and drain of the MOS transistor are not turned on, and the secondary filter unit is in a stopped state.
  • control unit 12 in the embodiment of the present invention can also control the on and off of the MOS transistor by other types of signals than the PWM signal.
  • the above MOS tube can be N-channel enhancement
  • the MOS tube can also be other types of MOS tubes.
  • control unit 12 can also use other devices that can function as a switch to control whether the secondary filtering unit operates. This embodiment of the present invention does not limit this.
  • the second adapter 10 can support the first charging mode and the second charging mode.
  • the second adapter 10 charges the charging device (such as the terminal) in the second charging mode faster than the charging speed of the device (such as the terminal) to be charged by the second adapter 10 in the first charging mode.
  • the second adapter 10 operating in the second charging mode is filled with the battery of the same capacity of the device to be charged (such as the terminal). It is shorter.
  • the second adapter 10 includes a control unit that performs bidirectional communication with the device to be charged (eg, a terminal) during the connection of the second adapter 10 to a device to be charged (eg, a terminal) to control the charging process of the second charging mode.
  • the control unit may be the control unit in any of the above embodiments, such as a control unit in the first adjustment unit or a control unit in the second adjustment unit.
  • the first charging mode may be a normal charging mode
  • the second charging mode may be a fast charging mode.
  • the normal charging mode means that the second adapter outputs a relatively small current value (typically less than 2.5 A) or a relatively small power (typically less than 15 W) to charge the battery in the charging device (eg, the terminal).
  • a relatively small current value typically less than 2.5 A
  • a relatively small power typically less than 15 W
  • the second adapter can output a relatively large current ( Usually greater than 2.5A, such as 4.5A, 5A or higher) or charging the battery in a charging device (such as a terminal) with relatively large power (usually greater than or equal to 15W), compared to the normal charging mode.
  • the charging time required for the second adapter to fully charge the same capacity battery in the fast charging mode can be significantly shortened and the charging speed is faster.
  • the embodiment of the present invention does not specifically limit the communication content of the control unit of the second adapter and the device to be charged (such as the terminal), and the control mode of the control unit for the output of the second adapter in the second charging mode.
  • the control unit may Communicating with a device to be charged (such as a terminal), interacting with the current voltage or current power of the battery in the device to be charged (such as a terminal), and adjusting the output voltage or output current of the second adapter based on the current voltage or current power of the battery.
  • the communication content between the control unit and the device to be charged (such as the terminal) and the control mode of the control unit for the output of the second adapter in the second charging mode will be described in detail below in conjunction with a specific embodiment.
  • control unit is bidirectional with the device to be charged (eg, the terminal)
  • the process of communicating to control the output of the second adapter in the second charging mode may include: the control unit performs two-way communication with the device to be charged (eg, the terminal) to negotiate between the second adapter and the device to be charged (eg, the terminal) Charging mode.
  • the second adapter does not blindly use the second charging mode to quickly charge the device to be charged (such as the terminal), but performs two-way communication with the device to be charged (such as the terminal), and negotiates whether the second adapter can adopt the first
  • the second charging mode is to charge the charging device (such as the terminal) quickly, which can improve the safety of the charging process.
  • the two-way communication between the control unit and the device to be charged (such as the terminal) to negotiate the charging mode between the second adapter and the device to be charged (such as the terminal) may include: the control unit sends the first to the device to be charged (such as the terminal) An instruction for inquiring whether a device to be charged (such as a terminal) turns on a second charging mode; the control unit receives a reply command sent by the device to be charged (such as a terminal) for the first instruction, and the reply instruction is used to indicate Whether the device to be charged (such as the terminal) agrees to turn on the second charging mode; in the case that the device to be charged (such as the terminal) agrees to turn on the second charging mode, the control unit uses the second charging mode to charge the device to be charged (such as the terminal).
  • the above description of the embodiments of the present invention does not limit the master-slave of the second adapter (or the control unit of the second adapter) and the device to be charged (such as the terminal), in other words, the control unit and the device to be charged (eg, Any one of the terminals may initiate a two-way communication session as the master device, and accordingly the other party may make a first response or a first reply as the slave device initiates communication to the master device.
  • the identity of the master and slave devices can be confirmed by comparing the level of the second adapter side and the device to be charged (such as the terminal) side with respect to the earth during communication.
  • the embodiment of the present invention does not limit the specific implementation of the two-way communication between the second adapter (or the control unit of the second adapter) and the device to be charged (such as the terminal), that is, the second adapter (or the second adapter)
  • the control unit initiates a communication session with any one of the devices to be charged (eg, the terminal) as the master device, and accordingly the other party acts as the slave device to make a first response or a first reply to the communication session initiated by the master device, and simultaneously
  • the master device can make a second response to the first response or the first reply of the slave device, that is, the negotiation process of the one charging mode is completed between the master and the slave device.
  • the master and slave devices can perform the charging operation between the master and the slave device after completing the negotiation of the multiple charging mode to ensure the safe and reliable charging process after the negotiation. Executed.
  • One way of replying to the second response may be that the master device side can receive the first response or the first reply made by the slave device for the communication session, and according to the received slave device A response or a first response makes a targeted second response. For example, when the master device receives the first response or the first reply of the slave device for the communication session within a preset time, the master device makes a first response or a first reply to the slave device.
  • the specific second response is specifically: the master device side and the slave device side complete the negotiation of the one charging mode, and the master device side and the slave device side perform the charging operation according to the first charging mode or the second charging mode according to the negotiation result, That is, the second adapter works according to the negotiation result to charge the device to be charged (such as the terminal) in the first charging mode or the second charging mode.
  • One way that the master device can make a further second response according to the first response or the first response of the slave device to the communication session may also be that the master device does not receive the preset time.
  • the master device side also makes a targeted second response to the first response or the first reply of the slave device. For example, when the master device does not receive the first response or the first response of the slave device for the communication session within a preset time, the master device also responds to the first response or the first response of the slave device.
  • the targeted second response is specifically: the master device side and the slave device side complete the negotiation of the charging mode, and the charging operation is performed between the master device side and the slave device side according to the first charging mode, that is, the second adapter works in the The device to be charged (such as a terminal) is charged in the first charging mode.
  • the second adapter when a device to be charged (such as a terminal) initiates a communication session as a master device, the second adapter (or the control unit of the second adapter) acts as a communication session initiated by the slave device to the master device side. After the first response or the first reply, the second adapter (or the second adapter) can be considered as no need to make a targeted second response to the first response or the first response of the second adapter to be charged by the device (such as the terminal).
  • the control unit completes a negotiation process of the charging mode with the device to be charged (such as the terminal), and the second adapter can determine, according to the negotiation result, the device to be charged (such as the terminal) in the first charging mode or the second charging mode. Charge it.
  • the process of the two-way communication between the control unit and the device to be charged (such as the terminal) to control the output of the second adapter in the second charging mode may include: the control unit and the device to be charged (eg, The terminal performs bidirectional communication to determine a charging voltage for charging the device to be charged (eg, the terminal) output by the second adapter in the second charging mode; and the control unit adjusts the output voltage of the second adapter to make the second The output voltage of the adapter (or the peak value of the output voltage of the second adapter) is equal to the output of the second adapter in the second charging mode for charging A charging voltage at which an electrical device (such as a terminal) performs charging.
  • the control unit performs bidirectional communication with the device to be charged (eg, the terminal) to determine that the charging voltage for charging the device to be charged (eg, the terminal) output by the second adapter in the second charging mode may include: a control unit Sending a second instruction to the device to be charged (such as the terminal) for inquiring whether the output voltage of the second adapter matches the current voltage of the battery of the device to be charged (such as the terminal); the control unit receiving the device to be charged (such as the terminal) And the reply instruction of the second instruction is used to indicate that the output voltage of the second adapter matches the current voltage of the battery, and is higher or lower.
  • a control unit Sending a second instruction to the device to be charged (such as the terminal) for inquiring whether the output voltage of the second adapter matches the current voltage of the battery of the device to be charged (such as the terminal); the control unit receiving the device to be charged (such as the terminal)
  • the reply instruction of the second instruction is used to indicate that the output voltage of the second adapter matches the
  • the second instruction may be used to query whether the current output voltage of the second adapter is suitable as the charging voltage for charging the device to be charged (eg, the terminal) as the second adapter output in the second charging mode, second
  • the command's reply command can be used to indicate that the current second adapter's output voltage is appropriate, high or low.
  • the current output voltage of the second adapter matches the current voltage of the battery, or the current output voltage of the second adapter is suitable as the charging voltage for charging the device to be charged (eg, the terminal) as the output of the second adapter in the second charging mode.
  • the current output voltage of the second adapter (or the peak value of the current output voltage) is slightly higher than the current voltage of the battery, and the difference between the output voltage of the second adapter (or the peak value of the current output voltage) and the current voltage of the battery Within the preset range (usually on the order of a few hundred millivolts).
  • the charging process of the control unit in two-way communication with the device to be charged (such as the terminal) to control the output of the second adapter in the second charging mode may include: the control unit and the device to be charged ( Performing bidirectional communication, such as terminal, to determine a charging current for charging a device to be charged (eg, a terminal) output by the second adapter in the second charging mode; output current to the second adapter by the control unit (or second adapter) The peak value of the output current is adjusted such that the output current of the second adapter (or the peak value of the output current of the second adapter) is equal to the charging current for charging the device to be charged by the second adapter in the second charging mode .
  • the control unit performs bidirectional communication with the device to be charged (eg, the terminal) to determine that the charging current for charging the device to be charged (eg, the terminal) output by the second adapter in the second charging mode may include: the control unit Sending a third instruction to the device to be charged (such as the terminal), the third instruction is used to query the maximum charging current currently supported by the device to be charged (such as the terminal); and the control unit receives the reply of the third instruction sent by the device to be charged (such as the terminal) The instruction, the reply instruction of the third instruction is used to indicate the maximum charging current currently supported by the device to be charged (such as the terminal); and the control unit determines the second charging mode according to the maximum charging current currently supported by the device to be charged (such as the terminal) The charging current output by the second adapter for charging a device to be charged, such as a terminal.
  • the determining unit determines, according to the maximum charging current currently supported by the device to be charged (eg, the terminal), the charging current for charging the device to be charged (eg, the terminal) output by the second adapter in the second charging mode, for example,
  • the second adapter may determine the maximum charging current currently supported by the device to be charged (eg, the terminal) as the charging current (or charging) for charging the device to be charged (eg, the terminal) output by the second adapter in the second charging mode.
  • the peak value of the current may also take into account factors such as the maximum charging current currently supported by the device to be charged (eg, the terminal) and its own current output capability, and then determine the device for charging the second adapter output in the second charging mode. (such as the terminal) charging current for charging.
  • the process of two-way communication between the control unit and the device to be charged (eg, the terminal) to control the output of the second adapter in the second charging mode may include: using the second in the second adapter In the charging mode, during charging of a device to be charged (such as a terminal), the control unit performs two-way communication with a device to be charged (such as a terminal) to adjust the output current of the second adapter.
  • the two-way communication between the control unit and the device to be charged (such as the terminal) to adjust the output current of the second adapter may include: the control unit sends a fourth instruction to the device to be charged (such as the terminal), and the fourth instruction is used to query The current voltage of the battery of the charging device (such as the terminal); the control unit receives the reply command of the fourth command sent by the second adapter, and the reply command of the fourth command is used to indicate the current voltage of the battery; the control unit adjusts according to the current voltage of the battery The output current of the second adapter.
  • the second adapter 10 includes a charging interface 51.
  • the control unit in the second adapter 10 can communicate bi-directionally with the device to be charged (eg, a terminal) via the data line 52 in the charging interface 51.
  • the process of the two-way communication between the control unit and the device to be charged (such as the terminal) to control the output of the second adapter in the second charging mode may include: the control unit and the device to be charged (eg, The terminal) performs two-way communication to determine whether the charging interface is in poor contact.
  • the two-way communication between the control unit and the device to be charged (such as the terminal) to determine whether the charging interface is in poor contact may include: the control unit sends a fourth command to the device to be charged (such as the terminal), and the fourth command is used to query the charging to be charged.
  • control unit determines that the voltage difference between the output voltage of the second adapter and the current voltage of the device to be charged (eg, the terminal) is greater than a preset voltage threshold, indicating that the voltage difference is divided by the second
  • the impedance obtained by the current value of the adapter output is greater than the preset impedance threshold, and the contact failure of the charging interface can be determined.
  • the charging interface contact failure may also be determined by a device to be charged (such as a terminal): the device to be charged (such as a terminal) sends a sixth instruction to the control unit, and the sixth instruction is used to query the second adapter. Output voltage; the device to be charged (such as the terminal) receives the reply command of the sixth command sent by the control unit, the reply command of the sixth command is used to indicate the output voltage of the second adapter; the device to be charged (such as the terminal) according to the device to be charged (such as the terminal) the current voltage of the battery and the output voltage of the second adapter to determine whether the charging interface is in poor contact.
  • the device to be charged determines that the charging interface is in poor contact
  • the device to be charged sends a fifth command to the control unit, and the fifth command is used to indicate that the charging interface is in poor contact.
  • the control unit may control the second adapter to exit the second charging mode.
  • FIG. 5B The communication process between the control unit in the second adapter and the device to be charged (e.g., terminal) will be described in more detail below in conjunction with FIG. 5B.
  • the example of FIG. 5B is merely intended to assist those skilled in the art to understand the embodiments of the present invention, and the embodiments of the present invention are not limited to the specific numerical values or specific examples illustrated.
  • a person skilled in the art will be able to make various modifications and changes in the form of the embodiment of FIG. 5B, and such modifications or variations are also within the scope of the embodiments of the present invention.
  • the charging process of the second adapter in the second charging mode to charge the device may include five stages.
  • the device to be charged After the device to be charged (such as a terminal) is connected to the power supply device, the device to be charged (such as a terminal) can detect the type of the power supply device through the data lines D+, D-, and when the power supply device is detected as the second adapter,
  • the current drawn by the charging device eg, the terminal
  • I2 eg, may be 1A
  • the control unit in the second adapter detects that the output current of the second adapter is greater than or equal to I2 within a preset duration (eg, may be continuous T1 time)
  • the control unit may consider that the device to be charged (eg, the terminal) is provided for the power source
  • the type identification of the device has been completed, the control unit starts a negotiation process between the second adapter and the device to be charged (such as the terminal), and sends an instruction 1 (corresponding to the first instruction) to the device to be charged (such as the terminal) to ask for Whether the charging device (such as a terminal) agrees that the second adapter charges the charging device (such as a terminal) in the second charging mode.
  • the control unit When the control unit receives the reply command of the instruction 1 sent by the device to be charged (such as the terminal), and the reply command of the command 1 indicates that the device to be charged (such as the terminal) does not agree with the second adapter for the second charging
  • the control unit detects the output current of the second adapter again.
  • the control unit again sends an instruction 1 to the device to be charged (such as the terminal) to inquire about the device to be charged ( Whether the terminal) agrees that the second adapter charges the charging device (such as the terminal) in the second charging mode.
  • the control unit repeats the above steps of phase 1 until the device to be charged (such as the terminal) agrees that the second adapter charges the device to be charged (such as the terminal) in the second charging mode, or the output current of the second adapter no longer satisfies greater than or equal to I2 conditions of.
  • the communication flow proceeds to the second stage.
  • the output voltage of the second adapter can include a plurality of gear positions.
  • the control unit sends an instruction 2 (corresponding to the second instruction described above) to the device to be charged (eg, the terminal) to inquire whether the output voltage of the second adapter (current output voltage) matches the current voltage of the battery of the device to be charged (eg, the terminal) .
  • the device to be charged (such as a terminal) sends a reply command of the instruction 2 to the control unit to indicate that the output voltage of the second adapter matches the current voltage of the battery of the device to be charged (eg, the terminal), is high or low. If the reply command for the instruction 2 indicates that the output voltage of the second adapter is high or low, the control unit may adjust the output voltage of the second adapter to a grid position and send the instruction 2 to the device to be charged (such as the terminal) again. Re-inquire whether the output voltage of the second adapter matches the current voltage of the battery of the device to be charged (eg terminal). Repeat the above steps of phase 2 until the device to be charged (such as the terminal) determines that the output voltage of the second adapter matches the current voltage of the battery of the device to be charged (eg, the terminal), and enters the third stage.
  • the control unit sends an instruction 3 (corresponding to the third instruction described above) to the device to be charged (eg, the terminal), and queries the maximum charging current currently supported by the device to be charged (eg, the terminal).
  • the device to be charged (such as a terminal) sends a reply command of instruction 3 to the control unit to indicate the maximum charging current currently supported by the device to be charged (such as the terminal), and enters the fourth stage.
  • the control unit determines, according to the maximum charging current currently supported by the device to be charged (eg, the terminal), a charging current output by the second adapter for charging the device to be charged (eg, the terminal) in the second charging mode, and then enters phase 5, ie, Constant current charging phase.
  • the control unit may send an instruction 4 (corresponding to the fourth instruction described above) to the device to be charged (such as the terminal) every time interval, and query the current voltage of the battery of the device to be charged (such as the terminal).
  • the device to be charged (such as a terminal) can send a reply command of the command 4 to the control unit to feed back the current voltage of the battery of the device to be charged (such as the terminal).
  • the control unit can determine whether the contact of the charging interface is good according to the current voltage of the battery of the device to be charged (such as the terminal), and whether it is necessary to reduce the output current of the second adapter.
  • the instruction 5 (corresponding to the fifth instruction) may be sent to the device to be charged (such as the terminal), the second adapter will exit the second charging mode, and then reset and re-enter the phase 1 .
  • the reply command of the command 1 may carry the path impedance of the device to be charged (such as the terminal). Data (or information).
  • the path impedance data of the device to be charged e.g., the terminal
  • the device to be charged agrees that the second adapter charges the device to be charged (eg, the terminal) in the second charging mode to the control unit to the second adapter
  • the time it takes for the output voltage to adjust to the appropriate charging voltage can be controlled within a certain range. If the time is outside the predetermined range, the second adapter or the device to be charged (such as the terminal) can determine that the fast charge communication process is abnormal, reset to re-enter phase 1.
  • phase 2 when the output voltage of the second adapter is higher than the current voltage of the battery of the device to be charged (eg, terminal) by ⁇ V ( ⁇ V may be set to 200-500 mV), the battery is to be charged.
  • a device (such as a terminal) can send a reply command of instruction 2 to the control unit to indicate that the output voltage of the second adapter matches the battery voltage of the device to be charged (eg, the terminal).
  • the adjustment speed of the output current of the second adapter can be controlled within a certain range, so as to avoid the second adapter in the second charging mode due to the too fast adjustment speed.
  • the output charging process to the charging device (such as the terminal) is abnormal.
  • the magnitude of the change in the output current of the second adapter may be controlled within 5%.
  • the control unit can monitor the path impedance of the charging circuit in real time. Specifically, the control unit may monitor the path impedance of the charging circuit according to the output voltage of the second adapter, the output current, and the current voltage of the battery fed back by the device to be charged (eg, the terminal).
  • the path impedance of the charging circuit > “the path impedance of the device to be charged (such as the terminal) + the impedance of the charging cable”
  • the charging interface is in poor contact, and the second adapter stops at the second charging. Charge the device (such as the terminal) in the mode.
  • the communication time interval between the control unit and the device to be charged may be controlled at Within a certain range, avoid the communication interval is too short and cause an abnormality in the communication process.
  • the stopping of the charging process (or the stopping of the charging process of the device to be charged (such as a terminal) by the second adapter in the second charging mode) may be divided into a recoverable stop and an unrecoverable stop. Two.
  • the charging process is stopped, the charging communication process is reset, and the charging process re-enters Phase 1. Then, the device to be charged (such as the terminal) does not agree that the second adapter charges the device to be charged (such as the terminal) in the second charging mode, and the communication flow does not enter phase 2.
  • the stop of the charging process in this case can be considered as an unrecoverable stop.
  • the charging process is stopped, the charging communication process is reset, and the charging process re-enters Phase 1.
  • the device to be charged eg, the terminal
  • the second adapter charges the device to be charged (eg, the terminal) in the second charging mode to resume the charging process.
  • the stopping of the charging process in this case can be regarded as a recoverable stop.
  • the charging process is stopped, the charging communication process is reset, and the charging process re-enters Phase 1. Then, the device to be charged (such as the terminal) does not agree that the second adapter charges the device to be charged (such as the terminal) in the second charging mode.
  • the device to be charged (such as the terminal) agrees that the second adapter charges the device to be charged (such as the terminal) in the second charging mode.
  • the stop of the fast charge process in this case can be considered as a recoverable stop.
  • the communication steps or operations illustrated above with respect to FIG. 5B are merely examples.
  • the handshake communication between the device to be charged (such as the terminal) and the control unit may also be initiated by the device to be charged (such as the terminal), that is,
  • the device to be charged (such as a terminal) sends an instruction 1 to inquire whether the control unit turns on the second charging mode.
  • the device to be charged such as a terminal
  • the second adapter starts to treat in the second charging mode.
  • the battery of the charging device (such as the terminal) is charged.
  • the second adapter directly loads the output current of the second adapter on both ends of the battery of the device to be charged (eg, the terminal) to directly charge the battery.
  • the direct charging may mean that the output voltage and the output current of the second adapter are directly loaded (or directly directed) to both ends of the battery of the device to be charged (eg, the terminal), and the battery of the device to be charged (such as the terminal) is charged. There is no need to change the output current or output voltage of the second adapter through the conversion circuit in the middle to avoid the energy loss caused by the conversion process.
  • the second adapter can be designed as a smart adapter, and the second adapter completes the conversion of the charging voltage or the charging current, so that It can reduce the burden on the device to be charged (such as the terminal) and reduce the heat generation of the device to be charged.
  • the second adapter 10 of the embodiment of the present invention can operate in a constant current mode.
  • the constant current mode herein refers to a charging mode that controls the output current of the second adapter, and does not require that the output current of the second adapter be kept constant.
  • the second adapter is typically charged in a constant current mode using a piecewise constant current.
  • Multi-stage constant current charging has N charging phases (N is an integer not less than 2).
  • the piecewise constant current charging can start the first stage charging with a predetermined charging current.
  • the N charging phases of the segmented constant current charging are sequentially performed from the first phase to the (N-1)th phase, and when the previous charging phase in the charging phase is transferred to the next charging phase, the charging current value is changed. Small; when the battery voltage reaches the charge termination voltage threshold, the previous charge phase in the charge phase will move to the next charge phase.
  • the output current of the second adapter is a pulsating direct current (or a unidirectional pulsating output current, or a pulsating waveform current, or a sinusoidal current),
  • the waveform of the pulsating direct current is shown in Fig. 6.
  • the constant current mode may refer to a charging mode that controls a peak or a mean value of the pulsating direct current, that is, controls an output current of the second adapter.
  • the peak value does not exceed the current corresponding to the constant current mode, as shown in Figure 7.
  • the output current of the second adapter is an alternating current
  • the alternating current can also reduce the lithium deposition phenomenon of the lithium battery and improve the service life of the battery.
  • the device embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 7.
  • the following describes the method embodiment of the embodiment of the present invention in detail with reference to FIG. 8. It should be understood that the description of the method side corresponds to the description of the device side, It is concise and the duplicate description is omitted as appropriate.
  • FIG. 8 is a schematic flow chart of a charging control method according to an embodiment of the present invention.
  • the method of FIG. 8 may be performed by the second adapter of the above, as may be the second adapter described in FIGS. 1 through 7, in particular, the second adapter includes a power conversion unit for inputting The alternating current is converted to obtain an output voltage and an output current of the second adapter, and the power conversion unit includes a secondary filtering unit.
  • the method of Figure 8 includes the following actions.
  • the second adapter If the second adapter operates in the second charging mode, control the secondary filtering unit to stop working, so that the second adapter outputs alternating current or pulsating direct current.
  • the capacitance in the secondary filtering unit is a solid capacitor.
  • the second adapter charges the charging device faster in the second charging mode than the second adapter in the first charging mode.
  • the charging speed, the method of FIG. 8 may further include: performing two-way communication with the device to be charged during the connection of the second adapter to the device to be charged to control the said in the second charging mode Output of the second adapter
  • the process of performing bidirectional communication with the device to be charged to control an output of the second adapter in the second charging mode comprises: charging with the to-be-charged The device performs two-way communication to negotiate a charging mode between the second adapter and the device to be charged.
  • the two-way communication with the device to be charged to negotiate a charging mode between the second adapter and the device to be charged includes: sending the device to be charged a first instruction, the first instruction is used to query whether the device to be charged turns on the second charging mode, and receives a reply command of the first instruction sent by the device to be charged, An instruction of the command is used to indicate whether the device to be charged agrees to enable the second charging mode; and when the device to be charged agrees to enable the second charging mode, using the second charging mode Tell the charging device to charge.
  • the process of performing bidirectional communication with the device to be charged to control an output of the second adapter in the second charging mode comprises: charging with the to-be-charged The device performs two-way communication to determine a charging voltage output by the second adapter in the second charging mode for charging the device to be charged; adjusting an output voltage of the second adapter to enable The output voltage of the second adapter is equal to a charging voltage output by the second adapter in the second charging mode for charging the device to be charged.
  • the two-way communication with the device to be charged to determine the output of the second adapter in the second charging mode for charging the device to be charged The charging voltage includes: transmitting a second instruction to the device to be charged, the second instruction for querying whether an output voltage of the second adapter matches a current voltage of a battery of the device to be charged; receiving the a reply instruction of the second instruction sent by the charging device, the reply instruction of the second instruction is used to indicate that an output voltage of the second adapter matches a current voltage of the battery, being high or low.
  • the process of performing bidirectional communication with the device to be charged to control an output of the second adapter in the second charging mode comprises: charging with the to-be-charged The device performs two-way communication to determine a charging current output by the second adapter in the second charging mode for charging the device to be charged; and adjusting an output current of the second adapter to enable The output current of the second adapter is equal to a charging current output by the second adapter in the second charging mode for charging the device to be charged.
  • the two-way communication with the device to be charged to determine the output of the second adapter in the second charging mode for charging the device to be charged The charging current includes: sending a third instruction to the device to be charged, the third instruction is used to query a maximum charging current currently supported by the device to be charged; and receiving the third instruction sent by the device to be charged Responding instruction, the reply instruction of the third instruction is used to indicate a maximum charging current currently supported by the device to be charged; and determining a location in the second charging mode according to a maximum charging current currently supported by the device to be charged a charging current output by the second adapter for charging the device to be charged.
  • the two-way communication with the device to be charged is controlled a process of preparing an output of the second adapter in the second charging mode, comprising: performing two-way communication with the device to be charged during charging using the second charging mode to adjust the The output current of the second adapter.
  • the two-way communication with the device to be charged to adjust an output current of the second adapter includes: a fourth instruction sent to the device to be charged, the The fourth command is used to query the current voltage of the battery of the device to be charged; the reply command of the fourth command sent by the second adapter is received, and the reply command of the fourth command is used to indicate the current voltage of the battery And adjusting an output current of the second adapter according to a current voltage of the battery.
  • the second adapter includes a charging interface
  • the control unit performs two-way communication with the device to be charged through a data line in the charging interface.
  • the output current of the second adapter is a pulsating direct current.
  • an output current of the second adapter is an alternating current.
  • an output voltage and an output current of the second adapter are directly loaded on both ends of the battery of the device to be charged, and the battery is directly Charge.
  • the second adapter comprises a control unit for controlling the charging process, the control unit being a micro control unit MCU.
  • the second adapter includes a charging interface
  • the charging interface is a universal serial bus USB interface.
  • first adapter and second adapter herein are for convenience of description only, and are not intended to limit the specific types of adapters of the embodiments of the present invention.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Theoretical Computer Science (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Rectifiers (AREA)

Abstract

一种适配器(10)和充电控制方法,该适配器(10)包括:功率转换单元(11),用于对输入的交流电进行转换,以得到适配器(10)的输出电压和输出电流,功率转换单元(11)包括次级滤波单元;控制单元(12),与次级滤波单元相连,在适配器(10)工作在第一充电模式的情况下,控制单元(12)控制次级滤波单元工作,使得适配器(10)输出恒定直流电,在适配器(10)工作在第二充电模式的情况下,控制单元(12)控制次级滤波单元停止工作,使得适配器(10)输出交流电或者脉动直流电。该适配器(10)能够降低电池的析锂现象,提高电池的使用寿命。

Description

适配器和充电控制方法 技术领域
本发明实施例涉及充电领域,并且更具体地,涉及一种适配器和充电控制方法。
背景技术
适配器又称为电源适配器,用于为待充电设备(如终端)进行充电。目前市面上的适配器通常采用恒压的方式为待充电设备(如终端)进行充电。由于待充电设备中的电池一般为锂电池,使用恒压的方式为待充电设备进行充电容易造成析锂现象,导致电池的寿命降低。
发明内容
本发明实施例提供一种适配器和充电控制方法,以降低电池的析锂现象,提高电池的使用寿命。
第一方面,提供一种适配器,所述适配器支持第一充电模式和第二充电模式,所述适配器包括:功率转换单元,用于对输入的交流电进行转换,以得到所述适配器的输出电压和输出电流,所述功率转换单元包括次级滤波单元;控制单元,与所述次级滤波单元相连,在所述适配器工作在所述第一充电模式的情况下,所述控制单元控制所述次级滤波单元工作,使得所述适配器输出恒定直流电,在所述适配器工作在所述第二充电模式的情况下,所述控制单元控制所述次级滤波单元停止工作,使得所述适配器输出交流电或者脉动直流电。
第二方面,提供一种充电控制方法,所述方法应用于适配器,所述适配器包括功率转换单元,所述功率转换单元用于对输入的交流电进行转换,以得到所述适配器的输出电压和输出电流,所述功率转换单元包括次级滤波单元,所述方法包括:在所述适配器工作在第一充电模式的情况下,控制所述适配器的次级滤波单元工作,使得所述适配器输出恒定直流电;在所述适配器工作在第二充电模式的情况下,控制所述次级滤波单元停止工作,使得所述适配器输出交流电或脉动直流电。
本发明实施例的适配器在输出交流电或者脉动直流电为电池充电时,能 够降低电池的析锂现象,减少充电接口的触点的拉弧的概率和强度,提高充电接口的寿命,此外,本发明实施例的适配器还能够在不同的充电模式之间灵活切换。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例的第二适配器的示意性结构图。
图2A和图2B是本发明实施例的脉动波形的示意图。
图3是本发明另一实施例的第二适配器的示意性结构图。
图4是本发明又一实施例的第二适配器的示意性结构图。
图5A是本发明实施例的第二适配器与待充电设备的连接方式示意图。
图5B是本发明实施例的快充通信过程的示意图。
图6是脉动直流电的电流波形示意图。
图7是本发明实施例的恒流模式下的脉动直流电的示意图。
图8是本发明实施例的充电控制方法的示意性流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
相关技术中提到了用于为待充电设备(如终端)进行充电的一第一适配器。该第一适配器工作在恒压模式下。在恒压模式下,该第一适配器输出的电压基本维持恒定,比如5V,9V,12V或20V等。
该第一适配器输出的电压并不适合直接加载到电池两端,而是需要先经过待充电设备(如终端)内的变换电路进行变换,以得到待充电设备(如终端)内的电池所预期的充电电压和/或充电电流。
变换电路用于对第一适配器输出的电压进行变换,以满足电池所预期的 充电电压和/或充电电流的需求。
作为一种示例,该变换电路可指充电管理模块,例如充电集成电路(integrated circuit,IC)。在电池的充电过程中,用于对电池的充电电压和/或充电电流进行管理。该变换电路具有电压反馈模块的功能,和/或,具有电流反馈模块的功能,以实现对电池的充电电压和/或充电电流的管理。
举例来说,电池的充电过程可包括涓流充电阶段,恒流充电阶段和恒压充电阶段中的一个或者多个。在涓流充电阶段,变换电路可利用电流反馈环使得在涓流充电阶段进入到电池的电流满足电池所预期的充电电流大小(譬如第一充电电流)。在恒流充电阶段,变换电路可利用电流反馈环使得在恒流充电阶段进入电池的电流满足电池所预期的充电电流大小(譬如第二充电电流,该第二充电电流可大于第一充电电流)。在恒压充电阶段,变换电路可利用电压反馈环使得在恒压充电阶段加载到电池两端的电压满足电池所预期的充电电压大小。
作为一种示例,当第一适配器输出的电压大于电池所预期的充电电压时,变换电路可用于对第一适配器输出的电压进行降压处理,以使降压转换后得到的充电电压满足电池所预期的充电电压需求。作为又一种示例,当第一适配器输出的电压小于电池所预期的充电电压时,变换电路可用于对第一适配器输出的电压进行升压处理,以使升压转换后得到的充电电压满足电池所预期的充电电压需求。
作为又一示例,以第一适配器输出5V恒定电压为例,当电池包括单个电芯(以锂电池电芯为例,单个电芯的充电截止电压为4.2V)时,变换电路(例如Buck降压电路)可对第一适配器输出的电压进行降压处理,以使得降压后得到的充电电压满足电池所预期的充电电压需求。
作为又一示例,以第一适配器输出5V恒定电压为例,当第一适配器为串联有两个及两个以上单电芯的电池(以锂电池电芯为例,单个电芯的充电截止电压为4.2V)充电时,变换电路(例如Boost升压电路)可对第一适配器输出的电压进行升压处理,以使得升压后得到的充电电压满足电池所预期的充电电压需求。
变换电路受限于电路转换效率低下的原因,致使未被转换部分的电能以热量的形式散失。这部分热量会聚焦在待充电设备(如终端)内部。待充电设备(如终端)的设计空间和散热空间都很小(例如,用户使用的移动终端 物理尺寸越来越轻薄,同时移动终端内密集排布了大量的电子元器件以提升移动终端的性能),这不但提升了变换电路的设计难度,还会导致聚焦在待充电设备(如终端)内的热量很难及时移除,进而引发待充电设备(如终端)的异常。
例如,变换电路上聚集的热量可能会对变换电路附近的电子元器件造成热干扰,引发电子元器件的工作异常。又如,变换电路上聚集的热量,可能会缩短变换电路及附近电子元件的使用寿命。又如,变换电路上聚集的热量,可能会对电池造成热干扰,进而导致电池充放电异常。又如变换电路上聚集的热量,可能会导致待充电设备(如终端)的温度升高,影响用户在充电时的使用体验。又如,变换电路上聚集的热量,可能会导致变换电路自身的短路,使得第一适配器输出的电压直接加载在电池两端而引起充电异常,如果电池长时间处于过压充电状态,甚至会引发电池的爆炸,危及用户安全。
本发明实施例提供一种输出电压可调的第二适配器。该第二适配器能够获取电池的状态信息。电池的状态信息可以包括电池当前的电量信息和/或电压信息。该第二适配器可以根据获取到的电池的状态信息来调节第二适配器自身的输出电压,以满足电池所预期的充电电压和/或充电电流的需求。进一步地,在电池充电过程的恒流充电阶段,第二适配器调节后输出的电压可直接加载在电池的两端为电池充电。
该第二适配器可以具有电压反馈模块的功能和电流反馈模块的功能,以实现对电池的充电电压和/或充电电流的管理。
该第二适配器根据获取到的电池的状态信息来调节第二适配器自身的输出电压可以指:该第二适配器能够实时获取到电池的状态信息,并根据每次所获取到的电池的实时状态信息来调节第二适配器自身输出的电压,以满足电池所预期的充电电压和/或充电电流。
该第二适配器根据实时获取到的电池的状态信息来调节第二适配器自身的输出电压可以指:随着充电过程中电池电压的不断上升,第二适配器能够获取到充电过程中不同时刻电池的当前状态信息,并根据电池的当前状态信息来实时调节第二适配器自身的输出电压,以满足电池所预期的充电电压和/或充电电流的需求。
举例来说,电池的充电过程可包括涓流充电阶段,恒流充电阶段和恒压充电阶段中的一个或者多个。在涓流充电阶段,第二适配器可利用电流反馈 环使得在涓流充电阶段由第二适配器输出且进入电池的电流满足电池所预期的充电电流的需求(譬如第一充电电流)。在恒流充电阶段,第二适配器可利用电流反馈环使得在恒流充电阶段由第二适配器输出且进入到电池的电流满足电池所预期的充电电流的需求(譬如第二充电电流,该第二充电电流可大于第一充电电流),并且,在恒流充电阶段,第二适配器可以将输出的充电电压直接加载在电池两端为电池充电。在恒压充电阶段,第二适配器可利用电压反馈环使得在恒压充电阶段由第二适配器输出的电压满足电池所预期的充电电压的需求。
对于涓流充电阶段和恒压充电阶段,第二适配器输出的电压可以采用类似第一适配器的处理方式,即经过待充电设备(如终端)内的变换电路进行变换,以得到待充电设备(如终端)内的电池所预期的充电电压和/或充电电流。
图1是本发明实施例的第二适配器的示意性结构图。图1的第二适配器10包括功率转换单元11和控制单元12。
功率转换单元11用于对输入的交流电进行转换,以得到第二适配器10的输出电压和输出电流,该功率转换单元11包括次级滤波单元;
控制单元12与次级滤波单元相连,在第二适配器10工作在第一充电模式的情况下,控制单元12控制次级滤波单元工作,使得第二适配器10输出恒定直流电,在第二适配器工作在第二充电模式的情况下,控制单元12控制次级滤波单元停止工作,使得第二适配器10输出交流电或者脉动直流电。
可选地,在一些实施例中,上述第一充电模式可以为恒压模式。
可选地,在一些实施例中,上述第二充电模式可以为恒流模式。
本发明实施例的第二适配器在输出交流电或者脉动直流电为电池充电时,能够降低电池的析锂现象,减少充电接口的触点的拉弧的概率和强度,提高充电接口的寿命,此外,本发明实施例的第二适配器还能够在不同的充电模式之间灵活切换。
上文指出,第二适配器在第二充电模式下可以输出交流电或者脉动直流电(也就是脉动波形的电流),这里的脉动波形可以是完整的脉动波形,也可以是将完整的脉动波形的进行削峰处理之后得到的脉动波形。所谓削峰处理可指将脉动波形中的超过某一阈值的部分滤掉,从而实现对脉动波形峰值的控制。在图2A所示的实施例中,脉动波形为完整的脉动波形,在图2B 所示的实施例中,脉动波形为经过削峰处理之后的脉动波形。
应理解,当第二适配器10工作在第一充电模式时,次级滤波单元正常工作,功率转换单元11的初级耦合至次级的电流经过整流后还要经过次级滤波单元的滤波处理,然后输出恒定直流电(或称电流值稳定的电流)。当第二适配器10工作在第二充电模式时,次级滤波单元停止工作,在一些实施例中,可以将功率转换单元11的初级耦合至次级的电流直接输出或经过简单处理之后输出,此时第二适配器10的输出电流可以是交流电,在另一些实施例中,可以对功率转换单元11的初级耦合至次级的电流进行整流,然后将整流后的电流经过简单处理之后输出,此时第二适配器10的输出电流为脉动直流电。
本发明实施例的第二适配器10可以为待充电设备(如终端)充电。本发明实施例中所使用到的待充电设备可以是“通信终端”(或简称为“终端”),包括但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
在一些实施例中,第二适配器10可以包括充电接口,但本发明实施例对充电接口的类型不作具体限定,例如,可以是通用串行总线(Universal Serial Bus,USB)接口,所述USB接口可以是标准USB接口,也可以是micro USB接口,还可以是Type-C接口。
在一些实施例中,控制单元12还可以对充电过程进行控制,以提高第二适配器的智能程度。具体地,该控制单元12可用于与待充电设备(如终端)进行双向通信,以获取待充电设备(如终端)的指令或状态信息(如待充电设备(如终端)电池的当前电压、待充电设备(如终端)的温度等),从而基于待充电设备(如终端)的指令或状态信号控制第二适配器的充电过程。进一步地,在一些实施例中,该控制单元12可以是微控制单元(Microcontroller Unit,MCU),但本发明实施例不限于此,控制单元12还可以是其他类型的芯片或电路。
可选地,在一些实施例中,次级滤波单元中的电容为固态电容。应理解,该固态电容的数量可以为一个也可以为多个。
进一步地,上述次级滤波单元可以包括多个固态电容,该多个固态电容均可与第二适配器的次级母线和地相连。以图3为例,次级滤波单元可以包括4个固态电容,这4个固态电容并联在一起。应理解,图3中的次级滤波单元只是一个具体的例子,次级滤波单元中包含的固态电容的数目也可以是其它的数值,本发明实施例对此不做限制。在次级滤波单元中的电容的总容量一定的情况下,通过采用多个并联的小电容,能够有效地降低电容的等效电阻和等效电感,使得次级滤波单元输出的直流电更加平稳。
另外,次级滤波单元中的电容的容量和/或个数可以基于第二适配器在第一充电模式下允许输出的最大电流确定,在第一充电模式下,如果希望提高第二适配器允许输出的最大电流,可以增加次级滤波单元中的电容的容量和/或个数。
可选地,在一些实施例中,第二适配器的VBUS端还可以连接一些陶瓷电容,以滤除第二适配器的输出电压和输出电流中的杂波。
如图4所示,控制单元12可以通过MOS管与次级滤波单元相连,在图4中,MOS管的栅极与控制单元12相连,MOS管的源极接地,MOS管的漏极与次级滤波单元中的电容的一端相连。控制单元12可以通过输出PWM信号来控制MOS管的通断,例如,当PWM信号为高电平时,MOS管的源极和漏极导通,次级滤波单元处于工作状态,当PWM信号为低电平时,MOS管的源极和漏极不导通,次级滤波单元处于停止工作状态。
应理解,本发明实施例中的控制单元12还可以通过除PWM信号之外的其它类型的信号来控制MOS管的通断。上述MOS管可以是N沟道增强 型MOS管,也可以为其它类型的MOS管。另外,控制单元12还可以采用其它能够起到开关作用的器件来控制次级滤波单元是否工作,本发明实施例对此不做限制。
可选地,在一些实施例中,第二适配器10可以支持第一充电模式和第二充电模式。第二适配器10在第二充电模式下对待充电设备(如终端)的充电速度快于第二适配器10在第一充电模式下对待充电设备(如终端)的充电速度。换句话说,相较于工作在第一充电模式下的第二适配器10来说,工作在第二充电模式下的第二适配器10充满相同容量的待充电设备(如终端)中的电池的耗时更短。
第二适配器10包括控制单元,在第二适配器10与待充电设备(如终端)连接的过程中,控制单元与待充电设备(如终端)进行双向通信,以控制第二充电模式的充电过程。该控制单元可以是上述任意实施例中的控制单元,如可以是第一调整单元中的控制单元,也可以是第二调整单元中的控制单元。
第一充电模式可为普通充电模式,第二充电模式可为快速充电模式。该普通充电模式是指第二适配器输出相对较小的电流值(通常小于2.5A)或者以相对较小的功率(通常小于15W)来对待充电设备(如终端)中的电池进行充电,在普通充电模式下想要完全充满一较大容量电池(如3000毫安时容量的电池),通常需要花费数个小时的时间;而在快速充电模式下,第二适配器能够输出相对较大的电流(通常大于2.5A,比如4.5A,5A甚至更高)或者以相对较大的功率(通常大于等于15W)来对待充电设备(如终端)中的电池进行充电,相较于普通充电模式而言,第二适配器在快速充电模式下完全充满相同容量电池所需要的充电时间能够明显缩短、充电速度更快。
本发明实施例对第二适配器的控制单元与待充电设备(如终端)的通信内容,以及控制单元对第二适配器在第二充电模式下的输出的控制方式不作具体限定,例如,控制单元可以与待充电设备(如终端)通信,交互待充电设备(如终端)中的电池的当前电压或当前电量,并基于电池的当前电压或当前电量调整第二适配器的输出电压或输出电流。下面结合具体的实施例对控制单元与待充电设备(如终端)之间的通信内容,以及控制单元对在第二充电模式下的第二适配器的输出的控制方式进行详细描述。
可选地,在一些实施例中,控制单元与待充电设备(如终端)进行双向 通信,以控制在第二充电模式下的第二适配器的输出的过程可包括:控制单元与待充电设备(如终端)进行双向通信,以协商第二适配器与待充电设备(如终端)之间的充电模式。
本发明实施例中,第二适配器并非盲目地采用第二充电模式对待充电设备(如终端)进行快速充电,而是与待充电设备(如终端)进行双向通信,协商第二适配器是否可以采用第二充电模式对待充电设备(如终端)进行快速充电,这样能够提升充电过程的安全性。
具体地,控制单元与待充电设备(如终端)进行双向通信,以协商第二适配器与待充电设备(如终端)之间的充电模式可包括:控制单元向待充电设备(如终端)发送第一指令,第一指令用于询问待充电设备(如终端)是否开启第二充电模式;控制单元接收待充电设备(如终端)发送的针对所述第一指令的回复指令,回复指令用于指示待充电设备(如终端)是否同意开启第二充电模式;在待充电设备(如终端)同意开启第二充电模式的情况下,控制单元使用第二充电模式为待充电设备(如终端)充电。
本发明实施例的上述描述并不会对第二适配器(或者第二适配器的控制单元)与待充电设备(如终端)的主从性进行限定,换句话说,控制单元与待充电设备(如终端)中的任何一方均可作为主设备方发起双向通信会话,相应地另外一方可以作为从设备方对主设备方发起的通信做出第一响应或第一回复。作为一种可行的方式,可以在通信过程中,通过比较第二适配器侧和待充电设备(如终端)侧相对于大地的电平高低来确认主、从设备的身份。
本发明实施例并未对第二适配器(或者第二适配器的控制单元)与待充电设备(如终端)之间双向通信的具体实现方式作出限制,即言,第二适配器(或者第二适配器的控制单元)与待充电设备(如终端)中的任何一方作为主设备方发起通信会话,相应地另外一方作为从设备方对主设备方发起的通信会话做出第一响应或第一回复,同时主设备方能够针对所述从设备方的第一响应或第一回复做出第二响应,即可认为主、从设备之间完成了一次充电模式的协商过程。作为一种可行的实施方式,主、从设备方之间可以在完成多次充电模式的协商后,再执行主、从设备方之间的充电操作,以确保协商后的充电过程安全、可靠的被执行。
作为主设备方能够根据所述从设备方针对通信会话的第一响应或第一 回复做出第二响应的一种方式可以是:主设备方能够接收到所述从设备方针对通信会话所做出的第一响应或第一回复,并根据接收到的所述从设备的第一响应或第一回复做出针对性的第二响应。作为举例,当主设备方在预设的时间内接收到所述从设备方针对通信会话的第一响应或第一回复,主设备方会对所述从设备的第一响应或第一回复做出针对性的第二响应具体为:主设备方与从设备方完成了一次充电模式的协商,主设备方与从设备方之间根据协商结果按照第一充电模式或者第二充电模式执行充电操作,即第二适配器根据协商结果工作在第一充电模式或者第二充电模式下为待充电设备(如终端)充电。
作为主设备方能够根据所述从设备方针对通信会话的第一响应或第一回复做出进一步的第二响应的一种方式还可以是:主设备方在预设的时间内没有接收到所述从设备方针对通信会话的第一响应或第一回复,主设备方也会对所述从设备的第一响应或第一回复做出针对性的第二响应。作为举例,当主设备方在预设的时间内没有接收到所述从设备方针对通信会话的第一响应或第一回复,主设备方也会对所述从设备的第一响应或第一回复做出针对性的第二响应具体为:主设备方与从设备方完成了一次充电模式的协商,主设备方与从设备方之间按照第一充电模式执行充电操作,即第二适配器工作在第一充电模式下为待充电设备(如终端)充电。
可选地,在一些实施例中,当待充电设备(如终端)作为主设备发起通信会话,第二适配器(或者第二适配器的控制单元)作为从设备对主设备方发起的通信会话做出第一响应或第一回复后,无需要待充电设备(如终端)对第二适配器的第一响应或第一回复做出针对性的第二响应,即可认为第二适配器(或者第二适配器的控制单元)与待充电设备(如终端)之间完成了一次充电模式的协商过程,进而第二适配器能够根据协商结果确定以第一充电模式或者第二充电模式为待充电设备(如终端)进行充电。
可选地,在一些实施例中,控制单元与待充电设备(如终端)进行双向通信,以控制第二适配器在第二充电模式下的输出的过程可包括:控制单元与待充电设备(如终端)进行双向通信,以确定在第二充电模式下的第二适配器输出的用于对待充电设备(如终端)进行充电的充电电压;控制单元对第二适配器的输出电压进行调整,使第二适配器的输出电压(或第二适配器的输出电压的峰值)等于在第二充电模式下的第二适配器输出的用于对待充 电设备(如终端)进行充电的充电电压。
具体地,控制单元与待充电设备(如终端)进行双向通信,以确定在第二充电模式下的第二适配器输出的用于对待充电设备(如终端)进行充电的充电电压可包括:控制单元向待充电设备(如终端)发送第二指令,第二指令用于询问第二适配器的输出电压与待充电设备(如终端)的电池的当前电压是否匹配;控制单元接收待充电设备(如终端)发送的第二指令的回复指令,第二指令的回复指令用于指示第二适配器的输出电压与电池的当前电压匹配、偏高或偏低。可替换地,第二指令可用于询问将第二适配器的当前输出电压作为在第二充电模式下的第二适配器输出的用于对待充电设备(如终端)进行充电的充电电压是否合适,第二指令的回复指令可用于指示当前第二适配器的输出电压合适、偏高或偏低。第二适配器的当前输出电压与电池的当前电压匹配,或者第二适配器的当前输出电压适合作为在第二充电模式下的第二适配器输出的用于对待充电设备(如终端)进行充电的充电电压可以指第二适配器的当前输出电压(或当前输出电压的峰值)略高于电池的当前电压,且第二适配器的输出电压(或当前输出电压的峰值)与电池的当前电压之间的差值在预设范围内(通常在几百毫伏的量级)。
可选地,在一些实施例中,控制单元与待充电设备(如终端)进行双向通信,以控制在第二充电模式下的第二适配器输出的充电过程可包括:控制单元与待充电设备(如终端)进行双向通信,以确定在第二充电模式下的第二适配器输出的用于对待充电设备(如终端)进行充电的充电电流;控制单元对第二适配器的输出电流(或第二适配器的输出电流的峰值)进行调整,使第二适配器的输出电流(或第二适配器的输出电流的峰值)等于在第二充电模式下的第二适配器输出的用于对待充电设备进行充电的充电电流。
具体地,控制单元与待充电设备(如终端)进行双向通信,以确定在第二充电模式下的第二适配器输出的用于对待充电设备(如终端)进行充电的充电电流可包括:控制单元向待充电设备(如终端)发送第三指令,第三指令用于询问待充电设备(如终端)当前支持的最大充电电流;控制单元接收待充电设备(如终端)发送的第三指令的回复指令,第三指令的回复指令用于指示待充电设备(如终端)当前支持的最大充电电流;控制单元根据待充电设备(如终端)当前支持的最大充电电流确定在第二充电模式下的第二适配器输出的用于对待充电设备(如终端)进行充电的充电电流。应理解,控 制单元根据待充电设备(如终端)当前支持的最大充电电流确定在第二充电模式下的第二适配器输出的用于对待充电设备(如终端)进行充电的充电电流的方式有多种,例如,第二适配器可以将待充电设备(如终端)当前支持的最大充电电流确定为在第二充电模式下的第二适配器输出的用于对待充电设备(如终端)进行充电的充电电流(或充电电流的峰值),也可以综合考虑待充电设备(如终端)当前支持的最大充电电流以及自身的电流输出能力等因素之后,确定在第二充电模式下的第二适配器输出的用于对待充电设备(如终端)进行充电的充电电流。
可选地,在一些实施例中,控制单元与待充电设备(如终端)进行双向通信,以控制在第二充电模式下的第二适配器的输出的过程可包括:在第二适配器使用第二充电模式为待充电设备(如终端)进行充电的过程中,控制单元与待充电设备(如终端)进行双向通信,以调整第二适配器的输出电流。
具体地,控制单元与待充电设备(如终端)进行双向通信,以调整第二适配器的输出电流可包括:控制单元向待充电设备(如终端)发送第四指令,第四指令用于询问待充电设备(如终端)的电池的当前电压;控制单元接收第二适配器发送的第四指令的回复指令,第四指令的回复指令用于指示电池的当前电压;控制单元根据电池的当前电压,调整第二适配器的输出电流。
可选地,在一些实施例中,如图5A所示,第二适配器10包括充电接口51。进一步地,在一些实施例中,第二适配器10中的控制单元可通过充电接口51中的数据线52与待充电设备(如终端)进行双向通信。
可选地,在一些实施例中,控制单元与待充电设备(如终端)进行双向通信,以控制在第二充电模式下第二适配器的输出的过程可包括:控制单元与待充电设备(如终端)进行双向通信,以确定充电接口是否接触不良。
具体地,控制单元与待充电设备(如终端)进行双向通信,以便确定充电接口是否接触不良可包括:控制单元向待充电设备(如终端)发送第四指令,第四指令用于询问待充电设备(如终端)的电池的当前电压;控制单元接收待充电设备(如终端)发送的第四指令的回复指令,第四指令的回复指令用于指示待充电设备(如终端)的电池的当前电压;控制单元根据第二适配器的输出电压和待充电设备(如终端)电池的当前电压,确定充电接口是否接触不良。例如,控制单元确定第二适配器的输出电压和待充电设备(如终端)的当前电压的压差大于预设的电压阈值,则表明此时压差除以第二适 配器输出的当前电流值所得到的阻抗大于预设的阻抗阈值,即可确定充电接口接触不良。
可选地,在一些实施例中,充电接口接触不良也可由待充电设备(如终端)进行确定:待充电设备(如终端)向控制单元发送第六指令,第六指令用于询问第二适配器的输出电压;待充电设备(如终端)接收控制单元发送的第六指令的回复指令,第六指令的回复指令用于指示第二适配器的输出电压;待充电设备(如终端)根据待充电设备(如终端)电池的当前电压和第二适配器的输出电压,确定充电接口是否接触不良。在待充电设备(如终端)确定充电接口接触不良后,待充电设备(如终端)向控制单元发送第五指令,第五指令用于指示充电接口接触不良。控制单元在接收到第五指令之后,可以控制第二适配器退出第二充电模式。
下面结合图5B,更加详细地描述第二适配器中的控制单元与待充电设备(如终端)之间的通信过程。应注意,图5B的例子仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图5B的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
如图5B所示,在第二充电模式下第二适配器的输出对待充电设备(如终端)的充电过程,即充电过程可以包含五个阶段。
阶段1:
待充电设备(如终端)与电源提供装置连接后,待充电设备(如终端)可以通过数据线D+、D-检测电源提供装置的类型,当检测到电源提供装置为第二适配器时,则待充电设备(如终端)吸收的电流可以大于预设的电流阈值I2(例如可以是1A)。当第二适配器中的控制单元检测到预设时长(例如,可以是连续T1时间)内第二适配器的输出电流大于或等于I2时,则控制单元可以认为待充电设备(如终端)对于电源提供装置的类型识别已经完成,控制单元开启第二适配器与待充电设备(如终端)之间的协商过程,向待充电设备(如终端)发送指令1(对应于上述第一指令),以询问待充电设备(如终端)是否同意第二适配器以第二充电模式对待充电设备(如终端)进行充电。
当控制单元收到待充电设备(如终端)发送的指令1的回复指令,且该指令1的回复指令指示待充电设备(如终端)不同意第二适配器以第二充电 模式对待充电设备(如终端)进行充电时,控制单元再次检测第二适配器的输出电流。当第二适配器的输出电流在预设的连续时长内(例如,可以是连续T1时间)仍然大于或等于I2时,控制单元再次向待充电设备(如终端)发送指令1,询问待充电设备(如终端)是否同意第二适配器以第二充电模式对待充电设备(如终端)进行充电。控制单元重复阶段1的上述步骤,直到待充电设备(如终端)同意第二适配器以第二充电模式对待充电设备(如终端)进行充电,或第二适配器的输出电流不再满足大于或等于I2的条件。
当待充电设备(如终端)同意第二适配器以第二充电模式对待充电设备(如终端)进行充电后,通信流程进入第2阶段。
阶段2:
第二适配器的输出电压可以包括多个档位。控制单元向待充电设备(如终端)发送指令2(对应于上述第二指令),以询问第二适配器的输出电压(当前的输出电压)与待充电设备(如终端)电池的当前电压是否匹配。
待充电设备(如终端)向控制单元发送指令2的回复指令,以指示第二适配器的输出电压与待充电设备(如终端)电池的当前电压匹配、偏高或偏低。如果针对指令2的回复指令指示第二适配器的输出电压偏高或偏低,控制单元可以将第二适配器的输出电压调整一格档位,并再次向待充电设备(如终端)发送指令2,重新询问第二适配器的输出电压与待充电设备(如终端)电池的当前电压是否匹配。重复阶段2的上述步骤直到待充电设备(如终端)确定第二适配器的输出电压与待充电设备(如终端)电池的当前电压匹配,进入第3阶段。
阶段3:
控制单元向待充电设备(如终端)发送指令3(对应于上述第三指令),询问待充电设备(如终端)当前支持的最大充电电流。待充电设备(如终端)向控制单元发送指令3的回复指令,以指示待充电设备(如终端)当前支持的最大充电电流,并进入第4阶段。
阶段4:
控制单元根据待充电设备(如终端)当前支持的最大充电电流,确定在第二充电模式下第二适配器输出的用于对待充电设备(如终端)进行充电的充电电流,然后进入阶段5,即恒流充电阶段。
阶段5:
在进入恒流充电阶段后,控制单元可以每间隔一段时间向待充电设备(如终端)发送指令4(对应于上述第四指令),询问待充电设备(如终端)电池的当前电压。待充电设备(如终端)可以向控制单元发送指令4的回复指令,以反馈待充电设备(如终端)电池的当前电压。控制单元可以根据待充电设备(如终端)电池的当前电压,判断充电接口的接触是否良好,以及是否需要降低第二适配器的输出电流。当第二适配器判断充电接口的接触不良时,可以向待充电设备(如终端)发送指令5(对应于上述第五指令),第二适配器会退出第二充电模式,然后复位并重新进入阶段1。
可选地,在一些实施例中,在阶段1中,待充电设备(如终端)发送指令1的回复指令时,指令1的回复指令中可以携带该待充电设备(如终端)的通路阻抗的数据(或信息)。待充电设备(如终端)的通路阻抗数据可用于在阶段5判断充电接口的接触是否良好。
可选地,在一些实施例中,在阶段2中,从待充电设备(如终端)同意第二适配器在第二充电模式下对待充电设备(如终端)进行充电到控制单元将第二适配器的输出电压调整到合适的充电电压所经历的时间可以控制在一定范围之内。如果该时间超出预定范围,则第二适配器或待充电设备(如终端)可以判定快充通信过程异常,复位以重新进入阶段1。
可选地,在一些实施例中,在阶段2中,当第二适配器的输出电压比待充电设备(如终端)电池的当前电压高ΔV(ΔV可以设定为200~500mV)时,待充电设备(如终端)可以向控制单元发送指令2的回复指令,以指示第二适配器的输出电压与待充电设备(如终端)的电池电压匹配。
可选地,在一些实施例中,在阶段4中,第二适配器的输出电流的调整速度可以控制一定范围之内,这样可以避免由于调整速度过快而导致在第二充电模式下第二适配器输出对待充电设备(如终端)的充电过程发生异常。
可选地,在一些实施例中,在阶段5中,第二适配器的输出电流的变化幅度可以控制在5%以内。
可选地,在一些实施例中,在阶段5中,控制单元可以实时监测充电电路的通路阻抗。具体地,控制单元可以根据第二适配器的输出电压、输出电流及待充电设备(如终端)反馈的电池的当前电压,监测充电电路的通路阻抗。当“充电电路的通路阻抗”>“待充电设备(如终端)的通路阻抗+充电线缆的阻抗”时,可以认为充电接口接触不良,第二适配器停止在第二充电 模式下对待充电设备(如终端)进行充电。
可选地,在一些实施例中,第二适配器开启在第二充电模式下对待充电设备(如终端)进行充电之后,控制单元与待充电设备(如终端)之间的通信时间间隔可以控制在一定范围之内,避免通信间隔过短而导致通信过程发生异常。
可选地,在一些实施例中,充电过程的停止(或第二适配器在第二充电模式下对待充电设备(如终端)的充电过程的停止)可以分为可恢复的停止和不可恢复的停止两种。
例如,当检测到待充电设备(如终端)的电池充满或充电接口接触不良时,充电过程停止,充电通信过程复位,充电过程重新进入阶段1。然后,待充电设备(如终端)不同意第二适配器在第二充电模式下对待充电设备(如终端)进行充电,则通信流程不进入阶段2。这种情况下的充电过程的停止可以视为不可恢复的停止。
又例如,当控制单元与待充电设备(如终端)之间出现通信异常时,充电过程停止,充电通信过程复位,充电过程重新进入阶段1。在满足阶段1的要求后,待充电设备(如终端)同意第二适配器在第二充电模式下对待充电设备(如终端)进行充电以恢复充电过程。这种情况下的充电过程的停止可以视为可恢复的停止。
又例如,当待充电设备(如终端)检测到电池出现异常时,充电过程停止,充电通信过程复位,充电过程重新进入阶段1。然后,待充电设备(如终端)不同意第二适配器在第二充电模式下对待充电设备(如终端)进行充电。当电池恢复正常,且满足阶段1的要求后,待充电设备(如终端)同意第二适配器在第二充电模式下对待充电设备(如终端)进行充电。这种情况下的快充过程的停止可以视为可恢复的停止。
以上对图5B示出的通信步骤或操作仅是示例。例如,在阶段1中,待充电设备(如终端)与第二适配器进行连接后,待充电设备(如终端)与控制单元之间的握手通信也可以由待充电设备(如终端)发起,即待充电设备(如终端)发送指令1,询问控制单元是否开启第二充电模式。当待充电设备(如终端)接收到控制单元的回复指令指示控制单元同意第二适配器在第二充电模式下对待充电设备(如终端)进行充电时,第二适配器开始在第二充电模式下对待充电设备(如终端)的电池进行充电。
又如,在阶段5之后,还可包括恒压充电阶段。具体地,在阶段5中,待充电设备(如终端)可以向控制单元反馈电池的当前电压,当电池的当前电压达到恒压充电电压阈值时,充电阶段从恒流充电阶段转入恒压充电阶段。在恒压充电阶段中,充电电流逐渐减小,当电流下降至某一阈值时停止整个充电过程,表示待充电设备(如终端)的电池已经被充满。
可选地,在一些实施例中,第二适配器将第二适配器的输出电流直接加载在待充电设备(如终端)的电池的两端,为电池进行直充。
具体地,直充可以指将第二适配器的输出电压和输出电流直接加载在(或者直接引导至)待充电设备(如终端)电池的两端,为待充电设备(如终端)的电池充电,中间无需经过变换电路对第二适配器的输出电流或输出电压进行变换,避免变换过程带来的能量损失。在使用第二充电模式进行充电的过程中,为了能够调整充电电路上的充电电压或充电电流,可以将第二适配器设计成智能的适配器,由第二适配器完成充电电压或充电电流的变换,这样可以减轻待充电设备(如终端)的负担,并降低待充电设备的发热量。
本发明实施例的第二适配器10可以工作在恒流模式。本文中的恒流模式是指对第二适配器的输出电流进行控制的充电模式,并非要求第二适配器的输出电流保持恒定不变。实际中,第二适配器在恒流模式下通常采用分段恒流的方式进行充电。
分段恒流充电(Multi-stage constant current charging)具有N个充电阶段(N为一个不小于2的整数)。分段恒流充电可以以预定的充电电流开始第一阶段充电。所述分段恒流充电的N个充电阶段从第一阶段到第(N-1)个阶段依次被执行,当充电阶段中的前一个充电阶段转到下一个充电阶段后,充电电流值变小;当电池电压到达充电终止电压阈值时,充电阶段中的前一个充电阶段会转到下一个充电阶段。
可选地,在一些实施例中,在第二充电模式下,第二适配器的输出电流为脉动直流电(或称单向脉动的输出电流,或称脉动波形的电流,或称馒头波电流),脉动直流电的波形如图6所示。
可选地,在一些实施例中,在第二适配器的输出电流为脉动直流电的情况下,恒流模式可以指对脉动直流电的峰值或均值进行控制的充电模式,即控制第二适配器的输出电流的峰值不超过恒流模式对应的电流,如图7所示。
可选地,在一些实施例中,在第二充电模式下,第二适配器的输出电流为交流电,交流电同样能够降低锂电芯的析锂现象,提高电芯的使用寿命。
上文结合图1至图7,详细描述了本发明的装置实施例,下文结合图8详细描述本发明实施例的方法实施例,应理解,方法侧的描述与装置侧的描述相互对应,为了简洁,适当省略重复的描述。
图8是根据本发明实施例的充电控制方法的示意性流程图。图8的方法可以由上文中的第二适配器执行,如可以是图1至图7中描述到的第二适配器,具体地,该第二适配器包括功率转换单元,该功率转换单元用于对输入的交流电进行转换,以得到第二适配器的输出电压和输出电流,功率转换单元包括次级滤波单元。
图8的方法包括以下动作。
810、在所述第二适配器工作在第一充电模式的情况下,控制所述第二适配器的次级滤波单元工作,使得所述第二适配器输出恒定直流电。
820、在所述第二适配器工作在第二充电模式的情况下,控制所述次级滤波单元停止工作,使得所述第二适配器输出交流电或脉动直流电。
可选地,在一些实施例中,所述次级滤波单元中的电容为固态电容。
可选地,在一些实施例中,所述次级滤波单元包括多个固态电容,所述多个固态电容均与所述第二适配器的次级母线和地相连。
可选地,在一些实施例中,所述第二适配器在所述第二充电模式下对待充电设备的充电速度快于所述第二适配器在所述第一充电模式下对所述待充电设备的充电速度,图8的方法还可包括:在所述第二适配器与待充电设备连接的过程中,与所述待充电设备进行双向通信,以控制在所述第二充电模式下的所述第二适配器的输出
可选地,在一些实施例中,所述与所述待充电设备进行双向通信,以控制在所述第二充电模式下的所述第二适配器的输出的过程,包括:与所述待充电设备进行双向通信,以协商所述第二适配器与所述待充电设备之间的充电模式。
可选地,在一些实施例中,所述与所述待充电设备进行双向通信,以协商所述第二适配器与所述待充电设备之间的充电模式,包括:向所述待充电设备发送第一指令,所述第一指令用于询问所述待充电设备是否开启所述第二充电模式;接收所述待充电设备发送的所述第一指令的回复指令,所述第 一指令的回复指令用于指示所述待充电设备是否同意开启所述第二充电模式;在所述待充电设备同意开启所述第二充电模式的情况下,使用所述第二充电模式为所述待充电设备充电。
可选地,在一些实施例中,所述与所述待充电设备进行双向通信,以控制在所述第二充电模式下的所述第二适配器的输出的过程,包括:与所述待充电设备进行双向通信,以确定在所述第二充电模式下的所述第二适配器输出的用于对所述待充电设备进行充电的充电电压;对所述第二适配器的输出电压进行调整,使所述第二适配器的输出电压等于在所述第二充电模式下的所述第二适配器输出的用于对所述待充电设备进行充电的充电电压。
可选地,在一些实施例中,所述与所述待充电设备进行双向通信,以确定在所述第二充电模式下的所述第二适配器输出的用于对所述待充电设备进行充电的充电电压,包括:向所述待充电设备发送第二指令,所述第二指令用于询问所述第二适配器的输出电压与所述待充电设备的电池的当前电压是否匹配;接收所述待充电设备发送的所述第二指令的回复指令,所述第二指令的回复指令用于指示所述第二适配器的输出电压与所述电池的当前电压匹配、偏高或偏低。
可选地,在一些实施例中,所述与所述待充电设备进行双向通信,以控制在所述第二充电模式下的所述第二适配器的输出的过程,包括:与所述待充电设备进行双向通信,以确定在所述第二充电模式下的所述第二适配器输出的用于对所述待充电设备进行充电的充电电流;对所述第二适配器的输出电流进行调整,使所述第二适配器的输出电流等于在所述第二充电模式下的所述第二适配器输出的用于对所述待充电设备进行充电的充电电流。
可选地,在一些实施例中,所述与所述待充电设备进行双向通信,以确定在所述第二充电模式下的所述第二适配器输出的用于对所述待充电设备进行充电的充电电流,包括:向所述待充电设备发送第三指令,所述第三指令用于询问所述待充电设备当前支持的最大充电电流;接收所述待充电设备发送的所述第三指令的回复指令,所述第三指令的回复指令用于指示所述待充电设备当前支持的最大充电电流;根据所述待充电设备当前支持的最大充电电流确定在所述第二充电模式下的所述第二适配器输出的用于对所述待充电设备进行充电的充电电流。
可选地,在一些实施例中,所述与所述待充电设备进行双向通信,以控 制在所述第二充电模式下的所述第二适配器的输出的过程,包括:在使用所述第二充电模式充电的过程中,与所述待充电设备进行双向通信,以调整所述第二适配器的输出电流。
可选地,在一些实施例中,所述与所述待充电设备进行双向通信,以调整所述第二适配器的输出电流,包括:向所述待充电设备发送的第四指令,所述第四指令用于询问所述待充电设备的电池的当前电压;接收所述第二适配器发送的所述第四指令的回复指令,所述第四指令的回复指令用于指示所述电池的当前电压;根据所述电池的当前电压,调整所述第二适配器的输出电流。
可选地,在一些实施例中,所述第二适配器包括充电接口,所述控制单元通过所述充电接口中的数据线与所述待充电设备进行双向通信。
可选地,在一些实施例中,在所述第二充电模式下,所述第二适配器的输出电流为脉动直流电。
可选地,在一些实施例中,在所述第二充电模式下,所述第二适配器的输出电流为交流电。
可选地,在一些实施例中,在所述第二充电模式下,所述第二适配器的输出电压和输出电流直接加载在所述待充电设备的电池的两端,为所述电池进行直充。
可选地,在一些实施例中,所述第二适配器包括用于对充电过程进行控制的控制单元,所述控制单元为微控制单元MCU。
可选地,在一些实施例中,所述第二适配器包括充电接口,所述充电接口为通用串行总线USB接口。
应理解,本文中的“第一适配器”和“第二适配器”仅是为了描述的方便,并非要对本发明实施例的适配器的具体类型进行限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应 过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种适配器,所述适配器支持第一充电模式和第二充电模式,其特征在于,所述适配器包括:
    功率转换单元,用于对输入的交流电进行转换,以得到所述适配器的输出电压和输出电流,所述功率转换单元包括次级滤波单元;
    控制单元,与所述次级滤波单元相连,在所述适配器工作在所述第一充电模式的情况下,所述控制单元控制所述次级滤波单元工作,使得所述适配器输出恒定直流电,在所述适配器工作在所述第二充电模式的情况下,所述控制单元控制所述次级滤波单元停止工作,使得所述适配器输出交流电或者脉动直流电。
  2. 如权利要求1所述的适配器,其特征在于,所述次级滤波单元中的电容为固态电容。
  3. 如权利要求2所述的适配器,其特征在于,所述次级滤波单元包括多个固态电容,所述多个固态电容均与所述适配器的次级母线和地相连。
  4. 如权利要求1-3中任一项所述的适配器,其特征在于,所述适配器在所述第二充电模式下对待充电设备的充电速度快于所述适配器在所述第一充电模式下对所述待充电设备的充电速度,在所述适配器与待充电设备连接的过程中,所述控制单元与所述待充电设备进行双向通信,以控制在所述第二充电模式下的所述适配器的输出。
  5. 如权利要求4所述的适配器,其特征在于,所述控制单元与所述待充电设备进行双向通信,以控制在所述第二充电模式下的所述适配器的输出的过程,包括:
    所述控制单元与所述待充电设备进行双向通信,以协商所述适配器与所述待充电设备之间的充电模式。
  6. 如权利要求5所述的适配器,其特征在于,所述控制单元与所述待充电设备进行双向通信,以协商所述适配器与所述待充电设备之间的充电模式,包括:
    所述控制单元向所述待充电设备发送第一指令,所述第一指令用于询问所述待充电设备是否开启所述第二充电模式;
    所述控制单元接收所述待充电设备发送的所述第一指令的回复指令,所述第一指令的回复指令用于指示所述待充电设备是否同意开启所述第二充 电模式;
    在所述待充电设备同意开启所述第二充电模式的情况下,所述控制单元使用所述第二充电模式为所述待充电设备充电。
  7. 如权利要求4-6中任一项所述的适配器,其特征在于,所述控制单元与所述待充电设备进行双向通信,以控制在所述第二充电模式下的所述适配器的输出的过程,包括:
    所述控制单元与所述待充电设备进行双向通信,以确定在所述第二充电模式下的所述适配器输出的用于对所述待充电设备进行充电的充电电压;
    所述控制单元对所述适配器的输出电压进行调整,使所述适配器的输出电压等于在所述第二充电模式下的所述适配器输出的用于对所述待充电设备进行充电的充电电压。
  8. 如权利要求7所述的适配器,其特征在于,所述控制单元与所述待充电设备进行双向通信,以确定在所述第二充电模式下的所述适配器输出的用于对所述待充电设备进行充电的充电电压,包括:
    所述控制单元向所述待充电设备发送第二指令,所述第二指令用于询问所述适配器的输出电压与所述待充电设备的电池的当前电压是否匹配;
    所述控制单元接收所述待充电设备发送的所述第二指令的回复指令,所述第二指令的回复指令用于指示所述适配器的输出电压与所述电池的当前电压匹配、偏高或偏低。
  9. 如权利要求4-8中任一项所述的适配器,其特征在于,所述控制单元与所述待充电设备进行双向通信,以控制在所述第二充电模式下的所述适配器的输出的过程,包括:
    所述控制单元与所述待充电设备进行双向通信,以确定在所述第二充电模式下的所述适配器输出的用于对所述待充电设备进行充电的充电电流;
    所述控制单元对所述适配器的输出电流进行调整,使所述适配器的输出电流等于在所述第二充电模式下的所述适配器输出的用于对所述待充电设备进行充电的充电电流。
  10. 如权利要求9所述的适配器,其特征在于,所述控制单元与所述待充电设备进行双向通信,以确定在所述第二充电模式下的所述适配器输出的用于对所述待充电设备进行充电的充电电流,包括:
    所述控制单元向所述待充电设备发送第三指令,所述第三指令用于询问 所述待充电设备当前支持的最大充电电流;
    所述控制单元接收所述待充电设备发送的所述第三指令的回复指令,所述第三指令的回复指令用于指示所述待充电设备当前支持的最大充电电流;
    所述控制单元根据所述待充电设备当前支持的最大充电电流确定在所述第二充电模式下的所述适配器输出的用于对所述待充电设备进行充电的充电电流。
  11. 如权利要求4-10中任一项所述的适配器,其特征在于,所述控制单元与所述待充电设备进行双向通信,以控制在所述第二充电模式下的所述适配器的输出的过程,包括:
    在使用所述第二充电模式充电的过程中,所述控制单元与所述待充电设备进行双向通信,以调整所述适配器的输出电流。
  12. 如权利要求11所述的适配器,其特征在于,所述控制单元与所述待充电设备进行双向通信,以调整所述适配器的输出电流,包括:
    所述控制单元向所述待充电设备发送的第四指令,所述第四指令用于询问所述待充电设备的电池的当前电压;
    所述控制单元接收所述适配器发送的所述第四指令的回复指令,所述第四指令的回复指令用于指示所述电池的当前电压;
    所述控制单元根据所述电池的当前电压,调整所述适配器的输出电流。
  13. 如权利要求4-12中任一项所述的适配器,其特征在于,所述适配器包括充电接口,所述控制单元通过所述充电接口中的数据线与所述待充电设备进行双向通信。
  14. 如权利要求1-13中任一项所述的适配器,其特征在于,在所述第二充电模式下,所述适配器的输出电流为脉动直流电。
  15. 如权利要求1-13中任一项所述的适配器,其特征在于,在所述第二充电模式下,所述适配器的输出电流为交流电。
  16. 如权利要求1-15中任一项所述的适配器,其特征在于,在所述第二充电模式下,所述适配器的输出电压和输出电流直接加载在所述待充电设备的电池的两端,为所述电池进行直充。
  17. 如权利要求1-16中任一项所述的适配器,其特征在于,所述控制单元为微控制单元MCU。
  18. 如权利要求1-17中任一项所述的适配器,其特征在于,所述适配 器包括充电接口,所述充电接口为通用串行总线USB接口。
  19. 一种充电控制方法,其特征在于,所述方法应用于适配器,所述适配器包括功率转换单元,所述功率转换单元用于对输入的交流电进行转换,以得到所述适配器的输出电压和输出电流,所述功率转换单元包括次级滤波单元,所述方法包括:
    在所述适配器工作在第一充电模式的情况下,控制所述适配器的次级滤波单元工作,使得所述适配器输出恒定直流电;
    在所述适配器工作在第二充电模式的情况下,控制所述次级滤波单元停止工作,使得所述适配器输出交流电或脉动直流电。
  20. 如权利要求19所述的方法,其特征在于,所述次级滤波单元中的电容为固态电容。
  21. 如权利要求20所述的方法,其特征在于,所述次级滤波单元包括多个固态电容,所述多个固态电容均与所述适配器的次级母线和地相连。
  22. 如权利要求19-21中任一项所述的方法,其特征在于,所述适配器在所述第二充电模式下对待充电设备的充电速度快于所述适配器在所述第一充电模式下对所述待充电设备的充电速度,所述方法还包括:
    在所述适配器与待充电设备连接的过程中,与所述待充电设备进行双向通信,以控制在所述第二充电模式下的所述适配器的输出。
  23. 如权利要求22所述的方法,其特征在于,所述与所述待充电设备进行双向通信,以控制在所述第二充电模式下的所述适配器的输出的过程,包括:
    与所述待充电设备进行双向通信,以协商所述适配器与所述待充电设备之间的充电模式。
  24. 如权利要求23所述的方法,其特征在于,所述与所述待充电设备进行双向通信,以协商所述适配器与所述待充电设备之间的充电模式,包括:
    向所述待充电设备发送第一指令,所述第一指令用于询问所述待充电设备是否开启所述第二充电模式;
    接收所述待充电设备发送的所述第一指令的回复指令,所述第一指令的回复指令用于指示所述待充电设备是否同意开启所述第二充电模式;
    在所述待充电设备同意开启所述第二充电模式的情况下,使用所述第二充电模式为所述待充电设备充电。
  25. 如权利要求22-24中任一项所述的方法,其特征在于,所述与所述待充电设备进行双向通信,以控制在所述第二充电模式下的所述适配器的输出的过程,包括:
    与所述待充电设备进行双向通信,以确定在所述第二充电模式下的所述适配器输出的用于对所述待充电设备进行充电的充电电压;
    对所述适配器的输出电压进行调整,使所述适配器的输出电压等于在所述第二充电模式下的所述适配器输出的用于对所述待充电设备进行充电的充电电压。
  26. 如权利要求25所述的方法,其特征在于,所述与所述待充电设备进行双向通信,以确定在所述第二充电模式下的所述适配器输出的用于对所述待充电设备进行充电的充电电压,包括:
    向所述待充电设备发送第二指令,所述第二指令用于询问所述适配器的输出电压与所述待充电设备的电池的当前电压是否匹配;
    接收所述待充电设备发送的所述第二指令的回复指令,所述第二指令的回复指令用于指示所述适配器的输出电压与所述电池的当前电压匹配、偏高或偏低。
  27. 如权利要求22-26中任一项所述的方法,其特征在于,所述与所述待充电设备进行双向通信,以控制在所述第二充电模式下的所述适配器的输出的过程,包括:
    与所述待充电设备进行双向通信,以确定在所述第二充电模式下的所述适配器输出的用于对所述待充电设备进行充电的充电电流;
    对所述适配器的输出电流进行调整,使所述适配器的输出电流等于在所述第二充电模式下的所述适配器输出的用于对所述待充电设备进行充电的充电电流。
  28. 如权利要求27所述的方法,其特征在于,所述与所述待充电设备进行双向通信,以确定在所述第二充电模式下的所述适配器输出的用于对所述待充电设备进行充电的充电电流,包括:
    向所述待充电设备发送第三指令,所述第三指令用于询问所述待充电设备当前支持的最大充电电流;
    接收所述待充电设备发送的所述第三指令的回复指令,所述第三指令的回复指令用于指示所述待充电设备当前支持的最大充电电流;
    根据所述待充电设备当前支持的最大充电电流确定在所述第二充电模式下的所述适配器输出的用于对所述待充电设备进行充电的充电电流。
  29. 如权利要求22-28中任一项所述的方法,其特征在于,所述与所述待充电设备进行双向通信,以控制在所述第二充电模式下的所述适配器的输出的过程,包括:
    在使用所述第二充电模式充电的过程中,与所述待充电设备进行双向通信,以调整所述适配器的输出电流。
  30. 如权利要求29所述的方法,其特征在于,所述与所述待充电设备进行双向通信,以调整所述适配器的输出电流,包括:
    向所述待充电设备发送的第四指令,所述第四指令用于询问所述待充电设备的电池的当前电压;
    接收所述适配器发送的所述第四指令的回复指令,所述第四指令的回复指令用于指示所述电池的当前电压;
    根据所述电池的当前电压,调整所述适配器的输出电流。
  31. 如权利要求22-30中任一项所述的方法,其特征在于,所述适配器包括充电接口,所述控制单元通过所述充电接口中的数据线与所述待充电设备进行双向通信。
  32. 如权利要求19-31中任一项所述的方法,其特征在于,在所述第二充电模式下,所述适配器的输出电流为脉动直流电。
  33. 如权利要求19-31中任一项所述的方法,其特征在于,在所述第二充电模式下,所述适配器的输出电流为交流电。
  34. 如权利要求19-33中任一项所述的方法,其特征在于,在所述第二充电模式下,所述适配器的输出电压和输出电流直接加载在所述待充电设备的电池的两端,为所述电池进行直充。
  35. 如权利要求19-34中任一项所述的方法,其特征在于,所述适配器包括用于对充电过程进行控制的控制单元,所述控制单元为微控制单元MCU。
  36. 如权利要求19-35中任一项所述的方法,其特征在于,所述适配器包括充电接口,所述充电接口为通用串行总线USB接口。
PCT/CN2017/070517 2016-02-05 2017-01-07 适配器和充电控制方法 WO2017133380A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020187007677A KR102204603B1 (ko) 2016-02-05 2017-01-07 어댑터와 충전 제어 방법
EP17746700.8A EP3282550B1 (en) 2016-02-05 2017-01-07 Adapter and charging control method
JP2018512567A JP6503138B2 (ja) 2016-02-05 2017-01-07 アダプタ及び充電制御方法
US15/562,011 US10985595B2 (en) 2016-02-05 2017-01-07 Adapter and method of controlling charging process
AU2017215235A AU2017215235B2 (en) 2016-02-05 2017-01-07 Adapter and charging control method
CN201780001423.7A CN108141057B (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
TW106124370A TWI658675B (zh) 2016-07-26 2017-07-20 適配器和充電控制方法
ZA2018/00935A ZA201800935B (en) 2016-02-05 2018-02-12 Adapter and charging control method
HK18109711.9A HK1250285A1 (zh) 2016-02-05 2018-07-26 適配器和充電控制方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/073679 WO2017133001A1 (zh) 2016-02-05 2016-02-05 充电方法、适配器和移动终端
CNPCT/CN2016/073679 2016-02-05
CN201610600612 2016-07-26
CN201610600612.3 2016-07-26

Publications (1)

Publication Number Publication Date
WO2017133380A1 true WO2017133380A1 (zh) 2017-08-10

Family

ID=59499282

Family Applications (30)

Application Number Title Priority Date Filing Date
PCT/CN2017/070540 WO2017133395A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法以及电源适配器
PCT/CN2017/070548 WO2017133402A2 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070536 WO2017133391A1 (zh) 2016-02-05 2017-01-07 充电系统、充电时的保护方法、电源适配器
PCT/CN2017/070537 WO2017133392A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法以及电源适配器
PCT/CN2017/070549 WO2017133403A2 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070544 WO2017133398A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法以及电源适配器
PCT/CN2017/070527 WO2017133387A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070521 WO2017133383A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070519 WO2017133381A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070542 WO2017143876A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法及电源适配器、开关电源
PCT/CN2017/070552 WO2017133405A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070535 WO2017133390A1 (zh) 2016-02-05 2017-01-07 充电系统、充电时的防保护方法以及电源适配器
PCT/CN2017/070538 WO2017133393A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法以及终端
PCT/CN2017/070541 WO2017133396A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法以及电源适配器
PCT/CN2017/070526 WO2017133386A2 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070547 WO2017133401A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070516 WO2017133379A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070530 WO2017133389A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法以及电源适配器
PCT/CN2017/070545 WO2017133399A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070543 WO2017133397A2 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070546 WO2017133400A2 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070517 WO2017133380A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070539 WO2017133394A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法以及终端
PCT/CN2017/070551 WO2017133404A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070528 WO2017133388A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070523 WO2017133384A2 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070520 WO2017133382A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070524 WO2017133385A2 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070728 WO2017133410A1 (zh) 2016-02-05 2017-01-10 用于终端的充电系统、充电方法以及电源适配器
PCT/CN2017/070724 WO2017133409A1 (zh) 2016-02-05 2017-01-10 用于终端的充电系统、充电方法以及电源适配器

Family Applications Before (21)

Application Number Title Priority Date Filing Date
PCT/CN2017/070540 WO2017133395A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法以及电源适配器
PCT/CN2017/070548 WO2017133402A2 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070536 WO2017133391A1 (zh) 2016-02-05 2017-01-07 充电系统、充电时的保护方法、电源适配器
PCT/CN2017/070537 WO2017133392A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法以及电源适配器
PCT/CN2017/070549 WO2017133403A2 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070544 WO2017133398A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法以及电源适配器
PCT/CN2017/070527 WO2017133387A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070521 WO2017133383A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070519 WO2017133381A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070542 WO2017143876A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法及电源适配器、开关电源
PCT/CN2017/070552 WO2017133405A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070535 WO2017133390A1 (zh) 2016-02-05 2017-01-07 充电系统、充电时的防保护方法以及电源适配器
PCT/CN2017/070538 WO2017133393A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法以及终端
PCT/CN2017/070541 WO2017133396A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法以及电源适配器
PCT/CN2017/070526 WO2017133386A2 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070547 WO2017133401A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070516 WO2017133379A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070530 WO2017133389A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法以及电源适配器
PCT/CN2017/070545 WO2017133399A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070543 WO2017133397A2 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070546 WO2017133400A2 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法

Family Applications After (8)

Application Number Title Priority Date Filing Date
PCT/CN2017/070539 WO2017133394A1 (zh) 2016-02-05 2017-01-07 用于终端的充电系统、充电方法以及终端
PCT/CN2017/070551 WO2017133404A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070528 WO2017133388A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070523 WO2017133384A2 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070520 WO2017133382A1 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070524 WO2017133385A2 (zh) 2016-02-05 2017-01-07 适配器和充电控制方法
PCT/CN2017/070728 WO2017133410A1 (zh) 2016-02-05 2017-01-10 用于终端的充电系统、充电方法以及电源适配器
PCT/CN2017/070724 WO2017133409A1 (zh) 2016-02-05 2017-01-10 用于终端的充电系统、充电方法以及电源适配器

Country Status (17)

Country Link
US (23) US10411494B2 (zh)
EP (20) EP3291410B1 (zh)
JP (26) JP6378454B2 (zh)
KR (21) KR102178666B1 (zh)
CN (5) CN108450037B (zh)
AU (7) AU2017215242B2 (zh)
DK (1) DK3249777T3 (zh)
ES (4) ES2788707T3 (zh)
HK (1) HK1246011A1 (zh)
IL (2) IL258469B (zh)
MY (3) MY190877A (zh)
PH (1) PH12018501667A1 (zh)
PT (1) PT3249777T (zh)
SG (4) SG11201708528PA (zh)
TW (13) TWI656709B (zh)
WO (30) WO2017133395A1 (zh)
ZA (5) ZA201707146B (zh)

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015113461A1 (zh) * 2014-01-28 2015-08-06 广东欧珀移动通信有限公司 电源适配器和终端
CN107112767B (zh) * 2015-06-30 2019-06-07 深圳市大疆创新科技有限公司 充电控制电路、充电装置、充电系统及充电控制方法
US10833518B2 (en) * 2015-09-22 2020-11-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charge control method and device, and electronic device
US10565657B2 (en) 2015-10-02 2020-02-18 Engie Storage Services Na Llc Methods and apparatuses for risk assessment and insuring intermittent electrical systems
US10248146B2 (en) * 2015-10-14 2019-04-02 Honeywell International Inc. System for dynamic control with interactive visualization to optimize energy consumption
ES2896245T3 (es) * 2016-01-05 2022-02-24 Guangdong Oppo Mobile Telecommunications Corp Ltd Método de carga rápida, terminal móvil y adaptador de corriente
EP3229336B1 (en) * 2016-02-05 2020-09-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging method and adapter
US10411494B2 (en) 2016-02-05 2019-09-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Adapter and method for charging control
KR102023617B1 (ko) * 2016-03-22 2019-09-20 삼성전자주식회사 이식형 의료장치에 전력을 공급하는 방법 및 이를 이용하는 전력공급시스템
CN105655985B (zh) 2016-03-29 2018-10-16 昂宝电子(上海)有限公司 用于led照明的过电压保护的系统和方法
CN109196762B (zh) * 2016-06-02 2021-03-16 株式会社村田制作所 电源系统
JP6358304B2 (ja) * 2016-09-30 2018-07-18 株式会社オートネットワーク技術研究所 車両用電源装置
JP2018087879A (ja) * 2016-11-28 2018-06-07 キヤノン株式会社 画像形成装置
TWI612750B (zh) * 2017-03-22 2018-01-21 華碩電腦股份有限公司 電子裝置及其充電方法
KR102335722B1 (ko) 2017-04-07 2021-12-06 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 충전 장치, 충전 대기 설비 및 그 제어 방법
WO2018184230A1 (zh) * 2017-04-07 2018-10-11 Oppo广东移动通信有限公司 无线充电系统、装置、方法及待充电设备
JP6720410B2 (ja) 2017-04-25 2020-07-08 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 電源供給機器及び充電制御方法
US10978882B2 (en) * 2017-05-16 2021-04-13 Dong Guan Juxing Power Co., Ltd. Constant-current charging circuit, energy storage power source and constant-current charging method
US10999652B2 (en) * 2017-05-24 2021-05-04 Engie Storage Services Na Llc Energy-based curtailment systems and methods
WO2018227278A1 (en) * 2017-06-12 2018-12-20 Gbatteries Energy Canada Inc. Battery charging through multi-stage voltage conversion
US11249139B2 (en) * 2017-06-14 2022-02-15 Hitachi Automotive Systems, Ltd. Battery monitoring system
CN109148985A (zh) * 2017-06-15 2019-01-04 苏州宝时得电动工具有限公司 一种电池包充电方法及装置
US10658841B2 (en) 2017-07-14 2020-05-19 Engie Storage Services Na Llc Clustered power generator architecture
EP3660944A4 (en) * 2017-07-24 2021-02-24 Koki Holdings Co., Ltd. BATTERY PACK AND ELECTRICAL DEVICE WITH BATTERY PACK
EP3557747A4 (en) * 2017-09-22 2020-03-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. POWER SUPPLY CIRCUIT, POWER SUPPLY DEVICE, AND CONTROL METHOD
KR102274224B1 (ko) * 2017-09-22 2021-07-07 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 전원 제공 회로, 전원 제공 기기와 제어 방법
KR102343010B1 (ko) 2017-09-22 2021-12-23 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 전원 회로 및 어댑터
WO2019056303A1 (zh) * 2017-09-22 2019-03-28 Oppo广东移动通信有限公司 电源提供电路、电源提供设备以及控制方法
WO2019056320A1 (zh) * 2017-09-22 2019-03-28 Oppo广东移动通信有限公司 电源提供电路、电源提供设备以及控制方法
CN109599905B (zh) * 2017-09-30 2020-11-06 比亚迪股份有限公司 充电电流调节方法和装置
US10379921B1 (en) * 2017-11-14 2019-08-13 Juniper Networks, Inc. Fault detection and power recovery and redundancy in a power over ethernet system
JP6838169B2 (ja) * 2017-11-29 2021-03-03 マーレエレクトリックドライブズジャパン株式会社 バッテリ充電装置
CN110119177B (zh) * 2018-02-07 2020-08-28 珠海市一微半导体有限公司 一种低压制造工艺的集成电路及其电源电路
TWI663514B (zh) * 2018-04-27 2019-06-21 宏碁股份有限公司 電子裝置及其溫度控制方法
CN110603708B (zh) * 2018-05-15 2023-12-19 Oppo广东移动通信有限公司 待充电设备、无线充电方法及系统
MX2019014925A (es) * 2018-05-31 2020-02-13 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo de carga y aparato de carga.
CN111433619B (zh) * 2018-06-15 2023-02-28 Oppo广东移动通信有限公司 待充电设备的适配器老化检测方法和装置
WO2019237331A1 (zh) * 2018-06-15 2019-12-19 Oppo广东移动通信有限公司 待充电设备的适配器老化检测方法和装置
CN110838739B (zh) * 2018-08-17 2023-03-14 群光电能科技(苏州)有限公司 充电装置及其操作方法
CN110879316B (zh) * 2018-09-05 2022-03-22 Oppo(重庆)智能科技有限公司 终端充电电流检测方法、系统及存储介质
WO2020051775A1 (zh) * 2018-09-11 2020-03-19 Oppo广东移动通信有限公司 电源提供装置和充电控制方法
WO2020073307A1 (zh) 2018-10-12 2020-04-16 Oppo广东移动通信有限公司 一种充电方法、终端及计算机存储介质
EP3719952A4 (en) * 2018-10-12 2021-01-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. CHARGING METHOD, TERMINAL DEVICE AND COMPUTER STORAGE MEDIUM
KR102316486B1 (ko) * 2018-11-27 2021-10-22 주식회사 엘지화학 시동용 배터리의 구동 시스템 및 이를 이용한 외부 시스템 오프 상태 인식 방법
KR102219370B1 (ko) * 2018-12-20 2021-02-23 현대트랜시스 주식회사 차량 내 통신 시스템 및 이를 이용한 통신 방법
CN109888864B (zh) * 2019-02-25 2021-03-23 宁德时代新能源科技股份有限公司 电池管理系统
TWI703330B (zh) * 2019-03-15 2020-09-01 德禮實業有限公司 可控制開關的零點檢測電路
CN109831262B (zh) * 2019-03-28 2021-04-16 黄小花 一种智能化低温储粮系统信号校准电路
TWI704744B (zh) * 2019-03-29 2020-09-11 威達高科股份有限公司 使用移動機器人電池的電源橋接裝置
NO345214B1 (no) * 2019-04-04 2020-11-09 Hark Tech As Effekttilpasningskrets og fremgangsmåte for å tilpasse effektuttaket fra en strømmåler
TWI691158B (zh) * 2019-04-24 2020-04-11 奇源科技有限公司 交流充電及供電電路
TWI688197B (zh) * 2019-04-30 2020-03-11 宏碁股份有限公司 電源轉換裝置
TWI692192B (zh) * 2019-05-29 2020-04-21 宏碁股份有限公司 可設計關機點之電源供應電路
JP7269380B2 (ja) * 2019-05-31 2023-05-08 広東美的制冷設備有限公司 運転制御方法、装置、回路、家電機器及びコンピュータ記憶媒体
US12003176B2 (en) * 2019-06-07 2024-06-04 Panasonic Intellectual Property Management Co., Ltd. In-vehicle power supply system to detect failure for a bi-directional DC-DC converter's conversion circuit
CN113169547A (zh) * 2019-06-21 2021-07-23 富士电机株式会社 集成电路、电源电路
CN110308322B (zh) * 2019-06-29 2021-07-23 杭州涂鸦信息技术有限公司 一种计算电源适配器电量的方法
TWI704753B (zh) * 2019-07-05 2020-09-11 宏碁股份有限公司 電源轉換裝置
CN112311024A (zh) * 2019-07-25 2021-02-02 Oppo广东移动通信有限公司 待充电设备、无线充电方法及系统
TWI695564B (zh) * 2019-09-03 2020-06-01 飛宏科技股份有限公司 電池充電器之常溫降流及高溫脈衝充電方法
CN110635544A (zh) * 2019-09-16 2019-12-31 深圳第三代半导体研究院 一种汽车车载充电系统
CN110635546B (zh) * 2019-09-18 2021-11-30 华为数字能源技术有限公司 一种无线充电的电子设备、方法及系统
CN110488086A (zh) * 2019-09-20 2019-11-22 成都沃特塞恩电子技术有限公司 窄脉冲的功率测量方法及系统
CN110690751B (zh) * 2019-11-17 2021-10-01 鲨湾科技(上海)有限公司 一种充电底座及充电系统
US11498446B2 (en) * 2020-01-06 2022-11-15 Ford Global Technologies, Llc Plug-in charge current management for battery model-based online learning
US11145257B2 (en) * 2020-02-02 2021-10-12 Novatek Microelectronics Corp. Display device driving method and related driver circuit
CN113364072A (zh) * 2020-03-06 2021-09-07 华为技术有限公司 一种充电方法、设备和系统
CN111327020B (zh) * 2020-03-10 2020-12-25 珠海格力电器股份有限公司 电源保护电路和电源
CN113394979B (zh) * 2020-03-12 2023-11-17 Oppo广东移动通信有限公司 电源提供装置及充电控制方法
CN113394989B (zh) * 2020-03-12 2023-08-08 Oppo广东移动通信有限公司 电源转换装置及充电控制方法
CN113495195A (zh) * 2020-03-20 2021-10-12 富泰华工业(深圳)有限公司 电子设备及其诊断方法
CN111293757A (zh) * 2020-03-24 2020-06-16 上海广为美线电源电器有限公司 全自动控制的充电设备
CN111413624B (zh) * 2020-04-13 2021-04-09 清华大学 燃料电池使用寿命和剩余寿命的倒数预测方法及装置
DE112021002840T5 (de) 2020-05-18 2023-03-23 Omron Corporation Sicherheitssystem für eine Ladestation eines mobilen Roboters
KR20230031219A (ko) * 2020-05-21 2023-03-07 아이온트라 엘엘씨 배터리 셀의 임피던스를 측정하기 위한 시스템 및 방법
TWI730802B (zh) * 2020-06-05 2021-06-11 安沛科技股份有限公司 充電裝置的控制系統及其方法
CN111682629A (zh) * 2020-06-22 2020-09-18 深圳市富兰瓦时技术有限公司 一种储能装置补电系统和方法
CN111917152B (zh) * 2020-07-07 2021-03-23 珠海智融科技有限公司 提高电源效率的方法、终端、存储介质及充电装置
TWI767280B (zh) * 2020-07-24 2022-06-11 台達電子工業股份有限公司 電源供電系統之降低線損方法及具有降低線損之電源供電系統
KR20220017260A (ko) 2020-08-04 2022-02-11 삼성전자주식회사 직접 충전 방식에 기반하여 배터리를 충전하는 전자 장치 및 그의 동작 방법
CN114391206B (zh) * 2020-08-17 2024-03-01 华为数字能源技术有限公司 一种充电电路、终端设备、适配器、充电系统及方法
TWI740615B (zh) * 2020-08-19 2021-09-21 僑威科技股份有限公司 行動電子裝置之快充式充電裝置
CN112019060A (zh) * 2020-08-28 2020-12-01 东莞市大忠电子有限公司 一种车载交直流快充电源适配器电路
CN112319296B (zh) * 2020-10-13 2022-08-30 武汉蔚来能源有限公司 充电保护方法、系统及充电电池
TWI741850B (zh) * 2020-10-22 2021-10-01 僑威科技股份有限公司 電源轉換系統
TWI729966B (zh) 2020-12-11 2021-06-01 四零四科技股份有限公司 電源管理系統
TWI767452B (zh) * 2020-12-16 2022-06-11 廣達電腦股份有限公司 電子裝置
CN112731984B (zh) * 2020-12-23 2022-02-22 恒大新能源汽车投资控股集团有限公司 动力电池温度调节方法、存储介质和系统
TWI741920B (zh) 2020-12-23 2021-10-01 大陸商艾科微電子(深圳)有限公司 供電電路及電源供應器
KR20220112077A (ko) * 2021-02-03 2022-08-10 삼성전자주식회사 전력 공급 방법 및 이를 지원하는 전자 장치
CN115145349B (zh) 2021-03-30 2024-06-04 台达电子工业股份有限公司 供电系统及方法
US20220344958A1 (en) * 2021-04-26 2022-10-27 Cirrus Logic International Semiconductor Ltd. Pulsed current battery management system
CN113193770B (zh) * 2021-05-08 2022-12-13 Oppo广东移动通信有限公司 电源装置、电源适配器以及电源装置控制方法
CN113252949B (zh) * 2021-05-13 2021-11-05 北京芯格诺微电子有限公司 带有片内实时校准的高精度电流采样电路
US11791648B2 (en) * 2021-05-28 2023-10-17 Deltran Operations Usa, Inc. Automated battery charging
US20220407486A1 (en) * 2021-06-19 2022-12-22 Maxim Integrated Products, Inc. Digital communication systems and associated methods
CN113671251B (zh) * 2021-06-30 2024-07-19 北京航天发射技术研究所 一种输入电形式辨识方法、装置和电子设备
US20230009995A1 (en) * 2021-07-11 2023-01-12 Harman International Industries, Incorporated System and method for delivering power to a portable device
CN113640565A (zh) * 2021-07-26 2021-11-12 台达电子企业管理(上海)有限公司 电流检测电路、电流检测方法及转换器
TWI817432B (zh) * 2022-04-07 2023-10-01 宏碁股份有限公司 能改善電弧現象之電源傳輸系統
KR102530292B1 (ko) * 2022-05-04 2023-05-10 (주)케이엔씨 충전 장치
KR102598301B1 (ko) * 2022-08-19 2023-11-03 (주)케이엔씨 충전 장치
CN115220387B (zh) * 2022-09-15 2022-11-29 成都市易冲半导体有限公司 一种宽范围高精度线性充电电流控制方法
CN115776160A (zh) * 2022-12-09 2023-03-10 昂宝电子(上海)有限公司 用于快充充电器的校准输出电流的方法和装置
CN115986880B (zh) * 2023-01-06 2024-05-10 铁塔能源有限公司 一种充电方法及充电电路
US20240291308A1 (en) * 2023-02-23 2024-08-29 The Noco Company Systems and Methods for Adaptive USB Charging
CN116826892B (zh) * 2023-05-26 2024-06-21 荣耀终端有限公司 充电方法、充电装置、电子设备及可读存储介质
CN116742762B (zh) * 2023-08-14 2024-04-26 陕西拓普索尔电子科技有限责任公司 充电方法、装置和设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202059194U (zh) * 2011-05-17 2011-11-30 杭州电子科技大学 智能通用型液晶显示充电器
CN102447142A (zh) * 2010-10-08 2012-05-09 理察·蓝德立·葛瑞 断续负载装置及其控制方法
US20130234655A1 (en) * 2010-12-06 2013-09-12 Panasonic Corporation Charger, adapter and charging system
CN203872379U (zh) * 2014-05-28 2014-10-08 佛山市顺德区美的电热电器制造有限公司 电磁加热电路和电磁加热器具
CN104810877A (zh) * 2014-01-28 2015-07-29 广东欧珀移动通信有限公司 电池充电装置及方法
CN105576306A (zh) * 2014-10-17 2016-05-11 东莞新能源科技有限公司 电池快速充电方法
CN106026327A (zh) * 2016-02-05 2016-10-12 广东欧珀移动通信有限公司 充电装置、充电方法、电源适配器和终端

Family Cites Families (434)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1897394A (en) * 1930-11-17 1933-02-14 United States Gypsum Co Gypsum calciner
JPS502047B1 (zh) * 1970-03-18 1975-01-23
JPS502047A (zh) 1973-05-08 1975-01-10
US3974660A (en) 1974-07-01 1976-08-17 Tecumseh Products Company Power supply for refrigeration units
CA1025940A (en) 1975-07-25 1978-02-07 Serge Casagrande Battery charger
JPS5441434A (en) * 1977-09-06 1979-04-02 Matsushita Electric Works Ltd Method of charging battery
US4354148A (en) 1979-04-18 1982-10-12 Sanyo Electric Co., Ltd. Apparatus for charging rechargeable battery
JPS5822304B2 (ja) 1979-12-06 1983-05-07 東芝機械株式会社 両頭平面研削盤におけるワ−ク送り込み装置
JPS58105743U (ja) * 1982-01-14 1983-07-19 三洋電機株式会社 電池の充電装置
DE3303223A1 (de) 1983-02-01 1984-08-09 Silcon Elektronik As Stromversorgungsvorrichtung
US6075340A (en) 1985-11-12 2000-06-13 Intermec Ip Corp. Battery pack having memory
JPS61244267A (ja) * 1985-04-18 1986-10-30 Nec Corp 電源回路
JPS6289431A (ja) 1985-10-15 1987-04-23 株式会社マキタ 急速充電式電池の充電回路
JPS63184073A (ja) 1986-07-23 1988-07-29 Shimadzu Corp ピ−ク値検出回路
JPS63187321A (ja) * 1987-01-30 1988-08-02 Hitachi Ltd 座標読取装置
US5614802A (en) 1987-02-13 1997-03-25 Nilssen; Ole K. Frequency, voltage and waveshape converter for a three phase induction motor
US4763045A (en) 1987-05-04 1988-08-09 Bang H. Mo Spark ignitor generated by capacitor discharge synchronized with alternate current power frequency
JPH0191626A (ja) * 1987-10-02 1989-04-11 Sony Corp 電池充電装置
JPH0186475U (zh) 1987-11-25 1989-06-08
JPH01170330A (ja) 1987-12-25 1989-07-05 Nec Corp 充電装置
JPH01197998A (ja) * 1988-02-03 1989-08-09 Hitachi Medical Corp インバータ式x線装置
US5270635A (en) * 1989-04-11 1993-12-14 Solid State Chargers, Inc. Universal battery charger
JPH0326194A (ja) 1989-06-23 1991-02-04 Matsushita Electric Ind Co Ltd Isdn交換装置
JPH03189569A (ja) 1989-12-20 1991-08-19 Toshiba Corp 電圧測定装置
JP3019353B2 (ja) * 1990-02-27 2000-03-13 ソニー株式会社 充電装置
JP2646824B2 (ja) * 1990-09-28 1997-08-27 富士通株式会社 電源装置
JPH0476133U (zh) * 1990-11-09 1992-07-02
JPH0739341Y2 (ja) * 1991-03-26 1995-09-06 太陽誘電株式会社 定電流回路
US5382893A (en) * 1991-05-16 1995-01-17 Compaq Computer Corporation Maximum power regulated battery charger
JPH0513108A (ja) 1991-07-01 1993-01-22 Yoshimura Denki Kk 二次電池
JP3187454B2 (ja) * 1991-07-05 2001-07-11 松下電工株式会社 充電回路
JPH0549182A (ja) 1991-08-08 1993-02-26 Sharp Corp 組電池の充電装置
JPH05103430A (ja) 1991-10-07 1993-04-23 Murata Mfg Co Ltd バツテリ充電回路
JPH05137271A (ja) * 1991-11-08 1993-06-01 Nec Corp 電池充電方法
US5214369A (en) 1991-12-30 1993-05-25 The Charles Machine Works, Inc. Universal battery charger
JPH0646535A (ja) 1992-05-22 1994-02-18 Tamura Seisakusho Co Ltd 充電器
US5442274A (en) * 1992-08-27 1995-08-15 Sanyo Electric Company, Ltd. Rechargeable battery charging method
JP2601974B2 (ja) * 1992-09-16 1997-04-23 インターナショナル・ビジネス・マシーンズ・コーポレイション 電子機器用電源装置及び電子機器システム
US5614805A (en) 1992-11-19 1997-03-25 Tokin Corporation Method and apparatus for charging a secondary battery by supplying pulsed current as charging current
JPH06165407A (ja) 1992-11-24 1994-06-10 Toyonori Akiba スイッチングコンバータ式充電器
JPH06351170A (ja) * 1993-06-02 1994-12-22 Fujitsu Ltd 充電電流検出回路
JP3226396B2 (ja) * 1993-09-24 2001-11-05 オリジン電気株式会社 直流電源装置
US5463304A (en) * 1993-11-22 1995-10-31 Winters; Thomas L. Life extending circuit for storage batteries
JPH07177672A (ja) 1993-12-20 1995-07-14 Sony Corp 2次電池の充電装置
JP3605733B2 (ja) 1994-01-25 2004-12-22 株式会社エイ・ティーバッテリー 充電方法
US5561596A (en) 1994-02-22 1996-10-01 International Business Machines Corporation AC line stabilization circuitry for high power factor loads
GB9408056D0 (en) 1994-04-22 1994-06-15 Switched Reluctance Drives Ltd A control circuit for an inductive load
JPH0865904A (ja) 1994-06-06 1996-03-08 Nippondenso Co Ltd 電気自動車用充電装置
JP3198222B2 (ja) * 1994-10-07 2001-08-13 株式会社東芝 ボルトの鉛直支持構造体及びその取付方法
JP3291402B2 (ja) * 1994-10-20 2002-06-10 三洋電機株式会社 二次電池の充電方法
JPH08182215A (ja) 1994-12-26 1996-07-12 Shin Kobe Electric Mach Co Ltd 二次電池の充電方法及び充電装置
JP3208270B2 (ja) * 1995-01-30 2001-09-10 三洋電機株式会社 二次電池の充電方法
JPH08223907A (ja) 1995-02-06 1996-08-30 Internatl Business Mach Corp <Ibm> 電源装置及び電源供給方法
DE19504320C1 (de) 1995-02-10 1996-07-25 Starck H C Gmbh Co Kg Verfahren zur Herstellung von Kobaltmetall-haltigem Kobalt(II)-Oxid sowie dessen Verwendung
JP3660398B2 (ja) * 1995-06-28 2005-06-15 ヤマハ発動機株式会社 2次電池の充電方法
JP3469681B2 (ja) * 1995-08-22 2003-11-25 三洋電機株式会社 コンデンサーを内蔵するパック電池
FR2738416B1 (fr) * 1995-08-31 1997-09-26 Lacme Dispositif electrique de charge et/ou d'assistance au demarrage pour vehicule automobile
JP3620118B2 (ja) * 1995-10-24 2005-02-16 松下電器産業株式会社 定電流・定電圧充電装置
KR0151495B1 (ko) * 1995-12-02 1998-12-15 김광호 배터리 충전 모드 제어 회로
US5648895A (en) * 1995-12-19 1997-07-15 Sysgration Ltd. Flyback and charging circuitry for an uninterruptible power supply system
JPH09233725A (ja) 1996-02-20 1997-09-05 Brother Ind Ltd 急速充電回路
JP3508384B2 (ja) * 1996-04-05 2004-03-22 ソニー株式会社 バッテリ充電装置及び方法、並びにバッテリパック
EP0847123B1 (en) 1996-05-21 2004-12-29 Matsushita Electric Industrial Co., Ltd. Pulse charging method and a charger
JPH10136573A (ja) * 1996-10-28 1998-05-22 Sanyo Electric Co Ltd 電動車両の充電システム
DE69805378T2 (de) * 1997-03-12 2002-11-28 Koninklijke Philips Electronics N.V., Eindhoven Wandler, netzteil und batterieladegerät
JP3038652B2 (ja) 1997-05-28 2000-05-08 日本電気株式会社 無停電電源装置
US6025695A (en) 1997-07-09 2000-02-15 Friel; Daniel D. Battery operating system
JPH11143591A (ja) * 1997-11-11 1999-05-28 Matsushita Electric Ind Co Ltd 電源装置
JP3216595B2 (ja) * 1997-11-13 2001-10-09 ソニー株式会社 二次電池の充電装置
IL136235A0 (en) * 1997-11-17 2001-05-20 Lifestyle Technologies Universal power supply
US6184660B1 (en) * 1998-03-26 2001-02-06 Micro International, Ltd. High-side current-sensing smart battery charger
JPH11332238A (ja) * 1998-05-19 1999-11-30 Sanyo Electric Co Ltd 電源装置
US6198645B1 (en) * 1998-07-02 2001-03-06 National Semiconductor Corporation Buck and boost switched capacitor gain stage with optional shared rest state
CN1079603C (zh) 1998-08-20 2002-02-20 苏永贵 组合脉冲充电方法
US6137265A (en) 1999-01-11 2000-10-24 Dell Usa, L.P. Adaptive fast charging of lithium-ion batteries
KR20010006576A (ko) 1999-01-18 2001-01-26 가나이 쓰도무 전력축적수단의 충방전장치 및 그것을 사용한전력축적수단의 제조방법
JP2000275282A (ja) * 1999-03-26 2000-10-06 Mitsubishi Electric Corp ワンチップ極値検出装置
US6100664A (en) 1999-03-31 2000-08-08 Motorola Inc. Sub-miniature high efficiency battery charger exploiting leakage inductance of wall transformer power supply, and method therefor
US6127804A (en) 1999-09-10 2000-10-03 Oglesbee; John Wendell Lithium ion charging means and method using ionic relaxation control
US6577072B2 (en) 1999-12-14 2003-06-10 Takion Co., Ltd. Power supply and LED lamp device
JP2001178013A (ja) 1999-12-20 2001-06-29 Casio Comput Co Ltd 充電回路及びその充電制御方法
US6229287B1 (en) 2000-01-24 2001-05-08 Michael T. Ferris Battery charger
US6456511B1 (en) 2000-02-17 2002-09-24 Tyco Electronics Corporation Start-up circuit for flyback converter having secondary pulse width modulation
JP2001286070A (ja) 2000-03-31 2001-10-12 Sony Corp 充電装置および充電制御方法
US6459237B1 (en) * 2000-06-13 2002-10-01 Hewlett-Packard Company Battery charger apparatus and method
CN1168210C (zh) 2000-06-27 2004-09-22 百利通电子(上海)有限公司 红外线感应照明灯电子开关
JP3486603B2 (ja) 2000-07-06 2004-01-13 Tdk株式会社 電源装置
JP3428955B2 (ja) * 2000-08-25 2003-07-22 オーツー・マイクロ・インターナショナル・リミテッド バッファバッテリィ電力供給システム
JP3574394B2 (ja) 2000-10-02 2004-10-06 シャープ株式会社 スイッチング電源装置
US6563235B1 (en) * 2000-10-03 2003-05-13 National Semiconductor Corporation Switched capacitor array circuit for use in DC-DC converter and method
BR0114779A (pt) 2000-10-20 2003-07-01 Ray O Vac Corp Processo e aparelho para ajuste de carga de pilhas eletroquìmicas
JP2002218749A (ja) * 2001-01-19 2002-08-02 Sony Corp スイッチング電源装置
JP4167811B2 (ja) 2001-03-05 2008-10-22 Tdk株式会社 スイッチング電源装置
JP3714882B2 (ja) * 2001-03-16 2005-11-09 シャープ株式会社 携帯型通信端末充電システム
US6414465B1 (en) 2001-06-22 2002-07-02 France/Scott Fetzer Company Method and apparatus for charging a lead acid battery
JP2003028901A (ja) * 2001-07-11 2003-01-29 Fujitsu Ten Ltd マルチソースmosを用いた電流検出回路
US7012405B2 (en) 2001-09-14 2006-03-14 Ricoh Company, Ltd. Charging circuit for secondary battery
JP2003111386A (ja) * 2001-09-26 2003-04-11 Sanyo Electric Co Ltd Dc−dcコンバータの制御方法
JP2003116232A (ja) * 2001-10-04 2003-04-18 Matsushita Electric Ind Co Ltd 電源装置
KR20050043732A (ko) * 2001-11-02 2005-05-11 아커 웨이드 파워 테크놀로지스 엘엘씨 고용량 배터리용 고속 충전기
US6664765B2 (en) * 2002-01-30 2003-12-16 Denso Corporation Lithium-ion battery charger power limitation method
WO2003107505A2 (en) 2002-06-14 2003-12-24 Koninklijke Philips Electronics N.V. Charger for rechargeable batteries
JP3557198B2 (ja) 2002-06-17 2004-08-25 株式会社東芝 スイッチング電源回路及び電子機器
SI21248B (sl) 2002-06-20 2008-12-31 Mikro + Polo Druĺ˝Ba Za Inĺ˝Eniring, Proizvodnjo In Trgovino D.O.O. Postopek in naprava za hitro polnjenje baterije
JP3753112B2 (ja) 2002-08-20 2006-03-08 株式会社村田製作所 スイッチング電源装置およびそれを用いた電子装置
JP3905005B2 (ja) * 2002-09-18 2007-04-18 富士通株式会社 携帯型機器及び半導体集積回路装置
AU2003286569A1 (en) * 2002-10-21 2004-05-13 Advanced Power Technology, Inc. Ac-dc power converter having high input power factor and low harmonic distortion
US6909266B2 (en) 2002-11-14 2005-06-21 Fyre Storm, Inc. Method of regulating an output voltage of a power converter by calculating a current value to be applied to an inductor during a time interval immediately following a voltage sensing time interval and varying a duty cycle of a switch during the time interval following the voltage sensing time interval
JP2004172963A (ja) 2002-11-20 2004-06-17 Uniden Corp コードレス電話機
US7176654B2 (en) 2002-11-22 2007-02-13 Milwaukee Electric Tool Corporation Method and system of charging multi-cell lithium-based batteries
US6844705B2 (en) 2002-12-09 2005-01-18 Intersil Americas Inc. Li-ion/Li-polymer battery charger configured to be DC-powered from multiple types of wall adapters
US6914415B2 (en) * 2003-02-14 2005-07-05 Motorola, Inc. Battery adaptor to facilitate reconditioning in a smart charger
JP2004260911A (ja) * 2003-02-25 2004-09-16 Canon Inc Acアダプタ
US7135836B2 (en) 2003-03-28 2006-11-14 Power Designers, Llc Modular and reconfigurable rapid battery charger
US6862194B2 (en) * 2003-06-18 2005-03-01 System General Corp. Flyback power converter having a constant voltage and a constant current output under primary-side PWM control
GB2403609A (en) 2003-07-01 2005-01-05 Univ Leicester Pulse charging an electrochemical device
JP3905867B2 (ja) 2003-07-17 2007-04-18 東芝テック株式会社 充電式電気掃除機
JP4124041B2 (ja) 2003-07-18 2008-07-23 日立工機株式会社 充電機能付き直流電源装置
US7528579B2 (en) 2003-10-23 2009-05-05 Schumacher Electric Corporation System and method for charging batteries
JP2005151740A (ja) 2003-11-18 2005-06-09 Sanyo Electric Co Ltd 充電器
US6909617B1 (en) 2004-01-22 2005-06-21 La Marche Manufacturing Co. Zero-voltage-switched, full-bridge, phase-shifted DC-DC converter with improved light/no-load operation
CN1564421A (zh) 2004-03-17 2005-01-12 毛锦铭 锂电池充电器
US7755330B2 (en) 2004-03-31 2010-07-13 Texas Instruments Incorporated Methods and systems for controlling an AC adapter and battery charger in a closed loop configuration
US20050253557A1 (en) 2004-05-14 2005-11-17 Grand Power Sources Inc. Electric charging system
TWI298970B (en) * 2004-07-29 2008-07-11 Sanyo Electric Co Voltage reduction type dc-dc converter
JP2006121797A (ja) * 2004-10-20 2006-05-11 Matsushita Electric Ind Co Ltd 充電器
TWI251395B (en) 2004-11-12 2006-03-11 Niko Semiconductor Co Ltd Pulse width modulation apparatus by using output voltage feedback delay circuit to automatically change the output frequency
JP2006158073A (ja) * 2004-11-29 2006-06-15 Fuji Electric Holdings Co Ltd キャパシタの充放電方法および電力変換装置
US7723964B2 (en) 2004-12-15 2010-05-25 Fujitsu General Limited Power supply device
US20060164044A1 (en) * 2005-01-25 2006-07-27 Keat Cheong S Digital pulse controlled capacitor charging circuit
SG124315A1 (en) * 2005-01-31 2006-08-30 Stl Corp Battery pack
CN1828467A (zh) 2005-03-03 2006-09-06 华邦电子股份有限公司 可调稳压电源装置
TWI278162B (en) * 2005-05-24 2007-04-01 Compal Electronics Inc Power management device and method for an electronic device
CN1881738B (zh) 2005-06-17 2011-06-22 鸿富锦精密工业(深圳)有限公司 充电模式控制电路及方法
CN100438261C (zh) * 2005-07-14 2008-11-26 栢怡国际股份有限公司 交替回路式充电装置
JP4544092B2 (ja) 2005-08-12 2010-09-15 パナソニック電工株式会社 電気カミソリシステム
US20070040516A1 (en) * 2005-08-15 2007-02-22 Liang Chen AC to DC power supply with PFC for lamp
US20070138971A1 (en) * 2005-08-15 2007-06-21 Liang Chen AC-to-DC voltage converter as power supply for lamp
US7595619B2 (en) 2005-08-23 2009-09-29 Texas Instruments Incorporated Feed-forward circuit for adjustable output voltage controller circuits
TW200723660A (en) 2005-09-30 2007-06-16 Sony Corp Switching power supply circuit
KR20070079783A (ko) 2006-02-03 2007-08-08 엘지전자 주식회사 배터리의 충전제어 장치 및 방법
US10099308B2 (en) 2006-02-09 2018-10-16 Illinois Tool Works Inc. Method and apparatus for welding with battery power
JP2007252116A (ja) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd パルス充電装置
TWI312603B (en) 2006-03-17 2009-07-21 Innolux Display Corp Battery charging circuit
JP4193857B2 (ja) 2006-03-23 2008-12-10 ソニー株式会社 リチウムイオン2次電池の充電装置及び充電方法
JP4495105B2 (ja) * 2006-03-28 2010-06-30 富士通株式会社 無停電電源装置
JP4431119B2 (ja) * 2006-03-28 2010-03-10 パナソニック株式会社 充電器
WO2008001153A1 (en) * 2006-06-29 2008-01-03 Nokia Corporation Device and method for detecting a usb charger
KR101259642B1 (ko) * 2006-08-01 2013-04-30 엘지전자 주식회사 충전장치, 충전장치를 구비한 휴대용기기 및 그를 이용한충전방법
US20080149320A1 (en) 2006-10-19 2008-06-26 Sony Ericsson Mobile Communications Ab Electronic device with dual function outer surface
JP2008136278A (ja) 2006-11-27 2008-06-12 Matsushita Electric Works Ltd 充電器
DE102006057523B4 (de) 2006-12-06 2008-08-07 Siemens Ag Regelverfahren für eine Volumenstromregelung
US7750604B2 (en) 2007-02-16 2010-07-06 O2Micro, Inc. Circuits and methods for battery charging
CN101051701B (zh) 2007-03-01 2010-08-11 华为技术有限公司 一种蓄电池脉冲快速充电方法及充电系统
CN201017967Y (zh) 2007-03-05 2008-02-06 南京德朔实业有限公司 一种带有自充功能的锂电系统
US20080218127A1 (en) 2007-03-07 2008-09-11 O2Micro Inc. Battery management systems with controllable adapter output
US7973515B2 (en) * 2007-03-07 2011-07-05 O2Micro, Inc Power management systems with controllable adapter output
JP4379480B2 (ja) * 2007-03-09 2009-12-09 ソニー株式会社 充電器および充電方法
CN101022179A (zh) 2007-03-15 2007-08-22 淮阴工学院 蓄电池快速充电方法
JP2008236878A (ja) 2007-03-19 2008-10-02 Hitachi Koki Co Ltd 充電装置
FR2914123B1 (fr) 2007-03-20 2009-12-04 Advanced Electromagnetic Syste Chargeur rapide universel pour tout element electrolytique, piles alcalines et accumulateurs rechargeables
US8018204B2 (en) * 2007-03-26 2011-09-13 The Gillette Company Compact ultra fast battery charger
CN101291079B (zh) 2007-04-18 2010-10-13 深圳市盈基实业有限公司 自适应电池充电电路
JP2009017648A (ja) * 2007-07-03 2009-01-22 Canon Inc 充電装置
US8040699B2 (en) * 2007-07-09 2011-10-18 Active-Semi, Inc. Secondary side constant voltage and constant current controller
US8193778B2 (en) * 2007-07-13 2012-06-05 Sanyo Electric Co., Ltd. Method of charging a battery array
JP4479760B2 (ja) * 2007-07-25 2010-06-09 ソニー株式会社 充電装置および充電方法
JP4380747B2 (ja) * 2007-07-25 2009-12-09 ソニー株式会社 充電装置
US7663352B2 (en) 2007-08-27 2010-02-16 System General Corp. Control circuit for measuring and regulating output current of CCM power converter
JP5162187B2 (ja) 2007-08-31 2013-03-13 京セラ株式会社 携帯端末および起動方法
US9071073B2 (en) 2007-10-04 2015-06-30 The Gillette Company Household device continuous battery charger utilizing a constant voltage regulator
US7755916B2 (en) 2007-10-11 2010-07-13 Solarbridge Technologies, Inc. Methods for minimizing double-frequency ripple power in single-phase power conditioners
CN101202462A (zh) * 2007-11-02 2008-06-18 南开大学 多功能随身电源
US7969043B2 (en) * 2007-11-05 2011-06-28 O2 Micro, Inc. Power management systems with multiple power sources
CN101431250A (zh) 2007-11-06 2009-05-13 上海辰蕊微电子科技有限公司 用于电池充电器的充电管理控制电路及其控制方法
US20110280047A1 (en) * 2007-11-29 2011-11-17 Eng Electronic Co., Ltd. Switching power adaptor circuit
KR100998304B1 (ko) 2008-01-23 2010-12-03 삼성에스디아이 주식회사 배터리 팩 및 이의 충전 방법
US7855520B2 (en) * 2008-03-19 2010-12-21 Niko Semiconductor Co., Ltd. Light-emitting diode driving circuit and secondary side controller for controlling the same
JP5551342B2 (ja) * 2008-03-26 2014-07-16 富士重工業株式会社 充電装置
JP2009247101A (ja) * 2008-03-31 2009-10-22 Tdk Corp 充電装置
US8320143B2 (en) 2008-04-15 2012-11-27 Powermat Technologies, Ltd. Bridge synchronous rectifier
CN101312297B (zh) * 2008-05-16 2010-12-08 浙江华源电气有限公司 蓄电池脉冲充电电源装置
JP2010011563A (ja) 2008-06-25 2010-01-14 Mitsumi Electric Co Ltd 直流電源装置
JP2010010499A (ja) * 2008-06-30 2010-01-14 New Japan Radio Co Ltd 半導体装置の製造方法
CN101621209A (zh) * 2008-07-03 2010-01-06 深圳富泰宏精密工业有限公司 充电装置及其充电方法
JP5301897B2 (ja) 2008-07-03 2013-09-25 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 充電装置
JP5098912B2 (ja) 2008-07-11 2012-12-12 ソニー株式会社 バッテリパックおよび充電制御システム
JP5138490B2 (ja) 2008-07-17 2013-02-06 ルネサスエレクトロニクス株式会社 サンプル・ホールド回路及びデジタルアナログ変換回路
CN101651356A (zh) 2008-08-11 2010-02-17 鸿富锦精密工业(深圳)有限公司 电源适配器及其充电方法
WO2010028303A2 (en) 2008-09-04 2010-03-11 Allsop, Inc. System and method for providing power to portable electronic devices
CN101714647B (zh) * 2008-10-08 2012-11-28 株式会社牧田 电动工具用蓄电池匣以及电动工具
JP5313635B2 (ja) * 2008-11-10 2013-10-09 株式会社マキタ 電動工具用充電システム、電動工具用バッテリパック、及び電動工具用充電器
JP4766095B2 (ja) 2008-10-09 2011-09-07 ソニー株式会社 充電装置
US8488342B2 (en) 2008-10-21 2013-07-16 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for constant voltage mode and constant current mode in flyback power converters with primary-side sensing and regulation
JP5431842B2 (ja) * 2008-10-21 2014-03-05 セイコーインスツル株式会社 バッテリ状態監視回路及びバッテリ装置
TWI414126B (zh) 2009-01-23 2013-11-01 Asustek Comp Inc 充電裝置
JP5451094B2 (ja) * 2009-02-02 2014-03-26 スパンション エルエルシー 充電回路、充電装置、電子機器及び充電方法
US8169806B2 (en) 2009-02-12 2012-05-01 Apple Inc. Power converter system with pulsed power transfer
JP5600881B2 (ja) * 2009-03-06 2014-10-08 セイコーエプソン株式会社 Dc−dcコンバータ回路、電気光学装置及び電子機器
US8143862B2 (en) * 2009-03-12 2012-03-27 02Micro Inc. Circuits and methods for battery charging
US8159091B2 (en) * 2009-04-01 2012-04-17 Chimei Innolux Corporation Switch circuit of DC/DC converter configured to conduct various modes for charging/discharging
JP2010251104A (ja) * 2009-04-15 2010-11-04 Sanyo Electric Co Ltd パック電池
JP2010263735A (ja) 2009-05-11 2010-11-18 Toshiba Corp 情報処理装置及びバッテリ充電制御方法
JP2010263734A (ja) 2009-05-11 2010-11-18 Funai Electric Co Ltd 安全保護回路並びにそれを備えた電源装置及び電気機器
JP2010288360A (ja) * 2009-06-11 2010-12-24 Mitsubishi Electric Corp 電力変換装置
JP2010288403A (ja) 2009-06-12 2010-12-24 Nissan Motor Co Ltd 組電池充電制御装置
JP5593849B2 (ja) * 2009-06-12 2014-09-24 日産自動車株式会社 組電池の監視装置
CN101572496B (zh) 2009-06-15 2012-07-11 哈尔滨工程大学 基于单片机控制的程控开关电源
CN101706558B (zh) * 2009-07-20 2013-07-03 深圳市普禄科智能检测设备有限公司 一种直流电源及蓄电池在线监测系统
CN101986502A (zh) * 2009-07-28 2011-03-16 深圳富泰宏精密工业有限公司 手机电池充电电路
TWI401555B (zh) 2009-07-29 2013-07-11 Delta Electronics Inc 調壓電路及其適用之並聯式調壓電路系統
TWI427892B (zh) 2009-09-08 2014-02-21 Pegatron Corp 具省電功能之供電系統及供電方法
US8148942B2 (en) 2009-11-05 2012-04-03 O2Micro International Limited Charging systems with cell balancing functions
CN102668350B (zh) 2009-11-25 2015-02-18 罗姆股份有限公司 电源适配器、dc/dc转换器的控制电路及设备侧连接器、dc/dc转换器、利用其的电源装置、以及电子设备
US20110140673A1 (en) 2009-12-10 2011-06-16 Texas Insturments Incorporated Pulse width modulated battery charging
JP5454781B2 (ja) 2010-01-15 2014-03-26 株式会社ダイフク 鉛蓄電池の充電装置
JP2011151891A (ja) 2010-01-19 2011-08-04 Sony Corp 二次電池の充電方法および充電装置
US9087656B1 (en) * 2010-02-08 2015-07-21 VI Chip, Inc. Power supply system with power factor correction and efficient low power operation
US8553439B2 (en) 2010-02-09 2013-10-08 Power Integrations, Inc. Method and apparatus for determining zero-crossing of an AC input voltage to a power supply
US8310845B2 (en) * 2010-02-10 2012-11-13 Power Integrations, Inc. Power supply circuit with a control terminal for different functional modes of operation
JP4848038B2 (ja) 2010-02-26 2011-12-28 幸男 高橋 充電器及び充電装置
CN101867295B (zh) 2010-03-16 2014-07-16 成都芯源系统有限公司 一种电路及控制方法
CN101944853B (zh) * 2010-03-19 2013-06-19 郁百超 绿色功率变换器
JP2011205839A (ja) * 2010-03-26 2011-10-13 Hitachi Koki Co Ltd 充電器及び電池パック
JP5412355B2 (ja) 2010-03-31 2014-02-12 株式会社日立製作所 バッテリ充電装置、バッテリ充電回路及び半導体集積回路装置
JP5486986B2 (ja) 2010-03-31 2014-05-07 新電元工業株式会社 バッテリ充電装置、バッテリ充電回路及び半導体集積回路装置
JP5693870B2 (ja) 2010-04-13 2015-04-01 ミネベア株式会社 スイッチング電源回路
TWM391795U (en) 2010-06-18 2010-11-01 Digilion Inc Power supply adapter
CN101924471B (zh) 2010-08-31 2013-05-01 深圳市明微电子股份有限公司 恒定输出电流的方法及装置
CN201904769U (zh) * 2010-09-01 2011-07-20 文祚明 取样电路档位快速切换装置
CN101938154B (zh) 2010-09-09 2013-11-06 中兴通讯股份有限公司 一种终端充电方法、装置及系统
JP5817096B2 (ja) * 2010-09-22 2015-11-18 日産自動車株式会社 電力供給装置及び電力供給方法
JP5226753B2 (ja) * 2010-10-04 2013-07-03 レノボ・シンガポール・プライベート・リミテッド 充電システムおよび充電方法
JP5685885B2 (ja) 2010-10-21 2015-03-18 株式会社デンソー 車両用電池パック
US9252463B2 (en) 2010-10-21 2016-02-02 Chervon (Hk) Limited Battery charging system having multiple charging modes
US9153999B2 (en) 2010-10-22 2015-10-06 Qualcomm, Incorporated Circuits and methods for automatic power source detection
CN102055344B (zh) 2010-12-22 2013-03-06 上海明石光电科技有限公司 开关电源
JP5664223B2 (ja) 2010-12-27 2015-02-04 ソニー株式会社 充電装置
US8971074B2 (en) 2011-01-05 2015-03-03 General Electric Company Bias supply, a power supply and a method of using bias supply voltage levels to signal information across an isolation barrier
CN102364848B (zh) * 2011-02-01 2013-04-03 杭州士兰微电子股份有限公司 一种原边控制的恒流开关电源控制器及方法
CN102364990B (zh) * 2011-02-01 2012-10-10 杭州士兰微电子股份有限公司 一种原边控制led恒流驱动开关电源控制器及其方法
JP2012165546A (ja) * 2011-02-07 2012-08-30 Konica Minolta Medical & Graphic Inc 充電システム、電子機器および充電装置
US8351302B2 (en) * 2011-02-09 2013-01-08 Jeremy Laurence Fischer Power supply for clock
JP2012200781A (ja) * 2011-03-28 2012-10-22 Nippon Avionics Co Ltd 静電蓄勢式溶接電源の充電制御方法および静電蓄勢式溶接電源
US20120249054A1 (en) * 2011-03-29 2012-10-04 Paul King Universal charging board assembly and method for providing power to devices connected thereof
JP5403288B2 (ja) 2011-03-30 2014-01-29 株式会社エクォス・リサーチ 電力伝送システム
JP2012217276A (ja) 2011-03-31 2012-11-08 Sanyo Electric Co Ltd 電源装置及びこれを備える車両
JP5617748B2 (ja) * 2011-04-08 2014-11-05 株式会社デンソー 充電装置
JP2012223077A (ja) * 2011-04-14 2012-11-12 Kyocera Corp 充電システム
CN202019221U (zh) 2011-04-18 2011-10-26 成都秦川科技发展有限公司 电动汽车pwm整流及变压变流脉冲充电系统
US8836287B2 (en) * 2011-05-03 2014-09-16 Apple Inc. Time-domain multiplexing of power and data
CN102769383B (zh) * 2011-05-05 2015-02-04 广州昂宝电子有限公司 用于利用初级侧感测和调整进行恒流控制的系统和方法
CN202026118U (zh) 2011-05-17 2011-11-02 李秉哲 防止蓄电池过量充电的充电装置
JP2012249410A (ja) 2011-05-27 2012-12-13 Sharp Corp 電気自動車充電用の充電器及び充電装置
JP5097289B1 (ja) 2011-05-27 2012-12-12 シャープ株式会社 電気自動車充電用の充電器及び充電装置
KR101813011B1 (ko) * 2011-05-27 2017-12-28 삼성전자주식회사 무선 전력 및 데이터 전송 시스템
CN102820682B (zh) 2011-06-09 2016-01-20 中兴通讯股份有限公司 一种通过usb接口通信并为外部设备充电的装置及方法
DE102011077716A1 (de) * 2011-06-17 2012-12-20 Robert Bosch Gmbh Ladevorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers
US9263968B2 (en) 2011-06-22 2016-02-16 Eetrex, Inc. Bidirectional inverter-charger
CN102364856B (zh) 2011-06-30 2013-10-16 成都芯源系统有限公司 开关电源及其空载控制电路和控制方法
US8788852B2 (en) * 2011-07-01 2014-07-22 Intel Corporation System and method for providing power through a reverse local data transfer connection
CN103732361B (zh) * 2011-07-24 2017-03-01 株式会社牧田 用于电动工具的适配器、电动工具系统和其操作方法
JP5887081B2 (ja) * 2011-07-26 2016-03-16 ローム株式会社 Ac/dcコンバータおよびそれを用いたac電源アダプタおよび電子機器
JP2013031303A (ja) 2011-07-28 2013-02-07 Sanyo Electric Co Ltd 電池パックの無接点充電方法及び電池パック
WO2013035183A1 (ja) * 2011-09-08 2013-03-14 日立ビークルエナジー株式会社 電池システム監視装置
JP5780894B2 (ja) * 2011-09-16 2015-09-16 株式会社半導体エネルギー研究所 非接触給電システム
JP5773435B2 (ja) 2011-10-25 2015-09-02 ニチコン株式会社 充電装置
US8699243B2 (en) 2011-10-28 2014-04-15 Apple Inc. Power converter system with synchronous rectifier output stage and reduced no-load power consumption
US9805890B2 (en) * 2011-11-07 2017-10-31 Cooper Technologies Company Electronic device state detection for zero power charger control, systems and methods
CN102427260A (zh) 2011-12-02 2012-04-25 苏州冠硕新能源有限公司 充电管理系统及采用该充电管理系统的充电器
CN103167663A (zh) * 2011-12-09 2013-06-19 鸿富锦精密工业(深圳)有限公司 Led控制电路
US20130147543A1 (en) * 2011-12-12 2013-06-13 Futurewei Technologies, Inc. Apparatus and Method for Fractional Charge Pumps
JP2013135510A (ja) * 2011-12-26 2013-07-08 Sanyo Electric Co Ltd 充電電流の決定方法及びパック電池
CN105703429B (zh) 2011-12-28 2018-09-11 中兴通讯股份有限公司 一种充电方法、移动终端、充电设备及系统
US9614446B2 (en) * 2012-01-19 2017-04-04 Koninklijke Philips N.V. Power supply device
KR101629997B1 (ko) * 2012-01-30 2016-06-13 엘에스산전 주식회사 전기자동차 충전기를 위한 dc-링크 캐패시터 방전 장치
WO2013114497A1 (ja) 2012-02-01 2013-08-08 パナソニック株式会社 電源供給制御システムの制御装置
CN104106194B (zh) 2012-02-08 2016-07-06 三菱电机株式会社 电力变换装置
CN102545360A (zh) 2012-02-09 2012-07-04 刘德军 电动车蓄电池智能充电器
CN103001272A (zh) * 2012-02-15 2013-03-27 西安胜唐电源有限公司 具有电度计量和电池管理的充电站
IL218213A0 (en) * 2012-02-20 2012-07-31 Better Place GmbH Charging management method and system
KR20130098521A (ko) * 2012-02-28 2013-09-05 삼성전자주식회사 무선 전력공급장치 및 그 제어 방법
US9287731B2 (en) * 2012-02-29 2016-03-15 Fairchild Semiconductor Corporation Battery charging system including current observer circuitry to avoid battery voltage overshoot based on battery current draw
FR2987946B1 (fr) 2012-03-09 2014-03-07 Valeo Sys Controle Moteur Sas Procede de decharge d'au moins un condensateur d'un circuit electrique
JP5773920B2 (ja) 2012-03-19 2015-09-02 ルネサスエレクトロニクス株式会社 充電装置
JP5822304B2 (ja) 2012-03-26 2015-11-24 ニチコン株式会社 充電装置
US9450452B2 (en) 2012-04-03 2016-09-20 Micorsoft Technology Licensing, LLC Transformer coupled current capping power supply topology
CN102629773B (zh) 2012-04-12 2014-04-30 杭州创美实业有限公司 智能脉冲温控充电器
CN103376346B (zh) * 2012-04-26 2015-12-02 比亚迪股份有限公司 一种低边电流检测系统
AT512887B1 (de) 2012-04-27 2014-03-15 Siemens Ag Ausgangsstufe eines Ladegerätes
US9118185B2 (en) * 2012-05-14 2015-08-25 Qualcomm Incorporated Systems and methods for high power factor charging
JP6174129B2 (ja) 2012-05-18 2017-08-02 ドルビー ラボラトリーズ ライセンシング コーポレイション パラメトリックオーディオコーダに関連するリバーシブルダイナミックレンジ制御情報を維持するシステム
CN202616850U (zh) 2012-06-01 2012-12-19 宋新林 蓄电池充电机
CN102723880A (zh) * 2012-06-13 2012-10-10 广州金升阳科技有限公司 一种交流变直流电路
CN202651863U (zh) * 2012-06-28 2013-01-02 华为终端有限公司 充电器及充电系统
JP6122257B2 (ja) 2012-07-04 2017-04-26 ローム株式会社 Dc/dcコンバータおよびその制御回路、それを用いた電源装置、電源アダプタおよび電子機器
CN103580506B (zh) * 2012-07-19 2016-09-07 比亚迪股份有限公司 开关电源及电源控制芯片
US8933662B2 (en) 2012-07-26 2015-01-13 Daifuku Co., Ltd. Charging apparatus for lead storage battery
CN102801340B (zh) 2012-08-20 2014-07-02 浙江大学 一种ac-dc变换器的控制方法及其控制器
JP6008365B2 (ja) * 2012-09-05 2016-10-19 新電元工業株式会社 充電装置
CN102916595B (zh) * 2012-10-25 2015-02-18 深圳市明微电子股份有限公司 一种开关电源及其多阈值开关电路
TWI498704B (zh) * 2012-11-06 2015-09-01 泰達電子公司 可動態調整輸出電壓之電源轉換器及其適用之供電系統
WO2014077978A1 (en) * 2012-11-14 2014-05-22 Apple Inc. High voltage charging for a portable device
CN102957193B (zh) 2012-11-19 2015-12-23 中兴通讯股份有限公司 一种充电管理方法、装置和系统
US9209676B2 (en) 2012-12-07 2015-12-08 Motorola Solutions, Inc. Method and apparatus for charging batteries having different voltage ranges with a single conversion charger
JP6092604B2 (ja) * 2012-12-10 2017-03-08 ローム株式会社 Dc/dcコンバータおよびその制御回路、それを用いた電源装置、電源アダプタおよび電子機器
CN103036437B (zh) 2012-12-11 2015-03-11 航天科工深圳(集团)有限公司 一种配网终端电源装置
KR101489226B1 (ko) * 2012-12-21 2015-02-06 주식회사 만도 전기 자동차용 통합형 완속 충전기, 충전기능을 갖는 전기 자동차, 완속 충전기를 포함하는 전기 자동차용 충전기의 제어 시스템 및 제어 방법
CN203104000U (zh) 2012-12-24 2013-07-31 华联电电子(深圳)有限公司 便携式充电器
US20140184189A1 (en) * 2013-01-02 2014-07-03 Loai Galal Bahgat Salem Inductively assisted switched capacitor dc-dc converter
US9921627B2 (en) 2013-01-08 2018-03-20 Semiconductor Components Industries, Llc Control circuit for programmable power supply
JP6101493B2 (ja) * 2013-01-15 2017-03-22 ローム株式会社 電力供給装置、acアダプタ、電子機器および電力供給システム
US9425634B2 (en) 2013-01-17 2016-08-23 Tamura Corporation Charging apparatus for secondary battery
JP5997063B2 (ja) 2013-01-17 2016-09-21 株式会社タムラ製作所 二次電池の充電装置
CN103066666B (zh) * 2013-01-22 2015-08-26 矽力杰半导体技术(杭州)有限公司 一种升压型电池充电管理系统及其控制方法
JP6081207B2 (ja) * 2013-01-29 2017-02-15 三洋電機株式会社 無接点給電システム、受電機器、給電台、無接点給電方法
JP2014161146A (ja) * 2013-02-19 2014-09-04 Denso Corp スイッチング電源装置
US20140239882A1 (en) 2013-02-26 2014-08-28 System General Corporation Apparatus for charging battery through programmable power adapter
US20140253051A1 (en) * 2013-03-07 2014-09-11 Apple Inc. Charging a battery in a portable electronic device
US9318963B2 (en) 2013-03-13 2016-04-19 Dialog Semiconductor Inc. Switching power converter with secondary to primary messaging
CN103178595B (zh) 2013-03-14 2015-06-24 广东欧珀移动通信有限公司 手机适配器
CN203135543U (zh) 2013-03-14 2013-08-14 广东欧珀移动通信有限公司 手机适配器
US9559538B1 (en) 2013-03-15 2017-01-31 Maxim Integrated Products, Inc. Switch mode battery charger with improved battery charging time
KR20140120699A (ko) * 2013-04-04 2014-10-14 삼성전자주식회사 충전을 위한 전자 장치 제어 방법 및 이를 지원하는 전자 장치와 충전 장치
JP6030018B2 (ja) * 2013-04-16 2016-11-24 株式会社マキタ 充電システム
TWI479294B (zh) 2013-04-18 2015-04-01 Asustek Comp Inc 電源適配器
US9231481B2 (en) 2013-04-26 2016-01-05 Motorola Solutions, Inc. Power converter apparatus
CN203368317U (zh) 2013-04-28 2013-12-25 矽恩微电子(厦门)有限公司 无需环路补偿的高pfc恒流控制装置及电压变换器
JP2014220876A (ja) 2013-05-02 2014-11-20 株式会社ブリッジ・マーケット 電子トランス
JP6279229B2 (ja) * 2013-05-07 2018-02-14 東芝Itコントロールシステム株式会社 充放電制御装置
DE102013105119B4 (de) 2013-05-17 2016-03-03 H-Tech Ag Verfahren und Vorrichtung zum Laden von wiederaufladbaren Zellen
US20160164324A1 (en) * 2013-06-03 2016-06-09 Mediatek Inc. Portable device capable of controlling output characteristics of adaptor, and corresponding method
US9553519B2 (en) 2013-06-04 2017-01-24 Intel Corporation Small form factor voltage adapters and devices, platforms, and techniques for managing power boosts
JP2015006068A (ja) 2013-06-21 2015-01-08 三洋電機株式会社 無接点給電方法
US9419455B2 (en) * 2013-09-06 2016-08-16 Broadcom Corporation Multimode battery charger
JP5895912B2 (ja) 2013-09-11 2016-03-30 トヨタ自動車株式会社 車載バッテリの充電システム及び車載バッテリの充電方法
KR101502230B1 (ko) * 2013-09-17 2015-03-12 삼성에스디아이 주식회사 배터리 충전 방법 및 배터리 충전 시스템
CN203537225U (zh) * 2013-09-18 2014-04-09 江门市三通科技实业有限公司 一种具有抗浪涌功能的新型恒流开关电源
JP2015065736A (ja) 2013-09-24 2015-04-09 日立工機株式会社 充電装置
KR101854218B1 (ko) * 2013-10-22 2018-05-03 삼성에스디아이 주식회사 배터리 팩, 배터리 팩을 포함하는 에너지 저장 시스템, 배터리 팩의 충전 방법
JP5519853B1 (ja) * 2013-11-11 2014-06-11 パナソニック株式会社 電子機器および電子機器システム
KR20150054464A (ko) * 2013-11-12 2015-05-20 삼성에스디아이 주식회사 배터리 충전 방법 및 배터리 충전 시스템
TWI506937B (zh) 2013-12-03 2015-11-01 Grenergy Opto Inc 可提供負載補償之電源控制器以及相關之控制方法
JP6225679B2 (ja) 2013-12-09 2017-11-08 横浜ゴム株式会社 タイヤビードフィラー用ゴム組成物およびそれを用いた空気入りタイヤ
CN203645386U (zh) 2013-12-10 2014-06-11 中兴通讯股份有限公司 充电适配器及移动终端
KR102215085B1 (ko) 2013-12-23 2021-02-15 삼성전자주식회사 충전 기기 및 그 동작 방법
JP2015144554A (ja) * 2013-12-24 2015-08-06 パナソニックIpマネジメント株式会社 電力変換装置
CN103698594A (zh) * 2013-12-31 2014-04-02 广东易事特电源股份有限公司 一种检测范围可调节的电流检测电路及方法
KR101938220B1 (ko) * 2014-01-27 2019-01-14 엘에스산전 주식회사 아날로그 전류 출력모듈
CN103762691B (zh) 2014-01-28 2015-12-23 广东欧珀移动通信有限公司 电池充电装置及电池充电保护控制方法
CN103746434B (zh) 2014-01-28 2016-04-06 广东欧珀移动通信有限公司 充电方法和系统
CN103762702B (zh) 2014-01-28 2015-12-16 广东欧珀移动通信有限公司 电子设备充电装置及其电源适配器
CN203747452U (zh) * 2014-01-28 2014-07-30 广东欧珀移动通信有限公司 电池充电装置
CN108134432B (zh) 2014-01-28 2021-01-15 Oppo广东移动通信有限公司 电子设备充电控制装置及方法
CN106487065B (zh) 2014-01-28 2019-02-05 Oppo广东移动通信有限公司 快速充电方法和系统
CN106329688B (zh) 2014-01-28 2019-09-27 Oppo广东移动通信有限公司 电子设备及其电源适配器
CN203747485U (zh) 2014-01-28 2014-07-30 广东欧珀移动通信有限公司 电子设备充电装置及其电源适配器
PT3101770T (pt) 2014-01-28 2019-07-12 Guangdong Oppo Mobile Telecommunications Corp Ltd Adaptador de energia e terminal
CN203747451U (zh) * 2014-01-28 2014-07-30 广东欧珀移动通信有限公司 电池充电装置
WO2015113461A1 (zh) 2014-01-28 2015-08-06 广东欧珀移动通信有限公司 电源适配器和终端
US9641014B2 (en) * 2014-02-12 2017-05-02 Qualcomm Incorporated Circuits and methods for controlling skin temperature of an electronic device
CN103856060A (zh) 2014-02-13 2014-06-11 苏州市职业大学 一种最大输出电流可调的反激式开关电源
US20150244187A1 (en) * 2014-02-26 2015-08-27 Kabushiki Kaisha Toshiba Electronic device
JP2015162967A (ja) 2014-02-27 2015-09-07 日立マクセル株式会社 エネルギー管理システム、及びプログラム
TWI536706B (zh) 2014-03-11 2016-06-01 登騰電子股份有限公司 智慧型電源轉接器及其供電控制方法
US9562951B2 (en) 2014-03-11 2017-02-07 Venable Corporation Digital Frequency response analysis system and method useful for power supplies
JP2017508437A (ja) 2014-03-14 2017-03-23 アヴォジー,インコーポレイテッド 共振コンバータにおける適応型同期スイッチング
TWM481439U (zh) 2014-03-14 2014-07-01 San-Shan Hong 交換式電源供應器及其保護裝置
US20150280576A1 (en) 2014-03-26 2015-10-01 Infineon Technologies Austria Ag System and Method for a Switched Mode Power Supply
EP2928038A1 (en) * 2014-03-31 2015-10-07 ABB Technology AG Inductive power transfer system and method for operating an inductive power transfer system
US9711983B2 (en) 2014-04-09 2017-07-18 Blackberry Limited Device, system and method for charging a battery
JP5908179B2 (ja) * 2014-04-16 2016-04-26 三菱電機株式会社 車両用充電装置
US9158325B1 (en) 2014-04-22 2015-10-13 Infineon Technologies Ag Cable quality detection and power consumer devices
CN203827185U (zh) 2014-05-07 2014-09-10 昂宝电子(上海)有限公司 兼容多种通信指令和支持多级升降压的开关电源电路
CN203981764U (zh) 2014-05-09 2014-12-03 中节能六合天融环保科技有限公司 高速脉冲峰值甄别采样电路
TW201547175A (zh) 2014-06-06 2015-12-16 Wei-Chih Huang 降低待機功耗之交流/直流轉換器
US9742217B2 (en) * 2014-06-13 2017-08-22 Nissan Motor Co., Ltd. Charge control apparatus and charge control method
TWI539731B (zh) 2014-06-19 2016-06-21 立錡科技股份有限公司 電壓轉換控制器、電壓轉換電路以及電壓轉換控制方法
CN104022634B (zh) 2014-06-30 2016-06-29 中国电子科技集团公司第四十三研究所 一种储能电容式高、低压浪涌抑制电路及其抑制方法
CN204190621U (zh) 2014-07-09 2015-03-04 昂宝电子(上海)有限公司 一种开关电源电路
WO2016013451A1 (ja) 2014-07-22 2016-01-28 ローム株式会社 充電回路およびそれを利用した電子機器、充電器
KR102271730B1 (ko) 2014-07-31 2021-07-02 삼성전자주식회사 충전 제어 방법 및 이를 지원하는 전자 장치
KR101592751B1 (ko) 2014-08-13 2016-02-05 현대자동차주식회사 완속충전 초기 오버 슈트 방지 장치 및 방법
US9634502B2 (en) * 2014-08-20 2017-04-25 Qualcomm Incorporated Fast battery charging through digital feedback
CN105472827B (zh) * 2014-08-22 2018-11-09 比亚迪股份有限公司 Led驱动控制电路及其控制芯片
CN104393628B (zh) * 2014-08-29 2017-02-01 展讯通信(上海)有限公司 Usb充电器、移动终端和充电控制方法
DE102015011718A1 (de) 2014-09-10 2016-03-10 Infineon Technologies Ag Gleichrichtervorrichtung und Anordnung von Gleichrichtern
JP6400407B2 (ja) 2014-09-18 2018-10-03 Ntn株式会社 充電装置
US9784777B2 (en) * 2014-09-24 2017-10-10 Qualcomm Incorporated Methods and systems for measuring power in wireless power systems
US9929568B2 (en) 2014-09-26 2018-03-27 Integrated Device Technology, Inc. Methods and apparatuses for power control during backscatter modulation in wireless power receivers
TWI640145B (zh) * 2014-10-13 2018-11-01 力智電子股份有限公司 轉接器、可攜式電子裝置與其充電控制方法
CN204118838U (zh) * 2014-10-20 2015-01-21 广州市江科电子有限公司 一种三段式加脉冲智能电动车充电器
CN104362842A (zh) 2014-10-20 2015-02-18 矽力杰半导体技术(杭州)有限公司 开关电源及适用于开关电源的浪涌保护电路、方法
CN106415973B (zh) 2014-11-11 2020-08-28 Oppo广东移动通信有限公司 通信方法、电源适配器和终端
US9577452B2 (en) 2014-12-05 2017-02-21 Htc Corporation Portable electronic device and charging method therefor
US10250053B2 (en) 2014-12-16 2019-04-02 Virginia Tech Intellectual Properties, Inc. Optimal battery current waveform for bidirectional PHEV battery charger
CN104506055B (zh) 2014-12-26 2018-07-06 东莞市时瑞电池有限公司 自适应电压输出电源电路及电源装置
CN104467139B (zh) 2014-12-31 2017-10-24 展讯通信(上海)有限公司 充电方法、装置及充电器
CN104917222B (zh) 2015-01-05 2018-08-10 惠州市英盟科技有限公司 电动车车载数码充电器
US10193380B2 (en) 2015-01-13 2019-01-29 Inertech Ip Llc Power sources and systems utilizing a common ultra-capacitor and battery hybrid energy storage system for both uninterruptible power supply and generator start-up functions
CN105991018B (zh) * 2015-01-27 2018-08-21 意瑞半导体(上海)有限公司 功率因数校正电路、乘法器及电压前馈电路
TWI573365B (zh) * 2015-02-04 2017-03-01 通嘉科技股份有限公司 應用於交流電源的保護電路及其相關保護方法
KR101832577B1 (ko) 2015-02-10 2018-02-26 스토어닷 엘티디. 에너지 저장기기 충전용 고전력 충전장치
CN104600813B (zh) 2015-02-11 2017-12-19 南京矽力杰半导体技术有限公司 自适应输入电流限制的充电器及其控制方法
CN104767260B (zh) 2015-03-30 2017-04-05 华为技术有限公司 充电器、终端设备和充电系统
CN104917267B (zh) * 2015-06-05 2017-09-05 凤冠电机(深圳)有限公司 兼容mtk及qc2.0充电方案的二合一充电电路
US9525333B1 (en) 2015-06-05 2016-12-20 Power Integrations Limited BJT driver with dynamic adjustment of storage time versus input line voltage variations
CN104917271A (zh) 2015-06-19 2015-09-16 李�昊 一种适配器
DE102015212403B4 (de) * 2015-07-02 2021-03-25 Dialog Semiconductor (Uk) Limited Batterieladesystem mit regelungsschleife
CN104967201B (zh) 2015-08-05 2018-10-02 青岛海信移动通信技术股份有限公司 快速充电方法、移动终端及可直充电源适配器
CN104993562B (zh) * 2015-08-05 2017-12-05 青岛海信移动通信技术股份有限公司 可直充电源适配器
CN105098945B (zh) * 2015-08-05 2018-01-09 青岛海信移动通信技术股份有限公司 一种可直充电源适配器
CN104967199B (zh) 2015-08-05 2018-07-10 青岛海信移动通信技术股份有限公司 快速充电方法及移动终端
CN104993182B (zh) * 2015-08-05 2018-01-09 青岛海信移动通信技术股份有限公司 一种移动终端、可直充电源适配器及充电方法
CN105098900B (zh) * 2015-08-05 2018-05-29 青岛海信移动通信技术股份有限公司 移动终端、可直充电源适配器及充电方法
TWI579678B (zh) * 2015-08-13 2017-04-21 華碩電腦股份有限公司 電源適配器與其控制方法
CN204858705U (zh) * 2015-08-13 2015-12-09 深圳市龙威盛电子科技有限公司 手机充电器
CN105048613B (zh) 2015-09-02 2018-10-16 泉州市海通电子设备有限公司 一种电动车智能充电器
TWI536409B (zh) * 2015-09-11 2016-06-01 萬國半導體(開曼)股份有限公司 脈衝變壓器
CN105226759A (zh) * 2015-10-28 2016-01-06 北京新能源汽车股份有限公司 电池管理系统的同步采样方法和采样系统
CN105305551B (zh) 2015-11-11 2018-11-30 南京矽力杰半导体技术有限公司 充电电源及其控制方法
US9559521B1 (en) 2015-12-09 2017-01-31 King Electric Vehicles Inc. Renewable energy system with integrated home power
US20170187200A1 (en) 2015-12-28 2017-06-29 Dialog Semiconductor (Uk) Limited Charger Communication by Load Modulation
TWM523138U (zh) * 2015-12-29 2016-06-01 律源興業股份有限公司 切換式電源供應器及使用其之電源供應設備
US10536024B2 (en) 2016-01-19 2020-01-14 Texas Instruments Incorporated Battery charging system
US10411494B2 (en) 2016-02-05 2019-09-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Adapter and method for charging control
JP2017163779A (ja) * 2016-03-11 2017-09-14 ローム株式会社 給電装置、1次側コントローラ、acアダプタ、電子機器、短絡検出方法
US20170293335A1 (en) * 2016-04-08 2017-10-12 Robert A. Dunstan Adjustable power delivery apparatus for universal serial bus (usb) type-c
CN106028327A (zh) 2016-05-19 2016-10-12 徐美琴 一种通过认证服务器实现热点安全的方法
EP3723231B1 (en) 2016-07-26 2021-10-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter
EP3276811B1 (en) 2016-07-26 2019-03-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter
CN106297726B (zh) * 2016-09-08 2018-10-23 京东方科技集团股份有限公司 采样保持电路、放电控制方法和显示装置
US10476394B2 (en) 2016-12-28 2019-11-12 Texas Instruments Incorporated Dynamic learning of voltage source capabilities
US20180214971A1 (en) 2017-02-02 2018-08-02 Illinois Tool Works Inc. Methods and apparatus for a multi-mode welding-type power supply

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447142A (zh) * 2010-10-08 2012-05-09 理察·蓝德立·葛瑞 断续负载装置及其控制方法
US20130234655A1 (en) * 2010-12-06 2013-09-12 Panasonic Corporation Charger, adapter and charging system
CN202059194U (zh) * 2011-05-17 2011-11-30 杭州电子科技大学 智能通用型液晶显示充电器
CN104810877A (zh) * 2014-01-28 2015-07-29 广东欧珀移动通信有限公司 电池充电装置及方法
CN203872379U (zh) * 2014-05-28 2014-10-08 佛山市顺德区美的电热电器制造有限公司 电磁加热电路和电磁加热器具
CN105576306A (zh) * 2014-10-17 2016-05-11 东莞新能源科技有限公司 电池快速充电方法
CN106026327A (zh) * 2016-02-05 2016-10-12 广东欧珀移动通信有限公司 充电装置、充电方法、电源适配器和终端

Also Published As

Publication number Publication date
KR20180111758A (ko) 2018-10-11
US20180269700A1 (en) 2018-09-20
JP2019511188A (ja) 2019-04-18
TW201733239A (zh) 2017-09-16
US10910866B2 (en) 2021-02-02
TWI610509B (zh) 2018-01-01
SG11201708528PA (en) 2017-11-29
US20180351396A1 (en) 2018-12-06
US10608462B2 (en) 2020-03-31
AU2017215236A1 (en) 2017-10-12
HK1246011A1 (zh) 2018-08-31
WO2017133384A2 (zh) 2017-08-10
IL255584B2 (en) 2023-02-01
WO2017133386A2 (zh) 2017-08-10
US20180123383A1 (en) 2018-05-03
ES2788707T3 (es) 2020-10-22
KR20170134575A (ko) 2017-12-06
TW201729497A (zh) 2017-08-16
AU2017215263B2 (en) 2019-05-16
EP3273571A1 (en) 2018-01-24
JP6623237B2 (ja) 2019-12-18
AU2017215241A1 (en) 2017-11-09
TWI666849B (zh) 2019-07-21
CN206490598U (zh) 2017-09-12
TWI625917B (zh) 2018-06-01
KR102183635B1 (ko) 2020-11-27
JP2018516049A (ja) 2018-06-14
JP2018517387A (ja) 2018-06-28
KR102138109B1 (ko) 2020-07-28
US10411494B2 (en) 2019-09-10
PH12018501667A1 (en) 2019-06-17
KR102157343B1 (ko) 2020-09-17
JP6976993B2 (ja) 2021-12-08
WO2017133404A1 (zh) 2017-08-10
JP2018519781A (ja) 2018-07-19
WO2017143876A1 (zh) 2017-08-31
EP3249777B1 (en) 2019-08-21
TW201729496A (zh) 2017-08-16
US10985595B2 (en) 2021-04-20
JP2018520618A (ja) 2018-07-26
JP2018525961A (ja) 2018-09-06
KR102189990B1 (ko) 2020-12-14
US20190252904A1 (en) 2019-08-15
EP3282550A4 (en) 2018-10-17
KR102157331B1 (ko) 2020-09-17
JP2019180232A (ja) 2019-10-17
KR20180098608A (ko) 2018-09-04
WO2017133392A1 (zh) 2017-08-10
EP3285364A1 (en) 2018-02-21
MY188691A (en) 2021-12-23
US10644529B2 (en) 2020-05-05
KR20170133469A (ko) 2017-12-05
WO2017133396A1 (zh) 2017-08-10
KR20180023995A (ko) 2018-03-07
KR20170139066A (ko) 2017-12-18
JP6421253B2 (ja) 2018-11-07
US10566828B2 (en) 2020-02-18
US20180183262A1 (en) 2018-06-28
WO2017133402A2 (zh) 2017-08-10
JP2018516046A (ja) 2018-06-14
JP2019165627A (ja) 2019-09-26
TW201729500A (zh) 2017-08-16
EP3407460B1 (en) 2020-08-19
EP3285363A1 (en) 2018-02-21
JP6386199B2 (ja) 2018-09-05
JP6420498B2 (ja) 2018-11-07
US10461568B2 (en) 2019-10-29
KR102196455B1 (ko) 2020-12-30
EP3282550B1 (en) 2020-04-15
AU2017215242A1 (en) 2017-10-12
EP3285362A1 (en) 2018-02-21
JP6670852B2 (ja) 2020-03-25
EP3285364A4 (en) 2018-05-30
EP3282548A4 (en) 2019-01-23
US20180083477A1 (en) 2018-03-22
EP3249777A4 (en) 2018-04-18
KR20170139614A (ko) 2017-12-19
EP3319202A2 (en) 2018-05-09
US20180331559A1 (en) 2018-11-15
EP3285364B1 (en) 2020-02-26
US10348119B2 (en) 2019-07-09
SG11201801422UA (en) 2018-03-28
WO2017133384A3 (zh) 2017-09-21
KR102227157B1 (ko) 2021-03-12
JP6458200B2 (ja) 2019-01-23
WO2017133385A2 (zh) 2017-08-10
EP3273570B1 (en) 2020-10-07
US20180145533A1 (en) 2018-05-24
JP6712294B2 (ja) 2020-06-17
EP3291410A2 (en) 2018-03-07
CN108141058A (zh) 2018-06-08
JP2018523963A (ja) 2018-08-23
DK3249777T3 (da) 2019-09-16
JP6728372B2 (ja) 2020-07-22
IL255584A (en) 2018-01-31
JP6589046B6 (ja) 2019-12-11
US10819134B2 (en) 2020-10-27
EP3319202A4 (en) 2018-08-29
EP3249779B1 (en) 2020-09-02
TW201729486A (zh) 2017-08-16
US20180026472A1 (en) 2018-01-25
JP2018525962A (ja) 2018-09-06
EP3285360B1 (en) 2020-02-26
TWI651914B (zh) 2019-02-21
EP3282547B1 (en) 2020-08-26
CN107836066B (zh) 2021-06-15
KR20180113493A (ko) 2018-10-16
CN108141058B (zh) 2022-03-22
EP3282551A4 (en) 2018-05-23
TW201737587A (zh) 2017-10-16
JP6378454B2 (ja) 2018-08-22
TW201729485A (zh) 2017-08-16
TW201733241A (zh) 2017-09-16
JP2019507569A (ja) 2019-03-14
US20180183260A1 (en) 2018-06-28
TW201729495A (zh) 2017-08-16
ZA201801132B (en) 2019-07-31
US20190393716A1 (en) 2019-12-26
US10714963B2 (en) 2020-07-14
TWI617113B (zh) 2018-03-01
KR102176549B1 (ko) 2020-11-11
US20180069418A1 (en) 2018-03-08
TWI663805B (zh) 2019-06-21
AU2017215247B2 (en) 2019-09-12
CN107836066A (zh) 2018-03-23
JP2019097386A (ja) 2019-06-20
US20180342890A1 (en) 2018-11-29
TWI625916B (zh) 2018-06-01
EP3249778A4 (en) 2018-03-07
KR20180012329A (ko) 2018-02-05
SG11201806170UA (en) 2018-08-30
ZA201800935B (en) 2019-08-28
US20190312454A1 (en) 2019-10-10
WO2017133391A1 (zh) 2017-08-10
AU2017215241B2 (en) 2019-02-14
ZA201707368B (en) 2018-11-28
EP3282551B1 (en) 2019-08-14
EP3285360A2 (en) 2018-02-21
EP3282547A1 (en) 2018-02-14
KR102157329B1 (ko) 2020-09-17
WO2017133403A2 (zh) 2017-08-10
CN107735922A (zh) 2018-02-23
EP3249778B1 (en) 2020-10-14
EP3413429A1 (en) 2018-12-12
AU2017215236B2 (en) 2019-05-09
JP2018519785A (ja) 2018-07-19
JP6948356B2 (ja) 2021-10-13
KR102204865B1 (ko) 2021-01-19
ES2744852T3 (es) 2020-02-26
EP3282549B1 (en) 2020-02-26
TWI661640B (zh) 2019-06-01
EP3413429B1 (en) 2021-02-24
WO2017133381A1 (zh) 2017-08-10
JP2018519780A (ja) 2018-07-19
MY183550A (en) 2021-02-26
KR102301104B1 (ko) 2021-09-10
EP3285361A4 (en) 2018-06-06
EP3407460A1 (en) 2018-11-28
WO2017133397A2 (zh) 2017-08-10
JP2018525963A (ja) 2018-09-06
EP3249779A4 (en) 2018-07-25
TWI656710B (zh) 2019-04-11
KR102178666B1 (ko) 2020-11-16
JP2018516057A (ja) 2018-06-14
US10651677B2 (en) 2020-05-12
WO2017133394A1 (zh) 2017-08-10
EP3291410B1 (en) 2020-04-29
JP2018520628A (ja) 2018-07-26
KR20180011247A (ko) 2018-01-31
AU2017215264A1 (en) 2018-02-22
WO2017133383A1 (zh) 2017-08-10
IL258469A (en) 2018-05-31
WO2017133379A1 (zh) 2017-08-10
KR20170134604A (ko) 2017-12-06
US20180358836A1 (en) 2018-12-13
US10389164B2 (en) 2019-08-20
KR102193332B1 (ko) 2020-12-22
ZA201707933B (en) 2019-04-24
EP3273570A1 (en) 2018-01-24
WO2017133402A3 (zh) 2017-10-05
AU2017215235A1 (en) 2018-02-08
KR102157342B1 (ko) 2020-09-17
US10291060B2 (en) 2019-05-14
EP3285363B1 (en) 2021-05-26
WO2017133397A3 (zh) 2017-09-21
US10381860B2 (en) 2019-08-13
US10637276B2 (en) 2020-04-28
KR102138091B1 (ko) 2020-07-28
US20180358835A1 (en) 2018-12-13
KR20180014045A (ko) 2018-02-07
TWI651915B (zh) 2019-02-21
TWI663810B (zh) 2019-06-21
AU2017215264B2 (en) 2019-02-14
IL258469B (en) 2022-09-01
US10541553B2 (en) 2020-01-21
US20180069409A1 (en) 2018-03-08
JP2018196324A (ja) 2018-12-06
EP3282549A4 (en) 2018-05-23
WO2017133399A1 (zh) 2017-08-10
WO2017133393A1 (zh) 2017-08-10
WO2017133389A1 (zh) 2017-08-10
EP3282547A4 (en) 2018-03-14
WO2017133400A2 (zh) 2017-08-10
JP6503138B2 (ja) 2019-04-17
US10566829B2 (en) 2020-02-18
AU2017215247A1 (en) 2018-08-09
KR20180137011A (ko) 2018-12-26
JP6495535B2 (ja) 2019-04-03
US10581264B2 (en) 2020-03-03
EP3291410A4 (en) 2018-07-11
EP3282569A4 (en) 2018-07-11
AU2017215263A1 (en) 2017-11-09
EP3282548A1 (en) 2018-02-14
US10320225B2 (en) 2019-06-11
JP2018529303A (ja) 2018-10-04
WO2017133386A3 (zh) 2017-09-21
WO2017133385A3 (zh) 2017-09-21
EP3282550A1 (en) 2018-02-14
KR20180008619A (ko) 2018-01-24
EP3285361B1 (en) 2020-10-28
WO2017133400A3 (zh) 2017-10-26
TW201729499A (zh) 2017-08-16
JP6483325B2 (ja) 2019-03-13
WO2017133388A1 (zh) 2017-08-10
WO2017143876A8 (zh) 2017-12-14
WO2017133390A1 (zh) 2017-08-10
WO2017133382A1 (zh) 2017-08-10
WO2017133398A1 (zh) 2017-08-10
CN108450037A (zh) 2018-08-24
TW201729494A (zh) 2017-08-16
EP3407460A4 (en) 2019-01-23
EP3319202B1 (en) 2020-09-02
EP3282551A2 (en) 2018-02-14
WO2017133410A1 (zh) 2017-08-10
EP3282549A2 (en) 2018-02-14
ES2857570T3 (es) 2021-09-29
ES2746231T3 (es) 2020-03-05
KR20170133457A (ko) 2017-12-05
JP6559888B2 (ja) 2019-08-14
US10566827B2 (en) 2020-02-18
EP3413429A4 (en) 2019-03-13
KR20180016444A (ko) 2018-02-14
JP6495485B2 (ja) 2019-04-03
US20180294666A1 (en) 2018-10-11
EP3285362B1 (en) 2021-03-10
IL255584B (en) 2022-10-01
JP6738834B2 (ja) 2020-08-12
JP6918862B2 (ja) 2021-08-11
KR102134066B1 (ko) 2020-07-15
JP2018201330A (ja) 2018-12-20
JP2018519786A (ja) 2018-07-19
US11539230B2 (en) 2022-12-27
JP2018516050A (ja) 2018-06-14
KR20180018741A (ko) 2018-02-21
WO2017133401A1 (zh) 2017-08-10
JP2019110753A (ja) 2019-07-04
WO2017133403A3 (zh) 2017-10-12
EP3249778A1 (en) 2017-11-29
EP3285363A4 (en) 2018-05-30
US10644530B2 (en) 2020-05-05
JP2018521621A (ja) 2018-08-02
KR102183491B1 (ko) 2020-11-27
WO2017133405A1 (zh) 2017-08-10
KR102204603B1 (ko) 2021-01-19
EP3282548B1 (en) 2021-02-24
AU2017215242B2 (en) 2019-01-03
EP3282569A1 (en) 2018-02-14
TW201729484A (zh) 2017-08-16
TWI656709B (zh) 2019-04-11
TWI655821B (zh) 2019-04-01
AU2017215235B2 (en) 2019-04-04
JP6420499B2 (ja) 2018-11-07
WO2017133395A1 (zh) 2017-08-10
JP6705010B2 (ja) 2020-06-03
EP3273571B1 (en) 2020-02-26
TW201803243A (zh) 2018-01-16
PT3249777T (pt) 2019-09-27
KR20170134603A (ko) 2017-12-06
JP2018527877A (ja) 2018-09-20
SG11201806219QA (en) 2018-08-30
JP6761061B2 (ja) 2020-09-23
EP3273570A4 (en) 2019-01-23
EP3249777A1 (en) 2017-11-29
JP6692390B2 (ja) 2020-05-13
JP6393001B2 (ja) 2018-09-19
KR20180030164A (ko) 2018-03-21
WO2017133409A1 (zh) 2017-08-10
JP6589046B2 (ja) 2019-10-09
MY190877A (en) 2022-05-13
KR20180113491A (ko) 2018-10-16
EP3249779A1 (en) 2017-11-29
KR20180111759A (ko) 2018-10-11
KR102301103B1 (ko) 2021-09-10
EP3285360A4 (en) 2018-05-30
US20180090977A1 (en) 2018-03-29
US20180262042A1 (en) 2018-09-13
EP3273571A4 (en) 2018-06-27
EP3285362A4 (en) 2018-05-16
CN107735922B (zh) 2021-08-06
WO2017133387A1 (zh) 2017-08-10
KR102191090B1 (ko) 2020-12-16
US20180331560A1 (en) 2018-11-15
US10491030B2 (en) 2019-11-26
US20180331563A1 (en) 2018-11-15
CN108450037B (zh) 2019-07-12
KR102183637B1 (ko) 2020-11-27
JP6546295B2 (ja) 2019-07-17
EP3282569B1 (en) 2020-04-08
JP6810738B2 (ja) 2021-01-06
US20190334369A1 (en) 2019-10-31
ZA201707146B (en) 2019-04-24
EP3285361A1 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
WO2017133380A1 (zh) 适配器和充电控制方法
CN108141057B (zh) 适配器和充电控制方法
WO2018068454A1 (zh) 待充电设备和充电方法
TWI658675B (zh) 適配器和充電控制方法
WO2018152786A1 (zh) 均衡电路、待充电设备和充电控制方法
WO2018188006A1 (zh) 待充电设备和充电方法
WO2019056303A1 (zh) 电源提供电路、电源提供设备以及控制方法
WO2018068523A1 (zh) 电池管理电路和方法、均衡电路和方法以及待充电设备
WO2018195776A1 (zh) 电源提供设备和充电控制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15562011

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017215235

Country of ref document: AU

Date of ref document: 20170107

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018512567

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE