WO2015096613A1 - 在线互动式不间断电源及其控制方法 - Google Patents

在线互动式不间断电源及其控制方法 Download PDF

Info

Publication number
WO2015096613A1
WO2015096613A1 PCT/CN2014/093295 CN2014093295W WO2015096613A1 WO 2015096613 A1 WO2015096613 A1 WO 2015096613A1 CN 2014093295 W CN2014093295 W CN 2014093295W WO 2015096613 A1 WO2015096613 A1 WO 2015096613A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
output
alternating current
inverter
voltage
Prior art date
Application number
PCT/CN2014/093295
Other languages
English (en)
French (fr)
Inventor
李岳辉
阳岳丰
张华丽
顾亦磊
Original Assignee
伊顿制造(格拉斯哥)有限合伙莫尔日分支机构
李岳辉
阳岳丰
张华丽
顾亦磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构, 李岳辉, 阳岳丰, 张华丽, 顾亦磊 filed Critical 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构
Priority to US15/107,332 priority Critical patent/US9979227B2/en
Priority to EP14873436.1A priority patent/EP3089316A4/en
Publication of WO2015096613A1 publication Critical patent/WO2015096613A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • H02J7/045
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/46Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current

Definitions

  • Uninterruptible power supplies are capable of continuously supplying power to electrical equipment and have been extensively studied and utilized. Uninterruptible power supplies can be divided into backup, online and online interactive methods according to their working methods.
  • the online interactive uninterruptible power supply directly supplies power to the load when the utility power is normal, and supplies power to the load through the battery when the utility power is cut off.
  • the voltage at the output of the uninterruptible power supply will be higher or lower than the voltage required by the load.
  • an automatic voltage regulator is usually connected to the input end of the mains to adjust the voltage at the output of the uninterruptible power supply.
  • the automatic voltage regulator has high reliability and a wide range of adjustments to the input voltage.
  • the automatic voltage regulator is bulky, heavy, costly, and energy intensive, which directly leads to a reduction in the utilization of power and an increase in cost of the uninterruptible power supply. Therefore, there is an urgent need for an uninterruptible power supply that does not have an automatic voltage regulator and that can provide a stable AC voltage.
  • an input end of the DC/AC inverter is connected to both ends of the chargeable discharge device
  • the switch switching device selectively connecting the AC input terminal to the AC output terminal or connecting an output end of the full bridge inverter to the AC output terminal;
  • a booster circuit having an output coupled to an input of the full-bridge inverter
  • rectified buck circuit controlled to provide a rectified output or a rectified buck output, an input of the rectified buck circuit coupled to the alternating current input, the rectified buck circuit operatively providing the boost
  • the circuit or the full bridge inverter provides pulsating direct current.
  • the rectifying step-down circuit comprises a bidirectional switch, a first full bridge rectifying circuit and an inductor, the first full bridge rectifying circuit has an input end and an output end, and the alternating current input end is connected through the bidirectional switch At the input end of the first full bridge rectifier circuit, one end of the inductor is connected to the anode of the output end of the first full bridge rectifier circuit.
  • said bidirectional switch comprises a first MOS field effect transistor having an anti-parallel diode and a second MOS field effect transistor having an anti-parallel diode, said source of said first MOS field effect transistor a pole connected to a source of the second MOSFET, a drain of the second MOSFET is connected to an anode of the third diode, the first MOSFET The drain of the effect transistor is connected to a terminal of the alternating current input terminal.
  • the inductor constitutes a part of the boosting circuit, and the boosting circuit realizes boosting by the inductance.
  • the rectifying step-down circuit comprises a first full bridge rectifying circuit having an input end and an output end, an input end and an output end, an input end of the first full bridge rectifying circuit and the The AC input terminal is connected, the output end of the first full bridge rectifier circuit is connected to the input end of the buck circuit, and the output end of the buck circuit is used as an output end of the rectified buck circuit.
  • the rectifier circuit comprises a second full bridge rectifier circuit, and the first full bridge rectifier circuit and the second full bridge rectifier circuit share two diodes.
  • the chargeable and discharge device comprises a protection switch, a storage capacitor and a chargeable and dischargeable battery, and the protection switch is connected in series with the chargeable discharge battery in parallel with the storage capacitor.
  • An embodiment of the present invention provides a method for controlling an online interactive uninterruptible power supply, and when the voltage of the AC input terminal is greater than a voltage required by the AC output terminal, controlling the switch switching device to cause the full bridge inverter
  • the output end of the device is connected to the AC output terminal to control the DC/AC inverter to stop working, and the rectifier step-down circuit is controlled to rectify and step down the AC current of the AC input terminal to the full bridge inverter.
  • a pulsating direct current is provided to control the full bridge inverter to operate in a pulse width modulation manner to provide the desired alternating current to the alternating current output.
  • Another embodiment of the present invention provides a method for controlling an online interactive uninterruptible power supply, and when the voltage of the AC input terminal is less than a voltage required by the AC output terminal, controlling the switch switching device to cause the full bridge inverse
  • the output end of the transformer is connected to the AC output terminal, and the DC/AC inverter is controlled to stop working, and the rectifying and step-down circuit is controlled to rectify the AC power of the AC input terminal to provide a pulsating DC power to the boosting circuit.
  • controlling the boost circuit and the full bridge inverter to operate in a pulse width modulation manner to provide the alternating current output to the alternating current output.
  • a further embodiment of the present invention provides a method for controlling an online interactive uninterruptible power supply, wherein when the voltage of the AC input terminal is greater than a voltage required by the AC output terminal, and the AC output terminal has a required power less than Controlling the switch switching device to connect the output end of the full bridge inverter to the AC output terminal to control the pulse width of the full bridge inverter when the capacitive input of the power provided by the AC input terminal
  • the modulation mode works to control the charger to charge the chargeable and discharge device, and alternately perform the following two steps.
  • the voltage across the device increases from a first threshold voltage to a second threshold voltage greater than the first threshold voltage and provides a desired alternating current to the alternating current output;
  • the threshold voltage is applied to the alternating current output to provide the required alternating current.
  • a further embodiment of the present invention provides a method for controlling an online interactive uninterruptible power supply, when the voltage of the AC input terminal is less than a voltage required by the AC output terminal, and the AC output terminal has a required power less than Controlling the switch switching device to connect the output end of the full bridge inverter to the AC output terminal to control the pulse width of the full bridge inverter when the capacitive input of the power provided by the AC input terminal
  • the modulation mode works to control the charger to charge the chargeable and discharge device, and alternately perform the following two steps.
  • the threshold voltage is applied to the alternating current output to provide the required alternating current.
  • the online interactive uninterruptible power supply of the invention can provide stable alternating current at the output end, and has a simple circuit structure, fewer components used, low cost, and improved utilization efficiency of electric energy.
  • the uninterruptible power supply of the present invention can be applied to any load condition, avoids distortion of the output end waveform, and avoids large inrush current to the inverter in the uninterruptible power supply. Cause damage.
  • FIG. 1 is a block diagram of an online interactive uninterruptible power supply of the present invention.
  • FIG. 2 is a circuit diagram of an online interactive uninterruptible power supply according to a first embodiment of the present invention.
  • FIG. 3 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in FIG. 2 in the bypass mode.
  • FIG. 4 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in FIG. 2 in a backup mode.
  • FIG. 5 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in FIG. 2 implementing a step-down in an online mode.
  • FIG. 7 is a circuit diagram of the online interactive uninterruptible power supply shown in FIG. 2 with a capacitive load connected.
  • FIG. 8 is an equivalent circuit diagram of the AC input terminal for supplying power to the capacitive load when the online interactive uninterruptible power supply shown in FIG. 7 is stepped down in the online mode.
  • FIG. 9 is an equivalent circuit diagram of the chargeable and discharge device for supplying power to the capacitive load when the online interactive uninterruptible power supply shown in FIG. 7 is stepped down in the online mode.
  • FIG. 10 is a timing diagram of the online interactive uninterruptible power supply shown in FIG. 7 during the step-down process in the online mode.
  • FIG. 11 is an equivalent circuit diagram of the AC input terminal for supplying power to the capacitive load when the online interactive uninterruptible power supply shown in FIG. 7 is boosted in the online mode.
  • Figure 13 is a circuit diagram of an online interactive uninterruptible power supply in accordance with a second embodiment of the present invention.
  • Figure 14 is a circuit diagram of an online interactive uninterruptible power supply according to a third embodiment of the present invention.
  • the online interactive uninterruptible power supply of the present invention comprises an AC input terminal 20 , an AC output terminal 30 , a chargeable and discharge device 19 , a DC/AC inverter 1 , a rectifier circuit 14 , a rectifier step-down circuit 15 , Boost circuit 16, capacitor C, full bridge inverter 5, charger 2, switching devices S and S1.
  • An input terminal of the DC/AC inverter 1 is connected to both ends of the chargeable discharge device 19 for converting direct current in the chargeable discharge device 19 into alternating current.
  • the output of the DC/AC inverter 1 is connected to the input of the rectifier circuit 14, and the output of the rectifier circuit 14 is connected to the input of the full-bridge inverter 5.
  • the input end of the rectification step-down circuit 15 is connected to the AC input terminal 20.
  • the rectification step-down circuit 15 is used for rectifying and stepping down the AC current of the AC input terminal 20, and outputting it to the input end of the full-bridge inverter 5, or inputting an AC input.
  • the alternating current of terminal 20 is rectified and output to the input of boost circuit 16.
  • the output of the booster circuit 16 is connected to the input of the full bridge inverter 5.
  • the switching device S selectively connects the output of the AC input 20 or the full-bridge inverter 5 to the AC output 30.
  • Both ends of the capacitor C are connected to the input terminal of the full bridge inverter 5.
  • the input end of the charger 2 is connected to the AC output terminal 30, and the output end of the charger 2 is connected to both ends of the chargeable discharge device 19 for charging the AC power of the AC output terminal 30 to the chargeable discharge device 19.
  • the chargeable discharge device 19 may be a chargeable discharge battery or a battery pack, or may be a chargeable discharge battery or a battery pack connected in series with a protection switch and then connected in parallel with a capacitor or a capacitor group. During the frequent charging and discharging of the chargeable and dischargeable device 19, frequent charging and discharging can be realized for the parallel capacitors or capacitor groups, thereby reducing the number of times of charging and discharging the battery or the battery pack, and effectively protecting the battery or the battery pack.
  • the AC input terminal 20 When the voltage of the AC input terminal 20 is equal to the voltage required by the AC output terminal 30, the AC input terminal 20 directly supplies power to the AC output terminal 30. At this time, if the voltage across the chargeable discharge device 19 is smaller than that of the chargeable and discharge device 19 At the rated voltage, the charger 2 is controlled to charge the chargeable discharge device 19. When the voltage across the chargeable discharge device 19 is equal to the rated voltage, the charger 2 is controlled to stop charging.
  • the switch switching device S is controlled such that the output of the full-bridge inverter 5 is connected to the AC output terminal 30, and the DC/AC inverter 1 is controlled to discharge the chargeable and discharge device 19 and output AC power.
  • the full bridge inverter 5 is controlled to operate in a pulse width modulation mode to provide the desired alternating current to the AC output terminal 30.
  • the control switch S connects the output end of the full-bridge inverter 5 with the AC output terminal 30, so that the DC/AC inverter 1 stops working, and the control rectifier circuit 15 rectifies and steps down the alternating current of the AC input terminal 20 Switch S1 is output to the input of full-bridge inverter 5, and full-bridge inverter 5 is controlled to operate in pulse width modulation to provide the desired AC power to AC output terminal 30.
  • the switch switching device S When the voltage of the AC input terminal 20 is less than the voltage required by the AC output terminal 30, the switch switching device S is controlled such that the output of the full-bridge inverter 5 is connected to the AC output terminal 30, so that the DC/AC inverter 1 stops working.
  • the control rectifier step-down circuit 15 rectifies the alternating current of the alternating current input terminal 20, outputs it to the input terminal of the boosting circuit 16 through the switch S1, and controls the boosting circuit 16 and the full-bridge inverter 5 to operate in a pulse width modulation manner.
  • the AC output 30 provides the required AC power. In this state, the rectifying step-down circuit 15 serves only as a rectifying action and does not have a step-down effect.
  • the AC output 30 can be connected with a resistive load, a capacitive load, or no load.
  • the switch switching device S is controlled to make the full bridge.
  • the output end of the inverter 5 is connected to the AC output terminal 30, and the full-bridge inverter 5 is controlled to operate in a pulse width modulation mode, and the charger 2 is controlled to charge the chargeable and discharge device 19, and the following two steps are alternately performed.
  • the voltage is increased from a first threshold voltage to a second threshold voltage greater than the first threshold voltage and provides a desired alternating current to the alternating current output 30;
  • the control rectification step-down circuit 15 stops working while controlling the DC/AC inverter 1 to operate in a pulse width modulation manner, so that the voltage across the chargeable discharge device 19 is lowered from the second threshold voltage to the first threshold voltage, and the AC output is output. End 30 provides the required AC power.
  • control rectification step-down circuit 15 rectifies the alternating current of the alternating current input terminal 20 and outputs it to the input end of the boosting circuit 16 so that the voltage across the chargeable and dischargeable device 19 is from the first threshold voltage. Increase to a second greater than the first threshold voltage a threshold voltage, and controlling the booster circuit 16 to operate in a pulse width modulation manner to provide the desired alternating current to the alternating current output terminal 30;
  • the control rectification step-down circuit 15 stops working while controlling the DC/AC inverter 1 to operate in a pulse width modulation manner, so that the voltage across the chargeable discharge device 19 is lowered from the second threshold voltage to the first threshold voltage, and the AC output is output. End 30 provides the required AC power.
  • the DC/AC inverter 1, the charger 2, the rectifier circuit 14, the rectification step-down circuit 15, the boosting circuit 16, the full-bridge inverter 5, and the chargeable and discharge device 19 in FIG. 1 can be Any of the circuit forms known in the art that are capable of achieving its function are employed to achieve the above described modes of operation.
  • the rectifying step-down circuit 15 can realize the function of rectifying the alternating current into a direct current output, and can operatively provide a step-down DC output.
  • FIG. 2 is a circuit diagram of an online interactive uninterruptible power supply in accordance with a preferred embodiment of the present invention.
  • the input end of the DC/AC inverter 1 is connected to both ends of the chargeable discharge device 19, and the output end of the DC/AC inverter 1 is connected to the input end of the full bridge rectifier circuit 6, the full bridge
  • the rectifier circuit 6 includes diodes D1-D4, the anodes of the diodes D1 and D3 are the input terminals of the full-bridge rectifier circuit 6, the cathode of the diode D1 and the anode of the diode D2 are the outputs of the full-bridge rectifier circuit 6, where the diode D1 is defined
  • the cathode serves as the positive or positive terminal of the output of the full bridge rectifier circuit 6, and the anode of the diode D2 serves as the negative or negative terminal of the output of the full bridge rectifier circuit 6.
  • the boosting circuit 4 includes an inductor L1, a diode D9, and a MOSFET half-effect transistor T3.
  • One end of the inductor L1 and the source of the MOSFET half-effect transistor T3 serve as an input terminal of the booster circuit 4, and an input terminal of the booster circuit 4 It is connected to the output of the full bridge rectifier circuit 6.
  • the cathode of the diode D9 and the source of the MOS field effect transistor T3 serve as the output terminal of the booster circuit 4.
  • the bidirectional switch 9 comprises a MOSFET half-effect transistor T1 having an anti-parallel diode D7 and a MOSFET half-effect transistor T2 having an anti-parallel diode D8, a source of the MOS field-effect transistor T1 and a MOSFET.
  • the source of the transistor T2 is connected, the drain of the MOSFET half-effect transistor T2 is connected to the anode of the diode D5, the drain of the MOSFET half-effect transistor T1 and the cable between the electromagnetic interference filter 3 and the switching device S are connected.
  • 7 is connected, the anode of the diode D10 is connected to the cable 8 between the electromagnetic interference filter 3 and the switching device S.
  • the full bridge rectifier circuit 11 includes diodes D5, D6, D10, and D11, and one terminal that defines a high voltage in the output end of the full bridge rectifier circuit 11 is a positive terminal or a positive terminal, and the cable 7 and the cable 8 pass through the bidirectional switch 9 and the full bridge rectifier circuit.
  • the input of 11 is connected.
  • One end of the inductor L2 is connected to the positive terminal of the output end of the full bridge rectifier circuit 11, and the other end of the inductor L2 and the other terminal of the output terminal of the full bridge rectifier circuit 11 serve as the output terminal of the rectifying step-down circuit 21.
  • the input end of the charger 2 is connected to the AC output terminal 30, and the output end of the charger 2 is connected to both ends of the chargeable discharge device 19. When the charger 2 is in operation, the power of the AC output terminal 30 is used to charge and discharge the device 19. Charge it.
  • the bidirectional switch 9 can be replaced with a bidirectional thyristor, and the switch switching device S can select any other switch capable of performing on-switching, such as a relay.
  • the online interactive uninterruptible power supply may not have the electromagnetic interference filter 3.
  • FIG. 3 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in FIG. 2 in the bypass mode.
  • the switch switching device S is controlled to make the AC input terminal 20 and the AC output terminal 30 conduct, and the bidirectional switch 9 is disconnected.
  • the DC/AC inverter 1 stops working, the boosting circuit 4 stops working, and the full-bridge inverter 5 stops working, and the AC input terminal 20 directly supplies power to the AC output terminal 30.
  • the control charger 2 charges the chargeable discharge device 19 when the voltage across the chargeable discharge device 19 is equal to the rated voltage or rating. When a certain ratio of voltage is applied, the charger 2 stops working.
  • FIG. 4 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in FIG. 2 in a backup mode.
  • the utility power fails to provide the alternating current
  • the switch switching device S controls the output end of the full-bridge inverter 5 to be connected with the alternating current output terminal 30, and the bidirectional switch 9 is controlled to be disconnected, and the golden oxide half is controlled.
  • the field effect transistor T3 is in an off state such that the boosting circuit 4 is stopped, and the DC/AC inverter 1 is controlled to operate in a pulse width modulation mode to convert the direct current in the chargeable and dischargeable device 19 into an alternating current output through the full bridge rectifier circuit.
  • the AC output terminal 30 can be powered by discharging through the rechargeable battery B.
  • FIG. 5 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in FIG. 2 implementing a step-down in an online mode.
  • the switch switching device S is controlled such that the output of the full-bridge inverter 5 is connected to the AC output terminal 30, and the DC/AC inverter 1 is stopped.
  • the gold-oxygen half field effect transistor T3 is turned off to stop the boosting circuit 4, at this time, the bidirectional switch 9 is controlled to operate in a pulse width modulation manner, and the gold-oxygen half field effect transistor T1 and the gold-oxygen half field effect transistor T2 are given.
  • the pulse width modulation signal is turned on or off at the same time.
  • the full bridge rectifier circuit 6 and the full bridge rectifier circuit 11 constitute a freewheeling circuit.
  • the rectifying step-down circuit 21 simultaneously rectifies and steps down the alternating current of the alternating current input terminal 20, thereby obtaining pulsating direct current at the input end of the full bridge inverter 5, and controlling the full bridge inverter 5 to be pulse width modulated. Work thus to obtain the desired AC voltage at the AC output 30. Finally, the effect of stabilizing the output voltage is achieved.
  • the gold-oxygen half field effect transistor T1 and the gold-oxygen half field effect transistor T2 are operated in a pulse width modulation mode and simultaneously turned on or off at the same time, which can make the control method simple and reduce the power consumption of the bidirectional switch 9.
  • the MOSFET half-time transistor T2 can be controlled to be turned off during the positive half cycle of the alternating current output terminal 20 to provide a pulse width modulation to the MOSFET half-effect transistor T1.
  • the signal, in the negative half cycle of the alternating current of the alternating current output terminal 20 controls the metal oxide half field effect transistor T1 to be turned off to provide a pulse width modulation signal to the gold oxide half field effect transistor T2.
  • the chargeable and discharge device 19 can also be charged by the charger 2, and when the voltage across the chargeable and discharge device 19 is equal to a certain ratio of the rated voltage or the rated voltage, the charger 2 stop working.
  • FIG. 6 is an equivalent circuit diagram of the online interactive uninterruptible power supply shown in FIG. 2 implementing boosting in the online mode.
  • the switching device S is controlled such that the output of the full-bridge inverter 5 is connected to the AC output terminal 30, so that the DC/AC inverter 1 stops working.
  • the bidirectional switch 9 is always in a conducting state.
  • the rectifying step-down circuit 21 only rectifies the alternating current of the alternating current input terminal 20.
  • the alternating current of the alternating current input terminal 20 is converted into direct current by the full bridge rectifying circuit 11, and the boosting is controlled.
  • the boosted pulsating direct current is obtained at the output of the booster circuit 4, and the full-bridge inverter 5 is controlled to operate in the pulse width modulation mode at the AC output terminal 30 to obtain the required AC voltage.
  • the chargeable and discharge device 19 can also be charged by the charger 2, and when the voltage across the chargeable and discharge device 19 is equal to a certain ratio of the rated voltage or the rated voltage, the charger 2 stop working.
  • FIG. 7 is a circuit diagram of the capacitive output 10 coupled to the AC output 30 of the online interactive uninterruptible power supply of FIG. 2, wherein the capacitive load 10 requires less power than the AC input 20 provides.
  • a detecting device for detecting a load condition such as a voltage and a power required to detect a load, and a type of a load, and the like, may be included in FIG.
  • the control device for the intermittent power source the control device controls the operating mode of the circuit based on the detection signal.
  • the present invention also provides an embodiment for solving this problem, which will be described in detail below with reference to Figs.
  • FIG. 8 is an equivalent circuit diagram of the AC input terminal for supplying power to the capacitive load when the online interactive uninterruptible power supply shown in FIG. 7 is stepped down in the online mode.
  • the switch switching device S is controlled to make the full bridge inverter 5
  • the output terminal is connected to the AC output terminal 30, and the MOSFET half-effect transistor T3 is turned off to stop the boosting circuit 4 from being operated, and the charger 2 is controlled to charge the chargeable and discharge device 19 while making the DC/AC inverter
  • the device 1 stops working, and the bidirectional switch 9 is controlled to operate in a pulse width modulation manner to obtain a stepped pulsating direct current at the input end of the full bridge inverter 5, and the full bridge inverter 5 is controlled to operate in a pulse width modulation manner to communicate
  • the output terminal 30 obtains the required AC voltage, and the control mode of the
  • FIG. 10 is a timing diagram of the online interactive uninterruptible power supply shown in FIG. 7 in a step-down process in an online mode, wherein the high operating state value of the rectified buck circuit shown in FIG. 10 indicates that the bidirectional switch 9 operates in a pulse width modulation mode.
  • the rectification step-down circuit 21 is simultaneously implemented to perform rectification and step-down functions.
  • the low state value indicates that the bidirectional switch 9 is always in the off state, and the high DC/AC inverter operating state value indicates that the DC/AC inverter 1 is pulse width modulated. Mode operation, low status value indicates that DC/AC inverter 1 stops working.
  • the control charger 2 since the power supplied by the AC input terminal 20 is greater than the power required by the capacitive load 10, the control charger 2 is always charging the chargeable discharge device 19 such that it is on the chargeable discharge device 19.
  • the voltage gradually increases from the first threshold voltage U 1 to the second threshold voltage U 2 , during which the bidirectional switch 9 in the rectified buck circuit 21 operates in a pulse width modulation mode, and the DC/AC inverter Device 1 stops working.
  • the bidirectional switch 9 is turned off.
  • the equivalent circuit diagram is as shown in FIG. 9 , and the DC/AC inverter 1 is controlled in a pulse width modulation manner.
  • FIG. 9 When the voltage on the chargeable and discharge device 19 is increased from the first threshold voltage U 1 to the second threshold voltage U 2 , FIG. 9 again. Works under the circuit shown. Based on the control method of the circuit shown in FIG. 8 and FIG. 9, when the AC input terminal 20 supplies power to the AC output terminal 30, a part of the power in the AC input terminal 20 is charged to the chargeable and discharge device 19 through the charger 2, when When the electric energy in the chargeable discharge device 19 reaches a predetermined value, the AC input terminal 20 is controlled not to supply electric energy to the AC output terminal 30, and the AC output terminal 30 is powered by the chargeable discharge device 19, thereby enabling the capacitive load 10 to be two The voltage at the terminal is the required sinusoidal AC voltage, reducing the impact and impact of the inrush current on the full-bridge inverter 5.
  • FIG. 11 is an equivalent circuit diagram of the AC input terminal for supplying power to the capacitive load when the online interactive uninterruptible power supply shown in FIG. 7 is boosted in the online mode.
  • the switch switching device S is controlled to make the full bridge inverter and an output terminal 30 of the AC output terminal 5, and controls the charger 2 pair of charge and discharge device 19 is charged, so that the voltage on the charging and discharging means 19 is gradually increased, rising from a first voltage threshold value U 1 to the second threshold voltage U 2 , the equivalent circuit in this time period is shown in Figure 11, the bidirectional switch S is in the on state (the equivalent is the wire at this time), the boost circuit 4 operates in the pulse width modulation mode, and the DC/AC inverter Device 1 stops working.
  • the equivalent circuit diagram is as shown in FIG. 12 , so that the bidirectional switch S is turned off, so that the metal oxide half field effect transistor T3 is turned off to make the voltage boost.
  • the circuit 4 stops working, and the DC/AC inverter 1 is controlled to operate in a pulse width modulation mode, thereby converting the direct current on the chargeable and dischargeable device 19 into an alternating current output, after passing through the full bridge rectifier circuit 6, in the full bridge inverter 5
  • the input receives pulsating direct current, and the full-bridge inverter 5 is controlled to operate in a pulse width modulation mode to output the required alternating current to the capacitive load 10.
  • the device 19 can charge and discharge the capacitive load 10 to supply power during charging and discharging a voltage across the apparatus 19 U 2 gradually decreases from the second threshold voltage, when the voltage on the charge and discharge device 19 can be reduced to After the first threshold voltage U 1 , the circuit shown in FIG. 11 is operated again. When the voltage on the chargeable and discharge device 19 increases from the first threshold voltage U 1 to the second threshold voltage U 2 , the image is again shown in FIG. 12 . Working under the circuit shown. Based on the control method of the circuit shown in FIGS. 11 and 12, the voltage across the capacitive load 10 can be the required sinusoidal alternating voltage, reducing the impact and impact of the inrush current on the full bridge inverter 5.
  • the timing diagram of the control method based on the equivalent circuit shown in FIG. 11 and FIG. 12 is basically the same as that of FIG. 10 in the online mode, and details are not described herein again.
  • the difference is that the working state of the rectified step-down circuit in FIG. 10 is replaced by the operating state of the boosting circuit, wherein the high value of the operating state of the boosting circuit indicates that the bidirectional switch 9 is in an on state and the boosting circuit 4 operates in a pulse width modulation manner.
  • the low value of the operating state of the voltage circuit indicates that the bidirectional switch S is open and the boosting circuit 4 is stopped.
  • the chargeable discharge device 19 supplies power to the capacitive load 10 based on the same equivalent circuit diagram (Figs. 9 and 12).
  • the alternating current of the alternating current input terminal 20 is rectified and stepped down, and the alternating current of the alternating current input terminal 20 is lowered.
  • the voltages are not simultaneously performed, so that one of the inductances L1 and L2 can be reduced.
  • the full-bridge rectifier circuit 6 and the full-bridge rectifier circuit 11 do not simultaneously rectify the AC power output from the DC/AC inverter 1 and the AC power input from the AC input terminal 20, respectively. Therefore, the full-bridge rectifier circuit 6 can also be implemented. Two of the diodes are shared with the full bridge rectifier circuit 11.
  • Figure 13 is a circuit diagram of an in-line uninterruptible power supply according to a second embodiment of the present invention, which is substantially the same as Figure 2 except that the inductance L2, the diode D10 and the diode D11 are missing.
  • Diodes D3, D4, D5 and D6 form a full bridge rectifier circuit 22, and the cable 7 and cable 8 are connected to the input of the full bridge rectifier circuit 22 via a bidirectional switch 9.
  • the control method of the uninterruptible power supply shown in FIG. 13 is the same as the control method of the uninterruptible power supply shown in FIG. 2, and details are not described herein again.
  • the online interactive uninterruptible power supply of the embodiment has fewer components, lower cost, and lower power consumption.
  • Figure 14 is a circuit diagram of an online interactive uninterruptible power supply according to a third embodiment of the present invention. This is basically the same as FIG. 13 except that the bidirectional switch 9 is reduced compared to FIG. 13, and the MOSFET half-effect transistor T8 and the diode D12 are added, and the cable 7 is directly connected to the anode of the diode D5.
  • the gold-oxide half field effect transistor T8, the diode D12, and the inductor L1 constitute a step-down circuit 13, and the step-down circuit 13 and the step-up circuit 4 share the inductance L1.
  • the full bridge rectifier circuit 22 and the step-down circuit 13 constitute a rectification step-down circuit for rectifying the alternating current of the alternating current input terminal 20 and stepping down the output.
  • the online interactive uninterruptible power supply of the embodiment has few components and low cost.
  • the step-down circuit 13 and the booster circuit 4 may not share the inductance L1.
  • IGBT can also be used in place of the MOS field effect transistor of the above embodiment.

Abstract

一种在线互动式不间断电源,包括:交流输入端(20)、交流输出端(30)、可充放电装置(19)、DC/AC逆变器(1)、整流电路(14)、全桥逆变器(5)、电容(C)、开关切换装置(S)、充电器(2)、升压电路(16)和整流降压电路(15),升压电路的输出端连接在全桥逆变器的输入端,整流降压电路被控制用于提供整流输出或整流降压输出,整流降压电路的输入端和交流输入端连接,整流降压电路可操作地给升压电路或全桥逆变器提供脉动直流电。在线互动式不间断电源能够给交流输出端提供稳定的交流电,且体积小,成本低。

Description

在线互动式不间断电源及其控制方法 技术领域
本发明涉及不间断电源,特别涉及在线互动式不间断电源及其控制方法。
背景技术
不间断电源能够持续不断地给用电设备进行供电,已经被广泛地研究和利用。不间断电源根据其工作方式可以分为后备式、在线式和在线互动式。
在线互动式不间断电源在市电正常时直接由市电向负载供电,当市电停电时,通过电池对负载进行供电。但是当市电的电压较高或较低时,经过逆变器的转换后,将会使得不间断电源的输出端的电压具有高于或低于负载所需的电压。为了使得在线互动式不间断电源具有稳定的输出电压,通常在市电的输入端连接有自动电压调节器,用于调节不间断电源输出端的电压。自动电压调节器的可靠性高,且对输入端电压的调节范围广。
但是,自动电压调节器的体积大、重量重、成本高且耗能多,这直接导致了不间断电源对电能的利用率降低和成本的增加。因此,目前急需一种不带自动电压调节器、同时能够提供稳定交流电压的不间断电源。
发明内容
针对上述技术问题,本发明提供一种在线互动式不间断电源,包括:
交流输入端和交流输出端;
可充放电装置;
DC/AC逆变器,所述DC/AC逆变器的输入端和所述可充放电装置的两端连接;
整流电路,所述整流电路的输入端和所述DC/AC逆变器的输出端连接;
全桥逆变器,所述全桥逆变器的输入端连接在所述整流电路的输出端;
电容,所述电容的两端连接在所述全桥逆变器的输入端上;
开关切换装置,所述开关切换装置择一地使得所述交流输入端与所述交流输出端连接或使得所述全桥逆变器的输出端与所述交流输出端连接;
充电器,所述充电器的输入端与所述交流输出端连接,所述充电器的输出端与所述可充放电装置的两端连接;
升压电路,所述升压电路的输出端连接在所述全桥逆变器的输入端;以及
整流降压电路,其被控制用于提供整流输出或整流降压输出,所述整流降压电路的输入端和所述交流输入端连接,所述整流降压电路可操作地给所述升压电路或所述全桥逆变器提供脉动直流电。
优选的,所述整流降压电路包括双向开关、第一全桥整流电路和电感,所述第一全桥整流电路具有输入端和输出端,所述交流输入端的通过所述双向开关连接在所述第一全桥整流电路的输入端,所述电感的一端连接在所述第一全桥整流电路的输出端的正极。
优选的,所述双向开关包括具有反向并联二极管的第一金氧半场效晶体管和具有反向并联二极管的第二金氧半场效晶体管,所述第一金氧半场效晶体管的源极和所述第二金氧半场效晶体管的源极连接,所述第二金氧半场效晶体管的漏极连接在所述第三二极管的阳极,所述第一金氧半场效晶体管的漏极连接在所述交流输入端的一个端子上。
优选的,所述电感构成所述升压电路的一部分,所述升压电路通过所述电感实现升压。
优选的,所述整流降压电路包括第一全桥整流电路和降压电路,所述第一全桥整流电路具有输入端和输出端,所述第一全桥整流电路的输入端和所述交流输入端连接,所述第一全桥整流电路的输出端和所述降压电路的输入端连接,所述降压电路的输出端作为所述整流降压电路的输出端。
优选的,所述整流电路包括第二全桥整流电路,所述第一全桥整流电路和所述第二全桥整流电路共用两个二极管。
优选的,所述可充放电装置包括保护开关、储能电容和可充放电电池,所述保护开关与所述可充放电电池串联后与所述储能电容并联。
本发明的一个实施例提供了在线互动式不间断电源的控制方法,当所述交流输入端的电压大于所述交流输出端所需的电压时,控制所述开关切换装置使得所述全桥逆变器的输出端与所述交流输出端连接,控制所述DC/AC逆变器停止工作,控制所述整流降压电路将所述交流输入端的交流电整流并降压后给所述全桥逆变器提供脉动直流电,控制所述全桥逆变器以脉宽调制方式工作从而给所述交流输出端提供所需的交流电。
本发明的另一个实施例提供了在线互动式不间断电源的控制方法,当所述交流输入端的电压小于所述交流输出端所需的电压时,控制所述开关切换装置使得所述全桥逆变器的输出端与所述交流输出端连接,控制所述DC/AC逆变器停止工作,控制所述整流降压电路将所述交流输入端的交流电整流后给所述升压电路提供脉动直流电,并控制所述升压电路和所述全桥逆变器以脉宽调制方式工作从而给所述交流输出端提供所需的交流电。
本发明的又一个实施例提供了在线互动式不间断电源的控制方法,当所述交流输入端的电压大于所述交流输出端所需的电压时,且所述交流输出端连接有所需功率小于所述交流输入端提供的功率的容性负载时,控制所述开关切换装置使得所述全桥逆变器的输出端与所述交流输出端连接,控制所述全桥逆变器以脉宽调制方式工作,控制所述充电器对所述可充放电装置进行充电,并交替进行如下两个步骤,
控制所述DC/AC逆变器停止工作,并控制所述整流降压电路将所述交流输入端的交流电整流并降压后给所述全桥逆变器提供脉动直流电,使得所述可充放电装置两端的电压从第一阈值电压增加到大于所述第一阈值电压的第二阈值电压,并对所述交流输出端提供所需的交流电;
控制所述整流降压电路停止工作,同时控制所述DC/AC逆变器以脉宽调制方式工作,使得所述可充放电装置两端的电压从所述第二阈值电压降低到所述第一阈值电压,并对所述交流输出端提供所需的交流电。
本发明的再一个实施例提供了在线互动式不间断电源的控制方法,当所述交流输入端的电压小于所述交流输出端所需的电压时,且所述交流输出端连接有所需功率小于所述交流输入端提供的功率的容性负载时,控制所述开关切换装置使得所述全桥逆变器的输出端与所述交流输出端连接,控制所述全桥逆变器以脉宽调制方式工作,控制所述充电器对所述可充放电装置进行充电,并交替进行如下两个步骤,
控制所述DC/AC逆变器停止工作,控制所述整流降压电路将所述交流输入端的交流电整流后给所述升压电路提供脉动直流电,使得所述可充放电装置两端的电压从第一阈值电压增加到大于所述第一阈值电压的第二阈值电压,并控制所述升压电路以脉宽调制方式工作对所述交流输出端提供所需的交流电;
控制所述整流降压电路停止工作,同时控制所述DC/AC逆变器以脉宽调制方式工作,使得所述可充放电装置两端的电压从所述第二阈值电压降低到所述第一阈值电压,并对所述交流输出端提供所需的交流电。
本发明的在线互动式不间断电源能够在输出端提供稳定的交流电,并且电路结构简单、使用的元器件少、成本低,同时提高了电能的利用效率。基于本发明的在线互动式不间断电源的控制方法,本发明的不间断电源能够适用于任何负载情况,避免了输出端波形的失真,并且避免了大的涌流对不间断电源中的逆变器造成损坏。
附图说明
以下参照附图对本发明实施例作进一步说明,其中:
图1是本发明的在线互动式不间断电源的方框图。
图2是本发明第一个实施例的在线互动式不间断电源的电路图。
图3是图2所示的在线互动式不间断电源在旁路模式下的等效电路图。
图4是图2所示的在线互动式不间断电源在后备模式下的等效电路图。
图5是图2所示的在线互动式不间断电源在在线模式下实现降压的等效电路图。
图6是图2所示的在线互动式不间断电源在在线模式下实现升压的等效电路图。
图7是图2所示的在线互动式不间断电源连接有容性负载的电路图。
图8是图7所示的在线互动式不间断电源在在线模式下实现降压时,交流输入端对容性负载进行供电的等效电路图。
图9是图7所示的在线互动式不间断电源在在线模式下实现降压时,可充放电装置对容性负载进行供电的等效电路图。
图10是图7所示的在线互动式不间断电源在在线模式下实现降压过程中的时序图。
图11是图7所示的在线互动式不间断电源在在线模式下实现升压时,交流输入端对容性负载进行供电的等效电路图。
图12是图7所示的在线互动式不间断电源在在线模式下实现升压时, 可充放电装置对容性负载进行供电的等效电路图。
图13是本发明第二个实施例的在线互动式不间断电源的电路图。
图14是本发明第三个实施例的在线互动式不间断电源的电路图。
主要装置符号说明
1  DC/AC逆变器
2  充电器
3  电磁干扰滤波器
4  升压电路
5  全桥逆变器
6  全桥整流电路
7、8  电缆
9  双向开关
10  容性负载
11  全桥整流电路
13  降压电路
14  整流电路
15  整流降压电路
16  升压电路
19  可充放电装置
20  交流输入端
21  整流降压电路
22  全桥整流电路
30  交流输出端
S、S1  开关切换装置
C  电容
T1-T8  金氧半场效晶体管
D1-D12  二极管
L1、L2  电感
具体实施方式
为了使本发明的目的,技术方案及优点更加清楚明白,以下结合附图 通过具体实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1是本发明的在线互动式不间断电源的方框图。如图1所示,本发明的在线互动式不间断电源包括交流输入端20、交流输出端30、可充放电装置19、DC/AC逆变器1、整流电路14、整流降压电路15、升压电路16、电容C、全桥逆变器5、充电器2、开关切换装置S和S1。DC/AC逆变器1的输入端连接在可充放电装置19的两端,用于将可充放电装置19中的直流电转换为交流电。DC/AC逆变器1的输出端连接在整流电路14的输入端上,整流电路14的输出端连接在全桥逆变器5的输入端上。整流降压电路15的输入端和交流输入端20连接,整流降压电路15用于将交流输入端20的交流电整流并降压后输出至全桥逆变器5的输入端,或将交流输入端20的交流电整流后输出至升压电路16的输入端。升压电路16的输出端连接在全桥逆变器5的输入端上。开关切换装置S选择性地使得交流输入端20或全桥逆变器5的输出端与交流输出端30连接。电容C的两端连接在全桥逆变器5的输入端上。充电器2的输入端连接在交流输出端30上,充电器2的输出端连接在可充放电装置19的两端,用于将交流输出端30的交流电对可充放电装置19进行充电。
可充放电装置19可以是可充放电电池或电池组,还可以是可充放电电池或电池组与保护开关串联后再与电容或电容组并联。在可充放电装置19频繁的实现充放电的过程中,可以对并联的电容或电容组实现频繁的充放电,从而减少了对电池或电池组的充放电次数,有效保护了电池或电池组。
当交流输入端20的电压等于交流输出端30所需的电压时,使得交流输入端20对交流输出端30直接进行供电,此时如果可充放电装置19两端的电压小于可充放电装置19的额定电压,则控制充电器2对可充放电装置19进行充电。当可充放电装置19两端的电压等于额定电压时,控制充电器2停止充电。
当交流输入端20没有电压输出时,控制开关切换装置S使得全桥逆变器5的输出端与交流输出端30连接,控制DC/AC逆变器1使得可充放电装置19放电并输出交流电,控制全桥逆变器5以脉宽调制方式工作从而给交流输出端30提供所需的交流电。
当交流输入端20的电压大于交流输出端30所需的电压时,控制开关 切换装置S使得全桥逆变器5的输出端与交流输出端30连接,使得DC/AC逆变器1停止工作,控制整流降压电路15将交流输入端20的交流电整流并降压后通过开关S1输出至全桥逆变器5的输入端,控制全桥逆变器5以脉宽调制方式工作从而给交流输出端30提供所需的交流电。
当交流输入端20的电压小于交流输出端30所需的电压时,控制开关切换装置S使得全桥逆变器5的输出端与交流输出端30连接,使得DC/AC逆变器1停止工作,控制整流降压电路15将交流输入端20的交流电整流后通过开关S1输出至升压电路16的输入端,并控制升压电路16和全桥逆变器5以脉宽调制方式工作从而给交流输出端30提供所需的交流电。此状态中,整流降压电路15仅用作整流作用,不起降压作用。
当不间断电源以上述两种在线模式工作时,交流输出端30可以连接有阻性负载、容性负载或空载。
当交流输入端20的电压大于交流输出端30所需的电压时,且交流输出端30连接有所需功率小于交流输入端20提供的功率的容性负载时,控制开关切换装置S使得全桥逆变器5的输出端与交流输出端30连接,控制全桥逆变器5以脉宽调制方式工作,控制充电器2对可充放电装置19进行充电,并交替进行如下两个步骤,
控制DC/AC逆变器1停止工作,并控制整流降压电路15将交流输入端20的交流电整流并降压后输出至全桥逆变器5的输入端,使得可充放电装置19两端的电压从第一阈值电压增加到大于第一阈值电压的第二阈值电压,并对交流输出端30提供所需的交流电;
控制整流降压电路15停止工作,同时控制DC/AC逆变器1以脉宽调制方式工作,使得可充放电装置19两端的电压从第二阈值电压降低到第一阈值电压,并对交流输出端30提供所需的交流电。
当交流输入端20的电压小于交流输出端30所需的电压时,且交流输出端30连接有所需功率小于交流输入端20提供的功率的容性负载时,控制开关切换装置S使得全桥逆变器5的输出端与交流输出端30连接,控制全桥逆变器5以脉宽调制方式工作,控制充电器2对可充放电装置19进行充电,并交替进行如下两个步骤,
控制DC/AC逆变器1停止工作,控制整流降压电路15将交流输入端20的交流电整流后输出至升压电路16的输入端,使得可充放电装置19两端的电压从第一阈值电压增加到大于第一阈值电压的第二 阈值电压,并控制升压电路16以脉宽调制方式工作对交流输出端30提供所需的交流电;
控制整流降压电路15停止工作,同时控制DC/AC逆变器1以脉宽调制方式工作,使得可充放电装置19两端的电压从第二阈值电压降低到第一阈值电压,并对交流输出端30提供所需的交流电。
本领域技术人员能够明白图1中的DC/AC逆变器1、充电器2、整流电路14、整流降压电路15、升压电路16、全桥逆变器5、可充放电装置19可以采用本领域已知的能够实现其功能的任何电路形式以实现上述工作模式。其中,整流降压电路15能够实现将交流电整流为直流电输出的功能,并可操作地提供降压直流输出。
图2是本发明的一个优选实施例的在线互动式不间断电源的电路图。如图2所示,DC/AC逆变器1的输入端和可充放电装置19的两端连接,DC/AC逆变器1的输出端和全桥整流电路6的输入端连接,全桥整流电路6包括二极管D1-D4,二极管D1和二极管D3的阳极为全桥整流电路6的输入端,二极管D1的阴极和二极管D2的阳极为全桥整流电路6的输出端,在此定义二极管D1的阴极作为全桥整流电路6的输出端的正极或正极端子,二极管D2的阳极作为全桥整流电路6的输出端的负极或负极端子。升压电路4包括电感L1、二极管D9和金氧半场效晶体管T3,电感L1的一端和金氧半场效晶体管T3的源极作为升压电路4的输入端,升压电路4的输入端和全桥整流电路6的输出端连接。二极管D9的阴极和金氧半场效晶体管T3的源极作为升压电路4的输出端。全桥逆变器5包括金氧半场效晶体管T4-T7,金氧半场效晶体管T4和金氧半场效晶体管T5相连接作为一个桥臂,金氧半场效晶体管T6和金氧半场效晶体管T7相连接作为另一个桥臂,金氧半场效晶体管T4的漏极和金氧半场效晶体管T5的源极作为全桥逆变器5的输入端,并和升压电路4的输出端连接,金氧半场效晶体管T4的源极和金氧半场效晶体管T6的源极作为全桥逆变器5的输出端。电缆7和电缆8作为交流输入端20和交流输出端30之间的电连接回路,交流输入端20和市电连接,交流输出端30和负载(图中未示出)连接。电磁干扰滤波器3连接在交流输入端20和交流输出端30之间,用于过滤市电中的有害高频噪声。在电磁干扰滤波器3和交流输出端30之间还连接有开关切换装置S,开关切换装置S能够选择性地使得交流输入端20和交流输出端30导通,或使得全桥逆变器5的输出端和交流输出 端30连接。整流降压电路21包括双向开关9、全桥整流电路11和电感L2。双向开关9包括具有反向并联二极管D7的金氧半场效晶体管T1和具有反向并联二极管D8的金氧半场效晶体管T2,金氧半场效晶体管T1的源极和金氧半场效晶体管T2的源极连接,金氧半场效晶体管T2的漏极和二极管D5的阳极连接,金氧半场效晶体管T1的漏极与位于电磁干扰滤波器3和开关切换装置S之间的电缆7连接,二极管D10的阳极与位于电磁干扰滤波器3和开关切换装置S之间的电缆8连接。全桥整流电路11包括二极管D5、D6、D10和D11,定义全桥整流电路11的输出端中电压高的一个端子为正极端子或正极,电缆7和电缆8通过双向开关9和全桥整流电路11的输入端连接。电感L2的一端连接在全桥整流电路11的输出端的正极端子上,电感L2的另一端和全桥整流电路11的输出端的另一个端子作为整流降压电路21的输出端。充电器2的输入端连接至交流输出端30,充电器2的输出端和可充放电装置19的两端连接,当充电器2工作时,利用交流输出端30的电能对可充放电装置19进行充电。
在本发明的其他实施例中,双向开关9可以替换为双向晶闸管,开关切换装置S可以选择其他任意能够实现导通切换的开关,例如可以是继电器。在另外的实施例中,在线互动式不间断电源可以不具有电磁干扰滤波器3。
以下将结合图3-8说明图2所示的在线互动式不间断电源的工作原理及其控制方法。
图3是图2所示的在线互动式不间断电源在旁路模式下的等效电路图。当交流输入端20的电压等于交流输出端30所需的电压时,说明此时市电正常,控制开关切换装置S使得交流输入端20和交流输出端30导通,同时使得双向开关9断开,DC/AC逆变器1停止工作,升压电路4停止工作,同时使得全桥逆变器5停止工作,交流输入端20直接给交流输出端30供电。如果可充放电装置19两端的电压小于其额定电压或额定电压的某一比例值时,控制充电器2对可充放电装置19进行充电,当可充放电装置19两端的电压等于额定电压或额定电压的某一比例值时,充电器2停止工作。
图4是图2所示的在线互动式不间断电源在后备模式下的等效电路图。此时市电出现故障不提供交流电,控制开关切换装置S使得全桥逆变器5的输出端和交流输出端30连接,控制双向开关9断开,控制金氧半 场效晶体管T3处于截止状态使得升压电路4停止工作,同时控制DC/AC逆变器1以脉宽调制方式工作从而将可充放电装置19中的直流电转换为交流电输出,经过全桥整流电路6后在全桥逆变器5的输入端上得到脉动直流电,同时控制全桥逆变器5以脉宽调制方式工作,从而给交流输出端30提供所需的交流电。因此在后备模式下,可以通过可充放电电池B进行放电从而对交流输出端30进行供电。
图5是图2所示的在线互动式不间断电源在在线模式下实现降压的等效电路图。当交流输入端20的电压大于交流输出端30所需的电压时,控制开关切换装置S使得全桥逆变器5的输出端和交流输出端30连接,此时DC/AC逆变器1停止工作,且将金氧半场效晶体管T3截止以使得升压电路4停止工作,此时控制双向开关9以脉宽调制方式工作,给金氧半场效晶体管T1和金氧半场效晶体管T2脉宽调制信号使其同时导通或同时截止,当金氧半场效晶体管T1和金氧半场效晶体管T2同时截止时,全桥整流电路6和全桥整流电路11构成了续流回路,此时整流降压电路21同时实现对交流输入端20的交流电进行整流和降压,从而在全桥逆变器5的输入端上得到脉动直流电,控制全桥逆变器5以脉宽调制方式工作从而在交流输出端30得到所需的交流电压。最终实现稳定输出电压的作用。使得金氧半场效晶体管T1和金氧半场效晶体管T2以脉宽调制方式工作并同时导通或同时截止,能够使得控制方法简单,同时能够减少双向开关9的功耗。在控制双向开关9以脉宽调制方式工作时,还可以在交流输出端20的交流电正半周期内,控制金氧半场效晶体管T2截止,给金氧半场效晶体管T1提供一个脉宽调制信号,在交流输出端20的交流电负半周期内,控制金氧半场效晶体管T1截止,给金氧半场效晶体管T2提供一个脉宽调制信号。在本发明的另一实施例中,还可以通过充电器2对可充放电装置19进行充电,当可充放电装置19两端的电压等于额定电压或额定电压的某一比例值时,充电器2停止工作。
图6是图2所示的在线互动式不间断电源在在线模式下实现升压的等效电路图。当交流输入端20的电压小于交流输出端30所需的电压时,控制开关切换装置S使得全桥逆变器5的输出端和交流输出端30连接,使得DC/AC逆变器1停止工作,使得双向开关9一直处于导通状态,此时整流降压电路21仅对交流输入端20的交流电实现整流目的,交流输入端20的交流电经过全桥整流电路11后转换为直流电,控制升压电路4以脉 宽调制方式工作,在升压电路4的输出端得到升压后的脉动直流电,同时控制全桥逆变器5以脉宽调制方式工作在交流输出端30得到所需要的交流电压。在本发明的另一实施例中,还可以通过充电器2对可充放电装置19进行充电,当可充放电装置19两端的电压等于额定电压或额定电压的某一比例值时,充电器2停止工作。
图7是在图2所示的在线互动式不间断电源的交流输出端30连接有容性负载10的电路图,其中容性负载10所需功率小于交流输入端20提供的功率。在本发明的另一个实施例中,在图7中还可以包括用于检测负载情况的检测装置,例如检测负载所需的电压和功率,以及负载的类型等参数,并将检测信号发送至不间断电源的控制装置中,使得控制装置根据该检测信号控制电路的工作模式。本领域的技术人员可知能够采用实现上述功能的任何形式的检测装置。当容性负载10所需功率小于交流输入端20提供的功率时,在交流输入端20的交流电的正旋波峰值点上,容性负载10上的储能会非常的大,从而引起容性负载10两端的波形失真,导致大量的涌流进入全桥逆变器5中,容易造成全桥逆变器5的损坏和寿命的降低。针对该情况,本发明还提供了解决该问题的实施例,下面将结合图8-图12对此进行详细说明。
图8是图7所示的在线互动式不间断电源在在线模式下实现降压时,交流输入端对容性负载进行供电的等效电路图。当交流输入端20的电压大于交流输出端30所需的电压时,由于交流输入端20提供的电功率大于容性负载10所需的功率,此时控制开关切换装置S使得全桥逆变器5的输出端和交流输出端30连接,且使得金氧半场效晶体管T3截止以使得升压电路4一直停止工作,控制充电器2对可充放电装置19进行充电,同时使得DC/AC逆变器1停止工作,控制双向开关9以脉宽调制方式工作从而在全桥逆变器5的输入端得到降压后的脉动直流电,控制全桥逆变器5以脉宽调制方式工作从而在交流输出端30得到所需的交流电压,其中双向开关9的控制方式和图5中的相同,在此不再赘述。
图10是图7所示的在线互动式不间断电源在在线模式下实现降压过程中的时序图,其中图10所示整流降压电路工作状态值高表示双向开关9以脉宽调制方式工作使得整流降压电路21同时实现整流和降压的功能,状态值低表示双向开关9一直处于截止状态,另外DC/AC逆变器工作状态值高表示DC/AC逆变器1以脉宽调制方式工作,状态值低表示DC/AC 逆变器1停止工作。在如图8所示的电路的工作期间,由于交流输入端20提供的功率大于容性负载10所需要的功率,控制充电器2一直给可充放电装置19充电使得可充放电装置19上的电压逐渐地增加,从第一阈值电压U1上升到第二阈值电压U2,在此时间段内,整流降压电路21中的双向开关9以脉宽调制方式工作,且DC/AC逆变器1停止工作。当可充放电装置19上的电压升到第二阈值电压U2后,使得双向开关9断开,此时等效电路图如图9所示,控制DC/AC逆变器1以脉宽调制方式工作,从而将可充放电装置19上的直流电转化为交流电输出,经过全桥整流电路6后,在全桥逆变器5的输入端得到脉动直流电,控制全桥逆变器5以脉宽调制方式工作,从而给容性负载10输出所需的交流电。在采用可充放电装置19对容性负载10进行供电过程中,可充放电装置19两端的电压从第二阈值电压U2开始逐渐地减小,当可充放电装置19上的电压减小到第一阈值电压U1后,重新以图8所示的等效电路工作,当可充放电装置19上的电压从第一阈值电压U1增加到第二阈值电压U2后,再次以图9所示的电路下工作。基于图8和图9所示电路的控制方法,当交流输入端20对交流输出端30提供电能时,将交流输入端20中的一部分电能通过充电器2对可充放电装置19进行充电,当可充放电装置19中的电能达到一预定值时,控制交流输入端20不对交流输出端30提供电能,同时通过可充放电装置19对交流输出端30进行供电,从而能够使得容性负载10两端的电压为所需要的正弦交流电压,减小了涌流对全桥逆变器5的冲击和影响。
图11是图7所示的在线互动式不间断电源在在线模式下实现升压时,交流输入端对容性负载进行供电的等效电路图。当交流输入端20的电压小于交流输出端30所需的电压时,由于交流输入端20提供的电功率大于容性负载10所需的功率时,此时控制开关切换装置S使得全桥逆变器5的输出端和交流输出端30连接,控制充电器2对可充放电装置19进行充电,使得可充放电装置19上的电压逐渐地增加,从第一阈值电压U1上升到第二阈值电压U2,在此时间段内等效电路如图11所示,双向开关S处于导通状态(此时等效为导线),升压电路4以脉宽调制方式工作,且DC/AC逆变器1停止工作。当可充放电装置19上的电压升到第二阈值电压U2后,此时等效电路图如图12所示,使得双向开关S断开,使得金氧半场效晶体管T3截止以使得升压电路4停止工作,控制DC/AC逆变器1 以脉宽调制方式工作,从而将可充放电装置19上的直流电转化为交流电输出,经过全桥整流电路6后,在全桥逆变器5的输入端得到脉动直流电,控制全桥逆变器5以脉宽调制方式工作,从而给容性负载10输出所需的交流电。在采用可充放电装置19对容性负载10进行供电过程中,可充放电装置19两端的电压从第二阈值电压U2开始逐渐地减小,当可充放电装置19上的电压减小到第一阈值电压U1后,重新以图11所示的电路下工作,当可充放电装置19上的电压从第一阈值电压U1增加到第二阈值电压U2后,再次以图12所示的电路下工作。基于图11和图12所示电路的控制方法,能够使得容性负载10两端的电压为所需要的正弦交流电压,减小了涌流对全桥逆变器5的冲击和影响。
基于图11和图12所示等效电路的控制方法在在线模式下实现升压过程中的时序图与图10基本相同,在此不再赘述。区别在于将图10中的整流降压电路工作状态替换为升压电路工作状态,其中升压电路工作状态值高表示双向开关9处于导通状态且升压电路4以脉宽调制方式工作,升压电路工作状态值低表示双向开关S断开且升压电路4停止工作。
其中,当交流输入端20提供的电功率大于容性负载10所需的功率时,可充放电装置19基于相同的等效电路图(图9和图12)对容性负载10进行供电。
基于图2所示的电路图和上述的控制方法可知,由于图2所示的电路在实际的工作过程中,对交流输入端20的交流电进行整流并降压和对交流输入端20的交流电进行降压并不会同时进行,因此能够减少电感L1和电感L2其中的一个电感。另外,全桥整流电路6和全桥整流电路11也并不会同时分别对DC/AC逆变器1输出的交流电和交流输入端20的交流电进行整流,因此,也可以使得全桥整流电路6和全桥整流电路11共用其中的两个二极管。
图13是本发明第二个实施例的在线式不间断电源的电路图,与图2基本相同,区别在于少了电感L2,二极管D10和二极管D11。二极管D3、D4、D5和D6构成全桥整流电路22,电缆7和电缆8通过双向开关9连接在全桥整流电路22的输入端。其中图13所示的不间断电源的控制方法和图2所示的不间断电源的控制方法相同,在此不再赘述。通过共用电感L1,以及共用二极管D3和二极管D4,从而使得本实施例的在线互动式不间断电源的元器件少,成本低,耗能低。
图14是本发明第三个实施例的在线互动式不间断电源的电路图。其与图13基本相同,区别在于,相比于图13减少了双向开关9,增加了金氧半场效晶体管T8和二极管D12,电缆7直接连接在二极管D5的阳极。金氧半场效晶体管T8、二极管D12和电感L1构成降压电路13,降压电路13和升压电路4共用电感L1。此时全桥整流电路22和降压电路13构成一个整流降压电路,用于将交流输入端20的交流电进行整流并降压输出。通过共用电感L1,以及共用二极管D3和二极管D4,从而使得本实施例的在线互动式不间断电源的元器件少,成本低。在本发明的其他实施例中,降压电路13和升压电路4也可以不共用电感L1。
本领域的技术人员可知,还可以采用IGBT代替上述实施例中的金氧半场效晶体管。
虽然本发明已经通过优选实施例进行了描述,然而本发明并非局限于这里所描述的实施例,在不脱离本发明范围的情况下还包括所作出的各种改变以及变化。

Claims (11)

  1. 一种在线互动式不间断电源,其特征在于,包括:
    交流输入端和交流输出端;
    可充放电装置;
    DC/AC逆变器,所述DC/AC逆变器的输入端和所述可充放电装置的两端连接;
    整流电路,所述整流电路的输入端和所述DC/AC逆变器的输出端连接;
    全桥逆变器,所述全桥逆变器的输入端连接在所述整流电路的输出端;
    电容,所述电容的两端连接在所述全桥逆变器的输入端上;
    开关切换装置,所述开关切换装置择一地使得所述交流输入端与所述交流输出端连接或使得所述全桥逆变器的输出端与所述交流输出端连接;
    充电器,所述充电器的输入端与所述交流输出端连接,所述充电器的输出端与所述可充放电装置的两端连接;
    升压电路,所述升压电路的输出端连接在所述全桥逆变器的输入端;以及
    整流降压电路,其被控制用于提供整流输出或整流降压输出,所述整流降压电路的输入端和所述交流输入端连接,所述整流降压电路可操作地给所述升压电路或所述全桥逆变器提供脉动直流电。
  2. 根据权利要求1所述的在线互动式不间断电源,其特征在于,所述整流降压电路包括双向开关、第一全桥整流电路和电感,所述第一全桥整流电路具有输入端和输出端,所述交流输入端的通过所述双向开关连接在所述第一全桥整流电路的输入端,所述电感的一端连接在所述第一全桥整流电路的输出端的正极。
  3. 根据权利要求2所述的在线互动式不间断电源,其特征在于,所述双向开关包括具有反向并联二极管的第一金氧半场效晶体管和具有反向并联二极管的第二金氧半场效晶体管,所述第一金氧半场效晶体管的源极和所述第二金氧半场效晶体管的源极连接,所述第二金氧半场效晶体管的漏极连接在所述第三二极管的阳极,所述第一金氧半场效晶体管的漏极连接在所述交流输入端的一个端子上。
  4. 根据权利要求2或3所述的在线互动式不间断电源,其特征在于,所述电感构成所述升压电路的一部分,所述升压电路通过所述电感实现升压。
  5. 根据权利要求1所述的在线互动式不间断电源,其特征在于,所述整流降压电路包括第一全桥整流电路和降压电路,所述第一全桥整流电路具有输入端和输出端,所述第一全桥整流电路的输入端和所述交流输入端连接,所述第一全桥整流电路的输出端和所述降压电路的输入端连接,所述降压电路的输出端作为所述整流降压电路的输出端。
  6. 根据权利要求2、3或5任一项所述的在线互动式不间断电源,其特征在于,所述整流电路包括第二全桥整流电路,所述第一全桥整流电路和所述第二全桥整流电路共用两个二极管。
  7. 根据权利要求1所述的在线互动式不间断电源,其特征在于,所述可充放电装置包括保护开关、储能电容和可充放电电池,所述保护开关与所述可充放电电池串联后与所述储能电容并联。
  8. 一种用于权利要求1至7任一项所述的在线互动式不间断电源的控制方法,其特征在于,当所述交流输入端的电压大于所述交流输出端所需的电压时,控制所述开关切换装置使得所述全桥逆变器的输出端与所述交流输出端连接,控制所述DC/AC逆变器停止工作,控制所述整流降压电路将所述交流输入端的交流电整流并降压后给所述全桥逆变器提供脉动直流电,控制所述全桥逆变器以脉宽调制方式工作从而给所述交流输出端提供所需的交流电。
  9. 一种用于权利要求1至7任一项所述的在线互动式不间断电源的控制方法,其特征在于,当所述交流输入端的电压小于所述交流输出端所需的电压时,控制所述开关切换装置使得所述全桥逆变器的输出端与所述交流输出端连接,控制所述DC/AC逆变器停止工作,控制所述整流降压电路将所述交流输入端的交流电整流后给所述升压电路提供脉动直流电,并控制所述升压电路和所述全桥逆变器以脉宽调制方式工作从而给所述交流输出端提供所需的交流电。
  10. 一种用于权利要求1至7任一项所述的在线互动式不间断电源的控制方法,其特征在于,当所述交流输入端的电压大于所述交流输出端所需的电压时,且所述交流输出端连接有所需功率小于所述交流输入端提供的功率的容性负载时,控制所述开关切换装置使得所述全桥逆变器的输出 端与所述交流输出端连接,控制所述全桥逆变器以脉宽调制方式工作,控制所述充电器对所述可充放电装置进行充电,并交替进行如下两个步骤,
    控制所述DC/AC逆变器停止工作,并控制所述整流降压电路将所述交流输入端的交流电整流并降压后给所述全桥逆变器提供脉动直流电,使得所述可充放电装置两端的电压从第一阈值电压增加到大于所述第一阈值电压的第二阈值电压,并对所述交流输出端提供所需的交流电;
    控制所述整流降压电路停止工作,同时控制所述DC/AC逆变器以脉宽调制方式工作,使得所述可充放电装置两端的电压从所述第二阈值电压降低到所述第一阈值电压,并对所述交流输出端提供所需的交流电。
  11. 一种用于权利要求1至7任一项所述的在线互动式不间断电源的控制方法,其特征在于,当所述交流输入端的电压小于所述交流输出端所需的电压时,且所述交流输出端连接有所需功率小于所述交流输入端提供的功率的容性负载时,控制所述开关切换装置使得所述全桥逆变器的输出端与所述交流输出端连接,控制所述全桥逆变器以脉宽调制方式工作,控制所述充电器对所述可充放电装置进行充电,并交替进行如下两个步骤,
    控制所述DC/AC逆变器停止工作,控制所述整流降压电路将所述交流输入端的交流电整流后给所述升压电路提供脉动直流电,使得所述可充放电装置两端的电压从第一阈值电压增加到大于所述第一阈值电压的第二阈值电压,并控制所述升压电路以脉宽调制方式工作对所述交流输出端提供所需的交流电;
    控制所述整流降压电路停止工作,同时控制所述DC/AC逆变器以脉宽调制方式工作,使得所述可充放电装置两端的电压从所述第二阈值电压降低到所述第一阈值电压,并对所述交流输出端提供所需的交流电。
PCT/CN2014/093295 2013-12-23 2014-12-08 在线互动式不间断电源及其控制方法 WO2015096613A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/107,332 US9979227B2 (en) 2013-12-23 2014-12-08 Line interactive UPS
EP14873436.1A EP3089316A4 (en) 2013-12-23 2014-12-08 Online interactive uninterruptible power supply and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310717600.5 2013-12-23
CN201310717600.5A CN104734264B (zh) 2013-12-23 2013-12-23 在线互动式不间断电源及其控制方法

Publications (1)

Publication Number Publication Date
WO2015096613A1 true WO2015096613A1 (zh) 2015-07-02

Family

ID=53457857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093295 WO2015096613A1 (zh) 2013-12-23 2014-12-08 在线互动式不间断电源及其控制方法

Country Status (4)

Country Link
US (1) US9979227B2 (zh)
EP (1) EP3089316A4 (zh)
CN (1) CN104734264B (zh)
WO (1) WO2015096613A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3206291A1 (en) * 2016-02-12 2017-08-16 Schneider Electric IT Corporation Apparatus and method for low frequency power inverter

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961146B (zh) * 2016-01-08 2021-05-14 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 不间断电源及其控制供电电路
CN107785987B (zh) * 2016-08-25 2023-06-09 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 在线式不间断电源
CN107800185B (zh) * 2016-08-29 2023-06-09 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 在线式不间断电源
US10230364B2 (en) * 2017-04-26 2019-03-12 Futurewei Technologies, Inc. Hybrid power devices
CN108092398B (zh) * 2017-12-04 2023-12-19 西安图为电气技术有限公司 一种控制器集成系统
CN109888807A (zh) * 2019-03-07 2019-06-14 深圳供电局有限公司 电压暂降补偿装置和系统
CN109921500A (zh) * 2019-04-23 2019-06-21 深圳供电局有限公司 输出调控电路及充电机
CN111009892A (zh) * 2019-06-11 2020-04-14 联正电子(深圳)有限公司 配电盘
CN110994772A (zh) * 2019-06-11 2020-04-10 联正电子(深圳)有限公司 配电系统及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123367A (zh) * 2006-08-09 2008-02-13 台达电子工业股份有限公司 不断电电源供应器的控制方法
CN101295934A (zh) * 2007-04-28 2008-10-29 力博特公司 一种具有宽输入电压范围的不间断电源
CN202772647U (zh) * 2012-08-14 2013-03-06 大连中山海洋消防设备厂 小型消防应急灯具专用应急电源

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612580A (en) * 1995-10-10 1997-03-18 Northrop Grumman Corporation Uninterruptible power system
US6774602B2 (en) 2002-06-14 2004-08-10 Delphi Technologies, Inc. Apparatus and method for providing temporary power
CN100394667C (zh) * 2003-07-30 2008-06-11 飞瑞股份有限公司 不间断电源模块并联控制方法及其系统
CN101789690B (zh) * 2010-01-26 2011-12-14 山特电子(深圳)有限公司 一种ups前级升压装置
CN102651559A (zh) * 2011-02-23 2012-08-29 硕天科技股份有限公司 可延长空载放电时间的不断电系统控制方法
WO2012176403A1 (ja) * 2011-06-21 2012-12-27 パナソニック株式会社 昇降圧型ac/dcコンバータ
US9106103B2 (en) * 2011-09-23 2015-08-11 Eaton Corporation Unintteruptible power supply systems and methods employing on-demand energy storage
CN103187746B (zh) * 2011-12-31 2015-04-29 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 一种不间断电源拓扑

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123367A (zh) * 2006-08-09 2008-02-13 台达电子工业股份有限公司 不断电电源供应器的控制方法
CN101295934A (zh) * 2007-04-28 2008-10-29 力博特公司 一种具有宽输入电压范围的不间断电源
CN202772647U (zh) * 2012-08-14 2013-03-06 大连中山海洋消防设备厂 小型消防应急灯具专用应急电源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3089316A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3206291A1 (en) * 2016-02-12 2017-08-16 Schneider Electric IT Corporation Apparatus and method for low frequency power inverter
US10211750B2 (en) 2016-02-12 2019-02-19 Schneider Electric It Corporation Apparatus and method for low frequency power inverter

Also Published As

Publication number Publication date
CN104734264A (zh) 2015-06-24
US9979227B2 (en) 2018-05-22
US20170005511A1 (en) 2017-01-05
EP3089316A1 (en) 2016-11-02
EP3089316A4 (en) 2017-09-06
CN104734264B (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2015096613A1 (zh) 在线互动式不间断电源及其控制方法
TWI373900B (en) High efficiency charging circuit and power supplying system
US8488346B2 (en) Power conversion apparatus and method
TW201222184A (en) Twin lead type load controller
WO2019095995A1 (zh) 大功率便携式用电设备及其电源控制装置及方法
CN104994664B (zh) 一种漏感能量回馈的单级降压型led驱动电路
CN208386212U (zh) 一种不间断电源
US20120092909A1 (en) Power conversion apparatus
CN103647448B (zh) 集成降压-反激式高功率因数恒流电路及装置
CN108242895B (zh) 混合式全桥倍压整流器及其单级转换器
US9142966B2 (en) Method for controlling a grid-connected power supply system
US20230208279A1 (en) Active diode circuit and ac/dc power conversion circuit
EP3249771A1 (en) Uninterrupted power supply and control method thereof
EP2120320B1 (en) Dc power supply device
TWI551024B (zh) 交流-直流電力轉換裝置及其控制方法
CN116131637B (zh) 一种低成本高效率交流到直流转换拓扑及转换方法
CN107800185B (zh) 在线式不间断电源
US20150162842A1 (en) Single stage power factor correction converter
CN211266788U (zh) 一种开关电源电路
US20220200480A1 (en) Power conversion system, method for controlling the power conversion system, and program
TW202224330A (zh) 返馳式轉換器及其控制方法
CN114747113A (zh) 充电设备和用于运行充电设备的方法
CN110446293A (zh) 发光元件驱动装置及其驱动方法
CN213547169U (zh) 一种多组电池的集中充电装置
CN218103593U (zh) 一种led灯供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15107332

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014873436

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873436

Country of ref document: EP