WO2003076119A1 - Method of cutting processed object - Google Patents

Method of cutting processed object Download PDF

Info

Publication number
WO2003076119A1
WO2003076119A1 PCT/JP2003/002867 JP0302867W WO03076119A1 WO 2003076119 A1 WO2003076119 A1 WO 2003076119A1 JP 0302867 W JP0302867 W JP 0302867W WO 03076119 A1 WO03076119 A1 WO 03076119A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
cutting
region
laser
laser beam
Prior art date
Application number
PCT/JP2003/002867
Other languages
English (en)
French (fr)
Inventor
Fumitsugu Fukuyo
Kenshi Fukumitsu
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27800281&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003076119(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to AT03744054T priority Critical patent/ATE493226T1/de
Priority to JP2003574374A priority patent/JP4606741B2/ja
Priority to US10/507,340 priority patent/US7749867B2/en
Priority to KR1020047014372A priority patent/KR100749972B1/ko
Priority to AU2003211581A priority patent/AU2003211581A1/en
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to EP03744054A priority patent/EP1498216B1/en
Priority to DE60335538T priority patent/DE60335538D1/de
Publication of WO2003076119A1 publication Critical patent/WO2003076119A1/ja
Priority to US12/570,380 priority patent/US8183131B2/en
Priority to US13/451,988 priority patent/US8551865B2/en
Priority to US13/975,814 priority patent/US8673745B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/384Removing material by boring or cutting by boring of specially shaped holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/221Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • C03B33/074Glass products comprising an outer layer or surface coating of non-glass material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]

Definitions

  • the present invention relates to a processing object cutting method for cutting a processing object such as a semiconductor material substrate, a piezoelectric material substrate, or a glass substrate.
  • Cutting is one of the laser applications, and general cutting by laser is as follows.
  • a part to be processed such as a semiconductor wafer or a glass substrate is irradiated with a laser beam having a wavelength that is absorbed by the object to be processed, and the part to be cut by the absorption of the laser beam is directed from the front surface to the rear surface
  • the workpiece is cut by heating and melting. This method also melts the area around the surface of the workpiece to be cut. Therefore, when the object to be processed is a semiconductor wafer, among the semiconductor elements formed on the surface of the semiconductor wafer, the semiconductor elements located in the vicinity of the region may be melted.
  • No. 0 0-2 1 9 5 2 8 has a laser cutting method disclosed in Japanese Patent Laid-Open No. 2 0 0 0-1 5 4 6 7.
  • a part to be processed is heated by a laser beam, and the object to be processed is cooled to cause a thermal shock at the part to be processed to be processed.
  • Disconnect In the cutting methods of these publications, a part to be processed is heated by a laser beam, and the object to be processed is cooled to cause a thermal shock at the part to be processed to be processed.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a processing object cutting method capable of cutting a processing object with high accuracy.
  • a processing object cutting method is configured by irradiating a laser beam with a converging point inside a wafer-shaped processing object, and by multiphoton absorption inside the processing object.
  • a modified region is formed, and by this modified region, the cutting start region that is biased from the center position in the thickness direction of the workpiece to the one end surface side of the workpiece is aligned with the planned cutting line of the workpiece.
  • a cutting start region is formed inside the object to be processed along a desired cutting line to be cut by the modified region formed by multiphoton absorption.
  • multiphoton absorption occurs locally inside the object to be processed, and laser light is hardly absorbed by one end surface of the object to be processed and the other end surface on the opposite side. It is possible to prevent melting of the end face.
  • the cutting start area is formed by being deviated from the center position in the thickness direction of the workpiece to the one end face side, when the workpiece is pressed from the other end face side, the cutting start area is formed at the center position.
  • the condensing point is a portion where the laser beam is condensed.
  • the cutting start region means a region that becomes a starting point of cutting when a workpiece is cut. Therefore, the cutting start region is a planned cutting portion where cutting is planned for the workpiece.
  • the cutting start region is formed by continuously forming the modified region. In some cases, the modified region may be formed intermittently.
  • “to form a cutting start region that is deviated from the center position in the thickness direction of the workpiece to the one end face side of the workpiece” means that the modified region that constitutes the cutting start region is It means that it is biased from one half of the thickness in the thickness direction toward one end face.
  • the center position of the width of the modified region (cutting origin region) in the thickness direction of the workpiece is shifted from the center position in the thickness direction of the workpiece to one end face side.
  • all parts of the modified region (cutting origin region) are not limited to the case where the portion is located on one end surface side with respect to the center position in the thickness direction of the workpiece.
  • the pressing process it is preferable to press the workpiece along the planned cutting line.
  • a line to be cut is placed between adjacent functional elements.
  • FIG. 1 is a plan view of an object to be processed during laser processing by the laser processing method according to the present embodiment.
  • FIG. 2 is a cross-sectional view taken along line II-II of the workpiece shown in FIG.
  • FIG. 3 is a plan view of an object to be processed after laser processing by the laser processing method according to the present embodiment.
  • Fig. 4 is a cross-sectional view of the workpiece shown in Fig. 3 along the IV-IVf spring.
  • FIG. 5 is a cross-sectional view of the workpiece shown in FIG. 3 along VV and ⁇ .
  • FIG. 6 is a plan view of a processing object cut by the laser processing method according to the present embodiment.
  • FIG. 7 is a graph showing the relationship between the electric field strength and the crack spot size in the laser processing method according to the present embodiment.
  • FIG. 8 is a cross-sectional view of the object to be processed in the first step of the laser processing method according to the present embodiment.
  • FIG. 9 is a cross-sectional view of the object to be processed in the second step of the laser caching method according to the present embodiment.
  • FIG. 10 is a cross-sectional view of the object to be processed in the third step of the laser processing method according to the present embodiment.
  • FIG. 11 is a cross-sectional view of the object to be processed in the fourth step of the laser processing method according to the present embodiment.
  • FIG. 12 is a view showing a photograph of a cross section of a part of a gyricon wafer cut by the laser processing method according to the present embodiment.
  • FIG. 13 is a graph showing the relationship between the wavelength of the laser beam and the transmittance inside the silicon substrate in the laser processing method according to the present embodiment.
  • FIG. 14 is a schematic configuration diagram of a laser processing apparatus according to the present embodiment.
  • FIG. 15 is a flow chart for explaining the cutting start region forming step according to the present embodiment.
  • FIG. 16 is a plan view of the workpiece according to the first embodiment.
  • FIG. 17 is a cross-sectional view illustrating a process for manufacturing a workpiece according to the first embodiment.
  • FIG. 18 is a cross-sectional view illustrating the cutting start region forming process according to the first embodiment.
  • FIG. 19 is a cross-sectional view illustrating a case where the cutting start region is located across the center line in the workpiece according to the first embodiment.
  • FIG. 20 is a cross-sectional view showing a case where all the parts of the cutting start region are located on the surface side with respect to the center line in the workpiece according to the first embodiment.
  • FIG. 21 shows a case where the cutting start area on the back side is located on the center line and the cutting start area on the front side is located between the cutting start area on the back side and the surface in the workpiece according to Example 1. It is sectional drawing shown.
  • FIG. 22 is a cross-sectional view illustrating the pressing step according to the first embodiment.
  • FIG. 23 is a cross-sectional view illustrating an expansion process of the expansion sheet according to the first embodiment.
  • FIG. 24 is a cross-sectional view illustrating a case where laser light is irradiated from the back side of the workpiece in the cutting start region forming process according to the first embodiment.
  • FIG. 25 is a cross-sectional view illustrating a cutting start region forming process according to the second embodiment.
  • FIG. 26 is a cross-sectional view illustrating the pressing step according to the second embodiment.
  • FIG. 27 is a cross-sectional view illustrating a case where laser light is irradiated from the back side of the workpiece in the cutting start region forming process according to the second embodiment.
  • the processing object is irradiated with laser light with the focusing point inside, and the processing object is modified by multiphoton absorption inside the processing object. Form. Therefore, this laser processing method, particularly multiphoton absorption, will be described first.
  • the material becomes optically transparent. Therefore, a condition under which absorption occurs in the material is h V> E G.
  • the intensity of the laser beam is made very large, the material will be absorbed under the condition of nh v> E e (n-2, 3, 4,. This phenomenon is called multiphoton absorption.
  • the intensity of the laser beam is determined by the peak power density (W / cm 2 ) at the focal point of the laser beam. For example, if the peak power density is 1 X 10 8 (W / cm 2 ) or more, the multiphoton Absorption occurs.
  • the peak power density is (laser light at the condensing point Energy per pulse) ⁇ (Laser beam beam spot cross-sectional area X pulse width).
  • the intensity of the laser beam is determined by the electric field strength (WZ cm 2 ) at the condensing point of the laser beam.
  • FIG. 1 is a plan view of the workpiece 1 during laser processing
  • Fig. 2 is a cross-sectional view along the II-II line of the workpiece 1 shown in Fig. 1
  • Fig. 3 is the workpiece after laser processing
  • Fig. 4 is a cross-sectional view of the workpiece 1 shown in Fig. 3 along the IV-IV line
  • Fig. 5 is a cross-sectional view of the workpiece 1 shown in Fig. 3 along the V-V line.
  • FIG. 6 is a plan view of the cut workpiece 1.
  • the surface 3 of the workpiece 1 has a desired cutting line 5 on which the workpiece 1 is to be cut.
  • the planned cutting line 5 is an imaginary line extending in a straight line (the actual cutting line 5 may be drawn as the planned cutting line 5 on the workpiece 1).
  • the modified region 7 is formed by irradiating the processing object 1 with the laser beam L by aligning the condensing point P inside the processing object 1 under the condition that multiphoton absorption occurs. .
  • the condensing point is a portion where the laser beam L is condensed.
  • the condensing point P is moved along the planned cutting line 5 by relatively moving the laser beam L along the planned cutting line 5 (that is, along the direction of arrow A).
  • the modified region 7 is formed only inside the workpiece 1 along the planned cutting line 5, and in this modified region 7, the cutting start region (scheduled cutting portion) is formed. 8 is formed.
  • the laser processing method according to the present embodiment does not form the modified region 7 by causing the processing object 1 to generate heat by causing the processing object 1 to absorb the laser beam L.
  • the modified region 7 is formed by transmitting the laser beam L through the workpiece 1 and generating multiphoton absorption inside the workpiece 1. Therefore, since the laser beam L is hardly absorbed by the surface 3 of the workpiece 1, the surface 3 of the workpiece 1 is not melted.
  • the workpiece 1 When cutting the workpiece 1, if there is a starting point at the part to be cut, the workpiece 1 Therefore, the workpiece 1 can be cut with a relatively small force as shown in FIG. Therefore, the workpiece 1 can be cut without causing unnecessary cracks on the surface 3 of the workpiece 1.
  • the following two types of cutting of workpieces starting from the cutting start region can be considered.
  • One is a case where after the cutting start region is formed, an artificial force is applied to the processing target, so that the processing target is cracked from the cutting start region and the processing target is cut. This is, for example, cutting when the thickness of the workpiece is large.
  • Artificial force is applied when, for example, bending stress or shear stress is applied to the workpiece along the cutting start area of the workpiece, or thermal stress is generated by applying a temperature difference to the workpiece. It is to let you.
  • the other is that by forming the cutting start region, the workpiece is naturally cracked in the cross-sectional direction (thickness direction) of the workpiece from the cutting start region, resulting in the cutting of the workpiece. This is the case.
  • the cutting start region is formed by one row of modified regions.
  • the thickness direction This is made possible by forming the cutting start region by the modified regions formed in a plurality of rows. Even in the case of natural cracking, the crack does not run on the surface of the portion corresponding to the portion where the cutting start region is not formed at the portion to be cut, and corresponds to the portion where the cutting start region is formed. Since only the part can be cleaved, the cleaving can be controlled well. In recent years, since the thickness of workpieces such as silicon wafers tends to be thin, such a cleaving method with good controllability is very effective.
  • the modified regions formed by multiphoton absorption in this embodiment include the following (1) to (3).
  • the focal point The laser beam is irradiated under the conditions that the electric field intensity at 1 is 10 ⁇ 10 8 (W / cm 2 ) or more and the pulse width is 1 ⁇ s or less.
  • This pulse width is multi-light This is a condition in which a crack region can be formed only inside the workpiece without causing extra damage to the surface of the workpiece while causing child absorption. As a result, a phenomenon called optical damage due to multiphoton absorption occurs inside the workpiece.
  • the upper limit value of the electric field strength is, for example, 1 ⁇ 10 12 (W / cm 2 ).
  • the pulse width is preferably 1 ns to 200 ns.
  • the present inventor obtained the relationship between the electric field strength and the crack size by experiment.
  • the experimental conditions are as follows.
  • Polarization characteristics linearly polarized light
  • FIG. 7 is a graph showing the results of the above experiment.
  • the horizontal axis represents the peak power density. Since the laser beam is a panorless laser beam, the electric field strength is represented by the peak power density.
  • the vertical axis shows the size of cracks (crack spots) formed inside the workpiece by one pulse of laser light. Crack spots gather to form a crack area. The size of the crack spot is the size of the maximum length of the crack spot shape.
  • the data indicated by black circles in the graph is for the case where the condenser lens (C) has a magnification of 100 and a numerical aperture (NA) of 0.80.
  • the data indicated by white circles in the graph is for the case where the magnification of the condenser lens (C) is 50 times and the numerical aperture (NA) is 0 ⁇ 55. It can be seen that crack spots are generated inside the workpiece from the peak power density of about 10 1 1 (WZ cm 2 ), and the crack spots increase as the peak power density increases.
  • the laser beam L is irradiated to the workpiece 1 by aligning the condensing point P inside the workpiece 1 under the condition that multiphoton absorption occurs, and the inside of the workpiece 1 is cracked along the planned cutting line.
  • Region 9 is formed.
  • the crack region 9 is a region including one or more cracks.
  • a cutting start region is formed.
  • the crack grows further starting from the crack area 9 (that is, starting from the cutting start area), and the crack reaches the front surface 3 and back surface 21 of the workpiece 1 as shown in Fig. 10
  • the workpiece 1 is cut when the workpiece 1 is broken. Cracks that reach the front and back surfaces of the workpiece may grow naturally, or may grow when a force is applied to the workpiece.
  • the focusing point is set inside the object (for example, a semiconductor material such as silicon).
  • the electric field strength at the focal point is 1 X 10 8 (W / cm 2 ) or more and the pulse width is 1 ⁇ m.
  • Irradiate laser light under the following conditions.
  • the inside of the workpiece is locally heated by multiphoton absorption.
  • a melt processing region is formed inside the workpiece.
  • the melt treatment region is a region once re-solidified after melting, a region in a molten state, or a region re-solidified from a molten state, and can also be referred to as a phase-change region or a region in which the crystal structure has changed.
  • a melt-processed region can also be said to be a region in which one structure is changed to another in a single crystal structure, an amorphous structure, or a polycrystalline structure.
  • a region changed from a single crystal structure to an amorphous structure a region changed from a single crystal structure to a polycrystalline structure, or a region changed from a single crystal structure to a structure including an amorphous structure and a polycrystalline structure.
  • the melt processing region has, for example, an amorphous silicon structure.
  • the pulse width is preferably 1 ns to 200 ns.
  • the inventor has confirmed through experiments that a melt-processed region is formed inside a silicon wafer.
  • the experimental conditions are as follows.
  • Light source Semiconductor laser pumped Nd: Y AG laser
  • Polarization characteristics linearly polarized light
  • FIG. 12 shows a photograph of a cross section of a part of a silicon wafer cut by laser processing under the above conditions. It is. A melt processing region 13 is formed inside the silicon wafer 11. The size in the thickness direction of the melt processing region 13 formed under the above conditions is about 100 ⁇ .
  • Fig. 13 is a graph showing the relationship between the wavelength of the laser beam and the transmittance inside the silicon substrate. However, the reflection components on the front side and back side of the silicon substrate are removed to show the transmittance only inside. The above relationship was shown for each of the silicon substrate thicknesses t of 50 / m, 100 m, 20 00 ⁇ m, 50 00 m, and 100 00 m.
  • the laser light is transmitted 80% or more inside the silicon substrate.
  • the thickness of the silicon wafer 1 1 shown in FIG. 1 2 is 3 500 ⁇
  • the melt-processed region 1 3 due to multiphoton absorption is formed near the center of the silicon wafer, that is, 1 75 m from the surface.
  • the transmittance is 90% or more when referring to a silicon wafer with a thickness of 200 ⁇ m. Therefore, the laser light is hardly absorbed inside the silicon wafer 11, and most of it is transmitted. To do.
  • melt processing region 13 was formed by multiphoton absorption.
  • the formation of the melt processing region by multiphoton absorption is, for example, “picosecond pulse laser” on pages 7 2 to 7 3 of the 6th Annual Meeting of the Japan Welding Society (September 6th, 2000) It is described in “Processing characteristics evaluation of silicon”. Silicon wafers are cracked in the cross-sectional direction starting from the cutting start region formed in the melt processing region, and as a result, the crack reaches the front and back surfaces of the silicon wafer. Disconnected.
  • the cracks that reach the front and back surfaces of the silicon wafer may grow spontaneously, or they may grow when force is applied to the silicon wafer.
  • the crack grows from the state in which the melt processing area forming the cutting start area is melted, and the cutting start point.
  • cracks grow when the solidified region is melted from the melted region that forms the region.
  • the melt processing region is formed only inside the silicon wafer, and the melt processing region is formed only inside as shown in FIG. If a cutting start area is formed in the melt processing area inside the workpiece, it is easy to control the cleaving because it is difficult to cause unnecessary cracks off the cutting start area line during cleaving.
  • the focusing point is set inside the object to be processed (for example, glass), and the laser beam is emitted under the condition that the electric field strength at the focusing point is 1 X 10 8 (W / cm 2 ) or more and the pulse width is 1 ns or less. Irradiate.
  • the pulse width is made extremely short and multiphoton absorption occurs inside the workpiece, the energy due to multiphoton absorption is not converted into thermal energy, and the ionic valence changes inside the workpiece, Permanent structural changes such as crystallization or polarization orientation are induced to form a refractive index change region.
  • the upper limit value of the electric field strength is, for example, IX 1 0 1 2 (W / cm 2 ).
  • the pulse width is preferably 1 ns or less, and more preferably lps or less.
  • the formation of the refractive index change region by multiphoton absorption is described in “The 4th 2nd Laser Thermal Processing Workshop Proceedings (1 997. 1 January)” from page 105 to page 11 This is described in “Light-induced structure formation inside glass by femtosecond laser irradiation”.
  • the case of (1) to (3) is described as the modified region formed by multiphoton absorption.
  • the cutting starting region is formed as follows in consideration of the crystal structure of the wafer-like workpiece and its cleavage property, etc., with the cutting starting region as the starting point, the force is further reduced. In addition, it is possible to cut the workpiece with high accuracy.
  • the substrate is cut in a direction along the (1 1 1) plane (first cleavage plane) or the (1 1 0) plane (second cleavage plane). It is preferable to form an origin region. Further, in the case of a substrate made of a zinc-blende III-group V compound semiconductor such as Ga As, it is preferable to form the cutting origin region in the direction along the (1 1 0) plane.
  • the (1 0 2 1) plane (A Plane) or (1 1 0 0) It is preferable to form the cutting origin region in a direction along the plane (M plane).
  • the direction in which the above-described cutting start region is to be formed (for example, the direction along the (1 1 1) plane in the single crystal silicon substrate), or the substrate along the direction perpendicular to the direction in which the cutting start region is to be formed. If the orientation flat is formed, it becomes possible to easily and accurately form the cutting start region along the direction in which the cutting start region is to be formed on the substrate by using the orientation flat as a reference.
  • FIG. 14 is a schematic configuration diagram of the laser processing apparatus 100.
  • the laser processing apparatus 100 includes a laser light source 10 1 that generates the laser light L, and a laser light source control unit 1 0 that controls the laser light source 1 0 1 in order to adjust the output, pulse width, and the like of the laser light L. 2, a dichroic mirror 10 0 3 having a function of reflecting the laser beam L and arranged to change the direction of the optical axis of the laser beam L by 90 °, and a laser reflected by the dichroic mirror 1 0 3
  • the converging point P is moved in the X (Y) axis direction by moving the workpiece 1 in the X (Y) axis direction by the X (Y) axis stage 1 0 9 (1 1 1). Since the Z-axis direction is perpendicular to the surface 3 of the workpiece 1, the Z-axis direction is the direction of the focal depth of the laser light L incident on the workpiece 1. Therefore, by moving the Z-axis stage 1 13 in the Z-axis direction, the condensing point P of the laser beam L can be aligned inside the workpiece 1. Thereby, for example, when the workpiece 1 has a multilayer structure, the focusing point P is adjusted to a desired position such as the substrate of the workpiece 1 or a laminated portion on the substrate. Can do.
  • the laser light source 10 0 1 is an N d: YAG laser that generates pulsed laser light.
  • N d YV 0 4
  • monodentate N d: is a YLF laser or a titanium sapphire laser.
  • pulsed laser light is used for processing the workpiece 1.
  • continuous wave laser light may be used as long as multiphoton absorption can be caused.
  • the laser processing apparatus 1 0 0 further includes an observation light source 1 1 7 that generates visible light to illuminate the workpiece 1 placed on the mounting table 1 0 7 with a visible light beam, and a dike mouth mirror 1 0. 3 and a condensing lens 10 5, and a visible light beam splitter 1 19 disposed on the same optical axis.
  • a dichroic mirror 10 3 is arranged between the beam splitter 1 1 9 and the condensing lens 1 0 5.
  • the beam splitter 1 1 9 has a function of reflecting about half of visible light and transmitting the other half, and is arranged to change the direction of the optical axis of visible light by 90 °.
  • the laser processing apparatus 100 further includes an image sensor 1 2 1 and an imaging lens 1 arranged on the same optical axis as the beam splitter 1 1 9, the dichroic mirror 1 0 3 and the condensing lens 1 0 5.
  • An example of the image sensor 1 2 1 is a CCD camera.
  • the reflected light of the visible light that illuminates the surface 3 including the planned cutting line 5 etc. passes through the condensing lens 1 0 5, the dichroic mirror 1 0 3, the beam splitter 1 1 9, and the imaging lens 1 2 3
  • the image is formed by and imaged by the image sensor 1 2 1 and becomes imaging data.
  • the laser processing apparatus 100 further includes an imaging data processing unit 1 2 5 to which imaging data output from the imaging element 1 2 1 is input, and an overall control unit 1 2 7 that controls the entire laser processing apparatus 100. And a monitor 1 2 9.
  • the imaging data processing unit 1 2 5 calculates focus data for focusing the visible light generated by the observation light source 1 1 7 on the surface 3 of the workpiece 1 based on the imaging data. Based on this focus data, the stage control unit 1 15 controls the movement of the Z-axis stage 1 13 so that the focus of the visible light matches the surface 3 of the workpiece. Therefore, the imaging data processing unit 1 2 5 functions as an autofocus unit.
  • the imaging data processing unit 1 25 calculates image data such as an enlarged image of the surface 3 based on the imaging data. This image data is sent to the overall control unit 1 27, where various processes are performed by the overall control unit and sent to the monitor 1 29. As a result, an enlarged image or the like is displayed on the monitor 1 29.
  • the overall control unit 1 2 7 receives data from the stage control unit 1 1 5 and image data from the imaging data processing unit 1 2 5. Based on these data, the laser light source control unit 1 0 2 The entire laser processing apparatus 100 is controlled by controlling the observation light source 1 1 7 and the stage controller 1 15. Therefore, the overall control unit 1 2 7 stores as a computer unit.
  • FIG. 15 is related to this embodiment. It is a flowchart for demonstrating a cutting
  • the light absorption characteristic of the workpiece 1 is measured with a spectrophotometer (not shown). Based on this measurement result, a laser light source 10 0 1 that generates a laser beam L having a wavelength transparent to the workpiece 1 or a wavelength with little absorption is selected (S 1 0 1). Subsequently, the thickness of the workpiece 1 is measured. Based on the thickness measurement result and the refractive index of the workpiece 1, the amount of movement of the workpiece 1 in the Z-axis direction is determined (S 1 0 3). This is because the processing target is based on the focusing point P of the laser beam L positioned on the surface 3 of the workpiece 1 in order to position the focusing point P of the laser beam inside the workpiece 1. 1 is the amount of movement in the Z-axis direction. This movement amount is input to the overall control unit 1 2 7.
  • the workpiece 1 is placed on the mounting table 1 07 of the laser processing apparatus 100. Then, visible light is generated from the observation light source 1 1 7 to illuminate the workpiece 1 (S 1 0 5).
  • the surface 3 of the workpiece 1 including the projected cutting line 5 is imaged by the imaging device 1 2 1.
  • the imaging data imaged by the imaging element 1 2 1 is sent to the imaging data processing unit 1 2 5. Based on the imaging data, the imaging data processing unit 1 25 calculates focus data such that the visible light focus of the observation light source 1 17 is located on the surface 3 (S 1 0 7).
  • This focus data is sent to the stage controller 1 1 5.
  • the stage controller 1 15 moves the Z-axis stage 1 13 in the Z-axis direction based on the focus data (S 1 0 9).
  • the visible light focus of the observation light source 1 1 7 is positioned on the surface 3 of the workpiece 1.
  • the imaging data processing unit 1 25 calculates the enlarged image data of the surface 3 of the workpiece 1 including the planned cutting line 5 based on the imaging data.
  • This enlarged image data is sent to the monitor 1 2 9 via the overall control unit 1 2 7, and thereby an enlarged image around the planned cutting line 5 is displayed on the monitor 1 2 9.
  • the movement amount data determined in advance in step S 1 0 3 is input to the overall control unit 1 27, and this movement amount data is sent to the stage control unit 1 15.
  • the stage control unit 1 1 5 uses the movement amount data to determine the focal point P of the laser beam L as the workpiece.
  • the workpiece 1 is moved in the Z-axis direction to the position inside 1 by the Z-axis stage 1 1 3 (S 1 1 1).
  • a laser beam L is generated from the laser light source 100 1, and the laser beam L is irradiated on the planned cutting line 5 on the surface 3 of the workpiece 1. Since the condensing point P of the laser beam L is located inside the workpiece 1, the modified region is formed only inside the workpiece 1. Then, the X-axis stage 109 and the Y-axis stage 1 1 1 are moved along the planned cutting line 5, and a modified region is formed along the planned cutting line 5. A cutting start region along the planned cutting line 5 is formed inside the object 1 (S 1 1 3).
  • FIGS. 17, 18 and 22 to 24 are partial cross-sectional views along the XVII-XVII line of the workpiece 1 shown in FIG. 16.
  • FIGS. 19 to 21 are partial cross-sectional views along the XIX-XIX line of the workpiece 1 shown in FIG.
  • a plurality of functional elements 17 are formed in a matrix on the surface 3 of the workpiece 1 that is a silicon wafer in parallel with the orientation flat 16 of the workpiece 1. Then, the workpiece 1 is produced.
  • An insulating film 18 such as Si 0 2 is formed on the surface 3 side of the workpiece 1, and the surface 3 and the functional element 17 are covered with the insulating film 18.
  • the workpiece 1 is a substrate, and the functional element 17 and the insulating film 18 are stacked portions provided on the surface of the substrate.
  • the laminated portion provided on the surface of the substrate refers to a material deposited on the surface of the substrate, a material attached to the surface of the substrate, or a material attached to the surface of the substrate. It does not matter whether the material is different or the same.
  • the laminated portion provided on the surface of the substrate includes those provided in close contact with the substrate and those provided with a gap from the substrate.
  • a semiconductor operating layer formed by crystal growth on the substrate a functional element formed on the substrate (a light receiving element such as a photodiode, a light emitting element such as a laser diode, or a circuit element formed as a circuit) )
  • a functional element formed on the substrate a light receiving element such as a photodiode, a light emitting element such as a laser diode, or a circuit element formed as a circuit
  • the laminated portion includes those in which a plurality of layers of different materials are formed.
  • the processing object 1 is irradiated with the laser beam L with the condensing point P inside, and a modified region 7 is formed inside the processing object 1.
  • a cutting starting point region 8 is formed along a predetermined cutting line 5 on the inner side of the surface (laser beam incident surface) 3 by a predetermined distance (cutting starting point region forming step). Since the object 1 to be processed is a silicon wafer, a melt-processed region is formed as the modified region 7.
  • the cutting origin region 8 that is biased toward the surface (one end face) 3 side from the center line C B passing through the center position in the thickness direction of the workpiece 1 8 Is formed along the planned cutting line 5.
  • the width in the thickness direction of the unmodified region 1 a located on the surface 3 side with respect to the cutting start region 8 (hereinafter referred to as The width of the cutting start region 8 (that is, the modified region 7) is 40 m
  • the unmodified region 1 b located on the back surface 21 side with respect to the cutting start region 8 The width is 40 m.
  • the width of unmodified region 1 a is 10 ⁇ m
  • the width of cutting origin region 8 is 20 ⁇ m
  • non-modified region 1 b The width is 20 ⁇ m.
  • examples of the “cut starting point region 8 biased toward the surface 3 side from the center line CL” include the following. There are two cases. That is, as shown in FIG. 20, “when all the portions of the cutting start region 8 are located on the surface 3 side with respect to the center line CL” and FIG. “Cut start area 8 a, 8 b are formed on the front 3 side and back 2 1 side, and the cut start area 8 b on the back 2 1 side is located on the center line CL, and the front 3 side. This is the case where the cutting start region 8 a is located between the cutting start region 8 b and the surface 3.
  • the thickness of the workpiece 1 is 100 ⁇ m
  • the width of the non-modified region 1 a is 30 m
  • the width of the cutting start region 8 is 10 ⁇ m
  • the non-modified The width of the mass region 1 b is 60 ⁇ m.
  • the thickness of the workpiece 1 is 20 0 ⁇
  • the width of the unmodified region 1 a is 20 ⁇ m
  • the width of the cutting origin region 8 a is 40 m
  • the cutting The width of the non-modified region 1 c located between the starting regions 8 a and 8 b is 2 ⁇ ⁇ m
  • the width of the cutting starting region 8 is 40 ⁇ m
  • the width of the non-modified region 1 b is 80 / im It is.
  • the laser beam L is scanned on the planned cutting line 5, and this planned cutting line 5 is formed in a lattice pattern so as to pass between the adjacent functional elements 17 and 17. It is set (see Fig. 16). Then, the position data of the planned cutting line 5 with respect to the processing object 1 is stored in the storage unit in the overall control unit 1 27 of the laser processing apparatus 100, for example.
  • the back surface (the other end surface) of the workpiece 1 through the extended finer 19 2 is processed 1
  • the crack 24 is generated from the cutting starting region 8 as a starting point, and the crack 24 is caused to reach the front surface 3 and the back surface 21 of the workpiece 1 (pressing process).
  • the workpiece 1 is divided into individual semiconductor chips 25 having one functional element 17.
  • the position data of the planned cutting line 5 stored in the storage unit is read out, the knife edge 23 is controlled based on this position data, and the workpiece is processed along the planned cutting line 5.
  • the knife edge 2 3 is pressed against 1, and the workpiece 1 is pressed along the line 5 to be cut.
  • the position data of the planned cutting line 5 with respect to the workpiece 1 is stored, and in the pressing process, based on the position data.
  • the workpiece 1 along the planned cutting line 5 it is possible to easily and accurately apply a pressing force to the cutting start region 8 formed inside the substrate 1. Then, by pressing the workpiece 1 along the planned cutting line 5, the workpiece 1 can be accurately cut for each functional element 17 and the action of the pressing force on the functional element 17 Can be almost eliminated.
  • the cutting start region (scheduled portion) formed by the modified region 7 8 The knife edge 2 3 is pressed against the back surface 2 1 of the workpiece 1 so as to follow, and the workpiece 1 is split and cut. This is because a large tensile stress among the bending stresses generated by the pressing of the knife edge 2 3 acts on the modified region 7, so that the workpiece 1 can be cut with a relatively small force.
  • the expansion film 19 is expanded outward to separate the semiconductor chips 25 from each other. In this way, by using the extension film 19 to separate the semiconductor chips 25 from each other, the pickup of the semiconductor chip 25 can be facilitated.
  • the cutting start region 8 is formed inside the workpiece 1 along the planned cutting line 5 by the modified region 7 formed by multiphoton absorption. Form.
  • multiphoton absorption occurs locally inside the workpiece 1 and the laser beam L is hardly absorbed by the front surface 3 and the back surface 21 of the workpiece 1. It is possible to prevent melting of the front surface 3 and the rear surface 21.
  • the cutting starting point region 8 is formed by being deviated from the center line CL of the workpiece 1 to the front surface 3 side, when the workpiece 1 is pressed from the back surface 21 side by the knife edge 23, the center line CL Compared with the case where the cutting start region 8 is formed on the top, it is possible to generate 2 4 by breaking the workpiece 1 from the cutting start region 8 with a small pressing force. Therefore, it is possible to prevent the unnecessary cracks from coming off the planned cutting line 5 and to accurately cut the workpiece 1 along the planned cutting line 5. It becomes possible to cut.
  • the cutting start region 8 can be formed as follows. That is, as shown in FIG. 24, before attaching the expansion film 19, a protective film 20 for protecting the functional element 17 is attached to the surface 3 side of the workpiece 1.
  • the processing object 1 is mounted on the mounting table 10 07 of the processing apparatus 100 so that the back surface 21 side of the processing object 1 faces the condensing lens 10 05.
  • the focused point P is aligned with the inside of the workpiece 1 and irradiated with the laser beam L, and a modified region 7 is formed inside the workpiece 1.
  • a cutting start region 8 that is biased toward the surface 3 side of the workpiece 1 is formed along the planned cutting line 5.
  • 25 to 27 are partial cross-sectional views along the XVII-XVII line of the workpiece 1 shown in FIG. .
  • a workpiece 1 shown in FIGS. 16 and 17 is manufactured, and a cutting start region 8 is formed at a predetermined distance from the surface (laser beam incident surface) 3 of the workpiece 1.
  • a cutting start region 8 is formed at a predetermined distance from the surface (laser beam incident surface) 3 of the workpiece 1.
  • Form along the planned cutting line 5 cutting origin region forming step).
  • the center line C passing through the center position in the thickness direction of the workpiece 1 is shifted to the back surface (one end surface) 2 1 side.
  • a cut starting point region 8 is formed along the planned cutting line 5.
  • a protective film 20 is attached to the surface 3 side of the workpiece 1, and the functional element 17 is covered with the protective film 20.
  • the knife edge 2 3 is pressed against the workpiece 1 from the surface (other end surface) 3 side of the workpiece 1 through the expansion film 19 to generate cracks 24 starting from the cutting origin region 8.
  • This The crack 2 4 is made to reach the front surface 3 and the back surface 2 1 of the workpiece 1 (pressing process).
  • the workpiece 1 is divided into individual semiconductor chips 25 having one functional element 17.
  • the position data of the cutting scheduled line 5 stored in the storage unit is read out, and the knife edge 23 3 is controlled based on this position data, and the cutting is scheduled.
  • the knife edge 2 3 is pressed against the workpiece 1 along the line 5, whereby the workpiece 1 is pressed along the line 5 to be cut.
  • the cutting start region (scheduled portion) formed by the modified region 7 8 The knife edge 2 3 is pressed against the surface 3 of the workpiece 1 so that the workpiece 1 is cut, and the workpiece 1 is broken and cut. This is because the workpiece 1 can be cut with a relatively small force because a large tensile stress of the bending stress generated by the pressing of the knife edge 2 3 acts on the modified region 7.
  • the protective film 20 is peeled off from the workpiece 1 and the same as in Example 1.
  • the expansion film 19 is expanded outward to separate the semiconductor chips 25 from each other, and the semiconductor chips 25 are picked up.
  • the cutting starting point region 8 is formed by being deviated from the center line CL of the workpiece 1 to the back surface 21 side. For this reason, when the workpiece 1 is pressed from the surface 3 side by the knife edge 2 3, the cutting start region 8 can be formed with a smaller pressing force than when the cutting start region 8 is formed on the center f spring CL. As a starting point, a crack 2 4 can be generated in the workpiece 1. Therefore, it is possible to prevent the unnecessary cracks from coming off the cutting line 5 and to cut the workpiece 1 along the cutting line 5 with high accuracy. In addition, since it is possible to cut the workpiece 1 with a small pressing force, the influence on the functional element 17 when the workpiece 1 is pressed from the surface 3 side can be reduced. Monkey.
  • a metal film for countermeasures against static electricity and the like is formed between the adjacent functional elements 17 and 17 in the workpiece 1, and it is difficult to irradiate the laser beam L from the surface 3 side of the workpiece 1.
  • the processing object 1 is irradiated with the laser beam L with the focusing point P inside the processing object 1, and the processing object 1
  • the modified region 7 is formed inside, and the modified region 7 forms a cutting start region 8 that is biased from the center line C toward the back surface 21 side of the workpiece 1 along the planned cutting line 5.
  • the present invention is not limited to the above embodiment.
  • the front surface 3 side or the back surface 2 1 side of the workpiece 1 was pressed along the scheduled cutting line 5, but the workpiece 1 was pressed using a roller or the like.
  • the entire surface 3 side or back surface 21 side may be pressed.
  • the crack 24 is generated starting from the cutting start region 8, the workpiece 1 can be efficiently cut along the planned cutting line 5.
  • a part (for example, a part for each functional element 17) on the front surface 3 side or the back surface 21 side of the workpiece 1 may be sequentially pressed using a pressure idler or the like.
  • a cutter or the like in addition to the knife edge 23 described above. .
  • the workpiece can be cut with high accuracy.

Description

明細
加工対象物切断方法
技術分野
本発明は、 半導体材料基板、 圧電材料基板やガラス基板等の加工対象物を切断 するための加工対象物切断方法に関する。
景技術
レーザ応用の一つに切断があり、 レーザによる一般的な切断は次の通りである 。 例えば半導体ウェハやガラス基板のような加工対象物の切断する箇所に、 加工 対象物が吸収する波長のレーザ光を照射し、 レーザ光の吸収により切断する箇所 において加工対象物の表面から裏面に向けて加熱溶融を進行させて加工対象物を 切断する。 し力、し、 この方法では加工対象物の表面のうち切断する箇所となる領 域周辺も溶融される。 よって、 加工対象物が半導体ウェハの場合、 半導体ウェハ の表面に形成された半導体素子のうち、 上記領域付近に位置する半導体素子が溶 融する恐れがある。
このような加工対象物の表面の溶融を防止する方法として、 例えば、 特開 2 0
0 0 - 2 1 9 5 2 8号公報ゃ特開 2 0 0 0— 1 5 4 6 7号公報に開示されたレー ザによる切断方法がある。 これらの公報の切断方法では、 加工対象物の切断する 箇所をレーザ光により加熱し、 そして加工対象物を冷却することにより、 加工対 象物の切断する箇所に熱衝撃を生じさせて加工対象物を切断する。
発明の開示
しかし、 これらの公報の切断方法では、 加工対象物に生じる熱衝撃が大きいと 、 加工対象物の表面に、 切断予定ラインから外れた割れやレーザ照射していない 先の箇所までの割れ等の不必要な割れが発生することがある。 よって、 これらの 切断方法では精密切断をすることができない。 特に、 加工対象物が半導体ウェハ 、 液晶表示装置が形成されたガラス基板や電極パターンが形成されたガラス基板 の場合、 この不必要な割れにより半導体チップ、 液晶表示装置や電極パターンが 損傷することがある。 また、 これらの切断方法では平均入力エネルギーが大きい ので、 半導体チップ等に与える熱的ダメージも大きい。
そこで、 本発明は、 このような事情に鑑みてなされたものであり、 加工対象物 を精度良く切断することのできる加工対象物切断方法を提供することを目的とす る。
上記目的を達成するために、 本発明に係る加工対象物切断方法は、 ウェハ状の 加工対象物の内部に集光点を合わせてレーザ光を照射し、 加工対象物の内部に多 光子吸収による改質領域を形成し、 この改質領域によって、 加工対象物の厚さ方 向における中心位置から加工対象物の一端面側に偏倚した切断起点領域を加工対 象物の切断予定ラインに沿って形成する切断起点領域形成工程と、 加工対象物の 他端面側から加工対象物を押圧する押圧工程とを備えることを特徴とする。 この加工対象物切断方法においては、 多光子吸収により形成される改質領域に よって、 加工対象物を切断すべき所望の切断予定ラインに沿って加工対象物の内 部に切断起点領域を形成する。 このとき、 多光子吸収は加工対象物の内部で局所 的に発生し、 加工対象物の一端面やその反対側の他端面ではレーザ光がほとんど 吸収されないため、 レーザ光の照射による一端面及び他端面の溶融を防止するこ とができる。 そして、 加工対象物の厚さ方向における中心位置から一端面側に偏 倚して切断起点領域が形成されているため、 他端面側から加工対象物を押圧する と、 当該中心位置に切断起点領域が形成されている場合に比べ、 小さな押圧力で 切断起点領域を起点として加工対象物に割れを発生させることができる。 したが つて、 切断予定ラインから外れた不必要な割れの発生を防止して加工対象物を切 断予定ラインに沿って精度良く切断することが可能になる。
ここで、 集光点とは、 レーザ光が集光した箇所のことである。 また、 切断起点 領域とは、 加工対象物が切断される際に切断の起点となる領域を意味する。 した がって、 切断起点領域は、 加工対象物において切断が予定される切断予定部であ る。 そして、 切断起点領域は、 改質領域が連続的に形成されることで形成される 場合もあるし、 改質領域が断続的に形成されることで形成される場合もある。 ま た、 「加工対象物の厚さ方向における中心位置から加工対象物の一端面側に偏倚 した切断起点領域を形成する」 とは、 切断起点領域を構成する改質領域が、 加工 対象物の厚さ方向における厚さの半分の位置から一端面側に偏倚して形成される ことを意味する。 つまり、 加工対象物の厚さ方向における改質領域 (切断起点領 域) の幅の中心位置が、 加工対象物の厚さ方向における中心位置から一端面側に 偏倚して位置している場合を意味し、 改質領域 (切断起点領域) の全ての部分が 加工対象物の厚さ方向における中心位置に対して一端面側に位置している場合の みに限る意味ではない。
また、 押圧工程では、 切断予定ラインに沿って加工対象物を押圧することが好 ましい。 例えば、 加工対象物の他端面に積層部として機能素子がマトリックス状 に形成されている場合において当該加工対象物を機能素子毎に切断するようなと き、 隣り合う機能素子間に切断予定ラインを設定し、 この切断予定ラインに沿つ て加工対象物を押圧すれば、 機能素子毎に正確に加工対象物を切断することがで きる。 しかも、 機能素子への押圧力の作用をほぼなくすことができる。
また、 切断起点領域形成工程では、 加工対象物に対する切断予定ラインの位置 データを記憶し、 押圧工程では、 位置データに基づいて、 切断予定ラインに沿つ て加工対象物を押圧することが好ましい。 これにより、 加工対象物の内部に形成 された切断起点領域に対して容易且つ正確に押圧力を作用させることが可能にな る。
図面の簡単な説明
図 1は、 本実施形態に係るレーザ加工方法によるレーザ加工中の加工対象物の 平面図である。
図 2は、 図 1に示す加工対象物の II一 II線に沿った断面図である。
図 3は、 本実施形態に係るレーザ加工方法によるレーザ加工後の加工対象物の 平面図である。 図 4は、 図 3に示す加工対象物の IV— IVf泉に沿った断面図である。
図 5は、 図 3に示す加工対象物の V—V,锒に沿った断面図である。
図 6は、 本実施形態に係るレーザ加工方法により切断された加工対象物の平面 図である。
図 7は、 本実施形態に係るレーザ加工方法における電界強度とクラックスポッ トの大きさとの関係を示すグラフである。
図 8は、 本実施形態に係るレーザ加工方法の第 1工程における加工対象物の断 面図である。
図 9は、 本実施形態に係るレーザカ卩ェ方法の第 2工程における加工対象物の断 面図である。
図 1 0は、 本実施形態に係るレーザ加工方法の第 3工程における加工対象物の 断面図である。
図 1 1は、 本実施形態に係るレーザ加工方法の第 4工程における加工対象物の 断面図である。
図 1 2は、 本実施形態に係るレーザ加工方法により切断されたジリコンウェハ の一部における断面の写真を表した図である。
図 1 3は、 本実施形態に係るレーザ加工方法におけるレーザ光の波長とシリコ ン基板の内部の透過率との関係を示すグラフである。
図 1 4は、 本実施形態に係るレーザ加工装置の概略構成図である。
図 1 5は、 本実施形態に係る切断起点領域形成工程を説明するためのフローチ ヤートである。
図 1 6は、 実施例 1に係る加工対象物の平面図である。
図 1 7は、 実施例 1に係る加工対象物の作製工程を示す断面図である。
図 1 8は、 実施例 1に係る切断起点領域形成工程を示す断面図である。
図 1 9は、 実施例 1に係る加工対象物において切断起点領域が中心線を跨いで 位置する場合を示す断面図である。 図 20は、 実施例 1に係る加工対象物において切断起点領域の全ての部分が中 心線に対して表面側に位置する場合を示す断面図である。
図 21は、 実施例 1に係る加工対象物において裏面側の切断起点領域が中心線 上に位置し、 表面側の切断起点領域が裏面側の切断起点領域と表面との間に位置 する場合を示す断面図である。
図 22は、 実施例 1に係る押圧工程を示す断面図である。
図 23は、 実施例 1に係る拡張シートの拡張工程を示す断面図である。
図 24は、 実施例 1に係る切断起点領域形成工程において加工対象物の裏面側 からレーザ光を照射する場合を示す断面図である。
図 25は、 実施例 2に係る切断起点領域形成工程を示す断面図である。
図 26は、 実施例 2に係る押圧工程を示す断面図である。
図 27は、 実施例 2に係る切断起点領域形成工程において加工対象物の裏面側 からレーザ光を照射する場合を示す断面図である。
発明を実施するための最良の形態
以下、 図面と共に本発明の好適な実施形態について詳細に説明する。 本実施形 態に係る加工対象物切断方法の切断起点領域形成工程では、 加工対象物の内部に 集光点を合わせてレーザ光を照射し、 加工対象物の内部に多光子吸収による改質 領域を形成する。 そこで、 このレーザ加工方法、 特に多光子吸収について最初に 説明する。
材料の吸収のバンドギヤップ EGよりも光子のエネルギー h Vが小さいと光学 的に透明となる。 よって、 材料に吸収が生じる条件は h V >EGである。 しかし 、 光学的に透明でも、 レーザ光の強度を非常に大きくすると nh v〉Eeの条件 (n-2, 3, 4, · ■ · ) で材料に吸収が生じる。 この現象を多光子吸収とい う。 パルス波の場合、 レーザ光の強度はレーザ光の集光点のピークパワー密度 ( W/cm2) で決まり、 例えばピークパワー密度が 1 X 108 (W/cm2) 以上 の条件で多光子吸収が生じる。 ピークパワー密度は、 (集光点におけるレーザ光 の 1パルス当たりのエネルギー) ÷ (レーザ光のビームスポッ ト断面積 Xパルス 幅) により求められる。 また、 連続波の場合、 レーザ光の強度はレーザ光の集光 点の電界強度 (WZ c m2) で決まる。
このような多光子吸収を利用する本実施形態に係るレーザ加工の原理について 、 図 1〜図 6を参照して説明する。 図 1はレーザ加工中の加工対象物 1の平面図 であり、 図 2は図 1に示す加工対象物 1の II一 II線に沿った断面図であり、 図 3 はレーザ加工後の加工対象物 1の平面図であり、 図 4は図 3に示す加工対象物 1 の IV— IV線に沿った断面図であり、 図 5は図 3に示す加工対象物 1の V— V,線に 沿った断面図であり、 図 6は切断された加工対象物 1の平面図である。
図 1及び図 2に示すように、 加工対象物 1の表面 3には、 加工対象物 1を切断 すべき所望の切断予定ライン 5がある。 切断予定ライン 5は直線状に延びた仮想 線である (加工対象物 1に実際に線を引いて切断予定ライン 5としてもよい) 。 本実施形態に係るレーザ加工は、 多光子吸収が生じる条件で加工対象物 1の内部 に集光点 Pを合わせてレーザ光 Lを加工対象物 1に照射して改質領域 7を形成す る。 なお、 集光点とはレーザ光 Lが集光した箇所のことである。
レーザ光 Lを切断予定ライン 5に沿って (すなわち矢印 A方向に沿って) 相対 的に移動させることにより、 集光点 Pを切断予定ライン 5に沿って移動させる。 これにより、 図 3〜図 5に示すように改質領域 7が切断予定ライン 5に沿って加 ェ対象物 1の内部にのみ形成され、 この改質領域 7でもって切断起点領域 (切断 予定部) 8が形成される。 本実施形態に係るレーザ加工方法は、 加工対象物 1が レーザ光 Lを吸収することにより加工対象物 1を発熱させて改質領域 7を形成す るのではない。 加工対象物 1にレーザ光 Lを透過させ加工対象物 1の内部に多光 子吸収を発生させて改質領域 7を形成している。 よって、 加工対象物 1の表面 3 ではレーザ光 Lがほとんど吸収されないので、 加工対象物 1の表面 3が溶融する ことはなレ、。
加工対象物 1の切断において、 切断する箇所に起点があると加工対象物 1はそ の起点から割れるので、 図 6に示すように比較的小さな力で加工対象物 1を切断 することができる。 よって、 加工対象物 1の表面 3に不必要な割れを発生させる ことなく加工対象物 1の切断が可能となる。
なお、 切断起点領域を起点とした加工対象物の切断には、 次の 2通りが考えら れる。 1つは、 切断起点領域形成後、 加工対象物に人為的な力が印加されること により、 切断起点領域を起点として加工対象物が割れ、 加工対象物が切断される 場合である。 これは、 例えば加工対象物の厚さが大きい場合の切断である。 人為 的な力が印加されるとは、 例えば、 加工対象物の切断起点領域に沿って加工対象 物に曲げ応力やせん断応力を加えたり、 加工対象物に温度差を与えることにより 熱応力を発生させたりすることである。 他の 1つは、 切断起点領域を形成するこ とにより、 切断起点領域を起点として加工対象物の断面方向 (厚さ方向) に向か つて自然に割れ、 結果的に加工対象物が切断される場合である。 これは、 例えば 加工対象物の厚さが小さい場合には、 1列の改質領域により切断起点領域が形成 されることで可能となり、 加工対象物の厚さが大きい場合には、 厚さ方向に複数 列形成された改質領域により切断起点領域が形成されることで可能となる。 なお 、 この自然に割れる場合も、 切断する箇所において、 切断起点領域が形成されて いない部位に対応する部分の表面上にまで割れが先走ることがなく、 切断起点領 域を形成した部位に対応する部分のみを割断することができるので、 割断を制御 よくすることができる。 近年、 シリコンウェハ等の加工対象物の厚さは薄くなる 傾向にあるので、 このような制御性のよい割断方法は大変有効である。
さて、 本実施形態において多光子吸収により形成される改質領域としては、 次 の (1 ) 〜 (3 ) がある。
( 1 ) 改質領域が 1つ又は複数のクラックを含むクラック領域の場合 加工対象物 (例えばガラスや L i T a 0 3からなる圧電材料) の内部に集光点 を合わせて、 集光点における電界強度が 1 X 1 0 8 (W/ c m 2) 以上で且つパル ス幅が 1 μ s以下の条件でレーザ光を照射する。 このパルス幅の大きさは、 多光 子吸収を生じさせつつ加工対象物の表面に余計なダメージを与えずに、 加工対象 物の内部にのみクラック領域を形成できる条件である。 これにより、 加工対象物 の内部には多光子吸収による光学的損傷という現象が発生する。 この光学的損傷 により加工対象物の内部に熱ひずみが誘起され、 これにより加工対象物の内部に クラック領域が形成される。 電界強度の上限値としては、 例えば 1 X 1012 (W /cm2) である。 パルス幅は例えば 1 n s〜200 n sが好ましい。 なお、 多 光子吸収によるクラック領域の形成は、 例えば、 第 45回レーザ熱加工研究会論 文集 (1 998年. 1 2月) の第 23頁〜第 28頁の 「固体レーザー高調波によ るガラス基板の内部マーキング」 に記載されている。
本発明者は、 電界強度とクラックの大きさとの関係を実験により求めた。 実験 条件は次ぎの通りである。
(A) 加工対象物:パイレックス (登録商標) ガラス (厚さ 700 m)
(B) レーザ
光源:半導体レーザ励起 Nd : YAGレーザ
波長: 1064 n m
レーザ光スポッ ト断面積: 3· 14X 10— 8 cm2
発振形態: Qスィツチパルス
繰り返し周波数: 100 kH z
パルス幅 : 30 n s
出力:出力く 1 m J Zパルス
レーザ光品質: TEM00
偏光特性:直線偏光
(C) 集光用レンズ
レーザ光波長に対する透過率: 60パーセント
(D) 加工対象物が載置される載置台の移動速度: 100歸 秒 なお、 レーザ光品質が TEM0。とは、集光性が高くレーザ光の波長程度まで集
8
訂正された翔紙 (規則 91) 光可能を意味する。
図 7は上記実験の結果を示すグラフである。 横軸はピークパワー密度であり、 レーザ光がパノレスレーザ光なので電界強度はピークパワー密度で表される。 縦軸 は 1パルスのレーザ光により加ェ対象物の内部に形成されたクラック部分 (クラ ックスポット) の大きさを示している。 クラックスポットが集まりクラック領域 となる。 クラックスポットの大きさは、 クラックスポットの形状のうち最大の長 さとなる部分の大きさである。 グラフ中の黒丸で示すデータは集光用レンズ (C ) の倍率が 1 0 0倍、 開口数 (N A) が 0 . 8 0の場合である。 一方、 グラフ中 の白丸で示すデータは集光用レンズ (C ) の倍率が 5 0倍、 開口数 (N A) が 0 · 5 5の場合である。 ピークパワー密度が 1 0 1 1 (WZ c m2) 程度から加工対 象物の内部にクラックスポットが発生し、 ピークパワー密度が大きくなるに従い クラックスポットも大きくなることが分かる。
次に、 本実施形態に係るレーザ加工において、 クラック領域形成による加工対 象物の切断のメカニズムについて図 8〜図 1 1を用いて説明する。 図 8に示すよ うに、 多光子吸収が生じる条件で加工対象物 1の内部に集光点 Pを合わせてレー ザ光 Lを加工対象物 1に照射して切断予定ラインに沿って内部にクラック領域 9 を形成する。 クラック領域 9は 1つ又は複数のクラックを含む領域である。 この クラック領域 9でもつて切断起点領域が形成される。 図 9に示すようにクラック 領域 9を起点として (すなわち、 切断起点領域を起点として) クラックがさらに 成長し、 図 1 0に示すようにクラックが加工対象物 1の表面 3と裏面 2 1に到達 し、 図 1 1に示すように加工対象物 1が割れることにより加工対象物 1が切断さ れる。 加工対象物の表面と裏面に到達するクラックは自然に成長する場合もある し、 加工対象物に力が印加されることにより成長する場合もある。
( 2 ) 改質領域が溶融処理領域の場合
力 [!ェ対象物 (例えばシリコンのような半導体材料) の内部に集光点を合わせて
、 集光点における電界強度が 1 X 1 0 8 (W/ c m 2) 以上で且つパルス幅が 1 μ S以下の条件でレーザ光を照射する。 これにより加工対象物の内部は多光子吸収 によって局所的に加熱される。 この加熱により加工対象物の内部に溶融処理領域 が形成される。 溶融処理領域とは一旦溶融後再固化した領域や、 まさに溶融状態 の領域や、 溶融状態から再固化する状態の領域であり、 相変化した領域や結晶構 造が変化した領域ということもできる。 また、 溶融処理領域とは単結晶構造、 非 晶質構造、 多結晶構造において、 ある構造が別の構造に変化した領域ということ もできる。 つまり、 例えば、 単結晶構造から非晶質構造に変化した領域、 単結晶 構造から多結晶構造に変化した領域、 単結晶構造から非晶質構造及び多結晶構造 を含む構造に変化した領域を意味する。 加工対象物がシリコン単結晶構造の場合 、 溶融処理領域は例えば非晶質シリコン構造である。 電界強度の上限値としては
、 例えば 1 X 1012 (W/ c m2) である。 パルス幅は例えば 1 n s〜 200 n sが好ましい。
本発明者は、 シリコンウェハの内部で溶融処理領域が形成されることを実験に より確認、した。 実験条件は次の通りである。
(A) 加工対象物:シリコンウェハ (厚さ 350 ίΐη、 外径 4インチ)
(Β) レーザ
光源:半導体レーザ励起 N d : Y AGレーザ
波長: 1064 n m
レーザ光スポッ ト断面積: 3. 14X 1 0— 8 cm2
発振形態: Qスィツチパルス
繰り返し周波数: 100 kH z
パルス幅 : 30 n s
出力: 20 μ J /パルス
レーザ光品質: TEM00
偏光特性:直線偏光
(C) 集光用レンズ 倍率: 5 0倍
N. A. : 0. 5 5
レーザ光波長に対する透過率: 6 0パーセント
(D) 加工対象物が載置される載置台の移動速度: 1 0 OmmZ秒 図 1 2は、 上記条件でのレーザ加工により切断されたシリコンウェハの一部に おける断面の写真を表した図である。 シリコンウェハ 1 1の内部に溶融処理領域 1 3が形成されている。 なお、 上記条件により形成された溶融処理領域 1 3の厚 さ方向の大きさは 1 0 0 μ ηι程度である。
溶融処理領域 1 3が多光子吸収により形成されたことを説明する。 図 1 3は、 レーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。 た だし、 シリコン基板の表面側と裏面側それぞれの反射成分を除去し、 内部のみの 透過率を示している。 シリコン基板の厚さ tが 5 0 / m、 1 0 0 m、 2 0 0 μ m、 5 0 0 m、 1 0 00 mの各々について上記関係を示した。
例えば、 N d : YAGレーザの波長である 1 0 64 nmにおいて、 シリコン基 板の厚さが 5 0 0 μΐη以下の場合、 シリコン基板の内部ではレーザ光が 8 0 %以 上透過することが分かる。 図 1 2に示すシリコンウェハ 1 1の厚さは 3 5 0 μπι であるので、 多光子吸収による溶融処理領域 1 3はシリコンウェハの中心付近、 つまり表面から 1 7 5 mの部分に形成される。 この場合の透過率は、 厚さ 2 0 0 μ ΐηのシリコンウェハを参考にすると、 9 0%以上なので、 レーザ光がシリコ ンウェハ 1 1の内部で吸収されるのは僅かであり、 ほとんどが透過する。 このこ とは、 シリコンウェハ 1 1の内部でレーザ光が吸収されて、 溶融処理領域 1 3が シリ コンウェハ 1 1の内部に形成 (つまりレーザ光による通常の加熱で溶融処理 領域が形成) されたものではなく、 溶融処理領域 1 3が多光子吸収により形成さ れたことを意味する。 多光子吸収による溶融処理領域の形成は、 例えば、 溶接学 会全国大会講演概要第 6 6集 (2 0 0 0年 4月) の第 7 2頁〜第 7 3頁の 「ピコ 秒パルスレーザによるシリコンの加工特性評価」 に記載されている。 なお、 シリコンウェハは、 溶融処理領域でもって形成される切断起点領域を起 点として断面方向に向かって割れを発生させ、 その割れがシリコンウェハの表面 と裏面とに到達することにより、 結果的に切断される。 シリコンウェハの表面と 裏面に到達するこの割れは自然に成長する場合もあるし、 シリコンウェハに力が 印加されることにより成長する場合もある。 なお、 切断起点領域からシリコンゥ ェハの表面と裏面とに割れが自然に成長する場合には、 切断起点領域を形成する 溶融処理領域が溶融している状態から割れが成長する場合と、 切断起点領域を形 成する溶融処理領域が溶融している状態から再固化する際に割れが成長する場合 とのいずれもある。 ただし、 どちらの場合も溶融処理領域はシリコンウェハの内 部のみに形成され、 切断後の切断面には、 図 1 2のように内部にのみ溶融処理領 域が形成されている。 加工対象物の内部に溶融処理領域でもつて切断起点領域を 形成すると、 割断時、 切断起点領域ラインから外れた不必要な割れが生じにくい ので、 割断制御が容易となる。
( 3 ) 改質領域が屈折率変化領域の場合
加工対象物 (例えばガラス) の内部に集光点を合わせて、 集光点における電界 強度が 1 X 1 0 8 (W/ c m 2) 以上で且つパルス幅が 1 n s以下の条件でレーザ 光を照射する。 パルス幅を極めて短くして、 多光子吸収を加工対象物の内部に起 こさせると、 多光子吸収によるエネルギーが熱エネルギーに転化せずに、 加工対 象物の内部にはィオン価数変化、 結晶化又は分極配向等の永続的な構造変化が誘 起されて屈折率変化領域が形成される。 電界強度の上限値としては、 例えば I X 1 0 1 2 (W/ c m 2) である。 パルス幅は例えば 1 n s以下が好ましく、 l p s 以下がさらに好ましい。 多光子吸収による屈折率変化領域の形成は、 例えば、 第 4 2回レーザ熱加工研究会論文集 (1 9 9 7年. 1 1月) の第 1 0 5頁〜第 1 1 1頁の 「フェムト秒レーザー照射によるガラス内部への光誘起構造形成」 に記載 されている。
以上、 多光子吸収により形成される改質領域として (1 ) 〜 (3 ) の場合を説 明したが、 ウェハ状の加工対象物の結晶構造やその劈開性などを考慮して切断起 点領域を次のように形成すれば、 その切断起点領域を起点として、 より一層小さ な力で、 しかも精度良く加工対象物を切断することが可能になる。
すなわち、 シリコンなどのダイヤモンド構造の単結晶半導体からなる基板の場 合は、 (1 1 1 ) 面 (第 1劈開面) や (1 1 0 ) 面 (第 2劈開面) に沿った方向 に切断起点領域を形成するのが好ましい。 また、 G a A sなどの閃亜鉛鉱型構造 の III一 V族化合物半導体からなる基板の場合は、 (1 1 0 ) 面に沿った方向に切 断起点領域を形成するのが好ましい。 さらに、 サファイア (A 1 2 0 3) などの六 方晶系の結晶構造を有する基板の場合は、 (0 0 0 1 ) 面 (C面) を主面として ( 1 1 2◦) 面 (A面) 或いは (1 1 0 0 ) 面 (M面) に沿った方向に切断起点 領域を形成するのが好ましい。
なお、 上述した切断起点領域を形成すべき方向 (例えば、 単結晶シリコン基板 における (1 1 1 ) 面に沿った方向) 、 或いは切断起点領域を形成すべき方向に 直交する方向に沿って基板にオリエンテーションフラットを形成すれば、 そのォ リエンテーシヨンフラットを基準とすることで、 切断起点領域を形成すべき方向 に沿った切断起点領域を容易且つ正確に基板に形成することが可能になる。
次に、 上述したレーザ加工方法に使用されるレーザ加工装置について、 図 1 4 を参照して説明する。 図 1 4はレーザ加工装置 1 0 0の概略構成図である。
レーザ加工装置 1 0 0は、 レーザ光 Lを発生するレーザ光源 1 0 1と、 レーザ 光 Lの出力やパルス幅等を調節するためにレーザ光源 1 0 1を制御するレーザ光 源制御部 1 0 2と、 レーザ光 Lの反射機能を有しかつレーザ光 Lの光軸の向きを 9 0 ° 変えるように配置されたダイクロイツクミラー 1 0 3と、 ダイクロイツク ミラー 1 0 3で反射されたレーザ光 Lを集光する集光用レンズ 1 0 5と、 集光用 レンズ 1 0 5で集光されたレーザ光 Lが照射される加工対象物 1が載置される載 置台 1 0 7と、 載置台 1 0 7を X軸方向に移動させるための X軸ステージ 1 0 9 と、 載置台 1 0 7を X軸方向に直交する Y軸方向に移動させるための Y軸ステー ジ 1 1 1と、 載置台 1 0 7を X軸及び Y軸方向に直交する Z軸方向に移動させる ための Z軸ステージ 1 1 3と、 これら 3つのステージ 1 0 9, 1 1 1 , 1 1 3の 移動を制御するステージ制御部 1 1 5とを備える。
この集光点 Pの X (Y) 軸方向の移動は、 加工対象物 1を X (Y) 軸ステージ 1 0 9 ( 1 1 1 ) により X (Y) 軸方向に移動させることにより行う。 Z軸方向 は、 加工対象物 1の表面 3と直交する方向なので、 加工対象物 1に入射するレー ザ光 Lの焦点深度の方向となる。 よって、 Z軸ステージ 1 1 3を Z軸方向に移動 させることにより、 加工対象物 1の内部にレーザ光 Lの集光点 Pを合わせること ができる。 これにより、 例えば、 加工対象物 1が多層構造を有しているような場 合に、 加工対象物 1の基板や或いは当該基板上の積層部等、 所望の位置に集光点 Pを合わせることができる。
レーザ光源 1 0 1はパルスレーザ光を発生する N d : Y A Gレーザである。 レ 一ザ光源 1 0 1に用いることができるレーザとして、 この他、 N d : Y V 0 4レ 一ザ、 N d : Y L Fレーザやチタンサファイアレーザがある。 本実施形態では、 加工対象物 1の加工にパルスレーザ光を用いているが、 多光子吸収を起こさせる ことができるなら連続波レーザ光でもよい。
レーザ加工装置 1 0 0はさらに、 載置台 1 0 7に載置された加工対象物 1を可 視光線により照明するために可視光線を発生する観察用光源 1 1 7と、 ダイク口 イツクミラー 1 0 3及び集光用レンズ 1 0 5と同じ光軸上に配置された可視光用 のビームスプリッタ 1 1 9とを備える。 ビームスプリッタ 1 1 9と集光用レンズ 1 0 5との間にダイクロイックミラー 1 0 3が配置されている。 ビームスプリッ タ 1 1 9は、 可視光線の約半分を反射し残りの半分を透過する機能を有しかつ可 視光線の光軸の向きを 9 0 ° 変えるように配置されている。 観察用光源 1 1 7か ら発生した可視光線はビームスプリッタ 1 1 9で約半分が反射され、 この反射さ れた可視光線がダイクロイツクミラー 1 0 3及び集光用レンズ 1 0 5を透過し、 加工対象物 1の切断予定ライン 5等を含む表面 3を照明する。 なお、 加工対象物 1の裏面が集光用レンズ 1 0 5側となるよう加工対象物 1が載置台 1 0 7に載置 された場合は、 ここでいう 「表面」 カ 「裏面」 となるのは勿論である。
レーザ加工装置 1 0 0はさらに、 ビームスプリッタ 1 1 9、 ダイクロイツクミ ラー 1 0 3及び集光用レンズ 1 0 5と同じ光軸上に配置された撮像素子 1 2 1及 び結像レンズ 1 2 3を備える。 撮像素子 1 2 1としては例えば C C Dカメラがあ る。 切断予定ライン 5等を含む表面 3を照明した可視光線の反射光は、 集光用レ ンズ 1 0 5、 ダイクロイツクミラー 1 0 3、 ビームスプリッタ 1 1 9を透過し、 結像レンズ 1 2 3で結像されて撮像素子 1 2 1で撮像され、 撮像データとなる。
レーザ加工装置 1 0 0はさらに、 撮像素子 1 2 1から出力された撮像データが 入力される撮像データ処理部 1 2 5と、 レーザ加工装置 1 0 0全体を制御する全 体制御部 1 2 7と、 モニタ 1 2 9とを備える。 撮像データ処理部 1 2 5は、 撮像 データを基にして観察用光源 1 1 7で発生した可視光の焦点を加工対象物 1の表 面 3上に合わせるための焦点データを演算する。 この焦点データを基にしてステ ージ制御部 1 1 5が Z軸ステージ 1 1 3を移動制御することにより、 可視光の焦 点が加工対象物の表面 3に合うようにする。 よって、 撮像データ処理部 1 2 5は オートフォーカスユニットとして機能する。 また、 撮像データ処理部 1 2 5は、 撮像データを基にして表面 3の拡大画像等の画像データを演算する。 この画像デ ータは全体制御部 1 2 7に送られ、 全体制御部で各種処理がなされ、 モニタ 1 2 9に送られる。 これにより、 モニタ 1 2 9に拡大画像等が表示される。
全体制御部 1 2 7には、 ステージ制御部 1 1 5からのデータ、 撮像データ処理 部 1 2 5からの画像データ等が入力し、 これらのデータも基にしてレーザ光源制 御部 1 0 2、 観察用光源、 1 1 7及びステージ制御部 1 1 5を制御することにより 、 レーザ加工装置 1 0 0全体を制御する。 よって、 全体制御部 1 2 7はコンビュ ータュニットとして機倉 gする。
次に、 上述したレーザ加工装置 1 0 0を使用した場合の切断起点領域形成工程 について、 図 1 4及ぴ図 1 5を参照して説明する。 図 1 5は、 本実施形態に係る 切断起点領域形成工程を説明するためのフローチャートである。
加工対象物 1の光吸収特性を図示しない分光光度計等により測定する。 この測 定結果に基づいて、 加工対象物 1に対して透明な波長又は吸収の少ない波長のレ 一ザ光 Lを発生するレーザ光源 1 0 1を選定する (S 1 0 1 )。続いて、加工対象 物 1の厚さを測定する。 厚さの測定結果及び加工対象物 1の屈折率を基にして、 加工対象物 1の Z軸方向の移動量を決定する (S 1 0 3 )。 これは、 レーザ光しの 集光点 Pを加工対象物 1の内部に位置させるために、 加工対象物 1の表面 3に位 置するレーザ光 Lの集光点 Pを基準とした加工対象物 1の Z軸方向の移動量であ る。 この移動量は全体制御部 1 2 7に入力される。
加工対象物 1をレーザ加工装置 1 0 0の載置台 1 0 7に載置する。 そして、 観 察用光源 1 1 7から可視光を発生させて加工対象物 1を照明する (S 1 0 5 )。照 明された切断予定ライン 5を含む加工対象物 1の表面 3を撮像素子 1 2 1により 撮像する。 撮像素子 1 2 1により撮像された撮像データは撮像データ処理部 1 2 5に送られる。 この撮像データに基づいて撮像データ処理部 1 2 5は観察用光源 1 1 7の可視光の焦点が表面 3に位置するような焦点データを演算する ( S 1 0 7 )。
この焦点データはステージ制御部 1 1 5に送られる。 ステージ制御部 1 1 5は 、 この焦点データを基にして Z軸ステージ 1 1 3を Z軸方向の移動させる (S 1 0 9 )。 これにより、観察用光源 1 1 7の可視光の焦点が加工対象物 1の表面 3に 位置する。 なお、 撮像データ処理部 1 2 5は撮像データに基づいて、 切断予定ラ イン 5を含む加工対象物 1の表面 3の拡大画像データを演算する。 この拡大画像 データは全体制御部 1 2 7を介してモニタ 1 2 9に送られ、 これによりモニタ 1 2 9に切断予定ライン 5付近の拡大画像が表示される。
全体制御部 1 2 7には予めステップ S 1 0 3で決定された移動量データが入力 されており、 この移動量データがステージ制御部 1 1 5に送られる。 ステージ制 御部 1 1 5はこの移動量データに基づいて、 レーザ光 Lの集光点 Pが加工対象物 1の内部となる位置に、 Z軸ステージ 1 1 3により加工対象物 1を Z軸方向に移 動させる (S 1 1 1 )。
続いて、 レーザ光源 1 0 1からレーザ光 Lを発生させて、 レーザ光 Lを加工対 象物 1の表面 3の切断予定ライン 5に照射する。 レーザ光 Lの集光点 Pは加工対 象物 1の内部に位置しているので、 改質領域は加工対象物 1の内部にのみ形成さ れる。 そして、 切断予定ライン 5に沿うように X軸ステージ 1 0 9や Y軸ステー ジ 1 1 1を移動させて、 切断予定ライン 5に沿って改質領域を形成し、 この改質 領域によって、 加工対象物 1の内部に切断予定ライン 5に沿った切断起点領域を 形成する (S 1 1 3 )。
以下、 実施例により、 本発明についてより具体的に説明する。
[実施例 1 ]
本発明に係る加工対象物切断方法の実施例 1について説明する。 なお、 図 1 7 、図 1 8及び図 2 2〜図 2 4は、図 1 6に示す加工対象物 1の XVII— XVII線に沿 つた部分断面図である。 また、 図 1 9〜図 2 1は、 図 1 6に示す加工対象物 1の XIX— XIX線に沿った部分断面図である。
図 1 6及ぴ図 1 7に示すように、 シリコンウェハである加工対象物 1の表面 3 に、 加工対象物 1のオリエンテーションフラット 1 6と平行に複数の機能素子 1 7をマトリックス状に形成して、 加工対象物 1を作製する。 この加工対象物 1の 表面 3側には、 S i 0 2等の絶縁膜 1 8が形成され、 この絶縁膜 1 8によって表 面 3と機能素子 1 7とが覆われている。
したがって、 加工対象物 1は基板であり、 機能素子 1 7及び絶縁膜 1 8は、 基 板の表面に設けられた積層部である。 ここで、 基板の表面に設けられた積層部と は、 基板の表面に堆積されたもの、 基板の表面に貼り合わされたもの、 或いは基 板の表面に取り付けられたもの等をいい、 基板に対し異種材料であるか同種材料 であるかは問わない。 そして、 基板の表面に設けられた積層部には、 基板に密着 して設けられるものや、 基板と間隙を取って設けられるもの等がある。 例として は、 基板上に結晶成長により形成された半導体動作層、 基板上に形成された機能 素子 (フォトダイオード等の受光素子やレーザダイオード等の発光素子、 或いは 回路として形成された回路素子等を意味する) 、 ガラス基板上に貼り合わされた 他のガラス基板等があり、 積層部は異種材料を複数層形成したものも含む。 続いて、 図 1 8に示すように、 加工対象物 1の裏面 2 1に拡張可能な拡張フィ ルム 1 9を貼り付けた後、 例えば上述のレーザ加工装置 1 0 0の載置台 1 0 7上 に、 加工対象物 1の表面 3側が集光用レンズ 1 0 5に対面するように加工対象物 1を載置する。 そして、 加工対象物 1の内部に集光点 Pを合わせてレーザ光 Lを 照射し、 加工対象物 1の内部に改質領域 7を形成し、 この改質領域 7によって、 加工対象物 1の表面 (レーザ光入射面) 3から所定距離内側に切断起点領域 8を 切断予定ライン 5に沿って形成する (切断起点領域形成工程) 。 なお、 加工対象 物 1がシリコンウェハであるため、 改質領域 7としては溶融処理領域が形成され る。
この切断起点領域形成工程では、 図 1 9に示すように、 加工対象物 1の厚さ方 向における中心位置を通る中心線 C乙から、 表面 (一端面) 3側に偏倚した切断 起点領域 8を切断予定ライン 5に沿って形成する。 例として、 シリコンウェハで ある加工対象物 1の厚さが 1 0 0 μ mの場合、 切断起点領域 8に対して表面 3側 に位置する非改質領域 1 aの厚さ方向の幅 (以下、 単に 「幅」 という) は 2 0 m、 切断起点領域 8 (すなわち改質領域 7 ) の幅は 4 0 m、 切断起点領域 8に 対して裏面 2 1側に位置する非改質領域 1 bの幅は 4 0 mである。 また、 加工 対象物 1の厚さが 5 0 μ mの場合、 非改質領域 1 aの幅は 1 0 μ m、 切断起点領 域 8の幅は 2 0 μ m、 非改質領域 1 bの幅は 2 0 μ mである。
なお、 このような 「切断起点領域 8が中心線 C Lを跨いで位置する場合」 の他 に、 「中心線 C Lから表面 3側に偏倚した切断起点領域 8」 の態様として、 例え ば次のような 2つの場合がある。 すなわち、 図 2 0に示すように 「切断起点領域 8の全ての部分が中心線 C Lに対して表面 3側に位置する場合」 と、 図 2 1に示 すように 「切断起点領域 8 a, 8 bが表面 3側と裏面 2 1側とに 2本形成され、 裏面 2 1側の切断起点領域 8 bが中心線 C L上に位置し、 表面 3側の切断起点領 域 8 aが切断起点領域 8 bと表面 3との間に位置する場合」 である。
例えば、 図 2 0の場合は、 加工対象物 1の厚さが 1 0 0 μ m、 非改質領域 1 a の幅が 3 0 m、 切断起点領域 8の幅が 1 0 μ m、 非改質領域 1 bの幅が 6 0 μ mである。 また、 図 2 1の場合は、 加工対象物 1の厚さが 2 0 0 ιη、 非改質領 域 1 aの幅が 2 0 μ m、 切断起点領域 8 aの幅が 4 0 m、 切断起点領域 8 a , 8 b間に位置する非改質領域 1 cの幅が 2 ◦ μ m、 切断起点領域 8 の幅が 4 0 μ m、 非改質領域 1 bの幅が 8 0 /i mである。
また、 上述の切断起点領域形成工程では、 レーザ光 Lが切断予定ライン 5上を 走査されるが、 この切断予定ライン 5は、 隣り合う機能素子 1 7 , 1 7間を通る ように格子状に設定される (図 1 6参照) 。 そして、 この加工対象物 1に対する 切断予定ライン 5の位置データは、 例えばレーザ加工装置 1 0 0の全体制御部 1 2 7内の記憶部に記憶される。
切断起点領域形成工程の後、 図 2 2に示すように、 拡張フイノレム 1 9を介して 加工対象物 1の裏面 (他端面) 2 1側から押圧手段としてのナイフエッジ 2 3を 加工対象物 1に押し当て、 切断起点領域 8を起点として割れ 2 4を発生させて、 この割れ 2 4を加工対象物 1の表面 3と裏面 2 1とに到達させる (押圧工程) 。 これにより、 加工対象物 1は、 機能素子 1 7を 1つ有する個々の半導体チップ 2 5に分割されていく。
この押圧工程では、 記憶部に記憶されていた切断予定ライン 5の位置データが 読み出され、 この位置データに基づいてナイフエッジ 2 3が制御されて、 切断予 定ライン 5に沿って加工対象物 1にナイフエッジ 2 3が押し当てられ、 これによ り、 切断予定ライン 5に沿つて加工対象物 1が押圧されることになる。
このように、 切断起点領域形成工程において、 加工対象物 1に対する切断予定 ライン 5の位置データを記憶し、 押圧工程において、 その位置データに基づいて 切断予定ライン 5に沿って加工対象物 1を押圧することで、 基板 1の内部に形成 された切断起点領域 8に対して容易且つ正確に押圧力を作用させることができる 。 そして、 切断予定ライン 5に沿って加工対象物 1を押圧することで、 機能素子 1 7毎に正確に加工対象物 1を切断することができ、 しかも、 機能素子 1 7への 押圧力の作用をほぼなくすことができる。
図 2 2に示す押圧工程のように、 改質領域 7が加工対象物 1の表面 3近傍に位 置する場合には、 改質領域 7でもって形成された切断起点領域 (切断予定部) 8 に沿うよう加工対象物 1の裏面 2 1にナイフエッジ 2 3を押し当てて、 加工対象 物 1を割って切断する。 これは、 ナイフエッジ 2 3の押し当てにより生じる曲げ 応力のうち大きな引張応力が改質領域 7に作用するため、 比較的小さな力で加ェ 対象物 1を切断することができるからである。
加工対象物 1を押圧した後、 図 2 3に示すように、 拡張フイルム 1 9を外方側 にエキスパンドして各半導体チップ 2 5を互いに離間させる。 このように拡張フ イルム 1 9を用いて各半導体チップ 2 5を互いに離間させることで、 半導体チッ プ 2 5のピックアップの容易化を図ることができる。
以上説明したように、 実施例 1に係る加工対象物切断方法においては、 多光子 吸収により形成される改質領域 7によって、 切断予定ライン 5に沿って加工対象 物 1の内部に切断起点領域 8を形成する。 このとき、 多光子吸収は加工対象物 1 の内部で局所的に発生し、 加工対象物 1の表面 3や裏面 2 1ではレーザ光 Lがほ とんど吸収されないため、 レーザ光 Lの照射による表面 3及ぴ裏面 2 1の溶融を 防止することができる。 そして、 加工対象物 1の中心線 C Lから表面 3側に偏倚 して切断起点領域 8が形成されているため、 ナイフエッジ 2 3によって裏面 2 1 側から加工対象物 1を押圧すると、 中心線 C L上に切断起点領域 8が形成されて いる場合に比べ、 小さな押圧力で切断起点領域 8を起点として加工対象物 1に割 れ 2 4を発生させることができる。 したがって、 切断予定ライン 5から外れた不 必要な割れの宪生を防止して加工対象物 1を切断予定ライン 5に沿って精度良く 切断することが可能になる。
なお、 図 1 6及ぴ図 1 7に示す加工対象物 1において、 隣り合う機能素子 1 7 , 1 7間に (すなわち、 切断予定ライン 5上に) 静電気対策などのための金属膜 が形成されており、 加工対象物 1の表面 3側からのレーザ光 Lの照射が困難な場 合には、 次のように切断起点領域 8を形成することができる。 すなわち、 図 2 4 に示すように、 拡張フィルム 1 9を貼り付ける前に、 加工対象物 1の表面 3側に 機能素子 1 7を保護するための保護フィルム 2 0を貼り付け、 例えば上述のレー ザ加工装置 1 0 0の載置台 1 0 7上に、 加工対象物 1の裏面 2 1側が集光用レン ズ 1 0 5に対面するように加工対象物 1を載置する。 そして、 加工対象物 1の内 部に集光点 Pを合わせてレーザ光 Lを照射し、 加工対象物 1の内部に改質領域 7 を形成し、 この改質領域 7によって、 中心線 C Lから加工対象物 1の表面 3側に 偏倚した切断起点領域 8を切断予定ライン 5に沿って形成する。
[実施例 2 ]
本発明に係る加工対象物切断方法の実施例 2について説明する。 なお、 図 2 5 〜図 2 7は、図 1 6に示す加工対象物 1の XVII— XVII線に沿った部分断面図であ る。 .
上述した実施例 1と同様に、 図 1 6及び図 1 7に示す加工対象物 1を作製し、 この加工対象物 1の表面 (レーザ光入射面) 3から所定距離内側に切断起点領域 8を切断予定ライン 5に沿って形成する (切断起点領域形成工程) 。 実施例 2に おける切断起点領域形成工程では、 図 2 5に示すように、 加工対象物 1の厚さ方 向における中心位置を通る中心線 C から、 裏面 (一端面) 2 1側に偏倚した切 断起点領域 8を切断予定ライン 5に沿って形成する。
続いて、 図 2 6に示すように、 加工対象物 1の表面 3側に保護フィルム 2 0を 貼り付け、 この保護フィルム 2 0により機能素子 1 7を覆う。 そして、 拡張フィ ルム 1 9を介して加工対象物 1の表面 (他端面) 3側からナイフエッジ 2 3を加 ェ対象物 1に押し当て、 切断起点領域 8を起点として割れ 2 4を発生させて、 こ の割れ 2 4を加工対象物 1の表面 3と裏面 2 1とに到達させる (押圧工程) 。 こ れにより、 加工対象物 1は、 機能素子 1 7を 1つ有する個々の半導体チップ 2 5 に分割されていく。
この押圧工程においても、 実施例 1と同様に、 記憶部に記憶されていた切断予 定ライン 5の位置データが読み出され、 この位置データに基づいてナイフエッジ 2 3が制御されて、 切断予定ライン 5に沿って加工対象物 1にナイフエッジ 2 3 が押し当てられ、 これにより、 切断予定ライン 5に沿って加工対象物 1が押圧さ れることになる。
図 2 6に示す押圧工程のように、 改質領域 7が加工対象物 1の裏面 2 1近傍に 位置する場合には、 改質領域 7でもって形成された切断起点領域 (切断予定部) 8に沿うよう加工対象物 1の表面 3にナイフエッジ 2 3を押し当てて、 加工対象 物 1を割って切断する。 これは、 ナイフエッジ 2 3の押し当てにより生じる曲げ 応力のうち大きな引張応力が改質領域 7に作用するため、 比較的小さな力で加工 対象物 1を切断することができるからである。
続いて、 加工対象物 1から保護フィルム 2 0を剥がし取り、 実施例 1と同様に
、 拡張フィルム 1 9を外方側にエキスパンドして各半導体チップ 2 5を互いに離 間させて、 各半導体チップ 2 5のピックアップを行う。
以上説明したように、 実施例 2に係る加工対象物切断方法においては、 加工対 象物 1の中心線 C Lから裏面 2 1側に偏倚して切断起点領域 8が形成される。 こ のため、 ナイフエッジ 2 3によって表面 3側から加工対象物 1を押圧すると、 中 心 f泉 C L上に切断起点領域 8が形成されている場合に比べ、 小さな押圧力で切断 起点領域 8を起点として加工対象物 1に割れ 2 4を発生させることができる。 し たがって、 切断予定ライン 5から外れた不必要な割れの発生を防止して加工対象 物 1を切断予定ライン 5に沿って精度良く切断することが可能になる。 しかも、 小さな押圧力によって加工対象物 1を切断することが可能となることから、 表面 3側から加工対象物 1を押圧した際の機能素子 1 7への影響を軽減することがで さる。
なお、 加工対象物 1において、 隣り合う機能素子 1 7 , 1 7間に静電気対策な どのための金属膜が形成されており、 加工対象物 1の表面 3側からのレーザ光 L の照射が困難な場合には、 図 2 7に示すように、 上述した実施例 1と同様の方法 によって、 加工対象物 1の内部に集光点 Pを合わせてレーザ光 Lを照射し、 加工 対象物 1の内部に改質領域 7を形成し、 この改質領域 7によって、 中心線 C か ら加工対象物 1の裏面 2 1側に偏倚した切断起点領域 8を切断予定ライン 5に沿 つて形成する。
本発明は上記実施形態には限定されない。 例えば、 実施例 1及び実施例 2の押 圧工程では、 切断予定ライン 5に沿って加工対象物 1の表面 3側又は裏面 2 1側 を押圧したが、 ローラ等を用いて加工対象物 1の表面 3側又は裏面 2 1側の全体 を押圧してもよい。 この場合にも、 切断起点領域 8を起点として割れ 2 4が発生 するため、 切断予定ライン 5に沿って加工対象物 1を効率良く切断することがで きる。 また、 加圧エードル等を用いて加工対象物 1の表面 3側又は裏面 2 1側の 一部分 (例えば機能素子 1 7毎の部分) を順次押圧していってもよい。 なお、 切 断予定ライン 5に沿って加工対象物 1を押圧する手段としては、 上述のナイフエ ッジ 2 3の他にカツタ等がある。 .
産業上の利用可能性
以上説明したように、 本発明に係る加工対象物切断方法によれば、 加工対象物 を精度良く切断することが可能になる。

Claims

言冑求の範囲
1 . ウェハ状の加工対象物の内部に集光点を合わせてレーザ光を照射し、 前記 加工対象物の内部に多光子吸収による改質領域を形成し、 この改質領域によって 、 前記加工対象物の厚さ方向における中心位置から前記加工対象物の一端面側に 偏倚した切断起点領域を前記加工対象物の切断予定ラインに沿って形成する切断 起点領域形成工程と、
前記加工対象物の他端面側から前記加工対象物を押圧する押圧工程とを備える ことを特徴とする加工対象物切断方法。
2 . 前記押圧工程では、 前記切断予定ラインに沿って前記加工対象物を押圧す ることを特徴とする請求の範囲第 1項記載の加工対象物切断方法。
3 . 前記切断起点領域形成工程では、 前記加工対象物に対する前記切断予定ラ インの位置データを記憶し、
前記押圧工程では、 前記位置データに基づいて、 前記切断予定ラインに沿って 前記加工対象物を押圧することを特徴とする請求の範囲第 2項記載の加工対象物 切断方法。
PCT/JP2003/002867 2002-03-12 2003-03-11 Method of cutting processed object WO2003076119A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE60335538T DE60335538D1 (de) 2002-03-12 2003-03-11 Verfahren zum schneiden eines bearbeiteten objekts
JP2003574374A JP4606741B2 (ja) 2002-03-12 2003-03-11 加工対象物切断方法
US10/507,340 US7749867B2 (en) 2002-03-12 2003-03-11 Method of cutting processed object
KR1020047014372A KR100749972B1 (ko) 2002-03-12 2003-03-11 가공 대상물 절단 방법
AU2003211581A AU2003211581A1 (en) 2002-03-12 2003-03-11 Method of cutting processed object
AT03744054T ATE493226T1 (de) 2002-03-12 2003-03-11 Verfahren zum schneiden eines bearbeiteten objekts
EP03744054A EP1498216B1 (en) 2002-03-12 2003-03-11 Method of cutting processed object
US12/570,380 US8183131B2 (en) 2002-03-12 2009-09-30 Method of cutting an object to be processed
US13/451,988 US8551865B2 (en) 2002-03-12 2012-04-20 Method of cutting an object to be processed
US13/975,814 US8673745B2 (en) 2002-03-12 2013-08-26 Method of cutting object to be processed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002067372 2002-03-12
JP2002-67372 2002-03-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10507340 A-371-Of-International 2003-03-11
US12/570,380 Division US8183131B2 (en) 2002-03-12 2009-09-30 Method of cutting an object to be processed

Publications (1)

Publication Number Publication Date
WO2003076119A1 true WO2003076119A1 (en) 2003-09-18

Family

ID=27800281

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2003/002867 WO2003076119A1 (en) 2002-03-12 2003-03-11 Method of cutting processed object
PCT/JP2003/002945 WO2003076120A1 (en) 2002-03-12 2003-03-12 Laser processing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002945 WO2003076120A1 (en) 2002-03-12 2003-03-12 Laser processing method

Country Status (11)

Country Link
US (7) US7749867B2 (ja)
EP (9) EP2216128B1 (ja)
JP (9) JP4606741B2 (ja)
KR (3) KR100749972B1 (ja)
CN (3) CN1328002C (ja)
AT (2) ATE493226T1 (ja)
AU (2) AU2003211581A1 (ja)
DE (1) DE60335538D1 (ja)
ES (3) ES2356817T3 (ja)
TW (2) TWI296218B (ja)
WO (2) WO2003076119A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042421A1 (ja) * 2003-10-31 2005-05-12 The Japan Steel Works, Ltd. ガラスの切断方法
EP1742253A1 (en) * 2004-03-30 2007-01-10 Hamamatsu Photonics K.K. Laser processing method and semiconductor chip
WO2007004607A1 (ja) * 2005-07-04 2007-01-11 Hamamatsu Photonics K.K. 加工対象物切断方法
WO2007037219A1 (ja) * 2005-09-28 2007-04-05 Tokyo Seimitsu Co., Ltd. レーザーダイシング装置及びレーザーダイシング方法
US7211526B2 (en) 2004-02-19 2007-05-01 Canon Kabushiki Kaisha Laser based splitting method, object to be split, and semiconductor element chip
WO2007074823A1 (ja) * 2005-12-27 2007-07-05 Hamamatsu Photonics K.K. レーザ加工方法及び半導体チップ
JP2009188433A (ja) * 2009-05-28 2009-08-20 Mitsubishi Chemicals Corp 窒化物系半導体素子の製造方法
US7902636B2 (en) 2004-11-12 2011-03-08 Hamamatsu Photonics K.K. Semiconductor chip including a substrate and multilayer part
US7939430B2 (en) 2004-11-12 2011-05-10 Hamamatsu Photonics K.K. Laser processing method
JP2012023231A (ja) * 2010-07-15 2012-02-02 Disco Abrasive Syst Ltd 分割方法
CN103418908A (zh) * 2012-05-17 2013-12-04 株式会社迪思科 改性层形成方法
CN103537805A (zh) * 2012-07-17 2014-01-29 深圳市大族激光科技股份有限公司 晶圆片激光切割方法及晶圆片加工方法

Families Citing this family (233)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659300B2 (ja) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
ATE534142T1 (de) 2002-03-12 2011-12-15 Hamamatsu Photonics Kk Verfahren zum auftrennen eines substrats
EP2216128B1 (en) 2002-03-12 2016-01-27 Hamamatsu Photonics K.K. Method of cutting object to be processed
TWI326626B (en) 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
TWI520269B (zh) 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
FR2852250B1 (fr) 2003-03-11 2009-07-24 Jean Luc Jouvin Fourreau de protection pour canule, un ensemble d'injection comportant un tel fourreau et aiguille equipee d'un tel fourreau
US8685838B2 (en) * 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
US20060128065A1 (en) * 2003-06-06 2006-06-15 Teiichi Inada Adhesive sheet, dicing tape intergrated type adhesive sheet, and semiconductor device producing method
JP2005032903A (ja) 2003-07-10 2005-02-03 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
EP2324950B1 (en) * 2003-07-18 2013-11-06 Hamamatsu Photonics K.K. Semiconductor substrate to be cut with treated and minute cavity region, and method of cutting such substrate
JP4563097B2 (ja) 2003-09-10 2010-10-13 浜松ホトニクス株式会社 半導体基板の切断方法
JP2005101413A (ja) * 2003-09-26 2005-04-14 Disco Abrasive Syst Ltd 薄板状被加工物の分割方法及び装置
JP4569097B2 (ja) * 2003-11-18 2010-10-27 凸版印刷株式会社 球状弾性表面波素子およびその製造方法
JP4509578B2 (ja) 2004-01-09 2010-07-21 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4601965B2 (ja) * 2004-01-09 2010-12-22 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4598407B2 (ja) * 2004-01-09 2010-12-15 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4536407B2 (ja) * 2004-03-30 2010-09-01 浜松ホトニクス株式会社 レーザ加工方法及び加工対象物
JP4829781B2 (ja) * 2004-03-30 2011-12-07 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップ
JP4938998B2 (ja) * 2004-06-07 2012-05-23 富士通株式会社 基板及び積層体の切断方法、並びに積層体の製造方法
US7491288B2 (en) * 2004-06-07 2009-02-17 Fujitsu Limited Method of cutting laminate with laser and laminate
JP2006040949A (ja) * 2004-07-22 2006-02-09 Advanced Lcd Technologies Development Center Co Ltd レーザー結晶化装置及びレーザー結晶化方法
US8604383B2 (en) * 2004-08-06 2013-12-10 Hamamatsu Photonics K.K. Laser processing method
KR100628276B1 (ko) * 2004-11-05 2006-09-27 엘지.필립스 엘시디 주식회사 스크라이브 장비 및 이를 구비한 기판의 절단장치 및이것을 이용한 기판의 절단방법
JP2006173428A (ja) * 2004-12-17 2006-06-29 Seiko Epson Corp 基板加工方法及び素子製造方法
JP4809632B2 (ja) * 2005-06-01 2011-11-09 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP4938261B2 (ja) * 2005-08-11 2012-05-23 株式会社ディスコ 液晶デバイスウエーハのレーザー加工方法
JP4742751B2 (ja) * 2005-08-30 2011-08-10 セイコーエプソン株式会社 表示パネル、表示パネルのレーザスクライブ方法及び電子機器
JP4762653B2 (ja) * 2005-09-16 2011-08-31 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
US7723718B1 (en) * 2005-10-11 2010-05-25 SemiLEDs Optoelectronics Co., Ltd. Epitaxial structure for metal devices
WO2007055010A1 (ja) * 2005-11-10 2007-05-18 Renesas Technology Corp. 半導体装置の製造方法および半導体装置
US20070111480A1 (en) * 2005-11-16 2007-05-17 Denso Corporation Wafer product and processing method therefor
JP2007165850A (ja) * 2005-11-16 2007-06-28 Denso Corp ウェハおよびウェハの分断方法
JP4872503B2 (ja) * 2005-11-16 2012-02-08 株式会社デンソー ウェハおよびウェハの加工方法
JP2007142001A (ja) * 2005-11-16 2007-06-07 Denso Corp レーザ加工装置およびレーザ加工方法
JP2007165851A (ja) * 2005-11-16 2007-06-28 Denso Corp ダイシングシートフレーム
KR100858983B1 (ko) * 2005-11-16 2008-09-17 가부시키가이샤 덴소 반도체 장치 및 반도체 기판 다이싱 방법
US7838331B2 (en) * 2005-11-16 2010-11-23 Denso Corporation Method for dicing semiconductor substrate
JP4830740B2 (ja) * 2005-11-16 2011-12-07 株式会社デンソー 半導体チップの製造方法
US7662668B2 (en) * 2005-11-16 2010-02-16 Denso Corporation Method for separating a semiconductor substrate into a plurality of chips along with a cutting line on the semiconductor substrate
JP4923874B2 (ja) * 2005-11-16 2012-04-25 株式会社デンソー 半導体ウェハ
JP4736738B2 (ja) * 2005-11-17 2011-07-27 株式会社デンソー レーザダイシング方法およびレーザダイシング装置
JP4907965B2 (ja) * 2005-11-25 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法
JP2007165706A (ja) * 2005-12-15 2007-06-28 Renesas Technology Corp 半導体集積回路装置の製造方法
JP4655915B2 (ja) * 2005-12-15 2011-03-23 セイコーエプソン株式会社 層状基板の分割方法
JP4804911B2 (ja) * 2005-12-22 2011-11-02 浜松ホトニクス株式会社 レーザ加工装置
US7960202B2 (en) * 2006-01-18 2011-06-14 Hamamatsu Photonics K.K. Photodiode array having semiconductor substrate and crystal fused regions and method for making thereof
GB2434767A (en) * 2006-02-02 2007-08-08 Xsil Technology Ltd Laser machining
US20070181545A1 (en) * 2006-02-06 2007-08-09 Boyette James E Method and apparatus for controlling sample position during material removal or addition
JP2007235008A (ja) * 2006-03-03 2007-09-13 Denso Corp ウェハの分断方法およびチップ
JP4322881B2 (ja) * 2006-03-14 2009-09-02 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP2007290304A (ja) * 2006-04-27 2007-11-08 Casio Comput Co Ltd 脆性シート材分断方法及びその装置
JP2007304296A (ja) * 2006-05-11 2007-11-22 Sony Corp 液晶表示装置及びその製造方法、並びに映像表示装置
JP2007304297A (ja) * 2006-05-11 2007-11-22 Sony Corp 液晶表示装置の製造方法
US20070298529A1 (en) * 2006-05-31 2007-12-27 Toyoda Gosei, Co., Ltd. Semiconductor light-emitting device and method for separating semiconductor light-emitting devices
JP4480728B2 (ja) * 2006-06-09 2010-06-16 パナソニック株式会社 Memsマイクの製造方法
EP1875983B1 (en) 2006-07-03 2013-09-11 Hamamatsu Photonics K.K. Laser processing method and chip
JP5183892B2 (ja) 2006-07-03 2013-04-17 浜松ホトニクス株式会社 レーザ加工方法
JP4954653B2 (ja) 2006-09-19 2012-06-20 浜松ホトニクス株式会社 レーザ加工方法
WO2008035679A1 (fr) * 2006-09-19 2008-03-27 Hamamatsu Photonics K. K. Procédé de traitement au laser et appareil de traitement au laser
JP5101073B2 (ja) * 2006-10-02 2012-12-19 浜松ホトニクス株式会社 レーザ加工装置
JP4964554B2 (ja) * 2006-10-03 2012-07-04 浜松ホトニクス株式会社 レーザ加工方法
JP5132911B2 (ja) * 2006-10-03 2013-01-30 浜松ホトニクス株式会社 レーザ加工方法
US8735770B2 (en) * 2006-10-04 2014-05-27 Hamamatsu Photonics K.K. Laser processing method for forming a modified region in an object
US7892891B2 (en) * 2006-10-11 2011-02-22 SemiLEDs Optoelectronics Co., Ltd. Die separation
GB0622232D0 (en) 2006-11-08 2006-12-20 Rumsby Philip T Method and apparatus for laser beam alignment for solar panel scribing
KR20080075398A (ko) * 2007-02-12 2008-08-18 주식회사 토비스 대형 티에프티-엘씨디 패널의 커팅방법
US20080232419A1 (en) * 2007-03-22 2008-09-25 Seiko Epson Corporation Laser array chip, laser module, manufacturing method for manufacturing laser module, manufacturing method for manufacturing laser light source, laser light source, illumination device, monitor, and projector
DE202007004412U1 (de) * 2007-03-22 2008-07-24 STABILA Messgeräte Gustav Ullrich GmbH Wasserwaage
JP5336054B2 (ja) * 2007-07-18 2013-11-06 浜松ホトニクス株式会社 加工情報供給装置を備える加工情報供給システム
JP2009049390A (ja) * 2007-07-25 2009-03-05 Rohm Co Ltd 窒化物半導体素子およびその製造方法
JP2009032970A (ja) * 2007-07-27 2009-02-12 Rohm Co Ltd 窒化物半導体素子の製造方法
JP4402708B2 (ja) 2007-08-03 2010-01-20 浜松ホトニクス株式会社 レーザ加工方法、レーザ加工装置及びその製造方法
JP5267462B2 (ja) * 2007-08-03 2013-08-21 日亜化学工業株式会社 半導体発光素子及びその製造方法
JP2009044600A (ja) * 2007-08-10 2009-02-26 Panasonic Corp マイクロホン装置およびその製造方法
JP5225639B2 (ja) * 2007-09-06 2013-07-03 浜松ホトニクス株式会社 半導体レーザ素子の製造方法
JP5449665B2 (ja) 2007-10-30 2014-03-19 浜松ホトニクス株式会社 レーザ加工方法
EP2209586A1 (de) * 2007-11-07 2010-07-28 CeramTec AG Verfahren zum laserritzen von spröden bauteilen
JP5054496B2 (ja) * 2007-11-30 2012-10-24 浜松ホトニクス株式会社 加工対象物切断方法
JP5134928B2 (ja) * 2007-11-30 2013-01-30 浜松ホトニクス株式会社 加工対象物研削方法
JP2010021398A (ja) * 2008-07-11 2010-01-28 Disco Abrasive Syst Ltd ウェーハの処理方法
KR100993088B1 (ko) * 2008-07-22 2010-11-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP5692969B2 (ja) 2008-09-01 2015-04-01 浜松ホトニクス株式会社 収差補正方法、この収差補正方法を用いたレーザ加工方法、この収差補正方法を用いたレーザ照射方法、収差補正装置、及び、収差補正プログラム
US8051679B2 (en) * 2008-09-29 2011-11-08 Corning Incorporated Laser separation of glass sheets
US9281197B2 (en) * 2008-10-16 2016-03-08 Sumco Corporation Epitaxial substrate for solid-state imaging device with gettering sink, semiconductor device, back illuminated solid-state imaging device and manufacturing method thereof
JP5254761B2 (ja) 2008-11-28 2013-08-07 浜松ホトニクス株式会社 レーザ加工装置
JP5241525B2 (ja) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置
JP5241527B2 (ja) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置
JP2010177277A (ja) * 2009-01-27 2010-08-12 Tokyo Seimitsu Co Ltd レーザーダイシング方法及びレーザーダイシング装置
EP2394775B1 (en) 2009-02-09 2019-04-03 Hamamatsu Photonics K.K. Workpiece cutting method
US8347651B2 (en) * 2009-02-19 2013-01-08 Corning Incorporated Method of separating strengthened glass
CN102326232B (zh) 2009-02-25 2016-01-20 日亚化学工业株式会社 半导体元件的制造方法
WO2010116917A1 (ja) 2009-04-07 2010-10-14 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
JP5491761B2 (ja) 2009-04-20 2014-05-14 浜松ホトニクス株式会社 レーザ加工装置
JP2010274328A (ja) * 2009-04-30 2010-12-09 Mitsuboshi Diamond Industrial Co Ltd レーザ加工方法及びレーザ加工装置
JP5537081B2 (ja) 2009-07-28 2014-07-02 浜松ホトニクス株式会社 加工対象物切断方法
JP5476063B2 (ja) 2009-07-28 2014-04-23 浜松ホトニクス株式会社 加工対象物切断方法
WO2011018989A1 (ja) 2009-08-11 2011-02-17 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
JP5379604B2 (ja) 2009-08-21 2013-12-25 浜松ホトニクス株式会社 レーザ加工方法及びチップ
US8932510B2 (en) 2009-08-28 2015-01-13 Corning Incorporated Methods for laser cutting glass substrates
JP2011060848A (ja) * 2009-09-07 2011-03-24 Nitto Denko Corp 熱硬化型ダイボンドフィルム、ダイシング・ダイボンドフィルム、及び、半導体装置
JP5446631B2 (ja) * 2009-09-10 2014-03-19 アイシン精機株式会社 レーザ加工方法及びレーザ加工装置
US20110127242A1 (en) * 2009-11-30 2011-06-02 Xinghua Li Methods for laser scribing and separating glass substrates
US8946590B2 (en) 2009-11-30 2015-02-03 Corning Incorporated Methods for laser scribing and separating glass substrates
US20130256286A1 (en) * 2009-12-07 2013-10-03 Ipg Microsystems Llc Laser processing using an astigmatic elongated beam spot and using ultrashort pulses and/or longer wavelengths
JP2011142297A (ja) * 2009-12-08 2011-07-21 Hitachi Via Mechanics Ltd 薄膜太陽電池製造方法及びレーザスクライブ装置
JP5056839B2 (ja) 2009-12-25 2012-10-24 三星ダイヤモンド工業株式会社 被加工物の加工方法および被加工物の分割方法
JP2011165766A (ja) * 2010-02-05 2011-08-25 Disco Abrasive Syst Ltd 光デバイスウエーハの加工方法
JP5558129B2 (ja) * 2010-02-05 2014-07-23 株式会社ディスコ 光デバイスウエーハの加工方法
JP5558128B2 (ja) * 2010-02-05 2014-07-23 株式会社ディスコ 光デバイスウエーハの加工方法
DE102010009015A1 (de) * 2010-02-24 2011-08-25 OSRAM Opto Semiconductors GmbH, 93055 Verfahren zum Herstellen einer Mehrzahl von optoelektronischen Halbleiterchips
JP2011189477A (ja) * 2010-03-16 2011-09-29 Disco Corp マイクロマシンデバイスの製造方法
KR100984719B1 (ko) * 2010-04-16 2010-10-01 유병소 레이저 가공장치
US8951889B2 (en) 2010-04-16 2015-02-10 Qmc Co., Ltd. Laser processing method and laser processing apparatus
JP5670647B2 (ja) 2010-05-14 2015-02-18 浜松ホトニクス株式会社 加工対象物切断方法
US8950217B2 (en) 2010-05-14 2015-02-10 Hamamatsu Photonics K.K. Method of cutting object to be processed, method of cutting strengthened glass sheet and method of manufacturing strengthened glass member
JP2012000636A (ja) 2010-06-16 2012-01-05 Showa Denko Kk レーザ加工方法
MY184075A (en) * 2010-07-12 2021-03-17 Rofin Sinar Tech Inc Method of material processing by laser filamentation
JP5104919B2 (ja) * 2010-07-23 2012-12-19 三星ダイヤモンド工業株式会社 レーザー加工装置、被加工物の加工方法および被加工物の分割方法
JP5104920B2 (ja) * 2010-07-23 2012-12-19 三星ダイヤモンド工業株式会社 レーザー加工装置、被加工物の加工方法および被加工物の分割方法
JP5599675B2 (ja) * 2010-08-16 2014-10-01 株式会社ディスコ Ledデバイスチップの製造方法
US8720228B2 (en) 2010-08-31 2014-05-13 Corning Incorporated Methods of separating strengthened glass substrates
US8722516B2 (en) 2010-09-28 2014-05-13 Hamamatsu Photonics K.K. Laser processing method and method for manufacturing light-emitting device
TWI469842B (zh) * 2010-09-30 2015-01-21 Mitsuboshi Diamond Ind Co Ltd 雷射加工裝置、被加工物之加工方法及被加工物之分割方法
JP2012079936A (ja) 2010-10-01 2012-04-19 Nitto Denko Corp ダイシング・ダイボンドフィルム、及び、半導体装置の製造方法
KR101259580B1 (ko) * 2010-10-15 2013-04-30 한국과학기술원 펄스 레이저의 분산 조절을 이용한 레이저 가공장치 및 가공방법
JP2012089721A (ja) * 2010-10-21 2012-05-10 Toshiba Corp 半導体装置の製造方法、半導体装置
JP5608521B2 (ja) * 2010-11-26 2014-10-15 新光電気工業株式会社 半導体ウエハの分割方法と半導体チップ及び半導体装置
EP2471627B1 (de) * 2010-12-29 2014-01-08 W. Blösch AG Verfahren zur Herstellung von mechanischen Werkstücken aus einer Platte aus monokristallinem Silizium
US9446566B2 (en) 2011-05-13 2016-09-20 Nippon Electric Glass Co., Ltd. Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
JP2013012559A (ja) * 2011-06-29 2013-01-17 Nichia Chem Ind Ltd 発光素子の製造方法
RU2469433C1 (ru) * 2011-07-13 2012-12-10 Юрий Георгиевич Шретер Способ лазерного отделения эпитаксиальной пленки или слоя эпитаксиальной пленки от ростовой подложки эпитаксиальной полупроводниковой структуры (варианты)
TWI409886B (zh) * 2011-08-05 2013-09-21 Powertech Technology Inc 防止晶粒破裂之晶粒拾取方法與裝置
CN102290505B (zh) * 2011-09-09 2014-04-30 上海蓝光科技有限公司 GaN基发光二极管芯片及其制造方法
CN102324450A (zh) * 2011-09-09 2012-01-18 上海蓝光科技有限公司 GaN基发光二极管芯片及其制备方法
JP5894754B2 (ja) * 2011-09-16 2016-03-30 浜松ホトニクス株式会社 レーザ加工方法
KR101293595B1 (ko) * 2011-11-07 2013-08-13 디에이치케이솔루션(주) 웨이퍼 다이싱 방법 및 그에 의해 제조되는 소자
US8624348B2 (en) 2011-11-11 2014-01-07 Invensas Corporation Chips with high fracture toughness through a metal ring
JP2013126682A (ja) * 2011-11-18 2013-06-27 Hamamatsu Photonics Kk レーザ加工方法
US8677783B2 (en) * 2011-11-28 2014-03-25 Corning Incorporated Method for low energy separation of a glass ribbon
JP5385999B2 (ja) * 2012-02-20 2014-01-08 株式会社レーザーシステム レーザ加工方法
JP2013188785A (ja) * 2012-03-15 2013-09-26 Mitsuboshi Diamond Industrial Co Ltd 被加工物の加工方法および分割方法
TW201343296A (zh) * 2012-03-16 2013-11-01 Ipg Microsystems Llc 使一工件中具有延伸深度虛飾之雷射切割系統及方法
JP5902529B2 (ja) * 2012-03-28 2016-04-13 株式会社ディスコ レーザ加工方法
US9938180B2 (en) * 2012-06-05 2018-04-10 Corning Incorporated Methods of cutting glass using a laser
CN102749746B (zh) * 2012-06-21 2015-02-18 深圳市华星光电技术有限公司 液晶基板切割装置及液晶基板切割方法
CN102751400B (zh) * 2012-07-18 2016-02-10 合肥彩虹蓝光科技有限公司 一种含金属背镀的半导体原件的切割方法
JP5965239B2 (ja) * 2012-07-31 2016-08-03 三星ダイヤモンド工業株式会社 貼り合わせ基板の加工方法並びに加工装置
US8842358B2 (en) 2012-08-01 2014-09-23 Gentex Corporation Apparatus, method, and process with laser induced channel edge
JP6053381B2 (ja) * 2012-08-06 2016-12-27 株式会社ディスコ ウェーハの分割方法
KR101358672B1 (ko) * 2012-08-13 2014-02-11 한국과학기술원 극초단 펄스 레이저를 이용한 투명시편 절단방법 및 다이싱 장치
US9610653B2 (en) 2012-09-21 2017-04-04 Electro Scientific Industries, Inc. Method and apparatus for separation of workpieces and articles produced thereby
JP2014096526A (ja) * 2012-11-12 2014-05-22 Disco Abrasive Syst Ltd ウエーハの加工方法
WO2014079478A1 (en) 2012-11-20 2014-05-30 Light In Light Srl High speed laser processing of transparent materials
EP2754524B1 (de) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie
EP2781296B1 (de) 2013-03-21 2020-10-21 Corning Laser Technologies GmbH Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser
KR101857336B1 (ko) 2013-04-04 2018-05-11 엘피케이에프 레이저 앤드 일렉트로닉스 악티엔게젤샤프트 기판을 분리시키기 위한 방법 및 장치
KR20160032221A (ko) 2013-07-18 2016-03-23 코닌클리케 필립스 엔.브이. 발광 디바이스들의 웨이퍼의 다이싱
US9102007B2 (en) * 2013-08-02 2015-08-11 Rofin-Sinar Technologies Inc. Method and apparatus for performing laser filamentation within transparent materials
US9640714B2 (en) 2013-08-29 2017-05-02 Nichia Corporation Method for manufacturing light emitting element
DE102013016693A1 (de) * 2013-10-08 2015-04-09 Siltectra Gmbh Herstellungsverfahren für Festkörperelemente mittels Laserbehandlung und temperaturinduzierten Spannungen
DE102014013107A1 (de) 2013-10-08 2015-04-09 Siltectra Gmbh Neuartiges Waferherstellungsverfahren
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US20150165560A1 (en) 2013-12-17 2015-06-18 Corning Incorporated Laser processing of slots and holes
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US9517963B2 (en) 2013-12-17 2016-12-13 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9209082B2 (en) 2014-01-03 2015-12-08 International Business Machines Corporation Methods of localized hardening of dicing channel by applying localized heat in wafer kerf
WO2015162445A1 (fr) 2014-04-25 2015-10-29 Arcelormittal Investigación Y Desarrollo Sl Procede et dispositif de preparation de toles d'acier aluminiees destinees a etre soudees puis durcies sous presse; flan soude correspondant
US9636783B2 (en) 2014-04-30 2017-05-02 International Business Machines Corporation Method and apparatus for laser dicing of wafers
KR20150130835A (ko) * 2014-05-14 2015-11-24 주식회사 이오테크닉스 금속층이 형성된 반도체 웨이퍼를 절단하는 레이저 가공 방법 및 레이저 가공 장치
WO2015182300A1 (ja) * 2014-05-29 2015-12-03 旭硝子株式会社 光学ガラスおよびガラス基板の切断方法
US9165832B1 (en) * 2014-06-30 2015-10-20 Applied Materials, Inc. Method of die singulation using laser ablation and induction of internal defects with a laser
CN106687419A (zh) 2014-07-08 2017-05-17 康宁股份有限公司 用于激光处理材料的方法和设备
TWI614914B (zh) 2014-07-11 2018-02-11 晶元光電股份有限公司 發光元件及其製造方法
EP3536440A1 (en) 2014-07-14 2019-09-11 Corning Incorporated Glass article with a defect pattern
EP3169477B1 (en) * 2014-07-14 2020-01-29 Corning Incorporated System for and method of processing transparent materials using laser beam focal lines adjustable in length and diameter
WO2016010991A1 (en) 2014-07-14 2016-01-21 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
CN208586209U (zh) 2014-07-14 2019-03-08 康宁股份有限公司 一种用于在工件中形成限定轮廓的多个缺陷的系统
CN105322057B (zh) * 2014-07-25 2020-03-20 晶元光电股份有限公司 发光元件及其制造方法
US9859162B2 (en) 2014-09-11 2018-01-02 Alta Devices, Inc. Perforation of films for separation
JP6499300B2 (ja) * 2014-10-13 2019-04-10 エバナ テクノロジーズ ユーエービー スパイク状の損傷構造を形成して基板を劈開または切断するレーザー加工方法
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
CN107406293A (zh) 2015-01-12 2017-11-28 康宁股份有限公司 使用多光子吸收方法来对经热回火的基板进行激光切割
JP6395633B2 (ja) * 2015-02-09 2018-09-26 株式会社ディスコ ウエーハの生成方法
JP6395632B2 (ja) * 2015-02-09 2018-09-26 株式会社ディスコ ウエーハの生成方法
JP2016149391A (ja) * 2015-02-10 2016-08-18 旭化成株式会社 窒化物半導体素子、窒化物半導体素子の移動方法及び半導体装置の製造方法
KR102546692B1 (ko) 2015-03-24 2023-06-22 코닝 인코포레이티드 디스플레이 유리 조성물의 레이저 절단 및 가공
JP2018516215A (ja) 2015-03-27 2018-06-21 コーニング インコーポレイテッド 気体透過性窓、および、その製造方法
DE102015004603A1 (de) 2015-04-09 2016-10-13 Siltectra Gmbh Kombiniertes Waferherstellungsverfahren mit Laserbehandlung und temperaturinduzierten Spannungen
US9985839B2 (en) * 2015-07-08 2018-05-29 Fedex Corporate Services, Inc. Systems, apparatus, and methods of event monitoring for an event candidate within a wireless node network based upon sighting events, sporadic events, and benchmark checkpoint events
WO2017011296A1 (en) 2015-07-10 2017-01-19 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
JP6498553B2 (ja) * 2015-07-17 2019-04-10 株式会社ディスコ レーザー加工装置
JP6245239B2 (ja) 2015-09-11 2017-12-13 日亜化学工業株式会社 半導体レーザ素子の製造方法
US20170197868A1 (en) * 2016-01-08 2017-07-13 Apple Inc. Laser Processing of Electronic Device Structures
US10518358B1 (en) 2016-01-28 2019-12-31 AdlOptica Optical Systems GmbH Multi-focus optics
KR102388994B1 (ko) * 2016-03-22 2022-04-22 실텍트라 게엠베하 분리될 고형체의 결합된 레이저 처리 방법
CN109311725B (zh) 2016-05-06 2022-04-26 康宁股份有限公司 从透明基材激光切割及移除轮廓形状
US10410883B2 (en) 2016-06-01 2019-09-10 Corning Incorporated Articles and methods of forming vias in substrates
US10794679B2 (en) 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
WO2018022476A1 (en) 2016-07-29 2018-02-01 Corning Incorporated Apparatuses and methods for laser processing
KR102423775B1 (ko) 2016-08-30 2022-07-22 코닝 인코포레이티드 투명 재료의 레이저 가공
KR102078294B1 (ko) 2016-09-30 2020-02-17 코닝 인코포레이티드 비-축대칭 빔 스폿을 이용하여 투명 워크피스를 레이저 가공하기 위한 기기 및 방법
EP3848333A1 (en) 2016-10-24 2021-07-14 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
EP3551373A1 (de) 2016-12-12 2019-10-16 Siltectra GmbH Verfahren zum dünnen von mit bauteilen versehenen festkörperschichten
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
JP6821259B2 (ja) * 2017-04-17 2021-01-27 株式会社ディスコ 被加工物の加工方法
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US10580725B2 (en) 2017-05-25 2020-03-03 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
KR101987192B1 (ko) * 2017-06-14 2019-09-30 주식회사 이오테크닉스 가공물 절단 장치
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
CN111065485B (zh) * 2017-08-25 2022-06-21 康宁股份有限公司 使用无焦光束调整组件激光加工透明工件的设备和方法
DE102017121679A1 (de) * 2017-09-19 2019-03-21 Osram Opto Semiconductors Gmbh Verfahren zum Vereinzeln von Halbleiterbauteilen und Halbleiterbauteil
JP6904567B2 (ja) * 2017-09-29 2021-07-21 三星ダイヤモンド工業株式会社 スクライブ加工方法及びスクライブ加工装置
EP3718148B1 (en) 2017-11-29 2022-11-16 Nichia Corporation Method for producing semiconductor light emitting element
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
CN108788488A (zh) * 2018-06-12 2018-11-13 华丰源(成都)新能源科技有限公司 一种激光切割装置及其控制方法
DE102018115205A1 (de) * 2018-06-25 2020-01-02 Vishay Electronic Gmbh Verfahren zur Herstellung einer Vielzahl von Widerstandsbaueinheiten
JP7086474B2 (ja) * 2018-08-02 2022-06-20 株式会社ディスコ ウェーハの加工方法
JP7047922B2 (ja) * 2018-09-04 2022-04-05 株式会社村田製作所 Memsデバイスの製造方法及びmemsデバイス
US10589445B1 (en) * 2018-10-29 2020-03-17 Semivation, LLC Method of cleaving a single crystal substrate parallel to its active planar surface and method of using the cleaved daughter substrate
EP3670062A1 (en) * 2018-12-20 2020-06-24 Thales Dis France SA Method for cutting an ink sticker in a multilayer structure and method for printing the ink sticker onto a substrate
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
US20220020705A1 (en) * 2020-07-20 2022-01-20 Western Digital Technologies, Inc. Semiconductor wafer thinned by stealth lasing
US11377758B2 (en) 2020-11-23 2022-07-05 Stephen C. Baer Cleaving thin wafers from crystals
JP2022102471A (ja) * 2020-12-25 2022-07-07 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
CN114512412B (zh) * 2022-04-20 2022-07-12 苏州科阳半导体有限公司 一种声表面波滤波器晶圆封装方法及芯片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111800A (ja) * 1990-08-31 1992-04-13 Nippon Sekiei Glass Kk 石英ガラス材料の切断加工方法
US5211805A (en) * 1990-12-19 1993-05-18 Rangaswamy Srinivasan Cutting of organic solids by continuous wave ultraviolet irradiation
JPH10305420A (ja) * 1997-03-04 1998-11-17 Ngk Insulators Ltd 酸化物単結晶からなる母材の加工方法、機能性デバイスの製造方法
JP2000124537A (ja) * 1998-10-21 2000-04-28 Sharp Corp 半導体レーザチップの製造方法とその方法に用いられる製造装置

Family Cites Families (265)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448510A (en) 1966-05-20 1969-06-10 Western Electric Co Methods and apparatus for separating articles initially in a compact array,and composite assemblies so formed
US3629545A (en) * 1967-12-19 1971-12-21 Western Electric Co Laser substrate parting
GB1246481A (en) 1968-03-29 1971-09-15 Pilkington Brothers Ltd Improvements in or relating to the cutting of glass
US3613974A (en) 1969-03-10 1971-10-19 Saint Gobain Apparatus for cutting glass
JPS4812599B1 (ja) * 1969-07-09 1973-04-21
US3610871A (en) 1970-02-19 1971-10-05 Western Electric Co Initiation of a controlled fracture
US3626141A (en) 1970-04-30 1971-12-07 Quantronix Corp Laser scribing apparatus
US3824678A (en) 1970-08-31 1974-07-23 North American Rockwell Process for laser scribing beam lead semiconductor wafers
US3909582A (en) * 1971-07-19 1975-09-30 American Can Co Method of forming a line of weakness in a multilayer laminate
US3790744A (en) 1971-07-19 1974-02-05 American Can Co Method of forming a line of weakness in a multilayer laminate
US3790051A (en) 1971-09-07 1974-02-05 Radiant Energy Systems Semiconductor wafer fracturing technique employing a pressure controlled roller
US3970819A (en) 1974-11-25 1976-07-20 International Business Machines Corporation Backside laser dicing system
US4092518A (en) * 1976-12-07 1978-05-30 Laser Technique S.A. Method of decorating a transparent plastics material article by means of a laser beam
US4242152A (en) 1979-05-14 1980-12-30 National Semiconductor Corporation Method for adjusting the focus and power of a trimming laser
JPS6041478B2 (ja) 1979-09-10 1985-09-17 富士通株式会社 半導体レ−ザ素子の製造方法
US4336439A (en) * 1980-10-02 1982-06-22 Coherent, Inc. Method and apparatus for laser scribing and cutting
JPS5854648A (ja) 1981-09-28 1983-03-31 Nippon Kogaku Kk <Nikon> 位置合わせ装置
US4475027A (en) 1981-11-17 1984-10-02 Allied Corporation Optical beam homogenizer
WO1984002296A1 (en) 1982-12-17 1984-06-21 Inoue Japax Res Laser machining apparatus
US4546231A (en) 1983-11-14 1985-10-08 Group Ii Manufacturing Ltd. Creation of a parting zone in a crystal structure
JPS59130438A (ja) * 1983-11-28 1984-07-27 Hitachi Ltd 板状物の分離法
US4650619A (en) 1983-12-29 1987-03-17 Toshiba Ceramics Co., Ltd. Method of machining a ceramic member
JPS60144985A (ja) * 1983-12-30 1985-07-31 Fujitsu Ltd 半導体発光素子の製造方法
US4562333A (en) 1984-09-04 1985-12-31 General Electric Company Stress assisted cutting of high temperature embrittled materials
JPH0746353B2 (ja) * 1984-10-19 1995-05-17 セイコーエプソン株式会社 日本語文章入力装置
JPS61229487A (ja) 1985-04-03 1986-10-13 Sasaki Glass Kk レ−ザビ−ムによるガラス切断方法
JPS6240986A (ja) 1985-08-20 1987-02-21 Fuji Electric Corp Res & Dev Ltd レ−ザ−加工方法
AU584563B2 (en) 1986-01-31 1989-05-25 Ciba-Geigy Ag Laser marking of ceramic materials, glazes, glass ceramics and glasses
US4691093A (en) 1986-04-22 1987-09-01 United Technologies Corporation Twin spot laser welding
FR2605310B1 (fr) 1986-10-16 1992-04-30 Comp Generale Electricite Procede de renforcement de pieces ceramiques par traitement au laser
US4815854A (en) * 1987-01-19 1989-03-28 Nec Corporation Method of alignment between mask and semiconductor wafer
US4981525A (en) 1988-02-19 1991-01-01 Sanyo Electric Co., Ltd. Photovoltaic device
JPH0256987A (ja) 1988-02-23 1990-02-26 Mitsubishi Electric Corp 混成集積回路の実装方法
JPH01133701U (ja) 1988-03-07 1989-09-12
JP2680039B2 (ja) 1988-06-08 1997-11-19 株式会社日立製作所 光情報記録再生方法及び記録再生装置
JP2507665B2 (ja) * 1989-05-09 1996-06-12 株式会社東芝 電子管用金属円筒部材の製造方法
JP2891264B2 (ja) * 1990-02-09 1999-05-17 ローム 株式会社 半導体装置の製造方法
US5132505A (en) * 1990-03-21 1992-07-21 U.S. Philips Corporation Method of cleaving a brittle plate and device for carrying out the method
JPH03276662A (ja) * 1990-03-26 1991-12-06 Nippon Steel Corp ウエハ割断法
JPH04167985A (ja) * 1990-10-31 1992-06-16 Nagasaki Pref Gov ウェハの割断方法
FR2669427B1 (fr) 1990-11-16 1993-01-22 Thomson Csf Dispositif de controle d'alignement de deux voies optiques et systeme de designation laser equipe d'un tel dispositif de controle.
JP2992088B2 (ja) * 1990-12-26 1999-12-20 東レ・ダウコーニング・シリコーン株式会社 シリコーンゴム組成物
JPH0639572A (ja) 1991-01-11 1994-02-15 Souei Tsusho Kk ウェハ割断装置
IL97479A (en) 1991-03-08 1994-01-25 Shafir Aaron Laser beam heating method and apparatus
JPH04300084A (ja) * 1991-03-28 1992-10-23 Toshiba Corp レーザ加工機
US5171249A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier
JP3213338B2 (ja) 1991-05-15 2001-10-02 株式会社リコー 薄膜半導体装置の製法
US5230184A (en) 1991-07-05 1993-07-27 Motorola, Inc. Distributed polishing head
US5762744A (en) 1991-12-27 1998-06-09 Rohm Co., Ltd. Method of producing a semiconductor device using an expand tape
GB2263195B (en) * 1992-01-08 1996-03-20 Murata Manufacturing Co Component supply method
RU2024441C1 (ru) 1992-04-02 1994-12-15 Владимир Степанович Кондратенко Способ резки неметаллических материалов
US5254149A (en) 1992-04-06 1993-10-19 Ford Motor Company Process for determining the quality of temper of a glass sheet using a laser beam
JP3088193B2 (ja) * 1992-06-05 2000-09-18 三菱電機株式会社 Loc構造を有する半導体装置の製造方法並びにこれに使用するリードフレーム
GB9216643D0 (en) * 1992-08-05 1992-09-16 Univ Loughborough Automatic operations on materials
WO1994014567A1 (en) 1992-12-18 1994-07-07 Firebird Traders Ltd. Process and apparatus for etching an image within a solid article
JP2720744B2 (ja) 1992-12-28 1998-03-04 三菱電機株式会社 レーザ加工機
US5382770A (en) 1993-01-14 1995-01-17 Reliant Laser Corporation Mirror-based laser-processing system with visual tracking and position control of a moving laser spot
US5637244A (en) 1993-05-13 1997-06-10 Podarok International, Inc. Method and apparatus for creating an image by a pulsed laser beam inside a transparent material
JP3293136B2 (ja) 1993-06-04 2002-06-17 セイコーエプソン株式会社 レーザ加工装置及びレーザ加工方法
US5580473A (en) 1993-06-21 1996-12-03 Sanyo Electric Co. Ltd. Methods of removing semiconductor film with energy beams
GB2281129B (en) * 1993-08-19 1997-04-09 United Distillers Plc Method of marking a body of glass
US5376793A (en) 1993-09-15 1994-12-27 Stress Photonics, Inc. Forced-diffusion thermal imaging apparatus and method
DE4404141A1 (de) 1994-02-09 1995-08-10 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur Laserstrahlformung, insbesondere bei der Laserstrahl-Oberflächenbearbeitung
JP3162255B2 (ja) * 1994-02-24 2001-04-25 三菱電機株式会社 レーザ加工方法及びその装置
US5656186A (en) 1994-04-08 1997-08-12 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
US5776220A (en) 1994-09-19 1998-07-07 Corning Incorporated Method and apparatus for breaking brittle materials
US5622540A (en) 1994-09-19 1997-04-22 Corning Incorporated Method for breaking a glass sheet
JP3374880B2 (ja) 1994-10-26 2003-02-10 三菱電機株式会社 半導体装置の製造方法、及び半導体装置
JP3535241B2 (ja) 1994-11-18 2004-06-07 株式会社半導体エネルギー研究所 半導体デバイス及びその作製方法
US5543365A (en) 1994-12-02 1996-08-06 Texas Instruments Incorporated Wafer scribe technique using laser by forming polysilicon
US5841543A (en) 1995-03-09 1998-11-24 Texas Instruments Incorporated Method and apparatus for verifying the presence of a material applied to a substrate
US5786560A (en) 1995-03-31 1998-07-28 Panasonic Technologies, Inc. 3-dimensional micromachining with femtosecond laser pulses
KR970008386A (ko) 1995-07-07 1997-02-24 하라 세이지 기판의 할단(割斷)방법 및 그 할단장치
JPH0929472A (ja) * 1995-07-14 1997-02-04 Hitachi Ltd 割断方法、割断装置及びチップ材料
DE69629704T2 (de) 1995-08-31 2004-07-08 Corning Inc. Verfahren und vorrichtung zum zerbrechen von sprödem material
US6057525A (en) * 1995-09-05 2000-05-02 United States Enrichment Corporation Method and apparatus for precision laser micromachining
US5641416A (en) 1995-10-25 1997-06-24 Micron Display Technology, Inc. Method for particulate-free energy beam cutting of a wafer of die assemblies
US5662698A (en) * 1995-12-06 1997-09-02 Ventritex, Inc. Nonshunting endocardial defibrillation lead
KR0171947B1 (ko) 1995-12-08 1999-03-20 김주용 반도체소자 제조를 위한 노광 방법 및 그를 이용한 노광장치
MY118036A (en) 1996-01-22 2004-08-30 Lintec Corp Wafer dicing/bonding sheet and process for producing semiconductor device
JP3660741B2 (ja) * 1996-03-22 2005-06-15 株式会社日立製作所 電子回路装置の製造方法
DE69705827T2 (de) 1996-03-25 2001-11-08 Nippon Sheet Glass Co Ltd Laserherstellungsverfahren für glassubstrate, und damit hergestellte beugunggitter
JPH09298339A (ja) 1996-04-30 1997-11-18 Rohm Co Ltd 半導体レーザの製法
DK109197A (da) 1996-09-30 1998-03-31 Force Instituttet Fremgangsmåde til bearbejdning af et materiale ved hjælp af en laserstråle
JPH10128567A (ja) * 1996-10-30 1998-05-19 Nec Kansai Ltd レーザ割断方法
DE19646332C2 (de) 1996-11-09 2000-08-10 Fraunhofer Ges Forschung Verfahren zur Veränderung des optischen Verhaltens an der Oberfläche und/oder innerhalb eines Werkstückes mittels eines Lasers
US6312800B1 (en) * 1997-02-10 2001-11-06 Lintec Corporation Pressure sensitive adhesive sheet for producing a chip
US6529362B2 (en) 1997-03-06 2003-03-04 Applied Materials Inc. Monocrystalline ceramic electrostatic chuck
US5976392A (en) 1997-03-07 1999-11-02 Yageo Corporation Method for fabrication of thin film resistor
US6156030A (en) * 1997-06-04 2000-12-05 Y-Beam Technologies, Inc. Method and apparatus for high precision variable rate material removal and modification
BE1011208A4 (fr) 1997-06-11 1999-06-01 Cuvelier Georges Procede de decalottage de pieces en verre.
DE19728766C1 (de) 1997-07-07 1998-12-17 Schott Rohrglas Gmbh Verwendung eines Verfahrens zur Herstellung einer Sollbruchstelle bei einem Glaskörper
US6294439B1 (en) 1997-07-23 2001-09-25 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
JP3498895B2 (ja) * 1997-09-25 2004-02-23 シャープ株式会社 基板の切断方法および表示パネルの製造方法
JP3231708B2 (ja) * 1997-09-26 2001-11-26 住友重機械工業株式会社 透明材料のマーキング方法
JP3292294B2 (ja) * 1997-11-07 2002-06-17 住友重機械工業株式会社 レーザを用いたマーキング方法及びマーキング装置
JP3449201B2 (ja) * 1997-11-28 2003-09-22 日亜化学工業株式会社 窒化物半導体素子の製造方法
JP3532100B2 (ja) * 1997-12-03 2004-05-31 日本碍子株式会社 レーザ割断方法
JP3604550B2 (ja) * 1997-12-16 2004-12-22 日亜化学工業株式会社 窒化物半導体素子の製造方法
US6641662B2 (en) 1998-02-17 2003-11-04 The Trustees Of Columbia University In The City Of New York Method for fabricating ultra thin single-crystal metal oxide wave retarder plates and waveguide polarization mode converter using the same
US6057180A (en) 1998-06-05 2000-05-02 Electro Scientific Industries, Inc. Method of severing electrically conductive links with ultraviolet laser output
JP3152206B2 (ja) 1998-06-19 2001-04-03 日本電気株式会社 オートフォーカス装置及びオートフォーカス方法
JP2000015467A (ja) 1998-07-01 2000-01-18 Shin Meiwa Ind Co Ltd 光による被加工材の加工方法および加工装置
US6181728B1 (en) 1998-07-02 2001-01-30 General Scanning, Inc. Controlling laser polarization
JP3784543B2 (ja) 1998-07-29 2006-06-14 Ntn株式会社 パターン修正装置および修正方法
JP3156776B2 (ja) 1998-08-03 2001-04-16 日本電気株式会社 レーザ照射方法
US6407360B1 (en) 1998-08-26 2002-06-18 Samsung Electronics, Co., Ltd. Laser cutting apparatus and method
US6402004B1 (en) * 1998-09-16 2002-06-11 Hoya Corporation Cutting method for plate glass mother material
JP3605651B2 (ja) 1998-09-30 2004-12-22 日立化成工業株式会社 半導体装置の製造方法
US6413839B1 (en) 1998-10-23 2002-07-02 Emcore Corporation Semiconductor device separation using a patterned laser projection
US6172329B1 (en) * 1998-11-23 2001-01-09 Minnesota Mining And Manufacturing Company Ablated laser feature shape reproduction control
JP3178524B2 (ja) 1998-11-26 2001-06-18 住友重機械工業株式会社 レーザマーキング方法と装置及びマーキングされた部材
KR100338983B1 (ko) 1998-11-30 2002-07-18 윤종용 웨이퍼분리도구및이를이용하는웨이퍼분리방법
US6211488B1 (en) 1998-12-01 2001-04-03 Accudyne Display And Semiconductor Systems, Inc. Method and apparatus for separating non-metallic substrates utilizing a laser initiated scribe
US6259058B1 (en) 1998-12-01 2001-07-10 Accudyne Display And Semiconductor Systems, Inc. Apparatus for separating non-metallic substrates
US6252197B1 (en) * 1998-12-01 2001-06-26 Accudyne Display And Semiconductor Systems, Inc. Method and apparatus for separating non-metallic substrates utilizing a supplemental mechanical force applicator
US6420678B1 (en) * 1998-12-01 2002-07-16 Brian L. Hoekstra Method for separating non-metallic substrates
JP2000195828A (ja) 1998-12-25 2000-07-14 Denso Corp ウエハの切断分離方法およびウエハの切断分離装置
US6127005A (en) 1999-01-08 2000-10-03 Rutgers University Method of thermally glazing an article
JP2000219528A (ja) 1999-01-18 2000-08-08 Samsung Sdi Co Ltd ガラス基板の切断方法及びその装置
EP1022778A1 (en) 1999-01-22 2000-07-26 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
JP2000210785A (ja) 1999-01-26 2000-08-02 Mitsubishi Heavy Ind Ltd 複数ビ―ムレ―ザ加工装置
JP3569147B2 (ja) 1999-01-26 2004-09-22 松下電器産業株式会社 基板の切断方法
KR100452661B1 (ko) 1999-02-03 2004-10-14 가부시끼가이샤 도시바 웨이퍼의 분할 방법 및 반도체 장치의 제조 방법
JP4040819B2 (ja) 1999-02-03 2008-01-30 株式会社東芝 ウェーハの分割方法及び半導体装置の製造方法
JP4119028B2 (ja) 1999-02-19 2008-07-16 小池酸素工業株式会社 レーザーピアシング方法
JP2000237885A (ja) 1999-02-19 2000-09-05 Koike Sanso Kogyo Co Ltd レーザー切断方法
US6208020B1 (en) 1999-02-24 2001-03-27 Matsushita Electronics Corporation Leadframe for use in manufacturing a resin-molded semiconductor device
JP3426154B2 (ja) 1999-02-26 2003-07-14 科学技術振興事業団 グレーティング付き光導波路の製造方法
JP2000247671A (ja) 1999-03-04 2000-09-12 Takatori Corp ガラスの分断方法
TW445545B (en) 1999-03-10 2001-07-11 Mitsubishi Electric Corp Laser heat treatment method, laser heat treatment apparatus and semiconductor device
JP3648399B2 (ja) 1999-03-18 2005-05-18 株式会社東芝 半導体装置
US6285002B1 (en) 1999-05-10 2001-09-04 Bryan Kok Ann Ngoi Three dimensional micro machining with a modulated ultra-short laser pulse
JP2000323441A (ja) 1999-05-10 2000-11-24 Hitachi Cable Ltd セラミックス基板上に形成した光導波回路チップの切断方法
US6420245B1 (en) 1999-06-08 2002-07-16 Kulicke & Soffa Investments, Inc. Method for singulating semiconductor wafers
US6562698B2 (en) 1999-06-08 2003-05-13 Kulicke & Soffa Investments, Inc. Dual laser cutting of wafers
JP2000349107A (ja) 1999-06-09 2000-12-15 Nitto Denko Corp 半導体封止チップモジュールの製造方法及びその固定シート
US6229113B1 (en) 1999-07-19 2001-05-08 United Technologies Corporation Method and apparatus for producing a laser drilled hole in a structure
US6344402B1 (en) 1999-07-28 2002-02-05 Disco Corporation Method of dicing workpiece
TW404871B (en) 1999-08-02 2000-09-11 Lg Electronics Inc Device and method for machining transparent medium by laser
JP2001047264A (ja) 1999-08-04 2001-02-20 Seiko Epson Corp 電気光学装置およびその製造方法ならびに電子機器
KR100578309B1 (ko) 1999-08-13 2006-05-11 삼성전자주식회사 레이저 커팅 장치 및 이를 이용한 유리 기판 커팅 방법
JP2001064029A (ja) 1999-08-27 2001-03-13 Toyo Commun Equip Co Ltd 多層ガラス基板及び、その切断方法
JP4493127B2 (ja) 1999-09-10 2010-06-30 シャープ株式会社 窒化物半導体チップの製造方法
US6359254B1 (en) 1999-09-30 2002-03-19 United Technologies Corporation Method for producing shaped hole in a structure
US6229114B1 (en) * 1999-09-30 2001-05-08 Xerox Corporation Precision laser cutting of adhesive members
JP3932743B2 (ja) 1999-11-08 2007-06-20 株式会社デンソー 圧接型半導体装置の製造方法
JP4180206B2 (ja) 1999-11-12 2008-11-12 リンテック株式会社 半導体装置の製造方法
EP1232038B1 (en) 1999-11-24 2008-04-23 Applied Photonics, Inc. Method and apparatus for separating non-metallic materials
US6612035B2 (en) 2000-01-05 2003-09-02 Patrick H. Brown Drywall cutting tool
JP2001196282A (ja) 2000-01-13 2001-07-19 Hitachi Ltd 半導体装置及びその製造方法
JP2001250798A (ja) 2000-03-06 2001-09-14 Sony Corp ケガキ線で材料を分割する方法及び装置
DE10015702A1 (de) 2000-03-29 2001-10-18 Vitro Laser Gmbh Verfahren zum Einbringen wenigstens einer Innengravur in einen flachen Körper und Vorrichtung zum Durchführen des Verfahrens
WO2001074529A2 (en) 2000-03-30 2001-10-11 Electro Scientific Industries, Inc. Laser system and method for single pass micromachining of multilayer workpieces
JP2001284292A (ja) * 2000-03-31 2001-10-12 Toyoda Gosei Co Ltd 半導体ウエハーのチップ分割方法
JP2003531492A (ja) 2000-04-14 2003-10-21 エス オー イ テク シリコン オン インシュレータ テクノロジース 特に半導体材料製の基板又はインゴットから少なくとも一枚の薄層を切り出す方法
US6333486B1 (en) 2000-04-25 2001-12-25 Igor Troitski Method and laser system for creation of laser-induced damages to produce high quality images
AU2001261402A1 (en) 2000-05-11 2001-11-20 Ptg Precision Technology Center Limited Llc System for cutting brittle materials
JP4697823B2 (ja) 2000-05-16 2011-06-08 株式会社ディスコ 脆性基板の分割方法
TW443581U (en) 2000-05-20 2001-06-23 Chipmos Technologies Inc Wafer-sized semiconductor package structure
JP2001339638A (ja) 2000-05-26 2001-12-07 Hamamatsu Photonics Kk ストリークカメラ装置
JP2001345252A (ja) 2000-05-30 2001-12-14 Hyper Photon Systens Inc レーザ切断機
JP3650000B2 (ja) 2000-07-04 2005-05-18 三洋電機株式会社 窒化物系半導体レーザ素子および窒化物半導体レーザ装置の製造方法
JP3906653B2 (ja) 2000-07-18 2007-04-18 ソニー株式会社 画像表示装置及びその製造方法
US6376797B1 (en) 2000-07-26 2002-04-23 Ase Americas, Inc. Laser cutting of semiconductor materials
JP2002047025A (ja) 2000-07-31 2002-02-12 Seiko Epson Corp 基板の切断方法、およびこれを用いた電気光学装置の製造方法とこれに用いるレーザ切断装置および電気光学装置と電子機器
JP2002050589A (ja) * 2000-08-03 2002-02-15 Sony Corp 半導体ウェーハの延伸分離方法及び装置
US6726631B2 (en) 2000-08-08 2004-04-27 Ge Parallel Designs, Inc. Frequency and amplitude apodization of transducers
US6325855B1 (en) 2000-08-09 2001-12-04 Itt Manufacturing Enterprises, Inc. Gas collector for epitaxial reactors
JP2002192371A (ja) 2000-09-13 2002-07-10 Hamamatsu Photonics Kk レーザ加工方法及びレーザ加工装置
JP4964376B2 (ja) 2000-09-13 2012-06-27 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
JP2003001458A (ja) 2000-09-13 2003-01-08 Hamamatsu Photonics Kk レーザ加工方法
JP3408805B2 (ja) * 2000-09-13 2003-05-19 浜松ホトニクス株式会社 切断起点領域形成方法及び加工対象物切断方法
JP3751970B2 (ja) 2000-09-13 2006-03-08 浜松ホトニクス株式会社 レーザ加工装置
JP3761565B2 (ja) 2000-09-13 2006-03-29 浜松ホトニクス株式会社 レーザ加工方法
JP4837320B2 (ja) 2000-09-13 2011-12-14 浜松ホトニクス株式会社 加工対象物切断方法
JP4659300B2 (ja) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
JP3722731B2 (ja) 2000-09-13 2005-11-30 浜松ホトニクス株式会社 レーザ加工方法
JP3761567B2 (ja) 2000-09-13 2006-03-29 浜松ホトニクス株式会社 レーザ加工方法
JP2003039184A (ja) 2000-09-13 2003-02-12 Hamamatsu Photonics Kk レーザ加工方法
JP4762458B2 (ja) 2000-09-13 2011-08-31 浜松ホトニクス株式会社 レーザ加工装置
JP3626442B2 (ja) 2000-09-13 2005-03-09 浜松ホトニクス株式会社 レーザ加工方法
JP3660294B2 (ja) 2000-10-26 2005-06-15 株式会社東芝 半導体装置の製造方法
JP3332910B2 (ja) 2000-11-15 2002-10-07 エヌイーシーマシナリー株式会社 ウェハシートのエキスパンダ
JP2002158276A (ja) 2000-11-20 2002-05-31 Hitachi Chem Co Ltd ウエハ貼着用粘着シートおよび半導体装置
US6875379B2 (en) 2000-12-29 2005-04-05 Amkor Technology, Inc. Tool and method for forming an integrated optical circuit
JP2002226796A (ja) 2001-01-29 2002-08-14 Hitachi Chem Co Ltd ウェハ貼着用粘着シート及び半導体装置
TW521310B (en) 2001-02-08 2003-02-21 Toshiba Corp Laser processing method and apparatus
US6770544B2 (en) 2001-02-21 2004-08-03 Nec Machinery Corporation Substrate cutting method
SG118117A1 (en) 2001-02-28 2006-01-27 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
TW473896B (en) 2001-03-20 2002-01-21 Chipmos Technologies Inc A manufacturing process of semiconductor devices
JP4091838B2 (ja) 2001-03-30 2008-05-28 富士通株式会社 半導体装置
KR100701013B1 (ko) 2001-05-21 2007-03-29 삼성전자주식회사 레이저 빔을 이용한 비금속 기판의 절단방법 및 장치
JP2003017790A (ja) 2001-07-03 2003-01-17 Matsushita Electric Ind Co Ltd 窒化物系半導体素子及び製造方法
JP2003046177A (ja) 2001-07-31 2003-02-14 Matsushita Electric Ind Co Ltd 半導体レーザの製造方法
JP2003154517A (ja) 2001-11-21 2003-05-27 Seiko Epson Corp 脆性材料の割断加工方法およびその装置、並びに電子部品の製造方法
US6608370B1 (en) 2002-01-28 2003-08-19 Motorola, Inc. Semiconductor wafer having a thin die and tethers and methods of making the same
US6908784B1 (en) 2002-03-06 2005-06-21 Micron Technology, Inc. Method for fabricating encapsulated semiconductor components
JP3935186B2 (ja) 2002-03-12 2007-06-20 浜松ホトニクス株式会社 半導体基板の切断方法
WO2003076118A1 (fr) 2002-03-12 2003-09-18 Hamamatsu Photonics K.K. Substrat semi-conducteur, puce a semi-conducteur et procede de fabrication d'un dispositif a semi-conducteur
JP4358502B2 (ja) 2002-03-12 2009-11-04 浜松ホトニクス株式会社 半導体基板の切断方法
JP3670267B2 (ja) 2002-03-12 2005-07-13 浜松ホトニクス株式会社 レーザ加工方法
JP2003338468A (ja) 2002-03-12 2003-11-28 Hamamatsu Photonics Kk 発光素子の製造方法、発光ダイオード、及び半導体レーザ素子
TWI326626B (en) 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
EP2216128B1 (en) 2002-03-12 2016-01-27 Hamamatsu Photonics K.K. Method of cutting object to be processed
JP2003338636A (ja) 2002-03-12 2003-11-28 Hamamatsu Photonics Kk 発光素子の製造方法、発光ダイオード、及び半導体レーザ素子
JP4509720B2 (ja) 2002-03-12 2010-07-21 浜松ホトニクス株式会社 レーザ加工方法
JP2006135355A (ja) 2002-03-12 2006-05-25 Hamamatsu Photonics Kk 半導体基板の切断方法
ATE534142T1 (de) 2002-03-12 2011-12-15 Hamamatsu Photonics Kk Verfahren zum auftrennen eines substrats
DE10213272A1 (de) * 2002-03-25 2003-10-23 Evotec Ag Vorrichtung und Verfahren zur Leitungsankopplung an fluidische Mikrosysteme
US6744009B1 (en) 2002-04-02 2004-06-01 Seagate Technology Llc Combined laser-scribing and laser-breaking for shaping of brittle substrates
US6787732B1 (en) 2002-04-02 2004-09-07 Seagate Technology Llc Method for laser-scribing brittle substrates and apparatus therefor
TWI520269B (zh) 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
EP1588793B1 (en) * 2002-12-05 2012-03-21 Hamamatsu Photonics K.K. Laser processing devices
JP2004188422A (ja) 2002-12-06 2004-07-08 Hamamatsu Photonics Kk レーザ加工装置及びレーザ加工方法
JP4334864B2 (ja) * 2002-12-27 2009-09-30 日本電波工業株式会社 薄板水晶ウェハ及び水晶振動子の製造方法
JP4188847B2 (ja) 2003-01-14 2008-12-03 富士フイルム株式会社 分析素子用カートリッジ
US7341007B2 (en) 2003-03-05 2008-03-11 Joel Vatsky Balancing damper
FR2852250B1 (fr) 2003-03-11 2009-07-24 Jean Luc Jouvin Fourreau de protection pour canule, un ensemble d'injection comportant un tel fourreau et aiguille equipee d'un tel fourreau
US8685838B2 (en) 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
GB2404280B (en) * 2003-07-03 2006-09-27 Xsil Technology Ltd Die bonding
EP2324950B1 (en) 2003-07-18 2013-11-06 Hamamatsu Photonics K.K. Semiconductor substrate to be cut with treated and minute cavity region, and method of cutting such substrate
JP4563097B2 (ja) 2003-09-10 2010-10-13 浜松ホトニクス株式会社 半導体基板の切断方法
JP2005086175A (ja) 2003-09-11 2005-03-31 Hamamatsu Photonics Kk 半導体薄膜の製造方法、半導体薄膜、半導体薄膜チップ、電子管、及び光検出素子
JP4300084B2 (ja) 2003-09-19 2009-07-22 株式会社リコー 画像形成装置
US7719017B2 (en) * 2004-01-07 2010-05-18 Hamamatsu Photonics K.K. Semiconductor light-emitting device and its manufacturing method
JP4601965B2 (ja) * 2004-01-09 2010-12-22 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4598407B2 (ja) 2004-01-09 2010-12-15 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4509578B2 (ja) 2004-01-09 2010-07-21 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4829781B2 (ja) * 2004-03-30 2011-12-07 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップ
JP4536407B2 (ja) 2004-03-30 2010-09-01 浜松ホトニクス株式会社 レーザ加工方法及び加工対象物
KR101336523B1 (ko) 2004-03-30 2013-12-03 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법 및 반도체 칩
US20110002792A1 (en) * 2004-04-09 2011-01-06 Bartos Ronald P Controller for a motor and a method of controlling the motor
JP4733934B2 (ja) 2004-06-22 2011-07-27 株式会社ディスコ ウエーハの加工方法
JP4634089B2 (ja) * 2004-07-30 2011-02-16 浜松ホトニクス株式会社 レーザ加工方法
US8604383B2 (en) * 2004-08-06 2013-12-10 Hamamatsu Photonics K.K. Laser processing method
US20090025386A1 (en) * 2004-10-12 2009-01-29 Peer Rumsby Electrically assisted turbocharger
JP4754801B2 (ja) 2004-10-13 2011-08-24 浜松ホトニクス株式会社 レーザ加工方法
JP4917257B2 (ja) * 2004-11-12 2012-04-18 浜松ホトニクス株式会社 レーザ加工方法
JP4781661B2 (ja) * 2004-11-12 2011-09-28 浜松ホトニクス株式会社 レーザ加工方法
JP4198123B2 (ja) * 2005-03-22 2008-12-17 浜松ホトニクス株式会社 レーザ加工方法
JP4776994B2 (ja) * 2005-07-04 2011-09-21 浜松ホトニクス株式会社 加工対象物切断方法
JP4749799B2 (ja) * 2005-08-12 2011-08-17 浜松ホトニクス株式会社 レーザ加工方法
JP4762653B2 (ja) 2005-09-16 2011-08-31 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4237745B2 (ja) 2005-11-18 2009-03-11 浜松ホトニクス株式会社 レーザ加工方法
JP4907965B2 (ja) * 2005-11-25 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法
JP4804911B2 (ja) 2005-12-22 2011-11-02 浜松ホトニクス株式会社 レーザ加工装置
JP4907984B2 (ja) 2005-12-27 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップ
JP5183892B2 (ja) * 2006-07-03 2013-04-17 浜松ホトニクス株式会社 レーザ加工方法
EP1875983B1 (en) 2006-07-03 2013-09-11 Hamamatsu Photonics K.K. Laser processing method and chip
WO2008035679A1 (fr) 2006-09-19 2008-03-27 Hamamatsu Photonics K. K. Procédé de traitement au laser et appareil de traitement au laser
JP4954653B2 (ja) * 2006-09-19 2012-06-20 浜松ホトニクス株式会社 レーザ加工方法
JP5101073B2 (ja) 2006-10-02 2012-12-19 浜松ホトニクス株式会社 レーザ加工装置
JP4964554B2 (ja) * 2006-10-03 2012-07-04 浜松ホトニクス株式会社 レーザ加工方法
JP5132911B2 (ja) 2006-10-03 2013-01-30 浜松ホトニクス株式会社 レーザ加工方法
US8735770B2 (en) * 2006-10-04 2014-05-27 Hamamatsu Photonics K.K. Laser processing method for forming a modified region in an object
JP5336054B2 (ja) 2007-07-18 2013-11-06 浜松ホトニクス株式会社 加工情報供給装置を備える加工情報供給システム
JP4402708B2 (ja) * 2007-08-03 2010-01-20 浜松ホトニクス株式会社 レーザ加工方法、レーザ加工装置及びその製造方法
JP5225639B2 (ja) 2007-09-06 2013-07-03 浜松ホトニクス株式会社 半導体レーザ素子の製造方法
JP5342772B2 (ja) * 2007-10-12 2013-11-13 浜松ホトニクス株式会社 加工対象物切断方法
JP5449665B2 (ja) 2007-10-30 2014-03-19 浜松ホトニクス株式会社 レーザ加工方法
JP5134928B2 (ja) 2007-11-30 2013-01-30 浜松ホトニクス株式会社 加工対象物研削方法
JP5054496B2 (ja) 2007-11-30 2012-10-24 浜松ホトニクス株式会社 加工対象物切断方法
JP5097639B2 (ja) * 2008-08-01 2012-12-12 ルネサスエレクトロニクス株式会社 リードフレーム及び半導体装置
JP5241525B2 (ja) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111800A (ja) * 1990-08-31 1992-04-13 Nippon Sekiei Glass Kk 石英ガラス材料の切断加工方法
US5211805A (en) * 1990-12-19 1993-05-18 Rangaswamy Srinivasan Cutting of organic solids by continuous wave ultraviolet irradiation
JPH10305420A (ja) * 1997-03-04 1998-11-17 Ngk Insulators Ltd 酸化物単結晶からなる母材の加工方法、機能性デバイスの製造方法
JP2000124537A (ja) * 1998-10-21 2000-04-28 Sharp Corp 半導体レーザチップの製造方法とその方法に用いられる製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATSUYOSHI MIDORIKAWA, December 1998, DAI 45 KAI LASER-NETSU KAKO KENKYUKAI RONBUNSHU, ISBN: 4-947684-21-6, article "Femto-byo laser no genjo to kako oyo", XP002970203 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042421A1 (ja) * 2003-10-31 2005-05-12 The Japan Steel Works, Ltd. ガラスの切断方法
US7423237B2 (en) 2003-10-31 2008-09-09 The Japan Steel Works, Ltd. Method of cutting laminated glass with laser beams
US7211526B2 (en) 2004-02-19 2007-05-01 Canon Kabushiki Kaisha Laser based splitting method, object to be split, and semiconductor element chip
EP1742253A1 (en) * 2004-03-30 2007-01-10 Hamamatsu Photonics K.K. Laser processing method and semiconductor chip
EP1742253B1 (en) * 2004-03-30 2012-05-09 Hamamatsu Photonics K.K. Laser processing method
US7939430B2 (en) 2004-11-12 2011-05-10 Hamamatsu Photonics K.K. Laser processing method
US7902636B2 (en) 2004-11-12 2011-03-08 Hamamatsu Photonics K.K. Semiconductor chip including a substrate and multilayer part
US8143141B2 (en) 2004-11-12 2012-03-27 Hamamatsu Photonics K.K. Laser beam machining method and semiconductor chip
US8138450B2 (en) 2005-07-04 2012-03-20 Hamamatsu Photonics K.K. Method for cutting workpiece
JP2007013056A (ja) * 2005-07-04 2007-01-18 Hamamatsu Photonics Kk 加工対象物切断方法
WO2007004607A1 (ja) * 2005-07-04 2007-01-11 Hamamatsu Photonics K.K. 加工対象物切断方法
KR101226309B1 (ko) 2005-07-04 2013-01-24 하마마츠 포토닉스 가부시키가이샤 가공 대상물 절단 방법
WO2007037219A1 (ja) * 2005-09-28 2007-04-05 Tokyo Seimitsu Co., Ltd. レーザーダイシング装置及びレーザーダイシング方法
WO2007074823A1 (ja) * 2005-12-27 2007-07-05 Hamamatsu Photonics K.K. レーザ加工方法及び半導体チップ
US8389384B2 (en) 2005-12-27 2013-03-05 Hamamatsu Photonics K.K. Laser beam machining method and semiconductor chip
KR101369567B1 (ko) 2005-12-27 2014-03-05 하마마츠 포토닉스 가부시키가이샤 레이저 가공방법 및 반도체 칩
US8759948B2 (en) 2005-12-27 2014-06-24 Hamamatsu Photonics K.K. Laser beam machining method and semiconductor chip
JP2009188433A (ja) * 2009-05-28 2009-08-20 Mitsubishi Chemicals Corp 窒化物系半導体素子の製造方法
JP2012023231A (ja) * 2010-07-15 2012-02-02 Disco Abrasive Syst Ltd 分割方法
CN103418908A (zh) * 2012-05-17 2013-12-04 株式会社迪思科 改性层形成方法
CN103537805A (zh) * 2012-07-17 2014-01-29 深圳市大族激光科技股份有限公司 晶圆片激光切割方法及晶圆片加工方法

Also Published As

Publication number Publication date
EP2216128B1 (en) 2016-01-27
US8361883B2 (en) 2013-01-29
EP1498215A1 (en) 2005-01-19
EP2199009A2 (en) 2010-06-23
US8551865B2 (en) 2013-10-08
EP1498216A1 (en) 2005-01-19
EP1498215B1 (en) 2011-06-15
JP4970628B1 (ja) 2012-07-11
CN101412154A (zh) 2009-04-22
KR20070114398A (ko) 2007-12-03
EP2199008A3 (en) 2013-10-02
EP3020503B1 (en) 2019-11-06
EP2216128A3 (en) 2013-10-02
CN101412154B (zh) 2012-02-01
JP5689449B2 (ja) 2015-03-25
JP4606741B2 (ja) 2011-01-05
EP3683003B1 (en) 2023-08-23
US20100015783A1 (en) 2010-01-21
JP5545777B2 (ja) 2014-07-09
US8183131B2 (en) 2012-05-22
DE60335538D1 (de) 2011-02-10
US20130252402A1 (en) 2013-09-26
US8598015B2 (en) 2013-12-03
JP2014068031A (ja) 2014-04-17
EP2272618B1 (en) 2015-10-07
EP2199009B1 (en) 2015-09-23
JP2011206851A (ja) 2011-10-20
EP1498216A4 (en) 2009-07-01
JP2009296008A (ja) 2009-12-17
ES2364244T3 (es) 2011-08-29
JPWO2003076120A1 (ja) 2005-07-07
CN1642687A (zh) 2005-07-20
KR100832941B1 (ko) 2008-05-27
EP3012061B1 (en) 2019-04-24
JP2013016867A (ja) 2013-01-24
US20050202596A1 (en) 2005-09-15
JP4886015B2 (ja) 2012-02-29
AU2003220851A1 (en) 2003-09-22
CN1328002C (zh) 2007-07-25
EP2272618A2 (en) 2011-01-12
ES2356817T3 (es) 2011-04-13
US8802543B2 (en) 2014-08-12
AU2003211581A1 (en) 2003-09-22
JP2012138598A (ja) 2012-07-19
EP2272618A3 (en) 2013-10-09
JP4846880B2 (ja) 2011-12-28
TW200304857A (en) 2003-10-16
JP2011142329A (ja) 2011-07-21
JP4515096B2 (ja) 2010-07-28
EP1498215A4 (en) 2009-07-01
TW200304858A (en) 2003-10-16
TWI296218B (en) 2008-05-01
US8673745B2 (en) 2014-03-18
US7749867B2 (en) 2010-07-06
JP5557766B2 (ja) 2014-07-23
ES2762406T3 (es) 2020-05-25
US20120205358A1 (en) 2012-08-16
KR20040093139A (ko) 2004-11-04
EP1498216B1 (en) 2010-12-29
ATE512751T1 (de) 2011-07-15
EP2199009A3 (en) 2013-10-02
EP2199008A2 (en) 2010-06-23
US20130344686A1 (en) 2013-12-26
US20060011593A1 (en) 2006-01-19
US20140080288A1 (en) 2014-03-20
EP3012061A1 (en) 2016-04-27
ATE493226T1 (de) 2011-01-15
WO2003076120A1 (en) 2003-09-18
KR20040099323A (ko) 2004-11-26
EP3020503A1 (en) 2016-05-18
KR100866171B1 (ko) 2008-10-30
EP3683003A1 (en) 2020-07-22
CN1642688A (zh) 2005-07-20
TWI270431B (en) 2007-01-11
CN100448593C (zh) 2009-01-07
EP2199008B1 (en) 2016-01-13
JP5778239B2 (ja) 2015-09-16
EP2216128A2 (en) 2010-08-11
JP2012206172A (ja) 2012-10-25
JPWO2003076119A1 (ja) 2005-07-07
KR100749972B1 (ko) 2007-08-16

Similar Documents

Publication Publication Date Title
WO2003076119A1 (en) Method of cutting processed object
TWI380867B (zh) Laser processing methods and semiconductor wafers
JP4322881B2 (ja) レーザ加工方法及びレーザ加工装置
WO2004080643A1 (ja) レーザ加工方法
JP3670267B2 (ja) レーザ加工方法
JP4409840B2 (ja) 加工対象物切断方法
JP3935189B2 (ja) レーザ加工方法
JP3935186B2 (ja) 半導体基板の切断方法
JP2003338467A (ja) 半導体基板の切断方法
JP2007013056A (ja) 加工対象物切断方法
JP4463796B2 (ja) レーザ加工方法
WO2003076118A1 (fr) Substrat semi-conducteur, puce a semi-conducteur et procede de fabrication d&#39;un dispositif a semi-conducteur
JP4167094B2 (ja) レーザ加工方法
JP4509720B2 (ja) レーザ加工方法
JP2006135355A (ja) 半導体基板の切断方法
JP2007083309A (ja) レーザ加工方法
WO2004080642A1 (ja) レーザ加工方法
JP3869850B2 (ja) レーザ加工方法
JP3867104B2 (ja) 半導体基板の切断方法
JP3867105B2 (ja) 半導体基板の切断方法
JP3867100B2 (ja) 半導体基板の切断方法
JP2006148175A (ja) レーザ加工方法
JP2004268103A (ja) レーザ加工方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003574374

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047014372

Country of ref document: KR

Ref document number: 20038058634

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003744054

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047014372

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003744054

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006011593

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10507340

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10507340

Country of ref document: US