JP2017060328A - 非接触受電装置及び電力伝送システム - Google Patents

非接触受電装置及び電力伝送システム Download PDF

Info

Publication number
JP2017060328A
JP2017060328A JP2015184140A JP2015184140A JP2017060328A JP 2017060328 A JP2017060328 A JP 2017060328A JP 2015184140 A JP2015184140 A JP 2015184140A JP 2015184140 A JP2015184140 A JP 2015184140A JP 2017060328 A JP2017060328 A JP 2017060328A
Authority
JP
Japan
Prior art keywords
power
frequency
coil
value
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015184140A
Other languages
English (en)
Inventor
崇弘 三澤
Takahiro Misawa
崇弘 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015184140A priority Critical patent/JP2017060328A/ja
Publication of JP2017060328A publication Critical patent/JP2017060328A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

【課題】送電コイルに流れる電流が最小となる最適周波数が、送電電力の周波数を調整可能な所定の周波数帯に確実に含まれるようにする。
【解決手段】受電コイル312のインダクタンスL2は、第1及び第2の値の間に設定される。第1及び第2の値の各々は、所定の受電電力において電流I1が最小となる最適周波数を算出する所定の式を用いて算出される。第1の値は、最適周波数が上記周波数帯の最大周波数であり、かつ、負荷インピーダンスRLを受電電力の制御範囲内における最大値とした場合に、上記の式から算出される。第2の値は、最適周波数が上記周波数帯の最小周波数であり、かつ、負荷インピーダンスRLを受電電力の制御範囲内における最小値とした場合に、上記の式から算出される。
【選択図】図2

Description

この発明は、非接触受電装置及び電力伝送システムに関し、特に、送電装置から磁界を通じて非接触で受電する非接触受電装置及びそれを用いた電力伝送システムに関する。
送電装置から受電装置へ磁界を通じて非接触で電力を伝送する電力伝送システムが知られている(たとえば特許文献1〜6参照)。このような電力伝送システムについて、特開2014−207795号公報(特許文献1)は、給電装置(送電装置)から車両(受電装置)へ非接触で給電する非接触給電システムを開示する。この非接触給電システムでは、給電装置は、送電コイルと、インバータと、制御部とを備える。送電コイルは、車両に搭載された受電コイルへ非接触で送電する。インバータは、駆動周波数に応じた交流電流を生成して送電コイルへ出力する。制御部は、バッテリへの充電電力指令とバッテリへの出力電力とを車両側から取得し、出力電力が充電電力指令に追従するようにインバータの駆動周波数をフィードバック制御する(特許文献1参照)。
特開2014−207795号公報 特開2013−154815号公報 特開2013−146154号公報 特開2013−146148号公報 特開2013−110822号公報 特開2013−126327号公報
上記のような電力伝送システムにおいては、受電装置における受電電力は一定に制御されている場合に、送電装置の送電コイルに流れる電流が最小となるように送電電力の周波数(インバータの駆動周波数)を調整することによって、送電コイルと受電コイルとの間の電力伝送効率を高めることができる。
ここで、送電電力の周波数は、所定の周波数帯域内とすることが規格等によって定められており、この所定の周波数帯を外れて周波数を調整することはできない。システムの回路設計(特に受電コイルのインダクタンス)によっては、送電コイルに流れる電流が最小となる最適周波数が上記の周波数帯に存在せず、周波数を最適周波数に調整できない可能性がある。
この発明は、かかる課題を解決するためになされたものであり、その目的は、送電装置から磁界を通じて非接触で受電する非接触受電装置及びそれを用いた電力伝送システムにおいて、送電コイルに流れる電流が最小となる最適周波数が、送電電力の周波数を調整可能な所定の周波数帯に確実に含まれるようにすることである。
この発明によれば、非接触受電装置は、送電装置から磁界を通じて非接触で受電する非接触受電装置である。送電装置は、所定の周波数帯において送電電力の周波数を調整可能に構成される。非接触受電装置によって受電される電力は、送電装置において送電電力の大きさを制御することによって所定の電力範囲内に制御される。非接触受電装置は、受電コイルと、キャパシタと、電気負荷とを備える。受電コイルは、送電装置の送電コイルから磁界を通じて非接触で受電する。キャパシタは、受電コイルと共振回路を形成する。電気負荷は、受電コイルによって受電される電力を受ける。受電コイルのインダクタンスは、第1の値と第1の値よりも大きい第2の値との間に設定される。第1及び第2の値の各々は、所定の受電電力において送電コイルに流れる電流が最小となる周波数を示す最適周波数を算出する第1の式を用いて算出される。第1の式は、受電コイルのインダクタンスと、キャパシタのキャパシタンスと、電気負荷のインピーダンスと、周波数と、送電コイルに流れる電流との関係を示す第2の式から、送電コイルに流れる電流が最小となる周波数を算出することにより導出される。そして、第1の値は、最適周波数が上記周波数帯の最大周波数であり、かつ、インピーダンスを上記電力範囲における最大値とした場合に、第1の式から算出されるインダクタンスである。第2の値は、最適周波数が上記周波数帯の最小周波数であり、かつ、インピーダンスを上記電力範囲における最小値とした場合に、第1の式から算出されるインダクタンスである。
また、この発明によれば、電力伝送システムは、送電装置と、受電装置とを備える。送電装置は、送電コイルと、インバータとを含む。送電コイルは、受電装置へ磁界を通じて非接触で送電する。インバータは、受電装置によって受電される電力が所定の電力範囲内に制御されるように送電電力の大きさを制御するとともに、所定の周波数帯において送電電力の周波数を調整する。受電装置は、受電コイルと、キャパシタと、電気負荷とを含む。受電コイルは、送電コイルから磁界を通じて非接触で受電する。キャパシタは、受電コイルと共振回路を形成する。電気負荷は、受電コイルによって受電される電力を受ける。受電コイルのインダクタンスは、第1の値と第1の値よりも大きい第2の値との間に設定される。第1及び第2の値の各々は、所定の受電電力において送電コイルに流れる電流が最小となる周波数を示す最適周波数を算出する第1の式を用いて算出される。第1の式は、受電コイルのインダクタンスと、キャパシタのキャパシタンスと、電気負荷のインピーダンスと、周波数と、送電コイルに流れる電流との関係を示す第2の式から、送電コイルに流れる電流が最小となる周波数を算出することにより導出される。そして、第1の値は、最適周波数が上記周波数帯の最大周波数であり、かつ、インピーダンスを上記電力範囲における最大値とした場合に、第1の式から算出されるインダクタンスである。第2の値は、最適周波数が上記周波数帯の最小周波数であり、かつ、インピーダンスを上記電力範囲における最小値とした場合に、第1の式から算出されるインダクタンスである。
上記のような第1及び第2の値の間に受電コイルのインダクタンスが設定されることにより、受電電力が所定の電力範囲内に制御される場合に、送電コイルに流れる電流が最小となる最適周波数は、周波数を調整可能な所定の周波数帯に含まれる。したがって、この発明によれば、送電電力の周波数を最適周波数に調整することができる。
この発明によれば、送電コイルに流れる電流が最小となる最適周波数が、周波数を調整可能な所定の周波数帯に確実に含まれるようにすることができる。その結果、送電電力の周波数を最適周波数に調整して、送電コイルと受電コイルとの間の電力伝送効率を高めることができる。
この発明の実施の形態による電力伝送システムの全体構成図である。 図1に示す送電部及び受電部の回路構成、並びに送電部から受電部への電力伝送を説明するための回路図である。 受電コイルのインダクタンスの設定範囲を説明するための図である。 図1に示す電源ECUにより実行される周波数制御及び送電電力制御の制御ブロック図である。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。
図1は、この発明の実施の形態による電力伝送システムの全体構成図である。図1を参照して、この電力伝送システムは、送電装置10と、受電装置20とを備える。受電装置20は、たとえば、送電装置10から供給され蓄えられた電力を用いて走行可能な車両等に搭載され得る。
送電装置10は、力率改善(PFC(Power Factor Correction))回路210と、インバータ220と、フィルタ回路230と、送電部240とを含む。また、送電装置10は、電源ECU(Electronic Control Unit)250と、通信部260と、電圧センサ270と、電流センサ272とをさらに含む。
PFC回路210は、交流電源100(たとえば系統電源)から受ける交流電力を整流及び昇圧してインバータ220へ供給するとともに、入力電流を正弦波に近づけることで力率を改善することができる。このPFC回路210には、公知の種々のPFC回路を採用し得る。なお、PFC回路210に代えて、力率改善機能を有しない整流器を採用してもよい。
インバータ220は、PFC回路210から受ける直流電力を、所定の伝送周波数を有する送電電力(交流)に変換する。インバータ220によって生成された送電電力は、フィルタ回路230を通じて送電部240へ供給される。インバータ220は、電圧形インバータであり、インバータ220を構成する各スイッチング素子に逆並列に還流ダイオードが接続されている。インバータ220は、たとえば単相フルブリッジ回路によって構成される。
フィルタ回路230は、インバータ220と送電部240との間に設けられ、インバータ220から発生する高調波ノイズを抑制する。フィルタ回路230は、たとえば、インダクタ及びキャパシタを含むLCフィルタによって構成される。
送電部240は、伝送周波数を有する交流電力(送電電力)をインバータ220からフィルタ回路230を通じて受け、送電部240の周囲に生成される電磁界を通じて、受電装置20の受電部310へ非接触で送電する。送電部240は、受電部310へ非接触で送電するための共振回路を含む。共振回路は、コイルとキャパシタとによって構成される(後述)。
電圧センサ270は、インバータ220の出力電圧Voを検出し、その検出値を電源ECU250へ出力する。電流センサ272は、インバータ220の出力電流Ioを検出し、その検出値を電源ECU250へ出力する。電圧センサ270及び電流センサ272の検出値に基づいて、インバータ220から送電部240へ供給される送電電力(すなわち、送電部240から受電装置20へ出力される電力)を検出することができる。なお、PFC回路210とインバータ220との間の直流ラインにおいて電圧及び電流を検出することにより送電電力を検出してもよい。
電源ECU250は、CPU(Central Processing Unit)、記憶装置、入出力バッファ等を含み(いずれも図示せず)、各種センサや機器からの信号を受けるとともに、送電装置10における各種機器の制御を行なう。一例として、電源ECU250は、送電装置10から受電装置20への電力伝送の実行時に、インバータ220が送電電力(交流)を生成するようにインバータ220のスイッチング制御を行なう。各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
電源ECU250により実行される主要な制御として、電源ECU250は、送電装置10から受電装置20への電力伝送の実行時に、送電電力を目標に制御するためのフィードバック制御(以下「送電電力制御」とも称する。)を実行する。具体的には、電源ECU250は、インバータ220の出力電圧のデューティ(duty)を調整することによって、送電電力を目標電力に制御する。なお、出力電圧のデューティとは、出力電圧波形(矩形波)の周期に対する正(又は負)の電圧出力時間の比として定義される。インバータ220のスイッチング素子(オン/オフデューティ0.5)の動作タイミングを変化させることによって、インバータ出力電圧のデューティを調整することができる。送電電力の目標電力は、受電装置20の受電状況に基づいて生成され得る。この実施の形態では、受電装置20において、受電電力の目標値と検出値との偏差に基づいて送電電力の目標電力が生成され、受電装置20から送電装置10へ送信される。
また、電源ECU250は、上記の送電電力制御を実行するとともに、インバータ220においてターンオン電流を制限値以下に抑えるための制御(以下「ターンオン電流制御」とも称する。)を実行する。具体的には、電源ECU250は、インバータ220の駆動周波数(スイッチング周波数)を調整することによって、ターンオン電流を制限値以下に制御する。ターンオン電流とは、インバータ220の出力電圧の立上り時におけるインバータ220の出力電流の瞬時値である。ターンオン電流が正であると、インバータ220の還流ダイオードに逆方向のリカバリー電流が流れ、還流ダイオードにおいて発熱すなわち損失が発生する。したがって、ターンオン電流の制限値は、たとえば0以下の所定値とされる。
なお、電源ECU250は、インバータ220の駆動周波数、すなわち送電電力の周波数を所定の周波数帯(規格等によって定められ得る。)において調整可能であり、この周波数帯を外れて周波数を調整することはできない。
さらに、電源ECU250は、送電電力が目標電力に制御されている下で、送電部240に含まれる送電コイル(後述)に流れる電流を最小にするための制御を実行する。詳細については後述するが、送電電力が目標電力に制御されている下で、送電コイルに流れる電流が小さいほど、送電部240(送電コイル)と受電部310(受電コイル)との間の電力伝送効率は高くなる。そこで、電源ECU250は、送電電力制御を実行しつつ、送電コイルに流れる電流が最小となるようにインバータ220の駆動周波数(送電電力の周波数)を調整する。
通信部260は、受電装置20の通信部370と無線通信するように構成され、受電装置20から送信される送電電力の目標値(目標電力)を受信するほか、送電の開始/停止や受電装置20の受電状況等の情報を受電装置20とやり取りする。
一方、受電装置20は、受電部310と、電気負荷390と、充電ECU360と、通信部370とを含む。
受電部310は、送電装置10の送電部240から出力される電力(交流)を、送電部240との間に生成される電磁界を通じて非接触で受電する。受電部310は、送電部240から非接触で受電するための共振回路を含む。共振回路は、コイルとキャパシタとによって構成される(後述)。そして、受電部310は、受電した電力を電気負荷390へ出力する。
電気負荷390は、受電部310によって受電される電力を受ける。電気負荷390は、フィルタ回路320と、整流部330と、リレー回路340と、蓄電装置350と、電圧センサ380と、電流センサ382とを含む。
フィルタ回路320は、受電部310と整流部330との間に設けられ、受電時に発生する高調波ノイズを抑制する。フィルタ回路320は、たとえば、インダクタ及びキャパシタを含むLCフィルタによって構成される。整流部330は、受電部310によって受電された交流電力を整流して蓄電装置350へ出力する。
蓄電装置350は、再充電可能な直流電源であり、たとえばリチウムイオン電池やニッケル水素電池などの二次電池によって構成される。蓄電装置350は、整流部330から出力される電力を蓄える。そして、蓄電装置350は、その蓄えられた電力を図示しない負荷駆動装置等へ供給する。なお、蓄電装置350として大容量のキャパシタも採用可能である。
リレー回路340は、整流部330と蓄電装置350との間に設けられ、送電装置10による蓄電装置350の充電時にオンされる。なお、特に図示しないが、整流部330と蓄電装置350との間(たとえば、整流部330とリレー回路340との間)に、整流部330の出力電圧を調整するDC/DCコンバータを設けてもよい。
電圧センサ380は、整流部330の出力電圧(受電電圧)を検出し、その検出値を充電ECU360へ出力する。電流センサ382は、整流部330からの出力電流(受電電流)を検出し、その検出値を充電ECU360へ出力する。電圧センサ380及び電流センサ382の検出値に基づいて、受電部310による受電電力(蓄電装置350の充電電力)を検出することができる。なお、受電電力の検出については、受電部310とフィルタ回路320との間の電力線、又はフィルタ回路320と整流部330との間の電力線において、電圧及び電流を検出することにより受電電力を検出してもよい。
充電ECU360は、CPU、記憶装置、入出力バッファ等を含み(いずれも図示せず)、各種センサや機器からの信号を受けるとともに、受電装置20における各種機器の制御を行なう。各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
充電ECU360により実行される主要な制御として、充電ECU360は、送電装置10からの受電中に、受電装置20における受電電力が所望の目標値となるように、送電装置10における送電電力の目標値(目標電力)を生成する。具体的には、充電ECU360は、受電電力の検出値と目標値との偏差に基づいて、送電装置10における送電電力の目標値を生成する。そして、充電ECU360は、生成された送電電力の目標値(目標電力)を通信部370によって送電装置10へ送信する。
なお、受電電力の目標値は、所定の電力範囲内において設定され、その電力範囲において適宜変更される。たとえば、蓄電装置350のSOC(State Of Charge)が所定レベルに達するまでは、受電電力の目標値は、所定の電力範囲内において最大に設定され(たとえば数kW)、SOCが満充電状態に近づくと、受電電力の目標値は、所定の電力範囲内において最小に設定される(たとえば1kW以下)。すなわち、受電装置20における受電電力は、送電装置10において送電電力の大きさを制御することによって所定の電力範囲内に制御される。
通信部370は、送電装置10の通信部260と無線通信するように構成され、充電ECU360において生成される送電電力の目標値(目標電力)を送電装置10へ送信するほか、電力伝送の開始/停止に関する情報を送電装置10とやり取りしたり、受電装置20の受電状況(受電電圧や受電電流、受電電力等)を送電装置10へ送信したりする。
この電力伝送システムにおいては、インバータ220から送電部240へ送電電力(交流)が供給される。送電部240及び受電部310の各々は、コイルとキャパシタとを含み、伝送周波数において共振するように設計されている。送電部240及び受電部310の共振強度を示すQ値は、100以上であることが好ましい。
送電装置10において、インバータ220から送電部240へ送電電力が供給されると、送電部240のコイルと受電部310のコイルとの間に形成される電磁界を通じて、送電部240から受電部310へエネルギー(電力)が移動する。受電部310へ移動したエネルギー(電力)は、フィルタ回路320及び整流部330を通じて蓄電装置350へ供給される。
図2は、図1に示した送電部240及び受電部310の回路構成、並びに送電部240から受電部310への電力伝送を説明するための回路図である。図2を参照して、送電部240は、送電コイル242と、キャパシタ244とを含む。キャパシタ244は、送電電力の力率を補償するために設けられ、送電コイル242に直列に接続される。送電コイル242のインダクタンスはL1であり、キャパシタ244のキャパシタンスはC1であるものとする。抵抗成分246は送電コイル242の巻線抵抗を示し、その抵抗値はr1であるものとする。なお、この回路図では、送電装置10において、インバータ220と送電部240との間のフィルタ回路230(図1)の図示は省略されている。
受電部310は、受電コイル312と、キャパシタ314とを含む。キャパシタ314は、受電電力の力率を補償するために設けられ、受電コイル312に直列に接続される。受電コイル312のインダクタンスはL2であり、キャパシタ314のキャパシタンスはC2であるものとする。抵抗成分316は受電コイル312の巻線抵抗を示し、その抵抗値はr2であるものとする。
インピーダンス395は、電気負荷390(図1)の等価インピーダンスを示し、そのインピーダンス値はRLであるものとする。すなわち、インピーダンス395は、受電部310以降の負荷インピーダンスである(以下では、電気負荷390の等価インピーダンスRLを「負荷インピーダンスRL」とも称する。)。なお、この負荷インピーダンスRLは、電気負荷390の回路構成、電気負荷390が受ける電力(受電電力)、及び電気負荷390に含まれる蓄電装置350(図1)の電圧(電気負荷390の電圧は蓄電装置350によって拘束される。)から算出することができる。
このような回路構成において、送電コイル242と受電コイル312との間の電力伝送効率ηは、次式にて表される。
Figure 2017060328
ここで、I1は送電コイル242に流れる電流を示し、I2は受電コイル312に流れる電流を示す。電気負荷390の電圧は、蓄電装置350(図1)によって拘束されるので、受電電力が一定の下では、電流I2及び負荷インピーダンスRLはほぼ一定となる。したがって、式(1)から、電力伝送効率ηは電流I1の2乗に反比例することが分かる。すなわち、送電コイル242に流れる電流I1が小さいほど、電力伝送効率ηは高くなる。
一方、図2に示した回路図から、送電コイル242に流れる電流I1と、受電コイル312に流れる電流I2とには、以下の関係が成り立つ。
Figure 2017060328
ここで、ωは、電流I1の周波数(インバータ220の駆動周波数であり、送電電力の周波数でもある。)を示す。Mは、送電コイル242と受電コイル312との相互インピーダンスを示す。上述のように、受電電力が一定の下では電流I2及び負荷インピーダンスRLはほぼ一定であるから、この式(2)は、周波数ωと電流I1との関数を示すものとみることができる。そこで、式(2)を周波数ωの関数として式(2)の導関数を算出し、算出された導関数を用いて、電流I1が最小(極小)となる周波数ωを示す最適周波数ωopを次式にて求めることができる。
Figure 2017060328
したがって、受電装置20における受電電力は一定に制御されるものとして、送電電力の周波数ω(インバータ220の駆動周波数)を最適周波数ωopに調整することによって、送電コイル242に流れる電流I1は最小となり、送電コイル242と受電コイル312との間の電力伝送効率η(式(1))を高めることができる。
ここで、送電電力の周波数ωは、所定の周波数帯域内とすることが規格等によって定められており、この所定の周波数帯を外れて周波数ωを調整することはできない。したがって、電力伝送システムの回路設計(特に受電コイル312のインダクタンスL2)によっては、送電コイル242に流れる電流I1が最小となる最適周波数ωopが上記の周波数帯に存在せず、周波数ωを最適周波数ωopに調整できない可能性がある。
そこで、この実施の形態に従う電力伝送システムにおいては、送電コイル242に流れる電流I1が最小となる周波数ωを示す最適周波数ωopが、インバータ220によって周波数ωを調整可能な所定の周波数帯に含まれるように、受電コイル312のインダクタンスL2が設定される。これにより、周波数ωを調整可能な所定の周波数帯において、周波数ωを最適周波数ωopに調整することができる。その結果、送電コイル242と受電コイル312との間の電力伝送効率ηを高めることができる。
以下、周波数ωを調整可能な所定の周波数帯に最適周波数ωopが含まれるようにするための、インダクタンスL2の設定の考え方について説明する。上記の式(3)をインダクタンスL2について整理すると次式が得られる。
Figure 2017060328
ここで、受電コイル312の巻線抵抗r2は、負荷インピーダンスRLに比べて十分に小さいので省略している。
周波数ωを調整可能な所定の周波数帯をωmin≦ω≦ωmaxとすると、負荷インピーダンスRLが一定(RL0とする。)の場合、最適周波数ωopが上記の周波数帯に含まれるには、式(4)からインダクタンスL2をL2(ωmax,RL0)≦L2≦L2(ωmin,RL0)の範囲に設定すればよい。
一方で、負荷インピーダンスRLは、電気負荷390が受ける電力(受電電力)によって変化する。受電電力の電圧は、蓄電装置350(図1)によって拘束されるので、たとえば、フィルタ回路320(図1)が4次のLCフィルタで構成される場合には、受電電力が大きいほど負荷インピーダンスRLは小さくなり、受電電力が小さいほど負荷インピーダンスRLは大きくなる。
そして、受電電力は、上述のように所定の電力範囲内において適宜変更され得る。所定の電力範囲における負荷インピーダンスRLの最小値及び最大値をそれぞれRLmin,RLmaxとすると、RLmin≦RL0≦RLmaxである任意の負荷インピーダンスRL0について、L2(ωmax,RL0)≦L2(ωmax,RLmax)、及びL2(ωmin,RLmin)≦L2(ωmin,RL0)が成り立つ。
そこで、この実施の形態に従う電力伝送システムでは、上記の検討に基づいて、図3に示されるように、式(4)を用いてインダクタンスL2が以下の範囲に設定される。
Figure 2017060328
すなわち、インダクタンスL2の下限(L2(ωmax,RLmax))は、最適周波数ωopが最大周波数ωmaxであり、かつ、負荷インピーダンスRLを受電電力の電力範囲における最大値RLmaxとした場合に、式(3)から算出されるL2の値である。また、インダクタンスL2の上限(L2(ωmin,RLmin))は、最適周波数ωopが最小周波数ωminであり、かつ、負荷インピーダンスRLを受電電力の電力範囲における最小値RLminとした場合に、式(3)から算出されるL2の値である。
受電コイル312のインダクタンスL2を式(5)で示される範囲に設定することにより、周波数ωを調整可能な所定の周波数帯(ωmin≦ω≦ωmax)、及び受電電力の所定の電力範囲において、最適周波数ωopが上記の周波数帯に含まれるようにすることができる。したがって、この実施の形態によれば、周波数ωを調整可能な所定の周波数帯において、周波数ωを最適周波数ωopに調整することができる。その結果、送電コイル242と受電コイル312との間の電力伝送効率ηを高めることができる。
図4は、図1に示した電源ECU250により実行される周波数制御及び送電電力制御の制御ブロック図である。図4を参照して、電源ECU250は、コントローラ420,440と、最適周波数算出部450とを含む。
コントローラ420は、送電電力の目標値を示す目標電力Psrと送電電力Psとの偏差に基づいて、インバータ220の出力電圧のデューティ指令値を生成する。コントローラ420は、たとえば、目標電力Psrと送電電力Psとの偏差を入力とするPI制御(比例積分制御)等を実行することによって操作量を算出し、その算出された操作量をデューティ指令値とする。これにより、送電電力Psが目標電力Psrに近づくように出力電圧のデューティが調整され、送電電力Psが目標電力Psrに制御される。
最適周波数算出部450は、上記の式(3)を用いて、送電コイル242に流れる電流I1が最小となる周波数ωを示す最適周波数ωopを算出し、算出された最適周波数ωopをコントローラ440へ出力する。なお、式(3)において、負荷インピーダンスRLは、電気負荷390(図1)の回路構成、蓄電装置350の電圧(略一定)、及び電気負荷390の受電電力Pcから算出することができる。
コントローラ440は、ターンオン電流Itが制限値を超えない範囲でインバータ220の駆動周波数(スイッチング周波数)が最適周波数ωopとなるように、インバータ220の駆動周波数の指令値を生成する。ターンオン電流Itは、電圧センサ270(図1)により出力電圧Voの立上りが検出されたときの電流センサ272(図1)の検出値(瞬時値)である。
なお、コントローラ440は、最適周波数ωopの近傍において、電流I1が最小となるようにインバータ220の駆動周波数指令値を調整してもよい。最適周波数ωopは式(3)に基づく理論値であり、回路の設計値と実際の性能とに差がある場合に、このような電流I1に基づくフィードバック制御によって設計誤差を補償するものである。
そして、受電コイル312のインダクタンスL2は、式(5)の範囲に設定されているので、上記のように設定される最適周波数ωopは、インバータ220の可動周波数(ωmin≦ω≦ωmax)に含まれることとなる。したがって、インバータ220の駆動周波数(送電電力の周波数)を最適周波数ωopに制御することにより、送電コイル242と受電コイル312との間の電力伝送効率ηを高めることができる。
以上のように、この実施の形態においては、受電コイル312のインダクタンスL2が式(5)で示される範囲に設定されるので、送電コイル242に流れる電流I1が最小となる最適周波数ωopは、送電電力の周波数ω(インバータ220の駆動周波数)を調整可能な所定の周波数帯(ωmin≦ω≦ωmax)に含まれる。したがって、この実施の形態によれば、送電電力の周波数ω(インバータ220の駆動周波数)を最適周波数ωopに調整して、送電コイル242と受電コイル312との間の電力伝送効率ηを高めることができる。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
10 送電装置、20 受電装置、100 交流電源、210 PFC回路、220 インバータ、230,320 フィルタ回路、240 送電部、242 送電コイル、244,314 キャパシタ、246,316 抵抗成分、250 電源ECU、260,370 通信部、270,380 電圧センサ、272,382 電流センサ、310 受電部、312 受電コイル、330 整流部、340 リレー回路、350 蓄電装置、360 充電ECU、395 インピーダンス、420,440 コントローラ、450 最適周波数算出部。

Claims (2)

  1. 送電装置から磁界を通じて非接触で受電する非接触受電装置であって、
    前記送電装置は、所定の周波数帯において送電電力の周波数を調整可能に構成され、
    前記非接触受電装置によって受電される電力は、前記送電装置において前記送電電力の大きさを制御することによって所定の電力範囲内に制御され、
    前記送電装置の送電コイルから磁界を通じて非接触で受電する受電コイルと、
    前記受電コイルと共振回路を形成するキャパシタと、
    前記受電コイルによって受電される電力を受ける電気負荷とを備え、
    前記受電コイルのインダクタンスは、第1の値と前記第1の値よりも大きい第2の値との間に設定され、
    前記第1及び第2の値の各々は、所定の受電電力において前記送電コイルに流れる電流が最小となる前記周波数を示す最適周波数を算出する第1の式を用いて算出され、
    前記第1の式は、前記受電コイルのインダクタンスと、前記キャパシタのキャパシタンスと、前記電気負荷のインピーダンスと、前記周波数と、前記送電コイルに流れる電流との関係を示す第2の式から、前記送電コイルに流れる電流が最小となる前記周波数を算出することにより導出され、
    前記第1の値は、前記最適周波数が前記周波数帯の最大周波数であり、かつ、前記インピーダンスを前記電力範囲における最大値とした場合に、前記第1の式から算出される前記インダクタンスであり、
    前記第2の値は、前記最適周波数が前記周波数帯の最小周波数であり、かつ、前記インピーダンスを前記電力範囲における最小値とした場合に、前記第1の式から算出される前記インダクタンスである、非接触受電装置。
  2. 送電装置と、
    受電装置とを備え、
    前記送電装置は、
    受電装置へ磁界を通じて非接触で送電する送電コイルと、
    前記受電装置によって受電される電力が所定の電力範囲内に制御されるように送電電力の大きさを制御するとともに、所定の周波数帯において送電電力の周波数を調整するインバータとを含み、
    前記受電装置は、
    前記送電コイルから磁界を通じて非接触で受電する受電コイルと、
    前記受電コイルと共振回路を形成するキャパシタと、
    前記受電コイルによって受電される電力を受ける電気負荷とを含み、
    前記受電コイルのインダクタンスは、第1の値と前記第1の値よりも大きい第2の値との間に設定され、
    前記第1及び第2の値の各々は、所定の受電電力において前記送電コイルに流れる電流が最小となる前記周波数を示す最適周波数を算出する第1の式を用いて算出され、
    前記第1の式は、前記受電コイルのインダクタンスと、前記キャパシタのキャパシタンスと、前記電気負荷のインピーダンスと、前記周波数と、前記送電コイルに流れる電流との関係を示す第2の式から、前記送電コイルに流れる電流が最小となる前記周波数を算出することにより導出され、
    前記第1の値は、前記最適周波数が前記周波数帯の最大周波数であり、かつ、前記インピーダンスを前記電力範囲における最大値とした場合に、前記第1の式から算出される前記インダクタンスであり、
    前記第2の値は、前記最適周波数が前記周波数帯の最小周波数であり、かつ、前記インピーダンスを前記電力範囲における最小値とした場合に、前記第1の式から算出される前記インダクタンスである、電力伝送システム。
JP2015184140A 2015-09-17 2015-09-17 非接触受電装置及び電力伝送システム Pending JP2017060328A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015184140A JP2017060328A (ja) 2015-09-17 2015-09-17 非接触受電装置及び電力伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015184140A JP2017060328A (ja) 2015-09-17 2015-09-17 非接触受電装置及び電力伝送システム

Publications (1)

Publication Number Publication Date
JP2017060328A true JP2017060328A (ja) 2017-03-23

Family

ID=58391888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015184140A Pending JP2017060328A (ja) 2015-09-17 2015-09-17 非接触受電装置及び電力伝送システム

Country Status (1)

Country Link
JP (1) JP2017060328A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019022266A (ja) * 2017-07-12 2019-02-07 トヨタ自動車株式会社 非接触電力伝送システム
JP2019531685A (ja) * 2017-04-07 2019-10-31 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdongoppo Mobile Telecommunications Corp., Ltd. 無線充電システム、装置、方法及び充電対象機器
US11075542B2 (en) 2017-04-07 2021-07-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device to-be-charged, wireless charging apparatus, and wireless charging method
US11171499B2 (en) 2017-04-13 2021-11-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device to be charged with multiple charging channels, charging method, and charging control circuit with multiple charging channels
US11394250B2 (en) 2017-04-07 2022-07-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging device, wireless charging method and device to be charged

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019531685A (ja) * 2017-04-07 2019-10-31 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdongoppo Mobile Telecommunications Corp., Ltd. 無線充電システム、装置、方法及び充電対象機器
US10998751B2 (en) 2017-04-07 2021-05-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging system, wireless charging device, wireless charging method, and device to be charged
US11075542B2 (en) 2017-04-07 2021-07-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device to-be-charged, wireless charging apparatus, and wireless charging method
US11201509B2 (en) 2017-04-07 2021-12-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging device, wireless charging method, and device to-be-charged
US11233423B2 (en) 2017-04-07 2022-01-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device to-be-charged, wireless charging apparatus, and wireless charging method
US11355963B2 (en) 2017-04-07 2022-06-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device to-be-charged, wireless charging apparatus, and wireless charging method
US11368050B2 (en) 2017-04-07 2022-06-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging device, method, and device to-be-charged
US11394250B2 (en) 2017-04-07 2022-07-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging device, wireless charging method and device to be charged
US11437848B2 (en) 2017-04-07 2022-09-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging device, device to-be-charged, and method for controlling charging
US11437865B2 (en) 2017-04-07 2022-09-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging system, wireless charging method, and device to-be-charged
US11171499B2 (en) 2017-04-13 2021-11-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device to be charged with multiple charging channels, charging method, and charging control circuit with multiple charging channels
JP2019022266A (ja) * 2017-07-12 2019-02-07 トヨタ自動車株式会社 非接触電力伝送システム

Similar Documents

Publication Publication Date Title
JP6299738B2 (ja) 非接触送電装置及び電力伝送システム
JP6350399B2 (ja) 非接触送電装置及び電力伝送システム
JP6079878B2 (ja) 給電装置、および非接触給電システム
JP6206579B2 (ja) 給電装置及び非接触給電システム
JP2017060328A (ja) 非接触受電装置及び電力伝送システム
CN109391043B (zh) 无线电力接收设备
WO2014196239A1 (ja) 給電装置、および非接触給電システム
US10298063B2 (en) Power-supplying device and wireless power supply system
US20180358843A1 (en) Power transmitting device and power receiving device
JP6269570B2 (ja) 非接触送電装置
JP6565809B2 (ja) 送電装置及び電力伝送システム
JP6579064B2 (ja) 送電装置及び電力伝送システム
JP6481558B2 (ja) 非接触送電装置
JP6414538B2 (ja) 非接触送電装置及び非接触電力伝送システム
JP6354678B2 (ja) 非接触送電装置
JP2019103231A (ja) 非接触送電装置及び電力伝送システム
JP6350439B2 (ja) 非接触送電装置
JP6565808B2 (ja) 送電装置及び電力伝送システム
JP6409750B2 (ja) 非接触電力伝送システム
JP6372444B2 (ja) 非接触送電装置
JP6911594B2 (ja) 非接触電力伝送システム
CN110875639A (zh) 电力传输装置、电力接收装置和电力传输装置的控制方法
JP2017093089A (ja) 送電装置、受電装置及び電力伝送システム
JP2016092960A (ja) 送電機器及び非接触電力伝送装置
JP2017131073A (ja) 送電装置及び電力伝送システム