WO2018184583A1 - 待充电设备、无线充电装置、无线充电方法及系统 - Google Patents

待充电设备、无线充电装置、无线充电方法及系统 Download PDF

Info

Publication number
WO2018184583A1
WO2018184583A1 PCT/CN2018/082011 CN2018082011W WO2018184583A1 WO 2018184583 A1 WO2018184583 A1 WO 2018184583A1 CN 2018082011 W CN2018082011 W CN 2018082011W WO 2018184583 A1 WO2018184583 A1 WO 2018184583A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
wireless
current
output
Prior art date
Application number
PCT/CN2018/082011
Other languages
English (en)
French (fr)
Inventor
万世铭
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2017/079784 external-priority patent/WO2018184230A1/zh
Priority claimed from PCT/CN2017/080334 external-priority patent/WO2018188006A1/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to JP2019552162A priority Critical patent/JP6871409B2/ja
Priority to CN201880007014.2A priority patent/CN110178283B/zh
Priority to KR1020197031258A priority patent/KR102325154B1/ko
Priority to EP18781213.6A priority patent/EP3605780B1/en
Publication of WO2018184583A1 publication Critical patent/WO2018184583A1/zh
Priority to US16/551,573 priority patent/US11075542B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present disclosure relates to the field of charging technologies, and in particular, to a device to be charged, a wireless charging device, a wireless charging method, and a system.
  • the wireless energy transmission methods of wireless charging technology include: electromagnetic induction type, electromagnetic resonance type and electromagnetic radiation type.
  • electromagnetic induction type wireless energy transmission principle is to transmit the capability through the coil coupling, and a coil is respectively arranged at the transmitting end and the receiving end.
  • the transmitting end is connected with a high-frequency alternating signal to generate an electromagnetic signal, and the receiving end converts the received electromagnetic signal into a current through a coil, and the current is supplied to the device after being processed by a circuit such as rectification and voltage regulation.
  • the interface for connecting the charging cable provided on the device to be charged can be removed. Moreover, it is not necessary to connect cables when charging, which makes charging more convenient.
  • the related art wireless charging technology has at least a drawback that the device generates severe heat when wirelessly charging.
  • An object of the present disclosure is to provide a device to be charged, a wireless charging device, a wireless charging method, and a system to solve the defects in the related art.
  • a wireless charging device including:
  • a voltage conversion circuit for receiving an input voltage and converting the input voltage to obtain an output voltage and an output current of the voltage conversion circuit
  • a wireless transmitting circuit configured to emit an electromagnetic signal according to an output voltage and an output current of the voltage converting circuit to wirelessly charge the charging device
  • a first control circuit configured to perform wireless communication with the device to be charged during the wireless charging, to obtain an output voltage and/or an output current of the step-down circuit fed back by the device to be charged;
  • An output voltage and/or an output current of the buck circuit adjusts an output voltage and/or an output current of the voltage conversion circuit to adjust a transmit power of the electromagnetic signal such that an input voltage and an output voltage of the buck circuit The difference satisfies the preset condition.
  • the first control circuit is configured to adjust an output voltage of the voltage conversion circuit according to an output current of the step-down circuit fed back by the device to be charged and a preset current threshold.
  • the current threshold includes: a first current threshold and a second current threshold;
  • the first control circuit is configured to control an output voltage of the voltage conversion circuit to increase when an output current of the buck circuit is greater than the first current threshold; and an output current of the buck circuit is less than At the second current threshold, the output voltage of the voltage conversion circuit is controlled to decrease.
  • the first control circuit is configured to adjust an output of the voltage conversion circuit according to an output voltage of the step-down circuit fed back by the device to be charged and a corresponding relationship between a preset voltage difference and a charging efficiency. Voltage.
  • the first control circuit is configured to adjust an output of the voltage conversion circuit according to an output voltage of the step-down circuit fed back by the device to be charged and a corresponding relationship between a preset voltage difference and a charging efficiency.
  • the voltage is the first voltage
  • the voltage conversion circuit is connected to an external power supply device
  • the first control circuit is further configured to communicate with the external power supply device, so that the external voltage device adjusts a current supplied to the voltage conversion circuit according to an output voltage and/or an output current of the buck circuit Voltage value and / or current value.
  • the first control circuit is further configured to communicate with the device to be charged to determine a charging mode, where the charging mode includes a first charging mode and a second charging mode, wherein The maximum transmit power of the wireless transmit circuit in one charging mode is greater than the maximum transmit power of the wireless transmit circuit when the second charging mode is employed.
  • a device to be charged including:
  • a wireless receiving circuit configured to receive an electromagnetic signal emitted by the wireless charging device, and convert the electromagnetic signal into an output voltage and an output current of the wireless receiving circuit
  • a step-down circuit configured to receive an output voltage of the wireless receiving circuit, and perform a step-down process on an output voltage of the wireless receiving circuit to charge the battery;
  • a detection circuit for detecting an output voltage and/or an output current of the step-down circuit
  • a second control circuit configured to communicate with the wireless charging device according to an output voltage and/or an output current on the step-down circuit detected by the detecting circuit, so that the wireless charging device adjusts the electromagnetic signal
  • the transmission power is such that the voltage difference between the input voltage and the output voltage of the step-down circuit satisfies a preset condition.
  • the battery includes N cells in series with each other, where N is a positive integer greater than one.
  • the buck circuit is a Buck circuit or a charge pump.
  • the second control circuit is configured to send adjustment information to the wireless charging device according to an output voltage and/or an output current on the buck circuit detected by the detecting circuit,
  • the adjustment information is used to instruct the wireless charging device to perform voltage and/or current adjustment on the power received from the power supply device to adjust the transmission power of the electromagnetic signal.
  • the device to be charged further includes:
  • the conversion circuit is configured to receive an output voltage and an output current of the wireless receiving circuit, and perform constant voltage and/or constant current control on an output voltage and/or an output current of the wireless receiving circuit to perform the battery Charging
  • the second control circuit is further configured to control switching between the step-down circuit and the conversion circuit.
  • the second control circuit is further configured to communicate with the wireless charging device to determine to control operation of the buck circuit or control operation of the conversion circuit.
  • the second control circuit is further configured to control switching between the step-down circuit and the conversion circuit according to a temperature of the battery.
  • the current output by the buck circuit is constant direct current, pulsating direct current, or alternating current.
  • a wireless charging method which is applied to a device to be charged, and the method includes:
  • the communicating with the wireless charging device according to the detected output voltage and/or output current on the step-down circuit comprises:
  • the method further includes:
  • the wireless charging device communicates to determine control of operation of the buck circuit or control operation of the conversion circuit.
  • a wireless charging method for use in a wireless charging device, including:
  • a wireless transmitting circuit to emit an electromagnetic signal according to an output voltage and an output current of the voltage converting circuit to wirelessly charge the device to be charged
  • performing wireless communication with the device to be charged acquiring an output voltage and/or an output current of the step-down circuit fed back by the device to be charged; and output voltage according to the output voltage of the step-down circuit And/or output current adjusts an output voltage and/or an output current of the voltage conversion circuit to adjust a transmission power of the electromagnetic signal such that a voltage difference between an input voltage and an output voltage of the step-down circuit satisfies a preset condition.
  • a wireless charging system comprising a wireless charging device and a device to be charged;
  • the device to be charged includes:
  • a wireless receiving circuit configured to receive an electromagnetic signal emitted by the wireless charging device, and convert the electromagnetic signal into an output voltage and an output current of the wireless receiving circuit
  • a step-down circuit configured to receive an output voltage of the wireless receiving circuit, and perform a step-down process on an output voltage of the wireless receiving circuit to charge the battery;
  • a detection circuit for detecting an output voltage and/or an output current of the step-down circuit
  • a second control circuit configured to communicate with the wireless charging device according to an output voltage and/or an output current on the buck circuit detected by the detecting circuit
  • the wireless charging device includes:
  • a voltage conversion circuit for receiving an input voltage and converting the input voltage to obtain an output voltage and an output current of the voltage conversion circuit
  • a wireless transmitting circuit configured to emit an electromagnetic signal according to an output voltage and an output current of the voltage converting circuit to wirelessly charge the device to be charged
  • a first control circuit configured to perform wireless communication with the device to be charged during the wireless charging, and acquire an output voltage and/or an output current of the step-down circuit fed back by the device to be charged;
  • An output voltage and/or an output current of the step-down circuit adjusts an output voltage and/or an output current of the voltage conversion circuit to adjust a transmission power of the electromagnetic signal such that an input voltage and an output voltage of the step-down circuit The pressure difference meets the preset conditions.
  • the device to be charged detects the output voltage and/or the output current of the step-down circuit and feeds back to the wireless charging device; the wireless charging device adjusts the transmitting power, thereby controlling the input voltage and output of the step-down circuit of the device to be charged.
  • the voltage difference between the voltages is used to improve the charging efficiency; on the other hand, the present disclosure can reduce the heat generation of the receiving coil, the step-down circuit, and the like by the differential pressure control, and reduce the temperature rise.
  • FIG. 1 is a schematic diagram of a wireless charging system according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing the structure of a wireless charging apparatus according to an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram of a device to be charged according to an embodiment of the present disclosure
  • FIG. 4 is a structural block diagram of a device to be charged according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a communication flow between a wireless charging device and a device to be charged in an embodiment of the present disclosure
  • FIG. 6 is a schematic flow chart of wireless charging according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flow chart of a wireless charging method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flow chart of a wireless charging method according to another embodiment of the present disclosure.
  • circuitry refers to all of the following: (a) hardware-only circuit implementations (such as only in analog and/or digital circuits) and (b) circuits and software Combination of (and/or firmware), such as (as applicable): (i) a combination of processors(s) or (ii) processor(s)/software (including digital signal processor(s)) And software and a portion of the memory(s) that work together to cause a device such as a mobile phone or server to perform various functions) and (c) a microprocessor(s) or microprocessor(s) A portion of a circuit that requires software or firmware for operation, even if the software or firmware does not physically exist.
  • This definition of "circuitry” applies to all uses of this term in this disclosure, including in any claims.
  • the device to be charged may refer to a terminal, and the “terminal” may include, but is not limited to, being configured to be connected via a wired line (eg, via a public switched telephone network (PSTN), a digital subscriber line). (digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (eg, for cellular networks, wireless local area networks (WLANs), such as handheld digital Digital television network of a digital video broadcasting handheld (DVB-H) network, a satellite network, an amplitude modulation-frequency modulation (AM-FM) broadcast transmitter, and/or a wireless interface of another communication terminal A device that receives/transmits a communication signal.
  • a wired line eg, via a public switched telephone network (PSTN), a digital subscriber line).
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • DSL digital cable, direct cable connection, and/or another data connection/network
  • WLANs wireless local area networks
  • a terminal configured to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal”, and/or a “mobile terminal.”
  • mobile terminals include, but are not limited to, satellite or cellular telephones; personal communication system (PCS) terminals that can combine cellular radio telephones with data processing, fax, and data communication capabilities; may include radio telephones, pagers, the Internet/ Intranet access, web browser, memo pad, calendar, and/or personal digital assistant (PDA) for global positioning system (GPS) receivers; and conventional laptop and/or palm Receiver or other electronic device including a radiotelephone transceiver.
  • the device or terminal to be charged used in the embodiments of the present disclosure may further include a power bank capable of receiving charging of the wireless charging device to store energy to provide energy for other electronic devices.
  • FIG. 1 is a schematic diagram of a wireless charging system according to an embodiment of the present disclosure.
  • the wireless charging system 10 includes a power supply device 100, a wireless charging device 200, and a device to be charged 300.
  • the power supply device 100 is configured to provide direct current to the wireless charging device 200.
  • the power supply device 100 may include a rectifier circuit, a transformer circuit, a control circuit, a charging interface, and the like, and converts the AC power input into a DC power output to be provided to the wireless charging device 200.
  • the power supply device can be an adapter, a charging treasure, or a vehicle power source.
  • the power supply device 100 can also provide AC power directly to the wireless charging device 200.
  • the power supply device 100 can be an AC power source.
  • the wireless charging device 200 further includes a circuit or a module for converting AC power to DC power, for example, a rectification filter circuit, a DC/DC conversion circuit 307, and the like.
  • the wireless charging device 200 is configured to convert the direct current or alternating current provided by the power supply device 100 into an electromagnetic signal to perform power transmission by wireless.
  • the wireless charging apparatus 200 includes: a rectifying and filtering circuit (not shown), a DC/DC converting circuit 307 (not shown), a wireless transmitting circuit 201, and a first control circuit. 202.
  • the 220V alternating current is converted into a stable direct current by a rectifying and filtering circuit, and then the voltage is adjusted to a fixed value to be supplied to the wireless transmitting circuit 201 by the conversion of the DC/DC converting circuit 307.
  • the rectifying filter circuit and the DC/DC converting circuit 307 are optional. As described above, when the power supply device 100 is an AC power source, the wireless charging device 200 may be provided with a rectifying filter circuit and a DC/DC converting circuit 307. When the power supply device 100 can provide stable direct current, the rectification filter circuit and/or the DC/DC conversion circuit 307 can be removed.
  • the wireless transmitting circuit 201 is configured to convert the direct current supplied from the direct current power supplied from the DC/DC converting circuit 307 or the power supply device or the like into an alternating current that can be coupled to the transmitting coil, and convert the alternating current into an electromagnetic signal through the transmitting coil to transmit.
  • the wireless transmitting circuit 201 may include an inverter circuit and a resonant circuit.
  • the inverter circuit can include a plurality of switching tubes, and the output power can be adjusted by controlling the conduction time (duty ratio) of the switching tubes.
  • a resonant circuit for transmitting electrical energy can include a capacitor and a transmitting coil. The magnitude of the output power of the wireless transmitting circuit 201 can be adjusted by adjusting the resonant frequency of the resonant circuit.
  • the wireless charging device 200 can be a wireless charging base or a device having an energy storage function or the like.
  • the wireless charging device 200 is a device having an energy storage function, it further includes an energy storage module (for example, a lithium battery 305) that can be extracted from an external power supply device and stored.
  • the energy storage module can provide power to the wireless transmitting circuit 201.
  • the wireless charging device 200 can obtain power from an external power supply device by wire or wirelessly.
  • the wired method for example, is connected to an external power supply device through a charging interface (for example, a Type-C interface) to obtain power.
  • the wireless charging device 200 includes a wireless receiving circuit 301 that can wirelessly acquire power from a device having a wireless charging function.
  • the first control circuit 202 is configured to control the wireless charging process.
  • the first control circuit 202 can be in communication with a power supply device to determine an output voltage and/or output current of the power supply device.
  • the first control circuit 202 can also communicate with the device to be charged to implement interaction of charging information (eg, battery 305 voltage information of the device to be charged, battery 305 temperature information, charging mode information, etc.), and charging parameters for wireless charging. (eg, charging voltage and/or charging current) is determined and the like.
  • the wireless charging device 200 may also include other related hardware, logic, circuitry, and/or code to implement the corresponding functionality.
  • the wireless charging device 200 can further include a display module (eg, can be a light emitting diode or an LED display) for displaying the state of charge (eg, charging in progress or termination, etc.) in real time during wireless charging.
  • a display module eg, can be a light emitting diode or an LED display
  • the state of charge eg, charging in progress or termination, etc.
  • the wireless charging device 200 further includes: a voltage conversion circuit 203.
  • the voltage conversion circuit 203 is configured to perform voltage conversion on the current supplied to the wireless transmission circuit 201 when the voltage of the current supplied to the wireless transmission circuit 201 does not satisfy the preset condition.
  • the current provided to the wireless transmit circuit 201 can be provided by the DC/DC converter circuit 307, provided by the power supply device or provided by the aforementioned energy storage module, and the like.
  • the voltage supplied to the wireless transmitting circuit 201 can reach the voltage requirement of the wireless transmitting circuit 201 for the input voltage
  • the voltage converting circuit 203 can be omitted to simplify the implementation of the wireless charging device.
  • the voltage requirement of the wireless transmitting circuit 201 for the input voltage can be set according to actual needs, for example, set to 10V.
  • the voltage of the current supplied to the wireless transmitting circuit 201 cannot satisfy the preset condition, that is, the voltage is lower than the required voltage of the wireless transmitting circuit 201 or the voltage is higher than the required voltage of the wireless transmitting circuit 201.
  • this charging mode requires a higher input voltage to the wireless transmitting circuit 201 (eg, a voltage requirement of 10V or 20V).
  • the voltage converting circuit 203 can boost the input voltage to reach the voltage demand of the wireless transmitting circuit 201. If the output voltage of the power supply device exceeds the voltage requirement of the wireless transmission circuit 201, the voltage conversion circuit 203 can step down the input voltage to reach the voltage requirement of the wireless transmission circuit 201.
  • the device to be charged 300 includes a wireless receiving circuit 301, a second control circuit 302, a step-down circuit 303, a detecting circuit 304, a battery 305, and a first charging channel 306.
  • the wireless receiving circuit 301 is configured to convert an electromagnetic signal emitted by the wireless transmitting circuit 201 of the wireless charging device 200 into an alternating current through a receiving coil, and perform rectification and/or filtering operations on the alternating current, and the alternating current Converted to a stable direct current to charge battery 305.
  • the wireless receiving circuit 301 includes a receiving coil and an AC/DC converting circuit 307.
  • the AC/DC conversion circuit 307 is configured to convert the alternating current received by the receiving coil into direct current.
  • the battery 305 may include a single cell or multiple cells.
  • the plurality of cells are in a series relationship. Therefore, the charging voltage that the battery 305 can withstand is the sum of the charging voltages that the plurality of batteries can withstand, and the charging speed can be increased, and the charging heat can be reduced.
  • the voltage of the internal single cell is generally between 3.0V and 4.35V.
  • the total voltage of the two cells in series is 6.0V-8.7V.
  • the output voltage of the wireless receiving circuit 301 can be improved when the plurality of cells are connected in series compared to the single cell.
  • the charging current required for multi-cell cells is about 1/N of the charging current required for a single cell (N is the series-connected electricity in the device to be charged) The number of cores).
  • the multi-cell cell scheme can reduce the charging current, thereby reducing the heat generation of the device to be charged during the charging process.
  • the multi-cell series scheme can be used to increase the charging voltage and thereby increase the charging speed.
  • the first charging channel 306 can be a wire.
  • a buck circuit 303 can be disposed on the first charging channel 306.
  • the step-down circuit 303 is configured to step down the DC power outputted by the wireless receiving circuit 301 to obtain an output voltage and an output current of the first charging channel 306.
  • the voltage value and current value of the direct current output by the first charging channel 306, which meets the charging requirements of the battery 305, can be directly loaded into the battery 305.
  • the detecting circuit 304 is configured to detect a voltage value and/or a current value of the first charging channel 306.
  • the voltage value and/or current value of the first charging channel 306 may refer to a voltage value and/or a current value between the wireless receiving circuit 301 and the step-down circuit 303, that is, an output voltage value and/or a current value of the wireless receiving circuit 301.
  • the voltage value and/or current value on the first charging channel 306 may also refer to a voltage value and/or a current value between the buck circuit 303 and the battery 305, that is, an output voltage and/or an output current of the buck circuit 303.
  • the detection circuit 304 can include a voltage detection circuit 304 and a current detection circuit 304.
  • the voltage detection circuit 304 can be used to sample the voltage on the first charging channel 306 and send the sampled voltage value to the second control circuit 302.
  • voltage detection circuit 304 can sample the voltage on first charging channel 306 by series voltage division.
  • the current detection circuit 304 can be used to sample the current on the first charging channel 306 and send the sampled current value to the second control circuit 302.
  • current sensing circuit 304 can sample detect current on first charging channel 306 via a current sense resistor and a galvanometer.
  • the second control circuit 302 is configured to communicate with the first control circuit 202 of the wireless charging device, and the detection circuit 304 detects the voltage value and/or the current value to be fed back to the first control circuit 202. Therefore, the first control circuit 202 can adjust the transmit power of the wireless transmit circuit 201 according to the feedback voltage value and/or the current value, so that the voltage value and/or current value of the direct current output from the first charging channel 306 and the battery 305 are The required charging voltage value and/or current value match.
  • matching the charging voltage value and/or current value required for the battery 305" includes: the voltage value and/or current value of the direct current output from the first charging channel 306 and the battery 305
  • the required charging voltage value and/or current value are equal or floating preset ranges (eg, the voltage value floats up and down from 100 millivolts to 200 millivolts).
  • the implementation of the step-down circuit 303 can be various.
  • the buck circuit 303 can be a Buck circuit.
  • the buck circuit 303 can be a charge pump.
  • the charge pump is composed of a plurality of switching devices, and the heat generated by the current flowing through the switching device is small, and is almost equivalent to the current directly passing through the wires. Therefore, the charge pump is used as the step-down circuit 303, which not only can reduce the voltage, but also has a low heat generation.
  • the buck circuit 303 can also be a half voltage circuit.
  • the boosting factor of the voltage conversion circuit 203 of the wireless charging device 200 and the step-down factor of the step-down circuit 303 of the device 300 to be charged are set and the output voltage that the power supply device can provide, and the charging required by the battery 305.
  • the voltage and other parameters are related to each other, and the two may be equal or not equal to each other.
  • the boosting factor of the voltage conversion circuit 203 and the step-down factor of the step-down circuit 303 can be set equal.
  • the voltage conversion circuit 203 may be a voltage multiplying circuit for boosting the output voltage of the power supply device by a factor of two; the step-down circuit 303 may be a half voltage circuit for reducing the output voltage of the wireless receiving circuit 301 by half.
  • the boosting multiple of the voltage conversion circuit 203 and the step-down multiple of the step-down circuit 303 are set to 1:1.
  • This arrangement can make the output voltage and output current of the step-down circuit 303 and the power supply respectively.
  • the output voltage of the device is consistent with the output current, which is beneficial to simplify the implementation of the control circuit. For example, when the second control circuit 302 knows that the output current of the step-down circuit 303 is 4.5A through the detection circuit 304, the output power of the power supply device needs to be adjusted, so that the step-down circuit 303 is required.
  • the output current reaches 5A.
  • the first control circuit 202 or the second control circuit 302 needs to be based on the adjustment of the output power of the power supply device.
  • the difference between the current output current of the step-down circuit 303 and the expected value recalculates the adjustment value of the output power of the power supply device.
  • the ratio of the boosting multiple of the voltage conversion circuit 203 to the step-down factor of the step-down circuit 303 is set to 1:1, and the second control circuit 302 notifies the first control circuit 202 to increase the output current to 5A. Yes, which simplifies the feedback adjustment of the wireless charging path.
  • the device to be charged 300 further includes: a second charging channel 308 .
  • the second charging channel 308 can be a wire.
  • a conversion circuit 307 is provided on the second charging channel 308 for voltage control of the direct current output from the wireless receiving circuit 301 to obtain an output voltage and an output current of the second charging channel 308 to charge the battery 305.
  • transform circuit 307 includes circuitry for voltage regulation and circuitry for achieving constant current and constant voltage.
  • the circuit for voltage regulation is connected to the wireless receiving circuit 301, and the circuit for realizing constant current and constant voltage is connected to the battery 305.
  • the wireless transmitting circuit 201 can adopt a constant transmitting power.
  • the converting circuit 307 processes the voltage and current to meet the charging requirement of the battery 305.
  • Input battery 305 enables charging of battery 305.
  • the constant transmit power does not have to be that the transmit power remains completely constant, which may vary over a range, for example, the transmit power is 7.5 W up and down by 0.5 W.
  • the second control circuit 302 is further configured to compare the output voltage value of the second charging channel 308 with the set target value (for example, the actual demand voltage value of the battery 305). The error value is determined, and the error value is sent to the first controller in the form of a data packet.
  • the output voltage value of the second charging channel 308 can be a voltage value and/or a current value between the conversion circuit 307 and the battery 305.
  • the wireless charging device and the device to be charged can be wirelessly charged in accordance with the Qi standard.
  • the data signal including the above error value can be coupled to the coil of the wireless receiving circuit 301 by means of signal modulation to be transmitted to the coil of the wireless transmitting circuit 201, and then transmitted to the first controller.
  • the radio energy transmission control process may include:
  • the second control circuit 302 compares the detected output voltage value of the second charging channel 308 with the set target value, determines the error value, and then sends the error value to the first controller in the form of a data packet; the first control The device determines the difference according to the current value of the current transmitting coil and the information of the error packet, and sets a new operating frequency according to the difference to adjust the magnitude of the transmitting power of the wireless transmitting circuit 201.
  • the charging mode corresponding to charging the battery 305 with the first charging channel 306 is referred to as a first charging mode
  • the manner corresponding to charging the battery 305 with the second charging channel 308 is referred to as a second. Charging mode.
  • the wireless charging device and the device to be charged can determine whether to charge the battery 305 in the first charging mode or the second charging mode by communication.
  • the maximum transmitting power of the wireless transmitting circuit 201 may be the first transmitting power value.
  • the maximum transmit power of the wireless transmitting circuit 201 may be the second transmit power value.
  • the first transmit power value is greater than the second transmit power value, and thus, the charging speed of the device to be charged is greater than the second charging mode by using the first charging mode.
  • the wireless transmitting circuit 201 in order to reduce the problem of coil heating during wireless charging, can adopt a high voltage and low current mode when the first charging mode is employed. That is, when the first charging mode is employed, the output voltage of the wireless transmitting circuit 201 is greater than the output voltage of the wireless transmitting circuit 201 when the second charging mode is employed, thereby making the first transmitting power value larger than the second transmitting power value.
  • the second control circuit 302 switches between the first charging channel 306 and the second charging channel 308 according to the charging mode.
  • the second control circuit 302 controls the buck circuit 303 on the first charging channel 306 to operate.
  • the second control circuit 302 controls the conversion circuit 307 on the second charging channel 308 to operate.
  • the wireless charging device does not blindly use the first charging mode or the second charging mode to charge the charging device, but performs two-way communication with the device to be charged, negotiates a charging mode, and improves the security of the charging process. .
  • FIG. 5 it is a schematic diagram of a communication process between a wireless charging device and a device to be charged according to an embodiment of the present disclosure.
  • step S51 the wireless charging device transmits a first instruction to the device to be charged.
  • the first instruction is used to query whether the device to be charged supports the first charging mode; or the first instruction is used to request at least one of the following information of the device to be charged: the type or model of the device to be charged (for example, to be charged The model set when the device is shipped from the factory), the identification code of the device to be charged (for example, a character string preset for the device to be charged to identify whether the device to be charged supports the first charging mode), the maximum charging voltage supported by the device to be charged, and The maximum charging current supported by the device to be charged.
  • the type or model of the device to be charged for example, to be charged The model set when the device is shipped from the factory
  • the identification code of the device to be charged for example, a character string preset for the device to be charged to identify whether the device to be charged supports the first charging mode
  • the maximum charging voltage supported by the device to be charged for example, a character string preset for the device to be charged to identify whether the device to be charged supports the first charging mode
  • the maximum charging voltage and the maximum charging current supported by the device to be charged are related to the circuit parameters of the step-down circuit 303 or the conversion circuit 307 in the device to be charged, and/or, and the battery cells of the battery 305 in the device to be charged.
  • the quantity is related.
  • step S52 the wireless charging device determines the charging mode to be used according to the reply information fed back by the device to be charged.
  • the wireless charging device determines that the charging mode employed is the first charging mode. Conversely, when the reply message indicates that the wireless charging device does not support the first charging mode, the wireless charging device determines that the charging mode employed is the second charging mode.
  • the reply information fed back by the device to be charged may include at least one of the following types: type or model of the device to be charged, an identification code of the device to be charged, a maximum charging voltage supported by the device to be charged, and a device to be charged The maximum charging current supported, etc.
  • the wireless charging device determines the available charging mode based on the received reply information. For example, when the type or model of the device to be charged is a type or model supporting the first charging mode, it is determined that the charging device is wirelessly charged in the first charging mode.
  • the wireless charging device can feed back the determined charging mode to the device to be charged, whereby the device to be charged can control the first charging channel 306 or the second charging channel 308 to be turned on.
  • the communication between the wireless charging device and the device to be charged may adopt Bluetooth communication, Wi-Fi communication, short-range wireless communication based on high carrier frequency, optical communication, ultrasonic communication, ultra-wideband communication, mobile communication, and the like.
  • Wireless communication method may adopt Bluetooth communication, Wi-Fi communication, short-range wireless communication based on high carrier frequency, optical communication, ultrasonic communication, ultra-wideband communication, mobile communication, and the like.
  • the short-range wireless communication module based on the high carrier frequency includes an IC chip internally packaged with an EHF antenna.
  • the high carrier frequency is 60 GHz.
  • the optical communication module includes an infrared communication module that can transmit information using infrared rays.
  • the mobile communication module can perform information transmission using a mobile communication protocol such as a 5G communication protocol, a 4G communication protocol, or a 3G communication protocol.
  • a mobile communication protocol such as a 5G communication protocol, a 4G communication protocol, or a 3G communication protocol.
  • the communication is coupled to the coil of the wireless receiving circuit 301 by means of signal modulation, thereby improving communication reliability and avoiding voltage ripple caused by signal coupling communication.
  • the wave affects the voltage processing of the conversion circuit 307 or the step-down circuit 303.
  • the wireless charging device in addition to communicating with the device to be charged, determining a charging mode between the wireless charging device and the device to be charged, may also communicate with the power supply device to determine between the power supply device and the wireless charging device. Charging mode.
  • the wireless charging device adopts a higher transmitting power than the transmitting power used in the second charging mode, that is, adopts the first charging mode.
  • the demand voltage of the wireless transmitting circuit 201 of the wireless charging device is higher. Therefore, the wireless charging device can also communicate with the power supply device to cause the power supply device to provide a suitable voltage.
  • the types of power supply devices include fast charge type power supply devices and non-fast charge type power supply devices.
  • the fast charge type power supply device can provide an output voltage greater than the output voltage that can be provided by a non-fast charge type power supply device.
  • the output voltage/output current of a non-fast charge type power supply device is 5V/2A; the output voltage/output current of a fast charge type power supply device is 15V/2A.
  • the voltage supplied to the wireless charging device can support the wireless charging device to adopt the first charging mode.
  • the type of the power supply device is a non-fast charge type
  • the voltage supplied to the wireless charging device can support the wireless charging device to adopt the second charging mode.
  • the wireless charging device is in communication with the power supply device, determines the type of power supply device, and communicates with the device to be charged in accordance with the methods described above to determine a charging mode supported by the device to be charged. Then, the wireless charging device can determine the charging mode to be employed according to the type of the power supply device and/or the charging mode supported by the device to be charged.
  • the wireless charging device may convert the voltage provided by the power supply device through the voltage conversion circuit 203 to adopt The first charging mode.
  • the device to be charged when the type of the power supply device is fast charge, the device to be charged supports the first charging mode, but the voltage provided by the power supply device cannot meet the requirement of the wireless transmitting circuit 201 (ie, when the first charging mode is adopted)
  • the voltage supplied from the power supply device may also be converted by the voltage converting circuit 203 to adopt the first charging mode.
  • the voltage conversion circuit 203 can be powered The second charging mode is employed after the voltage provided by the device is converted (eg, stepped down).
  • the wireless charging device determines to adopt the second charging mode.
  • the embodiment of the present disclosure adopts a high voltage and a low current. Wireless charging method to reduce heat and improve charging efficiency.
  • a voltage conversion circuit 203 is provided at the wireless charging device end.
  • a first charging channel 306 (eg, a wire) connected to the battery 305 is disposed at the device to be charged.
  • the first charging channel 306 is provided with a step-down circuit 303 for stepping down the output voltage of the wireless receiving circuit 301 such that the output voltage and the output current of the first charging channel 306 satisfy the charging requirement of the battery 305.
  • the wireless charging device 200 charges the single cell battery 305 in the device to be charged with an output power of 20 W
  • the wireless transmitting circuit The input voltage of 201 needs to be 5V, and the input current needs to be 4A. The current of 4A will inevitably cause the coil to generate heat and reduce the charging efficiency.
  • the step-down circuit 303 is provided on the first charging channel 306, in the case where the transmitting power of the wireless transmitting circuit 201 does not change (the aforementioned 20 W)
  • the input voltage of the wireless transmitting circuit 201 can be increased, whereby the input current of the wireless transmitting circuit 201 can be reduced.
  • the step-down circuit 303 can employ a half-voltage circuit, that is, the ratio of the input voltage to the output voltage of the step-down circuit 303 is a fixed 2:1 to further reduce the heat generation of the step-down circuit 303. .
  • the input voltage of the wireless transmitting circuit 201 can be 10V, and the input current can be 2A, whereby the output voltage of the wireless receiving circuit 301 is 10V (it should be understood that power consumption is considered, The actual value will be close to 10V).
  • the output voltage of the first charging channel 306 is 5V by the step-down of the step-down circuit 303 to effect charging of the battery 305. It should be understood that this embodiment is illustrated with the required voltage of the battery 305 being 5V.
  • the second control circuit 302 detects the output voltage and/or the voltage on the step-down circuit 303 in real time by the detection circuit 304.
  • the output current is fed back to the first control circuit 202.
  • the first control circuit 202 realizes the adjustment of the output power of the wireless transmitting circuit 201 according to the feedback output voltage and/or the output current, so that the voltage difference between the input voltage and the output voltage of the step-down circuit 303 satisfies a preset condition.
  • the wireless charging device 200 adjusts the output power of the wireless transmitting circuit 201.
  • the adjustment manner may include any one of the following three methods and a combination of several:
  • the adjustment of the output power of the wireless transmission circuit 201 is realized by adjusting parameters such as the tuning frequency of the resonance circuit and/or the duty ratio of the switching tube of the inverter circuit.
  • the adjustment of the output power of the wireless transmission circuit 201 is realized by adjusting the output voltage of the power supply device (i.e., the voltage input to the wireless charging device).
  • the preset condition may be that the ratio of the input voltage to the output voltage of the step-down circuit 303 is 2:1. Then, if the output power of the wireless transmitting circuit 201 is adjusted by the above method (2), when it is detected that the output voltage of the step-down circuit 303 is D1 volt, the first control circuit 202 controls the voltage of the step-down circuit 303.
  • the input voltage is 2D1 volts (it is understood that considering the energy loss, the actual voltage can be greater than 2D1 volts). Thereby, the voltage difference of the step-down circuit 303 is made to satisfy a preset condition to reduce heat generation and improve charging efficiency.
  • the first control circuit 202 determines the tuning according to D1 and D2.
  • the frequency or switching duty cycle causes the input voltage of the buck circuit 303 to be 2D1 volts (it is understood that considering the energy loss, the actual voltage can be greater than 2D1 volts).
  • the first control circuit 202 communicates with the power supply device according to D1, so that the voltage supply device is supplied to the wireless transmission circuit 201.
  • the voltage is 2D1 volts such that the output voltage of the wireless transmit circuit 201 is 2D1 volts (it is understood that considering the energy loss, the actual voltage can be greater than 2D1 volts).
  • the input voltage of the step-down circuit 303 is made 2D1 volt.
  • the manner of communication between the first control circuit 202 and the power supply device is not specifically limited in the embodiment of the present disclosure.
  • the first control circuit 202 can be connected to a power supply device through a communication interface other than the charging interface, and communicate with the power supply device through the communication interface.
  • the first control circuit 202 can communicate with the power supply device in a wireless manner.
  • the first control circuit 202 can perform near field communication (NFC) with the power supply device.
  • NFC near field communication
  • the first control circuit 202 can communicate with the power supply device through the charging interface without the need to provide an additional communication interface or other wireless communication module, which simplifies the implementation of the wireless charging device.
  • the charging interface is a USB interface
  • the first control circuit 202 can communicate with the power supply device based on data lines (eg, D+ and/or D- lines) in the USB interface.
  • the charging interface can be a USB interface (such as a USB TYPE-C interface) that supports a power delivery (PD) communication protocol, and the first control circuit 202 and the power supply device can communicate based on the PD communication protocol.
  • PD power delivery
  • the manner in which the power supply device adjusts the output power is not specifically limited.
  • a voltage feedback loop and a current feedback loop can be provided inside the power supply device, so that the output voltage and/or the output current can be adjusted according to actual needs.
  • the wireless charging device 200 may be provided in various shapes, for example, a circle, a square, etc., when the device to be charged is placed on the charging surface of the wireless charging device 200 (the surface on which the transmitting coil is disposed), wirelessly charging The device 200 starts wireless charging in accordance with the wireless charging procedure shown in FIG.
  • FIG. 6 is a schematic flowchart of wireless charging according to an embodiment of the present disclosure.
  • step S61 the wireless charging device detects whether there is an object.
  • the wireless charging device transmits an energy every preset time to detect whether an object is placed on the surface.
  • step S62 it is determined whether the detected object is a legitimate device to be charged.
  • step S63 identity information and configuration information of the device to be charged are acquired.
  • the identity information may be the identification code of the device to be charged
  • the configuration information may be the type or model of the device to be charged.
  • step S64 the charging mode is determined according to the identity information and the configuration information of the device to be charged.
  • the determination of the charging mode may be determined in accordance with the foregoing manner, depending on the type of power supply device and/or the charging mode supported by the device to be charged.
  • the wireless charging process of steps S65-S67 when it is determined that the second charging mode is employed, the wireless charging process of steps S65-S67 is performed; when it is determined that the first charging mode is employed, the wireless charging process of steps S68-S69 is performed.
  • step S65 in the wireless charging process, acquiring control information fed back by the device to be charged;
  • the data packet signal including the control information may be coupled to the coil of the wireless receiving circuit 301 by the second control circuit 302 of the device to be charged, and transmitted to the coil of the wireless transmitting circuit 201, and then transmitted to the wireless device.
  • the control information may include the aforementioned error values.
  • step S66 when the control information is to terminate the transmission information, the wireless charging is stopped;
  • step S67 when the control information is error information, the transmission power of the wireless transmission circuit 201 is adjusted based on the error information.
  • the adjustment of the transmission power can be performed by the above method (1) or (3).
  • step S68 during wireless charging, wireless communication is performed with the device to be charged, and the output voltage and/or output current of the step-down circuit 303 fed back by the device to be charged is obtained.
  • step S69 the output voltage and/or the output current of the voltage conversion circuit 203 is adjusted according to the output voltage and/or the output current of the step-down circuit 303 to adjust the transmission power of the electromagnetic signal so that the input voltage and output of the step-down circuit 303 are made.
  • the voltage difference of the voltage satisfies the preset condition.
  • the transmission power can be adjusted by any one or more of the above (1) to (3).
  • the wireless charging is stopped. For example, when it is detected that the device to be charged leaves the charging surface, the charging termination condition is satisfied. Or when an abnormality occurs during charging (for example, overvoltage, overcurrent, or overtemperature in the charging process), the charging termination condition is satisfied.
  • the output voltage of the wireless receiving circuit 301 of the device to be charged is determined by the output voltage of the voltage converting circuit 203.
  • the operating efficiency of the step-down circuit 303 is improved, and the temperature rise is reduced.
  • the voltage difference of the step-down circuit 303 can be reduced by lowering the input voltage of the wireless receiving circuit 301.
  • the wireless charging device and/or the device to be charged of the embodiments of the present disclosure may perform wireless charging only by the first charging mode, or simultaneously support the first charging mode and the second charging mode.
  • the embodiments of the present disclosure do not limit this.
  • the first control circuit 202 of the wireless charging device in order to ensure that the charging current of the battery 305 is constant, if the input voltage of the wireless receiving circuit 301 is lowered, it is necessary to increase the input current of the wireless receiving circuit 301. An increase in the input current causes an increase in the current on the receiving coil, causing the temperature rise of the coil to increase. Therefore, the first control circuit 202 of the wireless charging device according to an embodiment of the present disclosure further adjusts the output voltage of the voltage conversion circuit 203 according to the output current of the step-down circuit 303 fed back by the device to be charged and the preset current threshold.
  • the current threshold comprises: a first current threshold and a second current threshold, wherein the first current threshold is greater than the second current threshold.
  • the first control circuit 202 is configured to: when the output current of the buck circuit 303 is greater than the first current threshold, increase the output voltage of the control voltage conversion circuit 203; when the output current of the buck circuit 303 is less than the second current threshold, the control voltage The output voltage of the conversion circuit 203 is lowered.
  • the temperature rise model database may be established by data of the debug phase or a plurality of test data or the like, determining a maximum current threshold allowed on the charging coil (ie, the first current threshold), and determining the second Current threshold.
  • the first control circuit 202 of the wireless charging device further adjusts the voltage conversion circuit 203 according to the output voltage of the step-down circuit 303 fed back by the device to be charged and the corresponding relationship between the preset voltage difference and the charging efficiency. Output voltage.
  • the voltage difference at the optimum efficiency of the step-down circuit 303 can be obtained through debugging and testing, and the corresponding relationship between the voltage difference and the charging efficiency can be determined.
  • the charging efficiency can be reversed by a temperature rise reaction, for example, the charging efficiency is inversely proportional to the temperature rise, and the higher the charging efficiency, the lower the temperature rise.
  • the voltage difference may also be a voltage difference between the input voltage of the battery 305 and the output voltage of the voltage conversion circuit 203. It should be understood that in some embodiments, the voltage difference of the step-down circuit may also be obtained according to any one of the battery voltage and the following voltage: an output voltage of the wireless transmitting circuit, an output voltage of the wireless receiving circuit, an input of the step-down circuit The output voltage of the voltage and voltage conversion circuit.
  • the output voltage of the voltage conversion circuit 203 can be adjusted according to the voltage difference of the step-down circuit 303 and the above-described corresponding relationship to achieve optimum charging efficiency.
  • the input voltage of the battery 305 is determined according to the output voltage of the feedback step-down voltage; and the voltage conversion circuit 203 is determined according to the determined voltage difference between the input voltage of the battery 305 and the output voltage of the voltage conversion circuit 203 and the above correspondence. The output voltage is adjusted to achieve optimum charging efficiency.
  • the two methods for adjusting the voltage of the voltage conversion circuit 203 may be combined, that is, according to the output voltage of the step-down circuit 303 fed back by the device to be charged and the preset voltage difference corresponding to the charging efficiency. a relationship, the output voltage of the voltage conversion circuit 203 is adjusted to be a first voltage; and after the output voltage of the voltage conversion circuit 203 is adjusted to be a first voltage, an output current and a pre-process of the step-down circuit 303 fed back according to the device to be charged The current threshold is set to adjust the output voltage of the voltage conversion circuit 203 to be the second voltage. Thereby, the output voltage of the voltage conversion circuit 203 can be coarsely adjusted and finely adjusted to ensure the accuracy of the adjustment.
  • FIG. 7 is a schematic flowchart diagram of a wireless charging method according to an embodiment of the present disclosure.
  • the wireless charging method is applied to a device to be charged.
  • step S71 the electromagnetic signal transmitted by the wireless charging device is received by the wireless receiving circuit 301, and the electromagnetic signal is converted into an output voltage and an output current of the wireless receiving circuit 301.
  • step S72 the output voltage of the wireless receiving circuit 301 is received by the step-down circuit 303, and the output voltage of the wireless receiving circuit 301 is stepped down to charge the battery 305 of the device to be charged.
  • step S73 the output voltage and/or output current of the step-down circuit 303 is detected.
  • step S74 according to the detected output voltage and/or output current on the step-down circuit 303, communication with the wireless charging device is performed, so that the wireless charging device adjusts the transmission power of the electromagnetic signal, so that the input voltage of the step-down circuit 303 is The voltage difference of the output voltage satisfies the preset condition.
  • communicating with the wireless charging device based on the detected output voltage and/or output current on the buck circuit 303 includes:
  • Adjusting information is sent to the wireless charging device according to the detected output voltage and/or output current on the step-down circuit 303, and the adjustment information is used to instruct the wireless charging device to perform voltage and/or current adjustment on the power received from the power supply device. Adjust the transmit power of the electromagnetic signal.
  • the method further includes:
  • Communication with the wireless charging device is made to determine whether the control buck circuit 303 operates or controls the conversion circuit 307 to operate.
  • FIG. 8 is a schematic flowchart diagram of a wireless charging method according to another embodiment of the present disclosure.
  • the wireless charging method is applied to a wireless charging device.
  • step S81 the input voltage is received by the voltage conversion circuit 203, and the input voltage is converted to obtain an output voltage and an output current of the voltage conversion circuit 203.
  • step S82 the wireless transmitting circuit 201 is used to wirelessly charge the device to be charged according to the output voltage and the output current of the voltage converting circuit 203.
  • step S83 in the process of wireless charging, wirelessly communicating with the device to be charged, acquiring the output voltage and/or output current of the step-down circuit 303 fed back by the device to be charged; and according to the output voltage of the step-down circuit 303 and/or Or output current adjusts the output voltage and/or output current of the voltage conversion circuit 203 to adjust the transmission power of the electromagnetic signal such that the voltage difference between the input voltage and the output voltage of the step-down circuit 303 satisfies a preset condition.
  • the charging process of the battery 305 using the first charging channel 306 or the second charging channel 308 may include a trickle charging phase, a constant current charging phase, and a constant voltage charging phase.
  • the constant current charging phase mentioned in the embodiment of the present disclosure does not necessarily have to keep the charging current completely constant, for example, it may be that the peak value or the average value of the charging current remains unchanged for a period of time.
  • the constant current charging phase can be charged by means of piecewise constant current.
  • the multi-stage constant current charging may have N constant current stages (N is an integer not less than 2), and the segmented constant current charging starts the first stage charging with a predetermined charging current, the points The N constant current phases of the segment constant current charging are sequentially performed from the first phase to the Nth phase, and when the previous constant current phase in the constant current phase is transferred to the next constant current phase, the charging current value may be small; When the battery 305 voltage reaches the charge termination voltage threshold, the previous constant current phase in the constant current phase will shift to the next constant current phase.
  • the current conversion process between two adjacent constant current phases may be gradual, or may be a stepped jump change.
  • the communication manner and communication sequence between the wireless charging device and the device to be charged are not specifically limited in the embodiment of the present disclosure.
  • the wireless communication between the wireless charging device and the device to be charged may be a one-way wireless communication.
  • the device to be charged may be specified as the initiator of the communication, and the wireless charging device is the receiver of the communication.
  • the device to be charged can detect the charging current of the battery 305 (ie, the output current of the wireless receiving circuit 301) in real time through the detecting circuit 304, when the charging current of the battery 305 is currently required by the battery 305.
  • the device to be charged sends adjustment information to the wireless charging device, instructing the wireless charging device to adjust the transmission power of the wireless transmitting circuit 201.
  • the wireless communication between the wireless charging device and the device to be charged may be a two-way wireless communication.
  • Two-way wireless communication generally requires the receiver to send response information to the initiator after receiving the communication request initiated by the initiator, and the two-way communication mechanism can make the communication process more secure.
  • the above description of the embodiments of the present disclosure does not limit the master-slave of the wireless charging device (the first control circuit 202 in the wireless charging device) and the device to be charged (the first control circuit 202 in the device to be charged).
  • either the wireless charging device and any device to be charged can initiate a two-way communication session as the master device, and accordingly the other party can make a first response or first as the slave device initiates communication to the master device.
  • the identity of the master and slave devices can be determined by comparing the link conditions between the wireless charging device and the device to be charged during communication.
  • the wireless link that the wireless charging device transmits information to the device to be charged is an uplink
  • the wireless link that the device to be charged transmits information to the wireless charging device is a downlink
  • the wireless charging device can be set as the master device for communication; if the link quality of the downlink is good, the device to be charged can be set as the slave device for communication.
  • the embodiment of the present disclosure does not limit the specific implementation of the two-way communication between the wireless charging device and the device to be charged, that is, the wireless charging device initiates a communication session with the device to be charged as the master device, and accordingly
  • the first response or the first reply is made by the party as the slave device to the communication session initiated by the master device, and the master device can make a second response to the first response or the first response of the slave device. It is considered that a communication negotiation process is completed between the master and the slave device.
  • One way in which the master device can make a second response according to the first response or the first reply of the slave device for the communication session may be that the master device side can receive the slave device side for the communication session. And generating a first response or a first reply, and making a targeted second response according to the received first response or the first reply of the slave device.
  • One way that the master device can make a further second response according to the first response or the first response of the slave device to the communication session may also be that the master device does not receive the preset time.
  • the master device side also makes a targeted second response to the first response or the first reply of the slave device.
  • the wireless charging device when the device to be charged initiates a communication session as the master device, the wireless charging device does not need to be charged after making a first response or a first reply to the communication session initiated by the slave device to the master device.
  • the device makes a targeted second response to the first response or the first reply of the wireless charging device, that is, a communication negotiation process is completed between the wireless charging device and the device to be charged.
  • the embodiment of the present disclosure does not specifically limit the wireless communication mode between the first control circuit 202 in the wireless charging device and the second control circuit 302 in the device to be charged.
  • the first control circuit 202 and the second control circuit 302 can perform wireless based on bluetooth, wireless fidelity (Wi-Fi) or backscatter modulation (or power load modulation). Communication.
  • the second control circuit 302 can wirelessly communicate with the first control circuit 202 based on the voltage and/or current on the first charging channel 306 detected by the detection circuit 304 for first control.
  • the circuit 202 adjusts the transmit power of the wireless transmit circuit 201.
  • the content of the communication between the second control circuit 302 and the first control circuit 202 is not specifically limited in the embodiment of the present disclosure.
  • the second control circuit 302 can transmit the output voltage and/or output current of the first charging channel 306 detected by the detection circuit 304 to the first control circuit 202. Further, the second control circuit 302 can also send battery 305 status information to the first control circuit 202, wherein the battery 305 status information includes the current power and/or current voltage of the battery 305 in the device to be charged. The first control circuit 202 can first determine the current charging phase of the battery 305 based on the battery 305 status information, thereby determining a target charging voltage and/or target charging that matches the currently required charging voltage and/or charging current of the battery 305.
  • the first control circuit 202 can compare the output voltage and/or output current of the first charging channel 306 sent by the second control circuit 302 with the target charging voltage and/or the target charging current to determine the first Whether the output voltage and/or output current of the charging channel 306 matches the current required charging voltage and/or charging current of the battery 305, and the output voltage and/or output current at the first charging channel 306 is currently required by the battery 305. In the case where the charging voltage and/or the charging current do not match, the transmission power of the wireless transmitting circuit 201 is adjusted until the output voltage and/or output current of the first charging channel 306 and the current charging voltage and/or charging current of the battery 305 are currently required. Match.
  • the second control circuit 302 can transmit adjustment information to the first control circuit 202 to instruct the first control circuit 202 to adjust the transmit power of the wireless transmit circuit 201.
  • the second control circuit 302 can instruct the first control circuit 202 to increase the transmit power of the wireless transmit circuit 201; for example, the second control circuit 302 can instruct the first control circuit 202 to decrease the transmit power of the wireless transmit circuit 201.
  • the wireless charging device may set a plurality of gear positions of the transmitting power for the wireless transmitting circuit 201, and the first control circuit 202 adjusts the gear position of the transmitting power of the wireless transmitting circuit 201 by one gear every time the adjustment information is received. Bits until the output voltage and/or output current of the first charging channel 306 matches the current desired charging voltage and/or charging current of the battery 305.
  • the first control circuit 202 and the second control circuit 302 can exchange information for security protection, abnormality detection or fault processing, such as temperature information of the battery 305, entering overvoltage protection or overcurrent protection.
  • Information such as information, power transmission efficiency information (this power transmission efficiency information can be used to indicate power transmission efficiency between the wireless transmission circuit 201 and the wireless reception circuit 301).
  • the first control circuit 202 and/or the second control circuit 302 can control the charging circuit to enter a protection state, such as controlling the charging circuit to stop wireless charging.
  • a protection state such as controlling the charging circuit to stop wireless charging.
  • the first control circuit 202 may reduce the transmission power or control the wireless transmission circuit 201 to stop working.
  • the wireless transmitting circuit 201 can be controlled to stop working, and notify the user of the event, such as The power transmission efficiency is too low through the display, or the power transmission efficiency can be indicated by the indicator light, so that the user can adjust the wireless charging environment.
  • the first control circuit 202 and the second control circuit 302 can interact with other information that can be used to adjust the transmit power adjustment of the wireless transmit circuit 201, such as temperature information of the battery 305, indicating the first charging channel 306. Information on the peak or average of the voltage and/or current, power transmission efficiency information (which can be used to indicate the power transmission efficiency between the wireless transmitting circuit 201 and the wireless receiving circuit 301), and the like.
  • the second control circuit 302 can transmit power transmission efficiency information to the first control circuit 202, and the first control circuit 202 is further configured to determine an adjustment range of the transmission power of the wireless transmission circuit 201 according to the power transmission efficiency information. Specifically, if the power transmission efficiency information indicates that the power transmission efficiency between the wireless transmission circuit 201 and the wireless reception circuit 301 is low, the first control circuit 202 can increase the adjustment range of the transmission power of the wireless transmission circuit 201, so that the wireless transmission circuit The transmit power of 201 quickly reaches the target power.
  • the second control circuit 302 can send a peak to the first control circuit 202 indicating the output voltage and/or output current of the first charging channel 306 or The information of the mean value, the first control circuit 202 can determine whether the peak value or the average value of the output voltage and/or the output current of the first charging channel 306 matches the current charging voltage and/or charging current required by the battery 305, if not, Then, the transmission power of the wireless transmission circuit 201 can be adjusted.
  • the second control circuit 302 can send the temperature information of the battery 305 to the first control circuit 202. If the temperature of the battery 305 is too high, the first control circuit 202 can reduce the transmission power of the wireless transmission circuit 201 to reduce the wireless receiving circuit. The output current of 301, thereby reducing the temperature of the battery 305.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

一种待充电设备、无线充电装置、无线充电方法及系统,该无线充电装置(200)包括:电压转换电路(203),用于接收输入电压,并对输入电压进行转换,得到电压转换电路的输出电压和输出电流;无线发射电路(201),用于根据电压转换电路的输出电压和输出电流发射电磁信号,以对待充电设备进行无线充电;第一控制电路(202),用于在无线充电的过程中,与待充电设备进行无线通信,获取待充电设备反馈的降压电路(303)的输出电压和/或输出电流;以及根据降压电路的输出电压和/或输出电流调整电压转换电路的输出电压和/或输出电流,以调整电磁信号的发射功率,使得降压电路的输入电压和输出电压的压差满足预设条件。该待充电设备、无线充电装置、无线充电方法及系统可降低无线充电过程中的发热。

Description

待充电设备、无线充电装置、无线充电方法及系统 技术领域
本公开涉及充电技术领域,具体地,涉及一种待充电设备、无线充电装置、无线充电方法及系统。
背景技术
随着无线充电的普及,越来越多的电子设备都支持无线充电的功能。无线充电技术的无线电能传输方式包括:电磁感应式、电磁谐振式和电磁辐射式。以电磁感应式无线充电技术为例,电磁感应式无线电能传输原理是通过线圈耦合进行能力传递,在发送端与接收端分别设置一个线圈。发送端连接高频交变信号,从而产生电磁信号,接收端通过线圈将接收到的电磁信号转变成电流,电流经过整流、稳压等电路处理后给设备提供电能。
采用无线充电技术,待充电设备上设置的用于连接充电线缆的接口可以去除。且在充电时无需通过连接线缆,使得充电更加便捷。
然而,相关技术的无线充电技术,至少存在无线充电时,设备发热严重的缺陷。
发明内容
本公开的目的是提供一种待充电设备、无线充电装置、无线充电方法及系统,以解决相关技术中的缺陷。
为了实现上述目的,本公开第一方面,
第一方面,提供一种无线充电装置,包括:
电压转换电路,用于接收输入电压,并对所述输入电压进行转换,得到所述电压转换电路的输出电压和输出电流;
无线发射电路,用于根据所述电压转换电路的输出电压和输出电流发射电磁信号,以对待充电设备进行无线充电;
第一控制电路,用于在所述无线充电的过程中,与所述待充电设备进行无线通信,获取所述待充电设备反馈的降压电路的输出电压和/或输出电流;以及根据所述降压电路的输出电压和/或输出电流调整所述电压转换电路的输出电压和/或输出电流,以调整所述电磁信号的发射功率,使得所述降压电路的输入电压和输出电压的压差满足预设条件。
在一个实施例中,所述第一控制电路,用于根据所述待充电设备反馈的降压电路的输出电流和预设的电流阈值,调整所述电压转换电路的输出电压。
在一个实施例中,所述电流阈值包括:第一电流阈值和第二电流阈值;
所述第一控制电路,用于在所述降压电路的输出电流大于所述第一电流阈值时,控制所述电压转换电路的输出电压提高;在所述降压电路的输出电流小于所述第二电流阈值时,控制所述电压转换电路的输出电压降低。
在一个实施例中,所述第一控制电路,用于根据所述待充电设备反馈的降压电路的输出电压和预设的压差与充电效率的对应关系,调整所述电压转换电路的输出电压。
在一个实施例中,所述第一控制电路,用于根据所述待充电设备反馈的降压电路的 输出电压和预设的压差与充电效率的对应关系,调整所述电压转换电路的输出电压为第一电压;以及
在调整所述电压转换电路的输出电压为第一电压后,根据所述待充电设备反馈的降压电路的输出电流和预设的电流阈值,调整所述电压转换电路的输出电压为第二电压。
在一个实施例中,所述电压转换电路与外部电源提供设备连接;
所述第一控制电路,还用于与所述外部电源提供设备通信,以使所述外部电压设备根据所述降压电路的输出电压和/或输出电流调整提供给所述电压转换电路的电流的电压值和/或电流值。
在一个实施例中,所述第一控制电路,还用于与所述待充电设备通信,以确定充电模式,所述充电模式包括第一充电模式和第二充电模式,其中,采用所述第一充电模式时无线发射电路的最大发射功率大于采用所述第二充电模式时无线发射电路的最大发射功率。
第二方面,提供一种待充电设备,包括:
电池;
无线接收电路,用于接收无线充电装置发射的电磁信号,并将所述电磁信号转换成所述无线接收电路的输出电压和输出电流;
降压电路,用于接收所述无线接收电路的输出电压,对所述无线接收电路的输出电压进行降压处理,以对所述电池进行充电;
检测电路,用于检测所述降压电路的输出电压和/或输出电流;
第二控制电路,用于根据所述检测电路检测到的所述降压电路上的输出电压和/或输出电流,与所述无线充电装置进行通信,以便所述无线充电装置调整所述电磁信号的发射功率,使得所述降压电路的输入电压和输出电压的压差满足预设条件。
在一个实施例中,所述电池包括相互串联的N节电芯,其中N为大于1的正整数。
在一个实施例中,所述降压电路为Buck电路或电荷泵。
在一个实施例中,所述第二控制电路,用于根据所述检测电路检测到的所述降压电路上的输出电压和/或输出电流,向所述无线充电装置发送调整信息,所述调整信息用于指示所述无线充电装置对接收自电源提供设备的电能进行电压和/电流调整,以调整所述电磁信号的发射功率。
在一个实施例中,所述待充电设备还包括:
所述变换电路,用于接收所述无线接收电路的输出电压和输出电流,对所述无线接收电路的输出电压和/或输出电流进行恒压和/或恒流控制,以对所述电池进行充电;
所述第二控制电路,还用于控制所述降压电路和所述变换电路之间的切换。
在一个实施例中,所述第二控制电路,还用于与所述无线充电装置进行通信,以确定控制所述降压电路工作或控制所述变换电路工作。
在一个实施例中,所述第二控制电路还用于根据所述电池的温度,控制所述降压电路和所述转换电路之间的切换。
在一个实施例中,所述降压电路输出的电流为恒定直流电、脉动直流电或交流电。
第三方面,提供一种无线充电方法,应用于待充电设备,所述方法包括:
利用无线接收电路接收无线充电装置发射的电磁信号,并将所述电磁信号转换成所述无线接收电路的输出电压和输出电流;
利用降压电路接收所述无线接收电路的输出电压,对无线接收电路的输出电压进行降压处理,以对所述待充电设备的电池进行充电;
检测所述降压电路的输出电压和/或输出电流;
根据检测到的所述降压电路上的输出电压和/或输出电流,与所述无线充电装置进行通信,以便所述无线充电装置调整所述电磁信号的发射功率,使得所述降压电路的输入电压和输出电压的压差满足预设条件。
在一个实施例中,所述根据检测到的所述降压电路上的输出电压和/或输出电流,与所述无线充电装置进行通信,包括:
根据检测到的所述降压电路上的输出电压和/或输出电流,向所述无线充电装置发送调整信息,所述调整信息用于指示所述无线充电装置对接收自电源提供设备的电能进行电压和/电流调整,以调整所述电磁信号的发射功率。
在一个实施例中,所述方法还包括:
利用变换电路接收所述无线接收电路的输出电压和输出电流,对所述无线接收电路的输出电压和/或输出电流进行恒压和/或恒流控制,以对所述电池进行充电;以及与所述无线充电装置进行通信,以确定控制所述降压电路工作或控制所述变换电路工作。
第四方面,提供一种无线充电方法,应用于无线充电装置,包括:
利用电压转换电路接收输入电压,并对所述输入电压进行转换,得到所述电压转换电路的输出电压和输出电流;
利用无线发射电路根据所述电压转换电路的输出电压和输出电流发射电磁信号,以对待充电设备进行无线充电;
在所述无线充电的过程中,与所述待充电设备进行无线通信,获取所述待充电设备反馈的降压电路的输出电压和/或输出电流;以及根据所述降压电路的输出电压和/或输出电流调整所述电压转换电路的输出电压和/或输出电流,以调整所述电磁信号的发射功率,使得所述降压电路的输入电压和输出电压的压差满足预设条件。
第五方面,提供一种无线充电系统,所述无线充电系统包括无线充电装置和待充电设备;
所述待充电设备包括:
电池;
无线接收电路,用于接收所述无线充电装置发射的电磁信号,并将所述电磁信号转换成所述无线接收电路的输出电压和输出电流;
降压电路,用于接收所述无线接收电路的输出电压,对所述无线接收电路的输出电压进行降压处理,以对所述电池进行充电;
检测电路,用于检测所述降压电路的输出电压和/或输出电流;
第二控制电路,用于根据所述检测电路检测到的所述降压电路上的输出电压和/或输出电流,与所述无线充电装置进行通信;
所述无线充电装置包括:
电压转换电路,用于接收输入电压,并对所述输入电压进行转换,得到所述电压转换电路的输出电压和输出电流;
无线发射电路,用于根据所述电压转换电路的输出电压和输出电流发射电磁信号,以对所述待充电设备进行无线充电;
第一控制电路,用于在所述无线充电的过程中,与所述待充电设备进行无线通信,获取所述待充电设备反馈的所述降压电路的输出电压和/或输出电流;以及根据所述降压电路的输出电压和/或输出电流调整所述电压转换电路的输出电压和/或输出电流,以调整所述电磁信号的发射功率,使得所述降压电路的输入电压和输出电压的压差满足预设条件。
通过上述技术方案,待充电设备检测降压电路的输出电压和/或输出电流,并反馈给无线充电装置;由无线充电装置调整发射功率,从而控制待充电设备的降压电路的输入电压和输出电压之间的压差,以提高充电效率;另一方面,本公开通过压差控制,可降低接收线圈、降压电路等发热,减小温升。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开一实施例的无线充电系统的示意图;
图2是本公开一实施例的无线充电装置的结构框图;
图3是本公开一实施例的待充电设备的结构框图;
图4是本公开另一实施例的待充电设备的结构框图;
图5是本公开的一实施例中,无线充电装置与待充电设备的通信流程示意图;
图6是本公开一实施例的无线充电的流程示意图;
图7是本公开一实施例的无线充电方法的流程示意图;
图8是本公开另一实施例的无线充电方法的流程示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本公开中所使用的,术语“电路”指代所有的下述内容:(a)仅硬件的电路实施方式(诸如仅模拟和/或数字电路中的实施方式)以及(b)电路和软件(和/或固件)的组合,诸如(如可应用的):(i)(多个)处理器的组合或(ii)(多个)处理器/软件(包括(多个)数字信号处理器)、软件和(多个)存储器的一部分,它们一起工作,促使诸如移动电话或服务器的装置执行各种功能)以及(c)诸如(多个)微处理器或(多个)微处理器的一部分的电路,该电路要求用于操作的软件或固件,即使该软件或固件物理上并不存在。对“电路”的这个定义应用到本公开中这个术语的所有使用,包括在任何权利要求中。
本公开实施例中,待充电设备可以是指终端,该“终端”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。另外,本公开实施例中所使用到的待充电设备或终端还可包括移动电源(power bank),该移动电源能够接收无线充电装置的充电,从而将能量存储起来,以为其他电子装置提供能量。
参见图1为本公开一实施例的无线充电系统的示意图。
无线充电系统10包括:电源提供设备100、无线充电装置200和待充电设备300。
在一实施例中,电源提供设备100,用于向无线充电装置200提供直流电。该电源提供设备100可包括:整流电路、变压电路、控制电路和充电接口等,可实现将交流电输入转换为直流电输出,以提供给无线充电装置200。例如,电源提供设备可为适配器、充电宝或车载电源等。
在一实施例中,电源提供设备100还可直接将交流电提供给无线充电装置200。例如,电源提供设备100可为交流电源。当电源提供设备100为交流电源时,无线充电装置200还包括用于将交流电转换为直流电的电路或模块,例如,整流滤波电路和DC/DC变换电路307等。
无线充电装置200,用于将电源提供设备100提供的直流电或交流电,转换成电磁信号,以通过无线的方式进行电力传输。
参见图2,在一实施例中,无线充电装置200包括:整流滤波电路(图中未示出)、DC/DC变换电路307(图中未示出)、无线发射电路201和第一控制电路202。
220V交流电经过整流滤波电路变换成稳定的直流电,然后经过DC/DC变换电路307的变换将电压调节到一个固定值供给无线发射电路201。
应理解,整流滤波电路和DC/DC变换电路307为可选的,如前所述,当电源提供设备100为交流电源时,无线充电装置200可设置整流滤波电路和DC/DC变换电路307。当电源提供设备100可提供的为稳定的直流电时,可去除整流滤波电路和/或DC/DC变换电路307。
无线发射电路201,用于将DC/DC变换电路307提供的直流电或电源提供设备等提供的直流电转换为可耦合到发射线圈的交流电,并通过发射线圈将该交流电转换成电磁 信号进行发射。
在一实施例中,无线发射电路201可包括:逆变电路和谐振电路。逆变电路可包括多个开关管,通过控制开关管的导通时间(占空比)可调节输出功率的大小。谐振电路,用于将电能传输出去,例如,谐振电路可包括电容和发射线圈。通过调整谐振电路的谐振频率,可以调节无线发射电路201输出功率的大小。
在一实施例中,无线充电装置200可为无线充电底座或具有储能功能的设备等。当无线充电装置200为具有储能功能的设备时,其还包括储能模块(例如,锂电池305),可从外部电源提供设备获取电能并进行存储。由此,储能模块可将电能提供给无线发射电路201。应理解,无线充电装置200可通过有线或无线的方式从外部电源提供设备获取电能。有线的方式,例如,通过充电接口(例如,Type-C接口)与外部电源提供设备连接,获取电能。无线的方式,例如,无线充电装置200包括无线接收电路301,其可通过无线的方式从具有无线充电功能的设备获取电能。
第一控制电路202,用于对无线充电过程进行控制。例如,第一控制电路202可与电源提供设备进行通信,以确定电源提供设备的输出电压和/或输出电流。或,第一控制电路202还可与待充电设备进行通信,实现充电信息(例如,待充电设备的电池305电压信息、电池305温度信息、充电模式信息等)的交互、进行无线充电的充电参数(例如,充电电压和/或充电电流)确定等。
应理解,无线充电装置200还可包括其它相关硬件、逻辑器件、电路和/或编码,以实现相应的功能。例如,无线充电装置200还可包括显示模块(例如,可为发光二极管或LED显示屏),用于在无线充电过程中,实时显示充电状态(例如,充电进行中或终止等)。
参见图2,在本公开的一实施例中,无线充电装置200还包括:电压转换电路203。该电压转换电路203,用于在提供给无线发射电路201的电流的电压不满足预设条件时,对提供给无线发射电路201的电流进行电压变换。如前所述,在一个实施例中,提供给无线发射电路201的电流可为DC/DC变换电路307提供的、电源提供设备提供的或前述储能模块提供的等。
当然,可替换地,如果提供给无线发射电路201的电压可以达到无线发射电路201对输入电压的电压需求,可以省去电压转换电路203,以简化无线充电装置的实现。无线发射电路201对输入电压的电压需求可根据实际需求进行设置,例如,设置为10V。
在本公开的一实施例中,提供给无线发射电路201的电流的电压不能满足预设条件是指,该电压低于无线发射电路201的需求电压或该电压高于无线发射电路201的需求电压。例如,若采用高压低电流(例如,20V/1A)的充电模式进行无线充电,这种充电模式对无线发射电路201的输入电压要求较高(如电压需求为10V或20V)。如果提供给无线发射电路201的电压无法达到无线发射电路201的电压需求,则电压转换电路203可以对输入电压进行升压,以达到无线发射电路201的电压需求。而如果电源提供设备的输出电压超过无线发射电路201的电压需求,电压转换电路203可以对输入电压进行降压,以达到无线发射电路201的电压需求。
参见图3,本公开的一实施例中,待充电设备300包括:无线接收电路301、第二控 制电路302、降压电路303、检测电路304、电池305和第一充电通道306。
在一实施例中,无线接收电路301,用于通过接收线圈将无线充电装置200的无线发射电路201发射的电磁信号转换成交流电,并对该交流电进行整流和/或滤波等操作,将该交流电转换成稳定的直流电,以给电池305充电。
在一个实施例中,无线接收电路301包括:接收线圈和AC/DC变换电路307。AC/DC变换电路307,用于将接收线圈接收到的交流电转换为直流电。
在本公开的一实施例中,电池305可包括单电芯或多电芯。电池305包括多电芯时,该多个电芯之间为串联关系。由此,电池305可承受的充电电压为多个电芯可承受的充电电压之和,可提高充电速度,减少充电发热。
以待充电设备为手机为例,待充电设备的电池305包括单电芯时,内部的单节电芯的电压一般在3.0V-4.35V之间。而待充电设备的电池305包括两节串联的电芯时,串联的两节电芯的总电压为6.0V-8.7V。由此,相比于单电芯,采用多节电芯串联时,无线接收电路301的输出电压可以提高。与单节电芯相比,达到同等的充电速度,多节电芯所需的充电电流约为单节电芯所需的充电电流的1/N(N为待充电设备内的相互串联的电芯的数目)。换句话说,在保证同等充电速度(充电功率相同)的前提下,采用多节电芯的方案,可以降低充电电流的大小,从而减少待充电设备在充电过程的发热量。另一方面,与单电芯方案相比,在充电电流保持相同的情况下,采用多电芯串联方案,可提高充电电压,从而提高充电速度。
在本公开的一实施例中,第一充电通道306可为导线。在第一充电通道306上可设置降压电路303。
降压电路303,用于对无线接收电路301输出的直流电进行降压,得到第一充电通道306的输出电压和输出电流。在一个实施例中,该第一充电通道306输出的直流电的电压值和电流值,符合电池305的充电需求,可直接加载到电池305。
检测电路304,用于检测第一充电通道306的电压值和/或电流值。第一充电通道306的电压值和/或电流值可以指无线接收电路301与降压电路303之间的电压值和/或电流值,即无线接收电路301的输出电压值和/或电流值。或者,第一充电通道306上的电压值和/或电流值也可以指降压电路303与电池305之间电压值和/或电流值,即降压电路303的输出电压和/或输出电流。
在一实施例中,检测电路304可以包括:电压检测电路304和电流检测电路304。电压检测电路304可用于对第一充电通道306上的电压进行采样,并将采样后的电压值发送给第二控制电路302。在一些实施例中,电压检测电路304可以通过串联分压的方式对第一充电通道306上的电压进行采样。电流检测电路304可用于对第一充电通道306上的电流进行采样,并将采样后的电流值发送给第二控制电路302。在一些实施例中,电流检测电路304可以通过检流电阻和检流计对第一充电通道306上的电流进行采样检测。
在一实施例中,第二控制电路302,用于与无线充电装置的第一控制电路202进行通信,将检测电路304检测到电压值和/或电流值反馈给第一控制电路202。由此,第一控制电路202可根据该反馈的电压值和/或电流值,调整无线发射电路201的发射功率,使得第一充电通道306输出的直流电的电压值和/或电流值与电池305所需的充电电压值和 /或电流值相匹配。
应理解,在本公开的一实施例中,“与电池305所需的充电电压值和/或电流值相匹配”包括:第一充电通道306输出的直流电的电压值和/或电流值与电池305所需的充电电压值和/或电流值相等或浮动预设范围(例如,电压值上下浮动100毫伏~200毫伏)。
在本公开的实施例中,降压电路303的实现形式可以有多种。作为一个示例,降压电路303可以为Buck电路。作为另一个示例,降压电路303可以为电荷泵(charge pump)。电荷泵由多个开关器件构成,电流流过开关器件产生的热量很小,几乎与电流直接经过导线相当,所以采用电荷泵作为降压电路303,不但可以起到降压效果,而且发热较低。作为一个示例,降压电路303还可为半压电路。
在一实施例中,无线充电装置200的电压转换电路203的升压倍数和待充电设备300的降压电路303的降压倍数的设置与电源提供设备能够提供的输出电压、电池305需要的充电电压等参数有关,二者可以相等也可以不相等,本公开实施例对此不做具体限定。
作为一个示例,可以将电压转换电路203的升压倍数与降压电路303的降压倍数设置为相等。例如,电压转换电路203可以是倍压电路,用于将电源提供设备的输出电压提升2倍;降压电路303可以是半压电路,用于将无线接收电路301的输出电压降低一半。
本一实施例中,将电压转换电路203的升压倍数与降压电路303的降压倍数设置为1:1,这种设置方式可以使得降压电路303的输出电压和输出电流分别与电源提供设备的输出电压和输出电流相一致,有利于简化控制电路的实现。以电池305对充电电流的需求为5A为例,当第二控制电路302通过检测电路304获知降压电路303的输出电流为4.5A时,需要调整电源提供设备的输出功率,使得降压电路303的输出电流达到5A。如果电压转换电路203的升压倍数与降压电路303的降压倍数之比不等于1:1,则在调整电源提供设备的输出功率时,第一控制电路202或第二控制电路302需要基于降压电路303的当前输出电流与期望值之间的差距,重新计算电源提供设备的输出功率的调整值。本公开一实施例将电压转换电路203的升压倍数与降压电路303的降压倍数之比设置为1:1,则第二控制电路302通知第一控制电路202将输出电流提升至5A即可,从而简化了无线充电通路的反馈调整方式。
参见图4,在本公开的一实施例中,待充电设备300还包括:第二充电通道308。第二充电通道308可为导线。在第二充电通道308上可设置变换电路307,用于对无线接收电路301输出的直流电进行电压控制,得到第二充电通道308的输出电压和输出电流,以对电池305进行充电。
在一个实施例中,变换电路307包括:用于稳压的电路和用于实现恒流和恒压的电路。其中,用于稳压的电路与无线接收电路301连接,用于实现恒流和恒压的电路与电池305连接。
当采用第二充电通道308对电池305进行充电时,无线发射电路201可采用恒定发射功率,无线接收电路301接收电磁信号后,由变换电路307处理为满足电池305充电需求的电压和电流后,输入电池305实现对电池305的充电。应理解,在一些实施例中,恒定发射功率不一定是发射功率完全保持不变,其可在一定的范围内变动,例如,发射 功率为7.5W上下浮动0.5W。
在该实施例中,第二控制电路302,还用于根据检测到的第二充电通道308的输出电压值与设定的目标值(例如,可为电池305实际的需求电压值)进行比较,确定误差值,再将误差值通过数据包的形式发送给第一控制器。第二充电通道308的输出电压值可为变换电路307与电池305之间电压值和/或电流值。
在一实施例中,通过第二充电通道308对电池305进行充电时,无线充电装置和待充电设备可按照Qi标准进行无线充电。由此,可通过信号调制的方式,将包含上述误差值的数据信号耦合到无线接收电路301的线圈以发送给无线发射电路201的线圈,再传输给第一控制器。
在本公开的一实施例中,通过第二充电通道308对电池305进行充电时,无线电能传输控制过程可包括:
第二控制电路302根据检测到的第二充电通道308的输出电压值与设定的目标值进行比较,确定误差值,再将误差值通过数据包的形式发送给第一控制器;第一控制器根据当前发射线圈的电流值和误差数据包的信息,确定差值,并根据差值设定新的工作频率,以调节无线发射电路201的发射功率的大小。
在本公开的实施例中,将与第一充电通道306对电池305进行充电对应的充电方式称为第一充电模式,将与第二充电通道308对电池305进行充电对应的方式称为第二充电模式。无线充电装置和待充电设备可通过通信确定采用第一充电模式还是第二充电模式对电池305进行充电。
本公开实施例中,在无线充电装置侧,当通过第一充电模式对待充电设备充电时,无线发射电路201的最大发射功率可为第一发射功率值。而通过第二充电模式对待充电设备进行充电时,无线发射电路201的最大发射功率可为第二发射功率值。其中,第一发射功率值大于第二发射功率值,由此,采用第一充电模式对待充电设备的充电速度大于第二充电模式。
如上所述,在一个实施例中,为了降低无线充电过程中的线圈发热问题,采用第一充电模式时,无线发射电路201可采用高压低电流的方式。即采用第一充电模式时无线发射电路201的输出电压大于采用第二充电模式时无线发射电路201的输出电压,由此使得第一发射功率值大于第二发射功率值。
在待充电设备侧,第二控制电路302根据充电模式,在第一充电通道306和第二充电通道308之间进行切换。当采用第一充电模式时,第二控制电路302控制第一充电通道306上的降压电路303工作。当采用第二充电模式时,第二控制电路302控制第二充电通道308上的变换电路307工作。
本公开实施例中,无线充电装置并非盲目地采用第一充电模式或第二充电模式对待充电设备进行充电,而是与待充电设备进行双向通信,协商采用的充电模式,提升充电过程的安全性。
参见图5,为本公开的一实施例中,无线充电装置与待充电设备的通信流程示意图。
在步骤S51中,无线充电装置向待充电设备发送第一指令。
该第一指令用于询问待充电设备是否支持第一充电模式;或,该第一指令用于请求 待充电设备的以下信息中的至少一者:待充电设备的类型或型号(例如,待充电设备出厂时设置的型号)、待充电设备的标识码(例如,为待充电设备预置的用于标识待充电设备是否支持第一充电模式的字符串)、待充电设备支持的最大充电电压和待充电设备支持的最大充电电流等。如上所述,待充电设备支持的最大充电电压和最大充电电流与待充电设备中的降压电路303或变换电路307的电路参数有关,和/或,与待充电设备中的电池305的电芯数量有关。
在步骤S52中,无线充电装置根据待充电设备反馈的回复信息,确定采用的充电模式。
在一个实施例中,当回复信息指示无线充电装置支持第一充电模式时,无线充电装置确定采用的充电模式为第一充电模式。反之,当回复信息指示无线充电装置不支持第一充电模式时,无线充电装置确定采用的充电模式为第二充电模式。
在一个实施例中,待充电设备反馈的回复信息可包括以下信息中的至少一种:待充电设备的类型或型号、待充电设备的标识码、待充电设备支持的最大充电电压和待充电设备支持的最大充电电流等。无线充电装置根据接收到的回复信息,确定可采用的充电模式。例如,当待充电设备的类型或型号为支持第一充电模式的类型或型号时,确定采用第一充电模式对待充电设备进行无线充电。
在一个实施例中,无线充电装置可将确定的充电模式反馈给待充电设备,由此,待充电设备可控制第一充电通道306或第二充电通道308导通。
在一实施例中,无线充电装置和待充电设备之间的通信可采用蓝牙通信、Wi-Fi通信、基于高载波频率的近距离无线通信、光通信、超声波通信、超宽带通信和移动通信等无线通信方式。
在一实施例中,基于高载波频率的近距离无线通信模块包括内部封装有EHF天线的IC芯片。可选的,高载波频率为60GHz。
在一实施例中,光通信模块包括红外通信模块,可利用红外线传输信息。
在一实施例中,移动通信模块可利用5G通信协议、4G通信协议或3G通信协议等移动通信协议进行信息传输。
采用上述的无线通信方式,相比于上述的通过信号调制的方式耦合到无线接收电路301的线圈进行通信的方式,可提高通信的可靠性,且可避免采用信号耦合方式通信带来的电压纹波,影响变换电路307或降压电路303的电压处理过程。
在本公开的实施例中,无线充电装置除了与待充电设备进行通信,确定无线充电装置与待充电设备间的充电模式,还可与电源提供设备通信,以确定电源提供设备与无线充电装置间的充电模式。
如上所述,当无线充电装置与待充电设备间采用第一充电模式时,无线充电装置采用的发射功率相比于采用第二充电模式时采用的发射功率的更高,即采用第一充电模式时,无线充电装置的无线发射电路201的需求电压更高。因此,无线充电装置还可与电源提供设备通信,以使得电源提供设备提供相适应的电压。
在一个实施例中,电源提供设备的类型包括快充类电源提供设备和非快充类电源提供设备。快充类电源提供设备可提供的输出电压大于非快充类电源提供设备可提供的输 出电压。例如,非快充类电源提供设备的输出电压/输出电流为5V/2A;快充类电源提供设备的输出电压/输出电流为15V/2A。
当电源提供设备的类型为快充类时,其提供给无线充电装置的电压,可支持无线充电装置采用第一充电模式。当电源提供设备的类型为非快充类时,其提供给无线充电装置的电压,可支持无线充电装置采用第二充电模式。
在一个实施例中,无线充电装置与电源提供设备通信,确定电源提供设备的类型,以及按照前述的方法与待充电设备进行通信,确定待充电设备支持的充电模式。然后,无线充电装置可根据电源提供设备的类型和/或待充电设备支持的充电模式,确定采用的充电模式。
在一些实施例中,当电源提供设备的类型为非快充类,待充电设备支持第一充电模式时,无线充电装置可通过电压转换电路203,对电源提供设备提供的电压进行转换,以采用第一充电模式。
在一些实施例中,当电源提供设备的类型为快充类,待充电设备支持第一充电模式时,但电源提供设备提供的电压不能满足无线发射电路201的需求(即采用第一充电模式时,无线发射电路201的电压需求)时,也可通过电压转换电路203,对电源提供设备提供的电压进行转换,以采用第一充电模式。
在一些实施例中,当电源提供设备的类型为快充类,但待充电设备只支持第二充电模式(例如,待充电设备只包括第二充电通道308)时,电压转换电路203可对电源提供设备提供的电压进行转换(例如,进行降压)后,采用第二充电模式。
在一些实施例中,当电源提供设备的类型为非快充类,待充电设备支持第二充电模式时,则无线充电装置确定采用第二充电模式。
当无线充电装置采用第一充电模式对待充电设备的电池305充电时,为了解决相关技术中采用低压大电流的无线充电方式导致的发热问题和充电效率低问题,本公开实施例采用高电压低电流的无线充电方式,以减小发热和提高充电效率。
本公开一实施例中,在无线充电装置端设置电压转换电路203。在待充电设备端设置与电池305连接的第一充电通道306(例如,为导线)。其中,第一充电通道306设置降压电路303,用于对无线接收电路301的输出电压进行降压,以使第一充电通道306的输出电压和输出电流满足电池305的充电需求。
在一个实施例中,若无线充电装置200采用20W的输出功率对待充电设备中的单电芯电池305进行充电,则采用第二充电通道308对该单电芯电池305进行充电时,无线发射电路201的输入电压需为5V,输入电流需为4A,而采用4A的电流必然会导致线圈发热,降低充电效率。
当采用第一充电通道306对该单电芯电池305进行充电时,由于第一充电通道306上设置了降压电路303,在无线发射电路201的发射功率不变(前述的20W)的情况下,可提高无线发射电路201的输入电压,由此,可降低无线发射电路201的输入电流。
在本公开的一实施例中,降压电路303可采用半压电路,即该降压电路303的输入电压和输出电压的比值为固定的2:1,以进一步减小降压电路303的发热。
当降压电路303采用半压电路时,例如,无线发射电路201的输入电压可为10V, 输入电流可为2A,由此,无线接收电路301的输出电压为10V(应理解,考虑电能损耗,实际值将接近于10V)。通过降压电路303的降压,第一充电通道306的输出电压为5V,以实现对电池305的充电。应理解,该实施例以电池305的需求电压为5V进行说明,在实际对电池305进行充电时,第二控制电路302将检测电路304实时检测到的降压电路303上的输出电压和/或输出电流反馈给第一控制电路202。第一控制电路202根据反馈的输出电压和/或输出电流,实现对无线发射电路201输出功率的调整,使得降压电路303的输入电压和输出电压的压差满足预设条件。
在本公开的实施例中,无线充电装置200调整无线发射电路201的输出功率的方式可有多种。具体的,调整方式可包括以下三种方式中的任一种和几种的组合:
(1)输入无线发射电路201的电压固定的情况下,通过调整谐振电路的调谐频率和/或逆变电路的开关管的占空比等参数,实现对无线发射电路201的输出功率的调整。
(2)调整电压转换电路203的输出电压(即输入无线发射电路201的电压),由此,实现对无线发射电路201的输出功率的调整。
(3)在去掉图1所示的电压转换电路203的情况下,通过调整电源提供设备的输出电压(即输入无线充电装置的电压),实现对无线发射电路201的输出功率的调整。
例如,上述预设条件可为:降压电路303的输入电压和输出电压的比值为2:1。则若采用上述第(2)种方式对无线发射电路201的输出功率进行调整,当检测到降压电路303的输出电压为D1伏时,第一控制电路202通过控制,使得降压电路303的输入电压为2D1伏(应理解,考虑能量损耗,实际电压可大于2D1伏)。由此,使得降压电路303的压差满足预设条件,以减小发热,提高充电效率。
若采用上述第(1)种方式,当无线发射电路201的输入电压为固定值D2时,当检测到降压电路303的输出电压为D1伏时,第一控制电路202根据D1和D2确定调谐频率或开关占空比,使得降压电路303的输入电压为2D1伏(应理解,考虑能量损耗,实际电压可大于2D1伏)。
若采用上述第(3)种方式,当检测到降压电路303的输出电压为D1伏时,第一控制电路202根据D1,与电源提供设备通信,使得电压提供设备提供给无线发射电路201的电压为2D1伏,以使得无线发射电路201的输出电压为2D1伏(应理解,考虑能量损耗,实际电压可大于2D1伏)。由此,使得降压电路303的输入电压为2D1伏。
本公开实施例对第一控制电路202与电源提供设备之间的通信方式不做具体限定。作为一个示例,第一控制电路202可以通过除充电接口之外的其他通信接口与电源提供设备相连,并通过该通信接口与电源提供设备通信。作为另一个示例,第一控制电路202可以以无线的方式与电源提供设备进行通信。例如,第一控制电路202可以与电源提供设备进行近场通信(near field communication,NFC)。作为又一个示例,第一控制电路202可以通过充电接口与电源提供设备进行通信,而无需设置额外的通信接口或其他无线通信模块,这样可以简化无线充电装置的实现。例如,充电接口为USB接口,第一控制电路202可以与电源提供设备基于该USB接口中的数据线(如D+和/或D-线)进行通信。又如,充电接口可以为支持功率传输(power delivery,PD)通信协议的USB接口(如USB TYPE-C接口),第一控制电路202与电源提供设备可以基于PD通信协议进行通信。
本公开实施例中,对电源提供设备调节输出功率的方式不做具体限定。例如,电源提供设备内部可以设置电压反馈环和电流反馈环,从而能够根据实际需要对其输出电压和/或输出电流的调节。
在一实施例中,无线充电装置200可设置为各种形状,例如,圆形、方形等,当待充电设备放置在无线充电装置200的充电表面(设置了发射线圈的表面)时,无线充电装置200按照图6所示的无线充电流程开始无线充电。
参见图6为本公开一实施例的无线充电的流程示意图。
在步骤S61中,无线充电装置检测是否有物体。
例如,无线充电装置每隔预设时间发送一个能量,以检测表面是否放置了物体。
在步骤S62中,确定检测到物体是否为合法待充电设备。
在步骤S63中,获取待充电设备的身份信息和配置信息。
例如,身份信息可为上述的待充电设备的标识码,配置信息可为上述的待充电设备的类型或型号。
在步骤S64中,根据待充电设备的身份信息和配置信息,确定充电模式。
例如,充电模式的确定可按照前述的方式,根据电源提供设备的类型和/或待充电设备支持的充电模式进行确定。
在本公开的实施例中,当确定采用第二充电模式时,执行步骤S65-S67的无线充电过程;当确定采用第一充电模式时,执行步骤S68-S69的无线充电过程。
在步骤S65中,在无线充电过程中,获取待充电设备反馈的控制信息;
在一个实施例中,可按照前述方式,由待充电设备的第二控制电路302将包括控制信息的数据包信号耦合到无线接收电路301的线圈发送给无线发射电路201的线圈,再传输给无线充电装置的第一控制器。控制信息可包括前述的误差值。
在步骤S66中,当控制信息为终止传输信息时,则停止无线充电;
在步骤S67中,当控制信息为误差信息时,则根据误差信息调整无线发射电路201的发射功率。
例如,可通过上述方式(1)或(3)进行发射功率的调整。
在步骤S68中,在无线充电过程中,与待充电设备进行无线通信,获取待充电设备反馈的降压电路303的输出电压和/或输出电流。
在步骤S69中,根据降压电路303的输出电压和/或输出电流调整电压转换电路203的输出电压和/或输出电流,以调整电磁信号的发射功率,使得降压电路303的输入电压和输出电压的压差满足预设条件。
例如,可通过上述(1)至(3)中的任一种或多种方式调整发射功率。
应理解,不论是采用第一充电模式,还是采用第二充电模式,若满足充电终止条件时,则停止无线充电。例如,检测到待充电设备离开充电表面时,则满足充电终止条件。或者检测到充电过程中发生异常情况(例如,充电过程发生过压、过流或过温等)时,则满足充电终止条件。
本公开一实施例中,采用第一充电模式时,待充电设备的无线接收电路301的输出电压由电压转换电路203的输出电压决定。本公开一实施例,通过降低降压电路303的 输入电压和输出电压的压差,提高降压电路303的工作效率,减小温升。在一个实施例中,由于降压电路303的输入电压由无线接收电路301的输入电压决定,因此,通过降低无线接收电路301的输入电压,可减小降压电路303的压差。
应理解,本公开实施例的无线充电装置和/或待充电设备可仅通过第一充电模式进行无线充电,或者同时支持第一充电模式和第二充电模式进行无线充电。本公开实施例对此不作限制。
在一实施例中,为了保证电池305的充电电流恒定,若降低无线接收电路301的输入电压,则需要提高无线接收电路301的输入电流。输入电流提高,会导致接收线圈上的电流增大,使得线圈的温升增大。由此,本公开一实施例的无线充电装置的第一控制电路202还根据待充电设备反馈的降压电路303的输出电流和预设的电流阈值,调整电压转换电路203的输出电压。
在一实施例中,电流阈值包括:第一电流阈值和第二电流阈值,其中,第一电流阈值大于第二电流阈值。第一控制电路202,用于在降压电路303的输出电流大于第一电流阈值时,控制电压转换电路203的输出电压提高;在降压电路303的输出电流小于第二电流阈值时,控制电压转换电路203的输出电压降低。
应理解,在发射功率一定的情况下,当降压电路303的输出电流大于第一电流阈值时,即使降压电路303的压差满足预设条件,但由于接收线圈的电流过大会导致线圈发热。因此,通过控制电压转换电路203的输出电压提高,降低电流,有利于减小线圈的发热。而当降压电路303的输出电流小于第二电流阈值时,降压电路303的压差将会增大,导致降压电路303发热。由此,通过控制电压转换电路203的输出电压降低,以降低降压电路303的压差,可减小降压电路303的发热。
在一实施例中,可以通过调试阶段的数据或多次的测试数据等来建立温升模型数据库,确定充电线圈上允许的最大电流阈值(即上述第一电流阈值),以及确定上述的第二电流阈值。
在本公开的一实施例中,无线充电装置的第一控制电路202还根据待充电设备反馈的降压电路303的输出电压和预设的压差与充电效率的对应关系,调整电压转换电路203的输出电压。
在一实施例中,可根据降压电路303的工作特性,通过调试和测试,获取降压电路303的效率最佳时的压差,确定压差与充电效率的对应关系。充电效率可通过温升反应,例如,充电效率和温升成反比,充电效率越高,温升越低。
在一实施例中,压差还可为电池305输入电压和电压转换电路203的输出电压之间的压差。应理解,在一些实施例中,降压电路的压差还可根据电池电压和以下电压中的任一者获取到:无线发射电路的输出电压、无线接收电路的输出电压、降压电路的输入电压和电压转换电路的输出电压。
由此,可根据降压电路303的压差以及上述对应关系,对电压转换电路203的输出电压进行调整,以达到最佳充电效率。或者,根据反馈的降压电压的输出电压,确定电池305的输入电压;根据确定的电池305的输入电压和电压转换电路203的输出电压之间的压差以及上述对应关系,对电压转换电路203的输出电压进行调整,以达到最佳充 电效率。
在本公开的一实施例中,可结合上述两种对电压转换电路203的电压的调整方式,即根据待充电设备反馈的降压电路303的输出电压和预设的压差与充电效率的对应关系,调整所述电压转换电路203的输出电压为第一电压;以及在调整所述电压转换电路203的输出电压为第一电压后,根据待充电设备反馈的降压电路303的输出电流和预设的电流阈值,调整电压转换电路203的输出电压为第二电压。由此,可对电压转换电路203的输出电压进行粗调和细调,确保调节的准确性。
参见图7,为本公开一实施例的无线充电方法的流程示意图。该无线充电方法应用于待充电设备。
在步骤S71中,利用无线接收电路301接收无线充电装置发射的电磁信号,并将电磁信号转换成无线接收电路301的输出电压和输出电流。
在步骤S72中,利用降压电路303接收无线接收电路301的输出电压,对无线接收电路301的输出电压进行降压处理,以对待充电设备的电池305进行充电。
在步骤S73中,检测降压电路303的输出电压和/或输出电流。
在步骤S74中,根据检测到的降压电路303上的输出电压和/或输出电流,与无线充电装置进行通信,以便无线充电装置调整电磁信号的发射功率,使得降压电路303的输入电压和输出电压的压差满足预设条件。
在一个实施例中,根据检测到的降压电路303上的输出电压和/或输出电流,与无线充电装置进行通信,包括:
根据检测到的降压电路303上的输出电压和/或输出电流,向无线充电装置发送调整信息,调整信息用于指示无线充电装置对接收自电源提供设备的电能进行电压和/电流调整,以调整电磁信号的发射功率。
在一个实施例中,方法还包括:
利用变换电路307接收无线接收电路301的输出电压和输出电流,对无线接收电路301的输出电压和/或输出电流进行恒压和/或恒流控制,以对电池305进行充电;以及
与无线充电装置进行通信,以确定控制降压电路303工作或控制变换电路307工作。
参见图8,为本公开另一实施例的无线充电方法的流程示意图。该无线充电方法应用于无线充电装置。
在步骤S81中,利用电压转换电路203接收输入电压,并对输入电压进行转换,得到电压转换电路203的输出电压和输出电流。
在步骤S82中,利用无线发射电路201根据电压转换电路203的输出电压和输出电流发射电磁信号,以对待充电设备进行无线充电。
在步骤S83中,在无线充电的过程中,与待充电设备进行无线通信,获取待充电设备反馈的降压电路303的输出电压和/或输出电流;以及根据降压电路303的输出电压和/或输出电流调整电压转换电路203的输出电压和/或输出电流,以调整电磁信号的发射功率,使得降压电路303的输入电压和输出电压的压差满足预设条件。
应理解,上述方法的各步骤的具体实现细节,在前述实施例中已描述,在此不再赘述。
在本公开的实施例中,采用第一充电通道306或第二充电通道308对电池305的充电过程均可包括涓流充电阶段、恒流充电阶段和恒压充电阶段。需要说明的是,本公开实施例中提及的恒流充电阶段并非一定为充电电流保持完全恒定不变,例如可以是泛指充电电流的峰值或均值在一段时间内保持不变。实际中,恒流充电阶段可采用分段恒流的方式进行充电。
分段恒流充电(Multi-stage constant current charging)可具有N个恒流阶段(N为一个不小于2的整数),分段恒流充电以预定的充电电流开始第一阶段充电,所述分段恒流充电的N个恒流阶段从第一阶段到第N个阶段依次被执行,当恒流阶段中的前一个恒流阶段转到下一个恒流阶段后,充电电流值可变小;当电池305电压到达充电终止电压阈值时,恒流阶段中的前一个恒流阶段会转到下一个恒流阶段。相邻两个恒流阶段之间的电流转换过程可以是渐变的,或,也可以是台阶式的跳跃变化。
本公开实施例对无线充电装置与待充电设备之间的通信方式和通信顺序不做具体限定。
可选地,在一些实施例中,无线充电装置与待充电设备(或第二控制电路302与第一控制电路202)之间的无线通信可以为单向的无线通信。
举例说明,在电池305的无线充电过程中,可以规定待充电设备为通信的发起方,无线充电装置为通信的接收方。比如,在电池305的恒流充电阶段,待充电设备可以通过检测电路304实时检测电池305的充电电流(即无线接收电路301的输出电流),当电池305的充电电流与电池305当前所需的充电电流不匹配时,待充电设备向无线充电装置发送调整信息,指示无线充电装置调整无线发射电路201的发射功率。
可选地,在一些实施例中,无线充电装置与待充电设备(或第二控制电路302与第一控制电路202)之间的无线通信可以为双向的无线通信。双向的无线通信一般要求接收方在接收到发起方发起的通信请求之后,向发起方发送响应信息,双向通信机制能够使得通信过程更加安全。
本公开实施例的上述描述并不会对无线充电装置(无线充电装置中的第一控制电路202)与待充电设备(待充电设备中的第一控制电路202)的主从性进行限定。换句话说,无线充电装置与待充电设备中的任何一方均可作为主设备方发起双向通信会话,相应地另外一方可以作为从设备方对主设备方发起的通信做出第一响应或第一回复。作为一种可行的方式,可以在通信过程中,通过比较无线充电装置与待充电设备之间的链路状况确定主、从设备的身份。例如,假设无线充电装置向待充电设备发送信息的无线链路为上行链路,待充电设备向无线充电装置发送信息的无线链路为下行链路,如果上行链路的链路质量较好,可以将无线充电装置设置为通信的主设备;如果下行链路的链路质量较好,可以将待充电设备设置为通信的从设备。
本公开实施例并未对无线充电装置与待充电设备之间双向通信的具体实现方式作出限制,即言,无线充电装置与待充电设备中的任何一方作为主设备方发起通信会话,相应地另外一方作为从设备方对主设备方发起的通信会话做出第一响应或第一回复,同时主设备方能够针对所述从设备方的第一响应或第一回复做出第二响应,即可认为主、从设备之间完成了一次通信协商过程。
作为主设备方能够根据所述从设备方针对通信会话的第一响应或第一回复做出第二响应的一种方式可以是:主设备方能够接收到所述从设备方针对通信会话所做出的第一响应或第一回复,并根据接收到的所述从设备的第一响应或第一回复做出针对性的第二响应。
作为主设备方能够根据所述从设备方针对通信会话的第一响应或第一回复做出进一步的第二响应的一种方式还可以是:主设备方在预设的时间内没有接收到所述从设备方针对通信会话的第一响应或第一回复,主设备方也会对所述从设备的第一响应或第一回复做出针对性的第二响应。
可选地,在一些实施例中,当待充电设备作为主设备发起通信会话,无线充电装置作为从设备对主设备方发起的通信会话做出第一响应或第一回复后,无需要待充电设备对无线充电装置的第一响应或第一回复做出针对性的第二响应,即可认为无线充电装置与待充电设备之间完成了一次通信协商过程。
本公开实施例对无线充电装置中的第一控制电路202与待充电设备中的第二控制电路302之间的无线通信方式不做具体限定。举例说明,第一控制电路202和第二控制电路302可以基于蓝牙(bluetooth)、无线保真(wireless fidelity,Wi-Fi)或反向散射(backscatter)调制方式(或功率负载调制方式)进行无线通信。
上文指出,在无线充电过程中,第二控制电路302可以根据检测电路304检测到的第一充电通道306上的电压和/或电流,与第一控制电路202进行无线通信,以便第一控制电路202调整无线发射电路201的发射功率。但是,本公开实施例对第二控制电路302与第一控制电路202之间的通信内容不做具体限定。
作为一个示例,第二控制电路302可以向第一控制电路202发送检测电路304检测到的第一充电通道306的输出电压和/或输出电流。进一步地,第二控制电路302还可以向第一控制电路202发送电池305状态信息,其中电池305状态信息包括待充电设备中的电池305的当前电量和/或当前电压。第一控制电路202首先可以根据电池305状态信息,确定电池305当前所处的充电阶段,进而确定与电池305当前所需的充电电压和/或充电电流相匹配的目标充电电压和/或目标充电电流;然后,第一控制电路202可以将第二控制电路302发送来的第一充电通道306的输出电压和/或输出电流与上述目标充电电压和/或目标充电电流相比较,以确定第一充电通道306的输出电压和/或输出电流与电池305当前所需的充电电压和/或充电电流是否匹配,并在第一充电通道306的输出电压和/或输出电流与电池305当前所需的充电电压和/或充电电流不匹配的情况下,调整无线发射电路201的发射功率,直到第一充电通道306的输出电压和/或输出电流与电池305当前所需的充电电压和/或充电电流相匹配。
作为另一个示例,第二控制电路302可以向第一控制电路202发送调整信息,以指示第一控制电路202调整无线发射电路201的发射功率。例如,第二控制电路302可以指示第一控制电路202增大无线发射电路201的发射功率;又如,第二控制电路302可以指示第一控制电路202减小无线发射电路201的发射功率。更为具体地,无线充电装置可以为无线发射电路201设置发射功率的多个档位,第一控制电路202每接收到一次调整信息,就将无线发射电路201的发射功率的档位调整一个档位,直到第一充电通道 306的输出电压和/或输出电流与电池305当前所需的充电电压和/或充电电流相匹配。
除了上述通信内容之外,第一控制电路202和第二控制电路302之间还可以交互许多其他通信信息。在一些实施例中,第一控制电路202和第二控制电路302之间可以交互用于安全保护、异常检测或故障处理的信息,如电池305的温度信息,进入过压保护或过流保护的指示信息等信息,功率传输效率信息(该功率传输效率信息可用于指示无线发射电路201和无线接收电路301之间的功率传输效率)。
例如,当电池305的温度过高时,第一控制电路202和/或第二控制电路302可以控制充电回路进入保护状态,如控制充电回路停止无线充电。又如,第一控制电路202接收到第二控制电路302发送的过压保护或过流保护的指示信息之后,第一控制电路202可以降低发射功率,或控制无线发射电路201停止工作。又如第一控制电路202接收到第二控制电路302发送的功率传输效率信息之后,如果功率传输效率低于预设阈值,可以控制无线发射电路201停止工作,并向用户通知这一事件,如通过显示屏显示功率传输效率过低,或者可以通过指示灯指示功率传输效率过低,以便用户调整无线充电的环境。
在一些实施例中,第一控制电路202和第二控制电路302之间可以交互能够用于调整无线发射电路201的发射功率调整的其他信息,如电池305的温度信息,指示第一充电通道306上的电压和/或电流的峰值或均值的信息,功率传输效率信息(该功率传输效率信息可用于指示无线发射电路201和无线接收电路301之间的功率传输效率)等。
例如,第二控制电路302可以向第一控制电路202发送功率传输效率信息,第一控制电路202还用于根据功率传输效率信息确定无线发射电路201的发射功率的调整幅度。具体地,如果功率传输效率信息指示无线发射电路201与无线接收电路301之间的功率传输效率低,则第一控制电路202可以增大无线发射电路201的发射功率的调整幅度,使得无线发射电路201的发射功率快速达到目标功率。
又如,如果无线接收电路301输出的是脉动波形的电压和/或电流,第二控制电路302可以向第一控制电路202发送指示第一充电通道306的输出电压和/或输出电流的峰值或均值的信息,第一控制电路202可以判断第一充电通道306的输出电压和/或输出电流的峰值或均值是否与电池305当前所需的充电电压和/或充电电流相匹配,如果不匹配,则可以调整无线发射电路201的发射功率。
又如,第二控制电路302可以向第一控制电路202发送电池305的温度信息,如果电池305的温度过高,第一控制电路202可以降低无线发射电路201的发射功率,以降低无线接收电路301的输出电流,从而降低电池305的温度。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公 开的思想,其同样应当视为本公开所公开的内容。

Claims (20)

  1. 一种无线充电装置,其特征在于,包括:
    电压转换电路,用于接收输入电压,并对所述输入电压进行转换,得到所述电压转换电路的输出电压和输出电流;
    无线发射电路,用于根据所述电压转换电路的输出电压和输出电流发射电磁信号,以对待充电设备进行无线充电;
    第一控制电路,用于在所述无线充电的过程中,与所述待充电设备进行无线通信,获取所述待充电设备反馈的降压电路的输出电压和/或输出电流;以及根据所述降压电路的输出电压和/或输出电流调整所述电压转换电路的输出电压和/或输出电流,以调整所述电磁信号的发射功率,使得所述降压电路的输入电压和输出电压的压差满足预设条件。
  2. 如权利要求1所述的无线充电装置,其特征在于,所述第一控制电路,用于根据所述待充电设备反馈的降压电路的输出电流和预设的电流阈值,调整所述电压转换电路的输出电压。
  3. 如权利要求2所述的无线充电装置,其特征在于,所述电流阈值包括:第一电流阈值和第二电流阈值;
    所述第一控制电路,用于在所述降压电路的输出电流大于所述第一电流阈值时,控制所述电压转换电路的输出电压提高;在所述降压电路的输出电流小于所述第二电流阈值时,控制所述电压转换电路的输出电压降低。
  4. 如权利要求1所述的无线充电装置,其特征在于,所述第一控制电路,用于根据所述待充电设备反馈的降压电路的输出电压和预设的压差与充电效率的对应关系,调整所述电压转换电路的输出电压。
  5. 如权利要求1所述的无线充电装置,其特征在于,所述第一控制电路,用于根据所述待充电设备反馈的降压电路的输出电压和预设的压差与充电效率的对应关系,调整所述电压转换电路的输出电压为第一电压;以及
    在调整所述电压转换电路的输出电压为第一电压后,根据所述待充电设备反馈的降压电路的输出电流和预设的电流阈值,调整所述电压转换电路的输出电压为第二电压。
  6. 根据权利要求1所述的无线充电装置,其特征在于,所述电压转换电路与外部电源提供设备连接;
    所述第一控制电路,还用于与所述外部电源提供设备通信,以使所述外部电压设备根据所述降压电路的输出电压和/或输出电流调整提供给所述电压转换电路的电流的电压值和/或电流值。
  7. 根据权利要求1所述的无线充电装置,其特征在于,所述第一控制电路,还用于与所述待充电设备通信,以确定充电模式,所述充电模式包括第一充电模式和第二充电模式,其中,采用所述第一充电模式时无线发射电路的最大发射功率大于采用所述第二充电模式时无线发射电路的最大发射功率。
  8. 一种待充电设备,其特征在于,包括:
    电池;
    无线接收电路,用于接收无线充电装置发射的电磁信号,并将所述电磁信号转换成 所述无线接收电路的输出电压和输出电流;
    降压电路,用于接收所述无线接收电路的输出电压,对所述无线接收电路的输出电压进行降压处理,以对所述电池进行充电;
    检测电路,用于检测所述降压电路的输出电压和/或输出电流;
    第二控制电路,用于根据所述检测电路检测到的所述降压电路上的输出电压和/或输出电流,与所述无线充电装置进行通信,以便所述无线充电装置调整所述电磁信号的发射功率,使得所述降压电路的输入电压和输出电压的压差满足预设条件。
  9. 如权利要求8所述的待充电设备,其特征在于,所述电池包括相互串联的N节电芯,其中N为大于1的正整数。
  10. 如权利要求8或9所述的待充电设备,其特征在于,所述降压电路为Buck电路或电荷泵。
  11. 如权利要求10所述的待充电设备,其特征在于,所述第二控制电路,用于根据所述检测电路检测到的所述降压电路上的输出电压和/或输出电流,向所述无线充电装置发送调整信息,所述调整信息用于指示所述无线充电装置对接收自电源提供设备的电能进行电压和/电流调整,以调整所述电磁信号的发射功率。
  12. 如权利要求8-11中任一项所述的待充电设备,其特征在于,所述待充电设备还包括:
    变换电路,用于接收所述无线接收电路的输出电压和输出电流,对所述无线接收电路的输出电压和/或输出电流进行恒压和/或恒流控制,以对所述电池进行充电;
    所述第二控制电路,还用于控制所述降压电路和所述变换电路之间的切换。
  13. 如权利要求12所述的待充电设备,其特征在于,所述第二控制电路,还用于与所述无线充电装置进行通信,以确定控制所述降压电路工作或控制所述变换电路工作。
  14. 如权利要求12或13所述的待充电设备,其特征在于,所述第二控制电路还用于根据所述电池的温度,控制所述降压电路和所述转换电路之间的切换。
  15. 如权利要求8-14中任一项所述的待充电设备,其特征在于,所述降压电路输出的电流为恒定直流电、脉动直流电或交流电。
  16. 一种无线充电方法,应用于待充电设备,其特征在于,所述方法包括:
    利用无线接收电路接收无线充电装置发射的电磁信号,并将所述电磁信号转换成所述无线接收电路的输出电压和输出电流;
    利用降压电路接收所述无线接收电路的输出电压,对无线接收电路的输出电压进行降压处理,以对所述待充电设备的电池进行充电;
    检测所述降压电路的输出电压和/或输出电流;
    根据检测到的所述降压电路上的输出电压和/或输出电流,与所述无线充电装置进行通信,以便所述无线充电装置调整所述电磁信号的发射功率,使得所述降压电路的输入电压和输出电压的压差满足预设条件。
  17. 如权利要求16所述的方法,其特征在于,所述根据检测到的所述降压电路上的输出电压和/或输出电流,与所述无线充电装置进行通信,包括:
    根据检测到的所述降压电路上的输出电压和/或输出电流,向所述无线充电装置发送 调整信息,所述调整信息用于指示所述无线充电装置对接收自电源提供设备的电能进行电压和/电流调整,以调整所述电磁信号的发射功率。
  18. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    利用变换电路接收所述无线接收电路的输出电压和输出电流,对所述无线接收电路的输出电压和/或输出电流进行恒压和/或恒流控制,以对所述电池进行充电;以及
    与所述无线充电装置进行通信,以确定控制所述降压电路工作或控制所述变换电路工作。
  19. 一种无线充电方法,应用于无线充电装置,其特征在于,包括:
    利用电压转换电路接收输入电压,并对所述输入电压进行转换,得到所述电压转换电路的输出电压和输出电流;
    利用无线发射电路根据所述电压转换电路的输出电压和输出电流发射电磁信号,以对待充电设备进行无线充电;
    在所述无线充电的过程中,与所述待充电设备进行无线通信,获取所述待充电设备反馈的降压电路的输出电压和/或输出电流;以及根据所述降压电路的输出电压和/或输出电流调整所述电压转换电路的输出电压和/或输出电流,以调整所述电磁信号的发射功率,使得所述降压电路的输入电压和输出电压的压差满足预设条件。
  20. 一种无线充电系统,其特征在于,所述无线充电系统包括无线充电装置和待充电设备;
    所述待充电设备包括:
    电池;
    无线接收电路,用于接收所述无线充电装置发射的电磁信号,并将所述电磁信号转换成所述无线接收电路的输出电压和输出电流;
    降压电路,用于接收所述无线接收电路的输出电压,对所述无线接收电路的输出电压进行降压处理,以对所述电池进行充电;
    检测电路,用于检测所述降压电路的输出电压和/或输出电流;
    第二控制电路,用于根据所述检测电路检测到的所述降压电路上的输出电压和/或输出电流,与所述无线充电装置进行通信;
    所述无线充电装置包括:
    电压转换电路,用于接收输入电压,并对所述输入电压进行转换,得到所述电压转换电路的输出电压和输出电流;
    无线发射电路,用于根据所述电压转换电路的输出电压和输出电流发射电磁信号,以对所述待充电设备进行无线充电;
    第一控制电路,用于在所述无线充电的过程中,与所述待充电设备进行无线通信,获取所述待充电设备反馈的所述降压电路的输出电压和/或输出电流;以及根据所述降压电路的输出电压和/或输出电流调整所述电压转换电路的输出电压和/或输出电流,以调整所述电磁信号的发射功率,使得所述降压电路的输入电压和输出电压的压差满足预设条件。
PCT/CN2018/082011 2017-04-07 2018-04-04 待充电设备、无线充电装置、无线充电方法及系统 WO2018184583A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019552162A JP6871409B2 (ja) 2017-04-07 2018-04-04 被充電機器、無線充電装置、無線充電方法及び無線充電システム
CN201880007014.2A CN110178283B (zh) 2017-04-07 2018-04-04 待充电设备、无线充电装置、无线充电方法及系统
KR1020197031258A KR102325154B1 (ko) 2017-04-07 2018-04-04 충전 대기 설비, 무선 충전 장치 및 무선 충전 방법
EP18781213.6A EP3605780B1 (en) 2017-04-07 2018-04-04 Device to be charged, wireless charging apparatus, wireless charging method and system
US16/551,573 US11075542B2 (en) 2017-04-07 2019-08-26 Device to-be-charged, wireless charging apparatus, and wireless charging method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/079784 WO2018184230A1 (zh) 2017-04-07 2017-04-07 无线充电系统、装置、方法及待充电设备
CNPCT/CN2017/079784 2017-04-07
CNPCT/CN2017/080334 2017-04-13
PCT/CN2017/080334 WO2018188006A1 (zh) 2017-04-13 2017-04-13 待充电设备和充电方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/551,573 Continuation US11075542B2 (en) 2017-04-07 2019-08-26 Device to-be-charged, wireless charging apparatus, and wireless charging method

Publications (1)

Publication Number Publication Date
WO2018184583A1 true WO2018184583A1 (zh) 2018-10-11

Family

ID=63712012

Family Applications (6)

Application Number Title Priority Date Filing Date
PCT/CN2018/081962 WO2018184573A1 (zh) 2017-04-07 2018-04-04 无线充电装置、待充电设备及其控制方法
PCT/CN2018/082010 WO2018184582A1 (zh) 2017-04-07 2018-04-04 待充电设备、无线充电装置、无线充电方法及系统
PCT/CN2018/082011 WO2018184583A1 (zh) 2017-04-07 2018-04-04 待充电设备、无线充电装置、无线充电方法及系统
PCT/CN2018/081972 WO2018184578A1 (zh) 2017-04-07 2018-04-04 无线充电系统、装置、方法及待充电设备
PCT/CN2018/082013 WO2018184584A1 (zh) 2017-04-07 2018-04-04 无线充电装置、方法及待充电设备
PCT/CN2018/082009 WO2018184581A1 (zh) 2017-04-07 2018-04-04 待充电设备、无线充电装置、无线充电方法及系统

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/081962 WO2018184573A1 (zh) 2017-04-07 2018-04-04 无线充电装置、待充电设备及其控制方法
PCT/CN2018/082010 WO2018184582A1 (zh) 2017-04-07 2018-04-04 待充电设备、无线充电装置、无线充电方法及系统

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/CN2018/081972 WO2018184578A1 (zh) 2017-04-07 2018-04-04 无线充电系统、装置、方法及待充电设备
PCT/CN2018/082013 WO2018184584A1 (zh) 2017-04-07 2018-04-04 无线充电装置、方法及待充电设备
PCT/CN2018/082009 WO2018184581A1 (zh) 2017-04-07 2018-04-04 待充电设备、无线充电装置、无线充电方法及系统

Country Status (13)

Country Link
US (6) US11437848B2 (zh)
EP (6) EP3605781B1 (zh)
JP (7) JP6918135B2 (zh)
KR (6) KR102243241B1 (zh)
CN (6) CN110214402B (zh)
AU (4) AU2018247552A1 (zh)
BR (2) BR112019018588B1 (zh)
CA (3) CA3057731A1 (zh)
MX (3) MX2019010614A (zh)
RU (3) RU2724645C1 (zh)
SG (3) SG11201906965SA (zh)
WO (6) WO2018184573A1 (zh)
ZA (3) ZA201906558B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200067122A (ko) * 2018-11-30 2020-06-11 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 무선 충전 장치의 제어 방법, 제어장치 및 무선 충전 장치
CN111439141A (zh) * 2020-04-09 2020-07-24 西交利物浦大学 无线充电控制系统及装置
JP2022550050A (ja) * 2019-09-25 2022-11-30 オナー デバイス カンパニー リミテッド 高出力高速充電をサポートする電池モジュール、充電モジュールおよび電子デバイス

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2623815T5 (es) 2013-11-28 2022-11-28 Pan Dur Holding Gmbh & Co Kg Compuesto laminado
CN109314396B (zh) * 2017-04-07 2022-07-19 Oppo广东移动通信有限公司 无线充电系统、装置、方法及待充电设备
WO2018184536A1 (zh) * 2017-04-07 2018-10-11 Oppo广东移动通信有限公司 数据传输的方法和发送端设备
JP7059290B2 (ja) 2017-04-07 2022-04-25 オッポ広東移動通信有限公司 無線充電装置、無線充電方法及び被充電機器
EP3605781B1 (en) 2017-04-07 2023-08-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging apparatus and method, and device to be charged
WO2019218161A1 (zh) 2018-05-15 2019-11-21 Oppo广东移动通信有限公司 待充电设备和充电控制方法
CN112913104A (zh) * 2018-12-21 2021-06-04 Oppo广东移动通信有限公司 发射装置、接收装置、电源提供设备及无线充电方法
CN112956109A (zh) * 2018-12-21 2021-06-11 Oppo广东移动通信有限公司 接收装置和无线充电方法
WO2020124549A1 (zh) * 2018-12-21 2020-06-25 Oppo广东移动通信有限公司 一种无线充电方法、待充电设备、电源设备及存储介质
CN113169561B (zh) * 2018-12-21 2024-04-02 Oppo广东移动通信有限公司 无线充电方法、待充电设备、无线充电装置及存储介质
EP3890150A4 (en) * 2018-12-21 2021-12-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. CHARGING DEVICE, DEVICE TO CHARGE, CHARGING PROCESS, AND COMPUTER INFORMATION SUPPORT
CN109546711A (zh) * 2018-12-28 2019-03-29 维沃移动通信有限公司 无线充电控制方法、电路及终端设备
KR20200101228A (ko) 2019-02-19 2020-08-27 삼성전자주식회사 외부 장치를 무선 충전하기 위한 전자 장치
JP7168771B2 (ja) * 2019-04-22 2022-11-09 パイオニア株式会社 電磁波送信装置及び電磁波通信システム
US11594904B2 (en) * 2019-04-25 2023-02-28 II Richard Brian Murray Method and apparatus for reducing battery stress
KR20200136594A (ko) * 2019-05-28 2020-12-08 삼성전자주식회사 전압 분배 비율을 적응적으로 변경하는 전압 분배 회로를 포함하는 전자 장치
CN112636399B (zh) * 2019-09-24 2023-08-04 北京小米移动软件有限公司 充电方法和装置、终端设备及存储介质
CN110649688B (zh) * 2019-10-21 2023-03-14 广西电网有限责任公司电力科学研究院 一种基于电池温度检测的无线充电控制系统及方法
CN113036828A (zh) * 2019-12-24 2021-06-25 Oppo广东移动通信有限公司 电子设备
CN113067395B (zh) * 2019-12-31 2024-06-11 华为技术有限公司 电子设备、无线充电接收装置及控制方法、无线充电系统
KR20210105204A (ko) 2020-02-18 2021-08-26 엘지전자 주식회사 무선 전력 전송 장치, 무선 전력 수신 장치, 및 이를 포함하는 시스템
KR20210105205A (ko) 2020-02-18 2021-08-26 엘지전자 주식회사 무선 전력 전송 장치 및 그의 동작방법
US11239672B2 (en) * 2020-03-23 2022-02-01 Duracell U.S. Operations, Inc. Monitoring charging efficiency of a mobile computing device via a power bank
JP7437631B2 (ja) * 2020-03-31 2024-02-26 パナソニックIpマネジメント株式会社 通信制御装置、通信制御システム、および、通信制御方法
CN113725931A (zh) * 2020-05-25 2021-11-30 Oppo广东移动通信有限公司 电池组充电电路、电池组放电电路和电池组
US11196487B1 (en) 2020-07-31 2021-12-07 Scidatek Inc. Free-space communication and wireless power transfer system and method of using same
CN114356126B (zh) * 2020-09-29 2023-09-05 宝德科技股份有限公司 具动态调整组态的多线圈鼠标垫
CA3179155C (en) * 2021-02-09 2024-01-02 The Governing Council Of The University Of Toronto Excitation-quadrature-quadrature transmitter wireless power transfer system
US11710977B2 (en) 2021-03-11 2023-07-25 Duracell U.S. Operations, Inc. Integrated monitoring charging efficiency of a rechargeable device via a power bank
CN113098143A (zh) * 2021-03-30 2021-07-09 北京小米移动软件有限公司 电子设备的充电系统、无线充电端、终端及充电方法
CN113131568B (zh) * 2021-03-30 2023-04-28 联想(北京)有限公司 一种电池的无线充电控制方法及电路
US11936211B2 (en) * 2021-05-05 2024-03-19 Aira, Inc. Mixed analog front-end for wireless charging
KR20230136114A (ko) * 2021-06-29 2023-09-26 썬전 즈여우 프리사이스 일렉트로닉스 컴퍼니 리미티드 라이트닝 암형 소켓을 지닌 전원 어댑터, 충전 장치 및 시스템
CN113433704B (zh) * 2021-07-26 2023-11-21 Oppo广东移动通信有限公司 眼镜及其充电方法、电子设备系统
TWI788165B (zh) * 2021-12-28 2022-12-21 台達電子工業股份有限公司 電源傳輸系統及方法
CN115021379B (zh) * 2022-08-04 2022-11-04 深圳市微源半导体股份有限公司 一种充电电路和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140247052A1 (en) * 2013-03-01 2014-09-04 Canon Kabushiki Kaisha Wireless power supply system, power transmission device, and power receiving device
CN104113104A (zh) * 2014-05-22 2014-10-22 深圳天珑无线科技有限公司 一种充电方法及系统
CN104283293A (zh) * 2014-09-29 2015-01-14 深圳市泰金田科技有限公司 谐振-移频实现汽车无线充电的方法及系统
CN105896670A (zh) * 2016-05-25 2016-08-24 乐视控股(北京)有限公司 一种充电装置及移动终端

Family Cites Families (303)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277025A (ja) * 1985-09-26 1987-04-09 セイコーエプソン株式会社 集積回路
JPH03189569A (ja) 1989-12-20 1991-08-19 Toshiba Corp 電圧測定装置
JPH05168149A (ja) * 1991-12-16 1993-07-02 Nec Home Electron Ltd Acアダプタ付き情報処理装置
US5638540A (en) 1993-06-08 1997-06-10 U.S. Robotics Mobile Communication Corp. Portable computer/radio power management system
JPH07177658A (ja) 1993-12-20 1995-07-14 Matsushita Electric Works Ltd 給電回路
JPH07177653A (ja) 1993-12-20 1995-07-14 Toshiba Corp 系統連系保護装置
JP3620118B2 (ja) * 1995-10-24 2005-02-16 松下電器産業株式会社 定電流・定電圧充電装置
JP3439013B2 (ja) 1996-02-29 2003-08-25 三洋電機株式会社 二次電池のパルス充電方法
JP3595646B2 (ja) * 1997-03-19 2004-12-02 株式会社カージオペーシングリサーチ・ラボラトリー 生体植え込み装置
US6208115B1 (en) 1997-06-16 2001-03-27 Yehuda Binder Battery substitute pack
JPH1189103A (ja) * 1997-09-11 1999-03-30 Sanyo Electric Co Ltd 非接触型充電装置
JP2000333377A (ja) 1999-05-21 2000-11-30 Sony Computer Entertainment Inc エンタテインメントシステムおよび充電システム
US7386238B2 (en) * 2000-08-15 2008-06-10 Lockheed Martin Corporation Method and system for infrared data communications
CN2464002Y (zh) 2000-12-16 2001-12-05 蒋冠珞 自生反向脉冲的快速充电机
JP2004064938A (ja) 2002-07-31 2004-02-26 Fuji Photo Film Co Ltd 充電システム
US7203048B2 (en) 2002-10-24 2007-04-10 02Micro International Limited DC to DC controller with inrush current protection
JP2004328916A (ja) * 2003-04-25 2004-11-18 Fuji Photo Film Co Ltd 充電装置
CN100367594C (zh) 2003-05-08 2008-02-06 美国凹凸微系有限公司 带有浪涌电流保护的直流/直流控制器
TWI242994B (en) * 2004-01-06 2005-11-01 Huges Hi Tech Inc Wireless earphone and its charging circuit and its charging method
KR100853889B1 (ko) 2005-07-29 2008-08-25 엘에스전선 주식회사 무 접점 충전 배터리 및 충전기, 이들을 포함하는 배터리충전 세트, 및 충전제어 방법
KR100792311B1 (ko) * 2005-07-30 2008-01-07 엘에스전선 주식회사 충전전력 공급장치, 충전 장치, 배터리 장치, 무접점 충전 시스템 및 무접점 충전 방법
JP4991194B2 (ja) 2005-09-12 2012-08-01 株式会社リコー 画像形成装置
US20070139012A1 (en) 2005-11-01 2007-06-21 Aerovironment, Inc. Motive power dual battery pack
ATE476224T1 (de) 2005-12-07 2010-08-15 Boston Scient Neuromodulation Batterieschutz- und null-volt-batterie- wiederaufladungssystem für eine implantierbare medizinische vorrichtung
US7880445B2 (en) 2006-02-16 2011-02-01 Summit Microelectronics, Inc. System and method of charging a battery using a switching regulator
JP4187001B2 (ja) 2006-04-14 2008-11-26 船井電機株式会社 光ディスク記録再生装置
JP5020530B2 (ja) 2006-04-14 2012-09-05 パナソニック株式会社 充電方法ならびに電池パックおよびその充電器
JP2007305820A (ja) * 2006-05-12 2007-11-22 Asuka Electron Kk 積層平面コイル
WO2008030398A2 (en) 2006-09-05 2008-03-13 Summit Microelectronics, Inc Circuits and methods for controlling power in a battery operated system
JP4311687B2 (ja) 2006-10-06 2009-08-12 日本テキサス・インスツルメンツ株式会社 電源回路およびバッテリ装置
US8159364B2 (en) * 2007-06-14 2012-04-17 Omnilectric, Inc. Wireless power transmission system
CN101330229A (zh) 2007-06-21 2008-12-24 北京市北邮信息科技发展有限责任公司 一种非接触式电能传输装置
JP4453741B2 (ja) * 2007-10-25 2010-04-21 トヨタ自動車株式会社 電動車両および車両用給電装置
CN104055523B (zh) 2007-12-10 2016-08-24 拜尔健康护理有限责任公司 包括配备有电池的电路的便携式仪表和电源管理方法
KR101763547B1 (ko) * 2008-03-13 2017-07-31 액세스 비지니스 그룹 인터내셔날 엘엘씨 원격 장치로의 유도 전력 전송 방법 및 원격 장치에 전력을 공급하기 위한 유도 전력 공급장치
JP2009273327A (ja) * 2008-05-10 2009-11-19 Sanyo Electric Co Ltd 電池内蔵機器と充電台
US20100007293A1 (en) * 2008-07-09 2010-01-14 Ives Burr Meadors Programmable power-control circuit and methods of operation
US8111042B2 (en) * 2008-08-05 2012-02-07 Broadcom Corporation Integrated wireless resonant power charging and communication channel
JP5139941B2 (ja) * 2008-09-26 2013-02-06 Necエンベデッドプロダクツ株式会社 Rfid用アンテナ
US8947042B2 (en) * 2008-11-13 2015-02-03 Qualcomm Incorporated Wireless power and data transfer for electronic devices
JP2010130729A (ja) * 2008-11-25 2010-06-10 Canon Inc 充電装置、送電装置及び非接触充電システム
WO2010116441A1 (ja) 2009-03-30 2010-10-14 富士通株式会社 無線電力供給システム、無線送電装置、および無線受電装置
JP5353376B2 (ja) * 2009-03-31 2013-11-27 富士通株式会社 無線電力装置、無線電力受信方法
NZ597748A (en) * 2009-07-24 2013-12-20 Access Business Group Int Llc A wireless power supply
JP2011034306A (ja) * 2009-07-31 2011-02-17 Toshiba Corp 情報処理装置及び給電制御方法
US8374545B2 (en) * 2009-09-02 2013-02-12 Qualcomm Incorporated De-tuning in wireless power reception
US8928284B2 (en) 2009-09-10 2015-01-06 Qualcomm Incorporated Variable wireless power transmission
JP2011078191A (ja) 2009-09-30 2011-04-14 Nec Casio Mobile Communications Ltd 充電装置及び電子機器並びにプログラム
US8390249B2 (en) * 2009-11-30 2013-03-05 Broadcom Corporation Battery with integrated wireless power receiver and/or RFID
US9094054B2 (en) * 2009-11-30 2015-07-28 Broadcom Corporation IC controlled wireless power operation and applications thereof including control channel communication configuration
JP5550097B2 (ja) 2009-12-02 2014-07-16 Necカシオモバイルコミュニケーションズ株式会社 無接点充電装置及び電子機器並びにプログラム
KR101097262B1 (ko) 2009-12-28 2011-12-21 삼성에스디아이 주식회사 배터리 팩, 이의 충전방법
US8666437B2 (en) * 2010-01-05 2014-03-04 Iota, Inc. Mobile communications resource management system
WO2011084942A2 (en) 2010-01-05 2011-07-14 Access Business Group International Llc Integrated wireless power system
JP2011151891A (ja) 2010-01-19 2011-08-04 Sony Corp 二次電池の充電方法および充電装置
JP2011152018A (ja) 2010-01-25 2011-08-04 Sony Corp ワイヤレス蓄電システムおよびワイヤレス給電システム
WO2011122003A1 (ja) 2010-03-30 2011-10-06 パナソニック株式会社 無線電力伝送システム
JP5024420B2 (ja) 2010-04-27 2012-09-12 沖電気工業株式会社 太陽電池電源装置
JP2011259534A (ja) * 2010-06-05 2011-12-22 Sanyo Electric Co Ltd 電池内蔵機器と充電台
JP2012016125A (ja) * 2010-06-30 2012-01-19 Panasonic Electric Works Co Ltd 非接触給電システム及び非接触給電システムの金属異物検出装置
CN101902043B (zh) * 2010-07-23 2014-06-04 中兴通讯股份有限公司 充电电路管理装置及无线终端
CN101924387A (zh) * 2010-09-21 2010-12-22 福州大学 反馈式无线充电器
JP5071545B2 (ja) * 2010-10-06 2012-11-14 株式会社デンソー 電力需給システム
US20120104997A1 (en) 2010-11-01 2012-05-03 Qualcomm Incorporated Wireless charging device
JP5710220B2 (ja) * 2010-11-15 2015-04-30 株式会社シバタ 非接触式電力伝送装置、並びにこれに用いられる給電装置、受電装置及び電磁誘導用コイル
US10079090B2 (en) 2010-12-01 2018-09-18 Triune Systems, LLC Multiple coil data transmission system
CN102013717B (zh) * 2010-12-03 2013-01-16 清华大学 植入式医疗仪器用具有对位自动提示功能的无线充电方法
KR101813029B1 (ko) * 2010-12-17 2017-12-28 엘지전자 주식회사 무선전력전송방법, 무선전력수신방법, 무선전력전송장치 및 무선전력수신장치
US9496732B2 (en) 2011-01-18 2016-11-15 Mojo Mobility, Inc. Systems and methods for wireless power transfer
US10141770B2 (en) * 2011-01-18 2018-11-27 Mojo Mobility, Inc. Powering and/or charging with a plurality of protocols
JP5713714B2 (ja) 2011-02-10 2015-05-07 キヤノン株式会社 給電装置及び制御方法
KR101267076B1 (ko) 2011-03-24 2013-05-24 주식회사 한림포스텍 무선 전력 전송 어셈블리에서의 전력 제어 방법 및 무선 전력 전송 어셈블리
US10332676B2 (en) 2011-03-24 2019-06-25 Triune Systems, LLC Coupled inductor system having multi-tap coil
US9735623B2 (en) 2011-05-17 2017-08-15 Samsung Electronics Co., Ltd. Power transmitting method and power transmitter for communication with power receiver
JP2012239814A (ja) * 2011-05-24 2012-12-10 Fujifilm Corp 放射線撮影装置
JP2012249410A (ja) * 2011-05-27 2012-12-13 Sharp Corp 電気自動車充電用の充電器及び充電装置
KR102012684B1 (ko) * 2011-05-31 2019-08-26 삼성전자주식회사 무선 전력을 이용한 통신 장치 및 방법
US9099885B2 (en) 2011-06-17 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Wireless power feeding system
JP5767873B2 (ja) 2011-06-28 2015-08-26 株式会社東芝 蓄電装置および蓄電システム
JP5505375B2 (ja) 2011-06-29 2014-05-28 株式会社豊田自動織機 セルバランス制御装置及びセルバランス制御方法
US9379571B2 (en) * 2011-07-11 2016-06-28 Delphi Technologies, Inc. Electrical charging system having energy coupling arrangement for wireless energy transmission therebetween
JP5893285B2 (ja) 2011-08-04 2016-03-23 キヤノン株式会社 給電装置及びプログラム
KR101580342B1 (ko) * 2011-08-29 2015-12-24 삼성전기주식회사 무선 전력 전송 시스템 및 그의 제어방법
KR20130024757A (ko) 2011-08-29 2013-03-08 주식회사 케이더파워 이종 충전 방식을 가진 무선 충전 시스템
JP2013078171A (ja) * 2011-09-29 2013-04-25 Semiconductor Energy Lab Co Ltd 受電装置及び非接触給電システム
JP2013085386A (ja) 2011-10-11 2013-05-09 Panasonic Corp 蓄電池制御装置、蓄電池制御方法、電力貯蔵システム及び電気自動車の駆動システム
US9348381B2 (en) * 2011-10-19 2016-05-24 Zeco Systems Pte Ltd Methods and apparatuses for charging of electric vehicles
KR101818773B1 (ko) 2011-10-24 2018-02-22 삼성전자주식회사 공진 방식 무선 충전 시스템용 수신 전력 변환 장치
KR101327081B1 (ko) 2011-11-04 2013-11-07 엘지이노텍 주식회사 무선전력 수신장치 및 그 제어 방법
KR101338732B1 (ko) 2011-11-10 2013-12-06 엘지이노텍 주식회사 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 방법, 무선전력 수신 방법, 정보 전송 방법 및 정보 수신 방법
JP2013115859A (ja) 2011-11-25 2013-06-10 Hitachi Maxell Ltd ワイヤレス電力伝送装置
CN102427260A (zh) 2011-12-02 2012-04-25 苏州冠硕新能源有限公司 充电管理系统及采用该充电管理系统的充电器
JP6045141B2 (ja) * 2011-12-05 2016-12-14 キヤノン株式会社 電子機器及びプログラム
US8928182B2 (en) 2011-12-16 2015-01-06 Tdk Corporation Wireless power feeder and wireless power transmission system
CN102522799A (zh) 2011-12-30 2012-06-27 成都林海电子有限责任公司 一种移动终端电源
JP5880122B2 (ja) * 2012-02-21 2016-03-08 株式会社豊田自動織機 非接触電力伝送装置
KR101882800B1 (ko) 2012-02-28 2018-08-01 삼성전자주식회사 무선 전력 수신기 및 그 제어 방법
JP2013183496A (ja) 2012-02-29 2013-09-12 Equos Research Co Ltd 電力伝送システム
JP2013183523A (ja) 2012-03-01 2013-09-12 Nissan Motor Co Ltd 電動車両
JP2013191913A (ja) * 2012-03-12 2013-09-26 Renesas Electronics Corp ワイヤレス充電回路、ワイヤレス充電システム及び半導体装置
JP2013198260A (ja) * 2012-03-19 2013-09-30 Ihi Corp 電力伝送システム
JP2013211932A (ja) 2012-03-30 2013-10-10 Equos Research Co Ltd 電力伝送システム
JP2013223301A (ja) * 2012-04-13 2013-10-28 Toyota Industries Corp 非接触電力伝送装置の受電機器及び送電機器
JP5872373B2 (ja) 2012-04-25 2016-03-01 三洋電機株式会社 無接点給電方法
KR101438884B1 (ko) 2012-05-07 2014-09-05 엘지이노텍 주식회사 무선전력 송신장치 및 그의 무선전력 전송 방법
JP6024195B2 (ja) * 2012-05-15 2016-11-09 スミダコーポレーション株式会社 非接触給電システムおよび非接触給電システム用の送電コイル
US9218031B2 (en) 2012-05-18 2015-12-22 Dell Products, Lp System and method for providing wireless power feedback in a wireless power delivery system
JP2013243890A (ja) * 2012-05-22 2013-12-05 Heads Corp 非接触給電装置
CN103457362B (zh) * 2012-06-04 2016-02-03 比亚迪股份有限公司 无线充电的发送装置、无线充电系统及无线充电控制方法
JP2014017893A (ja) * 2012-07-05 2014-01-30 Toyota Industries Corp 非接触電力伝送装置
JP2014017927A (ja) * 2012-07-06 2014-01-30 Toshiba Digital Media Engineering Corp 送電装置、受電装置、送電方法及び受電方法
US9859756B2 (en) * 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9973021B2 (en) * 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US9893554B2 (en) * 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
KR101848303B1 (ko) 2012-07-10 2018-04-13 삼성전자주식회사 전력 전송을 제어하기 위한 방법 및 이를 위한 전력 송신기
US9142999B2 (en) * 2012-07-13 2015-09-22 Qualcomm Incorporated Systems, methods, and apparatus for small device wireless charging modes
JP2014023348A (ja) 2012-07-20 2014-02-03 Nikon Corp 携帯端末の充電装置
KR101270675B1 (ko) 2012-08-28 2013-06-03 한국과학기술원 급전장치
KR102026605B1 (ko) * 2012-09-07 2019-09-30 필립스 아이피 벤쳐스 비.브이. 양방향 무선 전력 송신을 위한 시스템 및 방법
KR101947980B1 (ko) 2012-09-12 2019-02-14 삼성전자주식회사 무선 전력 전송 장치 및 방법, 무선 전력 수신 장치
JP2014057185A (ja) * 2012-09-12 2014-03-27 Ricoh Co Ltd 無線給電装置及び電子機器
US20140091623A1 (en) 2012-09-28 2014-04-03 Keith Shippy Power share controller
CN202998182U (zh) 2012-10-17 2013-06-12 广东欧珀移动通信有限公司 可与手机通信的多功能保护套
WO2014080671A1 (ja) * 2012-11-22 2014-05-30 住友電気工業株式会社 非接触送電システム及び受電装置
CN203036282U (zh) 2012-11-27 2013-07-03 李昊致 睡眠灯
CN103036282A (zh) * 2012-12-06 2013-04-10 捷普科技(上海)有限公司 一种电压自适应无线充电装置及方法
JP5976516B2 (ja) 2012-12-12 2016-08-23 三洋電機株式会社 無接点充電方法
CN103001297B (zh) 2012-12-31 2014-12-10 中南大学 一种串联电容器组谐振式电压均衡充电方法及其系统
USD712888S1 (en) 2012-12-31 2014-09-09 Motorola Mobility Llc Communication device
US20140191568A1 (en) 2013-01-04 2014-07-10 Mojo Mobility, Inc. System and method for powering or charging multiple receivers wirelessly with a power transmitter
US9419465B2 (en) * 2013-01-07 2016-08-16 Nxp B.V. Wireless charger
JP6236636B2 (ja) 2013-01-24 2017-11-29 パナソニックIpマネジメント株式会社 蓄電池装置
CN103078381B (zh) * 2013-01-27 2015-06-17 中国科学院电工研究所 一种电动汽车无线充电装置及其输出控制方法
KR102019064B1 (ko) * 2013-01-29 2019-09-10 엘지이노텍 주식회사 무선 전력 송신 장치 및 방법
JP6100011B2 (ja) * 2013-02-06 2017-03-22 キヤノン株式会社 給電装置、給電方法及びプログラム
US9197094B2 (en) * 2013-03-07 2015-11-24 Ford Global Technologies, Llc Wireless charger and charging system with multi-compatibility
US9998180B2 (en) 2013-03-13 2018-06-12 Integrated Device Technology, Inc. Apparatuses and related methods for modulating power of a wireless power receiver
US9318915B2 (en) * 2013-03-20 2016-04-19 Halo2Cloud Llc Portable power charger with wireless and direct charging connectivity
MY162393A (en) 2013-03-29 2017-06-15 Nissan Motor Non-contact power supply system
TWI482391B (zh) 2013-04-02 2015-04-21 Wistron Corp 用於一電子裝置之充電電路及其相關充電方法
KR101490732B1 (ko) * 2013-04-23 2015-02-09 엘지이노텍 주식회사 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 방법, 무선전력 수신 방법, 정보 전송 방법 및 정보 수신 방법
CN104124775B (zh) 2013-04-28 2018-09-21 海尔集团技术研发中心 无线电能传输系统及其智能控制方法、智能控制系统
US20140329472A1 (en) 2013-05-03 2014-11-06 CommSense LLC Antenna Environment Sensing Device
CN103280870B (zh) * 2013-05-09 2015-08-26 北京航空航天大学 一种电动汽车非接触充电负载自适应匹配装置及控制方法
KR102082415B1 (ko) * 2013-05-27 2020-02-27 엘지전자 주식회사 무선 전력 전송 장치 및 그 방법
CN103269108B (zh) 2013-06-04 2015-04-29 奇瑞汽车股份有限公司 一种电池电量均衡电路
US9155900B2 (en) 2013-06-20 2015-10-13 Cochlear Limited Medical device battery charging system and methods
JP2015006068A (ja) 2013-06-21 2015-01-08 三洋電機株式会社 無接点給電方法
CN103354376A (zh) * 2013-06-26 2013-10-16 清华大学深圳研究生院 一种智能的通用型手机无线充电系统
US9446674B2 (en) * 2013-07-15 2016-09-20 Qualcomm Incorporated Systems, methods, and apparatus related to mutual detection and identification of electric vehicle and charging station
US9847885B2 (en) 2013-07-19 2017-12-19 Philips Lighting Holding B.V. Power negotiation in daisy-chained systems
US10008874B2 (en) 2013-07-19 2018-06-26 Intel Corporation Apparatus, system and method of wireless power transfer
TWI552483B (zh) 2013-07-22 2016-10-01 光寶電子(廣州)有限公司 電池模組、電池模組供電管理方法及其裝置
KR101420366B1 (ko) 2013-07-23 2014-07-16 김현민 전기자동차용 무선전력 전송장치
KR102126713B1 (ko) 2013-08-13 2020-06-25 삼성전자주식회사 무선 전력 전송 시스템에서 무선 충전 제어 방법 및 장치
CN104426245B (zh) * 2013-08-29 2017-03-15 海尔集团技术研发中心 无线供电方法、供电装置及供电系统
JP1524224S (zh) 2013-09-09 2015-05-25
JP6208503B2 (ja) * 2013-09-11 2017-10-04 ローム株式会社 ワイヤレス受電装置、その制御回路および制御方法
JP6165009B2 (ja) 2013-09-27 2017-07-19 エスアイアイ・セミコンダクタ株式会社 給電システム、給電装置、及び給電方法
KR20150045602A (ko) * 2013-10-21 2015-04-29 주식회사 리더브라이트 공진방식 기반의 무선충전장치
CN104578209A (zh) * 2013-10-22 2015-04-29 中兴通讯股份有限公司 一种无线充电终端及用户终端、无线充电方法
USD756948S1 (en) 2013-11-11 2016-05-24 Lg Electronics Inc. Cellular phone
USD756949S1 (en) 2013-11-11 2016-05-24 Lg Electronics Inc. Cellular phone
US20150236538A1 (en) 2013-11-15 2015-08-20 uNu Electronics, Inc. Mobile Device Case with Fast Charging Battery Pack
CN104659925A (zh) * 2013-11-20 2015-05-27 中兴通讯股份有限公司 无线电能收发方法和装置
US9673651B2 (en) 2013-11-21 2017-06-06 Qualcomm Incorporated Dynamic voltage adjust circuits and methods
KR102199469B1 (ko) * 2013-12-09 2021-01-06 한화디펜스 주식회사 전기차량에서 외부 차량과 상호 전력 공급을 수행하는 방법 및 장치
KR102280579B1 (ko) * 2013-12-19 2021-07-22 삼성전자주식회사 충전 회로, 이를 포함하는 충전 시스템 및 무선전력 수신기
CN105247755A (zh) 2013-12-26 2016-01-13 联发科技股份有限公司 多路径充电器及其充电方法
KR102035307B1 (ko) 2013-12-30 2019-10-22 주식회사 위츠 충전 장치 및 배터리 장치
TWM488138U (zh) * 2014-01-17 2014-10-11 林榮聰 蓄電池之無線充電模組
US20150214748A1 (en) 2014-01-24 2015-07-30 Mediatek Inc. Wireless power supply scheme capable of dynamically adjusting output power of wireless power transmitter according to voltage/current/power information of portable electronic device to be charged
CN106532884B (zh) * 2014-01-28 2019-07-19 Oppo广东移动通信有限公司 电池充电装置及方法
JP6329386B2 (ja) 2014-02-21 2018-05-23 ルネサスエレクトロニクス株式会社 非接触給電方法及び非接触給電システム
JP6493385B2 (ja) 2014-02-24 2019-04-03 ソニー株式会社 受電装置、給電制御方法、および給電システム
KR101817455B1 (ko) 2014-02-25 2018-01-11 닛산 지도우샤 가부시키가이샤 비접촉 급전 시스템 및 송전 장치
TW201533561A (zh) 2014-02-25 2015-09-01 Novatek Microelectronics Corp 可攜式電腦及無線鍵盤與平板電腦
RU2649905C2 (ru) 2014-02-25 2018-04-05 Ниссан Мотор Ко., Лтд. Система беспроводной подачи мощности и устройство передачи мощности
CN103944243B (zh) * 2014-02-27 2016-05-11 北京航空航天大学 一种电动汽车用带有精确对中功能的感应式非接触充电装置
JP6249223B2 (ja) 2014-03-04 2017-12-20 パナソニックIpマネジメント株式会社 非接触充電システム
DE102014002876A1 (de) * 2014-03-05 2015-09-10 Supa Wireless Gmbh Anordnung für eine induktive Energieübertragung
KR102187437B1 (ko) * 2014-03-11 2020-12-08 엘지이노텍 주식회사 무선전력 전송 장치를 구비한 무선전력전송 시스템
EP3121932B1 (en) 2014-03-18 2020-10-28 IHI Corporation Power supply device and non-contact power supply system
US10298048B1 (en) 2014-04-15 2019-05-21 Mediatek Inc. Wireless charging system and charging control method for dynamically adjusting output power
US9698632B2 (en) * 2014-05-09 2017-07-04 Otter Products, Llc Wireless battery charger and charge-receiving device
CN104124483B (zh) 2014-05-23 2016-05-04 东莞市钜大电子有限公司 一种移动电源快速充电方法及系统
RU149860U1 (ru) * 2014-06-03 2015-01-20 Общество с ограниченной ответственностью "Электронная корпорация "Радуга" Станция для зарядки электротранспорта
JP2016015808A (ja) * 2014-07-01 2016-01-28 株式会社豊田自動織機 受電機器及び非接触電力伝送装置
JP2016015862A (ja) 2014-07-03 2016-01-28 株式会社Ihi 受電装置
KR102438626B1 (ko) * 2014-07-07 2022-08-31 엘지전자 주식회사 무선 전력 전송방법, 장치 및 시스템
US10148096B2 (en) 2014-07-07 2018-12-04 Mediatek Singapore Pte. Ltd. Wireless or wired power delivery using a controllable power adapter
CN104037918A (zh) * 2014-07-08 2014-09-10 江苏天行健汽车科技有限公司 一种磁共振式车载移动终端无线充电系统及方法
US10355527B2 (en) * 2014-07-16 2019-07-16 Taiwan Semiconductor Manufacturing Company Limited Wireless charging receiver with variable resonant frequency
US9680531B2 (en) * 2014-08-01 2017-06-13 Qualcomm Incorporated System and method for detecting inadequate wireless coupling and improving in-band signaling in wireless power transfer systems
JP6181614B2 (ja) * 2014-08-04 2017-08-16 株式会社Soken 非接触電力伝送システム
EP2983266B1 (en) * 2014-08-05 2017-02-22 Panasonic Corporation Power transmission device and wireless power transmission system
CN104158269B (zh) * 2014-08-11 2016-03-16 长城信息产业股份有限公司 一种无线充电发射器、接收器、充电装置及无线充电方法
CN204190475U (zh) * 2014-08-11 2015-03-04 长城信息产业股份有限公司 一种无线充电发射器及无线充电装置
CN105471001A (zh) 2014-08-19 2016-04-06 中兴通讯股份有限公司 一种使用多电芯电池的移动终端及其充放电电路
KR102320853B1 (ko) 2014-09-02 2021-11-02 삼성전자 주식회사 전자 장치, 전자 장치의 충전 제어 방법, 전원 공급 장치, 및 전원 공급 장치의 전력 공급 방법
KR20160028537A (ko) 2014-09-03 2016-03-14 주식회사 케이더파워 휴대용 충전기
KR101994742B1 (ko) * 2014-09-12 2019-07-01 삼성전기주식회사 비접촉 방식 충전 장치, 비접촉 방식 배터리 장치 및 비접촉 방식 전력 전송 방법
US10559970B2 (en) 2014-09-16 2020-02-11 Qorvo Us, Inc. Method for wireless charging power control
CN104253468A (zh) * 2014-09-18 2014-12-31 青岛众海汇智能源科技有限责任公司 一种移动式无线充电系统及控制方法
JP6400407B2 (ja) 2014-09-18 2018-10-03 Ntn株式会社 充電装置
JP2016063726A (ja) 2014-09-22 2016-04-25 株式会社豊田自動織機 受電機器及び非接触電力伝送装置
JP2016063725A (ja) 2014-09-22 2016-04-25 株式会社豊田自動織機 受電機器及び非接触電力伝送装置
CN105515210A (zh) 2014-09-26 2016-04-20 国家电网公司 非接触充电桩、车载充电装置和充电系统
US20160094080A1 (en) * 2014-09-29 2016-03-31 Chervon Intellectual Property Limited Charging system and charging method thereof and battery pack
CN105529802B (zh) * 2014-09-29 2019-01-04 南京德朔实业有限公司 一种充电系统
KR102197580B1 (ko) 2014-10-07 2021-01-04 주식회사 히타치엘지 데이터 스토리지 코리아 무선 전력 전송 장치 및 방법
JP6049669B2 (ja) * 2014-10-23 2016-12-21 株式会社ダイヘン 直流電力供給装置および直流電力供給方法
JP2016092959A (ja) 2014-11-04 2016-05-23 株式会社豊田自動織機 送電機器及び非接触電力伝送装置
JP2016092986A (ja) * 2014-11-05 2016-05-23 株式会社豊田自動織機 非接触電力伝送装置及び受電機器
CN104467130A (zh) 2014-11-10 2015-03-25 深圳市兴吉胜电子有限公司 无线充电器
EP3220506B1 (en) 2014-11-11 2020-02-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method, power adaptor and terminal
JP6013442B2 (ja) * 2014-12-24 2016-10-25 株式会社ダイヘン 非接触給電システム、送電装置、および、異物検出方法
US10122415B2 (en) * 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
CN104539033B (zh) * 2015-01-15 2016-08-24 东北大学 一种电动汽车自调整无线充电系统及方法
DE102015202032A1 (de) * 2015-02-05 2016-08-11 Würth Elektronik eiSos Gmbh & Co. KG Induktor, insbesondere zur magnetisch gekoppelten Energieübertragung, sowie Verfahren zum Betreiben eines derartigen Induktors
CN104682494A (zh) * 2015-02-09 2015-06-03 成都杰联祺业电子有限责任公司 一种快速无线太阳能充电的方法和装置
CN104617632B (zh) 2015-02-16 2017-01-04 荆涛 可适配不同电子设备的充电装置及其充电方法、电子设备
JP2016152722A (ja) 2015-02-18 2016-08-22 株式会社東芝 半導体装置及びワイヤレス給電システム
KR102381085B1 (ko) 2015-02-27 2022-04-01 삼성전자주식회사 전압 컨버터, 그것을 갖는 충전 집적회로 및 전자 장치, 및 그것의 배터리 충전 방법
CN104701955B (zh) 2015-03-03 2017-03-22 惠州Tcl移动通信有限公司 一种无线充电装置
KR102154779B1 (ko) * 2015-03-10 2020-09-10 삼성전자주식회사 무선 충전 방법 및 장치
EP3879672B1 (en) * 2015-03-10 2022-05-11 Samsung Electronics Co., Ltd. Method and apparatus for wireless charging
TWI533552B (zh) * 2015-03-16 2016-05-11 國立雲林科技大學 具最大功率追蹤之無線電力傳輸快速充電系統及方法
US20160301238A1 (en) * 2015-04-10 2016-10-13 Intel Corporation Managing presence and long beacon extension pulses
CN104752046B (zh) * 2015-04-21 2017-03-01 浙江东尼电子股份有限公司 一种无线充电器用接收线圈
CN106208172B (zh) 2015-04-30 2020-06-16 微软技术许可有限责任公司 移动客户端设备无线充电、通信及认证技术
JP6651711B2 (ja) * 2015-05-13 2020-02-19 セイコーエプソン株式会社 制御装置、電子機器及び無接点電力伝送システム
CN106063073B (zh) 2015-05-13 2018-09-28 广东欧珀移动通信有限公司 快速充电方法、电源适配器和移动终端
TWI591952B (zh) 2015-05-15 2017-07-11 立錡科技股份有限公司 諧振式無線電源接收電路及其控制電路與無線電源轉換方法
US9583970B2 (en) * 2015-05-15 2017-02-28 National Yunlin University Of Science And Technology Wireless power transfer and rapid charging system and method with maximum power tracking
CN104901401A (zh) 2015-05-22 2015-09-09 深圳天珑无线科技有限公司 一种充电方法及充电系统
CN104821644B (zh) * 2015-05-25 2017-07-14 青岛大学 一种机器人无线充电方法
US9425644B1 (en) 2015-06-03 2016-08-23 Thor Charger Company Method and apparatus for charging an electrically chargeable device utilizing resonating magnetic oscillations in the apparatus
US20160380467A1 (en) 2015-06-26 2016-12-29 Lei Shao Managing the output power of a wireless charger
DE102015212403B4 (de) * 2015-07-02 2021-03-25 Dialog Semiconductor (Uk) Limited Batterieladesystem mit regelungsschleife
JP6525775B2 (ja) * 2015-07-07 2019-06-05 キヤノン株式会社 送電装置及びその制御方法
JP6526507B2 (ja) 2015-07-15 2019-06-05 シチズン時計株式会社 降圧回路及びこれを用いた降圧充電回路
WO2017018800A1 (en) 2015-07-27 2017-02-02 Samsung Electronics Co., Ltd. Method for transmitting wireless power in wireless charging system including a wireless power transmitting unit and wireless power receiving unit
CN106410303B (zh) 2015-07-27 2019-02-19 小米科技有限责任公司 充电方法及装置
CN105148402B (zh) * 2015-08-03 2018-03-20 北京品驰医疗设备有限公司 具有保护和限制功能的充电式植入医疗装置
CN105098900B (zh) 2015-08-05 2018-05-29 青岛海信移动通信技术股份有限公司 移动终端、可直充电源适配器及充电方法
KR102514140B1 (ko) * 2015-08-12 2023-03-27 삼성전자주식회사 전자 장치 및 전자 장치의 팬 제어 방법
KR102184527B1 (ko) * 2015-08-19 2020-11-30 삼성전자주식회사 전자 장치 및 전자 장치에서 유무선 충전 방법
KR102445714B1 (ko) 2015-08-28 2022-09-23 삼성전자 주식회사 배터리를 충전하는 방법 및 이를 구현하는 전자장치
JP6278012B2 (ja) 2015-08-28 2018-02-14 トヨタ自動車株式会社 非接触電力伝送システム及び送電装置
JP2017060328A (ja) 2015-09-17 2017-03-23 トヨタ自動車株式会社 非接触受電装置及び電力伝送システム
EP3352329B1 (en) 2015-09-17 2021-02-17 IHI Corporation Contactless power transmission device, and contactless power supply system
CN105162206B (zh) 2015-09-30 2018-03-23 环旭电子股份有限公司 充电电池的充电控制方法
CN105245025B (zh) 2015-10-12 2018-07-13 华中科技大学 一种用于实现动态无线恒定功率充电的系统及其控制方法
CN105226779B (zh) 2015-10-19 2017-06-20 广东欧珀移动通信有限公司 无线充电设备及其控制方法和控制装置
USD814455S1 (en) 2015-10-26 2018-04-03 Lenovo (Beijing) Co., Ltd. Flexible electronic device
CN105978049A (zh) 2015-10-26 2016-09-28 乐视移动智能信息技术(北京)有限公司 电池倍压充电电路和移动终端
JP6671920B2 (ja) 2015-10-26 2020-03-25 キヤノン株式会社 送電装置及びその制御方法
CN105262189A (zh) * 2015-11-24 2016-01-20 江南大学 一种物流电动车agv无线电能充电系统
USD802571S1 (en) 2015-12-18 2017-11-14 Lenovo (Beijing) Co., Ltd. Electronic device
USD813214S1 (en) 2015-12-18 2018-03-20 Lenovo (Beijing) Co., Ltd. Electronic device
JP2017131020A (ja) * 2016-01-19 2017-07-27 株式会社ダイヘン 非接触給電システムおよび受電装置
WO2017133387A1 (zh) 2016-02-05 2017-08-10 广东欧珀移动通信有限公司 适配器和充电控制方法
MY181704A (en) 2016-02-05 2021-01-04 Guangdong Oppo Mobile Telecommunications Corp Ltd Charge method, adapter and mobile terminal
CN205544421U (zh) 2016-02-17 2016-08-31 深圳市坤兴科技有限公司 具有高兼容性的快充充电电路及电源适配器
CN205355893U (zh) 2016-02-25 2016-06-29 深圳天珑无线科技有限公司 移动终端与充电器
JP6151396B2 (ja) * 2016-03-07 2017-06-21 パイオニア株式会社 非接触充電システム、送電装置及び方法、並びに受電装置及び方法
CN105656217A (zh) * 2016-03-10 2016-06-08 武汉大学 协议自适应电动汽车快速无线充电系统
KR102534961B1 (ko) * 2016-05-04 2023-05-23 삼성전자주식회사 무선 전력 송신기 및 무선 전력 수신기와 그 동작 방법
CN105826066B (zh) * 2016-05-16 2019-02-22 上海墨百意信息科技有限公司 一种应用于无线充电系统的线圈及电感调节方法
US10637272B2 (en) * 2016-05-19 2020-04-28 Shenzhen Yichong Wireless Power Technology Co. Ltd Wireless charging systems and methods with adaptive efficiency optimization
CN106026231B (zh) 2016-05-30 2019-12-10 Oppo广东移动通信有限公司 一种无线充电方法及装置
CN106026237A (zh) * 2016-06-06 2016-10-12 薛寿贞 无线充电器及无线充电系统
CN106026257B (zh) 2016-06-24 2018-09-04 青岛海信移动通信技术股份有限公司 一种移动终端
CN105958656B (zh) * 2016-06-27 2018-12-07 中惠创智(深圳)无线供电技术有限公司 多旋翼飞行器无线充电设备及方法
CN106059110B (zh) * 2016-07-27 2018-11-06 东南大学 一种恒流-恒压无线充电系统及其充电方法
CN205945131U (zh) * 2016-07-29 2017-02-08 武汉大学 近场谐振与感应耦合协同式生物遥测装置无线充电系统
KR102602243B1 (ko) 2016-07-29 2023-11-16 삼성전자주식회사 무선 전력 수신 장치 및 그 제어 방법
JP6658403B2 (ja) 2016-08-29 2020-03-04 株式会社Ihi 送電装置
CN106300539B (zh) 2016-09-12 2018-12-18 南昌黑鲨科技有限公司 一种充电系统及方法
CN106208408B (zh) * 2016-09-13 2019-04-30 宁波柔印电子科技有限责任公司 无线充电接收线圈及其制备方法
CN106169798A (zh) * 2016-09-28 2016-11-30 北京小米移动软件有限公司 高压充电系统、高压充电电池及终端设备
CN106169799A (zh) 2016-09-29 2016-11-30 昆山工研院新型平板显示技术中心有限公司 无线充电装置、无线充电设备及利用该无线充电设备进行充电的方法
US10541542B2 (en) 2016-09-30 2020-01-21 O2Micro Inc. System and method for charging a battery pack
JP6765923B2 (ja) 2016-10-05 2020-10-07 東芝テック株式会社 受電装置及び充電制御プログラム
JP1586458S (zh) 2016-10-11 2017-12-18
CN206077085U (zh) * 2016-10-17 2017-04-05 南京信息职业技术学院 一种多负载自适应无线充电系统
CN107959358B (zh) 2016-10-17 2020-05-05 宁波微鹅电子科技有限公司 一种无线充电装置的控制方法及无线充电装置
WO2018072209A1 (zh) 2016-10-21 2018-04-26 北京小米移动软件有限公司 充电方法及电子设备
USD806705S1 (en) 2016-11-01 2018-01-02 Apple Inc. Electronic device
USD834553S1 (en) 2016-11-07 2018-11-27 Hmd Global Oy Mobile phone
CN106505751B (zh) * 2016-11-29 2020-03-27 努比亚技术有限公司 基于WiFi通信的无线充电方法及装置
CN106410979B (zh) * 2016-12-05 2019-03-12 青岛鲁渝能源科技有限公司 无线电能传输系统及其控制方法
CN106451685B (zh) * 2016-12-09 2018-09-25 重庆理工大学 手机非接触式快速充电系统
CN106451705B (zh) 2016-12-20 2019-02-12 北京小米移动软件有限公司 电子设备、无线充电系统、设备、方法和装置
CN106532989A (zh) * 2016-12-26 2017-03-22 宇龙计算机通信科技(深圳)有限公司 无线充电控制电路、无线充电控制方法及电子装置
CN109314396B (zh) * 2017-04-07 2022-07-19 Oppo广东移动通信有限公司 无线充电系统、装置、方法及待充电设备
EP3605781B1 (en) 2017-04-07 2023-08-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging apparatus and method, and device to be charged
USD858514S1 (en) 2017-08-28 2019-09-03 Apple Inc. Electronic device
CN207251274U (zh) 2017-09-27 2018-04-17 中国矿业大学 一种无线充电磁感应式传感节点装置及系统
KR20190054416A (ko) 2017-11-13 2019-05-22 삼성전기주식회사 무선 전력 송신 장치
EP3719956B1 (en) 2018-05-15 2022-11-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device to be charged and wireless charging method and system
CN208522543U (zh) 2018-07-24 2019-02-19 昆山联滔电子有限公司 无线充电线圈装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140247052A1 (en) * 2013-03-01 2014-09-04 Canon Kabushiki Kaisha Wireless power supply system, power transmission device, and power receiving device
CN104113104A (zh) * 2014-05-22 2014-10-22 深圳天珑无线科技有限公司 一种充电方法及系统
CN104283293A (zh) * 2014-09-29 2015-01-14 深圳市泰金田科技有限公司 谐振-移频实现汽车无线充电的方法及系统
CN105896670A (zh) * 2016-05-25 2016-08-24 乐视控股(北京)有限公司 一种充电装置及移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605780A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200067122A (ko) * 2018-11-30 2020-06-11 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 무선 충전 장치의 제어 방법, 제어장치 및 무선 충전 장치
KR102202650B1 (ko) * 2018-11-30 2021-01-14 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 무선 충전 장치의 제어 방법, 제어장치 및 무선 충전 장치
US11342779B2 (en) 2018-11-30 2022-05-24 Beijing Xiaomi Mobile Software Co., Ltd. Wireless charging apparatus and control method and control device therefor
JP2022550050A (ja) * 2019-09-25 2022-11-30 オナー デバイス カンパニー リミテッド 高出力高速充電をサポートする電池モジュール、充電モジュールおよび電子デバイス
JP7369283B2 (ja) 2019-09-25 2023-10-25 オナー デバイス カンパニー リミテッド 高出力高速充電をサポートする電池モジュール、充電モジュールおよび電子デバイス
CN111439141A (zh) * 2020-04-09 2020-07-24 西交利物浦大学 无线充电控制系统及装置

Also Published As

Publication number Publication date
US20200036215A1 (en) 2020-01-30
CN110178283A (zh) 2019-08-27
CN110214402A (zh) 2019-09-06
CN110199453A (zh) 2019-09-03
CN110168844B (zh) 2023-07-18
CN110100368A (zh) 2019-08-06
EP3609038A4 (en) 2020-04-15
KR102397746B1 (ko) 2022-05-12
KR102325155B1 (ko) 2021-11-11
JP6842566B2 (ja) 2021-03-17
AU2018249241B2 (en) 2020-07-16
KR20190127886A (ko) 2019-11-13
US20190356156A1 (en) 2019-11-21
CN110100368B (zh) 2023-12-22
US20190379245A1 (en) 2019-12-12
CA3057731A1 (en) 2018-10-11
US20200021130A1 (en) 2020-01-16
WO2018184573A1 (zh) 2018-10-11
ZA201906558B (en) 2021-08-25
EP3605780A1 (en) 2020-02-05
CA3051027A1 (en) 2018-10-11
KR20190128706A (ko) 2019-11-18
RU2735154C1 (ru) 2020-10-28
AU2018247552A1 (en) 2019-10-24
EP3609038B1 (en) 2022-06-01
CA3051027C (en) 2021-05-11
EP3609040A4 (en) 2020-04-15
MX2019009633A (es) 2019-10-02
RU2727724C1 (ru) 2020-07-23
JP2020516223A (ja) 2020-05-28
AU2018249245A1 (en) 2019-09-12
US20190372387A1 (en) 2019-12-05
SG11201907726VA (en) 2019-09-27
BR112019016542B1 (pt) 2023-12-26
CN110192322B (zh) 2023-07-25
EP3605780A4 (en) 2020-03-25
JP2020517213A (ja) 2020-06-11
ZA201906543B (en) 2021-08-25
EP3609036A1 (en) 2020-02-12
JP2020512803A (ja) 2020-04-23
KR20190126398A (ko) 2019-11-11
EP3605781B1 (en) 2023-08-02
EP3609038A1 (en) 2020-02-12
AU2018249241A1 (en) 2019-08-15
EP3605781A4 (en) 2020-04-15
WO2018184584A1 (zh) 2018-10-11
US11437848B2 (en) 2022-09-06
US11355963B2 (en) 2022-06-07
US11368050B2 (en) 2022-06-21
BR112019018588B1 (pt) 2023-12-26
EP3582361B1 (en) 2022-08-03
EP3609036B1 (en) 2023-02-15
WO2018184581A1 (zh) 2018-10-11
JP7013480B2 (ja) 2022-01-31
US11075542B2 (en) 2021-07-27
JP6952127B2 (ja) 2021-10-20
CN110168844A (zh) 2019-08-23
KR20190128685A (ko) 2019-11-18
RU2724645C1 (ru) 2020-06-25
EP3582361A4 (en) 2020-03-04
SG11201909124UA (en) 2019-11-28
JP7203901B2 (ja) 2023-01-13
WO2018184578A1 (zh) 2018-10-11
CN110178283B (zh) 2023-07-25
SG11201906965SA (en) 2019-08-27
JP2021132528A (ja) 2021-09-09
KR20190128708A (ko) 2019-11-18
KR102243241B1 (ko) 2021-04-22
EP3605781A1 (en) 2020-02-05
CN110192322A (zh) 2019-08-30
EP3605780B1 (en) 2022-02-16
EP3609036A4 (en) 2020-04-01
US20200014252A1 (en) 2020-01-09
EP3609040A1 (en) 2020-02-12
JP2020516220A (ja) 2020-05-28
MX2019010614A (es) 2019-10-15
AU2021203830A1 (en) 2021-07-08
AU2021203830B2 (en) 2022-10-13
JP2020516222A (ja) 2020-05-28
KR102325154B1 (ko) 2021-11-11
ZA201907368B (en) 2021-04-28
US11233423B2 (en) 2022-01-25
US11539219B2 (en) 2022-12-27
CA3053269A1 (en) 2018-10-11
EP3609040B1 (en) 2022-08-24
BR112019018588A2 (pt) 2020-04-07
BR112019016542A2 (pt) 2020-03-31
MX2019011391A (es) 2020-02-05
AU2018249245B2 (en) 2021-01-28
BR112019020518A2 (pt) 2020-05-05
JP7046094B2 (ja) 2022-04-01
CN110199453B (zh) 2023-12-12
JP2020517212A (ja) 2020-06-11
KR102268987B1 (ko) 2021-06-24
CA3053269C (en) 2022-11-29
JP6918135B2 (ja) 2021-08-11
KR20190128707A (ko) 2019-11-18
WO2018184582A1 (zh) 2018-10-11
KR102335722B1 (ko) 2021-12-06
EP3582361A1 (en) 2019-12-18
CN110214402B (zh) 2023-12-26
JP6871409B2 (ja) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2018184583A1 (zh) 待充电设备、无线充电装置、无线充电方法及系统
WO2019218162A1 (zh) 待充电设备、无线充电方法及系统
WO2020124591A1 (zh) 电源提供装置、无线充电装置、系统及无线充电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552162

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197031258

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018781213

Country of ref document: EP

Effective date: 20191029