CN102055344B - 开关电源 - Google Patents
开关电源 Download PDFInfo
- Publication number
- CN102055344B CN102055344B CN2010106013365A CN201010601336A CN102055344B CN 102055344 B CN102055344 B CN 102055344B CN 2010106013365 A CN2010106013365 A CN 2010106013365A CN 201010601336 A CN201010601336 A CN 201010601336A CN 102055344 B CN102055344 B CN 102055344B
- Authority
- CN
- China
- Prior art keywords
- power supply
- current
- diode
- output
- links
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
Landscapes
- Dc-Dc Converters (AREA)
Abstract
本发明公开一种开关电源,该开关电源包括:电源输入单元、直流干线储能电容、变压器、原边控制器、功率开关管、采样电阻及输出单元,还包括:连接于所述输入单元和直流干线储能电容之间的开关储能单元,用于在功率开关管开始导通时储存能量,并在储能完成后或功率开关管关断时,将储能释放给直流干线储能电容;连接于采样电阻和原边控制器之间的信号提取单元,用于从采样电阻的电流采样信号中提取出变压器原边线圈的峰值电流信号,并提供给原边控制器的电流检测端。该开关电源利用开关储能单元改善开关电源输入端的功率因数,同时,利用信号提取单元精确检测到变压器原边线圈峰值电流,保证开关电源输出电流恒定。
Description
技术领域
本发明涉及电源领域,尤其涉及一种采用原边控制方法实现恒流输出并且具备功率因数校正的开关电源。
背景技术
恒流输出,是指开关电源输出为恒定的电流源,而非恒定的电压源,即当该恒流输出开关电源连接不同阻抗的负载时,流过负载的电流恒定不变。
原边控制,是指开关电源的控制部件通过对变压器原边侧的电流进行调节以实现对开关电源输出电流的控制,从而省却了变压器副边侧所需的电压电流检测以及光电耦合等电气隔离器件,简化了电路设计。
现有技术中的一种恒流输出的原边控制型的开关电源如图1所示,主要包括:输入单元100,变压器106、原边控制器107、功率开关管109、采样电阻110及输出单元120,其中:
输入单元100包括滤波电感101、整流桥102滤波电容103,交流输入电压Vac经滤波电感101、整流桥102整流后,输送至滤波电容103进行平滑滤波,最后得到干线电压Vbus,该干线电压Vbus为整个开关电源电路工作供电。
变压器106包括原边线圈106a,与原边线圈106a相耦合的副边线圈106b,与副边线圈106b相耦合的辅助线圈106c。
原边控制器107的驱动端OUT经限流电阻108与所述功率开关管109的控制端相连,用于控制功率开关管109的开通或关断。
当驱动端OUT输出高电平时,功率开关管109导通,干线电压Vbus输出的电流Ip流经原边线圈106a、功率开关管109、采样电阻110到地端,此时,原边线圈106a储能,电流Ip即为流经原边线圈106a的原边电流。电流Ip经采样电阻110取样后转换成电压信号输送至原边控制器的107的峰值电流检测端CS,当CS端接收到的电压信号大于原边控制器107内部设定的阈值电压时,驱动端OUT输出低电平,功率开关管109关断。
当功率开关管109关断时,储存在原边线圈106a中的能量经磁路耦合至副边线圈106b,副边线圈106b经整流二极管114对电容115充电,从而释放储能,充电后的电容115上的电压作为开关电源的输出,为负载提供恒定电流。
要使原边控制型开关电源输出电流为恒定值的重要条件是保持变压器原边线圈电流峰值Ipk恒定不变。
上述的原边控制型开关电源其输入电流Iac形状近似为脉冲形,由此导致输入电流Iac的高次谐波分量很高,功率因数很低,对电网造成污染且降低了发电设备的利用效率。
为了提高上述原边控制型开关电源的功率因数,图2所示的开关电源改善了输入端的功率因数,在图1所示的开关电源的基础上增设电压提升单元220,设置在整流桥202和直流干线储能电容219之间。
该电压提升单元220主要包括:电感216、第一二极管217和第二二极管218。电感216的一端连接整流桥202的正极性输出端,另一端连接第二二极管218的正极性端,第二二极管218的负极性端连接直流干线储能电容219的正极性端,直流干线储能电容219的负极性端接地;第一二极管217的正极性端连接第二二极管218的正极性端,第一二极管217的负极性端连接功率开关管209的第一端。
其功率因数校正的原理描述如下:
当功率开关管209导通时,除了产生流经原边线圈206a的原边电流Ip以外,还产生另一个流经电感216和第一二极管217的电流Ib,电流Ib在电感216中产生储能。当功率开关管209关断时,由于原边线圈206a中电压的极性反转,使得第一二极管217关断,此时,电感216中的储能经第二二极管218向直流干线储能电容219充电,从而,提升直流干线储能电容219上电压值。
由于开关电源工作在高频模式,电感216中的高频电流经滤波电容203和滤波电感201滤除高频成分后,其低频成分即为开关电源输入端的工频输入电流Iac,并且电流Iac形状为近似的正弦波形,由此电流Iac的高次谐波分量大大减小,并且整流桥202的导通角较大,使得功率因数得到了改善。
但是,图2所示的开关电源输出电流的恒流性能变差,并且输出电流纹波也会增大。这是因为,升压单元220的储能电流Ib和原边线圈206a中的电流Ip都是通过功率开关管209来控制的,即功率开关管209中的电流Id为电流Ib和电流Ip之和。当电流Id流经采样电阻210时,所产生的电流峰值信号被送至原边控制器207的峰值电流检测端CS,使驱动端输出低电平,关断功率开关管209,但此时,流经原边线圈206a的电流Ip并没有达到期望的峰值Ipk,导致原边线圈206a储能不足,使得开关电源的输出电流减小,无法保证输出电流为恒定值。当开关电源的输入电压发生变化时,储能电流Ib发生变化,使得原边峰值电流Ipk也发生变化,由此导致开关电源输出电流Iout也发生变化,从而无法实现恒定电流输出。
综上所述,原边控制器207无法采集到真实的原边线圈206a的峰值电流Ipk,故无法保证开关电源恒流输出的性能。
另外,由于开关电源输入的是正弦波工频电压,使得升压单元220的储能电流Ib也受此正弦波调制,进而使得流经原边线圈206a的原边电流的峰值Ipk也受此正弦波调制,因此开关电源输出电流Iout也受到调制,表现为较大的纹波电流。
与图2类似的开关电源功率因数校正方法,还有较多的衍生电路实施例,其共同的特征是使用同一个功率开关管控制升压单元的储能电流和变压器原边电流,虽然都可以改善开关电源输入端的功率因数,但都具有同样的缺点,即输出恒流特性变差、输出电流纹波变大,将对开关电源所连接的负载带来不利影响。
发明内容
本发明提供一种开关电源,能够在改善输入端的功率因素的同时,实现恒流输出,技术方案如下:
一种开关电源,包括输入单元、直流干线储能电容、变压器、原边控制器、功率开关管、采样电阻及输出单元,还包括:
连接于所述输入单元和所述直流干线储能电容之间的开关储能单元,用于在所述功率开关管导通时储存能量;并在储能完成后或所述功率开关管关断时,将所存储能量释放给所述直流干线储能电容;
连接于所述采样电阻和所述原边控制器之间的信号提取单元,用于在所述功率开关管导通时,从所述采样电阻的电流采样信号中提取出所述变压器原边线圈的峰值电流信号,并提供给所述原边控制器的峰值电流检测端;
与所述变压器的原边线圈及所述功率开关管串接的第一二极管,所述第一二极管的正极性端与所述原边线圈的一端连接,负极性端与功率开关管的第一端连接。
优选地,所述开关储能单元包括:第一电感、第二二极管、第三二极管及第一电容,其中:
所述第一电感的一端与所述输入单元的输出端相连,所述第一电感的另一端与所述第二二极管的正极性端相连;
所述第二二极管的负极性端与所述第三二极管的正极性端相连接,第三二极管的负极性端与所述直流干线储能电容的正极性端相连;
所述第一电容的一端与所述第三二极管的正极性端相连,所述第一电容的另一端作为所述开关储能单元的控制端与所述功率开关管的第一端相连接。
优选地,所述开关储能单元还包括:并联于所述第二二极管两端的阻尼电阻。
优选地,所述信号提取单元包括:定时器、开关晶体管及限流电阻,其中:
所述定时器的输入端作为所述信号提取单元的控制端与所述原边控制器的驱动端相连,所述定时器的输出端与所述开关晶体管的控制端相连接;
所述开关晶体管的第一端经所述限流电阻与所述功率开关管的第二端相连,且该第一端作为所述信号提取单元的输出端与所述原边控制器的峰值电流检测端相连,该开关晶体管的第二端接地。
优选地,所述信号提取单元包括:定时电容、第一定时电阻、第二定时电阻、驱动电阻、开关晶体管及限流电阻,其中:
所述定时电容、第一定时电阻及第二定时电阻串联连接在所述原边控制控制器的驱动端和地端之间,且所述定时电容与所述驱动端相连,所述第二定时电阻的一端接地;
所述开关晶体管的第一端经所述限流电阻与功率开关管的第二端相连,同时该开关晶体管的第一端与所述原边控制器的峰值电流检测端相连;所述开关晶体管的第二端接地;所述开关晶体管的控制端经所述驱动电阻与所述第二定时电阻未接地的一端相连。
优选地,所述开关晶体管为三极管,所述三极管的集电极、发射极及基极分别为所述开关晶体管的第一端、第二端及控制端。
优选地,所述开关晶体管为场效应晶体管,所述场效应晶体管的漏极、源极及栅极分别为所述开关晶体管的第一端、第二端及控制端。
优选地,所述输入单元包括设置在开关电源输入端的滤波电感、整流桥及输入滤波电容,其中:
所述整流桥的交流输入端经所述滤波电感与交流电源相连;
所述整流桥的正极性输出端与所述开关储能单元的输入端相连;
所述整流桥的负极性输出端与地端相连;
所述输入滤波电容并联在所述整流桥的正负输出端间。
优选地,所述输出单元包括整流二极管和输出滤波电容,其中:
所述整流二极管的正极性端与所述变压器的副边线圈的第一端相连接;
所述输出滤波电容的一端与所述整流二极管的负极性端相连接,所述输出滤波电容的另一端与所述副边线圈第二端相连接。
优选地,所述原边线圈与所述副边线圈为同一线圈,所述变压器的辅助线圈与所述副边线圈耦合。
优选地,所述原边线圈可以为所述副边线圈抽头分出的一部分线圈,所述变压器的辅助线圈与所述副边线圈耦合。
与现有技术相比,本技术具有以下优点:
所述开关电源在电源输入单元与直流干线储能电容之间引入开关储能单元,通过功率开关管上的开关信号控制开关储能单元,连续地将电源输入单元上的能量转移至直流干线储能电容,从而使得开关电源的输入电流在整个工频周期内保持连续,并且输入电流的形状为近似的正弦波形,由此减小输入电流的高次谐波分量,改善开关电源的功率因数。该开关电源同时还引入信号提取单元,能够从采样电阻取得的电流信号中提取出原边线圈的峰值电流信号,并提供给原边控制器,原边控制器根据接收到的原边线圈的峰值电流信号控制功率开关管的导通与关断,从而控制原边线圈电流的峰值,使得开关电源输出电流保持恒定。因此,本发明提供的开关电源能够在保持输出电流为恒定的同时,实现功率因数的校正,改善了开关电源的性能。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面对本发明实施例和现有技术描述中所需要使用的附图作介绍。
图1为现有技术的一种开关电源的电路结构示意图;
图2为现有技术的一种具有功率因数校正的开关电源的电路结构示意图;
图3为本发明实施例的开关电源的一种电路结构示意图;
图4为本发明实施例的开关电源的具体电路结构示意图;
图5为图4所示开关电源的各关键点的信号波形图;
图6为本发明实施例的开关电源的一种电流信号走向示意图;
图7为本发明实施例的开关电源的另一种电流信号走向示意图;
图8为本发明实施例的输入输出信号波形图;
图9为本发明实施例的开关电源的具体电路结构示意图;
图10为本发明实施例的开关电源的另一种电路结构示意图;
图11为本发明实施例的开关电源的又一种电路结构示意图。
具体实施方式
为了使本发明的目的、特征和优点能够更为明显易懂,下面结合附图和实施例对本发明的具体实施方式做详细的说明。
请参见图3,该图为本发明实施例的开关电源的电路结构示意图,所述开关电源主要包括:输入单元300、开关储能单元320、直流干线储能电容305、变压器306、第一二极管330、原边控制器309、功率开关管311、采样电阻312、信号提取单元340及电源输出单元360,其中,
所述电源输入单元300包括滤波电感301、由四个二极管组成的整流桥302及输入滤波电容303。
从输入单元300输入的交流电压Vac经整流桥302、滤波电感301及滤波电容303进行整流和滤波后得到一整流电压Vrec。
输入单元300的输出端连接至开关储能单元320的输入端,开关储能单元320的输出端连接至直流干线储能电容305的正极性端,且作为所述开关电源工作的直流干线电压Vbus。直流干线储能电容305的负极性端作为整个电路工作的参考地端。
所述功率开关管311包括第一端、第二端及控制端,其中,所述第一端连接至开关储能单元320的控制端。
在本实施例中功率开关管311为场效应晶体管,其第一端即场效应晶体管的漏极,其第二端即场效应管的源极,其控制端即场效应晶体管的栅极。该功率开关管还可以为双极型晶体管,其基极为所述控制端,其集电极为所述第一端,其发射极为所述第二端。
所述变压器306为一反激式变压器,包括原边线圈306a、与原边线圈306a耦合的副边线圈306b、与副边线圈306b耦合的辅助线圈306c。
原边线圈306a的输入端与所述直流干线储能电容305的正极性端连接,原边线圈306a的输出端经第一二极管330连接至功率开关管311的第一端,且第一二极管330的正极性端与原边线圈306a的输出端相连,用于阻止当原边线圈306a电压极性反转时电流的反向流动。
采样电阻312串接在所述功率开关管311的第二端和地之间,用于对功率开关管311中的电流信号进行取样并转换成一个电压信号。
信号提取单元340的输入端连接功率开关管311的第二端,用于获取采样电阻312上的电压信号,信号提取单元340的输出端连接原边控制器309的峰值电流检测端CS,用于将信号提取后的原边电流信号提供给原边控制器309。
原边控制器309的驱动端OUT与信号提取单元340的控制端连接,用以控制信号提取单元340的时序。同时,该驱动端OUT经电阻310连接至功率开关管311的控制端,用于控制功率开关管311的导通和关断。
原边控制器309的反馈电压检测端FB接收所述辅助线圈306c输出电压经第一分压电阻314、第二分压电阻315分压后的电压信号。
输入单元300的输出端经启动电阻307连接至原边控制器309的供电端Vcc,电容308连接在供电端Vcc和接地端GND之间,当电容308上的电压达到原边控制器309的启动电压时,原边控制器309开始工作;此外,辅助线圈306c的一端通过二极管313与原边控制器309的供电端Vcc相连接,为电容308充电,以维持原边控制器309工作所需电压。
电源输出单元360包括:整流二极管316和输出滤波电容317,其中,
整流二极管316的正极性端连接副边线圈306b的一端,用于对所述副边线圈306b的输出电流进行整流;输出滤波电容317的正极性端连接整流二极管316的负极性端,输出滤波电容317的负极性端连接副边线圈306b的另一端,所述输出滤波电容317的两端作为所述开关电源的输出。
本实施例提供的开关电源的工作过程描述如下:
开关电源得电开始工作时,原边控制器309的驱动端OUT输出高电平,同时记录OUT端上升沿时刻;OUT端高电平使功率开关管311导通,直流干线储能电容305输出电流Ip经原边线圈306a、第一二极管330、功率开关管311、采样电阻312至地端,电流Ip流经原边线圈306a并在其中产生储能;与此同时,开关储能单元320产生电流Ic,该电流Ic从整流电压Vrec端流进开关储能单元320的输入端,并从开关储能单元320的控制端流出,经功率开关管311和采样电阻312至地端,电流Ic在开关储能单元320中产生储能。
在功率开关管311导通期间,功率开关管311上的电流Id在采样电阻312上产生电流取样信号Vs,电流取样信号Vs包含原边线圈306a的电流Ip的信号和开关储能单元320的电流Ic的信号,并输送至信号提取单元340的输入端。
信号提取单元340利用电流Ic和电流Ip产生峰值存在的时间差,将电流取样信号Vs中的电流Ic信号剔除,只保留电流Ip的信号,并产生对应电流Ip的电压信号Vcs,输送至原边控制器309的峰值电流检测端CS;当CS端的电压信号Vcs超过内部设定的比较阈值Vth时,原边控制器309的OUT端输出低电平,将功率开关管311关断。
在功率开关管311关断期间,辅助线圈306c上的电压极性反转,产生一个上升沿,该上升沿电压信号经第一分压电阻314和第二分压电阻315分压后,输送至原边控制器309的反馈电压检测端FB,原边控制器309记录该FB端的上升沿时刻。
原边控制器309根据记录到的OUT端上升沿时刻及FB端上升沿时刻计算出原边线圈306a的导通时间Tonp。
在上述功率开关管311导通期间,由开关储能单元320流进功率开关管311的电流Ic随时间上升,当电流Ic达到峰值时,开关储能单元320的储能达到最大值,此后电流Ic快速降为零,随之开关储能单元320中的储能产生电流Ib对直流干线储能电容305充电,从而提升电容305上的直流电压Vbus。
在上述功率开关管311导通期间,由原边线圈306a经第一二极管330流进功率开关管311的电流Ip也随时间上升,但电流Ip上升速度比电流Ic上升速度来得慢,因而在时间上电流Ip峰值出现得比电流Ic峰值晚,以便信号提取单元340能够识别出准确的电流Ip的峰值信号Ipk。
当功率开关管311关断时,原边线圈306a中的电流Ip消失,原边线圈306a中的储能耦合至副边线圈306b,副边线圈306b经整流二极管316对输出滤波电容317充电,其充电电流为Is,以释放储能,输出滤波电容317对负载提供电流Iout;与此同时,原边线圈306a中的漏感储能使其电压极性反转,使得功率开关管311的第一端为高电位,此高电位输送至开关储能单元320的控制端,从而使得开关储能单元320复位,以便为下一个开关周期提供初始状态。
当副边线圈306b的储能释放完后,其上电压极性反转,从而使辅助线圈306c的极性再次反转产生一下降沿的电压信号,该下降沿信号同时提供给原边控制器309的反馈电压检测端FB,原边控制器309记录FB端下降沿时刻,原边控制器309根据记录到的FB端上升沿时刻至FB端下降沿时刻计算出副边线圈306b的导通时间Tons。
原边控制器309内部定义一固定常数K,并根据原边线圈导通时间Tonp及副边线圈导通时间Tons计算出一个死区时间Td,以满足条件:Tons/(Tonp+Tons+Td)=K。当原边控制器309检测到FB端下降沿时,启动死区时间定时器,在此期间OUT端输出保持为低电平;当死区时间Td结束时,原边控制器309的OUT端重新输出高电平,驱动功率开关管311导通,开关电源进入下一个开关周期。其中,开关电源一个完整的开关周期为原边线圈导通时间Tonp、副边线圈导通时间Tons及死区时间Td三段时间之和,即T=Tonp+Tons+Td。
在上述过程中,原边控制器309根据信号提取单元340提供的变压器原边线圈306a的真实的原边线圈电流峰值Ipk,并计算出原边线圈306a导通时间Tonp和副边线圈306b导通时间Tons,根据如下的公式(1)计算得到开关电源的输出电流Iout,
上述公式中,Np为原边线圈306a的匝数,Ns为副边线圈306b的匝数,K为原边控制器309内部定义的固定常数,Vth为原边控制器309内部固定的比较阈值电压,R312为采样电阻312的阻值。
由上式可知,K和Vth为常数,当变压器匝数Np和Ns以及电阻R312的电阻值都为固定值时,则开关电源输出的电流Iout为恒定值。综上所述,要使原边控制型开关电源输出电流为恒定值的重要条件是保持变压器原边线圈电流峰值Ipk恒定不变。
在上述开关电源的工作过程中,对开关储能单元320而言,无论是在其储能阶段还是在其释放储能阶段,开关储能单元320都从整流桥302后的整流电压Vrec吸收电流Irec,且电流Irec为所述电流Ic和电流Ib的矢量和。电流Irec来自于交流输入电压Vac流经输入滤波电容303、整流桥302和滤波电感301,由于受功率开关管311控制,故为高频电流,经滤波电感301和输入滤波电容303滤除高频成分后,其低频成分即为交流输入电流Iac。
由于开关电源不间断地工作在高频,所产生的高频电流Irec相对于工频输入电压Vac是连续发生的,经滤波后的交流输入电流Iac也能够保持连续,由此使得整流桥302在交流输入电压整个工频周期内保持较宽的导通角,从而提高了开关电源输入端的功率因数。另外,由于整流电压Vrec为正弦交流输入电压Vac经整流而成,故整流电压Vrec也保持了正弦形状,这使得开关储能单元320所吸收的电流Irec也受到正弦调制,由此产生的交流输入电流Iac也被调制成近似的正弦形状,这使得交流输入电流Iac的高次谐波分量大为减小,从而进一步提高了开关电源的功率因数。
在提高开关电源输入端功率因数的同时,利用信号提取单元340剔除了叠加在变压器原边线圈电流Ip上的开关储能单元的储能电流Ic,从而保证了原边控制器309的峰值电流检测端CS获取得到原边线圈的真实峰值电流值Ipk,使得开关电源输出的电流保持恒定不变。
综上所述,本发明实施例提供的开关电源通过增设的开关储能单元和信号提取单元,在实现原边控制恒流输出的同时,提高了开关电源的功率因数,从而改善开关电源的性能。
参见图4所示,图4包括了上述开关电源中开关储能单元和信号提取单元的一种具体实现方式,其余的电路结构和功能都与图3所示相同。
所述开关储能单元420包括:第一电感421、第二二极管422、第三二极管423、第一电容424,其中,
第一电感421的一端与第二二极管422的正极性端相连接,另一端作为开关储能单元420的输入端与输入单元300的正极性输出端相连接;第二二极管422的负极性端与第三二极管423的正极性端相连接,第三二极管423的负极性端作为所述开关储能单元420的输出端与直流干线储能电容305的正极性端相连接。
第一电容424的一端与第三二极管423的正极性端相连,另一端作为所述开关储能单元420的控制端与功率开关管311的第一端相连接。
优选地,上述开关储能单元420还包括阻尼电阻425,该阻尼电阻并联在第二二极管422的两端,用于消除第一电感421在工作时产生的寄生振荡。
所述信号提取单元440包括开关晶体管441、定时器442及限流电阻443,其中,
定时器442的输入端用作信号提取单元440的控制端与原边控制器309的驱动端OUT相连接,定时器442的输出端与开关晶体管441的控制端相连接;开关晶体管441的第一端经限流电阻443后作为信号提取单元440的输入端,与功率开关管311的第二端相连接,用于获取采样电阻312上的采样信号;开关晶体管441的第一端还作为信号提取单元440的输出端,与原边控制器309的峰值电流检测端CS相连接;开关晶体管441的第二端接地。
当开关晶体管441导通时,原边控制器309的峰值电流检测端CS被开关晶体管441短接至地端,使得无采样信号输入至CS端;当开关晶体管441断开时,原边控制器309的峰值电流检测端CS经限流电阻443接收采样电阻312上的采样信号Vs。
具体实施时,定时器442设定的脉冲Vpulse有效高电平持续时间Tpulse的取值范围为几百纳秒至几微秒,开关储能单元420中的第一电容424的取值范围可以是几百皮法至几千皮法,第一电感421的取值范围可以是几百微亨至几毫亨,所述器件参数满足Tpulse时间大于第一电容424的充电时间,从而确保原边控制器309的峰值电流检测端CS所接受的Vcs信号中不包括第一电容424充电电流Ic的峰值信号,而只包括流过原边线圈306a的电流Ip的峰值信号。另外,信号提取单元440也可以集成在原边控制器309的内部,以简化电路。
下面结合图4-7,说明开关储能单元420和信号提取单元440的工作过程:其中,图5为开关电源各关键点的信号波形图;图6为开关电源的功率开关管导通时的电流方向示意图;图7为开关电源的功率开关管断开时的电流方向示意图。
参见图5中,OUT为原边控制器309驱动端OUT的电压信号波形;Ip为原边线圈306a中流过的电流信号波形;Ic为第一电容424中流过的电流信号波形;Id为功率开关管311中流过的电流信号波形;Vs为采样电阻312上的电压信号波形;Vpulse为信号提取单元440中定时器输出的电压信号波形;Vcs为原边控制器309的峰值电流检测端CS的电压信号波形;Irec为由整流电压Vrec向开关储能单元420提供的电流信号波形;Ib为由开关储能单元420向直流干线储能电容305提供的电流信号波形。
整流电压Vrec为正弦交流输入电压经整流得到的,故其在交流工频周期内是随正弦而变化的。为了清楚地表达,图5中波形分成两种典型阶段Phase1和Phase2,其中,Phase1阶段对应交流电压Vac瞬态值为较低值时的时段,Phase2阶段对应交流电压Vac瞬态值为较高值时的时段。
当原边控制器309驱动端OUT输出高电平时,功率开关管311导通,整流电压Vrec产生储能电流Ic,经第一电感421、第二二极管422、第一电容424、功率开关管311、采样电阻312到地端。电流Ic对第一电容424充电,同时电流Ic在第一电感421中产生储能,电流Ic随时间逐渐上升,电流方向如图6所示的电流Ic走向。
与此同时,直流干线储能电容305储存的能量经原边线圈306a释放,输出电流Ip,经原边线圈306a、第一二极管330、功率开关管311、采样电阻312到地端,电流Ip在原边线圈306a中产生储能,电流Ip的大小随时间逐渐上升,其方向如图6所示的电流Ip走向。
在图4所示电路结构中,由于第一电感421和第一电容424取值均较小,使得电流Ic较快地将第一电容424充满,电流Ic的峰值在时间上出现得较早,并且在达到峰值后很快衰减到零,参见图5中Ic波形的A点和C点。
由于原边线圈306a的电感值较大,使得电流Ip随时间上升得较慢,电流Ip的峰值在时间上出现得较晚,参见图5中Ip波形的B点和D点。
电流Ic和电流Ip在功率开关管311的第一端汇合,产生流过功率开关管311的电流Id,电流Id流过采样电阻312产生电压信号Vs。由图5可见,在每个OUT信号为高电平期间,Vs信号出现两个峰值点,两个峰值点在时间上前后错开出现,其中前一个峰值由电流Ic产生,后一个峰值由电流Ip产生。
与此同时,原边控制器309的OUT端输出高电平时的上升沿信号输送至信号提取单元440内部的定时器442,定时器442根据此上升沿信号产生一个定时脉冲Vpulse,此脉冲的时间宽度为Tpulse。在Tpulse期间,脉冲Vpulse的有效电平为高电平,此高电平使得开关晶体管441导通,从而使得与之连接的原边控制器309的峰值电流检测端CS被短接至地;
当Tpulse时间结束后,脉冲Vpulse变为低电平,此低电平使得开关晶体管441关断,从而使得原边控制器309的峰值电流检测端CS可以获取采样电阻312上的采样信号,即原边线圈306a的峰值电流信号。
由上所述,信号提取单元440的工作原理是:利用采样电阻312上的峰值信号出现的时间差,在Vpulse脉冲为高电平期间,Vs信号中的前一个峰值被开关晶体管441短接至地,使得CS端检测不到此峰值信号;在Vpulse脉冲为低电平期间,开关晶体管441关断,使得CS端能够检测到Vs信号中的后一个峰值信号,CS端的信号如图5中的Vcs波形所示。
当Vcs信号达到原边控制器309内部设定的阈值Vth时,原边控制器309的OUT端改变为低电平,使得功率开关管311关断,Vcs信号的峰值参见图5中Vcs波形的E点和F点。
当原边控制器309驱动端OUT输出出现低电平时,功率开关管311关断,原边线圈306a中的绝大部分储能耦合至副边线圈306b。
同时,原边线圈306a上还有一小部分漏感能量产生如下的放电回路:原边线圈306a、第一二极管330、第一电容424、第三二极管423,此电流方向与第一电容424充电电流Ic的方向相反,用于完成对第一电容424上电压的复位,具体参见图7所示的放电电流Ic的走向。
此外,当功率开关管311关断时,原边线圈306a上极性反转的电压为负载电压Vout的映射,因而第一电容424被放电(或称反向充电)至一个确定的负电压值,该负电压值与负载电压成正比,该负电压值即为下一个高频开关周期开始时第一电容424上的初始电压。
另外,在前述的功率开关管311导通的过程中,当功率开关管311开始导通时,流过第一电容424的电流Ic同时也是流过第一电感421的,并在第一电感421中产生储能。当第一电容424被充满后,电流Ic达到峰值并开始快速下降至零,此时第一电感421中的储能开始生成对直流干线储能电容305的充电电流Ib,电流Ib的流动路径为:从整流电压Vrec、第一电感421、第二二极管422、第三二极管423直至直流干线储能电容305。电流Ib使得直流干线储能电容305上的电压得到提升,电流Ib的波形参见图5中的波形图,电流Ib的方向参见图7所示。
需要说明的是,电流Ib的产生与功率开关管311的关断动作并无关系,而是由电流Ic从峰值下降至零时自动产生的。电流Ic正向部分(图6中的Ic)与电流Ib的合成构成了电流Irec,电流Irec来自输入单元300,并且最终来自于交流输入电压Vac,电流Irec的波形参见图5中的波形图。
如图5所示,在Phase1阶段,当功率开关管311发生一次开通(从t0时刻至t4时刻),对应地产生一次导通电流Irec(从t0时刻至t3时刻);在Phase2阶段,当功率开关管311发生另一次开通(从t6时刻至t9时刻),会对应地产生另一次导通电流Irec(从t6时刻至t11时刻)。
电流Irec是与高频开关动作的功率开关管311同步的高频电流,并且是连续发生的,当电流Irec经滤波电感301和输入滤波电容303后,其高频成份被滤除,其低频成份即为交流输入电流Iac。电流Iac在整个工频周期内保持连续,这使得整流桥302具有较宽的导通角,从而改善了开关电源的功率因数。
另外,由于整流电压Vrec是由工频正弦电压Vac整流而成,在不同的时段Vrec电压是按正弦形状而发生变化的,如图5所示,在Phase1阶段(对应整流电压Vrec的瞬态值为较低时),电充Irec较小,其对应的平均值也较低;在Phase2阶段(对应整流电压Vrec的瞬态值为较高时),电流Irec较大,其对应的平均值也较高。这表明电流Irec的大小是受到Vrec电压的调制而发生变化的,这也进一步地表明交流输入电流Iac(为电流Irec的平均滤波值)是受到交流正弦电压Vac的调制的,此种调制效应使得电流Iac的形状为近似的正弦波形。近似正弦形的交流输入电流Iac的高次谐波分量较小,这也进一步地改善了开关电源输入侧的功率因数。
参见图8所示,其中,Vac为开关电源的交流输入电压波形;Iac为开关电源的交流输入电流波形;Vrec为经整流桥后的整流电压波形;Vbus为直流干线电压波形;Iout为开关电源的输出电流波形。参见图8所示的波形图可知,直流干线电压Vbus经开关储能单元储能升压后,其电压值高于整流电压Vrec。交流输入电流Iac受交流输入电压Vac调制,其波形为与Vac同周期的近似正弦波,其高次谐波分量较小,由此改善了开关电源输入侧的功率因数,且能够保证输出电流Iout的恒定。
图9示出了一个包括信号提取单元具体实施例的开关电源的结构示意图:
所述信号提取单元540具体包括:定时电容542、第一定时电阻544、第二定时电阻545、驱动电阻546、开关晶体管541及限流电阻543。
其中,定时电容542、第一定时电阻544、第二定时电阻545串接在原边控制器309的驱动端OUT和地之间,而且定时电容的一端与OUT端相连,另一端与第一定时电阻544相连,第二定时电阻545的一端与第一定时电阻544相连,另一端接地。
第二定时电阻545未接地的一端经驱动电阻546与开关晶体管541的控制端连接,开关晶体管541的第一端与原边控制器309的CS端连接,开关晶体管541的第二端接地,限流电阻543的一端与功率开关管311的第二端连接,另一端与开关晶体管541的第一端连接。
所述开关晶体管541可以通过三极管实现,其中三极管的基极、集电极、发射极分别为开关晶体管的控制端、第一端、第二端。开关晶体管541还可以通过场效应晶体管实现,其中场效应晶体管的漏极、源极及栅极分别为所述开关晶体管541的第一端、第二端及控制端。
图9所示的信号提取单元540的具体工作过程描述如下,其余部分的电路工作过程与之前描述的相同,此处不再赘述。
当原边控制器309的驱动端OUT的上升沿到来时,OUT端的电压经第一定时电阻544和第二定时电阻545为定时电容542充电。当此充电电流在第二定时电阻545上产生的电压超过开关晶体管541的基极开启电压时,开关晶体管541导通,使得原边控制器309的峰值电流检测端CS被短接至地。
当定时电容542被充满时,充电电流减小至零,使得第二定时电阻545上生成的电压不足以驱动开关晶体管541,开关晶体管541随之关断,从而原边控制器309的峰值电流检测端CS被释放而不再短接至地。
在此过程中,定时电容542从开始充电到充电结束分别对应了开关晶体管541从开通到关断的时段,由此定义了一个时间窗口,在此时间窗口内采样电阻312上的峰值信号经限流电阻543后被开关晶体管541短路至地端,从而使得开关储能单元420中的充电电流峰值信号被舍弃;在此时间窗口之外,采样电阻312上的峰值信号经限流电阻543后被输送至原边控制器309的CS端,这样,原边控制器309能够精确检测到原边线圈306a的电流峰值信号,从而能够保证开关电源输出电流为恒定值。
本发明上述的各个实施例通过引入由简单的电感、电容、二极管等元件组成的开关储能单元,以减小交流输入电流的高次谐波,改善开关电源的功率因数;同时还引入信号提取单元,以精确检测原边线圈中的电流峰值,从而保证开关电源输出为恒流源。本发明提供的开关电源在实现原边控制的恒流输出的同时,改善了开关电源输入侧的功率因数,提高了开关电源的性能。
此外,需要说明的是,上述所有实施例中的变压器的原边线圈与副边线圈是两个耦合的线圈;变压器还可以如图10所示,原边线圈与副边线圈为同一线圈406a;变压器还可以如图11所示,原边线圈由副边线圈抽头而成,即原边线圈为506a,副边线圈为506a与506b组合,其工作过程与前述开关电源的工作过程类似,此处不再赘述。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述是本发明的具体实施方式,且仅仅是本发明的一部分实施例,而不是全部。应当指出,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (11)
1.一种开关电源,包括输入单元、直流干线储能电容、变压器、原边控制器、功率开关管、采样电阻及输出单元,其特征在于,还包括:
连接于所述输入单元和所述直流干线储能电容之间的开关储能单元,用于在所述功率开关管导通时储存能量;并在储能完成后或所述功率开关管关断时,将所存储能量释放给所述直流干线储能电容;
连接于所述采样电阻和所述原边控制器之间的信号提取单元,用于在所述功率开关管导通时,从所述采样电阻的电流采样信号中提取出所述变压器原边线圈的峰值电流信号,并提供给所述原边控制器的峰值电流检测端;
与所述变压器的原边线圈及所述功率开关管串接的第一二极管,所述第一二极管的正极性端与所述原边线圈的一端连接,负极性端与功率开关管的第一端连接。
2.根据权利要求1所述的开关电源,其特征在于,所述开关储能单元包括:第一电感、第二二极管、第三二极管及第一电容,其中:
所述第一电感的一端与所述输入单元的输出端相连,所述第一电感的另一端与所述第二二极管的正极性端相连;
所述第二二极管的负极性端与所述第三二极管的正极性端相连接,所述第三二极管的负极性端与所述直流干线储能电容的正极性端相连;
所述第一电容的一端与所述第三二极管的正极性端相连,所述第一电容的另一端作为所述开关储能单元的控制端与所述功率开关管的第一端相连接。
3.根据权利要求2所述的开关电源,其特征在于,所述开关储能单元还包括:并联于所述第二二极管两端的阻尼电阻。
4.根据权利要求3所述的开关电源,其特征在于,所述信号提取单元包括:定时器、开关晶体管及限流电阻,其中:
所述定时器的输入端作为所述信号提取单元的控制端与所述原边控制器的驱动端相连,所述定时器的输出端与所述开关晶体管的控制端相连接;
所述开关晶体管的第一端经所述限流电阻与所述功率开关管的第二端相连,且该第一端作为所述信号提取单元的输出端与所述原边控制器的峰值电流检测端相连,该开关晶体管的第二端接地。
5.根据权利要求3所述的开关电源,其特征在于,所述信号提取单元包 括:定时电容、第一定时电阻、第二定时电阻、驱动电阻、开关晶体管及限流电阻,其中:
所述定时电容、第一定时电阻及第二定时电阻串联连接在所述原边控制器的驱动端和地端之间,且所述定时电容与所述驱动端相连,所述第二定时电阻的一端接地;
所述开关晶体管的第一端经所述限流电阻与功率开关管的第二端相连,同时该开关晶体管的第一端与所述原边控制器的峰值电流检测端相连;所述开关晶体管的第二端接地;所述开关晶体管的控制端经所述驱动电阻与所述第二定时电阻未接地的一端相连。
6.根据权利要求5所述的开关电源,其特征在于,所述开关晶体管为三极管,所述三极管的集电极、发射极及基极分别为所述开关晶体管的第一端、第二端及控制端。
7.根据权利要求5所述的开关电源,其特征在于,所述开关晶体管为场效应晶体管,所述场效应晶体管的漏极、源极及栅极分别为所述开关晶体管的第一端、第二端及控制端。
8.根据权利要求1-7任一项所述的开关电源,其特征在于,所述输入单元包括设置在开关电源输入端的滤波电感、整流桥及输入滤波电容,其中:
所述整流桥的交流输入端经所述滤波电感与交流电源相连;
所述整流桥的正极性输出端与所述开关储能单元的输入端相连;
所述整流桥的负极性输出端与地端相连;
所述输入滤波电容并联在所述整流桥的正负输出端间。
9.根据权利要求8所述的开关电源,其特征在于,所述输出单元包括整流二极管和输出滤波电容,其中:
所述整流二极管的正极性端与所述变压器的副边线圈的第一端相连接;
所述输出滤波电容的一端与所述整流二极管的负极性端相连接,所述输出滤波电容的另一端与所述副边线圈第二端相连接。
10.根据权利要求9所述的开关电源,其特征在于,所述原边线圈与所述副边线圈为同一线圈,所述变压器的辅助线圈与所述副边线圈耦合。
11.根据权利要求9所述的开关电源,其特征在于,所述原边线圈为所述 副边线圈的一部分,所述变压器的辅助线圈与所述副边线圈耦合。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010106013365A CN102055344B (zh) | 2010-12-22 | 2010-12-22 | 开关电源 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010106013365A CN102055344B (zh) | 2010-12-22 | 2010-12-22 | 开关电源 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102055344A CN102055344A (zh) | 2011-05-11 |
CN102055344B true CN102055344B (zh) | 2013-03-06 |
Family
ID=43959378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010106013365A Active CN102055344B (zh) | 2010-12-22 | 2010-12-22 | 开关电源 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102055344B (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8488342B2 (en) | 2008-10-21 | 2013-07-16 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for constant voltage mode and constant current mode in flyback power converters with primary-side sensing and regulation |
CN102769383B (zh) | 2011-05-05 | 2015-02-04 | 广州昂宝电子有限公司 | 用于利用初级侧感测和调整进行恒流控制的系统和方法 |
CN105246194B (zh) | 2011-11-15 | 2018-07-03 | 昂宝电子(上海)有限公司 | 用于各种操作模式中的恒流控制的led照明系统和方法 |
CN103368400B (zh) | 2012-03-31 | 2015-02-18 | 昂宝电子(上海)有限公司 | 用于恒压控制和恒流控制的系统和方法 |
CN102638165B (zh) * | 2012-03-31 | 2016-05-25 | 深圳鼎信芯微电子有限公司 | 一种开关电源功率补偿电路及电源芯片 |
CN102790531B (zh) | 2012-07-24 | 2015-05-27 | 昂宝电子(上海)有限公司 | 用于电源变换系统的电流控制的系统 |
FR2996382B1 (fr) * | 2012-09-28 | 2016-01-29 | Sagemcom Energy & Telecom Sas | Convertisseur a decoupage a pertes de commutation reduites |
CN105743345B (zh) * | 2014-04-23 | 2018-06-12 | 广州昂宝电子有限公司 | 用于电源变换系统中的输出电流调节的系统和方法 |
CN105896975B (zh) | 2014-04-23 | 2019-04-26 | 广州昂宝电子有限公司 | 用于电源变换系统中的输出电流调节的系统和方法 |
CN104682743A (zh) * | 2015-02-10 | 2015-06-03 | 厦门台和电子有限公司 | 一种多输出电源适配器电路 |
CN105186842B (zh) * | 2015-08-05 | 2018-03-30 | 广东美的制冷设备有限公司 | Pfc电路的输入电压自适应的电流限频方法和装置 |
US10411494B2 (en) | 2016-02-05 | 2019-09-10 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Adapter and method for charging control |
CN113630010B (zh) * | 2020-05-06 | 2024-07-12 | 上海芯熠微电子有限公司 | 一种原边控制交流-直流变换器输出电流电压特性曲线的装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1447507A (zh) * | 2003-04-08 | 2003-10-08 | 毛灿豪 | 一种开关电源 |
CN101060286A (zh) * | 2007-03-14 | 2007-10-24 | 崇贸科技股份有限公司 | 电源转换器的输出电流控制电路以及电源检测电路 |
CN101841242A (zh) * | 2010-04-14 | 2010-09-22 | 上海明石光电科技有限公司 | 开关电源及其输出电流的调节方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7016204B2 (en) * | 2004-08-12 | 2006-03-21 | System General Corp. | Close-loop PWM controller for primary-side controlled power converters |
JP5320105B2 (ja) * | 2009-02-23 | 2013-10-23 | パナソニック株式会社 | Led点灯装置及びそれを用いたled照明器具 |
-
2010
- 2010-12-22 CN CN2010106013365A patent/CN102055344B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1447507A (zh) * | 2003-04-08 | 2003-10-08 | 毛灿豪 | 一种开关电源 |
CN101060286A (zh) * | 2007-03-14 | 2007-10-24 | 崇贸科技股份有限公司 | 电源转换器的输出电流控制电路以及电源检测电路 |
CN101841242A (zh) * | 2010-04-14 | 2010-09-22 | 上海明石光电科技有限公司 | 开关电源及其输出电流的调节方法 |
Non-Patent Citations (1)
Title |
---|
JP特开2010-198761A 2010.09.09 |
Also Published As
Publication number | Publication date |
---|---|
CN102055344A (zh) | 2011-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102055344B (zh) | 开关电源 | |
CN102946199B (zh) | 直流隔离降压变换器及其母线电压检测电路 | |
CN103138573B (zh) | 降压式开关电源及其控制电路 | |
CN102882377B (zh) | 一种同步整流控制方法及其同步整流控制电路 | |
US10330711B2 (en) | Method and device for detecting current of inductor of PFC circuit | |
CN100456613C (zh) | 开关电源装置 | |
CN102723886B (zh) | 一种高功率因数开关电源及其控制器和控制方法 | |
CN204131392U (zh) | 一种升压功率因数校正变换电路及其控制电路 | |
CN103997295B (zh) | 太阳能光伏充电控制装置 | |
CN103475258B (zh) | 可调放电参数的高压脉冲电源 | |
CN109189140B (zh) | 一种纹波电流产生电路 | |
CN204046448U (zh) | 交流-直流转换器中的输出电压动态采样电路 | |
CN104393766B (zh) | 一种除尘用叠加式电源控制系统 | |
CN104901547A (zh) | 电流谐振型电源装置 | |
CN103997223B (zh) | 一种同步整流驱动电路 | |
CN203301368U (zh) | 降压式开关电源及其控制电路 | |
CN107742971A (zh) | 一种驱动电路及开关电源电路 | |
CN202940733U (zh) | 直流隔离降压变换器及其母线电压检测电路 | |
CN106602883B (zh) | 无辅助绕组的功率mos管开关电源集成供电电路 | |
CN203911863U (zh) | 太阳能光伏充电控制装置 | |
CN104749426A (zh) | 过零检测电路及功率因数校正电路 | |
CN104377962A (zh) | 一种植绒机的直流高压电源 | |
CN103368423A (zh) | 由运放或比较器控制的反激式同步整流电路及其反激式电源 | |
CN103516220A (zh) | 共铁心式功率因数校正谐振转换器 | |
CN203896194U (zh) | 一种开关电源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |