WO2020124591A1 - 电源提供装置、无线充电装置、系统及无线充电方法 - Google Patents

电源提供装置、无线充电装置、系统及无线充电方法 Download PDF

Info

Publication number
WO2020124591A1
WO2020124591A1 PCT/CN2018/122810 CN2018122810W WO2020124591A1 WO 2020124591 A1 WO2020124591 A1 WO 2020124591A1 CN 2018122810 W CN2018122810 W CN 2018122810W WO 2020124591 A1 WO2020124591 A1 WO 2020124591A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
signal
charging
wireless charging
power supply
Prior art date
Application number
PCT/CN2018/122810
Other languages
English (en)
French (fr)
Inventor
万世铭
张俊
陈社彪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP18943578.7A priority Critical patent/EP3893361A4/en
Priority to CN201880098996.0A priority patent/CN112956107A/zh
Priority to PCT/CN2018/122810 priority patent/WO2020124591A1/zh
Publication of WO2020124591A1 publication Critical patent/WO2020124591A1/zh
Priority to US17/347,376 priority patent/US20210305847A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/385Transceivers carried on the body, e.g. in helmets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3883Arrangements for mounting batteries or battery chargers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present disclosure relates to the technical field of wireless charging, and in particular, to a power supply device, a wireless charging device, a system, and a wireless charging method.
  • the present disclosure provides a power supply device, a wireless charging device, a system, and a wireless charging method, which can effectively solve the heat dissipation problem of a device to be charged during wireless charging.
  • a power supply device applicable to wireless charging, including: a rectifier module for rectifying input AC power to provide DC power; a control module, electrically connected to the rectifier module; wireless transmission
  • the drive module is electrically connected to the control module, receives the first control signal sent by the control module, and generates a drive signal according to the first control signal;
  • the reverse rectification module is electrically connected to the rectification module and the wireless transmission drive module, respectively, for Inversely transform the direct current according to the driving signal to generate an alternating current signal; and connect the interface, electrically connected with the reverse rectifier module, for outputting the alternating current signal.
  • the above power supply device further includes: a switch module, electrically connected to the rectifier module, the control module, the reverse rectifier module, and the connection interface, for receiving the second control signal sent by the control module, and according to the first The second control signal provides DC power to the reverse rectifier module or DC power to the connection interface; the connection interface is also used to output DC power.
  • control module is further configured to receive an instruction signal sent by the wireless transmission driving module, and determine whether the wireless charging device is connected to the connection interface according to the instruction signal; when the control module determines that the wireless charging is connected to the connection interface Device, send a second control signal to the switch module to control the switch module to provide DC power to the reverse rectifier module; when the control module determines that the wireless charging device is not connected to the connection interface, send a second control module to the switch module to control the switch module Provide DC power to the connection interface.
  • the indication signal includes: a communication signal based on the Qi wireless charging standard protocol.
  • the AC power signal includes a modulation signal obtained by modulating a signal generated by inversely transforming the DC power according to the driving signal by the inverse rectification module.
  • control module is further configured to receive feedback information sent by the device to be charged for wireless charging, and generate a first control signal according to the feedback information to control the wireless transmission drive module to generate a drive signal.
  • the power supply device further includes: a voltage adjustment module, electrically connected to the switch module, the control module, and the reverse rectification module, for receiving the third control signal sent by the control module, and according to the third control signal Adjust the input voltage of the reverse rectifier module.
  • control module is further configured to receive feedback information sent by the device to be charged for wireless charging, and generate a third control signal according to the feedback information to control the voltage adjustment circuit to adjust the input voltage of the reverse rectifier module.
  • the feedback information includes: the charging voltage value and/or charging current value detected by the device to be charged, the remaining power of the device to be charged or a preset full time of the power; or, the feedback information includes: to be charged The voltage or current adjustment instruction determined by the device according to the detected charging voltage value and/or charging current value, the remaining power or the preset power full time.
  • the feedback information is sent from the device to be charged to the power supply device through wireless communication; or, the feedback information is sent to the wireless charging device through the transmitting coil of the device to be charged and sent to the power supply device through the charging device .
  • connection interface is a USB type A female connector or a USB type B female connector.
  • the switch module is a load switch.
  • a wireless charging device which is composed of a charging interface, a resonant circuit, and a transmitting coil, wherein the resonant circuit is used to provide a resonant signal according to an alternating current signal received from the charging interface, and the transmitting coil is used Output energy according to the resonance signal to wirelessly charge the device to be charged.
  • the transmitting coil is further used to receive feedback information sent by the device to be charged;
  • the feedback information includes: the charging voltage value and/or charging current value detected by the device to be charged, the remaining power or pre-charge of the device to be charged The set full-charge time; or, the feedback information includes: a voltage or current adjustment instruction determined by the device to be charged according to the detected charging voltage value and/or charging current value, remaining power, or a preset full-charge time.
  • the wireless charging device is a wireless charging base, and the device to be charged is placed on the wireless charging base when performing wireless charging.
  • a wireless charging system including: any one of the above power supply devices.
  • the wireless charging system further includes: any one of the wireless charging devices described above.
  • the wireless charging system further includes: a device to be charged, the device to be charged includes a receiving coil, and the receiving coil is used to receive an alternating current signal output by the wireless charging device through the transmitting coil to wirelessly charge the device to be charged .
  • the device to be charged further includes: a charging interface matching the connection interface of the power supply device, configured to receive the DC power provided by the power supply device through a cable to charge the device to be charged.
  • the alternating current signal is a modulation signal
  • the terminal further includes a demodulation circuit for charging according to the charging signal demodulated from the modulation signal.
  • the device to be charged further includes: a second control module for communicating with the control module of the power supply device and sending feedback information to the power supply device, the feedback information including: the detected charging voltage value and /Or charging current value, remaining power, preset full time; or, the feedback information includes: the voltage determined by the second control module according to the detected charging voltage value and/or charging current value, remaining power, or preset power full time Or current adjustment command; AC signal is a modulation signal obtained by modulating according to feedback information.
  • the feedback information is sent to the wireless charging device through the receiving coil of the device to be charged and sent to the power supply device through the charging device; or, the feedback information is sent to the power supply device from the device to be charged through wireless communication .
  • the device to be charged further includes: a wireless receiving circuit, a voltage conversion circuit and a battery; the wireless receiving circuit is used to convert the alternating current signal output by the wireless charging device into direct current; the voltage conversion circuit and the wireless receiving circuit power Sexual connection, used to step down the DC power output from the wireless receiving circuit; the battery is electrically connected to the voltage conversion circuit to receive the DC power output from the voltage conversion circuit for charging; the detected charging voltage value and/or charging current value includes : The detected voltage value and/or current value of the direct current output by the wireless receiving circuit, and/or the detected voltage value and/or current value of the direct current output by the voltage conversion circuit.
  • a wireless charging method is provided, which is applied to a power supply device.
  • the power supply device includes: a rectifier module, a control module, a wireless transmission drive module, a reverse rectifier module, and a connection interface.
  • the method includes: through a rectifier module Rectify the input AC power to provide DC power; receive the first control signal sent by the control module through the wireless transmission drive module; generate a drive signal according to the first control signal through the wireless transmission drive module; perform DC power on the drive signal through the reverse rectification module Inverse transform, generate alternating current signal; and output alternating current signal through connection interface.
  • the power supply device further includes: a switch module, and the above method further includes: receiving a second control signal sent by the control module through the switch module; and supplying DC power to the inverse power according to the second control signal through the switch module Rectifier module, or provide DC power to the connection interface to output DC power through the connection interface.
  • the above method further includes: receiving an instruction signal sent by the wireless transmission driving module through the control module, and determining whether the wireless charging device is connected to the connection interface according to the instruction signal; when it is determined that the connection interface is connected When the wireless charging device, the second control signal is sent to the switch module to control the switch module to provide DC power to the reverse rectifier module; when it is determined that the wireless charging device is not connected to the connection interface, the second control signal is sent to the switch module to control the switch module Provide DC power to the connection interface.
  • the indication signal includes: a communication signal based on the Qi wireless charging standard protocol.
  • the above method further includes: modulating the signal generated by inversely transforming the DC power according to the driving signal through the inverse rectification module to obtain a modulation signal; wherein the AC power signal includes the modulation signal.
  • the above method further includes: receiving feedback information sent by the device to be charged for wireless charging through the control module, and generating a first control signal according to the feedback information to control the wireless transmission driving module to generate the driving signal.
  • the power supply device further includes: a voltage adjustment module, and the above method further includes: receiving a third control signal sent by the control module through the voltage adjustment module, and adjusting the input voltage of the reverse rectifier module according to the third control signal size.
  • the above method further includes: receiving feedback information sent by the device to be charged for wireless charging through the control module, and generating a third control signal according to the feedback information to control the voltage adjustment circuit to adjust the input voltage of the reverse rectifier module the size of.
  • the feedback information includes: the charging voltage value and/or charging current value detected by the device to be charged, the remaining power of the device to be charged or a preset full time of the power; or, the feedback information includes: to be charged The voltage or current adjustment instruction determined by the device according to the detected charging voltage value and/or charging current value, the remaining power or the preset power full time.
  • the feedback information is sent from the device to be charged to the power supply device through wireless communication; or, the feedback information is sent to the wireless charging device through the transmitting coil of the device to be charged and sent to the power supply device through the charging device.
  • a wireless charging method applied to a power supply device including: rectifying input AC power to provide DC power; and determining a connection interface connection with the power supply device according to the received indication signal Whether it is a wireless charging device; and when it is determined that the wireless charging device is connected to the connection interface, the power supply device is provided with an alternating current signal, and the alternating current signal is output to the wireless charging device through the connection interface; wherein, the alternating current signal is based on The inverse transform signal of direct current is generated.
  • the above method further includes: when it is determined that the wireless charging device is not connected to the connection interface, causing the power supply device to provide DC power to the connection interface, so that the connection interface outputs DC power.
  • the indication signal includes: a communication signal based on the Qi wireless charging standard protocol.
  • the AC power includes a modulation signal obtained by modulating the inverse transform signal of the DC power.
  • the power supply device has a wireless transmission driving module and a reverse rectification module, and can provide a charging voltage or a charging current for wireless charging to the wireless charging device, so that the wireless charging device adapted to be connected only needs to include a charging interface ,
  • the resonant circuit and the transmitting coil can be connected to the power supply device through a cable to wirelessly charge the device to be charged. Because the module in the wireless charging device only has the resonant circuit and the transmitting coil, the heating of the wireless charging device is greatly reduced, thereby reducing the heating of the device to be charged in contact with it during wireless charging, and achieving a good heat dissipation effect.
  • the power supply device of the present disclosure can be implemented as a power supply device for wireless charging by providing a switch module, and can also be implemented as a power supply device for wired charging, thereby being provided by one power supply
  • the device provides two charging methods for the equipment to be charged.
  • the power supply device is used to wirelessly charge a device to be charged, since the wireless charging device adapted thereto only needs to include a resonance circuit and a transmitting coil, the heat generated by the device to be charged during wireless charging can be effectively reduced.
  • Fig. 1 is a block diagram of a power supply device according to an exemplary embodiment.
  • Fig. 2 is a block diagram of another power supply device according to an exemplary embodiment.
  • FIG. 3 is a schematic diagram showing when the rectifier module and the connection interface module in the power supply device shown in FIG. 2 are conducted according to an example.
  • Fig. 4 is a block diagram of a wireless charging device according to an exemplary embodiment.
  • Fig. 5 is a flowchart of a wireless charging method according to an exemplary embodiment.
  • FIG. 6 is a schematic structural diagram of a device to be charged according to an example.
  • FIG. 7 is a flowchart of another wireless charging method according to an exemplary embodiment.
  • Fig. 8 is a block diagram of still another power supply device according to an exemplary embodiment.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is at least two, for example, two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; can be mechanical connection, electrical connection or can communicate with each other; can be directly connected, can also be indirectly connected through an intermediary, can be the internal connection of two components or the interaction between two components.
  • installation can be a fixed connection or a detachable connection , Or integrated; can be mechanical connection, electrical connection or can communicate with each other; can be directly connected, can also be indirectly connected through an intermediary, can be the internal connection of two components or the interaction between two components.
  • the first feature “above” or “below” the second feature may include the first and second features in direct contact, or may include the first and second features Not direct contact but contact through another feature between them.
  • the first feature is “above”, “above” and “above” the second feature includes that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” the second feature includes that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.
  • Fig. 1 is a block diagram of a power supply device according to an exemplary embodiment.
  • the power supply device 10 shown in FIG. 1 may be, for example, an adapter, or may be a power bank that can supply electric energy to the wireless charging device.
  • the power supply device 10 can be used for wireless charging, for example, the power supply device 10 and the wireless charging device 1 are electrically connected through a cable 3, and the wireless charging device 1 is provided with a charging current for wireless charging through the cable 3 and The charging voltage, so that the wireless charging device 1 can wirelessly charge the device 2 to be charged.
  • the wireless charging device 1 may be a wireless charging base, and the device to be charged 2 is placed on the wireless charging device 1 when performing wireless charging.
  • the power supply device 10 includes a rectification module 102, a control module 104, a wireless transmission drive module 106, a reverse rectification module 108, and a connection interface 110.
  • the rectifier module 102 is used to rectify and/or filter the input AC power to provide stable DC power.
  • the rectifier module 102 may be implemented as an AC/DC converter, for example, which can convert input AC power (such as 220V mains power) into stable low-voltage DC power suitable for the needs of the device to be charged.
  • the control module 104 is electrically connected to the rectifier module 102 and the wireless transmission driving module 106, and can be used to send the first control signal to the wireless transmission driving module 106.
  • the control module 104 may be implemented as a microcontroller unit (MCU), for example.
  • the wireless transmission driving module 106 is used to receive the first control signal and generate a driving signal according to the first control signal.
  • the wireless transmission driving module 106 may be implemented as an integrated circuit chip (IC) having a driving function, for example.
  • the reverse rectification module 108 is electrically connected to the rectification module 102 and the wireless transmission driving module 106 respectively, and is used for generating an alternating current signal according to the driving signal generated by the wireless transmission driving module 106 and the direct current provided by the rectification module 102.
  • the reverse rectification module 108 may be implemented as a reverse rectification bridge circuit, for example.
  • the alternating current signal is a modulation signal obtained by the inverse rectification module 108 modulating the alternating current generated by inversely transforming the direct current provided by the rectification module 102 according to the driving signal generated by the wireless transmission driving module 106.
  • the control module 104 may, for example, generate the first according to data information sent to the device to be charged by wireless charging, such as the charging voltage value and/or charging current value detected by the device to be charged, the remaining power, or the preset full time, etc.
  • the control signal thereby controlling the wireless transmission drive module 106 to generate a drive signal for driving the reverse rectification module 108 for modulation.
  • the data information may be provided by the wireless transmission driving module 106, for example.
  • the wireless transmission driving module 106 demodulates the signal sent by the charging device through the charging cable, and sends the data information in the demodulated signal to the control module 104.
  • the modulation signal may be, for example, modulation of the frequency of alternating current voltage or current generated by inversely transforming the direct current provided by the rectifier module 102, or modulation of the duty cycle of the output waveform. For example, a larger duty cycle (such as 90%) can realize fast charging, and a smaller duty cycle (such as 60%) can realize normal charging.
  • control module 104 in the embodiments of the present disclosure in combination with the structure in the device to be charged.
  • the device to be charged 2 includes: a wireless receiving circuit 21, a second control module 22, a voltage conversion circuit 23, a battery 25 and a first charging channel 26.
  • the wireless receiving circuit 21 is used to convert the electromagnetic signal emitted by the wireless charging device into alternating current through a receiving coil, and rectify and/or filter the alternating current to convert the alternating current into stable direct current to charge the battery 25.
  • the battery 25 may include a single cell or multiple cells. When the battery 25 includes multiple cells, the multiple cells may be connected in series. Thus, the charging voltage that the battery 25 can withstand is the sum of the charging voltage that the multiple cells can withstand, which can increase the charging speed and reduce the heating of the charging.
  • the voltage of the internal single cell is generally between 3.0V and 4.35V.
  • the total voltage of the two cells connected in series is 6.0V-8.7V. Therefore, when multiple cells are used in series, the output voltage of the wireless receiving circuit 21 can be increased compared to a single cell.
  • the charging current required by multi-cell batteries is about 1/N of the charging current required by single-cell batteries (N is the series-connected power in the device to be charged Number of cores).
  • the scheme of using multi-cell batteries can reduce the size of the charging current, thereby reducing the calorific value of the device to be charged during the charging process.
  • adopting the multi-cell series scheme can increase the charging voltage and thus increase the charging speed.
  • the first charging channel 26 may be a wire.
  • a voltage conversion circuit 23 may be provided on the first charging channel 26.
  • the voltage conversion circuit 23 is used for stepping down the direct current output by the wireless receiving circuit 21 to obtain the output voltage and output current of the first charging channel 26.
  • the voltage and current values of the direct current output by the first charging channel 26 meet the charging requirements of the battery 25 and can be directly loaded into the battery 25.
  • the second control module 22 is used to communicate with the control circuit 104 of the power supply device 10, and feed back the detected charging voltage value and/or charging current value, remaining power or preset full time information to the power supply device, in addition It can transmit error information and termination transmission information, etc.; alternatively, the feedback information can also include the voltage or current adjustment determined by the device to be charged according to the detected charging voltage value and/or charging current value, remaining power or preset full time and other information instruction.
  • the device to be charged 2 further includes a detection circuit 24 for detecting the voltage value and/or current value of the first charging channel 26.
  • the voltage value and/or current value of the first charging channel 26 may refer to the voltage value and/or current value between the voltage conversion circuit 23 and the battery 25, that is, the output voltage and/or output current of the voltage conversion circuit 23, the output voltage and And/or the output current is directly applied to the battery 25 to charge the battery 25.
  • the output voltage and/or output current is fed back to the power supply device 10, which can be used to determine its transmit power.
  • the voltage value and/or current value of the first charging channel 26 may also refer to the voltage value and/or current value between the wireless receiving circuit 21 and the voltage conversion circuit 23, that is, the output voltage value and/or of the wireless receiving circuit 21 Current value.
  • the output voltage and/or output current is fed back to the power supply device 10 and can be used to determine the input voltage of the wireless transmission drive module 106 at a certain transmission power to ensure that the current entering the receiving coil of the device to be charged 2 is within a set range Inside, thereby further controlling the heating of the receiving coil.
  • the second control module 22 may couple the feedback information to the receiving coil in the wireless receiving circuit 21 and send it to the transmitting coil of the wireless charging device. After receiving the information fed back by the second control circuit 22 of the device to be charged 2 through the transmitting coil, the wireless charging device sends it to the control module 104 of the power supply device 10 connected to it through the charging interface.
  • the device to be charged 2 may, for example, also pass through a mobile communication network such as Bluetooth, WiFi, or a communication standard (such as 2G, 3G , 4G or 5G) or 60Hz high-frequency antenna communicates with the wireless charging device to send the feedback information to the wireless charging device.
  • the wireless charging device is then sent to the control module 104 of the power supply device 10 connected with the cable through its charging interface.
  • the device to be charged 2 and the wireless charging device further include corresponding communication modules, such as a Bluetooth communication module, a WiFi communication module, a 2G/3G/4G/5G mobile communication module or 60Hz high frequency antenna, etc.
  • the device to be charged 2 can also communicate with the power supply device 10 to transmit the feedback information.
  • the communication method between the device to be charged 2 and the power supply device 10 may include, for example, Bluetooth, WiFi, or a mobile communication network based on a communication standard (such as 2G, 3G, 4G, or 5G).
  • a communication standard such as 2G, 3G, 4G, or 5G.
  • the device to be charged 2 and the power supply device 10 also include corresponding communication modules, such as a Bluetooth communication module, a WiFi communication module, or a 2G/3G/4G/5G mobile communication module Wait.
  • the control module 104 in the power supply device 10 can use the wireless transmission drive module 106 to cause the reverse rectification module 108 to generate a modulation signal, thereby adjusting the resonance frequency of the resonant circuit of the wireless charging device; or, through the wireless transmission drive module 106 Adjust the duty ratio of the switch tube of the reverse rectifier module 108 to adjust the output power, so that the voltage value and/or current value of the direct current output by the first charging channel 26 and the required charging voltage value of the battery 25 and /Or the current value is more matched, thus providing a faster charging speed.
  • connection interface 110 of the power supply device 10 is electrically connected to the reverse rectifier module 108 and is used to output a charge modulation signal.
  • the connection interface 110 is generally a female connector, for example, USB type A or USB type B.
  • the end of the cable 3 connected to the connection interface 110 may be a USB type A or USB type B male connector to adapt to the connection interface 110.
  • the power supply device has a wireless transmission driving module and a reverse rectification module, which can provide a charging voltage or a charging current for wireless charging to the wireless charging device, so that the wireless charging device adapted to be connected only needs to Including the charging interface, the resonance circuit and the transmitting coil, the device to be charged can be wirelessly charged after being connected to the power supply device through a cable. Because the module in the wireless charging device only has the resonant circuit and the transmitting coil, the heating of the wireless charging device is greatly reduced, thereby reducing the heating of the device to be charged in contact with it during wireless charging, and achieving a good heat dissipation effect.
  • Fig. 2 is a block diagram of another power supply device according to an exemplary embodiment.
  • the power supply device 20 shown in FIG. 2 further includes: a switch module 212.
  • the switch module 212 is electrically connected to the rectifier module 102, the control module 104, the reverse rectifier module 108, and the connection interface 110, and is used to receive the second control signal sent by the control module 104 and provide the rectifier module 102 according to the second control signal
  • the DC charging signal is provided to the reverse rectification module 108, or the DC charging signal is provided to the connection interface 110 so that the connection interface 110 outputs the DC charging signal.
  • the switch module 212 may be implemented as a load switch or a discrete switch, for example.
  • FIG. 3 is a schematic diagram showing when the rectifier module and the connection interface module in the power supply device shown in FIG. 2 are conducted according to an example.
  • the power supply device 20 can be used as a power supply device for wired charging through a cable 3 Connect with the device to be charged 2'.
  • the charging interface 29 of the device to be charged 2' may be a female connector of the Micro USB interface, USB Type C interface, and Lightning interface, and the end of the cable 3 connected to the charging interface 29 of the device to be charged 2'may be The charging interface 29 of the charging device 2'is compatible with the male terminals of the Micro USB interface, USB Type C interface and Lightning interface.
  • the device to be charged 2'shown in FIG. 3 may be a device that supports only the wired charging function or a device that also has a wireless charging function.
  • the power supply device 20 can be used as a power supply device for wireless charging
  • the cable 3 is electrically connected to the wireless charging device 1.
  • the charging interface of the wireless charging device 1 may be a female interface of a Micro USB interface, a USB Type C interface, and a Lightning interface, and the end of the cable 3 connected to the charging interface of the wireless charging device 1 may be the wireless charging device 1
  • the charging interface is compatible with the male connector of Micro USB interface, USB Type C interface and Lightning interface.
  • control module 104 is further configured to receive an instruction signal sent by the wireless transmission driving module 106, and determine whether the wireless charging device 1 is connected to the connection interface 110 according to the instruction signal.
  • the control module 104 can receive the instruction signal through the data line included in the connection interface 110.
  • the wireless transmission driving module 106 receives relevant communication information from the device connected to the power supply device 20 through the connection interface 110 and sends it to the control module 104 through an instruction signal.
  • the indication signal may include: a communication signal based on the Qi wireless charging standard protocol. For example, it may be a communication signal defined in the Qi wireless charging standard protocol, or it may be a communication signal defined based on the Qi wireless charging standard protocol.
  • the indication signal may also include, for example, a communication signal based on the PMA (Power Matters Alliance) wireless charging standard, the A4WP (Alliance for Wireless) Power wireless charging standard, iNPOFi technology, or Wi-Po technology.
  • PMA Power Matters Alliance
  • A4WP Alliance for Wireless Power wireless charging standard
  • iNPOFi iNPOFi technology
  • Wi-Po technology Wi-Po technology
  • control module 104 When the control module 104 detects that the indication signal includes a communication signal conforming to the wireless charging standard, it determines that the wireless charging device 1 is connected to the connection interface 110, and sends a second control signal to the switch module 212 to control the switch module 212 to convert the rectifier module
  • the DC charging signal provided by 102 is provided to the reverse rectification module; and when the control module 104 detects that the communication signal included in the signal is not a communication signal conforming to the wireless charging standard, it is determined that the wireless charging device 1 is not connected to the connection interface 110, for example,
  • the device to be charged 2'shown in FIG. 3 sends a second control signal to the switch module 212 to control the switch module 212 to provide the DC charging signal provided by the rectifier module 102 to the connection interface 110, thereby providing a device connected to the connection interface 110 Perform wired charging.
  • the power supply device 20 may further include: a voltage adjustment module 614, electrically connected to the switch module 212, the control module 104, and the reverse rectification module 108, for receiving the data sent by the control module 104 The third control signal, and adjust the magnitude of the input voltage of the reverse rectification module 108 according to the third control signal.
  • the control module 104 may generate the third control signal by receiving the feedback information from the device to be charged, thereby controlling the output voltage of the voltage adjustment module 614.
  • the power supply device provided according to the embodiment of the present invention can be implemented as a power supply device for wireless charging by providing a switch module, and can also be implemented as a power supply device for wired charging, so that a power supply device
  • the charging device provides two charging methods.
  • the power supply device is used to wirelessly charge a device to be charged, since the wireless charging device adapted thereto only needs to include a resonance circuit and a transmitting coil, the heat generated by the device to be charged during wireless charging can be effectively reduced.
  • Fig. 4 is a block diagram of a wireless charging device according to an exemplary embodiment.
  • the wireless charging device 30 includes a charging interface 302, a resonance circuit 304 and a transmitting coil 306.
  • the charging interface 302 is connected to the power supply device 4 through the cable 3, the charging interface 302 of the wireless charging device 30 may be a female connector of a Micro USB interface, a USB Type C interface, and a Lightning interface, and the cable 3 is connected to the charging interface of the wireless charging device 30
  • the connected end may be a male connector of a Micro USB interface, a USB Type C interface, and a Lightning interface that are compatible with the charging interface of the wireless charging device 30.
  • the resonance circuit 304 is used to provide a resonance signal according to the charging current signal or the charging voltage signal received from the charging interface 302.
  • the resonance circuit 304 may be, for example, an RLC series resonance circuit.
  • the transmitting coil 306 outputs energy according to the resonance signal provided by the resonance circuit 304, thereby wirelessly charging the device 2 to be charged.
  • the wireless charging device 30 may be, for example, a wireless charging base.
  • the device to be charged 2 When the device to be charged 2 is wirelessly charged, it is placed on the wireless charging base so that the transmitting coil 306 in the wireless charging base can be connected to the device to be charged
  • the receiving coil in 2 performs coupled wireless charging.
  • the wireless charging device 30 may further include, for example, a Bluetooth communication module, a WiFi communication module, 2G/3G/4G /5G mobile communication module or high-frequency antenna that meets 60Hz and other communication modules.
  • the wireless charging device provided by the embodiment of the present invention, it only needs to include a resonance circuit and a transmitting coil. Therefore, when the wireless charging device is connected through the power supply device adapted to the wireless charging device, it can effectively solve the contact with the charging device Fever problem.
  • Embodiments of the present invention also provide a wireless charging system.
  • the wireless charging system may include: a power supply device 10 that can be used for wireless charging as shown in FIGS. 1-3 or 8. 20.
  • the wireless charging system may further include: a wireless charging device 30 as shown in FIG. 4.
  • the wireless charging device 30 may be, for example, a wireless charging base.
  • the wireless charging device to be charged 2 performs wireless charging, as shown in FIG. 1 or 2
  • the display is placed on the wireless charging base.
  • the wireless charging system may further include: a device to be charged 2 as shown in FIGS. 1, 2 and 4, the device to be charged 2 includes a receiving coil 27 adapted to the wireless charging device 30, used In order to receive the charging current signal or charging voltage signal output by the wireless charging device through the transmitting coil, the wireless charging device 2 is charged wirelessly.
  • the to-be-charged device included in the wireless charging system may also be the to-be-charged device 2'shown in FIG. 3, including: a charging interface 29 matching the connection interface 110 of the power supply device 10 or 20, for receiving through a cable The DC charging signal provided by the power supply device to perform wired charging for the device to be charged 2'.
  • the charging current signal or charging voltage signal output by the power supply device 10 or 20 or 60 through the connection interface 110 is a modulation signal that is output to the reverse rectification module 108 according to the data information returned by the device to be charged 2
  • the signal obtained by modulating the inverse transform signal of the DC charging signal may be, for example, the modulation of the frequency of the inverse transform signal or the modulation of the duty cycle of the output waveform.
  • the device to be charged 2 further includes: a demodulation circuit 28 as shown in FIG. 1, FIG. 2 or FIG. 4 for charging according to the charging current or voltage demodulated from the modulation signal.
  • the wireless charging device can be provided with a charging voltage or charging current for wireless charging, thereby making it wirelessly connected
  • the charging device only needs to include a charging interface, a resonant circuit and a transmitting coil, and then can be connected to the power supply device through a cable to wirelessly charge the device to be charged.
  • the module in the wireless charging device only has the resonant circuit and the transmitting coil, the heating of the wireless charging device is greatly reduced, thereby reducing the heating of the device to be charged in contact with it during wireless charging, and achieving a good heat dissipation effect.
  • the power supply device in the wireless charging system can be realized as a power supply device for wireless charging by setting a switch module, and can also be realized as a power supply device for wired charging, so that a power supply device The charging device provides two charging methods.
  • Fig. 5 is a flowchart of a wireless charging method according to an exemplary embodiment.
  • the method 40 may be applied to the power supply device 10 or 20 shown in FIGS. 1-3 or 8 described above.
  • Method 40 includes:
  • step S402 the input AC power is rectified to provide a DC charging signal.
  • the input AC power (such as 220V mains power) is converted into a stable low-voltage DC charging signal suitable for the needs of the device to be charged.
  • the DC charging signal may be a current signal or a voltage signal.
  • step S404 according to the received instruction signal, it is determined whether a wireless charging device is connected to the connection interface of the power supply device.
  • the instruction signal includes: communication information sent by a device connected to it through the connection interface of the power supply device. Based on the communication information, it is determined whether the wireless charging device is connected to the connection interface of the power supply device.
  • the indication signal includes: a communication signal based on the Qi wireless charging standard protocol.
  • it may be a communication signal defined in the Qi wireless charging standard protocol, or it may be a communication signal defined based on the Qi wireless charging standard protocol.
  • the indication signal may also include, for example, a communication signal based on the PMA (Power Matters Alliance) wireless charging standard, the A4WP (Alliance for Wireless) Power wireless charging standard, iNPOFi technology, or Wi-Po technology.
  • step S406 when it is determined that the wireless charging device is connected to the connection interface, the power supply device is caused to provide a charging current signal or a charging voltage signal, and the charging current signal or the charging voltage signal is output to the wireless charging device through the connection interface.
  • the charging current signal or the charging voltage signal is an AC charging signal generated according to the inverse conversion signal of the DC charging signal.
  • the charging current signal or the charging voltage signal is a modulation signal obtained by modulating the inverse transform signal of the DC charging signal.
  • the method 40 further includes:
  • step S408 when it is determined that the wireless charging device is not connected to the connection interface, the power supply device is caused to provide a DC charging signal to the connection interface, so that the connection interface outputs the DC charging signal.
  • Method 50 includes:
  • step S502 the input AC power is rectified by the rectifier module to provide DC power.
  • step S504 the first control signal sent by the control module is received by the wireless driving module.
  • step S506 the wireless driving module generates a driving signal according to the first control signal.
  • step S508 the inverse rectification module inversely transforms the DC power according to the drive signal to generate an AC power signal.
  • step S510 an alternating current signal is output through the connection interface.
  • the method 50 further includes: receiving the second control signal sent by the control module through the switch module. And the switch module provides DC power to the reverse rectifier module according to the second control signal, or DC power to the connection interface to output the DC power through the connection interface.
  • the method 50 further includes: receiving an instruction signal sent by the wireless transmission driving module through the control module, and determining whether the wireless charging device is connected to the connection interface according to the instruction signal; when it is determined that the wireless charging is connected to the connection interface Device, send a second control signal to the switch module to control the switch module to provide DC power to the reverse rectifier module; when it is determined that the connection interface is not a wireless charging device, send a second control signal to the switch module to control the switch module to DC power Provide to the connection interface.
  • the indication signal includes: a communication signal based on the Qi wireless charging standard protocol.
  • the method 50 further includes: modulating the signal generated by inversely transforming the DC power according to the driving signal through the inverse rectification module to obtain a modulated signal.
  • the alternating current signal includes the modulation signal.
  • the method 50 further includes: receiving feedback information sent by the device to be charged for wireless charging through the control module, and generating a first control signal according to the feedback information to control the wireless transmission driving module to generate the driving signal.
  • the method 50 further includes: receiving a third control signal sent by the control module through the voltage adjustment module, and adjusting the magnitude of the input voltage of the reverse rectification module according to the third control signal.
  • the method 50 further includes: receiving feedback information sent by the device to be charged for wireless charging through the control module, and generating a third control signal according to the feedback information to control the voltage adjustment circuit to adjust the magnitude of the input voltage of the reverse rectification module .
  • the feedback information includes: the charging voltage value and/or the charging current value detected by the device to be charged, the remaining power of the device to be charged or the preset charge time; or, the feedback information includes: The voltage or current adjustment command determined by the detected charging voltage value and/or charging current value, remaining power or preset power full time.
  • the feedback information is sent by the device to be charged to the power supply device through wireless communication; or, the feedback information is sent to the wireless charging device via the transmitting coil of the device to be charged and sent to the power supply device through the charging device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种电源提供装置、无线充电装置、系统及无线充电方法。电源提供装置,可应用于无线充电,包括:整流模块,用于对输入的交流电进行整流以提供直流电;控制模块,与整流模块电性连接;无线发射驱动模块,与控制模块电性连接,接收控制模块发送的第一控制信号,并根据第一控制信号,产生驱动信号;逆整流模块,分别与整流模块及无线发射驱动模块电性连接,用于根据驱动信号与直流电,产生交流电信号;以及连接接口,与逆整流模块电性连接,用于输出交流电信号。该电源提供装置能够有效解决无线充电时待充电设备的散热问题。

Description

电源提供装置、无线充电装置、系统及无线充电方法 技术领域
本公开涉及无线充电技术领域,具体而言,涉及一种电源提供装置、无线充电装置、系统及无线充电方法。
背景技术
随着无线充电技术的快速发展,越来越多的待充电设备(如智能手机等)都支持无线充电或无线传输等功能,使得待充电设备可以摆脱充电缆线的限制,从而提供更加便捷的充电方式。而现有的无线充电技术由于待充电设备发热的限制导致充电功率无法进一步增大,限制了无线充电的应用体验。
在所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开提供一种电源提供装置、无线充电装置、系统及无线充电方法,能够有效解决无线充电时待充电设备的散热问题。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的一方面,提供了一种电源提供装置,可应用于无线充电,包括:整流模块,用于对输入的交流电进行整流以提供直流电;控制模块,与整流模块电性连接;无线发射驱动模块,与控制模块电性连接,接收控制模块发送的第一控制信号,并根据第一控制信号,产生驱动信号;逆整流模块,分别与整流模块及无线发射驱动模块电性连接,用于根据驱动信号对直流电进行逆变换,产生交流电信号;以及连接接口,与逆整流模块电性连接,用于输出交流电信号。
根据本公开的一实施方式,上述电源提供装置还包括:开关模块,与整流模块、控制模块、逆整流模块及连接接口电性连接,用于接收控制模块发送的第二控制信号,并根据第二控制信号,将直流电提供给逆整流模块,或者将直流电提供给连接接口;连接接口还用于输出直流电。
根据本公开的一实施方式,控制模块还用于接收无线发射驱动模块发送的指示信号, 根据指示信号确定与连接接口连接的是否为无线充电装置;当控制模块确定与连接接口连接的是无线充电装置时,向开关模块发送第二控制信号以控制开关模块将直流电提供给逆整流模块;当控制模块确定与连接接口连接的不是无线充电装置时,向开关模块发送第二控制模块以控制开关模块将直流电提供给连接接口。
根据本公开的一实施方式,指示信号包括:基于Qi无线充电标准协议的通信信号。
根据本公开的一实施方式,交流电信号包括逆整流模块根据驱动信号,对直流电进行逆变换后产生的信号进行调制所得到的调制信号。
根据本公开的一实施方式,控制模块还用于接收进行无线充电的待充电设备发送的反馈信息,并根据反馈信息产生第一控制信号,以控制无线发射驱动模块产生驱动信号。
根据本公开的一实施方式,电源提供装置还包括:电压调整模块,与开关模块、控制模块及逆整流模块电性连接,用于接收控制模块发送的第三控制信号,并根据第三控制信号调整逆整流模块输入电压的大小。
根据本公开的一实施方式,控制模块还用于接收进行无线充电的待充电设备发送的反馈信息,并根据反馈信息产生第三控制信号,以控制电压调整电路调整逆整流模块输入电压的大小。
根据本公开的一实施方式,反馈信息包括:待充电设备检测到的充电电压值和/或充电电流值、待充电设备的剩余电量或预设的电量充满时间;或者,反馈信息包括:待充电设备根据检测到的充电电压值和/或充电电流值、剩余电量或预设的电量充满时间确定的电压或电流调整指令。
根据本公开的一实施方式,反馈信息由待充电设备通过无线通信方式发送至电源提供装置;或者,反馈信息经由待充电设备的发射线圈发送至无线充电装置,并通过充电装置发送至电源提供装置。
根据本公开的一实施方式,连接接口为USB A型母头或USB B型母头。
根据本公开的一实施方式,开关模块为负载开关。
根据本公开的另一方面,提供了一种无线充电装置,由充电接口、谐振电路及发射线圈组成,其中谐振电路用于根据从充电接口接收到的交流电信号提供谐振信号,发射线圈用于根据谐振信号输出能量以为待充电设备进行无线充电。
根据本公开的一实施方式,发射线圈还用于接收待充电设备发送的反馈信息;反馈信息包括:待充电设备检测到的充电电压值和/或充电电流值、待充电设备的剩余电量或预设的电量充满时间;或者,反馈信息包括:待充电设备根据检测到的充电电压值和/或充 电电流值、剩余电量或预设的电量充满时间确定的电压或电流调整指令。
根据本公开的一实施方式,无线充电装置为无线充电底座,待充电设备在进行无线充电时被置于无线充电底座之上。
根据本公开的再一方面,提供了一种无线充电系统,包括:上述任一种电源提供装置。
根据本公开的一实施方式,上述无线充电系统还包括:上述任一种无线充电装置。
根据本公开的一实施方式,上述无线充电系统还包括:待充电设备,待充电设备包括:接收线圈,接收线圈用于接收无线充电装置通过发射线圈输出的交流电信号,以为待充电设备无线充电。
根据本公开的一实施方式,待充电设备还包括:与电源提供装置的连接接口相匹配的充电接口,用于通过电缆接收电源提供装置提供的直流电,以为待充电设备充电。
根据本公开的一实施方式,交流电流信号为调制信号,终端还包括:解调电路,用于根据从调制信号中解调出的充电信号进行充电。
根据本公开的一实施方式,待充电设备还包括:第二控制模块,用于与电源提供装置的控制模块通信,向电源提供装置发送反馈信息,述反馈信息包括:检测到的充电电压值和/或充电电流值、剩余电量、预设充满时间;或者,反馈信息包括:第二控制模块根据检测到的充电电压值和/或充电电流值、剩余电量或预设的电量充满时间确定的电压或电流调整指令;交流电信号为根据反馈信息进行调制所得到调制信号。
根据本公开的一实施方式,反馈信息经由待充电设备的接收线圈发送至无线充电装置,并通过充电装置发送至电源提供装置;或者,反馈信息由待充电设备通过无线通信方式发送至电源提供装置。
根据本公开的一实施方式,待充电设备还包括:无线接收电路、电压转换电路及电池;无线接收电路用于将无线充电装置输出的交流电信号转换成直流电;电压转换电路与无线接收电路电性连接,用于对无线接收电路输出的直流电进行降压;电池与电压转换电路电性连接,接收电压转换电路输出的直流电,以进行充电;检测到的充电电压值和/或充电电流值包括:检测到的无线接收电路输出的直流电的电压值和/或电流值,和/或,检测到的电压转换电路输出的直流电的电压值和/或电流值。
根据本公开的再一方面,提供一种无线充电方法,应用于电源提供装置,电源提供装置包括:整流模块、控制模块、无线发射驱动模块、逆整流模块及连接接口,方法包括:通过整流模块对输入的交流电进行整流以提供直流电;通过无线发射驱动模块接收控制模块发送的第一控制信号;通过无线发射驱动模块根据第一控制信号,产生驱动信号;通过 逆整流模块根据驱动信号对直流电进行逆变换,产生交流电信号;以及通过连接接口输出交流电信号。
根据本公开的一实施方式,电源提供装置还包括:开关模块,上述方法还包括:通过开关模块接收控制模块发送的第二控制信号;以及通过开关模块根据第二控制信号,将直流电提供给逆整流模块,或者将直流电提供给连接接口,以通过连接接口输出直流电。
根据本公开的一实施方式,上述方法还包括:通过控制模块接收无线发射驱动模块发送的指示信号,并根据指示信号确定与连接接口连接的是否为无线充电装置;当确定与连接接口连接的是无线充电装置时,向开关模块发送第二控制信号以控制开关模块将直流电提供给逆整流模块;当确定与连接接口连接的不是无线充电装置时,向开关模块发送第二控制信号以控制开关模块将直流电提供给连接接口。
根据本公开的一实施方式,指示信号包括:基于Qi无线充电标准协议的通信信号。
根据本公开的一实施方式,上述方法还包括:通过逆整流模块根据驱动信号,对直流电进行逆变换后产生的信号进行调制,以得到调制信号;其中,交流电信号包括调制信号。
根据本公开的一实施方式,上述方法还包括:通过控制模块接收进行无线充电的待充电设备发送的反馈信息,并根据反馈信息产生第一控制信号,以控制无线发射驱动模块产生驱动信号。
根据本公开的一实施方式,电源提供装置还包括:电压调整模块,上述方法还包括:通过电压调整模块接收控制模块发送的第三控制信号,并根据第三控制信号调整逆整流模块输入电压的大小。
根据本公开的一实施方式,上述方法还包括:通过控制模块接收进行无线充电的待充电设备发送的反馈信息,并根据反馈信息产生第三控制信号,以控制电压调整电路调整逆整流模块输入电压的大小。
根据本公开的一实施方式,反馈信息包括:待充电设备检测到的充电电压值和/或充电电流值、待充电设备的剩余电量或预设的电量充满时间;或者,反馈信息包括:待充电设备根据检测到的充电电压值和/或充电电流值、剩余电量或预设的电量充满时间确定的电压或电流调整指令。
根据本公开的一实施方式,反馈信息由待充电设备通过无线通信发送至电源提供装置;或者,反馈信息经由待充电设备的发射线圈发送至无线充电装置,并通过充电装置发送至电源提供装置。
根据本公开的再一方面,提供了一种无线充电方法,应用于电源提供装置,包括:对 输入的交流电进行整流以提供直流电;根据接收到的指示信号,确定与电源提供装置的连接接口连接的是否为无线充电装置;以及当确定与连接接口连接的是无线充电装置时,使电源提供装置提供交流电信号,并通过连接接口向无线充电装置输出交流电信号;其中,交流电信号为根据直流电的逆变换信号产生。
根据本公开的一实施方式,上述方法还包括:当确定与连接接口连接的不是无线充电装置时,使电源提供装置将直流电提供给连接接口,以使连接接口输出直流电。
根据本公开的一实施方式,指示信号包括:基于Qi无线充电标准协议的通信信号。
根据本公开的一实施方式,交流电包括对直流电的逆变换信号进行调制所得到的调制信号。
根据本公开的电源提供装置,具有无线发射驱动模块及逆整流模块,可以为无线充电装置提供用于无线充电的充电电压或充电电流,从而使得与其适配连接的无线充电装置仅需包括充电接口、谐振电路及发射线圈,即可通过线缆与该电源提供装置连接后为待充电设备进行无线充电。因无线充电装置中的模块仅余谐振电路及发射线圈,极大地降低无线充电装置的发热,从而降低了进行无线充电时与其接触的待充电设备的发热,达到了很好的散热效果。
另外,根据一些实施例,本公开的电源提供装置,通过设置一开关模块即可实现为用于无线充电的电源提供装置,还可实现为用于有线充电的电源提供装置,从而通过一个电源提供装置为待充电设备提供了两种充电方式。此外,当使用该电源提供装置为待充电设备进行无线充电时,因与其适配的无线充电装置仅需包括谐振电路与发射线圈,可有效降低待充电设备在无线充电时的发热。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
通过参照附图详细描述其示例实施例,本公开的上述和其它目标、特征及优点将变得更加显而易见。
图1是根据一示例性实施方式示出的一种电源提供装置的框图。
图2是根据一示例性实施方式示出的另一种电源提供装置的框图。
图3是根据一示例示出的图2所示的电源提供装置中的整流模块与连接接口模块导通时的示意图。
图4是根据一示例性实施方式示出的一种无线充电装置的框图。
图5是根据一示例性实施方式示出的一种无线充电方法的流程图。
图6是根据一示例示出的待充电设备的结构示意图。
图7是根据一示例性实施方式示出的另一种无线充电方法的流程图。
图8是根据一示例性实施方式示出的再一种电源提供装置的框图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知结构、方法、装置、实现、材料或者操作以避免喧宾夺主而使得本公开的各方面变得模糊。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或可以互相通讯;可以是直接相连,也可以通过中间媒介 间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
图1是根据一示例性实施方式示出的一种电源提供装置的框图。图1所示的电源提供装置10例如可以为适配器,或者也可以为能够向无线充电装置提供电能的充电宝等。参考图1,电源提供装置10可用于无线充电,例如电源提供装置10与无线充电装置1之间通过电缆3电性连接,并通过电缆3为无线充电装置1提供用于无线充电的充电电流和充电电压,从而使得无线充电装置1可以为待充电设备2进行无线充电。如图1所示,无线充电装置1可以为一无线充电底座,待充电设备2在进行无线充电时被置于无线充电装置1之上。
电源提供装置10包括:整流模块102、控制模块104、无线发射驱动模块106、逆整流模块108及连接接口110。
整流模块102用于对输入的交流电进行整流和/或滤波等操作,以提供稳定的直流电。整流模块102例如可以实施为AC/DC转换器,其可将输入的交流电(如220V的市电)转换为适于待充电设备需求的稳定低压直流电。
控制模块104与整流模块102及无线发射驱动模块106电性连接,可用于向无线发射驱动模块106发送第一控制信号。控制模块104例如可以实施为一微控制单元(Microcontroller Unit,MCU)。
无线发射驱动模块106用于接收第一控制信号,并根据第一控制信号,产生驱动信号。无线发射驱动模块106例如可以实施为一具有驱动功能的集成电路芯片(IC)。
逆整流模块108分别与整流模块102及无线发射驱动模块106电性连接,用于根据无线发射驱动模块106产生的驱动信号与整流模块102提供的直流电,产生交流电信号。逆整流模块108例如可以实施为一逆整流桥电路。
在一些实施例中,交流电信号为逆整流模块108根据无线发射驱动模块106产生的驱 动信号对整流模块102提供的直流电进行逆变换后产生的交流电进行调制所得到的调制信号。控制模块104例如可以根据被进行无线充电的待充电设备向其发送的数据信息,如待充电设备检测到的充电电压值和/或充电电流值、剩余电量或预设充满时间等信息产生第一控制信号,从而控制无线发射驱动模块106产生用于驱动逆整流模块108进行调制的驱动信号。该数据信息例如可以通过无线发射驱动模块106提供。无线发射驱动模块106对待充电设备通过充电线缆发送的信号进行解调,并将解调信号中的数据信息发送给控制模块104。调制信号例如可以为对整流模块102提供的直流电进行逆变换后产生的交流电的电压或电流的频率的调制,或者是对其输出波形的占空比的调制等。如较大(如90%)的占空比可以实现快速充电,较小(如60%)的占空比实现正常充电。
下面将结合待充电设备中的结构,说明在本公开实施方式中,待充电设备如何与控制模块104进行通信。
图6是根据一示例示出的待充电设备的结构示意图。如图6所示,待充电设备2包括:无线接收电路21、第二控制模块22、电压转换电路23、电池25及第一充电通道26。
无线接收电路21用于通过接收线圈将无线充电装置发射的电磁信号转换成交流电,并对该交流电进行整流和/或滤波等操作,将该交流电转换成稳定的直流电,以给电池25充电。
电池25可包括单电芯或多电芯。电池25包括多电芯时,该多个电芯之间可为串联关系。由此,电池25可承受的充电电压为多个电芯可承受的充电电压之和,可提高充电速度,减少充电发热。
例如,以待充电设备为手机为例,待充电设备的电池25包括单电芯时,内部的单节电芯的电压一般在3.0V~4.35V之间。而待充电设备的电池25包括两节串联的电芯时,串联的两节电芯的总电压为6.0V-8.7V。由此,相比于单电芯,采用多节电芯串联时,无线接收电路21的输出电压可以提高。与单节电芯相比,达到同等的充电速度,多节电芯所需的充电电流约为单节电芯所需的充电电流的1/N(N为待充电设备内的相互串联的电芯的数目)。换句话说,在保证同等充电速度(充电功率相同)的前提下,采用多节电芯的方案,可以降低充电电流的大小,从而减少待充电设备在充电过程的发热量。另一方面,与单电芯方案相比,在充电电流保持相同的情况下,采用多电芯串联方案,可提高充电电压,从而提高充电速度。
第一充电通道26可为导线。在第一充电通道26上可设置电压转换电路23。电压转换电路23用于对无线接收电路21输出的直流电进行降压,得到第一充电通道26的输出 电压和输出电流。该第一充电通道26输出的直流电的电压值和电流值,符合电池25的充电需求,可直接加载到电池25。
第二控制模块22用于与电源提供装置10的控制电路104进行通信,将检测到的充电电压值和/或充电电流值、剩余电量或预设充满时间等信息反馈给电源提供装置,此外还可以传输误差信息和终止传输信息等;或者,反馈信息还可以包括待充电设备根据检测到的充电电压值和/或充电电流值、剩余电量或预设充满时间等信息确定的电压或电流的调整指令。
为了检测充电电压值和/或充电电流值,待充电设备2还包括:检测电路24,用于检测第一充电通道26的电压值和/或电流值。第一充电通道26的电压值和/或电流值可以指电压转换电路23与电池25之间电压值和/或电流值,即电压转换电路23的输出电压和/或输出电流,该输出电压和/或输出电流直接加载到电池25,以为电池25进行充电。该输出电压和/或输出电流反馈给电源提供装置10,可以用于确定其发射功率。或者,第一充电通道26的电压值和/或电流值还可以指无线接收电路21与电压转换电路23之间的电压值和/或电流值,即无线接收电路21的输出电压值和/或电流值。该输出电压和/或输出电流反馈给电源提供装置10,可用于在确定的发射功率下,确定无线发射驱动模块106的输入电压,以保证进入待充电设备2的接收线圈的电流在设定范围内,从而进一步控制接收线圈的发热。
第二控制模块22可将上述反馈信息耦合到无线接收电路21中的接收线圈发送给无线充电装置的发射线圈。无线充电装置通过发射线圈接收到待充电设备2的第二控制电路22反馈的信息后,通过其充电接口发送给与其通过电缆连接的电源提供装置10的控制模块104。
此外,除了上述的、通过将反馈信息耦合到接收线圈中发送给无线充电装置的发射线圈外,待充电设备2例如还可以通过如蓝牙、WiFi、基于通信标准的移动通信网络(如2G、3G、4G或5G)或60Hz的高频天线与无线充电装置进行通信,以将上述反馈信息发送给无线充电装置。无线充电装置再通过其充电接口发送给与其通过电缆连接的电源提供装置10的控制模块104。可以理解的是,通过上述的通信方式进行通信时,待充电设备2及无线充电装置还包括相应的通信模块,如蓝牙通信模块、WiFi通信模块、2G/3G/4G/5G移动通信模块或满足60Hz的高频天线等。
此外,待充电设备2还可以与电源提供装置10之间通信,以传输上述反馈信息。待充电设备2与电源提供装置10之间的通信方式例如可以包括:蓝牙、WiFi或基于通信标 准的移动通信网络(如2G、3G、4G或5G)等。同样地,可以理解的是,为了能够实现上述通信,待充电设备2与电源提供装置10均还包括相应的通信模块,如蓝牙通信模块、WiFi通信模块或2G/3G/4G/5G移动通信模块等。
电源提供装置10中的控制模块104接收到上述反馈信息后,可以通过无线发射驱动模块106使逆整流模块108产生调制信号,从而调整无线充电装置谐振电路的谐振频率;或者,通过无线发射驱动模块106调整逆整流模块108开关管的占空比等,实现对其输出功率的调整,以使第一充电通道26输出的直流电的电压值和/或电流值与电池25所需的充电电压值和/或电流值更匹配,从而提供更快的充电速度。
电源提供装置10的连接接口110,与逆整流模块108电性连接,用于输出充电调制信号。连接接口110一般为母头,例如可以为USB A型,也可以为USB B型。缆线3与连接接口110连接的一端则可以为USB A型或USB B型公头,以与连接接口110相适配。
根据本发明实施方式提供的电源提供装置,具有无线发射驱动模块及逆整流模块,可以为无线充电装置提供用于无线充电的充电电压或充电电流,从而使得与其适配连接的无线充电装置仅需包括充电接口、谐振电路及发射线圈,即可通过线缆与该电源提供装置连接后为待充电设备进行无线充电。因无线充电装置中的模块仅余谐振电路及发射线圈,极大地降低无线充电装置的发热,从而降低了进行无线充电时与其接触的待充电设备的发热,达到了很好的散热效果。
应清楚地理解,本公开描述了如何形成和使用特定示例,但本公开的原理不限于这些示例的任何细节。相反,基于本公开公开的内容的教导,这些原理能够应用于许多其它实施方式。
图2是根据一示例性实施方式示出的另一种电源提供装置的框图。参考图1与图2,与图1中所示的电源提供装置10不同的是,图2所示的电源提供装置20还包括:开关模块212。
开关模块212与整流模块102、控制模块104、逆整流模块108及连接接口110电性连接,用于接收控制模块104发送的第二控制信号,并根据该第二控制信号,将整流模块102提供的直流充电信号提供给逆整流模块108,或者将该直流充电信号提供给连接接口110以使连接接口110输出直流充电信号。开关模块212例如可以实施为负载开关,也可以实施为分立开关。
图3是根据一示例示出的图2所示的电源提供装置中的整流模块与连接接口模块导通 时的示意图。如图3所示,当开关模块212根据接收控制模块104发送的第二控制信号导通整流模块102与连接接口110时,电源提供装置20可以作为用于有线充电的电源提供装置,通过线缆3与待充电设备2’连接。此时,待充电设备2’的充电接口29可以为Micro USB接口、USB Type C接口和Lightning接口的母头,线缆3与待充电设备2’的充电接口29连接的一端则可以为与待充电设备2’的充电接口29相适配的Micro USB接口、USB Type C接口和Lightning接口的公头。进一步地,图3所示的待充电设备2’可以为仅支持有线充电功能的设备,也可以为同时具有无线充电功能的设备。
而如图2所示,当开关模块212根据接收控制模块104发送的第二控制信号导通整流模块102与逆整流模块108时,电源提供装置20可以作为用于无线充电的电源提供装置,通过电缆3与无线充电装置1电性连接。此时,无线充电装置1的充电接口可以为Micro USB接口、USB Type C接口和Lightning接口的母头,线缆3与无线充电装置1的充电接口相连接的一端则可以为与无线充电装置1的充电接口相适配的Micro USB接口、USB Type C接口和Lightning接口的公头。
在一些实施例中,控制模块104还用于接收无线发射驱动模块106发送的指示信号,根据该指示信号确定与连接接口110连接的是否为无线充电装置1。控制模块104可以通过连接接口110包含的数据线来接收该指示信号。无线发射驱动模块106从与电源提供装置20通过连接接口110连接的设备处接收相关通信信息,并将其通过指示信号发送给控制模块104。指示信号可以包括:基于Qi无线充电标准协议的通信信号。例如可以为Qi无线充电标准协议中所定义的通信信号,或者也可以是基于Qi无线充电标准协议自行定义的通信信号。此外,指示信号例如还可以包括:基于PMA(Power Matters Alliance)无线充电标准、A4WP(Alliance for Wireless Power)无线充电标准、iNPOFi技术或Wi-Po技术的通信信号。
当控制模块104检测到指示信号包括了符合无线充电标准的通信信号时,则确定与连接接口110连接的是无线充电装置1,向开关模块212发送第二控制信号以控制开关模块212将整流模块102提供的直流充电信号提供给逆整流模块;而当控制模块104检测到指示信号包括的通信信号非符合无线充电标准的通信信号时,确定与连接接口110连接的不是无线充电装置1,例如是图3所示的待充电设备2’,向开关模块212发送第二控制信号以控制开关模块212将整流模块102提供的直流充电信号提供给连接接口110,从而为与连接接口110相连接的设备进行有线充电。
在一些实施例中,如图8所示,电源提供装置20还可以包括:电压调整模块614, 与开关模块212、控制模块104及逆整流模块108电性连接,用于接收控制模块104发送的第三控制信号,并根据第三控制信号调整逆整流模块108输入电压的大小。控制模块104可以通过接收上述待充电设备反馈的信息,产生该第三控制信号,从而控制电压调整模块614的输出电压大小。
根据本发明实施方式提供的电源提供装置,通过设置一开关模块即可实现为用于无线充电的电源提供装置,还可实现为用于有线充电的电源提供装置,从而通过一个电源提供装置为待充电设备提供了两种充电方式。此外,当使用该电源提供装置为待充电设备进行无线充电时,因与其适配的无线充电装置仅需包括谐振电路与发射线圈,可有效降低待充电设备在无线充电时的发热。
图4是根据一示例性实施方式示出的一种无线充电装置的框图。参考图4,无线充电装置30包括:充电接口302、谐振电路304及发射线圈306。
充电接口302通过线缆3与电源提供装置4相连,无线充电装置30的充电接口302可以为Micro USB接口、USB Type C接口和Lightning接口的母头,线缆3与无线充电装置30的充电接口相连接的一端则可以为与无线充电装置30的充电接口相适配的Micro USB接口、USB Type C接口和Lightning接口的公头。
谐振电路304用于根据从充电接口302接收到的充电电流信号或充电电压信号提供谐振信号。谐振电路304例如可以为RLC串联谐振电路。
发射线圈306根据谐振电路304提供的谐振信号输出能量,从而为待充电设备2进行无线充电。
在一些实施例中,无线充电装置30例如可以为无线充电底座,当待充电设备2进行无线充电时,被放置在无线充电底座上,从而可通过无线充电底座中的发射线圈306与待充电设备2中的接收线圈进行耦合无线充电。
此外,如上所述,为了实现与待充电设备2之间的通信,以接收待充电设备2发送的反馈信息,无线充电装置30还可以包括如蓝牙通信模块、WiFi通信模块、2G/3G/4G/5G移动通信模块或满足60Hz的高频天线等通信模块。
根据本发明实施方式提供的无线充电装置,仅需要包括谐振电路与发射线圈,因此在通过与其适配的电源提供装置连接,为待充电设备进行无线充电时,可有效解决与其接触的待充电设备的发热问题。
本发明实施方式还提供了一种无线充电系统,联合参考图1-图4,该无线充电系统可以包括:图1-图3或图8中所示的可用于无线充电的电源提供装置10或20。
此外,该无线充电系统还可以包括:如图4中所示的无线充电装置30,该无线充电装置30例如可以为无线充电底座,在待充电设备2进行无线充电时,如图1或2所示被放置于该无线充电底座之上。
更进一步地,该无线充电系统还可以包括:如图1、图2及图4中所示的待充电设备2,该待充电设备2包括与无线充电装置30相适配的接收线圈27,用于接收无线充电装置通过发射线圈输出的充电电流信号或充电电压信号,以为待充电设备2无线充电。此外,该无线充电系统包括的待充电设备还可以为图3所示的待充电设备2’,包括:与电源提供装置10或20的连接接口110相匹配的充电接口29,用于通过电缆接收电源提供装置提供的直流充电信号,以为待充电设备2’进行有线充电。
在一些实施例中,电源提供装置10或20或60通过连接接口110输出的充电电流信号或充电电压信号为调制信号,该调制信号为根据待充电设备2返回的数据信息对逆整流模块108输出的直流充电信号的逆变换信号进行调制后所得的信号,例如可以是对逆变换信号的频率的调制,或者对其输出波形占空比的调制等。待充电设备2还包括:如图1、图2或图4所示解调电路28,用于根据从该调制信号中解调出的充电电流或电压进行充电。
根据本发明实施方式提供的无线充电系统,其中电源提供装置具有无线发射驱动模块及逆整流模块,可以为无线充电装置提供用于无线充电的充电电压或充电电流,从而使得与其适配连接的无线充电装置仅需包括充电接口、谐振电路及发射线圈,即可通过线缆与该电源提供装置连接后为待充电设备进行无线充电。因无线充电装置中的模块仅余谐振电路及发射线圈,极大地降低无线充电装置的发热,从而降低了进行无线充电时与其接触的待充电设备的发热,达到了很好的散热效果。此外,该无线充电系统中的电源提供装置通过设置一开关模块即可实现为用于无线充电的电源提供装置,还可实现为用于有线充电的电源提供装置,从而通过一个电源提供装置为待充电设备提供了两种充电方式。
下述为本公开方法实施例,可由本公开装置实施例中的各模块执行。对于本公开方法实施例中未披露的细节,请参照本公开装置实施例。
图5是根据一示例性实施方式示出的一种无线充电方法的流程图。参考图5,方法40可以应用于上述图1-图3或图8所示的电源提供装置10或20。方法40包括:
在步骤S402中,对输入的交流电进行整流以提供直流充电信号。
例如,将输入的交流电(如220V的市电)转换为适于待充电设备需求的稳定低压直流充电信号,该直流充电信号可以为电流信号,也可以为电压信号。
在步骤S404中,根据接收到的指示信号,确定与电源提供装置的连接接口连接的是否为无线充电装置。
指示信号包括:通过电源提供装置的连接接口接收的与其连接的设备发送的通信信息。并根据这些通信信息,确定与电源提供装置的连接接口连接的是否为无线充电装置。
在一些实施例中,指示信号包括:基于Qi无线充电标准协议的通信信号。例如可以为Qi无线充电标准协议中所定义的通信信号,或者也可以是基于Qi无线充电标准协议自行定义的通信信号。此外,指示信号例如还可以包括:基于PMA(Power Matters Alliance)无线充电标准、A4WP(Alliance for Wireless Power)无线充电标准、iNPOFi技术或Wi-Po技术的通信信号。
因此,可以通过检测指示信号中是否包含了符合无线充电标准的通信信号来确定与电源提供装置的连接接口所连接的是否为无线充电装置。
在步骤S406中,当确定与该连接接口连接的是无线充电装置时,使电源提供装置提供充电电流信号或充电电压信号,并通过该连接接口向无线充电装置输出充电电流信号或充电电压信号。
其中,充电电流信号或充电电压信号为根据直流充电信号的逆变换信号产生的交流充电信号。
在一些实施例中,充电电流信号或充电电压信号为对直流充电信号的逆变换信号进行调制所得到的调制信号。
在一些实施例中,方法40还包括:
在步骤S408中,当确定与连接接口连接的不是无线充电装置时,使电源提供装置将直流充电信号提供给连接接口,以使连接接口输出直流充电信号。
图7是根据一示例性实施方式示出的另一种无线充电方法的流程图。参考图7,方法50可以应用于上述图1-图3或图8所示的电源提供装置10或20。方法50包括:
在步骤S502中,通过整流模块对输入的交流电进行整流以提供直流电。
在步骤S504中,通过无线驱动模块接收控制模块发送的第一控制信号。
在步骤S506中,通过无线驱动模块根据第一控制信号,产生驱动信号。
在步骤S508中,通过逆整流模块根据驱动信号对直流电进行逆变换,产生交流电信号。
在步骤S510中,通过连接接口输出交流电信号。
在一些实施例中,方法50还包括:通过开关模块接收控制模块发送的第二控制信号。以及通过开关模块根据第二控制信号,将直流电提供给逆整流模块,或者将直流电提供给连接接口,以通过连接接口输出直流电。
在一些实施例中,方法50还包括:通过控制模块接收无线发射驱动模块发送的指示信号,并根据指示信号确定与连接接口连接的是否为无线充电装置;当确定与连接接口连接的是无线充电装置时,向开关模块发送第二控制信号以控制开关模块将直流电提供给逆整流模块;当确定与连接接口连接的不是无线充电装置时,向开关模块发送第二控制信号以控制开关模块将直流电提供给连接接口。
在一些实施例中,指示信号包括:基于Qi无线充电标准协议的通信信号。
在一些实施例中,方法50还包括:通过逆整流模块根据驱动信号,对直流电进行逆变换后产生的信号进行调制,以得到调制信号。其中,交流电信号包括该调制信号。
在一些实施例中,方法50还包括:通过控制模块接收进行无线充电的待充电设备发送的反馈信息,并根据反馈信息产生第一控制信号,以控制无线发射驱动模块产生驱动信号。
在一些实施例中,方法50还包括:通过电压调整模块接收控制模块发送的第三控制信号,并根据第三控制信号调整逆整流模块输入电压的大小。
在一些实施例中,方法50还包括:通过控制模块接收进行无线充电的待充电设备发送的反馈信息,并根据反馈信息产生第三控制信号,以控制电压调整电路调整逆整流模块输入电压的大小。
在一些实施例中,反馈信息包括:待充电设备检测到的充电电压值和/或充电电流值、待充电设备的剩余电量或预设的电量充满时间;或者,反馈信息包括:待充电设备根据检测到的充电电压值和/或充电电流值、剩余电量或预设的电量充满时间确定的电压或电流调整指令。
在一些实施例中,反馈信息由待充电设备通过无线通信发送至电源提供装置;或者,反馈信息经由待充电设备的发射线圈发送至无线充电装置,并通过充电装置发送至电源提供装置。
需要注意的是,上述附图仅是根据本公开示例性实施方式的方法所包括的处理的示意 性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
以上具体地示出和描述了本公开的示例性实施方式。应可理解的是,本公开不限于这里描述的详细结构、设置方式或实现方法;相反,本公开意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。

Claims (37)

  1. 一种电源提供装置,可应用于无线充电,其特征在于,包括:
    整流模块,用于对输入的交流电进行整流以提供直流电;
    控制模块,与所述整流模块电性连接;
    无线发射驱动模块,与所述控制模块电性连接,接收所述控制模块发送的第一控制信号,并根据所述第一控制信号,产生驱动信号;
    逆整流模块,分别与所述整流模块及所述无线发射驱动模块电性连接,用于根据所述驱动信号对所述直流电进行逆变换,产生交流电信号;以及
    连接接口,与所述逆整流模块电性连接,用于输出所述交流电信号。
  2. 根据权利要求1所述的电源提供装置,其特征在于,还包括:开关模块,与所述整流模块、所述控制模块、所述逆整流模块及所述连接接口电性连接,用于接收所述控制模块发送的第二控制信号,并根据所述第二控制信号,将所述直流电提供给所述逆整流模块,或者将所述直流电提供给所述连接接口;所述连接接口还用于输出所述直流电。
  3. 根据权利要求2所述的电源提供装置,其特征在于,所述控制模块还用于接收所述无线发射驱动模块发送的指示信号,根据所述指示信号确定与所述连接接口连接的是否为无线充电装置;当所述控制模块确定与所述连接接口连接的是所述无线充电装置时,向所述开关模块发送所述第二控制信号以控制所述开关模块将所述直流电提供给所述逆整流模块;当所述控制模块确定与所述连接接口连接的不是所述无线充电装置时,向所述开关模块发送所述第二控制模块以控制所述开关模块将所述直流电提供给所述连接接口。
  4. 根据权利要求3所述的电源提供装置,其特征在于,所述指示信号包括:基于Qi无线充电标准协议的通信信号。
  5. 根据权利要求3所述的电源提供装置,其特征在于,所述交流电信号包括所述逆整流模块根据所述驱动信号,对所述直流电进行逆变换后产生的信号进行调制所得到的调制信号。
  6. 根据权利要求5所述的电源提供装置,其特征在于,所述控制模块还用于接收进行所述无线充电的待充电设备发送的反馈信息,并根据所述反馈信息产生所述第一控制信号,以控制所述无线发射驱动模块产生所述驱动信号。
  7. 根据权利要求3所述的电源提供装置,其特征在于,还包括:电压调整模块,与所述所述开关模块、所述控制模块及所述逆整流模块电性连接,用于接收所述控制模块发 送的第三控制信号,并根据所述第三控制信号调整所述逆整流模块输入电压的大小。
  8. 根据权利要求7所述的电压提供装置,其特征在于,所述控制模块还用于接收进行所述无线充电的待充电设备发送的反馈信息,并根据所述反馈信息产生所述第三控制信号,以控制所述电压调整电路调整所述逆整流模块输入电压的大小。
  9. 根据权利要求6或8所述的电源提供装置,其特征在于,所述反馈信息包括:所述待充电设备检测到的充电电压值和/或充电电流值、所述待充电设备的剩余电量或预设的电量充满时间;或者,所述反馈信息包括:所述待充电设备根据检测到的充电电压值和/或充电电流值、剩余电量或预设的电量充满时间确定的电压或电流调整指令。
  10. 根据权利要求9所述的电源提供装置,其特征在于,所述反馈信息由所述待充电设备通过无线通信方式发送至所述电源提供装置;或者,所述反馈信息经由所述待充电设备的接收线圈发送至所述无线充电装置,并通过所述充电装置发送至所述电源提供装置。
  11. 根据权利要求2所述的电源提供装置,其特征在于,所述连接接口为USB A型母头或USB B型母头。
  12. 根据权利要求2所述的电源提供装置,其特征在于,所述开关模块为负载开关。
  13. 一种无线充电装置,其特征在于,包括:充电接口、谐振电路及发射线圈,其中所述谐振电路用于根据从所述充电接口接收到的交流电信号提供谐振信号,所述发射线圈用于根据所述谐振信号输出能量以为待充电设备进行无线充电。
  14. 根据权利要求13所述的无线充电装置,其特征在于,所述发射线圈还用于接收所述待充电设备发送的反馈信息;所述反馈信息包括:所述待充电设备检测到的充电电压值和/或充电电流值、所述待充电设备的剩余电量或预设的电量充满时间;或者,所述反馈信息包括:所述待充电设备根据检测到的充电电压值和/或充电电流值、剩余电量或预设的电量充满时间确定的电压或电流调整指令。
  15. 根据权利要求13或14所述的无线充电装置,其特征在于,所述无线充电装置为无线充电底座,所述待充电设备在进行无线充电时被置于所述无线充电底座之上。
  16. 一种无线充电系统,其特征在于,包括:根据权利要求1-12任一项所述的电源提供装置。
  17. 根据权利要求16所述的无线充电系统,其特征在于,还包括:根据权利要求13-15任一项所述的无线充电装置。
  18. 根据权利要求17所述的无线充电系统,其特征在于,还包括:待充电设备,所述待充电设备包括:接收线圈,所述接收线圈用于接收所述无线充电装置通过发射线圈输 出的交流电信号,以为所述待充电设备无线充电。
  19. 根据权利要求18所述的无线充电系统,其特征在于,所述待充电设备还包括:与所述电源提供装置的连接接口相匹配的充电接口,用于通过电缆接收所述电源提供装置提供的直流电,以为所述待充电设备充电。
  20. 根据权利要求18所述的无线充电系统,其特征在于,所述交流电信号为调制信号,所述终端还包括:解调电路,用于根据从所述调制信号中解调出的充电信号进行充电。
  21. 根据权利要求20所述的无线充电系统,其特征在于,所述待充电设备还包括:第二控制模块,用于与所述电源提供装置的控制模块通信,向所述电源提供装置发送反馈信息,所述反馈信息包括:检测到的充电电压值和/或充电电流值、剩余电量、预设的电量充满时间;或者,所述反馈信息包括:所述第二控制模块根据检测到的充电电压值和/或充电电流值、剩余电量或预设的电量充满时间确定的电压或电流调整指令;所述交流电信号为根据所述反馈信息进行调制所得到所述调制信号。
  22. 根据权利要求21所述的无线充电系统,其特征在于,所述反馈信息经由所述待充电设备的接收线圈发送至所述无线充电装置,并通过所述充电装置发送至所述电源提供装置;或者,所述反馈信息由所述待充电设备通过无线通信方式发送至所述电源提供装置。
  23. 根据权利要求21所述的无线充电系统,其特征在于,所述待充电设备还包括:无线接收电路、电压转换电路及电池;所述无线接收电路用于将所述无线充电装置输出的交流电信号转换成直流电;所述电压转换电路与所述无线接收电路电性连接,用于对所述无线接收电路输出的直流电进行降压;所述电池与所述电压转换电路电性连接,接收所述电压转换电路输出的直流电,以进行充电;检测到的所述充电电压值和/或充电电流值包括:检测到的所述无线接收电路输出的直流电的电压值和/或电流值,和/或,检测到的所述电压转换电路输出的直流电的电压值和/或电流值。
  24. 一种无线充电方法,应用于电源提供装置,其特征在于,所述电源提供装置包括:整流模块、控制模块、无线发射驱动模块、逆整流模块及连接接口,所述方法包括:
    通过所述整流模块对输入的交流电进行整流以提供直流电;
    通过所述无线发射驱动模块接收所述控制模块发送的第一控制信号;
    通过所述无线发射驱动模块根据所述第一控制信号,产生驱动信号;
    通过所述逆整流模块根据所述驱动信号对所述直流电进行逆变换,产生交流电信号;以及
    通过所述连接接口输出所述交流电信号。
  25. 根据权利要求24所述的方法,其特征在于,所述电源提供装置还包括:开关模块,所述方法还包括:
    通过所述开关模块接收所述控制模块发送的第二控制信号;以及
    通过所述开关模块根据所述第二控制信号,将所述直流电提供给所述逆整流模块,或者将所述直流电提供给所述连接接口,以通过所述连接接口输出所述直流电。
  26. 根据权利要求25所述的方法,其特征在于,还包括:通过所述控制模块接收所述无线发射驱动模块发送的指示信号,并根据所述指示信号确定与所述连接接口连接的是否为无线充电装置;当确定与所述连接接口连接的是所述无线充电装置时,向所述开关模块发送所述第二控制信号以控制所述开关模块将所述直流电提供给所述逆整流模块;当确定与所述连接接口连接的不是所述无线充电装置时,向所述开关模块发送所述第二控制信号以控制所述开关模块将所述直流电提供给所述连接接口。
  27. 根据权利要求26所述的方法,其特征在于,所述指示信号包括:基于Qi无线充电标准协议的通信信号。
  28. 根据权利要求26所述的方法,其特征在于,还包括:通过所述逆整流模块根据所述驱动信号,对所述直流电进行逆变换后产生的信号进行调制,以得到调制信号;其中,所述交流电信号包括所述调制信号。
  29. 根据权利要求28所述的方法,其特征在于,通过所述控制模块接收进行所述无线充电的待充电设备发送的反馈信息,并根据所述反馈信息产生所述第一控制信号,以控制所述无线发射驱动模块产生所述驱动信号。
  30. 根据权利要求26所述的方法,其特征在于,所述电源提供装置还包括:电压调整模块,所述方法还包括:通过所述电压调整模块接收所述控制模块发送的第三控制信号,并根据所述第三控制信号调整所述逆整流模块输入电压的大小。
  31. 根据权利要求30所述的方法,其特征在于,还包括:通过所述控制模块接收进行所述无线充电的待充电设备发送的反馈信息,并根据所述反馈信息产生所述第三控制信号,以控制所述电压调整电路调整所述逆整流模块输入电压的大小。
  32. 根据权利要求29或31所述的方法,其特征在于,所述反馈信息包括:所述待充电设备检测到的充电电压值和/或充电电流值、所述待充电设备的剩余电量或预设的电量充满时间;或者,所述反馈信息包括:所述待充电设备根据检测到的充电电压值和/或充电电流值、剩余电量或预设的电量充满时间确定的电压或电流调整指令。
  33. 根据权利要求32所述的方法,其特征在于,所述反馈信息由所述待充电设备通 过无线通信发送至所述电源提供装置;或者,所述反馈信息经由所述待充电设备的发射线圈发送至所述无线充电装置,并通过所述充电装置发送至所述电源提供装置。
  34. 一种无线充电方法,应用于电源提供装置,其特征在于,包括:
    对输入的交流电进行整流以提供直流电;
    根据接收到的指示信号,确定与所述电源提供装置的连接接口连接的是否为无线充电装置;以及
    当确定与所述连接接口连接的是所述无线充电装置时,使所述电源提供装置提供交流电信号,并通过所述连接接口向所述无线充电装置输出所述交流电信号;
    其中,所述交流电信号为根据所述直流电的逆变换信号产生。
  35. 根据权利要求34所述的方法,其特征在于,还包括:
    当确定与所述连接接口连接的不是所述无线充电装置时,使所述电源提供装置将所述直流电提供给所述连接接口,以使所述连接接口输出所述直流电。
  36. 根据权利要35所述的方法,其特征在于,所述指示信号包括:基于Qi无线充电标准协议的通信信号。
  37. 根据权利要求34所述的方法,其特征在于,所述交流电信号为对所述直流电的逆变换信号进行调制所得到的调制信号。
PCT/CN2018/122810 2018-12-21 2018-12-21 电源提供装置、无线充电装置、系统及无线充电方法 WO2020124591A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18943578.7A EP3893361A4 (en) 2018-12-21 2018-12-21 POWER SUPPLY DEVICE, WIRELESS CHARGING DEVICE, SYSTEM, AND WIRELESS CHARGING METHOD
CN201880098996.0A CN112956107A (zh) 2018-12-21 2018-12-21 电源提供装置、无线充电装置、系统及无线充电方法
PCT/CN2018/122810 WO2020124591A1 (zh) 2018-12-21 2018-12-21 电源提供装置、无线充电装置、系统及无线充电方法
US17/347,376 US20210305847A1 (en) 2018-12-21 2021-06-14 Power supply device, wireless charging device, system, and wireless charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/122810 WO2020124591A1 (zh) 2018-12-21 2018-12-21 电源提供装置、无线充电装置、系统及无线充电方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/347,376 Continuation US20210305847A1 (en) 2018-12-21 2021-06-14 Power supply device, wireless charging device, system, and wireless charging method

Publications (1)

Publication Number Publication Date
WO2020124591A1 true WO2020124591A1 (zh) 2020-06-25

Family

ID=71100628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122810 WO2020124591A1 (zh) 2018-12-21 2018-12-21 电源提供装置、无线充电装置、系统及无线充电方法

Country Status (4)

Country Link
US (1) US20210305847A1 (zh)
EP (1) EP3893361A4 (zh)
CN (1) CN112956107A (zh)
WO (1) WO2020124591A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113131592A (zh) * 2021-04-16 2021-07-16 维沃移动通信有限公司 充电装置、充电控制方法和充电控制装置、存储介质
WO2022089243A1 (zh) * 2020-10-27 2022-05-05 深圳英派森科技有限公司 具有无线充扩展功能的适配器及无线充电装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11444485B2 (en) * 2019-02-05 2022-09-13 Mojo Mobility, Inc. Inductive charging system with charging electronics physically separated from charging coil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203690974U (zh) * 2013-12-12 2014-07-02 南车青岛四方机车车辆股份有限公司 一种带有供能装置和车载充电装置的无线充电系统
CN104124784A (zh) * 2014-07-25 2014-10-29 邢益涛 一种无线充电发射器
CN106451811A (zh) * 2016-12-05 2017-02-22 青岛鲁渝能源科技有限公司 具有异常状态保护功能的无线电能传输系统及方法
US20170237267A1 (en) * 2016-02-12 2017-08-17 Qualcomm Incorporated Wireless power receiving element with capacitive coupling
CN108695949A (zh) * 2018-07-05 2018-10-23 驿网无际(上海)智能科技有限公司 一种车载手机有线无线充电器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ597748A (en) * 2009-07-24 2013-12-20 Access Business Group Int Llc A wireless power supply
US8696368B2 (en) * 2011-04-26 2014-04-15 Anthony Quezada Wall mountable universal serial bus and alternating current power sourcing receptacle
WO2013181985A1 (en) * 2012-06-04 2013-12-12 Shenzhen Byd Auto R&D Company Limited Transmitting device, wireless charging system comprising transmitting device and method for controlling charging process thereof
KR102082415B1 (ko) * 2013-05-27 2020-02-27 엘지전자 주식회사 무선 전력 전송 장치 및 그 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203690974U (zh) * 2013-12-12 2014-07-02 南车青岛四方机车车辆股份有限公司 一种带有供能装置和车载充电装置的无线充电系统
CN104124784A (zh) * 2014-07-25 2014-10-29 邢益涛 一种无线充电发射器
US20170237267A1 (en) * 2016-02-12 2017-08-17 Qualcomm Incorporated Wireless power receiving element with capacitive coupling
CN106451811A (zh) * 2016-12-05 2017-02-22 青岛鲁渝能源科技有限公司 具有异常状态保护功能的无线电能传输系统及方法
CN108695949A (zh) * 2018-07-05 2018-10-23 驿网无际(上海)智能科技有限公司 一种车载手机有线无线充电器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3893361A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022089243A1 (zh) * 2020-10-27 2022-05-05 深圳英派森科技有限公司 具有无线充扩展功能的适配器及无线充电装置
CN113131592A (zh) * 2021-04-16 2021-07-16 维沃移动通信有限公司 充电装置、充电控制方法和充电控制装置、存储介质

Also Published As

Publication number Publication date
CN112956107A (zh) 2021-06-11
US20210305847A1 (en) 2021-09-30
EP3893361A4 (en) 2021-12-22
EP3893361A1 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
CN110199453B (zh) 待充电设备、无线充电装置、无线充电方法及系统
CN110603708B (zh) 待充电设备、无线充电方法及系统
CN110121823B (zh) 待充电设备、无线充电装置及其控制方法
CN102355035B (zh) 无线充电发送装置、无线充电系统以及无线充电控制方法
US20210305847A1 (en) Power supply device, wireless charging device, system, and wireless charging method
US20220006303A1 (en) Charging and discharging control method, and device
WO2021092870A1 (zh) 电子设备、无线充电装置、系统及方法
CN104065145A (zh) 无线充电装置及其充电方法
CN102709997A (zh) 利用无线方式传输电能同时向多个或多种负载充电的方法
EP3937333A1 (en) Apparatus to be charged, and charging and discharging control method
CN110336361A (zh) 无线充电器及其控制方法
CN112290611A (zh) 用于无线充电的系统
US20220029461A1 (en) Power Matching Method and Apparatus for Wireless Charging, and Wireless Charging Apparatus
US12034329B2 (en) Device to be charged, and charging and discharging control method
CN209982156U (zh) 一种新型手机无线充电器
CN112803610B (zh) 待充电设备、系统以及无线充电方法、存储介质
CN112821499A (zh) 无线充电底座及电子设备系统
CN103744492A (zh) 一种无线充电笔记本电脑散热垫
CN203882260U (zh) 一种基于无线充电技术的笔记本电脑散热垫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018943578

Country of ref document: EP

Effective date: 20210705