WO2019237331A1 - 待充电设备的适配器老化检测方法和装置 - Google Patents

待充电设备的适配器老化检测方法和装置 Download PDF

Info

Publication number
WO2019237331A1
WO2019237331A1 PCT/CN2018/091492 CN2018091492W WO2019237331A1 WO 2019237331 A1 WO2019237331 A1 WO 2019237331A1 CN 2018091492 W CN2018091492 W CN 2018091492W WO 2019237331 A1 WO2019237331 A1 WO 2019237331A1
Authority
WO
WIPO (PCT)
Prior art keywords
adapter
load
voltage
unit
curve
Prior art date
Application number
PCT/CN2018/091492
Other languages
English (en)
French (fr)
Inventor
田晨
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880078142.6A priority Critical patent/CN111433615B/zh
Priority to PCT/CN2018/091492 priority patent/WO2019237331A1/zh
Publication of WO2019237331A1 publication Critical patent/WO2019237331A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies

Definitions

  • the present application relates to the technical field of adapters, and in particular, to an adapter aging detection method and device for a device to be charged.
  • the adapter In order to check whether the adapter of the device to be charged is qualified, it is necessary to perform an aging test on the adapter.
  • the adapter In the related art, the adapter is usually placed at a high temperature of 40 degrees and is continuously subjected to full-load aging for several hours.
  • the related technology has a problem that when reducing the heat treatment of the adapter in consideration of factors such as cost, it will make the adapter's full-load working time shorter. At this time, if the full-load high temperature is used for long-term aging detection, it is easy to exceed the adapter's use conditions. As a result, the adapter aging test fails or even damages the adapter.
  • an object of the present application is to propose an adapter aging detection method for a device to be charged.
  • the second object of the present application is to propose an adapter for a device to be charged.
  • a third object of the present application is to provide an adapter aging detection device for a device to be charged.
  • a fourth object of the present application is to propose a non-transitory computer-readable storage medium.
  • an embodiment of the first aspect of the present application proposes an adapter aging detection method for a device to be charged, which obtains a charging curve of the device to be charged in a preset state; and generates a load curve of a load simulator according to the charging curve. ;
  • the load simulator applies a corresponding load to the adapter according to the load curve, and detects the temperature of the adapter; and determines whether the aging is qualified according to the temperature of the adapter.
  • the load simulator applies the load curve to the adapter according to the load curve.
  • the detection method of the embodiment of the present application applies a corresponding load to the adapter according to the load curve through the load simulator, so that it can not only meet the aging effect of the adapter, but also detect the working condition of the adapter when it works, and ensure the reliability of the adapter.
  • an embodiment of the second aspect of the present application proposes an adapter for a device to be charged, which is applicable to the foregoing aging detection method.
  • the adapter further includes: a first rectifying unit. The alternating current is rectified to output the voltage of the first pulsating waveform; the switching unit is used for modulating the voltage of the first pulsating waveform according to the control signal; the transformer is used for adjusting the first pulsating waveform according to the modulation.
  • a voltage of a pulsating waveform outputs a voltage of a second pulsating waveform; a second rectifying unit configured to rectify the voltage of the second pulsating waveform to output a voltage of a third pulsating waveform; a first charging interface
  • the first charging interface is connected to the second rectification unit; a sampling unit, the sampling unit is configured to sample the voltage and / or current output by the second rectification unit to obtain a voltage sampling value and / or current Sampling value; control unit, the control unit is connected to the sampling unit and the switching unit, and the control unit outputs Said control signal to the switching unit, and adjusting the duty ratio of the control signal according to the sampled voltage value and / or the current sample value, so that the voltage of the third pulsation waveform to meet the demand charge.
  • an embodiment of the third aspect of the present application proposes an adapter aging detection device for a device to be charged, which includes an obtaining module for obtaining a charging curve of the device to be charged in a preset state; a generating module for The charging curve generates a load curve of a load simulator; the load simulator is configured to apply a corresponding load to the adapter according to the load curve, detect the temperature of the adapter, and determine whether the aging is qualified according to the temperature of the adapter.
  • the charging curve of the device to be charged in a preset state is obtained through an acquisition module, and then the generation module generates a load curve of the load simulator according to the curve, and the load simulator according to the load curve Apply the corresponding load to the adapter, check the temperature of the adapter, and determine whether the adapter is qualified according to the temperature of the adapter. Therefore, the detection device of the embodiment of the present application applies a load curve to the adapter through a load simulator, so that it can not only meet the aging effect of the adapter, but also detect the working condition of the adapter when it works, and ensure the reliability of the adapter.
  • an embodiment of the fourth aspect of the present application proposes a non-transitory computer-readable storage medium, and when the program is executed by a processor, the method for detecting an adapter aging of a device to be charged is implemented.
  • FIG. 1 is a flowchart of an adapter aging detection method for a device to be charged according to an embodiment of the present application
  • FIG. 2 is a schematic block diagram of a charging system for a terminal according to an embodiment of the present application
  • FIG. 3 is a schematic block diagram of an adapter aging detection device for a device to be charged according to an embodiment of the present application.
  • the adapter proposed in this application is suitable for charging a device to be charged.
  • the adapter can output the voltage / current of the pulsating waveform to charge the device to be charged.
  • the voltage / current magnitude of the pulsating waveform is periodically changed. Compared with the traditional constant voltage and constant current, it can reduce the lithium precipitation of the lithium battery, improve the battery life, and reduce the arcing of the contacts of the charging interface. Probability and strength, improve the life of the charging interface, and help reduce the polarization effect of the battery, increase the charging speed, reduce the heating of the battery, and ensure safety and reliability during charging.
  • the adapter outputs a pulsating waveform voltage, there is no need to set an electrolytic capacitor in the adapter, which can not only simplify and reduce the size of the adapter, but also greatly reduce costs.
  • the adapter 1 includes a first rectifying unit 101, a switching unit 102, a transformer 103, a second rectifying unit 104, a first charging interface 105, a sampling unit 106, and a control unit 107.
  • the first rectifying unit 101 rectifies an input alternating current (commercial power, such as AC220V) to output a voltage of a first pulsating waveform, such as a hoe wave voltage.
  • the first rectifying unit 101 may be a full-bridge rectifier circuit composed of four diodes.
  • the switching unit 102 is configured to modulate the voltage of the first pulsating waveform according to the control signal.
  • the switching unit 102 may be composed of a MOS tube, and performs PWM (Pulse Width Modulation) control on the MOS tube to modulate the hob wave voltage. Chopper modulation.
  • the transformer 103 is configured to output a voltage of a second pulse waveform according to the modulated voltage of the first pulse waveform.
  • the second rectifying unit 104 is configured to rectify the voltage of the second pulse waveform to output the voltage of the third pulse waveform.
  • the second rectifying unit 104 may be composed of a diode or a MOS tube, and can achieve secondary synchronous rectification, so that the third pulse waveform is synchronized with the modulated first pulse waveform.
  • the third pulsation waveform is synchronized with the modulated first pulsation waveform, specifically, the phase of the third pulsation waveform is consistent with the phase of the first pulsation waveform after modulation, and the amplitude of the third pulsation waveform is equal to The amplitude variation trend of the first pulse waveform after modulation remains the same.
  • the first charging interface 105 is connected to the second rectifying unit 104 and is configured to output a voltage of a third pulsating waveform to charge the device 2 to be charged.
  • the sampling unit 106 is configured to sample the voltage and / or current output by the second rectifying unit 104 to obtain a voltage sample value and / or a current sample value.
  • the control unit 107 is respectively connected to the sampling unit 106 and the switching unit 102.
  • the control unit 107 outputs a control signal to the switching unit 102, and adjusts the duty cycle of the control signal according to the voltage sampling value and / or the current sampling value, so that the first The voltage of the third pulsating waveform output by the two rectifying units 104 meets the charging requirement.
  • the device to be charged 2 includes a second charging interface 201 and a battery 202.
  • the second charging interface 201 is connected to the battery 202, and when the second charging interface 201 is connected to the first charging interface 105, the second charging interface 201 loads the voltage of the third pulsating waveform to the battery 202 to realize the charging of the battery 202 .
  • the adapter 1 further includes a driving unit, such as a MOSFET driver.
  • the driving unit is connected between the switching unit 102 and the control unit 107.
  • the driving unit is configured to drive the switching unit 102 to be turned on or off according to a control signal. .
  • the driving unit may also be integrated in the control unit 107.
  • the adapter 1 further includes an auxiliary winding and a power supply unit.
  • the auxiliary winding generates a voltage of a fourth pulse waveform according to the voltage of the modulated first pulse waveform.
  • the power supply unit is connected to the auxiliary winding. (Including a filtering and stabilizing module, a voltage conversion module, etc.) for converting the voltage of the fourth pulsating waveform to output a direct current, and supplying power to the driving unit and / or the control unit 107 respectively.
  • the power supply unit may be composed of a small filter capacitor, a voltage stabilizing chip, and the like, and realizes processing and conversion of the voltage of the fourth pulsating waveform, and outputs low voltage direct current such as 3.3V or 5V.
  • the power supply power of the driving unit can be obtained by the voltage conversion of the fourth pulsating waveform by the power supply unit.
  • its power supply can also be obtained by the voltage conversion of the fourth pulsating waveform by the power supply unit.
  • the control unit 107 when the control unit 107 is set on the primary side, the power supply unit provides two direct current outputs to supply power to the drive unit and the control unit 107 respectively.
  • An optocoupler isolation unit is provided between the control unit 107 and the sampling unit 106 to implement the primary of the adapter 1 Signal isolation from the secondary.
  • the power supply unit separately supplies power to the control unit 107.
  • the control unit 107 is provided on the secondary side and the drive unit is provided on the primary side, the power supply unit separately supplies power to the drive unit.
  • the power supply of the control unit 107 is provided by the secondary unit, for example, the third output of the second rectifier unit 104 through a power supply unit. The voltage of the pulsating waveform is converted into a DC power and supplied to the control unit 107.
  • the adapter 1 further includes a first voltage detection unit.
  • the first voltage detection unit is respectively connected to the auxiliary winding and the control unit 107.
  • the first voltage detection unit is configured to detect a voltage of a fourth pulsating waveform to generate a voltage.
  • the control unit 107 is further configured to adjust the duty cycle of the control signal according to the voltage detection value.
  • control unit 107 can reflect the voltage output from the second rectification unit 104 according to the voltage output from the auxiliary winding detected by the first voltage detection unit, and then adjust the duty cycle of the control signal according to the voltage detection value, so that the first The output of the two rectifying units 104 matches the charging requirements of the battery.
  • the adapter 1 may also perform two-way communication with the device to be charged through the charging interface, and exchange information of the terminal (for example, battery voltage information, battery temperature information, etc.).
  • the device to be charged may refer to a terminal
  • the “terminal” may include, but is not limited to, a smart phone, a computer, a personal digital assistant (PDA), a smart wearable device, a gaming device, a camera Equipment, etc.
  • the adapter can also be a device that has the function of charging the terminal, such as a car adapter and a power bank.
  • the adapter in this application may also be a fast charge adapter or a common adapter. Based on the adapter of the device to be charged, the present application proposes an adapter aging detection method for the device to be charged and an adapter aging detection device for the device to be charged.
  • FIG. 1 is a flowchart of an adapter aging detection method according to an embodiment of the present application. As shown in FIG. 1, the adapter aging detection method according to the embodiment of the present application includes the following steps:
  • S101 Obtain a charging curve of a device to be charged in a preset state.
  • the preset state may be a state in which the power of the device to be charged is zero to 100%.
  • the device to be charged is charged according to a preset state to obtain the charging curve of the device to be charged in the preset state, that is, the relationship curve between the amount of charge of the device to be charged and time. .
  • the load curve includes multiple load states and the duration of each load state.
  • the load simulator may include a controller, a load analog circuit, and an interface connected to the adapter.
  • the controller is used to control the load analog circuit according to the load curve to generate different load states, so that the analog load circuit is connected to the adapter through The interface receives the power transmitted by the adapter according to the load state corresponding to the load curve, thereby achieving the purpose of performing analog output for the adapter.
  • the load simulator may further include a display device to display the current load status in real time, which is convenient for observing the current load status and the duration of each load status.
  • the load status may be a load percentage, such as 100% load (ie, full load), 80% load, and the like.
  • the load percentage corresponds to the power of the device to be charged. For example, when the power of the device to be charged is 0%, the corresponding load state is 100% load, and when the power of the device to be charged is 20%, the corresponding load state is 80. %, When the power of the device to be charged is 100%, the corresponding load state is 0% load.
  • the duration of each load state can be changed from a percentage step to the duration of the next percentage according to the charging capacity of the device to be charged.
  • the load curve can be 15 minutes at full load, 30 minutes at 80% load, 30 minutes at 50% load ... until a preset time of 0% load aging.
  • the load simulator applies a corresponding load to the adapter according to the load curve, and detects the temperature of the adapter.
  • S104 Determine whether the aging is qualified according to the temperature of the adapter.
  • the load simulator simulates the state of charging the device to be charged through the load simulator, detects the temperature of the adapter, and determines whether the adapter is qualified according to the temperature of the adapter.
  • the production cost of the adapter can be saved on the premise of ensuring the aging effect of the adapter, that is, when the adapter saves costs by reducing heat treatment, it will not be in the aging detection process. Produces excessive aging.
  • judging whether the aging is qualified according to the temperature of the adapter specifically includes: judging whether the temperature of the adapter is greater than a preset temperature threshold after the corresponding duration of each load state operation; if it is greater than the preset temperature threshold, then Judging aging.
  • the preset temperature threshold corresponding to each load state may be different.
  • the load curve may include N load states, where a preset temperature threshold corresponding to the i-th load state is smaller than a preset temperature threshold corresponding to the i + 1th load state, where i is less than N.
  • the first load state of the load curve may be a full load state
  • the second load state of the load curve may be an 80% load state.
  • the first The first temperature threshold corresponding to the 1 load state is smaller than the second temperature threshold corresponding to the second load state.
  • the first temperature threshold may be 100 degrees
  • the second temperature threshold may be 110 degrees.
  • the load simulator applies full load to the adapter, which is the first load state for the first preset time, such as 15 minutes, and then detects the current temperature of the adapter to determine Whether the current temperature of the adapter is greater than the first temperature threshold corresponding to the first load state. If the current temperature of the adapter is greater than the first temperature threshold corresponding to the first load state, then the adapter is judged to be unqualified and marked as defective.
  • the adapter If the temperature is less than or equal to the first temperature threshold corresponding to the first load state, the adapter is judged to be qualified, and then the load simulator continues to apply the second load state, that is, 80% load to the adapter for a second preset time, such as 30 minutes, and then Detect the current temperature of the adapter to determine whether the current temperature of the adapter is greater than the second temperature threshold corresponding to the second load state. If the current temperature of the adapter is greater than the second temperature threshold corresponding to the second load state, the adapter is judged to be unqualified and marked as Defective if the current temperature of the adapter is less than or equal A second load state corresponding to the second temperature threshold value, it is determined that the adapter passing aging.
  • the second load state that is, 80% load to the adapter for a second preset time, such as 30 minutes
  • the adapter's aging is qualified after the duration of each load state, it can be detected in time whether the adapter is qualified, and if there are a large number of unqualified adapters, the production of the adapter can be performed according to the failed nodes of the adapter. Adjust to improve the yield of adapter manufacturing.
  • the charging curve of the device to be charged in a preset state is obtained, and then the load curve of the load simulator is generated according to the charging curve.
  • the load curve applies the corresponding load to the adapter, detects the temperature of the adapter, and then determines whether the aging is qualified according to the temperature of the adapter. Therefore, the detection method of the embodiment of the present application applies a corresponding load to the adapter according to the load curve through the load simulator, so that it can not only meet the aging effect of the adapter, but also detect the working condition of the adapter when it works, and ensure the reliability of the adapter.
  • FIG. 2 is a schematic block diagram of an adapter aging detection device for a device to be charged according to an embodiment of the present application.
  • the adapter aging detection device 100 for a device to be charged according to an embodiment of the present application includes: an obtaining module 10, a generating module 20, and a load simulator 30.
  • the obtaining module 10 is configured to obtain a charging curve of a device to be charged in a preset state
  • the generating module 20 is configured to generate a load curve of a load simulator according to the charging curve
  • the load simulator 30 is configured to apply a corresponding load to the adapter according to the load curve. And detect the temperature of the adapter, and determine whether the aging is qualified according to the temperature of the adapter.
  • the preset state may be a state in which the power of the device to be charged is zero to 100%.
  • the load curve may include multiple load states and the duration of each load state.
  • the device to be charged is charged according to a preset state to obtain the charging curve of the device to be charged in the preset state, that is, the relationship curve between the amount of charge of the device to be charged and time. .
  • the load status may be a load percentage, such as 100% load, 80% load, and the like.
  • the load percentage corresponds to the power of the device to be charged. For example, when the power of the device to be charged is 0%, the corresponding load state is 100% load, and when the power of the device to be charged is 20%, the corresponding load state is 80. %, When the power of the device to be charged is 100%, the corresponding load state is 0% load.
  • the duration of each load state can be changed from a percentage step to the duration of the next percentage according to the charging capacity of the device to be charged.
  • the load curve can be 15 minutes at full load, 30 minutes at 80% load, 30 minutes at 50% load ... until a preset time of 0% load aging.
  • the generation module 20 generates the load curve of the load simulator according to the charging curve
  • the load simulator 30 Apply the corresponding load to the adapter according to the load curve, that is, use the load simulator to simulate the state of charging the device to be charged, detect the temperature of the adapter, and determine whether the adapter is qualified according to the temperature of the adapter.
  • the load simulator applies a load to the adapter according to the load curve to dynamically adjust the output state of the adapter, which can save the production cost of the adapter while ensuring the aging effect of the adapter, that is, when the adapter saves costs by reducing heat treatment , Will not produce excessive aging during the aging test.
  • the load simulator 30 is further configured to determine whether the temperature of the adapter is greater than a preset temperature threshold after running for a corresponding duration of each load state, and to judge aging if the temperature of the adapter is greater than the preset temperature threshold.
  • the preset temperature threshold corresponding to each load state may be different.
  • the load curve may include N load states, where a preset temperature threshold corresponding to the i-th load state is smaller than a preset temperature threshold corresponding to the i + 1th load state, where i is less than N.
  • the first load state of the load curve may be a full load state
  • the second load state of the load curve may be an 80% load state.
  • the first The first temperature threshold corresponding to the 1 load state is smaller than the second temperature threshold corresponding to the second load state.
  • the first temperature threshold may be 100 degrees
  • the second temperature threshold may be 110 degrees.
  • the load simulator 30 applies a full load to the adapter, which is the first load state, for a first preset time, such as 15 minutes, and then detects the current temperature of the adapter. Determine whether the current temperature of the adapter is greater than the first temperature threshold corresponding to the first load state. If the current temperature of the adapter is greater than the first temperature threshold corresponding to the first load state, determine that the adapter is aging unqualified and mark it as defective.
  • the adapter If the current temperature is less than or equal to the first temperature threshold corresponding to the first load state, the adapter is judged to be qualified, and then the load simulator continues to apply 80% of the load to the adapter, that is, the second load state for a second preset time, such as 30 minutes, Then detect the current temperature of the adapter to determine whether the current temperature of the adapter is greater than the second temperature threshold corresponding to the second load state. If the current temperature of the adapter is greater than the second temperature threshold corresponding to the second load state, the adapter is judged to be unqualified and marked. Defective if the current temperature of the adapter is less than or If it is equal to the second temperature threshold corresponding to the second load state, the adapter is judged to be qualified for aging.
  • a second preset time such as 30 minutes
  • the production of the adapter can be adjusted according to the failed nodes of the adapter. So as to improve the yield of adapter production.
  • the charging curve of the device to be charged in a preset state is obtained through an acquisition module, and then the generation module generates a load curve of the load simulator according to the curve, and the load simulator according to the load
  • the curve applies the corresponding load to the adapter, and detects the temperature of the adapter, and determines whether the adapter is qualified according to the temperature of the adapter. Therefore, the detection device of the embodiment of the present application applies a load curve to the adapter through a load simulator, so that it can not only meet the aging effect of the adapter, but also detect the working condition of the adapter when it works, and ensure the reliability of the adapter.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, the meaning of "plurality” is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.
  • any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for implementing steps of a custom logic function or process
  • the scope of the preferred embodiments of the present application includes additional implementations, in which the functions may be performed out of the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present application pertain.
  • a sequenced list of executable instructions that can be considered to implement a logical function can be embodied in any computer-readable medium,
  • the instruction execution system, device, or device such as a computer-based system, a system including a processor, or other system that can fetch and execute instructions from the instruction execution system, device, or device), or combine these instruction execution systems, devices, or devices Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • each part of the application may be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • Discrete logic circuits with logic gates for implementing logic functions on data signals Logic circuits, ASICs with suitable combinational logic gate circuits, programmable gate arrays (PGA), field programmable gate arrays (FPGAs), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried by the methods in the foregoing embodiments may be implemented by a program instructing related hardware.
  • the program may be stored in a computer-readable storage medium.
  • the program is When executed, one or a combination of the steps of the method embodiment is included.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种适配器老化检测方法和装置,方法包括:获取待充电设备在预设状态下的充电曲线(S101);根据所述充电曲线生成负载模拟器的负载曲线(S102);所述负载模拟器根据所述负载曲线向适配器施加相应负载,并检测所述适配器的温度(S103);以及根据所述适配器的温度判断是否老化合格(S104),从而既可以满足适配器的老化效果,还可以检测出适配器工作时的工作情况,确保适配器的可靠性。

Description

待充电设备的适配器老化检测方法和装置 技术领域
本申请涉及适配器技术领域,特别涉及一种待充电设备的适配器老化检测方法和装置。
背景技术
为了检测待充电设备的适配器是否合格,需要对适配器进行老化检测。相关技术中,通常将适配器置于40度的高温下,持续进行几个小时的满载老化。但是,相关技术存在的问题是,当考虑成本等因素对适配器降低热处理时,会使适配器的满载工作时间较短,此时,若采用满载高温长时间进行老化检测,容易超过适配器的使用条件,导致适配器老化检测不通过甚至损坏适配器。
发明内容
本申请旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本申请的一个目的在于提出一种待充电设备的适配器老化检测方法。
本申请的第二个目的在于提出一种待充电设备的适配器。
本申请的第三个目的在于提出一种待充电设备的适配器老化检测装置。
本申请的第四个目的在于提出一种非临时性计算机可读存储介质。
为达到上述目的,本申请第一方面实施例提出了一种待充电设备的适配器老化检测方法,获取待充电设备在预设状态下的充电曲线;根据所述充电曲线生成负载模拟器的负载曲线;所述负载模拟器根据所述负载曲线向适配器施加相应负载,并检测所述适配器的温度;以及根据所述适配器的温度判断是否老化合格。
根据本申请实施例的待充电设备的适配器老化检测方法,通过获取待充电设备在预设状态下的充电曲线,然后根据充电曲线生成负载模拟器的负载曲线,负载模拟器根据负载曲线向适配器施加相应负载,并检测适配器的温度,然后根据适配器的温度判断是否老化合格。由此,本申请实施例的检测方法通过负载模拟器根据负载曲线对适配器施加相应负载,从而既可以满足适配器的老化效果,还可以检测出适配器工作时的工作情况,确保适配器的可靠性。
为达到上述目的,本申请第二方面实施例提出了一种待充电设备的适配器,适用于前述的老化检测方法,所述适配器还包括:第一整流单元,所述第一整流单元对输入的交流电进行整流以输出第一脉动波形的电压;开关单元,所述开关单元用于根据控制信号对所述 第一脉动波形的电压进行调制;变压器,所述变压器用于根据调制后的所述第一脉动波形的电压输出第二脉动波形的电压;第二整流单元,所述第二整流单元用于对所述第二脉动波形的电压进行整流以输出第三脉动波形的电压;第一充电接口,所述第一充电接口与所述第二整流单元相连;采样单元,所述采样单元用于对所述第二整流单元输出的电压和/或电流进行采样以获得电压采样值和/或电流采样值;控制单元,所述控制单元分别与所述采样单元和所述开关单元相连,所述控制单元输出所述控制信号至所述开关单元,并根据所述电压采样值和/或电流采样值对所述控制信号的占空比进行调节,以使所述第三脉动波形的电压满足充电需求。
为达到上述目的,本申请第三方面实施例提出了一种待充电设备的适配器老化检测装置,包括获取模块,用于获取待充电设备在预设状态的充电曲线;生成模块,用于根据所述充电曲线生成负载模拟器的负载曲线;负载模拟器,用于根据所述负载曲线向适配器施加相应负载,并检测所述适配器的温度,以及根据所述适配器的温度判断是否老化合格。
根据本申请实施例的待充电设备的适配器老化检测装置,通过获取模块获取待充电设备在预设状态的充电曲线,然后生成模块根据该曲线生成负载模拟器的负载曲线,负载模拟器根据负载曲线向适配器施加相应负载,并检测适配器的温度,根据适配器的温度判断适配器是否老化合格。由此,本申请实施例的检测装置通过负载模拟器向适配器施加负载曲线,从而既可以满足适配器的老化效果,还可以检测出适配器工作时的工作情况,确保适配器的可靠性。
为了实现上述目的,本申请第四方面实施例提出了一种非临时性计算机可读存储介质,该程序被处理器执行时实现所述的待充电设备的适配器老化检测方法。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中,
图1为根据本申请实施例的待充电设备的适配器老化检测方法的流程图;
图2为根据本申请一个实施例的用于终端的充电系统的方框示意图;
图3为根据本申请实施例的待充电设备的适配器老化检测装置的方框示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
需要说明的是,本申请提出的适配器适用于为待充电设备充电。在本申请的实施例中,适配器可输出脉动波形的电压/电流为待充电设备充电。脉动波形的电压/电流的大小周期性变换,与传统的恒压恒流相比,能够降低锂电池的析锂现象,提高电池的使用寿命,并且还能够减少充电接口的触点的拉弧的概率和强度,提高充电接口的寿命,以及有利于降低电池的极化效应、提高充电速度、减少电池的发热,保证充电时的安全可靠。此外,由于适配器输出的是脉动波形的电压,从而无需在适配器中设置电解电容,不仅可以实现适配器的简单化、小型化,还可大大降低成本。
如图2所示,在一个实施例中,适配器1包括:第一整流单元101、开关单元102、变压器103、第二整流单元104、第一充电接口105、采样单元106和控制单元107。
第一整流单元101对输入的交流电(市电,例如AC220V)进行整流以输出第一脉动波形的电压例如馒头波电压,其中,第一整流单元101可以是四个二极管构成的全桥整流电路。
开关单元102用于根据控制信号对第一脉动波形的电压进行调制,其中,开关单元102可由MOS管构成,通过对MOS管进行PWM(Pulse Width Modulation,脉冲宽度调制)控制以对馒头波电压进行斩波调制。
变压器103用于根据调制后的所述第一脉动波形的电压输出第二脉动波形的电压。
第二整流单元104用于对所述第二脉动波形的电压进行整流以输出第三脉动波形的电压。在一个实施例中,第二整流单元104可由二极管或MOS管组成,能够实现次级同步整流,从而第三脉动波形与调制后的第一脉动波形保持同步。需要说明的是,第三脉动波形与调制后的第一脉动波形保持同步,具体是指第三脉动波形的相位与调制后的第一脉动波形的相位保持一致,第三脉动波形的幅值与调制后的第一脉动波形的幅值变化趋势保持一致。
第一充电接口105与第二整流单元104相连,用于将第三脉动波形的电压输出,以给待充电设备2充电。
采样单元106用于对第二整流单元104输出的电压和/或电流进行采样以获得电压采样值和/或电流采样值。
控制单元107分别与采样单元106和开关单元102相连,控制单元107输出控制信号至开关单元102,并根据电压采样值和/或电流采样值对控制信号的占空比进行调节,以使该第二整流单元104输出的第三脉动波形的电压满足充电需求。
如图2所示,在一个实施例中,待充电设备2包括:第二充电接口201和电池202。第二充电接口201与电池202相连,其中,当第二充电接口201与第一充电接口105连接时,第二充电接口201将第三脉动波形的电压加载至电池202,实现对电池202的充电。在本 申请的一个实施例中,适配器1还包括驱动单元,例如MOSFET驱动器,驱动单元连接在开关单元102与控制单元107之间,驱动单元用于根据控制信号驱动开关单元102的开通或关断。当然,需要说明的是,在本申请的其他实施例中,驱动单元也可集成在控制单元107中。
在本申请的一个实施例中,适配器1还包括辅助绕组和供电单元,辅助绕组根据调制后的第一脉动波形的电压生成第四脉动波形的电压,供电单元与辅助绕组相连,供电单元(例如包括滤波稳压模块、电压转换模块等)用于对第四脉动波形的电压进行转换以输出直流电,分别给驱动单元和/或控制单元107供电。供电单元可以是由滤波小电容、稳压芯片等器件构成,实现对第四脉动波形的电压进行处理、转换,输出3.3V或5V等低电压直流电。
也就是说,驱动单元的供电电源可以由供电单元对第四脉动波形的电压转换得到,控制单元107设置在初级侧时,其供电电源也可以由供电单元对第四脉动波形的电压转换得到。其中,控制单元107设置在初级侧时,供电单元提供两路直流电输出,以分别给驱动单元和控制单元107供电,在控制单元107与采样单元106之间设置光耦隔离单元实现适配器1的初级和次级之间的信号隔离。
当控制单元107设置在初级侧且集成有驱动单元时,供电单元单独给控制单元107供电。当控制单元107设置在次级侧、驱动单元设置在初级侧时,供电单元单独给驱动单元供电,控制单元107的供电由次级提供例如通过一个供电单元将第二整流单元104输出的第三脉动波形的电压转换为直流电源来供给控制单元107。
在本申请的另一个实施例,适配器1还包括第一电压检测单元,第一电压检测单元分别与辅助绕组和控制单元107相连,第一电压检测单元用于检测第四脉动波形的电压以生成电压检测值,其中,控制单元107还用于根据电压检测值对控制信号的占空比进行调节。
也就是说,控制单元107可根据第一电压检测单元检测到的辅助绕组输出的电压来反映第二整流单元104输出的电压,然后根据电压检测值对控制信号的占空比进行调节,使得第二整流单元104的输出匹配电池的充电需求。
在本公开的实施例中,适配器1还可与待充电设备通过充电接口进行双向通信,交互终端的信息(例如,电池电压信息、电池温度信息等)。
在本公开的实施例中,待充电设备可以是指终端,该“终端”可包括,但不限于智能手机、电脑、个人数字助理(personal digital assistant,PDA)、智能穿戴设备、游戏设备、摄像设备等。适配器,还可以为车载适配器、充电宝等具有给终端充电的功能的设备。
应理解,本申请中的适配器也可以是快充适配器或普通适配器。基于上述待充电设备的适配器,本申请提出了一种待充电设备的适配器老化检测方法和待充电设备的适配器老 化检测装置。
下面结合附图来描述本申请实施例的适配器老化检测方法和适配器老化检测装置。
图1为根据本申请实施例的适配器老化检测方法的流程图。如图1所示,本申请实施例的适配器老化检测方法,包括以下步骤:
S101:获取待充电设备在预设状态下的充电曲线。
其中,预设状态可为从待充电设备电量为零充电至100%的状态。
应当理解的是,在确定适配器匹配的待充电设备之后,对待充电设备按照预设状态进行充电,以获取待充电设备在预设状态下的充电曲线,即待充电设备充电电量和时间的关系曲线。
S102:根据充电曲线生成负载模拟器的负载曲线。
其中,负载曲线包括多个负载状态,以及每个负载状态的持续时间。
需要说明的是,负载模拟器可包括控制器、负载模拟电路和与适配器相连的接口,控制器用于根据负载曲线对负载模拟电路进行控制以生成不同负载状态,使模拟负载电路通过与适配器相连的接口,按照负载曲线对应的负载状态接收适配器传送的电能,从而实现为适配器进行模拟输出的目的。进一步地,负载模拟器还可包括显示装置,以实时显示当前负载状态,便于对当前负载状态以及每个负载状态的持续时间进行观测。
还需要说明的是,负载状态可为负载百分比,例如100%负载(即满载)、80%负载等。其中,负载百分比与待充电设备的电量相对应,例如,当待充电设备电量为0%时,相应的负载状态为100%负载,当待充电设备电量为20%时,相应的负载状态为80%,当待充电设备电量为100%时,相应的负载状态为0%负载。
其中,每个负载状态的持续时间可根据待充电设备的充电电量从一个百分比阶跃到下一百分比的持续时间。
因此,负载曲线可为满载老化15分钟,80%负载老化30分钟,50%负载老化30分钟……直至0%负载老化预设时间。
S103:负载模拟器根据负载曲线向适配器施加相应负载,并检测适配器的温度。
S104:根据适配器的温度判断是否老化合格。
也就是说,先确定适配器匹配的待充电设备,然后获取该待充电设备在预设状态下的充电曲线,根据充电曲线生成负载模拟器的负载曲线,负载模拟器根据负载曲线向适配器施加相应负载,即通过负载模拟器为适配器模拟出为待充电设备充电的状态,同时检测适配器的温度,并根据适配器的温度判断适配器是否老化合格。
由此,通过负载模拟器向适配器按照负载曲线施加负载,能够在保证适配器老化效果的前提下,节约适配器的生产成本,即,适配器通过减少热处理的方式节省成本时,也不 会在老化检测过程中产生老化过度。
根据本申请的一个实施例,根据适配器的温度判断是否老化合格具体包括:在每个负载状态运行对应的持续时间之后,判断适配器的温度是否大于预设温度阈值;如果大于预设温度阈值,则判断老化。
其中,每个负载状态对应的预设温度阈值可不同。
需要说明的是,负载曲线可包括N个负载状态,其中,第i个负载状态对应的预设温度阈值小于第i+1个负载状态对应的预设温度阈值,其中,i小于N。例如,以待充电设备每充电20%为一个负载状态为例,则负载曲线的第1个负载状态可为满载状态,负载曲线的第2个负载状态可为80%负载状态,进一步地,第1负载状态对应的第一温度阈值小于第2负载状态对应的第二温度阈值。其中,第一温度阈值可为100度,第二温度阈值可为110度。
举例来说,以满载老化15分钟然后800%负载老化30分钟为例,负载模拟器向适配器施加满载即第1负载状态,持续第一预设时间例如15分钟,然后检测适配器的当前温度,判断适配器的当前温度是否大于第1负载状态对应的第一温度阈值,如果适配器的当前温度大于第1负载状态对应的第一温度阈值,则判断适配器老化不合格,标记为不良品,如果适配器的当前温度小于或等于第1负载状态对应的第一温度阈值,则判断适配器老化合格,然后负载模拟器继续向适配器施第2负载状态即80%负载并持续第二预设时间,例如30分钟,然后检测适配器的当前温度,判断适配器的当前温度是否大于第2负载状态对应的第二温度阈值,如果适配器的当前温度大于第2负载状态对应的第二温度阈值,则判断适配器老化不合格,标记为不良品,如果适配器的当前温度小于或等于第2负载状态对应的第二温度阈值,则判断适配器老化合格。
由此,通过在每个负载状态持续时间之后对适配器的老化是否合格进行检测,能够及时检测出适配器是否合格,以及若当适配器出现大量不合格时,可根据适配器不合格节点对适配器的生产进行调整,从而提高适配器生产制造的良品率。
综上所述,根据本申请实施例的待充电设备的适配器老化检测方法,通过获取待充电设备在预设状态下的充电曲线,然后根据充电曲线生成负载模拟器的负载曲线,负载模拟器根据负载曲线向适配器施加相应负载,并检测适配器的温度,然后根据适配器的温度判断是否老化合格。由此,本申请实施例的检测方法通过负载模拟器根据负载曲线对适配器施加相应负载,从而既可以满足适配器的老化效果,还可以检测出适配器工作时的工作情况,确保适配器的可靠性。
图2为根据本申请实施例的待充电设备的适配器老化检测装置的方框示意图。如图2所示,本申请实施例的待充电设备的适配器老化检测装置100包括:获取模块10、生成模 块20和负载模拟器30。
其中,获取模块10用于获取待充电设备在预设状态的充电曲线,生成模块20用于根据充电曲线生成负载模拟器的负载曲线,负载模拟器30用于根据负载曲线向适配器施加相应负载,并检测适配器的温度,根据适配器的温度判断是否老化合格。
其中,预设状态可为从待充电设备电量为零充电至100%的状态。
其中,负载曲线可包括多个负载状态,以及每个负载状态的持续时间。
应当理解的是,在确定适配器匹配的待充电设备之后,对待充电设备按照预设状态进行充电,以获取待充电设备在预设状态下的充电曲线,即待充电设备充电电量和时间的关系曲线。
需要说明的是,负载状态可为负载百分比,例如100%负载、80%负载等。其中,负载百分比与待充电设备的电量相对应,例如,当待充电设备电量为0%时,相应的负载状态为100%负载,当待充电设备电量为20%时,相应的负载状态为80%,当待充电设备电量为100%时,相应的负载状态为0%负载。
其中,每个负载状态的持续时间可根据待充电设备的充电电量从一个百分比阶跃到下一百分比的持续时间。
因此,负载曲线可为满载老化15分钟,80%负载老化30分钟,50%负载老化30分钟……直至0%负载老化预设时间。
也就是说,先确定适配器匹配的待充电设备,然后通过获取模块10获取该待充电设备在预设状态下的充电曲线,生成模块20根据充电曲线生成负载模拟器的负载曲线,负载模拟器30根据负载曲线向适配器施加相应负载,即通过负载模拟器为适配器模拟出为待充电设备充电的状态,同时检测适配器的温度,并根据适配器的温度判断适配器是否老化合格。
由此,通过负载模拟器向适配器按照负载曲线施加负载,实现适配器输出状态的动态调整,能够在保证适配器老化效果的前提下,节约适配器的生产成本,即,适配器通过减少热处理的方式节省成本时,也不会在老化检测过程中产生老化过度。
根据本申请的一个实施例,负载模拟器30还用于在每个负载状态运行对应的持续时间之后,判断适配器的温度是否大于预设温度阈值,如果大于预设温度阈值,则判断老化。
其中,每个负载状态对应的预设温度阈值可不同。
需要说明的是,负载曲线可包括N个负载状态,其中,第i个负载状态对应的预设温度阈值小于第i+1个负载状态对应的预设温度阈值,其中,i小于N。例如,以待充电设备每充电20%为一个负载状态为例,则负载曲线的第1个负载状态可为满载状态,负载曲线的第2个负载状态可为80%负载状态,进一步地,第1负载状态对应的第一温度阈值小于第2负载状态对应的第二温度阈值。其中,第一温度阈值可为100度,第二温度阈值可为 110度。
举例来说,以满载老化15分钟然后800%负载老化30分钟为例,负载模拟器30向适配器施加满载即第1负载状态,持续第一预设时间例如15分钟,然后检测适配器的当前温度,判断适配器的当前温度是否大于第1负载状态对应的第一温度阈值,如果适配器的当前温度大于第1负载状态对应的第一温度阈值,则判断适配器老化不合格,标记为不良品,如果适配器的当前温度小于或等于第1负载状态对应的第一温度阈值,则判断适配器老化合格,然后负载模拟器继续向适配器施加80%负载即第2负载状态并持续第二预设时间,例如30分钟,然后检测适配器的当前温度,判断适配器的当前温度是否大于第2负载状态对应的第二温度阈值,如果适配器的当前温度大于第2负载状态对应的第二温度阈值,则判断适配器老化不合格,标记为不良品,如果适配器的当前温度小于或等于第2负载状态对应的第二温度阈值,则判断适配器老化合格。
由此,通过在每个负载状态之后对适配器的老化是否合格进行检测,能够及时检测出适配器是否合格,以及若当适配器出现大量不合格时,可根据适配器不合格节点对适配器的生产进行调整,从而提高适配器生产制造的良品率。
综上所述,根据本申请实施例的适配器老化检测装置,通过获取模块获取待充电设备在预设状态的充电曲线,然后生成模块根据该曲线生成负载模拟器的负载曲线,负载模拟器根据负载曲线向适配器施加相应负载,并检测适配器的温度,根据适配器的温度判断适配器是否老化合格。由此,本申请实施例的检测装置通过负载模拟器向适配器施加负载曲线,从而既可以满足适配器的老化效果,还可以检测出适配器工作时的工作情况,确保适配器的可靠性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个 或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了 本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (18)

  1. 一种适配器老化检测方法,其特征在于,包括以下步骤:
    获取待充电设备在预设状态下的充电曲线;
    根据所述充电曲线生成负载模拟器的负载曲线;
    所述负载模拟器根据所述负载曲线向适配器施加相应负载,并检测所述适配器的温度;以及
    根据所述适配器的温度判断是否老化合格。
  2. 如权利要求1所述的适配器老化检测方法,其特征在于,所述预设状态为从所述待充电设备电量为零充电至100%的状态。
  3. 如权利要求1所述的适配器老化检测方法,其特征在于,所述负载曲线包括多个负载状态,以及每个负载状态的持续时间。
  4. 如权利要求3所述的适配器老化检测方法,其特征在于,所述根据所述适配器的温度判断是否老化合格具体包括:
    在每个负载状态运行对应的持续时间之后,判断所述适配器的温度是否大于预设温度阈值;
    如果大于所述预设温度阈值,则判断老化。
  5. 如权利要求4所述的适配器老化检测方法,其特征在于,每个负载状态对应的预设温度阈值不同。
  6. 如权利要求5所述的适配器老化检测方法,其特征在于,所述负载曲线包括N个负载状态,其中,第i个负载状态对应的预设温度阈值小于第i+1个负载状态对应的预设温度阈值,其中,i小于N。
  7. 一种适配器,其特征在于,适用于权利要求1-6任一项所述的老化检测方法,所述适配器还包括:
    第一整流单元,所述第一整流单元对输入的交流电进行整流以输出第一脉动波形的电压;
    开关单元,所述开关单元用于根据控制信号对所述第一脉动波形的电压进行调制;
    变压器,所述变压器用于根据调制后的所述第一脉动波形的电压输出第二脉动波形的电压;
    第二整流单元,所述第二整流单元用于对所述第二脉动波形的电压进行整流以输出第三脉动波形的电压;
    第一充电接口,所述第一充电接口与所述第二整流单元相连;
    采样单元,所述采样单元用于对所述第二整流单元输出的电压和/或电流进行采样以获得电压采样值和/或电流采样值;
    控制单元,所述控制单元分别与所述采样单元和所述开关单元相连,所述控制单元输出所述控制信号至所述开关单元,并根据所述电压采样值和/或电流采样值对所述控制信号的占空比进行调节,以使所述第三脉动波形的电压满足充电需求。
  8. 如权利要求7所述的适配器,其特征在于,所述控制单元,还用于根据所述电压采样值和/或电流采样值对所述控制信号的频率进行调节。
  9. 如权利要求7所述的适配器,其特征在于,所述适配器还包括:
    驱动单元,所述驱动单元连接在所述开关单元与所述控制单元之间,所述驱动单元用于根据所述控制信号驱动所述开关单元的开通或关断。
  10. 如权利要求7所述的适配器,其特征在于,所述适配器还包括:
    辅助绕组,所述辅助绕组根据调制后的第一脉动波形的电压生成第四脉动波形的电压;
    供电单元,所述供电单元与所述辅助绕组相连,所述供电单元用于对所述第四脉动波形的电压进行转换以输出直流电,分别给所述驱动单元和/或所述控制单元供电。
  11. 如权利要求10所述的适配器,其特征在于,所述适配器还包括:
    第一电压检测单元,所述第一电压检测单元分别与所述辅助绕组和所述控制单元相连,所述第一电压检测单元用于检测所述第四脉动波形的电压以生成电压检测值,其中,所述控制单元,还用于根据所述电压检测值对所述控制信号的占空比进行调节。
  12. 一种适配器老化检测装置,其特征在于,包括:
    获取模块,用于获取待充电设备在预设状态的充电曲线;
    生成模块,用于根据所述充电曲线生成负载模拟器的负载曲线;
    负载模拟器,用于根据所述负载曲线向适配器施加相应负载,并检测所述适配器的温度,以及根据所述适配器的温度判断是否老化合格。
  13. 如权利要求12所述的适配器老化检测装置,其特征在于,所述预设状态为从所述待充电设备电量为零充电至100%的状态。
  14. 如权利要求12所述的适配器老化检测装置,其特征在于,所述负载曲线包括多个负载状态,以及每个负载状态的持续时间。
  15. 如权利要求14所述的适配器老化检测装置,其特征在于,所述负载模拟器,还用于:
    在每个负载状态运行对应的持续时间之后,判断所述适配器的温度是否大于预设温度阈值;
    如果大于所述预设温度阈值,则判断老化。
  16. 如权利要求15所述的适配器老化检测装置,其特征在于,每个负载状态对应的预设温度阈值不同。
  17. 如权利要求16所述的适配器老化检测装置,其特征在于,所述负载曲线包括N个负载状态,其中,第i个负载状态对应的预设温度阈值小于第i+1个负载状态对应的预设温度阈值,其中,i小于N。
  18. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-6中任一所述的适配器老化检测方法。
PCT/CN2018/091492 2018-06-15 2018-06-15 待充电设备的适配器老化检测方法和装置 WO2019237331A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880078142.6A CN111433615B (zh) 2018-06-15 2018-06-15 待充电设备的适配器老化检测方法和装置
PCT/CN2018/091492 WO2019237331A1 (zh) 2018-06-15 2018-06-15 待充电设备的适配器老化检测方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/091492 WO2019237331A1 (zh) 2018-06-15 2018-06-15 待充电设备的适配器老化检测方法和装置

Publications (1)

Publication Number Publication Date
WO2019237331A1 true WO2019237331A1 (zh) 2019-12-19

Family

ID=68842380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091492 WO2019237331A1 (zh) 2018-06-15 2018-06-15 待充电设备的适配器老化检测方法和装置

Country Status (2)

Country Link
CN (1) CN111433615B (zh)
WO (1) WO2019237331A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118191661A (zh) * 2024-03-04 2024-06-14 宁海县鹰峤电气有限公司 一种智能老化电源装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201497781U (zh) * 2009-09-03 2010-06-02 东莞市大忠电子有限公司 电阻式电源适配器老化装置
CN104485812A (zh) * 2014-12-17 2015-04-01 镇江市高等专科学校 电源适配器老化烧机装置
CN106019170A (zh) * 2016-05-18 2016-10-12 广东欧珀移动通信有限公司 一种电源适配器检测装置
WO2017143876A1 (zh) * 2016-02-05 2017-08-31 广东欧珀移动通信有限公司 用于终端的充电系统、充电方法及电源适配器、开关电源
CN206601449U (zh) * 2017-02-10 2017-10-31 广州晨日电子技术有限公司 电子产品老化测试设备
CN107918076A (zh) * 2015-06-12 2018-04-17 广东欧珀移动通信有限公司 一种电源适配器检测方法和电源适配器检测装置
CN207408517U (zh) * 2017-11-20 2018-05-25 深圳市爱纳优科技有限公司 一种电源适配器老化测试治具

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951642B2 (ja) * 2009-03-19 2012-06-13 株式会社日立製作所 電力変換装置及びそれを用いたエレベータ装置
CN104345285B (zh) * 2014-11-04 2017-10-10 大连理工常熟研究院有限公司 一种节能的电源转换器老化测试装置
CN104967199B (zh) * 2015-08-05 2018-07-10 青岛海信移动通信技术股份有限公司 快速充电方法及移动终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201497781U (zh) * 2009-09-03 2010-06-02 东莞市大忠电子有限公司 电阻式电源适配器老化装置
CN104485812A (zh) * 2014-12-17 2015-04-01 镇江市高等专科学校 电源适配器老化烧机装置
CN107918076A (zh) * 2015-06-12 2018-04-17 广东欧珀移动通信有限公司 一种电源适配器检测方法和电源适配器检测装置
WO2017143876A1 (zh) * 2016-02-05 2017-08-31 广东欧珀移动通信有限公司 用于终端的充电系统、充电方法及电源适配器、开关电源
CN106019170A (zh) * 2016-05-18 2016-10-12 广东欧珀移动通信有限公司 一种电源适配器检测装置
CN206601449U (zh) * 2017-02-10 2017-10-31 广州晨日电子技术有限公司 电子产品老化测试设备
CN207408517U (zh) * 2017-11-20 2018-05-25 深圳市爱纳优科技有限公司 一种电源适配器老化测试治具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118191661A (zh) * 2024-03-04 2024-06-14 宁海县鹰峤电气有限公司 一种智能老化电源装置

Also Published As

Publication number Publication date
CN111433615B (zh) 2022-12-30
CN111433615A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2019237330A1 (zh) 待充电设备的适配器老化检测方法和装置
US11824396B2 (en) Wireless charging method, electronic device and wireless charging apparatus
TWI548197B (zh) 逆變裝置及其控制方法
EP0780750B1 (en) Inverter control method and inverter apparatus using the method
US9484820B2 (en) DC/DC converter, electronic apparatus having the same and DC/DC conversion method thereof
JP7179091B2 (ja) バッテリーの急速充電方法、充電装置、被充電機器及び充電システム
US11258289B2 (en) Power supply circuit and adaptor
EP3367537A1 (en) Energy management method and circuit for friction nano power generator, and device
JP2010261862A (ja) Acライン信号検出装置およびその方法、並びに電源装置
JP2022523238A (ja) 最適化器、太陽光発電システム、及び太陽電池モジュールのためのiv曲線スキャニング方法
US20170033598A1 (en) Emergency inverter and emergency lighting system
CN110429702B (zh) 电源输出装置及电源输出方法
CN103917001A (zh) 开关电源、开关电源的控制方法及控制芯片
CN105281587A (zh) 用于反激变换器的同步整流
US11502618B2 (en) DC photovoltaic input emulation using an AC generator source
CN109189140A (zh) 一种纹波电流产生电路
WO2019237331A1 (zh) 待充电设备的适配器老化检测方法和装置
CN102891523B (zh) 一种电能自循环式大功率充电机老化控制方法及其系统
US10170909B2 (en) Converter and photovoltaic generation systems with converter
TW201123682A (en) Solar storage system and method of charge using the same
KR20160063807A (ko) 그리드 인버터형 전자부하 시험장치
CN109494849A (zh) 电池状态调控装置及方法
WO2024060007A1 (zh) 转换装置、光伏系统及控制方法
JP2012019676A (ja) 電力伝達用絶縁回路および電力変換装置
CN216956204U (zh) 双向直流斩波器的测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922588

Country of ref document: EP

Kind code of ref document: A1