WO2018188006A1 - 待充电设备和充电方法 - Google Patents

待充电设备和充电方法 Download PDF

Info

Publication number
WO2018188006A1
WO2018188006A1 PCT/CN2017/080334 CN2017080334W WO2018188006A1 WO 2018188006 A1 WO2018188006 A1 WO 2018188006A1 CN 2017080334 W CN2017080334 W CN 2017080334W WO 2018188006 A1 WO2018188006 A1 WO 2018188006A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charging
charged
power supply
supply device
Prior art date
Application number
PCT/CN2017/080334
Other languages
English (en)
French (fr)
Inventor
张俊
陈社彪
田晨
张加亮
李家达
万世铭
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to PT179057633T priority Critical patent/PT3462565T/pt
Priority to PCT/CN2017/080334 priority patent/WO2018188006A1/zh
Priority to ES17905763T priority patent/ES2865855T3/es
Priority to CN202210601924.1A priority patent/CN114784923A/zh
Priority to JP2019545913A priority patent/JP6992080B2/ja
Priority to EP17905763.3A priority patent/EP3462565B1/en
Priority to CN201780041786.3A priority patent/CN109478791A/zh
Priority to KR1020197027259A priority patent/KR102318241B1/ko
Priority to DK17905763.3T priority patent/DK3462565T3/da
Priority to RU2019125331A priority patent/RU2724645C1/ru
Priority to JP2019553061A priority patent/JP7013480B2/ja
Priority to KR1020197030203A priority patent/KR102335722B1/ko
Priority to AU2018247552A priority patent/AU2018247552A1/en
Priority to CN201880007014.2A priority patent/CN110178283B/zh
Priority to BR112019020518-7A priority patent/BR112019020518B1/pt
Priority to PCT/CN2018/082010 priority patent/WO2018184582A1/zh
Priority to JP2019553926A priority patent/JP7046094B2/ja
Priority to AU2018249241A priority patent/AU2018249241B2/en
Priority to KR1020197030202A priority patent/KR102268987B1/ko
Priority to EP18781213.6A priority patent/EP3605780B1/en
Priority to JP2019552162A priority patent/JP6871409B2/ja
Priority to CN201880007016.1A priority patent/CN110192322B/zh
Priority to KR1020197031260A priority patent/KR102325155B1/ko
Priority to CN201880005719.0A priority patent/CN110214402B/zh
Priority to MX2019009633A priority patent/MX2019009633A/es
Priority to KR1020197031258A priority patent/KR102325154B1/ko
Priority to PCT/CN2018/082013 priority patent/WO2018184584A1/zh
Priority to SG11201906965SA priority patent/SG11201906965SA/en
Priority to PCT/CN2018/082011 priority patent/WO2018184583A1/zh
Priority to CN201880005272.7A priority patent/CN110100368B/zh
Priority to PCT/CN2018/081972 priority patent/WO2018184578A1/zh
Priority to EP18781210.2A priority patent/EP3609040B1/en
Priority to CN201880005718.6A priority patent/CN110168844B/zh
Priority to AU2018249245A priority patent/AU2018249245B2/en
Priority to KR1020197030856A priority patent/KR102243241B1/ko
Priority to RU2019133506A priority patent/RU2727724C1/ru
Priority to BR112019016542-8A priority patent/BR112019016542B1/pt
Priority to CA3051027A priority patent/CA3051027C/en
Priority to KR1020197031259A priority patent/KR102397746B1/ko
Priority to JP2019552867A priority patent/JP6842566B2/ja
Priority to BR112019018588-7A priority patent/BR112019018588B1/pt
Priority to EP18780892.8A priority patent/EP3582361B1/en
Priority to PCT/CN2018/081962 priority patent/WO2018184573A1/zh
Priority to RU2019127748A priority patent/RU2735154C1/ru
Priority to EP18780783.9A priority patent/EP3609038B1/en
Priority to MX2019011391A priority patent/MX2019011391A/es
Priority to SG11201909124U priority patent/SG11201909124UA/en
Priority to CN201880007013.8A priority patent/CN110199453B/zh
Priority to SG11201907726VA priority patent/SG11201907726VA/en
Priority to EP18781214.4A priority patent/EP3605781B1/en
Priority to JP2019553917A priority patent/JP6918135B2/ja
Priority to CA3057731A priority patent/CA3057731A1/en
Priority to MX2019010614A priority patent/MX2019010614A/es
Priority to JP2019553923A priority patent/JP6952127B2/ja
Priority to EP18780344.0A priority patent/EP3609036B1/en
Priority to CA3053269A priority patent/CA3053269C/en
Priority to PCT/CN2018/082009 priority patent/WO2018184581A1/zh
Priority to TW107112719A priority patent/TWI665844B/zh
Publication of WO2018188006A1 publication Critical patent/WO2018188006A1/zh
Priority to US16/238,162 priority patent/US11171499B2/en
Priority to US16/530,585 priority patent/US11437848B2/en
Priority to US16/546,244 priority patent/US11368050B2/en
Priority to US16/551,573 priority patent/US11075542B2/en
Priority to US16/575,086 priority patent/US11539219B2/en
Priority to US16/584,166 priority patent/US11355963B2/en
Priority to US16/589,024 priority patent/US11233423B2/en
Priority to ZA2019/06558A priority patent/ZA201906558B/en
Priority to ZA2019/06543A priority patent/ZA201906543B/en
Priority to ZA2019/07368A priority patent/ZA201907368B/en
Priority to JP2021094397A priority patent/JP7203901B2/ja
Priority to AU2021203830A priority patent/AU2021203830B2/en
Priority to JP2021137472A priority patent/JP7187632B2/ja
Priority to US17/495,775 priority patent/US11631985B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of charging technology, and more particularly, to a device to be charged and a charging method.
  • the charging process of the electronic device is accompanied by the heating of the electronic device.
  • Long-term charging can cause a large amount of heat to collect inside the electronic device, which may cause malfunction of the electronic device. Therefore, how to reduce the heat generation of an electronic device during charging is an urgent problem to be solved.
  • the present application provides a device to be charged and a charging method capable of reducing the amount of heat generated during charging.
  • a device to be charged comprising: a multi-section battery core connected in series; a conversion circuit for receiving an input voltage provided by the power supply device, converting the input voltage into a charging voltage of the multi-cell battery And a power supply voltage of the system of the device to be charged, charging the plurality of cells based on the charging voltage, and supplying power to the system of the device to be charged based on the power supply voltage.
  • a charging method is provided, the charging method being applied to a device to be charged, the device to be charged comprising: a plurality of cells connected in series with each other; and a conversion circuit for receiving an input voltage provided by the power supply device, Converting the input voltage into a charging voltage of the multi-cell and a power supply voltage of a system of the device to be charged, charging the multi-cell based on the charging voltage, and based on the supply voltage a system for supplying power to the device to be charged; a first charging channel and a second charging channel, wherein the conversion circuit is located on the first charging channel, and the second charging channel is configured to receive an output voltage and an output current of the power supply device, and The output voltage and the output current of the power supply device are directly loaded at both ends of the multi-cell charging to charge the multi-cell; the charging method includes: using the second charging channel as a In the case of charging a plurality of cells, communicating with the power supply device to control an output voltage and/or an output current of the power supply device to
  • the cell structure inside the charging device is modified, and multi-cell cells connected in series are introduced.
  • the charging current required for the multi-cell cell is about 1/N of the charging current required for a single cell (N is the number of cells connected in series in the device to be charged), in other words, the technical solution provided by the present application under the premise of ensuring the same charging speed
  • the charging current can be greatly reduced, thereby reducing the amount of heat generated by the device to be charged during the charging process.
  • the technical solution provided by the present application controls the system of the device to be charged to take power from the power supply device, thereby avoiding the problem that the multi-cell voltage is too low to be turned on. And improve the charging efficiency of the charging process.
  • FIG. 1 is a structural diagram of a charging system according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of a charging system according to another embodiment of the present invention.
  • FIG. 3 is a structural diagram of a charging system according to still another embodiment of the present invention.
  • FIG. 4 is a structural diagram of a charging system according to still another embodiment of the present invention.
  • FIG. 5 is a structural diagram of a charging system according to still another embodiment of the present invention.
  • FIG. 6 is a flowchart of a fast charging process according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a charging method provided by an embodiment of the present invention.
  • the device to be charged used in the embodiments of the present invention may refer to a terminal, and the “terminal” may include, but is not limited to, being configured to be connected via a wire line (eg, via a public switched telephone network (PSTN), Digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (eg, for cellular networks, wireless local area network (WLAN), Digital television networks such as handheld digital video broadcasting handheld (DVB-H) networks, satellite networks, amplitude modulation-frequency modulation (AM-FM) broadcast transmitters, and/or another communication terminal
  • PSTN public switched telephone network
  • DSL Digital subscriber line
  • WLAN wireless local area network
  • Digital television networks such as handheld digital video broadcasting handheld (DVB-H) networks
  • satellite networks amplitude modulation-frequency modulation (AM-FM) broadcast transmitters, and/or another communication terminal
  • AM-FM amplitude modulation-frequency modulation
  • a terminal configured to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal”, and/or a “mobile terminal.”
  • mobile terminals include, but are not limited to, satellite or cellular telephones; cellular radiotelephones can be combined with data processing, faxing, and data Communication capable personal communication system (PCS) terminal; may include radiotelephone, pager, Internet/intranet access, web browser, memo pad, calendar, and/or global positioning system (GPS) Receiver's personal digital assistant (PDA); and conventional laptop and/or palmtop receivers or other electronic devices including radiotelephone transceivers.
  • the device or terminal to be charged used in the embodiments of the present invention may further include a power bank capable of accepting charging of the adapter to store energy to provide energy for other electronic devices.
  • the power supply device used in the embodiment of the present invention may be an adapter, a power bank, a computer, or the like.
  • FIG. 1 is a schematic structural diagram of a device to be charged according to an embodiment of the present invention.
  • the device to be charged 10 of FIG. 1 comprises a multi-section cell 11 connected in series with each other, a conversion circuit 12 and a system 13 of the device 10 to be charged.
  • the system 13 of the device 10 to be charged may refer to a device within the device 10 to be charged that needs to be powered by the cell.
  • the system inside the device to be charged 10 may refer to a processor, a memory, a radio frequency module, a Bluetooth module, and a wireless fidelity (WiFi) module inside the mobile phone.
  • the conversion circuit 12 can be configured to receive an input voltage provided by the power supply device 20, and convert the input voltage into a charging voltage of the multi-cell 11 (the charging voltage is greater than a total voltage of the multi-cell 11), based on the charging voltage The battery cell 11 is charged.
  • supply voltage of system 13 provided by conversion circuit 12 is not less than the minimum operating voltage of system 13 and no greater than the maximum operating voltage of system 13.
  • the device to be charged 20 may include a charging interface.
  • the conversion circuit 12 can be connected to a power line in the charging interface.
  • the external power supply device 20 can transmit the above input voltage to the conversion circuit 12 through a power supply line (such as VBUS) in the charging interface.
  • a power supply line such as VBUS
  • the charging interface can be a universal serial bus (USB) interface.
  • the USB interface can be, for example, a USB 2.0 interface, a micro USB interface, or a USB TYPE-C interface.
  • the charging interface can also be a lightning interface, or any other type of parallel port and/or serial port that can be used for charging.
  • the power supply device 20 can charge the device to be charged 10 by wireless charging, the power supply device 20 can transmit an electromagnetic signal to the device 10 to be charged, and the conversion circuit 12 can be obtained by a wireless receiving circuit inside the device 10 to be charged.
  • the power supply provides an input voltage provided by device 20.
  • the input voltage provided by the power supply device 20 may be less than the total voltage of the multi-cell 11 , and the charging voltage output by the conversion circuit 12 is greater than the total voltage of the multi-cell 11 .
  • the conversion circuit 12 may include a boosting circuit (such as a boost boosting circuit) capable of performing a boosting process on an input voltage supplied from the power supply device 20.
  • the traditional charging scheme is mostly a charging scheme designed for a single cell.
  • the input voltage provided by the power supply device usually cannot meet the charging requirements of the multi-cell (ie, the input voltage provided by the power supply device is usually less than the total voltage of the multi-cell).
  • the power supply device can generally provide an input voltage of 5V, and the voltage of a single cell inside the device to be charged is generally between 3.0V and 4.35V. If a conventional single cell solution is adopted, the conversion circuit can be Constant voltage and/or constant current control is applied to a single cell directly using an input voltage of 5V.
  • the 5V voltage cannot meet the charging requirement of the multi-cell battery.
  • the voltage of a single cell is generally between 3.0V and 4.35V, and the total voltage of the two cells in series is 6.0V-8.7V.
  • the input voltage of the 5V provided by the power supply device is obviously Cannot be used to charge two batteries. Therefore, the conversion circuit 12 provided by the embodiment of the present invention may first perform a step-up process on the input voltage provided by the power supply device, and then perform constant voltage and/or control on the multi-section cell 11 based on the voltage obtained after the step-up, so that the conversion is performed.
  • the charging voltage output by the circuit 12 is greater than the total voltage of the multi-cell 11.
  • the power supply device 20 may directly provide an input voltage greater than the total voltage of the multi-cell cells 11, such that the conversion circuit 12 adjusts the power supply device 20 (eg, based on multi-section power) After the charging phase of the core 11 is currently subjected to constant voltage and/or constant current control, it can be directly used to charge the multi-cell cells 11.
  • the conversion circuit 12 can also be used to convert the input voltage to the supply voltage of the system 13 and to power the system 13 based on the supply voltage. It should be understood that the supply voltage of system 13 provided by conversion circuit 12 is not less than the minimum operating voltage of system 13 and no greater than the maximum operating voltage of system 13.
  • the embodiment of the present invention remodels the cell structure inside the charging device, and introduces a plurality of cells connected in series.
  • the current is about 1/N of the charging current required for a single cell (N is the number of cells connected in series in the device to be charged).
  • the embodiment of the present invention can greatly reduce the magnitude of the charging current while ensuring the same charging speed, thereby reducing the amount of heat generated by the device to be charged during the charging process.
  • the battery inside the device to be charged is usually used to supply power to the system.
  • the charging phase of the battery cell includes a constant current charging phase and a constant voltage charging phase, and the charging current in the constant voltage charging phase is generally small. If the battery core is used simultaneously during the charging process of the battery core, when the battery cell is in the constant voltage charging phase.
  • the traditional single-cell solution also has a solution for powering the system based on the power provided by the power supply device during the charging process, the solution cannot be directly applied to the multi-cell architecture.
  • the conversion circuit 12 takes power from the power supply device 20 and is based on the power supplied by the power supply device 20.
  • System 13 within charging device 10 is powered. In this way, even if the voltage of the multi-cell 11 is low, the system 13 can obtain a relatively normal starting voltage from the power supply device 20, which reduces the startup wait time of the system. Further, during charging of the multi-cell cell 11, the multi-cell 11 is not responsible for powering the system 13, thereby avoiding the problem of low charging efficiency caused by the extension of the constant-voltage charging phase indicated above.
  • the embodiment of the present invention does not specifically limit the form of the conversion circuit 12.
  • the input voltage provided by the power supply device 20 is 5V
  • the system 13 requires a supply voltage of 3.0V-4.35V.
  • the change circuit 12 can directly utilize the buck circuit to input the 5V.
  • the voltage drop is 3.0V-4.35V to power system 13.
  • the transform circuit 12 can include a charge management circuit 121 and a buck circuit 122.
  • the charge management circuit 121 can be configured to receive an input voltage provided by the power supply device 20, convert the input voltage into a charge voltage and a first voltage, wherein the first voltage is greater than a maximum operating voltage of the system 13 of the device 10 to be charged.
  • the charging management circuit 121 provided by the embodiment of the present invention may be a charging management circuit with a boost function.
  • the charge management circuit 121 can be An integrated circuit (IC) with a boost function, also called a Charger.
  • This boost function can be implemented, for example, by a Boost boost circuit.
  • the buck circuit 122 can be configured to receive the first voltage output by the charge management circuit 121 and convert the first voltage to a supply voltage of the system 13 of the device 10 to be charged.
  • the embodiment of the present invention uses the step-down circuit 122 to step down the first voltage to obtain the power required by the system 13. Voltage.
  • the manner in which the charging management circuit 121 converts the input voltage into the charging voltage is not specifically limited in the embodiment of the present invention.
  • the charge management circuit 121 may first boost the input voltage supplied from the power supply device 20, and then replace the boosted voltage with a charging voltage that matches the current charging phase of the multi-cell 11.
  • the charge management circuit 121 can also adjust the input voltage provided by the power supply device 20 to match the adjusted voltage with the current charging phase of the single cell, and then boost the adjusted voltage. Processing, the charging voltage of the multi-cell 11 is obtained.
  • the input voltage provided by the power supply device 20 may be greater than the total voltage of the multi-cell 11 , and the charge management circuit 121 may directly perform constant voltage constant current control based on the input voltage provided by the power supply device 20 .
  • the above charging voltage may be greater than the total voltage of the multi-cell 11 , and the charge management circuit 121 may directly perform constant voltage constant current control based on the input voltage provided by the power supply device 20 . The above charging voltage.
  • the manner in which the charging management circuit 121 converts the input voltage into the first voltage is not specifically limited in the embodiment of the present invention.
  • the charge management circuit 121 may directly boost the input voltage supplied from the power supply device 20 to the first voltage; as another example, the charge management circuit 121 may use the charging voltage of the multi-cell cell as the first voltage.
  • the input voltage provided by the power supply device 20 may be greater than the total voltage of the multi-cell 11 , and the charge management circuit 121 may directly input the input voltage provided by the power supply device as the first voltage, if the power supply device 20 provides The input voltage is too high, and the charge management circuit 121 can also step down the input voltage provided by the power supply device 20 to obtain the first voltage.
  • the traditional charging scheme is a charging scheme designed for a single cell.
  • the system within the device to be charged is typically powered by a single cell, so that the operating voltage of the system within the device to be charged is typically matched to the voltage of a single cell.
  • the embodiment of the present invention adopts a multi-cell scheme, and the total voltage of the multi-cell cells 11 is higher than the total voltage of the system 13 of the device 10 to be charged. Therefore, before the multi-cell 11 is used to supply power to the system 13, the total voltage of the multi-cell 11 can be stepped down to make the voltage after the step-down meet the power supply requirements of the system 13.
  • the charge management circuit 121 can select a charge management circuit with a power path management function, so that the multi-cell 11 can supply the step-down circuit when the system 13 is powered during the non-charging process.
  • the step-down function of 122 simplifies the design of the charging and power lines inside the device to be charged.
  • the charging management circuit 121 can also be configured to receive the second voltage output by the multi-section cell 11 and transmit the second voltage to the buck circuit 122 if the device to be charged 10 is not connected to the power supply device 20, wherein The second voltage is the total voltage of the multi-cell 11 and the second voltage is greater than the maximum operating voltage of the system of the device to be charged; the buck circuit 122 can also be used to convert the second voltage into the system 13 of the device 10 to be charged. Voltage.
  • the charging management circuit 121 provided by the embodiment of the present invention is a charging management circuit with a power path management function.
  • the charge management circuit 121 can control the buck circuit 122 to draw power from the power supply device; in the non-charge phase, the charge management circuit 121 can control the buck circuit 122 to draw power from the multi-cell 11.
  • the embodiment of the present invention can select the most suitable power path according to the actual situation to supply power to the system 13, and realize efficient management and dynamic switching of the power path.
  • Power path management functions can be implemented in a variety of ways. As shown in FIG. 3, a power path management circuit 1211 may be provided inside the charge management circuit 121.
  • the power path management circuit 1211 may be implemented by, for example, a metal oxide semiconductor (MOS) tube or a diode, and the power path management circuit.
  • MOS metal oxide semiconductor
  • the specific design manner can refer to the prior art, and will not be described in detail herein.
  • the power path management circuit 1211 of FIG. 3 can be integrated in the charging IC.
  • the step-down circuit 122 will be described in detail below in conjunction with a specific embodiment.
  • the operating voltage of a single cell ranges from 3.0V to 4.35V. Since the system 13 of the device to be charged 10 is designed based on a single cell structure, the operating voltage range is also 3.0V-4.35V, that is, the minimum operating voltage of system 13 is generally 3.0V, and the maximum operating voltage of system 13 is generally 4.35V.
  • the step-down circuit 122 can reduce the total voltage of the multi-cell cells 11 to any value in the interval of 3.0V - 4.35V.
  • the step-down circuit 122 can be implemented in various manners, for example, a buck circuit, a charge pump, or the like can be used to implement step-down.
  • the buck circuit 122 may be a charge pump, and the voltage input to the buck circuit 122 (such as the first voltage or the second voltage above) may be directly reduced to 1/N of the current total voltage by the charge pump.
  • N denotes the number of cells included in the multi-section cell 11.
  • Traditional Buck circuits include devices such as switching transistors and inductors. Because the power loss of the inductor is relatively large, Depressurizing with the Buck circuit results in a large power loss.
  • the charge pump mainly uses the switch tube and the capacitor to step down. The capacitor basically does not consume extra energy. Therefore, the charge pump can reduce the power loss caused by the step-down process.
  • the switch tube inside the charge pump controls the charging and discharging of the capacitor in a certain manner, so that the input voltage is reduced by a certain factor (the factor selected in the embodiment of the present invention is 1/N), thereby obtaining the required power supply voltage.
  • the charge management circuit 121 can select a Boost Charger with a power path management function.
  • the VCC pin of the Boost Charger can be connected to the VBUS of the charging interface for receiving the input voltage (eg 5V) provided by the power supply device 20.
  • the Boost Charger's VBAT pin can be connected to a multi-cell cell 11 to provide a charging voltage (greater than the total voltage of multiple cells).
  • the Boost Charger can also include pins that can be used to power system 13 for outputting the first voltage described above, which is stepped down by buck circuit 122 to form a supply voltage for system 13.
  • the Boost Charger has a power path management function capable of controlling the step-down circuit 122 to dynamically draw power between the power supply device 20 and the multi-cell 11.
  • the buck circuit 122 is separately disposed from the Boost Charger, but the embodiment of the present invention is not limited thereto. In some embodiments, the buck circuit 122 may also be integrated in the Boost. In the Charger, the voltage at the pin output of the Boost Charger that can be used for power supply is the supply voltage that satisfies the power supply requirements of the system 13.
  • a power supply device for charging a device to be charged is mentioned in the related art.
  • the power supply device operates in a constant voltage mode.
  • constant voltage mode the voltage supplied by the power supply device is kept substantially constant, such as 5V, 9V, 12V or 20V.
  • the voltage output by the power supply device is not suitable for direct loading to both ends of the battery, but needs to be converted by a conversion circuit in the device to be charged to obtain a charging voltage and/or a charging current expected by the battery in the device to be charged. .
  • the conversion circuit is used to convert the voltage output by the power supply device to meet the charging voltage and/or charging current demanded by the battery.
  • the conversion circuit can refer to a charge management circuit, such as a charging IC.
  • a charge management circuit such as a charging IC.
  • the conversion circuit has the function of a voltage feedback module and/or has the function of a current feedback module to enable management of the charging voltage and/or charging current of the battery.
  • the charging process of the battery may include one or more of a trickle charging phase, a constant current charging phase, and a constant voltage charging phase.
  • the conversion circuit can utilize a current feedback loop such that the current entering the battery during the trickle charge phase meets the magnitude of the charge current expected by the battery (eg, the first charge current).
  • the conversion circuit can utilize the current feedback loop such that the current entering the battery during the constant current charging phase meets the expected charging current of the battery (eg, the second charging current, which can be greater than the first charging current) .
  • the conversion circuit can utilize a voltage feedback loop such that the magnitude of the voltage applied across the battery during the constant voltage charging phase satisfies the expected charging voltage of the battery.
  • the conversion circuit when the voltage output by the power supply device is greater than the charging voltage expected by the battery, the conversion circuit can be used to step down the voltage output by the power supply device so that the charging voltage obtained after the buck conversion satisfies the battery Expected charging voltage requirements. As still another example, when the voltage output by the power supply device is less than the charging voltage expected by the battery, the conversion circuit can be used to boost the voltage output by the power supply device so that the charging voltage obtained after the boost conversion meets the battery. The expected charging voltage requirement.
  • the conversion circuit for example, Buck drops
  • the voltage circuit can step down the voltage outputted by the power supply device so that the charging voltage obtained after the voltage reduction satisfies the charging voltage demand expected by the battery.
  • a conversion circuit can boost the voltage output from the power supply device so that the charged voltage obtained after boosting satisfies the expected charging voltage requirement of the battery.
  • the conversion circuit is limited by the low conversion efficiency of the circuit, so that the electric energy of the unconverted portion is dissipated as heat. This part of the heat will focus on the inside of the device to be charged.
  • the design space and heat dissipation space of the device to be charged are very small (for example, the physical size of the mobile terminal used by the user is getting thinner and lighter, and a large number of electronic components are densely arranged in the mobile terminal to improve the performance of the mobile terminal), which is not only Improves the design difficulty of the conversion circuit, and also causes the heat focused on the device to be charged to be difficult Remove in time, causing anomalies in the device to be charged.
  • the heat accumulated on the conversion circuit may cause thermal interference to the electronic components near the conversion circuit, causing abnormal operation of the electronic components.
  • the heat accumulated on the conversion circuit may shorten the life of the conversion circuit and nearby electronic components.
  • the heat accumulated on the circuit may cause thermal interference to the battery, which may cause abnormal battery charging and discharging.
  • the heat accumulated on the circuit which may cause the temperature of the device to be charged to rise, which affects the user's experience in charging.
  • the heat accumulated on the conversion circuit may cause a short circuit of the conversion circuit itself, so that the voltage outputted by the power supply device is directly loaded on both ends of the battery and causes charging abnormality. If the battery is in an overvoltage state for a long time, it may even cause The explosion of the battery jeopardizes user safety.
  • Embodiments of the present invention provide a power supply device with adjustable output voltage.
  • the power supply device is capable of acquiring status information of the battery.
  • the status information of the battery may include current battery information and/or voltage information of the battery.
  • the power supply device can adjust the output voltage of the power supply device according to the obtained state information of the battery to meet the expected charging voltage and/or charging current of the battery, and the output voltage of the power supply device can be directly loaded after being adjusted. Charge the battery to both ends of the battery (hereinafter referred to as "direct charge"). Further, during the constant current charging phase of the battery charging process, the voltage outputted by the power supply device can be directly loaded at both ends of the battery to charge the battery.
  • the power supply device adjusts the output voltage of the power supply device according to the acquired state information of the battery.
  • the power supply device can obtain the state information of the battery in real time, and according to the real-time status information of the obtained battery each time. To adjust the voltage of the power supply device's own output to meet the expected charging voltage and / or charging current of the battery.
  • the power supply device adjusts the output voltage of the power supply device according to the status information of the battery obtained in real time.
  • the power supply device can obtain the current battery at different times during the charging process as the battery voltage increases during the charging process.
  • the status information, and the output voltage of the power supply device itself is adjusted in real time according to the current state information of the battery to meet the demand of the battery for the expected charging voltage and/or charging current.
  • the charging process of the battery may include at least one of a trickle charging phase, a constant current charging phase, and a constant voltage charging phase.
  • the power supply device can output a first charging current to charge the battery during the trickle charging phase to meet the demanded charging current of the battery (the first charging current can be a constant DC current).
  • the power supply device can benefit The current feedback loop is used to make the output of the power supply device in the constant current charging phase and the current entering the battery meets the demand of the charging current expected by the battery (for example, the second charging current may be a current of a pulsating waveform, and the second charging current may be More than the first charging current, the current peak value of the pulsation waveform in the constant current charging phase may be greater than the constant DC current in the trickle charging phase, and the constant current in the constant current charging phase may refer to the current peak or average value of the pulsating waveform. Basically unchanged).
  • the power supply device can utilize the voltage feedback loop to keep the voltage output from the power supply device to the device to be charged (ie, constant DC voltage) constant during the constant voltage charging phase.
  • the power supply device mentioned in the embodiment of the present invention can be mainly used to control the constant current charging phase of the battery in the device to be charged.
  • the control functions of the trickle charging phase and the constant voltage charging phase of the battery in the device to be charged may also be coordinated by the power supply device and the additional charging chip in the device to be charged, which are mentioned in the embodiments of the present invention;
  • the charging power received by the battery in the trickle charging phase and the constant voltage charging phase is small, and the efficiency conversion loss and heat accumulation of the internal charging chip of the device to be charged are acceptable.
  • the constant current charging phase or the constant current phase mentioned in the embodiment of the present invention may refer to a charging mode that controls the output current of the power supply device, and does not require that the output current of the power supply device remains completely constant.
  • the current peak or average value of the pulsation waveform which may be generally referred to as the output of the power supply device, remains substantially constant, or remains substantially constant for a period of time.
  • the power supply device typically charges in a constant current charging phase using a piecewise constant current.
  • the multi-stage constant current charging may have N constant current stages (N is an integer not less than 2), and the segmented constant current charging starts the first stage charging with a predetermined charging current, the points
  • the N constant current phases of the segment constant current charging are sequentially performed from the first phase to the (N-1)th phase, and when the previous constant current phase in the constant current phase is transferred to the next constant current phase, the pulsating waveform is
  • the current peak or average value can be small; when the battery voltage reaches the charge termination voltage threshold, the previous constant current phase in the constant current phase will shift to the next constant current phase.
  • the current conversion process between two adjacent constant current phases may be gradual, or may be a stepped jump change.
  • the constant current mode may refer to a charging mode that controls the peak value or the average value of the pulsating direct current, that is, the peak value of the output current of the control power supply device does not exceed the constant current mode.
  • the constant current mode may refer to a charging mode that controls the peak value of the alternating current.
  • the voltage of the pulsation waveform outputted by the power supply device is directly
  • the charging current can be characterized in the form of a pulse wave (such as a skull wave).
  • the charging current can charge the battery in an intermittent manner, and the period of the charging current can be changed according to the frequency of the input alternating current, for example, the alternating current grid.
  • the frequency corresponding to the period of the charging current is an integral multiple or a reciprocal of the grid frequency. Times.
  • the current waveform corresponding to the charging current may be composed of one or a group of pulses synchronized with the power grid.
  • the battery may receive the pulsating direct current output by the power supply device during the charging process (for example, at least one of a trickle charging phase, a constant current charging phase, and a constant voltage charging phase) (the direction is not Variable, amplitude magnitude changes with time), alternating current (direction and magnitude vary with time) or direct current (ie constant DC, amplitude magnitude and direction do not change with time).
  • a trickle charging phase for example, at least one of a trickle charging phase, a constant current charging phase, and a constant voltage charging phase
  • direct current ie constant DC, amplitude magnitude and direction do not change with time.
  • the power supply device provides an operation mode.
  • the embodiment of the present invention introduces a first charging channel and a second charging channel inside the device to be charged 10. A detailed description will be given below with reference to FIG. 5.
  • the device to be charged 10 may include a first charging channel 14 and a second charging channel 15.
  • the conversion circuit 12 can be located on the first charging channel 14.
  • the second charging channel 15 can be configured to receive the output voltage and the output current of the power supply device 20, and directly load the output voltage and the output current of the power supply device 20 at the two ends of the multi-cell charging 11, for the multi-cell 11 Charging.
  • the device to be charged 10 shown in FIG. 5 may further include a communication control circuit 16 that can communicate with the power supply device 20 in the case of charging the multi-cell 11 using the second charging channel 15.
  • a communication control circuit 16 that can communicate with the power supply device 20 in the case of charging the multi-cell 11 using the second charging channel 15.
  • two-way communication can be performed by communication line 18 as shown in FIG. 5, which can be, for example, a data line in a communication interface between the power supply device 20 and the device to be charged 10) to control the power supply device.
  • the output voltage and/or output current of 20 causes the output voltage and/or output current of the power supply device 20 to match the charging phase in which the multi-cell 11 is currently located.
  • the communication control circuit 16 can communicate with the power supply device 20 to control the output voltage and/or output current of the power supply device 20 to cause the output voltage of the power supply device 20.
  • the charging voltage corresponding to the constant voltage charging phase is matched.
  • the communication control circuit 16 can communicate with the power supply device 20 to control the output voltage and/or output current of the power supply device 20 to cause the output of the power supply device 20.
  • the current matches the charging current corresponding to the constant current charging phase.
  • the communication control circuit 16 can also be used to control switching between the first charging channel 14 and the second charging channel 15. Specifically, as shown in FIG. 5, the communication control circuit 16 can be connected to the second charging channel 15 through the switch 17, and control the switching between the first charging channel 14 and the second charging channel 15 by controlling the on and off of the switch 17. .
  • the device to be charged 10 may also be based on the input voltage provided by the power supply device 20 as the system 13 powered by.
  • the power supply device 20 supports the first charging mode and the second charging mode, and the power supply device 20 charges the charging device 10 faster than the power supply device 20 in the second charging mode.
  • the charging speed of the charging device in a charging mode In other words, the power supply device 20 operating in the second charging mode is less time consuming to charge the battery of the same capacity than the power supply device 20 operating in the first charging mode.
  • the power supply device 20 in the first charging mode, can charge the multi-cell 11 through the first charging channel 14, and in the second charging mode, the power supply device 20 can pass the second The charging channel 15 charges the multi-cell cells 11.
  • the first charging mode may be a normal charging mode
  • the second charging mode may be a fast charging mode.
  • the normal charging mode means that the power supply device 20 outputs a relatively small current value (typically less than 2.5 A) or charges the battery in the charging device with a relatively small power (typically less than 15 W), in the normal charging mode.
  • the power supply device 20 can output a relatively large current (usually greater than 2.5A, such as 4.5A, 5A or higher) or charging the battery in the charging device with relatively large power (usually greater than or equal to 15W), the power supply device 20 is fast compared to the normal charging mode
  • the charging time required to fully charge the same capacity battery in charging mode can be significantly shortened and the charging speed is faster.
  • the communication content of the power supply device 20 and the communication control circuit 16 and the control mode of the communication control circuit 16 for the output of the power supply device 20 in the second charging mode are not specifically limited.
  • the communication control circuit 16 may Communicating with the power supply device 20, interacting with the current total voltage or the current total power of the multi-cell 11 in the device to be charged, and adjusting the output voltage of the power supply device 20 based on the current total voltage or the current total power of the multi-cell 11 Or output current.
  • the above description of the embodiments of the present invention does not limit the master-slave of the power supply device 20 and the device to be charged (or the communication control circuit 16 in the device to be charged), in other words, the power supply device 20 and the device to be charged Either party can initiate a two-way communication session as the master device, and accordingly the other party can make a first response or a first reply as the slave device initiates communication to the master device.
  • the identity of the master and slave devices can be confirmed by comparing the level of the power supply device 20 side and the device to be charged relative to the ground during communication.
  • the embodiment of the present invention does not limit the specific implementation manner of the two-way communication between the power supply device 20 and the device to be charged.
  • the power supply device 20 initiates a communication session with the device to be charged as the master device.
  • the other party as the slave device makes a first response or a first reply to the communication session initiated by the master device, and the master device can make a second response to the first response or the first reply of the slave device.
  • the negotiation process of one charging mode is completed between the master and the slave device.
  • the master and slave devices can perform the charging operation between the master and the slave device after completing the negotiation of the multiple charging mode to ensure the safe and reliable charging process after the negotiation. Executed.
  • One way in which the master device can make a second response according to the first response or the first reply of the slave device for the communication session may be that the master device side can receive the slave device side for the communication session. And generating a first response or a first reply, and making a targeted second response according to the received first response or the first reply of the slave device. For example, when the master device receives the first response or the first reply of the slave device for the communication session within a preset time, the master device makes a first response or a first reply to the slave device.
  • the specific second response is specifically: the master device side and the slave device side complete the negotiation of the one charging mode, and the master device side and the slave device side perform the charging operation according to the first charging mode or the second charging mode according to the negotiation result, That is, the power supply device 20 operates to charge the device to be charged in the first charging mode or the second charging mode according to the negotiation result.
  • One way that the master device can make a further second response according to the first response or the first response of the slave device to the communication session may also be that the master device does not receive the preset time.
  • the master device side also makes a targeted second response to the first response or the first reply of the slave device. For example, when the master device does not receive the first response or the first response of the slave device for the communication session within a preset time, the master device also responds to the first response or the first response of the slave device.
  • the second response to the specificity is specifically: the master device side and the slave device side complete the negotiation of the one charging mode, and the charging operation is performed between the master device side and the slave device side according to the first charging mode, that is, the power supply device 20 works in the first The device to be charged is charged in a charging mode.
  • the power supply device 20 when the device to be charged initiates a communication session as the master device, the power supply device 20 does not need to wait after making a first response or a first reply to the communication session initiated by the device to the master device.
  • the charging device performs a targeted second response to the first response or the first response of the power supply device 20, that is, the negotiation process of the charging mode is completed between the power supply device 20 and the device to be charged, and then the power supply device is 20 can determine, according to the negotiation result, charging the device to be charged in the first charging mode or the second charging mode.
  • the communication control circuit 16 may perform bidirectional communication with the power supply device 20 through the data line in the charging interface to control the output of the power supply device 20 in the second charging mode, including: The communication control circuit 16 performs two-way communication with the power supply device 20 to negotiate a charging mode between the power supply device 20 and the device to be charged.
  • the communication control circuit 16 performs two-way communication with the power supply device 20 to negotiate a charging mode between the power supply device 20 and the device to be charged, including: the communication control circuit 16 receives the power supply device 20 to transmit a first instruction, the first instruction is used to query whether the device to be charged is to turn on the second charging mode; the communication control circuit 16 sends a reply instruction of the first instruction to the power supply device 20, and the reply instruction of the first instruction is used to indicate the device to be charged Whether to agree to turn on the second charging mode; in the case where the device to be charged agrees to turn on the second charging mode, the communication control circuit 16 controls the power supply device 20 to charge the plurality of cells through the first charging path 14.
  • the communication control circuit 16 performs bidirectional communication with the power supply device 20 through the data line to control the process of the output of the power supply device 20 in the second charging mode, including: the communication control circuit 16 The two-way communication with the power supply device 20 is performed to determine a charging voltage output by the power supply device 20 in the second charging mode for charging the device to be charged.
  • the communication control circuit 16 performs bidirectional communication with the power supply device 20 to determine a charging voltage output by the power supply device 20 for charging the device to be charged in the second charging mode, including: The communication control circuit 16 receives a second command sent by the power supply device 20, and the second command is used to inquire whether the output voltage of the power supply device 20 matches the current total voltage of the multi-cell 11 of the device to be charged; the communication control circuit 16 The power supply device 20 sends a reply command of the second command, and the reply command of the second command is used to instruct the power supply device 20 The output voltage matches, is higher or lower than the current total voltage of the multi-cell 11.
  • the second instruction may be used to query whether the current output voltage of the power supply device 20 is the charging voltage for charging the device to be charged outputted by the power supply device 20 in the second charging mode, the second instruction
  • the reply command can be used to indicate that the output voltage of the current power supply device 20 is appropriate, high or low.
  • the current output voltage of the power supply device 20 matches the current total voltage of the multi-cell, or the current output voltage of the power supply device 20 is suitable as the output of the power supply device 20 in the second charging mode for charging the device to be charged
  • the charging voltage may mean that the current output voltage of the power supply device 20 is slightly higher than the current total voltage of the multi-cell, and the difference between the output voltage of the power supply device 20 and the current total voltage of the multi-cell is preset. In the range (usually on the order of a few hundred millivolts).
  • the process in which the communication control circuit 16 performs bidirectional communication with the power supply device 20 through the data line to control the output of the power supply device 20 in the second charging mode may include: the communication control circuit 16 The two-way communication with the power supply device 20 is performed to determine a charging current output by the power supply device 20 in the second charging mode for charging the device to be charged.
  • the communication control circuit 16 performs bidirectional communication with the power supply device 20 to determine that the charging current output by the power supply device 20 for charging the device to be charged in the second charging mode may include The communication control circuit 16 receives the third command sent by the power supply device 20, the third command is used to query the maximum charging current currently supported by the device to be charged; the communication control circuit 16 sends a response command to the third command to the power supply device 20, The three command reply command is used to indicate the maximum charging current currently supported by the device to be charged, so that the power supply device 20 determines the output of the power supply device 20 in the second charging mode for treating based on the maximum charging current currently supported by the device to be charged. The charging current that the charging device is charging.
  • the communication control circuit 16 determines various manners of the charging current for charging the device to be charged, which is output by the power supply device 20 in the second charging mode, according to the maximum charging current currently supported by the device to be charged.
  • the power supply device 20 may determine the maximum charging current currently supported by the device to be charged as the charging current output by the power supply device 20 in the second charging mode for charging the device to be charged, or may consider the device to be charged. After the currently supported maximum charging current and its own current output capability, etc., the charging current output by the power supply device 20 for charging the device to be charged in the second charging mode is determined.
  • the communication control circuit 16 provides a data line and a power supply.
  • the process of performing bidirectional communication to control the output of the power supply device 20 in the second charging mode may include: in the process of charging using the second charging mode, the communication control circuit 16 performs bidirectional communication with the power supply device 20, To adjust the output current of the power supply device 20.
  • the communication control circuit 16 performs bidirectional communication with the power supply device 20 to adjust the output current of the power supply device 20, which may include: the communication control circuit 16 receives the fourth command sent by the power supply device 20, and the fourth command is used to query more The current total voltage of the battery cell; the communication control circuit 16 sends a reply command of the fourth command to the power supply device 20, and the reply command of the fourth command is used to indicate the current total voltage of the multi-cell, so that the power supply device 20 is based on The current total voltage of the battery cells adjusts the output current of the power supply device 20.
  • the communication control circuit 16 performs bidirectional communication with the power supply device 20 through the data line to control the output of the power supply device 20 in the second charging mode, which may include: the communication control circuit 16 and The power supply device 20 performs two-way communication to determine whether the charging interface is in poor contact.
  • the communication control circuit 16 performs bidirectional communication with the power supply device 20 to determine whether the charging interface is in poor contact.
  • the communication control circuit 16 receives the fourth command sent by the power supply device 20, and the fourth command is used to query the device to be charged.
  • the output voltage of 20 and the current voltage of the battery of the device to be charged determine whether the charging interface is in poor contact.
  • the power supply device 20 determines that the voltage difference between the output voltage of the power supply device 20 and the current voltage of the device to be charged is greater than a preset voltage threshold, indicating that the voltage difference is obtained by dividing the current current value output by the power supply device 20
  • the impedance is greater than the preset impedance threshold to determine poor contact of the charging interface.
  • poor charging interface contact may also be determined by the device to be charged.
  • the communication control circuit 16 transmits a sixth command for inquiring the output voltage of the power supply device 20 to the power supply device 20; the communication control circuit 16 receives the reply command of the sixth command sent by the power supply device 20, sixth The command's reply command is used to indicate the output voltage of the power supply device 20; the communication control circuit 16 determines whether the charging interface is in poor contact based on the current voltage of the battery and the output voltage of the power supply device 20. After the communication control circuit 16 determines that the charging interface is in poor contact, the communication control circuit 16 may send a fifth command to the power supply device 20, the fifth command being used to indicate that the charging interface is in poor contact. After receiving the fifth command, the power supply device 20 The second charging mode can be exited.
  • FIG. 6 The communication process between the power supply device and the device to be charged (specifically, can be performed by the control unit in the device to be charged) will be described in more detail below with reference to FIG. It should be noted that the example of FIG. 6 is only intended to assist those skilled in the art to understand the embodiments of the present invention, and is not intended to limit the embodiments of the present invention to the specific numerical values or specific examples illustrated. A person skilled in the art will be able to make various modifications and changes in accordance with the example of FIG. 6 which are within the scope of the embodiments of the present invention.
  • the communication flow between the power supply device and the device to be charged may include the following five stages:
  • the device to be charged can detect the type of the power supply device through the data lines D+, D-.
  • the current absorbed by the device to be charged may be greater than a preset current threshold I2 (eg, may be 1A).
  • I2 e.g, may be 1A
  • the power supply device may consider that the type identification of the device to be charged for the power supply device has been completed. Then, the power supply device opens a negotiation process with the device to be charged, and sends an instruction 1 (corresponding to the first instruction) to the device to be charged to ask whether the device to be charged agrees to the device to be charged in the second charging mode. Charge it.
  • the power supply device When the power supply device receives the reply command of the instruction 1 sent by the device to be charged, and the reply command of the command 1 indicates that the device to be charged does not agree that the power supply device charges the device to be charged in the second charging mode, the power supply device detects the device again. The power supply provides the output current of the device. When the output current of the power supply device is still greater than or equal to I2 within a preset continuous time period (for example, may be continuous T1 time), the power supply device again sends an instruction 1 to the device to be charged, asking whether the device to be charged agrees to the power supply. The device charges the device to be charged in the second charging mode. The power supply device repeats the above steps of phase 1 until the device to be charged agrees that the power supply device charges the device to be charged in the second charging mode, or the output current of the power supply device no longer satisfies the condition greater than or equal to I2.
  • the output voltage of the power supply device may include multiple gear positions.
  • Power supply device to be charged The device sends a command 2 (corresponding to the second command described above) to inquire whether the output voltage of the power supply device (current output voltage) matches the current voltage of the battery of the device to be charged (the current total voltage of the multi-cell).
  • the device to be charged sends a reply command of the instruction 2 to the power supply device to indicate that the output voltage of the power supply device matches the current voltage of the battery of the device to be charged (the current total voltage of the multi-cell battery), which is high or low. If the reply command for the instruction 2 indicates that the output voltage of the power supply device is high or low, the power supply device can adjust the output voltage of the power supply device to one gear position, and send the command 2 to the device to be charged again, and re-inquire the power supply. Provides an indication of whether the output voltage of the device matches the current voltage of the battery (the current total voltage of the multi-cell). The above steps of phase 2 are repeated until the device to be charged determines that the output voltage of the power supply device matches the current voltage of the battery of the device to be charged (the current total voltage of the multi-cell cells), and enters phase 3.
  • the power supply device sends an instruction 3 (corresponding to the third instruction described above) to the device to be charged, and queries the maximum charging current currently supported by the device to be charged.
  • the device to be charged sends a reply command of instruction 3 to the power supply device to indicate the maximum charging current currently supported by the device to be charged, and enters phase 4.
  • the power supply device determines, according to the maximum charging current currently supported by the device to be charged, the charging current output by the power supply device for charging the device to be charged in the second charging mode, and then enters phase 5, that is, the constant current charging phase.
  • the power supply device may send an instruction 4 (corresponding to the fourth instruction described above) to the device to be charged at intervals, and query the current voltage of the battery of the device to be charged (the current total voltage of the multi-cell battery) .
  • the device to be charged may send a reply command of the instruction 4 to the power supply device to feed back the current voltage of the battery (the current total voltage of the multi-cell).
  • the power supply device can judge whether the contact of the charging interface is good or not, and whether it is necessary to reduce the output current of the power supply device according to the current voltage of the battery (the current total voltage of the multi-cell).
  • the command 5 can be sent to the device to be charged (corresponding to the fifth command), the power supply device will exit the second charging mode, and then reset and re-enter the phase 1.
  • the reply command of the command 1 may carry the data (or information) of the path impedance of the device to be charged.
  • the path impedance data of the device to be charged can be used to determine the contact of the charging interface in phase 5 No good.
  • the device to be charged agrees that the power supply device charges the device to be charged in the second charging mode to the power supply device, and adjusts the output voltage of the power supply device to an appropriate charging.
  • the time experienced by the voltage can be controlled within a certain range. If the time exceeds the predetermined range, the power supply device or the device to be charged may determine that the communication process is abnormal, reset to re-enter phase 1.
  • the device to be charged may send a reply command of the instruction 2 to the power supply device to indicate that the output voltage of the power supply device matches the voltage of the battery of the device to be charged (the total voltage of the multi-cell).
  • the adjustment speed of the output current of the power supply device in phase 4, can be controlled within a certain range, so that an abnormality in the charging process due to the excessive adjustment speed can be avoided.
  • the magnitude of the change in the output current of the power supply device may be controlled within 5%.
  • the power supply device can monitor the path impedance of the charging circuit in real time. Specifically, the power supply device can monitor the path impedance of the charging circuit according to the output voltage of the power supply device, the output current, and the current voltage of the battery (the current total voltage of the multi-cell) fed back by the device to be charged.
  • the path impedance of the charging circuit > “the path impedance of the device to be charged + the impedance of the charging cable”
  • the power supply device stops charging the device to be charged in the second charging mode.
  • the communication time interval between the power supply device and the device to be charged may be controlled within a certain range to avoid communication. The interval is too short and the communication process is abnormal.
  • the stopping of the charging process (or the stopping of the charging process of the powering device to be charged in the second charging mode) may be divided into a recoverable stop and an unrecoverable stop.
  • the charging process is stopped, the charging communication process is reset, and the charging process re-enters Phase 1. Then, the device to be charged does not agree that the power supply device charges the device to be charged in the second charging mode. Then the communication flow does not enter phase 2.
  • the stop of the charging process in this case can be considered as an unrecoverable stop.
  • the charging process is stopped, the charging communication process is reset, and the charging process re-enters Phase 1. After satisfying the requirements of Phase 1, the device to be charged agrees that the power supply device charges the device to be charged in the second charging mode to resume the charging process.
  • the stopping of the charging process in this case can be regarded as a recoverable stop.
  • the charging process is stopped, resetting and re-entering phase 1. Then, the device to be charged does not agree that the power supply device charges the device to be charged in the second charging mode.
  • the battery multi-cell battery
  • the device to be charged agrees that the power supply device charges the device to be charged in the second charging mode.
  • the stop of the fast charge process in this case can be considered as a recoverable stop.
  • the handshake communication between the device to be charged and the power supply device may also be initiated by the device to be charged, that is, the device to be charged sends an instruction 1 to inquire whether the device provides power supply. Turn on the second charging mode.
  • the device to be charged receives the reply command from the power supply device indicating that the power supply device agrees that the power supply device charges the device to be charged in the second charging mode, the power supply device starts to charge the battery of the device in the second charging mode (multiple The battery pack is charged.
  • a constant voltage charging phase can also be included.
  • the device to be charged can feed back the current voltage of the battery (the current total voltage of the multi-cell) to the power supply device, and when the current voltage of the battery (the current total voltage of the multi-cell) reaches a constant voltage At the charging voltage threshold, the charging phase transitions from the constant current charging phase to the constant voltage charging phase.
  • the charging current is gradually decreased, and when the current drops to a certain threshold, it indicates that the battery (multiple cells) of the device to be charged has been fully charged, and the entire charging process is stopped.
  • FIG. 7 is a schematic flowchart of a charging method provided by an embodiment of the present invention.
  • the charging method shown in FIG. 7 can be applied to a device to be charged (such as the device to be charged 10 in the above), the device to be charged includes: a plurality of cells connected in series with each other; and a conversion circuit for receiving an input provided by the power supply device a voltage that converts the input voltage into a charging voltage of the multi-cell and a system of the device to be charged a power supply voltage, charging the plurality of cells based on the charging voltage, and supplying power to the system of the device to be charged based on the power supply voltage; a first charging channel and a second charging channel, wherein the converting circuit Located on the first charging channel, the second charging channel is configured to receive an output voltage and an output current of the power supply device, and directly load the output voltage and the output current of the power supply device in the multi-cell charging At both ends, the plurality of cells are charged; the method of FIG. 7 includes:
  • the conversion circuit includes: a charging management circuit, configured to receive the input voltage, convert the input voltage into the charging voltage and a first voltage, wherein the first voltage a maximum operating voltage of the system greater than the device to be charged; a step-down circuit for receiving the first voltage and converting the first voltage into a supply voltage of a system of the device to be charged.
  • the charging management circuit is further configured to receive a second voltage output by the multi-cell battery when the device to be charged is not connected to the power supply device, and Transmitting the second voltage to the buck circuit, wherein the second voltage is a total voltage of the multi-cell, and the second voltage is greater than a maximum operating voltage of a system of the device to be charged;
  • the step-down circuit is further configured to convert the second voltage into a supply voltage of a system of the device to be charged.
  • the buck circuit is a charge pump.
  • the power supply device provides an input voltage that is less than a total voltage of the multi-cell, the charge management circuit including a Boost boost circuit and a charging IC.
  • the Boost boost circuit is integrated in the same chip as the charging IC.
  • the method of FIG. 7 may further include controlling switching between the first charging channel and the second charging channel.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, Or other programmable devices.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (such as a digital video disc (DVD)), or a semiconductor medium (such as a solid state disk (SSD)).
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium such as a digital video disc (DVD)
  • a semiconductor medium such as a solid state disk (SSD)
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

提供了一种待充电设备和充电方法,该待充电设备包括:相互串联的多节电芯;变换电路,用于接收电源提供设备提供的输入电压,将输入电压变换成多节电芯的充电电压和待充电设备的系统的供电电压,基于充电电压为多节电芯充电,并基于供电电压为待充电设备的系统供电。该待充电设备能够降低充电过程中的发热量。

Description

待充电设备和充电方法 技术领域
本申请涉及充电技术领域,更为具体地,涉及一种待充电设备和充电方法。
背景技术
随着电子设备的普及,电子设备的使用越来越频繁,因此,电子设备需要经常充电。
电子设备的充电过程伴随着电子设备的发热。长时间充电会使电子设备内部聚集大量的热量,进而可能导致电子设备出现故障。因此,如何降低电子设备在充电过程中的发热量是目前亟待解决的问题。
发明内容
本申请提供一种待充电设备和充电方法,能够降低充电过程中的发热量。
一方面,提供一种待充电设备,包括:相互串联的多节电芯;变换电路,用于接收电源提供设备提供的输入电压,将所述输入电压变换成所述多节电芯的充电电压和所述待充电设备的系统的供电电压,基于所述充电电压为所述多节电芯充电,并基于所述供电电压为所述待充电设备的系统供电。
另一方面,提供一种充电方法,所述充电方法应用于待充电设备,所述待充电设备包括:相互串联的多节电芯;变换电路,用于接收电源提供设备提供的输入电压,将所述输入电压变换成所述多节电芯的充电电压和所述待充电设备的系统的供电电压,基于所述充电电压为所述多节电芯充电,并基于所述供电电压为所述待充电设备的系统供电;第一充电通道和第二充电通道,其中所述变换电路位于所述第一充电通道上,第二充电通道用于接收电源提供设备的输出电压和输出电流,并将所述电源提供设备的输出电压和输出电流直接加载在所述多节电芯充电的两端,为所述多节电芯充电;所述充电方法包括:在使用所述第二充电通道为所述多节电芯充电的情况下,与所述电源提供设备通信,以控制所述电源提供设备的输出电压和/或输出电流,使所述电源提供设备的输出电压和/或输出电流与所述多节电芯当前所处的 充电阶段相匹配。
本申请对待充电设备内部的电芯结构进行了改造,引入了相互串联的多节电芯,与单电芯方案相比,如果要达到同等的充电速度,多节电芯所需的充电电流约为单节电芯所需的充电电流的1/N(N为待充电设备内的相互串联的电芯的数目),换句话说,在保证同等充电速度的前提下,本申请提供的技术方案可以大幅降低充电电流的大小,从而减少待充电设备在充电过程的发热量。进一步地,在多电芯方案基础上,在充电过程中,本申请提供的技术方案控制待充电设备的系统从电源提供设备取电,避免了多节电芯电压过低造成的无法开机的问题,并提高了充电过程的充电效率。
附图说明
图1是本发明一个实施例提供的充电系统的结构图。
图2是本发明另一实施例提供的充电系统的结构图。
图3是本发明又一实施例提供的充电系统的结构图。
图4是本发明又一实施例提供的充电系统的结构图。
图5是本发明又一实施例提供的充电系统的结构图。
图6是本发明实施例提供的快充过程的流程图。
图7是本发明实施例提供的充电方法的示意性流程图。
具体实施方式
本发明实施例中所使用到的待充电设备可以是指终端,该“终端”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据 通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。另外,本发明实施例中所使用到的待充电设备或终端还可包括移动电源(power bank),该移动电源能够接受适配器的充电,从而将能量存储起来,以为其他电子装置提供能量。
本发明实施例中所使用到的电源提供设备可以为适配器、移动电源(power bank)或电脑等。
图1是本发明实施例提供的待充电设备的示意性结构图。图1的待充电设备10包括相互串联的多节电芯11、变换电路12以及待充电设备10的系统13。
应理解,待充电设备10的系统13可以指待充电设备10内部的需要由电芯供电的器件。以手机为例,待充电设备10内部的系统可以指手机内部的处理器、存储器、射频模块、蓝牙模块和无线保真(wireless fidelity,WiFi)模块等。
变换电路12可用于接收电源提供设备20提供的输入电压,将输入电压变换成多节电芯11的充电电压(充电电压大于所述多节电芯11的总电压),基于该充电电压为多节电芯11充电。
应理解,变换电路12提供的系统13的供电电压不小于系统13的最小工作电压,不大于系统13的最大工作电压。
需要说明的是,本发明实施例对变换电路12接收输入电压的方式不做具体限定。
作为一个示例,待充电设备20可以包括充电接口。变换电路12可以与该充电接口中的电源线相连。在充电过程中,外部的电源提供设备20可以通过该充电接口中的电源线(如VBUS)将上述输入电压传输至变换电路12。
本发明实施例对上述充电接口的类型不做具体限定。例如,该充电接口可以为通用串行总线(universal serial bus,USB)接口。该USB接口例如可以是USB 2.0接口,micro USB接口,或USB TYPE-C接口。又如,该充电接口还可以lightning接口,或者其他任意类型的能够用于充电的并口和/或串口
作为另一个示例,电源提供设备20可以通过无线充电方式为待充电设备10充电,电源提供设备20可以向待充电设备10发送电磁信号,变换电路12可以通过待充电设备10内部的无线接收电路获取电源提供设备20提供的输入电压。
可选地,在一些实施例中,电源提供设备20提供的输入电压可以小于多节电芯11的总电压,变换电路12输出的充电电压大于多节电芯11的总电压。例如,变换电路12可以包含升压电路(如boost升压电路),能够对电源提供设备20提供的输入电压进行升压处理。
传统的待充电设备内部通常设置单节电芯,因此,传统的充电方案大多是针对单节电芯设计的充电方案。这样一来,电源提供设备提供的输入电压通常无法满足多节电芯的充电需求(即电源提供设备提供的输入电压通常会小于多节电芯的总电压)。以手机充电为例,电源提供设备一般能够提供5V的输入电压,待充电设备内部的单节电芯的电压一般在3.0V-4.35V之间,如果采用传统的单电芯方案,变换电路可以直接利用5V的输入电压对单节电芯进行恒压和/或恒流控制。但是,考虑到本发明实施例采用的是多电芯串联的方案,5V电压无法满足多节电芯的充电需求。以两节电芯串联为例,单节电芯的电压一般在3.0V-4.35V,则串联的两节电芯的总电压为6.0V-8.7V,电源提供设备提供的5V的输入电压显然无法用来为两节电芯充电。因此,本发明实施例提供的变换电路12可以先对电源提供设备提供的输入电压进行升压处理,再基于升压之后得到的电压对多节电芯11进行恒压和/或控制,使得变换电路12输出的充电电压大于多节电芯11的总电压。
可选地,在一些实施例中,电源提供设备20可以直接提供大于多节电芯11的总电压的输入电压,这样一来,变换电路12对电源提供设备20进行调整(如基于多节电芯11当前所处的充电阶段进行恒压和/或恒流控制)之后,可以直接用于为多节电芯11充电。
变换电路12还可用于将输入电压变换成系统13的供电电压,并基于供电电压为系统13供电。应理解,变换电路12提供的系统13的供电电压不小于系统13的最小工作电压,不大于系统13的最大工作电压。
综上所述,为了保证充电速度,并缓解待充电设备的发热现象,本发明实施例对待充电设备内部的电芯结构进行了改造,引入了相互串联的多节电芯。与单电芯方案相比,如果要达到同等的充电速度,多节电芯所需的充电 电流约为单节电芯所需的充电电流的1/N(N为待充电设备内的相互串联的电芯的数目)。换句话说,在保证同等充电速度的前提下,本发明实施例可以大幅降低充电电流的大小,从而减少待充电设备在充电过程的发热量。
在传统的待充电设备中,无论是在充电过程还是非充电过程,通常会采用待充电设备内部的电芯为系统供电。这样会引发如下问题:当电芯的电压较低时,即使将待充电设备与外部的电源提供设备相连,该待充电设备中的系统也无法立刻开机,通常需要充电一段时间才能开机,导致开机等待时间较长。此外,电芯的充电阶段包括恒流充电阶段和恒压充电阶段,恒压充电阶段的充电电流一般较小,如果在电芯充电过程中同时使用电芯供电,当电芯处于恒压充电阶段时,电芯输出的供电电流与恒压充电阶段的充电电流可能会相互抵消,从而导致恒压充电阶段被延长,进而降低了待充电设备的充电效率。传统的单电芯方案虽然也有在充电过程中基于电源提供设备提供的电能为系统供电的方案,但该方案并不能直接运用在多电芯架构中。
再次参见图1,相比而言,在本发明实施例中,当多节电芯11处于充电阶段时,变换电路12从电源提供设备20取电,并基于电源提供设备20提供的电能为待充电设备10内的系统13供电。这样一来,即使多节电芯11的电压较低,系统13也能够从电源提供设备20得到一个比较正常的开机电压,减少了系统的开机等待时间。进一步地,在多节电芯11的充电过程中,该多节电芯11无需负责为系统13供电,从而避免了上文指出的恒压充电阶段被延长而产生的充电效率低的问题。
本发明实施例对变换电路12的形式不做具体限定。可选地,在一些实施例中,以电源提供设备20提供的输入电压为5V,系统13需要的供电电压为3.0V-4.35V为例,变化电路12可以直接利用buck电路将该5V的输入电压降为3.0V-4.35V,从而为系统13供电。
可选地,在一些实施例中,如图2所示,变换电路12可包括充电管理电路121和降压电路122。
充电管理电路121可用于接收电源提供设备20提供的输入电压,将输入电压转换成充电电压和第一电压,其中第一电压大于待充电设备10的系统13的最大工作电压。
可选地,在一些实施例中,本发明实施例提供的充电管理电路121可以是具有升压功能的充电管理电路。作为一个示例,充电管理电路121可以是 具有升压功能的充电集成电路(integrated circuit,IC),也可称为Charger。该升压功能例如可以通过Boost升压电路实现。
降压电路122可用于接收充电管理电路121输出的第一电压,并将第一电压转换成待充电设备10的系统13的供电电压。
考虑到充电管理电路121输出的第一电压大于待充电设备10的系统13的最大工作电压,本发明实施例利用降压电路122对该第一电压进行降压处理,得到系统13所需的供电电压。
本发明实施例对充电管理电路121将输入电压转换成充电电压的方式不做具体限定。作为一个示例,充电管理电路121可以先对电源提供设备20提供的输入电压进行升压,然后将升压后的电压换成与多节电芯11当前所处充电阶段相匹配的充电电压。当然,充电管理电路121也可以先对电源提供设备20提供的输入电压进行调整,使调整后的电压与单节电芯当前所处的充电阶段相匹配,然后再对调整后的电压进行升压处理,得到多节电芯11的充电电压。作为另一个示例,电源提供设备20提供的输入电压可以大于多节电芯11的总电压,充电管理电路121可以在电源提供设备20提供的输入电压的基础上直接进行恒压恒流控制,得到上述充电电压。
本发明实施例对充电管理电路121将输入电压转换成第一电压的方式不做具体限定。作为一个示例,充电管理电路121可以直接将电源提供设备20提供的输入电压升压至第一电压;作为另一个示例,充电管理电路121可以将多节电芯的充电电压作为该第一电压。作为另一个示例,电源提供设备20提供的输入电压可以大于多节电芯11的总电压,充电管理电路121可以直接将电源提供设备提供的输入电压作为上述第一电压,如果电源提供设备20提供的输入电压过高,充电管理电路121还可以对电源提供设备20提供的输入电压进行降压之后,得到上述第一电压。
上文指出,传统的充电方案均是针对单节电芯设计的充电方案。在传统的充电方案中,待充电设备内的系统通常是由单节电芯供电,因此,待充电设备内的系统的工作电压通常与单节电芯的电压相匹配。本发明实施例采用的是多电芯方案,多节电芯11的总电压会高于待充电设备10的系统13的总电压。因此,在利用多节电芯11为系统13供电之前,可以先对多节电芯11的总电压进行降压处理,使降压后的电压满足系统13的供电需求。在图2的实施例中,由于已经在充电管理电路121的输出端连接了降压电路122, 因此,为了简化电路实现,充电管理电路121可以选取带有电源路径(power path)管理功能的充电管理电路,使得非充电过程中,多节电芯11为系统13供电时可以复用降压电路122的降压功能,从而简化待充电设备内部的充电线路和供电线路的设计。
具体地,充电管理电路121还可用于在待充电设备10未与电源提供设备20连接的情况下,接收多节电芯11输出的第二电压,并向降压电路122传输第二电压,其中第二电压为多节电芯11的总电压,且第二电压大于待充电设备的系统的最大工作电压;降压电路122还可用于将第二电压转换成待充电设备10的系统13的供电电压。
本发明实施例提供的充电管理电路121是带有电源路径管理功能的充电管理电路。在充电阶段,充电管理电路121可以控制降压电路122从电源提供设备取电;在非充电阶段,充电管理电路121可以控制降压电路122从多节电芯11取电。换句话说,本发明实施例能够根据实际情况选取最合适的电源路径为系统13供电,实现了电源路径的高效管理和动态切换。
电源路径管理功能的实现方式可以有多种。如图3所示,可以在充电管理电路121内部具有电源路径管理电路1211,该电源路径管理电路1211例如可以通过金属氧化物半导体(metal oxide semiconductor,MOS)管或二极管实现,电源路径管理电路的具体设计方式可以参照现有技术,此处不再详述。图3的电源路径管理电路1211可以集成在充电IC中。
下面结合具体的实施例,对降压电路122进行详细描述。
以单节电芯的工作电压的取值范围为3.0V-4.35V为例,由于待充电设备内10的系统13是基于单电芯架构设计的,因此,其工作电压的取值范围也为3.0V-4.35V,即系统13的最小工作电压一般为3.0V,系统13的最大工作电压一般为4.35V。为了保证系统13的供电电压正常,降压电路122可以将多节电芯11的总电压降到3.0V-4.35V这一区间中的任意值。降压电路122的实现方式可以有多种,例如可以采用Buck电路、电荷泵等电路形式实现降压。
为了简化电路的实现,降压电路122可以是电荷泵,通过电荷泵可以直接将输入到降压电路122的电压(如上文中的第一电压或第二电压)降为当前总电压的1/N。其中,N表示该多节电芯11所包含的电芯的数量。传统的Buck电路包含开关管和电感等器件。由于电感的功率损耗比较大,所以采 用Buck电路降压会导致功率损耗比较大。与Buck电路相比,电荷泵主要是利用开关管和电容进行降压,电容基本上不消耗额外的能量,因此,采用电荷泵能够降低降压过程带来的功率损耗。具体地,电荷泵内部的开关管以一定方式控制电容的充电和放电,使输入电压以一定因数降低(本发明实施例选取的因数为1/N),从而得到所需要的供电电压。
下面结合具体例子,更加详细地描述本发明实施例。应注意,图4的例子仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图4的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
如图4所示,充电管理电路121可以选取带有电源路径管理功能的Boost Charger。Boost Charger的VCC引脚可以与充电接口的VBUS相连,用于接收电源提供设备20提供的输入电压(如5V)。Boost Charger的VBAT引脚可以与多节电芯11相连,用于提供充电电压(大于多节电芯的总电压)。Boost Charger还可包括能够用于为系统13供电的引脚,用于输出上述第一电压,该第一电压或第二电压经过降压电路122降压之后形成系统13的供电电压。此外,Boost Charger具有电源路径管理功能,能够控制降压电路122在电源提供设备20和多节电芯11之间动态取电。
需要说明的是,在图4的实施例中,降压电路122与Boost Charger是分离设置的,但本发明实施例不限于此,在一些实施例中,也可以将降压电路122集成在Boost Charger中,使得Boost Charger中的能够用于供电的引脚输出的电压即为满足系统13供电需求的供电电压。
相关技术中提到了用于为待充电设备进行充电的一电源提供设备。该电源提供设备工作在恒压模式下。在恒压模式下,该电源提供设备输出的电压基本维持恒定,比如5V,9V,12V或20V等。
该电源提供设备输出的电压并不适合直接加载到电池两端,而是需要先经过待充电设备内的变换电路进行变换,以得到待充电设备内的电池所预期的充电电压和/或充电电流。
变换电路用于对电源提供设备输出的电压进行变换,以满足电池所预期的充电电压和/或充电电流的需求。
作为一种示例,该变换电路可指充电管理电路,例如充电IC。在电池的 充电过程中,用于对电池的充电电压和/或充电电流进行管理。该变换电路具有电压反馈模块的功能,和/或,具有电流反馈模块的功能,以实现对电池的充电电压和/或充电电流的管理。
举例来说,电池的充电过程可包括涓流充电阶段,恒流充电阶段和恒压充电阶段中的一个或者多个。在涓流充电阶段,变换电路可利用电流反馈环使得在涓流充电阶段进入到电池的电流满足电池所预期的充电电流大小(譬如第一充电电流)。在恒流充电阶段,变换电路可利用电流反馈环使得在恒流充电阶段进入电池的电流满足电池所预期的充电电流大小(譬如第二充电电流,该第二充电电流可大于第一充电电流)。在恒压充电阶段,变换电路可利用电压反馈环使得在恒压充电阶段加载到电池两端的电压的大小满足电池所预期的充电电压大小。
作为一种示例,当电源提供设备输出的电压大于电池所预期的充电电压时,变换电路可用于对电源提供设备输出的电压进行降压处理,以使降压转换后得到的充电电压满足电池所预期的充电电压需求。作为又一种示例,当电源提供设备输出的电压小于电池所预期的充电电压时,变换电路可用于对电源提供设备输出的电压进行升压处理,以使升压转换后得到的充电电压满足电池所预期的充电电压需求。
作为又一示例,以电源提供设备输出5V恒定电压为例,当电池包括单个电芯(以锂电池电芯为例,单个电芯的充电截止电压为4.2V)时,变换电路(例如Buck降压电路)可对电源提供设备输出的电压进行降压处理,以使得降压后得到的充电电压满足电池所预期的充电电压需求。
作为又一示例,以电源提供设备输出5V恒定电压为例,当电源提供设备为串联有两个及两个以上单电芯的电池(以锂电池电芯为例,单个电芯的充电截止电压为4.2V)充电时,变换电路(例如Boost升压电路)可对电源提供设备输出的电压进行升压处理,以使得升压后得到的充电电压满足电池所预期的充电电压需求。
变换电路受限于电路转换效率低下的原因,致使未被转换部分的电能以热量的形式散失。这部分热量会聚焦在待充电设备内部。待充电设备的设计空间和散热空间都很小(例如,用户使用的移动终端物理尺寸越来越轻薄,同时移动终端内密集排布了大量的电子元器件以提升移动终端的性能),这不但提升了变换电路的设计难度,还会导致聚焦在待充电设备内的热量很难 及时移除,进而引发待充电设备的异常。
例如,变换电路上聚集的热量可能会对变换电路附近的电子元器件造成热干扰,引发电子元器件的工作异常。又如,变换电路上聚集的热量,可能会缩短变换电路及附近电子元件的使用寿命。又如,变换电路上聚集的热量,可能会对电池造成热干扰,进而导致电池充放电异常。又如变换电路上聚集的热量,可能会导致待充电设备的温度升高,影响用户在充电时的使用体验。又如,变换电路上聚集的热量,可能会导致变换电路自身的短路,使得电源提供设备输出的电压直接加载在电池两端而引起充电异常,如果电池长时间处于过压充电状态,甚至会引发电池的爆炸,危及用户安全。
本发明实施例提供一种输出电压可调的电源提供设备。该电源提供设备能够获取电池的状态信息。电池的状态信息可以包括电池当前的电量信息和/或电压信息。该电源提供设备可以根据获取到的电池的状态信息来调节电源提供设备自身的输出电压,以满足电池所预期的充电电压和/或充电电流的需求,电源提供设备调节后输出的电压可直接加载到电池两端为电池充电(下称“直充”)。进一步地,在电池充电过程的恒流充电阶段,电源提供设备调节后输出的电压可直接加载在电池的两端为电池充电。
该电源提供设备可以具有电压反馈模块的功能和电流反馈模块的功能,以实现对电池的充电电压和/或充电电流的管理。
该电源提供设备根据获取到的电池的状态信息来调节电源提供设备自身的输出电压可以指:该电源提供设备能够实时获取到电池的状态信息,并根据每次所获取到的电池的实时状态信息来调节电源提供设备自身输出的电压,以满足电池所预期的充电电压和/或充电电流。
该电源提供设备根据实时获取到的电池的状态信息来调节电源提供设备自身的输出电压可以指:随着充电过程中电池电压的不断上升,电源提供设备能够获取到充电过程中不同时刻电池的当前状态信息,并根据电池的当前状态信息来实时调节电源提供设备自身的输出电压,以满足电池所预期的充电电压和/或充电电流的需求。
举例来说,电池的充电过程可包括涓流充电阶段、恒流充电阶段和恒压充电阶段中的至少一个。在涓流充电阶段,电源提供设备可在涓流充电阶段输出一第一充电电流对电池进行充电以满足电池所预期的充电电流的需求(第一充电电流可为恒定直流电流)。在恒流充电阶段,电源提供设备可利 用电流反馈环使得在恒流充电阶段由电源提供设备输出且进入到电池的电流满足电池所预期的充电电流的需求(譬如第二充电电流,可为脉动波形的电流,该第二充电电流可大于第一充电电流,可以是恒流充电阶段的脉动波形的电流峰值大于涓流充电阶段的恒定直流电流大小,而恒流充电阶段的恒流可以指的是脉动波形的电流峰值或平均值保持基本不变)。在恒压充电阶段,电源提供设备可利用电压反馈环使得在恒压充电阶段由电源提供设备输出到待充电设备的电压(即恒定直流电压)保持恒定。
举例来说,本发明实施例中提及的电源提供设备可主要用于控制待充电设备内电池的恒流充电阶段。在其他实施例中,待充电设备内电池的涓流充电阶段和恒压充电阶段的控制功能也可由本发明实施例提及的电源提供设备和待充电设备内额外的充电芯片来协同完成;相较于恒流充电阶段,电池在涓流充电阶段和恒压充电阶段接受的充电功率较小,待充电设备内部充电芯片的效率转换损失和热量累积是可以接受的。需要说明的是,本发明实施例中提及的恒流充电阶段或恒流阶段可以是指对电源提供设备的输出电流进行控制的充电模式,并非要求电源提供设备的输出电流保持完全恒定不变,例如可以是泛指电源提供设备输出的脉动波形的电流峰值或平均值保持基本不变,或者是一个时间段保持基本不变。例如,实际中,电源提供设备在恒流充电阶段通常采用分段恒流的方式进行充电。
分段恒流充电(Multi-stage constant current charging)可具有N个恒流阶段(N为一个不小于2的整数),分段恒流充电以预定的充电电流开始第一阶段充电,所述分段恒流充电的N个恒流阶段从第一阶段到第(N-1)个阶段依次被执行,当恒流阶段中的前一个恒流阶段转到下一个恒流阶段后,脉动波形的电流峰值或平均值可变小;当电池电压到达充电终止电压阈值时,恒流阶段中的前一个恒流阶段会转到下一个恒流阶段。相邻两个恒流阶段之间的电流转换过程可以是渐变的,或,也可以是台阶式的跳跃变化。
进一步地,在电源提供设备的输出电流为脉动直流电的情况下,恒流模式可以指对脉动直流电的峰值或均值进行控制的充电模式,即控制电源提供设备的输出电流的峰值不超过恒流模式对应的电流。此外,电源提供设备的输出电流为交流电的情况下,恒流模式可以指对交流电的峰值进行控制的充电模式。
此外,在本发明的实施例中,电源提供设备输出的脉动波形的电压直接 加载到待充电设备的电池上以对电池进行充电时,充电电流可以是以脉动波(如馒头波)的形式表征出来。可以理解是,充电电流可以以间歇的方式为电池充电,该充电电流的周期可以跟随输入交流电例如交流电网的频率进行变化,例如,充电电流的周期所对应的频率为电网频率的整数倍或倒数倍。并且,充电电流以间歇的方式为电池充电时,该充电电流对应的电流波形可以是与电网同步的一个或一组脉冲组成。
作为一种示例,本发明实施例中,电池在充电过程中(例如涓流充电阶段、恒流充电阶段和恒压充电阶段中的至少一个),可以接受电源提供设备输出的脉动直流电(方向不变、幅值大小随时间变化)、交流电(方向和幅值大小都随时间变化)或直流电(即恒定直流,幅值大小和方向都不随时间变化)。
为了配合相关技术中的电源提供设备以及本发明实施例提供的输出电压可调的电源提供设备的工作方式。本发明实施例在待充电设备10内部引入了第一充电通道和第二充电通道。下面结合图5进行详细描述。
如图5所示,待充电设备10可包括第一充电通道14和第二充电通道15。变换电路12可以位于第一充电通道14上。第二充电通道15可用于接收电源提供设备20的输出电压和输出电流,并将电源提供设备20的输出电压和输出电流直接加载在多节电芯充电11的两端,为多节电芯11充电。
进一步地,图5所示的待充电设备10还可包括通信控制电路16,在使用第二充电通道15为多节电芯11充电的情况下,通信控制电路16可以与电源提供设备20通信(如双向通信,例如可以通过如图5所示的通信线路18进行通信,该通信线路例如可以是电源提供设备20和待充电设备10之间的通信接口中的数据线),以控制电源提供设备20的输出电压和/或输出电流,使电源提供设备20的输出电压和/或输出电流与多节电芯11当前所处的充电阶段相匹配。
例如,当多节电芯11处于恒压充电阶段时,通信控制电路16可以与电源提供设备20通信,以控制电源提供设备20的输出电压和/或输出电流,使电源提供设备20的输出电压与恒压充电阶段对应的充电电压相匹配。
又如,当多节电芯11处于恒流充电阶段时,通信控制电路16可以与电源提供设备20通信,以控制电源提供设备20的输出电压和/或输出电流,使电源提供设备20的输出电流与恒流充电阶段对应的充电电流相匹配。
此外,在一些实施例中,通信控制电路16还可用于控制第一充电通道14和第二充电通道15之间的切换。具体地,如图5所示,通信控制电路16可以通过开关17与第二充电通道15相连,并通过控制该开关17的通断控制第一充电通道14和第二充电通道15之间的切换。
可选地,在一些实施例中,在电源提供设备20通过第二充电通道15为多节电芯11充电的情况下,待充电设备10也可以基于电源提供设备20提供的输入电压为系统13供电。
可选地,在一些实施例中,电源提供设备20支持第一充电模式和第二充电模式,电源提供设备20在第二充电模式下对待充电设备10的充电速度快于电源提供设备20在第一充电模式下对待充电设备的充电速度。换句话说,相较于工作在第一充电模式下的电源提供设备20来说,工作在第二充电模式下的电源提供设备20充满相同容量的电池的耗时更短。进一步地,在一些实施例中,在第一充电模式下,电源提供设备20可以通过第一充电通道14为多节电芯11充电,在第二充电模式下,电源提供设备20可以通过第二充电通道15为多节电芯11充电。
第一充电模式可为普通充电模式,第二充电模式可为快速充电模式。该普通充电模式是指电源提供设备20输出相对较小的电流值(通常小于2.5A)或者以相对较小的功率(通常小于15W)来对待充电设备中的电池进行充电,在普通充电模式下想要完全充满一较大容量电池(如3000毫安时容量的电池),通常需要花费数个小时的时间;而在快速充电模式下,电源提供设备20能够输出相对较大的电流(通常大于2.5A,比如4.5A,5A甚至更高)或者以相对较大的功率(通常大于等于15W)来对待充电设备中的电池进行充电,相较于普通充电模式而言,电源提供设备20在快速充电模式下完全充满相同容量电池所需要的充电时间能够明显缩短、充电速度更快。
本发明实施例对电源提供设备20与通信控制电路16的通信内容,以及通信控制电路16对电源提供设备20在第二充电模式下的输出的控制方式不作具体限定,例如,通信控制电路16可以与电源提供设备20通信,交互待充电设备中的多节电芯11的当前总电压或当前总电量,并基于多节电芯11的当前总电压或当前总电量调整电源提供设备20的输出电压或输出电流。下面结合具体的实施例对通信控制电路16与电源提供设备20之间的通信内容,以及通信控制电路16对在第二充电模式下的电源提供设备20的输出的 控制方式进行详细描述。
本发明实施例的上述描述并不会对电源提供设备20与待充电设备(或者待充电设备中的通信控制电路16)的主从性进行限定,换句话说,电源提供设备20与待充电设备中的任何一方均可作为主设备方发起双向通信会话,相应地另外一方可以作为从设备方对主设备方发起的通信做出第一响应或第一回复。作为一种可行的方式,可以在通信过程中,通过比较电源提供设备20侧和待充电设备侧相对于大地的电平高低来确认主、从设备的身份。
本发明实施例并未对电源提供设备20与待充电设备之间双向通信的具体实现方式作出限制,即言,电源提供设备20与待充电设备中的任何一方作为主设备方发起通信会话,相应地另外一方作为从设备方对主设备方发起的通信会话做出第一响应或第一回复,同时主设备方能够针对所述从设备方的第一响应或第一回复做出第二响应,即可认为主、从设备之间完成了一次充电模式的协商过程。作为一种可行的实施方式,主、从设备方之间可以在完成多次充电模式的协商后,再执行主、从设备方之间的充电操作,以确保协商后的充电过程安全、可靠的被执行。
作为主设备方能够根据所述从设备方针对通信会话的第一响应或第一回复做出第二响应的一种方式可以是:主设备方能够接收到所述从设备方针对通信会话所做出的第一响应或第一回复,并根据接收到的所述从设备的第一响应或第一回复做出针对性的第二响应。作为举例,当主设备方在预设的时间内接收到所述从设备方针对通信会话的第一响应或第一回复,主设备方会对所述从设备的第一响应或第一回复做出针对性的第二响应具体为:主设备方与从设备方完成了一次充电模式的协商,主设备方与从设备方之间根据协商结果按照第一充电模式或者第二充电模式执行充电操作,即电源提供设备20根据协商结果工作在第一充电模式或者第二充电模式下为待充电设备充电。
作为主设备方能够根据所述从设备方针对通信会话的第一响应或第一回复做出进一步的第二响应的一种方式还可以是:主设备方在预设的时间内没有接收到所述从设备方针对通信会话的第一响应或第一回复,主设备方也会对所述从设备的第一响应或第一回复做出针对性的第二响应。作为举例,当主设备方在预设的时间内没有接收到所述从设备方针对通信会话的第一响应或第一回复,主设备方也会对所述从设备的第一响应或第一回复做出针 对性的第二响应具体为:主设备方与从设备方完成了一次充电模式的协商,主设备方与从设备方之间按照第一充电模式执行充电操作,即电源提供设备20工作在第一充电模式下为待充电设备充电。
可选地,在一些实施例中,当待充电设备作为主设备发起通信会话,电源提供设备20作为从设备对主设备方发起的通信会话做出第一响应或第一回复后,无需要待充电设备对电源提供设备20的第一响应或第一回复做出针对性的第二响应,即可认为电源提供设备20与待充电设备之间完成了一次充电模式的协商过程,进而电源提供设备20能够根据协商结果确定以第一充电模式或者第二充电模式为待充电设备进行充电。
可选地,在一些实施例中,通信控制电路16可以通过充电接口中的数据线与电源提供设备20进行双向通信,以控制在第二充电模式下的电源提供设备20的输出的过程包括:通信控制电路16与电源提供设备20进行双向通信,以协商电源提供设备20与待充电设备之间的充电模式。
可选地,在一些实施例中,通信控制电路16与电源提供设备20进行双向通信,以协商电源提供设备20与待充电设备之间的充电模式包括:通信控制电路16接收电源提供设备20发送的第一指令,第一指令用于询问待充电设备是否开启第二充电模式;通信控制电路16向电源提供设备20发送第一指令的回复指令,第一指令的回复指令用于指示待充电设备是否同意开启第二充电模式;在待充电设备同意开启第二充电模式的情况下,通信控制电路16控制电源提供设备20通过第一充电通道14为多节电芯充电。
可选地,在一些实施例中,通信控制电路16通过数据线与电源提供设备20进行双向通信,以控制在第二充电模式下的电源提供设备20的输出的过程,包括:通信控制电路16与电源提供设备20进行双向通信,以确定在第二充电模式下的电源提供设备20输出的用于对待充电设备进行充电的充电电压。
可选地,在一些实施例中,通信控制电路16与电源提供设备20进行双向通信,以确定在第二充电模式下的电源提供设备20输出的用于对待充电设备进行充电的充电电压包括:通信控制电路16接收电源提供设备20发送的第二指令,第二指令用于询问电源提供设备20的输出电压与待充电设备的多节电芯11的当前总电压是否匹配;通信控制电路16向电源提供设备20发送第二指令的回复指令,第二指令的回复指令用于指示电源提供设备20 的输出电压与多节电芯11的当前总电压匹配、偏高或偏低。可替换地,第二指令可用于询问将电源提供设备20的当前输出电压作为在第二充电模式下的电源提供设备20输出的用于对待充电设备进行充电的充电电压是否合适,第二指令的回复指令可用于指示当前电源提供设备20的输出电压合适、偏高或偏低。电源提供设备20的当前输出电压与多节电芯的当前总电压匹配,或者电源提供设备20的当前输出电压适合作为在第二充电模式下的电源提供设备20输出的用于对待充电设备进行充电的充电电压可以指电源提供设备20的当前输出电压略高于多节电芯的当前总电压,且电源提供设备20的输出电压与多节电芯的当前总电压之间的差值在预设范围内(通常在几百毫伏的量级)。
可选地,在一些实施例中,通信控制电路16通过数据线与电源提供设备20进行双向通信,以控制在第二充电模式下的电源提供设备20的输出的过程可包括:通信控制电路16与电源提供设备20进行双向通信,以确定在第二充电模式下的电源提供设备20输出的用于对待充电设备进行充电的充电电流。
可选地,在一些实施例中,通信控制电路16与电源提供设备20进行双向通信,以确定在第二充电模式下的电源提供设备20输出的用于对待充电设备进行充电的充电电流可包括:通信控制电路16接收电源提供设备20发送的第三指令,第三指令用于询问待充电设备当前支持的最大充电电流;通信控制电路16向电源提供设备20发送第三指令的回复指令,第三指令的回复指令用于指示待充电设备当前支持的最大充电电流,以便电源提供设备20基于待充电设备当前支持的最大充电电流确定在第二充电模式下的电源提供设备20输出的用于对待充电设备进行充电的充电电流。应理解,通信控制电路16根据待充电设备当前支持的最大充电电流确定在第二充电模式下的电源提供设备20输出的用于对待充电设备进行充电的充电电流的方式有多种。例如,电源提供设备20可以将待充电设备当前支持的最大充电电流确定为在第二充电模式下的电源提供设备20输出的用于对待充电设备进行充电的充电电流,也可以综合考虑待充电设备当前支持的最大充电电流以及自身的电流输出能力等因素之后,确定在第二充电模式下的电源提供设备20输出的用于对待充电设备进行充电的充电电流。
可选地,在一些实施例中,通信控制电路16通过数据线与电源提供设 备20进行双向通信,以控制在第二充电模式下的电源提供设备20的输出的过程可包括:在使用第二充电模式充电的过程中,通信控制电路16与电源提供设备20进行双向通信,以调整电源提供设备20的输出电流。
具体地,通信控制电路16与电源提供设备20进行双向通信,以调整电源提供设备20的输出电流可包括:通信控制电路16接收电源提供设备20发送的第四指令,第四指令用于询问多节电芯的当前总电压;通信控制电路16向电源提供设备20发送第四指令的回复指令,第四指令的回复指令用于指示多节电芯的当前总电压,以便电源提供设备20根据多节电芯的当前总电压,调整电源提供设备20的输出电流。
可选地,在一些实施例中,通信控制电路16通过数据线与电源提供设备20进行双向通信,以控制在第二充电模式下电源提供设备20的输出的过程可包括:通信控制电路16与电源提供设备20进行双向通信,以确定充电接口是否接触不良。
具体地,通信控制电路16与电源提供设备20进行双向通信,以便确定充电接口是否接触不良可包括:通信控制电路16接收电源提供设备20发送的第四指令,第四指令用于询问待充电设备的电池的当前电压;通信控制电路16向电源提供设备20发送第四指令的回复指令,第四指令的回复指令用于指示待充电设备的电池的当前电压,以便电源提供设备20根据电源提供设备20的输出电压和待充电设备的电池的当前电压,确定充电接口是否接触不良。例如,电源提供设备20确定电源提供设备20的输出电压和待充电设备的当前电压的压差大于预设的电压阈值,则表明此时压差除以电源提供设备20输出的当前电流值所得到的阻抗大于预设的阻抗阈值,即可确定充电接口接触不良。
可选地,在一些实施例中,充电接口接触不良也可由待充电设备进行确定。例如,通信控制电路16向电源提供设备20发送第六指令,第六指令用于询问电源提供设备20的输出电压;通信控制电路16接收电源提供设备20发送的第六指令的回复指令,第六指令的回复指令用于指示电源提供设备20的输出电压;通信控制电路16根据电池的当前电压和电源提供设备20的输出电压,确定充电接口是否接触不良。在通信控制电路16确定充电接口接触不良后,通信控制电路16可以向电源提供设备20发送第五指令,第五指令用于指示充电接口接触不良。电源提供设备20在接收到第五指令之后, 可以退出第二充电模式。
下面结合图6,更加详细地描述电源提供设备与待充电设备(具体可以由待充电设备中的控制单元执行)之间的通信过程。应注意,图6的例子仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图6的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
如图6所示,电源提供设备和待充电设备之间的通信流程(或称快速过程的通信流程)可以包括以下五个阶段:
阶段1:
待充电设备与电源提供装置连接后,待充电设备可以通过数据线D+、D-检测电源提供装置的类型。当检测到电源提供装置为电源提供设备时,则待充电设备吸收的电流可以大于预设的电流阈值I2(例如可以是1A)。当电源提供设备检测到预设时长(例如,可以是连续T1时间)内电源提供设备的输出电流大于或等于I2时,则电源提供设备可以认为待充电设备对于电源提供装置的类型识别已经完成。接着,电源提供设备开启与待充电设备之间的协商过程,向待充电设备发送指令1(对应于上述第一指令),以询问待充电设备是否同意电源提供设备以第二充电模式对待充电设备进行充电。
当电源提供设备收到待充电设备发送的指令1的回复指令,且该指令1的回复指令指示待充电设备不同意电源提供设备以第二充电模式对待充电设备进行充电时,电源提供设备再次检测电源提供设备的输出电流。当电源提供设备的输出电流在预设的连续时长内(例如,可以是连续T1时间)仍然大于或等于I2时,电源提供设备再次向待充电设备发送指令1,询问待充电设备是否同意电源提供设备以第二充电模式对待充电设备进行充电。电源提供设备重复阶段1的上述步骤,直到待充电设备同意电源提供设备以第二充电模式对待充电设备进行充电,或电源提供设备的输出电流不再满足大于或等于I2的条件。
当待充电设备同意电源提供设备以第二充电模式对待充电设备进行充电后,通信流程进入阶段2。
阶段2:
电源提供设备的输出电压可以包括多个档位。电源提供设备向待充电设 备发送指令2(对应于上述第二指令),以询问电源提供设备的输出电压(当前的输出电压)与待充电设备电池的当前电压(多节电芯的当前总电压)是否匹配。
待充电设备向电源提供设备发送指令2的回复指令,以指示电源提供设备的输出电压与待充电设备电池的当前电压(多节电芯的当前总电压)匹配、偏高或偏低。如果针对指令2的回复指令指示电源提供设备的输出电压偏高或偏低,电源提供设备可以将电源提供设备的输出电压调整一格档位,并再次向待充电设备发送指令2,重新询问电源提供设备的输出电压与电池的当前电压(多节电芯的当前总电压)是否匹配。重复阶段2的上述步骤直到待充电设备确定电源提供设备的输出电压与待充电设备电池的当前电压(多节电芯的当前总电压)匹配,进入阶段3。
阶段3:
电源提供设备向待充电设备发送指令3(对应于上述第三指令),询问待充电设备当前支持的最大充电电流。待充电设备向电源提供设备发送指令3的回复指令,以指示待充电设备当前支持的最大充电电流,并进入阶段4。
阶段4:
电源提供设备根据待充电设备当前支持的最大充电电流,确定在第二充电模式下电源提供设备输出的用于对待充电设备进行充电的充电电流,然后进入阶段5,即恒流充电阶段。
阶段5:
在进入恒流充电阶段后,电源提供设备可以每间隔一段时间向待充电设备发送指令4(对应于上述第四指令),询问待充电设备电池的当前电压(多节电芯的当前总电压)。待充电设备可以向电源提供设备发送指令4的回复指令,以反馈电池的当前电压(多节电芯的当前总电压)。电源提供设备可以根据电池的当前电压(多节电芯的当前总电压),判断充电接口的接触是否良好,以及是否需要降低电源提供设备的输出电流。当电源提供设备判断充电接口的接触不良时,可以向待充电设备发送指令5(对应于上述第五指令),电源提供设备会退出第二充电模式,然后复位并重新进入阶段1。
可选地,在一些实施例中,在阶段1中,待充电设备发送指令1的回复指令时,指令1的回复指令中可以携带该待充电设备的通路阻抗的数据(或信息)。待充电设备的通路阻抗数据可用于在阶段5判断充电接口的接触是 否良好。
可选地,在一些实施例中,在阶段2中,从待充电设备同意电源提供设备在第二充电模式下对待充电设备进行充电到电源提供设备将电源提供设备的输出电压调整到合适的充电电压所经历的时间可以控制在一定范围之内。如果该时间超出预定范围,则电源提供设备或待充电设备可以判定通信过程异常,复位以重新进入阶段1。
可选地,在一些实施例中,在阶段2中,当电源提供设备的输出电压比待充电设备电池的当前电压(多节电芯的当前总电压)高ΔV(ΔV可以设定为200~500mV)时,待充电设备可以向电源提供设备发送指令2的回复指令,以指示电源提供设备的输出电压与待充电设备的电池的电压(多节电芯的总电压)匹配。
可选地,在一些实施例中,在阶段4中,电源提供设备的输出电流的调整速度可以控制一定范围之内,这样可以避免由于调整速度过快而导致充电过程发生异常。
可选地,在一些实施例中,在阶段5中,电源提供设备的输出电流的变化幅度可以控制在5%以内。
可选地,在一些实施例中,在阶段5中,电源提供设备可以实时监测充电电路的通路阻抗。具体地,电源提供设备可以根据电源提供设备的输出电压、输出电流及待充电设备反馈的电池的当前电压(多节电芯的当前总电压),监测充电电路的通路阻抗。当“充电电路的通路阻抗”>“待充电设备的通路阻抗+充电线缆的阻抗”时,可以认为充电接口接触不良,电源提供设备停止在第二充电模式下对待充电设备进行充电。
可选地,在一些实施例中,电源提供设备开启在第二充电模式下对待充电设备进行充电之后,电源提供设备与待充电设备之间的通信时间间隔可以控制在一定范围之内,避免通信间隔过短而导致通信过程发生异常。
可选地,在一些实施例中,充电过程的停止(或电源提供设备在第二充电模式下对待充电设备的充电过程的停止)可以分为可恢复的停止和不可恢复的停止两种。
例如,当检测到待充电设备的电池(多节电芯)充满或充电接口接触不良时,充电过程停止,充电通信过程复位,充电过程重新进入阶段1。然后,待充电设备不同意电源提供设备在第二充电模式下对待充电设备进行充电, 则通信流程不进入阶段2。这种情况下的充电过程的停止可以视为不可恢复的停止。
又例如,当电源提供设备与待充电设备之间出现通信异常时,充电过程停止,充电通信过程复位,充电过程重新进入阶段1。在满足阶段1的要求后,待充电设备同意电源提供设备在第二充电模式下对待充电设备进行充电以恢复充电过程。这种情况下的充电过程的停止可以视为可恢复的停止。
又例如,当待充电设备检测到电池(多节电芯)出现异常时,充电过程停止,复位并重新进入阶段1。然后,待充电设备不同意电源提供设备在第二充电模式下对待充电设备进行充电。当电池(多节电芯)恢复正常,且满足阶段1的要求后,待充电设备同意电源提供设备在第二充电模式下对待充电设备进行充电。这种情况下的快充过程的停止可以视为可恢复的停止。
以上对图6示出的通信步骤或操作仅是示例。例如,在阶段1中,待充电设备与电源提供设备连接后,待充电设备与电源提供设备之间的握手通信也可以由待充电设备发起,即待充电设备发送指令1,询问电源提供设备是否开启第二充电模式。当待充电设备接收到电源提供设备的回复指令指示电源提供设备同意电源提供设备在第二充电模式下对待充电设备进行充电时,电源提供设备开始在第二充电模式下对待充电设备的电池(多节电芯)进行充电。
又如,在阶段5之后,还可包括恒压充电阶段。具体地,在阶段5中,待充电设备可以向电源提供设备反馈电池的当前电压(多节电芯的当前总电压),当电池的当前电压(多节电芯的当前总电压)达到恒压充电电压阈值时,充电阶段从恒流充电阶段转入恒压充电阶段。在恒压充电阶段中,充电电流逐渐减小,当电流下降至某一阈值时,表示待充电设备的电池(多节电芯)已经被充满,停止整个充电过程。
上文结合图1-图6,详细描述了本发明的装置实施例,下文结合图7,详细描述本发明实施例的方法实施例,应理解,方法侧的描述与装置侧的描述相互对应,为了简洁,适当省略重复的描述。
图7是本发明实施例提供的充电方法的示意性流程图。图7所示的充电方法可应用于待充电设备(如上文中的待充电设备10),所述待充电设备包括:相互串联的多节电芯;变换电路,用于接收电源提供设备提供的输入电压,将所述输入电压变换成所述多节电芯的充电电压和所述待充电设备的系 统的供电电压,基于所述充电电压为所述多节电芯充电,并基于所述供电电压为所述待充电设备的系统供电;第一充电通道和第二充电通道,其中所述变换电路位于所述第一充电通道上,第二充电通道用于接收电源提供设备的输出电压和输出电流,并将所述电源提供设备的输出电压和输出电流直接加载在所述多节电芯充电的两端,为所述多节电芯充电;图7的方法包括:
710、在使用所述第二充电通道为所述多节电芯充电的情况下,与所述电源提供设备通信,以控制所述电源提供设备的输出电压和/或输出电流,使所述电源提供设备的输出电压和/或输出电流与所述多节电芯当前所处的充电阶段相匹配。
可选地,在一些实施例中,所述变换电路包括:充电管理电路,用于接收所述输入电压,将所述输入电压转换成所述充电电压和第一电压,其中所述第一电压大于所述待充电设备的系统的最大工作电压;降压电路,用于接收所述第一电压,并将所述第一电压转换成所述待充电设备的系统的供电电压。
可选地,在一些实施例中,所述充电管理电路还用于在所述待充电设备未与所述电源提供设备连接的情况下,接收所述多节电芯输出的第二电压,并向所述降压电路传输所述第二电压,其中所述第二电压为所述多节电芯的总电压,且所述第二电压大于所述待充电设备的系统的最大工作电压;所述降压电路还用于将所述第二电压转换成所述待充电设备的系统的供电电压。
可选地,在一些实施例中,所述降压电路为电荷泵。
可选地,在一些实施例中,电源提供设备提供的输入电压小于多节电芯的总电压,所述充电管理电路包括Boost升压电路和充电IC。
可选地,在一些实施例中,所述Boost升压电路与所述充电IC集成在同一芯片中。
可选地,在一些实施例中,图7的方法还可包括:控制所述第一充电通道和所述第二充电通道之间的切换。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、 或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易 想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种待充电设备,其特征在于,包括:
    相互串联的多节电芯;
    变换电路,用于接收电源提供设备提供的输入电压,将所述输入电压变换成所述多节电芯的充电电压和所述待充电设备的系统的供电电压,基于所述充电电压为所述多节电芯充电,并基于所述供电电压为所述待充电设备的系统供电。
  2. 如权利要求1所述的待充电设备,其特征在于,所述变换电路包括:
    充电管理电路,用于接收所述输入电压,将所述输入电压转换成所述充电电压和第一电压,其中所述第一电压大于所述待充电设备的系统的最大工作电压;
    降压电路,用于接收所述第一电压,并将所述第一电压转换成所述待充电设备的系统的供电电压。
  3. 如权利要求2所述的待充电设备,其特征在于,所述充电管理电路还用于在所述待充电设备未与所述电源提供设备连接的情况下,接收所述多节电芯输出的第二电压,并向所述降压电路传输所述第二电压,其中所述第二电压为所述多节电芯的总电压,且所述第二电压大于所述待充电设备的系统的最大工作电压;
    所述降压电路还用于将所述第二电压转换成所述待充电设备的系统的供电电压。
  4. 如权利要求2或3所述的待充电设备,其特征在于,所述降压电路为电荷泵。
  5. 如权利要求2-4中任一项所述的待充电设备,其特征在于,所述电源提供设备提供的输入电压小于所述多节电芯的总电压,所述充电管理电路包括Boost升压电路和充电集成电路IC。
  6. 如权利要求5所述的待充电设备,其特征在于,所述Boost升压电路与所述充电IC集成在同一芯片中。
  7. 如权利要求1-6中任一项所述的待充电设备,其特征在于,所述待充电设备包括:
    第一充电通道和第二充电通道,其中所述变换电路位于所述第一充电通道上,第二充电通道用于接收电源提供设备的输出电压和输出电流,并将所 述电源提供设备的输出电压和输出电流直接加载在所述多节电芯充电的两端,为所述多节电芯充电;
    通信控制电路,在使用所述第二充电通道为所述多节电芯充电的情况下,所述通信控制电路与所述电源提供设备通信,以控制所述电源提供设备的输出电压和/或输出电流,使所述电源提供设备的输出电压和/或输出电流与所述多节电芯当前所处的充电阶段相匹配;
    所述通信控制电路还用于控制所述第一充电通道和所述第二充电通道之间的切换。
  8. 一种充电方法,其特征在于,所述充电方法应用于待充电设备,所述待充电设备包括:
    相互串联的多节电芯;
    变换电路,用于接收电源提供设备提供的输入电压,将所述输入电压变换成所述多节电芯的充电电压和所述待充电设备的系统的供电电压,基于所述充电电压为所述多节电芯充电,并基于所述供电电压为所述待充电设备的系统供电;
    第一充电通道和第二充电通道,其中所述变换电路位于所述第一充电通道上,第二充电通道用于接收电源提供设备的输出电压和输出电流,并将所述电源提供设备的输出电压和输出电流直接加载在所述多节电芯充电的两端,为所述多节电芯充电;
    所述充电方法包括:
    在使用所述第二充电通道为所述多节电芯充电的情况下,与所述电源提供设备通信,以控制所述电源提供设备的输出电压和/或输出电流,使所述电源提供设备的输出电压和/或输出电流与所述多节电芯当前所处的充电阶段相匹配。
  9. 如权利要求8所述的充电方法,其特征在于,所述变换电路包括:
    充电管理电路,用于接收所述输入电压,将所述输入电压转换成所述充电电压和第一电压,其中所述第一电压大于所述待充电设备的系统的最大工作电压;
    降压电路,用于接收所述第一电压,并将所述第一电压转换成所述待充电设备的系统的供电电压。
  10. 如权利要求9所述的充电方法,其特征在于,所述充电管理电路还 用于在所述待充电设备未与所述电源提供设备连接的情况下,接收所述多节电芯输出的第二电压,并向所述降压电路传输所述第二电压,其中所述第二电压为所述多节电芯的总电压,且所述第二电压大于所述待充电设备的系统的最大工作电压;
    所述降压电路还用于将所述第二电压转换成所述待充电设备的系统的供电电压。
  11. 如权利要求9或10所述的充电方法,其特征在于,所述降压电路为电荷泵。
  12. 如权利要求9-11中任一项所述的充电方法,其特征在于,所述电源提供设备提供的输入电压小于所述多节电芯的总电压,所述充电管理电路包括Boost升压电路和充电集成电路IC。
  13. 如权利要求12所述的充电方法,其特征在于,所述Boost升压电路与所述充电IC集成在同一芯片中。
  14. 如权利要求8-13中任一项所述的充电方法,其特征在于,所述方法还包括:
    控制所述第一充电通道和所述第二充电通道之间的切换。
PCT/CN2017/080334 2017-04-07 2017-04-13 待充电设备和充电方法 WO2018188006A1 (zh)

Priority Applications (72)

Application Number Priority Date Filing Date Title
PT179057633T PT3462565T (pt) 2017-04-13 2017-04-13 Dispositivo a ser carregado e método de carregamento
PCT/CN2017/080334 WO2018188006A1 (zh) 2017-04-13 2017-04-13 待充电设备和充电方法
ES17905763T ES2865855T3 (es) 2017-04-13 2017-04-13 Dispositivo a ser cargado y método de carga
CN202210601924.1A CN114784923A (zh) 2017-04-13 2017-04-13 待充电设备和充电方法
JP2019545913A JP6992080B2 (ja) 2017-04-13 2017-04-13 被充電機器及び充電方法
EP17905763.3A EP3462565B1 (en) 2017-04-13 2017-04-13 Device to be charged and charging method
CN201780041786.3A CN109478791A (zh) 2017-04-13 2017-04-13 待充电设备和充电方法
KR1020197027259A KR102318241B1 (ko) 2017-04-13 2017-04-13 충전 대기 설비 및 충전 방법
DK17905763.3T DK3462565T3 (da) 2017-04-13 2017-04-13 Anordning, der skal oplades, og opladningsfremgangsmåde
RU2019125331A RU2724645C1 (ru) 2017-04-07 2018-04-04 Беспроводное зарядное устройство, заряжаемое устройство и способ управления ими
JP2019553061A JP7013480B2 (ja) 2017-04-07 2018-04-04 被充電機器、無線充電装置及び無線充電方法
KR1020197030203A KR102335722B1 (ko) 2017-04-07 2018-04-04 무선 충전 장치, 충전 대기 설비 및 그 제어 방법
AU2018247552A AU2018247552A1 (en) 2017-04-07 2018-04-04 Wireless charging apparatus and method, and device to be charged
CN201880007014.2A CN110178283B (zh) 2017-04-07 2018-04-04 待充电设备、无线充电装置、无线充电方法及系统
BR112019020518-7A BR112019020518B1 (pt) 2017-04-07 2018-04-04 Dispositivo de carregamento sem fio, dispositivo a ser carregado e método de carregamento sem fio
PCT/CN2018/082010 WO2018184582A1 (zh) 2017-04-07 2018-04-04 待充电设备、无线充电装置、无线充电方法及系统
JP2019553926A JP7046094B2 (ja) 2017-04-07 2018-04-04 無線充電装置、方法および充電対象機器
AU2018249241A AU2018249241B2 (en) 2017-04-07 2018-04-04 Wireless charging apparatus, device to be charged and control method therefor
KR1020197030202A KR102268987B1 (ko) 2017-04-07 2018-04-04 무선 충전 장치, 무선 충전 방법 및 충전 대기 설비
EP18781213.6A EP3605780B1 (en) 2017-04-07 2018-04-04 Device to be charged, wireless charging apparatus, wireless charging method and system
JP2019552162A JP6871409B2 (ja) 2017-04-07 2018-04-04 被充電機器、無線充電装置、無線充電方法及び無線充電システム
CN201880007016.1A CN110192322B (zh) 2017-04-07 2018-04-04 待充电设备、无线充电装置、无线充电方法及系统
KR1020197031260A KR102325155B1 (ko) 2017-04-07 2018-04-04 충전 대기 설비, 무선 충전 장치 및 무선 충전 방법
CN201880005719.0A CN110214402B (zh) 2017-04-07 2018-04-04 无线充电系统、装置、方法及待充电设备
MX2019009633A MX2019009633A (es) 2017-04-07 2018-04-04 Aparato de carga inalambrica, dispositivo para ser cargado y metodo de control para el mismo.
KR1020197031258A KR102325154B1 (ko) 2017-04-07 2018-04-04 충전 대기 설비, 무선 충전 장치 및 무선 충전 방법
PCT/CN2018/082013 WO2018184584A1 (zh) 2017-04-07 2018-04-04 无线充电装置、方法及待充电设备
SG11201906965SA SG11201906965SA (en) 2017-04-07 2018-04-04 Wireless charging device, device to-be-charged, and method for controlling the same
PCT/CN2018/082011 WO2018184583A1 (zh) 2017-04-07 2018-04-04 待充电设备、无线充电装置、无线充电方法及系统
CN201880005272.7A CN110100368B (zh) 2017-04-07 2018-04-04 无线充电装置、方法及待充电设备
PCT/CN2018/081972 WO2018184578A1 (zh) 2017-04-07 2018-04-04 无线充电系统、装置、方法及待充电设备
EP18781210.2A EP3609040B1 (en) 2017-04-07 2018-04-04 Wireless charging system, apparatus, method and device to be charged
CN201880005718.6A CN110168844B (zh) 2017-04-07 2018-04-04 无线充电装置、待充电设备及其控制方法
AU2018249245A AU2018249245B2 (en) 2017-04-07 2018-04-04 Wireless charging system, apparatus, method and device to be charged
KR1020197030856A KR102243241B1 (ko) 2017-04-07 2018-04-04 무선 충전 장치, 방법 및 충전 대상 기기
RU2019133506A RU2727724C1 (ru) 2017-04-07 2018-04-04 Устройство и способ беспроводной зарядки, и устройство, подлежащее зарядке
BR112019016542-8A BR112019016542B1 (pt) 2017-04-07 2018-04-04 Dispositivo de carregamento sem fio, dispositivo a ser carregado e método para controlar um dispositivo de carregamento sem fio
CA3051027A CA3051027C (en) 2017-04-07 2018-04-04 Wireless charging device, device to-be-charged, and method for controlling the same
KR1020197031259A KR102397746B1 (ko) 2017-04-07 2018-04-04 충전 대기 설비, 무선 충전 장치 및 무선 충전 방법
JP2019552867A JP6842566B2 (ja) 2017-04-07 2018-04-04 被充電機器、無線充電装置及び無線充電方法
BR112019018588-7A BR112019018588B1 (pt) 2017-04-07 2018-04-04 Dispositivo a ser carregado, sistema de carregamento sem fio e método de carregamento sem fio
EP18780892.8A EP3582361B1 (en) 2017-04-07 2018-04-04 Wireless charging apparatus, device to be charged and control method therefor
PCT/CN2018/081962 WO2018184573A1 (zh) 2017-04-07 2018-04-04 无线充电装置、待充电设备及其控制方法
RU2019127748A RU2735154C1 (ru) 2017-04-07 2018-04-04 Система, устройство и способ беспроводной зарядки и заряжаемое устройство
EP18780783.9A EP3609038B1 (en) 2017-04-07 2018-04-04 Device to be charged, wireless charging apparatus, wireless charging method and system
MX2019011391A MX2019011391A (es) 2017-04-07 2018-04-04 Dispositivo y método de carga inalámbrica, y dispositivo a cargar.
SG11201909124U SG11201909124UA (en) 2017-04-07 2018-04-04 Wireless charging device and method, and device to be charged
CN201880007013.8A CN110199453B (zh) 2017-04-07 2018-04-04 待充电设备、无线充电装置、无线充电方法及系统
SG11201907726VA SG11201907726VA (en) 2017-04-07 2018-04-04 Wireless charging system, device, and method, and device to-be-charged
EP18781214.4A EP3605781B1 (en) 2017-04-07 2018-04-04 Wireless charging apparatus and method, and device to be charged
JP2019553917A JP6918135B2 (ja) 2017-04-07 2018-04-04 無線充電装置、無線充電方法及び被充電機器
CA3057731A CA3057731A1 (en) 2017-04-07 2018-04-04 Wireless charging device and method, and device to be charged
MX2019010614A MX2019010614A (es) 2017-04-07 2018-04-04 Sistema, dispositivo y metodo de carga inalambrica, y dispositivo para ser cargado.
JP2019553923A JP6952127B2 (ja) 2017-04-07 2018-04-04 無線充電装置、被充電機器及びその制御方法
EP18780344.0A EP3609036B1 (en) 2017-04-07 2018-04-04 Device to be charged, wireless charging apparatus, wireless charging method and system
CA3053269A CA3053269C (en) 2017-04-07 2018-04-04 Wireless charging system, device, and method, and device to-be-charged
PCT/CN2018/082009 WO2018184581A1 (zh) 2017-04-07 2018-04-04 待充电设备、无线充电装置、无线充电方法及系统
TW107112719A TWI665844B (zh) 2017-04-13 2018-04-13 待充電裝置和充電方法
US16/238,162 US11171499B2 (en) 2017-04-13 2019-01-02 Device to be charged with multiple charging channels, charging method, and charging control circuit with multiple charging channels
US16/530,585 US11437848B2 (en) 2017-04-07 2019-08-02 Wireless charging device, device to-be-charged, and method for controlling charging
US16/546,244 US11368050B2 (en) 2017-04-07 2019-08-20 Wireless charging device, method, and device to-be-charged
US16/551,573 US11075542B2 (en) 2017-04-07 2019-08-26 Device to-be-charged, wireless charging apparatus, and wireless charging method
US16/575,086 US11539219B2 (en) 2017-04-07 2019-09-18 Wireless charging device and method, and device to be charged
US16/584,166 US11355963B2 (en) 2017-04-07 2019-09-26 Device to-be-charged, wireless charging apparatus, and wireless charging method
US16/589,024 US11233423B2 (en) 2017-04-07 2019-09-30 Device to-be-charged, wireless charging apparatus, and wireless charging method
ZA2019/06558A ZA201906558B (en) 2017-04-07 2019-10-04 Wireless charging system, device, and method, and device to-be-charged
ZA2019/06543A ZA201906543B (en) 2017-04-07 2019-10-04 Wireless charging device, device to-be-charged, and method for controlling the same
ZA2019/07368A ZA201907368B (en) 2017-04-07 2019-11-06 Wireless charging apparatus and method, and device to be charged
JP2021094397A JP7203901B2 (ja) 2017-04-07 2021-06-04 無線充電装置、無線充電方法及び被充電機器
AU2021203830A AU2021203830B2 (en) 2017-04-07 2021-06-10 Wireless charging device and method, and device to be charged
JP2021137472A JP7187632B2 (ja) 2017-04-13 2021-08-25 被充電機器及び充電方法
US17/495,775 US11631985B2 (en) 2017-04-13 2021-10-06 Device to be charged with multiple charging channels, charging method, and charging control circuit with multiple charging channels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/080334 WO2018188006A1 (zh) 2017-04-13 2017-04-13 待充电设备和充电方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/238,162 Continuation US11171499B2 (en) 2017-04-13 2019-01-02 Device to be charged with multiple charging channels, charging method, and charging control circuit with multiple charging channels

Publications (1)

Publication Number Publication Date
WO2018188006A1 true WO2018188006A1 (zh) 2018-10-18

Family

ID=63792253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080334 WO2018188006A1 (zh) 2017-04-07 2017-04-13 待充电设备和充电方法

Country Status (10)

Country Link
US (2) US11171499B2 (zh)
EP (1) EP3462565B1 (zh)
JP (2) JP6992080B2 (zh)
KR (1) KR102318241B1 (zh)
CN (2) CN114784923A (zh)
DK (1) DK3462565T3 (zh)
ES (1) ES2865855T3 (zh)
PT (1) PT3462565T (zh)
TW (1) TWI665844B (zh)
WO (1) WO2018188006A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699604A (zh) * 2019-01-11 2020-09-22 Oppo广东移动通信有限公司 充电装置和充电方法
EP4080712A4 (en) * 2019-12-24 2023-06-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. ELECTRONIC DEVICE

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934865B (zh) * 2015-09-22 2018-06-12 广东欧珀移动通信有限公司 控制充电的方法和装置以及电子设备
PT3462565T (pt) * 2017-04-13 2021-04-19 Guangdong Oppo Mobile Telecommunications Corp Ltd Dispositivo a ser carregado e método de carregamento
CN108738228B (zh) * 2018-07-23 2021-10-29 维沃移动通信有限公司 一种电路板组件及终端
US11923715B2 (en) 2019-12-20 2024-03-05 Qualcomm Incorporated Adaptive multi-mode charging
CN116207828B (zh) * 2023-04-25 2023-10-03 荣耀终端有限公司 充电方法及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522799A (zh) * 2011-12-30 2012-06-27 成都林海电子有限责任公司 一种移动终端电源
US20130002026A1 (en) * 2011-06-28 2013-01-03 Kabushiki Kaisha Toshiba Energy storage apparatus and energy storage system
CN105896670A (zh) * 2016-05-25 2016-08-24 乐视控股(北京)有限公司 一种充电装置及移动终端
CN105978049A (zh) * 2015-10-26 2016-09-28 乐视移动智能信息技术(北京)有限公司 电池倍压充电电路和移动终端
CN106169798A (zh) * 2016-09-28 2016-11-30 北京小米移动软件有限公司 高压充电系统、高压充电电池及终端设备

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2242793B (en) 1990-04-05 1994-08-10 Technophone Ltd Battery charging apparatus
JPH0624357U (ja) 1992-08-20 1994-03-29 株式会社アイチコーポレーション 電源装置
US5638540A (en) * 1993-06-08 1997-06-10 U.S. Robotics Mobile Communication Corp. Portable computer/radio power management system
JPH07143683A (ja) 1993-11-15 1995-06-02 Sharp Corp 充電回路
JP3185502B2 (ja) 1993-11-22 2001-07-11 松下電器産業株式会社 コードレス電話装置
JPH07177658A (ja) * 1993-12-20 1995-07-14 Matsushita Electric Works Ltd 給電回路
JP3620118B2 (ja) 1995-10-24 2005-02-16 松下電器産業株式会社 定電流・定電圧充電装置
JP3508384B2 (ja) 1996-04-05 2004-03-22 ソニー株式会社 バッテリ充電装置及び方法、並びにバッテリパック
JPH10136573A (ja) 1996-10-28 1998-05-22 Sanyo Electric Co Ltd 電動車両の充電システム
US5877564A (en) 1997-02-18 1999-03-02 Nokia Mobile Phones Limited Mobile station voltage supply using level shift of base band operating voltages
US6208115B1 (en) 1997-06-16 2001-03-27 Yehuda Binder Battery substitute pack
US6835491B2 (en) 1998-04-02 2004-12-28 The Board Of Trustees Of The University Of Illinois Battery having a built-in controller
US6326767B1 (en) 1999-03-30 2001-12-04 Shoot The Moon Products Ii, Llc Rechargeable battery pack charging system with redundant safety systems
JP2000333377A (ja) * 1999-05-21 2000-11-30 Sony Computer Entertainment Inc エンタテインメントシステムおよび充電システム
JP3091070U (ja) 2002-05-21 2003-01-17 株式会社トライ 携帯充電器
US7203048B2 (en) * 2002-10-24 2007-04-10 02Micro International Limited DC to DC controller with inrush current protection
CN100367594C (zh) * 2003-05-08 2008-02-06 美国凹凸微系有限公司 带有浪涌电流保护的直流/直流控制器
JP2004336974A (ja) * 2003-05-12 2004-11-25 Origin Electric Co Ltd 電源装置
JP4131844B2 (ja) 2003-09-10 2008-08-13 京セラ株式会社 携帯端末
KR20050106745A (ko) 2004-05-06 2005-11-11 삼성전자주식회사 휴대용 프린터의 전원 공급 장치
JP4796784B2 (ja) 2005-04-18 2011-10-19 Necエナジーデバイス株式会社 2次電池の充電方法
US7859224B2 (en) 2005-05-26 2010-12-28 Shop-Vac Corporation Charge control circuit for a vehicle vacuum cleaner battery
JP2006353010A (ja) 2005-06-16 2006-12-28 Renesas Technology Corp 2次バッテリパックおよびその製造方法
JP4991194B2 (ja) * 2005-09-12 2012-08-01 株式会社リコー 画像形成装置
US20070139012A1 (en) * 2005-11-01 2007-06-21 Aerovironment, Inc. Motive power dual battery pack
JP2007215249A (ja) 2006-02-06 2007-08-23 Nec Corp 携帯端末、携帯端末の充電システム及び携帯端末の充電方法
US7880445B2 (en) * 2006-02-16 2011-02-01 Summit Microelectronics, Inc. System and method of charging a battery using a switching regulator
JP5020530B2 (ja) * 2006-04-14 2012-09-05 パナソニック株式会社 充電方法ならびに電池パックおよびその充電器
US8030900B2 (en) * 2006-09-05 2011-10-04 Summit Microelectronics, Inc. Circuits and methods for controlling power in a battery operated system
JP4311687B2 (ja) * 2006-10-06 2009-08-12 日本テキサス・インスツルメンツ株式会社 電源回路およびバッテリ装置
KR101380748B1 (ko) 2006-10-10 2014-04-02 삼성전자 주식회사 사용자 선택에 따라 배터리 충전모드를 변경하는컴퓨터시스템 및 그 제어방법
JP2008206259A (ja) * 2007-02-19 2008-09-04 Matsushita Electric Ind Co Ltd 充電システム、充電装置、及び電池パック
JP4805223B2 (ja) 2007-07-27 2011-11-02 レノボ・シンガポール・プライベート・リミテッド 充電システムおよび充電方法
KR101549805B1 (ko) * 2007-12-10 2015-09-02 바이엘 헬쓰케어, 엘엘씨 배터리로 전원공급되는 체액 분석물질 측정기의 고속 충전 및 전원 관리 방법
CN101557118B (zh) 2008-04-09 2012-05-30 鹏智科技(深圳)有限公司 二次电池的充电控制电路
JP4966998B2 (ja) 2009-06-18 2012-07-04 パナソニック株式会社 充電制御回路、電池パック、及び充電システム
JP2011055308A (ja) 2009-09-02 2011-03-17 Ricoh Co Ltd 撮像装置
US8405362B2 (en) 2009-12-04 2013-03-26 Linear Technology Corporation Method and system for minimum output-voltage battery charger
KR101097262B1 (ko) 2009-12-28 2011-12-21 삼성에스디아이 주식회사 배터리 팩, 이의 충전방법
KR101211756B1 (ko) 2010-02-11 2012-12-12 삼성에스디아이 주식회사 배터리 팩
JP5024420B2 (ja) * 2010-04-27 2012-09-12 沖電気工業株式会社 太陽電池電源装置
JP2012016125A (ja) 2010-06-30 2012-01-19 Panasonic Electric Works Co Ltd 非接触給電システム及び非接触給電システムの金属異物検出装置
US9054385B2 (en) 2010-07-26 2015-06-09 Energyor Technologies, Inc Passive power management and battery charging for a hybrid fuel cell / battery system
TWM402554U (en) 2010-11-10 2011-04-21 Richtek Technology Corp Charger circuit
JP2012249410A (ja) 2011-05-27 2012-12-13 Sharp Corp 電気自動車充電用の充電器及び充電装置
JP5505375B2 (ja) * 2011-06-29 2014-05-28 株式会社豊田自動織機 セルバランス制御装置及びセルバランス制御方法
JP5893285B2 (ja) 2011-08-04 2016-03-23 キヤノン株式会社 給電装置及びプログラム
CN103094939A (zh) 2011-11-01 2013-05-08 宏碁股份有限公司 电池管理电路
JP5737207B2 (ja) 2012-02-15 2015-06-17 三菱自動車工業株式会社 電圧バランス制御装置
JP2013183523A (ja) * 2012-03-01 2013-09-12 Nissan Motor Co Ltd 電動車両
JP5692163B2 (ja) * 2012-05-21 2015-04-01 トヨタ自動車株式会社 車両、および送電装置
CN102723752B (zh) 2012-05-24 2015-09-09 深圳市豪恩声学股份有限公司 压电充电式移动终端
US9711962B2 (en) 2012-07-09 2017-07-18 Davide Andrea System and method for isolated DC to DC converter
JP5603379B2 (ja) 2012-07-24 2014-10-08 株式会社ソニー・コンピュータエンタテインメント 電気機器
KR101942970B1 (ko) 2012-09-21 2019-01-28 삼성전자주식회사 밸런싱 방법 및 배터리 시스템
JP2014087200A (ja) 2012-10-25 2014-05-12 Nec Personal Computers Ltd 充電装置、充電方法、プログラム、及び情報処理装置
CN103001297B (zh) 2012-12-31 2014-12-10 中南大学 一种串联电容器组谐振式电压均衡充电方法及其系统
CN103107575B (zh) 2013-01-18 2015-07-29 华为终端有限公司 充电方法、移动设备、充电设备与充电系统
US9318915B2 (en) 2013-03-20 2016-04-19 Halo2Cloud Llc Portable power charger with wireless and direct charging connectivity
TWI482391B (zh) * 2013-04-02 2015-04-21 Wistron Corp 用於一電子裝置之充電電路及其相關充電方法
CN103269108B (zh) 2013-06-04 2015-04-29 奇瑞汽车股份有限公司 一种电池电量均衡电路
JP2015002068A (ja) 2013-06-14 2015-01-05 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 電子機器システム、充電器および電子機器
US9155900B2 (en) 2013-06-20 2015-10-13 Cochlear Limited Medical device battery charging system and methods
TWI552483B (zh) * 2013-07-22 2016-10-01 光寶電子(廣州)有限公司 電池模組、電池模組供電管理方法及其裝置
JP5949701B2 (ja) 2013-08-20 2016-07-13 富士通株式会社 充電システム及び処理装置
US20150236538A1 (en) * 2013-11-15 2015-08-20 uNu Electronics, Inc. Mobile Device Case with Fast Charging Battery Pack
JP6301637B2 (ja) 2013-11-20 2018-03-28 Necプラットフォームズ株式会社 電子機器及び充電方法
CN104682458A (zh) 2013-11-27 2015-06-03 展讯通信(上海)有限公司 充电控制装置、系统、充电芯片和用户终端
EP2879266A1 (en) 2013-11-28 2015-06-03 Dialog Semiconductor GmbH Power management method for a stacked cell rechargeable energy storage and stacked cell rechargeable energy storage device
KR102215085B1 (ko) 2013-12-23 2021-02-15 삼성전자주식회사 충전 기기 및 그 동작 방법
CN203674762U (zh) 2014-01-09 2014-06-25 成都芯源系统有限公司 移动电源电路
KR20150085642A (ko) 2014-01-16 2015-07-24 삼성전자주식회사 전원 공급 장치, 이를 포함하는 전자 장치 및 전원 공급 방법
CN108134432B (zh) 2014-01-28 2021-01-15 Oppo广东移动通信有限公司 电子设备充电控制装置及方法
US9845019B2 (en) 2014-02-25 2017-12-19 Nissan Motor Co., Ltd. Wireless power supply system and power transmission device
TW201539935A (zh) 2014-04-03 2015-10-16 Lausdeo Corp 行動電源
CN203813491U (zh) 2014-04-29 2014-09-03 深圳市前海富达科技有限公司 一种充电转接装置
US9800075B2 (en) 2014-06-04 2017-10-24 Societe Bic Smart charging cable and method for operating a portable electronic device
JP2016015862A (ja) 2014-07-03 2016-01-28 株式会社Ihi 受電装置
US10355527B2 (en) 2014-07-16 2019-07-16 Taiwan Semiconductor Manufacturing Company Limited Wireless charging receiver with variable resonant frequency
CN105471001A (zh) 2014-08-19 2016-04-06 中兴通讯股份有限公司 一种使用多电芯电池的移动终端及其充放电电路
US10033204B2 (en) 2014-09-03 2018-07-24 Mophie, Inc. Systems and methods for battery charging and management
JP2016063725A (ja) 2014-09-22 2016-04-25 株式会社豊田自動織機 受電機器及び非接触電力伝送装置
JP2016063726A (ja) 2014-09-22 2016-04-25 株式会社豊田自動織機 受電機器及び非接触電力伝送装置
JP6428107B2 (ja) 2014-09-29 2018-11-28 株式会社村田製作所 蓄電装置、電子機器、電動車両および電力システム
TWI640145B (zh) 2014-10-13 2018-11-01 力智電子股份有限公司 轉接器、可攜式電子裝置與其充電控制方法
PT3131171T (pt) 2014-11-11 2019-03-18 Guangdong Oppo Mobile Telecommunications Corp Ltd Adaptador de alimentação, terminal e sistema de carregamento
SG11201609425SA (en) 2014-11-11 2016-12-29 Guangdong Oppo Mobile Telecomm Power adapter and terminal
EP3220506B1 (en) * 2014-11-11 2020-02-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method, power adaptor and terminal
WO2016098631A1 (ja) 2014-12-15 2016-06-23 日本電気株式会社 電池パック、電子機器、セルバランス装置、セルバランス方法、およびプログラム
CN105762862B (zh) 2014-12-19 2019-05-17 比亚迪股份有限公司 电源系统及电子装置及电池的充电方法及放电方法
JP6013442B2 (ja) 2014-12-24 2016-10-25 株式会社ダイヘン 非接触給電システム、送電装置、および、異物検出方法
CN105762883B (zh) 2014-12-24 2019-09-06 Oppo广东移动通信有限公司 用于为电子设备充电的方法和电子设备
US9678528B2 (en) 2015-02-15 2017-06-13 Skyworks, Solutions Inc. Voltage supply system with boost converter and charge pump
KR102381085B1 (ko) 2015-02-27 2022-04-01 삼성전자주식회사 전압 컨버터, 그것을 갖는 충전 집적회로 및 전자 장치, 및 그것의 배터리 충전 방법
CN104779667B (zh) 2015-03-25 2017-11-07 深圳市华宝新能源股份有限公司 移动电源
CN106208172B (zh) 2015-04-30 2020-06-16 微软技术许可有限责任公司 移动客户端设备无线充电、通信及认证技术
CN104993565B (zh) 2015-08-05 2017-12-05 青岛海信移动通信技术股份有限公司 可直充电源适配器
CN105098900B (zh) * 2015-08-05 2018-05-29 青岛海信移动通信技术股份有限公司 移动终端、可直充电源适配器及充电方法
KR102184527B1 (ko) 2015-08-19 2020-11-30 삼성전자주식회사 전자 장치 및 전자 장치에서 유무선 충전 방법
JP6278012B2 (ja) 2015-08-28 2018-02-14 トヨタ自動車株式会社 非接触電力伝送システム及び送電装置
JP2017060328A (ja) 2015-09-17 2017-03-23 トヨタ自動車株式会社 非接触受電装置及び電力伝送システム
CN205141721U (zh) 2015-10-26 2016-04-06 乐视移动智能信息技术(北京)有限公司 电池倍压充电电路和移动终端
US10666070B2 (en) * 2016-01-07 2020-05-26 Fairchild Semiconductor Corporation Battery charge termination voltage reduction
US9979214B2 (en) 2016-01-12 2018-05-22 Richtek Technology Corporation Adaptive buck converter and charging cable using the same
JP6615873B2 (ja) 2016-02-05 2019-12-04 オッポ広東移動通信有限公司 充電方法、アダプター及び移動端末
CN105720645A (zh) 2016-04-11 2016-06-29 浙江德景电子科技有限公司 一种充电方法、装置和充电器
CN105978069B (zh) 2016-05-27 2018-09-21 深圳天珑无线科技有限公司 移动终端的充电方法和装置以及移动终端
CN106026257B (zh) * 2016-06-24 2018-09-04 青岛海信移动通信技术股份有限公司 一种移动终端
JP6658403B2 (ja) 2016-08-29 2020-03-04 株式会社Ihi 送電装置
CN106300539B (zh) * 2016-09-12 2018-12-18 南昌黑鲨科技有限公司 一种充电系统及方法
WO2018068243A1 (zh) 2016-10-12 2018-04-19 广东欧珀移动通信有限公司 移动终端
US11056896B2 (en) 2016-10-12 2021-07-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Terminal and device
CN106532820A (zh) 2016-11-16 2017-03-22 普联技术有限公司 一种快速充电方法及电子设备
CN106786980B (zh) 2017-01-23 2019-01-22 珠海市魅族科技有限公司 一种电子设备及基于电子设备的充电控制方法
PT3462565T (pt) * 2017-04-13 2021-04-19 Guangdong Oppo Mobile Telecommunications Corp Ltd Dispositivo a ser carregado e método de carregamento

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130002026A1 (en) * 2011-06-28 2013-01-03 Kabushiki Kaisha Toshiba Energy storage apparatus and energy storage system
CN102522799A (zh) * 2011-12-30 2012-06-27 成都林海电子有限责任公司 一种移动终端电源
CN105978049A (zh) * 2015-10-26 2016-09-28 乐视移动智能信息技术(北京)有限公司 电池倍压充电电路和移动终端
CN105896670A (zh) * 2016-05-25 2016-08-24 乐视控股(北京)有限公司 一种充电装置及移动终端
CN106169798A (zh) * 2016-09-28 2016-11-30 北京小米移动软件有限公司 高压充电系统、高压充电电池及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3462565A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699604A (zh) * 2019-01-11 2020-09-22 Oppo广东移动通信有限公司 充电装置和充电方法
KR20210005198A (ko) * 2019-01-11 2021-01-13 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 충전 장치, 충전 방법 및 충전 대기 설비
EP3780325A4 (en) * 2019-01-11 2021-03-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. CHARGING DEVICE AND CHARGING METHOD
JP2021525499A (ja) * 2019-01-11 2021-09-24 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 充電装置、充電方法及び被充電機器
CN111699604B (zh) * 2019-01-11 2021-12-31 Oppo广东移动通信有限公司 充电装置和充电方法
JP7193554B2 (ja) 2019-01-11 2022-12-20 オッポ広東移動通信有限公司 充電装置、充電方法及び被充電機器
KR102509907B1 (ko) * 2019-01-11 2023-03-15 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 충전 장치, 충전 방법 및 충전 대기 설비
EP4080712A4 (en) * 2019-12-24 2023-06-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. ELECTRONIC DEVICE

Also Published As

Publication number Publication date
US11631985B2 (en) 2023-04-18
JP2020511104A (ja) 2020-04-09
ES2865855T3 (es) 2021-10-18
KR102318241B1 (ko) 2021-10-27
PT3462565T (pt) 2021-04-19
EP3462565B1 (en) 2021-02-24
TW201838283A (zh) 2018-10-16
US11171499B2 (en) 2021-11-09
JP2021185738A (ja) 2021-12-09
CN109478791A (zh) 2019-03-15
TWI665844B (zh) 2019-07-11
JP6992080B2 (ja) 2022-01-13
JP7187632B2 (ja) 2022-12-12
KR20190113984A (ko) 2019-10-08
EP3462565A4 (en) 2019-08-14
US20190140466A1 (en) 2019-05-09
EP3462565A1 (en) 2019-04-03
DK3462565T3 (da) 2021-04-26
US20220029440A1 (en) 2022-01-27
CN114784923A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
TWI631793B (zh) 待充電裝置和充電方法
TWI675527B (zh) 均衡電路、待充電裝置和充電控制方法
WO2017133379A1 (zh) 适配器和充电控制方法
WO2018188006A1 (zh) 待充电设备和充电方法
TWI661291B (zh) 適配器和充電控制方法
US11462931B2 (en) Charging method and charging apparatus
WO2018068461A1 (zh) 待充电设备和充电方法
WO2019056303A1 (zh) 电源提供电路、电源提供设备以及控制方法
WO2018195776A1 (zh) 电源提供设备和充电控制方法
CN118199225B (zh) 充电控制方法、储能设备和可读存储介质
CN118199225A (zh) 充电控制方法、储能设备和可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017905763

Country of ref document: EP

Effective date: 20181228

ENP Entry into the national phase

Ref document number: 2019545913

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027259

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE