JP3670267B2 - レーザ加工方法 - Google Patents

レーザ加工方法 Download PDF

Info

Publication number
JP3670267B2
JP3670267B2 JP2003067281A JP2003067281A JP3670267B2 JP 3670267 B2 JP3670267 B2 JP 3670267B2 JP 2003067281 A JP2003067281 A JP 2003067281A JP 2003067281 A JP2003067281 A JP 2003067281A JP 3670267 B2 JP3670267 B2 JP 3670267B2
Authority
JP
Japan
Prior art keywords
substrate
cutting
region
processing method
laser processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003067281A
Other languages
English (en)
Other versions
JP2003334812A5 (ja
JP2003334812A (ja
Inventor
文嗣 福世
憲志 福満
直己 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29715898&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3670267(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2003067281A priority Critical patent/JP3670267B2/ja
Publication of JP2003334812A publication Critical patent/JP2003334812A/ja
Publication of JP2003334812A5 publication Critical patent/JP2003334812A5/ja
Application granted granted Critical
Publication of JP3670267B2 publication Critical patent/JP3670267B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]

Description

【0001】
【従来の技術】
近年、半導体デバイス用としてAl23基板上にGaN等の半導体動作層を結晶成長させたものや、液晶表示装置用としてガラス基板上に他のガラス基板を貼り合わせたもの等、種々の積層構造を有する加工対象物を高精度に切断する技術が求められている。
【0002】
従来、これらの積層構造を有する加工対象物の切断には、ブレードダイシング法やダイヤモンドスクライブ法が使用されるのが一般的である。
【0003】
ブレードダイシング法とは、ダイヤモンドブレード等により加工対象物を切削して切断する方法である。一方、ダイヤモンドスクライブ法とは、ダイヤモンドポイントツールにより加工対象物の表面にスクライブラインを設け、このスクライブラインに沿うよう加工対象物の裏面にナイフエッジを押し当てて、加工対象物を割って切断する方法である。
【0004】
【発明が解決しようとする課題】
しかしながら、ブレードダイシング法にあっては、例えば、加工対象物が上述した液晶表示装置用のものである場合、ガラス基板と他のガラス基板との間に間隙が設けられているため、この間隙に削り屑や潤滑洗浄水が入り込んでしまうおそれがある。
【0005】
また、ダイヤモンドスクライブ法にあっては、加工対象物がAl23基板等の硬度の高い基板を有している場合や、或いは、加工対象物がガラス基板同士を貼り合わせたものである場合等に、加工対象物の表面だけでなく裏面にもスクライブラインを設けなければならず、この表面と裏面とに設けられたスクライブラインの位置ずれによって切断不良が生じるおそれがある。
【0006】
そこで、本発明は、このような事情に鑑みてなされたものであり、上述したような問題を解決し、加工対象物が種々の積層構造を有する場合においても加工対象物を高精度に切断することのできるレーザ加工方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明に係るレーザ加工方法は、基板を含み、他方の面側の基板上に他方の面側からみて切断予定ラインと重なる積層部を有する平板状の加工対象物の一方の面に伸張性のフィルムを装着し、加工対象物の他方の面をレーザ光入射面として基板の内部に集光点を合わせてレーザ光を照射することにより多光子吸収による改質領域を形成し、この改質領域によって、加工対象物の切断予定ラインに沿ってレーザ光入射面から所定距離内側に切断起点領域を形成し、一方の面に装着されたフィルムを伸張させて、切断起点領域を起点として基板の厚さ方向に向かって割れを発生させ、基板を切断すると共に他方の面側の積層部を切断することにより、加工対象物を複数の部分に、互いに間隔があくように切断する工程を備えることを特徴とする。
【0008】
また、本発明に係るレーザ加工方法は、半導体基板を含み、他方の面側の基板上に他方の面側からみて切断予定ラインと重なる積層部を有する平板状の加工対象物の一方の面に伸張性のフィルムを装着し、加工対象物の他方の面をレーザ光入射面として基板の内部に集光点を合わせてレーザ光を照射することにより溶融処理領域を形成し、この溶融処理領域によって、加工対象物の切断予定ラインに沿ってレーザ光入射面から所定距離内側に切断起点領域を形成し、一方の面に装着されたフィルムを伸張させて、切断起点領域を起点として基板の厚さ方向に向かって割れを発生させ、基板を切断すると共に他方の面側の積層部を切断することにより、加工対象物を複数の部分に、互いに間隔があくように切断する工程を備えることを特徴とする。
【0009】
また、本発明に係るレーザ加工方法は、基板を含み、他方の面側の基板上に他方の面側からみて切断予定ラインと重なる積層部を有する平板状の加工対象物の基板の内部に集光点を合わせてレーザ光を照射することにより多光子吸収による改質領域を形成し、この改質領域によって、加工対象物の切断予定ラインに沿ってレーザ光入射面から所定距離内側に切断起点領域を形成する工程と、内部に改質領域を形成した加工対象物の一方の面に伸張性のフィルムを装着する工程と、一方の面に装着されたフィルムを伸張させて、切断起点領域を起点として基板の厚さ方向に向かって割れを発生させ、基板を切断すると共に他方の面側の積層部を切断することにより、加工対象物を複数の部分に、互いに間隔があくように切断する工程とを備えることを特徴とする。
【0010】
また、本発明に係るレーザ加工方法は、半導体基板を含み、他方の面側の基板上に他方の面側からみて切断予定ラインと重なる積層部を有する平板状の加工対象物の基板の内部に集光点を合わせてレーザ光を照射することにより溶融処理領域を形成し、この溶融処理領域によって、加工対象物の切断予定ラインに沿ってレーザ光入射面から所定距離内側に切断起点領域を形成する工程と、内部に溶融処理領域を形成した加工対象物の一方の面に伸張性のフィルムを装着する工程と、一方の面に装着されたフィルムを伸張させて、切断起点領域を起点として基板の厚さ方向に向かって割れを発生させ、基板を切断すると共に他方の面側の積層部を切断することにより、加工対象物を複数の部分に、互いに間隔があくように切断する工程とを備えることを特徴とする。
【0011】
これらのレーザ加工方法によれば、加工対象物が有する基板の内部に、多光子吸収という現象により形成される改質領域(溶融処理領域)でもって、加工対象物を切断すべき所望の切断予定ラインに沿った切断起点領域を形成することができる。そして、加工対象物に装着されたフィルムを伸張させることにより、基板の内部に形成された切断起点領域に引張応力を好適に印加することができる。これにより、切断起点領域を起点として、基板を比較的小さな力で精度良く割って切断することができるので、加工対象物が基板上に種々の積層構造を有する場合においても、この積層構造を基板とともに精度良く割って切断することができる。従って、このレーザ加工方法によれば、加工対象物を高精度に切断することができる。
【0012】
ここで、基板の内部とは、積層部が設けられている基板の面上をも含む意味である。さらに、集光点とは、レーザ光が集光した箇所のことである。そして、切断起点領域は、改質領域が連続的に形成されることで形成される場合もあるし、改質領域が断続的に形成されることで形成される場合もある。
【0013】
上述した本発明に係るレーザ加工方法においては、基板の厚さ方向において、少なくとも1つの切断起点領域の中心が基板の中心よりも一方の面側に位置するように切断起点領域を形成し、伸張性のフィルムを一方の面側に装着することが好ましい。これによって、少なくとも1つの切断起点領域が加工対象物の裏面側に偏るため、一方の面に装着されたフィルムを伸張させることによる引張応力をこの切断起点領域に対してより好適に印加することができる。従って、より小さな力でより精度良く基板を切断することができる。また、このとき、1つの切断起点領域が基板の中心を含むように切断起点領域を形成することが好ましい。これによって、加工対象物の他方の面側をより精度よく切断することができる。
【0014】
また、上述した本発明に係るレーザ加工方法においては、切断起点領域を形成する際に、切断起点領域から一方の面に達する亀裂を発生させることが好ましい。このレーザ加工方法によれば、一方の面に装着されたフィルムを伸張させることによる引張応力によって亀裂が加工対象物の他方の面に向かって拡がるので、より小さな力でより精度良く基板を切断することができる。
【0015】
また、上述した本発明に係るレーザ加工方法においては、加工対象物が、他方の面側からみて切断予定ラインと重なる積層部を他方の面側の基板上に有してもよい。このレーザ加工方法では、基板内に形成された切断起点領域を起点として、基板を比較的小さな力で精度良く割って切断することができるので、加工対象物が基板上に切断予定ラインと重なる積層部を有する場合においても、この積層部を基板とともに精度良く割って切断することができる。
【0016】
ここで、基板上の積層部とは、基板の表面に堆積されたもの、基板の表面に貼り合わされたもの、或いは基板の表面に取り付けられたもの等をいい、基板に対し異種材料であるか同種材料であるかは問わない。そして、積層部には、基板に密着して設けられるものや、基板と間隙を取って設けられるもの等がある。例としては、基板上に結晶成長により形成された半導体動作層や、ガラス基板上に貼り合わされた他のガラス基板等があり、積層部は異種材料を複数層形成したものも含む。
【0017】
また、上述した本発明に係るレーザ加工方法においては、積層部の切断予定ラインと重なる部分が絶縁性材料からなることが好ましい。これによって、加工対象物を切断する際に導電性の切片等が生じないので、該導電性の切片が切断後の複数の部分のいずれかに付着することによる電気的接続不良を防止することができる。
【0018】
【発明の実施の形態】
以下、図面と共に本発明の好適な実施形態について詳細に説明する。本実施形態に係るレーザ加工方法では、加工対象物の内部に多光子吸収による改質領域を形成する。そこで、このレーザ加工方法、特に多光子吸収について最初に説明する。
【0019】
材料の吸収のバンドギャップEGよりも光子のエネルギーhνが小さいと光学的に透明となる。よって、材料に吸収が生じる条件はhν>EGである。しかし、光学的に透明でも、レーザ光の強度を非常に大きくするとnhν>EGの条件(n=2,3,4,・・・)で材料に吸収が生じる。この現象を多光子吸収という。パルス波の場合、レーザ光の強度はレーザ光の集光点のピークパワー密度(W/cm2)で決まり、例えばピークパワー密度が1×108(W/cm2)以上の条件で多光子吸収が生じる。ピークパワー密度は、(集光点におけるレーザ光の1パルス当たりのエネルギー)÷(レーザ光のビームスポット断面積×パルス幅)により求められる。また、連続波の場合、レーザ光の強度はレーザ光の集光点の電界強度(W/cm2)で決まる。
【0020】
このような多光子吸収を利用する本実施形態に係るレーザ加工の原理について、図1〜図6を参照して説明する。図1はレーザ加工中の加工対象物1の平面図であり、図2は図1に示す加工対象物1のII−II線に沿った断面図であり、図3はレーザ加工後の加工対象物1の平面図であり、図4は図3に示す加工対象物1のIV−IV線に沿った断面図であり、図5は図3に示す加工対象物1のV−V線に沿った断面図であり、図6は切断された加工対象物1の平面図である。
【0021】
図1及び図2に示すように、加工対象物1の表面3には、加工対象物1を切断すべき所望の切断予定ライン5がある。切断予定ライン5は直線状に延びた仮想線である(加工対象物1に実際に線を引いて切断予定ライン5としてもよい)。本実施形態に係るレーザ加工は、多光子吸収が生じる条件で加工対象物1の内部に集光点Pを合わせてレーザ光Lを加工対象物1に照射して改質領域7を形成する。なお、集光点とはレーザ光Lが集光した箇所のことである。また、加工対象物1の表面3は、該表面3においてレーザ光Lが散乱することを防ぐため、平坦かつ滑面であることが好ましい。
【0022】
レーザ光Lを切断予定ライン5に沿って(すなわち矢印A方向に沿って)相対的に移動させることにより、集光点Pを切断予定ライン5に沿って移動させる。これにより、図3〜図5に示すように改質領域7が切断予定ライン5に沿って加工対象物1の内部にのみ形成され、この改質領域7でもって切断起点領域8が形成される。本実施形態に係るレーザ加工方法は、加工対象物1がレーザ光Lを吸収することにより加工対象物1を発熱させて改質領域7を形成するのではない。加工対象物1にレーザ光Lを透過させ加工対象物1の内部に多光子吸収を発生させて改質領域7を形成している。よって、加工対象物1の表面3ではレーザ光Lがほとんど吸収されないので、加工対象物1の表面3が溶融することはない。
【0023】
加工対象物1の切断において、切断する箇所に起点があると加工対象物1はその起点から割れるので、図6に示すように比較的小さな力で加工対象物1を切断することができる。よって、加工対象物1の表面3に不必要な割れを発生させることなく加工対象物1の切断が可能となる。
【0024】
なお、切断起点領域を起点とした基板の切断は、切断起点領域形成後、基板に人為的な力が印加されることにより完了される。すなわち、基板の切断起点領域と交差する方向に引張応力を加えることにより、切断起点領域を起点として基板が割れ、基板が切断される。
【0025】
さて、本実施形態において多光子吸収により形成される改質領域としては、次の(1)〜(3)がある。
【0026】
(1)改質領域が1つ又は複数のクラックを含むクラック領域の場合
基板(例えばサファイア、ガラス、またはLiTaO3からなる圧電材料)の内部に集光点を合わせて、集光点における電界強度が1×108(W/cm2)以上で且つパルス幅が1μs以下の条件でレーザ光を照射する。このパルス幅の大きさは、多光子吸収を生じさせつつ基板の表面に余計なダメージを与えずに、基板の内部にのみクラック領域を形成できる条件である。これにより、基板の内部には多光子吸収による光学的損傷という現象が発生する。この光学的損傷により基板の内部に熱ひずみが誘起され、これにより基板の内部にクラック領域が形成される。電界強度の上限値としては、例えば1×1012(W/cm2)である。パルス幅は例えば1ns〜200nsが好ましい。
【0027】
本発明者は、電界強度とクラックの大きさとの関係を実験により求めた。実験条件は次ぎの通りである。
(A)基板:パイレックス(登録商標)ガラス(厚さ700μm)
(B)レーザ
光源:半導体レーザ励起Nd:YAGレーザ
波長:1064nm
レーザ光スポット断面積:3.14×10-8cm2
発振形態:Qスイッチパルス
繰り返し周波数:100kHz
パルス幅:30ns
出力:出力<1mJ/パルス
レーザ光品質:TEM00
偏光特性:直線偏光
(C)集光用レンズ
レーザ光波長に対する透過率:60パーセント
(D)基板が載置される載置台の移動速度:100mm/秒
【0028】
なお、レーザ光品質がTEM00とは、集光性が高くレーザ光の波長程度まで集光可能を意味する。
【0029】
図7は上記実験の結果を示すグラフである。横軸はピークパワー密度であり、レーザ光がパルスレーザ光なので電界強度はピークパワー密度で表される。縦軸は1パルスのレーザ光により基板の内部に形成されたクラック部分(クラックスポット)の大きさを示している。クラックスポットが集まりクラック領域となる。クラックスポットの大きさは、クラックスポットの形状のうち最大の長さとなる部分の大きさである。グラフ中の黒丸で示すデータは集光用レンズ(C)の倍率が100倍、開口数(NA)が0.80の場合である。一方、グラフ中の白丸で示すデータは集光用レンズ(C)の倍率が50倍、開口数(NA)が0.55の場合である。ピークパワー密度が1011(W/cm2)程度から基板の内部にクラックスポットが発生し、ピークパワー密度が大きくなるに従いクラックスポットも大きくなることが分かる。
【0030】
次に、本実施形態に係るレーザ加工において、クラック領域形成による基板の切断のメカニズムについて図8〜図11を用いて説明する。図8に示すように、多光子吸収が生じる条件で加工対象物1の内部に集光点Pを合わせてレーザ光Lを加工対象物1に照射して切断予定ラインに沿って内部にクラック領域9を形成する。クラック領域9は1つ又は複数のクラックを含む領域である。このクラック領域9でもって切断起点領域が形成される。図9に示すように、人為的な力(例えば引張応力)を加工対象物1に印加することにより、クラック領域9を起点として(すなわち、切断起点領域を起点として)クラックがさらに成長し、図10に示すようにクラックが加工対象物1の表面3と裏面21に到達し、図11に示すように加工対象物1が割れることにより加工対象物1が切断される。
【0031】
(2)改質領域が溶融処理領域の場合
基板(例えばシリコンのような半導体材料)の内部に集光点を合わせて、集光点における電界強度が1×108(W/cm2)以上で且つパルス幅が1μs以下の条件でレーザ光を照射する。これにより基板の内部は多光子吸収によって局所的に加熱される。この加熱により基板の内部に溶融処理領域が形成される。溶融処理領域とは一旦溶融後再固化した領域や、まさに溶融状態の領域や、溶融状態から再固化する状態の領域であり、相変化した領域や結晶構造が変化した領域ということもできる。また、溶融処理領域とは単結晶構造、非晶質構造、多結晶構造において、ある構造が別の構造に変化した領域ということもできる。つまり、例えば、単結晶構造から非晶質構造に変化した領域、単結晶構造から多結晶構造に変化した領域、単結晶構造から非晶質構造及び多結晶構造を含む構造に変化した領域を意味する。基板がシリコン単結晶構造の場合、溶融処理領域は例えば非晶質シリコン構造である。電界強度の上限値としては、例えば1×1012(W/cm2)である。パルス幅は例えば1ns〜200nsが好ましい。
【0032】
本発明者は、シリコンウェハの内部で溶融処理領域が形成されることを実験により確認した。実験条件は次の通りである。
(A)基板:シリコンウェハ(厚さ350μm、外径4インチ)
(B)レーザ
光源:半導体レーザ励起Nd:YAGレーザ
波長:1064nm
レーザ光スポット断面積:3.14×10-8cm2
発振形態:Qスイッチパルス
繰り返し周波数:100kHz
パルス幅:30ns
出力:20μJ/パルス
レーザ光品質:TEM00
偏光特性:直線偏光
(C)集光用レンズ
倍率:50倍
N.A.:0.55
レーザ光波長に対する透過率:60パーセント
(D)基板が載置される載置台の移動速度:100mm/秒
【0033】
図12は、上記条件でのレーザ加工により切断されたシリコンウェハの一部における断面の写真を表した図である。シリコンウェハ11の内部に溶融処理領域13が形成されている。なお、上記条件により形成された溶融処理領域13の厚さ方向の大きさは100μm程度である。
【0034】
溶融処理領域13が多光子吸収により形成されたことを説明する。図13は、レーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。ただし、シリコン基板の表面側と裏面側それぞれの反射成分を除去し、内部のみの透過率を示している。シリコン基板の厚さtが50μm、100μm、200μm、500μm、1000μmの各々について上記関係を示した。
【0035】
例えば、Nd:YAGレーザの波長である1064nmにおいて、シリコン基板の厚さが500μm以下の場合、シリコン基板の内部ではレーザ光が80%以上透過することが分かる。図12に示すシリコンウェハ11の厚さは350μmなので、多光子吸収による溶融処理領域13をシリコンウェハ11の中心付近に形成すると、シリコンウェハ11の表面から175μmの部分に形成される。この場合の透過率は、厚さ200μmのシリコンウェハを参考にすると、90%以上なので、レーザ光がシリコンウェハ11の内部で吸収されるのは僅かであり、ほとんどが透過する。このことは、シリコンウェハ11の内部でレーザ光が吸収されて、溶融処理領域13がシリコンウェハ11の内部に形成(つまりレーザ光による通常の加熱で溶融処理領域が形成)されたものではなく、溶融処理領域13が多光子吸収により形成されたことを意味する。
【0036】
なお、シリコンウェハは、引張応力などの人為的な力が印加されることにより、溶融処理領域でもって形成される切断起点領域を起点として断面方向に向かって割れを発生させ、その割れがシリコンウェハの表面と裏面とに到達することにより、結果的に切断される。また、溶融処理領域はシリコンウェハの内部のみに形成され、切断後の切断面には、図12のように内部にのみ溶融処理領域が形成されている。基板の内部に溶融処理領域でもって切断起点領域を形成すると、切断時、切断起点領域ラインから外れた不必要な割れが生じにくいので、切断制御が容易となる。
【0037】
(3)改質領域が屈折率変化領域の場合
基板(例えばガラス)の内部に集光点を合わせて、集光点における電界強度が1×108(W/cm2)以上で且つパルス幅が1ns以下の条件でレーザ光を照射する。パルス幅を極めて短くして、多光子吸収を基板の内部に起こさせると、多光子吸収によるエネルギーが熱エネルギーに転化せずに、基板の内部にはイオン価数変化、結晶化又は分極配向等の永続的な構造変化が誘起されて屈折率変化領域が形成される。電界強度の上限値としては、例えば1×1012(W/cm2)である。パルス幅は例えば1ns以下が好ましく、1ps以下がさらに好ましい。
【0038】
以上、多光子吸収により形成される改質領域として(1)〜(3)の場合を説明したが、基板の結晶構造やその劈開性などを考慮して切断起点領域を次のように形成すれば、その切断起点領域を起点として、より一層小さな力で、しかも精度良く基板を切断することが可能になる。
【0039】
すなわち、シリコンなどのダイヤモンド構造の単結晶半導体からなる基板の場合は、(111)面(第1劈開面)や(110)面(第2劈開面)に沿った方向に切断起点領域を形成するのが好ましい。また、GaAsなどの閃亜鉛鉱型構造のIII−V族化合物半導体からなる基板の場合は、(110)面に沿った方向に切断起点領域を形成するのが好ましい。さらに、サファイア(Al23)などの六方晶系の結晶構造を有する基板の場合は、(0001)面(C面)を主面として(1120)面(A面)或いは(1100)面(M面)に沿った方向に切断起点領域を形成するのが好ましい。
【0040】
なお、基板として例えば円盤状のウェハを切断する場合、上述した切断起点領域を形成すべき方向(例えば、単結晶シリコン基板における(111)面に沿った方向)、或いは切断起点領域を形成すべき方向に直交する方向に沿ってウェハにオリエンテーションフラットを形成すれば、そのオリエンテーションフラットを基準とすることで、切断起点領域を形成すべき方向に沿った切断起点領域を容易且つ正確にウェハに形成することが可能になる。
【0041】
次に、上述したレーザ加工方法に使用されるレーザ加工装置について、図14を参照して説明する。図14はレーザ加工装置100の概略構成図である。
【0042】
レーザ加工装置100は、レーザ光Lを発生するレーザ光源101と、レーザ光Lの出力やパルス幅等を調節するためにレーザ光源101を制御するレーザ光源制御部102と、レーザ光Lの反射機能を有しかつレーザ光Lの光軸の向きを90°変えるように配置されたダイクロイックミラー103と、ダイクロイックミラー103で反射されたレーザ光Lを集光する集光用レンズ105と、集光用レンズ105で集光されたレーザ光Lが照射される加工対象物1が載置される載置台107と、載置台107をX軸方向に移動させるためのX軸ステージ109と、載置台107をX軸方向に直交するY軸方向に移動させるためのY軸ステージ111と、載置台107をX軸及びY軸方向に直交するZ軸方向に移動させるためのZ軸ステージ113と、これら3つのステージ109,111,113の移動を制御するステージ制御部115とを備える。
【0043】
この集光点PのX(Y)軸方向の移動は、加工対象物1をX(Y)軸ステージ109(111)によりX(Y)軸方向に移動させることにより行う。Z軸方向は、加工対象物1の表面3と直交する方向なので、加工対象物1に入射するレーザ光Lの焦点深度の方向となる。よって、Z軸ステージ113をZ軸方向に移動させることにより、加工対象物1の内部にレーザ光Lの集光点Pを合わせることができる。これにより、例えば、加工対象物1上に積層構造が設けられているような場合に、加工対象物1内部の所望の位置に集光点Pを合わせることができる。
【0044】
レーザ光源101はパルスレーザ光を発生するNd:YAGレーザである。レーザ光源101に用いることができるレーザとして、この他、Nd:YVO4レーザ、Nd:YLFレーザやチタンサファイアレーザがある。本実施形態では、加工対象物1の加工にパルスレーザ光を用いているが、多光子吸収を起こさせることができるなら連続波レーザ光でもよい。
【0045】
レーザ加工装置100はさらに、載置台107に載置された加工対象物1を可視光線により照明するために可視光線を発生する観察用光源117と、ダイクロイックミラー103及び集光用レンズ105と同じ光軸上に配置された可視光用のビームスプリッタ119とを備える。ビームスプリッタ119と集光用レンズ105との間にダイクロイックミラー103が配置されている。ビームスプリッタ119は、可視光線の約半分を反射し残りの半分を透過する機能を有しかつ可視光線の光軸の向きを90°変えるように配置されている。観察用光源117から発生した可視光線はビームスプリッタ119で約半分が反射され、この反射された可視光線がダイクロイックミラー103及び集光用レンズ105を透過し、加工対象物1の切断予定ライン5等を含む表面3を照明する。
【0046】
レーザ加工装置100はさらに、ビームスプリッタ119、ダイクロイックミラー103及び集光用レンズ105と同じ光軸上に配置された撮像素子121及び結像レンズ123を備える。撮像素子121としては例えばCCDカメラがある。切断予定ライン5等を含む表面3を照明した可視光線の反射光は、集光用レンズ105、ダイクロイックミラー103、ビームスプリッタ119を透過し、結像レンズ123で結像されて撮像素子121で撮像され、撮像データとなる。
【0047】
レーザ加工装置100はさらに、撮像素子121から出力された撮像データが入力される撮像データ処理部125と、レーザ加工装置100全体を制御する全体制御部127と、モニタ129とを備える。撮像データ処理部125は、撮像データを基にして観察用光源117で発生した可視光の焦点を加工対象物1の表面3上に合わせるための焦点データを演算する。この焦点データを基にしてステージ制御部115がZ軸ステージ113を移動制御することにより、可視光の焦点が加工対象物1の表面3に合うようにする。よって、撮像データ処理部125はオートフォーカスユニットとして機能する。また、撮像データ処理部125は、撮像データを基にして表面3の拡大画像等の画像データを演算する。この画像データは全体制御部127に送られ、全体制御部で各種処理がなされ、モニタ129に送られる。これにより、モニタ129に拡大画像等が表示される。
【0048】
全体制御部127には、ステージ制御部115からのデータ、撮像データ処理部125からの画像データ等が入力し、これらのデータも基にしてレーザ光源制御部102、観察用光源117及びステージ制御部115を制御することにより、レーザ加工装置100全体を制御する。よって、全体制御部127はコンピュータユニットとして機能する。
【0049】
次に、上述したレーザ加工装置100を用いた、本実施形態に係るレーザ加工方法について説明する。図15は、本実施形態に係るレーザ加工方法における加工対象物であるウェハ1aを示す斜視図である。また、図16は、図15に示されたウェハ1aの平面図である。また、図17は、図16に示されたウェハ1aのVI−VI断面及びVII−VII断面を示す拡大図である。
【0050】
図15〜図17を参照すると、ウェハ1aは、平板状であり略円盤状を呈している。図16を参照すると、ウェハ1aの表面3には縦横に交差する複数の切断予定ライン5が設定されている。切断予定ライン5は、ウェハ1aを複数のチップ状部分に切断するために想定される仮想線である。この切断予定ライン5は、例えばウェハ1aの劈開面に沿って想定されるとよい。
【0051】
また、ウェハ1aは、オリエンテーションフラット(以下「OF」という)19を有している。本実施形態では、OF19は縦横に交差する切断予定ライン5のうちの一方向と平行な方向を長手方向として形成されている。OF19は、ウェハ1aを切断予定ライン5に沿って切断する際に、切断方向を容易に判別する目的で設けられている。
【0052】
また、図17を参照すると、ウェハ1aは、半導体(Si)からなる基板15と、基板15の表面6上に積層された積層部4を備えている。積層部4は、絶縁性材料(SiO2)からなる層間絶縁膜17a及び17b、並びに金属(W)からなる第1の配線層19a及び第2の配線層19bを有している。層間絶縁層17aは基板15の表面6上に積層されており、表面6上に複数互いに分割されて設定された素子形成領域上に第1の配線層19aが積層されている。第1の配線層19a及び基板15は、層間絶縁層17aを貫通するように設けられたプラグ20aによって互いに電気的に接続されている。層間絶縁層17bは層間絶縁層17a及び第1の配線層19a上に積層されており、層間絶縁層17b上であって第1の配線層19aに対応する領域に第2の配線層19bが積層されている。第2の配線層19b及び第1の配線層19aは、層間絶縁層17bを貫通するように設けられたプラグ20bによって互いに電気的に接続されている。
【0053】
層間絶縁層17b上であって第2の配線層19b同士の隙間にある領域には、切断予定ライン5が想定される。すなわち、表面3側からウェハ1aを見たときに、積層部4のうち層間絶縁層17a及び17bが切断予定ライン5と重なっている。この切断予定ライン5においては、層間絶縁層17bの表面(すなわち、ウェハ1aの表面3)が平坦かつ滑面となっている。
【0054】
図18及び図19は、本実施形態に係るレーザ加工方法を説明するためのフローチャートである。また、図20〜図22は、レーザ加工方法を説明するためのウェハ1aの断面図である。
【0055】
図18を参照すると、まず、ウェハ1aの一方の面である裏面21に伸張性のフィルムであるエキスパンドテープ23を装着する(S1、図20)。エキスパンドテープ23は、例えば加熱により伸びる材料からなり、後の工程において、ウェハ1aをチップ状に分離させるために用いられる。エキスパンドテープ23としては、加熱により伸びるもの以外にも例えば伸張方向に力を加えることによって伸びるものでもよい。
【0056】
続いて、ウェハ1aの基板15の内部に、切断予定ライン5に沿って切断起点領域8を形成する(S3、図21(a)及び(b))。ここで、図21(b)は、図21(a)に示されるウェハ1aのVIII−VIII断面を示す断面図である。すなわち、ウェハ1aの他方の面である表面3における切断予定ライン5に対応する領域をレーザ光入射面として基板15の内部の集光点Pへレーザ光Lを照射することにより、基板15の内部に改質領域として溶融処理領域13を形成する。この溶融処理領域13が、ウェハ1aを切断する際の切断起点領域8となる。
【0057】
ここで、図19は、図14に示されたレーザ加工装置100を用いてウェハ1aに切断起点領域8を形成する方法を示すフローチャートである。なお、本実施形態において、ウェハ1aは、レーザ加工装置100の載置台107に、表面3が集光用レンズ105と対向するように配置される。すなわち、レーザ光Lは、ウェハ1aの表面3から入射される。
【0058】
図14及び図19を参照すると、まず、基板15、層間絶縁層17a及び17bの光吸収特性を図示しない分光光度計等により測定する。この測定結果に基づいて、基板15、層間絶縁層17a及び17bに対して透明な波長又は吸収の少ない波長のレーザ光Lを発生するレーザ光源101を選定する(S101)。
【0059】
続いて、基板15、層間絶縁層17a及び17bの厚さ、材質、及び屈折率等を考慮して、ウェハ1aのZ軸方向の移動量を決定する(S103)。これは、ウェハ1aの表面3から所定距離内側の所望の位置にレーザ光Lの集光点Pを合わせるために、ウェハ1aの表面3に位置するレーザ光Lの集光点Pを基準としたウェハ1aのZ軸方向の移動量である。この移動量は全体制御部127に入力される。
【0060】
ウェハ1aをレーザ加工装置100の載置台107にウェハ1aの表面3が集光用レンズ105側と対向するよう載置する。そして、観察用光源117から可視光を発生させてウェハ1aの表面3を照明する(S105)。照明されたウェハ1aの表面3を撮像素子121により撮像する。撮像素子121により撮像された撮像データは撮像データ処理部125に送られる。この撮像データに基づいて撮像データ処理部125は、観察用光源117の可視光の焦点がウェハ1aの表面3に位置するような焦点データを演算する(S107)。
【0061】
この焦点データはステージ制御部115に送られる。ステージ制御部115は、この焦点データを基にしてZ軸ステージ113をZ軸方向の移動させる(S109)。これにより、観察用光源117の可視光の焦点がウェハ1aの表面3に位置する。なお、撮像データ処理部125は撮像データに基づいて、切断予定ライン5を含む表面3の拡大画像データを演算する。この拡大画像データは全体制御部127を介してモニタ129に送られ、これによりモニタ129に切断予定ライン5付近の拡大画像が表示される。
【0062】
全体制御部127には予めステップS103で決定された移動量データが入力されており、この移動量データがステージ制御部115に送られる。ステージ制御部115はこの移動量データに基づいて、レーザ光Lの集光点Pの位置がウェハ1aの表面3から所定距離内側となるように、Z軸ステージ113によりウェハ1aをZ軸方向に移動させる(S111)。
【0063】
続いて、レーザ光源101からレーザ光Lを発生させて、レーザ光Lをウェハ1aの表面3に照射する。レーザ光Lの集光点Pは基板15の内部に位置しているので、溶融処理領域13は基板15の内部にのみ形成される。そして、切断予定ライン5に沿うようにX軸ステージ109やY軸ステージ111を移動させて溶融処理領域13を複数形成するか、あるいは切断予定ライン5に沿って連続して溶融処理領域13を形成することにより、切断予定ライン5に沿う切断起点領域8を基板15の内部に形成する(S113)。
【0064】
このステップS113においては、図21(b)に示されるように、切断起点領域8を、基板15の厚さ方向における切断起点領域8の中心が基板15の該方向の中心16よりも裏面21側に位置するように形成する。換言すれば、切断起点領域8を基板15の中心より裏面21側に偏って形成する。また、このとき、切断起点領域8が基板15の中心16を含むように切断起点領域8を形成する。この切断起点領域8の寸法例としては、基板15の厚さを100μmとした場合、切断起点領域8の中心を裏面21から例えば40μm程度、切断起点領域8の幅を例えば40μm程度とするとよい。
【0065】
再び図18を参照すると、ウェハ1aの基板15内部に切断起点領域8を形成したのち、切断起点領域8に沿ってウェハ1aを複数のチップ状部分24に切断する(S5、図22)。すなわち、エキスパンドテープ23を伸張させることにより切断起点領域8に引張応力を印加して、切断起点領域8を起点としてウェハ1aを複数のチップ状部分24に切断する。そして、エキスパンドテープ23をそのまま伸張させることにより複数のチップ状部分24の間に間隔26をあける。このとき、基板15が切断されると同時に、切断予定ライン5と重なる層間絶縁層17a及び17bも同時に切断される。
【0066】
以上説明したように、本実施形態に係るレーザ加工方法では、ウェハ1aが有する基板15の内部に、多光子吸収という現象により形成される改質領域7でもって、ウェハ1aを切断すべき所望の切断予定ライン5に沿った切断起点領域8を形成することができる。そして、ウェハ1aの裏面21に装着されたエキスパンドテープ23を伸張させることにより、基板15の内部に形成された切断起点領域8に引張応力を好適に印加することができる。これにより、切断起点領域8を起点として、基板15を比較的小さな力で精度良く割って切断することができるので、例えばウェハ1aが基板15上に積層部4を有する場合においても、この積層部4を基板15とともに精度良く割って切断することができる。従って、このレーザ加工方法によれば、ウェハ1aを高精度に切断することができる。
【0067】
また、本実施形態に係るレーザ加工方法においては、基板15の厚さ方向において、切断起点領域8の中心が基板15の中心16よりも裏面21側に位置するように切断起点領域8を形成している。これによって、切断起点領域8がウェハ1aの裏面21側に偏るため、裏面21に装着されたエキスパンドテープ23を伸張させることによる引張応力をこの切断起点領域8に対してより好適に印加することができる。従って、より小さな力でより精度良く基板15を切断することができる。また、このとき、切断起点領域8が基板15の中心16を含むように切断起点領域8を形成している。これによって、ウェハ1aの表面3側をより精度よく切断することができる。
【0068】
また、本実施形態に係るレーザ加工方法においては、ウェハ1aが、表面3側からみて切断予定ライン5と重なる積層部4を基板15の表面6上に有している。このレーザ加工方法では、基板15内に形成された切断起点領域8を起点として、基板15を比較的小さな力で精度良く割って切断することができるので、ウェハ1aが基板15上に切断予定ライン5と重なる積層部4を有する場合においても、この積層部4を基板15とともに精度良く割って切断することができる。
【0069】
また、本実施形態に係るレーザ加工方法においては、積層部4の切断予定ライン5と重なる部分が絶縁性材料からなっている。これによって、ウェハ1aを切断する際に導電性の切片等が生じないので、該導電性の切片が複数のチップ状部分24のいずれかに付着することによる電気的接続不良を防止することができる。
【0070】
図23(a)〜(c)は、本実施形態によるレーザ加工方法の第1の変形例ないし第3の変形例を説明するための断面図である。これらの変形例では、基板15の厚さを200μm(上述の実施形態では100μm)と厚くなっている。まず図23(a)を参照すると、第1の変形例では、切断起点領域8を、基板15の厚さ方向において切断起点領域8の中心が基板15の中心16よりも裏面21側に位置するように、且つ、切断起点領域8が基板15の中心16を含まないように形成している。なお、この切断起点領域8は、裏面21からの寸法が上述した実施形態における切断起点領域の寸法と同じとする。このように、基板15が厚く、切断起点領域8が基板15の中心16を含んでいなくとも、エキスパンドテープ23を伸張させることによって切断起点領域8に引張応力を好適に印加することができ、ウェハ1aをより小さな力で精度良く切断することが可能である。ただし、ウェハ1aの表面3側における切断精度を考慮すれば、図21(b)に示された実施形態のように切断起点領域8が基板15の中心16を含むように切断起点領域8を形成するほうがより好ましい。
【0071】
また、図23(b)を参照すると、第2の変形例では、切断起点領域を基板15の厚さ方向に複数本形成している。そして、一方の切断起点領域8aを第1の変形例における切断起点領域8と同じ位置に形成している。また、他方の切断起点領域8bを、切断起点領域8bの中心が基板15の中心16付近に位置するように、且つ、切断起点領域8bが基板15の中心16を含むように形成している。なお、この例における他方の切断起点領域8bの寸法例としては、その中心位置を例えば裏面21から100μm(すなわち基板15の中心位置)程度、その幅を例えば40μm程度とするとよい。
【0072】
また、図23(c)を参照すると、第3の変形例では、一方の切断起点領域8aを、第1の変形例における切断起点領域8と同じ位置に形成している。また、他方の切断起点領域8bを、切断起点領域8bの中心が基板15の中心16よりも表面3側に位置するように、且つ、切断起点領域8bが基板15の中心16を含まないように形成している。なお、この例における他方の切断起点領域8bの寸法例としては、その中心位置を例えば裏面21から160μm程度、その幅を例えば40μm程度とするとよい。
【0073】
上記した第2の変形例及び第3の変形例では、基板15の裏面21側へ偏った切断起点領域8aに加えて、切断起点領域8aと基板15の表面6との間に位置する切断起点領域8bを形成している。これによって、ウェハ1aをより小さな力で切断することができるとともに、ウェハ1aの表面3側をより精度よく切断することができる。一般には、少なくとも1つの切断起点領域の中心が基板15の中心16よりも裏面21側に位置していれば、ウェハ1aをより小さな力で切断することができる。また、基板15の中心16を含む切断起点領域と裏面21側に偏った切断起点領域とは、図21(b)に示したように同じ領域であってもよいし、図23(b)に示したように異なる領域であってもよい。
【0074】
図24(a)は、本実施形態によるレーザ加工方法の第4の変形例を説明するための断面図である。また、図24(b)は、図24(a)に示されたウェハ1aのIV−IV断面を示す断面図である。本変形例と上述した実施形態との相違は、溶融処理領域13(切断起点領域8)から裏面21に達する亀裂18を基板15に発生させている点である。この亀裂18は、図24(b)に示されるように切断起点領域8に沿って連続して発生させても良いし、切断起点領域8に沿って断続的に発生させても良い。これによって、裏面21に装着されたエキスパンドテープ23を伸張させることによる引張応力により亀裂18がウェハ1aの表面3に向かって拡がるので、より小さな力でより精度良く基板を切断することができる。
【0075】
図25(a)は、本実施形態によるレーザ加工方法の第5の変形例を説明するための断面図である。また、図25(b)は、図25(a)に示されたウェハ1bのX−X断面を示す断面図である。本変形例では、上述した実施形態とは異なる積層部を有するウェハを切断する場合について説明する。ここで用いられるウェハ1bは、上述したウェハ1aとは異なり、n型半導体からなる基板55を備えている。そして、ウェハ1bは、積層部44として、基板55上に積層されたn型クラッド層57aと、n型クラッド層57a上に積層された活性層57bと、活性層57b上に積層されたp型クラッド層57cと、p型クラッド層57c上に積層されたキャップ層57dとを備えている。キャップ層57d上には複数に分割されたアノード電極59aが、基板55の裏面61上にはアノード電極59aに対応するカソード電極59bが、それぞれ設けられている。
【0076】
このウェハ1bに対し、基板55内部を集光点Pとして、アノード電極59a間に想定された切断予定ライン5からレーザ光Lを入射する。そして、基板15内部に、溶融処理領域13による切断起点領域8を形成する。このとき、基板55の厚さ方向における切断起点領域8の中心位置が、基板15の中心46よりも裏面61側になるように切断起点領域8を形成する。そして、裏面61に装着されたエキスパンドテープ23を伸張することによってウェハ1bを切断し、複数の半導体レーザ素子を切り出す。
【0077】
本レーザ加工方法は、上述した実施形態における積層部4以外にも、例えば本実施例における積層部44のように様々な積層構造を備えるウェハに対して適用することができる。
【0078】
図26は、本実施形態によるレーザ加工方法の第6の変形例を示すフローチャートである。また、図27は、本変形例を説明するためのウェハ1aの断面図である。本変形例では、ウェハ1aの裏面21からレーザ光Lを入射する場合を説明する。
【0079】
図26を参照すると、まず、ウェハ1aの基板15の内部に、切断予定ライン5に沿って切断起点領域8を形成する(S11、図27)。すなわち、ウェハ1aの裏面21における切断予定ライン5に対応する領域をレーザ光入射面として基板15の内部の集光点Pへレーザ光Lを照射することにより、基板15の内部に改質領域として溶融処理領域13を形成する。この溶融処理領域13が、ウェハ1aを切断する際の切断起点領域8となる。
【0080】
続いて、ウェハ1aの裏面21に伸張性のフィルムであるエキスパンドテープ23を装着し(S13)、切断起点領域8に沿ってウェハ1aを複数のチップ状部分24に切断する(S15)。これらの工程は、上述した実施形態と同様なので、詳細な説明を省略する。
【0081】
本変形例に示したように、本実施形態によるレーザ加工方法においては、ウェハ1aの裏面21をレーザ光入射面として切断起点領域を形成することも可能である。また、エキスパンドテープ23を装着するタイミングは、本変形例のように切断起点領域を形成した後でもよい。
【0082】
以上、本発明の実施形態及び変形例について詳細に説明したが、本発明は上記実施形態及び変形例に限定されないことはいうまでもない。
【0083】
例えば、上記した実施形態及び変形例においては基板として半導体基板を用いているが、本発明は半導体基板に限らず、導電性基板や絶縁性基板を有するウェハに対しても好適に適用することができる。
【0084】
【発明の効果】
以上説明したように、本発明に係るレーザ加工方法によれば、加工対象物が有する基板の内部に、多光子吸収という現象により形成される改質領域(溶融処理領域)でもって、加工対象物を切断すべき所望の切断予定ラインに沿った切断起点領域を形成することができる。そして、加工対象物の一方の面に装着されたフィルムを伸張させることにより、基板の内部に形成された切断起点領域に引張応力を好適に印加することができる。これにより、切断起点領域を起点として、基板を比較的小さな力で精度良く割って切断することができるので、加工対象物が基板上に種々の積層構造を有する場合においても、この積層構造を基板とともに精度良く割って切断することができる。従って、このレーザ加工方法によれば、加工対象物を高精度に切断することができる。
【図面の簡単な説明】
【図1】本実施形態に係るレーザ加工方法によるレーザ加工中の加工対象物の平面図である。
【図2】図1に示す加工対象物のII−II線に沿った断面図である。
【図3】本実施形態に係るレーザ加工方法によるレーザ加工後の加工対象物の平面図である。
【図4】図3に示す加工対象物のIV−IV線に沿った断面図である。
【図5】図3に示す加工対象物のV−V線に沿った断面図である。
【図6】本実施形態に係るレーザ加工方法により切断された加工対象物の平面図である。
【図7】本実施形態に係るレーザ加工方法における電界強度とクラックスポットの大きさとの関係を示すグラフである。
【図8】本実施形態に係るレーザ加工方法の第1工程における加工対象物の断面図である。
【図9】本実施形態に係るレーザ加工方法の第2工程における加工対象物の断面図である。
【図10】本実施形態に係るレーザ加工方法の第3工程における加工対象物の断面図である。
【図11】本実施形態に係るレーザ加工方法の第4工程における加工対象物の断面図である。
【図12】本実施形態に係るレーザ加工方法により切断されたシリコンウェハの一部における断面の写真を表した図である。
【図13】本実施形態に係るレーザ加工方法におけるレーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。
【図14】本実施形態に係るレーザ加工装置の概略構成図である。
【図15】本実施形態に係るレーザ加工方法において用いられるウェハを示す斜視図である。
【図16】図15に示されたウェハの平面図である。
【図17】図16に示されたウェハのVI−VI断面及びVII−VII断面を示す拡大図である。
【図18】本実施形態に係るレーザ加工方法を説明するためのフローチャートである。
【図19】図14に示されたレーザ加工装置を用いてウェハに切断起点領域を形成する方法を示すフローチャートである。
【図20】レーザ加工方法を説明するためのウェハの断面図である。
【図21】(a)レーザ加工方法を説明するためのウェハの断面図である。(b)図21(a)に示されたウェハのVIII−VIII断面を示す断面図である。
【図22】レーザ加工方法を説明するためのウェハの断面図である。
【図23】(a)本実施形態によるレーザ加工方法の第1の変形例を説明するための断面図である。(b)本実施形態によるレーザ加工方法の第2の変形例を説明するための断面図である。(c)本実施形態によるレーザ加工方法の第3の変形例を説明するための断面図である。
【図24】(a)本実施形態によるレーザ加工方法の第4の変形例を説明するための断面図である。(b)図24(a)に示されたウェハのIV−IV断面を示す断面図である。
【図25】(a)本実施形態によるレーザ加工方法の第5の変形例を説明するための断面図である。(b)図25(a)に示されたウェハのX−X断面を示す断面図である。
【図26】本実施形態によるレーザ加工方法の第6の変形例を示すフローチャートである。
【図27】第6の変形例を説明するためのウェハの断面図である。
【符号の説明】
1…加工対象物、1a、1b…ウェハ、3…表面、4…積層部、5…切断予定ライン、6…表面、7…改質領域、8、8a、8b…切断起点領域、9…クラック領域、11…シリコンウェハ、13…溶融処理領域、15…基板、16…中心、17a、17b…層間絶縁層、18…亀裂、19a、19b…配線層、20a、20b…プラグ、21…裏面、23…エキスパンドテープ、24…チップ状部分、26…間隔、100…レーザ加工装置、101…レーザ光源、102…レーザ光源制御部、103…ダイクロイックミラー、105…集光用レンズ、107…載置台、109…X軸ステージ、111…Y軸ステージ、113…Z軸ステージ、115…ステージ制御部、117…観察用光源、119…ビームスプリッタ、121…撮像素子、123…結像レンズ、125…撮像データ処理部、127…全体制御部、129…モニタ、L…レーザ光、P…集光点。

Claims (12)

  1. 基板を含み、他方の面側の前記基板上に前記他方の面側からみて切断予定ラインと重なる積層部を有する平板状の加工対象物の一方の面に伸張性のフィルムを装着し、前記加工対象物の前記他方の面をレーザ光入射面として前記基板の内部に集光点を合わせてレーザ光を照射することにより多光子吸収による改質領域を形成し、この改質領域によって、前記加工対象物の前記切断予定ラインに沿って前記レーザ光入射面から所定距離内側に切断起点領域を形成し、前記一方の面に装着された前記フィルムを伸張させて、前記切断起点領域を起点として前記基板の厚さ方向に向かって割れを発生させ、前記基板を切断すると共に前記他方の面側の前記積層部を切断することにより、前記加工対象物を複数の部分に、互いに間隔があくように切断する工程を備える、レーザ加工方法。
  2. 半導体基板を含み、他方の面側の前記基板上に前記他方の面側からみて切断予定ラインと重なる積層部を有する平板状の加工対象物の一方の面に伸張性のフィルムを装着し、前記加工対象物の前記他方の面をレーザ光入射面として前記基板の内部に集光点を合わせてレーザ光を照射することにより溶融処理領域を形成し、この溶融処理領域によって、前記加工対象物の前記切断予定ラインに沿って前記レーザ光入射面から所定距離内側に切断起点領域を形成し、前記一方の面に装着された前記フィルムを伸張させて、前記切断起点領域を起点として前記基板の厚さ方向に向かって割れを発生させ、前記基板を切断すると共に前記他方の面側の前記積層部を切断することにより、前記加工対象物を複数の部分に、互いに間隔があくように切断する工程を備える、レーザ加工方法。
  3. 前記基板の厚さ方向において、少なくとも1つの前記切断起点領域の中心が前記基板の中心よりも前記一方の面側に位置するように前記切断起点領域を形成する、請求項1または2に記載のレーザ加工方法。
  4. 1つの前記切断起点領域が前記基板の中心を含むように前記切断起点領域を形成する、請求項3に記載のレーザ加工方法。
  5. 前記切断起点領域を形成する際に、前記切断起点領域から前記一方の面に達する亀裂を発生させる、請求項1〜4のいずれか一項に記載のレーザ加工方法。
  6. 前記積層部の前記切断予定ラインと重なる部分が絶縁性材料からなる、請求項1〜5のいずれか一項に記載のレーザ加工方法。
  7. 基板を含み、他方の面側の前記基板上に前記他方の面側からみて切断予定ラインと重なる積層部を有する平板状の加工対象物の前記基板の内部に集光点を合わせてレーザ光を照射することにより多光子吸収による改質領域を形成し、この改質領域によって、前記加工対象物の前記切断予定ラインに沿って前記レーザ光入射面から所定距離内側に切断起点領域を形成する工程と、
    内部に前記改質領域を形成した前記加工対象物の一方の面に伸張性のフィルムを装着する工程と、
    前記一方の面に装着された前記フィルムを伸張させて、前記切断起点領域を起点として前記基板の厚さ方向に向かって割れを発生させ、前記基板を切断すると共に前記他方の面側の前記積層部を切断することにより、前記加工対象物を複数の部分に、互いに間隔があくように切断する工程と
    を備える、レーザ加工方法。
  8. 半導体基板を含み、他方の面側の前記基板上に前記他方の面側からみて切断予定ラインと重なる積層部を有する平板状の加工対象物の前記基板の内部に集光点を合わせてレーザ光を照射することにより溶融処理領域を形成し、この溶融処理領域によって、前記加工対象物の前記切断予定ラインに沿って前記レーザ光入射面から所定距離内側に切断起点領域を形成する工程と、
    内部に前記溶融処理領域を形成した前記加工対象物の一方の面に伸張性のフィルムを装着する工程と、
    前記一方の面に装着された前記フィルムを伸張させて、前記切断起点領域を起点として前記基板の厚さ方向に向かって割れを発生させ、前記基板を切断すると共に前記他方の面側の前記積層部を切断することにより、前記加工対象物を複数の部分に、互いに間隔があくように切断する工程と
    を備える、レーザ加工方法。
  9. 前記基板の厚さ方向において、少なくとも1つの前記切断起点領域の中心が前記基板の中心よりも前記一方の面側に位置するように前記切断起点領域を形成し、前記伸張性のフィルムを前記一方の面側に装着する、請求項7または8に記載のレーザ加工方法。
  10. 1つの前記切断起点領域が前記基板の中心を含むように前記切断起点領域を形成する、請求項9に記載のレーザ加工方法。
  11. 前記積層部の前記切断予定ラインと重なる部分が絶縁性材料からなる、請求項7〜10のいずれか一項に記載のレーザ加工方法。
  12. 前記切断起点領域を形成する際に前記切断起点領域から前記基板の前記一方の面に達する亀裂を発生させ、前記フィルムを前記一方の面側に装着する、請求項7〜11のいずれか一項に記載のレーザ加工方法。
JP2003067281A 2002-03-12 2003-03-12 レーザ加工方法 Expired - Lifetime JP3670267B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067281A JP3670267B2 (ja) 2002-03-12 2003-03-12 レーザ加工方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002067372 2002-03-12
JP2002-67372 2002-03-12
JP2002067348 2002-03-12
JP2002-67348 2002-03-12
JP2003067281A JP3670267B2 (ja) 2002-03-12 2003-03-12 レーザ加工方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004280377A Division JP4509720B2 (ja) 2002-03-12 2004-09-27 レーザ加工方法

Publications (3)

Publication Number Publication Date
JP2003334812A JP2003334812A (ja) 2003-11-25
JP2003334812A5 JP2003334812A5 (ja) 2005-04-07
JP3670267B2 true JP3670267B2 (ja) 2005-07-13

Family

ID=29715898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067281A Expired - Lifetime JP3670267B2 (ja) 2002-03-12 2003-03-12 レーザ加工方法

Country Status (1)

Country Link
JP (1) JP3670267B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659300B2 (ja) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
TWI326626B (en) 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
ES2377521T3 (es) 2002-03-12 2012-03-28 Hamamatsu Photonics K.K. Método para dividir un sustrato
EP2272618B1 (en) 2002-03-12 2015-10-07 Hamamatsu Photonics K.K. Method of cutting object to be processed
TWI520269B (zh) 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
FR2852250B1 (fr) 2003-03-11 2009-07-24 Jean Luc Jouvin Fourreau de protection pour canule, un ensemble d'injection comportant un tel fourreau et aiguille equipee d'un tel fourreau
US8685838B2 (en) 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
JP4563097B2 (ja) 2003-09-10 2010-10-13 浜松ホトニクス株式会社 半導体基板の切断方法
JP2005251986A (ja) * 2004-03-04 2005-09-15 Disco Abrasive Syst Ltd ウエーハの分離検出方法および分離検出装置
WO2005098916A1 (ja) * 2004-03-30 2005-10-20 Hamamatsu Photonics K.K. レーザ加工方法及び半導体チップ
KR101193874B1 (ko) * 2004-07-30 2012-10-26 미쓰보시 다이야몬도 고교 가부시키가이샤 기판의 수직크랙 형성방법 및 수직크랙 형성장치
JP4917257B2 (ja) * 2004-11-12 2012-04-18 浜松ホトニクス株式会社 レーザ加工方法
JP4781661B2 (ja) 2004-11-12 2011-09-28 浜松ホトニクス株式会社 レーザ加工方法
JP2006150385A (ja) * 2004-11-26 2006-06-15 Canon Inc レーザ割断方法
JP4776994B2 (ja) 2005-07-04 2011-09-21 浜松ホトニクス株式会社 加工対象物切断方法
JP4552791B2 (ja) * 2005-07-20 2010-09-29 セイコーエプソン株式会社 基板分割方法
JP4816406B2 (ja) * 2005-11-16 2011-11-16 株式会社デンソー ウェハの加工方法
JP4816390B2 (ja) * 2005-11-16 2011-11-16 株式会社デンソー 半導体チップの製造方法および半導体チップ
WO2008146744A1 (ja) * 2007-05-25 2008-12-04 Hamamatsu Photonics K.K. 切断用加工方法
JP5093922B2 (ja) * 2007-09-27 2012-12-12 シチズンファインテックミヨタ株式会社 圧電デバイスの製造方法
JP5258671B2 (ja) * 2009-05-28 2013-08-07 三菱化学株式会社 窒化物系半導体素子の製造方法
JP6059499B2 (ja) 2012-10-05 2017-01-11 リンテック株式会社 表面保護シート
JP5998968B2 (ja) * 2013-02-04 2016-09-28 旭硝子株式会社 ガラス基板の切断方法、ガラス基板及び近赤外線カットフィルタガラス
KR102399356B1 (ko) * 2017-03-10 2022-05-19 삼성전자주식회사 기판, 기판의 쏘잉 방법, 및 반도체 소자

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US11219966B1 (en) 2018-12-29 2022-01-11 Wolfspeed, Inc. Laser-assisted method for parting crystalline material
US11826846B2 (en) 2018-12-29 2023-11-28 Wolfspeed, Inc. Laser-assisted method for parting crystalline material
US11901181B2 (en) 2018-12-29 2024-02-13 Wolfspeed, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US11911842B2 (en) 2018-12-29 2024-02-27 Wolfspeed, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
US11034056B2 (en) 2019-05-17 2021-06-15 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
US11654596B2 (en) 2019-05-17 2023-05-23 Wolfspeed, Inc. Silicon carbide wafers with relaxed positive bow and related methods

Also Published As

Publication number Publication date
JP2003334812A (ja) 2003-11-25

Similar Documents

Publication Publication Date Title
JP3670267B2 (ja) レーザ加工方法
JP4606741B2 (ja) 加工対象物切断方法
JP3624909B2 (ja) レーザ加工方法
KR100853057B1 (ko) 레이저 가공 방법
WO2004080643A1 (ja) レーザ加工方法
JP3722731B2 (ja) レーザ加工方法
JP4837320B2 (ja) 加工対象物切断方法
JP3935189B2 (ja) レーザ加工方法
JP4509720B2 (ja) レーザ加工方法
JP4463796B2 (ja) レーザ加工方法
WO2002022301A1 (fr) Procede et dispositif d'usinage par rayonnement laser
JP4409840B2 (ja) 加工対象物切断方法
JP4527098B2 (ja) レーザ加工方法
JP2005313238A (ja) レーザ加工方法
JP4167094B2 (ja) レーザ加工方法
JP3867109B2 (ja) レーザ加工方法
JP3867110B2 (ja) レーザ加工方法
JP4146863B2 (ja) 半導体基板の切断方法
JP4509719B2 (ja) レーザ加工方法
WO2004080642A1 (ja) レーザ加工方法
JP3869850B2 (ja) レーザ加工方法
JP3867003B2 (ja) レーザ加工方法
JP2006205259A (ja) レーザ加工方法
JP2004268103A (ja) レーザ加工方法
KR100813351B1 (ko) 레이저 가공 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040524

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050413

R150 Certificate of patent or registration of utility model

Ref document number: 3670267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

EXPY Cancellation because of completion of term