WO2019056303A1 - 电源提供电路、电源提供设备以及控制方法 - Google Patents

电源提供电路、电源提供设备以及控制方法 Download PDF

Info

Publication number
WO2019056303A1
WO2019056303A1 PCT/CN2017/102932 CN2017102932W WO2019056303A1 WO 2019056303 A1 WO2019056303 A1 WO 2019056303A1 CN 2017102932 W CN2017102932 W CN 2017102932W WO 2019056303 A1 WO2019056303 A1 WO 2019056303A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply circuit
current
charging
voltage
Prior art date
Application number
PCT/CN2017/102932
Other languages
English (en)
French (fr)
Inventor
田晨
张加亮
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to JP2019536307A priority Critical patent/JP6781843B2/ja
Priority to EP17925612.8A priority patent/EP3537567B1/en
Priority to CN201780061431.0A priority patent/CN109874364B/zh
Priority to KR1020197018300A priority patent/KR102282301B1/ko
Priority to PCT/CN2017/102932 priority patent/WO2019056303A1/zh
Priority to TW107131353A priority patent/TWI700577B/zh
Publication of WO2019056303A1 publication Critical patent/WO2019056303A1/zh
Priority to US16/415,479 priority patent/US11050289B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Definitions

  • the present application relates to the field of charging, and more particularly, to a power supply circuit, a power supply device, and a control method.
  • the power supply circuit typically includes a primary conversion unit and a secondary conversion unit.
  • the primary conversion unit generally includes a primary rectification unit and a primary filter unit.
  • the primary filtering unit typically requires primary filtering of the primary rectified voltage using one or more large-capacity liquid electrolytic capacitors (such as liquid aluminum electrolytic capacitors).
  • the liquid electrolytic capacitor has short defects such as short life and explosive slurry, which leads to the short life and unsafe of the conventional power supply circuit.
  • the application provides a power supply circuit, a power supply device, and a control method, which can improve the service life and safety of the power supply circuit.
  • a power supply circuit comprising: a primary rectifying unit configured to rectify an input alternating current to output a first voltage whose voltage value periodically changes; and a modulating unit configured to modulate the first voltage And generating a second voltage; a transformer for generating a third voltage according to the second voltage; a secondary rectification filtering unit, configured to rectify and filter the third voltage to generate a first current; and a control unit, configured to: Adjusting the first current to generate an output current of the power supply circuit, the output current having a second waveform whose current value periodically changes, and each period of the second waveform includes a current value 0 time period.
  • a power supply device comprising the power supply circuit of the first aspect.
  • a control method of a power supply circuit comprising: a primary rectification unit for rectifying an input alternating current to output a first voltage whose voltage value is periodically changed; and a modulating unit for Modulating the first voltage to generate a second voltage; a transformer for generating a third voltage according to the second voltage; and a secondary rectifying filtering unit, configured to rectify and filter the third voltage to generate a first a current;
  • the control method includes: the power source provides electricity a control unit in the path adjusts the first current to generate an output current of the power supply circuit, the output current has a second waveform in which the current value periodically changes, and each period of the second waveform includes The period in which the current value takes a value of zero.
  • the power supply circuit provided by the application removes the liquid electrolytic capacitor on the primary side, reduces the volume of the power supply circuit, and improves the service life and safety of the power supply circuit.
  • FIG. 1 is a schematic structural diagram of a power supply circuit provided by an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a waveform of a first voltage to be modulated according to an embodiment of the present invention.
  • Fig. 3 is a comparison diagram of voltage waveforms before and after modulation by a conventional power supply circuit.
  • FIG. 4 is a diagram showing an example of a waveform of a second voltage obtained by modulating a first voltage according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of a first waveform after secondary rectification filtering according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a power supply circuit according to another embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of a waveform of an output current and a waveform for generating a control signal for generating the waveform according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a power supply circuit according to still another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a power supply circuit according to still another embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a fast charging process according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a power supply device according to an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of a control method provided by an embodiment of the present invention.
  • the primary side of the power supply circuit is provided with both a primary rectifying unit and a primary filtering unit.
  • the primary filtering unit typically contains one or more liquid electrolytic capacitors.
  • the liquid electrolytic capacitor has the characteristics of large capacitance and strong filtering ability. The presence of the liquid electrolytic capacitor allows the output of the power supply circuit to be a constant direct current.
  • liquid electrolytic capacitors have short life and explosive properties, resulting in short life and unsafe operation of the power supply circuit.
  • charging the battery in the device to be charged with a constant direct current causes polarization and lithium evolution of the battery, which may reduce the service life of the battery.
  • Embodiments of the present invention provide a power supply circuit in which a liquid electrolytic capacitor on a primary side is removed.
  • the power supply circuit can be used to charge a battery in the device to be charged.
  • the device to be charged referred to in the present application may be a mobile terminal, such as a "communication terminal” (or simply “terminal”), including but not limited to being configured to be connected via a wireline (eg via a public switched telephone network) Network, PSTN), digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (eg, for cellular networks, wireless local area networks) Network, WLAN), digital television networks such as digital video broadcasting handheld (DVB-H) networks, satellite networks, amplitude modulation-frequency modulation (AM-FM) broadcast transmitters, and/or A device for receiving/transmitting a communication signal by a wireless interface of another communication terminal.
  • a wireline eg via a public switched telephone network
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • digital cable direct cable connection, and/or another data connection/network
  • WLAN wireless local area networks
  • digital television networks such as digital video broadcasting handheld (DVB-H) networks, satellite
  • Wireless communication terminals that are arranged to communicate over a wireless interface may be referred to as “wireless communication terminals,” “wireless terminals,” and/or “mobile terminals.”
  • mobile terminals include, but are not limited to, satellite or cellular telephones; personal communication system (PCS) terminals that can combine cellular radio telephones with data processing, fax, and data communication capabilities; may include radio telephones, pagers, the Internet/ Intranet access, web browser, memo pad, calendar, and/or personal digital assistant (PDA) for global positioning system (GPS) receivers; and conventional laptop and/or palm Receiver or other electronic device including a radiotelephone transceiver.
  • PCS personal communication system
  • PDA personal digital assistant
  • GPS global positioning system
  • a power supply circuit 10 may include a primary rectification unit 11 , a modulation unit 12 , a transformer 13 , and a secondary rectification filtering unit 14 .
  • the respective components of the power supply circuit 10 will be described in detail below.
  • the primary rectifying unit 11 can be configured to rectify the input alternating current to output a first voltage whose current value periodically changes.
  • the incoming alternating current may also be referred to as utility power.
  • the input AC power may be, for example, an alternating current of 220 V or an alternating current of 110 V, which is not specifically limited in the embodiment of the present invention.
  • the voltage waveform of the first voltage is a periodically varying waveform. As shown in FIG. 2, the waveform of the first voltage may be a pulsation waveform, or a slap wave.
  • the form of the primary rectifying unit 11 is not specifically limited in the embodiment of the present invention.
  • the primary rectifying unit 11 may be a full-bridge rectifying circuit composed of four diodes, or may be other types of rectifying circuits, such as a half-bridge rectifying circuit.
  • Modulation unit 12 can be used to modulate the first voltage to generate a second voltage.
  • the modulation unit 12 can also be referred to as a chopper unit or a chopper.
  • modulation unit 12 may also be referred to as a chopping unit or a chopper.
  • the working mode of the modulation unit 12 is not specifically limited in the embodiment of the present invention.
  • the modulating unit 12 may modulate the first voltage by means of pulse width modulation (PWM), or may modulate the first voltage by means of frequency modulation.
  • PWM pulse width modulation
  • the voltage output by the primary rectifying unit 11 needs to be filtered by the primary filtering unit (including one or more liquid electrolytic capacitors) to form a constant DC power.
  • the voltage waveform of the constant direct current is usually a straight line, that is, the voltage waveform before modulation shown in FIG.
  • the modulation unit modulates (chopper) the constant voltage to form a modulated voltage as shown in FIG. 3.
  • the constant voltage signal is reduced to a small number.
  • the power supply circuit removes the liquid electrolytic capacitor for primary filtering, and directly modulates the first voltage whose voltage value is periodically changed after the primary rectification.
  • the waveform of the first voltage as the waveform shown in FIG. 2 as an example
  • the waveform of the second voltage obtained after the modulation can be seen in FIG. 4.
  • the second voltage also contains many small pulse signals, but the amplitudes of these pulse signals are not equal, but periodically varied.
  • the dotted line of Fig. 4 is the envelope of the pulse signal constituting the second voltage.
  • the envelope of the pulse signal constituting the second voltage is substantially the same as the waveform of the first voltage.
  • the transformer 13 can be configured to generate a third voltage based on the second voltage.
  • the transformer 13 can be used to couple the second voltage from the primary to the secondary of the transformer to obtain a third voltage.
  • the transformer 13 can be used to perform a voltage-dependent operation on the second transformer to obtain a third voltage.
  • the transformer 13 can be an ordinary transformer or a high frequency transformer operating at a frequency of 50 kHz to 2 MHz.
  • the transformer 13 may include a primary winding and a secondary winding. The form of the primary winding and the secondary winding in the transformer 13, and the manner in which the primary winding, the secondary winding are connected to other units in the power supply circuit 10, and the type of switching power supply employed by the power supply circuit 10 are related.
  • the power supply circuit 10 may be a power supply circuit based on a flyback switching power supply, a power supply circuit based on a forward switching power supply, or a power supply circuit based on a push-pull switching power supply.
  • the type of the switching power supply on which the power supply circuit is based is different, and the specific form and the connection mode of the primary winding and the secondary winding of the transformer 13 are different, which is not specifically limited in the embodiment of the present invention. What is shown in Figure 1 is only one possible connection of the transformer 13.
  • the secondary rectification filtering unit 14 may include a secondary rectification unit and a secondary filtering unit. This invention The embodiment does not specifically limit the rectification mode of the secondary rectifying unit.
  • the secondary rectifying unit can synchronously rectify the voltage (or current) sensed by the secondary winding of the transformer using a synchronous rectifier (SR) chip.
  • the secondary rectifying unit may employ a diode for secondary rectification.
  • a secondary filtering unit can be used to secondary filter the voltage after secondary rectification.
  • the secondary filtering unit may include one or more solid capacitors, or may also include a combination of a solid capacitor and a common capacitor such as a ceramic capacitor.
  • a first current can be obtained, and the waveform of the first current is hereinafter referred to as a first waveform.
  • the solid line in Fig. 5 is an example of the first waveform.
  • the first waveform is not a waveform having a constant current value, but a waveform in which the current value periodically changes, and the reason is explained as follows.
  • the second voltage of the input transformer 13 is composed of many small pulse signals whose amplitude periodically changes.
  • the third voltage transmitted by the transformer 13 to the secondary side is also composed of a number of small pulse signals whose amplitude periodically changes.
  • the secondary rectifying and filtering unit 14 is provided with a secondary filtering capacitor, but compared with the liquid electrolytic capacitor, the secondary filtering capacitor usually selects some solid capacitors with a lower capacitance.
  • the capacitance of a solid capacitor is generally low and the filtering capability is relatively weak. Therefore, the main function of the secondary filter capacitor is to filter many small pulse signals output after secondary rectification into periodically varying continuous signals, the waveforms of which are generally waveforms similar to those of these small pulse signals. .
  • the first waveform is not a complete pulsation waveform, and the peaks and troughs of the first waveform do not reach the peaks and troughs of the pulsation waveform (dashed line in FIG. 5).
  • the main reason why the peak of the first waveform does not reach the peak of the pulsation waveform is that the power supply circuit 10 generally monitors its own output voltage and/or output current, and limits the output voltage and/or current limiting the output current.
  • the voltage limiting and/or current limiting operation limits the peak of the pulsating waveform below a predetermined amplitude, thereby forming a first waveform after peak clipping as shown in FIG.
  • the main reason that the trough of the first waveform does not reach the trough of the pulsation waveform is that the secondary filter capacitor in the secondary rectification filtering unit 14 has a clamping effect on the voltage on the secondary side charging line, so that the secondary side charging line The voltage and current on the line cannot reach 0 points.
  • the secondary filter capacitor enters a discharge state, so that the voltage on the charging line does not continue to drop, thereby being the first
  • the trough of the waveform is "clamped" to a value greater than 0.
  • the specific size of the value is related to the capacitance of the secondary filter capacitor, which is not specifically limited in the embodiment of the present invention.
  • the power supply circuit 10 removes the liquid electrolytic capacitor on the primary side, thereby reducing the volume of the power supply circuit and improving the service life and safety of the power supply circuit.
  • the power supply circuit 10 can be used to charge a battery in the device to be charged. During the charging process, if the battery can be controlled for periodic charging and discharging, the polarization and lithium deposition of the battery can be greatly reduced, thereby improving the service life and safety of the battery.
  • the secondary filter capacitor in the secondary rectification filtering unit 14 has a clamping effect on the voltage on the charging line of the power supply circuit 10, resulting in the secondary filtering.
  • the valley of the waveform of the first current ie, the first waveform
  • the battery in the device to be charged may always be in a state of charge, and the periodic discharge of the battery cannot be guaranteed.
  • the power supply circuit 10 may further include a control unit 15.
  • the control unit 15 can be configured to adjust the first current to generate an output current of the power supply circuit 10.
  • the output current of the power supply circuit 10 may have a second waveform in which the current value periodically changes, and each period of the second waveform includes a period in which the current value takes a value of zero.
  • the second waveform includes a period in which the current value takes a value of 0 and a period in which the current value takes a value other than 0.
  • a period in which the current value takes a value of 0 is referred to as a first period
  • a period in which a current value is not 0 is referred to as a second period.
  • the second waveform is a waveform of the output current, and the current value of the output current in the first period takes a value of 0, indicating that the power supply circuit 10 has no output during the first period.
  • the battery in the device to be charged generally needs to continuously supply power to the system in the device to be charged, the battery will be in a discharged state.
  • the current value of the output current is non-zero in the second period, indicating that the output of the power supply circuit 10 is restored in the second period.
  • the battery in the device to be charged is in a charged state. It can be seen that, since each period of the second waveform has a first period in which the current value is 0 and a second period in which the current value is not 0, the battery in the device to be charged can enter a periodic charging and discharging state. , thereby greatly reducing the polarization and lithium deposition of the battery, thereby improving the service life and safety of the battery.
  • the control unit 15 can be, for example, a micro-control unit (MCU).
  • the control unit 15 can control other units in the power supply circuit 10 by transmitting control signals to other units in the power supply circuit 10.
  • the manner in which the control unit 15 adjusts the first current may be various, and correspondingly, the control unit 15 is connected to other units in the power supply circuit 10.
  • FIG. 6 is an embodiment of control unit 15 adjusting the first current to form an output current through zero.
  • the power supply circuit 10 may further include a first switching unit 62 for controlling the switching of the charging line 61 of the power supply circuit 10.
  • Charging line 61 can be used to transfer electrical energy.
  • the charging line 61 can be used to transmit a charging voltage and/or a charging current to the device to be charged.
  • the charging line 61 may be, for example, VBUS in USB.
  • the first switching unit 62 can be any device having a line on/off control function. As shown in FIG. 6, the first switching unit 62 may be a metal oxide semiconductor (MOS) transistor, and the gate of the MOS transistor may be connected to the control unit 15 to receive a control signal from the control unit 15. The source and drain of the MOS transistor can be connected in series in the charging line 61 so that the charging line 61 can be turned on or off under the control of the control signal.
  • MOS metal oxide semiconductor
  • control unit 15 can be configured to control the first switching unit 62 to be in an off state during a partial period of each period of the first waveform to turn off the output of the power supply circuit 10.
  • the embodiment of the present invention does not specifically limit the manner of selecting the foregoing partial time period, and may be any one or more time periods of each period of the first waveform.
  • the partial period may be a period in which the trough of the first waveform is located.
  • the control unit 15 can control the first light-opening unit 62 to be in an off state during a portion or all of the period in which the first waveform is in the trough to turn off the output of the power supply circuit 10.
  • the first switch is controlled during a period of the valley of each period of the first waveform compared to a manner of controlling the first switching unit 62 to be in an off state at other periods than the period in which the valley of each of the first waveforms is removed
  • the unit 62 is in the off state, the following effects can be achieved: under the premise that the battery is periodically charged and discharged, the charging efficiency of the battery is maximized.
  • control unit 15 controls the first light-opening unit 62 to be in an off state during a part or all of the period in which the first waveform is in the trough, and the manner in which the control unit 15 determines the period of the trough of the first waveform may be various.
  • the control unit 15 samples the first current and determines a period in which the trough of the first waveform is located based on the sampled value of the first current.
  • the period of the first current has a synchronous relationship with the period of many other signals in the power supply circuit 10, such as a voltage signal or a current signal output by the primary rectifying unit, a voltage signal or a current signal output by the secondary rectifying unit, and the like.
  • Control unit 15 can be based on the same The waveform of the step signal, and the synchronization relationship between the waveform of the synchronization signal and the first waveform determine the period in which the trough of the first waveform is located.
  • the control unit 15 can send a control signal as shown in FIG. 7 to the first switch 62, and control the valley of the first waveform in the power supply circuit 10.
  • the period stops outputting, so that a second waveform including a period in which the current value takes a value of 0 as shown in FIG. 7 can be formed.
  • Figure 8 is another embodiment of control unit 15 adjusting the first current to form an output current through zero.
  • the power supply circuit 10 may further include a load circuit 81 connected in parallel between the charging circuits of the power supply circuit 10, and a second switching unit 82 for controlling the switching of the load circuit 81.
  • the charging circuit can be a circuit formed by a charging line and a ground line.
  • the charging circuit may be a loop formed by VBUS and GND.
  • the load circuit 81 is introduced inside the power supply circuit 10 in the embodiment of the present invention.
  • the configuration of the load on the load circuit 81 can be such that when the second switching unit 82 is in the closed state, the electrical energy transmitted on the charging circuit is consumed by the load in the load circuit 81.
  • the embodiment of the present invention does not specifically limit the form of the load on the load circuit 81.
  • the load can be, for example, a resistor or other device that can be used to dissipate electrical energy.
  • the size of the load may be determined according to actual conditions, as long as the second switching unit 82 can be ensured that the electric energy on the charging circuit is consumed by the load circuit 81.
  • the control unit 15 is operable to control the second switching unit 82 to be in a closed state during a partial period of each cycle of the first waveform.
  • the second switching unit 82 is in the closed state, the load circuit 81 is in an operating state, and the electric energy on the charging circuit can be consumed by the load circuit 81 and not outputted to the outside of the power supply circuit 10. Therefore, when the load circuit 81 is in the operating state, the output current of the power supply circuit 10 is zero.
  • the secondary rectification filtering unit 14 may include a filter circuit 141 (should be understood, The secondary rectification filtering unit may also include devices associated with secondary rectification, and for simplicity, only the devices associated with this embodiment in the secondary rectification filtering unit 14 are shown in FIG.
  • the filter circuit 141 can be composed of one or more capacitors 143 (such as solid capacitors) connected in parallel.
  • the filter circuit 141 may further include a third switching unit 142 for controlling the switching circuit 141 to be turned on and off.
  • the control unit 15 in the embodiment of the present invention controls the third switching unit 142 to be in an off state during a target period in each period of the first waveform, wherein the target period is the first The period in which the trough of the waveform is located.
  • the capacitance in the filter circuit 141 should be in the discharged state during the target period, but since the control unit 15 controls the filter circuit 141 to not operate through the third switching unit 142 in the target period, The capacitance in the filter circuit 141 is prevented from being discharged to the outside, and thus the power supply circuit 10 has no output. In this way, the output current of the power supply circuit 10 is 0 during the target period.
  • the third switching unit 142 may include a MOS transistor.
  • the anode of the filter capacitor 143 can be connected to the charging circuit of the power supply circuit 10 (such as VBUS), the cathode of the filter capacitor 143 can be connected to the source of the MOS transistor, and the drain of the MOS transistor can be connected to the ground (such as GND).
  • the gate can be connected to the control unit 15.
  • the source of the MOS transistor is connected to the cathode of the filter capacitor 143 so that the cathode of the body diode inside the MOS transistor is grounded, so that when the MOS transistor is closed, the filter capacitor 143 does not discharge the body diode.
  • a power supply circuit for charging a device to be charged is mentioned in the related art.
  • the power supply circuit operates in a constant voltage mode.
  • the output voltage of the power supply circuit is maintained substantially constant, such as 5V, 9V, 12V or 20V.
  • the output voltage of the power supply circuit is not suitable for direct loading to both ends of the battery, but needs to be converted by a conversion circuit in the device to be charged to obtain the expected charging voltage and/or charging current of the battery in the device to be charged. .
  • the conversion circuit can be used to transform the output voltage of the power supply circuit to meet the desired charging voltage and/or charging current of the battery.
  • the conversion circuit can refer to a charge management module, such as an integrated circuit (IC). Used to manage the charging voltage and/or charging current of the battery during charging of the battery.
  • the conversion circuit can have the function of a voltage feedback module and/or have the function of a current feedback module to enable management of the charging voltage and/or charging current of the battery.
  • the charging process of the battery may include one or more of a trickle charging phase, a constant current charging phase, and a constant voltage charging phase.
  • the conversion circuit can utilize a current feedback loop such that the current entering the battery during the trickle charge phase meets the magnitude of the charge current expected by the battery (eg, the first charge current).
  • the conversion circuit can utilize the current feedback loop such that the current entering the battery during the constant current charging phase meets the expected charging current of the battery (eg, the second charging current, which can be greater than the first charging current) .
  • the conversion circuit can utilize a voltage feedback loop such that the magnitude of the voltage applied across the battery during the constant voltage charging phase satisfies the expected charging voltage of the battery.
  • the conversion circuit when the voltage output by the power supply circuit is greater than the expected charging voltage of the battery, the conversion circuit can be used to step down the voltage of the power supply circuit output so that the charging voltage obtained after the step-down conversion satisfies the battery Expected charging voltage requirements. As still another example, when the voltage output by the power supply circuit is less than the charging voltage expected by the battery, the conversion circuit can be used to boost the voltage output by the power supply circuit so that the charging voltage obtained after the boost conversion satisfies the battery. The expected charging voltage requirement.
  • the conversion circuit for example, Buck is lowered.
  • the voltage circuit can step down the voltage outputted by the power supply circuit so that the charging voltage obtained after the voltage reduction satisfies the charging voltage demand expected by the battery.
  • a conversion circuit (such as a boost voltage boosting circuit) can boost the voltage of the power supply circuit output so that the charging voltage obtained after boosting satisfies the charging voltage demand expected by the battery.
  • the conversion circuit is limited by the low conversion efficiency of the circuit, so that the electric energy of the unconverted portion is dissipated as heat. This part of the heat will focus on the inside of the device to be charged.
  • the design space and heat dissipation space of the device to be charged are very small (for example, the physical size of the mobile terminal used by the user is getting thinner and lighter, and a large number of electronic components are densely arranged in the mobile terminal to improve the performance of the mobile terminal), which is not only
  • the design difficulty of the conversion circuit is improved, and the heat focused on the device to be charged is difficult to remove in time, thereby causing an abnormality of the device to be charged.
  • the heat accumulated on the conversion circuit may cause thermal interference to the electronic components near the conversion circuit, causing abnormal operation of the electronic components.
  • the heat accumulated on the conversion circuit may shorten the life of the conversion circuit and nearby electronic components.
  • Another example is to convert the heat accumulated on the circuit, It may cause thermal interference to the battery, which may cause abnormal battery charging and discharging.
  • Another example is the heat accumulated on the circuit, which may cause the temperature of the device to be charged to rise, which affects the user's experience in charging.
  • the heat accumulated on the conversion circuit may cause a short circuit of the conversion circuit itself, so that the voltage output from the power supply circuit is directly loaded on both ends of the battery, causing abnormal charging. If the battery is in an overvoltage state for a long time, it may even cause The explosion of the battery jeopardizes user safety.
  • the embodiment of the invention further provides a power supply circuit 10.
  • the control unit 15 in the power supply circuit 10 can also be used to communicate with the device to be charged to adjust the output power of the power supply circuit 10 such that the output voltage and/or output current of the power supply circuit 10 and the battery in the device to be charged are currently The charging phase is matched.
  • the charging phase in which the battery is currently located may include at least one of the following phases: a trickle charging phase, a constant voltage charging phase, and a constant current charging phase.
  • the above is in communication with the device to be charged to adjust the output power of the power supply circuit so that the output voltage and/or output current of the power supply circuit is in the device to be charged.
  • the matching of the charging phase currently in the battery may include: communicating with the device to be charged during the constant voltage charging phase of the battery to adjust the output power of the power supply circuit, so that the output voltage of the power supply circuit corresponds to the constant voltage charging phase. The charging voltages match.
  • the above-mentioned communication with the device to be charged communicates with the output power of the power supply circuit so that the output voltage and/or output current of the power supply circuit is in the device to be charged.
  • the matching of the charging phase currently in the battery may include: communicating with the device to be charged during the constant current charging phase of the battery to adjust the output power of the power supply circuit, so that the output current of the power supply circuit corresponds to the constant current charging phase. The charging current is matched.
  • the power supply circuit 10 having the communication function provided by the embodiment of the present invention is described in more detail below.
  • the power supply circuit 10 can acquire status information of the battery.
  • the status information of the battery may include current battery information and/or voltage information of the battery.
  • the power supply circuit 10 can adjust the output voltage of the power supply circuit 10 itself according to the acquired state information of the battery to meet the demand of the battery's expected charging voltage and/or charging current, and the power supply circuit 10 adjusts the output voltage. It can be directly loaded to the battery to charge the battery (hereinafter referred to as "direct charge"). Further, during the constant current charging phase of the battery charging process, the voltage outputted by the power supply circuit 10 can be directly loaded at both ends of the battery to charge the battery.
  • the power supply circuit 10 can have the function of a voltage feedback module and the function of a current feedback module to enable management of the charging voltage and/or charging current of the battery.
  • the power supply circuit 10 adjusts the output voltage of the power supply circuit 10 according to the acquired state information of the battery.
  • the power supply circuit 10 can obtain the state information of the battery in real time, and according to the battery that is acquired each time.
  • the real-time status information adjusts the voltage output by the power supply circuit 10 itself to satisfy the charging voltage and/or charging current expected by the battery.
  • the power supply circuit 10 adjusts the output voltage of the power supply circuit 10 according to the state information of the battery acquired in real time. It may mean that the power supply circuit 10 can acquire different times during the charging process as the battery voltage increases during the charging process.
  • the current state information of the battery, and the output voltage of the power supply circuit 10 itself is adjusted in real time according to the current state information of the battery to meet the demand of the battery for the expected charging voltage and/or charging current.
  • the charging process of the battery may include at least one of a trickle charging phase, a constant current charging phase, and a constant voltage charging phase.
  • the power supply circuit 10 can output a first charging current to charge the battery during the trickle charging phase to meet the battery's expected charging current (the first charging current can be a constant DC current).
  • the power supply circuit 10 can utilize the current feedback loop such that the current supplied by the power supply circuit 10 during the constant current charging phase and the current entering the battery meets the demand for the charging current expected by the battery (eg, the second charging current, For the current of the pulsating waveform, the second charging current may be greater than the first charging current, and the current peak value of the pulsating waveform in the constant current charging phase may be greater than the constant DC current in the trickle charging phase, and the constant current in the constant current charging phase may be It means that the current peak or average value of the pulsating waveform remains basically unchanged).
  • the power supply circuit 10 can utilize the voltage feedback loop to keep the voltage output from the power supply circuit 10 to the device to be charged (i.e., constant DC voltage) constant during the constant voltage charging phase.
  • the power supply circuit 10 referred to in the embodiment of the present invention can be used to control a constant current charging phase of a battery in a device to be charged.
  • the control functions of the trickle charging phase and the constant voltage charging phase of the battery in the device to be charged may also be performed cooperatively by the power supply circuit 10 and the additional charging chip in the device to be charged, which are mentioned in the embodiments of the present invention.
  • the charging power received by the battery in the trickle charging phase and the constant voltage charging phase is small, and the efficiency conversion loss and heat accumulation of the internal charging chip of the device to be charged are acceptable.
  • the constant current charging phase or the constant current phase mentioned in the embodiment of the present invention may refer to a charging mode that controls the output current of the power supply circuit 10, and does not require that the output current of the power supply circuit 10 remains completely constant.
  • the constant for example, may be that the current peak or average value of the pulsation waveform outputted by the power supply circuit 10 remains substantially constant, or remains substantially constant for a period of time.
  • the power supply circuit 10 is typically charged in a constant current charging phase using a piecewise constant current.
  • the multi-stage constant current charging may have N constant current stages (N is an integer not less than 2), and the segmented constant current charging starts the first stage charging with a predetermined charging current, the points The N constant current phases of the segment constant current charging are sequentially performed from the first phase to the Nth phase.
  • N is an integer not less than 2
  • the current constant current phase in the constant current phase shifts to the next constant current phase, the current peak or average value of the pulsation waveform can be small; when the battery voltage reaches the charge termination voltage threshold, the previous constant current in the constant current phase The phase will move to the next constant current phase.
  • the current conversion process between two adjacent constant current phases may be gradual, or may be a stepped jump change.
  • the constant current mode may refer to a charging mode that controls the peak value or the average value of the periodically varying current, that is, The peak value of the output current of the control power supply circuit 10 does not exceed the current corresponding to the constant current mode.
  • the constant current mode may refer to a charging mode that controls the peak value of the alternating current.
  • the power supply circuit 10 can support the first charging mode and the second charging mode, and the power supply circuit 10 charges the battery faster than the power supply circuit 10 in the second charging mode.
  • the charging speed of the battery in charging mode In other words, the power supply circuit operating in the second charging mode is less time consuming to charge the battery of the same capacity than the power supply circuit operating in the first charging mode.
  • the power supply circuit 10 in the first charging mode, charges the battery through the second charging channel, and in the second charging mode, the power supply circuit 10 charges the battery through the first charging channel.
  • the first charging mode may be a normal charging mode
  • the second charging mode may be a fast charging mode.
  • the normal charging mode refers to the power supply circuit outputting a relatively small current value (usually less than 2.5A) or charging the battery in the charging device with relatively small power (usually less than 15W), thinking in the normal charging mode. To fully charge a large capacity battery (such as a 3000 mAh battery), it usually takes several hours.
  • the power supply circuit can output a relatively large current (usually greater than 2.5A, such as 4.5A, 5A or higher) or a relatively large power (usually greater than or equal to 15W) to be treated in the charging device. The battery is charged.
  • the charging time required for the power supply circuit to completely fill the same capacity battery in the fast charging mode can be significantly shortened and the charging speed is faster.
  • the output current of the power supply circuit 10 can have a second waveform in which the current value periodically changes.
  • the second waveform may refer to a current waveform of the output current of the power supply circuit 10 operating in the second charging mode.
  • the output voltage of the power supply circuit 10 The voltage value can be a constant voltage value, and the current waveform of the output current can vary with load.
  • the device to be charged may perform bidirectional communication with the power supply circuit 10 (or the control unit 15 in the power supply circuit 10) to control the output of the power supply circuit 10 in the second charging mode (ie, control the second charge)
  • the power supply in the mode provides the charging voltage and/or charging current provided by the circuit 10.
  • the device to be charged may include a charging interface, and the device to be charged may communicate with the power supply circuit 10 through a data line in the charging interface.
  • the charging interface as a USB interface as an example, the data line can be a D+ line and/or a D- line in the USB interface.
  • the device to be charged may also be in wireless communication with the power supply circuit 10.
  • the embodiment of the present invention does not specifically limit the communication content of the power supply circuit 10 and the device to be charged, and the control mode of the device to be charged to the output of the power supply circuit 10 in the second charging mode.
  • the device to be charged can be provided with a power source.
  • the circuit 10 communicates, interacting with the current total voltage of the battery in the device to be charged and/or the current total amount of power, and adjusting the output voltage or output current of the power supply circuit 10 based on the current total voltage of the battery and/or the current total amount of power.
  • the communication content between the charging device and the power supply circuit 10 will be described in detail below in conjunction with the specific embodiment, and the manner in which the device to be charged controls the output of the power supply circuit 10 in the second charging mode will be described in detail.
  • the above description of the embodiment of the present invention does not limit the master-slave of the power supply circuit 10 and the device to be charged.
  • either the power supply circuit 10 and the device to be charged can initiate the two-way as the master device.
  • the communication session correspondingly the other party may make a first response or a first reply as a communication initiated by the slave device to the master device.
  • the identity of the master and slave devices can be confirmed by comparing the level of the power supply circuit 10 side and the device to be charged with respect to the earth during communication.
  • the embodiment of the present invention does not limit the specific implementation manner of the two-way communication between the power supply circuit 10 and the device to be charged.
  • the power supply circuit 10 and any device to be charged initiate a communication session as the master device.
  • the other party as the slave device makes a first response or a first reply to the communication session initiated by the master device, and the master device can make a second response to the first response or the first reply of the slave device.
  • the negotiation process of one charging mode is completed between the master and the slave device.
  • the master and slave devices can perform the charging operation between the master and the slave device after completing the negotiation of the multiple charging mode to ensure the safe and reliable charging process after the negotiation. Executed.
  • One way that the master device can make a second response according to the first response or the first response of the slave device to the communication session may be that the master device can receive the slave device policy A first response or a first reply to the communication session, and making a targeted second response based on the received first response or first reply of the slave device. For example, when the master device receives the first response or the first reply of the slave device for the communication session within a preset time, the master device makes a first response or a first reply to the slave device.
  • the specific second response is specifically: the master device side and the slave device side complete the negotiation of the one charging mode, and the master device side and the slave device side perform the charging operation according to the first charging mode or the second charging mode according to the negotiation result, That is, the power supply circuit 10 operates to charge the device to be charged in the first charging mode or the second charging mode according to the negotiation result.
  • One way that the master device can make a further second response according to the first response or the first response of the slave device to the communication session may also be that the master device does not receive the preset time.
  • the master device side also makes a targeted second response to the first response or the first reply of the slave device. For example, when the master device does not receive the first response or the first response of the slave device for the communication session within a preset time, the master device also responds to the first response or the first response of the slave device.
  • the specific second response is specifically: the master device side and the slave device side complete the negotiation of the one charging mode, and the charging operation is performed according to the first charging mode between the master device side and the slave device side, that is, the power supply circuit 10 works.
  • the device to be charged is charged in the first charging mode.
  • the power supply circuit 10 when the device to be charged initiates a communication session as the master device, the power supply circuit 10 does not need to wait after making a first response or a first reply to the communication session initiated by the device to the master device.
  • the charging device makes a targeted second response to the first response or the first reply of the power supply circuit 10, that is, the negotiation process of the primary charging mode is completed between the power supply providing circuit 10 and the device to be charged, and then the power supply circuit is provided. 10 can determine, according to the negotiation result, charging the device to be charged in the first charging mode or the second charging mode.
  • the process in which the device to be charged performs bidirectional communication with the power supply circuit 10 to control the output of the power supply circuit 10 in the second charging mode includes: the device to be charged and the power supply circuit 10 perform Two-way communication to negotiate a charging mode between the power supply circuit 10 and the device to be charged.
  • the device to be charged performs two-way communication with the power supply circuit 10 to negotiate a charging mode between the power supply circuit 10 and the device to be charged, including: the device to be charged receives the first transmission by the power supply circuit 10. An instruction for inquiring whether the device to be charged turns on the second charging mode; and the device to be charged sends a reply to the first command to the power supply circuit 10
  • the instruction, the reply instruction of the first instruction is used to indicate whether the device to be charged agrees to enable the second charging mode; and in the case that the device to be charged agrees to turn on the second charging mode, the device to be charged controls the power supply circuit 10 to pass the first charging channel Charging batteries.
  • the process in which the device to be charged performs bidirectional communication with the power supply circuit 10 to control the output of the power supply circuit 10 in the second charging mode includes: the device to be charged and the power supply circuit 10 Two-way communication is performed to determine a charging voltage output by the power supply circuit 10 for charging the device to be charged in the second charging mode.
  • the device to be charged performs two-way communication with the power supply circuit 10 to determine a charging voltage output by the power supply circuit 10 for charging the device to be charged in the second charging mode, including:
  • the charging device receives a second command sent by the power supply circuit 10, the second command is for inquiring whether the output voltage of the power supply circuit 10 matches the current total voltage of the battery of the device to be charged; the device to be charged transmits the second to the power supply circuit 10.
  • the reply command of the command, the reply command of the second command is used to indicate that the output voltage of the power supply circuit 10 matches the current total voltage of the battery, being high or low.
  • the second instruction may be used to query whether the current output voltage of the power supply circuit 10 is suitable as the charging voltage for charging the device to be charged outputted by the power supply circuit 10 in the second charging mode, the second instruction
  • the reply command can be used to indicate that the output voltage of the current power supply circuit 10 is appropriate, high or low.
  • the current output voltage of the power supply circuit 10 matches the current total voltage of the battery, or the current output voltage of the power supply circuit 10 is suitable as the charging voltage for charging the device to be charged outputted by the power supply circuit 10 in the second charging mode. It can be said that the difference between the current output voltage of the power supply circuit 10 and the current total voltage of the battery is within a preset range (usually on the order of several hundred millivolts).
  • the current output voltage is higher than the current total battery voltage includes that the difference between the output voltage of the power supply circuit 10 and the current total voltage of the battery is higher than a preset range.
  • the current output voltage is lower than the current total battery voltage includes that the difference between the output voltage of the power supply circuit 10 and the current total voltage of the battery is lower than a preset range.
  • the process in which the device to be charged performs bidirectional communication with the power supply circuit 10 to control the output of the power supply circuit 10 in the second charging mode may include: the device to be charged and the power supply circuit 10 Two-way communication is performed to determine a charging current output by the power supply circuit 10 for charging the device to be charged in the second charging mode.
  • the device to be charged performs two-way communication with the power supply circuit 10 to determine the device for charging to be output by the power supply circuit 10 in the second charging mode.
  • the charging current for charging may include: receiving, by the charging device, a third instruction sent by the power supply circuit 10, the third instruction for inquiring about a maximum charging current currently supported by the device to be charged; and the device to be charged transmitting the third instruction to the power supply circuit 10.
  • the reply command of the third command is used to indicate the maximum charging current currently supported by the device to be charged, so that the power supply circuit 10 determines the power supply circuit 10 in the second charging mode based on the maximum charging current currently supported by the device to be charged.
  • the output charging current for charging the device to be charged is used to indicate the maximum charging current currently supported by the device to be charged.
  • the maximum charging current currently supported by the device to be charged may be obtained according to the capacity of the battery of the device to be charged, the battery system, or the like, or may be a preset value.
  • the charging device determines the charging current for charging the device to be charged outputted by the power supply circuit 10 in the second charging mode according to the maximum charging current currently supported by the device to be charged.
  • the power supply circuit 10 can determine the maximum charging current currently supported by the device to be charged as the charging current for charging the device to be charged outputted by the power supply circuit 10 in the second charging mode, and can also comprehensively consider the device to be charged. After the currently supported maximum charging current and its own current output capability, etc., the charging current output by the power supply circuit 10 for charging the device to be charged in the second charging mode is determined.
  • the process in which the device to be charged performs bidirectional communication with the power supply circuit 10 to control the output of the power supply circuit 10 in the second charging mode may include: charging using the second charging mode
  • the device to be charged performs bidirectional communication with the power supply circuit 10 to adjust the output current of the power supply circuit 10.
  • the device to be charged performs bidirectional communication with the power supply circuit 10 to adjust the output current of the power supply circuit 10, which may include: the device to be charged receives the fourth command sent by the power supply circuit 10, and the fourth command is used to query the current battery. The total voltage; the device to be charged sends a reply command of the fourth command to the power supply circuit 10, and the reply command of the fourth command is used to indicate the current total voltage of the battery, so that the power supply circuit 10 adjusts the power supply circuit according to the current total voltage of the battery. 10 output current.
  • the process in which the device to be charged performs bidirectional communication with the power supply circuit 10 to control the output of the power supply circuit 10 in the second charging mode may include: the device to be charged and the power supply circuit 10 perform Two-way communication to determine if the charging interface is in poor contact.
  • the device to be charged performs two-way communication with the power supply circuit 10 to determine whether the charging interface is in poor contact.
  • the method may include: the device to be charged receives a fourth command sent by the power supply circuit 10, and the fourth command is used to inquire about charging. Current voltage of the device's battery; device to be charged The power supply circuit 10 sends a reply command of the fourth command, and the reply command of the fourth command is used to indicate the current voltage of the battery of the device to be charged, so that the power supply circuit 10 according to the output voltage of the power supply circuit 10 and the battery of the device to be charged The current voltage determines if the charging interface is in poor contact.
  • the power supply circuit 10 determines that the voltage difference between the output voltage of the power supply circuit 10 and the current voltage of the device to be charged is greater than a preset voltage threshold, indicating that the voltage difference is obtained by dividing the current value output by the power supply circuit 10 at this time.
  • the impedance is greater than the preset impedance threshold to determine poor contact of the charging interface.
  • poor charging interface contact may also be determined by the device to be charged.
  • the device to be charged sends a sixth command to the power supply circuit 10, the sixth command is used to inquire the output voltage of the power supply circuit 10; the device to be charged receives the reply command of the sixth command sent by the power supply circuit 10, and the sixth command
  • the reply command is for indicating the output voltage of the power supply circuit 10; the device to be charged determines whether the charging interface is in poor contact according to the current voltage of the battery and the output voltage of the power supply circuit 10.
  • the device to be charged may send a fifth command to the power supply circuit 10, and the fifth command is used to indicate that the charging interface is in poor contact.
  • the power supply circuit 10 can exit the second charging mode after receiving the fifth command.
  • FIG. 10 is only intended to assist those skilled in the art to understand the embodiments of the present invention, and is not intended to limit the embodiments of the present invention to the specific numerical values or specific examples illustrated. A person skilled in the art will be able to make various modifications or changes in the form of the embodiment of FIG. 10, and such modifications or variations are also within the scope of the embodiments of the present invention.
  • the communication flow (or fast charge communication flow) between the power supply circuit 10 and the device to be charged may include the following five stages:
  • the device to be charged can detect the type of the power supply circuit 10 through the data lines D+, D-.
  • the current to be charged by the device to be charged may be greater than a preset current threshold I2 (for example, may be 1A).
  • I2 for example, may be 1A
  • the power supply circuit 10 may consider the type of the device to be charged to be identified by the power supply circuit. Has been completed.
  • the power supply circuit 10 turns on the negotiation process with the device to be charged, and sends an instruction 1 (corresponding to the first instruction) to the device to be charged to ask whether the device to be charged agrees to provide power.
  • the way 10 charges the charging device in a second charging mode.
  • the power supply circuit 10 When the power supply circuit 10 receives the reply command of the command 1 sent by the device to be charged, and the reply command of the command 1 indicates that the device to be charged does not agree that the power supply circuit 10 charges the device to be charged in the second charging mode, the power supply circuit 10 detects the output current of the power supply circuit 10 again. When the output current of the power supply circuit 10 is still greater than or equal to I2 within a preset continuous time period (for example, may be continuous T1 time), the power supply circuit 10 again sends an instruction 1 to the device to be charged, asking whether the device to be charged agrees The power supply circuit 10 charges the device to be charged in the second charging mode.
  • a preset continuous time period for example, may be continuous T1 time
  • the power supply circuit 10 repeats the above-described steps of the stage 1 until the device to be charged agrees that the power supply circuit 10 charges the device to be charged in the second charging mode, or the output current of the power supply circuit 10 no longer satisfies the condition of greater than or equal to I2.
  • the output voltage of the power supply circuit 10 may include a plurality of gear positions.
  • the power supply circuit 10 sends an instruction 2 (corresponding to the second instruction described above) to the device to be charged to inquire whether the output voltage (current output voltage) of the power supply circuit 10 matches the current voltage of the battery in the device to be charged.
  • the device to be charged sends a reply command of the command 2 to the power supply circuit 10 to indicate that the output voltage of the power supply circuit 10 matches the current voltage of the battery of the device to be charged, which is high or low. If the reply command for the instruction 2 indicates that the output voltage of the power supply circuit 10 is high or low, the power supply circuit 10 can lower or increase the output voltage of the power supply circuit 10 and send the command 2 to the device to be charged again. It is re-inquired whether the output voltage of the power supply circuit 10 matches the current voltage of the battery. The above steps of phase 2 are repeated until the device to be charged determines that the output voltage of the power supply circuit 10 matches the current voltage of the battery of the device to be charged, and proceeds to phase 3.
  • the output voltage of the power supply circuit 10 can be adjusted in various ways. For example, a plurality of voltage gear positions from low to high may be set in advance for the output voltage of the power supply circuit 10. The higher the voltage gear position, the larger the output voltage of the power supply circuit 10. If the reply command of the instruction 2 indicates that the output voltage of the power supply circuit 10 is high, the voltage level of the output voltage of the power supply circuit 10 can be lowered from the current voltage level by one gear position; if the return command of the instruction 2 indicates the power supply If the output voltage of the providing circuit 10 is low, the voltage level of the output voltage of the power supply circuit 10 can be increased from the current voltage level by one gear.
  • the power supply circuit 10 sends an instruction 3 (corresponding to the third instruction described above) to the device to be charged, and queries the maximum charging current currently supported by the device to be charged.
  • the device to be charged sends a reply command of instruction 3 to the power supply circuit 10 to indicate the maximum charging current currently supported by the device to be charged, and enters phase 4.
  • the power supply circuit 10 determines the charging current for charging the device to be charged, which is output by the power supply circuit 10 in the second charging mode, according to the maximum charging current currently supported by the device to be charged, and then enters phase 5, that is, the constant current charging phase.
  • the power supply circuit 10 can send an instruction 4 (corresponding to the fourth instruction described above) to the device to be charged every interval of time to query the current voltage of the battery of the device to be charged.
  • the device to be charged can send a reply command of the command 4 to the power supply circuit 10 to feed back the current voltage of the battery.
  • the power supply circuit 10 can judge whether the contact of the charging interface is good or not, and whether it is necessary to lower the output current of the power supply circuit 10, based on the current voltage of the battery.
  • the command 5 (corresponding to the fifth command) may be sent to the device to be charged, and the power supply circuit 10 may exit the second charging mode, then reset and re-enter the phase 1.
  • the device to be charged agrees that the power supply circuit 10 charges the device to be charged in the second charging mode to the power supply circuit 10 to adjust the output voltage of the power supply circuit 10 to
  • the time experienced by a suitable charging voltage can be controlled within a certain range. If the time exceeds the predetermined range, the power supply circuit 10 or the device to be charged may determine that the communication process is abnormal, reset to re-enter phase 1.
  • the device to be charged may The power supply circuit 10 transmits a reply command of the command 2 to instruct the output voltage of the power supply circuit 10 to match the voltage of the battery of the device to be charged.
  • the adjustment speed of the output current of the power supply circuit 10 can be controlled within a certain range, so that an abnormality in the charging process due to the excessive adjustment speed can be avoided.
  • the magnitude of the change in the output current of the power supply circuit 10 may be controlled within 5%.
  • the power supply circuit 10 can monitor the impedance of the charging path in real time. Specifically, the power supply circuit 10 can monitor the impedance of the charging path according to the output voltage of the power supply circuit 10, the output current, and the current voltage of the battery fed back by the device to be charged.
  • the power supply circuit 10 stops charging the device to be charged in the second charging mode.
  • the communication time interval between the power supply circuit 10 and the device to be charged may be controlled within a certain range. Avoid communication short intervals and cause an abnormality in the communication process.
  • the stopping of the charging process (or the stopping of the charging process of the powering device to be charged in the second charging mode) may be divided into a recoverable stop and an unrecoverable stop.
  • the charging process is stopped, the charging communication process is reset, and the charging process re-enters Phase 1. Then, the device to be charged does not agree that the power supply circuit 10 charges the device to be charged in the second charging mode, and the communication flow does not enter phase 2.
  • the stop of the charging process in this case can be considered as an unrecoverable stop.
  • the charging process is stopped, the charging communication process is reset, and the charging process re-enters the phase 1.
  • the device to be charged agrees that the power supply circuit 10 charges the device to be charged in the second charging mode to resume the charging process.
  • the stopping of the charging process in this case can be regarded as a recoverable stop.
  • the device to be charged detects an abnormality in the battery, the charging process is stopped, resets, and re-enters Phase 1. Then, the device to be charged does not agree that the power supply circuit 10 charges the device to be charged in the second charging mode. When the battery returns to normal and the requirements of phase 1 are met, the device to be charged agrees that the power supply circuit 10 charges the device to be charged in the second charging mode.
  • the stop of the fast charge process in this case can be considered as a recoverable stop.
  • the communication steps or operations illustrated above with respect to FIG. 10 are merely examples.
  • the handshake communication between the device to be charged and the power supply circuit 10 can also be initiated by the device to be charged, that is, the device to be charged sends an instruction 1 to inquire about the power supply. Whether the circuit 10 turns on the second charging mode.
  • the reply command instructs the power supply circuit 10 to agree that the power supply circuit 10 charges the battery to be charged in the second charging mode when the power supply circuit 10 charges the device to be charged in the second charging mode.
  • a constant voltage charging phase can also be included.
  • the device to be charged may feed back the current voltage of the battery to the power supply circuit 10.
  • the charging phase transitions from the constant current charging phase to the constant voltage charging phase.
  • the charging current is gradually decreased, and when the current drops to a certain threshold, it indicates that the battery of the device to be charged has been fully charged, and the entire charging process is stopped.
  • the embodiment of the present invention further provides a power supply device.
  • the power supply device 1100 may include the power supply circuit 10 provided by any of the above embodiments.
  • the power supply device 1100 may be, for example, an adapter or a power bank or the like dedicated to charging, or may be another device capable of providing power and data services, such as a computer.
  • the power supply circuit and the power supply device provided by the embodiment of the present invention are described in detail above with reference to FIGS.
  • the control method of the power supply circuit provided by the embodiment of the present invention is described in detail below with reference to FIG.
  • the power supply circuit may be the power supply circuit 10 described in any of the above embodiments, and the description related to the power supply circuit may be referred to the foregoing, and the repeated description is omitted as appropriate.
  • the power supply circuit may include a primary rectification unit, a modulation unit, a transformer, a secondary rectification filtering unit, and a control unit.
  • the primary rectifying unit can be configured to rectify the input alternating current to output a first voltage whose voltage value periodically changes.
  • a modulation unit can be used to modulate the first voltage to generate a second voltage.
  • a transformer can be used to generate a third voltage based on the second voltage.
  • a secondary rectification filtering unit is operative to rectify and filter the third voltage to generate a first current.
  • the method of FIG. 12 can include step 1210.
  • the control unit may adjust the first current to generate an output current of the power supply circuit.
  • the output current has a second waveform in which the current value periodically changes, and each period of the second waveform includes a period in which the current value takes a value of zero.
  • the first current has a first waveform whose current value is periodically transformed;
  • the power supply circuit may further include a first switching unit for controlling the charging line of the power supply circuit to be turned on and off.
  • Step 1210 can include controlling the first switching unit to be in an open state during a portion of each period of the first waveform.
  • the first current has a first waveform whose current value is periodically changed;
  • the power supply circuit may further include a load circuit connected in parallel between the charging circuits of the power supply circuit, and for controlling the load circuit A second switching unit that is turned on and off.
  • Step 1210 can include controlling the second switching unit to be in a closed state during a portion of each cycle of the first waveform, wherein the load circuit can be configured to consume electrical energy transmitted on the charging circuit when the second switching unit is in the closed state.
  • the partial period may be a period in which the trough of the first waveform is located.
  • the secondary rectification filtering unit may include a third switching unit for controlling switching of the filter circuit in the secondary rectification filtering unit.
  • Step 1210 can include controlling the third switching unit to be in an open state during a target time period in each cycle of the first waveform, wherein the target time period is a time period in which the trough of the first waveform is located.
  • the filtering circuit may include a filtering capacitor.
  • the third switching unit may include a MOS transistor.
  • the positive pole of the filter capacitor can be connected to the charging line of the power supply circuit, and the negative pole of the filter capacitor can be connected to the source of the MOS transistor.
  • the drain of the MOS transistor can be connected to the ground, and the gate of the MOS transistor can be connected to the control unit.
  • the method of FIG. 12 may further include step 1220.
  • the control unit communicates with the device to be charged to adjust the output power of the power supply circuit such that the output voltage and/or output current of the power supply circuit matches the charging phase in which the battery in the device to be charged is currently located.
  • the charging phase of the power supply circuit to the battery includes at least one of a trickle charging phase, a constant voltage charging phase, and a constant current charging phase.
  • step 1220 may include: communicating with the device to be charged during the constant voltage charging phase of the battery to adjust the output power of the power supply circuit such that the output voltage of the power supply circuit and the constant voltage charging The charging voltages corresponding to the phases match.
  • step 1220 may include: communicating with the device to be charged during the constant current charging phase of the battery to adjust the output power of the power supply circuit, so that the output current of the power supply circuit and the constant current charging The charging currents corresponding to the phases match.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (such as a digital video disc (DVD)), or a semiconductor medium (such as a solid state disk (SSD)).
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium such as a digital video disc (DVD)
  • a semiconductor medium such as a solid state disk (SSD)
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

提供一种电源提供电路、电源提供设备以及控制方法。该电源提供电路包括初级整流单元、调制单元、变压器、次级整流滤波单元和控制单元。该电源提供电路去掉了初级侧的液态电解电容,使得电源能提供电路的体积更小,使用更安全。此外,该电源提供电路的输出电流为电流值周期性变化的电流,且该控制单元可以控制该输出电流包括电流值取值为0的时段,从而可以保证待充电设备中的电池的周期性充放电。

Description

电源提供电路、电源提供设备以及控制方法 技术领域
本申请涉及充电领域,并且更为具体地,涉及一种电源提供电路、电源提供设备以及控制方法。
背景技术
电源提供电路通常包含初级转换单元和次级转换单元。初级转换单元一般包括初级整流单元和初级滤波单元。初级滤波单元通常需要使用一个或多个大容量的液态电解电容(如液态铝制电解电容)对初级整流后的电压进行初级滤波。
液态电解电容具有寿命短、易爆浆等缺陷,导致传统电源提供电路使用寿命短,且不安全。
发明内容
本申请提供一种电源提供电路、电源提供设备以及控制方法,可以提高电源提供电路的使用寿命和安全性。
第一方面,提供一种电源提供电路,包括:初级整流单元,用于对输入的交流电进行整流以输出电压值周期性变化的第一电压;调制单元,用于对所述第一电压进行调制以生成第二电压;变压器,用于根据所述第二电压生成第三电压;次级整流滤波单元,用于对所述第三电压进行整流和滤波以生成第一电流;控制单元,用于对所述第一电流进行调整以生成所述电源提供电路的输出电流,所述输出电流具有电流值周期性变化的第二波形,且所述第二波形的每个周期包含电流值取值为0的时段。
第二方面,提供一种电源提供设备,包括如第一方面所述的电源提供电路。
第三方面,提供一种电源提供电路的控制方法,所述电源提供电路包括:初级整流单元,用于对输入的交流电进行整流以输出电压值周期性变化的第一电压;调制单元,用于对所述第一电压进行调制以生成第二电压;变压器,用于根据所述第二电压生成第三电压;次级整流滤波单元,用于对所述第三电压进行整流和滤波以生成第一电流;所述控制方法包括:所述电源提供电 路中的控制单元对所述第一电流进行调整以生成所述电源提供电路的输出电流,所述输出电流具有电流值周期性变化的第二波形,且所述第二波形的每个周期包含电流值取值为0的时段。
本申请提供的电源提供电路去掉了初级侧的液态电解电容,降低了电源提供电路的体积,并提高了电源提供电路的使用寿命和安全性。
附图说明
图1是本发明一个实施例提供的电源提供电路的示意性结构图。
图2是本发明实施例提供的待调制的第一电压的波形示例图。
图3是传统电源提供电路调制前后的电压波形对比图。
图4是本发明实施例提供的将第一电压调制后得到的第二电压的波形示例图。
图5是本发明实施例提供的经过次级整流滤波后的第一波形的示例图。
图6是本发明另一实施例提供的电源提供电路的示意性结构图。
图7是本发明实施例提供的输出电流的波形以及生成用于生成该波形的控制信号的波形示例图。
图8是本发明又一实施例提供的电源提供电路的示意性结构图。
图9是本发明又一实施例提供的电源提供电路的示意性结构图。
图10是本发明实施例提供的快充过程的示意性流程图。
图11是本发明实施例提供的电源提供设备的示意性结构图。
图12是本发明实施例提供的控制方法的示意性流程图。
具体实施方式
相关技术中,电源提供电路的初级侧既设置有初级整流单元,也设置有初级滤波单元。初级滤波单元一般包含一个或多个液态电解电容。液态电解电容具有容值大,滤波能力强的特点。该液态电解电容的存在使得电源提供电路的输出可以为恒定直流电。但是,液态电解电容具有寿命短、易爆浆等特性,导致电源提供电路使用寿命短,且不安全。此外,利用恒定直流电为待充电设备中的电池充电会导致电池的极化和析锂现象,从而可能会降低该电池的使用寿命。
为了提高电源提供电路的使用寿命和安全性,并缓解电池在充电过程的 极化和析锂现象。本发明实施例提供一种去掉了初级侧的液态电解电容的电源提供电路。该电源提供电路可用于为待充电设备中的电池进行充电。本申请所提及的待充电设备可以是移动终端,如“通信终端”(或简称为“终端”),包括但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
如图1所示,本发明一实施例提供的电源提供电路10可以包括初级整流单元11、调制单元12、变压器13和次级整流滤波单元14。下面对电源提供电路10的各个组成部分分别进行详细介绍。
初级整流单元11可用于对输入的交流电进行整流以输出电流值周期性变化的第一电压。在一些情况下,输入的交流电(AC)也可称为市电。输入的交流电例如可以是220V的交流电,也可以是110V的交流电,本发明实施例对此不做具体限定。
第一电压的电压波形为周期性变化的波形。如图2所示,该第一电压的波形可以为脉动波形,或称馒头波。
本发明实施例对初级整流单元11的形式不做具体限定。初级整流单元11可以采用四个二极管构成的全桥整流电路,也可以采用其他形式的整流电路,如半桥整流电路。
调制单元12可用于对第一电压进行调制以生成第二电压。在某些情况 下,调制单元12也可称为斩波单元或斩波器。或者,在某些情况下,调制单元12也可称为截波单元或截波器。本发明实施例对调制单元12的工作方式不做具体限定。作为一个示例,调制单元12可以采用脉冲宽度调制(pulse width modulation,PWM)的方式对第一电压进行调制,也可以采用频率调制的方式对第一电压进行调制。
需要说明的是,在相关技术中,初级整流单元11输出的电压(对应于本发明实施例的第一电压)需要先经过初级滤波单元(包含一个或多个液态电解电容)进行滤波,形成恒定直流电。该恒定直流电的电压波形通常为直线,即图3所示的调制前的电压波形。接着,调制单元对该恒定电压进行调制(斩波),形成如图3所示的调制后的电压,从图3可以看出,经过调制单元的处理,恒定的电压信号被斩成许多小的幅值相等的方波脉冲信号。
相比而言,本发明实施例提供的电源提供电路去掉了用于初级滤波的液态电解电容,直接对初级整流之后的电压值周期性变化的第一电压进行调制。以第一电压的波形为图2所示的波形为例,调制后得到的第二电压的波形可以参见图4。从图4可以看出,第二电压同样包含许多小的脉冲信号,但这些脉冲信号的幅值并不相等,而是周期性变化的。图4的虚线为组成第二电压的脉冲信号的包络。对比图2可以看出,组成第二电压的脉冲信号的包络与第一电压的波形基本相同。
变压器13可用于根据第二电压生成第三电压。换句话说,变压器13可用于将第二电压从变压器的初级耦合至次级,得到第三电压。例如,变压器13可用于对第二变压进行变压相关操作,得到第三电压。变压器13可以是普通变压器,也可以是工作频率为50KHz-2MHz的高频变压器。变压器13可以包括初级绕组和次级绕组。变压器13中的初级绕组和次级绕组的形式,以及初级绕组、次级绕组与电源提供电路10中的其他单元的连接方式与电源提供电路10所采用的开关电源的类型有关。例如,电源提供电路10可以是基于反激式开关电源的电源提供电路,也可以是基于正激式开关电源的电源提供电路,还可以是基于推挽式开关电源的电源提供电路。电源提供电路所基于的开关电源的类型不同,变压器13的初级绕组、次级绕组的具体形式和连接方式就会相应不同,本发明实施例对此不做具体限定。图1示出的仅是变压器13的一种可能的连接方式。
次级整流滤波单元14可以包括次级整流单元和次级滤波单元。本发明 实施例对次级整流单元的整流方式不做具体限定。作为一个示例,次级整流单元可以使用同步整流(synchronous rectifier,SR)芯片,对变压器的次级绕组感应到的电压(或电流)进行同步整流。作为另一示例,次级整流单元可以采用二极管进行次级整流。次级滤波单元可用于对次级整流之后的电压进行次级滤波。次级滤波单元可以包括一个或多个固态电容,或者也可以包括固态电容与普通电容(如陶瓷电容)的组合。
经过次级整流滤波单元14的处理,可以得到第一电流,下文将第一电流的波形称为第一波形。图5中的实线是第一波形的一个示例。从图5可以看出,第一波形并非是电流值恒定的波形,而是电流值周期性变化的波形,原因解释如下。
由于电源提供电路10的初级侧去掉了液态电解电容,使得输入变压器13的第二电压由幅值周期性变化的许多小的脉冲信号组成。同样地,变压器13向次级侧传输的第三电压也由幅值周期性变化的许多小的脉冲信号组成。次级整流滤波单元14中设置有次级滤波电容,但与液态电解电容相比,次级滤波电容通常会选取一些容值较低的固态电容。固态电容的容值一般较低,滤波能力相对较弱。因此,次级滤波电容的主要功能在于将次级整流之后输出的许多小的脉冲信号滤成周期性变化的连续信号,该连续信号的波形一般为与这些小的脉冲信号的包络类似的波形。
进一步地,从图5可以看出,第一波形并非完整的脉动波形,第一波形的波峰和波谷均未达到脉动波形(图5中的虚线)的波峰和波谷。第一波形的波峰未达到脉动波形的波峰的主要原因在于电源提供电路10一般会监控自身的输出电压和/或输出电流,并对输出电压进行限压和/或对输出电流进行限流操作。该限压和/或限流操作会将脉动波形的波峰限制在预设的幅值以下,从而形成了如图5所示的经过削峰处理之后的第一波形。
第一波形的波谷未达到脉动波形的波谷的主要原因在于,次级整流滤波单元14中的次级滤波电容对次级侧的充电线路上的电压具有钳位作用,使得次级侧的充电线路上的电压和电流均无法达到0点。具体地,当次级侧的充电线路上的电压下降至与次级滤波电容的电压值相等时,次级滤波电容会进入放电状态,使得充电线路上的电压不再继续下降,从而将第一波形的波谷“钳位”在大于0的某个数值,该数值的具体大小与次级滤波电容的容值有关,本发明实施例对此不做具体限定。
由上文的描述可以看出,本发明实施例提供的电源提供电路10去掉了初级侧的液态电解电容,从而降低了电源提供电路的体积,并提高了电源提供电路的使用寿命和安全性。
电源提供电路10可用于为待充电设备中的电池进行充电。在充电过程中,如果可以控制电池周期性的充放电,就可以很大程度上降低电池的极化和析锂现象,从而提高电池的使用寿命和安全性。但是,基于上文中的与次级滤波相关的描述可知,次级整流滤波单元14中的次级滤波电容对电源提供电路10的充电线路上的电压具有钳位作用,导致次级滤波之后得到的第一电流的波形(即第一波形)的波谷不能达到0点。如果直接将第一电流作为电源提供电路10的输出电流,由于第一电流无法达到0点,可能会使待充电设备中的电池始终处于充电状态,无法保证该电池的周期性放电。
为了保证电池能够进行周期性充放电,进一步地,在一些实施例中,电源提供电路10还可以包括控制单元15。控制单元15可用于对第一电流进行调整以生成电源提供电路10的输出电流。电源提供电路10的输出电流可以具有电流值周期性变化的第二波形,且第二波形的每个周期包含电流值取值为0的时段。
第二波形在每个周期包含电流值取值为0的时段和电流值取值非0的时段。为了便于描述,此处将电流值取值为0的时段称为第一时段,将电流值取值非0的时段称为第二时段。第二波形为输出电流的波形,输出电流在第一时段的电流值取值为0,表示电源提供电路10在第一时段没有输出。此时,由于待充电设备中的电池一般需要持续为待充电设备中的系统供电,因此,该电池会处于放电状态。输出电流的电流值在第二时段取值非0,表示电源提供电路10的输出在第二时段得到恢复。此时,待充电设备中的电池处于充电状态。由此可见,由于第二波形的每个周期具有电流值取值为0的第一时段和电流值取值非0的第二时段,使得待充电设备中的电池可以进入周期性的充放电状态,从而很大程度上降低电池的极化和析锂现象,进而提高了电池的使用寿命和安全性。
控制单元15例如可以是微控制单元(micro-control unit,MCU)。该控制单元15可以通过向电源提供电路10中的其他单元发送控制信号的方式对电源提供电路10中的其他单元进行控制。控制单元15对第一电流的调整方式可以由多种,相应地,控制单元15与电源提供电路10中的其他单元的连 接方式也可以有多种,本发明实施例对此不做具体限定。下面结合图6-图9进行举例说明。
图6是控制单元15对第一电流调整以形成经过0点的输出电流的一个实施例。如图6所示,电源提供电路10还可包括用于控制电源提供电路10的充电线路61通断的第一开关单元62。充电线路61可用于传输电能。换句话说,该充电线路61可用于向待充电设备传输充电电压和/或充电电流。以电源提供电路10通过通用串行总线(universal serial bus,USB)为待充电设备充电为例,该充电线路61例如可以是USB中的VBUS。
第一开关单元62可以是具有线路通断控制功能的任意器件。如图6所示,第一开关单元62可以是金属氧化物半导体(metal oxide semiconductor,MOS)管,该MOS管的栅极可以与控制单元15相连,以接收控制单元15发出的控制信号。该MOS管的源极和漏极可以串联在充电线路61中,从而可以在控制信号的控制下对充电线路61进行导通或者断开控制。
进一步地,控制单元15可用于在第一波形的每个周期的部分时段控制第一开关单元62处于断开状态,以关闭电源提供电路10的输出。
本发明实施例对上述部分时段的选取方式不做具体限定,可以是第一波形的每个周期的任意的一个或多个时段。
可选地,作为一个示例,该部分时段可以为第一波形的波谷所在的时段。换句话说,控制单元15可以在第一波形处于波谷的部分或全部时段控制第一开光单元62处于断开状态,以关闭电源提供电路10的输出。与在第一波形的每个周期的除波谷所在时段之外的其他时段控制第一开关单元62处于断开状态的方式相比,在第一波形的每个周期的波谷所在时段控制第一开关单元62处于断开状态可以达到如下效果:在满足电池周期性处于充放电状态的前提下,最大程度地保证电池的充电效率。
假设控制单元15在第一波形处于波谷的部分或全部时段控制第一开光单元62处于断开状态,控制单元15确定第一波形的波谷所在时段的方式可以有多种。作为一个示例,控制单元15对第一电流进行采样,并根据第一电流的采样值判断第一波形的波谷所在的时段。作为另一个示例,第一电流的周期与电源提供电路10中的许多其他信号的周期具有同步关系,如初级整流单元输出的电压信号或电流信号,次级整流单元输出的电压信号或电流信号等,下面称这些信号为第一电流的同步信号。控制单元15可以根据同 步信号的波形,以及同步信号的波形与第一波形之间的同步关系判断第一波形的波谷所在的时段。
以第一波形为如图5中的实线所示的波形为例,控制单元15可以向第一开关62发送如图7所示的控制信号,控制电源提供电路10在第一波形的波谷所在时段停止输出,从而可以形成如图7所示的包含电流值取值为0的时段的第二波形。
图8是控制单元15对第一电流调整以形成经过0点的输出电流的另一实施例。如图8所示,电源提供电路10还可包括并联在电源提供电路10的充电回路之间的负载电路81,以及用于控制负载电路81通断的第二开关单元82。
该充电回路可以是充电线路和地线形成的回路。以电源提供电路10通过USB为待充电设备充电为例,该充电回路可以是VBUS和GND形成的回路。
为了实现电源提供电路10的输出电流能够达到0的目的,本发明实施例在电源提供电路10内部引入了负载电路81。负载电路81上的负载的配置可使得当第二开关单元82处于闭合状态时,充电回路上传输的电能均通过负载电路81中的负载被消耗。
本发明实施例对负载电路81上的负载的形式不做具体限定。该负载例如可以是电阻,也可以是其他可用于消耗电能的器件。此外,负载的大小可以根据实际情况确定,只要能够保证第二开关单元82闭合时,充电回路上的电能均通过负载电路81消耗即可。
控制单元15可用于在第一波形的每个周期的部分时段控制第二开关单元82处于闭合状态。当第二开关单元82处于闭合状态时,负载电路81处于工作状态,充电回路上的电能可以通过负载电路81被消耗,不会输出至电源提供电路10的外部。因此,负载电路81处于工作状态时,电源提供电路10的输出电流为0。
本发明实施例中提及的部分时段(即负载电路81处于工作状态的时段)的选取方式与图6的实施例类似,可以参见上文中的与图6实施例相关的描述,为避免重复,此处不再详述。
图9是控制单元15对第一电流调整以形成经过0点的输出电流的又一实施例。如图9所示,次级整流滤波单元14可以包括滤波电路141(应理解, 次级整流滤波单元还可以包括与次级整流相关的器件,为了简洁,图9中仅示出次级整流滤波单元14中的与本实施例相关的器件)。滤波电路141可以由一个或多个并联的电容143(如固态电容)组成。滤波电路141还可以包括用于控制滤波电路141通断的第三开关单元142。当第三开关单元142处于导通状态时,滤波电路141处于工作状态,对电源提供电路10的充电线路上的电压具有钳位作用,导致电源提供电路10的输出电流无法达到0。为了使得电源提供电路的输出电流达到0点,本发明实施例中的控制单元15在第一波形的每个周期中的目标时段控制第三开关单元142处于断开状态,其中目标时段为第一波形的波谷所在的时段。由于目标时段为第一波形的波谷所在的时段,滤波电路141中的电容在该目标时段本应该处于放电状态,但是由于控制单元15在目标时段通过第三开关单元142控制滤波电路141不工作,使得滤波电路141中的电容无法对外放电,进而使得电源提供电路10无输出。这样一来,在目标时段,电源提供电路10的输出电流为0。
进一步地,在图9对应的实施例中,第三开关单元142可以包括MOS管。滤波电容143的正极可以与电源提供电路10的充电线路(如VBUS)相连,滤波电容143的负极可以与MOS管的源极相连,MOS管的漏极可以与地(如GND)相连,MOS管的栅极可以与控制单元15相连。MOS管的源极接滤波电容143的负极可以使得MOS管内部的体二极管的阴极对地,从而使得MOS管闭合时,滤波电容143不会对该体二极管放电。
相关技术中提到了用于为待充电设备进行充电的一电源提供电路。该电源提供电路工作在恒压模式下。在恒压模式下,该电源提供电路的输出电压基本维持恒定,比如5V,9V,12V或20V等。
该电源提供电路的输出电压并不适合直接加载到电池两端,而是需要先经过待充电设备内的变换电路进行变换,以得到待充电设备内的电池所预期的充电电压和/或充电电流。
变换电路可用于对电源提供电路的输出电压进行变换,以满足电池所预期的充电电压和/或充电电流的需求。
作为一种示例,该变换电路可指充电管理模块,例如充电集成电路(integrated circuit,IC)。在电池的充电过程中,用于对电池的充电电压和/或充电电流进行管理。该变换电路可以具有电压反馈模块的功能,和/或,具有电流反馈模块的功能,以实现对电池的充电电压和/或充电电流的管理。
举例来说,电池的充电过程可包括涓流充电阶段,恒流充电阶段和恒压充电阶段中的一个或者多个。在涓流充电阶段,变换电路可利用电流反馈环使得在涓流充电阶段进入到电池的电流满足电池所预期的充电电流大小(譬如第一充电电流)。在恒流充电阶段,变换电路可利用电流反馈环使得在恒流充电阶段进入电池的电流满足电池所预期的充电电流大小(譬如第二充电电流,该第二充电电流可大于第一充电电流)。在恒压充电阶段,变换电路可利用电压反馈环使得在恒压充电阶段加载到电池两端的电压的大小满足电池所预期的充电电压大小。
作为一种示例,当电源提供电路输出的电压大于电池所预期的充电电压时,变换电路可用于对电源提供电路输出的电压进行降压处理,以使降压转换后得到的充电电压满足电池所预期的充电电压需求。作为又一种示例,当电源提供电路输出的电压小于电池所预期的充电电压时,变换电路可用于对电源提供电路输出的电压进行升压处理,以使升压转换后得到的充电电压满足电池所预期的充电电压需求。
作为又一示例,以电源提供电路输出5V恒定电压为例,当电池包括单个电芯(以锂电池电芯为例,单个电芯的充电截止电压为4.2V)时,变换电路(例如Buck降压电路)可对电源提供电路输出的电压进行降压处理,以使得降压后得到的充电电压满足电池所预期的充电电压需求。
作为又一示例,以电源提供电路输出5V恒定电压为例,当电源提供电路为串联有两个及两个以上单电芯的电池(以锂电池电芯为例,单个电芯的充电截止电压为4.2V)充电时,变换电路(例如Boost升压电路)可对电源提供电路输出的电压进行升压处理,以使得升压后得到的充电电压满足电池所预期的充电电压需求。
变换电路受限于电路转换效率低下的原因,致使未被转换部分的电能以热量的形式散失。这部分热量会聚焦在待充电设备内部。待充电设备的设计空间和散热空间都很小(例如,用户使用的移动终端物理尺寸越来越轻薄,同时移动终端内密集排布了大量的电子元器件以提升移动终端的性能),这不但提升了变换电路的设计难度,还会导致聚焦在待充电设备内的热量很难及时移除,进而引发待充电设备的异常。
例如,变换电路上聚集的热量可能会对变换电路附近的电子元器件造成热干扰,引发电子元器件的工作异常。又如,变换电路上聚集的热量,可能会缩短变换电路及附近电子元件的使用寿命。又如,变换电路上聚集的热量, 可能会对电池造成热干扰,进而导致电池充放电异常。又如变换电路上聚集的热量,可能会导致待充电设备的温度升高,影响用户在充电时的使用体验。又如,变换电路上聚集的热量,可能会导致变换电路自身的短路,使得电源提供电路输出的电压直接加载在电池两端而引起充电异常,如果电池长时间处于过压充电状态,甚至会引发电池的爆炸,危及用户安全。
本发明实施例还提供一种电源提供电路10。该电源提供电路10中的控制单元15还可用于与待充电设备通信,以调整电源提供电路10的输出功率,使得电源提供电路10的输出电压和/或输出电流与待充电设备中的电池当前所处的充电阶段相匹配。
应理解,电池当前所处的充电阶段可以包括以下阶段中的至少一个:涓流充电阶段、恒压充电阶段、恒流充电阶段。
以电池当前所处的充电阶段为恒压充电阶段为例,上述与待充电设备通信,以调整电源提供电路的输出功率,使得电源提供电路的输出电压和/或输出电流与待充电设备中的电池当前所处的充电阶段相匹配可包括:在电池的恒压充电阶段,与待充电设备进行通信,以调整电源提供电路的输出功率,使得电源提供电路的输出电压与恒压充电阶段对应的充电电压相匹配。
以电池当前所处的充电阶段为恒流充电阶段为例,上述与待充电设备通信,以调整电源提供电路的输出功率,使得电源提供电路的输出电压和/或输出电流与待充电设备中的电池当前所处的充电阶段相匹配可包括:在电池的恒流充电阶段,与待充电设备进行通信,以调整电源提供电路的输出功率,使得电源提供电路的输出电流与恒流充电阶段对应的充电电流相匹配。
下面对本发明实施例提供的具有通信功能的电源提供电路10进行更为详细的举例说明。
该电源提供电路10可以获取电池的状态信息。电池的状态信息可以包括电池当前的电量信息和/或电压信息。该电源提供电路10可以根据获取到的电池的状态信息来调节电源提供电路10自身的输出电压,以满足电池所预期的充电电压和/或充电电流的需求,电源提供电路10调节后输出的电压可直接加载到电池两端为电池充电(下称“直充”)。进一步地,在电池充电过程的恒流充电阶段,电源提供电路10调节后输出的电压可直接加载在电池的两端为电池充电。
该电源提供电路10可以具有电压反馈模块的功能和电流反馈模块的功能,以实现对电池的充电电压和/或充电电流的管理。
该电源提供电路10根据获取到的电池的状态信息来调节电源提供电路10自身的输出电压可以指:该电源提供电路10能够实时获取到电池的状态信息,并根据每次所获取到的电池的实时状态信息来调节电源提供电路10自身输出的电压,以满足电池所预期的充电电压和/或充电电流。
该电源提供电路10根据实时获取到的电池的状态信息来调节电源提供电路10自身的输出电压可以指:随着充电过程中电池电压的不断上升,电源提供电路10能够获取到充电过程中不同时刻电池的当前状态信息,并根据电池的当前状态信息来实时调节电源提供电路10自身的输出电压,以满足电池所预期的充电电压和/或充电电流的需求。
举例来说,电池的充电过程可包括涓流充电阶段、恒流充电阶段和恒压充电阶段中的至少一个。在涓流充电阶段,电源提供电路10可在涓流充电阶段输出一第一充电电流对电池进行充电以满足电池所预期的充电电流的需求(第一充电电流可为恒定直流电流)。在恒流充电阶段,电源提供电路10可利用电流反馈环使得在恒流充电阶段由电源提供电路10输出且进入到电池的电流满足电池所预期的充电电流的需求(譬如第二充电电流,可为脉动波形的电流,该第二充电电流可大于第一充电电流,可以是恒流充电阶段的脉动波形的电流峰值大于涓流充电阶段的恒定直流电流大小,而恒流充电阶段的恒流可以指的是脉动波形的电流峰值或平均值保持基本不变)。在恒压充电阶段,电源提供电路10可利用电压反馈环使得在恒压充电阶段由电源提供电路10输出到待充电设备的电压(即恒定直流电压)保持恒定。
举例来说,本发明实施例中提及的电源提供电路10可用于控制待充电设备内电池的恒流充电阶段。在其他实施例中,待充电设备内电池的涓流充电阶段和恒压充电阶段的控制功能也可由本发明实施例提及的电源提供电路10和待充电设备内额外的充电芯片来协同完成。相较于恒流充电阶段,电池在涓流充电阶段和恒压充电阶段接受的充电功率较小,待充电设备内部充电芯片的效率转换损失和热量累积是可以接受的。
需要说明的是,本发明实施例中提及的恒流充电阶段或恒流阶段可以是指对电源提供电路10的输出电流进行控制的充电模式,并非要求电源提供电路10的输出电流保持完全恒定不变,例如可以是泛指电源提供电路10输出的脉动波形的电流峰值或平均值保持基本不变,或者是一个时间段保持基本不变。例如,实际中,电源提供电路10在恒流充电阶段通常采用分段恒流的方式进行充电。
分段恒流充电(Multi-stage constant current charging)可具有N个恒流阶段(N为一个不小于2的整数),分段恒流充电以预定的充电电流开始第一阶段充电,所述分段恒流充电的N个恒流阶段从第1个阶段到第N个阶段依次被执行。当恒流阶段中的当前恒流阶段转到下一个恒流阶段后,脉动波形的电流峰值或平均值可变小;当电池电压到达充电终止电压阈值时,恒流阶段中的前一个恒流阶段会转到下一个恒流阶段。相邻两个恒流阶段之间的电流转换过程可以是渐变的,或,也可以是台阶式的跳跃变化。
进一步地,在电源提供电路10的输出电流为电流值周期性变化的电流(如脉动直流电)的情况下,恒流模式可以指对周期性变化的电流的峰值或均值进行控制的充电模式,即控制电源提供电路10的输出电流的峰值不超过恒流模式对应的电流。此外,电源提供电路10的输出电流为交流电的情况下,恒流模式可以指对交流电的峰值进行控制的充电模式。
可选地,在一些实施例中,电源提供电路10可以支持第一充电模式和第二充电模式,电源提供电路10在第二充电模式下对电池的充电速度快于电源提供电路10在第一充电模式下对电池的充电速度。换句话说,相较于工作在第一充电模式下的电源提供电路来说,工作在第二充电模式下的电源提供电路充满相同容量的电池的耗时更短。进一步地,在一些实施例中,在第一充电模式下,电源提供电路10通过第二充电通道为电池充电,在第二充电模式下,电源提供电路10通过第一充电通道为电池充电。
第一充电模式可为普通充电模式,第二充电模式可为快速充电模式。该普通充电模式是指电源提供电路输出相对较小的电流值(通常小于2.5A)或者以相对较小的功率(通常小于15W)来对待充电设备中的电池进行充电,在普通充电模式下想要完全充满一较大容量电池(如3000毫安时容量的电池),通常需要花费数个小时的时间。而在快速充电模式下,电源提供电路能够输出相对较大的电流(通常大于2.5A,比如4.5A,5A甚至更高)或者以相对较大的功率(通常大于等于15W)来对待充电设备中的电池进行充电,相较于普通充电模式而言,电源提供电路在快速充电模式下完全充满相同容量电池所需要的充电时间能够明显缩短、充电速度更快。
上文指出,电源提供电路10的输出电流可以具有电流值周期性变化的第二波形。该第二波形可以是指电源提供电路10工作在第二充电模式下的输出电流的电流波形。在第一充电模式下,电源提供电路10的输出电压的 电压值可以为恒定电压值,输出电流的电流波形可以随负载的变化而变化。
进一步地,待充电设备可以与电源提供电路10(或与电源提供电路10中的控制单元15)进行双向通信,以控制在第二充电模式下的电源提供电路10的输出(即控制第二充电模式下的电源提供电路10提供的充电电压和/或充电电流)。待充电设备可以包括充电接口,待充电设备可以通过充电接口中的数据线与电源提供电路10进行通信。以充电接口为USB接口为例,数据线可以是USB接口中的D+线和/或D-线。或者,待充电设备也可以与电源提供电路10进行无线通信。
本发明实施例对电源提供电路10与待充电设备的通信内容,以及待充电设备对电源提供电路10在第二充电模式下的输出的控制方式不作具体限定,例如,待充电设备可以与电源提供电路10通信,交互待充电设备中的电池的当前总电压和/或当前总电量,并基于电池的当前总电压和/或当前总电量调整电源提供电路10的输出电压或输出电流。下面结合具体的实施例对待充电设备与电源提供电路10之间的通信内容,以及待充电设备对在第二充电模式下的电源提供电路10的输出的控制方式进行详细描述。
本发明实施例的上述描述并不会对电源提供电路10与待充电设备的主从性进行限定,换句话说,电源提供电路10与待充电设备中的任何一方均可作为主设备方发起双向通信会话,相应地另外一方可以作为从设备方对主设备方发起的通信做出第一响应或第一回复。作为一种可行的方式,可以在通信过程中,通过比较电源提供电路10侧和待充电设备侧相对于大地的电平高低来确认主、从设备的身份。
本发明实施例并未对电源提供电路10与待充电设备之间双向通信的具体实现方式作出限制,即言,电源提供电路10与待充电设备中的任何一方作为主设备方发起通信会话,相应地另外一方作为从设备方对主设备方发起的通信会话做出第一响应或第一回复,同时主设备方能够针对所述从设备方的第一响应或第一回复做出第二响应,即可认为主、从设备之间完成了一次充电模式的协商过程。作为一种可行的实施方式,主、从设备方之间可以在完成多次充电模式的协商后,再执行主、从设备方之间的充电操作,以确保协商后的充电过程安全、可靠的被执行。
作为主设备方能够根据所述从设备方针对通信会话的第一响应或第一回复做出第二响应的一种方式可以是:主设备方能够接收到所述从设备方针 对通信会话所做出的第一响应或第一回复,并根据接收到的所述从设备的第一响应或第一回复做出针对性的第二响应。作为举例,当主设备方在预设的时间内接收到所述从设备方针对通信会话的第一响应或第一回复,主设备方会对所述从设备的第一响应或第一回复做出针对性的第二响应具体为:主设备方与从设备方完成了一次充电模式的协商,主设备方与从设备方之间根据协商结果按照第一充电模式或者第二充电模式执行充电操作,即电源提供电路10根据协商结果工作在第一充电模式或者第二充电模式下为待充电设备充电。
作为主设备方能够根据所述从设备方针对通信会话的第一响应或第一回复做出进一步的第二响应的一种方式还可以是:主设备方在预设的时间内没有接收到所述从设备方针对通信会话的第一响应或第一回复,主设备方也会对所述从设备的第一响应或第一回复做出针对性的第二响应。作为举例,当主设备方在预设的时间内没有接收到所述从设备方针对通信会话的第一响应或第一回复,主设备方也会对所述从设备的第一响应或第一回复做出针对性的第二响应具体为:主设备方与从设备方完成了一次充电模式的协商,主设备方与从设备方之间按照第一充电模式执行充电操作,即电源提供电路10工作在第一充电模式下为待充电设备充电。
可选地,在一些实施例中,当待充电设备作为主设备发起通信会话,电源提供电路10作为从设备对主设备方发起的通信会话做出第一响应或第一回复后,无需要待充电设备对电源提供电路10的第一响应或第一回复做出针对性的第二响应,即可认为电源提供电路10与待充电设备之间完成了一次充电模式的协商过程,进而电源提供电路10能够根据协商结果确定以第一充电模式或者第二充电模式为待充电设备进行充电。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以控制在第二充电模式下的电源提供电路10的输出的过程包括:待充电设备与电源提供电路10进行双向通信,以协商电源提供电路10与待充电设备之间的充电模式。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以协商电源提供电路10与待充电设备之间的充电模式包括:待充电设备接收电源提供电路10发送的第一指令,第一指令用于询问待充电设备是否开启第二充电模式;待充电设备向电源提供电路10发送第一指令的回复 指令,第一指令的回复指令用于指示待充电设备是否同意开启第二充电模式;在待充电设备同意开启第二充电模式的情况下,待充电设备控制电源提供电路10通过第一充电通道为电池充电。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以控制在第二充电模式下的电源提供电路10的输出的过程,包括:待充电设备与电源提供电路10进行双向通信,以确定在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电压。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以确定在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电压包括:待充电设备接收电源提供电路10发送的第二指令,第二指令用于询问电源提供电路10的输出电压与待充电设备的电池的当前总电压是否匹配;待充电设备向电源提供电路10发送第二指令的回复指令,第二指令的回复指令用于指示电源提供电路10的输出电压与电池的当前总电压匹配、偏高或偏低。可替换地,第二指令可用于询问将电源提供电路10的当前输出电压作为在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电压是否合适,第二指令的回复指令可用于指示当前电源提供电路10的输出电压合适、偏高或偏低。
电源提供电路10的当前输出电压与电池的当前总电压匹配,或者电源提供电路10的当前输出电压适合作为在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电压可以指:电源提供电路10的当前输出电压与电池的当前总电压之间的差值在预设范围内(通常在几百毫伏的量级)。当前输出电压与电池当前总电压偏高包括:电源提供电路10的输出电压与电池的当前总电压之间的差值高于预设范围。当前输出电压与电池当前总电压偏低包括:电源提供电路10的输出电压与电池的当前总电压之间的差值低于预设范围。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以控制在第二充电模式下的电源提供电路10的输出的过程可包括:待充电设备与电源提供电路10进行双向通信,以确定在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电流。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以确定在第二充电模式下的电源提供电路10输出的用于对待充电设备 进行充电的充电电流可包括:待充电设备接收电源提供电路10发送的第三指令,第三指令用于询问待充电设备当前支持的最大充电电流;待充电设备向电源提供电路10发送第三指令的回复指令,第三指令的回复指令用于指示待充电设备当前支持的最大充电电流,以便电源提供电路10基于待充电设备当前支持的最大充电电流确定在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电流。
待充电设备当前支持的最大充电电流可根据待充电设备的电池的容量、电芯体系等得出,或者为预设值。
应理解,待充电设备根据待充电设备当前支持的最大充电电流确定在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电流的方式有多种。例如,电源提供电路10可以将待充电设备当前支持的最大充电电流确定为在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电流,也可以综合考虑待充电设备当前支持的最大充电电流以及自身的电流输出能力等因素之后,确定在第二充电模式下的电源提供电路10输出的用于对待充电设备进行充电的充电电流。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以控制在第二充电模式下的电源提供电路10的输出的过程可包括:在使用第二充电模式充电的过程中,待充电设备与电源提供电路10进行双向通信,以调整电源提供电路10的输出电流。
具体地,待充电设备与电源提供电路10进行双向通信,以调整电源提供电路10的输出电流可包括:待充电设备接收电源提供电路10发送的第四指令,第四指令用于询问电池的当前总电压;待充电设备向电源提供电路10发送第四指令的回复指令,第四指令的回复指令用于指示电池的当前总电压,以便电源提供电路10根据电池的当前总电压,调整电源提供电路10的输出电流。
可选地,在一些实施例中,待充电设备与电源提供电路10进行双向通信,以控制在第二充电模式下电源提供电路10的输出的过程可包括:待充电设备与电源提供电路10进行双向通信,以确定充电接口是否接触不良。
在一个实施例中,待充电设备与电源提供电路10进行双向通信,以便确定充电接口是否接触不良可包括:待充电设备接收电源提供电路10发送的第四指令,第四指令用于询问待充电设备的电池的当前电压;待充电设备 向电源提供电路10发送第四指令的回复指令,第四指令的回复指令用于指示待充电设备的电池的当前电压,以便电源提供电路10根据电源提供电路10的输出电压和待充电设备的电池的当前电压,确定充电接口是否接触不良。例如,电源提供电路10确定电源提供电路10的输出电压和待充电设备的当前电压的压差大于预设的电压阈值,则表明此时压差除以电源提供电路10输出的当前电流值所得到的阻抗大于预设的阻抗阈值,即可确定充电接口接触不良。
可选地,在一些实施例中,充电接口接触不良也可由待充电设备进行确定。例如,待充电设备向电源提供电路10发送第六指令,第六指令用于询问电源提供电路10的输出电压;待充电设备接收电源提供电路10发送的第六指令的回复指令,第六指令的回复指令用于指示电源提供电路10的输出电压;待充电设备根据电池的当前电压和电源提供电路10的输出电压,确定充电接口是否接触不良。在待充电设备确定充电接口接触不良后,待充电设备可以向电源提供电路10发送第五指令,第五指令用于指示充电接口接触不良。电源提供电路10在接收到第五指令之后,可以退出第二充电模式。
下面结合图10,更加详细地描述电源提供电路10与待充电设备之间的通信过程。应注意,图10的例子仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图10的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
如图10所示,电源提供电路10和待充电设备之间的通信流程(或称快充通信流程)可以包括以下五个阶段:
阶段1:
待充电设备与电源提供电路10连接后,待充电设备可以通过数据线D+、D-检测电源提供电路10的类型。当检测到电源提供电路10为如适配器等专门用于充电的电源提供电路时,待充电设备吸收的电流可以大于预设的电流阈值I2(例如可以是1A)。当电源提供电路10检测到预设时长(例如,可以是连续T1时间)内电源提供电路10的输出电流大于或等于I2时,则电源提供电路10可以认为待充电设备对于电源提供电路的类型识别已经完成。接着,电源提供电路10开启与待充电设备之间的协商过程,向待充电设备发送指令1(对应于上述第一指令),以询问待充电设备是否同意电源提供电 路10以第二充电模式对待充电设备进行充电。
当电源提供电路10收到待充电设备发送的指令1的回复指令,且该指令1的回复指令指示待充电设备不同意电源提供电路10以第二充电模式对待充电设备进行充电时,电源提供电路10再次检测电源提供电路10的输出电流。当电源提供电路10的输出电流在预设的连续时长内(例如,可以是连续T1时间)仍然大于或等于I2时,电源提供电路10再次向待充电设备发送指令1,询问待充电设备是否同意电源提供电路10以第二充电模式对待充电设备进行充电。电源提供电路10重复阶段1的上述步骤,直到待充电设备同意电源提供电路10以第二充电模式对待充电设备进行充电,或电源提供电路10的输出电流不再满足大于或等于I2的条件。
当待充电设备同意电源提供电路10以第二充电模式对待充电设备进行充电后,通信流程进入阶段2。
阶段2:
电源提供电路10的输出电压可以包括多个档位。电源提供电路10向待充电设备发送指令2(对应于上述第二指令),以询问电源提供电路10的输出电压(当前的输出电压)与待充电设备中的电池的当前电压是否匹配。
待充电设备向电源提供电路10发送指令2的回复指令,以指示电源提供电路10的输出电压与待充电设备电池的当前电压匹配、偏高或偏低。如果针对指令2的回复指令指示电源提供电路10的输出电压偏高或偏低,电源提供电路10可以将电源提供电路10的输出电压调低或调高,并再次向待充电设备发送指令2,重新询问电源提供电路10的输出电压与电池的当前电压是否匹配。重复阶段2的上述步骤直到待充电设备确定电源提供电路10的输出电压与待充电设备电池的当前电压匹配,进入阶段3。电源提供电路10的输出电压的调整方式可以有多种。例如,可以预先为电源提供电路10的输出电压设置由低到高的多个电压档位,电压档位越高,表明电源提供电路10的输出电压越大。如果指令2的回复指令指示电源提供电路10的输出电压偏高,则可以将电源提供电路10的输出电压的电压档位从当前电压档位调低一个档位;如果指令2的回复指令指示电源提供电路10的输出电压偏低,则可以将电源提供电路10的输出电压的电压档位从当前电压档位调高一个档位。
阶段3:
电源提供电路10向待充电设备发送指令3(对应于上述第三指令),询问待充电设备当前支持的最大充电电流。待充电设备向电源提供电路10发送指令3的回复指令,以指示待充电设备当前支持的最大充电电流,并进入阶段4。
阶段4:
电源提供电路10根据待充电设备当前支持的最大充电电流,确定在第二充电模式下电源提供电路10输出的用于对待充电设备进行充电的充电电流,然后进入阶段5,即恒流充电阶段。
阶段5:
在进入恒流充电阶段后,电源提供电路10可以每间隔一段时间向待充电设备发送指令4(对应于上述第四指令),询问待充电设备电池的当前电压。待充电设备可以向电源提供电路10发送指令4的回复指令,以反馈电池的当前电压。电源提供电路10可以根据电池的当前电压,判断充电接口的接触是否良好,以及是否需要降低电源提供电路10的输出电流。当电源提供电路10判断充电接口的接触不良时,可以向待充电设备发送指令5(对应于上述第五指令),电源提供电路10会退出第二充电模式,然后复位并重新进入阶段1。
可选地,在一些实施例中,在阶段2中,从待充电设备同意电源提供电路10在第二充电模式下对待充电设备进行充电到电源提供电路10将电源提供电路10的输出电压调整到合适的充电电压所经历的时间可以控制在一定范围之内。如果该时间超出预定范围,则电源提供电路10或待充电设备可以判定通信过程异常,复位以重新进入阶段1。
可选地,在一些实施例中,在阶段2中,当电源提供电路10的输出电压比待充电设备电池的当前电压高ΔV(ΔV可以设定为200~500mV)时,待充电设备可以向电源提供电路10发送指令2的回复指令,以指示电源提供电路10的输出电压与待充电设备的电池的电压匹配。
可选地,在一些实施例中,在阶段4中,电源提供电路10的输出电流的调整速度可以控制一定范围之内,这样可以避免由于调整速度过快而导致充电过程发生异常。
可选地,在一些实施例中,在阶段5中,电源提供电路10的输出电流的变化幅度可以控制在5%以内。
可选地,在一些实施例中,在阶段5中,电源提供电路10可以实时监测充电通路的阻抗。具体地,电源提供电路10可以根据电源提供电路10的输出电压、输出电流及待充电设备反馈的电池的当前电压,监测充电通路的阻抗。当“充电通路的阻抗”>“待充电设备的通路阻抗+充电线缆的阻抗”时,可以认为充电接口接触不良,电源提供电路10停止在第二充电模式下对待充电设备进行充电。
可选地,在一些实施例中,电源提供电路10开启在第二充电模式下对待充电设备进行充电之后,电源提供电路10与待充电设备之间的通信时间间隔可以控制在一定范围之内,避免通信间隔过短而导致通信过程发生异常。
可选地,在一些实施例中,充电过程的停止(或电源提供电路10在第二充电模式下对待充电设备的充电过程的停止)可以分为可恢复的停止和不可恢复的停止两种。
例如,当检测到待充电设备的电池充满或充电接口接触不良时,充电过程停止,充电通信过程复位,充电过程重新进入阶段1。然后,待充电设备不同意电源提供电路10在第二充电模式下对待充电设备进行充电,则通信流程不进入阶段2。这种情况下的充电过程的停止可以视为不可恢复的停止。
又例如,当电源提供电路10与待充电设备之间出现通信异常时,充电过程停止,充电通信过程复位,充电过程重新进入阶段1。在满足阶段1的要求后,待充电设备同意电源提供电路10在第二充电模式下对待充电设备进行充电以恢复充电过程。这种情况下的充电过程的停止可以视为可恢复的停止。
又例如,当待充电设备检测到电池出现异常时,充电过程停止,复位并重新进入阶段1。然后,待充电设备不同意电源提供电路10在第二充电模式下对待充电设备进行充电。当电池恢复正常,且满足阶段1的要求后,待充电设备同意电源提供电路10在第二充电模式下对待充电设备进行充电。这种情况下的快充过程的停止可以视为可恢复的停止。
以上对图10示出的通信步骤或操作仅是示例。例如,在阶段1中,待充电设备与电源提供电路10连接后,待充电设备与电源提供电路10之间的握手通信也可以由待充电设备发起,即待充电设备发送指令1,询问电源提供电路10是否开启第二充电模式。当待充电设备接收到电源提供电路10的 回复指令指示电源提供电路10同意电源提供电路10在第二充电模式下对待充电设备进行充电时,电源提供电路10开始在第二充电模式下对待充电设备的电池进行充电。
又如,在阶段5之后,还可包括恒压充电阶段。具体地,在阶段5中,待充电设备可以向电源提供电路10反馈电池的当前电压,当电池的当前电压达到恒压充电电压阈值时,充电阶段从恒流充电阶段转入恒压充电阶段。在恒压充电阶段中,充电电流逐渐减小,当电流下降至某一阈值时,表示待充电设备的电池已经被充满,停止整个充电过程。
本发明实施例还提供一种电源提供设备,如图11所示,该电源提供设备1100可以包括上文任意实施例提供的电源提供电路10。该电源提供设备1100例如可以是适配器或移动电源(power bank)等专门用于充电的设备,也可以是电脑等能够提供电源和数据服务的其他设备。
上文结合图1-图11,详细描述了本发明实施例提供的电源提供电路和电源提供设备。下文结合图12,详细描述本发明实施例提供的电源提供电路的控制方法。该电源提供电路可以是上文任意实施例描述的电源提供电路10,与电源提供电路相关的描述可以参见前文,此处适当省略重复的描述。
该电源提供电路可以包括初级整流单元、调制单元、变压器、次级整流滤波单元和控制单元。
初级整流单元可用于对输入的交流电进行整流以输出电压值周期性变化的第一电压。
调制单元可用于对第一电压进行调制以生成第二电压。
变压器可用于根据第二电压生成第三电压。
次级整流滤波单元可用于对第三电压进行整流和滤波以生成第一电流。图12的方法可以包括步骤1210。在步骤1210中,控制单元可以对第一电流进行调整以生成电源提供电路的输出电流。输出电流具有电流值周期性变化的第二波形,且第二波形的每个周期包含电流值取值为0的时段。
可选地,在一些实施例中,第一电流具有电流值周期性变换的第一波形;电源提供电路还可包括用于控制电源提供电路的充电线路通断的第一开关单元。
步骤1210可包括在第一波形的每个周期的部分时段控制第一开关单元处于断开状态。
可选地,在一些实施例中,第一电流具有电流值周期性变换的第一波形;电源提供电路还可包括并联在电源提供电路的充电回路之间的负载电路,以及用于控制负载电路通断的第二开关单元。
步骤1210可包括在第一波形的每个周期的部分时段控制第二开关单元处于闭合状态,其中负载电路可用于在第二开关单元处于闭合状态时,消耗充电回路上传输的电能。
可选地,在一些实施例中,上述部分时段可为第一波形的波谷所在的时段。
可选地,在一些实施例中,上述次级整流滤波单元可包括用于控制次级整流滤波单元中的滤波电路通断的第三开关单元。
步骤1210可包括在第一波形的每个周期中的目标时段控制第三开关单元处于断开状态,其中目标时段为第一波形的波谷所在的时段。
可选地,在一些实施例中,上述滤波电路可包括滤波电容。第三开关单元可包括MOS管。滤波电容的正极可以与电源提供电路的充电线路相连,滤波电容的负极可以与MOS管的源极相连。MOS管的漏极可以与地相连,MOS管的栅极可以与控制单元相连。
可选地,在一些实施例中,图12的方法还可包括步骤1220。在步骤1220中,控制单元与待充电设备通信,以调整电源提供电路的输出功率,使得电源提供电路的输出电压和/或输出电流与待充电设备中的电池当前所处的充电阶段相匹配。
可选地,在一些实施例中,电源提供电路对电池的充电阶段包括涓流充电阶段、恒压充电阶段、恒流充电阶段中的至少一个。
可选地,在一些实施例中,步骤1220可包括:在电池的恒压充电阶段,与待充电设备进行通信,以调整电源提供电路的输出功率,使得电源提供电路的输出电压与恒压充电阶段对应的充电电压相匹配。
可选地,在一些实施例中,步骤1220可包括:在电池的恒流充电阶段,与待充电设备进行通信,以调整电源提供电路的输出功率,使得电源提供电路的输出电流与恒流充电阶段对应的充电电流相匹配。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加 载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种电源提供电路,其特征在于,包括:
    初级整流单元,用于对输入的交流电进行整流以输出电压值周期性变化的第一电压;
    调制单元,用于对所述第一电压进行调制以生成第二电压;
    变压器,用于根据所述第二电压生成第三电压;
    次级整流滤波单元,用于对所述第三电压进行整流和滤波以生成第一电流;
    控制单元,用于对所述第一电流进行调整以生成所述电源提供电路的输出电流,所述输出电流具有电流值周期性变化的第二波形,且所述第二波形的每个周期包含电流值取值为0的时段。
  2. 如权利要求1所述的电源提供电路,其特征在于,所述第一电流具有电流值周期性变化的第一波形;
    所述电源提供电路还包括:用于控制所述电源提供电路的充电线路通断的第一开关单元,所述控制单元用于在所述第一波形的每个周期的部分时段控制所述第一开关单元处于断开状态。
  3. 如权利要求1所述的电源提供电路,其特征在于,所述第一电流具有电流值周期性变化的第一波形;
    所述电源提供电路还包括:并联在所述电源提供电路的充电回路之间的负载电路,以及用于控制所述负载电路通断的第二开关单元;
    所述控制单元用于在所述第一波形的每个周期的部分时段控制所述第二开关单元处于闭合状态;
    所述负载电路用于在所述第二开关单元处于闭合状态时,消耗所述充电回路上传输的电能。
  4. 如权利要求2或3所述的电源提供电路,其特征在于,所述部分时段为所述第一波形的波谷所在的时段。
  5. 如权利要求1所述的电源提供电路,其特征在于,所述次级整流滤波单元包括:第三开关单元;
    所述第三开关单元,用于控制所述次级整流滤波单元中的滤波电路通断;
    所述控制单元,用于在所述第一波形的每个周期中的目标时段控制所述 第三开关单元处于断开状态,其中所述目标时段为所述第一波形的波谷所在的时段。
  6. 如权利要求5所述的电源提供电路,其特征在于,所述滤波电路包括:滤波电容;
    所述第三开关单元包括:金属氧化物半导体MOS管;
    所述滤波电容的正极与所述电源提供电路的充电线路相连,所述滤波电容的负极与所述MOS管的源极相连,所述MOS管的漏极与地相连,所述MOS管的栅极与所述控制单元相连。
  7. 如权利要求1-6中任一项所述的电源提供电路,其特征在于,所述控制单元还用于与待充电设备通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配。
  8. 如权利要求7所述的电源提供电路,其特征在于,所述电源提供电路对所述电池的充电阶段包括涓流充电阶段、恒压充电阶段、恒流充电阶段中的至少一个。
  9. 如权利要求8所述的电源提供电路,其特征在于,所述与待充电设备通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配,包括:
    在所述电池的恒压充电阶段,与所述待充电设备进行通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压与所述恒压充电阶段对应的充电电压相匹配。
  10. 如权利要求8或9所述的电源提供电路,其特征在于,所述与待充电设备通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配,包括:
    在所述电池的恒流充电阶段,与所述待充电设备进行通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电流与所述恒流充电阶段对应的充电电流相匹配。
  11. 一种电源提供设备,其特征在于,包括如权利要求1-10中任一项所述的电源提供电路。
  12. 如权利要求11所述的电源提供设备,其特征在于,所述电源提供设备为适配器。
  13. 一种电源提供电路的控制方法,其特征在于,所述电源提供电路包括:
    初级整流单元,用于对输入的交流电进行整流以输出电压值周期性变化的第一电压;
    调制单元,用于对所述第一电压进行调制以生成第二电压;
    变压器,用于根据所述第二电压生成第三电压;
    次级整流滤波单元,用于对所述第三电压进行整流和滤波以生成第一电流;
    所述控制方法包括:
    所述电源提供电路中的控制单元对所述第一电流进行调整以生成所述电源提供电路的输出电流,所述输出电流具有电流值周期性变化的第二波形,且所述第二波形的每个周期包含电流值取值为0的时段。
  14. 如权利要求13所述的控制方法,其特征在于,所述第一电流具有电流值周期性变化的第一波形;
    所述电源提供电路还包括用于控制所述电源提供电路的充电线路通断的第一开关单元,
    所述对所述第一电流进行调整,包括:
    在所述第一波形的每个周期的部分时段控制所述第一开关单元处于断开状态。
  15. 如权利要求13所述的控制方法,其特征在于,所述第一电流具有电流值周期性变化的第一波形;
    所述电源提供电路还包括并联在所述电源提供电路的充电回路之间的负载电路,以及用于控制所述负载电路通断的第二开关单元,
    所述对所述第一电流进行调整,包括:
    在所述第一波形的每个周期的部分时段控制所述第二开关单元处于闭合状态,其中所述负载电路用于在所述第二开关单元处于闭合状态时,消耗所述充电回路上传输的电能。
  16. 如权利要求14或15所述的控制方法,其特征在于,所述部分时段为所述第一波形的波谷所在的时段。
  17. 如权利要求13所述的控制方法,其特征在于,所述次级整流滤波单元包括用于控制所述次级整流滤波单元中的滤波电路通断的第三开关单元,
    所述对所述第一电流进行调整,包括:
    在所述第一波形的每个周期中的目标时段控制所述第三开关单元处于断开状态,其中所述目标时段为所述第一波形的波谷所在的时段。
  18. 如权利要求17所述的控制方法,其特征在于,所述滤波电路包括滤波电容,所述第三开关单元包括金属氧化物半导体MOS管,所述滤波电容的正极与所述电源提供电路的充电线路相连,所述滤波电容的负极与所述MOS管的源极相连,所述MOS管的漏极与地相连,所述MOS管的栅极与所述控制单元相连。
  19. 如权利要求13-18中任一项所述的控制方法,其特征在于,所述控制方法还包括:
    与待充电设备通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配。
  20. 如权利要求19所述的控制方法,其特征在于,所述电源提供电路对所述电池的充电阶段包括涓流充电阶段、恒压充电阶段、恒流充电阶段中的至少一个。
  21. 如权利要求20所述的控制方法,其特征在于,所述与待充电设备通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配,包括:
    在所述电池的恒压充电阶段,与所述待充电设备进行通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压与所述恒压充电阶段对应的充电电压相匹配。
  22. 如权利要求20或21所述的控制方法,其特征在于,所述与待充电设备通信,以调整所述电源提供电路的输出功率,使得所述电源提供电路的输出电压和/或输出电流与所述待充电设备中的电池当前所处的充电阶段相匹配,包括:
    在所述电池的恒流充电阶段,与所述待充电设备进行通信,以调整所述 电源提供电路的输出功率,使得所述电源提供电路的输出电流与所述恒流充电阶段对应的充电电流相匹配。
PCT/CN2017/102932 2017-09-22 2017-09-22 电源提供电路、电源提供设备以及控制方法 WO2019056303A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019536307A JP6781843B2 (ja) 2017-09-22 2017-09-22 電源供給回路、電源供給機器及び制御方法
EP17925612.8A EP3537567B1 (en) 2017-09-22 2017-09-22 Power supply circuit, power supply device, and control method
CN201780061431.0A CN109874364B (zh) 2017-09-22 2017-09-22 电源提供电路、电源提供设备以及控制方法
KR1020197018300A KR102282301B1 (ko) 2017-09-22 2017-09-22 전원 공급 회로, 전원 공급 기기 및 제어 방법(power supply circuit, power supply device and control method)
PCT/CN2017/102932 WO2019056303A1 (zh) 2017-09-22 2017-09-22 电源提供电路、电源提供设备以及控制方法
TW107131353A TWI700577B (zh) 2017-09-22 2018-09-06 電源供應電路、電源供應裝置以及控制方法
US16/415,479 US11050289B2 (en) 2017-09-22 2019-05-17 Power supply circuit, power supply device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/102932 WO2019056303A1 (zh) 2017-09-22 2017-09-22 电源提供电路、电源提供设备以及控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/415,479 Continuation US11050289B2 (en) 2017-09-22 2019-05-17 Power supply circuit, power supply device and control method

Publications (1)

Publication Number Publication Date
WO2019056303A1 true WO2019056303A1 (zh) 2019-03-28

Family

ID=65810914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102932 WO2019056303A1 (zh) 2017-09-22 2017-09-22 电源提供电路、电源提供设备以及控制方法

Country Status (7)

Country Link
US (1) US11050289B2 (zh)
EP (1) EP3537567B1 (zh)
JP (1) JP6781843B2 (zh)
KR (1) KR102282301B1 (zh)
CN (1) CN109874364B (zh)
TW (1) TWI700577B (zh)
WO (1) WO2019056303A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755090B (zh) * 2019-10-28 2022-02-11 仁寶電腦工業股份有限公司 基於人工智慧的功率配置方法和功率配置裝置
TWI767280B (zh) * 2020-07-24 2022-06-11 台達電子工業股份有限公司 電源供電系統之降低線損方法及具有降低線損之電源供電系統
CN114629355A (zh) * 2020-12-11 2022-06-14 艾科微电子(深圳)有限公司 恒流控制装置及其相关恒流控制方法
CN113824189B (zh) * 2021-10-18 2024-03-19 国网黑龙江省电力有限公司电力科学研究院 一种锂离子电池的多段式充电系统
TWI784788B (zh) * 2021-11-10 2022-11-21 技嘉科技股份有限公司 供電調控電路、充電裝置與其供電模式調整方法
CN114460999A (zh) * 2022-01-04 2022-05-10 珠海格力电器股份有限公司 一种可校准电路、控制器及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854114A (zh) * 2009-04-01 2010-10-06 鸿富锦精密工业(深圳)有限公司 电源模块
CN101860190A (zh) * 2009-04-13 2010-10-13 全汉企业股份有限公司 具备功因校正的转换器的元件参数配置方法
CN105449788A (zh) * 2015-12-31 2016-03-30 东莞新能德科技有限公司 充电保护电路
CN106059025A (zh) * 2016-02-05 2016-10-26 广东欧珀移动通信有限公司 用于终端的充电系统及电源适配器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113395A (ja) * 1985-11-11 1987-05-25 三菱電機株式会社 マイクロ波光源装置用電源装置
JP2527395B2 (ja) * 1992-03-31 1996-08-21 株式会社タムラ製作所 充電器の電池温度検出方式
JPH0614474A (ja) * 1992-06-23 1994-01-21 Sony Corp 充電装置
JPH0731070A (ja) * 1993-07-02 1995-01-31 Brother Ind Ltd パルス充電器
JP2004312972A (ja) * 2003-04-02 2004-11-04 Hitachi Lighting Ltd 直流電源装置
US8018204B2 (en) * 2007-03-26 2011-09-13 The Gillette Company Compact ultra fast battery charger
US8310845B2 (en) * 2010-02-10 2012-11-13 Power Integrations, Inc. Power supply circuit with a control terminal for different functional modes of operation
JP2012223077A (ja) * 2011-04-14 2012-11-12 Kyocera Corp 充電システム
KR101370536B1 (ko) * 2012-06-01 2014-03-06 (주)플로우테크 엘이디 조명용 전원 장치
JP2014220876A (ja) * 2013-05-02 2014-11-20 株式会社ブリッジ・マーケット 電子トランス
CN103762702B (zh) * 2014-01-28 2015-12-16 广东欧珀移动通信有限公司 电子设备充电装置及其电源适配器
EP3249779B1 (en) * 2016-02-05 2020-09-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Adaptor and charge control method
JP6660253B2 (ja) * 2016-06-02 2020-03-11 Ntn株式会社 バッテリ充電装置
US11101674B2 (en) * 2016-08-05 2021-08-24 Avago Technologies International Sales Pte. Limited Battery charging architectures
CN106785141A (zh) * 2016-12-29 2017-05-31 宁德新能源科技有限公司 电池充电方法及装置
CN109219913B (zh) * 2017-04-06 2022-04-15 Oppo广东移动通信有限公司 充电系统、充电方法以及电源适配器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854114A (zh) * 2009-04-01 2010-10-06 鸿富锦精密工业(深圳)有限公司 电源模块
CN101860190A (zh) * 2009-04-13 2010-10-13 全汉企业股份有限公司 具备功因校正的转换器的元件参数配置方法
CN105449788A (zh) * 2015-12-31 2016-03-30 东莞新能德科技有限公司 充电保护电路
CN106059025A (zh) * 2016-02-05 2016-10-26 广东欧珀移动通信有限公司 用于终端的充电系统及电源适配器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3537567A4 *

Also Published As

Publication number Publication date
TWI700577B (zh) 2020-08-01
US20190280515A1 (en) 2019-09-12
CN109874364A (zh) 2019-06-11
CN109874364B (zh) 2023-01-13
KR102282301B1 (ko) 2021-07-27
KR20190086005A (ko) 2019-07-19
JP6781843B2 (ja) 2020-11-04
EP3537567A4 (en) 2020-01-15
EP3537567A1 (en) 2019-09-11
US11050289B2 (en) 2021-06-29
TW201915657A (zh) 2019-04-16
EP3537567B1 (en) 2023-02-15
JP2020504590A (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
WO2017133379A1 (zh) 适配器和充电控制方法
TWI674741B (zh) 電源供應電路、電源供應裝置和控制方法
TWI700577B (zh) 電源供應電路、電源供應裝置以及控制方法
TWI653520B (zh) 適配器和充電控制方法
US11258289B2 (en) Power supply circuit and adaptor
CN109804541B (zh) 电源提供电路、电源提供设备以及控制方法
CN109845082B (zh) 电源提供电路、电源提供设备以及控制方法
WO2018195776A1 (zh) 电源提供设备和充电控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017925612

Country of ref document: EP

Effective date: 20190606

ENP Entry into the national phase

Ref document number: 20197018300

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019536307

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE