WO2020051775A1 - 电源提供装置和充电控制方法 - Google Patents

电源提供装置和充电控制方法 Download PDF

Info

Publication number
WO2020051775A1
WO2020051775A1 PCT/CN2018/105105 CN2018105105W WO2020051775A1 WO 2020051775 A1 WO2020051775 A1 WO 2020051775A1 CN 2018105105 W CN2018105105 W CN 2018105105W WO 2020051775 A1 WO2020051775 A1 WO 2020051775A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
power supply
grid
supply device
voltage
Prior art date
Application number
PCT/CN2018/105105
Other languages
English (en)
French (fr)
Inventor
邱治维
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880014653.1A priority Critical patent/CN110383665A/zh
Priority to US16/613,771 priority patent/US20210336545A1/en
Priority to PCT/CN2018/105105 priority patent/WO2020051775A1/zh
Priority to EP18922097.3A priority patent/EP3651338A4/en
Publication of WO2020051775A1 publication Critical patent/WO2020051775A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/022
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the field of charging, and more particularly, to a power supply device and a charging control method.
  • the present application provides a power supply device and a charging control method, which can improve the charging efficiency of a battery.
  • a power supply device including: a transformer; a first conversion circuit located on a primary side of the transformer for converting an alternating current provided by a power grid into a voltage in a pulse form; a second conversion circuit located in the The secondary side of the transformer is configured to generate an output current of the power supply device; a feedback circuit is configured to generate a feedback signal of the output current; a switch control unit is configured to control the output current according to a grid synchronization signal and the feedback signal.
  • the voltage in the form of pulses is controlled so that the waveform of the output current is consistent with the waveform of the grid synchronization signal, where the grid synchronization signal is a signal in the form of a pulse and the frequency of the grid synchronization signal is provided by the grid
  • the frequency of the alternating current is n times or 1 / n times, and n is a positive integer not less than 1.
  • a charging control method including: converting an alternating current provided by a power grid into a voltage in a pulse form on a primary side of a transformer; and coupling the voltage in the pulse form to a secondary side of the transformer to generate a power source Providing an output current of the device; controlling the voltage in the form of a pulse according to a grid synchronization signal and a feedback signal of the output current, so that a waveform of the output current is consistent with a waveform of the grid synchronization signal, wherein the grid
  • the synchronization signal is a signal in the form of a pulse
  • the frequency of the grid synchronization signal is n times or 1 / n times the frequency of the AC power provided by the grid, and n is a positive integer not less than 1.
  • Setting the output current of the power supply device to a current in the form of a pulse can reduce the polarization impedance of the battery, increase the charging time in the constant current charging stage, and further improve the charging efficiency of the battery.
  • FIG. 1 is a schematic structural diagram of a conventional power supply device.
  • FIG. 2 is a schematic structural diagram of a power supply device according to an embodiment of the present application.
  • FIG. 3 is a diagram illustrating a waveform example of an output current of a power supply device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a power supply device according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a power supply device according to another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a charging control method according to an embodiment of the present application.
  • the conventional power supply device 10 generally includes a first conversion circuit 11, a transformer 12, a second conversion circuit 13, a feedback circuit 14, and a switch control unit 15.
  • the first conversion circuit 11 is located on the primary side of the transformer 12. Therefore, the first conversion circuit 11 may sometimes be referred to as a primary conversion circuit.
  • the first conversion circuit 11 may include a rectifier circuit and a liquid electrolytic capacitor (such as a liquid aluminum electrolytic capacitor) for filtering. Rectifier circuits and liquid electrolytic capacitors can be used to rectify and filter the AC power provided by the grid. Since the liquid electrolytic capacitor has a strong filtering capability, the voltage output by the first conversion circuit 11 is usually a constant voltage. This constant voltage waveform is shown at reference numeral 16 in FIG. 1.
  • the transformer 12 may couple electric energy from the primary side to the secondary side in an electromagnetic coupling manner.
  • the electrical energy coupled to the secondary can be extracted from the energy of the electrical signal output by the first conversion circuit 11.
  • the energy extraction method can be adjusted in real time by the switch control unit 15 according to the output of the power supply device 10.
  • the second conversion circuit 13 is located on the secondary side of the transformer 12. Therefore, the second conversion circuit 13 may also be referred to as a secondary conversion circuit.
  • the second conversion circuit 13 can be used to rectify and / or filter the output voltage of the secondary (or secondary) side of the transformer 12 to form the output current of the power supply device 10.
  • the output current of the conventional power supply device 10 is usually a constant DC power.
  • the feedback circuit 14 may be configured to generate a feedback signal of an output voltage and / or an output current of the power supply device 10 and provide the feedback signal to the switch control unit 15.
  • the switching control unit 15 can control the output frequency and / or output current of the power supply device 10 by controlling the switching frequency and / or the duty cycle of a switching element (not shown in FIG. 1), so that the output of the power supply device 10 The voltage and / or output current has reached the desired value.
  • the switching element controlled by the switching control unit 15 may be, for example, a metal oxide semiconductor (MOS) tube.
  • the battery has a polarization resistance, which causes the charging process of the battery to switch from the constant current charging stage to the constant voltage charging stage prematurely, thereby reducing the charging efficiency of the battery.
  • the cause of this phenomenon is analyzed below.
  • the battery charging stage may include a trickle charging stage, a constant current charging stage, and a constant voltage charging stage.
  • the trickle charge phase can also be called the precharge phase, and usually uses a lower current to charge the battery.
  • the battery power (or voltage) reaches a certain requirement, it will enter the constant current charging stage.
  • the constant current charging stage a larger current can be used to charge the battery.
  • the voltage across the battery reaches the charge cut-off voltage in the constant-current charging stage, in order to avoid overcharging the battery, it is necessary to enter the constant-voltage charging stage and slowly charge the battery until the battery is fully charged (or reaches a preset threshold).
  • the voltage across the battery includes not only the actual voltage of the battery (that is, the actual voltage corresponding to the current charge of the battery), but also the "dummy voltage” caused by the polarization impedance of the battery.
  • the “virtual voltage” caused by the polarization impedance is high, which will cause the actual voltage across the battery to be relatively small, and the charging process of the battery has shifted from the constant current charging stage to the constant voltage charging stage, resulting in a lower charging efficiency of the battery. .
  • the embodiment of the present application provides a power supply device.
  • the output current of the power supply device is not a constant direct current, but a current in the form of a pulse. Pulsed current can reduce the polarization impedance of the battery. The smaller the polarization resistance, the longer the charging time in the constant current charging stage, and the higher the charging efficiency of the battery.
  • the power supply device 20 may include a first conversion circuit 21, a transformer 22, a second conversion circuit 23, a feedback circuit 24, and a switch control unit 25.
  • the first conversion circuit 21 is located on the primary side (or primary side) of the transformer 22.
  • the first conversion circuit 21 can be used to convert the alternating current provided by the power grid into a voltage in the form of a pulse.
  • the liquid electrolytic capacitor with strong filtering ability on the primary side may be removed, so that the voltage output by the first conversion circuit 21 is a voltage in the form of a pulse.
  • FIG. 5 shows a possible implementation manner of the first conversion circuit 21.
  • the first conversion circuit 21 may include a rectifier circuit 211 and one or more capacitors 212 (such as multilayer ceramic capacitors) with less filtering capability.
  • FIG. 5 uses the rectifier circuit 211 as a full-bridge rectifier circuit as an example for description. The embodiment of the present application is not limited thereto.
  • the rectifier circuit in the first conversion circuit 21 may also be a half-bridge rectifier circuit, or other types of rectifier circuits.
  • the capacitor 212 can be used to filter out the glitch of the voltage output by the rectifier circuit 211 and improve the signal quality.
  • the first conversion circuit 21 may include only the rectifier circuit 211 and does not include any capacitor element.
  • FIG. 2 shows a waveform of a voltage in the form of a pulse output from the first conversion circuit 21 at reference numeral 26. Comparing the voltage waveform at reference numeral 16 in FIG. 1 with the voltage waveform at reference numeral 26 in FIG. 2, it can be seen that the effect of removing the liquid electrolytic capacitor on the voltage waveform output by the first conversion circuit 21 can be seen. Removing the liquid electrolytic capacitor can reduce the volume of the power supply device 20. In addition, the liquid electrolytic capacitor has a short service life and is easy to burst. Therefore, removing the liquid electrolytic capacitor can also improve the service life and safety of the power supply device 20.
  • the transformer 22 may be a common transformer or an isolation transformer capable of electrically isolating the primary and secondary.
  • the transformer 22 may couple electric energy from the primary side to the secondary side in an electromagnetic coupling manner.
  • the electric energy coupled to the secondary can be extracted from the electric energy of the electric signal output from the first conversion circuit 21.
  • the energy extraction method can be adjusted in real time by the switch control unit 25 according to the output of the power supply device 20.
  • the second conversion circuit 23 is located on the secondary side of the transformer 22.
  • the second conversion circuit 23 may be configured to generate an output current of the power supply device 20 according to the electrical energy coupled from the primary side to the secondary side of the transformer 22.
  • FIG. 5 shows a possible implementation manner of the second conversion circuit 23.
  • the second conversion circuit 23 may include a rectifier circuit 231 and a filter circuit 232.
  • the rectifier circuit 231 may be, for example, a synchronous rectifier circuit.
  • the rectification circuit 231 may be implemented by using a diode or a synchronous rectification chip.
  • the filtering circuit 232 usually selects one or more capacitors with small filtering capacity in parallel.
  • the filter capacitor 232 is mainly used for filtering the burr of the voltage output by the rectifier circuit 231 to improve the quality of the output current of the power supply device 20.
  • the filter circuit 232 may also be removed, and only the rectifier circuit 231 is retained.
  • the feedback circuit 24 can be used to generate a feedback signal of an output current of the power supply device 20.
  • the embodiment of the present application does not limit the specific form of the feedback circuit 24, as long as the feedback circuit 24 can detect the output current of the power supply device 20 in real time, and when the output current of the power supply device 20 deviates from the desired output current, it can timely switch to the switch.
  • the control unit 25 only needs to provide a feedback signal.
  • the feedback circuit 24 may be a voltage feedback circuit composed of components such as a voltage detection circuit and an operational amplifier, or a current feedback circuit composed of components such as a current detection circuit and an operational amplifier, or a combination of a voltage feedback circuit and a current feedback circuit.
  • the feedback circuit 24 may directly send a feedback signal to the control unit 25. In some embodiments, the feedback circuit 24 may also send a feedback signal to the control unit 25 through the optocoupler device to enhance the isolation between the primary side and the secondary side of the transformer 22.
  • the switch control unit 25 can be used to control the voltage in the form of a pulse (that is, the voltage output by the first conversion circuit 21) according to the grid synchronization signal and the feedback signal provided by the feedback circuit 24 (sometimes it can also be called modulation, chopping control, or chopping (Wave modulation) so that the waveform of the output current (or the envelope of the waveform of the output current) of the power supply device 20 is consistent with the waveform of the grid synchronization signal.
  • a pulse that is, the voltage output by the first conversion circuit 21
  • the feedback circuit 24 sometimes it can also be called modulation, chopping control, or chopping (Wave modulation) so that the waveform of the output current (or the envelope of the waveform of the output current) of the power supply device 20 is consistent with the waveform of the grid synchronization signal.
  • the output current of the power supply device 20 may change with the change of the grid synchronization signal, which means that the input current of the primary side may also change with the change of the grid synchronization signal.
  • the grid synchronization signal may be a synchronization signal of the voltage (or input voltage on the primary side) in the form of a pulse output from the first conversion circuit 21 (that is, the grid synchronization signal changes following the change in the voltage in the form of the pulse). Therefore, in this case, the input voltage on the primary side and the input current on the primary side can remain synchronized. Because the power factor (PF) of the entire system is related to the phase difference between the input voltage and the input current, the smaller the phase difference between the two, the higher the power factor of the entire system. Therefore, the power supply device 20 provided in the embodiment of the present application has a higher power factor.
  • the switch control unit 25 There can be various control methods of the switch control unit 25.
  • the conventional peak current method or average current method can be used to control the output current of the power supply device 20.
  • the peak current method and the average current method reference may be made to the prior art, and details are not described herein again.
  • FIG. 5 shows a possible implementation manner of the switch control unit 25.
  • the switch control unit 25 may be a pulse width modulation (PWM) control unit.
  • the PWM control unit 25 may be a current-type PWM control unit.
  • the current-type PWM control unit can send a PWM signal obtained by the peak current method or the average current method to the switching element 28, so as to control the on / off of the switching element 28.
  • the grid synchronization signal mentioned above refers to a signal with a signal frequency that is n times or 1 / n times the frequency of the alternating current provided by the grid, where n may be a positive integer not less than 1.
  • the grid synchronization signal refers to a signal whose signal frequency is an integer multiple or an integer multiple of the frequency of the alternating current provided by the grid.
  • the frequency of the grid synchronization signal may be twice the frequency of the alternating current provided by the grid.
  • the waveform of the output current of the power supply device 20 can also follow the frequency of the AC power provided by the grid (that is, the waveform of the output current of the power supply device 20
  • the frequency is also an integer multiple or an integer multiple of the frequency of the alternating current provided by the power grid).
  • the grid synchronization signal may be a periodic signal with a minimum value of 0, or a periodic signal with a minimum value exceeding 0 points (that is, a negative number).
  • the output current of the power supply device 20 may be a periodic signal with a minimum value of 0, or a periodic signal with a minimum value exceeding 0 (that is, a negative number).
  • the waveform of the grid synchronization signal in one cycle may be a sine half wave as shown in (a) of FIG. 3; accordingly, the waveform of the output current of the power supply device 20 in one cycle is also shown in (a) of FIG. 3 ).
  • the waveform of the grid synchronization signal in a period may be a trapezoidal wave as shown in FIG. 3 (b); correspondingly, the waveform of the output current of the power supply device 20 in a period may also be A trapezoidal wave is shown in FIG. 3 (b).
  • the peak value of a sine half-wave in one period is one point, and the included angle between two adjacent sine half-waves is relatively large, which will cause the effective value of the output current of the power supply device 20 to be relatively low.
  • the peak value of the trapezoidal waveform is not a point, but a line segment. In other words, within a period, the trapezoidal wave will remain at the peak value of the waveform for a period of time.
  • the output current of the power supply device 20 is controlled as a trapezoidal wave, not only the output current of the power supply device 20 is maintained as a pulsed current, but the output current is increased.
  • the effective value of the battery further improves the charging efficiency of the battery.
  • the following describes the method for obtaining the grid synchronization signal by taking the grid synchronization signal as a trapezoidal wave as an example.
  • the power supply device 20 may further include a shaping circuit 27.
  • the shaping circuit 27 may be used to obtain the original synchronization signal from the output of the first conversion circuit 21; shape the original synchronization signal to obtain the grid synchronization signal; and send the grid synchronization signal to the switch control unit 25.
  • the shaping circuit 27 intercepts the original synchronization signal from the output terminal of the first conversion circuit 21, the waveform of the original synchronization signal is the same as the waveform shown at reference numeral 26.
  • the waveform in one period is also a sine half wave.
  • the shaping circuit 27 may shape the waveform of the original synchronization signal according to actual needs.
  • the shaping circuit 27 may shape the waveform of the original synchronization signal into a waveform shown at reference numeral 31, that is, a trapezoidal wave. Since the waveform of the output current of the power supply device 20 is consistent with the waveform of the grid synchronization signal, the waveform of the output current of the power supply device 20 is also a trapezoidal wave as shown by reference numeral 32.
  • the trapezoidal wave can increase the effective value of the output current of the power supply device 20.
  • FIG. 5 shows an example of the manner in which the shaping circuit 27 intercepts the original synchronization signal from the power grid. As shown in FIG. 5, the original synchronization signal can be intercepted at the output A of the rectifier circuit 211.
  • the original synchronization signal may not be shaped, and the original synchronization signal may be directly used as a grid synchronization signal.
  • the waveform of the original synchronization signal may be shaped into other arbitrary shapes according to actual needs, so that the waveform of the output current of the power supply device 20 may be transformed into other arbitrary shaped waveforms.
  • the switch control unit 25 may also control the switching element to stop several switching cycles (such as controlling the switch to enter a skip mode), so that the waveform of the output current of the power supply device 20 may be Form new waveforms in other forms.
  • the power supply device 20 mentioned above may sometimes be referred to as a converter or a switching power supply.
  • the topological structure of the power supply device 20 may adopt any one of a flyback, a forward, a half bridge, or a full bridge.
  • the embodiments of the present application This is not limited.
  • the power supply device 20 may use a unipolar power supply.
  • the input and output signals of the unipolar power supply without electrolytic capacitors have good followability, so the total harmonic distortion of the system can be reduced, and the power factor of the system can be improved.
  • FIG. 6 is a schematic flowchart of a charging control method according to an embodiment of the present application. The method of FIG. 6 includes steps S62 to S66.
  • step S62 on the primary side of the transformer, the AC power provided by the power grid is converted into a voltage in the form of a pulse.
  • step S64 a voltage in the form of a pulse is coupled to the secondary side of the transformer to generate an output current of the power supply device.
  • step S66 the voltage in the form of a pulse is controlled according to the grid synchronization signal and the feedback signal of the output current, so that the waveform of the output current is consistent with the waveform of the grid synchronization signal.
  • the grid synchronization signal is a signal in the form of a pulse, and the frequency of the grid synchronization signal is n times or 1 / n times the frequency of the alternating current provided by the grid, and n is a positive integer not less than 1.
  • the waveform of the grid synchronization signal within a period is trapezoidal.
  • the method of FIG. 6 may further include: obtaining an original synchronization signal from an output of the first conversion circuit, where the first conversion circuit is a circuit on the primary side for converting AC power into a voltage in a pulse form; Shaping is performed to obtain the grid synchronization signal.
  • the method of FIG. 6 may further include: adjusting a waveform of the voltage in the form of a pulse to generate a grid synchronization signal.
  • the minimum value of the output current of the power supply device is less than or equal to zero.
  • the grid synchronization signal is a voltage synchronization signal in the form of a pulse.
  • the output current of the power supply device may change with the change of the grid synchronization signal.
  • the power supply device is a unipolar power supply.
  • control of the voltage in the form of a pulse is performed based on a PWM control unit.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.

Abstract

提供一种电源提供装置和充电控制方法。该电源提供装置包括:变压器;第一转换电路,位于变压器的初级侧,用于将电网提供的交流电转换成脉冲形式的电压;第二转换电路,位于变压器的次级侧,用于生成电源提供装置的输出电流;反馈电路,用于生成输出电流的反馈信号;开关控制单元,用于根据电网同步信号和反馈信号对脉冲形式的电压进行控制,使得输出电流的波形与电网同步信号的波形保持一致,其中电网同步信号为脉冲形式的信号,且电网同步信号的频率为交流电的频率的n倍或1/n倍,n为不小于1的正整数。将电源提供装置的输出电流设置为脉冲形式的电流,可以降低电池的极化阻抗,增加恒流充电阶段的充电时间,进而可以提升电池的充电效率。

Description

电源提供装置和充电控制方法 技术领域
本申请涉及充电领域,并且更为具体地,涉及一种电源提供装置和充电控制方法。
背景技术
目前,移动终端(例如智能手机)越来越受到消费者的青睐,但是移动终端耗电量大,需要经常充电。因此,电池的充电效率成为各大厂商关心的热点问题。
发明内容
本申请提供一种电源提供装置和充电控制方法,可以提高电池的充电效率。
第一方面,提供一种电源提供装置,包括:变压器;第一转换电路,位于所述变压器的初级侧,用于将电网提供的交流电转换成脉冲形式的电压;第二转换电路,位于所述变压器的次级侧,用于生成所述电源提供装置的输出电流;反馈电路,用于生成所述输出电流的反馈信号;开关控制单元,用于根据电网同步信号和所述反馈信号对所述脉冲形式的电压进行控制,使得所述输出电流的波形与所述电网同步信号的波形保持一致,其中所述电网同步信号为脉冲形式的信号,且所述电网同步信号的频率为所述电网提供的所述交流电的频率的n倍或1/n倍,n为不小于1的正整数。
第二方面,提供一种充电控制方法,包括:在变压器的初级侧,将电网提供的交流电转换成脉冲形式的电压;将所述脉冲形式的电压耦合至所述变压器的次级侧以生成电源提供装置的输出电流;根据电网同步信号和所述输出电流的反馈信号对所述脉冲形式的电压进行控制,使得所述输出电流的波形与所述电网同步信号的波形保持一致,其中所述电网同步信号为脉冲形式的信号,且所述电网同步信号的频率为所述电网提供的所述交流电的频率的n倍或1/n倍,n为不小于1的正整数。
将电源提供装置的输出电流设置为脉冲形式的电流,可以降低电池的极化阻抗,增加恒流充电阶段的充电时间,进而可以提升电池的充电效率。
附图说明
图1是传统电源提供装置的示意性结构图。
图2是本申请一个实施例提供的电源提供装置的示意性结构图。
图3是本申请实施例提供的电源提供装置的输出电流的波形示例图。
图4是本申请另一实施例提供的电源提供装置的示意性结构图。
图5是本申请又一实施例提供的电源提供装置的示意性结构图。
图6是本申请实施例提供的充电控制方法的示意性流程图。
具体实施方式
为了便于理解,先对传统电源提供装置的结构进行简单介绍。
如图1所示,传统的电源提供装置10通常包括第一转换电路11、变压器12,第二转换电路13,反馈电路14以及开关控制单元15。
第一转换电路11位于变压器12的初级侧,因此,第一转换电路11有时也可称为初级转换电路。第一转换电路11可以包括整流电路以及用于滤波的液态电解电容(如液态铝制电解电容)。整流电路和液态电解电容可用于对电网提供的交流电进行整流和滤波。由于液态电解电容具有很强的滤波能力,因此,第一转换电路11输出的电压通常为恒定电压。该恒定电压的波形在图1的附图标记16处示出。
变压器12可以以电磁耦合的方式将电能从初级侧耦合至次级侧。耦合至次级的电能可以从第一转换电路11输出的电信号的能量中抽取。能量的抽取方式可以由开关控制单元15根据电源提供装置10的输出情况进行实时调整。
第二转换电路13位于变压器12的次级侧,因此,第二转换电路13有时也可称为次级转换电路。第二转换电路13可用于对变压器12的次级(或副边)的输出电压进行整流和/或滤波,形成电源提供装置10的输出电流。传统的电源提供装置10输出电流通常为恒定直流电。
反馈电路14可用于生成电源提供装置10的输出电压和/或输出电流的反馈信号,并将该反馈信号提供给开关控制单元15。
开关控制单元15可以通过控制开关元件(图1未示出)的开关频率和/或占空比,实现对电源提供装置10的输出电压和/或输出电流进行控制,使 得电源提供装置10的输出电压和/或输出电流达到期望值。开关控制单元15控制的开关元件例如可以是金属氧化物半导体(metal oxide semiconductor,MOS)管。
在使用电源提供装置10为电池充电的过程中,由于电池具有极化阻抗,导致电池的充电过程过早地从恒流充电阶段转入恒压充电阶段,进而降低电池的充电效率。下面对这一现象的产生原因进行分析。
电池的充电阶段可以包括涓流充电阶段、恒流充电阶段和恒压充电阶段。涓流充电阶段也可称为预充阶段,通常采用较小的电流对电池进行充电。等电池的电量(或电压)达到一定要求时,会进入恒流充电阶段。在恒流充电阶段,可以采用较大电流对电池进行充电。当电池两端的电压达到恒流充电阶段的充电截止电压时,为了避免电池过充,需要进入恒压充电阶段,缓慢地对电池进行充电,直到电池的电量充满(或达到预设阈值)为止。
电池两端的电压不但包括电池的实际电压(即电池的当前电量所对应的真实电压),还包括电池的极化阻抗引起的“虚电压”。电池的极化阻抗越高,其引起的“虚电压”也就相应越高。极化阻抗引起的“虚电压”较高,就会导致电池两端的实际电压还比较小时,电池的充电过程就已经从恒流充电阶段转入恒压充电阶段,进而导致电池的充电效率较低。
本申请实施例提供一种电源提供装置。该电源提供装置的输出电流并非恒定直流电,而是脉冲形式的电流。脉冲形式的电流能够减少电池的极化阻抗。极化阻抗越小,恒流充电阶段的充电时间越长,电池的充电效率也就相应越高。
如图2所示,本申请实施例提供的电源提供装置20可以包括第一转换电路21,变压器22,第二转换电路23,反馈电路24以及开关控制单元25。
第一转换电路21位于变压器22的初级侧(或原边)。第一转换电路21可用于将电网提供的交流电转换成脉冲形式的电压。例如,可以去掉初级侧的滤波能力较强的液态电解电容,使得第一转换电路21输出的电压为脉冲形式的电压。
图5给出了第一转换电路21的一种可能的实现方式。如图5所示,第一转换电路21可以包括整流电路211以及一个或多个滤波能力较小的电容212(如多层陶瓷电容)。图5是以整流电路211为全桥整流电路为例进行说明的,本申请实施例不限于此,第一转换电路21中的整流电路也可以是半 桥整流电路,或其他类型的整流电路。电容212可用于滤除整流电路211输出的电压的毛刺,提高信号质量。或者,在某些实施例中,第一转换电路21也可以仅包含整流电路211,不包含任何电容元件。
图2在附图标记26处示出了第一转换电路21输出的脉冲形式的电压的波形。对比图1的附图标记16处的电压波形与图2的附图标记26处的电压波形即可以看出去掉液态电解电容对第一转换电路21输出的电压波形的影响。去掉液态电解电容可以减小了电源提供装置20的体积。此外,液态电解电容的使用寿命较短,且容易爆浆,因此,去掉液态电解电容还可以提高电源提供装置20的使用寿命和安全性。
变压器22可以是普通的变压器,也可以是能够将初级和次级电气隔离的隔离变压器。变压器22可以以电磁耦合的方式将电能从初级侧耦合至次级侧。耦合至次级的电能可以从第一转换电路21输出的电信号的电能中抽取。能量的抽取方式可以由开关控制单元25根据电源提供装置20的输出情况进行实时调整。
第二转换电路23位于变压器22的次级侧。第二转换电路23可用于根据变压器22从初级侧耦合至次级侧的电能生成电源提供装置20的输出电流。
图5示出了第二转换电路23的一种可能的实现方式。如图5所示,第二转换电路23可以包括整流电路231和滤波电路232。
整流电路231例如可以是同步整流电路。整流电路231可以采用二极管或同步整流芯片实现。
滤波电路232通常选用并联的一个或多个滤波能力较小的电容。滤波电容232主要用于滤除整流电路231输出的电压的毛刺,以提高电源提供装置20的输出电流的质量。可选地,某些实施例中,也可以去掉滤波电路232,仅保留整流电路231。
反馈电路24可用于生成电源提供装置20的输出电流的反馈信号。本申请实施例对反馈电路24的具体形式不做限定,只要该反馈电路24能够实时检测电源提供装置20的输出电流,当电源提供装置20的输出电流偏离期望的输出电流时,能够及时向开关控制单元25提供反馈信号即可。反馈电路24可以是电压检测电路、运放等元件组成的电压反馈电路,也可以由电流检测电路、运放等元件组成的电流反馈电路,还可以是电压反馈电路和电流反 馈电路的组合。
反馈电路24可以直接向控制单元25发送反馈信号。在某些实施例中,反馈电路24也可以通过光耦器件向控制单元25发送反馈信号,以增强变压器22的初级侧和次级侧的隔离性。
开关控制单元25可用于根据电网同步信号和反馈电路24提供的反馈信号对脉冲形式的电压(即第一转换电路21输出的电压)进行控制(有时也可称为调制,斩波控制,或斩波调制),使得电源提供装置20的输出电流的波形(或输出电流的波形的包络)与电网同步信号的波形保持一致。
电源提供装置20的输出电流可以跟随电网同步信号的变化而变化,意味着初级侧的输入电流也可以跟随所述电网同步信号的变化而变化。进一步地,电网同步信号可以是第一转换电路21输出的脉冲形式的电压(或称初级侧的输入电压)的同步信号(即电网同步信号跟随该脉冲形式的电压的变化而变化)。因此,在这种情况下,初级侧的输入电压和初级侧的输入电流可以保持同步。由于整个系统的功率因数(power factor,PF)与该输入电压和输入电流之间的相位差有关,二者的相位差越小,整个系统的功率因数越高。因此,本申请实施例提供的电源提供装置20具有较高的功率因素。
开关控制单元25的控制方式可以有多种,例如可以采用传统的峰值电流法或平均电流法对电源提供装置20的输出电流进行控制。峰值电流法和平均电流法的实现方式可以参见现有技术,此处不再详述。
图5示出了开关控制单元25的一种可能的实现方式。如图5所示,开关控制单元25可以是脉冲宽度调制(pulse width modulation,PWM)控制单元。PWM控制单元25可以为电流型PWM控制单元。该电流型PWM控制单元可以向开关元件28发送经峰值电流法或平均电流法得到的PWM信号,从而对开关元件28的通断进行控制。
上文提及的电网同步信号是指信号频率为电网提供的交流电的频率的n倍或1/n倍的信号,其中,n可以为不小于1的正整数。换句话说,电网同步信号是指信号频率为电网提供的交流电的频率的整数倍或整数倒数倍的信号。例如,电网同步信号的频率可以为电网提供的交流电的频率的2倍。由于电源提供装置20的输出电流的波形与电网同步信号的波形保持一致,因此,电源提供装置20的输出电流的波形也可以追随电网提供的交流电的频率(即电源提供装置20的输出电流的波形的频率也为电网提供的交流电 的频率的整数倍或整数倒数倍)。
电网同步信号可以是最小值为0的周期性信号,也可以是最小值过0点(即为负数)的周期性信号。相应地,电源提供装置20的输出电流可以是最小值为0的周期性信号,也可以是最小值过0点(即为负数)的周期性信号。
电网同步信号在一个周期内的波形可以是如图3中的(a)所示的正弦半波;相应地,电源提供装置20的输出电流在一个周期内的波形也是如图3中的(a)所示的正弦半波。在其他实施例中,电网同步信号在一个周期内的波形可以是如图3中的(b)所示的梯形波;相应地,电源提供装置20的输出电流在一个周期内的波形也可以是如图3中的(b)所示的梯形波。
正弦半波在一个周期内的峰值为一个点,且两个相邻的正弦半波之间的夹角比较大,这样会导致电源提供装置20的输出电流的有效值比较低。在一个周期内,梯形波的波形的峰值并非一个点,而是一条线段。换句话说,在一个周期内,梯形波会有一段时间维持在波形的峰值。与峰值仅为一个点的正弦半波相比,如果控制电源提供装置20的输出电流为梯形波,不但维持了电源提供装置20的输出电流为脉冲形式的电流的特性,而且增大了输出电流的有效值,进一步提升了电池的充电效率。
电网同步信号的获取方式可以有多种,可以直接从变压器的初级侧截取,也可以利用其他方式生成。
下面结合图4,以电网同步信号为梯形波为例,对电网同步信号的获取方式进行举例说明。
如图4所示,电源提供装置20还可包括塑形电路27。塑形电路27可用于从第一转换电路21的输出端获取原始同步信号;对原始同步信号进行塑形,得到电网同步信号;向开关控制单元25发送电网同步信号。
在图4实施例中,由于塑形电路27从第一转换电路21的输出端截取原始同步信号,因此,该原始同步信号的波形与附图标记26处所示的波形的形状相同,其在一个周期内的波形也为正弦半波。塑形电路27可以根据实际需要对原始同步信号的波形进行塑形。例如,塑形电路27可以将原始同步信号的波形塑形成附图标记31处所示的波形,即梯形波。由于电源提供装置20的输出电流的波形与电网同步信号的波形保持一致,因此,电源提供装置20的输出电流的波形如附图标记32所示,也为梯形波。梯形波能够 增大电源提供装置20的输出电流的有效值。
图5给出了塑形电路27从电网截取原始同步信号的方式的一个示例,如图5所示,可以在整流电路211的输出端A截取原始同步信号。
可选地,在某些实施例中,也可以不对原始同步信号进行塑形,将该原始同步信号直接作为电网同步信号。
可选地,在某些实施例中,还可以根据实际需要将原始同步信号的波形塑形成其他任意形状,从而使得电源提供装置20的输出电流的波形可以变换成其他任意形状的波形。此外,在上文描述的任一实施例的基础上,开关控制单元25还可以控制开关元件停止若干个开关周期(如控制开关进入skip模式),从而使得电源提供装置20的输出电流的波形可以形成其他形式的新波形。
上文提及的电源提供装置20有时也可称为转换器或开关电源。电源提供装置20的拓扑架构可以采用反激式(flyback)、顺向式(forward)、半桥式(half bridge)或全桥式(full bridge)中的任意一种拓扑架构,本申请实施例对此并不限定。电源提供装置20可以采用单极性电源。去掉电解电容的单极性电源的输入输出信号具有很好的跟随性,因此可以降低系统的总谐波失真,提高系统的功率因素。
上文结合图1至图5,详细描述了本申请的装置实施例,下面结合图6,详细描述本申请的方法实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面装置实施例。
图6是本申请实施例提供的充电控制方法的示意性流程图。图6的方法包括步骤S62至步骤S66。
在步骤S62,在变压器的初级侧,将电网提供的交流电转换成脉冲形式的电压。
在步骤S64,将脉冲形式的电压耦合至变压器的次级侧以生成电源提供装置的输出电流。
在步骤S66,根据电网同步信号和输出电流的反馈信号对脉冲形式的电压进行控制,使得输出电流的波形与电网同步信号的波形保持一致。电网同步信号为脉冲形式的信号,且电网同步信号的频率为电网提供的交流电的频率的n倍或1/n倍,n为不小于1的正整数。
可选地,电网同步信号在一个周期内的波形为梯形。
可选地,图6的方法还可包括:从第一转换电路的输出端获取原始同步信号,第一转换电路为初级侧的用于将交流电转换成脉冲形式的电压的电路;对原始同步信号进行塑形,得到电网同步信号。
可选地,图6的方法还可包括:对脉冲形式的电压的波形进行调整以生成电网同步信号。
可选地,电源提供装置的输出电流的最小值小于或等于0。
可选地,电网同步信号是脉冲形式的电压的同步信号。
可选地,电源提供装置的输出电流可以跟随电网同步信号的变化而变化。
可选地,电源提供装置为单极性电源。
可选地,上述脉冲形式的电压的控制是基于PWM控制单元进行的。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种电源提供装置,其特征在于,包括:
    变压器;
    第一转换电路,位于所述变压器的初级侧,用于将电网提供的交流电转换成脉冲形式的电压;
    第二转换电路,位于所述变压器的次级侧,用于生成所述电源提供装置的输出电流;
    反馈电路,用于生成所述输出电流的反馈信号;
    开关控制单元,用于根据电网同步信号和所述反馈信号对所述脉冲形式的电压进行控制,使得所述输出电流的波形与所述电网同步信号的波形保持一致,其中所述电网同步信号为脉冲形式的信号,且所述电网同步信号的频率为所述电网提供的所述交流电的频率的n倍或1/n倍,n为不小于1的正整数。
  2. 根据权利要求1所述的电源提供装置,其特征在于,所述电网同步信号在一个周期内的波形为梯形。
  3. 根据权利要求1或2所述的电源提供装置,其特征在于,所述电源提供装置还包括:
    塑形电路,用于从所述第一转换电路的输出端获取原始同步信号;对所述原始同步信号进行塑形,得到所述电网同步信号;向所述开关控制单元发送所述电网同步信号。
  4. 根据权利要求1-3中任一项所述的电源提供装置,其特征在于,所述输出电流的最小值小于或等于0。
  5. 根据权利要求1-4中任一项所述的电源提供装置,其特征在于,所述电网同步信号是所述脉冲形式的电压的同步信号。
  6. 根据权利要求1-5中任一项所述的电源提供装置,其特征在于,所述输出电流跟随所述电网同步信号的变化而变化。
  7. 根据权利要求1-6中任一项所述的电源提供装置,其特征在于,所述电源提供装置为单极性电源。
  8. 根据权利要求1-7中任一项所述的电源提供装置,其特征在于,所述开关控制单元为脉冲宽度调制PWM控制单元。
  9. 一种充电控制方法,其特征在于,包括:
    在变压器的初级侧,将电网提供的交流电转换成脉冲形式的电压;
    将所述脉冲形式的电压耦合至所述变压器的次级以生成电源提供装置的输出电流;
    根据电网同步信号和所述输出电流的反馈信号对所述脉冲形式的电压进行控制,使得所述输出电流的波形与所述电网同步信号的波形保持一致,其中所述电网同步信号为脉冲形式的信号,且所述电网同步信号的频率为所述电网提供的所述交流电的频率的n倍或1/n倍,n为不小于1的正整数。
  10. 根据权利要求9所述的方法,其特征在于,所述电网同步信号在一个周期内的波形为梯形。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    从第一转换电路的输出端获取原始同步信号,所述第一转换电路为所述初级侧的用于将所述交流电转换成所述脉冲形式的电压的电路;
    对所述原始同步信号进行塑形,得到所述电网同步信号。
  12. 根据权利要求9-11中任一项所述的方法,其特征在于,所述输出电流的最小值小于或等于0。
  13. 根据权利要求9-12中任一项所述的方法,其特征在于,所述电网同步信号是所述脉冲形式的电压的同步信号。
  14. 根据权利要求9-13中任一项所述的方法,其特征在于,所述输出电流跟随所述电网同步信号的变化而变化。
  15. 根据权利要求9-14中任一项所述的方法,其特征在于,所述电源提供装置为单极性电源。
  16. 根据权利要求9-15中任一项所述的方法,其特征在于,所述脉冲形式的电压的控制是基于脉冲宽度调制PWM控制单元进行的。
PCT/CN2018/105105 2018-09-11 2018-09-11 电源提供装置和充电控制方法 WO2020051775A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880014653.1A CN110383665A (zh) 2018-09-11 2018-09-11 电源提供装置和充电控制方法
US16/613,771 US20210336545A1 (en) 2018-09-11 2018-09-11 Power Supply Device and Charging Control Method
PCT/CN2018/105105 WO2020051775A1 (zh) 2018-09-11 2018-09-11 电源提供装置和充电控制方法
EP18922097.3A EP3651338A4 (en) 2018-09-11 2018-09-11 POWER SUPPLY DEVICE AND CHARGE CONTROL METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/105105 WO2020051775A1 (zh) 2018-09-11 2018-09-11 电源提供装置和充电控制方法

Publications (1)

Publication Number Publication Date
WO2020051775A1 true WO2020051775A1 (zh) 2020-03-19

Family

ID=68248609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105105 WO2020051775A1 (zh) 2018-09-11 2018-09-11 电源提供装置和充电控制方法

Country Status (4)

Country Link
US (1) US20210336545A1 (zh)
EP (1) EP3651338A4 (zh)
CN (1) CN110383665A (zh)
WO (1) WO2020051775A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7027488B2 (ja) * 2020-06-22 2022-03-01 レノボ・シンガポール・プライベート・リミテッド 充電制御装置、二次電池、電子機器、及び制御方法
CN112713624B (zh) * 2020-12-16 2022-09-06 国创移动能源创新中心(江苏)有限公司 正弦包络线脉冲电流充电电路和充电机
CN113541456B (zh) * 2021-09-16 2022-01-14 华邦创科(惠州市)智能科技有限公司 全电压高频直接变换隔离型安全电源
TWI801220B (zh) * 2022-04-26 2023-05-01 宏碁股份有限公司 電源供應器
CN116070530B (zh) * 2023-03-07 2023-06-27 国网天津市电力公司城西供电分公司 一种基于数据驱动的电网建模实时仿真方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1338868A (zh) * 2000-06-06 2002-03-06 汤姆森许可公司 电源频率同步短脉冲串式电源
EP2365738A1 (en) * 2010-03-11 2011-09-14 Nouveaux établissements Charles MARTIN S.A: High voltage circuit for electrical stimulation
CN206962727U (zh) * 2017-04-20 2018-02-02 深圳市助尔达电子科技有限公司 一种电源电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6944034B1 (en) * 2003-06-30 2005-09-13 Iwatt Inc. System and method for input current shaping in a power converter
JP5504129B2 (ja) * 2010-10-18 2014-05-28 東芝テック株式会社 電力変換装置
CN103944246A (zh) * 2014-04-28 2014-07-23 青岛大学 一种馈能式铅酸蓄电池快速充电系统及方法
GB2540572B (en) * 2015-07-21 2018-12-19 Dyson Technology Ltd Battery charger
WO2017147741A1 (zh) * 2016-02-29 2017-09-08 东莞新能源科技有限公司 锂离子电池充电方法
KR102138109B1 (ko) * 2016-02-05 2020-07-28 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 어댑터 및 충전 제어 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1338868A (zh) * 2000-06-06 2002-03-06 汤姆森许可公司 电源频率同步短脉冲串式电源
EP2365738A1 (en) * 2010-03-11 2011-09-14 Nouveaux établissements Charles MARTIN S.A: High voltage circuit for electrical stimulation
CN206962727U (zh) * 2017-04-20 2018-02-02 深圳市助尔达电子科技有限公司 一种电源电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3651338A4 *

Also Published As

Publication number Publication date
EP3651338A4 (en) 2020-08-12
EP3651338A1 (en) 2020-05-13
US20210336545A1 (en) 2021-10-28
CN110383665A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2020051775A1 (zh) 电源提供装置和充电控制方法
Pierquet et al. A single-phase photovoltaic inverter topology with a series-connected energy buffer
AU2015100179A4 (en) A battery charger with power factor correction
TWI473376B (zh) 電源供應系統及其控制方法
WO2015096613A1 (zh) 在线互动式不间断电源及其控制方法
CN110995025A (zh) 一种开关电源电路
CN104242655A (zh) 具有初级侧动态负载检测和初级侧反馈控制的开关功率变换器
CN105517650A (zh) 多绕组反激式dc/ac变换电路
CN102223064B (zh) 具过载延迟及短路保护机制的串联谐振转换器
WO2016115998A1 (zh) 一种数字化双激不间断开关电源
CN111432512A (zh) 电磁加热设备及其加热控制装置和方法
CN112803780A (zh) 一种变换器及电源适配器
US9142966B2 (en) Method for controlling a grid-connected power supply system
CN100530921C (zh) 具有省电模式的返驰式脉冲宽度调制装置
US20190363637A1 (en) Smart sine wave step-down converter
CN108539745A (zh) 一种中频炉谐波滤波系统的工作方法
CN206452314U (zh) 一种开关电源
CN108092516A (zh) 一种模块化水冷高压电源
JP2014011950A (ja) 共通コア力率改善共振形コンバータ
CN209676138U (zh) 一种开关电源
KR20160116254A (ko) 단일 입력의 h-브리지 멀티 레벨 인버터
CN210431239U (zh) 一种非隔离电源
CN203967970U (zh) 节能低干扰中频感应电源
US10923938B2 (en) Charging device and charging method
CN202043040U (zh) 双反馈环等离子体弧开关电源

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018922097

Country of ref document: EP

Effective date: 20191219

NENP Non-entry into the national phase

Ref country code: DE