EP2504364B1 - Targeted binding agents against b7-h1 - Google Patents

Targeted binding agents against b7-h1 Download PDF

Info

Publication number
EP2504364B1
EP2504364B1 EP10833923.5A EP10833923A EP2504364B1 EP 2504364 B1 EP2504364 B1 EP 2504364B1 EP 10833923 A EP10833923 A EP 10833923A EP 2504364 B1 EP2504364 B1 EP 2504364B1
Authority
EP
European Patent Office
Prior art keywords
antibody
cancer
antibodies
amino acid
disclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10833923.5A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2504364A1 (en
EP2504364A4 (en
Inventor
Christophe Queva
Michelle Morrow
Scott Hammond
Marat Alimzhanov
John Babcook
Ian Foltz
Jaspal Singh Kang
Laura Sekirov
Melanie Boyle
Matthieu Chodorge
Kathleen Ann Mulgrew
Ross Stewart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MedImmune Ltd
Original Assignee
MedImmune Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44066905&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2504364(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to PL17179204T priority Critical patent/PL3279215T3/pl
Priority to DK17179204.7T priority patent/DK3279215T3/da
Priority to SI201031562T priority patent/SI2504364T1/sl
Priority to PL10833923T priority patent/PL2504364T3/pl
Priority to EP17179204.7A priority patent/EP3279215B1/en
Application filed by MedImmune Ltd filed Critical MedImmune Ltd
Publication of EP2504364A1 publication Critical patent/EP2504364A1/en
Publication of EP2504364A4 publication Critical patent/EP2504364A4/en
Publication of EP2504364B1 publication Critical patent/EP2504364B1/en
Application granted granted Critical
Priority to HRP20171653TT priority patent/HRP20171653T1/hr
Priority to HUS1900002C priority patent/HUS1900002I1/hu
Priority to CY20201100370T priority patent/CY1122816T1/el
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/567Framework region [FR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • the disclosure relates to targeted binding agents against the B7-H1 protein and uses of such agents.
  • the disclosure relates to fully human monoclonal antibodies directed to B7-H1 and uses of these antibodies.
  • aspects of the disclosure also relate to cell lines expressing such targeted binding agents or antibodies.
  • the described targeted binding agents are useful as diagnostics and for the treatment of diseases associated with the activity and/or expression of B7-H 1.
  • T cells and B cells Two major classes of lymphocytes termed T cells and B cells. After encountering an antigen, T cells proliferate and differentiate into antigen-specific effector cells, while B cells proliferate and differentiate into antibody-secreting cells.
  • T cell activation is a multi-step process requiring several signaling events between the T cell and an antigen-presenting cell (APC).
  • APC antigen-presenting cell
  • T cell activation to occur two types of signals must be delivered to a resting T cell. The first type is mediated by the antigen-specific T cell receptor (TcR), and confers specificity to the immune response. The second, costimulatory, type regulates the magnitude of the response and is delivered through accessory receptors on the T cell.
  • TcR antigen-specific T cell receptor
  • a primary costimulatory signal is delivered through the activating CD28 receptor upon engagement of its ligands B7-1 or B7-2.
  • engagement of the inhibitory CTLA-4 receptor by the same B7-1 or B7-2 ligands results in attenuation of a T cell response.
  • CTLA-4 signals antagonize costimulation mediated by CD28.
  • CD28 costimulation overrides the CTLA-4 inhibitory effect.
  • Temporal regulation of the CD28 and CTLA-4 expression maintains a balance between activating and inhibitory signals and ensures the development of an effective immune response, while safeguarding against the development of autoimmunity.
  • ICOS CD28-like costimulatory receptor
  • PD-1 Programmed Death 1
  • This disclosure relates to modulation of immune responses mediated by B7-H 1.
  • B7-H1 also known as PD-L1
  • B7-H1 is a type I transmembrane protein of approximately 53kDa in size.
  • B7-H1 is expressed on a number of immune cell types including activated and anergic/exhausted T cells, on naive and activated B cells, as well as on myeloid dendritic cells (DC), monocytes and mast cells. It is also expressed on non-immune cells including islets of the pancreas, Kupffer cells of the liver, vascular endothelium and selected epithelia, for example airway epithelia and renal tubule epithelia, where its expression is enhanced during inflammatory episodes.
  • DC myeloid dendritic cells
  • B7-H1 expression is also found at increased levels on a number of tumours including, but not limited to breast, colon, colorectal, lung, renal, including renal cell carcinoma, gastric, bladder, non-small cell lung cancer (NSCLC), hepatocellular cancer (HCC), and pancreatic cancer, as well as melanoma.
  • tumours including, but not limited to breast, colon, colorectal, lung, renal, including renal cell carcinoma, gastric, bladder, non-small cell lung cancer (NSCLC), hepatocellular cancer (HCC), and pancreatic cancer, as well as melanoma.
  • NSCLC non-small cell lung cancer
  • HCC hepatocellular cancer
  • pancreatic cancer pancreatic cancer
  • B7-H1 is a member of the B7 family of proteins, which contain two extracellular Ig domains, one N-terminal V-type domain followed by a C-type domain.
  • the intracellular domain of 30 amino acids length contains no obvious signaling motifs, but does bear a potential site for protein kinase C phosphorylation.
  • the murine form of B7-H1 bears 69% amino acid identity with the human form of B7-H1, and also shares a conserved structure.
  • B7-H1 is known to bind two alternative ligands, the first of these, PD-1, is a 50-55 kDa type I transmembrane receptor that was originally identified in a T cell line undergoing activation-induced apoptosis. PD-1 is expressed on activated T cells, B cells, and monocytes, as well as other cells of the immune system and binds both B7-H1 (PD-L1) and the related B7-DC (PD-L2). The second is the B7 family member B7-1, which is expressed on activated T cells, B cells, monocytes and antigen presenting cells.
  • PD-1 is a member of the immunoglobulin (Ig) superfamily that contains a single Ig V-like domain in its extracellular region.
  • the PD-1 cytoplasmic domain contains two tyrosines, with the most membrane-proximal tyrosine (VAYEEL (SEQ ID NO: 110) in mouse PD-1) located within an ITIM (immuno-receptor tyrosine-based inhibitory motif).
  • ITIM immunoglobulin-like domain in mouse PD-1
  • Human and murine PD-1 proteins share about 60% amino acid identity with conservation of four potential N-glycosylation sites, and residues that define the Ig-V domain.
  • the ITIM in the cytoplasmic region and the ITIM-like motif surrounding the carboxy-terminal tyrosine (TEYATI (SEQ ID NO: 111) in human and mouse) are also conserved between human and murine orthologues.
  • Signalling via the PD-1/B7-H1 axis is believed to serve critical, non-redundant functions within the immune system, by negatively regulating T cell responses. This regulation is involved in T cell development in the thymus, in regulation of chronic inflammatory responses and in maintenance of both peripheral tolerance and immune privilege. The critical nature of these functions is exemplified in PD-1-deficient mice, which exhibit an autoimmune phenotype. PD-1 deficiency in the C57BL/6 mice results in chronic progressive lupus-like glomerulonephritis and arthritis. In Balb/c mice, PD-1 deficiency leads to severe cardiomyopathy due to the presence of heart-tissue-specific self-reacting antibodies. The function of signaling via B7-H1/B7-1 is less clear, but is thought to also be involved in delivering negative regulatory signals to both T cells and antigen presenting cells.
  • B7-H1 expression on tumour cells is believed to aid tumours in evading detection and elimination by the immune system.
  • B7-H1 functions in this respect via several alternative mechanisms including driving exhaustion and anergy of tumour infiltrating T lymphocytes, stimulating secretion of immune repressive cytokines into the tumour micro-environment, stimulating repressive regulatory T cell function and protecting B7-H1 expressing tumour cells from lysis by tumour cell specific cytotoxic T cells.
  • US 2009/055944 A1 (KORMAN ET AL., 26 February 2009 ) relates to human monoclonal antibodies that bind to PD-L1.
  • EP 1 537 878 A1 (ONO PHARMACEUTICAL CO; HONJO T, 8 June 2005 ) relates to compositions that inhibit the function of PD-1, PD-L1 or PD-L2 and therapies using them.
  • STROME et al. (CANCER RESEARCH, vol. 63, 2003, pages 6501-6505 ) relates to B7-H1 blockade augmenting adoptive T-cell immunotherapy for squamous cell carcinoma.
  • BLANK C et al. (INTERNATIONAL JOURNAL OF CANCER, vol. 119, no. 2, 1 July 2006, pages 317-327 ) relates to PD-L1 (B7-H1) augmenting human tumor-specific T cell responses in vitro.
  • NING LI et al. (JOURNAL OF CLINICAL IMMUNOLOGY, vol. 27, no. 1, 16 December 2006, pages 117-130 ) relates to potent systemic antitumor immunity induced by vaccination with chemotactic-prostate tumor associated antigen gene-modified tumor cell and blockade of B7-H1.
  • WO 2009/089149 A1 (UNIV JOHNS HOPKINS; CHEN LIEPING, 16 July 2009 ) relates to B7-H1 (CD274) antagonists inducing apoptosis of tumor cells.
  • WO 2006/133396 A2 (DANA FARBER CANCER INST INC; BRIGHAM & WOMENS HOSPITAL; UNIV, 14 December 2006 ) relates to methods and compositions for the treatment of persistent infections.
  • L. ZHANG et al. (BLOOD, vol. 114, no. 8, 20 August 2009, pages 1545-1552 ) relates to PD-1/PD-L 1 interactions inhibiting antitumor immune responses in a murine acute myeloid leukemia model.
  • NOMI et al. (CLINICAL CANCER RESEARCH, vol. 13, 2007, pages 2151-2157 ) relates to the clinical significance and therapeutic potential of the Programmed Death-1 pathway in human pancreatic cancer.
  • PAREKH V V et al. (THE JOURNAL OF IMMUNOLOGY, vol. 182, no. 5, 1 March 2009, pages 2816-2826 ) relates to PD-1/PD-L blockade preventing anergy induction and enhancing the anti-tumor activities of glycolipid-activated invariant NKT cells.
  • EP 2 172 219 A1 (SNU R&DB FOUNDATION, 7 April 2010 ) relates to an anti-cancer agent comprising an iNKT ligand and anti-PD-1 antibody or anti-PD-L1 antibody.
  • WO 2010/077634 A1 (GENENTECH INC; IRVING BRYAN; CHEUNG JEANNE; CHIU HENRY, 8 July 2010 ) relates to anti-PD-L1 antibodies and their use to enhance T-cell function.
  • the present disclosure relates to targeted binding agents that specifically bind to B7-H1 and inhibit the biological activity of B7-H1.
  • the disclosure relates to targeted binding agents that specifically bind to B7-H1 and thereby inhibit B7-H1 activity.
  • the disclosure relates to targeted binding agents that specifically bind to B7-H1 and thereby inhibit binding of B7-H1 to PD-1.
  • the disclosure relates to targeted binding agents that block B7-H1 induced T-cell suppression and thereby enhance anti-tumor immunity.
  • the disclosure further relates to targeted binding agents that can further stimulate one or more of the following activities including T cell proliferation, IFN- ⁇ and/or IL-2 secretion in mixed lymphocyte reactions.
  • targeted binding agents that specifically bind to B7-H1 and inhibit the biological activity of B7-H1.
  • the targeted binding agent inhibits at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of the biological activity than would occur in the absence of the targeted binding agent.
  • Targets of the disclosure relate to targeted binding agents that specifically bind to B7-H1 and thereby inhibit B7-H1 activity.
  • the targeted binding agent inhibits at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of B7-H1 activity than would occur in the absence of the targeted binding agent.
  • Instances of the disclosure relate to targeted binding agents that specifically bind to B7-H1 and thereby inhibit binding to PD-1.
  • the targeted binding agent inhibits at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of B7-H1/PD-1 receptor ligand binding compared to what would occur in the absence of the targeted binding agent.
  • the targeted binding agents of the disclosure can inhibit binding of PD-1/Fc to human B7-H1 expressed on ES-2 cells.
  • the targeted binding agent inhibits binding with an IC50 of less than 1 nM, 0.5 nM, 0.4, 0.3, 0.2, 0.1, 0.09, 0.08, 0.07 or 0.06 nM.
  • the antibodies of the disclosure have an IC50 of about 1 nM down to about 0.06 nM; or of about 0.5 nM down to about 0.06 nM; or of about 0.1 nM down to about 0.06 nM; or of about 1 nM down to about 0.1 nM; or of about 1 nM down to about 0.5 nM.
  • Instances of the disclosure relate to targeted binding agents that specifically bind to B7-H1 and thereby inhibit binding to its ligand B7-1.
  • the targeted binding agent inhibits at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, 95%, 96%, 97%, 98% 99% or 100% of B7-H1/B7-1 receptor ligand binding compared to what would occur in the absence of the targeted binding agent.
  • Targets of the disclosure relate to targeted binding agents that specifically bind to B7-H1 and inhibit B7-H1 induced tumor proliferation.
  • the targeted binding agent inhibits at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of B7-H1 induced tumor proliferation than would occur in the absence of the targeted binding agent.
  • the targeted binding agent inhibits at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of B7-H1 induced tumor cell survival than would occur in the absence of the targeted binding agent.
  • targeted binding agents that specifically bind to B7-H1 and thereby inhibit tumour growth of A375 or HPAC cancer cell lines.
  • the targeted binding agent inhibits at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of growth of cancer cells at day 30 compared to an isotype control.
  • targeted binding agents that specifically bind to B7-H1 and thereby inhibit B7-H1 mediated suppression of tumour reactive T-cells, thereby enhancing anti-tumour cytolytic T-cell activity.
  • the targeted binding agent inhibits at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of B7-H1 mediated suppression of tumour reactive T-cell activity than would occur in the absence of the targeted binding agent.
  • the targeted binding agent enhances at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of anti-tumor immunity than would occur in the absence of the targeted binding agent.
  • the targeted binding agent inhibits at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of cell proliferation than would occur in the absence of the targeted binding agent.
  • the antibodies of the disclosure relate to targeted binding agents that specifically bind to B7-H1 and increase specific cytolytic (CTL) activity against B7-H1 expressing tumor cells.
  • the antibodies of the disclosure have an EC50 of less than or equal to 100 nM, 50 nM or 1 nM. Further, in another instance, the antibodies of the disclosure have an EC50 of about 100 nM down to about 1 nM; or of about 50 nM down to about 1 nM; or of about 20 nM down to about 1 nM; or of about 100 nM down to about 50 nM; or of about 100 nM down to about 70 nM.
  • the disclosure relate to targeted binding agents that specifically bind to B7-H1 and inhibit B7-H1 mediated suppression of T-cell proliferation at an EC50 less than or equal to 100 nM.
  • the antibodies of the disclosure have an EC50 of less than or equal to 100 nM, e.g., 90, 80, 70, 60, 50, 40, 30, 20 or 10 nM.
  • the antibodies of the disclosure have an EC50 of about 100 nM down to about 10 nM; or of about 50 nM down to about 10 nM; or of about 20 nM down to about 10 nM; or of about 100 nM down to about 50 nM; or of about 100 nM down to about 70 nM; or of about 100 nM down to about 80 nM.
  • the targeted binding agents also inhibit tumour cell adhesion, motility, invasion and cellular metastasis and in addition, the targeted binding agents are useful for reducing tumour growth. Mechanisms by which this can be achieved can include, and are not limited to, inhibiting B7-H1 activity.
  • the targeted binding agent is an antibody. In one instance of the disclosure, the targeted binding agent is a monoclonal antibody. In one instance of the disclosure, the targeted binding agent is a fully human monoclonal antibody or a fragment thereof. Such monoclonal antibodies may be referred to herein as anti-B7-H1 antibodies or antibodies of the disclosure.
  • Antibodies, monoclonal antibodies and human monoclonal antibodies include the antibodies of the IgG1, IgG2, IgG3 and IgG4 isotypes, for example IgG2.
  • the targeted binding agent is a fully human monoclonal antibody of the IgG2 isotype. This isotype has reduced potential to elicit effector function in comparison with other isotypes, which may lead to reduced toxicity.
  • the targeted binding agent is a fully human monoclonal antibody of the IgG1 isotype.
  • the IgG1 isotype has increased potential to elicit Antibody Directed Cell-mediated Cytotoxicity (ADCC) in comparison with other isotypes, which may lead to improved efficacy.
  • ADCC Antibody Directed Cell-mediated Cytotoxicity
  • the IgG1 isotype has improved stability in comparison with other isotypes, e.g. IgG4, which may lead to improved bioavailability/ease of manufacture/longer half-life.
  • the fully human monoclonal antibody of the IgG1 isotype is of the z, za or f allotype.
  • the targeted binding agent has desirable therapeutic properties, selected from one or more of the following: high binding affinity for B7-H1, the ability to inhibit B7-H1 activity in vitro and in vivo, the ability to inhibit B7-H1-mediated tumour cell survival, and the ability to inhibit B7-H1 mediated suppression of tumour reactive T-cells, which may in turn reduce tumour cell proliferation, motility, invasion, metastasis, and tumour growth.
  • the disclosure includes antibodies that specifically bind to B7-H1 with very high affinities (Kd).
  • the targeted binding agent binds B7-H1 with a binding affinity (Kd) of less than 5 nanomolar (nM). In other instances, the targeted binding agent binds with a Kd of less than 4 nM, 3 nM, 2.5nM, 2 nM or 1 nM.
  • antibodies of the disclosure binds B7-H1 with a Kd of about 5 nM to about 1 nM; or about 5 nM to about 2 nM; or about 5 nM to about 3 nM; or about 5 nM to about 4 nM; or about 3 nM to about 1 nM; or about 2 nM to about 1 nM.
  • the targeted binding agent binds B7-H1 with a Kd of less than 950 picomolar (pM).
  • the targeted binding agent binds B7-H1 with a Kd of less than 900 pM.
  • the targeted binding agent binds B7-H1 with a Kd of less than 800 pM, 700 pM or 600 pM. In some instances of the disclosure, the targeted binding agent binds B7-H1 with a Kd of less than 500 pM. In other instances, the targeted binding agent binds B7-H1 with a Kd of less than 400 pM. In still other instances the targeted binding agent binds B7-H1 with a Kd of less than 300 pM. In some other instances , the targeted binding agent binds B7-H1 with a Kd of less than 200 pM. In some other instances , the targeted binding agent binds B7-H1 with a Kd of less than 100 pM.
  • antibodies of the disclosure binds B7-H1 with a Kd of about 900 pM to about 100 pM; or about 900 pM to about 200 pM; or about 900 pM to about 300 pM; or about 900 pM to about 400 pM; or about 900 pM to about 500 pM; or about 900 pM to about 600 pM; or about 900 pM to about 700 pM; or about 200 pM to about 100 pM; or about 300 pM to about 200 pM; or about 400 pM to about 300 pM.
  • the targeted binding agent binds B7-H1 with a Kd of less than 90 pM, 80 pM, 70 pM, 60 pM, 55pM or 50pM. In some other instances , the targeted binding agent binds B7-H1 with a Kd of less than 60 pM. In some other instances , the targeted binding agent binds B7-H1 with a Kd of less than 55 pM.
  • antibodies of the disclosure binds B7-H1 with a Kd of about 100 pM to about 50 pM; or about 100 pM to about 70 pM; or about 100 pM to about 80 pM; or about 100 pM to about 90 pM; or about 70 pM to about 50 pM; or about 60 pM to about 50 pM; or about 55 pM to about 50 pM.
  • the Kd may be assessed using a method described herein or known to one of skill in the art (e.g., a BIAcore assay, ELISA) (Biacore International AB, Uppsala, Sweden).
  • Targeted binding agents of the disclosure have considerably improved binding affinities for B7-H1 in comparison with the antibodies reported in the prior art.
  • binding properties of the targeted binding agent or antibody of the disclosure may also be measured by reference to the dissociation or association rates (k off and k on respectively).
  • a targeted binding agent or an antibody of the disclosure may have a k on rate (antibody (Ab) + antigen (Ag) km ⁇ Ab-Ag) of at least 10 4 M -1 s -1 , at least 5 X 10 4 M -1 s -1 , at least 10 5 M -1 s -1 , at least 2 X 10 5 M -1 s -1 , at least 5 X 10 5 M -1 s -1 , at least 10 6 M -1 s -1 , at least 5 X 10 6 M -1 s , at least 10 7 M -1 s -1 , at least 5 X 10 7 M -1 s -1 , or at least 10 8 M -1 s -1 as measured by a BIAcore assay.
  • antibodies of the disclosure have a k on rate of about 5 X 10 4 M -1 s -1 to about 5 X 10 8 M -1 s -1 ; or of about 5 X 10 5 M -1 s -1 to about 5 X 10 8 M -1 s -1 ; or of about 5 X 10 6 M -1 s -1 to about 5 X 10 8 M -1 s -1 ; or of about 5 X 10 7 M -1 s -1 to about 5 X 10 8 M -1 s -1 , as measured by a BIAcore assay.
  • targeted binding agent or an antibody may have a k off rate ((Ab-Ag) k off ⁇ antibody (Ab) + antigen (Ag)) of less than 5x10 -1 s -1 , less than 10 -1 s -1 , less than 5x10 -2 s -1 , less than 10 -2 s -1 , less than 5x10 -3 s -1 , less than 10 -3 s -1 , less than 5x10 -4 s -1 , less than 10 -4 s 11 , less than 5x10 -5 s -1 , less than 10 -5 s -1 , less than 5x10 -6 s -1 , less than 10 -6 s -1 , less than 5x10 -7 s -1 , less than 10 -7 s -1 , less than 5x10 -8 s -1 , less than 10 -8 s -1 , less than 5x10 -9 s , less than 10 -9
  • antibodies of the disclosure have a k off rate of about 1 X 10 -4 s -1 to about 1 X 10 -5 s -1 ; or of about 1 X 10 -4 s -1 to about 5 X 10 -4 s -1 , as measured by a BIAcore assay.
  • the targeted binding agent of the disclosure specifically binds human B7-H1.
  • the targeted binding agent of the disclosure does not bind other immune co-modulatory proteins, e.g., human PD-L2, human B7-H2, human B7-H3, human CD28, human CTLA-4 and human PD1.
  • the targeted binding agent of the disclosure is cross-reactive with other B7-H1 proteins from other species.
  • the targeted binding agent of the disclosure is cross-reactive with cynomolgus monkey B7-H1.
  • the targeted binding agent of the disclosure is cross-reactive with mouse B7-H1, e.g., 2.7A4.
  • the targeted binding agent of the disclosure is cross-reactive with cynomolgus monkey B7-H1 and with mouse B7-H1, e.g., 2.7A4.
  • the targeted binding agent of the disclosure is cross-reactive with cynomolgus monkey B7-H1 but not with mouse B7-H1, e.g., 2.9D10 and 2.14H9.
  • the targeted binding agent or antibody comprises a sequence comprising any one of the heavy chain sequences (VH) shown in Table 8.
  • the targeted binding agent or antibody comprises a sequence comprising any one of the heavy chain sequences of antibodies 2.9D10, 2.7A4, 2.14H9, 3.15G8, 2.20A8, 3.18G1, 2.7A4OPT, or 2.14H9OPT.
  • a targeted binding agent or antibody comprising a sequence comprising any one of the heavy chain sequences of antibodies 2.9D10, 2.7A4, 2.14H9, 3.15G8, 2.20A8, 3.18G1, 2.7A4OPT, or 2.14H9OPT, or another antibody as disclosed herein, may further comprise any one of the light chain sequences (VL) shown in Table 9 or of antibodies 2.9D10, 2.7A4, 2.14H9, 3.15G8, 2.20A8, 3.18G1, 2.7A4OPT or 2.14H9OPT, or other antibody as disclosed herein.
  • VL light chain sequences
  • the targeted binding agent or antibody comprises a sequence comprising any one of the heavy chain sequences of antibodies 2.9D10, 2.7A4, 2.14H9, 3.15G8, 2.20A8, 3.18G1, 2.7A4OPT, or 2.14H9OPT and further comprising the corresponding light chain sequence of antibody 2.9D10, 2.7A4, 2.14H9, 3.15G8, 2.20A8, 3.18G1, 2.7A4OPT, or 2.14H9OPT.
  • the antibody is a fully human monoclonal antibody.
  • the targeted binding agent or antibody comprises a sequence comprising any one of the light chain sequences shown in Table 9.
  • the targeted binding agent or antibody comprises a sequence comprising any one of the light chain sequences of antibodies 2.9D10, 2.7A4, 2.14H9, 3.15G8, 2.20A8, 3.18G1, 2.7A4OPT, or 2.14H9OPT.
  • the antibody is a fully human monoclonal antibody.
  • the targeted binding agent or antibody comprises a sequence comprising any of the heavy chain sequence of antibody 2.7A4 and further comprising the light chain sequence of antibody 2.7A4. In another instance the targeted binding agent or antibody comprises a sequence comprising any of the heavy chain sequence of antibody 2.14H9 and further comprising the light chain sequence of antibody 2.14H9. In another instance the targeted binding agent or antibody comprises a sequence comprising any of the heavy chain sequence of antibody 2.9D10 and further comprising the light chain sequence of antibody 2.9D10. In another instance the targeted binding agent or antibody comprises a sequence comprising any of the heavy chain sequence of antibody 2.7A.4OPT and further comprising the light chain sequence of antibody 2.7A.4OPT. In another instance the targeted binding agent or antibody comprises a sequence comprising any of the heavy chain sequence of antibody 2.14H9OPT and further comprising the light chain sequence of antibody 2.14H9OPT.
  • the targeting binding agent is any one of the monoclonal antibodies as shown in Table 1.
  • the targeting binding agent is a monoclonal antibody selected from the group consisting of: 2.7A4, 2.14H9, 2.9D10, 2.7A4OPT or 2.14H9OPT.
  • the targeted binding agent comprises one or more of fully human monoclonal antibodies 2.7A4, 2.14H9, 2.9D10, 2.7A4OPT or 2.14H9OPT.
  • the targeting binding agent is monoclonal antibody 2.7A4.
  • the targeting binding agent is monoclonal antibody 2.14H9.
  • the targeting binding agent is monoclonal antibody 2.9D10.
  • the targeting binding agent is monoclonal antibody 2.7A4OPT. In certain other instances, the targeting binding agent is monoclonal antibody 2.14H9OPT. In additional instances, the targeted binding agent is derivable from any of the foregoing monoclonal antibodies.
  • the targeted binding agent may comprise a sequence comprising any one of the CDR1, CDR2 or CDR3 of the heavy chain variable sequences encoded by a polynucleotide in a plasmid designated 2.7A4_G, 2.14H9_G, and 2.9D10_NG which were deposited at NCIMB under number 41598 on November 19, 2008, under number 41597 on November 19,2008, and under number 41599 on November 19, 2008, respectively.
  • the targeted binding agent may comprise a sequence comprising any one of the CDR1, CDR2 or CDR3 of the light chain variable domain sequences encoded by a polynucleotide in a plasmid designated 2.7A4_G, 2.14H9_G and 2.9D10_NG which were deposited under number 41598 on November 19, 2008, under number 41597 on November 19, 2008, or under number 41599 on November 19,2008, respectively.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable domain amino acid sequence comprising a CDR3 encoded by the polynucleotide in plasmid designated 2.7A4_G which was deposited at the NCIMB under deposit number 41598 on November 19, 2008 and a light chain variable domain amino acid sequence comprising a CDR3 encoded by the polynucleotide in plasmid designated 2.7A4_G which was deposited at the NCIMB under deposit number 41598 on November 19, 2008.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable domain amino acid sequence comprising at least one, at least two, or at least three of the CDRs of the antibody encoded by the polynucleotide in plasmid designated 2.7A4_G which was deposited at the NCIMB under deposit number 41598 on November 19, 2008.
  • a targeted binding agent or an antibody of the disclosure comprises a light chain variable domain amino acid sequence comprising at least one, at least two, or at least three of the CDRs of the antibody encoded by the polynucleotide in plasmid designated 2.7A4_G which was deposited at the NCIMB under deposit number 41598 on November 19,2008.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable domain amino acid sequence comprising at least one, at least two, or at least three of the CDRs of the antibody encoded by the polynucleotide in plasmid designated 2.7A4_G which was deposited at the NCIMB under deposit number 41598 on November 19, 2008 and a light chain variable domain amino acid sequence comprising at least one, at least two, or at least three of the CDRs of the antibody encoded by the polynucleotide in plasmid designated 2.7A4_G which was deposited at the NCIMB under deposit number 41598 on November 19,2008.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable domain amino acid sequence comprising a CDR3 encoded by the polynucleotide in plasmid designated 2.14H9_G which was deposited at the NCIMB under number 41597 on November 19,2008.
  • targeted binding agent or an antibody of the disclosure comprises a heavy chain variable domain amino acid sequence comprising a CDR3 encoded by the polynucleotide in plasmid designated 2.14H9_G which was deposited at the NCIMB under number 41597 on November 19, 2008, and a light chain variable domain amino acid sequence comprising a CDR3 encoded by the polynucleotide in plasmid designated 2.14H9_G which was deposited at the NCIMB under number 41597 on November 19,2008.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable domain amino acid sequence comprising at least one, at least two, or at least three of the CDRs of the antibody encoded by the polynucleotide in plasmid designated 2.14H9_G which was deposited at the NCIMB under number 41597 on November 19, 2008.
  • a targeted binding agent or an antibody of the disclosure comprises a light chain variable domain amino acid sequence comprising at least one, at least two, or at least three of the CDRs of the antibody encoded by the polynucleotide in plasmid designated 2.14H9_G which was deposited at the NCIMB under number 41597 on November 19, 2008.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable domain amino acid sequence comprising at least one, at least two, or at least three of the CDRs of the antibody encoded by the polynucleotide in plasmid designated 2.14H9_G which was deposited at the NCIMB under number 41597 on November 19, 2008 and a light chain variable domain amino acid sequence comprising at least one, at least two, or at least three of the CDRs of the antibody encoded by the polynucleotide in plasmid designated 2.14H9_G which was deposited at the NCIMB under number 41597 on November 19, 2008.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable domain amino acid sequence comprising a CDR3 encoded by the polynucleotide in plasmid designated 2.9D10_NG which was deposited at the NCIMB under number 41599 on November 19, 2008.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable domain amino acid sequence comprising a CDR3 encoded by the polynucleotide in plasmid designated 2.9D10_NG which was deposited at the NCIMB under number 41599 on November 19, 2008 and a light chain variable domain amino acid sequence comprising a CDR3 encoded by the polynucleotide in plasmid designated 2.9D10_NG which was deposited at the NCIMB under number 41599 on November 19, 2008.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable domain amino acid sequence comprising at least one, at least two, or at least three of the CDRs of the antibody encoded by the polynucleotide in plasmid designated 2.9D10_NG which was deposited at the NCIMB under number 41599 on November 19,2008.
  • a targeted binding agent or an antibody of the disclosure comprises a light chain variable domain amino acid sequence comprising at least one, at least two, or at least three of the CDRs of the antibody encoded by the polynucleotide in plasmid designated 2.9D10_NG which was deposited at the NCIMB under number 41599 on November 19,2008.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable domain amino acid sequence comprising at least one, at least two, or at least three of the CDRs of the antibody encoded by the polynucleotide in plasmid designated 2.9D10_NG which was deposited at the NCIMB under number 41599 on November 19, 2008 and a light chain variable domain amino acid sequence comprising at least one, at least two, or at least three of the CDRs of the antibody encoded by the polynucleotide in plasmid designated 2.9D10_NG which was deposited at the NCIMB under number 41599 on November 19,2008.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable sequence of an antibody encoded by the polynucleotide in plasmid designated 2.7A4_G which was deposited at the NCIMB number 41598 on November 19,2008.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable sequence of an antibody encoded by the polynucleotide in plasmid designated 2.14H9_G which was deposited at the NCIMB under number 41597 on November 19,2008.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable domain sequence of an antibody encoded by the polynucleotide in plasmid designated 2.9D10_NG which was deposited at the NCIMB under number 41599 on November 19, 2008.
  • a targeted binding agent or an antibody of the disclosure comprises a light chain variable domain of an antibody encoded by the polynucleotide in plasmid designated 2.7A4_G which was deposited at the NCIMB under number 41598 on November 19, 2008.
  • a targeted binding agent or an antibody of the disclosure comprises a light chain variable domain of an antibody encoded by the polynucleotide in plasmid designated 2.14H9_G which was deposited at the NCIMB under number 41597 on November 19, 2008.
  • a targeted binding agent or an antibody of the disclosure comprises a light chain variable domain of an antibody encoded by the polynucleotide in plasmid designated 2.9D10_NG which was deposited at the NCIMB under number 41599 on November 19,2008.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable domain sequence of an antibody encoded by the polynucleotide in plasmid designated 2.7A4_G which was deposited at the NCIMB under number 41598 on November 19, 2008 and a light chain variable domain sequence of an antibody encoded by the polynucleotide in plasmid designated 2.7A4_G which was deposited at the NCIMB under number 41598 on November 19, 2008.
  • a targeted binding agent or an antibody of the disclosure comprises a light chain variable domain sequence of an antibody encoded by the polynucleotide in plasmid designated 2.14H9_G which was deposited at the NCIMB under number 41597 on November 19, 2008 and a heavy chain variable domain sequence of an antibody encoded by the polynucleotide in plasmid designated 2.14H9_G which was deposited at the NCIMB under number 41597 on November 19, 2008.
  • a targeted binding agent or an antibody of the disclosure comprises a heavy chain variable domain sequence of an antibody encoded by the polynucleotide in plasmid designated 2.9D10_NG which was deposited at the NCIMB under number 41599 on November 19, 2008 and a light chain variable domain sequence of an antibody encoded by the polynucleotide in plasmid designated 2.9D10_NG which was deposited at the NCIMB under number 41599 on November 19, 2008.
  • a targeted binding agent or an antibody may comprise a sequence comprising a heavy chain CDR11 (HCDR1), heavy chain CDR2 (HCDR2) and heavy chain CDR3 (HCDR3) selected from any one of the sequences shown in Table 8.
  • a targeted binding agent or an antibody may comprise a sequence comprising a light chain CDR1 (LCDR1), light chain CDR2 (LCDR2) and light chain CDR3 (LCDR3) selected from any one of the sequences shown in Table 9.
  • a targeted binding agent or an antibody may comprise a sequence comprising a HCDR1, HCDR2 and HCDR3 selected from any one of the CDRs of antibodies 2.9D10, 2.7A4, 2.14H9, 3.15G8, 2.20A8, or 3.18G1.
  • a targeted binding agent or an antibody may comprise a sequence comprising a LCDR1, LCDR2 and LCDR3 selected from any one of the CDRs of antibodies 2.9D10, 2.7A4, 2.14H9, 3.15G8, 2.20A8, or 3.18G1.
  • a further instance is a targeted binding agent or an antibody that specifically binds to B7-H1 and comprises a sequence comprising one of the CDR2 and one of the CDR3 sequences shown in Table 9.
  • the targeted binding agent or antibody further comprises a sequence comprising: a CDR3 sequence as shown in Table 8.
  • the targeted binding agent or antibody further comprises a sequence comprising: a CDR2 and a CDR3 sequence as shown in Table 8 and/or Table 9.
  • the targeted binding agent or antibody further comprises a sequence comprising: a CDR1, a CDR2 and a CDR3 sequence as shown in Table 8 and/or Table 9.
  • the targeted binding agent or antibody may comprise a sequence comprising any one of a CDR1, a CDR2 or a CDR3 of any one of the fully human monoclonal antibodies 2.7A4, 2.14H9 or 2.9D10, as shown in Table 8.
  • the targeted binding agent or antibody may comprise a sequence comprising any one of a CDR1, a CDR2 or a CDR3 of any one of the fully human monoclonal antibodies 2.7A4, 2.14H9 or 2.9D10, as shown in Table 9.
  • the targeted binding agent or antibody may comprise a sequence comprising a CDR1, a CDR2 and a CDR3 of any one of fully human monoclonal antibodies 2.7A4, 2.14H9, 2.9D10, 2.7A4OPT or 2.14H9OPT, as shown in Table 8.
  • the targeted binding agent or antibody may comprise a sequence comprising a CDR1, a CDR2 and a CDR3 of any one of fully human monoclonal antibodies 2.7A4, 2.14H9, 2.9D10, 2.7A4OPT or 2.14H9OPT, as shown in Table 9.
  • the targeted binding agent or antibody comprises a sequence comprising the CDR1, CDR2 and CDR3 sequence of fully human monoclonal antibody 2.7A4 as shown in Table 8 and the CDR1, CDR2 and CDR3 sequence of fully human monoclonal antibody 2.7A4 as shown in Table 9.
  • the targeted binding agent or antibody comprises a sequence comprising the CDR1, CDR2 and CDR3 sequence of fully human monoclonal antibody 2.14H9 as shown in Table 8 and the CDR1, CDR2 and CDR3 sequence of fully human monoclonal antibody 2.14H9 as shown in Table 9.
  • the targeted binding agent or antibody comprises a sequence comprising the CDR1, CDR2 and CDR3 sequence of fully human monoclonal antibody 2.9D10 as shown in Table 8 and the CDR1, CDR2 and CDR3 sequence of fully human monoclonal antibody 2.9D10 as shown in Table 9.
  • the antibody is a fully human monoclonal antibody.
  • a further instance of the disclosure is a targeted binding agent or antibody comprising a sequence comprising the contiguous sequence spanning the framework regions and CDRs, specifically from FR1 through FR4 or CDR1 through CDR3, of any one of the sequences 2.9D10, 2.7A4, 2.14H9, 3.15G8, 2.20A8, 3.18G1, 2.7A4OPT, or 2.14H9OPT, or as shown in Table 8 or Table 9.
  • a further instance of the disclosure is a targeted binding agent or antibody comprising a sequence comprising the contiguous sequence spanning the framework regions and CDRs, specifically from FR1 through FR4 or CDR1 through CDR3, of any one of the sequences 2.9D10,2.7A4, 2.14H9, 3.15G8, 2.20A8, 3.18G1, 2.7A4OPT, or 2.14H9OPT or as shown in Table 8 and Table 9.
  • the targeted binding agent or antibody comprises a sequence comprising the contiguous sequences spanning the framework regions and CDRs, specifically from FR1 through FR4 or CDR1 through CDR3, of any one of the sequences of monoclonal antibodies 2.9D10, 2.7A4, 2.14H9, 3.15G8, 2.20A8, 3.18G1, 2.7A4OPT, or 2.14H9OPT or as shown in Table 8 or Table 9.
  • a further instance of the disclosure is a targeted binding agent or antibody comprising a sequence comprising the contiguous sequence spanning the framework regions and CDRs, specifically from FR1 through FR4 or CDR1 through CDR3, of any one of the sequences of monoclonal antibodies 2.9D10, 2.7A4, 2.14H9, 3.15G8, 2.20A8, 3.18G1, 2.7A4OPT, or 2.14H9OPT or as shown in Table 8 and Table 9.
  • the antibody is a fully human monoclonal antibody.
  • a targeted binding agent or antibody of the disclosure comprises a CDR3 sequence as shown in Table 8 or 9; or any one of a CDR1, a CDR2 or a CDR3 sequence as shown in Table 8 or 9; or a CDR1, a CDR2 and a CDR3 sequence of a light chain variable domain sequence as shown in Table 8; or a CDR1, a CDR2 and a CDR3 sequence of a heavy chain variable domain sequence sequence as shown as shown in Table 9.
  • One instance provides a targeted binding agent or antibody, or antigen-binding portion thereof, wherein the agent or antibody, or antigen-binding portion thereof, comprises a sequence comprising SEQ ID NO.:2, SEQ ID NO.:7, SEQ ID NO.: 12, SEQ ID NO.: 17, SEQ ID NO.:22, SEQ ID NO.:27, SEQ ID NO.:32, SEQ ID NO.:37, SEQ ID NO.:42, SEQ ID NO.:47, SEQ ID NO.:52, SEQ ID NO.:57, SEQ ID NO.:62, SEQ ID NO.:67, SEQ ID NO.:72, or SEQ ID NO.:77.
  • One instance provides a targeted binding agent or antibody, or antigen-binding portion thereof, wherein the agent or antibody, or antigen-binding portion thereof, comprises a heavy chain sequence comprising the sequence of SEQ ID NO.:2.
  • the targeted binding agent or antibody, or antigen-binding portion thereof further comprises a light chain sequence comprising the sequence of SEQ ID NO.:7.
  • the antibody is a fully human monoclonal antibody.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain variable domain having at least 90% identity to the amino acid of SEQ ID NO:2 and comprises a light chain variable domain having at least 90% identity to the amino acid sequence of SEQ ID NO:7.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain sequence comprising the sequence of SEQ ID NO.:12. In one instance, the targeted binding agent or antibody, or antigen-binding portion thereof, further comprises a light chain sequence comprising the sequence of SEQ ID NO.: 17. In some instances, the antibody is a fully human monoclonal antibody.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain variable domain having at least 90% identity to the amino acid of SEQ ID NO:12 and comprises a light chain variable domain having at least 90% identity to the amino acid sequence of SEQ ID NO:17.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain sequence comprising the sequence of SEQ ID NO.:22.
  • the targeted binding agent or antibody, or antigen-binding portion thereof further comprises a light chain sequence comprising the sequence of SEQ ID NO.:27.
  • the antibody is a fully human monoclonal antibody.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain variable domain having at least 90% identity to the amino acid of SEQ ID NO:22 and comprises a light chain variable domain having at least 90% identity to the amino acid sequence of SEQ ID NO:27.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain sequence comprising the sequence of SEQ ID NO.:32.
  • the targeted binding agent or antibody, or antigen-binding portion thereof further comprises a light chain sequence comprising the sequence of SEQ ID NO.:37.
  • the antibody is a fully human monoclonal antibody.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain variable domain having at least 90% identity to the amino acid of SEQ ID NO:32 and comprises a light chain variable domain having at least 90% identity to the amino acid sequence of SEQ ID NO:37.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain sequence comprising the sequence of SEQ ID NO.:42. In another instance, the targeted binding agent or antibody, or antigen-binding portion thereof, further comprises a light chain sequence comprising the sequence of SEQ ID NO.:47. In some instances, the antibody is a fully human monoclonal antibody.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain variable domain having at least 90% identity to the amino acid of SEQ ID NO:42 and comprises a light chain variable domain having at least 90% identity to the amino acid sequence of SEQ ID NO:47.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain sequence comprising the sequence of SEQ ID NO.:52.
  • the targeted binding agent or antibody, or antigen-binding portion thereof further comprises a light chain sequence comprising the sequence of SEQ ID NO.:57.
  • the antibody is a fully human monoclonal antibody.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain variable domain having at least 90% identity to the amino acid of SEQ ID NO:52 and comprises a light chain variable domain having at least 90% identity to the amino acid sequence of SEQ ID NO:57.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain sequence comprising the sequence of SEQ ID NO.:62.
  • the targeted binding agent or antibody, or antigen-binding portion thereof further comprises a light chain sequence comprising the sequence of SEQ ID NO.:67.
  • the antibody is a fully human monoclonal antibody.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain variable domain having at least 90% identity to the amino acid of SEQ ID NO:62 and comprises a light chain variable domain having at least 90% identity to the amino acid sequence of SEQ ID NO:67.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain sequence comprising the sequence of SEQ ID NO.:72. In another instance, the targeted binding agent or antibody, or antigen-binding portion thereof, further comprises a light chain sequence comprising the sequence of SEQ ID NO.:77. In some instances, the antibody is a fully human monoclonal antibody.
  • the targeted binding agent or antibody, or antigen-binding portion thereof comprises a heavy chain variable domain having at least 90% identity to the amino acid of SEQ ID NO:72 and comprises a light chain variable domain having at least 90% identity to the amino acid sequence of SEQ ID NO:77.
  • the targeted binding agent or antibody comprises variants or derivatives of the CDRs disclosed herein, the contiguous sequences spanning the framework regions and CDRs (specifically from FR1 through FR4 or CDR1 through CDR3), the light or heavy chain sequences disclosed herein, or the antibodies disclosed herein.
  • Variants include targeted binding agents or antibodies comprising sequences which have as many as twenty, sixteen, ten, nine or fewer, e.g.
  • Variants include targeted binding agents or antibodies comprising sequences which have one, two or three, amino acid additions, substitutions, deletions, and/or insertions in any of the CDR1, CDR2 or CDR3s as shown in Table 8 or Table 9, the contiguous sequences spanning the framework regions and CDRs (specifically from FR1 through FR4 or CDR1 through CDR3) as shown in Table 8 or Table 9, the light or heavy chain sequences disclosed herein, or with the monoclonal antibodies disclosed herein.
  • Variants include targeted binding agents or antibodies comprising sequences which have at least about 60, 70, 80, 85, 90, 95, 98 or about 99% amino acid sequence identity with any of the CDR1, CDR2 or CDR3s as shown in Table 8 or Table 9, the contiguous sequences spanning the framework regions and CDRs (specifically from FR1 through FR4 or CDR1 through CDR3) as shown in Table 8 or Table 9, the light or heavy chain sequences disclosed herein, or with the monoclonal antibodies disclosed herein.
  • the percent identity of two amino acid sequences can be determined by any method known to one skilled in the art, including, but not limited to, pairwise protein alignment.
  • variants comprise changes in the CDR sequences or light or heavy chain sequences disclosed herein that are naturally occurring or are introduced by in vitro engineering of native sequences using recombinant DNA techniques or mutagenesis techniques.
  • Naturally occurring variants include those which are generated in vivo in the corresponding germline nucleotide sequences during the generation of an antibody to a foreign antigen.
  • variants include targeted binding agents or antibodies comprising sequences which have (a) a VH CDR1 having an amino acid sequence identical to or comprising 1,2, or 3 amino acid residue substitutions relative to SEQ ID NO: 3;
  • variants include targeted binding agents or antibodies comprising sequences which have (a) a VH CDR1 having an amino acid sequence identical to or comprising 1,2, or 3 amino acid residue substitutions relative to SEQ ID NO: 23;
  • the derivative may be a heteroantibody, that is an antibody in which two or more antibodies are linked together.
  • Derivatives include antibodies which have been chemically modified. Examples include covalent attachment of one or more polymers, such as water-soluble polymers, N-linked, or O-linked carbohydrates, sugars, phosphates, and/or other such molecules. The derivatives are modified in a manner that is different from naturally occurring or starting antibody, either in the type or location of the molecules attached. Derivatives further include deletion of one or more chemical groups which are naturally present on the antibody.
  • the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 2. In some instances of the disclosure, the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 2, wherein SEQ ID NO.: 2 comprises any one of the unique combinations of germline and non-germline residues indicated by each row of Table 10. In some instances of the disclosure, the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 2, wherein SEQ ID NO.: 2 comprises any one, any two, any three, any four or all five of the germline residues as indicated in Table 10.
  • the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 2, wherein SEQ ID NO.: 2 comprises any one of the unique combinations of germline and non-germline residues indicated by each row of Table 10. In some instances of the disclosure, the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 2, wherein SEQ ID NO.: 2 comprises any one, any two, any three, any four, any five, or all five of the germline residues as indicated in Table 10.
  • the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 7, wherein SEQ ID NO.: 7 comprises any one of the unique combinations of germline and non-germline residues indicated by each row of Table 11 and any one of the unique combinations of germline and non-germline residues indicated by each row of Table 11. In some instances of the disclosure, the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 7, wherein SEQ ID NO.: 7 comprises any one, any two, any three, any four, any five, for all five of the germline residues as indicated in Table 11.
  • the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 12. In some instances of the disclosure, the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 12, wherein SEQ ID NO.: 12 comprises any one of the unique combinations of germline and non-germline residues indicated by each row of Table 12. In some instances of the disclosure, the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 12, wherein SEQ ID NO.: 12 comprises any one, any two or all two of the germline residues as indicated in Table 12.
  • the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 17. In some instances of the disclosure, the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 17, wherein SEQ ID NO.: 17 comprises any one of the unique combinations of germline and non-germline residues indicated by each row of Table 13. In some instances of the disclosure, the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 17, wherein SEQ ID NO.: 17 comprises any one, any two, any three, any four or all four of the germline residues as indicated in Table 13.
  • the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 27. In some instances of the disclosure, the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 27, wherein SEQ ID NO.: 27 comprises any one of the unique combinations of germline and non-germline residues indicated by each row of Table 14. In some instances of the disclosure, the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 27, wherein SEQ ID NO.: 27 comprises any one, any two, any three or all three of the germline residues as indicated in Table 14.
  • a further instance of the disclosure a targeted binding agent or antibody which competes for binding to B7-H1 with the targeted binding agent or antibodies of the disclosure.
  • the targeted binding agent or antibody competes for binding to B7-H1 with any one of fully human monoclonal antibodies 2.7A4, 2.14H9 or 2.9D 10, 2.7A4OPT or 2.14H9OPT.
  • “Competes” indicates that the targeted binding agent or antibody competes for binding to B7-H1 with any one of fully human monoclonal antibodies 2.7A4, 2.14H9 or 2.9D10, 2.7A4OPT or 2.14H9OPT, i.e. competition is unidirectional.
  • Instances of the disclosure include a targeted binding agent or antibody which cross competes with any one of fully human monoclonal antibodies 2.7A4, 2.14H9 or 2.9D10, 2.7A4OPT or 2.14H9OPT for binding to B7-H1.
  • Cross competes indicates that the targeted binding agent or antibody competes for binding to B7-H1 with any one of fully human monoclonal antibodies 2.7A4, 2.14H9 or 2.9D10, 2.7A4OPT or 2.14H9OPT, and vice versa, i.e. competition is bidirectional.
  • a further instance of the disclosure is a targeted binding agent or antibody that binds to the same epitope or epitopes on the extracellular domain of human B7-H1 as the targeted binding agent or antibodies of the disclosure.
  • Instances of the disclosure also include a targeted binding agent or antibody that binds to the same epitope or epitopes on the extracellular domain of human B7-H1 as any one of fully human monoclonal antibodies 2.7A4, 2.14H9 or 2.9D10, 2.7A4OPT or 2.14H9OPT.
  • the targeted binding agent or antibody binds an epitope on human B7-H1 including at least one or more of the following amino acids selected from the group consisting of Asp at position 122 and Arg at position 125.
  • an antibody of the disclosure binds an epitope on human B7-H1 comprising at least two of the following three amino acid residues of Asp at position 122, Arg at position 125 and Arg at position 113.
  • the antibody binds an epitope on human B7-H1, wherein the antibody exhibits no binding to Ile at position 54, Ser at position 117 and Ala at position 121 on human B7-H1.
  • an antibody of the disclosure loses its ability to bind to human B7-H1 if the Arg at position 113 is mutated to an Ala, or to a Tyr, or to a Leu as determined by a competition assay as compared to binding to wild-type B7-H1. In yet a further instance, an antibody of the disclosure loses its ability to bind to human B7-H1 if the Arg at position 125 is mutated to an Ala, or to a Gln, or to a Ser as determined by a competition assay as compared to binding to wild-type B7-H1.
  • an antibody of the disclosure retains its ability to bind to human B7-H1 if the Arg at position 123 is mutated to an Ala, or to a Phe, or to a Thr as determined by a competition assay as compared to binding to wild-type B7-H1.
  • the antibody is 2.14H9.
  • the antibody is 2.14H9OPT.
  • the targeted binding agent or antibody binds an epitope on the extracellular domain of human B7-H1 comprising at least one or more of the following amino acids Asp at position 122 and Thr at position 20.
  • the antibody binds at least two of the following three amino acid residues of Phe at position 19, Thr at position 20 and Asp at position 122 on human B7-H1.
  • an antibody of the disclosure loses its ability to bind to human B7-H1 if the Phe at position 19 is mutated to an Ala, or to a Gly, or to a Ser as determined by a competition assay as compared to binding to wild-type B7-H1. In yet a further instance, an antibody of the disclosure loses its ability to bind to human B7-H1 if the Thr at position 20 is mutated to an Ala, or to a Val, or to a Asp as determined by a competition assay as compared to binding to wild-type B7-H1.
  • an antibody of the disclosure loses its ability to bind to human B7-H1 if the Asp at position 122 is mutated to an Asn, or to a Glu as determined by a competition assay as compared to binding to wild-type B7-H1.
  • an antibody of the disclosure retains its ability to bind to human B7-H1 if the Arg at position 123 is mutated to an Ala, or to a Phe, or to a Thr as determined by a competition assay as compared to binding to wild-type B7-H1.
  • the antibody is 2.7A4. In another example, the antibody is 2.7A4OPT.
  • the targeted binding agent is a bispecific antibody.
  • a bispecific antibody is an antibody that has binding specificity for at least two different epitopes on the same or on different proteins. Methods for making bispecific antibodies are known in the art. (See, for example, Millstein et al., Nature, 305:537-539 (1983 ); Traunecker et al., EMBO J., 10:3655-3659 (1991 ); Suresh et al., Methods in Enzymology, 121:210 (1986 ); Kostelny et al., J. Immunol., 148(5):1547-1553 (1992 ); Hollinger et al., Proc. Natl acid. Sci.
  • Instances of the disclosure described herein relate to monoclonal antibodies that specifically bind B7-H1 and affect B7-H1 function. Other instances relate to fully human antibodies that specifically bind B7-H1 and preparations thereof with desirable properties from a therapeutic perspective, including high binding affinity for B7-H1, high selectivity for inhibition of B7-H1 signaling, low toxicity, the ability to block PD-1 receptor activity, the ability to inhibit B7-H1-induced tumour cell survival through immune suppression, the ability to inhibit B7-H1 mediated repression of anti-tumour immunity, which may in turn inhibit proliferation or invasion -related diseases include neoplastic diseases, and/or the ability of tumour cells to grow in vitro and in vivo.
  • Still other instances relate to a method of repressing B7-H1-mediated T cell inhibition in an animal by administering to an animal in need thereof an effective amount of a composition comprising the antibodies of the disclosure. Still other instances relate to fully human antibodies that specifically bind B7-H1 and preparations thereof that do not result in a significant Human Anti-Chimeric Antibody (HACA) response, thereby allowing for repeated administration.
  • HACA Human Anti-Chimeric Antibody
  • nucleic acid molecule encoding any of the targeted binding agents or antibodies of the disclosure.
  • nucleic acid molecule encoding the light chain or the heavy chain of an antibody of the disclosure.
  • nucleic acid molecule encodes the light chain or the heavy chain of a fully human monoclonal antibody of any of the antibodies described herein.
  • nucleic acid molecule encodes the light chain or the heavy chain of any one of the fully human monoclonal antibodies 2.7A4, 2.14H9, 2.9D10, 2.7A4OPT and 2.14H9OPT.
  • the nucleic acid molecule encodes the light chain and the heavy chain of any one of the fully human monoclonal antibodies 2.7A4, 2.14H9, 2.9D10, 2.7A4OPT and 2.14H9OPT.
  • the disclosure also encompasses polynucleotides that hybridize under stringent or lower stringency hybridization conditions, as defined herein, to polynucleotides that encode any of the targeted binding agents or antibodies described herein.
  • a vector comprising a nucleic acid molecule or molecules as described hereinabove, wherein the vector encodes a targeted binding agent as described hereinabove.
  • a vector comprising a nucleic acid molecule or molecules as described hereinabove, wherein the vector encodes a light chain and/or a heavy chain of an antibody as defined hereinabove.
  • the vector comprises a nucleic acid molecule encoding the light chain and/or the heavy chain of a fully human monoclonal antibody.
  • the vector comprises a nucleic acid molecule encoding the light chain or the heavy chain of any one of the fully human monoclonal antibodies 2.7A4, 2.14H9, 2.9D10, 2.7A4OPT and 2.14H9OPT.
  • the vector comprises a nucleic acid molecule encoding the light chain and the heavy chain of any one of the fully human monoclonal antibodies 2.7A4, 2.14H9, 2.9D10, 2.7A4OPT and 2.14H9OPT.
  • a host cell transformed with any of the nucleic acid molecules as described hereinabove.
  • a host cell comprising the vector comprising the nucleic acid molecule as described hereinabove.
  • the host cell may comprise more than one vector.
  • antibodies can advantageously be, for example, polyclonal, oligoclonal, monoclonal, chimeric, humanised, and/or fully human antibodies.
  • the targeted binding agent is a binding fragment of a fully human monoclonal antibody.
  • the targeted binding agent can be a full-length antibody (e.g ., having an intact human Fc region) or an antibody binding fragment (e.g ., a Fab, Fab' or F(ab') 2 , Fv, dAb or other well known antibody fragment, as described in more detail below).
  • the antibodies can be single-domain antibodies such as camelid or human single VH or VL domains that bind to B7-H1, such as a dAb fragment.
  • cells for producing these antibodies.
  • examples of cells include hybridomas, or recombinantly created cells, such as Chinese hamster ovary (CHO) cells, variants of CHO cells (for example DG44) and NS0 cells that produce antibodies against B7-H1. Additional information about variants of CHO cells can be found in Andersen and Reilly (2004) Current Opinion in Biotechnology 15, 456-462 .
  • the antibody can be manufactured from a hybridoma that secretes the antibody, or from a recombinantly engineered cell that has been transformed or transfected with a gene or genes encoding the antibody.
  • one instance of the disclosure is a method of producing a targeted binding agent or an antibody of the disclosure by culturing host cells under conditions wherein a nucleic acid molecule is expressed to produce the targeted binding agent or antibody followed by recovery of the targeted binding agent or antibody.
  • a method of producing an antibody of the disclosure by culturing host cells under conditions wherein a nucleic acid molecule is expressed to produce the antibody, followed by recovery of the antibody.
  • Still other instances include an antibody of the disclosure produced by the method of culturing a host cell which expresses an antibody encoded by a nucleic acid molecule encoding an antibody of the disclosure, and isolating said antibody from said culture.
  • instances of the disclosure also include any nucleic acid molecule which encodes an antibody or fragment of an antibody of the disclosure including nucleic acid sequences optimised for increasing yields of antibodies or fragments thereof when transfected into host cells for antibody production.
  • a further instance herein includes a method of producing antibodies that specifically bind to B7-H1 and inhibit the biological activity of B7-H1, by immunising a mammal with cells expressing B7-H1, isolated cell membranes containing B7-H1, purified B7-H1, or a fragment thereof, and/or one or more orthologous sequences or fragments thereof.
  • a further instance herein includes a method of producing high affinity antibodies that specifically bind to B7-H1 and inhibit the biological activity of B7-H1, by immunising a mammal with cells expressing B7-H1, isolated cell membranes containing B7-H1, purified B7-H1, or a fragment thereof, and/or one or more orthologous sequences or fragments thereof.
  • B7-H1 is expressed on a number of tumour types.
  • Antibodies that specifically bind to B7-H1 can prevent B7-H1-mediated tumour cell survival and inhibit B7-H1 mediated repression of anti-tumour immune responses through immune suppression, this can in turn reduce tumour cell invasion, metastasis, tumour growth, and other properties.
  • the antibody can be manufactured from a hybridoma that secretes the antibody, or from a recombinantly engineered cell that has been transformed or transfected with a gene or genes encoding the antibody.
  • hybridoma that produces the targeted binding agent or antibody of the disclosure. In one instance there is a hybridoma that produces the light chain and/or the heavy chain of an antibody of the disclosure. In one instance the hybridoma may produce a light chain and/or a heavy chain of a fully human monoclonal antibody. In another instance, the hybridoma produces the light chain and/or the heavy chain of the fully human monoclonal antibody 2.7A4, 2.14H9, 2.9D10, 2.7A4OPT and 2.14H9OPT.
  • the hybridoma may produce an antibody that binds to the same epitope or epitopes as fully human monoclonal antibody 2.7A4, 2.14H9, 2.9D10, 2.7A4OPT and 2.14H9OPT.
  • the hybridoma may produce an antibody that competes for binding to B7-H1 with fully human monoclonal antibody 2.7A4, 2.14H9, 2.9D10, 2.7A4OPT and 2.14H9OPT.
  • the hybridoma may produce an antibody that cross-competes for binding to B7-H1 with fully human monoclonal antibody 2.7A4, 2.14H9, 2.9D10, 2.7A4OPT and 2.14H9OPT.
  • compositions including a targeted binding agent or antibody of the disclosure or binding fragment thereof, and a pharmaceutically acceptable carrier.
  • Still further instances of the disclosure include methods of treating a proliferative or invasion-related disease in an animal by administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • the method further comprises selecting an animal in need of treatment for a proliferative or invasion-related disease, and administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • the animal is human.
  • the targeted binding agent is a fully human monoclonal antibody.
  • the targeted binding agent is an antibody of the disclosure and may be selected from the group consisting of 2.7A4, 2.14H9 or 2.9D10, 2.7A4OPT or 2.14H9OPT.
  • Still further instances of the disclosure include methods of inhibiting cell proliferation or invasion -related disease, with a B7-H1 mediated component, in an animal by administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • the method further comprises selecting an animal in need of treatment for proliferation or invasion -related disease, with a 87-H1 mediated component, and administering to said animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • the animal is human.
  • the targeted binding agent is a fully human monoclonal antibody.
  • the targeted binding agent is an antibody of the disclosure and may be selected from the group consisting of 2.7A4, 2.14H9 or 2.9D10, 2.7A4OPT or 2.14H9OPT.
  • Still further instances of the disclosure include methods of inhibiting tumour cell invasion, cellular metastasis or tumour growth in an animal by administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • the method further comprises selecting an animal in need of treatment for tumour cell, invasion, cellular metastasis or tumour growth, and administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • the animal is human.
  • the targeted binding agent is a fully human monoclonal antibody.
  • the targeted binding agent is an antibody of the disclosure and may be selected from the group consisting of 2.7A4, 2.14H9 or 2.9D10, 2.7A4OPT or 2.14H9OPT.
  • Still further instances of the disclosure include methods of treating an animal suffering from a neoplastic disease by administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • the method further comprises selecting an animal in need of treatment for a neoplastic disease, and administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • Still further instances of the disclosure include methods of treating an animal suffering from a non-neoplastic disease by administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • the method further comprises selecting an animal in need of treatment for a non-neoplastic disease, and administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • Still further instances of the disclosure include methods of treating an animal suffering from chronic viral infection by administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • the method further comprises selecting an animal in need of treatment for chronic viral infection, and administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • Still further instances of the disclosure include methods of treating an animal suffering from a malignant tumour by administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • the method further comprises selecting an animal in need of treatment for a malignant tumour, and administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • Still further instances of the disclosure include methods of treating an animal suffering from a disease or condition associated with B7-H1 expression by administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • the method further comprises selecting an animal in need of treatment for a disease or condition associated with B7-H1 expression, and administering to the animal a therapeutically effective dose of a targeted binding agent of the disclosure.
  • a malignant tumour may be selected from the group consisting of: solid tumours such as melanoma, skin cancers, small cell lung cancer, non-small cell lung cancer, glioma, hepatocellular (liver) carcinoma, gallbladder cancer, thyroid tumour, bone cancer, gastric (stomach) cancer, prostate cancer, breast cancer, ovarian cancer, cervical cancer, uterine cancer, vulval cancer, endometrial cancer, testicular cancer, bladder cancer, lung cancer, glioblastoma, endometrial cancer, kidney cancer, renal cell carcinoma, colon cancer, colorectal, pancreatic cancer, esophageal carcinoma, brain/CNS cancers, head and neck cancers, neuronal cancers, mesothelioma, sarcomas, biliary (cholangiocarcinoma), small bowel adenocarcinoma, pediatric malignancies, epidermoid carcinoma, sarcomas, cancer of the pleural/peritoneal membranes and le
  • Treatable proliferative or invasion -related diseases include neoplastic diseases, such as, melanoma, skin cancer, small cell lung cancer, non-small cell lung cancer, salivary gland, glioma, hepatocellular (liver) carcinoma, gallbladder cancer, thyroid tumour, bone cancer, gastric (stomach) cancer, prostate cancer, breast cancer, ovarian cancer, cervical cancer, uterine cancer, vulval cancer, endometrial cancer, testicular cancer, bladder cancer, lung cancer, glioblastoma, thyroid cancer, endometrial cancer, kidney cancer, colon cancer, colorectal cancer, pancreatic cancer, esophageal carcinoma, brain/CNS cancers, neuronal cancers, head and neck cancers, mesothelioma, sarcomas, biliary (cholangiocarcinoma), small bowel adenocarcinoma, pediatric malignancies, epidermoid carcinoma, sarcomas, cancer of the pleural/
  • Treatable chronic viral infections include HIV, hepatitis B virus (HBV), and hepatitis C virus (HCV) in humans, simian immunodeficiency virus (SIV) in monkeys, and lymphocytic choriomeningitis virus (LCMV) in mice.
  • HIV hepatitis B virus
  • HCV hepatitis C virus
  • SIV simian immunodeficiency virus
  • LCMV lymphocytic choriomeningitis virus
  • Disease-related cell invasion and/or proliferation may be any abnormal, undesirable or pathological cell invasion and/or proliferation, for example tumour-related cell invasion and/or proliferation.
  • the neoplastic disease is a solid tumour selected from any one of the following carcinomas of the breast, colon, colorectal, prostate, stomach, gastric, ovary, esophagus, pancreas, gallbladder, non-small cell lung cancer, thyroid, endometrium, head and neck, renal, renal cell carcinoma, bladder and gliomas.
  • the present disclosure is suitable for use in inhibiting B7-H1, in patients with a tumour which is dependent alone, or in part, on B7-H1.
  • Still further instances of the disclosure include use of a targeted binding agent or antibody of the disclosure in the preparation of a medicament for the treatment of an animal suffering from a proliferative or invasion-related disease. In certain instances the use further comprises selecting an animal in need of treatment for a proliferative or invasion-related disease.
  • Still further instances of the disclosure include use of a targeted binding agent or antibody of the disclosure in the preparation of medicament for the treatment of proliferation or invasion -related disease, with a B7-H1 mediated component, in an animal. In certain instances the use further comprises selecting an animal in need of treatment for proliferation or invasion-related disease, with a B7-H1 mediated component.
  • Still further instances of the disclosure include use of a targeted binding agent or antibody of the disclosure in the preparation of medicament for the treatment of tumour cell invasion, cellular metastasis or tumour growth in an animal. In certain instances the use further comprises selecting an animal in need of treatment for tumour cell invasion, cellular metastasis or tumour.
  • Still further instances of the disclosure include use of a targeted binding agent or antibody of the disclosure in the preparation of a medicament for the treatment of an animal suffering from a neoplastic disease. In certain instances the use further comprises selecting an animal in need of treatment for a neoplastic disease.
  • Still further instances of the disclosure include use of a targeted binding agent or antibody of the disclosure in the preparation of a medicament for the treatment of an animal suffering from a disease where the etiology is associated with an infectious agent, such as, for example, hepatocellular cancer, gastric cancer, or cervical cancer.
  • an infectious agent such as, for example, hepatocellular cancer, gastric cancer, or cervical cancer.
  • the use further comprises selecting an animal in need of treatment for a neoplastic disease.
  • Still further instances of the disclosure include use of a targeted binding agent or antibody of the disclosure in the preparation of a medicament for the treatment of an animal suffering from a non-neoplastic disease. In certain instances the use further comprises selecting an animal in need of treatment for a non-neoplastic disease.
  • Still further instances of the disclosure include use of a targeted binding agent or antibody of the disclosure in the preparation of a medicament for the treatment of an animal suffering from chronic viral infection.
  • the use further comprises selecting an animal in need of treatment for a non-neoplastic disease.
  • the use further comprises ocular disease, inflammatory disease, cardiovascular disease and sepsis.
  • Still further instances of the disclosure include use of a targeted binding agent or antibody of the disclosure in the preparation of a medicament for the treatment of an animal suffering from a malignant tumour. In certain instances the use further comprises selecting an animal in need of treatment for a malignant tumour.
  • Still further instances of the disclosure include use of a targeted binding agent or antibody of the disclosure in the preparation of a medicament for the treatment of an animal suffering from a disease or condition associated with B7-H1 expression. In certain instances the use further comprises selecting an animal in need of treatment for a disease or condition associated with B7-H1 expression.
  • Still further instances of the disclosure include a targeted binding agent or antibody of the disclosure for use as a medicament for the treatment of an animal suffering from a proliferative or invasion-related disease.
  • Still further instances of the disclosure include a targeted binding agent or antibody of the disclosure for use as a medicament for the treatment of an animal suffering from tumour cell invasion, cellular metastasis or tumour growth in an animal.
  • Still further instances of the disclosure include a targeted binding agent or antibody of the disclosure for use as a medicament for the treatment of an animal suffering from a disease or condition associated with B7-H1 expression.
  • treatment of a neoplastic disease comprises inhibition of tumour growth, tumour growth delay, regression of tumour, shrinkage of tumour, increased time to regrowth of tumour on cessation of treatment, increased time to tumour recurrence, slowing of disease progression.
  • treatment of a disease or condition associated with B7-H1 expression comprises inhibiting the growth of cells that express B7-H1.
  • a clearing agent is administered, to remove excess circulating antibody from the blood.
  • the animal to be treated is a human.
  • the targeted binding agent is a fully human monoclonal antibody.
  • the targeted binding agent is selected from the group consisting of fully human monoclonal antibodies 2.7A4, 2.14H9 and 2.9D10.
  • Instances of the disclosure include a conjugate comprising the targeted binding agent as described herein, and a therapeutic agent.
  • the therapeutic agent is a toxin.
  • the therapeutic agent is a radioisotope.
  • the therapeutic agent is a pharmaceutical composition.
  • a method of selectively killing a cancerous cell in a patient comprises administering a fully human antibody conjugate to a patient.
  • the fully human antibody conjugate comprises an antibody that can bind to B7-H1 and an agent.
  • the agent is either a toxin, a radioisotope, or another substance that will kill a cancer cell.
  • the antibody conjugate thereby selectively kills the cancer cell.
  • a conjugated fully human antibody that specifically binds to B7-H1 is provided. Attached to the antibody is an agent, and the binding of the antibody to a cell results in the delivery of the agent to the cell.
  • the above conjugated fully human antibody binds to an extracellular domain of B7-H1.
  • the antibody and conjugated toxin are internalised by a cell that expresses B7-H1.
  • the agent is a cytotoxic agent.
  • the agent is, for example saporin, or auristatin, pseudomonas exotoxin, gelonin, ricin, calicheamicin or maytansine-based immunoconjugates, and the like.
  • the agent is a radioisotope.
  • the targeted binding agent or antibody of the disclosure can be administered alone, or can be administered in combination with additional antibodies or chemotherapeutic drugs or radiation therapy or therapeutic vaccines.
  • a monoclonal, oligoclonal or polyclonal mixture of B7-H1 antibodies that block B7-H1 mediated repression of anti-tumour immunity can be administered in combination with a drug shown to inhibit tumour cell proliferation.
  • a pharmaceutical composition comprising a targeted binding agent of antibody of the disclosure and a pharmaceutically acceptable carrier.
  • Another instance of the disclosure includes a method of diagnosing diseases or conditions in which an antibody as disclosed herein is utilised to detect the presence and/or level of B7-H1 in a patient or patient sample.
  • the patient sample is blood or blood serum or urine.
  • methods for the identification of risk factors, diagnosis of disease, and staging of disease is presented which involves the identification of the expression and/or overexpression of B7-H1 using anti-B7-H1 antibodies.
  • the methods comprise administering to a patient a fully human antibody conjugate that selectively binds to B7-H1 on a cell.
  • the antibody conjugate comprises an antibody that specifically binds to B7-H1 and a label.
  • the methods further comprise observing the presence of the label in the patient. A relatively high amount of the label will indicate a relatively high risk of the disease and a relatively low amount of the label will indicate a relatively low risk of the disease.
  • the label is a green fluorescent protein.
  • the disclosure further provides methods for assaying for the presence and/or level of B7-H1 in a patient sample, comprising contacting an antibody as disclosed herein with a biological sample from a patient, and detecting the level of binding between said antibody and B7-H1 in said sample.
  • the biological sample is blood, plasma or serum.
  • Another instance of the disclosure includes a method for diagnosing a condition associated with the expression of B7-H1 in a cell by contacting the serum or a cell with an antibody as disclosed herein, and thereafter detecting the presence of B7-H1.
  • the condition can be a proliferative or invasion -related disease including, but not limited to, a neoplastic disease.
  • the disclosure includes an assay kit for detecting B7-H1 in mammalian tissues, cells, or body fluids. Such a kit would be useful to screen for B7-H1-related diseases.
  • the kit includes a targeted binding agent or antibody of the disclosure and a means for indicating the reaction of the targeted binding agent or antibody with B7-H1, if present.
  • the antibody is a monoclonal antibody.
  • the antibody that binds B7-H1 is labeled.
  • the antibody is an unlabeled primary antibody and the kit further includes a means for detecting the primary antibody.
  • the means for detecting includes a labeled second antibody that is an anti-immunoglobulin.
  • the antibody may be labeled with a marker selected from the group consisting of a fluorochrome, an enzyme, a radionuclide and a radiopaque material.
  • the targeted binding agents or antibodies as disclosed herein can be modified to enhance their capability of fixing complement and participating in complement-dependent cytotoxicity (CDC).
  • the targeted binding agents or antibodies can be modified to enhance their capability of activating effector cells and participating in antibody-dependent cytotoxicity (ADCC).
  • the targeted binding agents or antibodies can be modified both to enhance their capability of activating effector cells and participating in antibody-dependent cytotoxicity (ADCC) and to enhance their capability of fixing complement and participating in complement-dependent cytotoxicity (CDC).
  • the targeted binding agents or antibodies as disclosed herein can be modified to reduce their capability of fixing complement and participating in complement-dependent cytotoxicity (CDC). In other instances, the targeted binding agents or antibodies can be modified to reduce their capability of activating effector cells and participating in antibody-dependent cytotoxicity (ADCC). In yet other instances, the targeted binding agents or antibodies as disclosed herein can be modified both to reduce their capability of activating effector cells and participating in antibody-dependent cytotoxicity (ADCC) and to reduce their capability of fixing complement and participating in complement-dependent cytotoxicity (CDC).
  • ADCC antibody-dependent cytotoxicity
  • the half-life of a targeted binding agent or antibody as disclosed herein and of compositions of the disclosure is at least about 4 to 7 days.
  • the mean half-life of a targeted binding agent or antibody as disclosed herein and of compositions of the disclosure is at least about 2 to 5 days, 3 to 6 days, 4 to 7 days, 5 to 8 days, 6 to 9 days, 7 to 10 days, 8 to 11 days, 8 to 12, 9 to 13, 10 to 14, 11 to 15, 12 to 16, 13 to 17, 14 to 18, 15 to 19, or 16 to 20 days.
  • the mean half-life of a targeted binding agent or antibody as disclosed herein and of compositions of the disclosure is at least about 17 to 21 days, 18 to 22 days, 19 to 23 days, 20 to 24 days, 21 to 25, days, 22 to 26 days, 23 to 27 days, 24 to 28 days, 25 to 29 days, or 26 to 30 days.
  • the half-life of a targeted binding agent or antibody as disclosed herein and of compositions of the disclosure can be up to about 50 days.
  • the half-lives of antibodies and of compositions of the disclosure can be prolonged by methods known in the art. Such prolongation can in turn reduce the amount and/or frequency of dosing of the antibody compositions.
  • Antibodies with improved in vivo half-lives and methods for preparing them are disclosed in U.S. Patent No. 6,277,375 ; and International Publication Nos. WO 98/23289 and WO 97/3461 .
  • the disclosure provides an article of manufacture including a container.
  • the container includes a composition containing a targeted binding agent or antibody as disclosed herein, and a package insert or label indicating that the composition can be used to treat cell adhesion, invasion, angiogenesis, and/or proliferation -related diseases, including, but not limited to, diseases characterised by the expression or overexpression of B7-H1.
  • the disclosure provides a kit for treating diseases involving the expression of B7-H1, comprising a targeted binding agent or antibody as disclosed herein, and instructions to administer the monoclonal antibodies to a subject in need of treatment.
  • the present disclosure provides formulation of proteins comprising a variant Fc region. That is, a non naturally occurring Fc region, for example an Fc region comprising one or more non naturally occurring amino acid residues. Also encompassed by the variant Fc regions of present disclosure are Fc regions which comprise amino acid deletions, additions and/or modifications.
  • the serum half-life of proteins comprising Fc regions may be increased by increasing the binding affinity of the Fc region for FcRn.
  • the Fc variant protein has enhanced serum half life relative to comparable molecule.
  • the present disclosure provides an Fc variant, wherein the Fc region comprises at least one non naturally occurring amino acid at one or more positions selected from the group consisting of 239, 330 and 332, as numbered by the EU index as set forth in Kabat.
  • the present disclosure provides an Fc variant, wherein the Fc region comprises at least one non naturally occurring amino acid selected from the group consisting of 239D, 330L and 332E, as numbered by the EU index as set forth in Kabat.
  • the Fc region may further comprise additional non naturally occurring amino acid at one or more positions selected from the group consisting of 252, 254, and 256, as numbered by the EU index as set forth in Kabat.
  • the present disclosure provides an Fc variant, wherein the Fc region comprises at least one non naturally occurring amino acid selected from the group consisting of 239D, 330L and 332E, as numbered by the EU index as set forth in Kabat and at least one non naturally occurring amino acid at one or more positions selected from the group consisting of 252Y, 254T and 256E, as numbered by the EU index as set forth in Kabat.
  • the present disclosure provides an Fc variant, wherein the Fc region comprises at least one non naturally occurring amino acid at one or more positions selected from the group consisting of 234, 235 and 331, as numbered by the EU index as set forth in Kabat.
  • the present disclosure provides an Fc variant, wherein the Fc region comprises at least one non naturally occurring amino acid selected from the group consisting of 234F, 235F, 235Y, 235E and 331S, as numbered by the EU index as set forth in Kabat.
  • an Fc variant of the disclosure comprises the 234F, 235F, and 331S non naturally occurring amino acid residues, as numbered by the EU index as set forth in Kabat.
  • an Fc variant of the disclosure comprises the 234F, 235Y, and 331S non naturally occurring amino acid residues, as numbered by the EU index as set forth in Kabat.
  • an Fc variant of the disclosure comprises the 234F, 235E, and 331S non naturally occurring amino acid residues, as numbered by the EU index as set forth in Kabat.
  • the Fc region may further comprise additional non naturally occurring amino acid at one or more positions selected from the group consisting of 252, 254, and 256, as numbered by the EU index as set forth in Kabat.
  • the present disclosure may further comprise additional non naturally occurring amino acid at one or more positions selected from the group consisting of 252, 254, and 256, as numbered by the EU index as set forth in Kabat.
  • the Fc region comprises at least one non naturally occurring amino acid selected from the group consisting of 234F, 235F, 235Y, 235E and 331 S, as numbered by the EU index as set forth in Kabat; at least one non naturally occurring amino acid selected from the group consisting of 234F, 235F, and 331S, as numbered by the EU index as set forth in Kabat, and at least one non naturally occurring amino acid at one or more positions are selected from the group consisting of 252Y, 254T and 256E, as numbered by the EU index as set forth in Kabat.
  • the "OPT" and "'TM” designations are synonymous and are used to describe antibodies of the disclosure engineered to introduce the three mutations; L234F and L235E in the hinge and P331S in the CH2 domain of the IgG molecule to eliminate its ability to trigger antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity ( Oganesyan V. et al. (2008), Acta Cryst., D64: 700-704 ).
  • the present disclosure provides an Fc variant protein formulation, wherein the Fc region comprises at least a non naturally occurring amino acid at one or more positions selected from the group consisting of 239, 330 and 332, as numbered by the EU index as set forth in Kabat.
  • the present disclosure provides an Fc variant protein formulation, wherein the Fc region comprises at least one non naturally occurring amino acid selected from the group consisting of 239D, 330L and 332E, as numbered by the EU index as set forth in Kabat.
  • the Fc region may further comprise additional non naturally occurring amino acid at one or more positions selected from the group consisting of 252, 254, and 256, as numbered by the EU index as set forth in Kabat.
  • the present disclosure provides an Fc variant protein formulation, wherein the Fc region comprises at least one non naturally occurring amino acid selected from the group consisting of 239D, 330L and 332E, as numbered by the EU index as set forth in Kabat and at least one non naturally occurring amino acid at one or more positions are selected from the group consisting of 252Y, 254T and 256E, as numbered by the EU index as set forth in Kabat.
  • the present disclosure provides an Fc variant protein formulation, wherein the Fc region comprises at least one non naturally occurring amino acid at one or more positions selected from the group consisting of 234, 235 and 331, as numbered by the EU index as set forth in Kabat.
  • the present disclosure provides an Fc variant protein formulation, wherein the Fc region comprises at least one non naturally occurring amino acid selected from the group consisting of 234F, 235F, 235Y, 235E and 331S, as numbered by the EU index as set forth in Kabat.
  • the Fc region may further comprise additional non naturally occurring amino acid at one or more positions selected from the group consisting of 252, 254, and 256, as numbered by the EU index as set forth in Kabat.
  • the present disclosure provides an Fc variant protein formulation, wherein the Fc region comprises at least one non naturally occurring amino acid selected from the group consisting of 234F, 235F, 235Y, 235E and 331S, as numbered by the EU index as set forth in Kabat; and at least one non naturally occurring amino acid at one or more positions are selected from the group consisting of 252Y, 254T and 256E, as numbered by the EU index as set forth in Kabat.
  • amino acid substitutions and/or deletions can be generated by mutagenesis methods, including, but not limited to, site-directed mutagenesis ( Kunkel, Proc. Natl. acid. Sci. USA 82:488-492 (1985 )), PCR mutagenesis ( Higuchi, in “PCR Protocols: A Guide to Methods and Applications", Academic Press, San Diego, pp. 177-183 (1990 )), and cassette mutagenesis ( Wells et al., Gene 34:315-323 (1985 )).
  • site-directed mutagenesis Kunkel, Proc. Natl. acid. Sci. USA 82:488-492 (1985 )
  • PCR mutagenesis Higuchi, in "PCR Protocols: A Guide to Methods and Applications", Academic Press, San Diego, pp. 177-183 (1990 )
  • cassette mutagenesis Wells et al., Gene 34:315-323 (1985 )
  • site-directed mutagenesis is performed by the overlap-extension PCR method ( Higuchi, in "PCR Technology: Principles and Applications for DNA Amplification", Stockton Press, New York, pp. 61-70 (1989 )).
  • the technique of overlap-extension PCR can also be used to introduce any desired mutation(s) into a target sequence (the starting DNA).
  • the first round of PCR in the overlap- extension method involves amplifying the target sequence with an outside primer (primer 1) and an internal mutagenesis primer (primer 3), and separately with a second outside primer (primer 4) and an internal primer (primer 2), yielding two PCR segments (segments A and B).
  • the internal mutagenesis primer (primer 3) is designed to contain mismatches to the target sequence specifying the desired mutation(s).
  • the products of the first round of PCR (segments A and B) are amplified by PCR using the two outside primers (primers 1 and 4).
  • the resulting full-length PCR segment (segment C) is digested with restriction enzymes and the resulting restriction fragment is cloned into an appropriate vector.
  • the starting DNA e.g., encoding an Fc fusion protein, an antibody or simply an Fc region
  • the primers are designed to reflect the desired amino acid substitution.
  • an Fc variant protein comprises one or more engineered glycoforms, i.e., a carbohydrate composition that is covalently attached to the molecule comprising an Fc region.
  • Engineered glycoforms may be useful for a variety of purposes, including but not limited to enhancing or reducing effector function.
  • Engineered glycoforms may be generated by any method known to one skilled in the art, for example by using engineered or variant expression strains, by co-expression with one or more enzymes, for example DI N-acetylglucosaminyltransferase III (GnTI11), by expressing a molecule comprising an Fc region in various organisms or cell lines from various organisms, or by modifying carbohydrate(s) after the molecule comprising Fc region has been expressed.
  • Methods for generating engineered glycoforms are known in the art, and include but are not limited to those described in Umana et al, 1999, Nat.
  • glycosylation of the Fc region can be modified to increase or decrease effector function (see for examples, Umana et al, 1999, Nat. Biotechnol 17:176-180 ; Davies et al., 2001, Biotechnol Bioeng 74:288-294 ; Shields et al, 2002, J Biol Chem 277:26733-26740 ; Shinkawa et al., 2003, J Biol Chem 278:3466-3473 ) U.S. Pat. No. 6,602,684 ; U.S. Ser. No. 10/277,370 ; U.S. Ser. No.
  • the Fc regions of the antibodies of the disclosure comprise altered glycosylation of amino acid residues.
  • the altered glycosylation of the amino acid residues results in lowered effector function.
  • the altered glycosylation of the amino acid residues results in increased effector function.
  • the Fc region has reduced fucosylation.
  • the Fc region is afucosylated (see for examples, U.S. Patent Application Publication No.2005/0226867 ).
  • Standard techniques are used for recombinant DNA, oligonucleotide synthesis, and tissue culture and transformation (e.g., electroporation, lipofection). Enzymatic reactions and purification techniques are performed according to manufacturer's specifications or as commonly accomplished in the art or as described herein. The foregoing techniques and procedures are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification. See for example, e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual (3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001 )), which is incorporated herein by reference.
  • a compound refers to any small molecular weight compound with a molecular weight of less than about 2000 Daltons.
  • B7-H1 refers to the human B7-H, B7H1, B7-H1, B7 homolog 1, CD274 antigen, PDCD1L1, PDCD1LG1, PDCD1 ligand 1, PDL1, PD-L1, Programmed cell death 1 ligand 1 precursor, or Programmed death ligand 1.
  • neutralising when referring to a targeted binding agent, such as an antibody, relates to the ability of said agent to eliminate, reduce, or significantly reduce, the activity of a target antigen.
  • a “neutralising” anti-B7-H1 antibody of the disclosure is capable of eliminating or significantly reducing the activity of B7-H1.
  • a neutralising, antagonising or inhibiting antibody that specifically binds B7-H1 may, for example, act by blocking the binding of B7-H1 to its cognate ligands.
  • a neutralising antibody against B7-H1 inhibits B7-H1 mediated repression of T-cell immunity.
  • a neutralising, antagonising or inhibiting antibody that specifically binds B7-H1 may, for example, act by inhibiting binding of B7-H1 to PD-1 and/or to B7-1.
  • “Inhibiting the biological activity of B7-H1” encompasses an inhibition of B7-H1 activity by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% in comparison with the biological activity in the absence of a targeted binding agent or antibody of the disclosure.
  • polypeptide is used herein as a generic term to refer to native protein, fragments, or analogs of a polypeptide sequence.
  • native protein, fragments, and analogs are species of the polypeptide genus.
  • Preferred polypeptides in accordance with the disclosure comprise the human heavy chain immunoglobulin molecules and the human kappa light chain immunoglobulin molecules, as well as antibody molecules formed by combinations comprising the heavy chain immunoglobulin molecules with light chain immunoglobulin molecules, such as the kappa or lambda light chain immunoglobulin molecules, and vice versa, as well as fragments and analogs thereof.
  • Preferred polypeptides in accordance with the disclosure may also comprise solely the human heavy chain immunoglobulin molecules or fragments thereof.
  • naturally occurring refers to the fact that an object can be found in nature.
  • a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory or otherwise is naturally occurring.
  • control sequence refers to polynucleotide sequences that are necessary either to effect or to affect the expression and processing of coding sequences to which they are connected. The nature of such control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and transcription termination sequence; in eukaryotes, generally, such control sequences may include promoters, enhancers, introns, transcription termination sequences, polyadenylation signal sequences, and 5' and '3 untranslated regions.
  • control sequences is intended to include, at a minimum, all components whose presence is essential for expression and processing, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.
  • polynucleotide as referred to herein means a polymeric form of nucleotides of at least 10 bases in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide, or RNA-DNA hetero-duplexes.
  • the term includes single and double stranded forms of DNA.
  • oligonucleotide includes naturally occurring, and modified nucleotides linked together by naturally occurring, and non naturally occurring linkages. Oligonucleotides are a polynucleotide subset generally comprising a length of 200 bases or fewer. Preferably, oligonucleotides are 10 to 60 bases in length and most preferably 12, 13, 14, 15, 16, 17, 18, 19, or 20 to 40 bases in length. Oligonucleotides are usually single stranded, e.g. for probes; although oligonucleotides may be double stranded, e.g. for use in the construction of a gene mutant. Oligonucleotides can be either sense or antisense oligonucleotides.
  • nucleotides includes deoxyribonucleotides and ribonucleotides.
  • modified nucleotides includes nucleotides with modified or substituted sugar groups and the like.
  • oligonucleotide linkages includes oligonucleotides linkages such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoraniladate, phosphoroamidate, and the like. See e.g., LaPlanche et al. Nucl. Acids Res.
  • An oligonucleotide can include a label for detection, if desired.
  • selective hybridise means to detectably and specifically bind.
  • Polynucleotides, oligonucleotides and fragments thereof selectively hybridise to nucleic acid strands under hybridisation and wash conditions that minimise appreciable amounts of detectable binding to nonspecific nucleic acids.
  • High stringency conditions can be used to achieve selective hybridisation conditions as known in the art and discussed herein.
  • the nucleic acid sequence homology between the polynucleotides, oligonucleotides, or antibody fragments and a nucleic acid sequence of interest will be at least 80%, and more typically with preferably increasing homologies of at least 85%, 90%, 95%, 99%, and 100%.
  • Stringent hybridization conditions include, but are not limited to, hybridization to filter-bound DNA in 6X sodium chloride/sodium citrate (SSC) (0.9 M NaCl/90 mM NaCitrate, pH 7.0) at about 45°C followed by one or more washes in 0.2X SSC/0.1% SDS at about 50-65°C, highly stringent conditions such as hybridization to filter-bound DNA in 6X SSC at about 45°C followed by one or more washes in 0.1X SSC/0.2% SDS at about 60°C, or any other stringent hybridization conditions known to those skilled in the art (see, for example, Ausubel, F.M. et al., eds. 1989 Current Protocols in Molecular Biology, vol. 1, Green Publishing Associates, Inc. and John Wiley and Sons, Inc., NY at pages 6.3.1 to 6.3.6 and 2.10.3 ).
  • SSC sodium chloride/sodium citrate
  • Two amino acid sequences are "homologous" if there is a partial or complete identity between their sequences. For example, 85% homology means that 85% of the amino acids are identical when the two sequences are aligned for maximum matching. Gaps (in either of the two sequences being matched) are allowed in maximising matching; gap lengths of 5 or less are preferred with 2 or less being more preferred. Alternatively and preferably, two protein sequences (or polypeptide sequences derived from them of at least about 30 amino acids in length) are homologous, as this term is used herein, if they have an alignment score of at more than 5 (in standard deviation units) using the program ALIGN with the mutation data matrix and a gap penalty of 6 or greater.
  • the two sequences or parts thereof are more preferably homologous if their amino acids are greater than or equal to 50% identical when optimally aligned using the ALIGN program. It should be appreciated that there can be differing regions of homology within two orthologous sequences. For example, the functional sites of mouse and human orthologues may have a higher degree of homology than non-functional regions.
  • a polynucleotide sequence is homologous (i.e., is identical, not strictly evolutionarily related) to all or a portion of a reference polynucleotide sequence, or that a polypeptide sequence is identical to a reference polypeptide sequence.
  • the term “complementary to” is used herein to mean that the complementary sequence is homologous to all or a portion of a reference polynucleotide sequence.
  • the nucleotide sequence "TATAC” corresponds to a reference sequence “TATAC” and is complementary to a reference sequence "GTATA”.
  • sequence identity means that two polynucleotide or amino acid sequences are identical (i.e., on a nucleotide-by-nucleotide or residue-by-residue basis) over the comparison window.
  • percentage of sequence identity is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I) or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the comparison window (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity.
  • substantially identical denotes a characteristic of a polynucleotide or amino acid sequence, wherein the polynucleotide or amino acid comprises a sequence that has at least 85 percent sequence identity, preferably at least 90 to 95 percent sequence identity, more preferably at least 99 percent sequence identity, as compared to a reference sequence over a comparison window of at least 18 nucleotide (6 amino acid) positions, frequently over a window of at least 24-48 nucleotide (8-16 amino acid) positions, wherein the percentage of sequence identity is calculated by comparing the reference sequence to the sequence which may include deletions or additions which total 20 percent or less of the reference sequence over the comparison window.
  • the reference sequence may be a subset of a larger sequence.
  • the twenty conventional amino acids and their abbreviations follow conventional usage. See Immunology - A Synthesis (2nd Edition, E.S. Golub and D.R. Gren, Eds., Sinauer Associates, Sunderland, Mass. (1991 )).
  • Stereoisomers e.g., D-amino acids of the twenty conventional amino acids, unnatural amino acids such as ⁇ -, ⁇ -disubstituted amino acids, N-alkyl amino acids, lactic acid, and other unconventional amino acids may also be suitable components for polypeptides of the present disclosure.
  • Examples of unconventional amino acids include: 4-hydroxyproline, ⁇ -carboxyglutamate, ⁇ -N,N,N-trimethyllysine, ⁇ -N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, ⁇ -N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline).
  • the left-hand direction is the amino terminal direction and the right-hand direction is the carboxy-terminal direction, in accordance with standard usage and convention.
  • the left-hand end of single-stranded polynucleotide sequences is the 5' end; the left-hand direction of double-stranded polynucleotide sequences is referred to as the 5' direction.
  • RNA transcripts The direction of 5' to 3' addition of nascent RNA transcripts is referred to as the transcription direction; sequence regions on the DNA strand having the same sequence as the RNA and which are 5' to the 5' end of the RNA transcript are referred to as "upstream sequences"; sequence regions on the DNA strand having the same sequence as the RNA and which are 3' to the 3' end of the RNA transcript are referred to as "downstream sequences".
  • the term "substantial identity” means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 80 percent sequence identity, preferably at least 90 percent sequence identity, more preferably at least 95 percent sequence identity, and most preferably at least 99 percent sequence identity.
  • residue positions that are not identical differ by conservative amino acid substitutions.
  • Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains.
  • a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and methionine.
  • Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamic-aspartic, and asparagine-glutamine.
  • minor variations in the amino acid sequences of antibodies or immunoglobulin molecules are contemplated as being encompassed by the present disclosure, providing that the variations in the amino acid sequence maintain at least 75%, more preferably at least 80%, 90%, 95%, and most preferably 99% sequence identity to the antibodies or immunoglobulin molecules described herein.
  • conservative amino acid replacements are contemplated. Conservative replacements are those that take place within a family of amino acids that have related side chains.
  • More preferred families are: serine and threonine are an aliphatic-hydroxy family; asparagine and glutamine are an amide-containing family; alanine, valine, leucine and isoleucine are an aliphatic family; and phenylalanine, tryptophan, and tyrosine are an aromatic family.
  • Structural and functional domains can be identified by comparison of the nucleotide and/or amino acid sequence data to public or proprietary sequence databases.
  • computerised comparison methods are used to identify sequence motifs or predicted protein conformation domains that occur in other proteins of known structure and/or function. Methods to identify protein sequences that fold into a known three-dimensional structure are known. Bowie et al. Science 253:164 (1991 ).
  • Glutaminyl and asparaginyl residues are frequently deamidated to the corresponding glutamyl and aspartyl residues, respectively. These residues are deamidated under neutral or basic conditions. The deamidated form of these residues falls within the scope of this disclosure.
  • cysteine residues in proteins are either engaged in cysteine-cysteine disulfide bonds or sterically protected from the disulfide bond formation when they are a part of folded protein region.
  • Disulfide bond formation in proteins is a complex process, which is determined by the redox potential of the environment and specialized thiol-disulfide exchanging enzymes ( Creighton, Methods Enzymol. 107, 305-329, 1984 ; Houee-Levin, Methods Enzymol. 353, 35-44,2002 ).
  • cysteine residue When a cysteine residue does not have a pair in protein structure and is not sterically protected by folding, it can form a disulfide bond with a free cysteine from solution in a process known as disulfide shuffling. In another process known as disulfide scrambling, free cysteines may also interfere with naturally occurring disulfide bonds (such as those present in antibody structures) and lead to low binding, low biological activity and/or low stability.
  • Preferred amino acid substitutions are those which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter binding affinities, and (4) confer or modify other physicochemical or functional properties of such analogs.
  • Analogs can include various muteins of a sequence other than the naturally occurring peptide sequence. For example, single or multiple amino acid substitutions (preferably conservative amino acid substitutions) may be made in the naturally occurring sequence (preferably in the portion of the polypeptide outside the domain(s) forming intermolecular contacts.
  • a conservative amino acid substitution should not substantially change the structural characteristics of the parent sequence (e.g., a replacement amino acid should not tend to break a helix that occurs in the parent sequence, or disrupt other types of secondary structure that characterises the parent sequence).
  • Examples of art-recognised polypeptide secondary and tertiary structures are described in Proteins, Structures and Molecular Principles (Creighton, Ed., W. H. Freeman and Company, New York (1984 )); Introduction to Protein Structure (C. Branden and J. Tooze, eds., Garland Publishing, New York, N.Y. (1991 )); and Thornton et at. Nature 354:105 (1991 ). Additionally, such methods may be used to make amino acid substitutions or deletions of one or more variable region cysteine residues participating in an intrachain disulfide bond to generate antibody molecules lacking one or more intrachain disulfide bonds.
  • CDR region or “CDR” is intended to indicate the hypervariable regions of the heavy and light chains of an antibody which confer the antigen-binding specificity to the antibody.
  • CDRs may be defined according to the Kabat system ( Kabat, E.A. et al. (1991) Sequences of Proteins of Immunological Interest, 5th Edition. US Department of Health and Human Services, Public Service, NIH, Washingt on), and later editions.
  • An antibody typically contains 3 heavy chain CDRs and 3 light chain CDRs.
  • CDR or CDRs is used here in order to indicate, according to the case, one of these regions or several, or even the whole, of these regions which contain the majority of the amino acid residues responsible for the binding by affinity of the antibody for the antigen or the epitope which it recognises.
  • the third CDR of the heavy chain (HCDR3) has a greater size variability (greater diversity essentially due to the mechanisms of arrangement of the genes which give rise to it). It may be as short as 2 amino acids although the longest size known is 26. CDR length may also vary according to the length that can be accommodated by the particular underlying framework. Functionally, HCDR3 plays a role in part in the determination of the specificity of the antibody ( Segal et al., PNAS, 71:4298-4302, 1974 , Amit et al., Science, 233:747-753, 1986 , Chothia et al., J. Mol.
  • a "set of CDRs" referred to herein comprises CDR1, CDR2 and CDR3.
  • a set of HCDRs refers to HCDR1, HCDR2 and HCDR3
  • a set of LCDRs refers to LCDR1, LCDR2 and LCDR3.
  • Variants of the VH and VL domains and CDRs of the present disclosure including those for which amino acid sequences are set out herein, and which can be employed in targeting binding agents and antibodies for B7-H1 can be obtained by means of methods of sequence alteration or mutation and screening for antigen targeting with desired characteristics.
  • desired characteristics include but are not limited to: increased binding affinity for antigen relative to known antibodies which are specific for the antigen; increased neutralisation of an antigen activity relative to known antibodies which are specific for the antigen if the activity is known; specified competitive ability with a known antibody or ligand to the antigen at a specific molar ratio; ability to immunoprecipitate ligand-receptor complex; ability to bind to a specified epitope; linear epitope, e.g.
  • peptide sequence identified using peptide-binding scan e.g. using peptides screened in linear and/or constrained conformation; conformational epitope, formed by non-continuous residues; ability to modulate a new biological activity of B7-H1, or downstream molecule; ability to bind and/or neutralise B7-H1 and/or for any other desired property.
  • the techniques required to make substitutions within amino acid sequences of CDRs, antibody VH or VL domains and antigen binding sites are available in the art. Variants of antibody molecules disclosed herein may be produced and used in the present disclosure. Following the lead of computational chemistry in applying multivariate data analysis techniques to the structure/property-activity relationships ( Wold, et al.
  • the properties of antibodies can be derived from empirical and theoretical models (for example, analysis of likely contact residues or calculated physicochemical property) of antibody sequence, functional and three-dimensional structures and these properties can be considered singly and in combination.
  • An antibody antigen-binding site composed of a VH domain and a VL domain is typically formed by six loops of polypeptide: three from the light chain variable domain (VL) and three from the heavy chain variable domain (VH).
  • VL light chain variable domain
  • VH heavy chain variable domain
  • Analysis of antibodies of known atomic structure has elucidated relationships between the sequence and three-dimensional structure of antibody combining sites. These relationships imply that, except for the third region (loop) in VH domains, binding site loops have one of a small number of main-chain conformations: canonical structures.
  • the canonical structure formed in a particular loop has been shown to be determined by its size and the presence of certain residues at key sites in both the loop and in framework regions.
  • sequence-structure relationship can be used for prediction of those residues in an antibody of known sequence, but of an unknown three-dimensional structure, which are important in maintaining the three-dimensional structure of its CDR loops and hence maintain binding specificity. These predictions can be backed up by comparison of the predictions to the output from lead optimisation experiments.
  • a model can be created of the antibody molecule using any freely available or commercial package, such as WAM.
  • a protein visualisation and analysis software package such as Insight II (Accelrys, Inc.) or Deep View may then be used to evaluate possible substitutions at each position in the CDR. This information may then be used to make substitutions likely to have a minimal or beneficial effect on activity or confer other desirable properties.
  • polypeptide fragment refers to a polypeptide that has an amino-terminal and/or carboxy-terminal deletion, but where the remaining amino acid sequence is identical to the corresponding positions in the naturally occurring sequence deduced, for example, from a full-length cDNA sequence. Fragments typically are at least 5, 6, 8 or 10 amino acids long, preferably at least 14 amino acids long, more preferably at least 20 amino acids long, usually at least 50 amino acids long, and even more preferably at least 70 amino acids long.
  • analog refers to polypeptides which are comprised of a segment of at least 25 amino acids that has substantial identity to a portion of a deduced amino acid sequence and which has at least one of the following properties: (1) specific binding to B7-H1, under suitable binding conditions, (2) ability to block appropriate B7-H1-protein binding, or (3) ability to inhibit B7-H1 activity.
  • polypeptide analogs comprise a conservative amino acid substitution (or addition or deletion) with respect to the naturally occurring sequence.
  • Analogs typically are at least 20 amino acids long, preferably at least 50 amino acids long or longer, and can often be as long as a full-length naturally occurring polypeptide.
  • Peptide analogs are commonly used in the pharmaceutical industry as non-peptide drugs with properties analogous to those of the template peptide. These types of non-peptide compound are termed "peptide mimetics" or "peptidomimetics”. Fauchere, J. Adv. Drug Res. 15:29 (1986 ); Veber and Freidinger TINS p.392 (1985 ); and Evans et al. J. Med. Chem. 30:1229 (1987 ). Such compounds are often developed with the aid of computerised molecular modeling. Peptide mimetics that are structurally similar to therapeutically useful peptides may be used to produce an equivalent therapeutic or prophylactic effect.
  • a paradigm polypeptide i.e., a polypeptide that has a biochemical property or pharmacological activity
  • Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type may be used to generate more stable peptides.
  • constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art ( Rizo and Gierasch Ann. Rev. Biochem. 61:387 (1992 ); for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclise the peptide.
  • antibody and “antibodies” (immunoglobulins) may be an oligoclonal antibody, a polyclonal antibody, a monoclonal antibody (including full-length monoclonal antibodies), a camelised antibody, a chimeric antibody, a CDR-grafted antibody, a multi-specific antibody, a bi-specific antibody, a catalytic antibody, a chimeric antibody, a humanized antibody, a fully human antibody, an anti-idiotypic antibody and antibodies that can be labeled in soluble or bound form as well as fragments, variants or derivatives thereof, either alone or in combination with other amino acid sequences provided by known techniques.
  • An antibody may be from any species.
  • An antibody comprises a polypeptide or group of polypeptides that are comprised of at least one binding domain that is formed from the folding of polypeptide chains having three-dimensional binding spaces with internal surface shapes and charge distributions complementary to the features of an antigenic determinant of an antigen.
  • An antibody typically has a tetrameric form, comprising two identical pairs of polypeptide chains, each pair having one "light” and one "heavy” chain. The variable regions of each light/heavy chain pair form an antibody binding site.
  • Native antibodies are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains.
  • Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes.
  • Each heavy and light chain also has regularly spaced intrachain disulfide bridges.
  • Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains.
  • Each light chain has a variable domain at one end (VL) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain.
  • Light chains are classified as either lambda chains or kappa chains based on the amino acid sequence of the light chain constant region.
  • variable domain of a kappa light chain may also be denoted herein as VK.
  • variable region may also be used to describe the variable domain of a heavy chain or light chain. Particular amino acid residues are believed to form an interface between the light and heavy chain variable domains.
  • the variable regions of each light/heavy chain pair form an antibody binding site.
  • Such antibodies may be derived from any mammal, including, but not limited to, humans, monkeys, pigs, horses, rabbits, dogs, cats, mice, etc.
  • antibody or “antibodies” includes binding fragments of the antibodies of the disclosure, exemplary fragments include single-chain Fvs (scFv), single-chain antibodies, single domain antibodies, domain antibodies, Fv fragments, Fab fragments, F(ab') fragments, F(ab')2 fragments, antibody fragments that exhibit the desired biological activity, disulfide-stabilised variable region (dsFv), dimeric variable region (Diabody), anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id antibodies to antibodies of the disclosure), intrabodies, linear antibodies, single-chain antibody molecules and multispecific antibodies formed from antibody fragments and epitope-binding fragments of any of the above.
  • scFv single-chain Fvs
  • dsFv disulfide-stabilised variable region
  • Diabody dimeric variable region
  • anti-Id antibodies including, e.g., anti-Id antibodies to antibodies of the disclosure
  • intrabodies linear antibodies, single-chain antibody molecules and multi
  • antibodies include immunoglobulin molecules and immunologically active fragments of immunoglobulin molecules, i.e., molecules that contain an antigen-binding site.
  • Immunoglobulin molecules can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass.
  • Digestion of antibodies with the enzyme, papain results in two identical antigen-binding fragments, known also as "Fab” fragments, and a "Fc” fragment, having no antigen-binding activity but having the ability to crystallise.
  • Digestion of antibodies with the enzyme, pepsin results in the a F(ab') 2 fragment in which the two arms of the antibody molecule remain linked and comprise two-antigen binding sites.
  • the F(ab') 2 fragment has the ability to crosslink antigen.
  • Fv when used herein refers to the minimum fragment of an antibody that retains both antigen-recognition and antigen-binding sites. This region consists of a dimer of one heavy and one light chain variable domain in tight, non-covalent or covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.
  • Fab when used herein refers to a fragment of an antibody that comprises the constant domain of the light chain and the CH1 domain of the heavy chain.
  • dAb when used herein refers to a fragment of an antibody that is the smallest functional binding unit of a human antibodies.
  • a “dAb” is a single domain antibody and comprises either the variable domain of an antibody heavy chain (VH domain) or the variable domain of an antibody light chain (VL domain).
  • VH domain variable domain of an antibody heavy chain
  • VL domain variable domain of an antibody light chain
  • Each dAb contains three of the six naturally occurring CDRs ( Ward et al., Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341, 544-546 (1989 ); Holt, et al., Domain antibodies: protein for therapy, Trends Biotechnol. 21, 484-49 (2003 )). With molecular weights ranging from 11 to 15 kDa, they are four times smaller than a fragment antigen binding (Fab)2 and half the size of a single chain Fv (scFv) molecule.
  • Fab fragment antigen
  • “Camelid” when used herein refers to antibody molecules are composed of heavy-chain dimers which are devoid of light chains, but nevertheless have an extensive antigen-binding repertoire ( Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446-448 ).
  • diabodies refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy chain variable domain (V H ) connected to a light chain variable domain (V L ) in the same polypeptide chain (V H -V L ).
  • V H heavy chain variable domain
  • V L light chain variable domain
  • the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites.
  • Diabodies are described more fully in, for example, EP 404,097 ; WO 93/11161 ; and Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993 ).
  • binding fragments are ( Ward, E.S. et al., (1989) Nature 341, 544-546 ) the Fab fragment consisting of VL, VH, CL and CH1 domains; ( McCafferty et al (1990) Nature, 348, 552-554 ) the Fd fragment consisting of the VH and CH1 domains; ( Holt et al (2003) Trends in Biotechnology 21, 484-490 ) the Fv fragment consisting of the VL and VH domains of a single antibody; (iv) the dAb fragment ( Ward, E.S.
  • Fv, scFv or diabody molecules may be stabilised by the incorporation of disulphide bridges linking the VH and VL domains ( Reiter, Y. et al, Nature Biotech, 14, 1239-1245, 1996 ).
  • Minibodies comprising a scFv joined to a CH3 domain may also be made ( Hu, S. et al, (1996) Cancer Res., 56, 3055-3061 ).
  • binding fragments are Fab', which differs from Fab fragments by the addition of a few residues at the carboxyl terminus of the heavy chain CH1 domain, including one or more cysteines from the antibody hinge region, and Fab'-SH, which is a Fab' fragment in which the cysteine residue(s) of the constant domains bear a free thiol group.
  • variable refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are responsible for the binding specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed through the variable domains of antibodies. It is concentrated in segments called Complementarity Determining Regions (CDRs) both in the light chain and the heavy chain variable domains. The more highly conserved portions of the variable domains are called the framework regions (FR).
  • CDRs Complementarity Determining Regions
  • FR framework regions
  • the variable domains of native heavy and light chains each comprise four FR regions, largely adopting a ⁇ -sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the ⁇ -sheet structure.
  • the CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see, Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991 )).
  • the constant domains are generally not involved directly in antigen binding, but may influence antigen binding affinity and may exhibit various effector functions, such as participation of the antibody in ADCC, CDC, and/or apoptosis.
  • hypervariable region when used herein refers to the amino acid residues of an antibody which are associated with its binding to antigen.
  • the hypervariable regions encompass the amino acid residues of the "complementarity determining regions" or "CDRs” (e.g., residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) of the light chain variable domain and residues 31-35 (H1), 50-65 (H2) and 95-102 (H3) of the heavy chain variable domain; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed.
  • CDRs complementarity determining regions
  • target binding agent refers to an agent, for example an antibody, or binding fragment thereof, that preferentially binds to a target site.
  • the targeted binding agent is specific for only one target site. In other instances, the targeted binding agent is specific for more than one target site.
  • the targeted binding agent may be a monoclonal antibody and the target site may be an epitope.
  • a targeted binding agent may comprise at least one antigen binding domain (e.g. a CDR) of an antibody, wherein said domain is fused or contained within a heterologous protein scaffold, e.g. a non-antibody protein scaffold.
  • Binding fragments of an antibody are produced by recombinant DNA techniques, or by enzymatic or chemical cleavage of intact antibodies. Binding fragments include Fab, Fab', F(ab') 2 , Fv, dAb and single-chain antibodies. An antibody other than a "bispecific” or “bifunctional” antibody is understood to have each of its binding sites identical. An antibody substantially inhibits adhesion of a receptor to a counter-receptor when an excess of antibody reduces the quantity of receptor bound to counter-receptor by at least about 20%, 40%, 60% or 80%, and more usually greater than about 85% (as measured in an in vitro competitive binding assay).
  • epitopic determinants includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor.
  • Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and may, but not always, have specific three-dimensional structural characteristics, as well as specific charge characteristics.
  • An antibody is said to specifically bind an antigen when the dissociation constant is ⁇ 1 ⁇ M, preferably ⁇ 100 nM and most preferably ⁇ 10 nM.
  • agent is used herein to denote a chemical compound, a mixture of chemical compounds, a biological macromolecule, or an extract made from biological materials.
  • B7-H1 polypeptide refers to a portion of aB7-H1 polypeptide that has a biological or an immunological activity of a native B7-H1 polypeptide.
  • Biological when used herein refers to a biological function that results from the activity of the native B7-H1 polypeptide.
  • a preferred B7-H1 biological activity includes, for example, B7-H1 induced cell proliferation, cell adhesion and invasion.
  • mammal when used herein refers to any animal that is considered a mammal. Preferably, the mammal is human.
  • Animal when used herein encompasses animals considered a mammal. Preferably the animal is human.
  • patient includes human and veterinary subjects.
  • mAb refers to monoclonal antibody.
  • Liposome when used herein refers to a small vesicle that may be useful for delivery of drugs that may include the B7-H1 polypeptide of the disclosure or antibodies to such a B7-H1 polypeptide to a mammal.
  • Label refers to the addition of a detectable moiety to a polypeptide, for example, a radiolabel, fluorescent label, enzymatic label chemiluminescent labeled or a biotinyl group.
  • Radioisotopes or radionuclides may include 3 H, 14 C, 15 N, 35 S, 90 Y, 99 Tc, 111 In, 125 I, 131 I, fluorescent labels may include rhodamine, lanthanide phosphors or FITC and enzymatic labels may include horseradish peroxidase, ⁇ -galactosidase, luciferase, alkaline phosphatase.
  • Additional labels include, by way of illustration and not limitation: enzymes, such as glucose-6-phosphate dehydrogenase ("G6PDH”), alpha-D-galactosidase, glucose oxydase, glucose amylase, carbonic anhydrase, acetylcholinesterase, lysozyme, malate dehydrogenase and peroxidase; dyes; additional fluorescent labels or fluorescers include, such as fluorescein and its derivatives, fluorochrome, GFP (GFP for "Green Fluorescent Protein”), dansyl, umbelliferone, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde, and fluorescamine; fluorophores such as lanthanide cryptates and chelates e.g.
  • enzymes such as glucose-6-phosphate dehydrogenase (“G6PDH”), alpha-D-galactosidase, glucose oxydase, glucose
  • chemoluminescent labels or chemiluminescers such as isoluminol, luminol and the dioxetanes; sensitisers; coenzymes; enzyme substrates; particles, such as latex or carbon particles; metal sol; crystallite; liposomes; cells, etc., which may be further labelled with a dye, catalyst or other detectable group; molecules such as biotin, digoxygenin or 5-bromodeoxyuridine; toxin moieties, such as for example a toxin moiety selected from a group of Pseudomonas exotoxin (PE or a cytotoxic fragment or mutant thereof), Diptheria toxin or a cytotoxic fragment or mutant thereof, a botulinum toxin A, B, C, D, E or F, ricin or a cytotoxic fragment thereof e.g. ricin A, abrin or a cytotoxic fragment thereof, sap
  • pharmaceutical agent or drug refers to a chemical compound or composition capable of inducing a desired therapeutic effect when properly administered to a patient.
  • Other chemistry terms herein are used according to conventional usage in the art, as exemplified by The McGraw-Hill Dictionary of Chemical Terms (Parker, S., Ed., McGraw-Hill, San Francisco (1985 )).
  • substantially pure means an object species is the predominant species present (i.e., on a molar basis it is more abundant than any other individual species in the composition), and preferably a substantially purified fraction is a composition wherein the object species comprises at least about 50 percent (on a molar basis) of all macromolecular species present. Generally, a substantially pure composition will comprise more than about 80 percent of all macromolecular species present in the composition, more preferably more than about 85%, 90%, 95%, and 99%. Most preferably, the object species is purified to essential homogeneity (contaminant species cannot be detected in the composition by conventional detection methods) wherein the composition consists essentially of a single macromolecular species.
  • Antibody-dependent cell-mediated cytotoxicity and “ADCC” refer to a cell-mediated reaction in which non-specific cytotoxic cells that express Ig Fc receptors (FcRs) (e.g . Natural Killer (NK) cells, monocytes, neutrophils, and macrophages) recognise bound antibody on a target cell and subsequently cause lysis of the target cell.
  • FcRs Ig Fc receptors
  • NK cells Natural Killer (NK) cells, monocytes, neutrophils, and macrophages
  • FcRs expression on hematopoietic cells is summarised in Table 9 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991 ).
  • ADCC activity of a molecule of interest can be assessed in vitro , such as that described in U.S. Patent No. 5,500,362 , or 5,821,337.
  • useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells.
  • PBMC peripheral blood mononuclear cells
  • NK Natural Killer
  • ADCC activity of the molecule of interest can be assessed in vivo , e.g., in an animal model such as that disclosed in Clynes et al. PNAS (USA) 95:652-656 (1988 ).
  • C1q complement dependent cytotoxicity
  • IgG or IgM Fc domain of Igs, IgG or IgM, which are in complex with antigen
  • C1q is a large, structurally complex glycoprotein of ⁇ 410 kDa present in human serum at a concentration of 70 ⁇ g/ml ( Cooper, N.R. 1985. Adv. Immunol. 37:151 ).
  • C1r and C1s forms the complex C1, the first component of complement.
  • At least two of the N-terminal globular heads of C1q must be bound to the Fc of Igs for C1 activation, hence for initiation of the complement cascade ( Cooper, N.R. 1985. Adv. Immunol. 37:151 ).
  • antibody half-life means a pharmacokinetic property of an antibody that is a measure of the mean survival time of antibody molecules following their administration.
  • Antibody half-life can be expressed as the time required to eliminate 50 percent of a known quantity of immunoglobulin from the patient's body or a specific compartment thereof, for example, as measured in serum or plasma, i.e., circulating half-life, or in other tissues.
  • Half-life may vary from one immunoglobulin or class of immunoglobulin to another. In general, an increase in antibody half-life results in an increase in mean residence time (MRT) in circulation for the antibody administered.
  • MRT mean residence time
  • isotype refers to the classification of an antibody's heavy or light chain constant region.
  • the constant domains of antibodies are not involved in binding to antigen, but exhibit various effector functions.
  • a given human antibody or immunoglobulin can be assigned to one of five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM.
  • IgA, IgD, IgE, IgG, and IgM Several of these classes may be further divided into subclasses (isotypes), e.g., IgG1 (gamma 1), IgG2 (gamma 2), IgG3 (gamma 3), and IgG4 (gamma 4), and IgA1 and IgA2.
  • the heavy chain constant regions that correspond to the different classes of immunoglobulins are called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
  • the structures and three-dimensional configurations of different classes of immunoglobulins are well-known.
  • human immunoglobulin classes only human IgG1, IgG2, IgG3, IgG4, and IgM are known to activate complement.
  • Human IgG1, IgG2, IgG3, and IgG4 are known to bind Fc gamma receptors, which mediate various effector functions including ADCC.
  • Human light chain constant regions may be classified into two major classes, kappa and lambda.
  • the isotype of an antibody that specifically binds B7-H1 can be switched, for example to take advantage of a biological property of a different isotype.
  • the antibodies in some circumstances it can be desirable in connection with the generation of antibodies as therapeutic antibodies against B7-H1 that the antibodies be capable of fixing complement and participating in complement-dependent cytotoxicity (CDC).
  • CDC complement-dependent cytotoxicity
  • isotypes of antibodies that are capable of the same, including, without limitation, the following: murine IgM, murine IgG2a, murine IgG2b, murine IgG3, human IgM, human IgA, human IgG1, and human IgG3.
  • antibodies can be desirable in connection with the generation of antibodies as therapeutic antibodies against B7-H1 that the antibodies be capable of binding Fc receptors on effector cells and participating in antibody-dependent cytotoxicity (ADCC).
  • ADCC antibody-dependent cytotoxicity
  • isotypes of antibodies that are capable of the same, including, without limitation, the following: murine IgG2a, murine IgG2b, murine IgG3, human IgG1, and human IgG3.
  • antibodies that are generated need not initially possess such an isotype but, rather, the antibody as generated can possess any isotype and the antibody can be isotype switched thereafter using conventional techniques that are well known in the art. Such techniques include the use of direct recombinant techniques ( see e.g., U.S. Patent No. 4,816,397 ), cell-cell fusion techniques ( see e.g., U.S. Patent Nos. 5,916,771 and 6,207,418 ), among others.
  • the anti- B7-H1 antibodies discussed herein are fully human antibodies. If an antibody possessed desired binding to B7-H1, it could be readily isotype switched to generate a human IgM, human IgG1, or human IgG3 isotype, while still possessing the same variable region (which defines the antibody's specificity and some of its affinity). Such molecule would then be capable of fixing complement and participating in CDC and/or be capable of binding to Fc receptors on effector cells and participating in ADCC.
  • Whole blood assays use unfractionated blood as a source of natural effectors. Blood contains complement in the plasma, together with FcR-expressing cellular effectors, such as polymorphonuclear cells (PMNs) and mononuclear cells (MNCs). Thus, whole blood assays allow simultaneous evaluation of the synergy of both ADCC and CDC effector mechanisms in vitro .
  • PMNs polymorphonuclear cells
  • MNCs mononuclear cells
  • a “therapeutically effective” amount as used herein is an amount that provides some improvement or benefit to the subject. Stated in another way, a “therapeutically effective” amount is an amount that provides some alleviation, mitigation, and/or decrease in at least one clinical symptom. Clinical symptoms associated with the disorders that can be treated by the methods of the disclosure are well-known to those skilled in the art. Further, those skilled in the art will appreciate that the therapeutic effects need not be complete or curative, as long as some benefit is provided to the subject.
  • Exemplary cancers in humans include a bladder tumour, breast tumour, prostate tumour, basal cell carcinoma, biliary tract cancer, bladder cancer, bone cancer, brain and CNS cancer (e.g., glioma tumour), cervical cancer, choriocarcinoma, colon and rectum cancer, connective tissue cancer, cancer of the digestive system; endometrial cancer, esophageal cancer; eye cancer; cancer of the head and neck; gastric cancer; intra-epithelial neoplasm; kidney cancer; larynx cancer; leukemia; liver cancer; lung cancer (e.g.
  • lymphoma including Hodgkin's and Non-Hodgkin's lymphoma; melanoma; myeloma, neuroblastoma, oral cavity cancer (e.g., lip, tongue, mouth, and pharynx); ovarian cancer; pancreatic cancer, retinoblastoma; rhabdomyosarcoma; rectal cancer, renal cancer, cancer of the respiratory system; sarcoma, skin cancer; stomach cancer, testicular cancer, thyroid cancer; uterine cancer, cancer of the urinary system, as well as other carcinomas and sarcomas.
  • Exemplary chronic infections in humans include HIV, hepatitis B virus (HBV), and hepatitis C virus (HCV).
  • HIV hepatitis B virus
  • HCV hepatitis C virus
  • the basic antibody structural unit is known to comprise a tetramer.
  • Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light” (about 25 kDa) and one "heavy” chain (about 50-70 kDa).
  • the amino-terminal portion of each chain includes a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition.
  • the carboxy-terminal portion of each chain defines a constant region primarily responsible for effector function.
  • Human light chains are classified as kappa and lambda light chains.
  • Heavy chains are classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgA, and IgE, respectively.
  • variable and constant regions are joined by a "J" region of about 12 or more amino acids, with the heavy chain also including a "D” region of about 10 more amino acids.
  • variable regions of each light/heavy chain pair form the antibody binding site.
  • an intact antibody has two binding sites. Except in bifunctional or bispecific antibodies, the two binding sites are the same.
  • the chains all exhibit the same general structure of relatively conserved framework regions (FR) joined by three hyper variable regions, also called CDRs.
  • the CDRs from the two chains of each pair are aligned by the framework regions, enabling binding to a specific epitope.
  • both light and heavy chains comprise the domains FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4.
  • the assignment of amino acids to each domain is in accordance with the definitions of Kabat Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987 and 1991 )), or Chothia & Lesk J. Mol. Biol. 196:901-917 (1987 ); Chothia et al. Nature 342:878-883 (1989 ).
  • a bispecific or bifunctional antibody is an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites.
  • Bispecific antibodies can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai & Lachmann Clin. Exp. Immunol. 79: 315-321 (1990 ), Kostelny et al. J. Immunol. 148:1547-1553 (1992 ).
  • Bispecific antibodies do not exist in the form of fragments having a single binding site (e.g., Fab, Fab', and Fv).
  • VH domain is paired with a VL domain to provide an antibody antigen-binding site, although a VH or VL domain alone may be used to bind antigen.
  • the VH domain (see Table 9) may be paired with the VL domain (see Table 13), so that an antibody antigen-binding site is formed comprising both the VH and VL domains
  • Human antibodies avoid some of the problems associated with antibodies that possess murine or rat variable and/or constant regions.
  • the presence of such murine or rat derived proteins can lead to the rapid clearance of the antibodies or can lead to the generation of an immune response against the antibody by a patient.
  • fully human antibodies can be generated through the introduction of functional human antibody loci into a rodent, other mammal or animal so that the rodent, other mammal or animal produces fully human antibodies.
  • XenoMouse ® strains of mice that have been engineered to contain up to but less than 1000 kb-sised germline configured fragments of the human heavy chain locus and kappa light chain locus. See Mendez et al. Nature Genetics 15:146-156 (1997 ) and Green and Jakobovits J. Exp. Med. 188:483-495 (1998 ).
  • the XenoMouse ® strains are available from Amgen, Inc. (Fremont, California, U.S.A).
  • mice are capable of producing human immunoglobulin molecules and antibodies and are deficient in the production of murine immunoglobulin molecules and antibodies. Technologies utilised for achieving the same are disclosed in U.S. Patent Application Serial No. 08/759,620, filed December 3, 1996 and International Patent Application Nos. WO 98/24893, published June 11, 1998 and WO 00/76310, published December 21, 2000 . See also Mendez et al. Nature Genetics 15:146-156 (1997 ).
  • minilocus In an alternative approach, others, including GenPharm International, Inc., have utilised a "minilocus" approach.
  • an exogenous Ig locus is mimicked through the inclusion of pieces (individual genes) from the Ig locus.
  • one or more V H genes, one or more D H genes, one or more J H genes, a mu constant region, and usually a second constant region (preferably a gamma constant region) are formed into a construct for insertion into an animal.
  • This approach is described in U.S. Patent No. 5,545,807 to Surani et al. and U.S. Patent Nos.
  • Kirin has also demonstrated the generation of human antibodies from mice in which, through microcell fusion, large pieces of chromosomes, or entire chromosomes, have been introduced. See European Patent Application Nos. 773 288 and 843 961 . Additionally, KM TM - mice, which are the result of cross-breeding of Kirin's Tc mice with Medarex's minilocus (Humab) mice have been generated. These mice possess the human IgH transchromosome of the Kirin mice and the kappa chain transgene of the Genpharm mice ( Ishida et al., Cloning Stem Cells, (2002) 4:91-102 ).
  • Human antibodies can also be derived by in vitro methods. Suitable examples include but are not limited to phage display (CAT, Morphosys, Dyax, Biosite/Medarex, Xoma, Symphogen, Alexion (formerly Proliferon), Affimed) ribosome display (CAT), yeast display, and the like.
  • mice were prepared through the utilization of the XenoMouse ® technology, as described below. Such mice are capable of producing human immunoglobulin molecules and antibodies and are deficient in the production of murine immunoglobulin molecules and antibodies. Technologies utilised for achieving the same are disclosed in the patents, applications, and references disclosed in the background section herein. In particular, however, a preferred instance of transgenic production of mice and antibodies therefrom is disclosed in U.S. Patent Application Serial No. 08/759,620, filed December 3, 1996 and International Patent Application Nos. WO 98/24893, published June 11, 1998 and WO 00/76310, published December 21, 2000 . See also Mendez et al. Nature Genetics 15:146-156 (1997 ).
  • XenoMouse ® lines of mice are immunised with an antigen of interest (e.g. B7-H1), lymphatic cells (such as B-cells) are recovered from the hyperimmunised mice, and the recovered lymphocytes are fused with a myeloid-type cell line to prepare immortal hybridoma cell lines.
  • B7-H1 an antigen of interest
  • lymphatic cells such as B-cells
  • myeloid-type cell line to prepare immortal hybridoma cell lines.
  • These hybridoma cell lines are screened and selected to identify hybridoma cell lines that produced antibodies specific to the antigen of interest.
  • Provided herein are methods for the production of multiple hybridoma cell lines that produce antibodies specific to B7-H1.
  • characterisation of the antibodies produced by such cell lines including nucleotide and amino acid sequence analyses of the heavy and light chains of such antibodies.
  • B cells can be directly assayed.
  • CD19+ B cells can be isolated from hyperimmune XenoMouse® mice and allowed to proliferate and differentiate into antibody-secreting plasma cells.
  • Antibodies from the cell supernatants are then screened by ELISA for reactivity against the B7-H1 immunogen.
  • the supernatants might also be screened for immunoreactivity against fragments of B7-H1 to further map the different antibodies for binding to domains of functional interest on B7-H1.
  • the antibodies may also be screened other related human proteins and against the rat, the mouse, and non-human primate, such as Cynomolgus monkey, orthologues of B7-H1, the last to determine species cross-reactivity.
  • B cells from wells containing antibodies of interest may be immortalised by various methods including fusion to make hybridomas either from individual or from pooled wells, or by infection with EBV or transfection by known immortalising genes and then plating in suitable medium.
  • single plasma cells secreting antibodies with the desired specificities are then isolated using a B7-H1-specific hemolytic plaque assay (see for example Babcook et al., Proc. Natl. Acad. Sci. USA 93:7843-48 (1996 )).
  • Cells targeted for lysis are preferably sheep red blood cells (SRBCs) coated with the B7-H1 antigen.
  • SRBCs sheep red blood cells
  • a plaque In the presence of a B-cell culture containing plasma cells secreting the immunoglobulin of interest and complement, the formation of a plaque indicates specific B7-H1-mediated lysis of the sheep red blood cells surrounding the plasma cell of interest.
  • the single antigen-specific plasma cell in the center of the plaque can be isolated and the genetic information that encodes the specificity of the antibody is isolated from the single plasma cell.
  • RT-PCR reverse-transcription followed by PCR
  • Such cloned DNA can then be further inserted into a suitable expression vector, preferably a vector cassette such as a pcDNA, more preferably such a pcDNA vector containing the constant domains of immunglobulin heavy and light chain.
  • a suitable expression vector preferably a vector cassette such as a pcDNA, more preferably such a pcDNA vector containing the constant domains of immunglobulin heavy and light chain.
  • the generated vector can then be transfected into host cells, e.g., HEK293 cells, CHO cells, and cultured in conventional nutrient media modified as appropriate for inducing transcription, selecting transformants, or amplifying the genes encoding the desired sequences.
  • antibodies as described herein can be expressed in cell lines other than hybridoma cell lines. Sequences encoding particular antibodies can be used to transform a suitable mammalian host cell. Transformation can be by any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a virus (or into a viral vector) and transducing a host cell with the virus (or vector) or by transfection procedures known in the art, as exemplified by U.S. Patent Nos. 4,399,216 , 4,912,040 , 4,740,461 , and 4,959,455 . The transformation procedure used depends upon the host to be transformed.
  • Methods for introducing heterologous polynucleotides into mammalian cells include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.
  • Mammalian cell lines available as hosts for expression are well known in the art and include many immortalised cell lines available from the NCIMB, including but not limited to Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), human epithelial kidney 293 cells (Hek293), and a number of other cell lines. Cell lines of particular preference are selected through determining which cell lines have high expression levels and produce antibodies with constitutive B7-H1 binding properties.
  • CHO Chinese hamster ovary
  • HeLa cells HeLa cells
  • BHK baby hamster kidney
  • COS monkey kidney cells
  • Hep G2 human hepatocellular carcinoma cells
  • Hek293 human epithelial kidney 293 cells
  • a myeloma, CHO cell or other cell line is prepared that possesses a heavy chain with any desired isotype and another myeloma, CHO cell or other cell line is prepared that possesses the light chain.
  • Such cells can, thereafter, be fused and a cell line expressing an intact antibody can be isolated.
  • antibody candidates are generated that meet desired "structural" attributes as discussed above, they can generally be provided with at least certain of the desired "functional” attributes through isotype switching.
  • a myeloma, CHO cell or other cell line is prepared that possesses a heavy chain with any desired isotype and another myeloma, CHO cell or other cell line is prepared that possesses the light chain.
  • Such cells can, thereafter, be fused and a cell line expressing an intact antibody can be isolated.
  • antibody candidates are generated that meet desired "structural" attributes as discussed above, they can generally be provided with at least certain of the desired "functional” attributes through isotype switching.
  • Instances of the disclosure include the antibodies listed below in Table 1. This table reports the identification number of each antibody, along with the SEQ ID number of the variable domain of the corresponding heavy chain and light chain genes and polypeptides, respectively. Each antibody sequence has been given an identification number.
  • Instances of the disclosure include sterile pharmaceutical formulations of anti-B7-H1 antibodies that are useful as treatments for diseases. Such formulations would inhibit the binding of B7-H1 to one or more of its cognate ligands, thereby treating pathological conditions where, for example, serum or tissue B7-H1 is abnormally elevated.
  • Antibodies of the disclosure preferably possess adequate affinity to potently inhibit B7-H1 activity, or inhibit B7-H1 binding to one or more of its cognate ligands, and preferably have an adequate duration of action to allow for infrequent dosing in humans. A prolonged duration of action will allow for less frequent and more convenient dosing schedules by alternate parenteral routes such as subcutaneous or intramuscular injection.
  • Sterile formulations can be created, for example, by filtration through sterile filtration membranes, prior to or following lyophilisation and reconstitution of the antibody.
  • the antibody ordinarily will be stored in lyophilised form or in solution.
  • Therapeutic antibody compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having an adapter that allows retrieval of the formulation, such as a stopper pierceable by a hypodermic injection needle.
  • the route of antibody administration is in accord with known methods, e.g., injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, intrathecal, inhalation or intralesional routes, direct injection to a tumour site, or by sustained release systems as noted below.
  • the antibody is preferably administered continuously by infusion or by bolus injection.
  • an effective amount of antibody to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it is preferred that the therapist titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. Typically, the clinician will administer antibody until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays or by the assays described herein.
  • Antibodies as described herein, can be prepared in a mixture with a pharmaceutically acceptable carrier.
  • This therapeutic composition can be administered intravenously or through the nose or lung, preferably as a liquid or powder aerosol (lyophilised).
  • the composition can also be administered parenterally or subcutaneously as desired.
  • the therapeutic composition should be sterile, pyrogen-free and in a parenterally acceptable solution having due regard for pH, isotonicity, and stability. These conditions are known to those skilled in the art.
  • dosage formulations of the compounds described herein are prepared for storage or administration by mixing the compound having the desired degree of purity with pharmaceutically acceptable carriers, excipients, or stabilisers.
  • Such materials are non-toxic to the recipients at the dosages and concentrations employed, and include buffers such as TRIS HCl, phosphate, citrate, acetate and other organic acid salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) peptides such as polyarginine, proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidinone; amino acids such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium and/or nonionic surfactants such as TWEEN, PLURONICS or polyethyleneglycol.
  • buffers such as TRIS HCl, phosphate, citrate, a
  • Sterile compositions for injection can be formulated according to conventional pharmaceutical practice as described in Remington: The Science and Practice of Pharmacy (20th ed, Lippincott Williams & Wilkens Publishers (2003 )). For example, dissolution or suspension of the active compound in a vehicle such as water or naturally occurring vegetable oil like sesame, peanut, or cottonseed oil or a synthetic fatty vehicle like ethyl oleate or the like may be desired. Buffers, preservatives, antioxidants and the like can be incorporated according to accepted pharmaceutical practice.
  • sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the polypeptide, which matrices are in the form of shaped articles, films or microcapsules.
  • sustained-release matrices include polyesters, hydrogels (e.g., poly(2-hydroxyethyl-methacrylate) as described by Langer et al., J. Biomed Mater. Res., (1981) 15:167-277 and Langer, Chem. Tech., (1982) 12:98-105 , or poly(vinylalcohol)), polylactides ( U.S. Pat. No.
  • Sustained-released compositions also include preparations of crystals of the antibody suspended in suitable formulations capable of maintaining crystals in suspension. These preparations when injected subcutaneously or intraperitonealy can produce a sustained release effect.
  • Other compositions also include liposomally entrapped antibodies. Liposomes containing such antibodies are prepared by methods known per se: U.S. Pat. No. DE 3,218,121 ; Epstein et al., Proc. Natl. Acad. Sci. USA, (1985) 82:3688-3692 ; Hwang et al., Proc. Natl. Acad. Sci.
  • the dosage of the antibody formulation for a given patient will be determined by the attending physician taking into consideration various factors known to modify the action of drugs including severity and type of disease, body weight, sex, diet, time and route of administration, other medications and other relevant clinical factors.
  • Therapeutically effective dosages can be determined by either in vitro or in vivo methods.
  • An effective amount of the antibodies, described herein, to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it is preferred for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect.
  • a typical daily dosage might range from about 0.0001mg/kg, 0.001mg/kg, 0.01mg/kg, 0.1mg/kg, 1mg/kg, 10mg/kg to up to 100mg/kg, 1000mg/kg, 10000mg/kg or more, of the patient's body weight depending on the factors mentioned above.
  • the dosage may be between 0.0001 mg/kg and 20 mg/kg, 0.0001 mg/kg and 10 mg/kg, 0.0001 mg/kg and 5 mg/kg, 0.0001 and 2 mg/kg, 0.0001 and 1 mg/kg, 0.0001 mg/kg and 0.75 mg/kg, 0.0001 mg/kg and 0.5 mg/kg, 0.0001 mg/kg to 0.25 mg/kg, 0.0001 to 0.15 mg/kg, 0.0001 to 0.10 mg/kg, 0.001 to 0.5 mg/kg, 0.01 to 0.25 mg/kg or 0.01 to 0.10 mg/kg of the patient's body weight depending on the factors mentioned above.
  • the clinician will administer the therapeutic antibody until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays or as described herein.
  • Doses of antibodies of the disclosure may be repeated and the administrations may be separated by at least 1 day, 2 days, 3 days, 5 days, 10 days, 15 days, 30 days, 45 days, 2 months, 75 days, 3 months, or at least 6 months.
  • compositions and methods herein will be administered with suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like.
  • suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like.
  • formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as Lipofectin TM ), DNA conjugates, anhydrous absorption pastes, oil-in-water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax.
  • any of the foregoing mixtures can be appropriate in treatments and therapies in accordance with the present disclosure, provided that the active ingredient in the formulation is not inactivated by the formulation and the formulation is physiologically compatible and tolerable with the route of administration. See also Baldrick P. "Pharmaceutical excipient development: the need for preclinical guidance.” Regul. Toxicol. Pharmacol. 32(2):210-8 (2000 ), Wang W. “Lyophilisation and development of solid protein pharmaceuticals.” Int. J. Pharm. 203(1-2):1-60 (2000 ), Charman WN "Lipids, lipophilic drugs, and oral drug delivery-some emerging concepts.” J Pharm Sci .89(8):967-78 (2000 ), Powell et al.
  • Such modalities include, without limitation, advanced antibody therapeutics, such as bispecific antibodies, immunotoxins, radiolabeled therapeutics, and single antibody V domains, antibody-like binding agent based on other than V region scaffolds, single domain antibodies, generation of peptide therapeutics, B7-H1 binding domains in novel scaffolds, gene therapies, particularly intrabodies, antisense therapeutics, and small molecules.
  • An antigen binding site may be provided by means of arrangement of CDRs on non-antibody protein scaffolds, such as fibronectin or cytochrome B etc. ( Haan & Maggos (2004) BioCentury, 12(5): A1-A6 ; Koide et al. (1998) Journal of Molecular Biology, 284: 1141-1151 ; Nygren et al. (1997) Current Opinion in Structural Biology, 7: 463-469 ) or by randomising or mutating amino acid residues of a loop within a protein scaffold to confer binding specificity for a desired target. Scaffolds for engineering novel binding sites in proteins have been reviewed in detail by Nygren et al. ( Nygren et al.
  • Protein scaffolds for antibody mimics are disclosed in WO/0034784 , in which the inventors describe proteins (antibody mimics) that include a fibronectin type III domain having at least one randomised loop.
  • a suitable scaffold into which to graft one or more CDRs, e.g. a set of HCDRs, may be provided by any domain member of the immunoglobulin gene superfamily.
  • the scaffold may be a human or non-human protein.
  • An advantage of a non-antibody protein scaffold is that it may provide an antigen-binding site in a scaffold molecule that is smaller and/or easier to manufacture than at least some antibody molecules.
  • Small size of a binding member may confer useful physiological properties, such as an ability to enter cells, penetrate deep into tissues or reach targets within other structures, or to bind within protein cavities of the target antigen.
  • Use of antigen binding sites in non-antibody protein scaffolds is reviewed in Wess, 2004 ( Wess, L. In: BioCentury, The Bernstein Report on BioBusiness, 12(42), A1-A7, 2004 ).
  • Typical are proteins having a stable backbone and one or more variable loops, in which the amino acid sequence of the loop or loops is specifically or randomly mutated to create an antigen-binding site that binds the target antigen.
  • Such proteins include the IgG-binding domains of protein A from S.
  • aureus transferrin, albumin, tetranectin, fibronectin (e.g. 10th fibronectin type III domain), lipocalins as well as gamma-crystalline and other AffilinTM scaffolds (Scil Proteins).
  • AffilinTM scaffolds Scil Proteins
  • Other approaches include synthetic "Microbodies” based on cyclotides - small proteins having intra-molecular disulphide bonds, Microproteins (VersabodiesTM, Amunix) and ankyrin repeat proteins (DARPins, Molecular Partners).
  • a targeted binding agent may comprise other amino acids, e.g. forming a peptide or polypeptide, such as a folded domain, or to impart to the molecule another functional characteristic in addition to ability to bind antigen.
  • Targeted binding agents of the disclosure may carry a detectable label, or may be conjugated to a toxin or a targeting moiety or enzyme (e.g. via a peptidyl bond or linker).
  • a targeted binding agent may comprise a catalytic site (e.g. in an enzyme domain) as well as an antigen binding site, wherein the antigen binding site binds to the antigen and thus targets the catalytic site to the antigen.
  • the catalytic site may inhibit biological function of the antigen, e.g. by cleavage.
  • bispecific antibodies can be generated that comprise (i) two antibodies one with a specificity to B7-H1 and another to a second molecule that are conjugated together, (ii) a single antibody that has one chain specific to B7-H1 and a second chain specific to a second molecule, or (iii) a single chain antibody that has specificity to B7-H1 and the other molecule.
  • Such bispecific antibodies can be generated using techniques that are well known; for example, in connection with (i) and (ii) see e.g., Fanger et al. Immunol Methods 4:72-81 (1994 ) and Wright and Harris, supra . and in connection with (iii) see e.g., Traunecker et al. Int.
  • the second specificity can be made as desired.
  • the second specificity can be made to the heavy chain activation receptors, including, without limitation, CD16 or CD64 (see e.g., Deo et al. Immunol. Today 18:127 (1997 )) or CD89 ( see e.g., Valerius et al. Blood 90:4485-4492 (1997 )).
  • Antibodies can also be modified to act as immunotoxins utilising techniques that are well known in the art. See e.g., Vitetta Immunol Today 14:252 (1993 ). See also U.S. Patent No. 5,194,594 . In connection with the preparation of radiolabeled antibodies, such modified antibodies can also be readily prepared utilising techniques that are well known in the art. See e.g., Junghans et al. in Cancer Chemotherapy and Biotherapy 655-686 (2d edition, Chafner and Longo, eds., Lippincott Raven (1996 )). See also U.S. Patent Nos.
  • Each immunotoxin or radiolabeled molecule would be likely to kill cells expressing the desired multimeric enzyme subunit oligomerisation domain.
  • an antibody When an antibody is linked to an agent (e.g., radioisotope, pharmaceutical composition, or a toxin) it is contemplated that the agent possesses a pharmaceutical property selected from the group of antimitotic, alkylating, antimetabolite, antiangiogenic, apoptotic, alkaloid, COX-2, and antibiotic agents and combinations thereof.
  • agent e.g., radioisotope, pharmaceutical composition, or a toxin
  • the agent possesses a pharmaceutical property selected from the group of antimitotic, alkylating, antimetabolite, antiangiogenic, apoptotic, alkaloid, COX-2, and antibiotic agents and combinations thereof.
  • the agent can be selected from the group of nitrogen mustards, ethylenimine derivatives, alkyl sulfonates, nitrosoureas, triazenes, folic acid analogs, anthracyclines, taxanes, COX-2 inhibitors, pyrimidine analogs, purine analogs, antimetabolites, antibiotics, enzymes, epipodophyllotoxins, platinum coordination complexes, vinca alkaloids, substituted ureas, methyl hydrazine derivatives, adrenocortical suppressants, antagonists, endostatin, taxols, camptothecins, oxaliplatin, doxorubicins and their analogs, and a combination thereof.
  • toxins further include gelonin, Pseudomonas exotoxin (PE), PE40, PE38, diphtheria toxin, ricin, abrin, alpha toxin, saporin, ribonuclease (RNase), DNase I, Staphylococcal enterotoxin-A, pokeweed antiviral protein, gelonin, Pseudomonas endotoxin, members of the enediyne family of molecules, such as calicheamicin and esperamicin, as well as derivatives, combinations and modifications thereof.
  • Chemical toxins can also be taken from the group consisting of duocarmycin ( see, e.g., U.S. Patent No.
  • chemotherapeutic agents also include Adriamycin, Doxorubicin, 5-Fluorouracil, Cytosine arabinoside (Ara-C), Cyclophosphamide, Thiotepa, Taxotere (docetaxel), Busulfan, Cytoxin, Taxol, Methotrexate, Cisplatin, Melphalan, Vinblastine, Bleomycin, Etoposide, Ifosfamide, Mitomycin C, Mitoxantrone, Vincreistine, Vinorelbine, Carboplatin, Teniposide, Daunomycin, Carminomycin, Aminopterin, Dactinomycin, Mitomycins, Esperamicins ( see, U.S.
  • Patent No. 4,675,187 Suitable toxins and chemotherapeutic agents are described in Remington's Pharmaceutical Sciences, 19th Ed. (Mack Publishing Co. 1995 ), and in Goodman And Gilman's The Pharmacological Basis of Therapeutics, 7th Ed. (MacMillan Publishing Co. 1985 ). Other suitable toxins and/or chemotherapeutic agents are known to those of skill in the art.
  • radioisotopes examples include gamma-emitters, positron-emitters, and x-ray emitters that can be used for localisation and/or therapy, and beta-emitters and alpha-emitters that can be used for therapy.
  • the radioisotopes described previously as useful for diagnostics, prognostics and staging are also useful for therapeutics.
  • Non-limiting examples of anti-cancer or anti-leukemia agents include anthracyclines such as doxorubicin (adriamycin), daunorubicin (daunomycin), idarubicin, detorubicin, carminomycin, epirubicin, esorubicin, and morpholino and substituted derivatives, combinations and modifications thereof.
  • anthracyclines such as doxorubicin (adriamycin), daunorubicin (daunomycin), idarubicin, detorubicin, carminomycin, epirubicin, esorubicin, and morpholino and substituted derivatives, combinations and modifications thereof.
  • Exemplary pharmaceutical agents include cis-platinum, taxol, calicheamicin, vincristine, cytarabine (Ara-C), cyclophosphamide, prednisone, daunorubicin, idarubicin, fludarabine, chlorambucil, interferon alpha, hydroxyurea, temozolomide, thalidomide, and bleomycin, and derivatives, combinations and modifications thereof.
  • the anti-cancer or anti-leukemia is doxorubicin, morpholinodoxorubicin, or morpholinodaunorubicin.
  • the antibodies of the disclosure also encompass antibodies that have half-lives (e.g., serum half-lives) in a mammal, preferably a human, of greater than that of an unmodified antibody.
  • said antibody half life is greater than about 15 days, greater than about 20 days, greater than about 25 days, greater than about 30 days, greater than about 35 days, greater than about 40 days, greater than about 45 days, greater than about 2 months, greater than about 3 months, greater than about 4 months, or greater than about 5 months.
  • the increased half-lives of the antibodies of the present disclosure or fragments thereof in a mammal, preferably a human, result in a higher serum titer of said antibodies or antibody fragments in the mammal, and thus, reduce the frequency of the administration of said antibodies or antibody fragments and/or reduces the concentration of said antibodies or antibody fragments to be administered.
  • Antibodies or fragments thereof having increased in vivo half-lives can be generated by techniques known to those of skill in the art.
  • antibodies or fragments thereof with increased in vivo half-lives can be generated by modifying (e.g., substituting, deleting or adding) amino acid residues identified as involved in the interaction between the Fc domain and the FcRn receptor (see, e.g., International Publication Nos. WO 97/34631 and WO 02/060919 .
  • Antibodies or fragments thereof with increased in vivo half-lives can be generated by attaching to said antibodies or antibody fragments polymer molecules such as high molecular weight polyethyleneglycol (PEG).
  • PEG high molecular weight polyethyleneglycol
  • PEG can be attached to said antibodies or antibody fragments with or without a multifunctional linker either through site-specific conjugation of the PEG to the N- or C-terminus of said antibodies or antibody fragments or via epsilon-amino groups present on lysine residues.
  • Linear or branched polymer derivatisation that results in minimal loss of biological activity will be used.
  • the degree of conjugation will be closely monitored by SDS-PAGE and mass spectrometry to ensure proper conjugation of PEG molecules to the antibodies.
  • Unreacted PEG can be separated from antibody-PEG conjugates by, e.g., size exclusion or ion-exchange chromatography.
  • affinity values can be important, other factors can be as important or more so, depending upon the particular function of the antibody.
  • an immunotoxin toxin associated with an antibody
  • the act of binding of the antibody to the target can be useful; however, in some instances, it is the internalisation of the toxin into the cell that is the desired end result.
  • antibodies with a high percent internalisation can be desirable in these situations.
  • antibodies with a high efficiency in internalisation are contemplated.
  • a high efficiency of internalisation can be measured as a percent internalised antibody, and can be from a low value to 100%.
  • 0.1-5, 5-10, 10-20, 20-30, 30-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-99, and 99-100% can be a high efficiency.
  • the desirable efficiency can be different in different instances, depending upon, for example, the associated agent, the amount of antibody that can be administered to an area, the side effects of the antibody-agent complex, the type (e.g., cancer type) and severity of the problem to be treated.
  • the antibodies disclosed herein provide an assay kit for the detection of B7-H1 expression in mammalian tissues or cells in order to screen for a disease or disorder associated with changes in expression of B7-H1.
  • the kit comprises an antibody that binds B7-H1 and means for indicating the reaction of the antibody with the antigen, if present.
  • an article of manufacture comprising a container, comprising a composition containing an antibody that specifically binds B7-H1, and a package insert or label indicating that the composition can be used to treat disease mediated by B7-H1 expression.
  • a mammal and, more preferably, a human receives the antibody that specifically binds B7-H1.
  • the anti-tumour treatment defined herein may be applied as a sole therapy or may involve, in addition to the compounds of the disclosure, conventional surgery, bone marrow and peripheral stem cell transplantations or radiotherapy or chemotherapy.
  • Such chemotherapy may include one or more of the following categories of anti tumour agents:
  • the anti-tumour treatment defined herein may involve, in addition to the compounds of the disclosure, treatment with other antiproliferative/antineoplastic drugs and combinations thereof, as used in medical oncology, such as alkylating agents (for example cis-platin, oxaliplatin, carboplatin, cyclophosphamide, nitrogen mustard, melphalan, chlorambucil, busulphan, temozolamide and nitrosoureas); antimetabolites (for example gemcitabine and antifolates such as fluoropyrimidines like 5-fluorouracil and tegafur, raltitrexed, methotrexate, cytosine arabinoside, and hydroxyurea); anti-tumor antibiotics (for example anthracyclines like adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mit
  • Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate dosing of the individual components of the treatment.
  • Such combination products employ the compounds of this disclosure, or pharmaceutically acceptable salts thereof, within the dosage range described hereinbefore and the other pharmaceutically active agent within its approved dosage range.
  • the human B7-H1 cDNA ( Dong, H. et al., 1999, Nat. Med. 5:1365 - 1369 ) was amplified from Image clone 7262208 (ATCC) using polymerase chain reaction (PCR) and then cloned into the Nhe 1 and EcoR1 sites of pcr3.1Bid vector. This construct was lipofected into CHO cells (American Type Tissue Collection, catalog # CCL-61) and the expression on the cell surface was confirmed by fluorescent activated cell sorting (FACS) analysis.
  • FACS fluorescent activated cell sorting
  • the extracellular domain of human B7-H1 (amino acid residues 1-239) fused to the Fc region of human IgG1 was purchased from R&D Systems Inc., catalog # 156-B7-100.
  • Monoclonal antibodies against human B7-H1 were developed by sequentially immunizing XenoMouse ® mice (XenoMouse strains: XMG2 (IgG2 kappa/lambda) and XMG4 (IgG4 kappa/lambda) Amgen, Inc. Vancouver, British Columbia, Canada) with either 5-10 ug of the B7-H1/Fc chimera protein or 1-2x10(6) CHO cells expressing recombinant human B7-H1 as described in Example 1.
  • EXAMPLE 3 RECOVERY OF LYMPHOCYTES, B-CELL ISOLATIONS, FUSIONS AND GENERATION OF HYBRIDOMAS
  • Immunised mice were sacrificed by cervical dislocation, and the draining lymph nodes harvested and pooled from each cohort.
  • the lymphoid cells were dissociated by grinding in DMEM to release the cells from the tissues and the cells were suspended in DMEM. The cells were counted, and 0.9 ml DMEM per 100 million lymphocytes added to the cell pellet to resuspend the cells gently but completely.
  • Using 100 ⁇ l of CD90+ magnetic beads per 100 million cells the cells were labeled by incubating the cells with the magnetic beads at 4°C for 15 minutes.
  • the magnetically labeled cell suspension containing up to 10 8 positive cells (or up to 2x10 9 total cells) was loaded onto a LS+ column and the column washed with DMEM. The total effluent was collected as the CD90-negative fraction (most of these cells were expected to be B cells).
  • the fusion was performed by mixing washed enriched B cells from above and nonsecretory myeloma P3X63Ag8.653 cells purchased from ATCC, cat.# CRL 1580 ( Kearney et al, J. Immunol. 123, 1979, 1548-1550 ) at a ratio of 1:1.
  • the cell mixture was gently pelleted by centrifugation at 800 x g. After complete removal of the supernatant, the cells were treated with 2-4 mL of Pronase solution (CalBiochem, cat. # 53702; 0.5 mg/ml in PBS) for no more than 2 minutes.
  • Electro-cell fusion was performed using a fusion generator (model ECM2001, Genetronic, Inc., San Diego, CA).
  • the fusion chamber size used was 2.0 ml, using the following instrument settings:
  • the cell suspensions were carefully removed from the fusion chamber under sterile conditions and transferred into a sterile tube containing the same volume of Hybridoma Culture Medium (DMEM, JRH Biosciences), 15 % FBS (Hyclone), supplemented with L-glutamine, pen/strep, OPI (oxaloacetate, pyruvate, bovine insulin) (all from Sigma) and IL-6 (Boehringer Mannheim).
  • DMEM Hybridoma Culture Medium
  • FBS Hyclone
  • OPI oxaloacetate, pyruvate, bovine insulin
  • IL-6 Boehringer Mannheim
  • Hybridoma Selection Medium Hybridoma Culture Medium supplemented with 0.5x HA (Sigma, cat. # A9666)
  • Hybridoma Selection Medium 0.5x HA (Sigma, cat. # A9666)
  • the cells were mixed gently and pipetted into 96-well plates and allowed to grow. On day 7 or 10, one-half the medium was removed, and the cells re-fed with Hybridoma Selection Medium.
  • Hybridomas were grown as routine in the selective medium. Exhaustive supernatants collected from the hybridomas were tested in various assays as described in Examples 4-5. Just to note, antibodies that begin with a 3 digit, e.g., 3.15G8, are IgG4 and antibodies that begin with a 2, e.g., 2.9D10, are IgG2.
  • EXAMPLE 4 BINDING TO CELL BOUND HUMAN AND CYNOMOLGUS MONKEY B7-H1
  • Supernatants collected from hybridoma cells were tested to assess the ability of the secreted antibodies to bind to 293T cells transiently expressing either full length human or cynomolgus monkey B7-H1.
  • a mock-transfected 293T cell line was used as a negative control.
  • Cells diluted in PBS containing 2% FBS were seeded at a density of 2500-3000 expressing and 15000-17500 mock transfected cells in 40 ⁇ l/well in 384 well plates (Coming Costar, catalog # 3712). Immediately after plating, 10 ⁇ l/well of hybridoma supernatants were added and plates incubated for 1.5 hr at room temperature.
  • Cells were washed and fixed in 100 ul of PBS containing 3.7% formaldehyde and 3% bovine serum albumin for 20 min at room temperature. Cells were washed and incubated in 100 ul of PBS containing 0.6% H2O2 and 3% bovine serum albumin for 10 min at room temperature. Cells were washed and incubated in 50 ⁇ l of horseradish peroxidase-conjugated streptavidin diluted at 1:4000 for 30 min at 4oC. Cells were washed before signal detection.
  • ODmax-ODmin the average value obtained with the cells incubated with irrelevant hybridoma supernatants in the presence of biotin-conjugated human PD-1/Fc protein and ODmin is the average value obtained with the cells incubated with irrelevant hybridoma supernatants in the absence of biotin-conjugated human PD-1/Fc protein.
  • 0% of maximum response indicates 100% inhibition of B7-H1/PD-1 binding by a hybridoma supernatant (Table 4).
  • EXAMPLE 6 BINDING OF PURIFIED ANTI-B7-H1 ANTIBODIES TO HUMAN B7-H1, HUMAN B7-DC, MOUSE B7-H1
  • the ability of the purified antibodies to bind to human B7-H1, B7-DC, mouse B7H1 and cynomolgus monkey B7-H1 was determined by FACS analysis. Briefly, 293T cells were either mock-transfected or transiently transfected with either human B7-H1 or human B7-DC using Lipofectamine 2000 (Invitrogen, catalog #11668). Mouse J558 cells expressing mouse B7-H1 were obtained from ATCC (catalog #TIB-6). Cells were resuspended in PBS containing 2% FBS (FACS buffer) and seeded at 50000 cells/well into V-bottomed plates.
  • Anti-B7-H1 and isotype control antibodies diluted in FACS buffer were added at a final concentration of 5 ⁇ g/ml and plates were incubated for 1 h at 4 °C. After washing with FACS buffer, goat anti-human Fc Cy5 (5 ⁇ g/ml, Jackson Immunoresearch, catalog # 109-175-098) and 7-AAD (5 ⁇ g/ml) were added and plates were incubated for 15 min at 4 °C before being washed again with FACS buffer and being read on a FACSCalibur instrument. Table 5 shows ability of purified antibodies (5 ⁇ g/ml) to bind to 293T cells transfected with human B7-H1.
  • mice anti-human B7-DC (PD-L2) antibody R&D systems cat #MAB1224, detected with goat anti-mouse Fc Cy5, Jackson Immunoresearch
  • PE-conjugated rat anti-mouse B7-H1 antibody eBioscience, clone M1H5, detected with goat anti-rat Fc Cy5, Jackson Immunoresearch
  • mice B7-H1 expression was used as a positive control for mouse B7-H1 expression. Table 5.
  • EXAMPLE 7 BINDING OF PURIFIED HUMAN ANTI-B7-H1 ANTIBODIES TO STIMULATED HUMAN AND CYNOMOLGUS MONKEY T CELLS
  • 96-well high binding plates were incubated with 100 ul/well of anti-CD3 antibody diluted at 1 ug/ml in PBS (OKT3 clone, eBioscience, catalog # 160037) at 4C overnight.
  • Human T cells were isolated from frozen leukopack using T cell enrichment kit (StemCell Technologies, catalog #19051).
  • Anti-CD3 mAb coated plates were washed with PBS and purified T cells were added in 200 ul of ICM media at 360000 cells/well and cultured for 72 hours.
  • T cells were then harvested, washed in FACS buffer and mixed with diluted purified anti-B7-H1 antibodies or irrelevant human IgG2 or IgG4 antibodies at final concentration of 1ug/ml in 96-well V-bottom assay plate (50 ul/well). After 2 hours incubation at 4C, T cells were washed twice in FACS buffer and then stained with Cy5-conjugated goat anti-human IgG Fc antibody (5 ug/ml, Jackson Immunoresearch, catalog # 109-175-098) and 7-AAD (10 ug/ml). Cells were incubated for 30 min at 4 °C before being washed again with FACS buffer and being read on a FACSCalibur instrument. Live lymphocyte population was selected for analysis based on forward and side scatter as well as negative staining for 7-AAD.
  • 96-well high binding plates were incubated with 100 ul/well of goat anti-mouse IgG Fc antibody diluted at 1 ug/ml in PBS at 4C overnight. Plates were washed with PBS and incubated with anti-CD3 antibody diluted at 1 ug/ml in ICM media (clone SP-34, BD catalog #556610) at 37C for 2 hours. Cynomolgus monkey PBMC were isolated from peripheral blood (Bioreclamation, catalog #CYNWBCPT).
  • Anti-CD3 mAb coated plates were washed with PBS and isolated PBMC were added in 200 ul of ICM media at ⁇ 200000 cells/well and cultured for 72 hours. Cells were then harvested, washed in FACS buffer and mixed with diluted purified anti-B7-H1 antibodies or irrelevant human IgG2 or IgG4 antibodies at a final concentration of 1ug/ml in 96-well V-bottom assay plate (50 ul/well).
  • Table 6 shows the ability of purified anti-B7-H1 antibodies (1 ⁇ g/ml) to bind to activated human T cells as well as to activated cynomolgus monkey T cells.
  • Binding of purified anti-B7-H1 antibodies to stimulated human or cynomologus T-cells Ab ID Human T cells (geo mean) Cyno T cells (geo mean) 2.9D10 49.0 106.8 2.14H9 53.0 106.3 3.15G8 48.0 92.8 2.20A8 41.0 80.7 2.7A4 49.0 103.9 3.18G1 45.0 94.6 IgG2 10.0 nd IgG4 10.0 17.6
  • CD3-coated beads/ml were further coupled with recombinant human IgG1Fc (R&D Systems, cat# 110-HG-100) at 160 ug/ml or with the recombinant human B7-H1/Fc protein (R&D Systems, Cat# 156-B7-100) at 80 ug/ml combined with the human IgG1Fc protein at 80 ug/ml (total concentration 160 ug/ml) and incubated at 37°C for 24 hours with shaking.
  • human IgG1Fc R&D Systems, cat# 110-HG-100
  • B7-H1/Fc protein R&D Systems, Cat# 156-B7-100
  • the beads were then incubated in PBS containing 0.05% bovine serum albumin at room temperature for 1 hour, washed four times in 0.1% BSA and 2mM EDTA in PBS (pH7.4) and finally resuspended in RPMI1640 media containing 10% FBS at 5x10(7) beads/ml.
  • Peripheral blood monocytes were isolated from a leukapheresis pack using Ficoll-Paque Plus (GE Healthcare 17-1440-03) density gradient centrifugation, resuspended in serum-free RPMI 1640 (Gibco 22400-089), and CD4+ T-cells were isolated from PBMC using Dynal CD4 Negative Isolation Kit (Invitrogen, cat# 113-37D) per manufacturer's instructions.
  • 10 ul of coated beads were mixed 10 ul of diluted anti-B7-H1 or control IgG2/4 antibody in a sample tube and incubated at RT for 3-4 hours on a shaker.
  • T cells were plated at 10(5) cells/80 ul/well in 96-well plate (Coming, cat#3603) and bead-antibody mix was added at 20ul/well to a total volume of 100 ul/well.
  • T cell activation in the absence of B7-H1 inhibitory effect was determined using beads coated with anti-CD3 antibody and the human IgG1Fc protein.
  • Cells were cultured for 5 days and supernatants were harvested and analyzed for IFN- ⁇ release by using BD Human IFN- ⁇ ELISA Kit II (BD Cat. No.550612) per manufacturer's instructions. Cell proliferation was measured on day 5 by the addition of 10 ⁇ l/well of AlamarBlue (Invitrogen DAL 1025).
  • Enhancement of T cell activation by antibodies directed against B7-H1 was determined in a dendritic cell-T-cell mixed lymphocyte (DCMLR) assay.
  • Dendritic cells were generated from monocytic precursors as described previously ( Curr Protoc Immunol. 2001 May; Chapter 7: Unit 7.32 ).
  • Peripheral blood monocytes were isolated from a leukapheresis pack using Ficoll-Paque Plus (GE Healthcare 17-1440-03) density gradient centrifugation, resuspended in serum-free RPMI 1640 (Gibco 22400-089), and allowed to adhere to T150 cell culture flasks (Coming 430825).
  • the nonadherent cells were removed and the cells were cultured in RPMI supplemented with 5% human serum (Invitrogen 34005100).
  • Cytokines were added at a final concentration of 2ng/ml GM-CSF (BD Biosciences 550068) and 10ng/ml IL-4 (BD Biosciences 554605).
  • Fresh media with cytokines was added every 2 - 3 days.
  • cells were matured with 20ng/ml of TNF- ⁇ (BD Biosciences 554618) and allowed to incubate for 24 hours. Mature dendritic cells were harvested, phenotyped, and frozen for later use.
  • CD4+ T-cells were isolated from PBMC using a magnetic isolation kit (Dynal 113.17) per manufacturer's instructions and cultured in a primary MLR as described previously ( J Immunol. 2003 Apr 1;170(7):3637-44 ).
  • 1.5E5 allogeneic CD4+ responding T-cells were cultured in 96 well-flat bottom microtiter plates (Costar 3595) with dendritic cells at a T-cell:dendritic cell ratio of 1:2.5.
  • Dendritic cell preparations were treated with 100 ⁇ g/ml of mitomycin C (Sigma M4287) prior to addition to coculture to prevent any proliferation from contaminating lymphocytes.
  • Antibodies were added at various concentrations in a final volume of 200 ⁇ l of RPMI + 10% human serum. Thymidine incorporation was measured on Day 5 by a 16-h pulse with [ 3 H] thymidine (1 ⁇ ci/well, Perkin-Elmer NET027001MC). Supernatants were harvested prior to radioactive labeling and analyzed for IFN- ⁇ release by Luminex assay (BioRad 171-B11921) per manufacturer's instructions. Enhancement of T-cell proliferation by anti-B7-H1 antibodies from repeat experiments is shown in Figure 2 . Corresponding IFN- ⁇ release is shown in Figure 3 .
  • the heavy chain variable domain sequences and the light chain variable domain sequence s of the antibodies were sequenced to determine their DNA sequences.
  • the complete sequence information for the anti-B7-H1 antibodies is provided in the sequence listing with nucleotide and amino acid sequences for each gamma and kappa or lambda chain combination.
  • the variable heavy sequences were analyzed to determine the VH family and the J-region sequence.
  • the sequences were then translated to determine the primary amino acid sequence and compared to the germline VH and J-region sequences to assess somatic hypermutations.
  • Tables 8 and 9 are tables comparing the antibody heavy chain regions to their cognate germline heavy chain region and the antibody light chain regions to their cognate germline light chain region.
  • the amino acid numbering is by numerical numbering.
  • Immunoglobulin genes undergo various modifications during maturation of the immune response, including recombination between V, D and J gene segments, isotype switching, and hypermutation in the variable regions. Recombination and somatic hypermutation are the foundation for generation of antibody diversity and affinity maturation, but they can also generate sequence liabilities that may make commercial production of such immunoglobulins as therapeutic agents difficult, or increase the immunogenicity risk of the antibody.
  • mutations in CDR regions are likely to contribute to improved affinity and function, while mutations in framework regions may increase the risk of immunogenicity. This risk can be reduced by reverting framework mutations to germline, while ensuring that activity of the antibody is not adversely impacted.
  • Some structural liabilities may be generated by the diversification processes, or they may exist within germline sequences contributing to the heavy and light chain variable domains. Regardless of the source, it may be desirable to remove potential structural liabilities that may result in instability, aggregation, heterogeneity of product, or increased immunogenicity. Examples of undesirable liabilities include unpaired cysteines (which may lead to disulfide bond scrambling, or variable sulfhydryl adduct formation), N-linked glycosylation sites (resulting in heterogeneity of structure and activity), as well as deamidation (e.g. NG, NS), isomerization (DG), oxidation (exposed methionine), and hydrolysis (DP) sites.
  • unpaired cysteines which may lead to disulfide bond scrambling, or variable sulfhydryl adduct formation
  • N-linked glycosylation sites resulting in heterogeneity of structure and activity
  • deamidation e.g. NG, NS
  • DG isomerization
  • the antibody sequence can be mutated back to the germline sequence.
  • Such corrective mutations can occur at one, two, three or more positions, or a combination of any of the mutated positions, using standard molecular biological techniques.
  • Tables 10-14 below illustrate the positions of such variations back to germline for mAb 2.9D10, 2.7A4 and 2.14H9. Each row represents a unique combination of germline and non-germline residues at the position indicated by bold type. The position of the amino acid is representated by numerical numbering.
  • the disclosure includes replacing any structural liabilities in the sequence that might affect the heterogeneity of the antibodies of the disclosure.
  • Such liabilities include glycosylation sites, un-paired cysteines, surface exposed methinones, etc.
  • changes are made to remove one or more of such structural liabilities.
  • N-linked glycosylation sites it may be desirable to remove one or more consensus N-linked glycosylation sites from the antibody germline or antibody sequence.
  • an N-linked glycosylation consensus site sequence has the sequence of Asn-any AA- Ser or Thr where the middle amino acid cannot be a proline (Pro).
  • unpaired cysteines can be replaced alone or in conjunction with other structural changes. An unpaired cysteine can be mutated to an appropriate amino acid that has comparable side chain properties such as a serine.
  • a sequence that is optimized is a sequence which has been mutated at one or more positions back to its germline sequence or can be modified to remove one or more other liabilities such as structural liabilities.
  • An optimized sequence can also include a sequence that has been mutated at one or more positions back to its germline sequence and which has also been further modified to remove one or more structural liabilities. Table 10.
  • the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 2.
  • SEQ ID NO.: 2 comprises any one of the combinations of germline and non-germline residues indicated by each row of Table 10.
  • SEQ ID NO: 2 comprises any one, any two, any three, any four, any five, or all five of the germline residues as indicated in Table 10.
  • SEQ ID NO.: 2 comprises any one of the unique combinations of germline and non-germline residues indicated by each row of Table 10.
  • the non germline sequence is mutated back to germline at position 80 where F is changed to a Y and at position 87 where K is changed to an R.
  • the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 7.
  • SEQ ID NO.: 7 comprises any one of the combinations of germline and non-germline residues indicated by each row of Table 11.
  • SEQ ID NO: 7 comprises any one, any two, any three, any four, any five, or all five of the germline residues as indicated in Table 11.
  • SEQ ID NO.: 7 comprises any one of the unique combinations of germline and non-germline residues indicated by each row of Table 11.
  • 2.7A4 variable light domain which has been mutated to particular germline sequences
  • 2.7A4 VLOPT optically mutated where the non-germline sequence has been mutated from an A to a T at position 17 and a R to a K at position 104 as shown in Table 15.
  • Table 12 Exemplary Mutations of 2.9D10 Heavy Chain (SEQ ID NO: 12) to Germline at the Indicated Residue Number 56 58 G K S K G Q S Q
  • the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 12.
  • SEQ ID NO.: 12 comprises any one of the combinations of germline and non-germline residues indicated by each row of Table 12.
  • SEQ ID NO: 12 comprises any one, any two, or all two of the germline residues as indicated in Table 12.
  • SEQ ID NO.: 12 comprises any one of the unique combinations of germline and non-germline residues indicated by each row of Table 12.
  • the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 17.
  • SEQ ID NO.: 17 comprises any one of the combinations of germline and non-germline residues indicated by each row of Table 13.
  • SEQ ID NO: 17 comprises any one, any two, any three, any four, or all four of the germline residues as indicated in Table 7.
  • SEQ ID NO.: 17 comprises any one of the unique combinations of germline and non-germline residues indicated by each row of Table 13.
  • SEQ ID NO: 17 can be altered or further altered by making nongermlining changes to SEQ ID NO: 17.
  • SEQ ID NO:17 can be altered such that from a F to a Y at position 37 and from a F to a Y at position 50.
  • Table 14 Exemplary Mutations of 2.14H9 Light Chain (SEQ ID NO: 27) to Germline at the Indicated Residue Number 28 51 104 R G K S G K R D K S D K R G K S G K R D K S D K R G E S G E R D E S D E R G E S G E R D E S D E S D E.
  • the targeted binding agent or antibody comprises a sequence comprising SEQ ID NO.: 27.
  • SEQ ID NO.: 27 comprises any one of the combinations of germline and non-germline residues indicated by each row of Table 14.
  • SEQ ID NO: 27 comprises any one, any two, any three, or all three of the germline residues as indicated in Table 14.
  • SEQ ID NO.: 27 comprises any one of the unique combinations of germline and non-germline residues indicated by each row of Table 14.
  • the heavy chain of 2.14H9 can be changed at amino acid 31 of SEQ ID NO:22 from a R to a S.
  • Germlining of these amino acid residues was carried out using standard site directed mutagenesis techniques with the appropriate mutagenic primers.
  • the germlined sequences have the prefix "OPT" after the antibody name, for example, 2.7A4VHOPT, 2.7VLOPT and 2.14H9VLOPT.
  • Germlined IgG were then re-evaluated in the human B7-H1/hPD1 ligand inhibition assay to confirm there had not been a reduction in antibody in vitro activity.
  • Example activities for germlined versus non-germlined anti-B7-H1 antibodies are provided in Figure 4 .
  • Clones were converted from scFv to IgG format by sub-cloning the V H and V L domains into vectors expressing whole antibody heavy and light chains respectively.
  • the V H domains were cloned into the vector pEU15.1 to express IgG1 or the vector pEU15.1-TM to express IgG1-TM antibodies. Both vectors contain the human heavy chain constant domains and regulatory elements to express whole IgG heavy chain in mammalian cells.
  • the vector pEU15.1-TM is a modified pEU15.1 human IgG1 vector.
  • V L domains were cloned into pEU4.4 and pEU3.4 vectors for the expression of the human lambda and kappa light chain constant domains respectively, with regulatory elements to express whole IgG light chain in mammalian cells.
  • Vectors for the expression of heavy chains and light chains were originally described in Vaughan et al. (Nature Biotechnology 14(3):309-314, 1996 ). These vectors have been engineered simply by introducing an OriP element.
  • IgGs the heavy and light chain IgG expression vectors were transfected into EBNA-HEK293 mammalian cells (Invitrogen R620-07). IgGs were expressed and secreted into the medium. Harvests were pooled and spun down prior to purification. The IgG was purified using Protein A chromatography using an AKTA Express purification system (GE Healthcare) previously sanitised to avoid any endotoxin contamination of the sample. Culture supernatants are loaded onto 1mL HiTrapTM MabSelectSureTM columns (GE Healthcare, 11-0034-93) and washed with 50 mM Tris-HCl pH 8.0, 250 mM NaCl.
  • AKTA Express purification system GE Healthcare
  • Bound IgG was eluted from the column using 0.1 M Sodium Citrate (pH 3.0) and neutralised by the addition of 1M Tris-HCl (pH 9.0). The eluted material was buffer exchanged into PBS using Nap10 columns (Amersham, 17-0854-02) and filtered before determining protein concentration and endotoxin levels. IgG concentration was determined spectrophotometrically using an extinction coefficient based on the amino acid sequence of the IgG (Vaughan et al. supra ). Endotoxin level was determined using the Endosafe PTS Portable Test System (Charles River Laboratories) fitted with 1-0.1 EU/mL and 10-0.1EU/mL LAL cartridges (Charles River Laboratories, PT520). The purified IgG were analysed for degradation by SDS-PAGE.
  • Anti-B7-H antibodies in the IgG1-TM format were evaluated and compared to the same antibodies but in the IgG1 format in the human B7-H1/hPD1 ligand inhibition assay to confirm there had not been a reduction in antibody in vitro activity due to IgG isotype switching ( Figure 4 ).
  • EXAMPLE 12 HUMAN B7H1/FC BINDING HUMAN PD1/FC - HTRF ® ASSAY
  • the assay described is a homogenous TR-FRET assay using HTRF ® assay technology requiring no wash steps.
  • a Costar 3676 microtitre plate 5 ⁇ l/well of biotinylated PD1/Fc at 1nM diluted into PBS was added. This was followed with the addition of 5 ⁇ l/well streptavidin XL ent (CisBio) at 4nM diluted into assay buffer (PBS + 0.1% BSA + 0.8M KF). 5 ⁇ l/well of a titration of sample material diluted in PBS was added to relevant wells. For the definition of total binding, 5 ⁇ l of PBS or relevant sample buffer was added per well.
  • EXAMPLE 13 HUMAN B7H1/FC BINDING HUMAN B7-1/FC - HTRF ® ASSAY
  • the assay described was a homogenous TR-FRET assay using HTRF ® assay technology requiring no wash steps.
  • HTRF ® assay technology To a Costar 3676 microtitre plate 5 ⁇ l/well of biotinylated B7-1/Fc at 8nM diluted into PBS was added. This was followed with the addition of 5 ⁇ l/well streptavidin XL ent (CisBio) at 20nM diluted into assay buffer (PBS + 0.1% BSA + 0.8M KF). 5 ⁇ l/well of a titration of sample material diluted in PBS was added to relevant wells. For the definition of total binding, 5 ⁇ l of PBS or relevant sample buffer per well was added.
  • EXAMPLE 14 CROSS REACTIVITY OF ANTI-B7-H1 ANTIBODIES WITH OTHER IMMUNE CO-MODULATORY PROTEINS
  • ELISAs were performed to determine the cross-reactivity of the anti-B7-H1 IgG1-TM antibodies for other immune co-modulatory molecules.
  • the ELISAs consisted of coating MaxiSorp plates (NUNC) at 4° C overnight with 250ng per well of the extracellular domain (ECD) of human B7-H1 (R&D Systems, 156-B7), human PD-L2 (R&D Systems, 1224-PL), human B7-H2 (R&D Systems, 165-B7), human B7-H3 (R&D Systems, 1027-B3), human CD28 (R&D Systems, 342-CD), human CTLA-4 (R&D Systems, 325-CT) and human PD1 (R&D Systems, 1086-PD) followed by blocking the plates with PBS containing 3% dried milk powder at room temperature for 1h.
  • NUNC MaxiSorp plates
  • Murine cross reactivity was also investigated by coating the ECD of murine B7-H1 (R&D Systems, 1019-B7).
  • Biotinylated anti-B7-H1 IgG1-TM diluted at 100nM in PBS containing 3% dried milk powder, were incubated at room temperature for 2h to allow binding. Bound biotinylated IgGs were detected with europium N1-labelled streptavidin (Perkin Elmer, 1244-360) at 0.2ug/mL.
  • Control experiment demonstrating antigen coating to the NUNC plate was performed using the commercial antibodies mouse IgG2a anti-human B7-H1 (R&D Systems, MAB156), mouse IgG2b anti-human PD-L2 (R&D Systems, MAB1224), mouse IgG2b anti-human B7-H2 (R&D Systems, MAB165), mouse IgG1 anti-human B7-H3 (R&D Systems, MAB1027), mouse IgG1 anti-human CD28 (R&D Systems, MAB342), mouse IgG2a anti-human CTLA-4 (Abcam, ab33320), mouse IgG2b anti-human PD1 (R&D Systems, MAB1086) and rat IgG2a anti-mouse B7-H1 (R&D Systems, MAB1019).
  • mouse IgG2a anti-human B7-H1 R&D Systems, MAB156
  • mouse IgG2b anti-human PD-L2 R&D Systems, MAB
  • the cross-reactivity of the 3 anti-B7-H1 IgG1-TM antibodies 2.7A4OPT, 2.9D10 and 2.14H9OPT to the panel of eight immune co-modulatory antigens were determined in triplicate. At 100nM of antibody concentration, all three anti-B7-H1 antibodies show no cross reactivity for any of the seven human immune co-modulatory molecules we tested ( Figure 5 ).
  • the IgG1-TM anti-B7-H1 antibody 2.7A4OPT displays a measurable cross reactivity for murine B7-H1 with a signal level of 5.3% on average compared to 100% binding to the human B7-H1.
  • the other two anti-B7-H1 antibodies tested, 2.9D10 and 2.14H9OPT do not show any cross reactivity for murine B7-H1 ( Figure 5 ).
  • EXAMPLE 15 AFFINITY OF ANTI-B7-H1 ANTIBODIES FOR HUMAN AND CYNOMOLOGUS B7-H1
  • the binding affinity and kinetic parameters of anti-B7-H1 antibodies in the IgG1-TM format to monomeric human and cynomologus B7-H1 were determined by surface plasmon resonance using a BIAcore T100 instrument (BIAcore, Uppsala, Sweden). In brief, experiments were performed at 25°C using HBS-EP buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.05% v/v surfactant P20) as running buffer.
  • IgGs were affinity captured on the surface of a CM5 sensor chip (BIAcore) via protein G, which was amine coupled onto the CM5 surface to achieve the density of -500 Response Units (RU), according to the manufacturer's instructions (BIAapplications Handbook, BIAcore).
  • Recombinant monomeric human or cynomologus B7-H1 FlagHis 10 (“His 10 " disclosed as SEQ ID NO: 93) extracellular domains (ECDs) were used as analytes. Dilutions of B7-H1 ECD (200-3.12 nM) in the running buffer were injected at a constant flow rate of 100 ⁇ l/min for 60 seconds.
  • Affinity of anti-B7-H1 antibodies 2.7A4OPT and 2.14H9OPT for monomeric human B7-H1 is 1nM and 175pM respectively (Table 21).
  • Table 21 Affinity and kinetic parameters analysis of anti-B7-H1 antibodies for binding to human B7-H1 mAb/HUMAN B7H1 K d (nM) k on (M 1 s -1 ) k off (s -1 ) Reference Antibody #1 6.3 1.36x10 6 0.0086 2 . 7A4OPT 1 1.24x10 6 0.0012 2 . 14H9OPT 0.175 2x10 6 0.00035
  • Affinity of anti-B7-H1 antibodies 2.7A4OPT and 2.14H9OPT for monomeric cynomologus B7-H1 is 835pM and 367pM respectively (Table 22). Those two antibodies are strongly cross reactive for cynomologus B7-H1 as affinities are very close to the ones for human B7-H 1.
  • Table 22 Affinity and kinetic parameters analysis of anti-B7-H1 antibodies for binding to cynomologus B7-H1 mAb/CYNO B7H1 K d (nM) k on (M -1 s -1 ) k off (s -1 ) Reference Antibody #1 4.64 1.36x10 6 0.0063 2 . 7A4OPT 0.835 1.31x10 6 0.0011 2 . 14H9OPT 0.367 1x10 6 0.00037
  • EXAMPLE 16 EPITOPE MAPPING OF ANTI-B7-H1 ANTIBODIES
  • Anti-B7-H1 antibodies are competing for the binding of human B7-H1 to human PD1 (Example 5, 8 and 12) so they should interact with some of those 14 residues if we assume that there are negligible differences between the B7H1 binding interface to human and mouse PD1 (62% amino acid identity between the two species extracellular domain sequence). Single amino acid B7-H1 mutants will be generated for all the 14 positions described in Table 23. Mutants will be tested for binding to anti-B7-H1 antibodies by phage ELISA and the ability to compete the binding of anti-B7-H1 antibodies to human B7-H1 in HTRF ® competition assays. All anti-B7-H1 antibodies described are in the IgG1-TM format.
  • PCR product has then been directionally cloned in the pCANTAB6 vector ( McCafferty J. et al., 1994, Appl. Biochem. Biotechnol., Vol. 47, p157-173 ) using Sfi I and Not I restriction sites.
  • E. coli strain TG1 were transformed with the ligation and individual colonies were screened by sequencing to identify a B7-H1 transformant named B7-H1_pCANTA6.
  • B7-H1 mutants have been generated by saturation mutagenesis at all the 14 residues of the PD1 interface using fully randomised NNS primers (Table 24) and the plasmid B7-H1_pCANTA6 as DNA template. Mutagenesis was performed with the Stratagene's QuickChange Multi Site-Directed Mutagenesis Kit (Catalog #200513) according to the manufacturer's instructions. Mutagenic reactions were used to transform E. coli strain TG1 and individual colonies were screened by sequencing to identify B7-H1 variants. A total of 252 variants were identified among the 280 possible (20 amino acids time 14 positions) and cherry picked in 3 96-wells culture plates.
  • Binding of the B7-H1 mutants to anti-B7-H1 antibodies 2.14H9OPT, 2.7A4OPT or Reference Ab#1 have been assessed by phage ELISA after assuring that the B7-H1 extracellular domain in fusion with gene III protein could be displayed at the phage surface.
  • Cherry picked TG1 cultures were grown and superinfected with M13K07 helper phage to produce phage particles displaying B7-H1 mutants at their surface.
  • Phage supernatants were blocked in PBS+3% skimmed milk and incubated in NUNC MaxiSorb plates previously coated overnight with 1ug/mL 2.14H9OPT, 2.7A4OPT or Reference antibody#1 in PBS and blocked with PBS+3% skimmed milk. Bound phages were detected using streptavidin coupled with europium (Perkin Elmer) after incubation with a biotinylated anti-M13 secondary antibody (Progen).
  • Extracellular domain of human B7-H1 wild-type and mutants were expressed in bacteria and purified by affinity chromatography as previously described ( Bannister D. et al., 2006, Biotechnology and bioengineering, 94, 931-937 ).
  • the HTRF® competition assays measured the binding of anti-B7-H1 antibody to HIS FLAG tagged B7-H1. Titration of non tagged B7-H1 samples, prepared as described above, will compete with HIS FLAG tagged B7-H1 for binding to anti-B7-H1 antibody, leading to a reduction in assay signal.
  • the antibodies 2.14H9OPT, 2.7A4OPT and Reference antibody#1 were used to establish competition assays for characterising the relative binding of purified wild-type or mutants B7-H1. This will confirm which B7-H1 residues are required for antibody binding. 10 ⁇ l of B7-H1 sample was added to a 384 well low volume assay plate (Coming 3673).
  • B7-H1 residues Three additional B7-H1 residues (Ile54, Ser117 and Ala121) are not involved in the binding to 2.14H9OPT and 2.7A4OPT as IC 50 of B7-H1 mutants for those residues are similar or marginally modified compared to wild-type B7-H1.
  • Competition data to the 3 anti-B7-H1 antibodies for wild-type and all the other B7-H1 mutants are summarised in the Table 25.
  • Arg113 and Arg125 are strongly involved in the binding to 2.14H9OPT.
  • Replacement by an Ala or other amino acids (Tyr or Leu at position 113 and Gln or Ser at position 125) lead to a total lost of binding to that antibody.
  • Binding profile of those B7-H1 mutants to 2.7A4OPT or Reference antibody#1 is similar to the wild-type B7-H1. This shows that the lost of binding is not due to a general structural modification of B7-H1 as for instance an unfolded protein but to a direct involvement of those residues with 2.14H9OPT binding.
  • Those data also demonstrate that 2.14H9OPT binding epitope is different from 2.7A4OPT and Reference antibody#1 epitopes.
  • Met115, Asp122 and Tyr123 are also involved in the binding to 2.14H9OPT but to a lesser extend.
  • Replacement of Met115 by an Ala does not affect the binding to 2.14H9OPT or 2.7A4OPT but replacement by an Asn leads to a total lost of binding activity to 2.14H9OPT but not to 2.7A4OPT.
  • replacement of Asp 122 by an Asn is affecting the binding to 2.14H9OPT but not to Reference antibody#1.
  • Mutating Tyr123 by an Ala or a Thr greatly modify the binding profile to 2.14H9OPT but not to 2.7A4OPT.
  • a replacement by a Phe does not change the binding to 2.14H9OPT suggesting that the hydroxyl group of the tyrosine 123 is not involved in the binding interaction.
  • PBMCs Peripheral blood monocytes
  • RPMI 1640 Glutamax I media Glutamax I media
  • pen/strep GBCO, 15140
  • Human AB Serum Human AB Serum
  • anti-B7-H1 antibodies in the IgG1-TM format or isotype control were added at the indicated concentrations and cultures returned to 37°C for a further 2 days, at which point supernatants were harvested and analysed by DELFIA for levels of interferon- ⁇ . Enhancement of interferon- ⁇ release by anti-B7-H1 antibodies is shown in Figure 6 .
  • Anti-B7-H1 antibodies 2.9D10, 2.7A4OPT and 2.14H9OPT are able to increase the release of Interferon- ⁇ . This data confirms the ability of 2.9D10, 2.7A4OPT and 2.14H9OPT to enhance antigen specific T-cell responses.
  • B7-H1 has been suggested to have potential inhibitory signalling properties.
  • the potential for anti-B7-H1 antibodies to act as agonist that might drive such inhibitory signalling was tested by examining their ability to inhibit an antigen recall response.
  • PBMCs Peripheral blood monocytes
  • PBMCs Peripheral blood monocytes
  • RPMI 1640 Glutamax I media Glutamax I media
  • pen/strep GBCO, 15140
  • Human AB Serum Human AB Serum
  • the in-vivo activity of anti-human B7-H1 antibodies was investigated in xenograft mouse models using immunocompromised NOD/SCID (non-obese diabetic/severe combined immunodeficiency) mice.
  • the mice were engrafted subcutaneously (SC) with human cancer cell lines expressing human B7-H1 and human CD4+ and CD8+ T cells that were isolated from peripheral blood mononuclear cells of healthy donors and cultured to enrich for alloreactive effector T cells.
  • Intraperiteneal (IP) doses of anti-human B7-H1 antibodies were given to mice inoculated with the human pancreatic cancer cell line HPAC or the human melanoma cell line A375. Effect of the antibodies was observed on tumor growth until a 2000 mm 3 tumor volume or gross tumor necrosis.
  • CD4+ and CD8+ T cell lines human PBMC's from healthy donors were enriched for CD4+ or CD8+ T cells by the addition of 1 mL RosetteSep T cell enrichment product per 20 mL of whole blood. This was followed by a 20-minute incubation and subsequent isolation by density gradient centrifugation using RosetteSep DM-L density medium. After centrifugation, the cells were washed with PBS and resuspended in RPMI 1640 medium supplemented with 10% FBS. Enriched CD4+ and CD8+ T cells were cultured separately for 7-10 days in medium supplemented with rhIL-2 and each combined with mitomyosin C treated A375 or HPAC cells. T cells were collected and separately cultured again for 7-10 days in medium supplemented with rhIL-2 and combined with mitomyosin C treated A375 or HPAC cells. CD4+ and CD8+ T cells were collected and combined at a 1:1 ratio.
  • A375 and HPAC cancer cell lines and PBMC enriched for CD4+ and CD8+ T cells were mixed immediately before subcutaneous (SC) administration at the indicated effector-to-target (E:T) ratios.
  • the inoculation number of cells for each cancer cell line was predetermined by empirical tumor forming dose studies; in general, 2.5 ⁇ 10 6 cells in a total volume of 0.2 mL were engrafted into each animal.
  • IgG1TM isotype control human IgG2a or IgG1OPT (also referred to herein as "IgG1TM") antibody or the anti-B7-H1 antibodies 2.14H9 IgG2a, 2.14H9OPT, 2.7A4OPT or Reference antibody#1 in the IgG1OPT format.
  • IgG1TM isotype control human IgG2a or IgG1OPT
  • Anti-B7-H1 antibodies 2.14H9 IgG2a, 2.14H9OPT, 2.7A4OPT or Reference antibody#1 in the IgG1OPT format.
  • the first dose (200 ⁇ L) of test article was administered IP 1 hour after engraftment of cancer/effector T cells; the animals received up to 4 additional doses of the test article on study days 3, 5, 8 and/or 10.
  • rhIL-2 was administered IP 1 hour after engraftment of cancer/effector T cells; the animals received 4 additional daily doses of rhIL-2 for 4 consecutive days.
  • TGI tumor growth inhibition
  • anti-B7-H1 antibodies 2.14H9 IgG2a and 2.7A4OPT significantly inhibited the growth of HPAC (pancreas) cancer cells at day 30 by up to 61% and 50% respectively as compared to the isotype control group ( Figure 8 and Table 26).
  • Table 26 Study 1 - Treatment groups and percent Tumor Growth Inhibition in mice engrafted with HPAC cancer cells following intravenous administration of anti-B7-H1 antibodies
  • anti-B7-H1 antibodies 2.14H9OPT and 2.7A4OPT inhibited the growth of HPAC (pancreas) cancer cells at day 39 by up to 70% and 68% respectively as compared to the isotype control group ( Figure 9 and Table 27).
  • Table 27 Study 2 - Treatment groups and percent Tumor Growth Inhibition in mice engrafted with HPAC cancer cells following intravenous administration of anti-B7-H1 antibodies
  • anti-B7-H1 antibody 2.14H9OPT significantly inhibited the growth of HPAC (pancreas) cancer cells at day 30 by up to 60% as compared to the isotype control group ( Figure 10 and Table 28).
  • IP administration of 2.14H9 IgG2a or 2.7OPT anti-B7-H1 antibodies in the A375 (melanoma) xenograft model also significantly inhibited tumor growth at day 29 by as much as 64% and 61% respectively as compared to the isotype control group ( Figure 12 and Table 30).
  • Table 30 Study-5.
  • anti-B7-H1 antibody 2.14H9OPT significantly inhibited the growth of A375 (melanoma) cancer cells when combined with T cells at day 25 by up to 93% as compared to the isotype control group ( Figure 15 and Table 33).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Communicable Diseases (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • AIDS & HIV (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
EP10833923.5A 2009-11-24 2010-11-24 Targeted binding agents against b7-h1 Active EP2504364B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PL17179204T PL3279215T3 (pl) 2009-11-24 2010-11-24 Ukierunkowane środki wiążące przeciwko B7-H1
DK17179204.7T DK3279215T3 (da) 2009-11-24 2010-11-24 Målrettede bindemidler mod b7-h1
SI201031562T SI2504364T1 (sl) 2009-11-24 2010-11-24 Usmerjena vezavna sredstva proti B7-H1
PL10833923T PL2504364T3 (pl) 2009-11-24 2010-11-24 Ukierunkowane środki wiążące przeciwko B7-H1
EP17179204.7A EP3279215B1 (en) 2009-11-24 2010-11-24 Targeted binding agents against b7-h1
HRP20171653TT HRP20171653T1 (hr) 2009-11-24 2017-10-30 Vezna sredstva koja služe ciljano protiv b7-h1
HUS1900002C HUS1900002I1 (hu) 2009-11-24 2019-01-14 Targetált kötõdõ ágensek B7-H1 ellen
CY20201100370T CY1122816T1 (el) 2009-11-24 2020-04-22 Στοχοθετημενοι συνδετικοι παραγοντες εναντι β7-η1

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26406109P 2009-11-24 2009-11-24
PCT/US2010/058007 WO2011066389A1 (en) 2009-11-24 2010-11-24 Targeted binding agents against b7-h1

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP17179204.7A Division-Into EP3279215B1 (en) 2009-11-24 2010-11-24 Targeted binding agents against b7-h1
EP17179204.7A Division EP3279215B1 (en) 2009-11-24 2010-11-24 Targeted binding agents against b7-h1

Publications (3)

Publication Number Publication Date
EP2504364A1 EP2504364A1 (en) 2012-10-03
EP2504364A4 EP2504364A4 (en) 2013-11-13
EP2504364B1 true EP2504364B1 (en) 2017-08-09

Family

ID=44066905

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10833923.5A Active EP2504364B1 (en) 2009-11-24 2010-11-24 Targeted binding agents against b7-h1
EP17179204.7A Active EP3279215B1 (en) 2009-11-24 2010-11-24 Targeted binding agents against b7-h1

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17179204.7A Active EP3279215B1 (en) 2009-11-24 2010-11-24 Targeted binding agents against b7-h1

Country Status (27)

Country Link
US (5) US8779108B2 (es)
EP (2) EP2504364B1 (es)
JP (5) JP5837504B2 (es)
KR (4) KR101740171B1 (es)
CN (2) CN104961829B (es)
AU (2) AU2010324757C1 (es)
BR (2) BR122021025338B1 (es)
CA (2) CA2992770A1 (es)
CY (3) CY1119743T1 (es)
DK (2) DK2504364T3 (es)
ES (2) ES2793330T3 (es)
FR (1) FR19C1001I2 (es)
HK (1) HK1246310A1 (es)
HR (2) HRP20171653T1 (es)
HU (3) HUE037159T2 (es)
IL (2) IL219876A (es)
LT (3) LT2504364T (es)
LU (1) LUC00097I2 (es)
MX (3) MX343747B (es)
NO (2) NO2504364T3 (es)
NZ (2) NZ628923A (es)
PL (2) PL2504364T3 (es)
PT (2) PT3279215T (es)
RS (2) RS60033B1 (es)
RU (2) RU2571204C3 (es)
SI (2) SI3279215T1 (es)
WO (1) WO2011066389A1 (es)

Families Citing this family (811)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2618292T3 (es) 2008-01-31 2017-06-21 Inserm - Institut National De La Sante Et De La Recherche Medicale Anticuerpos contra CD39 humano y uso de los mismos para inhibir la actividad de las células T reguladoras
PE20120341A1 (es) 2008-12-09 2012-04-24 Genentech Inc Anticuerpos anti-pd-l1 y su uso para mejorar la funcion de celulas t
MX343747B (es) * 2009-11-24 2016-11-22 Medimmune Ltd Agentes de union diana contra b7-h1.
CN102791738B (zh) 2009-12-10 2015-10-07 霍夫曼-拉罗奇有限公司 优先结合人csf1r胞外域4的抗体及其用途
EP3626739A1 (en) 2011-06-24 2020-03-25 Stephen D. Gillies Light chain immunoglobulin fusion proteins and methods of use thereof
ES2671748T3 (es) 2011-07-21 2018-06-08 Tolero Pharmaceuticals, Inc. Inhibidores heterocíclicos de proteína quinasas
EA026924B1 (ru) 2011-08-01 2017-05-31 Дженентек, Инк. Способы лечения рака с использованием антагонистов, связывающихся с осью pd-1, и ингибиторов mek
RS61033B1 (sr) 2011-11-28 2020-12-31 Merck Patent Gmbh Antitela na pd-l1 i njihova upotreba
BR122022015975B1 (pt) 2012-05-15 2024-01-02 Bristol-Myers Squibb Company Anticorpos monoclonais, kit para o tratamento de um indivíduo afligido com um câncer, processo para medir pd-l1 membranoso em células tumorais isoladas e uso do anticorpo ou uma porção que se liga ao antígeno do mesmo
EP3553086A1 (en) 2012-05-31 2019-10-16 Sorrento Therapeutics Inc. Antigen binding proteins that bind pd-l1
AR091649A1 (es) 2012-07-02 2015-02-18 Bristol Myers Squibb Co Optimizacion de anticuerpos que se fijan al gen de activacion de linfocitos 3 (lag-3) y sus usos
CN104736174B (zh) 2012-07-06 2019-06-14 根马布私人有限公司 具有三重突变的二聚体蛋白质
CN112587671A (zh) 2012-07-18 2021-04-02 博笛生物科技有限公司 癌症的靶向免疫治疗
NZ631405A (en) 2012-10-02 2017-01-27 Bristol Myers Squibb Co Combination of anti-kir antibodies and anti-pd-1 antibodies to treat cancer
CA3139031A1 (en) 2012-10-04 2014-04-10 Dana-Farber Cancer Institute, Inc. Human monoclonal anti-pd-l1 antibodies and methods of use
AU2013337277B2 (en) 2012-11-05 2018-03-08 Foundation Medicine, Inc. Novel NTRK1 fusion molecules and uses thereof
CA2889298C (en) 2012-11-30 2024-01-02 Anton Belousov Identification of patients in need of pd-l1 inhibitor cotherapy
CA2894511C (en) 2012-12-11 2021-12-07 Albert Einstein College Of Medicine Of Yeshiva University Methods for high throughput receptor:ligand identification
AR093984A1 (es) * 2012-12-21 2015-07-01 Merck Sharp & Dohme Anticuerpos que se unen a ligando 1 de muerte programada (pd-l1) humano
US20150344577A1 (en) * 2013-01-11 2015-12-03 Dingfu Biotarget Co., Ltd Agents for treating tumors, use and method thereof
WO2014113729A2 (en) 2013-01-18 2014-07-24 Foundation Mecicine, Inc. Methods of treating cholangiocarcinoma
BR112015018989B1 (pt) 2013-02-22 2023-11-14 Curevac Ag Combinação de vacina/inibidor da via de pd-1, inibidor da via de pd-1 e vacina de rna
BR122021025267B1 (pt) 2013-02-22 2023-12-05 Curevac Ag Partes de kit e composição farmacêutica compreendendo um inibidor da via de pd-1
JP5894714B1 (ja) 2013-03-06 2016-03-30 アストラゼネカ アクチボラグ 上皮成長因子受容体の活性化変異型のキナゾリン阻害剤
WO2014165082A2 (en) * 2013-03-13 2014-10-09 Medimmune, Llc Antibodies and methods of detection
US9302005B2 (en) 2013-03-14 2016-04-05 Mayo Foundation For Medical Education And Research Methods and materials for treating cancer
KR20230070054A (ko) 2013-03-15 2023-05-19 제넨테크, 인크. Pd-1 및 pd-l1 관련 상태를 치료하기 위한 바이오마커 및 방법
AR095363A1 (es) * 2013-03-15 2015-10-14 Genentech Inc Biomarcadores y métodos para el tratamiento de condiciones relacionadas con pd-1 y pd-l1
RU2015147696A (ru) 2013-04-09 2017-05-12 Бостон Байомедикал, Инк. Способы лечения злокачественной опухоли
AR095882A1 (es) 2013-04-22 2015-11-18 Hoffmann La Roche Terapia de combinación de anticuerpos contra csf-1r humano con un agonista de tlr9
EP3027210A1 (en) 2013-08-02 2016-06-08 Aduro Biotech Holdings, Europe B.V. Combining cd27 agonists and immune checkpoint inhibition for immune stimulation
JP6521977B2 (ja) 2013-09-06 2019-05-29 オーリジーン ディスカバリー テクノロジーズ リミテッドAurigene Discovery Technologies Limited 免疫調節剤としての1,2,4−オキサジアゾール誘導体
HUE039012T2 (hu) 2013-09-06 2018-12-28 Aurigene Discovery Tech Ltd Gyûrûs peptidomimetikus vegyületek, mint immunomodulátorok
CA2922655A1 (en) 2013-09-06 2015-03-12 Aurigene Discovery Technologies Limited 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives as immunomodulators
DK3043816T3 (da) 2013-09-11 2019-10-14 Medimmune Ltd Anti-b7-h1-antistoffer til behandling af tumorer
AR097584A1 (es) * 2013-09-12 2016-03-23 Hoffmann La Roche Terapia de combinación de anticuerpos contra el csf-1r humano y anticuerpos contra el pd-l1 humano
WO2015036792A1 (en) 2013-09-16 2015-03-19 Astrazeneca Ab Therapeutic polymeric nanoparticles and methods of making and using same
BR122023024195A2 (pt) 2013-09-20 2023-12-26 Bristol-Myers Squibb Company Usos de anticorpos anti-lag-3 e anticorpos anti-pd-1
EP3049442A4 (en) 2013-09-26 2017-06-28 Costim Pharmaceuticals Inc. Methods for treating hematologic cancers
ES2714708T3 (es) 2013-10-01 2019-05-29 Mayo Found Medical Education & Res Procedimientos para el tratamiento de cáncer en pacientes con niveles elevados de Bim
CA2926856A1 (en) * 2013-10-25 2015-04-30 Dana-Farber Cancer Institute, Inc. Anti-pd-l1 monoclonal antibodies and fragments thereof
DE202014010499U1 (de) 2013-12-17 2015-10-20 Kymab Limited Targeting von humaner PCSK9 zur Cholesterinbehandlung
EP3527587A1 (en) 2013-12-17 2019-08-21 F. Hoffmann-La Roche AG Combination therapy comprising ox40 binding agonists and pd-l1 binding antagonists
CN112353943A (zh) 2013-12-17 2021-02-12 豪夫迈·罗氏有限公司 用pd-1轴结合拮抗剂和紫杉烷治疗癌症的方法
CN105899535A (zh) 2013-12-17 2016-08-24 豪夫迈·罗氏有限公司 用pd-1轴结合拮抗剂和抗cd20抗体治疗癌症的方法
CA2936077C (en) * 2014-01-06 2020-06-30 Expression Pathology, Inc. Srm assay for pd-l1
US10548985B2 (en) 2014-01-10 2020-02-04 Birdie Biopharmaceuticals, Inc. Compounds and compositions for treating EGFR expressing tumors
TWI681969B (zh) 2014-01-23 2020-01-11 美商再生元醫藥公司 針對pd-1的人類抗體
TWI680138B (zh) 2014-01-23 2019-12-21 美商再生元醫藥公司 抗pd-l1之人類抗體
JOP20200094A1 (ar) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc جزيئات جسم مضاد لـ pd-1 واستخداماتها
JOP20200096A1 (ar) 2014-01-31 2017-06-16 Children’S Medical Center Corp جزيئات جسم مضاد لـ tim-3 واستخداماتها
CN113549159A (zh) 2014-02-10 2021-10-26 默克专利有限公司 靶向TGFβ抑制
EP3107538B1 (en) * 2014-02-18 2020-05-27 Health Research, Inc. Combination therapy for hepatocellular carcinoma
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
CA2935878C (en) 2014-03-12 2023-05-02 Curevac Ag Combination of vaccination and ox40 agonists
BR112016022345A2 (pt) 2014-03-31 2017-10-10 Genentech Inc terapia de combinação compreendendo agentes antiangiogênese e agonistas de ligação de ox40
SG11201609285SA (en) 2014-05-13 2016-12-29 Medimmune Ltd Anti-b7-h1 and anti-ctla-4 antibodies for treating non-small cell lung cancer
CA2949121A1 (en) 2014-05-15 2015-11-19 Bristol-Myers Squibb Company Treatment of lung cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent
WO2015179654A1 (en) 2014-05-22 2015-11-26 Mayo Foundation For Medical Education And Research Distinguishing antagonistic and agonistic anti b7-h1 antibodies
RU2016151757A (ru) * 2014-05-29 2018-07-02 Медиммьюн Лимитед Антагонисты pdl-1 и pd-1 для лечения hpv-отрицательных форм рака
JP6666905B2 (ja) 2014-05-29 2020-03-18 スプリング バイオサイエンス コーポレーション Pd−l1抗体及びその使用
SI3151921T1 (sl) 2014-06-06 2019-12-31 Bristol-Myers Squibb Company Protitelesa proti z glukortikoidom induciranim receptorjem za faktor nekroze tumorja(GITR) in njihova uporaba
WO2015195163A1 (en) * 2014-06-20 2015-12-23 R-Pharm Overseas, Inc. Pd-l1 antagonist fully human antibody
EP3166976B1 (en) 2014-07-09 2022-02-23 Birdie Biopharmaceuticals Inc. Anti-pd-l1 combinations for treating tumors
US20160009805A1 (en) 2014-07-11 2016-01-14 Genentech, Inc. Anti-pd-l1 antibodies and diagnostic uses thereof
AR101210A1 (es) 2014-07-15 2016-11-30 Genentech Inc Métodos de tratamiento de cáncer usando antagonistas de unión al eje pd-1 e inhibidores de mek
EP3171896A4 (en) 2014-07-23 2018-03-21 Mayo Foundation for Medical Education and Research Targeting dna-pkcs and b7-h1 to treat cancer
WO2016024228A1 (en) 2014-08-11 2016-02-18 Acerta Pharma B.V. Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, a pd-1 inhibitor and/or a pd-l1 inhibitor
WO2016030455A1 (en) 2014-08-28 2016-03-03 Medimmune Limited Anti-b7-h1 and anti-ctla-4 antibodies for treating non-small lung cancer
HUE043847T2 (hu) 2014-08-28 2019-09-30 Halozyme Inc Hialuronán-lebontó enzimmel és egy immun checkpoint inhibitorral végzett kombinációs terápia
CN112546238A (zh) 2014-09-01 2021-03-26 博笛生物科技有限公司 用于治疗肿瘤的抗-pd-l1结合物
EP3189080A1 (en) * 2014-09-05 2017-07-12 Medimmune Limited Methods for identifying patients responsive to anti-pd-l1 antibody therapy using markers (cxcl9, krt8.trim29, and ifngamma)
WO2016040882A1 (en) 2014-09-13 2016-03-17 Novartis Ag Combination therapies of egfr inhibitors
RS60935B1 (sr) 2014-09-16 2020-11-30 Innate Pharma Neutralizacija inhibitornih puteva u limfocitima
PT3262071T (pt) 2014-09-23 2020-06-16 H Hoffnabb La Roche Ag Métodos de utilização de imunoconjugados anti-cd79b
CA2957813A1 (en) 2014-10-10 2016-04-14 Innate Pharma Cd73 blockade
BR112017007379A2 (pt) 2014-10-14 2017-12-19 Dana Farber Cancer Inst Inc moléculas de anticorpo para pd-l1 e usos das mesmas
JP6625627B2 (ja) 2014-10-14 2019-12-25 ハロザイム インコーポレイテッド アデノシンデアミナーゼ−2(ada2)、その変異体の組成物およびそれを使用する方法
HUE043227T2 (hu) 2014-10-24 2019-08-28 Astrazeneca Ab Kombináció
JP6755866B2 (ja) 2014-11-10 2020-09-16 メディミューン リミテッド Cd73特異的結合分子及びその使用
MX2017006320A (es) 2014-11-17 2017-08-10 Genentech Inc Terapia combinada que comprende agonistas de unión de ox40 y antagonistas de unión del eje de pd-1.
PL3221355T3 (pl) 2014-11-20 2021-03-08 F. Hoffmann-La Roche Ag Terapia skojarzona składająca się z dwuswoistych aktywujących limfocyty T cząsteczek wiążących antygen CD3 i receptor folianowy 1 (FolR1) oraz antagonistów wiązania osi PD-1
DK3221346T3 (da) 2014-11-21 2020-10-12 Bristol Myers Squibb Co Antistoffer omfattende modificerede konstante områder af tungkæden
HUE050596T2 (hu) 2014-11-21 2020-12-28 Bristol Myers Squibb Co Antitestek CD73 ellen és azok felhasználásai
US20160158360A1 (en) 2014-12-05 2016-06-09 Genentech, Inc. Methods and compositions for treating cancer using pd-1 axis antagonists and hpk1 antagonists
AU2015360667B2 (en) 2014-12-09 2021-09-23 Regeneron Pharmaceuticals, Inc. Non-human animals having a humanized cluster of differentiation 274 gene
AU2015369683C1 (en) 2014-12-23 2024-06-20 Bristol-Myers Squibb Company Antibodies to TIGIT
GB201500319D0 (en) 2015-01-09 2015-02-25 Agency Science Tech & Res Anti-PD-L1 antibodies
MA41414A (fr) 2015-01-28 2017-12-05 Centre Nat Rech Scient Protéines de liaison agonistes d' icos
MA41460A (fr) 2015-02-03 2017-12-12 Oncomed Pharm Inc Agents de liaison à la tnfrsf et leurs utilisations
EP3254110B1 (en) 2015-02-03 2020-03-18 Ventana Medical Systems, Inc. Histochemical assay for evaluating expression of programmed death ligand 1 (pd-l1)
WO2016127052A1 (en) 2015-02-05 2016-08-11 Bristol-Myers Squibb Company Cxcl11 and smica as predictive biomarkers for efficacy of anti-ctla4 immunotherapy
WO2016128912A1 (en) 2015-02-12 2016-08-18 Acerta Pharma B.V. Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, a pd-1 inhibitor, and/or a pd-l1 inhibitor
CN107405401B (zh) 2015-02-26 2022-02-01 默克专利股份公司 用于治疗癌症的pd-1/pd-l1抑制剂
US10238650B2 (en) 2015-03-06 2019-03-26 Beyondspring Pharmaceuticals, Inc. Method of treating cancer associated with a RAS mutation
CA2978679A1 (en) 2015-03-06 2016-09-15 Beyondspring Pharmaceuticals, Inc. Method of treating a brain tumor
EP3267984B1 (en) 2015-03-10 2021-11-24 Aurigene Discovery Technologies Limited 1,2,4-oxadiazole and thiadiazole compounds as immunomodulators
US10336824B2 (en) 2015-03-13 2019-07-02 Cytomx Therapeutics, Inc. Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of thereof
WO2016146143A1 (en) 2015-03-16 2016-09-22 Amal Therapeutics Sa Cell penetrating peptides and complexes comprising the same
CN107743495B (zh) 2015-03-23 2021-05-14 拜耳制药股份公司 抗ceacam6抗体及其用途
CN114380909A (zh) 2015-03-30 2022-04-22 斯特库比股份有限公司 特异性针对糖基化的pd-l1的抗体及其使用方法
US11933786B2 (en) 2015-03-30 2024-03-19 Stcube, Inc. Antibodies specific to glycosylated PD-L1 and methods of use thereof
ES2844049T3 (es) 2015-04-07 2021-07-21 Cytlimic Inc Adyuvante para vacunas contra el cáncer
KR20170138494A (ko) * 2015-04-17 2017-12-15 엘살리스 비오떼끄 항-tyr03 항체 및 이의 용도
CN104830788A (zh) * 2015-05-05 2015-08-12 杨光华 基于hbv-hcv抗原的dc细胞、靶向性免疫细胞群及其制备方法和用途
HRP20201900T4 (hr) 2015-05-12 2024-06-07 F. Hoffmann - La Roche Ag Terapeutski i dijagnostički postupci kod raka
WO2016181348A1 (en) 2015-05-14 2016-11-17 Pfizer Inc. Combinations comprising a pyrrolidine-2,5-dione ido1 inhibitor and an anti-body
US20160347848A1 (en) 2015-05-28 2016-12-01 Medimmune Limited Therapeutic combinations and methods for treating neoplasia
US20180155429A1 (en) 2015-05-28 2018-06-07 Bristol-Myers Squibb Company Treatment of pd-l1 positive lung cancer using an anti-pd-1 antibody
WO2016196298A1 (en) 2015-05-29 2016-12-08 Genentech, Inc. Therapeutic and diagnolstic methods for cancer
HRP20230060T1 (hr) 2015-05-29 2023-03-17 Bristol-Myers Squibb Company Antitijela protiv ox40 i njihova primjena
CN113603784A (zh) 2015-05-29 2021-11-05 艾吉纳斯公司 抗-ctla-4抗体及其使用方法
JP6884111B2 (ja) 2015-05-29 2021-06-09 ジェネンテック, インコーポレイテッド 癌におけるpd−l1プロモーターのメチル化
US11078278B2 (en) 2015-05-29 2021-08-03 Bristol-Myers Squibb Company Treatment of renal cell carcinoma
KR20180011117A (ko) 2015-05-31 2018-01-31 큐어제닉스 코포레이션 면역 요법용 복합 조성물
AU2016271475A1 (en) 2015-06-03 2017-12-21 Boston Biomedical, Inc. Compositions comprising a cancer stemness inhibitor and an immunotherapeutic agent for use in treating cancer
WO2016200835A1 (en) 2015-06-08 2016-12-15 Genentech, Inc. Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists
WO2016197204A1 (en) 2015-06-11 2016-12-15 Bionomics Limited Pharmaceutical combination and uses thereof
US10696745B2 (en) 2015-06-11 2020-06-30 Wuxi Biologics (Shanghai) Co. Ltd. Anti-PD-L1 antibodies
BR112017026189A2 (pt) 2015-06-12 2018-08-14 Bristol Myers Squibb Co tratamento de câncer através do bloqueio combinado das vias de sinalização de pd-1 e cxcr4
KR20180018762A (ko) 2015-06-16 2018-02-21 메르크 파텐트 게엠베하 Pd-l1 길항제 조합 치료
CA2986263A1 (en) 2015-06-17 2016-12-22 Genentech, Inc. Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes
SI3313441T1 (sl) 2015-06-24 2024-05-31 Janssen Biotech, Inc., Imunomodulacija in zdravljenje solidnih tumorjev s protitelesi, ki se specifično vežejo na cd38
BR112017028353A2 (pt) 2015-06-29 2018-09-04 The Rockfeller University anticorpos para cd40 com atividade agonista melhorada
WO2017011399A1 (en) 2015-07-13 2017-01-19 Beyondspring Pharmaceuticals, Inc Plinabulin compositions
RS61532B1 (sr) 2015-07-14 2021-04-29 Bristol Myers Squibb Co Postupak lečenja kancera primenom inhibitora imunološke kontrolne tačke; antitelo koje se vezuje za receptor programirane smrti-1 (pd-1) ili ligand programirane smrti-1 (pd-l1)
KR20180036974A (ko) 2015-07-16 2018-04-10 바이오엑셀 테라퓨틱스 인코포레이티드 면역조절을 이용하는 암의 치료를 위한 신규한 접근법
EP3316902A1 (en) 2015-07-29 2018-05-09 Novartis AG Combination therapies comprising antibody molecules to tim-3
PL3317301T3 (pl) 2015-07-29 2021-11-15 Novartis Ag Terapie skojarzone zawierające cząsteczki przeciwciał przeciw lag-3
EP3328418A1 (en) 2015-07-29 2018-06-06 Novartis AG Combination therapies comprising antibody molecules to pd-1
CN106397592A (zh) 2015-07-31 2017-02-15 苏州康宁杰瑞生物科技有限公司 针对程序性死亡配体(pd-l1)的单域抗体及其衍生蛋白
WO2017020291A1 (en) 2015-08-06 2017-02-09 Wuxi Biologics (Shanghai) Co. Ltd. Novel anti-pd-l1 antibodies
WO2017025871A1 (en) 2015-08-07 2017-02-16 Glaxosmithkline Intellectual Property Development Limited Combination therapy comprising anti ctla-4 antibodies
AR105654A1 (es) 2015-08-24 2017-10-25 Lilly Co Eli Anticuerpos pd-l1 (ligando 1 de muerte celular programada)
EA039736B1 (ru) * 2015-09-15 2022-03-04 Сайтомкс Терапьютикс, Инк. Анти-pdl1-антитела, активируемые анти-pdl1-антитела и способы их применения
MA44909A (fr) 2015-09-15 2018-07-25 Acerta Pharma Bv Association thérapeutique d'un inhibiteur du cd19 et d'un inhibiteur de la btk
ES2839212T3 (es) 2015-09-29 2021-07-05 Inst Nat Sante Rech Med Métodos para determinar el estado metabólico de linfomas B
WO2017058780A1 (en) 2015-09-30 2017-04-06 Merck Patent Gmbh Combination of a pd-1 axis binding antagonist and an alk inhibitor for treating alk-negative cancer
CN106565836B (zh) * 2015-10-10 2020-08-18 中国科学院广州生物医药与健康研究院 高亲和力的可溶性pdl-1分子
WO2017064043A1 (en) 2015-10-12 2017-04-20 Innate Pharma Cd73 blocking agents
WO2017075045A2 (en) * 2015-10-30 2017-05-04 Mayo Foundation For Medical Education And Research Antibodies to b7-h1
KR20180069070A (ko) 2015-11-03 2018-06-22 얀센 바이오테크 인코포레이티드 Tim-3과 특이적으로 결합하는 항체 및 그의 용도
CA3003969A1 (en) 2015-11-06 2017-05-11 Orionis Biosciences Nv Bi-functional chimeric proteins and uses thereof
WO2017087280A1 (en) 2015-11-16 2017-05-26 Genentech, Inc. Methods of treating her2-positive cancer
RU2727914C2 (ru) 2015-11-17 2020-07-24 Сучжоу Санкадия Биофармасьютикалз Ко., Лтд. Антитело против лиганда 1 запрограммированной гибели клеток (pd-l1), его антигенсвязывающий фрагмент и их медицинское применение
TWI795347B (zh) 2015-11-18 2023-03-11 美商必治妥施貴寶公司 使用抗pd-1抗體與抗ctla-4抗體之組合以治療肺癌
MX2018006072A (es) 2015-11-19 2018-08-01 Squibb Bristol Myers Co Anticuerpos contra receptor de factor de necrosis de tumor inducido por glucocorticoides (gitr) y usos de los mismos.
AU2016355320B2 (en) 2015-11-19 2023-12-07 Genentech, Inc. Methods of treating cancer using B-RAF inhibitors and immune checkpoint inhibitors
US20190256608A1 (en) 2015-12-01 2019-08-22 Glaxosmithkline Intellectual Property Development Limited Combination treatments and uses and methods thereof
EP3383412A4 (en) 2015-12-02 2019-06-05 Stcube, Inc. SPECIFIC ANTIBODIES OF GLYCOSYLATED PD-1 PROTEIN AND METHODS OF USE
CR20180286A (es) 2015-12-03 2018-07-16 Glaxosmithkline Ip Dev Ltd Dinucleotidos de purina cíclicos como moduladores de sting
WO2017098421A1 (en) 2015-12-08 2017-06-15 Glaxosmithkline Intellectual Property Development Limited Benzothiadiazine compounds
EP3178848A1 (en) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies
CA2997406C (en) 2015-12-09 2024-05-28 F. Hoffmann-La Roche Ag Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies or cytokine release
WO2017100541A1 (en) * 2015-12-10 2017-06-15 Gerd Binnig Methods for treatment and selection of patients responsive to immune mediated cancer therapy
BR112018011781A2 (pt) 2015-12-14 2018-12-04 Macrogenics Inc molécula biespecífica possuindo um ou mais sítios de ligação a epítopo capazes de ligação imunoespecífica a (um) epítopo(s) de pd-1 e um ou mais sítios de ligação a epítopo capazes de ligação imunoespecífica a (um) epítopo(s) de ctla-4, e composição farmacêutica
CN108495651A (zh) 2015-12-17 2018-09-04 诺华股份有限公司 抗pd-1的抗体分子及其用途
JP7082055B2 (ja) 2015-12-22 2022-06-07 ノバルティス アーゲー 抗癌治療における組み合わせ使用のためのメソテリンキメラ抗原受容体(car)およびpd-l1阻害剤に対する抗体
ES2837155T3 (es) 2016-01-04 2021-06-29 Inst Nat Sante Rech Med Uso de PD-1 y Tim-3 como medida de células CD8+ para predecir y tratar el carcinoma de células renales
CN106939047B (zh) * 2016-01-04 2021-08-31 江苏怀瑜药业有限公司 一种pd-l1抗体及其制备方法
CN106943597A (zh) 2016-01-07 2017-07-14 博笛生物科技(北京)有限公司 用于治疗肿瘤的抗-egfr组合
CN106943598A (zh) 2016-01-07 2017-07-14 博笛生物科技(北京)有限公司 用于治疗肿瘤的抗-her2组合
CN115554406A (zh) 2016-01-07 2023-01-03 博笛生物科技有限公司 用于治疗肿瘤的抗-cd20组合
AU2017205089B2 (en) 2016-01-08 2023-10-05 F. Hoffmann-La Roche Ag Methods of treating CEA-positive cancers using PD-1 axis binding antagonists and anti-CEA/anti-CD3 bispecific antibodies
PL3402503T3 (pl) 2016-01-13 2021-04-19 Acerta Pharma B.V. Kombinacje terapeutyczne antyfolianu oraz inhibitora btk
PT3405495T (pt) 2016-01-21 2021-05-14 Innate Pharma Neutralização de vias inibidoras em linfócitos
EP4059957A1 (en) 2016-02-05 2022-09-21 Orionis Biosciences BV Bispecific signaling agents and uses thereof
IL260933B2 (en) 2016-02-08 2023-04-01 Beyondspring Pharmaceuticals Inc Preparations containing tocorsol or its analogues
HUE058114T2 (hu) 2016-02-15 2022-07-28 Astrazeneca Ab Cediranib rögzített idõszakos adagolását tartalmazó eljárások
US11434294B2 (en) * 2016-02-25 2022-09-06 Cell Medica, Inc. Binding members to PD-L1
MX2018010361A (es) 2016-02-29 2019-07-08 Genentech Inc Métodos terapéuticos y de diagnóstico para el cáncer.
WO2017151727A1 (en) 2016-03-01 2017-09-08 North Carolina State University Enhanced cancer immunotherapy by microneedle patch-assisted delivery
US20190284293A1 (en) 2016-03-04 2019-09-19 Bristol-Myers Squibb Company Combination therapy with anti-cd73 antibodies
MX2017016851A (es) 2016-03-04 2018-04-30 Sichuan Kelun Biotech Biopharmaceutical Co Ltd Anticuerpo para el ligando del factor 1 de muerte celular programada (pdl-1), composicion farmaceutica del mismo y uso de los mismos.
US11078274B2 (en) 2016-03-08 2021-08-03 Innate Pharma Siglec neutralizing antibodies
WO2017153952A1 (en) 2016-03-10 2017-09-14 Glaxosmithkline Intellectual Property Development Limited 5-sulfamoyl-2-hydroxybenzamide derivatives
EP3442542A4 (en) 2016-03-15 2020-01-15 North Carolina State University NANOPARTICLE, DOSAGE FORM WITH CONTROLLED RELEASE, AND METHOD FOR RELEASING AN IMMUNOTHERAPEUTIC
JP6430025B2 (ja) 2016-03-15 2018-11-28 中外製薬株式会社 Pd−1系結合アンタゴニストおよび抗gpc3抗体を使用して癌を治療する方法
RS65430B1 (sr) 2016-03-16 2024-05-31 Amal Therapeutics Sa Kombinacija modulatora imunološke kontrolne tačke i kompleksa koji sadrži peptid koji prodire u ćeliju, teret i tlr peptidni agonist za primenu u medicini
WO2017161154A2 (en) 2016-03-16 2017-09-21 H. Lee Moffitt Cancer Center & Research Institute, Inc. Pd1 and pdl-1 expression during progression from myelodysplastic syndrome to acute myelogenous leukemia
RU2744959C2 (ru) 2016-03-23 2021-03-17 Мэбспейс Байосайнсиз (Сучжоу) Ко., Лтд Новые анти-pd-l1 антитела
EP3436481B1 (en) 2016-03-29 2021-06-30 Stcube, Inc. Dual function antibodies specific to glycosylated pd-l1 and methods of use thereof
WO2017167921A1 (en) 2016-03-30 2017-10-05 Centre Léon-Bérard Lymphocytes expressing cd73 in cancerous patient dictates therapy
WO2017176925A1 (en) 2016-04-05 2017-10-12 Bristol-Myers Squibb Company Cytokine profiling analysis for predicting prognosis of a patient in need of an anti-cancer treatment
WO2017176565A1 (en) 2016-04-07 2017-10-12 Eli Lilly And Company Combinations of an anti-b7-h1 antibody and a cxcr4 peptide antagonist for treating a solid tumor
EP3440076B1 (en) 2016-04-07 2022-06-01 GlaxoSmithKline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
WO2017175156A1 (en) 2016-04-07 2017-10-12 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides useful as protein modulators
JP2019515670A (ja) 2016-04-15 2019-06-13 ジェネンテック, インコーポレイテッド がんをモニタリングし治療するための方法
EP3443350B1 (en) 2016-04-15 2020-12-09 H. Hoffnabb-La Roche Ag Methods for monitoring and treating cancer
CN109071665B (zh) 2016-04-18 2022-11-01 塞德斯医疗公司 结合人cd40的激动性抗体及其用途
MX2018012651A (es) * 2016-04-25 2019-01-30 Medimmune Llc Composiciones que comprenden coformulacion de anticuerpos anti-ligando-1 de muerte celular programada (pd-l1) y anti-antigeno-4 asociado a linfocitos t citotoxicos (ctla-4).
WO2017191545A1 (en) 2016-05-05 2017-11-09 Glaxosmithkline Intellectual Property (No.2) Limited Enhancer of zeste homolog 2 inhibitors
TWI755395B (zh) 2016-05-13 2022-02-21 美商再生元醫藥公司 抗-pd-1抗體與輻射治療癌症之組合
JP7105200B2 (ja) 2016-05-13 2022-07-22 オリオニス バイオサイエンシズ ビーブイ 標的突然変異体インターフェロン-ベータおよびその使用
EP3455245A2 (en) 2016-05-13 2019-03-20 Orionis Biosciences NV Therapeutic targeting of non-cellular structures
EP3458095A4 (en) 2016-05-18 2019-11-27 Albert Einstein College of Medicine PD-L1 POLYPEPTIDE VARIANTS, T-LYMPHOCYTE MODULATOR MULTIMERIC POLYPEPTIDES AND METHODS OF USING SAME
KR20190019068A (ko) 2016-05-18 2019-02-26 큐 바이오파마, 인크. T-세포 조절 다량체 폴리펩타이드 및 이의 사용 방법
CN115845070A (zh) 2016-05-20 2023-03-28 伊莱利利公司 用notch和pd-1或pd-l1抑制剂的组合治疗
JP7267012B2 (ja) 2016-05-27 2023-05-01 アジェナス インコーポレイテッド 抗tim-3抗体及びその使用方法
EP3463405A4 (en) 2016-05-27 2020-02-26 DNAtrix, Inc. ADENOVIRUS AND IMMUNOMODULATORY POLYTHERAPY
US10994033B2 (en) 2016-06-01 2021-05-04 Bristol-Myers Squibb Company Imaging methods using 18F-radiolabeled biologics
EP3252078A1 (en) 2016-06-02 2017-12-06 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer
BR112019022558A2 (pt) 2016-06-02 2020-05-19 Hoffmann La Roche anticorpos, métodos para tratar ou retardar a progressão de uma doença proliferativa e para tratar ou retardar a progressão do câncer em um indivíduo, composições farmacêuticas, kit, usos de uma combinação de um anticorpo anti-cd20 e de um anticorpo e invenção
FI3464368T3 (fi) 2016-06-02 2023-09-12 Bristol Myers Squibb Co Anti-pd-1-vasta-aineen käyttö yhdistelmänä anti-cd30-vasta-aineen kanssa lymfooman hoitamisessa
KR20230038318A (ko) 2016-06-02 2023-03-17 브리스톨-마이어스 스큅 컴퍼니 불응성 호지킨 림프종에서의 니볼루맙을 사용한 pd-1 차단
EP3464369A1 (en) 2016-06-03 2019-04-10 Bristol-Myers Squibb Company Anti-pd-1 antibody for use in a method of treating a tumor
KR20190015407A (ko) 2016-06-03 2019-02-13 브리스톨-마이어스 스큅 컴퍼니 재발성 소세포 폐암의 치료 방법에 사용하기 위한 항-pd-1 항체
KR102515509B1 (ko) 2016-06-03 2023-03-28 브리스톨-마이어스 스큅 컴퍼니 결장직장암을 갖는 환자의 치료에서의 항-pd-1 항체의 용도
EP3463337A4 (en) 2016-06-06 2020-02-12 Beyondspring Pharmaceuticals, Inc. COMPOSITION AND METHOD FOR REDUCING NEUTROPENIA
BR112018075615A2 (pt) 2016-06-08 2019-07-02 Glaxosmithkline Ip Dev Ltd compostos químicos
JP2019521111A (ja) 2016-06-08 2019-07-25 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited Atf4経路阻害剤としての化学化合物
TWI762487B (zh) * 2016-06-08 2022-05-01 美商艾伯維有限公司 抗-b7-h3抗體及抗體藥物結合物
CA3029813A1 (en) 2016-06-13 2017-12-21 Torque Therapeutics, Inc. Methods and compositions for promoting immune cell function
KR102379464B1 (ko) 2016-06-20 2022-03-29 키맵 리미티드 항-pd-l1 항체
US9567399B1 (en) 2016-06-20 2017-02-14 Kymab Limited Antibodies and immunocytokines
WO2018029474A2 (en) 2016-08-09 2018-02-15 Kymab Limited Anti-icos antibodies
US10590199B2 (en) * 2016-06-29 2020-03-17 Checkpoint Therapeutics, Inc. PD-L1-specific antibodies and methods of using the same
RU2656181C1 (ru) * 2016-07-13 2018-05-31 Закрытое Акционерное Общество "Биокад" Анти-pd-1-антитела, способ их получения и способ применения
TWI780057B (zh) 2016-07-14 2022-10-11 美商必治妥美雅史谷比公司 針對tim3之抗體及其用途
GB201612520D0 (en) 2016-07-19 2016-08-31 F-Star Beta Ltd Binding molecules
KR20190031299A (ko) 2016-07-20 2019-03-25 주식회사 에스티큐브 글리코실화된 pd-l1에 결합하는 항체의 조합을 사용하는 암 치료 방법
US20190241573A1 (en) 2016-07-20 2019-08-08 Glaxosmithkline Intellectual Property Development Limited Isoquinoline derivatives as perk inhibitors
CN106243223B (zh) * 2016-07-28 2019-03-05 北京百特美博生物科技有限公司 抗人pdl1抗体及其用途
CN109476748B (zh) 2016-08-08 2023-05-23 豪夫迈·罗氏有限公司 用于癌症的治疗和诊断方法
TWI760352B (zh) 2016-08-09 2022-04-11 英商克馬伯有限公司 抗icos抗體
EP3496752B1 (en) 2016-08-12 2022-05-18 Genentech, Inc. Combination therapy with a mek inhibitor, a pd-1 axis inhibitor, and a vegf inhibitor
MX2019001896A (es) * 2016-08-15 2019-08-29 Univ Hokkaido Nat Univ Corp Anticuerpo anti-pd-l1.
EP3504239B1 (en) 2016-08-25 2024-05-29 F. Hoffmann-La Roche AG Intermittent dosing of an anti-csf-1r antibody in combination with macrophage activating agent
BR112019004185A2 (pt) 2016-09-09 2019-09-03 Lab Francais Du Fractionnement combinação de um anticorpo anti-cd20, inibidor de pi3-quinase-delta inibidor e anticorpo anti-pd-1 ou anti-pd-l1 para tratamento de cânceres hematológicos
US20190218294A1 (en) 2016-09-09 2019-07-18 Bristol-Myers Squibb Company Use of an anti-pd-1 antibody in combination with an anti-mesothelin antibody in cancer treatment
JP2019529418A (ja) 2016-09-16 2019-10-17 バイオノミックス リミテッド 抗体およびチェックポイント阻害剤の併用療法
MX2019002968A (es) 2016-09-21 2019-10-15 Amal Therapeutics Sa Un complejo novedoso que comprende un peptido penetrante de celulas, una carga y un agonista de peptido de tlr para tratamiento de cancer colorrectal.
WO2018055145A1 (en) 2016-09-26 2018-03-29 F. Hoffmann-La Roche Ag Predicting response to pd-1 axis inhibitors
JP2019537619A (ja) 2016-09-27 2019-12-26 オンコロジー、インコーポレイテッド β2−糖タンパク質1のレベルに基づいて、バビツキシマブで癌を治療するための方法、およびそのためのアッセイ
KR20190061030A (ko) 2016-09-29 2019-06-04 제넨테크, 인크. Mek 억제제, pd-1 축 억제제 및 탁산을 사용한 조합 요법
AU2017339517B2 (en) 2016-10-06 2024-03-14 Foundation Medicine, Inc. Therapeutic and diagnostic methods for cancer
BR112019006504A2 (pt) 2016-10-06 2019-06-25 Merck Patent Gmbh regime de dosagem de avelumabe para o tratamento de câncer
EP3522917A2 (en) 2016-10-07 2019-08-14 Enterome S.A. Microbiota sequence variants of tumor-related antigenic epitopes
US11478538B2 (en) 2016-10-07 2022-10-25 Enterome S.A. Immunogenic compounds for cancer therapy
US11478537B2 (en) 2016-10-07 2022-10-25 Enterome S.A. Immunogenic compounds for cancer therapy
MX2019003683A (es) 2016-10-11 2019-08-22 Agenus Inc Anticuerpos anti gen 3 de activación linfocítica (lag 3 ) y métodos para usarlos.
US11291718B2 (en) 2016-10-11 2022-04-05 Cytlimic Inc. Method for treating cancer by administering a toll-like receptor agonist and LAG-3 IgG fusion protein
US11084859B2 (en) 2016-10-24 2021-08-10 Orionis Biosciences BV Targeted mutant interferon-gamma and uses thereof
WO2018081621A1 (en) 2016-10-28 2018-05-03 Bristol-Myers Squibb Company Methods of treating urothelial carcinoma using an anti-pd-1 antibody
RU2770590C2 (ru) * 2016-10-30 2022-04-18 Шанхай Хенлиус Байотек, Инк. Антитела против pd-l1 и их варианты
TWI788307B (zh) 2016-10-31 2023-01-01 美商艾歐凡斯生物治療公司 用於擴增腫瘤浸潤性淋巴細胞之工程化人造抗原呈現細胞
JP7039582B2 (ja) 2016-11-03 2022-03-22 ブリストル-マイヤーズ スクイブ カンパニー 活性化可能な抗ctla-4抗体およびその使用
EP3534947A1 (en) 2016-11-03 2019-09-11 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses & methods
CN109923128A (zh) 2016-11-15 2019-06-21 基因泰克公司 用于用抗cd20/抗cd3双特异性抗体进行治疗的给药
WO2018094275A1 (en) 2016-11-18 2018-05-24 Tolero Pharmaceuticals, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
US11299469B2 (en) 2016-11-29 2022-04-12 Sumitomo Dainippon Pharma Oncology, Inc. Naphthofuran derivatives, preparation, and methods of use thereof
WO2018099539A1 (en) 2016-11-29 2018-06-07 Horst Lindhofer Combination of t-cell redirecting multifunctional antibodies with immune checkpoint modulators and uses thereof
JP2020511407A (ja) 2016-12-01 2020-04-16 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited 併用療法
CN110248676A (zh) 2016-12-01 2019-09-17 葛兰素史密斯克莱知识产权发展有限公司 组合疗法
EP3548083A1 (en) 2016-12-03 2019-10-09 Juno Therapeutics, Inc. Methods for modulation of car-t cells
MD3551660T2 (ro) 2016-12-07 2024-03-31 Agenus Inc Anticorpi anti-CTLA-4 și procedee de utilizare a acestora
JP7106538B2 (ja) 2016-12-07 2022-07-26 アジェナス インコーポレイテッド 抗体およびその使用方法
EP3552626A4 (en) 2016-12-12 2020-06-10 Daiichi Sankyo Company, Limited ASSOCIATION OF AN ANTIBODY DRUG CONJUGATE AND AN IMMUNE CONTROL POINT INHIBITOR
TW201827076A (zh) 2016-12-12 2018-08-01 美商建南德克公司 使用抗pd-l1抗體及抗雄激素治療癌症之方法
WO2018111976A1 (en) 2016-12-14 2018-06-21 Janssen Biotech, Inc. Pd-l1 binding fibronectin type iii domains
BR112019012154A2 (pt) 2016-12-14 2019-11-12 Janssen Biotech Inc domínios do tipo iii da fibronectina de ligação a cd8a
US10611823B2 (en) 2016-12-14 2020-04-07 Hanssen Biotech, Inc CD137 binding fibronectin type III domains
WO2018112364A1 (en) 2016-12-16 2018-06-21 Evelo Biosciences, Inc. Combination therapies for treating melanoma
WO2018112360A1 (en) 2016-12-16 2018-06-21 Evelo Biosciences, Inc. Combination therapies for treating cancer
EP3558360A1 (en) 2016-12-22 2019-10-30 F. Hoffmann-La Roche AG Treatment of tumors with an anti-csf-1r antibody in combination with an anti-pd-l1 antibody after failure of anti-pd-l1/pd1 treatment
EP3558339B1 (en) 2016-12-22 2024-01-24 Cue Biopharma, Inc. T-cell modulatory multimeric polypeptides and methods of use thereof
EP3565837B1 (en) 2017-01-05 2024-04-10 Netris Pharma Combined treatment with netrin-1 interfering drug and immune checkpoint inhibitors drugs
CN110431135A (zh) 2017-01-06 2019-11-08 大连万春布林医药有限公司 微管蛋白结合化合物及其治疗用途
US11584733B2 (en) 2017-01-09 2023-02-21 Shuttle Pharmaceuticals, Inc. Selective histone deacetylase inhibitors for the treatment of human disease
MA47215A (fr) 2017-01-09 2019-11-13 Bioxcel Therapeutics Inc Procédés prédictifs et diagnostiques pour le cancer de la prostate
EP3565829A4 (en) 2017-01-09 2021-01-27 Cue Biopharma, Inc. MULTIMER POLYPEPTIDES T-LYMPHOCYTE MODULATORS AND THEIR METHODS OF USE
WO2018129533A1 (en) 2017-01-09 2018-07-12 Shuttle Pharmaceuticals, Llc Selective histone deacetylase inhibitors for the treatment of human disease
KR20190103226A (ko) 2017-01-13 2019-09-04 아게누스 인코포레이티드 Ny-eso-1에 결합하는 t 세포 수용체 및 이의 사용 방법
AU2018211561B2 (en) 2017-01-24 2020-04-30 Pfizer Inc. Calicheamicin derivatives and antibody drug conjugates thereof
CA3052190A1 (en) 2017-02-01 2018-08-09 Beyondspring Pharmaceuticals, Inc. Method of reducing neutropenia
WO2018144999A1 (en) 2017-02-06 2018-08-09 Orionis Biosciences, Inc. Targeted engineered interferon and uses thereof
CA3052523A1 (en) 2017-02-06 2018-08-09 Orionis Biosciences Nv Targeted chimeric proteins and uses thereof
WO2018141959A1 (en) 2017-02-06 2018-08-09 Innate Pharma Immunomodulatory antibody drug conjugates binding to a human mica polypeptide
US11325976B2 (en) 2017-02-16 2022-05-10 Ying Zhang Anti-programmed death-ligand 1 (PD-L1) antibodies and therapeutic uses thereof
TWI674261B (zh) 2017-02-17 2019-10-11 美商英能腫瘤免疫股份有限公司 Nlrp3 調節劑
CN108456251A (zh) * 2017-02-21 2018-08-28 上海君实生物医药科技股份有限公司 抗pd-l1抗体及其应用
US11292842B2 (en) 2017-02-21 2022-04-05 Regeneron Pharmaceuticals, Inc. Anti-PD-1 antibodies for treatment of lung cancer
EP4389226A2 (en) 2017-02-24 2024-06-26 MacroGenics, Inc. Bispecific binding molecules that are capable of binding cd137 and tumor antigens, and uses thereof
JP2020509009A (ja) 2017-02-27 2020-03-26 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited キナーゼ阻害剤としての複素環式アミド
KR20190134631A (ko) 2017-03-01 2019-12-04 제넨테크, 인크. 암의 진단 및 치료 방법
WO2018161872A1 (zh) * 2017-03-06 2018-09-13 江苏恒瑞医药股份有限公司 抗b7-h3抗体、其抗原结合片段及其医药用途
MA49823A (fr) * 2017-03-09 2021-04-21 Genmab As Anticorps dirigés contre pd-l1
IL269000B2 (en) 2017-03-15 2024-06-01 Cue Biopharma Inc Methods for modulating an immune response
WO2018167147A1 (en) 2017-03-15 2018-09-20 F. Hoffmann-La Roche Ag Azaindoles as inhibitors of hpk1
KR102584011B1 (ko) 2017-03-16 2023-09-27 이나뜨 파르마 에스.에이. 암 치료를 위한 조성물 및 방법
US20210186982A1 (en) 2017-03-24 2021-06-24 Universite Nice Sophia Antipolis Methods and compositions for treating melanoma
BR112019018093A2 (pt) 2017-03-30 2020-06-16 F. Hoffmann-La Roche Ag Compostos, composição, método de inibição de hpk1, métodos para melhorar uma resposta imune e para tratar um distúrbio e usos do composto
JP7166278B2 (ja) 2017-03-30 2022-11-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング がんの治療のための抗pd-l1抗体およびdna-pkインヒビターの併用
US20180282282A1 (en) 2017-03-30 2018-10-04 Genentech, Inc. Isoquinolines as inhibitors of hpk1
KR20190133213A (ko) 2017-03-31 2019-12-02 브리스톨-마이어스 스큅 컴퍼니 종양을 치료하는 방법
CA3055769A1 (en) 2017-04-03 2018-10-11 Oncologie, Inc. Methods for treating cancer using ps-targeting antibodies with immuno-oncology agents
US11603407B2 (en) 2017-04-06 2023-03-14 Regeneron Pharmaceuticals, Inc. Stable antibody formulation
TWI788340B (zh) 2017-04-07 2023-01-01 美商必治妥美雅史谷比公司 抗icos促效劑抗體及其用途
AU2018253176B2 (en) 2017-04-13 2023-02-02 Agenus Inc. Anti-CD137 antibodies and methods of use thereof
WO2018189220A1 (en) 2017-04-13 2018-10-18 F. Hoffmann-La Roche Ag An interleukin-2 immunoconjugate, a cd40 agonist, and optionally a pd-1 axis binding antagonist for use in methods of treating cancer
TW201839400A (zh) 2017-04-14 2018-11-01 美商建南德克公司 用於癌症之診斷及治療方法
RU2665790C1 (ru) 2017-04-17 2018-09-04 Закрытое Акционерное Общество "Биокад" Моноклональное антитело к pd-l1
CN108728444A (zh) 2017-04-18 2018-11-02 长春华普生物技术股份有限公司 免疫调节性多核苷酸及其应用
WO2018195552A1 (en) 2017-04-21 2018-10-25 Sillajen, Inc. Oncolytic vaccinia virus and checkpoint inhibitor combination therapy
WO2018200430A1 (en) 2017-04-26 2018-11-01 Bristol-Myers Squibb Company Methods of antibody production that minimize disulfide bond reduction
CN108794467A (zh) 2017-04-27 2018-11-13 博笛生物科技有限公司 2-氨基-喹啉衍生物
AR111651A1 (es) 2017-04-28 2019-08-07 Novartis Ag Conjugados de anticuerpos que comprenden agonistas del receptor de tipo toll y terapias de combinación
SI3618863T1 (sl) 2017-05-01 2023-12-29 Agenus Inc. Protitelesa proti tigitu in načini uporabe njih
AU2018264455A1 (en) 2017-05-12 2019-11-14 Jiangsu Hengrui Medicine Co., Ltd. Fusion protein containing TGF-beta receptor and medicinal uses thereof
MX2019013751A (es) 2017-05-16 2020-01-15 Jiangsu Hengrui Medicine Co Composicion farmaceutica de anticuerpos del ligando 1 de muerte programada y su uso.
CN110869392A (zh) 2017-05-16 2020-03-06 百时美施贵宝公司 用抗gitr激动性抗体治疗癌症
CA3062656A1 (en) 2017-05-17 2018-11-22 Boston Biomedical, Inc. Methods for treating cancer
MA49144A (fr) 2017-05-18 2020-03-25 Tesaro Inc Polythérapies pour le traitement du cancer
CN116333129A (zh) 2017-05-25 2023-06-27 百时美施贵宝公司 包含经修饰的重链恒定区的抗体
KR20200031571A (ko) 2017-05-29 2020-03-24 가마맵스 파마 암 연관 면역억제의 억제제
HUE065242T2 (hu) 2017-05-30 2024-05-28 Bristol Myers Squibb Co LAG-3-pozitív tumorok kezelése
CA3065304A1 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Compositions comprising an anti-lag-3 antibody or an anti-lag-3 antibody and an anti-pd-1 or anti-pd-l1 antibody
AU2018277559A1 (en) 2017-05-30 2019-10-17 Bristol-Myers Squibb Company Compositions comprising a combination of an anti-LAG-3 antibody, a PD-1 pathway inhibitor, and an immunotherapeutic agent
US11566073B2 (en) 2017-06-01 2023-01-31 Bristol-Myers Squibb Company Methods of treating a tumor using an anti-PD-1 antibody
CN110914302A (zh) 2017-06-01 2020-03-24 赛托姆克斯治疗学股份有限公司 可活化抗pdl1抗体及其使用方法
WO2018225093A1 (en) 2017-06-07 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Chemical compounds as atf4 pathway inhibitors
CA3066048A1 (en) 2017-06-09 2018-12-13 Glaxosmithkline Intellectual Property Development Limited Combination therapy
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
GB201709808D0 (en) 2017-06-20 2017-08-02 Kymab Ltd Antibodies
EP3642240A1 (en) 2017-06-22 2020-04-29 Novartis AG Antibody molecules to cd73 and uses thereof
WO2018235056A1 (en) 2017-06-22 2018-12-27 Novartis Ag IL-1BETA BINDING ANTIBODIES FOR USE IN THE TREATMENT OF CANCER
JP2020524694A (ja) 2017-06-22 2020-08-20 ノバルティス アーゲー がんの処置における使用のためのIL−1β結合性抗体
CN118307674A (zh) 2017-06-22 2024-07-09 诺华股份有限公司 针对cd73的抗体分子及其用途
US11517567B2 (en) 2017-06-23 2022-12-06 Birdie Biopharmaceuticals, Inc. Pharmaceutical compositions
EP3645037A1 (en) 2017-06-27 2020-05-06 Novartis AG Dosage regimens for anti-tim-3 antibodies and uses thereof
US11560425B2 (en) 2017-06-27 2023-01-24 Neuracle Science Co., Ltd. Use of anti-FAM19A5 antibodies for treating cancers
US20210145771A1 (en) 2017-07-03 2021-05-20 Glaxosmithkline Intellectual Property Development Limited N-(3-(2-(4-chlorophenoxy)acetamido)bicyclo[1.1.1] pentan-1-yl)-2-cyclobutane-1- carboxamide derivatives and related compounds as atf4 inhibitors for treating cancer and other diseases
CN110896634A (zh) 2017-07-03 2020-03-20 葛兰素史密斯克莱知识产权发展有限公司 作为atf4抑制剂用于治疗癌症和其它疾病的2-(4-氯苯氧基)-n-((1-(2-(4-氯苯氧基)乙炔氮杂环丁烷-3-基)甲基)乙酰胺衍生物和相关化合物
CA3066514A1 (en) 2017-07-10 2019-01-17 Innate Pharma Siglec-9-neutralizing antibodies
AU2018301681B2 (en) 2017-07-14 2022-07-14 Innate Tumor Immunity, Inc. NLRP3 modulators
KR20200031659A (ko) 2017-07-20 2020-03-24 노파르티스 아게 항-lag-3 항체의 투여 요법 및 그의 용도
AU2018304458B2 (en) 2017-07-21 2021-12-09 Foundation Medicine, Inc. Therapeutic and diagnostic methods for cancer
WO2019021208A1 (en) 2017-07-27 2019-01-31 Glaxosmithkline Intellectual Property Development Limited USEFUL INDAZOLE DERIVATIVES AS PERK INHIBITORS
US11899017B2 (en) 2017-07-28 2024-02-13 Bristol-Myers Squibb Company Predictive peripheral blood biomarker for checkpoint inhibitors
KR20200064062A (ko) 2017-08-04 2020-06-05 젠맵 에이/에스 Pd-l1 및 cd137에 결합하는 결합제 및 그의 용도
EP3664844A1 (en) 2017-08-07 2020-06-17 Amgen Inc. Treatment of triple negative breast cancer or colorectal cancer with liver metastases with an anti pd-l1 antibody and an oncolytic virus
US11787859B2 (en) 2017-08-28 2023-10-17 Bristol-Myers Squibb Company TIM-3 antagonists for the treatment and diagnosis of cancers
CN111278854A (zh) 2017-09-04 2020-06-12 艾吉纳斯公司 与混合谱系白血病(mll)特异性磷酸肽结合的t细胞受体和其使用方法
UY37866A (es) 2017-09-07 2019-03-29 Glaxosmithkline Ip Dev Ltd Nuevos compuestos derivados de benzoimidazol sustituidos que reducen la proteína myc (c-myc) en las células e inhiben la histona acetiltransferasa de p300/cbp.
WO2019053617A1 (en) 2017-09-12 2019-03-21 Glaxosmithkline Intellectual Property Development Limited CHEMICAL COMPOUNDS
WO2019055579A1 (en) 2017-09-12 2019-03-21 Tolero Pharmaceuticals, Inc. TREATMENT REGIME FOR CANCERS THAT ARE INSENSITIVE TO BCL-2 INHIBITORS USING THE MCL-1 ALVOCIDIB INHIBITOR
EP3684413A1 (en) 2017-09-20 2020-07-29 Chugai Seiyaku Kabushiki Kaisha Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent
WO2019061324A1 (en) 2017-09-29 2019-04-04 Curis Inc. CRYSTALLINE FORMS OF IMMUNOMODULATORS
CA3076515A1 (en) 2017-09-30 2019-04-04 Tesaro, Inc. Combination therapies for treating cancer
EA039662B1 (ru) 2017-10-03 2022-02-24 Закрытое Акционерное Общество "Биокад" Антитела, специфичные к cd47 и pd-l1
JP2020536106A (ja) 2017-10-05 2020-12-10 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited Hivの処置に有用なインターフェロン遺伝子の刺激物質(sting)の調節物質
WO2019069270A1 (en) 2017-10-05 2019-04-11 Glaxosmithkline Intellectual Property Development Limited GENERATOR STIMULATOR MODULATORS (STING) INTERFERON
KR20200060471A (ko) 2017-10-06 2020-05-29 이나뜨 파르마 Cd39/cd73 축을 통한 t 세포 활성의 복원
CN111182923A (zh) 2017-10-06 2020-05-19 特沙诺有限公司 组合疗法及其用途
US20200256877A1 (en) 2017-10-09 2020-08-13 Enterome S.A. Microbiota Sequence Variants Of Tumor-Related Antigenic Epitopes
EP3470426A1 (en) 2017-10-10 2019-04-17 Numab Therapeutics AG Multispecific antibody
CN111194323B (zh) 2017-10-10 2024-07-09 努玛治疗有限公司 多特异性抗体
WO2019075090A1 (en) 2017-10-10 2019-04-18 Tilos Therapeutics, Inc. ANTI-LAP ANTIBODIES AND USES THEREOF
SG11202003111SA (en) 2017-10-10 2020-05-28 Numab Therapeutics AG Antibodies targeting cd137 and methods of use thereof
EP3694879A1 (en) * 2017-10-10 2020-08-19 Numab Therapeutics AG Antibodies targeting pdl1 and methods of use thereof
SG11202003081WA (en) 2017-10-11 2020-05-28 Aurigene Discovery Tech Ltd Crystalline forms of 3-substituted 1,2,4-oxadiazole
EP4116327A1 (en) 2017-10-11 2023-01-11 Board Of Regents, The University Of Texas System Human pd-l1 antibodies and methods of use therefor
US20200239577A1 (en) 2017-10-15 2020-07-30 Bristol-Myers Squibb Company Methods of treating tumor
CA3078517A1 (en) 2017-10-18 2019-04-25 Alpine Immune Sciences, Inc. Variant icos ligand immunomodulatory proteins and related compositions and methods
CN111655725A (zh) 2017-10-19 2020-09-11 德比奥药物国际股份有限公司 用于治疗癌症的组合产品
WO2019081983A1 (en) 2017-10-25 2019-05-02 Novartis Ag CD32B TARGETING ANTIBODIES AND METHODS OF USE
KR20200074214A (ko) 2017-11-01 2020-06-24 브리스톨-마이어스 스큅 컴퍼니 암을 치료하는데 사용하기 위한 면역자극 효능작용 항체
JP7378394B2 (ja) 2017-11-03 2023-11-13 オーリジーン オンコロジー リミテッド Tim-3およびpd-1経路の二重阻害剤
JP2021502344A (ja) 2017-11-06 2021-01-28 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company 腫瘍を処置する方法
EP3707510B1 (en) 2017-11-06 2024-06-26 F. Hoffmann-La Roche AG Diagnostic and therapeutic methods for cancer
JP7378395B2 (ja) 2017-11-06 2023-11-13 オーリジーン オンコロジー リミテッド 免疫調節のためのコンジョイントセラピー
WO2019094265A1 (en) * 2017-11-10 2019-05-16 Armo Biosciences, Inc. Pd1 polypeptide binding molecules
SG11202003477QA (en) 2017-11-14 2020-05-28 Pfizer Ezh2 inhibitor combination therapies
TW201925782A (zh) 2017-11-30 2019-07-01 瑞士商諾華公司 靶向bcma之嵌合抗原受體及其用途
US11629189B2 (en) 2017-12-19 2023-04-18 Kymab Limited Bispecific antibody for ICOS and PD-L1
GB201721338D0 (en) 2017-12-19 2018-01-31 Kymab Ltd Anti-icos Antibodies
CN108144745B (zh) * 2017-12-20 2020-06-16 天康生物股份有限公司 一种分离装置以及减少布氏菌病活疫苗的内毒素含量的方法
JP7284759B2 (ja) 2017-12-27 2023-05-31 ブリストル-マイヤーズ スクイブ カンパニー 抗cd40抗体およびその使用
CN109970856B (zh) 2017-12-27 2022-08-23 信达生物制药(苏州)有限公司 抗lag-3抗体及其用途
EP3735590A1 (en) 2018-01-04 2020-11-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma resistant
EP3737408A1 (en) 2018-01-08 2020-11-18 Novartis AG Immune-enhancing rnas for combination with chimeric antigen receptor therapy
WO2019139896A1 (en) 2018-01-09 2019-07-18 Cue Biopharma, Inc. Multimeric t-cell modulatory polypeptides and methods of use thereof
US11407723B2 (en) 2018-01-09 2022-08-09 Shuttle Pharmaceuticals, Inc. Selective histone deacetylase inhibitors for the treatment of human disease
CA3087105A1 (en) * 2018-01-10 2019-07-18 Jiangsu Hengrui Medicine Co., Ltd. Pd-l1 antibody, antigen-binding fragment thereof, and pharmaceutical use thereof
JP2021510697A (ja) 2018-01-12 2021-04-30 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company がん処置のための坑il−8抗体及び坑pd−1抗体を用いる組合せ治療
KR20200108870A (ko) 2018-01-12 2020-09-21 브리스톨-마이어스 스큅 컴퍼니 Tim3에 대한 항체 및 그의 용도
WO2019143607A1 (en) 2018-01-16 2019-07-25 Bristol-Myers Squibb Company Methods of treating cancer with antibodies against tim3
CA3096287A1 (en) 2018-01-22 2019-07-25 Pascal Biosciences Inc. Cannabinoids and derivatives for promoting immunogenicity of tumor and infected cells
BR112020014574A2 (pt) 2018-01-22 2020-12-08 Bristol-Myers Squibb Company Composições e métodos para o tratamento do câncer
BR112020014960A2 (pt) 2018-01-24 2020-12-22 Beyondspring Pharmaceuticals, Inc. Composição e método para redução de trombocitopenia
AU2019215031A1 (en) 2018-01-31 2020-08-20 Novartis Ag Combination therapy using a chimeric antigen receptor
EP3746117A1 (en) 2018-01-31 2020-12-09 Celgene Corporation Combination therapy using adoptive cell therapy and checkpoint inhibitor
US11896643B2 (en) 2018-02-05 2024-02-13 Orionis Biosciences, Inc. Fibroblast binding agents and use thereof
WO2019157124A1 (en) 2018-02-08 2019-08-15 Bristol-Myers Squibb Company Combination of a tetanus toxoid, anti-ox40 antibody and/or anti-pd-1 antibody to treat tumors
US20200399383A1 (en) 2018-02-13 2020-12-24 Novartis Ag Chimeric antigen receptor therapy in combination with il-15r and il15
WO2019162325A1 (en) 2018-02-21 2019-08-29 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of sk1 as biomarker for predicting response to immunecheckpoint inhibitors
CA3092108A1 (en) 2018-02-26 2019-08-29 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
AU2019236402A1 (en) 2018-03-12 2020-10-01 Assistance Publique-Hôpitaux De Paris (Aphp) Use of caloric restriction mimetics for potentiating chemo-immunotherapy for the treatment of cancers
CA3093499A1 (en) 2018-03-14 2019-09-19 Merck Patent Gmbh Compounds and uses thereof to treat tumors in a subject
CA3092589A1 (en) 2018-03-21 2019-09-26 Five Prime Therapeutics, Inc. Antibodies binding to vista at acidic ph
CA3092695A1 (en) 2018-03-23 2019-09-26 Board Of Regents, The University Of Texas System Human pd-l2 antibodies and methods of use therefor
KR20200135785A (ko) * 2018-03-23 2020-12-03 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 인간 pd-l1 및 pd-l2에 대한 이중 특이성 항체 및 이의 사용 방법
MX2020009861A (es) 2018-03-23 2020-10-08 Bristol Myers Squibb Co Anticuerpos contra el complejo principal de histocompatibilidad relacionado con las cadenas a y b clase i (mica) y/o (micb) y sus usos.
WO2019191676A1 (en) 2018-03-30 2019-10-03 Bristol-Myers Squibb Company Methods of treating tumor
SG11202009036YA (en) 2018-03-30 2020-10-29 Merus Nv Multivalent antibody
CN112292399A (zh) 2018-04-04 2021-01-29 百时美施贵宝公司 抗cd27抗体及其用途
WO2019193540A1 (en) 2018-04-06 2019-10-10 Glaxosmithkline Intellectual Property Development Limited Heteroaryl derivatives of formula (i) as atf4 inhibitors
WO2019193541A1 (en) 2018-04-06 2019-10-10 Glaxosmithkline Intellectual Property Development Limited Bicyclic aromatic ring derivatives of formula (i) as atf4 inhibitors
CN112218657A (zh) 2018-04-12 2021-01-12 百时美施贵宝公司 Cd73拮抗剂抗体和pd-1/pd-l1轴拮抗剂抗体的抗癌组合疗法
US20210147547A1 (en) 2018-04-13 2021-05-20 Novartis Ag Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof
US20210198374A1 (en) 2018-04-17 2021-07-01 Celldex Therapeutics, Inc. Anti-cd27 and anti-pd-l1 antibodies and bispecific constructs
AU2019255744A1 (en) 2018-04-18 2020-11-26 Xencor, Inc. IL-15/IL-15Ra heterodimeric Fc fusion proteins and uses thereof
AU2019256539A1 (en) 2018-04-18 2020-11-26 Xencor, Inc. PD-1 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and PD-1 antigen binding domains and uses thereof
ES2971122T3 (es) 2018-04-25 2024-06-03 Innate Tumor Immunity Inc Moduladores de NLRP3
AU2019258330A1 (en) * 2018-04-25 2020-12-10 Medimmune Limited Formulations of human anti-PD-L1 antibodies
WO2019210055A2 (en) 2018-04-26 2019-10-31 Agenus Inc. Heat shock protein-binding peptide compositions and methods of use thereof
CN112352052A (zh) 2018-05-04 2021-02-09 托利斯有限公司 激活上皮细胞和髓样细胞的tlr3配体
EP3787683A1 (en) 2018-05-04 2021-03-10 Merck Patent GmbH Combined inhibition of pd-1/pd-l1, tgf? and dna-pk for the treatment of cancer
SG11202011117VA (en) 2018-05-15 2020-12-30 Medimmune Ltd Treatment of cancer
GB201807924D0 (en) 2018-05-16 2018-06-27 Ctxt Pty Ltd Compounds
AR126019A1 (es) 2018-05-30 2023-09-06 Novartis Ag Anticuerpos frente a entpd2, terapias de combinación y métodos de uso de los anticuerpos y las terapias de combinación
EP3801766A1 (en) 2018-05-31 2021-04-14 Novartis AG Hepatitis b antibodies
WO2019232244A2 (en) 2018-05-31 2019-12-05 Novartis Ag Antibody molecules to cd73 and uses thereof
JP7398396B2 (ja) 2018-06-01 2023-12-14 ノバルティス アーゲー Bcmaに対する結合分子及びその使用
AU2019287765A1 (en) 2018-06-15 2021-01-07 Flagship Pioneering Innovations V, Inc. Increasing immune activity through modulation of postcellular signaling factors
JP7500442B2 (ja) 2018-06-18 2024-06-17 イナート・ファルマ・ソシエテ・アノニム 癌を処置するための組成物及び方法
AU2019288728A1 (en) 2018-06-23 2021-01-14 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor
EP3820904A2 (en) 2018-07-09 2021-05-19 Five Prime Therapeutics, Inc. Antibodies binding to ilt4
JP2021529814A (ja) 2018-07-09 2021-11-04 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited 化学化合物
FI3820573T3 (fi) 2018-07-10 2023-11-01 Novartis Ag 3-(5-hydroksi-1-oksoisoindolin-2-yyli)piperidiini-2,6-dionijohdannaisia ja niiden käyttö ikaros-perheen sinkkisormi 2 (ikzf2) -riippuvaisten sairauksien hoidossa
AR116109A1 (es) 2018-07-10 2021-03-31 Novartis Ag Derivados de 3-(5-amino-1-oxoisoindolin-2-il)piperidina-2,6-diona y usos de los mismos
KR20240067973A (ko) 2018-07-11 2024-05-17 액팀 테라퓨틱스, 인코퍼레이티드 조작된 면역자극성 박테리아 균주 및 이의 용도
SG11202100102VA (en) 2018-07-11 2021-02-25 Five Prime Therapeutics Inc Antibodies binding to vista at acidic ph
SG11202100170RA (en) 2018-07-12 2021-02-25 F Star Beta Ltd Antibody molecules that bind pd-l1 and cd137
US20210277135A1 (en) 2018-07-13 2021-09-09 Bristol-Myers Squibb Company Ox-40 agonist, pd-1 pathway inhibitor and ctla-4 inhibitor combination for use in a method of treating a cancer or a solid tumor
TWI822815B (zh) * 2018-07-14 2023-11-21 財團法人生物技術開發中心 抗-人類pd-l1之抗體及其用途
BR112021000673A2 (pt) 2018-07-18 2021-04-20 Genentech, Inc. métodos para tratar um indivíduo com câncer de pulmão, kits, anticorpo anti-pd-l1 e composições
MX2021000745A (es) 2018-07-20 2021-03-26 Surface Oncology Inc Composiciones anti-cd112r y metodos.
CN112601584A (zh) 2018-07-24 2021-04-02 豪夫迈·罗氏有限公司 异喹啉化合物及其用途
JP7386842B2 (ja) 2018-07-24 2023-11-27 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト ナフチリジン化合物およびその使用
EP3826660A1 (en) 2018-07-26 2021-06-02 Bristol-Myers Squibb Company Lag-3 combination therapy for the treatment of cancer
WO2020031107A1 (en) 2018-08-08 2020-02-13 Glaxosmithkline Intellectual Property Development Limited Chemical compounds
JP2021534180A (ja) 2018-08-16 2021-12-09 イネイト・テューマー・イミュニティ・インコーポレイテッドInnate Tumor Immunity, Inc. 置換4−アミノ−1H−イミダゾ[4,5−c]キノリン化合物およびその製造の改良法
ES2974964T3 (es) 2018-08-16 2024-07-02 Innate Tumor Immunity Inc Moduladores de NLRP3 derivados de imidazo[4,5-c]quinolina
JP7364663B2 (ja) 2018-08-16 2023-10-18 イネイト・テューマー・イミュニティ・インコーポレイテッド イミダゾ[4,5-c]キノリン誘導体のNLRP3モジュレーター
CN116410320A (zh) * 2018-08-20 2023-07-11 北京强新生物科技有限公司 新型癌症免疫治疗抗体组合物
CN112955221A (zh) 2018-08-27 2021-06-11 皮里斯制药有限公司 包含cd137/her2双特异性试剂和pd-1轴抑制剂的组合疗法及其用途
WO2020044206A1 (en) 2018-08-29 2020-03-05 Glaxosmithkline Intellectual Property Development Limited Heterocyclic amides as kinase inhibitors for use in the treatment cancer
TW202031273A (zh) 2018-08-31 2020-09-01 美商艾歐凡斯生物治療公司 抗pd-1抗體難治療性之非小細胞肺癌(nsclc)病患的治療
JP2021535169A (ja) 2018-09-03 2021-12-16 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Teadモジュレーターとして有用なカルボキサミドおよびスルホンアミド誘導体
WO2020048942A1 (en) 2018-09-04 2020-03-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for enhancing cytotoxic t lymphocyte-dependent immune responses
WO2020053742A2 (en) 2018-09-10 2020-03-19 Novartis Ag Anti-hla-hbv peptide antibodies
WO2020060771A1 (en) * 2018-09-18 2020-03-26 Vanderbilt University Human monoclonal antibodies to staphylococcal aureus isd proteins and uses thereof
MX2021003214A (es) 2018-09-19 2021-05-12 Genentech Inc Metodos terapeuticos y de diagnostico para el cancer de vejiga.
JP2022511337A (ja) 2018-09-19 2022-01-31 インサーム (インスティテュート ナショナル デ ラ サンテ エ デ ラ ルシェルシェ メディカル) 免疫チェックポイント治療に抵抗性のある癌の治療のための方法および医薬組成物
CN113015526A (zh) 2018-09-19 2021-06-22 豪夫迈·罗氏有限公司 螺环2,3-二氢-7-氮杂吲哚化合物及其用途
CN112930114B (zh) 2018-09-20 2023-10-03 艾欧凡斯生物治疗公司 由冷冻保存的肿瘤样品扩增til
EP4249917A3 (en) 2018-09-21 2023-11-08 F. Hoffmann-La Roche AG Diagnostic methods for triple-negative breast cancer
AU2019346012A1 (en) 2018-09-26 2021-04-15 Merck Patent Gmbh Combination of a PD-1 antagonist, an ATR inhibitor and a platinating agent for the treatment of cancer
JP7433304B2 (ja) 2018-09-30 2024-02-19 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト シンノリン化合物および癌などのhpk1依存性障害の治療
US20220040183A1 (en) 2018-10-01 2022-02-10 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of inhibitors of stress granule formation for targeting the regulation of immune responses
TW202024053A (zh) 2018-10-02 2020-07-01 美商建南德克公司 異喹啉化合物及其用途
TW202023558A (zh) 2018-10-03 2020-07-01 美商建南德克公司 8-胺基異喹啉化合物及其用途
AU2019355971A1 (en) 2018-10-03 2021-05-06 Xencor, Inc. IL-12 heterodimeric Fc-fusion proteins
WO2020076799A1 (en) 2018-10-09 2020-04-16 Bristol-Myers Squibb Company Anti-mertk antibodies for treating cancer
EP3863722A2 (en) 2018-10-10 2021-08-18 Tilos Theapeutics, Inc. Anti-lap antibody variants and uses thereof
CN113423734A (zh) 2018-10-12 2021-09-21 Xencor股份有限公司 靶向PD-1的IL-15/IL-15RαFC融合蛋白及其在联合疗法中的应用
WO2020081493A1 (en) 2018-10-16 2020-04-23 Molecular Templates, Inc. Pd-l1 binding proteins
US20210348238A1 (en) 2018-10-16 2021-11-11 Novartis Ag Tumor mutation burden alone or in combination with immune markers as biomarkers for predicting response to targeted therapy
EP3867410A4 (en) 2018-10-18 2022-07-13 MedImmune, LLC METHODS OF DETERMINING A TREATMENT FOR CANCER PATIENTS
CN113196061A (zh) 2018-10-18 2021-07-30 豪夫迈·罗氏有限公司 肉瘤样肾癌的诊断和治疗方法
JP2022512750A (ja) 2018-10-19 2022-02-07 ブリストル-マイヤーズ スクイブ カンパニー 黒色腫に対する併用療法
BR112021007517A2 (pt) 2018-10-22 2021-10-26 Glaxosmithkline Intellectual Property Development Limited Dosagem
EP3870609A1 (en) 2018-10-23 2021-09-01 Bristol-Myers Squibb Company Methods of treating tumor
KR20210084552A (ko) 2018-10-29 2021-07-07 위스콘신 얼럼나이 리서어치 화운데이션 향상된 암 면역요법을 위한 면역관문 억제제와 복합체화된 덴드리틱 폴리머
US11564995B2 (en) 2018-10-29 2023-01-31 Wisconsin Alumni Research Foundation Peptide-nanoparticle conjugates
EP3873532A1 (en) 2018-10-31 2021-09-08 Novartis AG Dc-sign antibody drug conjugates
UA127771C2 (uk) 2018-11-09 2023-12-27 Джянгсу Хенгруй Медісін Ко., Лтд. ФАРМАЦЕВТИЧНА КОМПОЗИЦІЯ, ЯКА МІСТИТЬ ЗЛИТИЙ ПРОТЕЇН РЕЦЕПТОРА TGF-<font face="Symbol">b, </font>ТА ЇЇ ЗАСТОСУВАННЯ
TW202028222A (zh) 2018-11-14 2020-08-01 美商Ionis製藥公司 Foxp3表現之調節劑
US20220010017A1 (en) 2018-11-14 2022-01-13 Bayer Aktiengesellschaft Pharmaceutical combination of anti-ceacam6 and either anti-pd-1 or anti-pd-l1 antibodies for the treatment of cancer
EP3880202A2 (en) 2018-11-16 2021-09-22 ArQule, Inc. Pharmaceutical combination for treatment of cancer
WO2020102501A1 (en) 2018-11-16 2020-05-22 Bristol-Myers Squibb Company Anti-nkg2a antibodies and uses thereof
WO2020102728A1 (en) 2018-11-16 2020-05-22 Neoimmunetech, Inc. Method of treating a tumor with a combination of il-7 protein and an immune checkpoint inhibitor
US20230183379A1 (en) 2018-11-20 2023-06-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Bispecific antibody targeting transferrin receptor 1 and soluble antigen
WO2020104479A1 (en) 2018-11-20 2020-05-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cancers and resistant cancers with anti transferrin receptor 1 antibodies
US11279698B2 (en) 2018-11-20 2022-03-22 Cornell University Macrocyclic complexes of alpha-emitting radionuclides and their use in targeted radiotherapy of cancer
JP2022511437A (ja) 2018-11-26 2022-01-31 デバイオファーム インターナショナル エス.エー. Hiv感染の組み合わせ治療
ES2971964T3 (es) 2018-11-28 2024-06-10 Inst Nat Sante Rech Med Métodos y kit para someter a ensayo el potencial lítico de células efectoras inmunitarias
CN113348177A (zh) 2018-11-28 2021-09-03 百时美施贵宝公司 包含经修饰的重链恒定区的抗体
EP3887548A1 (en) 2018-11-30 2021-10-06 GBG Forschungs GmbH Method for predicting the response to cancer immunotherapy in cancer patients
JP7406556B2 (ja) 2018-11-30 2023-12-27 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッド Hiv療法に有用な化合物
US11034710B2 (en) 2018-12-04 2021-06-15 Sumitomo Dainippon Pharma Oncology, Inc. CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
EP3891508A1 (en) 2018-12-04 2021-10-13 Bristol-Myers Squibb Company Methods of analysis using in-sample calibration curve by multiple isotopologue reaction monitoring
CA3121265A1 (en) 2018-12-05 2020-06-11 Genentech, Inc. Diagnostic methods and compositions for cancer immunotherapy
EP3891270A1 (en) 2018-12-07 2021-10-13 Institut National de la Santé et de la Recherche Médicale (INSERM) Use of cd26 and cd39 as new phenotypic markers for assessing maturation of foxp3+ t cells and uses thereof for diagnostic purposes
WO2020115261A1 (en) 2018-12-07 2020-06-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
WO2020120592A1 (en) 2018-12-12 2020-06-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for predicting and treating melanoma
EP3897624A1 (en) 2018-12-17 2021-10-27 Institut National de la Santé et de la Recherche Médicale (INSERM) Use of sulconazole as a furin inhibitor
TW202039542A (zh) 2018-12-19 2020-11-01 美商庫爾生物製藥有限公司 多聚體t細胞調節多肽及其使用方法
WO2020127411A1 (en) 2018-12-19 2020-06-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cancers by immuno-modulation using antibodies against cathespin-d
EP3897853A1 (en) 2018-12-20 2021-10-27 Xencor, Inc. Targeted heterodimeric fc fusion proteins containing il-15/il-15ra and nkg2d antigen binding domains
BR112021011874A2 (pt) 2018-12-20 2021-09-08 Novartis Ag Regime de dosagem e combinação farmacêutica compreendendo derivados de 3-(1-oxoisoindolin-2-il)piperidina-2,6-diona
US20220025036A1 (en) 2018-12-21 2022-01-27 Novartis Ag Use of il-1beta binding antibodies
BR112021012066A2 (pt) 2018-12-21 2021-11-03 Onxeo Novas moléculas de ácido nucleico conjugadas e seus usos
WO2020128637A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1 binding antibodies in the treatment of a msi-h cancer
SG11202104699TA (en) 2018-12-21 2021-07-29 Novartis Ag Use of il-1 beta antibodies in the treatment or prevention of myelodysplastic syndrome
US20220056123A1 (en) 2018-12-21 2022-02-24 Novartis Ag Use of il-1beta binding antibodies
WO2020127885A1 (en) 2018-12-21 2020-06-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Compositions for treating cancers and resistant cancers
KR20210106531A (ko) 2018-12-21 2021-08-30 에임 이뮤노테크 인코포레이티드 암 치료를 위한 조성물 및 방법
WO2020128893A1 (en) 2018-12-21 2020-06-25 Pfizer Inc. Combination treatments of cancer comprising a tlr agonist
EP3902828A1 (en) 2018-12-26 2021-11-03 Innate Pharma Compounds and methods for treatment of head and neck cancer
AU2019413690A1 (en) * 2018-12-27 2021-08-12 Gigagen, Inc. Anti-PD-L1 binding proteins and methods of use thereof
WO2020136235A1 (en) 2018-12-28 2020-07-02 Transgene Sa M2-defective poxvirus
US11447551B2 (en) 2018-12-28 2022-09-20 Sparx Bioscience Limited Binding molecules specific for claudin 18.2, compositions and methods thereof, for the treatment of cancer and other diseases
CN113286786A (zh) 2019-01-14 2021-08-20 先天肿瘤免疫公司 Nlrp3调节剂
EP3911417B1 (en) 2019-01-14 2022-10-26 Innate Tumor Immunity, Inc. Heterocyclic nlrp3 modulators , for use in the treatment of cancer
JP7373571B2 (ja) 2019-01-14 2023-11-02 イネイト・テューマー・イミュニティ・インコーポレイテッド がん治療に用いるためのnlrp3モジュレーターとしての置換キナゾリン
CN115120716A (zh) 2019-01-14 2022-09-30 健泰科生物技术公司 用pd-1轴结合拮抗剂和rna疫苗治疗癌症的方法
WO2020150116A1 (en) 2019-01-14 2020-07-23 Innate Tumor Immunity, Inc. Nlrp3 modulators
KR20210121077A (ko) 2019-01-15 2021-10-07 인쎄름 (엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔) 돌연변이된 인터루킨-34 (il-34) 폴리펩티드 및 요법에서의 이의 용도
CN113366316A (zh) 2019-01-30 2021-09-07 国家医疗保健研究所 用于鉴定患有癌症的受试者是否将获得对免疫检查点抑制剂的应答的方法和组合物
CN113924317A (zh) 2019-02-01 2022-01-11 葛兰素史克知识产权开发有限公司 贝兰他单抗莫福汀与派姆单抗组合用于治疗癌症
WO2020161083A1 (en) 2019-02-04 2020-08-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for modulating blood-brain barrier
WO2020163589A1 (en) 2019-02-08 2020-08-13 Genentech, Inc. Diagnostic and therapeutic methods for cancer
CA3127502A1 (en) 2019-02-12 2020-08-20 Sumitomo Dainippon Pharma Oncology, Inc. Formulations comprising heterocyclic protein kinase inhibitors
US20220098674A1 (en) 2019-02-13 2022-03-31 Inserm (Institut National De La Santé Et Dr La Recherch Médicale) Methods and compositions for selecting a cancer treatment in a subject suffering from cancer
CN113329792B (zh) 2019-02-15 2024-06-28 诺华股份有限公司 取代的3-(1-氧代异吲哚啉-2-基)哌啶-2,6-二酮衍生物及其用途
CN113490528A (zh) 2019-02-15 2021-10-08 诺华股份有限公司 3-(1-氧代-5-(哌啶-4-基)异吲哚啉-2-基)哌啶-2,6-二酮衍生物及其用途
US20220107320A1 (en) 2019-02-15 2022-04-07 Incelldx, Inc. Assaying Bladder-Associated Samples, Identifying and Treating Bladder-Associated Neoplasia, and Kits for Use Therein
WO2020169472A2 (en) 2019-02-18 2020-08-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of inducing phenotypic changes in macrophages
EP4394032A2 (en) 2019-02-19 2024-07-03 Turnstone Biologics Corp. Methods for producing autologous t cells useful to treat cancers and compositions thereof
SG11202109085YA (en) * 2019-02-21 2021-09-29 Eucure Beijing Biopharma Co Ltd Anti-pd-l1 antibody and use thereof
AU2020236015A1 (en) 2019-03-14 2021-09-09 Genentech, Inc. Treatment of cancer with HER2XCD3 bispecific antibodies in combination with anti-HER2 MAB
US11793802B2 (en) 2019-03-20 2023-10-24 Sumitomo Pharma Oncology, Inc. Treatment of acute myeloid leukemia (AML) with venetoclax failure
US11712433B2 (en) 2019-03-22 2023-08-01 Sumitomo Pharma Oncology, Inc. Compositions comprising PKM2 modulators and methods of treatment using the same
CN113891748A (zh) 2019-03-28 2022-01-04 百时美施贵宝公司 治疗肿瘤的方法
KR20210146348A (ko) 2019-03-28 2021-12-03 브리스톨-마이어스 스큅 컴퍼니 종양을 치료하는 방법
WO2020205662A1 (en) 2019-03-29 2020-10-08 Myst Therapeutics, Inc. Ex vivo methods for producing a t cell therapeutic and related compositions and methods
KR20210150623A (ko) 2019-03-29 2021-12-10 제넨테크, 인크. 세포 표면 단백질 상호작용의 조절 인자 및 이와 관련된 방법 및 조성물
US20220177978A1 (en) 2019-04-02 2022-06-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of predicting and preventing cancer in patients having premalignant lesions
US20220175814A1 (en) 2019-04-03 2022-06-09 Targimmune Therapeutics Ag Immunotherapy for the treatment of cancer
WO2020208060A1 (en) 2019-04-09 2020-10-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of sk2 inhibitors in combination with immune checkpoint blockade therapy for the treatment of cancer
MX2021012398A (es) 2019-04-12 2021-11-12 Vascular Biogenics Ltd Metodos de terapia antitumoral.
WO2020212484A1 (en) 2019-04-17 2020-10-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treatment of nlrp3 inflammasome mediated il-1beta dependent disorders
CA3134522A1 (en) 2019-04-19 2020-10-22 Genentech, Inc. Anti-mertk antibodies and their methods of use
BR112021021224A2 (pt) 2019-04-23 2021-12-21 Innate Pharma Anticorpos ou fragmentos de anticorpos, composição farmacêutica, kit, ácido nucleico ou conjunto de ácidos nucleicos, célula hospedeira recombinante e método para o tratamento ou a prevenção de uma doença em um paciente em necessidade do mesmo
EP3963109A1 (en) 2019-04-30 2022-03-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
WO2020223233A1 (en) 2019-04-30 2020-11-05 Genentech, Inc. Prognostic and therapeutic methods for colorectal cancer
MA55805A (fr) 2019-05-03 2022-03-09 Flagship Pioneering Innovations V Inc Métodes de modulation de l'activité immunitaire
KR20220004744A (ko) 2019-05-03 2022-01-11 제넨테크, 인크. 항-pd-l1 항체를 이용하여 암을 치료하는 방법
US20220211847A1 (en) 2019-05-06 2022-07-07 Medimmune Limited Combination of monalizumab, durvalumab, chemotherapy and bevacizumab or cetuximab for the treatment of colorectal cancer
CN114302875A (zh) 2019-05-16 2022-04-08 斯汀塞拉股份有限公司 氧代吖啶基乙酸衍生物及使用方法
EP3969452A1 (en) 2019-05-16 2022-03-23 Stingthera, Inc. Benzo[b][1,8]naphthyridine acetic acid derivatives and methods of use
IL266728B (en) 2019-05-19 2020-11-30 Yeda Res & Dev Identification of recurrent mutant neopeptides
EP3976090A1 (en) 2019-05-24 2022-04-06 Pfizer Inc. Combination therapies using cdk inhibitors
KR20220016155A (ko) 2019-05-30 2022-02-08 브리스톨-마이어스 스큅 컴퍼니 면역-종양학 (i-o) 요법에 적합한 대상체를 확인하는 방법
US20220233691A1 (en) 2019-05-30 2022-07-28 Bristol-Myers Squibb Company Cell localization signature and combination therapy
EP3976831A1 (en) 2019-05-30 2022-04-06 Bristol-Myers Squibb Company Multi-tumor gene signatures for suitability to immuno-oncology therapy
BR112021024820A2 (pt) * 2019-06-10 2022-01-25 Shandong Boan Biotechnology Co Ltd Proteína de fusão bifuncional contra pdl1 e tgfss e uso da mesma
WO2020261097A1 (en) 2019-06-26 2020-12-30 Glaxosmithkline Intellectual Property Development Limited Il1rap binding proteins
EP3994132A1 (en) 2019-07-03 2022-05-11 Sumitomo Dainippon Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (tnk1) inhibitors and uses thereof
GB201910138D0 (en) 2019-07-15 2019-08-28 Capella Bioscience Ltd Anti-pd-l1 antibodies
GB201910304D0 (en) 2019-07-18 2019-09-04 Ctxt Pty Ltd Compounds
GB201910305D0 (en) 2019-07-18 2019-09-04 Ctxt Pty Ltd Compounds
EP4004548A1 (en) 2019-07-29 2022-06-01 Yeda Research and Development Co. Ltd Methods of treating and diagnosing lung cancer
WO2021024020A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
TW202122420A (zh) 2019-08-30 2021-06-16 美商艾吉納斯公司 抗cd96抗體及其使用方法
JP2022547061A (ja) 2019-09-05 2022-11-10 アストラゼネカ・アクチエボラーグ 進展型小細胞肺癌(es-sclc)の治療のための組成物及び方法
WO2021043961A1 (en) 2019-09-06 2021-03-11 Glaxosmithkline Intellectual Property Development Limited Dosing regimen for the treatment of cancer with an anti icos agonistic antibody and chemotherapy
WO2021048292A1 (en) 2019-09-11 2021-03-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
TW202124446A (zh) 2019-09-18 2021-07-01 瑞士商諾華公司 與entpd2抗體之組合療法
US11918649B2 (en) 2019-09-18 2024-03-05 Molecular Templates, Inc. PD-L1-binding molecules comprising Shiga toxin a subunit scaffolds
JP2022548881A (ja) 2019-09-18 2022-11-22 ノバルティス アーゲー Entpd2抗体、組合せ療法並びに抗体及び組合せ療法を使用する方法
CN114423793A (zh) 2019-09-18 2022-04-29 分子模板公司 包含志贺菌毒素a亚基支架的pd-l1结合分子
EP4031575A1 (en) 2019-09-19 2022-07-27 Bristol-Myers Squibb Company Antibodies binding to vista at acidic ph
CN114555129A (zh) 2019-09-20 2022-05-27 特兰斯吉恩股份有限公司 编码hpv多肽和il-2的痘病毒与抗pd-l1抗体的组合
JP2022549273A (ja) 2019-09-22 2022-11-24 ブリストル-マイヤーズ スクイブ カンパニー Lag-3アンタゴニスト治療のための定量的空間プロファイリング
BR112022005655A2 (pt) 2019-09-25 2022-09-06 Bristol Myers Squibb Co Biomarcador compósito para terapia para câncer
WO2021062085A1 (en) 2019-09-27 2021-04-01 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
EP4034562A2 (en) 2019-09-27 2022-08-03 GlaxoSmithKline Intellectual Property Development Limited Antigen binding proteins
TWI832013B (zh) * 2019-09-30 2024-02-11 大陸商諾納生物(蘇州)有限公司 一種抗pd-l1抗原結合蛋白及其應用
JP2022550783A (ja) 2019-09-30 2022-12-05 アストラゼネカ・アクチエボラーグ 併用処置
EP3800201A1 (en) 2019-10-01 2021-04-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Cd28h stimulation enhances nk cell killing activities
EP4037714A1 (en) 2019-10-03 2022-08-10 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for modulating macrophages polarization
AU2020358979A1 (en) 2019-10-03 2022-04-21 Xencor, Inc. Targeted IL-12 heterodimeric Fc-fusion proteins
WO2021064184A1 (en) 2019-10-04 2021-04-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical composition for the treatment of ovarian cancer, breast cancer or pancreatic cancer
TW202128757A (zh) 2019-10-11 2021-08-01 美商建南德克公司 具有改善之特性的 PD-1 標靶 IL-15/IL-15Rα FC 融合蛋白
EP4045061A4 (en) 2019-10-14 2024-04-17 ARO Biotherapeutics Company FIBRONECTIN TYPE III DOMAINS BINDING TO CD137
WO2021076574A2 (en) 2019-10-14 2021-04-22 Aro Biotherapeutics Company Fn3 domain-sirna conjugates and uses thereof
CA3157889A1 (en) 2019-10-17 2021-04-22 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods for diagnosing nasal intestinal type adenocarcinomas
MX2022004766A (es) 2019-10-21 2022-05-16 Novartis Ag Terapias combinadas con venetoclax e inhibidores de tim-3.
JP2022553306A (ja) 2019-10-21 2022-12-22 ノバルティス アーゲー Tim-3阻害剤およびその使用
CN114630679A (zh) 2019-10-25 2022-06-14 第一三共株式会社 抗garp抗体和免疫调节剂的组合
US20240122938A1 (en) 2019-10-29 2024-04-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating uveal melanoma
EP4054591A1 (en) 2019-11-04 2022-09-14 Astrazeneca AB Combination therapy for treating cancer
CN115066613A (zh) 2019-11-06 2022-09-16 基因泰克公司 用于治疗血液癌症的诊断和治疗方法
WO2021092221A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
WO2021092220A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
WO2021092071A1 (en) 2019-11-07 2021-05-14 Oncxerna Therapeutics, Inc. Classification of tumor microenvironments
US20220411499A1 (en) 2019-11-08 2022-12-29 Bristol-Myers Squibb Company LAG-3 Antagonist Therapy for Melanoma
EP4058435A1 (en) 2019-11-13 2022-09-21 Genentech, Inc. Therapeutic compounds and methods of use
EP4058465A1 (en) 2019-11-14 2022-09-21 Cohbar Inc. Cxcr4 antagonist peptides
US20230000864A1 (en) 2019-11-22 2023-01-05 Sumitomo Pharma Oncology, Inc. Solid dose pharmaceutical composition
JP2023504042A (ja) 2019-11-27 2023-02-01 ミスト セラピューティクス リミテッド ライアビリティ カンパニー 調節物質を使用した腫瘍反応性t細胞組成物の生成方法
TW202128155A (zh) 2019-11-27 2021-08-01 日商賽多利克公司 醫藥組成物
WO2021127217A1 (en) 2019-12-17 2021-06-24 Flagship Pioneering Innovations V, Inc. Combination anti-cancer therapies with inducers of iron-dependent cellular disassembly
AU2020408198A1 (en) 2019-12-19 2022-07-14 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and vaccine compositions to treat cancers
JP2023510108A (ja) 2019-12-19 2023-03-13 ブリストル-マイヤーズ スクイブ カンパニー Dgk阻害剤およびチェックポイントアンタゴニストの組み合わせ
CA3165399A1 (en) 2019-12-20 2021-06-24 Novartis Ag Uses of anti-tgf-beta antibodies and checkpoint inhibitors for the treatment of proliferative diseases
US20230348458A1 (en) 2020-01-10 2023-11-02 Innate Tumor Immunity, Inc. Nlrp3 modulators
WO2021144426A1 (en) 2020-01-17 2021-07-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
MX2022008763A (es) 2020-01-17 2022-07-27 Novartis Ag Combinacion que comprende un inhibidor de tim-3 y un agente hipometilante para usarse en el tratamiento del sindrome mielodisplasico o leucemia mielomonocitica cronica.
WO2022050954A1 (en) 2020-09-04 2022-03-10 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
CN115038466A (zh) 2020-01-28 2022-09-09 葛兰素史密斯克莱知识产权发展有限公司 联合治疗及其用途和方法
EP4097131A1 (en) 2020-01-29 2022-12-07 Merus N.V. Means and method for modulating immune cell engaging effects
CN115397859A (zh) 2020-01-30 2022-11-25 Ona疗法有限公司 治疗癌症和癌症转移的联合疗法
AU2021212197A1 (en) 2020-01-31 2022-08-04 BioNTech SE Methods of inducing neoepitope-specific T cells with a PD-1 axis binding antagonist and an RNA vaccine
WO2021156360A1 (en) 2020-02-05 2021-08-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for discontinuing a treatment with a tyrosine kinase inhibitor (tki)
EP4100426A1 (en) 2020-02-06 2022-12-14 Bristol-Myers Squibb Company Il-10 and uses thereof
WO2021158635A1 (en) 2020-02-07 2021-08-12 Al Therapeutics, Inc. Anti-viral compositions and methods of use
DK3872091T3 (da) 2020-02-26 2023-09-11 Vir Biotechnology Inc Antistoffer mod sars-cov-2
WO2021174208A1 (en) 2020-02-27 2021-09-02 Myst Therapeutics, Llc Methods for ex vivo enrichment and expansion of tumor reactive t cells and related compositions thereof
WO2021174045A1 (en) 2020-02-28 2021-09-02 Bristol-Myers Squibb Company Radiolabeled fibronectin based scaffolds and antibodies and theranostic uses thereof
US20230113705A1 (en) 2020-02-28 2023-04-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosing, prognosing and managing treatment of breast cancer
IL295979A (en) 2020-03-06 2022-10-01 Ona Therapeutics S L Anti-cd36 antibodies and their use for cancer treatment
MX2022010912A (es) 2020-03-06 2022-11-09 Celgene Quanticel Res Inc Combinacion de un inhibidor de desmetilasa-1 especifica de lisina (lsd-1) y nivolumab para usarse en el tratamiento de cancer de pulmon de celulas peque?as (sclc) o cancer de pulmon de celulas no peque?as escamosas (sqnsclc).
WO2021177980A1 (en) 2020-03-06 2021-09-10 Genentech, Inc. Combination therapy for cancer comprising pd-1 axis binding antagonist and il6 antagonist
EP3878446A1 (en) 2020-03-09 2021-09-15 Universite De Geneve Hsd11b1 inhibitors for use in immunotherapy and uses thereof
JP2023516459A (ja) 2020-03-09 2023-04-19 ブリストル-マイヤーズ スクイブ カンパニー 増強されたアゴニスト活性を有するcd40に対する抗体
JP2023519254A (ja) 2020-03-23 2023-05-10 ブリストル-マイヤーズ スクイブ カンパニー がんを処置するための抗ccr8抗体
WO2021195485A1 (en) * 2020-03-27 2021-09-30 Vanderbilt University Human monoclonal antibodies to severe acute respiratory syndrome coronavirus 2 (sars-cov-2)
WO2021202959A1 (en) 2020-04-03 2021-10-07 Genentech, Inc. Therapeutic and diagnostic methods for cancer
EP4133107A1 (en) 2020-04-06 2023-02-15 Yeda Research and Development Co. Ltd Methods of diagnosing cancer and predicting responsiveness to therapy
WO2021207449A1 (en) 2020-04-09 2021-10-14 Merck Sharp & Dohme Corp. Affinity matured anti-lap antibodies and uses thereof
AU2021256925A1 (en) 2020-04-14 2022-11-03 Ares Trading S.A. Combination treatment for cancer based upon an ICOS antibody and a PD-L1 antibody TGF-beta-receptor fusion protein
CN115997008A (zh) 2020-04-22 2023-04-21 艾欧凡斯生物治疗公司 协调用于患者特异性免疫疗法的细胞的制造的系统和方法
US20210332105A1 (en) 2020-04-24 2021-10-28 Astrazeneca Ab Compositions and methods of treating cancer with chimeric antigen receptors
AU2021263756A1 (en) 2020-04-27 2022-12-15 Twist Bioscience Corporation Variant nucleic acid libraries for coronavirus
WO2021222167A1 (en) 2020-04-28 2021-11-04 Genentech, Inc. Methods and compositions for non-small cell lung cancer immunotherapy
EP4147052A1 (en) 2020-05-05 2023-03-15 F. Hoffmann-La Roche AG Predicting response to pd-1 axis inhibitors
KR20230009872A (ko) 2020-05-12 2023-01-17 큐 바이오파마, 인크. 다량체 t-세포 조절 폴리펩타이드 및 이의 사용 방법
BR112022021893A2 (pt) 2020-05-12 2022-12-20 Astrazeneca Ab Métodos e combinações para o tratamento de câncer utilizando anticorpos inibidores de ponto de verificação imune
EP4150122A1 (en) 2020-05-12 2023-03-22 Astrazeneca AB Biomarkers for predicting overall survival in recurrent/metastatic head and neck squamous cell carcinoma
WO2021231732A1 (en) 2020-05-15 2021-11-18 Bristol-Myers Squibb Company Antibodies to garp
WO2021234150A1 (en) 2020-05-21 2021-11-25 Astrazeneca Ab Tumor mutational burden associated with sensitivity to immunotherapy in locally advanced or metastatic urothelial carcinoma
KR20230042222A (ko) 2020-05-26 2023-03-28 인쎄름 (엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔) 중증 급성 호흡기 증후군 코로나바이러스 2(sars-cov-2) 폴리펩티드 및 백신 목적을 위한 이의 용도
WO2021245071A1 (en) 2020-06-03 2021-12-09 Mv Biotherapeutics Sa Combination of an atp-hydrolyzing enzyme and an immune checkpoint modulator and uses thereof
WO2021249969A1 (en) 2020-06-10 2021-12-16 Merck Patent Gmbh Combination product for the treatment of cancer diseases
CN115698719A (zh) 2020-06-12 2023-02-03 基因泰克公司 用于癌症免疫疗法的方法和组合物
IL299039A (en) 2020-06-16 2023-02-01 Genentech Inc Methods and preparations for the treatment of triple-negative breast cancer
WO2021257124A1 (en) 2020-06-18 2021-12-23 Genentech, Inc. Treatment with anti-tigit antibodies and pd-1 axis binding antagonists
AR122644A1 (es) 2020-06-19 2022-09-28 Onxeo Nuevas moléculas de ácido nucleico conjugado y sus usos
CA3182346A1 (en) 2020-06-23 2021-12-30 Novartis Ag Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
JP2023532339A (ja) 2020-06-29 2023-07-27 フラグシップ パイオニアリング イノベーションズ ブイ,インコーポレーテッド サノトランスミッションを促進するためにエンジニアリングされたウイルス及び癌の処置におけるそれらの使用
WO2022003554A1 (en) 2020-07-01 2022-01-06 Pfizer Inc. Biomarkers for pd-1 axis binding antagonist therapy
CN116234568A (zh) 2020-07-07 2023-06-06 生物技术公司 用于hpv阳性癌症的治疗性rna
US11787775B2 (en) 2020-07-24 2023-10-17 Genentech, Inc. Therapeutic compounds and methods of use
US20230266332A1 (en) 2020-07-28 2023-08-24 Inserm (Institut National De La Santè Et De La Recherch Médicale) Methods and compositions for preventing and treating a cancer
US20230271940A1 (en) 2020-08-03 2023-08-31 Novartis Ag Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
EP4196612A1 (en) 2020-08-12 2023-06-21 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2022036079A1 (en) 2020-08-13 2022-02-17 Bristol-Myers Squibb Company Methods of redirecting of il-2 to target cells of interest
WO2022047189A1 (en) 2020-08-28 2022-03-03 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hepatocellular carcinoma
JP2023538955A (ja) 2020-08-31 2023-09-12 ブリストル-マイヤーズ スクイブ カンパニー 細胞局在シグネチャーおよび免疫療法
EP4210734A1 (en) 2020-09-14 2023-07-19 Boehringer Ingelheim International GmbH Heterologous prime boost vaccine
JP2023544410A (ja) 2020-10-05 2023-10-23 ブリストル-マイヤーズ スクイブ カンパニー タンパク質を濃縮するための方法
WO2022076596A1 (en) 2020-10-06 2022-04-14 Codiak Biosciences, Inc. Extracellular vesicle-aso constructs targeting stat6
IL301906A (en) 2020-10-08 2023-06-01 Targimmune Therapeutics Ag Immunotherapy for cancer treatment
CA3197479A1 (en) 2020-10-12 2022-04-21 Astrazeneca Ab Adjuvant durvalumab in combination with chemotherapy for treatment of cancer
WO2022084210A1 (en) 2020-10-20 2022-04-28 F. Hoffmann-La Roche Ag Combination therapy of pd-1 axis binding antagonists and lrrk2 inhitibors
AR123855A1 (es) 2020-10-20 2023-01-18 Genentech Inc Anticuerpos anti-mertk conjugados con peg y métodos de uso
WO2022084531A1 (en) 2020-10-23 2022-04-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating glioma
WO2022087402A1 (en) 2020-10-23 2022-04-28 Bristol-Myers Squibb Company Lag-3 antagonist therapy for lung cancer
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
EP4236960A1 (en) 2020-10-28 2023-09-06 Ikena Oncology, Inc. Combination of an ahr inhibitor with a pdx inhibitor or doxorubicine
EP4240491A1 (en) 2020-11-06 2023-09-13 Novartis AG Cd19 binding molecules and uses thereof
US20240010739A1 (en) 2020-11-12 2024-01-11 Institut National De La Santé Et De La Recherche Médicale (Inserm) Antibodies conjugated or fused to the receptor-binding domain of the sars-cov-2 spike protein and uses thereof for vaccine purposes
IL301268A (en) 2020-11-13 2023-05-01 Genentech Inc Methods and compositions containing a KRASG12C inhibitor and a PD-L1 binding antagonist for the treatment of lung cancer
WO2022101463A1 (en) 2020-11-16 2022-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of the last c-terminal residues m31/41 of zikv m ectodomain for triggering apoptotic cell death
WO2022101481A1 (en) 2020-11-16 2022-05-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for predicting and treating uveal melanoma
EP4244392A1 (en) 2020-11-16 2023-09-20 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and compositions for predicting and treating uveal melanoma
CA3202523A1 (en) 2020-12-02 2022-06-09 Genentech, Inc. Methods and compositions for neoadjuvant and adjuvant urothelial carcinoma therapy
WO2022120179A1 (en) 2020-12-03 2022-06-09 Bristol-Myers Squibb Company Multi-tumor gene signatures and uses thereof
TW202237119A (zh) 2020-12-10 2022-10-01 美商住友製藥腫瘤公司 Alk﹘5抑制劑和彼之用途
AR124414A1 (es) 2020-12-18 2023-03-22 Century Therapeutics Inc Sistema de receptor de antígeno quimérico con especificidad de receptor adaptable
TW202245808A (zh) 2020-12-21 2022-12-01 德商拜恩迪克公司 用於治療癌症之治療性rna
WO2022135666A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
WO2022135667A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
JP2024503265A (ja) 2020-12-28 2024-01-25 ブリストル-マイヤーズ スクイブ カンパニー 抗体組成物およびその使用の方法
US20220233689A1 (en) 2020-12-28 2022-07-28 Bristol-Myers Squibb Company Methods of treating tumors
WO2022144025A1 (zh) * 2021-01-04 2022-07-07 上海翰森生物医药科技有限公司 一种抗erbb3受体的抗体或其抗原结合片段及其医药用途
WO2022148736A1 (en) 2021-01-05 2022-07-14 Transgene Vectorization of muc1 t cell engager
WO2022162569A1 (en) 2021-01-29 2022-08-04 Novartis Ag Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof
EP4284919A1 (en) 2021-01-29 2023-12-06 Iovance Biotherapeutics, Inc. Methods of making modified tumor infiltrating lymphocytes and their use in adoptive cell therapy
CN117222413A (zh) 2021-02-10 2023-12-12 同润生物医药(上海)有限公司 治疗肿瘤的方法和组合
EP4297780A1 (en) * 2021-02-26 2024-01-03 Fred Hutchinson Cancer Center Protective antibodies against respiratory viral infections
CA3212345A1 (en) 2021-03-02 2022-09-09 Glaxosmithkline Intellectual Property Development Limited Substituted pyridines as dnmt1 inhibitors
US20240165094A1 (en) 2021-03-17 2024-05-23 Institut National de la Santé et de la Recherche Médicale Methods and compositions for treating melanoma
CN117321418A (zh) 2021-03-18 2023-12-29 诺华股份有限公司 癌症生物标志物及其使用方法
AU2022245322A1 (en) 2021-03-25 2023-10-05 Oncxerna Therapeutics, Inc. Targeted therapies in cancer
TW202304506A (zh) 2021-03-25 2023-02-01 日商安斯泰來製藥公司 涉及抗claudin 18.2抗體的組合治療以治療癌症
IL306028A (en) 2021-03-26 2023-11-01 Astrazeneca Ab Combined treatment for melanoma
BR112023019847A2 (pt) 2021-03-29 2023-11-07 Juno Therapeutics Inc Métodos para dosagem e tratamento com uma combinação de uma terapia com inibidor de ponto de verificação e uma terapia com célula t car
JP2024511831A (ja) 2021-03-31 2024-03-15 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッド 抗原結合タンパク質およびそれらの組み合わせ
WO2022212784A1 (en) 2021-03-31 2022-10-06 Flagship Pioneering Innovations V, Inc. Thanotransmission polypeptides and their use in treating cancer
JP2024514530A (ja) 2021-04-02 2024-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 切断型cdcp1に対する抗体およびその使用
TW202304979A (zh) 2021-04-07 2023-02-01 瑞士商諾華公司 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途
US12016860B2 (en) 2021-04-08 2024-06-25 Nurix Therapeutics, Inc. Combination therapies with Cbl-b inhibitor compounds
JP2024515263A (ja) 2021-04-09 2024-04-08 オーエスイー・イミュノセラピューティクス 改善された特性を有する二機能性分子のための新規足場構造
WO2022214652A1 (en) 2021-04-09 2022-10-13 Ose Immunotherapeutics Scaffold for bifunctioanl molecules comprising pd-1 or cd28 and sirp binding domains
EP4319728A1 (en) 2021-04-09 2024-02-14 Genentech, Inc. Combination therapy with a raf inhibitor and a pd-1 axis inhibitor
CA3213079A1 (en) 2021-04-13 2022-10-20 Kristin Lynne ANDREWS Amino-substituted heterocycles for treating cancers with egfr mutations
WO2022219080A1 (en) 2021-04-14 2022-10-20 INSERM (Institut National de la Santé et de la Recherche Médicale) New method to improve nk cells cytotoxicity
WO2022226539A1 (en) * 2021-04-23 2022-10-27 Immunome, Inc. Methods of administering antibodies against sars-cov-2 spike protein
WO2022223791A1 (en) 2021-04-23 2022-10-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating cell senescence accumulation related disease
WO2022229966A1 (en) 2021-04-29 2022-11-03 Yeda Research And Development Co. Ltd. T cell receptors directed against ras-derived recurrent neoantigens and methods of identifying same
EP4330436A1 (en) 2021-04-30 2024-03-06 Genentech, Inc. Therapeutic and diagnostic methods and compositions for cancer
WO2022243378A1 (en) 2021-05-18 2022-11-24 Kymab Limited Uses of anti-icos antibodies
AR125874A1 (es) 2021-05-18 2023-08-23 Novartis Ag Terapias de combinación
JP2024518641A (ja) 2021-05-21 2024-05-01 天津立博美華基因科技有限責任公司 医薬物組合せ及びその使用
IL308530A (en) 2021-05-24 2024-01-01 Astrazeneca Ab Preparations and methods for treating lung cancer
EP4346887A1 (en) 2021-05-25 2024-04-10 Edelweiss Immune Inc C-x-c motif chemokine receptor 6 (cxcr6) binding molecules, and methods of using the same
WO2022247972A2 (es) 2021-05-26 2022-12-01 Centro De Inmunologia Molecular Uso de composiciones terapéuticas para el tratamiento de pacientes con tumores de origen epitelial
GB202107994D0 (en) 2021-06-04 2021-07-21 Kymab Ltd Treatment of cancer
EP4363059A1 (en) 2021-06-29 2024-05-08 Flagship Pioneering Innovations V, Inc. Immune cells engineered to promote thanotransmission and uses thereof
CA3223534A1 (en) 2021-07-02 2023-01-05 Genentech, Inc. Methods and compositions for treating cancer
WO2023278897A1 (en) 2021-07-02 2023-01-05 Yale University Compositions and methods for treating cancers
WO2023280790A1 (en) 2021-07-05 2023-01-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Gene signatures for predicting survival time in patients suffering from renal cell carcinoma
IL309831A (en) 2021-07-13 2024-02-01 BioNTech SE Multispecific binding agents against CD40 and CD137 in combined cancer therapy
EP4377350A2 (en) 2021-07-28 2024-06-05 Genentech, Inc. Methods and compositions for treating cancer
CA3224180A1 (en) 2021-07-28 2023-02-02 F. Hoffmann-La Roche Ag Methods and compositions for treating cancer
KR20240042476A (ko) 2021-07-30 2024-04-02 오엔에이 테라퓨틱스 에스.엘. 항-cd36 항체 및 암을 치료하기 위한 이의 용도
AU2022340804A1 (en) 2021-08-31 2024-03-21 Gennao Bio, Inc. Compositions and methods for treating cancers
IL310773A (en) 2021-09-02 2024-04-01 Deutsches Krebsforschungszentrum Stiftung Des ?Ffentlichen Rechts Anti-CECAM6 antibodies with reduced side effects
WO2023051926A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
WO2023056403A1 (en) 2021-09-30 2023-04-06 Genentech, Inc. Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
WO2023057882A1 (en) 2021-10-05 2023-04-13 Pfizer Inc. Combinations of azalactam compounds with a pd-1 axis binding antagonist for the treatment of cancer
TW202333802A (zh) 2021-10-11 2023-09-01 德商拜恩迪克公司 用於肺癌之治療性rna(二)
WO2023066322A1 (zh) 2021-10-21 2023-04-27 杭州阿诺生物医药科技有限公司 一种融合多肽及其用途
KR20240099331A (ko) 2021-10-28 2024-06-28 라이엘 이뮤노파마, 인크. 면역 세포를 배양하기 위한 방법
CN118176214A (zh) 2021-10-29 2024-06-11 百时美施贵宝公司 血液癌症的lag-3拮抗剂疗法
WO2023079428A1 (en) 2021-11-03 2023-05-11 Pfizer Inc. Combination therapies using tlr7/8 agonist
WO2023078900A1 (en) 2021-11-03 2023-05-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating triple negative breast cancer (tnbc)
WO2023080900A1 (en) 2021-11-05 2023-05-11 Genentech, Inc. Methods and compositions for classifying and treating kidney cancer
WO2023083439A1 (en) 2021-11-09 2023-05-19 BioNTech SE Tlr7 agonist and combinations for cancer treatment
WO2023088968A1 (en) 2021-11-17 2023-05-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Universal sarbecovirus vaccines
US20230203062A1 (en) 2021-11-24 2023-06-29 Genentech, Inc. Therapeutic compounds and methods of use
US20230202984A1 (en) 2021-11-24 2023-06-29 Genentech, Inc. Therapeutic compounds and methods of use
AU2022409713A1 (en) 2021-12-16 2024-06-20 Valerio Therapeutics New conjugated nucleic acid molecules and their uses
WO2023118165A1 (en) 2021-12-21 2023-06-29 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating melanoma
WO2023129438A1 (en) 2021-12-28 2023-07-06 Wisconsin Alumni Research Foundation Hydrogel compositions for use for depletion of tumor associated macrophages
WO2023137161A1 (en) 2022-01-14 2023-07-20 Amgen Inc. Triple blockade of tigit, cd112r, and pd-l1
WO2023147371A1 (en) 2022-01-26 2023-08-03 Bristol-Myers Squibb Company Combination therapy for hepatocellular carcinoma
WO2023147488A1 (en) 2022-01-28 2023-08-03 Iovance Biotherapeutics, Inc. Cytokine associated tumor infiltrating lymphocytes compositions and methods
WO2023154799A1 (en) 2022-02-14 2023-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Combination immunotherapy for treating cancer
WO2023164638A1 (en) 2022-02-25 2023-08-31 Bristol-Myers Squibb Company Combination therapy for colorectal carcinoma
WO2023166420A1 (en) 2022-03-03 2023-09-07 Pfizer Inc. Multispecific antibodies and uses thereof
WO2023168404A1 (en) 2022-03-04 2023-09-07 Bristol-Myers Squibb Company Methods of treating a tumor
WO2023170008A1 (en) 2022-03-07 2023-09-14 Astrazeneca Ab Method for predicting patient response to immunotherapy
WO2023170606A1 (en) 2022-03-08 2023-09-14 Alentis Therapeutics Ag Use of anti-claudin-1 antibodies to increase t cell availability
WO2023174210A1 (en) 2022-03-14 2023-09-21 Laekna Limited Combination treatment for cancer
WO2023178329A1 (en) 2022-03-18 2023-09-21 Bristol-Myers Squibb Company Methods of isolating polypeptides
WO2023174569A1 (en) 2022-03-18 2023-09-21 Astrazeneca Ab Methods of treating biliary tract cancer using anti-pd-l1 antibody in combination with chemotherapy
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023192478A1 (en) 2022-04-01 2023-10-05 Bristol-Myers Squibb Company Combination therapy with anti-il-8 antibodies and anti-pd-1 antibodies for treating cancer
WO2023196987A1 (en) 2022-04-07 2023-10-12 Bristol-Myers Squibb Company Methods of treating tumor
US20230326022A1 (en) 2022-04-08 2023-10-12 Bristol-Myers Squibb Company Machine Learning Identification, Classification, and Quantification of Tertiary Lymphoid Structures
US11958906B2 (en) 2022-04-13 2024-04-16 Genentech, Inc. Pharmaceutical compositions of mosunetuzumab and methods of use
TW202408562A (zh) 2022-04-13 2024-03-01 美商建南德克公司 治療性蛋白質之醫藥組成物及使用方法
WO2023201369A1 (en) 2022-04-15 2023-10-19 Iovance Biotherapeutics, Inc. Til expansion processes using specific cytokine combinations and/or akti treatment
WO2023214325A1 (en) 2022-05-05 2023-11-09 Novartis Ag Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
TW202408523A (zh) 2022-05-12 2024-03-01 美商建南德克公司 包含shp2抑制劑及pd-l1結合拮抗劑之方法及組成物
WO2023222854A1 (en) 2022-05-18 2023-11-23 Kymab Limited Uses of anti-icos antibodies
WO2023228095A1 (en) 2022-05-24 2023-11-30 Daiichi Sankyo Company, Limited Dosage regimen of an anti-cdh6 antibody-drug conjugate
TW202412757A (zh) 2022-05-27 2024-04-01 美商 Viiv 醫療保健公司 用於hiv治療之化合物
WO2023235415A1 (en) 2022-06-01 2023-12-07 Genentech, Inc. Method to identify a patient with an increased likelihood of chemotherapy-induced peripheral neuropathy
WO2023235847A1 (en) 2022-06-02 2023-12-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2024003241A1 (en) 2022-06-30 2024-01-04 Astrazeneca Ab Treatment for immuno-oncology resistant subjects with an anti pd-l1 antibody an antisense targeted to stat3 and an inhibitor of ctla-4
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024023740A1 (en) 2022-07-27 2024-02-01 Astrazeneca Ab Combinations of recombinant virus expressing interleukin-12 with pd-1/pd-l1 inhibitors
TW202412859A (zh) 2022-07-28 2024-04-01 英商阿斯特捷利康英國股份有限公司 抗體-藥物結合物及雙特異性檢查點抑制劑之組合
WO2024030906A2 (en) * 2022-08-05 2024-02-08 Hbm Alpha Therapeutics, Inc. Anti-corticotropin-releasing hormone antibodies and polycystic ovary syndrome
WO2024033400A1 (en) 2022-08-10 2024-02-15 Institut National de la Santé et de la Recherche Médicale Sk2 inhibitor for the treatment of pancreatic cancer
WO2024033399A1 (en) 2022-08-10 2024-02-15 Institut National de la Santé et de la Recherche Médicale Sigmar1 ligand for the treatment of pancreatic cancer
WO2024040175A1 (en) 2022-08-18 2024-02-22 Pulmatrix Operating Company, Inc. Methods for treating cancer using inhaled angiogenesis inhibitor
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024052356A1 (en) 2022-09-06 2024-03-14 Institut National de la Santé et de la Recherche Médicale Inhibitors of the ceramide metabolic pathway for overcoming immunotherapy resistance in cancer
WO2024054992A1 (en) 2022-09-09 2024-03-14 Bristol-Myers Squibb Company Methods of separating chelator
WO2024052514A1 (en) 2022-09-09 2024-03-14 Astrazeneca Ab Compositions and methods for treating advanced solid tumors
WO2024056716A1 (en) 2022-09-14 2024-03-21 Institut National de la Santé et de la Recherche Médicale Methods and pharmaceutical compositions for the treatment of dilated cardiomyopathy
WO2024069009A1 (en) 2022-09-30 2024-04-04 Alentis Therapeutics Ag Treatment of drug-resistant hepatocellular carcinoma
WO2024077166A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating lung cancer
WO2024077191A1 (en) 2022-10-05 2024-04-11 Flagship Pioneering Innovations V, Inc. Nucleic acid molecules encoding trif and additionalpolypeptides and their use in treating cancer
WO2024077095A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating bladder cancer
WO2024084034A1 (en) 2022-10-21 2024-04-25 Institut National de la Santé et de la Recherche Médicale Methods and pharmaceutical compositions for the treatment of osteoarthritis
WO2024089417A1 (en) 2022-10-24 2024-05-02 Memorial Sloan-Kettering Cancer Center Tumour stratification for responsiveness to an immune checkpoint inhibitor
WO2024089418A1 (en) 2022-10-24 2024-05-02 Cancer Research Technology Limited Tumour sensitisation to checkpoint inhibitors with redox status modifier
WO2024091991A1 (en) 2022-10-25 2024-05-02 Genentech, Inc. Therapeutic and diagnostic methods for multiple myeloma
WO2024094688A1 (en) 2022-11-01 2024-05-10 Heidelberg Pharma Research Gmbh Anti-gucy2c antibody and uses thereof
WO2024097328A1 (en) 2022-11-03 2024-05-10 Incyte Corporation Combination therapies comprising an anti-gitr antibody for treating cancers
WO2024112571A2 (en) 2022-11-21 2024-05-30 Iovance Biotherapeutics, Inc. Two-dimensional processes for the expansion of tumor infiltrating lymphocytes and therapies therefrom
WO2024116140A1 (en) 2022-12-01 2024-06-06 Medimmune Limited Combination therapy for treatment of cancer comprising anti-pd-l1 and anti-cd73 antibodies
WO2024115966A2 (en) 2022-12-01 2024-06-06 Innate Pharma Compositions and methods for neoadjuvant treatment in cancer
WO2024115725A1 (en) 2022-12-01 2024-06-06 BioNTech SE Multispecific antibody against cd40 and cd137 in combination therapy with anti-pd1 ab and chemotherapy
WO2024126457A1 (en) 2022-12-14 2024-06-20 Astellas Pharma Europe Bv Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and immune checkpoint inhibitors
WO2024137589A2 (en) 2022-12-20 2024-06-27 Genentech, Inc. Methods of treating pancreatic cancer with a pd-1 axis binding antagonist and an rna vaccine
WO2024137776A1 (en) 2022-12-21 2024-06-27 Bristol-Myers Squibb Company Combination therapy for lung cancer

Family Cites Families (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180193A (en) 1963-02-25 1965-04-27 Benedict David Machines for cutting lengths of strip material
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
FR2413974A1 (fr) 1978-01-06 1979-08-03 David Bernard Sechoir pour feuilles imprimees par serigraphie
US4263428A (en) 1978-03-24 1981-04-21 The Regents Of The University Of California Bis-anthracycline nucleic acid function inhibitors and improved method for administering the same
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
EP0052322B1 (de) 1980-11-10 1985-03-27 Gersonde, Klaus, Prof. Dr. Verfahren zur Herstellung von Lipid-Vesikeln durch Ultraschallbehandlung, Anwendung des Verfahrens und Vorrichtung zur Durchführung des Verfahrens
IE52535B1 (en) 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
US4474893A (en) 1981-07-01 1984-10-02 The University of Texas System Cancer Center Recombinant monoclonal antibodies
US4714681A (en) 1981-07-01 1987-12-22 The Board Of Reagents, The University Of Texas System Cancer Center Quadroma cells and trioma cells and methods for the production of same
US4485045A (en) 1981-07-06 1984-11-27 Research Corporation Synthetic phosphatidyl cholines useful in forming liposomes
EP0088046B1 (de) 1982-02-17 1987-12-09 Ciba-Geigy Ag Lipide in wässriger Phase
DE3218121A1 (de) 1982-05-14 1983-11-17 Leskovar, Peter, Dr.-Ing., 8000 München Arzneimittel zur tumorbehandlung
EP0102324A3 (de) 1982-07-29 1984-11-07 Ciba-Geigy Ag Lipide und Tenside in wässriger Phase
GB8308235D0 (en) 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4675187A (en) 1983-05-16 1987-06-23 Bristol-Myers Company BBM-1675, a new antibiotic complex
US4544545A (en) 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
HUT35524A (en) 1983-08-02 1985-07-29 Hoechst Ag Process for preparing pharmaceutical compositions containing regulatory /regulative/ peptides providing for the retarded release of the active substance
DE3486459D1 (de) 1983-09-26 1997-12-11 Udo Dr Med Ehrenfeld Mittel und Erzeugnis für die Diagnose und Therapie von Tumoren sowie zur Behandlung von Schwächen der zelligen und humoralen Immunabwehr
EP0143949B1 (en) 1983-11-01 1988-10-12 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Pharmaceutical composition containing urokinase
US4681581A (en) 1983-12-05 1987-07-21 Coates Fredrica V Adjustable size diaper and folding method therefor
US4740461A (en) 1983-12-27 1988-04-26 Genetics Institute, Inc. Vectors and methods for transformation of eucaryotic cells
US5101827A (en) 1985-07-05 1992-04-07 Immunomedics, Inc. Lymphographic and organ imaging method and kit
US5776093A (en) 1985-07-05 1998-07-07 Immunomedics, Inc. Method for imaging and treating organs and tissues
US4735210A (en) 1985-07-05 1988-04-05 Immunomedics, Inc. Lymphographic and organ imaging method and kit
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
DE3783588T2 (de) 1986-04-17 1993-06-09 Kyowa Hakko Kogyo Kk Neue verbindungen dc-88a und dc-89a1 und deren herstellungsverfahren.
US4959455A (en) 1986-07-14 1990-09-25 Genetics Institute, Inc. Primate hematopoietic growth factors IL-3 and pharmaceutical compositions
US4912040A (en) 1986-11-14 1990-03-27 Genetics Institute, Inc. Eucaryotic expression system
IL85035A0 (en) 1987-01-08 1988-06-30 Int Genetic Eng Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same
WO1988007089A1 (en) 1987-03-18 1988-09-22 Medical Research Council Altered antibodies
US5677425A (en) 1987-09-04 1997-10-14 Celltech Therapeutics Limited Recombinant antibody
US5648471A (en) 1987-12-03 1997-07-15 Centocor, Inc. One vial method for labeling antibodies with Technetium-99m
US4925648A (en) 1988-07-29 1990-05-15 Immunomedics, Inc. Detection and treatment of infectious and inflammatory lesions
US5601819A (en) 1988-08-11 1997-02-11 The General Hospital Corporation Bispecific antibodies for selective immune regulation and for selective immune cell binding
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
US5175384A (en) 1988-12-05 1992-12-29 Genpharm International Transgenic mice depleted in mature t-cells and methods for making transgenic mice
DE3920358A1 (de) 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
EP0739904A1 (en) 1989-06-29 1996-10-30 Medarex, Inc. Bispecific reagents for aids therapy
US5102990A (en) 1989-08-09 1992-04-07 Rhomed Incorporated Direct radiolabeling of antibodies and other proteins with technetium or rhenium
JP2840866B2 (ja) 1989-11-28 1998-12-24 日本ゼオン株式会社 ニトリル基含有高飽和共重合体ゴムと有機合成繊維との接着剤組成物
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6673986B1 (en) 1990-01-12 2004-01-06 Abgenix, Inc. Generation of xenogeneic antibodies
DE69133566T2 (de) 1990-01-12 2007-12-06 Amgen Fremont Inc. Bildung von xenogenen Antikörpern
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5151510A (en) 1990-04-20 1992-09-29 Applied Biosystems, Inc. Method of synethesizing sulfurized oligonucleotide analogs
FR2664073A1 (fr) 1990-06-29 1992-01-03 Thomson Csf Moyens de marquage d'objets, procede de realisation et dispositif de lecture.
WO1992000373A1 (en) 1990-06-29 1992-01-09 Biosource Genetics Corporation Melanin production by transformed microorganisms
US6255458B1 (en) 1990-08-29 2001-07-03 Genpharm International High affinity human antibodies and human antibodies against digoxin
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5789650A (en) 1990-08-29 1998-08-04 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
DE69133557D1 (de) 1990-08-29 2007-03-15 Pharming Intellectual Pty Bv Homologe rekombination in säugetier-zellen
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
KR100272077B1 (ko) 1990-08-29 2000-11-15 젠팜인터내셔날,인코포레이티드 이종 항체를 생산할 수 있는 전이유전자를 가진 인간이외의 동물
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US5877397A (en) 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5874299A (en) 1990-08-29 1999-02-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US6300129B1 (en) 1990-08-29 2001-10-09 Genpharm International Transgenic non-human animals for producing heterologous antibodies
US5194594A (en) 1990-09-07 1993-03-16 Techniclone, Inc. Modified antibodies
DE69128253T2 (de) 1990-10-29 1998-06-18 Chiron Corp Bispezifische antikörper, verfahren zu ihrer herstellung und deren verwendungen
JP3431140B2 (ja) 1991-04-26 2003-07-28 サーフィス・アクティブ・リミテッド 抗体およびその使用方法
WO1992022670A1 (en) 1991-06-12 1992-12-23 Genpharm International, Inc. Early detection of transgenic embryos
CA2103059C (en) 1991-06-14 2005-03-22 Paul J. Carter Method for making humanized antibodies
AU2235992A (en) 1991-06-14 1993-01-12 Genpharm International, Inc. Transgenic immunodeficient non-human animals
WO1993004169A1 (en) 1991-08-20 1993-03-04 Genpharm International, Inc. Gene targeting in animal cells using isogenic dna constructs
DK1136556T3 (da) 1991-11-25 2005-10-03 Enzon Inc Fremgangsmåde til fremstilling af multivalente antigen-bindende proteiner
CA2124967C (en) 1991-12-17 2008-04-08 Nils Lonberg Transgenic non-human animals capable of producing heterologous antibodies
WO1993017715A1 (en) 1992-03-05 1993-09-16 Board Of Regents, The University Of Texas System Diagnostic and/or therapeutic agents, targeted to neovascular endothelial cells
EP0640094A1 (en) 1992-04-24 1995-03-01 The Board Of Regents, The University Of Texas System Recombinant production of immunoglobulin-like domains in prokaryotic cells
NZ253943A (en) 1992-06-18 1997-01-29 Genpharm Int Transfering polynucleotides into eukaryotic cells using co-lipofection complexes of a cationic lipid and the polynucleotide
JPH07509137A (ja) 1992-07-24 1995-10-12 セル ジェネシス,インク. 異種抗体の生産
ATE149570T1 (de) 1992-08-17 1997-03-15 Genentech Inc Bispezifische immunoadhesine
ATE199392T1 (de) 1992-12-04 2001-03-15 Medical Res Council Multivalente und multispezifische bindungsproteine, deren herstellung und verwendung
US5981175A (en) 1993-01-07 1999-11-09 Genpharm Internation, Inc. Methods for producing recombinant mammalian cells harboring a yeast artificial chromosome
EP0754225A4 (en) 1993-04-26 2001-01-31 Genpharm Int HETEROLOGIC ANTIBODY-PRODUCING TRANSGENIC NON-HUMAN ANIMALS
US5885573A (en) 1993-06-01 1999-03-23 Arch Development Corporation Methods and materials for modulation of the immunosuppressive activity and toxicity of monoclonal antibodies
AU691811B2 (en) 1993-06-16 1998-05-28 Celltech Therapeutics Limited Antibodies
US5625825A (en) 1993-10-21 1997-04-29 Lsi Logic Corporation Random number generating apparatus for an interface unit of a carrier sense with multiple access and collision detect (CSMA/CD) ethernet data network
JPH07309761A (ja) 1994-05-20 1995-11-28 Kyowa Hakko Kogyo Co Ltd デュオカルマイシン誘導体の安定化法
US5643763A (en) 1994-11-04 1997-07-01 Genpharm International, Inc. Method for making recombinant yeast artificial chromosomes by minimizing diploid doubling during mating
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6121022A (en) 1995-04-14 2000-09-19 Genentech, Inc. Altered polypeptides with increased half-life
AU2466895A (en) 1995-04-28 1996-11-18 Abgenix, Inc. Human antibodies derived from immunized xenomice
TW311927B (es) 1995-07-11 1997-08-01 Minnesota Mining & Mfg
WO1997007671A1 (fr) 1995-08-29 1997-03-06 Kirin Beer Kabushiki Kaisha Animal chimerique et procede de constitution
GB9624482D0 (en) 1995-12-18 1997-01-15 Zeneca Phaema S A Chemical compounds
SK285141B6 (sk) 1996-02-13 2006-07-07 Astrazeneca Uk Limited Použitie chinazolínového derivátu, chinazolínový derivát, spôsob jeho prípravy a farmaceutická kompozícia, ktorá ho obsahuje
EP0885198B1 (en) 1996-03-05 2001-12-19 AstraZeneca AB 4-anilinoquinazoline derivatives
CA2249195A1 (en) 1996-03-18 1997-09-25 Board Of Regents, The University Of Texas System Immunoglobin-like domains with increased half lives
GB9718972D0 (en) 1996-09-25 1997-11-12 Zeneca Ltd Chemical compounds
US5916771A (en) 1996-10-11 1999-06-29 Abgenix, Inc. Production of a multimeric protein by cell fusion method
WO1998023289A1 (en) 1996-11-27 1998-06-04 The General Hospital Corporation MODULATION OF IgG BINDING TO FcRn
EP2314625B1 (en) 1996-12-03 2014-05-07 Amgen Fremont Inc. Transgenic mammals having human Ig loci including plural VH and Vkappa regions and antibodies produced therefrom
JP4367866B2 (ja) 1997-02-12 2009-11-18 ザ リージェンツ オブ ジ ユニバーシティ オブ ミシガン 肺癌用のタンパク質マーカーおよびその使用
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
GB9714249D0 (en) 1997-07-08 1997-09-10 Angiogene Pharm Ltd Vascular damaging agents
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
US6528624B1 (en) 1998-04-02 2003-03-04 Genentech, Inc. Polypeptide variants
ATE458007T1 (de) 1998-04-20 2010-03-15 Glycart Biotechnology Ag Glykosylierungs-engineering von antikörpern zur verbesserung der antikörperabhängigen zellvermittelten zytotoxizität
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
ES2329959T5 (es) 1998-12-10 2013-12-18 Bristol-Myers Squibb Company Armazones de proteína para miméticos de anticuerpo y otras proteínas de unión
GB9900334D0 (en) 1999-01-07 1999-02-24 Angiogene Pharm Ltd Tricylic vascular damaging agents
GB9900752D0 (en) 1999-01-15 1999-03-03 Angiogene Pharm Ltd Benzimidazole vascular damaging agents
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
ES2694002T3 (es) 1999-01-15 2018-12-17 Genentech, Inc. Polipéptido que comprende una región Fc de IgG1 humana variante
EE05345B1 (et) 1999-02-10 2010-10-15 Astrazeneca Ab Kinasoliini derivaadid angiogeneesi inhibiitoritena
CA2704600C (en) 1999-04-09 2016-10-25 Kyowa Hakko Kirin Co., Ltd. A method for producing antibodies with increased adcc activity
US6833268B1 (en) 1999-06-10 2004-12-21 Abgenix, Inc. Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions
JP4668498B2 (ja) 1999-10-19 2011-04-13 協和発酵キリン株式会社 ポリペプチドの製造方法
ES2306306T3 (es) 1999-11-05 2008-11-01 Astrazeneca Ab Nuevos derivados de quinazolina.
CZ303705B6 (cs) 2000-02-15 2013-03-27 Sugen, Inc. Pyrrolem substituovaná 2-indolinonová sloucenina pro pouzití jako inhibitor proteinkináz a farmaceutická kompozice s jejím obsahem
MXPA02011770A (es) 2000-05-31 2003-04-10 Astrazeneca Ab Derivados de indol con actividad de dano vascular.
UA73993C2 (uk) 2000-06-06 2005-10-17 Астразенека Аб Хіназолінові похідні для лікування пухлин та фармацевтична композиція
WO2002008213A1 (en) 2000-07-07 2002-01-31 Angiogene Pharmaceuticals Limited Colchinol derivatives as angiogenesis inhibitors
IL153484A0 (en) 2000-07-07 2003-07-06 Angiogene Pharm Ltd Colchinol derivatives as angiogenesis inhibitors
CA2424977C (en) 2000-10-06 2008-03-18 Kyowa Hakko Kogyo Co., Ltd. Process for purifying antibody
HU231090B1 (hu) 2000-10-06 2020-07-28 Kyowa Kirin Co., Ltd. Antitest-kompozíciót termelő sejt
US6946292B2 (en) 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
DK1355919T3 (da) 2000-12-12 2011-03-14 Medimmune Llc Molekyler med længere halveringstider, sammensætninger og anvendelser deraf
US20040002587A1 (en) 2002-02-20 2004-01-01 Watkins Jeffry D. Fc region variants
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
ES2654064T3 (es) * 2002-07-03 2024-03-13 Ono Pharmaceutical Co Composiciones inmunopotenciadoras que comprenden anticuerpos anti-PD-L1
DK2345671T3 (en) 2002-09-27 2016-02-15 Xencor Inc Optimized Fc variants and methods for their formation
WO2004063351A2 (en) 2003-01-09 2004-07-29 Macrogenics, Inc. IDENTIFICATION AND ENGINEERING OF ANTIBODIES WITH VARIANT Fc REGIONS AND METHODS OF USING SAME
US20050226867A1 (en) 2003-10-08 2005-10-13 Kyowa Hakko Kogyo Co., Ltd. IL-5R-specific antibody composition
EA010687B1 (ru) 2004-02-06 2008-10-30 Нимокс Корпорейшн Гуманизированное антитело
CN105085678B (zh) * 2004-12-21 2019-05-07 阿斯利康公司 血管生成素-2的抗体及其应用
CA2981431C (en) 2005-06-08 2021-04-13 Dana-Farber Cancer Institute Inc. Use of compounds that reduce activity or expression of programmed cell death-1 to treat lymphoma
KR101411165B1 (ko) * 2005-07-01 2014-06-25 메다렉스, 엘.엘.시. 예정 사멸 리간드 1 (피디-엘1)에 대한 인간 모노클로날항체
TW200815469A (en) 2006-06-23 2008-04-01 Astrazeneca Ab Compounds
US20090304711A1 (en) * 2006-09-20 2009-12-10 Drew Pardoll Combinatorial Therapy of Cancer and Infectious Diseases with Anti-B7-H1 Antibodies
EP2133365B1 (en) * 2006-12-27 2017-05-17 Emory University Compositions and methods for the treatment of infections and tumors
KR101586617B1 (ko) * 2007-06-18 2016-01-20 머크 샤프 앤 도메 비.브이. 사람 프로그램된 사멸 수용체 pd-1에 대한 항체
US20100285039A1 (en) * 2008-01-03 2010-11-11 The Johns Hopkins University B7-H1 (CD274) Antagonists Induce Apoptosis of Tumor Cells
KR101050829B1 (ko) * 2008-10-02 2011-07-20 서울대학교산학협력단 항 pd-1 항체 또는 항 pd-l1 항체를 포함하는 항암제
PE20120341A1 (es) * 2008-12-09 2012-04-24 Genentech Inc Anticuerpos anti-pd-l1 y su uso para mejorar la funcion de celulas t
MX343747B (es) * 2009-11-24 2016-11-22 Medimmune Ltd Agentes de union diana contra b7-h1.
JP6071725B2 (ja) 2013-04-23 2017-02-01 カルソニックカンセイ株式会社 電気自動車の駆動力制御装置
US9209965B2 (en) 2014-01-14 2015-12-08 Microsemi Semiconductor Ulc Network interface with clock recovery module on line card
US11392902B2 (en) 2017-06-06 2022-07-19 United Parcel Service Of America, Inc. Systems, methods, apparatuses and computer program products for providing notification of items for pickup and delivery
US11284893B2 (en) 2019-04-02 2022-03-29 Covidien Lp Stapling device with articulating tool assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JULIE R BRAHMER ET AL: "Safety and activity of anti-PD-L1 antibody in patients with advanced cancer", NEW ENGLAND JOURNAL OF MEDICINE, THE - NEJM, MASSACHUSETTS MEDICAL SOCIETY, US, vol. 366, no. 26, 28 June 2012 (2012-06-28), pages 2455 - 2465, XP002685330, ISSN: 1533-4406, DOI: 10.1056/NEJMOA1200694 *

Also Published As

Publication number Publication date
US20140356353A1 (en) 2014-12-04
RU2015147286A (ru) 2019-01-11
NO2019002I1 (es) 2019-01-14
KR101934071B1 (ko) 2019-01-02
RU2571204C3 (ru) 2020-12-14
US20170137522A1 (en) 2017-05-18
NZ628923A (en) 2016-02-26
HUE037159T2 (hu) 2018-08-28
HRP20200383T1 (hr) 2020-06-12
DK3279215T3 (da) 2020-04-27
SI3279215T1 (sl) 2020-07-31
CY2019003I2 (el) 2020-05-29
HUE049647T2 (hu) 2020-09-28
JP2017070294A (ja) 2017-04-13
US11518809B2 (en) 2022-12-06
BR112012012465A2 (pt) 2017-10-10
JP2019107005A (ja) 2019-07-04
US8779108B2 (en) 2014-07-15
FR19C1001I1 (fr) 2020-01-31
JP6271684B2 (ja) 2018-01-31
AU2010324757C1 (en) 2018-05-17
JP6480561B2 (ja) 2019-03-13
US10400039B2 (en) 2019-09-03
CN104961829B (zh) 2018-08-21
AU2010324757B2 (en) 2016-03-17
US9493565B2 (en) 2016-11-15
AU2016203758A1 (en) 2016-06-23
HRP20171653T1 (hr) 2017-12-15
CN102918058A (zh) 2013-02-06
HK1246310A1 (zh) 2018-09-07
RU2571204C2 (ru) 2015-12-20
AU2010324757A1 (en) 2012-05-24
RS60033B1 (sr) 2020-04-30
SI2504364T1 (sl) 2017-11-30
NZ599405A (en) 2014-09-26
CY1122816T1 (el) 2021-05-05
RU2015147286A3 (es) 2019-03-01
KR101790767B1 (ko) 2017-10-26
CN102918058B (zh) 2015-05-20
IL219876A0 (en) 2012-07-31
JP6700447B2 (ja) 2020-05-27
IL219876A (en) 2016-02-29
IL243813A0 (en) 2016-04-21
BR122021025338B1 (pt) 2023-03-14
JP2018093873A (ja) 2018-06-21
LUC00097I1 (es) 2019-01-14
AU2016203758B2 (en) 2017-12-21
JP5837504B2 (ja) 2015-12-24
EP3279215A1 (en) 2018-02-07
PL3279215T3 (pl) 2020-06-29
KR20170123347A (ko) 2017-11-07
ES2646863T3 (es) 2017-12-18
HUS1900002I1 (hu) 2019-02-28
RU2706200C2 (ru) 2019-11-14
JP2016117705A (ja) 2016-06-30
WO2011066389A1 (en) 2011-06-03
US20130034559A1 (en) 2013-02-07
BR112012012465B1 (pt) 2023-03-14
KR20150132594A (ko) 2015-11-25
JP6047646B2 (ja) 2016-12-21
ES2793330T3 (es) 2020-11-13
CY2019003I1 (el) 2020-05-29
EP2504364A1 (en) 2012-10-03
CA2778714A1 (en) 2011-06-03
MX343747B (es) 2016-11-22
LTC2504364I2 (lt) 2020-10-12
MX2012005809A (es) 2012-09-07
LUC00097I2 (es) 2019-12-24
RS56469B1 (sr) 2018-01-31
CN104961829A (zh) 2015-10-07
DK2504364T3 (da) 2017-11-06
LT3279215T (lt) 2020-04-10
FR19C1001I2 (fr) 2020-01-31
LTPA2019002I1 (lt) 2019-01-25
JP2013511959A (ja) 2013-04-11
EP2504364A4 (en) 2013-11-13
MX359551B (es) 2018-10-02
RU2012126138A (ru) 2013-12-27
PT3279215T (pt) 2020-05-18
PT2504364T (pt) 2017-11-14
KR101573109B1 (ko) 2015-12-01
CA2992770A1 (en) 2011-06-03
AU2016203758C1 (en) 2018-04-12
LT2504364T (lt) 2017-11-10
US20230235062A1 (en) 2023-07-27
CY1119743T1 (el) 2018-06-27
EP3279215B1 (en) 2020-02-12
KR20170062524A (ko) 2017-06-07
PL2504364T3 (pl) 2017-12-29
IL243813A (en) 2017-11-30
CA2778714C (en) 2018-02-27
US20210017282A1 (en) 2021-01-21
KR101740171B1 (ko) 2017-05-25
KR20120101691A (ko) 2012-09-14
NO2504364T3 (es) 2018-01-06

Similar Documents

Publication Publication Date Title
US11518809B2 (en) Targeted binding agents against B7-H1
US20120328625A1 (en) Targeted binding agents directed to sonic hedgehog homolog and uses thereof
QUEVA et al. Patent 2778714 Summary

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BABCOOK, JOHN

Inventor name: MORROW, MICHELLE

Inventor name: FOLTZ, IAN

Inventor name: QUEVA, CHRISTOPHE

Inventor name: BOYLE, MELANIE

Inventor name: STEWART, ROSS

Inventor name: MULGREW, KATHLEEN ANN

Inventor name: CHODORGE, MATTHIEU

Inventor name: ALIMZHANOV, MARAT

Inventor name: KANG, JASPAL, SINGH

Inventor name: SEKIROV, LAURA

Inventor name: HAMMOND, SCOTT

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1176623

Country of ref document: HK

A4 Supplementary search report drawn up and despatched

Effective date: 20131015

RIC1 Information provided on ipc code assigned before grant

Ipc: C07K 16/28 20060101AFI20131009BHEP

17Q First examination report despatched

Effective date: 20150805

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170531

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SERVOPATENT GMBH, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 916716

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010044350

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20171653

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20171101

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2504364

Country of ref document: PT

Date of ref document: 20171114

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20171103

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20171653

Country of ref document: HR

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E014466

Country of ref document: EE

Effective date: 20171101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2646863

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171218

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20170809

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20170402807

Country of ref document: GR

Effective date: 20180330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010044350

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1176623

Country of ref document: HK

26N No opposition filed

Effective date: 20180511

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E037159

Country of ref document: HU

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: SPCF

Free format text: PRODUCT NAME: DURVALUMAB (AN B7-H1 BINDENDER ANTIKOERPER, UMFASSEND IN DER SCHWERKETTE EINE CDR1-ANIMOSAEURESEQUENZ VON GFTFSRYWMS, EINE CDR2-AMINOSAEURESEQUENZ VON NIKQDGSEKYYVDSVKG UNAMINOSAEURESEQUENZ VON EGGWFGELAFDY, UND IN DURVALUMAB (AN B7-H1 BINDENDER ANTIKOERPER, UMFASSEND IN DER SCHWERKETTE EINE CDR1-ANIMOSAEURESEQUENZ VON GFTFSRYWMS, EINE CDR2-...; REGISTRATION NO/DATE: SWISSMEDIC 66548 11.06.2018

Filing date: 20181116

REG Reference to a national code

Ref country code: FR

Ref legal event code: CP

Free format text: PRODUCT NAME: DURVALUMAB; REGISTRATION NO/DATE: EU/1/18/1322 20180925

Spc suppl protection certif: 19C1001

Filing date: 20190109

REG Reference to a national code

Ref country code: FI

Ref legal event code: SPCF

Spc suppl protection certif: C20190002

Ref country code: IT

Ref legal event code: SPCF

Ref document number: 502017000119250

Country of ref document: IT

Free format text: PRODUCT NAME: DURVALUMAB O UNA SUA VARIANTE TERAPEUTICAMENTE EQUIVALENTE(IMFINZI); AUTHORISATION NUMBER(S) AND DATE(S): EU/1/18/1322, 20180925

Spc suppl protection certif: 132019000000015

REG Reference to a national code

Ref country code: NL

Ref legal event code: SPCF

Free format text: PRODUCT NAME: EEN ANTILICHAAM DAT BINDT AAN B7-H1 OMVATTENDE EEN ZWARE KETEN CDR1 AMINOZUUR SEQUENTIE GFTFSRYWMS, EEN ZWARE KETEN CDR2 AMINOZUUR SEQUENTIE NIKQDGSEKYYVDSVKG, EEN ZWARE KETEN CDR3 AMINOZUUR SEQUENTIE EGGWFGELAFDY, EEN LICHTE KETEN CDR1 AMINOZUUR SEQUENTIE RASQRVSSSYLA, EEN LICHTE KETEN CDR2 AMINOZUUR SEQUENTIE DASSRAT EN EEN LICHTE KETEN CDR3 AMINOZUUR SEQUENTIE QQYGSLPWT, IN HET BIJZONDER DURVALUMAB, OF EEN DOOR HET BASISOCTROOI BESCHERMDE THERAPEUTISCH EQUIVALENTE VARIANT DAARVAN; REGISTRATION NO/DATE: NOT AVAILABLE

Spc suppl protection certif: 300964

Filing date: 20190114

Expiry date: 20301123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R065

Ref document number: 602010044350

Country of ref document: DE

Free format text: PRODUCT NAME: EIN ANTIKOERPER, DER AN B7-H1 BINDET, UMFASSEND GFTFSRYWMS ALS CDR1-AMINOSAEURESEQUENZDR3-AMINOSAEURESEQ; REGISTRATION NO/DATE: EU/1/18/1322 20180921 AFDY ALS CDR3- AMINOSAEURESEQUENZEINE EINER SCHWEREN KETTE, RASQRVSSSYLA ALS CDR1- AMINOSAEURESEQUEN EINER SCHWEREN KETTE, NIKQDGSEKYYVDSVKG ALS CDR2- AMINOSAEURESEQUENZ EINER SCHWEREN KETTE, EGGWFGELZ EINER LEICHTEN KETTE, DASSRAT ALS CDR2-AMINOSAEURESEQUENZ EINER LEICHTEN KETTE UND QQYGSLPWT ALS C

Spc suppl protection certif: 122019000005

Filing date: 20190114

Expiry date: 20301125

REG Reference to a national code

Ref country code: LT

Ref legal event code: SPCF

Free format text: PRODUCT NAME: ANTIKUNAS, KURIS JUNGIASI PRIE B7-Y1, APIMANTIS SUNKIOSIOS GRANDINES CDR1, CDR2 IR CDR3 SEKAS, LENGVOSIOS GRANDINES CDR1, CDR2 IR CDR3 SEKAS, YPATINGAI DURVALUMABAS ARBA JO TERAPISKAI EKVIVALENTINIS VARIANTAS, KAIP APSAUGOTA PAGRINDINIAME PATENTE; REGISTRATION NO/DATE: EU/1/18/1322 20180921

Spc suppl protection certif: PA2019002

Filing date: 20190109

Expiry date: 20301124

REG Reference to a national code

Ref country code: DK

Ref legal event code: CTFF

Free format text: PRODUCT NAME: ET ANTISTOF DER BINDER TIL B7-H1, OMFATTENDE EN HEAVY CHAIN CDR1 MED AMINOSY-RESEKVENS GFTFSRYWMS, EN HEAVY CHAIN CDR2 MED AMINOSYRESEKVENS NIKQDGSEKYYVDSVKS, ... ISAER DURVALUMAB, ELLER EN TERAPEUTISK AEKVIVALENT DERAF, SOM BESKYTTET I GRUNDPATENTET; REG. NO/DATE: EU/1/18/1322 20180925

Spc suppl protection certif: CA 2019 00002

Filing date: 20190114

Expiry date: 20301124

Extension date: 20330925

Ref country code: NO

Ref legal event code: SPCF

Free format text: ; REG. NO/DATE: 20180108

Spc suppl protection certif: 2019002

Filing date: 20190114

REG Reference to a national code

Ref country code: BE

Ref legal event code: SPCF

Free format text: PRODUCT NAME: IMFINZI-DURVALUMAB; AUTHORISATION NUMBER AND DATE: EU/1/18/1332 20180925

Spc suppl protection certif: 2019C/002

Filing date: 20190103

Expiry date: 20301124

Extension date: 20330925

REG Reference to a national code

Ref country code: SE

Ref legal event code: SPCF

Free format text: PRODUCT NAME: AN ANTIBODY THAT BINDS TO B7-H1 COMPRISING A HEAVY CHAIN CDR1 AMINO ACID SEQUENCE OF GFTFSRYWMS, A HEAVY CHAIN CDR2 AMINO ACID SEQUENCE OF NIKQDGSEKYYVDSVKG, A HEAVY CHAIN CDR3 AMINO ACID SEQUENCE OF EGGWFGELAFDY, A LIGHT CHAIN CDR1 AMINO ACID SEQUENCE OF RASQRVSSSYLA, A LIGHT CHAIN CDR2 AMINO ACID SEQUENCE OF DASSRAT AND A LIGHT CHAIN CDR3 AMINO ACID SEQUENCE OF QQYGSLPWT, IN PARTICULAR DURVALUMAB, OR A THERAPEUTICALLY EQUIVALENT VARIANT THEREOF AS PROTECTED BY THE BASIC PATENT; REG. NO/DATE: EU/1/18/1322 20180925

Spc suppl protection certif: 1990002-6

REG Reference to a national code

Ref country code: EE

Ref legal event code: AA1Y

Ref document number: E014466

Country of ref document: EE

Free format text: PRODUCT NAME: DURVALUMAB;REG NO/DATE: EU/1/18/1332 25.09.2018

Spc suppl protection certif: C20190001

Filing date: 20190104

REG Reference to a national code

Ref country code: IE

Ref legal event code: SPCF

Free format text: PRODUCT NAME: (I) PRODUCT (I.E. ACTIVE INGREDIENT OR COMBINATION OF ACTIVE INGREDIENTS) FOR WHICH A CERTIFICATE IS REQUESTED: AN ANTIBODY THAT BINDS TO B7-H1 COMPRISING A HEAVY CHAIN CDR1 AMINO ACID SEQUENCE OF GFTFSRYWMS, A HEAVY CHAIN CDR2 AMINO ACID SEQUENCE OF NIKQDGSEKYYVDSVKG, A HEAVY CHAIN CDR3 AMINO ACID SEQUENCE OF EGGWFGELAFDY, A LIGHT CHAIN CDR1 AMINO ACID SEQUENCE OF RASQRVSSSYLA, A LIGHT CHAIN CDR2 AMINO ACID SEQUENCE OF DASSRAT AND A LIGHT CHAIN CDR3 AMINO ACID SEQUENCE OF QQYGSLPWT, IN PARTICULAR DURVALUMAB, OR A THERAPEUTICALLY EQUIVALENT VARIANT THEREOF AS PROTECTED BY THE BASIC PATENT; REGISTRATION NO/DATE: EU/1/18/1322 20180921

Spc suppl protection certif: 2019/002

Filing date: 20190114

REG Reference to a national code

Ref country code: LU

Ref legal event code: SPCF

Free format text: PRODUCT NAME: UN ANTICORPS SE LIANT AU B7-H1 COMPRENANT UNE CHAINE LOURDE CDR1 AYANT LA SEQUENCE D'ACIDES AMINES GFTFSRYWMS, UNE CHAINE LOURDE CDR2 AYANT LA SEQUENCE D'ACIDES AMINES NIKQDGSEKYYVDSVKG, UNE CHAINE LOURDE CDR3 AYANT LA SEQUENCE D'ACIDES AMINES EGGWFGELAFDY, UNE CHAINE LEGERE CDR1 AYANT LA SEQUENCE D'ACIDES AMINES RASQRVSSSYLA, UNE CHAINE LEGERE CDR2 AYANT LA SEQUENCE D'ACIDES AMINES DASSRAT ET UNE CHAINE LEGERE CDR3 AYANT LA SEQUENCE D'ACIDES AMINES QQYGSLPWT, EN PARTICULIER DURVALUMAB, OU UNE DE SES VARIANTES EQUIVALENTES THERAPEUTIQUEMENT TELLE QUE PROTEGEE PAR LE BREVET DE BASE; AUTHORISATION NUMBER AND DATE: EU/1/18/1322 20180925

Spc suppl protection certif: LUC00097

Filing date: 20190114

Expiry date: 20301124

Extension date: 20330925

REG Reference to a national code

Ref country code: HU

Ref legal event code: AA1S

Ref document number: E037159

Country of ref document: HU

Spc suppl protection certif: S1900002

Filing date: 20190114

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG1Y

Ref document number: E014466

Country of ref document: EE

Free format text: PRODUCT NAME: DURVALUMAB;REG NO/DATE: EU/1/18/1332 25.09.2018

Spc suppl protection certif: C20190001 00261

Filing date: 20190104

Extension date: 20330925

REG Reference to a national code

Ref country code: ES

Ref legal event code: SPCF

Free format text: PRODUCT NAME: DURVALUMAB O UNA VARIANTE EQUIVALENTE TERAPEUTICA DEL MISMO; NATIONAL AUTHORISATION NUMBER: EU/1/18/1322; DATE OF AUTHORISATION: 20180921; NUMBER OF FIRST AUTHORISATION IN EUROPEAN ECONOMIC AREA (EEA): EU/1/18/1322; DATE OF FIRST AUTHORISATION IN EEA: 20180921

Spc suppl protection certif: C201930002

Effective date: 20190114

REG Reference to a national code

Ref country code: AT

Ref legal event code: SPCF

Ref document number: 916716

Country of ref document: AT

Kind code of ref document: T

Free format text: PRODUCT NAME: DURVALUMAB; REGISTRATION NO/DATE: EU/1/18/1322 (MITTEILUNG) 20180925

Spc suppl protection certif: 2/2019

Filing date: 20190114

Effective date: 20190415

REG Reference to a national code

Ref country code: GB

Ref legal event code: CTFF

Free format text: PRODUCT NAME: AN ANTIBODY THAT BINDS TO B7-H1 COMPRISING A HEAVY CHAIN CDR1 AMINO ACID SEQUENCE OF NIKQDGSEKYYVDSVKG, A HEAVY CHAIN CDR3 AMINO ACID SEQUENCE OF EGGWFGELAFDY, A LIGHT CHAIN CDR1 AMINO ACID SEQUENCE OF RASQRVSSSYLA, A LIGHT CHAIN CDR2 AMINO ACID SEQUENCE; REGISTERED: UK EU/1/18/1322 20180921

Spc suppl protection certif: SPC/GB19/019

Filing date: 20190319

REG Reference to a national code

Ref country code: IT

Ref legal event code: SPCG

Ref document number: 502017000119250

Country of ref document: IT

Free format text: PRODUCT NAME: DURVALUMAB O UNA SUA VARIANTE TERAPEUTICAMENTE EQUIVALENTE(IMFINZI); AUTHORISATION NUMBER(S) AND DATE(S): EU/1/18/1322, 20180925

Spc suppl protection certif: 132019000000015

Extension date: 20330925

REG Reference to a national code

Ref country code: SK

Ref legal event code: SPCF

Free format text: PRODUCT NAME: DURVALUMAB; REGISTRATION NO/DATE: EU/1/18/1322 20180925

Spc suppl protection certif: 2-2019

Filing date: 20190114

REG Reference to a national code

Ref country code: AT

Ref legal event code: SPCG

Ref document number: 916716

Country of ref document: AT

Kind code of ref document: T

Free format text: PRODUCT NAME: DURVALUMAB; REGISTRATION NO/DATE: EU/1/18/1322 (MITTEILUNG) 20180925

Spc suppl protection certif: 2/2019

Filing date: 20190114

Expiry date: 20301124

Extension date: 20330925

Effective date: 20190715

REG Reference to a national code

Ref country code: CH

Ref legal event code: SPCG

Free format text: PRODUCT NAME: DURVALUMAB; REGISTRATION NO/DATE: SWISSMEDIC-ZULASSUNG 66548 11.06.2018

Spc suppl protection certif: C02504364/01

Filing date: 20181116

Extension date: 20330610

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20171653

Country of ref document: HR

Payment date: 20190927

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: SPCG

Free format text: PRODUCT NAME: DURVALUMAB; REG. NO/DATE: EU/1/18/1322 20180925

Spc suppl protection certif: 1990002-6

Expiry date: 20301125

Extension date: 20330924

REG Reference to a national code

Ref country code: LU

Ref legal event code: SPCG

Free format text: PRODUCT NAME: UN ANTICORPS SE LIANT AU B7-H1 COMPRENANT UNE CHAINE LOURDE CDR1 AYANT LA SEQUENCE D'ACIDES AMINES GFTFSRYWMS, UNE CHAINE LOURDE CDR2 AYANT LA SEQUENCE D'ACIDES AMINES NIKQDGSEKYYVDSVKG, UNE CHAINE LOURDE CDR3 AYANT LA SEQUENCE D'ACIDES AMINES EGGWFGELAFDY, UNE CHAINE LEGERE CDR1 AYANT LA SEQUENCE D'ACIDES AMINES RASQRVSSSYLA, UNE CHAINE LEGERE CDR2 AYANT LA SEQUENCE D'ACIDES AMINES DASSRAT ET UNE CHAINE LEGERE CDR3 AYANT LA SEQUENCE D'ACIDES AMINES QQYGSLPWT, EN PARTICULIER DURVALUMAB, OU UNE DE SES VARIANTES EQUIVALENTES THERAPEUTIQUEMENT TELLE QUE PROTEGEE PAR LE BREVET DE BASE; AUTHORISATION NUMBER AND DATE: EU/1/18/1322 20180925

Spc suppl protection certif: LUC00097

Filing date: 20190114

Expiry date: 20301124

Extension date: 20330925

Effective date: 20191224

REG Reference to a national code

Ref country code: FR

Ref legal event code: CT

Free format text: PRODUCT NAME: DURVALUMAB; REGISTRATION NO/DATE: EU/1/18/1322 20180925

Spc suppl protection certif: 19C1001

Filing date: 20190109

Extension date: 20330925

REG Reference to a national code

Ref country code: IE

Ref legal event code: SPCG

Free format text: PRODUCT NAME: DURVALUMAB; REGISTRATION NO/DATE: EU/1/18/1322 20180921

Spc suppl protection certif: 2019/002

Extension date: 20330924

Effective date: 20200422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: WANNERSTRASSE 9/1, 8045 ZUERICH (CH)

REG Reference to a national code

Ref country code: ES

Ref legal event code: SPCG

Free format text: PRODUCT NAME: DURVALUMAB; NATIONAL AUTHORISATION NUMBER: EU/1/18/1322; DATE OF AUTHORISATION: 20180921; NUMBER OF FIRST AUTHORISATION IN EUROPEAN ECONOMIC AREA (EEA): EU/1/18/1322; DATE OF FIRST AUTHORISATION IN EEA: 20180921

Spc suppl protection certif: C201930002

Extension date: 20330925

Effective date: 20200714

REG Reference to a national code

Ref country code: DK

Ref legal event code: CTFG

Free format text: PRODUCT NAME: DURVALUMAB; REG. NO/DATE: EU/1/18/1322 20180925

Spc suppl protection certif: CR 2019 00002

Filing date: 20190114

Expiry date: 20301124

Extension date: 20330925

REG Reference to a national code

Ref country code: LT

Ref legal event code: SPCG

Free format text: PRODUCT NAME: DURVALUMABAS; REGISTRATION NO/DATE: EU/1/18/1322 20180921

Spc suppl protection certif: PA2019002,C2504364

Filing date: 20190109

Expiry date: 20301124

Extension date: 20330925

REG Reference to a national code

Ref country code: NO

Ref legal event code: SPCG

Free format text: ; REG. NO/DATE: 20180108

Spc suppl protection certif: 2019002

Filing date: 20190114

Extension date: 20330925

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20171653

Country of ref document: HR

Payment date: 20201029

Year of fee payment: 11

REG Reference to a national code

Ref country code: HU

Ref legal event code: FG4S

Ref document number: E037159

Country of ref document: HU

Spc suppl protection certif: S1900002

Filing date: 20190114

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20171653

Country of ref document: HR

Payment date: 20211122

Year of fee payment: 12

REG Reference to a national code

Ref country code: FI

Ref legal event code: SPCG

Spc suppl protection certif: 702

Extension date: 20330925

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20171653

Country of ref document: HR

Payment date: 20221123

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: CTFG

Free format text: PRODUCT NAME: DURVALUMAB; REGISTERED: UK EU/1/18/1322(NI) 20180921; UK PLGB 17901/0327 20180921

Spc suppl protection certif: SPC/GB19/019

Filing date: 20190319

Extension date: 20330924

Effective date: 20230414

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230418

P02 Opt-out of the competence of the unified patent court (upc) changed

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20230912

Year of fee payment: 14

Ref country code: BG

Payment date: 20230913

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230913

Year of fee payment: 14

Ref country code: NL

Payment date: 20231016

Year of fee payment: 14

Ref country code: FR

Payment date: 20230929

Year of fee payment: 14

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20171653

Country of ref document: HR

Payment date: 20231005

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LV

Payment date: 20230920

Year of fee payment: 14

Ref country code: LU

Payment date: 20231113

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231013

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20231012

Year of fee payment: 14

Ref country code: GB

Payment date: 20231006

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20231027

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231211

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20231109

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231123

Year of fee payment: 14

Ref country code: SM

Payment date: 20231031

Year of fee payment: 14

Ref country code: SI

Payment date: 20230927

Year of fee payment: 14

Ref country code: SE

Payment date: 20231002

Year of fee payment: 14

Ref country code: RS

Payment date: 20231101

Year of fee payment: 14

Ref country code: RO

Payment date: 20231018

Year of fee payment: 14

Ref country code: PT

Payment date: 20231122

Year of fee payment: 14

Ref country code: NO

Payment date: 20231108

Year of fee payment: 14

Ref country code: MT

Payment date: 20231117

Year of fee payment: 14

Ref country code: LT

Payment date: 20231114

Year of fee payment: 14

Ref country code: IT

Payment date: 20231010

Year of fee payment: 14

Ref country code: HU

Payment date: 20231019

Year of fee payment: 14

Ref country code: HR

Payment date: 20231005

Year of fee payment: 14

Ref country code: FI

Payment date: 20231116

Year of fee payment: 14

Ref country code: EE

Payment date: 20231003

Year of fee payment: 14

Ref country code: DK

Payment date: 20231116

Year of fee payment: 14

Ref country code: DE

Payment date: 20230926

Year of fee payment: 14

Ref country code: CZ

Payment date: 20231027

Year of fee payment: 14

Ref country code: CY

Payment date: 20231120

Year of fee payment: 14

Ref country code: CH

Payment date: 20231202

Year of fee payment: 14

Ref country code: AT

Payment date: 20231025

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231016

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20231005

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: SPCE

Free format text: PRODUCT NAME: EEN ANTILICHAAM DAT BINDT AAN B7-H1 OMVATTENDE EEN ZWARE KETEN CDR1 AMINOZUUR SEQUENTIE GFTFSRYWMS, EEN ZWARE KETEN CDR2 AMINOZUUR SEQUENTIE NIKQDGSEKYYVDSVKG, EEN ZWARE KETEN CDR3 AMINOZUUR SEQUENTIE EGGWFGELAFDY, EEN LICHTE KETEN CDR1 AMINOZUUR SEQUENTIE RASQRVSSSYLA, EEN LICHTE KETEN CDR2 AMINOZUUR SEQUENTIE DASSRAT EN EEN LICHTE KETEN CDR3 AMINOZUUR SEQUENTIE QQYGSLPWT, IN HET BIJZONDER DURVALUMAB, OF EEN DOOR HET BASISOCTROOI BESCHERMDE THERAPEUTISCH EQUIVALENTE VARIANT DAARVAN; REGISTRATION NO/DATE: EU/1/18/1322 20180925

Spc suppl protection certif: 300964

Filing date: 20190114

Expiry date: 20301123

Effective date: 20240408

REG Reference to a national code

Ref country code: FR

Ref legal event code: SPCY

Free format text: PRODUCT NAME: DURVALUMAB; REGISTRATION NO/DATE: EU/1/18/1322 20180925

Spc suppl protection certif: 19C1001

Filing date: 20190109

Extension date: 20330925

REG Reference to a national code

Ref country code: EE

Ref legal event code: SPCT

Free format text: PARTY DATA CHANGE RELATED TO A GRANTED SPC

Spc suppl protection certif: 00261

REG Reference to a national code

Ref country code: LU

Ref legal event code: SPCT

Owner name: MEDIMMUNE LIMITED; GB

Spc suppl protection certif: LUC00097

Effective date: 20240424

Ref country code: LU

Ref legal event code: SPCE

Free format text: PRODUCT NAME: UN ANTICORPS SE LIANT AU B7-H1 COMPRENANT UNE CHAINE LOURDE CDR1 AYANT LA SEQUENCE D'ACIDES AMINES GFTFSRYWMS, UNE CHAINE LOURDE CDR2 AYANT LA SEQUENCE D'ACIDES AMINES NIKQDGSEKYYVDSVKG, UNE CHAINE LOURDE CDR3 AYANT LA SEQUENCE D'ACIDES AMINES EGGWFGELAFDY, UNE CHAINE LEGERE CDR1 AYANT LA SEQUENCE D'ACIDES AMINES RASQRVSSSYLA, UNE CHAINE LEGERE CDR2 AYANT LA SEQUENCE D'ACIDES AMINES DASSRAT ET UNE CHAINE LEGERE CDR3 AYANT LA SEQUENCE D'ACIDES AMINES QQYGSLPWT, EN PARTICULIER DURVALUMAB, OU UNE DE SES VARIANTES EQUIVALENTES THERAPEUTIQUEMENT TELLE QUE PROTEGEE PAR LE BREVET DE BASE; AUTHORISATION NUMBER AND DATE: EU/1/18/1322 20180925

Spc suppl protection certif: LUC00097

Filing date: 20240424

Ref country code: LU

Ref legal event code: HC

Owner name: MEDIMMUNE LIMITED; GB

Free format text: FORMER OWNER: MEDIMMUNE LIMITED

Effective date: 20240424

REG Reference to a national code

Ref country code: SE

Ref legal event code: SPCE

Free format text: PRODUCT NAME: DURVALUMAB; FIRST MARKETING AUTHORIZATION NUMBER SE: EU/1/18/1322, 2018-09-25;

Spc suppl protection certif: 1990002-6

REG Reference to a national code

Ref country code: BE

Ref legal event code: SPCE

Free format text: PRODUCT NAME: IMFINZI-DURVALUMAB; AUTHORISATION NUMBER AND DATE: EU/1/18/1332 20180925

Spc suppl protection certif: 2019C/002

Effective date: 20240422

REG Reference to a national code

Ref country code: EE

Ref legal event code: SPCE

Ref document number: E014466

Country of ref document: EE

Spc suppl protection certif: C20190001

Ref country code: AT

Ref legal event code: SPCE

Ref document number: 916716

Country of ref document: AT

Kind code of ref document: T

Free format text: PRODUCT NAME: DURVALUMAB; REGISTRATION NO/DATE: EU/1/18/1322 (MITTEILUNG) 20180925

Spc suppl protection certif: 2/2019

Filing date: 20190114

Expiry date: 20301124

Extension date: 20330925

Effective date: 20240515

REG Reference to a national code

Ref country code: FR

Ref legal event code: SPCJ

Free format text: PRODUCT NAME: DURVALUMAB; REGISTRATION NO/DATE: EU/1/18/1322 20180925

Spc suppl protection certif: 19C1001

Filing date: 20190109

Extension date: 20330925

REG Reference to a national code

Ref country code: IE

Ref legal event code: SPCE

Free format text: PRODUCT NAME: DURVALUMAB; REGISTRATION NO/DATE: EU/1/18/1322 20180921

Spc suppl protection certif: 2019/002

Effective date: 20240424

REG Reference to a national code

Ref country code: LT

Ref legal event code: SPCE

Free format text: PRODUCT NAME: DURVALUMABAS; REGISTRATION NO/DATE: EU/1/18/1322 20180921

Spc suppl protection certif: PA2019002,C2504364

Filing date: 20190109

Expiry date: 20301124

Extension date: 20330925

Effective date: 20240424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AL

Payment date: 20231106

Year of fee payment: 14