JP4569097B2 - 球状弾性表面波素子およびその製造方法 - Google Patents

球状弾性表面波素子およびその製造方法 Download PDF

Info

Publication number
JP4569097B2
JP4569097B2 JP2003387569A JP2003387569A JP4569097B2 JP 4569097 B2 JP4569097 B2 JP 4569097B2 JP 2003387569 A JP2003387569 A JP 2003387569A JP 2003387569 A JP2003387569 A JP 2003387569A JP 4569097 B2 JP4569097 B2 JP 4569097B2
Authority
JP
Japan
Prior art keywords
crystal
acoustic wave
surface acoustic
solid material
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003387569A
Other languages
English (en)
Other versions
JP2005150496A (ja
Inventor
晋 江森
浩功 野村
教尊 中曽
慎吾 赤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2003387569A priority Critical patent/JP4569097B2/ja
Publication of JP2005150496A publication Critical patent/JP2005150496A/ja
Application granted granted Critical
Publication of JP4569097B2 publication Critical patent/JP4569097B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、透明固体材料の内部加工に係わり、詳しくは、結晶材料などの異方性を有する材料の表面に損傷を与えることなく簡便に結晶軸の方向が明らかになる異方性透明固体材料、球状弾性表面波素子およびその製造方法に関する技術に関する。
基材上に弾性表面波を発生させるとともに基材上に発生された弾性表面波を受信するものとして弾性表面波素子は従来から良く知られている。弾性表面波素子とは圧電体上に1対の櫛形電極が設けられていて、一方の櫛形電極に高周波電圧を供給することにより一方の櫛形電極の並んでいる方向に弾性表面波を発生させ、他方の櫛形電極が一方の櫛形電極から発生される弾性表面波の移動方向に配置されていて上記弾性表面波を受け取るというものである。弾性表面波素子は、遅延線,発信機の為の発振素子及び共振素子、周波数を選択する為のフィルター、化学センサー、バイオセンサー、またはリモートタグ等に使用されている。
このような弾性表面波素子において1対の櫛形電極相互間を弾性表面波が伝搬する際の伝搬損失を出来る限り小さくし、共振周波数の精度を高める為の一つの提案として、特許文献1に示すような球状弾性表面波素子がある。このような球状弾性表面波素子においては、基材として異方性のある圧電結晶球を用いるため、結晶球表面においてどの結晶軸に対してどの位置にすだれ状電極(櫛型電極)を設けるかで、発生する弾性表面波やその伝搬速度に大きな違いが生じてしまう。しかし、圧電結晶球を基材にし、その表面にすだれ状電極などを形成して球形の弾性波デバイス(素子)を作成する際に、圧電結晶材料を球形加工すると、その形状により結晶軸方向を見定める事が困難になり、素子の製造にかかせないパターニングや素子の加工を行うために1個1個の結晶球について結晶方向を測定しなくてはならず、特にX線などの測定に時間のかかる方法を採用した場合には装置も高価で、生産速度があがらないという問題があった。
結晶球の結晶方位測定方法として一般に考えられるのは、X線ラウエ法と呼ばれる方法が一般的である。
単結晶材料が育成される際には結晶独自の結晶成長速度の結晶方位への依存から単結晶の形から判別出来ることが多いが、一旦結晶球として球形加工されてしまうと、その形状から結晶軸を同定する事は出来なくなる。
X線ラウエ方法とは、X線ビームを結晶の或る方向から照射すると、結晶を構成する原子の配列に従ってX線がその結晶面に従った方向に反射される事から、その反射X線のパターンから結晶方向を測定するもので、水晶発振子の材料切り出し工程等で多く用いられている。
球形加工された結晶球の結晶軸測定方法として、図2に示す光の旋回物性を利用した方法がある。特に水晶やLiNbO3、LiTaO3などにおいて、図2(A)に示す方法でZ軸方向に偏光させた光を入射して透過した光を別個の偏光板を通して観察すると、結晶材料の持つ光の旋回性と、球形としての幾何学的特徴から同心円状のマーク(図2(B))が現れる。このマークが球の中心に見える方向がZ軸方向と判断する事が出来る。この方法の欠点は、Z軸方向の測定には用いる事が出来るが、例えば水晶のX結晶軸あるいはY結晶軸をこれによって測定する事は出来ないことにある。また、Z軸の向きまでは判定できないため、裏表が重要になるような結晶球には対応できないという問題がある。
結晶材料を結晶球に加工する一般的な方法を図3を用いて説明する。
多くの結晶球を取り出す為の図示しない結晶材料からのウエハー材1の切り出しが行われる。
塊状の結晶材料は図3(A)の如く例えば結晶軸のZ方向に垂直な面で一旦平面板に切断される。このウエハー材1をZカット結晶基板と呼ぶ。このZカット結晶基板は更に細かく切断されて、図3(B)に図示するように多数の多角柱チップ(ここでは立方体チップ)に切り落とされる。次いで、図示しない工程で角が取り除かれて、最終的に図示しないイマハシ式丸玉研磨機と呼ばれる、球形の溝の中を圧力をかけられながら回転させて徐々に尖った部位を削り取る。
あるいは最後は適当な研磨物と共に材料を混合し、長時間かき混ぜる事で自然と材料相互間で衝突し、あるいは研磨剤との摩擦によって角がとれて結晶球3にするものである。
一般に、このような方法を用いて結晶球3を作成する際には、当初の立方体あるいは荒削りした角を取った個々の結晶材料の直径は、目標とする結晶球3の直径の概ね1.4倍の大きさが必要であり、図3(C)に示すように真球状に作り込まれる。
図4に示すように、新しい弾性表面波デバイスの一つとして球状弾性表面波素子4がある。球状弾性表面波素子4は圧電材料でできた円環状に連続する表面に弾性表面波41を発生して多重周回させるもので、円環状表面を弾性表面波41が伝搬する際に、その表面に付着する物質などによって周回速度が変化するのを電気的に測定するセンサーとして期待されている。弾性表面波41が結晶球3の表面を周回して伝搬する為には結晶で決まった方位を軸として弾性表面波を励起する必要がある。この為に、結晶球3の結晶方位により決まった特定の角度に弾性表面波41を励起検出するすだれ状電極42をホトリソグラフィーなどの方法を用いて形成しなくてはならない。
球状弾性表面波素子4は、例えば、水晶のZ軸シリンダーと呼ばれる円環状経路43を弾性表面波41を周回させる方法においては、図4(B)に示すように、その円環領域を外れた部位44(円環経路を赤道とすると極に相当する付近)を削っても周回特性に大きな影響を与えない事が知られている。その為、この部分を平らに削って他のICチップ等の電子部品、あるいはすだれ状電極42の結線スペースとして利用する、あるいは基板に固定する為の面として利用が望まれてきた。この極の平面の加工方法としては、樹脂などで固めた状態で樹脂ごと研磨する方法が用いられているが、微細物の高い平面精度での研磨は難しくコスト高になる問題を持っていた。
以上、詳細に述べたように、結晶球3の結晶軸を高い精度で決定することが要求されているが、簡便で低コストの方式が見いだせていなかった。
本発明では、結晶球3内部に刻印を残し、結晶軸を視認により判定するための方法を提案している。結晶軸を示す刻印はウエハー材1あるいは多角柱チップ2の表面に行っても研磨により消えてしまうため、結晶球3の内部に刻印する必要がある。しかし円環部分に刻印を残すと不良品となるため、透明体の表面に損傷を与えることなくマイクロメートルオーダーで透明体内部の微小部分のみに刻印しなければならない。
特に、近年、透明材料の内部加工では、超短パルスレーザーの有用性が研究報告されており、非特許文献1に示すように、屈折率を変えることで光導波路を形成したり、特許文献2に示すように、硝子内部にマイクロドットを形成することが可能である。
本発明による刻印方法は、上記の超短パルスレーザーの基本特性利用に基づいている。
公知文献は以下の通り。
特開2002−26688号公報 特開平11−267861号公報 緑川克美、「フェムト秒レーザーと物質の相互作用」、レーザー加工学会誌 Vol.8,No.3(2001)
結晶材料を切断した状態で、あるいは球形加工する前に、その結晶軸を示唆する目印を材料内部に形成してから球状加工を行い、球形加工した後でも消えない結晶軸方向を示唆する刻印を結晶球に形成しておくことで、材料の結晶軸同定作業が1回で済み、且つ研磨工程等の表面加工を含む後工程においてもその刻印を基準に製造することができ、非常に高速で簡便に結晶球を使った球状弾性表面波素子の結晶軸を示す刻印を形成することが出来る材料およびこの材料を用いた球状弾性表面波素子を提供する。
上記課題を解決する為に、まず本発明の第1の発明は、透明性と異方性を有する固体材料にレーザー光を用い該固体材料の内部に方位軸を示す刻印を施した異方性透明固体材料を用いて製造され、内部に該刻印を有することを特徴とする球状弾性表面波素子を提供するものである。
これによって、従来のような素子の製造に欠かせないパターニングや素子の加工を行うために1個1個の結晶球について結晶方向をX線ラウエ法などの高価で時間のかかる測定を不要とすることが出来る。
また、本発明の第2の発明は、前記レーザー光は瞬時パワーがギガワット、パルス幅が1ピコ秒以下の超短パルスレーザーであることを特徴とする請求項1記載の球状弾性表面波素子を提供するものである。
これによって、材料による光吸収特性問題を解決できる。
また、本発明の第3の発明は、前記刻印は空隙であることを特徴とする請求項1または2記載の球状弾性表面波素子を提供するものである。
また、本発明の第の発明は、透明性と異方性を有する球状の固体材料からなる球状弾性表面波素子の製造方法であって、少なくとも以下の工程1から工程3の工程を具備することを特徴とする内部に視認可能な方位軸を刻印された球状弾性表面波素子の製造方法を提供するものである。
工程1.1つの結晶方位について一定の角度を保つ平面を有した異方性透明固体材料に対し、レーザー光を照射して前記異方性透明固体材料内部に少なくとも1つの方位に関して視認可能な方位軸を刻印する工程
工程2.前記異方性透明固体材料をチップ状に切り出す工程
工程3.前記チップ状の異方性透明固体材料を、内部に工程1で刻印した方位軸を残しながら球状に加工する工程
以上の説明から明らかなように、本発明によれば、以下のような効果が得られる。
結晶方位の知られた表面を有する単結晶材料等の異方性透明固体材料の方位を視認するために、その表面からパルス幅がナノ秒以下のエネルギービームを照射して、表面を損傷
することなく、その異方性透明固体材料の内部に刻印し、加工した後にもその刻印の少なくとも一部は残すことで、従来のような素子の製造にかかせないパターニングや素子の加工を行うために1個1個の結晶球について結晶方向をX線ラウエ法などの高価で時間のかかる測定を不要とすることが出来る。
異方性透明固体材料内部への刻印を作る工程は、ウエハー材が複数の多角柱チップに、あるいは棒状の材料が円柱もしくは多角柱チップに切断されるより前に行うことで、材料の結晶軸同定作業が1回で済み、且つ後工程においてもその刻印を基準に製造することができる。本発明の異方性透明固体材料は結晶球内部の任意の座標に任意の数の空隙を形成したものであるので、単に結晶軸の存在を示すだけでなく、その方向や、複数の結晶軸の方位も刻印することが可能である。これらの情報にしたがって球状弾性表面波素子への加工を行えば、例えば水晶材料では、すだれ状電極形成位置に大きな影響を及ぼし、その形成位置がずれると弾性表面波の伝搬速度に著しい違いが現れてしまうX軸、Y軸の方位の判断も容易に行うことができる異方性透明固体材料となる。
刻印となる空隙もしくは空隙の集合を形成するエネルギービームは、空隙発生位置において高エネルギー密度となるレーザービームであり、瞬時パワーがギガワットでそのパルス幅が1ピコ秒以下のパルスレーザー(以下、超短パルスレーザー、あるいはフェムト秒レーザーという)によって発生されるので、材料による光吸収特性問題もなく、材料表面に損傷を与えることなく、異方性透明固体材料内部のみに極めて微細な刻印が簡便に出来るので、方位軸特定精度が高くなる。
さらに、異方性透明固体材料表面上に刻印を形成し、その異方性透明固体材料を加工して球基材を製造するにおいて、前記方位面の刻印された表面の少なくとも一部を残すようにして結晶球を製造することで、安価で簡便な検出方法で結晶軸を特定できるようになり、生産性が著しく向上する。
図を用いて本発明に係る異方性透明固体材料、球状弾性表面波素子およびその製造方法を説明する。
本発明で述べる刻印とは、対象となる固体材料に3次元的な座標を記録すること、あるいはその座標をいい、具体的にはレーザー光の照射を行い、当該固体材料に対し決定した任意の方位軸を、顕微鏡等の装置を用いる程度の視認により固体材料の外形状と空隙形成位置の相対的な比較を行って読み取ることができるような空隙を形成することである。
本発明で述べる方位軸とは、対象となる固体材料における3次元的な空間座標情報をいい、当該固体材料中における異方性の方向だけでなく、例えば互いに直交するXYZの3軸のように、当該固体材料中における異方性の方向とは必ずしも並行ではない人為的に決定した軸も含む。
従って、方位軸を刻印するといえば、対象となる固体材料に視認可能なしるしをつける(刻印する)ことによって固体材料の左右、裏表などの向き(方位軸)を、見ただけで判定できるようにすることである。
本発明の異方性透明固体材料とは、以下に詳しく説明する結晶性材料のみならず、透明かつ視認による異方軸の同定が困難である固体材料に対し方向軸を示す刻印の施されたすべての材料を含み、その形状はウエハー状、棒状、多角柱、円柱、球形を問わないものとする。ここで透明とは、空隙である刻印を形成するために使用するエネルギービームに対して透明であればよく、透明の程度は本発明の趣旨を逸脱しない範囲で意図した材料内位
置までエネルギービームが侵入して収束とそれによる加工がなされる程度であれば良い。
本発明における結晶球3とは、図4(A)の球状弾性表面波素子に示されている真球形形状のみならず、円環状経路43を弾性表面波41が周回する形状であればどの様な形状でもよく、例えば図4(B)の球状弾性表面波素子に用いられるような球の1部分を削った太鼓形状などの円環状領域を有する形状のように円環形状が形成を終了された段階の基材も含むものとする。
なお、その後その表面の一部を削ったり、あるいは部分的に平面を有していても結晶球3であることには変わらないものとする。
多角柱の材料から球加工を行うための詳細な加工手順は周知技術であるので省略する。
なお、厚さ方向に小さな多角柱材料から球加工を開始すると、小さかった一方向の面については、他の材料との接触が非常に小さく削られる機会が小さく、その他の面が削られて最終的に球表面あるいは其れに近い円環状経路を有する結晶球となった場合でも平面として残る事が知られており、
結晶球の結晶軸方向を球面を形成した後でも結晶軸を示唆する面として残す事で、この面を基準に後工程を施せば、結晶球に結晶軸によって決められた方向にパターニングや加工を行うことが出来る。
特に、結晶軸方向が明白にされたウエハー材1から結晶球3を作成するにおいて、結晶球3として完成された後、あるいはそのプロセス過程で重要となる結晶面を持った結晶板を切断して、結晶面を残したまま加工を行うことで、より多くの結晶軸方向に関する情報を特段の操作なく結晶球に残すことができる。
本発明においては、結晶材料から切り出したウエハー材1面内における軸方位をまず判定し、その軸方位に基づいて刻印された空隙13の座標位置を結晶球形成後も保持しなければならない。通常は結晶球を作る為にウエハー材が切断、球面加工されて結晶球になった後に、その内部に少なくとも複数の刻印としての空隙が存在するように設ける。
このとき、少なくとも2点の座標を特定できるように空隙13を形成しておけば結晶球の全ての軸方位をその空隙13の位置から再現する事も可能であり好ましい。結晶軸方位を示唆する刻印の方法について具体的には図4及び図5を用いて説明を行う。
球状弾性表面波素子4を形成する結晶球3の形状には大きく言って図4に示すように2種類があげられる。図4(A)は完全に透明固体材料を球形に加工してからその表面にすだれ状電極42などを形成して製造を行うが、例えば水晶のZ軸シリンダーと呼ばれる円環状経路43に弾性表面波41を伝搬させるように作成する場合には、必ずZ軸方向を地軸とした時の赤道方向にすだれ状電極42を形成しなくてはならない。この為、異方性透明固体材料に対し球加工を施す前に、Z軸方向を示唆する少なくとも2つの点を結晶軸のZ方向にのみ異なる座標に刻印すれば、球加工後にもその2点を繋いだ方位からZ軸方向を知る事ができ、それを元にZ軸シリンダー経路を認識する事が出来る。
ところが、Z軸シリンダー経路上(Z軸を地軸として赤道に相当)のどの位置にすだれ状電極42を形成しても一応は球状弾性表面波素子4として機能するが、弾性表面波41の周波数は赤道上でもその位置によって変化し、特にどの位置にすだれ状電極42を設け、弾性表面波41を発生させるかで大きく異なってしまう。従って素子の仕様を一定にするためにはXY方向も記録しておく必要がある。幾何学的に明らかなように、少なくとも2つの結晶軸をその向きも含めて記録するためには少なくとも3点の座標を示す空隙13が一直線上に並んでいない配置で刻印されている必要がある。あらかじめ3点の空間的な
配置(座標)とXYZ結晶軸との関係を把握する事でこれは可能である。もっとも簡単な場合を図5(B)に示す。z1及びz2の空隙でZ軸方向を示し、y1の空隙でY方向を示している。z1、z2、y1が少なくとも空間的にニ等辺三角形の位置に無ければ例えば水晶の3本の結晶方位すべてを記録する事が可能である。
図5(C)を用いて一つの点で結晶球3のZ軸を示す可能性を説明する。この例では1つの空隙z1が球のはずれに形成されている。空隙と、空隙に対して最も近い球表面を結び、例えばこれをZ軸として判定することができる。また、Z軸の方位も空隙がZ軸上のどちら側に位置するかで判定することができる。これを可能にするには図3で示した多角柱チップの切りだしと空隙の相対的な位置精度を高くして加工する必要があるのは言うまでもない。
図5(D)を用いて二つの点で結晶球のXYZ3軸すべてを示す可能性を説明する。この例では1つの空隙z1が球のはずれに施され、もう1つの空隙y1がz1とは重ならず、z1よりは球の中心に近いが球の中心ではない位置に刻印されている。最も球表面に近い空隙をz1、次に球表面に近い空隙をy1と決めておく。空隙z1と、空隙z1に対して最も近い球表面を結び、これをZ軸として判定することができる。また、例えば結晶球中心から空隙z1を通り球表面へ向かってZ軸の正の向きであると判断できる。そして結晶球の中心とz1、y1の3点により形成される面をYZ平面とすれば、結晶球の中心に対して空隙y1のある向きをY軸の正と判定することができるので、これら2軸の交わりから幾何学的にX軸の方位までもわかることとなる。
次に図6は球が少なくとも一つの方向を示す形状を有している例である。この場合は更に少数の空隙の刻印で結晶方位の記録が可能である。例えばこれは平面を有している場合であり、ここでは仮にZ軸を法線とする面が形成されているとあらかじめ知られている場合は、図6(A)に示すように2つの空隙がZ軸に並行に並んでいるのでさえなければY方向もしくはZ方向を記録する事が可能である。あるいは図6(B)のように空隙が1つであっても球の中心には位置しないことを利用してその方向を例えば+Y軸と記録する事が出来る。
図6では結晶球3において2箇所存在する円環経路を外れた部位44が、Z軸を法線とする平面によって切り取られた形状を示しているが、どちらか一方のみを真球形状の結晶球形成後に研磨等によって切削、あるいは双方を非対象になるように加工し、この加工によってZ軸の方位を表すようにすれば、刻印については1座標のみでも3軸すべてを表すことができる。
このように異方性透明固体材料への空隙の刻印によってその結晶軸方向を記録する方法は様々あるが何れも幾何学的に容易に推測可能であり利用する事も可能である。特にレーザー光による刻印の場合は、空隙形状が通常は紡錘体になることからその形状により1つの空隙によって2座標を刻印し、1つの結晶軸を示すことも容易に推察出来る。
このように本発明とは、結晶球の外形、その中に刻印された空隙の幾何学的配置、或いはその空隙の形状が示す座標から結晶軸を知ることができる異方性透明固体材料である。
なお、ここでは水晶結晶を例にとり、XYZの3軸を示す刻印を施した異方性透明固体材料について述べたが、先述の通り透明でレーザー光による空隙の形成が可能であり、軸方向を刻印したい任意の固体材料であれば本発明を適用することができ、また軸の角度や数も目的に応じて定めることができる任意事項である。
前記の空隙を形成するためのエネルギー源としてレーザー光を用いることが有効である
。図7、図8に示すようにレーザー光45はそのビーム形状を変える事で様々なウエハー材1中の位置や領域にエネルギーを集束させる事が可能であり、その為の光学系の構成は本発明の目的のためにはいかなるものでもよいので、ここでは記述しない。
但し、図8に示すように、複数の空隙13(刻印)が一度に形成出来るエネルギー分布を持ったレーザー光を用いれば1回のレーザー光45の照射によって特定方向の結晶方位を記録出きることから高スループットでの加工が可能であり望ましい。
このことは、超短パルスレーザーにて、集光光学系を工夫することで可能であることが報告されている。
なお、異方性透明固体材料に軸方位を刻印する際、あるいは結晶球形成の際、図9に示すように、空隙13を発生させるために照射する(された)レーザー光45が透過した異方性透明固体材料部分が結晶球完成後における円環状経路43とならないようにすることが好ましい。円環状経路43において弾性表面波41が伝搬することになるため、レーザー光透過による影響を受けた部分が変質してその伝搬に影響を与えることのないようにである。
また、先述したように、多角柱チップ2からの研磨により結晶球3を作成する際には、当初の立方体あるいは荒削りした角を取った個々の結晶材料の直径は、目標とする結晶球3の直径の概ね1.4倍の大きさが必要であり、図3(C)に示すような関係下で真球に近い形状まで作り込まれる。従って本発明で軸方位の認定のために刻印される空隙も、球形加工時に失われないよう目標とされる結晶球3の内部に収まる位置に行わなければならない。
以下のように、超短パルスレーザーを用いて空隙13を刻印することによる軸方位の記録を結晶球作成の基になるウエハー材1に対して行った。
図1は、超短パルスレーザー発生制御手段12を用いてウエハー材1内部に空隙13を刻印する機構の概略図である。
用意したウエハー材1は厚さが1.4mmの2インチのZカット水晶基板である。このウエハー材1に対して、図8に示すようにXY平面上であり、YX座標は同じであるがX軸方向に座標の異なる材料上の点2箇所が、球形加工後に得られる結晶球の1個1個すべてに刻印されてX軸を示す位置に、XY方向位置制御手段47及びZ方向位置制御手段48を稼動してはレーザー光45を照射しながら行った。図1(B)に示すように超短パルス秒レーザー発生制御手段12により発生させたレーザー光45の集束により生じる高エネルギー密度領域である焦点49が刻印形成座標となるように位置合わせを行い、ついでレーザー光45を照射して直径がマイクロメートルオーダーの空隙13を形成する。ここで上記夫々の2箇所の空隙刻印座標は、一辺が1.4mmの立方体の中心を挟む位置になり、かつ球形加工時に削り取られない位置に形成した。
本発明で使用した超短パルス秒レーザーはクラーク(Clark MXR)社製のCPA−2001であり、波長775nm、平均最大出力1W、繰り返し周波数1kHzの照射が可能である。
レーザー装置から出射されたレーザー光45は、光学系を通り、集光レンズを用いて、ウエハー材1内部の所定の位置にその焦点49を位置させる。上下左右の位置合わせはウエハー材1を搭載しているステージ群で行った。ソフトウェアコントローラーを用いてウエハー材1に対して所定の位置にレーザー光45の焦点49を合わせ、レーザー光45を照射する機構とした。
ウエハー材の表面座標を測定、位置決めをした後、Z軸ステージを移動させることで、所望の深さに位置を合わせた。その後、ビームスポット(ビームウェストの直径、焦点)10μm、平均出力3mW、1パルス照射によって、直径1μmから5μmの空隙13がウエハー材1の内部に形成できたことが顕微鏡を用いて確認できた。
以上の操作によりウエハー材1におけるすべての分割部分に刻印を施し、ダイシング装置により多角柱チップ2を切り出した。ここでは多角柱チップの形状は立方体とした。
研磨は荒削りをおこなった後に、イマハシ式丸玉加工機によって球形研磨を行った。この実施例では、立方体に切り出したためウエハー材表面が残らず、従って必要な球面精度を出す為に十分な研磨を行い、直径1mmの真球状の水晶結晶球を得た。
このようにして得られた1mmの直径の水晶結晶球3を球状弾性表面波素子4に加工した。フォトレジストの塗布を行った後に図10に示す結晶球回転ステージ15つきの装置にセットした。この装置は、4方向から結晶球3内部に作られた空隙13を共焦点型顕微鏡カメラ14によってその位置を測定し、結晶球3の結晶軸の方向を測定し、結晶球回転ステージ15を用いて結晶球3を所定の方向を向くように修正した後に、球状弾性表面波波素子4のすだれ状電極42パターンの露光を行った。
上記の空隙13の形成は、Zカット水晶ウエハーの場合について述べたが、LiNbO3等他の結晶材料に対しても同様の加工が可能であって、本発明の方法に依れば、ガラス質材料は勿論のこと先に述べた透明な固体材料なら加工が可能である。
本発明は、遅延線、発信機の為の発振素子及び共振素子、周波数を選択する為のフィルター、化学センサー、バイオセンサー、またはリモートタグ等に使用することができる。
本発明に係るレーザー光を使用した軸方向を示唆する刻印形成を示す概略図である。 従来から知られている結晶の偏光方向の旋回を利用した水晶のZ軸方向解析手段を示す概略図である。 本発明で用いる結晶球形成方法の一例を示す説明図である。 本発明に係る球状弾性表面波素子の例を示す説明図である。 本発明に係る異方性透明固体材料への刻印座標の例を示す説明図である。 本発明に係る異方性透明固体材料への刻印座標の例を示す説明図である。 本発明の実施例に係る超短パルスレーザーによる空隙形成方法の第1の例を示す図である。 本発明の実施例に係る超短パルスレーザーによる空隙形成方法の第2の例を示す図である。 本発明の実施例に係る超短パルスレーザーによる空隙形成方法のレーザービームの入射角の例を示す図である。 本発明の実施例に係る球状弾性表面波素子に加工するための空隙位置測定、座標軸特定を行う装置の概略構成を示す図である。
符号の説明
1・・・・ウエハー材
2・・・・多角柱チップ
3・・・・結晶球
4・・・・球状弾性表面波素子
7・・・・オリフラ
12・・・超短パルスレーザー発生制御手段
13・・・空隙
14・・・共焦点型顕微鏡カメラ
15・・・結晶回転ステージ
16・・・画像解析及び結晶方向解析手段
41・・・弾性表面波
42・・・すだれ状電極
43・・・円環状経路
44・・・円環領域を外れた部位
45・・・レーザー光
46・・・ビーム制御用光学的手段
47・・・XY方向位置制御手段
48・・・Z方向位置制御手段
49・・・焦点
50・・・偏光板
51・・・切りしろ

Claims (4)

  1. 透明性と異方性を有する固体材料にレーザー光を用い該固体材料の内部に方位軸を示す刻印を施した異方性透明固体材料を用いて製造され、内部に該刻印を有することを特徴とする球状弾性表面波素子
  2. 前記レーザー光は瞬時パワーがギガワット、パルス幅が1ピコ秒以下の超短パルスレーザーであることを特徴とする請求項1記載の球状弾性表面波素子
  3. 前記刻印は空隙であることを特徴とする請求項1または2記載の球状弾性表面波素子
  4. 透明性と異方性を有する球状の固体材料からなる球状弾性表面波素子の製造方法であって、少なくとも以下の工程1から工程3の工程を具備することを特徴とする内部に視認可能な方位軸を刻印された球状弾性表面波素子の製造方法。
    工程1.1つの結晶方位について一定の角度を保つ平面を有した異方性透明固体材料に対し、レーザー光を照射して前記異方性透明固体材料内部に少なくとも1つの方位に関して視認可能な方位軸を刻印する工程
    工程2.前記異方性透明固体材料をチップ状に切り出す工程
    工程3.前記チップ状の異方性透明固体材料を、内部に工程1で刻印した方位軸を残しながら球状に加工する工程
JP2003387569A 2003-11-18 2003-11-18 球状弾性表面波素子およびその製造方法 Expired - Fee Related JP4569097B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387569A JP4569097B2 (ja) 2003-11-18 2003-11-18 球状弾性表面波素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387569A JP4569097B2 (ja) 2003-11-18 2003-11-18 球状弾性表面波素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP2005150496A JP2005150496A (ja) 2005-06-09
JP4569097B2 true JP4569097B2 (ja) 2010-10-27

Family

ID=34694886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387569A Expired - Fee Related JP4569097B2 (ja) 2003-11-18 2003-11-18 球状弾性表面波素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP4569097B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5039940B2 (ja) * 2005-10-25 2012-10-03 セイコーインスツル株式会社 発熱抵抗素子、サーマルヘッド、プリンタ、及び発熱抵抗素子の製造方法
JP4978922B2 (ja) * 2006-05-23 2012-07-18 国立大学法人東北大学 異方性球状材料の方向測定方法、異方性球状材料の方向測定装置および球状弾性表面波素子の製造方法
JP5070816B2 (ja) * 2006-11-22 2012-11-14 凸版印刷株式会社 異方性球状材料の方向測定方法および球状弾性表面波素子の製造方法
JP4728936B2 (ja) * 2006-11-30 2011-07-20 株式会社山武 光学軸極点測定方法
JP5533508B2 (ja) * 2010-09-29 2014-06-25 凸版印刷株式会社 球状弾性表面波素子
WO2021025052A1 (ja) * 2019-08-07 2021-02-11 株式会社カネカ 大判成膜基板およびその製造方法、分割成膜基板およびその製造方法、分割成膜基板の生産管理方法および生産管理システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267861A (ja) * 1998-01-16 1999-10-05 Sumitomo Heavy Ind Ltd 光透過性材料のマーキング方法
JP2003012346A (ja) * 2001-06-27 2003-01-15 Central Glass Co Ltd 板ガラスの着色方法
JP2003078182A (ja) * 2001-08-30 2003-03-14 Kyocera Corp 弾性表面波素子用単結晶基板
JP2003089553A (ja) * 2001-09-13 2003-03-28 Shin Etsu Chem Co Ltd 内部マーキングされた石英ガラス、光学部材用石英ガラス基板及びマーキング方法
WO2003076120A1 (en) * 2002-03-12 2003-09-18 Hamamatsu Photonics K.K. Laser processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267861A (ja) * 1998-01-16 1999-10-05 Sumitomo Heavy Ind Ltd 光透過性材料のマーキング方法
JP2003012346A (ja) * 2001-06-27 2003-01-15 Central Glass Co Ltd 板ガラスの着色方法
JP2003078182A (ja) * 2001-08-30 2003-03-14 Kyocera Corp 弾性表面波素子用単結晶基板
JP2003089553A (ja) * 2001-09-13 2003-03-28 Shin Etsu Chem Co Ltd 内部マーキングされた石英ガラス、光学部材用石英ガラス基板及びマーキング方法
WO2003076120A1 (en) * 2002-03-12 2003-09-18 Hamamatsu Photonics K.K. Laser processing method

Also Published As

Publication number Publication date
JP2005150496A (ja) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4880820B2 (ja) レーザ支援加工方法
US11309191B2 (en) Method for modifying substrates based on crystal lattice dislocation density
CN113399816A (zh) 使用非轴对称束斑对透明工件进行激光加工的设备和方法
KR19980080075A (ko) 레이저 마크를 갖는 웨이퍼
TW201707831A (zh) 在可撓性基材片中持續製造孔的方法及其相關產品
WO2019151185A1 (ja) 磁気ディスク用ガラス基板の製造方法
JPH05119292A (ja) 液晶表示基板の分断方法
US20200398381A1 (en) Method for Producing Short Subcritical Cracks in Solid Bodies
JP2006290630A (ja) レーザを用いたガラスの加工方法
CN103791836B (zh) 基于激光扫描共聚焦技术的数控刀具刃口测量方法
CN106112703B (zh) 一种离子束加工工件的误差补偿方法
KR20000057827A (ko) 반도체 웨이퍼
JP4569097B2 (ja) 球状弾性表面波素子およびその製造方法
US20110021025A1 (en) Method for producing laser-marked semiconductor wafer
JP2006145810A (ja) 自動焦点装置、レーザ加工装置およびレーザ割断装置
KR20030023508A (ko) 내부 마킹된 석영 유리, 광학 부재용 석영 유리 기판 및마킹 방법
KR20190039007A (ko) 육방정 단결정 잉곳 및 웨이퍼의 가공 방법
CN109884020B (zh) 利用共聚焦激光扫描显微系统对微纳米级介质波导或台阶型结构侧壁角的无损测量方法
JP2007030095A (ja) ダイヤモンド工具の製造方法
JP4428058B2 (ja) 弾性表面波素子用結晶材、その製造方法および球状弾性表面波素子
JPH11156564A (ja) 耐熱性透明体およびその製造方法
JP2003039282A (ja) 自由曲面加工装置および自由曲面加工方法
US20130056857A1 (en) Device chip and manufacturing method therefor
JP4318835B2 (ja) 磁気記録媒体、および磁気記録再生装置
JP2004022746A (ja) ウエハ接合体の製造方法および該ウエハ接合体の厚さ測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees