WO2007145758A2 - Selective epitaxial formation of semiconductor films - Google Patents

Selective epitaxial formation of semiconductor films Download PDF

Info

Publication number
WO2007145758A2
WO2007145758A2 PCT/US2007/011464 US2007011464W WO2007145758A2 WO 2007145758 A2 WO2007145758 A2 WO 2007145758A2 US 2007011464 W US2007011464 W US 2007011464W WO 2007145758 A2 WO2007145758 A2 WO 2007145758A2
Authority
WO
WIPO (PCT)
Prior art keywords
epitaxial
semiconductor
over
regions
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2007/011464
Other languages
English (en)
French (fr)
Other versions
WO2007145758A3 (en
Inventor
Matthias Bauer
Keith Doran Weeks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASM America Inc
Original Assignee
ASM America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASM America Inc filed Critical ASM America Inc
Priority to JP2009514271A priority Critical patent/JP2009540565A/ja
Priority to KR1020147014598A priority patent/KR101544931B1/ko
Priority to CN2007800198311A priority patent/CN101454874B/zh
Priority to KR1020097000140A priority patent/KR101521878B1/ko
Priority to EP07777014A priority patent/EP2022083A2/en
Publication of WO2007145758A2 publication Critical patent/WO2007145758A2/en
Publication of WO2007145758A3 publication Critical patent/WO2007145758A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/027Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs
    • H10D30/0275Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs forming single crystalline semiconductor source or drain regions resulting in recessed gates, e.g. forming raised source or drain regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/791Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
    • H10D30/797Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in source or drain regions, e.g. SiGe source or drain
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/01Manufacture or treatment
    • H10D62/021Forming source or drain recesses by etching e.g. recessing by etching and then refilling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/82Heterojunctions
    • H10D62/822Heterojunctions comprising only Group IV materials heterojunctions, e.g. Si/Ge heterojunctions

Definitions

  • This invention relates generally to the deposition of silicon- containing materials in semiconductor processing, and relates more specifically to selective formation of silicon-containing materials on semiconductor windows.
  • epitaxial layers are often desired in selected locations, such as active area mesas among field isolation regions, or even more particularly over defined source and drain regions. While non- epitaxial (amorphous or polycrystalline) material can be selectively removed from over the field isolation regions after deposition, it is typically considered more efficient to simultaneously provide chemical vapor deposition (CVD) and etching chemicals, and to tune conditions to result in zero net deposition over insulative regions and net epitaxial deposition over exposed semiconductor windows.
  • CVD chemical vapor deposition
  • etching chemicals to tune conditions to result in zero net deposition over insulative regions and net epitaxial deposition over exposed semiconductor windows.
  • This process known as selective epitaxial CVD, takes advantage of slow nucleation of typical semiconductor deposition processes on insulators like silicon oxide or silicon nitride.
  • Such selective epitaxial CVD also takes advantage of the naturally greater susceptibility of amorphous and polycrystalline materials to etchants, as compared to the susceptibility of epitaxial layers.
  • Examples of the many situations in which selective epitaxial formation of semiconductor layers is desirable include a number of schemes for producing strain.
  • the electrical properties of semiconductor materials such as silicon, germanium and silicon germanium alloys are influenced by the degree to which the materials are strained. For example, silicon exhibits enhanced electron mobility under tensile strain, and silicon germanium exhibits enhanced hole mobility under compressive strain. Methods of enhancing the performance of semiconductor materials are of considerable interest and have potential applications in a variety of semiconductor processing applications.
  • Semiconductor processing is typically used in the fabrication of integrated circuits, which entails particularly stringent quality demands, as well as in a variety of other fields.
  • semiconductor processing techniques are also used in the fabrication of flat panel displays using a wide variety & of technologies, as well as in the fabrication of microelectromechanical systems (“MEMS").
  • MEMS microelectromechanical systems
  • the germanium atoms are slightly larger than the silicon atoms, but the deposited heteroepitaxial silicon germanium is constrained to the smaller lattice constant of the silicon beneath it, the silicon germanium is compressively strained to a degree that varies as a function of the germanium content.
  • the band gap for the silicon germanium layer decreases monotonically from 1.12 eV for pure silicon to 0.67 eV for pure germanium as the germanium content in the silicon germanium increases.
  • tensile strain is provided in a thin single crystalline silicon layer by heteroepitaxially depositing the silicon layer onto a relaxed silicon germanium layer.
  • the heteroepitaxially deposited silicon is strained because its lattice constant is constrained to the larger lattice constant of the relaxed silicon germanium beneath it.
  • the tensile strained heteroepitaxial silicon typically exhibits increased electron mobility. In both of these approaches, the strain is developed at the substrate level before the device (for example, a transistor) is fabricated.
  • strain is introduced into single crystalline silicon-containing materials by replacing silicon atoms with other atoms in the lattice structure.
  • This technique is typically referred to as substitutional doping.
  • substitution of germanium atoms for some of the silicon atoms in the lattice structure of single crystalline silicon produces a compressive strain in the resulting substitutional ⁇ doped single crystalline silicon material because the germanium atoms are larger than the silicon atoms that they replace. It is possible to introduce a tensile strain into single crystalline silicon by substitutional doping with carbon, because carbon atoms are smaller than the silicon atoms that they replace.
  • electrical dopants should also be substitutional ⁇ incorporated into epitaxial layers in order to be electrically active. Either the dopants are incorporated as deposited or they will need to be annealed to achieve the desired level of substitutionality and dopant activation. In situ doping of either impurities for tailored lattice constant or electrical dopants are often preferred over ex situ doping followed by annealing to incorporate the dopant into the lattice structure because the annealing consumes thermal budget.
  • in situ substitutional doping is complicated by the tendency for the dopant to incorporate non-substitutionally during deposition, for example, by incorporating interstitially in domains or clusters within the silicon, rather than by substituting for silicon atoms in the lattice structure.
  • Non-substitutional doping complicates, for example, carbon doping of silicon, carbon doping of silicon germanium, and doping of silicon and silicon germanium with electrically active dopants.
  • a method for selectively forming semiconductor material in semiconductor windows.
  • the method includes providing a substrate within a chemical vapor deposition chamber, where the substrate comprises insulating surfaces and single-crystal semiconductor surfaces.
  • Semiconductor material is blanket deposited over the insulating surfaces and the single-crystal semiconductor surfaces of the substrate, such that a thickness ratio of non-epitaxial semiconductor material over the insulating surfaces to epitaxial semiconductor material over the single-crystal semiconductor surfaces is less than about 1.6:1.
  • Non-epitaxial semiconductor material is selectively removed from over the insulating surfaces, wherein blanket depositing and selectively removing are conducted within the chemical vapor deposition chamber.
  • a method for selectively forming epitaxial semiconductor material.
  • Semiconductor material is blanket deposited to form epitaxial material over single-crystal semiconductor regions of a substrate and to form non-epitaxial material over insulating regions of the substrate.
  • the non-epitaxial material is selectively removed from over the insulating regions by exposing the blanket deposited semiconductor material to an etch chemistry including a halide source and a germanium source. Blanket depositing and selectively removing are repeated at least once.
  • a method for forming silicon-containing material in selected locations on a substrate.
  • the method includes providing a substrate having exposed windows of single-crystal semiconductor among field isolation regions. Silicon-containing material is blanket deposited over the windows of single-crystal material and the field isolation regions by flowing trisilane over the substrate. The silicon- containing material is selectively removed from over the field isolation regions. Blanket depositing and selectively removing are repeated in a plurality of cycles.
  • a method for selectively forming epitaxial semiconductor material.
  • the method includes providing a substrate with insulating regions and semiconductor windows formed therein. Amorphous semiconductor material is deposited over the insulating regions and the epitaxial semiconductor material is deposited over the semiconductor windows. The amorphous semiconductor material is selectively etched from over the insulating regions while leaving at least some epitaxial semiconductor material in the semiconductor windows. Blanket depositing and selectively removing are repeated in a plurality of cycles.
  • Figure 1 is a flowchart illustrating a process for selectively forming epitaxial semiconductor layers, using the particular example of depositing a carbon-doped silicon film in recessed source/drain regions of a mixed substrate.
  • Figure 2 is a schematic illustration of a partially formed semiconductor structure comprising patterned insulator regions formed in a semiconductor substrate.
  • Figure 3 is a schematic illustration of the partially formed semiconductor structure of Figure 2 after performing a blanket deposition of a carbon-doped silicon film over the mixed substrate surface.
  • Figure 4 is a schematic illustration of the partially formed semiconductor structure of Figure 3 after performing a selective chemical vapor etch process to remove carbon-doped silicon from oxide regions of the mixed substrate.
  • Figures 5A-5D are schematic illustrations of the partially formed semiconductor structure of Figure 4 after performing further cycles of blanket deposition and selective etch.
  • Figure 6 shows a graph of etch rate of amorphous regions of a carbon-doped silicon film as a function of HCt partial pressure in the etch chemistry.
  • Figure 7 shows a graph of etch rates and ratios amorphous (“a”) and single crystal (“c") etch rates as a function of GeH 4 flow in the etch chemistry for various etch chemistries.
  • Figure 8 shows a graph of etch rate of amorphous regions of a carbon-doped silicon film as a function of chamber pressure.
  • Figure 9 shows a graph of etch rate of amorphous regions of a carbon-doped silicon film as a function of reciprocal temperature.
  • Figure 10 shows a graph of thickness of amorphous regions of a carbon-doped silicon film as a function of accumulated etch time.
  • Figure 11 shows a graph of etch rate of amorphous regions of a carbon-doped silicon film deposited on a wafer as a function of radial position on the wafer.
  • Figure 12 shows a graph of thickness of amorphous regions of a carbon-doped silicon film deposited on a wafer as a function of radial position on the wafer for various etch cycle durations.
  • Figure 13 shows a graph of thickness of amorphous regions of a carbon-doped silicon film deposited of a wafer as a function of radial position of the wafer for various GeH 4 etchant etch chemistries and various etch cycle durations.
  • Figure 14 is a micrograph illustrating an example partially formed carbon-doped silicon structure created by performing blanket deposition and a partial etch cycle on a patterned substrate.
  • Figure 15 shows a graph of element concentration as a function of depth for an exemplary partially formed carbon-doped silicon film formed using certain of the techniques disclosed herein.
  • Figure 16 is a micrograph illustrating an exemplary formed carbon-doped silicon structure created by performing multiple deposition and etch cycles on a patterned substrate.
  • Figure 17 illustrates an atomic force microscopy analysis of an epitaxial carbon-doped silicon film that has been selectively formed using certain of the cyclical techniques disclosed herein.
  • Figure 18 shows x-ray diffraction rocking curves of carbon- doped silicon films deposited using certain of the cyclical techniques disclosed herein.
  • Deposition techniques often attempt to tailor the amount or kind of deposition in different regions of a substrate.
  • U.S. Patent No. 6,998,305 recognizes that simultaneous etch and deposition reactions are know for selective deposition on silicon without depositing on silicon oxide.
  • the '305 patent teaches cyclically alternating a selective deposition with an etch phase.
  • the inventors have recognized that selective deposition chemistries sometimes have undesirably effects on the deposited layers.
  • Deposition methods exist that are useful for making a variety of substitutional ⁇ doped single crystalline silicon-containing materials. For example, it is possible to perform in situ substitutional carbon doping of crystalline silicon by performing the deposition at a relatively high rate using trisilane (S1 3 H 8 ) as a silicon source and a carbon-containing gas or vapor as a carbon source. Carbon-doped silicon-containing alloys have a complementary nature to silicon germanium systems. The degree of substitutional doping is 70% or greater, expressed as the weight percentage of substitutional carbon dopant based on the total amount of carbon dopant (substitutional and non- substitutional) in the silicon.
  • trisilane S1 3 H 8
  • Carbon-doped silicon-containing alloys have a complementary nature to silicon germanium systems.
  • the degree of substitutional doping is 70% or greater, expressed as the weight percentage of substitutional carbon dopant based on the total amount of carbon dopant (substitutional and non- substitutional) in the silicon.
  • silicon-containing material and similar terms are used herein to refer to a broad variety of silicon-containing materials including without limitation silicon (including crystalline silicon), carbon-doped silicon (Si:C), silicon germanium, and carbon-doped silicon germanium (SiGe:C).
  • silicon including crystalline silicon
  • carbon-doped silicon Si:C
  • silicon germanium silicon germanium
  • SiGe:C carbon-doped silicon germanium
  • u Si:C and SiGe:C are not stoichiometric chemical formulas per se and thus are not limited to materials that contain particular ratios of the indicated elements. Furthermore, terms such as Si:C and SiGe:C are not intended to exclude the presence of other dopants, such that a phosphorous and carbon-doped silicon material is included within the term Si:C and the term Si:C:P. .
  • the percentage of a dopant (such as carbon, germanium or electrically active dopant) in a silicon- containing film is expressed herein in atomic percent on a whole film basis, unless otherwise stated.
  • Substrate refers either to the workpiece upon which deposition is desired, or the surface exposed to one or more deposition gases.
  • the substrate is a single crystal silicon wafer, a semiconductor-on-insulator ("SOI") substrate, or an epitaxial silicon surface, a silicon germanium surface, or a III— V material deposited upon a wafer.
  • Workpieces are not limited to wafers, but also include glass, plastic, or other substrates employed in semiconductor processing.
  • a "mixed substrate” is a substrate that has two or more different types of surfaces.
  • a mixed substrate comprises a first surface having a first surface morphology and a second surface having a second surface morphology.
  • carbon-doped silicon-containing layers are selectively formed over single crystal semiconductor materials while minimizing, and more preferably avoiding, deposition over adjacent dielectrics or insulators.
  • dielectric materials include silicon dioxide (including low dielectric constant forms such as carbon-doped and fluorine-doped oxides of silicon), silicon nitride, metal oxide and metal silicate.
  • epitaxial epitaxially
  • heteroepitaxial heteroepitaxially
  • similar terms are used herein to refer to the deposition of a crystalline silicon-containing material onto a crystalline substrate in such a way that the deposited layer adopts or follows the lattice constant of the substrate. Epitaxial deposition is generally considered to be heteroepitaxial when the composition of the deposited layer is different from that of the substrate.
  • a mixed substrate comprises a first surface having a first surface morphology and a second surface having a second surface morphology.
  • surface morphology refers to the crystalline structure of the substrate surface.
  • Amorphous and crystalline are examples of different morphologies.
  • Polycrystalline morphology is a crystalline structure that consists of a disorderly arrangement of orderly crystals and thus has an intermediate degree of order.
  • Single crystal morphology is a crystalline structure that has a high degree of long range order.
  • Epitaxial films are characterized by a crystal structure and orientation that is identical to the substrate upon which they are grown, typically single crystal.
  • the atoms in these materials are arranged in a lattice-like structure that persists over relatively long distances (on an atomic scale).
  • Amorphous morphology is a non-crystalline structure having a low degree of order because the atoms lack a definite periodic arrangement. Other morphologies include microcrystalline and mixtures of amorphous and crystalline material.
  • Non-epitaxial thus encompasses amorphous, polycrystalline, microcrystalline and mixtures of the same.
  • single-crystal or “epitaxial” are used to describe a predominantly large crystal structure having a tolerable number of faults therein, as is commonly employed for transistor fabrication.
  • the crystallinity of a layer generally falls along a continuum from amorphous to polycrystalline to single-crystal; a crystal structure is often considered single-crystal or epitaxial, despite low density faults.
  • mixed substrates include without limitation single crystal/polycrystalline, single crystal/amorphous, epitaxial/polycrystalline, epitaxial/amorphous, single crystal/dielectric, epitaxial/dielectric, conductor/dielectric, and semiconductor/dielectric.
  • mixed substrate includes substrates having more than two different types of surfaces. Methods described herein for depositing silicon-containing films onto mixed substrates having two types of surfaces are also applicable to mixed substrates having three or more different types of surfaces.
  • tensile strained carbon-doped silicon films provide a tensile strained silicon channel with enhanced electron mobility, particularly beneficial for NMOS devices. This advantageously eliminates the need to provide a relaxed silicon germanium buffer layer to support the strained silicon layer.
  • electrically active dopants are advantageously incorporated by in situ doping using dopant sources or dopant precursors. High levels of electrically active substitutional doping using phosphorous also contribute to tensile stress.
  • Preferred precursors for electrical dopants are dopant hydrides, including n-type dopant precursors such as phosphine, arsenic vapor, and arsine.
  • Silylphosphines for example (H 3 Si) 3 _ x PR x
  • Phosphor and arsenic are particularly useful for doping source and drain areas of NMOS devices.
  • SbH 3 and trimethylindium are alternative sources of antimony and indium, respectively.
  • Such dopant precursors are useful for the preparation of preferred films as described below, preferably boron- , phosphorous-, antimony-, indium-, and arsenic-doped silicon, Si:C, silicon germanium and SiGe:C films and alloys.
  • recessed source/drain regions by dry etching with subsequent HF cleaning and in situ anneal.
  • deposition of a selectively grown, thin (between approximately 1 nm and approximately 3 nm) silicon seed layer helps reduce etch damage.
  • a seed layer also helps to cover damage caused by prior dopant implantation processes.
  • such a seed layer might be selectively deposited using simultaneous provision of HCf and dichlorosilane at a deposition temperature between about 700 0 C and about 800 0 C.
  • a cyclical blanket deposition and etch process is illustrated in the flowchart provided in Figure 1 , and in the schematic illustrations of the partially formed semiconductor structures illustrated in Figure 2 though Figure 5D. While illustrated for use with Si:C deposition in recessed source/drain regions, it will be appreciated that the techniques described herein are advantageous for selective formation of epitaxial films in other circumstances, such as on active area islands surrounded by field isolation prior to any gate definition and without recessing.
  • Figure 1 illustrates that a mixed substrate having insulator regions and recessed source/drain regions is placed in a process chamber in operational block 10.
  • Figure 2 provides a schematic illustration of an exemplary mixed substrate that includes a patterned insulator 110 formed in a semiconductor substrate 100, such as a silicon wafer.
  • the illustrated insulator 110 in the form of oxide-filled shallow trench isolation (STI), defines field isolation regions 112 and is adjacent recessed source/drain regions 114 shown on either side of a gate electrode 115 structure.
  • the gate electrode 115 overlies a channel region 117 of the substrate.
  • the channel 117, source and drain regions 114 define a transistor active area, which is typically surrounded by field isolation 112 to prevent cross-talk with adjacent devices.
  • multiple transistors can be surrounded by field isolation.
  • the top of the gate structure 115 can be capped with dielectric, as illustrated. This surface then behaves similarly to the field regions 110 with respect to the deposition there over, and the conditions that maintain selectivity in the field region will also apply to the top of the gate.
  • the gate 115 is not capped with a dielectric, then the surface of the gate has the potential to grow polycrystalline material which then can be removed through in- situ etching of polycrystalline material, but a different set of selectivity conditions (pressure, gas flow, etc) would apply, compared to those used to ensure no residual polycrystalline material on the field 110.
  • a blanket Si:C layer is then deposited over the mixed substrate using trisilane as a silicon precursor. This results in amorphous or polycrystalline (non-epitaxial) deposition 120 over oxide regions 112, and lower epitaxial deposition 125 and sidewall epitaxial deposition 130 over the recessed source/drain regions 114.
  • bladenket deposition means that net deposition results over both the amorphous insulator 110 and the single crystal regions 114 in each deposition phase.
  • etchant e.g., lack of halides
  • some amount of etchant might be desirable to tune the ratio of deposited thickness over the various regions, as discussed in more detail below.
  • the deposition process may be partially selective but nevertheless blanket, since each deposition phase will have net deposition over both the insulator 110 and single crystal region 114.
  • amorphous or polycrystalline deposition 120 and the sidewall epitaxial deposition 130 are then selectively etched in an operational block 30 ( Figure 1 ), thus resulting in the structure that is schematically illustrated in Figure 4.
  • the vapor etch chemistry preferably comprises a halide (e.g., fluorine-, bromine- or chlorine-containing vapor compounds), and particularly a chlorine source, such as HCI or CI2.
  • the etch chemistry also contains a germanium source (e.g., a germane such as monogermane (GeH 4 ), GeCI 4 , metallorganic Ge precursors, solid source Ge) to improve etch rates.
  • a germanium source e.g., a germane such as monogermane (GeH 4 ), GeCI 4 , metallorganic Ge precursors, solid source Ge
  • the non-epitaxial material 120 is selectively removed, some epitaxial material is left and some is removed.
  • the sidewall epitaxial layer 130 is of a different plane and is also more defective (due to growth rate differential on the two surfaces) than the lower epitaxial layer 125. Accordingly, the sidewall epitaxial layer 130 is more readily removed, along with the non-epitaxial material 120.
  • each cycle of the process can be tuned to achieve largely bottom-up filling of the recesses 114.
  • epitaxial material can be left by the process even on the sidewalls if it is of good quality and does not hinder the goals of the selective fill.
  • This process is repeated until a target thickness of epitaxial Si:C film thickness is achieved over the recessed source/drain regions 114, as indicated by decisional block 40 ( Figure 1 ), and as schematically illustrated in Figure 5A (deposition of second cycle of blanket Si:C layer 120) and Figure 5B (etch of second cycle of SkC layer to leave layer of epitaxial Si:C with increased thickness of epitaxial layer 125 in recessed source/drain regions 114).
  • Figure 5C illustrates the result of further cycle(s) to leave epitaxial refilled source/drain regions 114, where the selective epitaxial layers 125 are roughly coplanar with field oxide 110.
  • Figure 5D illustrates the result of further cycle(s) to leave epitaxial layers 125 selectively as elevated source/drain regions 114.
  • the selective formation process may further include addition cycles of blanket deposition and selective etch back from over dielectric regions, but without carbon doping to form a capping layer.
  • the capping layer can be with or without electrical dopants.
  • the portion of the elevated source/drain regions 125 of Figure 5D that is above the original substrate surface (i.e., above the channel 117) can be carbon-free, since it does not contribute to the strain on the channel 117.
  • the deposited Si:C film optionally includes an electrically active dopant, particularly one suitable for NMOS devices, such as phosphorous or arsenic, thereby allowing phosphorous-doped Si:C films or arsenic doped Si:C films to be deposited (Si:C:P or Si:C:As films, respectively).
  • an electrically active dopant particularly one suitable for NMOS devices, such as phosphorous or arsenic, thereby allowing phosphorous-doped Si:C films or arsenic doped Si:C films to be deposited (Si:C:P or Si:C:As films, respectively).
  • the Si:C film is preferably deposited with an amorphous-to- epitaxial growth rate ratio that is preferably between about 1.0:1 and about 1.6:1 , more preferably between about 1.0:1 and about 1.3:1 , and most preferably between about 1.0:1 and about 1.1 :1 , such that the film thickness over insulator and over the recessed source/drain regions is about equal.
  • Manipulating the amorphous (or more generally non-epitaxial) to epitaxial growth rate ratio advantageously enables manipulation of the facet angle at the interface between the amorphous and crystalline Si:C after the subsequent etch process, and also minimizes etch duration for removal, relative to greater thicknesses over the insulators.
  • the amorphous regions of the Si:C deposition have little or no crystallinity (i.e., are predominantly amorphous), thus facilitating the subsequent etch in such regions. Furthermore, minimizing the excess of non- epitaxial deposition by bringing the ratio of thickness close to 1 :1 reduces the length of the etch phase needed to clear non-epitaxial deposition from the field regions (and optionally from the gate).
  • the Si:C film is selectively etched from the mixed substrate using an in situ chemical vapor etching technique.
  • the chemical vapor etching technique is optionally performed simultaneously with a brief temperature spike.
  • the temperature spike is conducted using the process described in U.S. Patent Application Publication 2003/0036268 (filed 29 May 2002; Attorney Docket ASMEX.317A).
  • a temperature spike can employ full power to the upper lamps for a short duration (for example, for about 12 to about 15 seconds) while decoupling the power ratio for the lower lamps.
  • the wafer temperature can rapidly ramp up while the susceptor temperature lags significantly.
  • the wafer temperature preferably increases from the loading temperature by between about 100 0 C and about 400 0 C, and more preferably by between about 200°C and about 350 0 C. Because of the short duration of the temperature spike and etch phase, the wafer is allowed to cool before the susceptor gets a chance to approach the peak temperature. In this way, it takes far less time for the wafer to cycle in temperature, as compared to simultaneously cycling the temperature of a more massive combination of wafer/susceptor together.
  • An example reactor for use with this temperature spike technique is the EPSILON ® series of single wafer epitaxial chemical vapor deposition chambers, which are commercially available from ASM America, Inc. (Phoenix, AZ).
  • the etch temperature is preferably kept low. Using a low temperature for the etch also reduces the likelihood that electrically active dopant atoms are deactivated during the etch. For example, etching with Ct 2 gas advantageously allows the etch temperature to be reduced, thus helping to maintain the substitutional carbon and electrically active dopants.
  • Low temperatures for the etch phase enables roughly matching deposition phase temperatures while taking advantage of the high dopant incorporation achieved at low temperatures. Etch rates can be enhanced to allow these lower temperatures without sacrificing throughput by including a germanium source (e.g.
  • Isothermal cyclical blanket deposition and etching means deposition and etching within ⁇ 50°C of one another, preferably within ⁇ 10°C, and most preferably setpoint temperature is within ⁇ 5°C for both steps.
  • isothermal processing improves throughput and minimizes time for temperature ramping and stabilization.
  • both blanket deposition and etching process are preferably "isobaric," i.e., within ⁇ 50 Torr of one another, preferably within ⁇ 20 Torr. Isothermal and/or isobaric conditions facilitate better throughput for avoiding ramp and stabilization times.
  • the two-stage process of performing a blanket deposition followed by a selective etch is optionally repeated cyclically until a target epitaxial film thickness over the recessed source/drain regions is achieved.
  • Example process parameters are summarized in Table A below, which lists both preferred operating points as well as preferred operating ranges in parentheses.
  • the process conditions such as chamber temperature, chamber pressure and carrier gas flow rates — are preferably substantially similar for the deposition and the etch phases, thereby allowing throughput to be increased.
  • the example below employs isothermal and isobaric conditions for both phases of the cycle. Other parameters are used in modified embodiments. TABLE A
  • epitaxial Si:C is etched significantly slower than amorphous or polycrystalline Si:C in each etch phase (etch selectivity in the range of 10:1 — 30:1). Defective epitaxial material is also preferentially removed in the etch phases.
  • the cyclical deposition and etch process conditions are tuned to reduce or eliminate net growth on the oxide while achieving net growth in each cycle in the epitaxial recessed source/drain regions. This cyclical process is distinguishable from conventional selective deposition processes in which deposition and etching reactions occur simultaneously.
  • Tables B and C below give two examples of deposition and etch durations and resultant thicknesses using a recipe similar to that of Table A. The recipes are differently tuned to modulate both deposition and etch rates by increasing the partial pressure of the SiaH ⁇ and optimizing etchant partial pressures.
  • the process parameters provided in Table A indicate a C ⁇ /HCt etch chemistry.
  • between about 20 seem and about 200 seem of 10% GeH 4 is included in the etch chemistry as an etch catalyst.
  • inclusion of a germanium source e.g.. a germane such as GeH 4 , GeCI 4 , metallorganic Ge precursors, solid source Ge
  • germanium source e.g. a germane such as GeH 4 , GeCI 4 , metallorganic Ge precursors, solid source Ge
  • use of germanium as a catalyst also advantageously allows lower etch temperatures to be used, and allows a temperature spike during etch to be omitted, as noted above in discussion of isothermal processing.
  • Figure 6 shows a graph of etch rate of amorphous regions of a carbon-doped silicon film as a function of HCC partial pressure in the etch chemistry, at a constant temperature of 600 0 C.
  • HCC partial pressure in the etch chemistry By decreasing the H 2 carrier flow, the partial pressure of HC? and GeH 4 is increased, thereby significantly increasing the amorphous etch rate in certain embodiments.
  • Figure 6 indicates that inclusion of 20 seem of 10% GeH 4 in the etch chemistry (symbols T and ⁇ ) results in substantially higher amorphous etch rates.
  • Figure 7 shows a graph of etch rate and amorphous/epitaxial etch rate ratio as a function of GeH 4 flow in the etch chemistry, at a constant temperature of 600 0 C, a constant H 2 carrier flow of 2 slm, and a constant chamber pressure of 64 Torr.
  • Amorphous etch rates are indicated by the "a-" prefix in the legend
  • epitaxial etch rates are indicated by the "c-” prefix in the legend
  • etch rate ratios are indicated by "ER” in the legend.
  • Increasing the GeH 4 flow causes the amorphous/epitaxial etch rate ratio to increase to a point, beyond which additional GeH 4 reduces etch selectivity.
  • Figure 7 indicates that an etch chemistry comprising 200 seem HCt and approximately 30 to 40 seem of 10% GeH 4 produces an amorphous/epitaxial etch rate ratio that cannot be obtained with lower or higher GeH 4 flow rates.
  • Figure 8 shows a graph of etch rate of amorphous regions of a Si:C film as a function of chamber pressure for various GeH 4 flow rates in the etch chemistry, at a constant temperature of 550 0 C, a constant H 2 carrier flow of 2 slm, and a constant HCf etchant flow of 200 seem.
  • the chamber pressure beyond approximately 80 Torr, the dependence of the etch rate on the GeH 4 flow rate is reduced.
  • the amorphous etch rate is increased by a factor of about two.
  • Figure 9 shows a graph of etch rate of amorphous regions of a carbon-doped silicon film as a function of reciprocal temperature, at a constant chamber pressure of 64 Torr, a constant H 2 carrier flow of 2 slm, a constant HC£ etchant flow of 200 seem, and a constant GeH 4 etchant flow of 50 seem of 10% GeH/».
  • the absolute etch rates are very high for these chemicals even at very low temperatures.
  • Figure 10 shows a graph of thickness of amorphous regions of a carbon-doped silicon film as a function of accumulated etch time, at a constant chamber pressure of 64 Ton * , a constant chamber temperature of 550 0 C 1 a constant H2 carrier flow of 2 slm, and a constant HCt etchant flow of 200 seem.
  • the slopes of the lines plotted in Figure 10 correspond to the etch rate of the amorphous Si:C film.
  • the etch rate in the center of the deposited film is greater than the etch rate at the edge of the deposited film. Therefore, in a preferred embodiment the wafer is "overetched" to increase the likelihood that amorphous Si:C is removed from the slower-etching wafer edges.
  • Figure 11 shows a graph of etch rate of amorphous regions of a carbon-doped silicon film deposited on a wafer as a function of radial position on the wafer, at a constant chamber temperature of 550 0 C, a constant chamber pressure of 64 Torr, a constant H 2 carrier flow of 2 slm, and a constant HCl etchant flow of 200 seem.
  • Figure 11 indicates that the etch rate is slightly slower at the wafer edge than the wafer center.
  • Figure 12 shows a graph of thickness of amorphous regions of a carbon-doped silicon film deposited on a wafer as a function of radial position on the wafer for various etch cycle durations, at a constant chamber temperature of 550 0 C, a constant chamber pressure of 80 Torr, a constant H 2 carrier flow of 2 slm, a constant HCl etchant flow of 200 seem, and a constant GeH 4 etchant flow of 6.5 seem.
  • Figure 13 shows a graph of thickness of amorphous regions of a carbon-doped silicon film deposited on a wafer as a function of radial position of the wafer for various GeH 4 etchant etch chemistries and various etch cycle durations. As illustrated in Figure 13, longer etch cycles and higher GeH 4 flow rates leads to more nonuniform etching. In a modified embodiment, this effect is compensated for by providing a final etch cycle of extended duration, thereby providing sufficient "overetch” to remove amorphous Si:C remaining at the center of the wafer.
  • each cycle preferably between about 1 nm/cycle and 10 nm/cycle, more preferably between about 2 nm/cycle and 5 nm/cycle.
  • conditions similar to Table A have been used to achieve net deposition rates of 4-11 nm/min.
  • Figure 14 is a photograph illustrating an example partially formed carbon-doped silicon structure created by performing one deposition cycle and one etch cycle on a patterned substrate. As illustrated, crystalline Si:C:P is present over an epitaxial substrate region, while amorphous Si:C:P is present over oxide. An amorphous pocket is present at the amorphous/epitaxial interface because deposition occurs at different growth rates depending on the exposed crystallographic orientation. In the structure illustrated in Figure 14, the ratio of amorphous etch rate to epitaxial etch rate is over 20.
  • Figure 16 is a photograph illustrating an example partially formed carbon-doped silicon structure created by performing multiple deposition and etch cycles on a patterned substrate.
  • Figure 17 illustrates an atomic force microscopy analysis of a epitaxial carbon-doped silicon film that has been selectively deposited using certain of the techniques disclosed herein.
  • Figure 15 shows a graph of element concentration as a function of depth for an example partially formed carbon-doped silicon film formed using certain of the techniques disclosed herein.
  • relatively modest levels of germanium are incorporated into the Si:C film due to GeH 4 use during the etch phase.
  • the germanium incorporation is less than about 5 atomic %, more preferably less than about 2 atomic %, and most preferably less than about 1 atomic %.
  • Figure 18 shows x-ray diffraction rocking curves of carbon- doped silicon films deposited using certain of the techniques disclosed herein.
  • the curves indicate different quantities of deposition/etch cycles, and correspond to increasing monomethylsilane ("MMS”) flow rates, which corresponds to higher substitutional C concentrations in the silicon epitaxial film.
  • MMS monomethylsilane
  • the techniques disclosed herein for selective epitaxial deposition of Si:C films provide several advantages over conventional techniques. For example, cyclical removal of polycrystalline or amorphous Si:C from insulator regions helps to improve the interface between the amorphous Si:C and the epitaxial Si:C. In particular, the cyclical process allows epitaxial growth to occur in interface regions where non-epitaxial growth would otherwise occur. Furthermore, in embodiments wherein the temperature spike during etch is omitted, such that the etch cycle is conducted at a temperature that is equal to, or only slightly elevated from, the deposition cycle, lower temperatures lead to many advantages. Throughput is improved by minimizing temperature (and/or pressure) ramp and stabilization time.
  • Deposition temperatures can still be low enough to achieve high (e.g., 1.0 - 3.6 at C%) substitutional carbon content, and a large portion of the substitutional carbon and electrically active dopants remain in place during the etch, thus resulting in high substitutional carbon and dopant concentrations in the resulting film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Chemical Vapour Deposition (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
PCT/US2007/011464 2006-06-07 2007-05-11 Selective epitaxial formation of semiconductor films Ceased WO2007145758A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009514271A JP2009540565A (ja) 2006-06-07 2007-05-11 半導体膜の選択的なエピタキシャル形成
KR1020147014598A KR101544931B1 (ko) 2006-06-07 2007-05-11 반도체 박막의 선택적 에피택셜 형성
CN2007800198311A CN101454874B (zh) 2006-06-07 2007-05-11 半导体薄膜的选择性外延形成
KR1020097000140A KR101521878B1 (ko) 2006-06-07 2007-05-11 반도체 박막의 선택적 에피택셜 형성
EP07777014A EP2022083A2 (en) 2006-06-07 2007-05-11 Selective epitaxial formation of semiconductor films

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US81170306P 2006-06-07 2006-06-07
US60/811,703 2006-06-07
US11/536,463 US8278176B2 (en) 2006-06-07 2006-09-28 Selective epitaxial formation of semiconductor films
US11/536,463 2006-09-28

Publications (2)

Publication Number Publication Date
WO2007145758A2 true WO2007145758A2 (en) 2007-12-21
WO2007145758A3 WO2007145758A3 (en) 2008-02-07

Family

ID=38895787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/011464 Ceased WO2007145758A2 (en) 2006-06-07 2007-05-11 Selective epitaxial formation of semiconductor films

Country Status (7)

Country Link
US (2) US8278176B2 (enExample)
EP (1) EP2022083A2 (enExample)
JP (1) JP2009540565A (enExample)
KR (2) KR101544931B1 (enExample)
CN (1) CN101454874B (enExample)
TW (1) TWI404123B (enExample)
WO (1) WO2007145758A2 (enExample)

Families Citing this family (503)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866534B2 (ja) 2001-02-12 2012-02-01 エーエスエム アメリカ インコーポレイテッド 半導体膜の改良された堆積方法
US7186630B2 (en) 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films
US7153772B2 (en) * 2003-06-12 2006-12-26 Asm International N.V. Methods of forming silicide films in semiconductor devices
WO2006044268A1 (en) * 2004-10-13 2006-04-27 Dow Global Technologies Inc. Catalysed diesel soot filter and process for its use
US7816236B2 (en) 2005-02-04 2010-10-19 Asm America Inc. Selective deposition of silicon-containing films
KR20080089403A (ko) 2005-12-22 2008-10-06 에이에스엠 아메리카, 인코포레이티드 도핑된 반도체 물질들의 에피택시 증착
US8278176B2 (en) 2006-06-07 2012-10-02 Asm America, Inc. Selective epitaxial formation of semiconductor films
US8986456B2 (en) 2006-10-10 2015-03-24 Asm America, Inc. Precursor delivery system
US7897495B2 (en) * 2006-12-12 2011-03-01 Applied Materials, Inc. Formation of epitaxial layer containing silicon and carbon
US9064960B2 (en) * 2007-01-31 2015-06-23 Applied Materials, Inc. Selective epitaxy process control
US8367548B2 (en) * 2007-03-16 2013-02-05 Asm America, Inc. Stable silicide films and methods for making the same
US7833883B2 (en) * 2007-03-28 2010-11-16 Intel Corporation Precursor gas mixture for depositing an epitaxial carbon-doped silicon film
US20080303060A1 (en) * 2007-06-06 2008-12-11 Jin-Ping Han Semiconductor devices and methods of manufacturing thereof
US7759199B2 (en) * 2007-09-19 2010-07-20 Asm America, Inc. Stressor for engineered strain on channel
US7776698B2 (en) * 2007-10-05 2010-08-17 Applied Materials, Inc. Selective formation of silicon carbon epitaxial layer
US7655543B2 (en) * 2007-12-21 2010-02-02 Asm America, Inc. Separate injection of reactive species in selective formation of films
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8486191B2 (en) 2009-04-07 2013-07-16 Asm America, Inc. Substrate reactor with adjustable injectors for mixing gases within reaction chamber
WO2011017339A2 (en) * 2009-08-06 2011-02-10 Applied Materials, Inc. Methods of selectively depositing an epitaxial layer
US8877655B2 (en) 2010-05-07 2014-11-04 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US8883270B2 (en) 2009-08-14 2014-11-11 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen—oxygen species
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US8343872B2 (en) * 2009-11-06 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming strained structures with compound profiles in semiconductor devices
US8367528B2 (en) 2009-11-17 2013-02-05 Asm America, Inc. Cyclical epitaxial deposition and etch
US8999798B2 (en) * 2009-12-17 2015-04-07 Applied Materials, Inc. Methods for forming NMOS EPI layers
KR101674179B1 (ko) * 2010-04-06 2016-11-10 삼성전자주식회사 전계 효과 트랜지스터를 포함하는 반도체 소자 및 그 형성 방법
US8466045B2 (en) 2010-07-02 2013-06-18 Tokyo Electron Limited Method of forming strained epitaxial carbon-doped silicon films
US8778767B2 (en) * 2010-11-18 2014-07-15 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits and fabrication methods thereof
WO2012102755A1 (en) * 2011-01-28 2012-08-02 Applied Materials, Inc. Carbon addition for low resistivity in situ doped silicon epitaxy
FR2973566A1 (fr) * 2011-04-01 2012-10-05 St Microelectronics Crolles 2 Procédé de formation d'une couche epitaxiee, en particulier sur des régions de source et de drain de transistor a appauvrissement total
US8809170B2 (en) 2011-05-19 2014-08-19 Asm America Inc. High throughput cyclical epitaxial deposition and etch process
US9537004B2 (en) 2011-05-24 2017-01-03 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain formation and structure
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
EP2718962A1 (en) * 2011-06-10 2014-04-16 Massachusetts Institute Of Technology High-concentration active doping in semiconductors and semiconductor devices produced by such doping
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9096931B2 (en) 2011-10-27 2015-08-04 Asm America, Inc Deposition valve assembly and method of heating the same
US9341296B2 (en) 2011-10-27 2016-05-17 Asm America, Inc. Heater jacket for a fluid line
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US9167625B2 (en) 2011-11-23 2015-10-20 Asm Ip Holding B.V. Radiation shielding for a substrate holder
US9005539B2 (en) 2011-11-23 2015-04-14 Asm Ip Holding B.V. Chamber sealing member
US9112003B2 (en) 2011-12-09 2015-08-18 Asm International N.V. Selective formation of metallic films on metallic surfaces
US9093269B2 (en) 2011-12-20 2015-07-28 Asm America, Inc. In-situ pre-clean prior to epitaxy
CN103187269B (zh) * 2011-12-30 2016-02-17 中芯国际集成电路制造(上海)有限公司 晶体管的形成方法
US20130193492A1 (en) * 2012-01-30 2013-08-01 International Business Machines Corporation Silicon carbon film structure and method
US9202727B2 (en) 2012-03-02 2015-12-01 ASM IP Holding Susceptor heater shim
US8946830B2 (en) 2012-04-04 2015-02-03 Asm Ip Holdings B.V. Metal oxide protective layer for a semiconductor device
US9029253B2 (en) 2012-05-02 2015-05-12 Asm Ip Holding B.V. Phase-stabilized thin films, structures and devices including the thin films, and methods of forming same
US8728832B2 (en) 2012-05-07 2014-05-20 Asm Ip Holdings B.V. Semiconductor device dielectric interface layer
US9012310B2 (en) 2012-06-11 2015-04-21 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial formation of source and drain regions
US8933375B2 (en) 2012-06-27 2015-01-13 Asm Ip Holding B.V. Susceptor heater and method of heating a substrate
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9117866B2 (en) 2012-07-31 2015-08-25 Asm Ip Holding B.V. Apparatus and method for calculating a wafer position in a processing chamber under process conditions
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9169975B2 (en) 2012-08-28 2015-10-27 Asm Ip Holding B.V. Systems and methods for mass flow controller verification
US9171715B2 (en) 2012-09-05 2015-10-27 Asm Ip Holding B.V. Atomic layer deposition of GeO2
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9324811B2 (en) 2012-09-26 2016-04-26 Asm Ip Holding B.V. Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US9330899B2 (en) 2012-11-01 2016-05-03 Asm Ip Holding B.V. Method of depositing thin film
US8900958B2 (en) 2012-12-19 2014-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial formation mechanisms of source and drain regions
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
US9252008B2 (en) 2013-01-11 2016-02-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial formation mechanisms of source and drain regions
US8853039B2 (en) 2013-01-17 2014-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction for formation of epitaxial layer in source and drain regions
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US8894870B2 (en) 2013-02-01 2014-11-25 Asm Ip Holding B.V. Multi-step method and apparatus for etching compounds containing a metal
JP5931780B2 (ja) * 2013-03-06 2016-06-08 東京エレクトロン株式会社 選択エピタキシャル成長法および成膜装置
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9564321B2 (en) * 2013-03-11 2017-02-07 Taiwan Semiconductor Manufacturing Co., Ltd. Cyclic epitaxial deposition and etch processes
US9093468B2 (en) 2013-03-13 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Asymmetric cyclic depositon and etch process for epitaxial formation mechanisms of source and drain regions
US9029226B2 (en) 2013-03-13 2015-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for doping lightly-doped-drain (LDD) regions of finFET devices
US8877592B2 (en) 2013-03-14 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of doped film for source and drain regions
US20140264612A1 (en) * 2013-03-15 2014-09-18 International Business Machines Corporation Growth of epitaxial semiconductor regions with curved top surfaces
TWI618120B (zh) * 2013-05-27 2018-03-11 聯華電子股份有限公司 磊晶製程
US8927431B2 (en) 2013-05-31 2015-01-06 International Business Machines Corporation High-rate chemical vapor etch of silicon substrates
US9293534B2 (en) 2014-03-21 2016-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of dislocations in source and drain regions of FinFET devices
US20150001628A1 (en) * 2013-06-27 2015-01-01 Global Foundries Inc. Semiconductor structure with improved isolation and method of fabrication to enable fine pitch transistor arrays
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9099423B2 (en) 2013-07-12 2015-08-04 Asm Ip Holding B.V. Doped semiconductor films and processing
US9018111B2 (en) 2013-07-22 2015-04-28 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9396934B2 (en) 2013-08-14 2016-07-19 Asm Ip Holding B.V. Methods of forming films including germanium tin and structures and devices including the films
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
CN104465657B (zh) * 2013-09-22 2017-10-20 中芯国际集成电路制造(上海)有限公司 互补tfet 及其制造方法
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US9605343B2 (en) 2013-11-13 2017-03-28 Asm Ip Holding B.V. Method for forming conformal carbon films, structures conformal carbon film, and system of forming same
US10179947B2 (en) 2013-11-26 2019-01-15 Asm Ip Holding B.V. Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition
US9218963B2 (en) 2013-12-19 2015-12-22 Asm Ip Holding B.V. Cyclical deposition of germanium
TWI686499B (zh) 2014-02-04 2020-03-01 荷蘭商Asm Ip控股公司 金屬、金屬氧化物與介電質的選擇性沉積
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US9299587B2 (en) 2014-04-10 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Microwave anneal (MWA) for defect recovery
US10047435B2 (en) 2014-04-16 2018-08-14 Asm Ip Holding B.V. Dual selective deposition
US9404587B2 (en) 2014-04-24 2016-08-02 ASM IP Holding B.V Lockout tagout for semiconductor vacuum valve
US9704708B2 (en) * 2014-07-11 2017-07-11 Applied Materials, Inc. Halogenated dopant precursors for epitaxy
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9853133B2 (en) * 2014-09-04 2017-12-26 Sunedison Semiconductor Limited (Uen201334164H) Method of manufacturing high resistivity silicon-on-insulator substrate
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
CN105529266A (zh) * 2014-10-21 2016-04-27 上海华力微电子有限公司 嵌入式锗硅外延位错缺陷的改善方法
KR102300403B1 (ko) 2014-11-19 2021-09-09 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
CN105609406B (zh) * 2014-11-19 2018-09-28 株式会社日立国际电气 半导体器件的制造方法、衬底处理装置、气体供给系统
US9761693B2 (en) 2014-11-27 2017-09-12 United Microelectronics Corp. Method for fabricating semiconductor device
US9755031B2 (en) * 2014-12-19 2017-09-05 Stmicroelectronics, Inc. Trench epitaxial growth for a FinFET device having reduced capacitance
KR102263121B1 (ko) 2014-12-22 2021-06-09 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 및 그 제조 방법
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US9490145B2 (en) 2015-02-23 2016-11-08 Asm Ip Holding B.V. Removal of surface passivation
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US9378950B1 (en) * 2015-05-22 2016-06-28 Stratio Methods for removing nuclei formed during epitaxial growth
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US9899291B2 (en) 2015-07-13 2018-02-20 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10043661B2 (en) 2015-07-13 2018-08-07 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US9536945B1 (en) * 2015-07-30 2017-01-03 International Business Machines Corporation MOSFET with ultra low drain leakage
US10428421B2 (en) 2015-08-03 2019-10-01 Asm Ip Holding B.V. Selective deposition on metal or metallic surfaces relative to dielectric surfaces
US10087525B2 (en) 2015-08-04 2018-10-02 Asm Ip Holding B.V. Variable gap hard stop design
US9741852B2 (en) * 2015-08-05 2017-08-22 United Microelectronics Corp. Manufacturing method of semiconductor structure
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10814349B2 (en) 2015-10-09 2020-10-27 Asm Ip Holding B.V. Vapor phase deposition of organic films
US10695794B2 (en) 2015-10-09 2020-06-30 Asm Ip Holding B.V. Vapor phase deposition of organic films
US9909214B2 (en) 2015-10-15 2018-03-06 Asm Ip Holding B.V. Method for depositing dielectric film in trenches by PEALD
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US9905420B2 (en) 2015-12-01 2018-02-27 Asm Ip Holding B.V. Methods of forming silicon germanium tin films and structures and devices including the films
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10501866B2 (en) 2016-03-09 2019-12-10 Asm Ip Holding B.V. Gas distribution apparatus for improved film uniformity in an epitaxial system
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US9892913B2 (en) 2016-03-24 2018-02-13 Asm Ip Holding B.V. Radial and thickness control via biased multi-port injection settings
US10087522B2 (en) 2016-04-21 2018-10-02 Asm Ip Holding B.V. Deposition of metal borides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11081342B2 (en) 2016-05-05 2021-08-03 Asm Ip Holding B.V. Selective deposition using hydrophobic precursors
KR102592471B1 (ko) 2016-05-17 2023-10-20 에이에스엠 아이피 홀딩 비.브이. 금속 배선 형성 방법 및 이를 이용한 반도체 장치의 제조 방법
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10373820B2 (en) 2016-06-01 2019-08-06 Asm Ip Holding B.V. Deposition of organic films
US10453701B2 (en) 2016-06-01 2019-10-22 Asm Ip Holding B.V. Deposition of organic films
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
KR102354490B1 (ko) 2016-07-27 2022-01-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (ko) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. 기판 가공 장치 및 그 동작 방법
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10177025B2 (en) 2016-07-28 2019-01-08 Asm Ip Holding B.V. Method and apparatus for filling a gap
JP6606476B2 (ja) * 2016-08-02 2019-11-13 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
US10090316B2 (en) 2016-09-01 2018-10-02 Asm Ip Holding B.V. 3D stacked multilayer semiconductor memory using doped select transistor channel
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US9865730B1 (en) * 2016-10-31 2018-01-09 International Business Machines Corporation VTFET devices utilizing low temperature selective epitaxy
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US11430656B2 (en) 2016-11-29 2022-08-30 Asm Ip Holding B.V. Deposition of oxide thin films
KR102762543B1 (ko) 2016-12-14 2025-02-05 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR102700194B1 (ko) 2016-12-19 2024-08-28 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
JP7169072B2 (ja) 2017-02-14 2022-11-10 エーエスエム アイピー ホールディング ビー.ブイ. 選択的パッシベーションおよび選択的堆積
KR102287788B1 (ko) * 2017-02-14 2021-08-10 에이에스엠 아이피 홀딩 비.브이. 알루미늄 및 질소 함유 재료의 선택적 증착
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
JP6778139B2 (ja) * 2017-03-22 2020-10-28 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
USD830981S1 (en) 2017-04-07 2018-10-16 Asm Ip Holding B.V. Susceptor for semiconductor substrate processing apparatus
US10559461B2 (en) * 2017-04-19 2020-02-11 Lam Research Corporation Selective deposition with atomic layer etch reset
KR102457289B1 (ko) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US11501965B2 (en) 2017-05-05 2022-11-15 Asm Ip Holding B.V. Plasma enhanced deposition processes for controlled formation of metal oxide thin films
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
KR102684628B1 (ko) 2017-05-16 2024-07-15 에이에스엠 아이피 홀딩 비.브이. 유전체 상에 옥사이드의 선택적 peald
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (ko) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
TWI815813B (zh) 2017-08-04 2023-09-21 荷蘭商Asm智慧財產控股公司 用於分配反應腔內氣體的噴頭總成
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10236177B1 (en) 2017-08-22 2019-03-19 ASM IP Holding B.V.. Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102491945B1 (ko) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR102401446B1 (ko) 2017-08-31 2022-05-24 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
KR102630301B1 (ko) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
KR102443047B1 (ko) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 방법 및 그에 의해 제조된 장치
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
JP7206265B2 (ja) 2017-11-27 2023-01-17 エーエスエム アイピー ホールディング ビー.ブイ. クリーン・ミニエンバイロメントを備える装置
KR102597978B1 (ko) 2017-11-27 2023-11-06 에이에스엠 아이피 홀딩 비.브이. 배치 퍼니스와 함께 사용하기 위한 웨이퍼 카세트를 보관하기 위한 보관 장치
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US11189730B2 (en) * 2017-12-26 2021-11-30 Intel Corporation Non-selective epitaxial source/drain deposition to reduce dopant diffusion for germanium nMOS transistors
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TWI799494B (zh) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 沈積方法
CN111630203A (zh) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 通过等离子体辅助沉积来沉积间隙填充层的方法
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
KR102501472B1 (ko) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
KR102600229B1 (ko) 2018-04-09 2023-11-10 에이에스엠 아이피 홀딩 비.브이. 기판 지지 장치, 이를 포함하는 기판 처리 장치 및 기판 처리 방법
KR102709511B1 (ko) 2018-05-08 2024-09-24 에이에스엠 아이피 홀딩 비.브이. 기판 상에 산화물 막을 주기적 증착 공정에 의해 증착하기 위한 방법 및 관련 소자 구조
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US12272527B2 (en) 2018-05-09 2025-04-08 Asm Ip Holding B.V. Apparatus for use with hydrogen radicals and method of using same
TWI816783B (zh) 2018-05-11 2023-10-01 荷蘭商Asm 智慧財產控股公司 用於基板上形成摻雜金屬碳化物薄膜之方法及相關半導體元件結構
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
TWI840362B (zh) 2018-06-04 2024-05-01 荷蘭商Asm Ip私人控股有限公司 水氣降低的晶圓處置腔室
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
TWI815915B (zh) 2018-06-27 2023-09-21 荷蘭商Asm Ip私人控股有限公司 用於形成含金屬材料及包含含金屬材料的膜及結構之循環沉積方法
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
KR102686758B1 (ko) 2018-06-29 2024-07-18 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10811498B2 (en) 2018-08-30 2020-10-20 Atomera Incorporated Method for making superlattice structures with reduced defect densities
US10566191B1 (en) 2018-08-30 2020-02-18 Atomera Incorporated Semiconductor device including superlattice structures with reduced defect densities
CN109192654A (zh) * 2018-08-31 2019-01-11 上海华力微电子有限公司 硅的外延生长方法、半导体器件及其形成方法
KR102707956B1 (ko) 2018-09-11 2024-09-19 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344B (zh) 2018-10-01 2024-10-25 Asmip控股有限公司 衬底保持设备、包含所述设备的系统及其使用方法
US12482648B2 (en) 2018-10-02 2025-11-25 Asm Ip Holding B.V. Selective passivation and selective deposition
JP2020056104A (ja) 2018-10-02 2020-04-09 エーエスエム アイピー ホールディング ビー.ブイ. 選択的パッシベーションおよび選択的堆積
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102605121B1 (ko) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US12378665B2 (en) 2018-10-26 2025-08-05 Asm Ip Holding B.V. High temperature coatings for a preclean and etch apparatus and related methods
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR102748291B1 (ko) 2018-11-02 2024-12-31 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
TWI874340B (zh) 2018-12-14 2025-03-01 荷蘭商Asm Ip私人控股有限公司 形成裝置結構之方法、其所形成之結構及施行其之系統
CN109698130A (zh) * 2018-12-24 2019-04-30 上海华力集成电路制造有限公司 锗硅源漏极的制备方法
TWI819180B (zh) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
KR102727227B1 (ko) 2019-01-22 2024-11-07 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN111524788B (zh) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 氧化硅的拓扑选择性膜形成的方法
KR102638425B1 (ko) 2019-02-20 2024-02-21 에이에스엠 아이피 홀딩 비.브이. 기판 표면 내에 형성된 오목부를 충진하기 위한 방법 및 장치
TWI845607B (zh) 2019-02-20 2024-06-21 荷蘭商Asm Ip私人控股有限公司 用來填充形成於基材表面內之凹部的循環沉積方法及設備
KR20200102357A (ko) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. 3-d nand 응용의 플러그 충진체 증착용 장치 및 방법
KR102626263B1 (ko) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치
TWI842826B (zh) 2019-02-22 2024-05-21 荷蘭商Asm Ip私人控股有限公司 基材處理設備及處理基材之方法
KR102858005B1 (ko) 2019-03-08 2025-09-09 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
KR102782593B1 (ko) 2019-03-08 2025-03-14 에이에스엠 아이피 홀딩 비.브이. SiOC 층을 포함한 구조체 및 이의 형성 방법
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
JP2020167398A (ja) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー ドアオープナーおよびドアオープナーが提供される基材処理装置
KR102809999B1 (ko) 2019-04-01 2025-05-19 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
US11965238B2 (en) 2019-04-12 2024-04-23 Asm Ip Holding B.V. Selective deposition of metal oxides on metal surfaces
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR102869364B1 (ko) 2019-05-07 2025-10-10 에이에스엠 아이피 홀딩 비.브이. 비정질 탄소 중합체 막을 개질하는 방법
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP7612342B2 (ja) 2019-05-16 2025-01-14 エーエスエム・アイピー・ホールディング・ベー・フェー ウェハボートハンドリング装置、縦型バッチ炉および方法
JP7598201B2 (ja) 2019-05-16 2024-12-11 エーエスエム・アイピー・ホールディング・ベー・フェー ウェハボートハンドリング装置、縦型バッチ炉および方法
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 배기 가스 분석을 포함한 기상 반응기 시스템을 사용하는 방법
KR20200141931A (ko) 2019-06-10 2020-12-21 에이에스엠 아이피 홀딩 비.브이. 석영 에피택셜 챔버를 세정하는 방법
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
JP7313201B2 (ja) * 2019-06-14 2023-07-24 東京エレクトロン株式会社 エッチング方法およびエッチング装置
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP7499079B2 (ja) 2019-07-09 2024-06-13 エーエスエム・アイピー・ホールディング・ベー・フェー 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
CN112242318A (zh) 2019-07-16 2021-01-19 Asm Ip私人控股有限公司 基板处理装置
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
KR102860110B1 (ko) 2019-07-17 2025-09-16 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
TWI839544B (zh) 2019-07-19 2024-04-21 荷蘭商Asm Ip私人控股有限公司 形成形貌受控的非晶碳聚合物膜之方法
CN112242295B (zh) 2019-07-19 2025-12-09 Asmip私人控股有限公司 形成拓扑受控的无定形碳聚合物膜的方法
CN112309843A (zh) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 实现高掺杂剂掺入的选择性沉积方法
US12169361B2 (en) 2019-07-30 2024-12-17 Asm Ip Holding B.V. Substrate processing apparatus and method
CN112309900B (zh) 2019-07-30 2025-11-04 Asmip私人控股有限公司 基板处理设备
CN112309899B (zh) 2019-07-30 2025-11-14 Asmip私人控股有限公司 基板处理设备
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
JP6953480B2 (ja) * 2019-07-31 2021-10-27 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
CN118422165A (zh) 2019-08-05 2024-08-02 Asm Ip私人控股有限公司 用于化学源容器的液位传感器
CN112342526A (zh) 2019-08-09 2021-02-09 Asm Ip私人控股有限公司 包括冷却装置的加热器组件及其使用方法
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
KR102806450B1 (ko) 2019-09-04 2025-05-12 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR102733104B1 (ko) 2019-09-05 2024-11-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US12469693B2 (en) 2019-09-17 2025-11-11 Asm Ip Holding B.V. Method of forming a carbon-containing layer and structure including the layer
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
KR20210042810A (ko) 2019-10-08 2021-04-20 에이에스엠 아이피 홀딩 비.브이. 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법
TW202128273A (zh) 2019-10-08 2021-08-01 荷蘭商Asm Ip私人控股有限公司 氣體注入系統、及將材料沉積於反應室內之基板表面上的方法
TWI846953B (zh) 2019-10-08 2024-07-01 荷蘭商Asm Ip私人控股有限公司 基板處理裝置
TWI846966B (zh) 2019-10-10 2024-07-01 荷蘭商Asm Ip私人控股有限公司 形成光阻底層之方法及包括光阻底層之結構
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
TWI834919B (zh) 2019-10-16 2024-03-11 荷蘭商Asm Ip私人控股有限公司 氧化矽之拓撲選擇性膜形成之方法
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR102845724B1 (ko) 2019-10-21 2025-08-13 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
KR20210050453A (ko) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11139163B2 (en) 2019-10-31 2021-10-05 Asm Ip Holding B.V. Selective deposition of SiOC thin films
KR102890638B1 (ko) 2019-11-05 2025-11-25 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR102861314B1 (ko) 2019-11-20 2025-09-17 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
CN112951697B (zh) 2019-11-26 2025-07-29 Asmip私人控股有限公司 基板处理设备
KR20210065848A (ko) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. 제1 유전체 표면과 제2 금속성 표면을 포함한 기판 상에 타겟 막을 선택적으로 형성하기 위한 방법
CN120998766A (zh) 2019-11-29 2025-11-21 Asm Ip私人控股有限公司 基板处理设备
CN112885693B (zh) 2019-11-29 2025-06-10 Asmip私人控股有限公司 基板处理设备
JP7527928B2 (ja) 2019-12-02 2024-08-05 エーエスエム・アイピー・ホールディング・ベー・フェー 基板処理装置、基板処理方法
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
FR3105571B1 (fr) 2019-12-18 2023-01-13 Commissariat Energie Atomique Procédé de formation d’une couche par épitaxie cyclée
KR20210080214A (ko) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. 기판 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
KR20210089079A (ko) 2020-01-06 2021-07-15 에이에스엠 아이피 홀딩 비.브이. 채널형 리프트 핀
JP7730637B2 (ja) 2020-01-06 2025-08-28 エーエスエム・アイピー・ホールディング・ベー・フェー ガス供給アセンブリ、その構成要素、およびこれを含む反応器システム
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
KR102882467B1 (ko) 2020-01-16 2025-11-05 에이에스엠 아이피 홀딩 비.브이. 고 종횡비 피처를 형성하는 방법
KR102675856B1 (ko) 2020-01-20 2024-06-17 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TWI889744B (zh) 2020-01-29 2025-07-11 荷蘭商Asm Ip私人控股有限公司 污染物捕集系統、及擋板堆疊
TW202513845A (zh) 2020-02-03 2025-04-01 荷蘭商Asm Ip私人控股有限公司 半導體裝置結構及其形成方法
KR20210100010A (ko) 2020-02-04 2021-08-13 에이에스엠 아이피 홀딩 비.브이. 대형 물품의 투과율 측정을 위한 방법 및 장치
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
KR20210103956A (ko) 2020-02-13 2021-08-24 에이에스엠 아이피 홀딩 비.브이. 수광 장치를 포함하는 기판 처리 장치 및 수광 장치의 교정 방법
TW202146691A (zh) 2020-02-13 2021-12-16 荷蘭商Asm Ip私人控股有限公司 氣體分配總成、噴淋板總成、及調整至反應室之氣體的傳導率之方法
TWI855223B (zh) 2020-02-17 2024-09-11 荷蘭商Asm Ip私人控股有限公司 用於生長磷摻雜矽層之方法
TWI895326B (zh) 2020-02-28 2025-09-01 荷蘭商Asm Ip私人控股有限公司 專用於零件清潔的系統
TW202139347A (zh) 2020-03-04 2021-10-16 荷蘭商Asm Ip私人控股有限公司 反應器系統、對準夾具、及對準方法
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
KR20210116249A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법
KR102775390B1 (ko) 2020-03-12 2025-02-28 에이에스엠 아이피 홀딩 비.브이. 타겟 토폴로지 프로파일을 갖는 층 구조를 제조하기 위한 방법
US12173404B2 (en) 2020-03-17 2024-12-24 Asm Ip Holding B.V. Method of depositing epitaxial material, structure formed using the method, and system for performing the method
TWI865747B (zh) 2020-03-30 2024-12-11 荷蘭商Asm Ip私人控股有限公司 在兩不同表面上同時選擇性沉積兩不同材料
TWI862807B (zh) 2020-03-30 2024-11-21 荷蘭商Asm Ip私人控股有限公司 相對於金屬表面在介電表面上之氧化矽的選擇性沉積
TW202140832A (zh) 2020-03-30 2021-11-01 荷蘭商Asm Ip私人控股有限公司 氧化矽在金屬表面上之選擇性沉積
KR102755229B1 (ko) 2020-04-02 2025-01-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
TWI887376B (zh) 2020-04-03 2025-06-21 荷蘭商Asm Ip私人控股有限公司 半導體裝置的製造方法
TWI888525B (zh) 2020-04-08 2025-07-01 荷蘭商Asm Ip私人控股有限公司 用於選擇性蝕刻氧化矽膜之設備及方法
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210128343A (ko) 2020-04-15 2021-10-26 에이에스엠 아이피 홀딩 비.브이. 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
TW202143328A (zh) 2020-04-21 2021-11-16 荷蘭商Asm Ip私人控股有限公司 用於調整膜應力之方法
TW202146831A (zh) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
KR20210132612A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐 화합물들을 안정화하기 위한 방법들 및 장치
TW202208671A (zh) 2020-04-24 2022-03-01 荷蘭商Asm Ip私人控股有限公司 形成包括硼化釩及磷化釩層的結構之方法
KR20210132576A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐 나이트라이드 함유 층을 형성하는 방법 및 이를 포함하는 구조
KR20210132606A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 반도체 기판 상의 3차원 구조에 갭을 충진하는 방법
KR102783898B1 (ko) 2020-04-29 2025-03-18 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
JP7726664B2 (ja) 2020-05-04 2025-08-20 エーエスエム・アイピー・ホールディング・ベー・フェー 基板を処理するための基板処理システム
JP7736446B2 (ja) 2020-05-07 2025-09-09 エーエスエム・アイピー・ホールディング・ベー・フェー 同調回路を備える反応器システム
KR102788543B1 (ko) 2020-05-13 2025-03-27 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
TW202146699A (zh) 2020-05-15 2021-12-16 荷蘭商Asm Ip私人控股有限公司 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統
KR20210143653A (ko) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210145079A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 기판을 처리하기 위한 플랜지 및 장치
KR102795476B1 (ko) 2020-05-21 2025-04-11 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
KR102702526B1 (ko) 2020-05-22 2024-09-03 에이에스엠 아이피 홀딩 비.브이. 과산화수소를 사용하여 박막을 증착하기 위한 장치
KR20210146802A (ko) 2020-05-26 2021-12-06 에이에스엠 아이피 홀딩 비.브이. 붕소 및 갈륨을 함유한 실리콘 게르마늄 층을 증착하는 방법
TWI876048B (zh) 2020-05-29 2025-03-11 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202212620A (zh) 2020-06-02 2022-04-01 荷蘭商Asm Ip私人控股有限公司 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法
TW202208659A (zh) 2020-06-16 2022-03-01 荷蘭商Asm Ip私人控股有限公司 沉積含硼之矽鍺層的方法
KR20210158809A (ko) 2020-06-24 2021-12-31 에이에스엠 아이피 홀딩 비.브이. 실리콘이 구비된 층을 형성하는 방법
TWI873359B (zh) 2020-06-30 2025-02-21 荷蘭商Asm Ip私人控股有限公司 基板處理方法
US12431354B2 (en) 2020-07-01 2025-09-30 Asm Ip Holding B.V. Silicon nitride and silicon oxide deposition methods using fluorine inhibitor
KR102707957B1 (ko) 2020-07-08 2024-09-19 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
TWI864307B (zh) 2020-07-17 2024-12-01 荷蘭商Asm Ip私人控股有限公司 用於光微影之結構、方法與系統
KR20220011092A (ko) 2020-07-20 2022-01-27 에이에스엠 아이피 홀딩 비.브이. 전이 금속층을 포함하는 구조체를 형성하기 위한 방법 및 시스템
TWI878570B (zh) 2020-07-20 2025-04-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
TW202219303A (zh) 2020-07-27 2022-05-16 荷蘭商Asm Ip私人控股有限公司 薄膜沉積製程
KR20220021863A (ko) 2020-08-14 2022-02-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
TW202228863A (zh) 2020-08-25 2022-08-01 荷蘭商Asm Ip私人控股有限公司 清潔基板的方法、選擇性沉積的方法、及反應器系統
TW202534193A (zh) 2020-08-26 2025-09-01 荷蘭商Asm Ip私人控股有限公司 形成金屬氧化矽層及金屬氮氧化矽層的方法
TW202229601A (zh) 2020-08-27 2022-08-01 荷蘭商Asm Ip私人控股有限公司 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統
KR20220033997A (ko) 2020-09-10 2022-03-17 에이에스엠 아이피 홀딩 비.브이. 갭 충진 유체를 증착하기 위한 방법 그리고 이와 관련된 시스템 및 장치
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
KR20220036866A (ko) 2020-09-16 2022-03-23 에이에스엠 아이피 홀딩 비.브이. 실리콘 산화물 증착 방법
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TWI889903B (zh) 2020-09-25 2025-07-11 荷蘭商Asm Ip私人控股有限公司 基板處理方法
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
KR20220045900A (ko) 2020-10-06 2022-04-13 에이에스엠 아이피 홀딩 비.브이. 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치
CN114293174A (zh) 2020-10-07 2022-04-08 Asm Ip私人控股有限公司 气体供应单元和包括气体供应单元的衬底处理设备
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
KR102873665B1 (ko) 2020-10-15 2025-10-17 에이에스엠 아이피 홀딩 비.브이. 반도체 소자의 제조 방법, 및 ether-cat을 사용하는 기판 처리 장치
TW202217037A (zh) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 沉積釩金屬的方法、結構、裝置及沉積總成
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
TW202229620A (zh) 2020-11-12 2022-08-01 特文特大學 沉積系統、用於控制反應條件之方法、沉積方法
TW202229795A (zh) 2020-11-23 2022-08-01 荷蘭商Asm Ip私人控股有限公司 具注入器之基板處理設備
TW202235649A (zh) 2020-11-24 2022-09-16 荷蘭商Asm Ip私人控股有限公司 填充間隙之方法與相關之系統及裝置
TW202235675A (zh) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 注入器、及基板處理設備
US12255053B2 (en) 2020-12-10 2025-03-18 Asm Ip Holding B.V. Methods and systems for depositing a layer
TW202233884A (zh) 2020-12-14 2022-09-01 荷蘭商Asm Ip私人控股有限公司 形成臨限電壓控制用之結構的方法
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202232639A (zh) 2020-12-18 2022-08-16 荷蘭商Asm Ip私人控股有限公司 具有可旋轉台的晶圓處理設備
TW202226899A (zh) 2020-12-22 2022-07-01 荷蘭商Asm Ip私人控股有限公司 具匹配器的電漿處理裝置
TW202242184A (zh) 2020-12-22 2022-11-01 荷蘭商Asm Ip私人控股有限公司 前驅物膠囊、前驅物容器、氣相沉積總成、及將固態前驅物裝載至前驅物容器中之方法
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
USD1099184S1 (en) 2021-11-29 2025-10-21 Asm Ip Holding B.V. Weighted lift pin
USD1060598S1 (en) 2021-12-03 2025-02-04 Asm Ip Holding B.V. Split showerhead cover
CN114496797B (zh) * 2022-01-27 2025-05-30 上海华力集成电路制造有限公司 一种改善多晶栅覆盖层上附着缺陷的外延方法
US20230307506A1 (en) * 2022-03-22 2023-09-28 Applied Materials, Inc. Low temperature n-type contact epi formation
US20250113517A1 (en) * 2023-09-29 2025-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial regions in semiconductor devices

Family Cites Families (279)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE393967B (sv) 1974-11-29 1977-05-31 Sateko Oy Forfarande och for utforande av stroleggning mellan lagren i ett virkespaket
US4210925A (en) 1978-02-07 1980-07-01 Harris Corporation I2 L Integrated circuit and process of fabrication
JPS594040Y2 (ja) 1978-08-14 1984-02-04 住友金属工業株式会社 高炉用羽口
FI57975C (fi) 1979-02-28 1980-11-10 Lohja Ab Oy Foerfarande och anordning vid uppbyggande av tunna foereningshinnor
US4521952A (en) 1982-12-02 1985-06-11 International Business Machines Corporation Method of making integrated circuits using metal silicide contacts
US4605947A (en) 1983-03-07 1986-08-12 Motorola Inc. Titanium nitride MOS device gate electrode and method of producing
JPS6010673A (ja) 1983-06-30 1985-01-19 Fujitsu Ltd 半導体装置
US4578142A (en) * 1984-05-10 1986-03-25 Rca Corporation Method for growing monocrystalline silicon through mask layer
JPS61121433A (ja) * 1984-11-19 1986-06-09 Sharp Corp 半導体基板
JPS61166071A (ja) 1985-01-17 1986-07-26 Toshiba Corp 半導体装置及びその製造方法
US4698316A (en) 1985-01-23 1987-10-06 Rca Corporation Method of depositing uniformly thick selective epitaxial silicon
US5373806A (en) 1985-05-20 1994-12-20 Applied Materials, Inc. Particulate-free epitaxial process
US4735918A (en) * 1985-05-24 1988-04-05 Hughes Aircraft Company Vertical channel field effect transistor
US5769950A (en) 1985-07-23 1998-06-23 Canon Kabushiki Kaisha Device for forming deposited film
US4778775A (en) 1985-08-26 1988-10-18 Intel Corporation Buried interconnect for silicon on insulator structure
US4749440A (en) 1985-08-28 1988-06-07 Fsi Corporation Gaseous process and apparatus for removing films from substrates
EP0214690B1 (en) * 1985-09-06 1992-03-25 Philips Electronics Uk Limited A method of manufacturing a semiconductor device
US4857479A (en) 1985-10-08 1989-08-15 Motorola Method of making poly-sidewall contact transistors
US4891092A (en) * 1986-01-13 1990-01-02 General Electric Company Method for making a silicon-on-insulator substrate
US4704186A (en) 1986-02-19 1987-11-03 Rca Corporation Recessed oxide method for making a silicon-on-insulator substrate
FR2595509B1 (fr) 1986-03-07 1988-05-13 Thomson Csf Composant en materiau semiconducteur epitaxie sur un substrat a parametre de maille different et application a divers composants en semiconducteurs
EP0241317B1 (en) * 1986-04-11 1993-03-10 Canon Kabushiki Kaisha Process for forming deposited film
US4747367A (en) * 1986-06-12 1988-05-31 Crystal Specialties, Inc. Method and apparatus for producing a constant flow, constant pressure chemical vapor deposition
US4761269A (en) 1986-06-12 1988-08-02 Crystal Specialties, Inc. Apparatus for depositing material on a substrate
EP0251767A3 (en) 1986-06-30 1988-09-07 Canon Kabushiki Kaisha Insulated gate type semiconductor device and method of producing the same
US4728623A (en) * 1986-10-03 1988-03-01 International Business Machines Corporation Fabrication method for forming a self-aligned contact window and connection in an epitaxial layer and device structures employing the method
KR900007686B1 (ko) 1986-10-08 1990-10-18 후지쓰 가부시끼가이샤 선택적으로 산화된 실리콘 기판상에 에피택셜 실리콘층과 다결정 실리콘층을 동시에 성장시키는 기상 증착방법
US4749441A (en) 1986-12-11 1988-06-07 General Motors Corporation Semiconductor mushroom structure fabrication
US5158644A (en) 1986-12-19 1992-10-27 Applied Materials, Inc. Reactor chamber self-cleaning process
US5269876A (en) 1987-01-26 1993-12-14 Canon Kabushiki Kaisha Process for producing crystal article
US5236546A (en) 1987-01-26 1993-08-17 Canon Kabushiki Kaisha Process for producing crystal article
US4994402A (en) * 1987-06-26 1991-02-19 Hewlett-Packard Company Method of fabricating a coplanar, self-aligned contact structure in a semiconductor device
US4786615A (en) 1987-08-31 1988-11-22 Motorola Inc. Method for improved surface planarity in selective epitaxial silicon
US4870030A (en) 1987-09-24 1989-09-26 Research Triangle Institute, Inc. Remote plasma enhanced CVD method for growing an epitaxial semiconductor layer
US4758531A (en) 1987-10-23 1988-07-19 International Business Machines Corporation Method of making defect free silicon islands using SEG
US4873205A (en) 1987-12-21 1989-10-10 International Business Machines Corporation Method for providing silicide bridge contact between silicon regions separated by a thin dielectric
US5319220A (en) 1988-01-20 1994-06-07 Sharp Kabushiki Kaisha Silicon carbide semiconductor device
JPH0228322A (ja) 1988-04-28 1990-01-30 Mitsubishi Electric Corp 半導体基板の前処理方法
US5164813A (en) 1988-06-24 1992-11-17 Unitrode Corporation New diode structure
US5059544A (en) 1988-07-14 1991-10-22 International Business Machines Corp. Method of forming bipolar transistor having self-aligned emitter-base using selective and non-selective epitaxy
US5112439A (en) * 1988-11-30 1992-05-12 Mcnc Method for selectively depositing material on substrates
US5037775A (en) 1988-11-30 1991-08-06 Mcnc Method for selectively depositing single elemental semiconductor material on substrates
JPH02163942A (ja) * 1988-12-17 1990-06-25 Sony Corp Misトランジスタの製造方法
US5061644A (en) 1988-12-22 1991-10-29 Honeywell Inc. Method for fabricating self-aligned semiconductor devices
US5146304A (en) 1988-12-22 1992-09-08 Honeywell Inc. Self-aligned semiconductor device
US5416354A (en) * 1989-01-06 1995-05-16 Unitrode Corporation Inverted epitaxial process semiconductor devices
US5004705A (en) * 1989-01-06 1991-04-02 Unitrode Corporation Inverted epitaxial process
US4897366A (en) * 1989-01-18 1990-01-30 Harris Corporation Method of making silicon-on-insulator islands
JPH0722338Y2 (ja) 1989-04-17 1995-05-24 株式会社三ツ葉電機製作所 減速装置付駆動装置
US5175121A (en) 1989-05-10 1992-12-29 Samsung Electronics Co., Ltd. Method for manufacturing a stacked capacitor DRAM semiconductor device
KR920008886B1 (ko) 1989-05-10 1992-10-10 삼성전자 주식회사 디램셀 및 그 제조방법
US5028973A (en) 1989-06-19 1991-07-02 Harris Corporation Bipolar transistor with high efficient emitter
US4923826A (en) * 1989-08-02 1990-05-08 Harris Corporation Method for forming dielectrically isolated transistor
JPH03130368A (ja) 1989-09-22 1991-06-04 Applied Materials Inc 半導体ウェーハプロセス装置の洗浄方法
US5211796A (en) * 1990-01-08 1993-05-18 Lst Logic Corporation Apparatus for performing in-situ etch of CVD chamber
JP2802449B2 (ja) 1990-02-16 1998-09-24 三菱電機株式会社 半導体装置の製造方法
FR2658951B1 (fr) * 1990-02-23 1992-05-07 Bonis Maurice Procede de fabrication d'un circuit integre pour filiere analogique rapide utilisant des lignes d'interconnexions locales en siliciure.
US4981811A (en) * 1990-04-12 1991-01-01 At&T Bell Laboratories Process for fabricating low defect polysilicon
US5043300A (en) 1990-04-16 1991-08-27 Applied Materials, Inc. Single anneal step process for forming titanium silicide on semiconductor wafer
DE4016471A1 (de) 1990-05-22 1991-11-28 Bosch Gmbh Robert Mikromechanischer neigungssensor
JP2590295B2 (ja) * 1990-06-06 1997-03-12 株式会社東芝 半導体装置及びその製造方法
US5071670A (en) 1990-06-11 1991-12-10 Kelly Michael A Method for chemical vapor deposition under a single reactor vessel divided into separate reaction chambers each with its own depositing and exhausting means
KR930007190B1 (ko) 1990-08-21 1993-07-31 삼성전자 주식회사 화합물 반도체 장치
US5032233A (en) 1990-09-05 1991-07-16 Micron Technology, Inc. Method for improving step coverage of a metallization layer on an integrated circuit by use of a high melting point metal as an anti-reflective coating during laser planarization
US5196360A (en) * 1990-10-02 1993-03-23 Micron Technologies, Inc. Methods for inhibiting outgrowth of silicide in self-aligned silicide process
DE4106287A1 (de) * 1990-10-25 1992-04-30 Bosch Gmbh Robert Verfahren zum anisotropen aetzen von monokristallinen, scheibenfoermigen traegern
US5403751A (en) * 1990-11-29 1995-04-04 Canon Kabushiki Kaisha Process for producing a thin silicon solar cell
US5236865A (en) 1991-01-16 1993-08-17 Micron Technology, Inc. Method for simultaneously forming silicide and effecting dopant activation on a semiconductor wafer
US5094977A (en) * 1991-01-25 1992-03-10 Micron Technology, Inc. Stress reduction in metal films by laser annealing
JPH04260325A (ja) * 1991-02-15 1992-09-16 Toshiba Corp 半導体装置の製造方法
US5147819A (en) 1991-02-21 1992-09-15 Micron Technology, Inc. Semiconductor metallization method
KR100228619B1 (ko) * 1991-03-05 1999-11-01 아치 케이. 말론 자기-정합 접점 형성 방법 및 구조
US5234857A (en) 1991-03-23 1993-08-10 Samsung Electronics, Co., Ltd. Method of making semiconductor device having a capacitor of large capacitance
KR920018987A (ko) 1991-03-23 1992-10-22 김광호 캐패시터의 제조방법
US5252841A (en) 1991-05-09 1993-10-12 Hughes Aircraft Company Heterojunction bipolar transistor structure having low base-collector capacitance, and method of fabricating the same
US5084406A (en) * 1991-07-01 1992-01-28 Micron Technology, Inc. Method for forming low resistance DRAM digit-line
US5389575A (en) * 1991-07-12 1995-02-14 Hughes Aircraft Company Self-aligned contact diffusion barrier method
US5182619A (en) * 1991-09-03 1993-01-26 Motorola, Inc. Semiconductor device having an MOS transistor with overlapped and elevated source and drain
JP2855908B2 (ja) 1991-09-05 1999-02-10 日本電気株式会社 半導体装置及びその製造方法
FR2682128B1 (fr) 1991-10-08 1993-12-03 Thomson Csf Procede de croissance de couches heteroepitaxiales.
JPH05175216A (ja) * 1991-12-24 1993-07-13 Rohm Co Ltd ヘテロ接合バイポーラトランジスタおよびその製法
US5231056A (en) 1992-01-15 1993-07-27 Micron Technology, Inc. Tungsten silicide (WSix) deposition process for semiconductor manufacture
US5201995A (en) * 1992-03-16 1993-04-13 Mcnc Alternating cyclic pressure modulation process for selective area deposition
US5425842A (en) 1992-06-09 1995-06-20 U.S. Philips Corporation Method of manufacturing a semiconductor device using a chemical vapour deposition process with plasma cleaning of the reactor chamber
US5306666A (en) * 1992-07-24 1994-04-26 Nippon Steel Corporation Process for forming a thin metal film by chemical vapor deposition
US5326992A (en) 1992-07-29 1994-07-05 The United States Of America As Represented By The Secretary Of The Navy Silicon carbide and SiCAlN heterojunction bipolar transistor structures
US6004683A (en) 1992-11-04 1999-12-21 C. A. Patents, L.L.C. Plural layered metal repair tape
US5285089A (en) * 1992-12-02 1994-02-08 Kobe Steel U.S.A., Inc. Diamond and silicon carbide heterojunction bipolar transistor
US5378641A (en) * 1993-02-22 1995-01-03 Micron Semiconductor, Inc. Electrically conductive substrate interconnect continuity region and method of forming same with an angled implant
JP2791260B2 (ja) 1993-03-01 1998-08-27 株式会社東芝 半導体装置の製造方法
JP3299807B2 (ja) * 1993-04-07 2002-07-08 シャープ株式会社 ヘテロ接合バイポーラトランジスタ
US5380370A (en) * 1993-04-30 1995-01-10 Tokyo Electron Limited Method of cleaning reaction tube
JP3292894B2 (ja) 1993-05-12 2002-06-17 日本電信電話株式会社 集積化受光回路
US5341016A (en) 1993-06-16 1994-08-23 Micron Semiconductor, Inc. Low resistance device element and interconnection structure
JP3009979B2 (ja) * 1993-07-05 2000-02-14 シャープ株式会社 半導体装置及びその製造方法
US5421957A (en) 1993-07-30 1995-06-06 Applied Materials, Inc. Low temperature etching in cold-wall CVD systems
DE69421465T2 (de) * 1993-07-30 2000-02-10 Applied Materials, Inc. Verfahren zur Ablagerung von Silzium-Nitrid auf Siliziumoberflächen
US5422502A (en) 1993-12-09 1995-06-06 Northern Telecom Limited Lateral bipolar transistor
JPH07169693A (ja) * 1993-12-16 1995-07-04 Mitsubishi Electric Corp 横型減圧cvd装置及びそのクリーニング方法
JP2611640B2 (ja) 1993-12-20 1997-05-21 日本電気株式会社 ヘテロ接合バイポーラトランジスタ
US5403434A (en) * 1994-01-06 1995-04-04 Texas Instruments Incorporated Low-temperature in-situ dry cleaning process for semiconductor wafer
US5609721A (en) * 1994-03-11 1997-03-11 Fujitsu Limited Semiconductor device manufacturing apparatus and its cleaning method
EP0709880A3 (en) 1994-10-31 1996-10-23 Sgs Thomson Microelectronics Method for forming projecting source / drain regions in an integrated circuit
FI97731C (fi) * 1994-11-28 1997-02-10 Mikrokemia Oy Menetelmä ja laite ohutkalvojen valmistamiseksi
FI100409B (fi) 1994-11-28 1997-11-28 Asm Int Menetelmä ja laitteisto ohutkalvojen valmistamiseksi
FR2728388A1 (fr) * 1994-12-19 1996-06-21 Korea Electronics Telecomm Procede de fabrication d'un transistor bipolaire
US5480814A (en) * 1994-12-27 1996-01-02 Taiwan Semiconductor Manufacturing Co., Ltd. Process of making a polysilicon barrier layer in a self-aligned contact module
JPH08213343A (ja) 1995-01-31 1996-08-20 Sony Corp 半導体装置およびその製造方法
US5656519A (en) 1995-02-14 1997-08-12 Nec Corporation Method for manufacturing salicide semiconductor device
JPH08236540A (ja) 1995-03-01 1996-09-13 Mitsubishi Electric Corp 半導体装置の製造方法、及び半導体装置
JP2914213B2 (ja) * 1995-03-28 1999-06-28 日本電気株式会社 半導体装置及びその製造方法
US5508212A (en) * 1995-04-27 1996-04-16 Taiwan Semiconductor Manufacturing Co. Salicide process for a MOS semiconductor device using nitrogen implant of titanium
JPH08306700A (ja) * 1995-04-27 1996-11-22 Nec Corp 半導体装置及びその製造方法
US5665614A (en) * 1995-06-06 1997-09-09 Hughes Electronics Method for making fully self-aligned submicron heterojunction bipolar transistor
US5654589A (en) 1995-06-06 1997-08-05 Advanced Micro Devices, Incorporated Landing pad technology doubled up as local interconnect and borderless contact for deep sub-half micrometer IC application
US5888903A (en) * 1995-06-07 1999-03-30 Texas Instruments Incorporated Self-aligned silicide process
US6060397A (en) 1995-07-14 2000-05-09 Applied Materials, Inc. Gas chemistry for improved in-situ cleaning of residue for a CVD apparatus
US5756394A (en) * 1995-08-23 1998-05-26 Micron Technology, Inc. Self-aligned silicide strap connection of polysilicon layers
US5656546A (en) 1995-08-28 1997-08-12 Taiwan Semiconductor Manufacturing Company Ltd Self-aligned tin formation by N2+ implantation during two-step annealing Ti-salicidation
US6113702A (en) * 1995-09-01 2000-09-05 Asm America, Inc. Wafer support system
DE19533313A1 (de) 1995-09-08 1997-03-13 Max Planck Gesellschaft Halbleiterstruktur für einen Transistor
US5637518A (en) 1995-10-16 1997-06-10 Micron Technology, Inc. Method of making a field effect transistor having an elevated source and an elevated drain
US6096638A (en) 1995-10-28 2000-08-01 Nec Corporation Method for forming a refractory metal silicide layer
US5693147A (en) 1995-11-03 1997-12-02 Motorola, Inc. Method for cleaning a process chamber
US5783495A (en) 1995-11-13 1998-07-21 Micron Technology, Inc. Method of wafer cleaning, and system and cleaning solution regarding same
JP3734559B2 (ja) 1996-03-15 2006-01-11 富士通株式会社 半導体装置の製造方法
US5998305A (en) 1996-03-29 1999-12-07 Praxair Technology, Inc. Removal of carbon from substrate surfaces
JP3400293B2 (ja) 1996-05-01 2003-04-28 株式会社東芝 Cvd装置及びそのクリーニング方法
US6058945A (en) 1996-05-28 2000-05-09 Canon Kabushiki Kaisha Cleaning methods of porous surface and semiconductor surface
US5670404A (en) 1996-06-21 1997-09-23 Industrial Technology Research Institute Method for making self-aligned bit line contacts on a DRAM circuit having a planarized insulating layer
US6183565B1 (en) * 1997-07-08 2001-02-06 Asm International N.V Method and apparatus for supporting a semiconductor wafer during processing
NL1003538C2 (nl) 1996-07-08 1998-01-12 Advanced Semiconductor Mat Werkwijze en inrichting voor het contactloos behandelen van een schijfvormig halfgeleidersubstraat.
US6177761B1 (en) * 1996-07-17 2001-01-23 Teledyne Lighting And Display Products, Inc. LED with light extractor
JP2839018B2 (ja) 1996-07-31 1998-12-16 日本電気株式会社 半導体装置の製造方法
US5916365A (en) 1996-08-16 1999-06-29 Sherman; Arthur Sequential chemical vapor deposition
US6043519A (en) * 1996-09-12 2000-03-28 Hughes Electronics Corporation Junction high electron mobility transistor-heterojunction bipolar transistor (JHEMT-HBT) monolithic microwave integrated circuit (MMIC) and single growth method of fabrication
US5945350A (en) 1996-09-13 1999-08-31 Micron Technology, Inc. Methods for use in formation of titanium nitride interconnects and interconnects formed using same
US5683922A (en) 1996-10-04 1997-11-04 United Microelectronics Corporation Method of fabricating a self-aligned contact
KR100236069B1 (ko) * 1996-12-26 1999-12-15 김영환 캐패시터 및 그 제조방법
JP3050152B2 (ja) 1997-01-23 2000-06-12 日本電気株式会社 半導体装置の製造方法
JP2950272B2 (ja) 1997-01-24 1999-09-20 日本電気株式会社 半導体薄膜の製造方法
US5849092A (en) 1997-02-25 1998-12-15 Applied Materials, Inc. Process for chlorine trifluoride chamber cleaning
US5879459A (en) * 1997-08-29 1999-03-09 Genus, Inc. Vertically-stacked process reactor and cluster tool system for atomic layer deposition
US6348096B1 (en) * 1997-03-13 2002-02-19 Nec Corporation Method for manufacturing group III-V compound semiconductors
JP3938610B2 (ja) 1997-03-14 2007-06-27 昌之 都田 基体の浮上装置並びに基体浮上型の加熱装置及び製膜装置
EP0874405A3 (en) 1997-03-25 2004-09-15 Mitsubishi Cable Industries, Ltd. GaN group crystal base member having low dislocation density, use thereof and manufacturing methods thereof
EP0942459B1 (en) 1997-04-11 2012-03-21 Nichia Corporation Method of growing nitride semiconductors
US5859447A (en) * 1997-05-09 1999-01-12 Yang; Edward S. Heterojunction bipolar transistor having heterostructure ballasting emitter
US6351039B1 (en) * 1997-05-28 2002-02-26 Texas Instruments Incorporated Integrated circuit dielectric and method
FR2764118B1 (fr) 1997-05-30 2000-08-04 Thomson Csf Transistor bipolaire stabilise avec elements isolants electriques
US6069068A (en) 1997-05-30 2000-05-30 International Business Machines Corporation Sub-quarter-micron copper interconnections with improved electromigration resistance and reduced defect sensitivity
US5904565A (en) * 1997-07-17 1999-05-18 Sharp Microelectronics Technology, Inc. Low resistance contact between integrated circuit metal levels and method for same
US6287965B1 (en) 1997-07-28 2001-09-11 Samsung Electronics Co, Ltd. Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor
US6100184A (en) 1997-08-20 2000-08-08 Sematech, Inc. Method of making a dual damascene interconnect structure using low dielectric constant material for an inter-level dielectric layer
US6117761A (en) 1997-08-23 2000-09-12 Micron Technology, Inc. Self-aligned silicide strap connection of polysilicon layers
KR100274603B1 (ko) 1997-10-01 2001-01-15 윤종용 반도체장치의제조방법및그의제조장치
US5856237A (en) * 1997-10-20 1999-01-05 Industrial Technology Research Institute Insitu formation of TiSi2/TiN bi-layer structures using self-aligned nitridation treatment on underlying CVD-TiSi2 layer
JP2967477B2 (ja) * 1997-11-26 1999-10-25 日本電気株式会社 半導体装置の製造方法
JPH11176822A (ja) 1997-12-05 1999-07-02 Hitachi Ltd 半導体処理装置
TW439151B (en) 1997-12-31 2001-06-07 Samsung Electronics Co Ltd Method for forming conductive layer using atomic layer deposition process
US6042654A (en) * 1998-01-13 2000-03-28 Applied Materials, Inc. Method of cleaning CVD cold-wall chamber and exhaust lines
US6031225A (en) * 1998-02-05 2000-02-29 Robotic Vision Systems, Inc. System and method for selective scanning of an object or pattern including scan correction
US5933761A (en) 1998-02-09 1999-08-03 Lee; Ellis Dual damascene structure and its manufacturing method
US6303523B2 (en) 1998-02-11 2001-10-16 Applied Materials, Inc. Plasma processes for depositing low dielectric constant films
US6147405A (en) * 1998-02-19 2000-11-14 Micron Technology, Inc. Asymmetric, double-sided self-aligned silicide and method of forming the same
US6181012B1 (en) * 1998-04-27 2001-01-30 International Business Machines Corporation Copper interconnection structure incorporating a metal seed layer
US6221711B1 (en) 1998-05-11 2001-04-24 Micron Technology, Inc. Methods of electrically contacting to conductive plugs, methods of forming contact openings, and methods of forming dynamic random access memory circuitry
KR100296117B1 (ko) 1998-05-27 2001-10-26 윤덕용 화학기상증착법에의한코발트다이실리사이드콘택형성방법
US6232641B1 (en) * 1998-05-29 2001-05-15 Kabushiki Kaisha Toshiba Semiconductor apparatus having elevated source and drain structure and manufacturing method therefor
US6221168B1 (en) * 1998-06-16 2001-04-24 Fsi International, Inc. HF/IPA based process for removing undesired oxides form a substrate
US6048790A (en) * 1998-07-10 2000-04-11 Advanced Micro Devices, Inc. Metalorganic decomposition deposition of thin conductive films on integrated circuits using reducing ambient
KR100275738B1 (ko) 1998-08-07 2000-12-15 윤종용 원자층 증착법을 이용한 박막 제조방법
US6188134B1 (en) 1998-08-20 2001-02-13 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with rubidium barrier film and process for making same
US6291876B1 (en) 1998-08-20 2001-09-18 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with composite atomic barrier film and process for making same
US6144050A (en) 1998-08-20 2000-11-07 The United States Of America As Represented By The Secretary Of The Navy Electronic devices with strontium barrier film and process for making same
EP1114464A1 (en) 1998-08-20 2001-07-11 THE UNITED STATES OF AMERICA as represented by THE SECRETARY OF THE NAVY Electronic devices with barrier film and process for making same
US6077775A (en) 1998-08-20 2000-06-20 The United States Of America As Represented By The Secretary Of The Navy Process for making a semiconductor device with barrier film formation using a metal halide and products thereof
KR100332364B1 (ko) 1998-09-01 2002-09-18 지니텍 주식회사 금속막의형성방법
EP0984484A2 (en) 1998-09-04 2000-03-08 Canon Kabushiki Kaisha Semiconductor subtrate and method for producing the same
KR20000022003A (ko) 1998-09-10 2000-04-25 이경수 금속과규소를포함한3성분질화물막의형성방법
KR100566905B1 (ko) 1998-09-11 2006-07-03 에이에스엠지니텍코리아 주식회사 표면 촉매를 이용한 화학 증착방법_
JP3478141B2 (ja) 1998-09-14 2003-12-15 信越半導体株式会社 シリコンウエーハの熱処理方法及びシリコンウエーハ
KR100273474B1 (ko) 1998-09-14 2000-12-15 이경수 화학기상 증착장치의 가스 공급장치와 그 제어방법
KR100287180B1 (ko) * 1998-09-17 2001-04-16 윤종용 계면 조절층을 이용하여 금속 배선층을 형성하는 반도체 소자의 제조 방법
TW382787B (en) 1998-10-02 2000-02-21 United Microelectronics Corp Method of fabricating dual damascene
KR100327328B1 (ko) * 1998-10-13 2002-05-09 윤종용 부분적으로다른두께를갖는커패시터의유전막형성방버뵤
KR100280102B1 (ko) 1998-10-13 2001-03-02 윤덕용 코발트-카본 합금박막을 이용한 단결정 코발트다이실리사이드콘택 형성방법
US6454854B1 (en) 1998-10-29 2002-09-24 Shin-Etsu Handotai Co., Ltd. Semiconductor wafer and production method therefor
JP2000150647A (ja) * 1998-11-11 2000-05-30 Sony Corp 配線構造およびその製造方法
JP2000208437A (ja) 1999-01-08 2000-07-28 United Microelectronics Corp ケイ化物層の形成方法
US6235568B1 (en) 1999-01-22 2001-05-22 Intel Corporation Semiconductor device having deposited silicon regions and a method of fabrication
US6200893B1 (en) * 1999-03-11 2001-03-13 Genus, Inc Radical-assisted sequential CVD
KR20000060438A (ko) 1999-03-16 2000-10-16 이경수 산화알루미늄 막의 형성 방법
US6207567B1 (en) * 1999-04-12 2001-03-27 United Microelectronics Corp. Fabricating method of glue layer and barrier layer
US6037258A (en) * 1999-05-07 2000-03-14 Taiwan Semiconductor Manufacturing Company Method of forming a smooth copper seed layer for a copper damascene structure
US6346732B1 (en) * 1999-05-14 2002-02-12 Kabushiki Kaisha Toshiba Semiconductor device with oxide mediated epitaxial layer
JP4010724B2 (ja) * 1999-12-28 2007-11-21 株式会社東芝 半導体装置の製造方法
US6146517A (en) 1999-05-19 2000-11-14 Infineon Technologies North America Corp. Integrated circuits with copper metallization for interconnections
KR20010001543A (ko) 1999-06-05 2001-01-05 김기범 구리 배선 구조를 가지는 반도체 소자 제조 방법
US6365453B1 (en) * 1999-06-16 2002-04-02 Micron Technology, Inc. Method and structure for reducing contact aspect ratios
EP1125321B1 (en) 1999-06-19 2007-08-15 ASM Genitech Korea Ltd. Chemical deposition reactor and method of forming a thin film using the same
US6415198B1 (en) * 1999-06-25 2002-07-02 Applied Materials, Inc. Plasma etching of silicon using a chlorine chemistry augmented with sulfur dioxide
KR100301246B1 (ko) * 1999-06-30 2001-11-01 박종섭 반도체 소자의 제조 방법
US6190453B1 (en) * 1999-07-14 2001-02-20 Seh America, Inc. Growth of epitaxial semiconductor material with improved crystallographic properties
US6391785B1 (en) 1999-08-24 2002-05-21 Interuniversitair Microelektronica Centrum (Imec) Method for bottomless deposition of barrier layers in integrated circuit metallization schemes
US7041170B2 (en) * 1999-09-20 2006-05-09 Amberwave Systems Corporation Method of producing high quality relaxed silicon germanium layers
US6727169B1 (en) * 1999-10-15 2004-04-27 Asm International, N.V. Method of making conformal lining layers for damascene metallization
US6203613B1 (en) * 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
KR20010047128A (ko) 1999-11-18 2001-06-15 이경수 액체원료 기화방법 및 그에 사용되는 장치
US6345150B1 (en) * 1999-11-30 2002-02-05 Wafermasters, Inc. Single wafer annealing oven
EP1247292B1 (en) 1999-12-15 2009-02-04 Genitech Co., Ltd. Method of forming copper interconnections and thin films using chemical vapor deposition with catalyst
US6348420B1 (en) * 1999-12-23 2002-02-19 Asm America, Inc. Situ dielectric stacks
NL1013984C2 (nl) 1999-12-29 2001-07-02 Asm Int Werkwijze en inrichting voor het behandelen van substraten.
US6184128B1 (en) * 2000-01-31 2001-02-06 Advanced Micro Devices, Inc. Method using a thin resist mask for dual damascene stop layer etch
TW408653U (en) * 2000-02-03 2000-10-11 Hu Hou Fei Ratcheting tool
EP1266054B1 (en) 2000-03-07 2006-12-20 Asm International N.V. Graded thin films
JP2001274387A (ja) 2000-03-28 2001-10-05 Seiko Epson Corp 半導体装置およびその製造方法
JP3492973B2 (ja) * 2000-03-30 2004-02-03 株式会社東芝 半導体装置の製造方法
US6316795B1 (en) 2000-04-03 2001-11-13 Hrl Laboratories, Llc Silicon-carbon emitter for silicon-germanium heterojunction bipolar transistors
WO2001078123A1 (en) 2000-04-11 2001-10-18 Genitech Co., Ltd. Method of forming metal interconnects
KR100332363B1 (ko) 2000-04-12 2002-04-12 최승철 화학기계적 연마장치의 연마패드를 위한 컨디셔너와 그컨디셔닝 방법
KR100363088B1 (ko) 2000-04-20 2002-12-02 삼성전자 주식회사 원자층 증착방법을 이용한 장벽 금속막의 제조방법
US6482733B2 (en) 2000-05-15 2002-11-19 Asm Microchemistry Oy Protective layers prior to alternating layer deposition
WO2001093338A1 (en) 2000-05-26 2001-12-06 Amberwave Systems Corporation Buried channel strained silicon fet using an ion implanted doped layer
US6342448B1 (en) * 2000-05-31 2002-01-29 Taiwan Semiconductor Manufacturing Company Method of fabricating barrier adhesion to low-k dielectric layers in a copper damascene process
EP2293322A1 (en) 2000-06-08 2011-03-09 Genitech, Inc. Method for forming a metal nitride layer
US6368954B1 (en) * 2000-07-28 2002-04-09 Advanced Micro Devices, Inc. Method of copper interconnect formation using atomic layer copper deposition
US6372584B1 (en) * 2000-08-01 2002-04-16 Advanced Micro Devices, Inc. Method for making raised source/drain regions using laser
US6583015B2 (en) 2000-08-07 2003-06-24 Amberwave Systems Corporation Gate technology for strained surface channel and strained buried channel MOSFET devices
KR100373853B1 (ko) * 2000-08-11 2003-02-26 삼성전자주식회사 반도체소자의 선택적 에피택시얼 성장 방법
US6613695B2 (en) 2000-11-24 2003-09-02 Asm America, Inc. Surface preparation prior to deposition
JP2002198525A (ja) * 2000-12-27 2002-07-12 Toshiba Corp 半導体装置及びその製造方法
US6444495B1 (en) 2001-01-11 2002-09-03 Honeywell International, Inc. Dielectric films for narrow gap-fill applications
JP3557457B2 (ja) 2001-02-01 2004-08-25 東北大学長 SiC膜の製造方法、及びSiC多層膜構造の製造方法
US7026219B2 (en) * 2001-02-12 2006-04-11 Asm America, Inc. Integration of high k gate dielectric
JP4866534B2 (ja) 2001-02-12 2012-02-01 エーエスエム アメリカ インコーポレイテッド 半導体膜の改良された堆積方法
AU2002305733A1 (en) * 2001-05-30 2002-12-09 Asm America, Inc Low temperature load and bake
US6614695B2 (en) 2001-08-24 2003-09-02 Micron Technology, Inc. Non-volatile memory with block erase
US6621131B2 (en) * 2001-11-01 2003-09-16 Intel Corporation Semiconductor transistor having a stressed channel
US7335545B2 (en) * 2002-06-07 2008-02-26 Amberwave Systems Corporation Control of strain in device layers by prevention of relaxation
US7307273B2 (en) * 2002-06-07 2007-12-11 Amberwave Systems Corporation Control of strain in device layers by selective relaxation
US6743721B2 (en) 2002-06-10 2004-06-01 United Microelectronics Corp. Method and system for making cobalt silicide
US7186630B2 (en) * 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films
US7540920B2 (en) 2002-10-18 2009-06-02 Applied Materials, Inc. Silicon-containing layer deposition with silicon compounds
US6657223B1 (en) 2002-10-29 2003-12-02 Advanced Micro Devices, Inc. Strained silicon MOSFET having silicon source/drain regions and method for its fabrication
US6998305B2 (en) * 2003-01-24 2006-02-14 Asm America, Inc. Enhanced selectivity for epitaxial deposition
JP4695824B2 (ja) 2003-03-07 2011-06-08 富士電機ホールディングス株式会社 半導体ウエハの製造方法
US7153772B2 (en) 2003-06-12 2006-12-26 Asm International N.V. Methods of forming silicide films in semiconductor devices
US7208362B2 (en) 2003-06-25 2007-04-24 Texas Instruments Incorporated Transistor device containing carbon doped silicon in a recess next to MDD to create strain in channel
TWI270986B (en) * 2003-07-29 2007-01-11 Ind Tech Res Inst Strained SiC MOSFET
US7132338B2 (en) * 2003-10-10 2006-11-07 Applied Materials, Inc. Methods to fabricate MOSFET devices using selective deposition process
US7303949B2 (en) * 2003-10-20 2007-12-04 International Business Machines Corporation High performance stress-enhanced MOSFETs using Si:C and SiGe epitaxial source/drain and method of manufacture
US7057216B2 (en) 2003-10-31 2006-06-06 International Business Machines Corporation High mobility heterojunction complementary field effect transistors and methods thereof
JP2005158786A (ja) 2003-11-20 2005-06-16 Seiko Epson Corp 半導体装置及びその製造方法
US6974730B2 (en) 2003-12-17 2005-12-13 Taiwan Semiconductor Manufacturing Co., Ltd. Method for fabricating a recessed channel field effect transistor (FET) device
CN100521114C (zh) * 2004-01-23 2009-07-29 Nxp股份有限公司 制造单晶发射区的方法
WO2005116304A2 (en) 2004-04-23 2005-12-08 Asm America, Inc. In situ doped epitaxial films
KR20050104229A (ko) * 2004-04-28 2005-11-02 주식회사 하이닉스반도체 반도체 소자의 제조방법
KR20050104228A (ko) * 2004-04-28 2005-11-02 주식회사 하이닉스반도체 반도체 소자의 콘택플러그 형성방법
US7135391B2 (en) * 2004-05-21 2006-11-14 International Business Machines Corporation Polycrystalline SiGe junctions for advanced devices
KR100547934B1 (ko) * 2004-08-20 2006-01-31 삼성전자주식회사 트랜지스터 및 그의 제조 방법
KR100607409B1 (ko) * 2004-08-23 2006-08-02 삼성전자주식회사 기판 식각 방법 및 이를 이용한 반도체 장치 제조 방법
US7402872B2 (en) * 2004-11-18 2008-07-22 Intel Corporation Method for forming an integrated circuit
US7682940B2 (en) 2004-12-01 2010-03-23 Applied Materials, Inc. Use of Cl2 and/or HCl during silicon epitaxial film formation
US7560352B2 (en) 2004-12-01 2009-07-14 Applied Materials, Inc. Selective deposition
US7312128B2 (en) 2004-12-01 2007-12-25 Applied Materials, Inc. Selective epitaxy process with alternating gas supply
US7335959B2 (en) * 2005-01-06 2008-02-26 Intel Corporation Device with stepped source/drain region profile
US7235492B2 (en) 2005-01-31 2007-06-26 Applied Materials, Inc. Low temperature etchant for treatment of silicon-containing surfaces
US7816236B2 (en) 2005-02-04 2010-10-19 Asm America Inc. Selective deposition of silicon-containing films
US7226820B2 (en) 2005-04-07 2007-06-05 Freescale Semiconductor, Inc. Transistor fabrication using double etch/refill process
US8105908B2 (en) 2005-06-23 2012-01-31 Applied Materials, Inc. Methods for forming a transistor and modulating channel stress
KR100642646B1 (ko) * 2005-07-08 2006-11-10 삼성전자주식회사 고진공 화학기상증착 기술을 사용하여 에피택시얼반도체층을 선택적으로 형성하는 방법들 및 이에 사용되는배치형 고진공 화학기상증착 장비들
US7405131B2 (en) 2005-07-16 2008-07-29 Chartered Semiconductor Manufacturing, Ltd. Method and structure to prevent silicide strapping of source/drain to body in semiconductor devices with source/drain stressor
US20070048956A1 (en) 2005-08-30 2007-03-01 Tokyo Electron Limited Interrupted deposition process for selective deposition of Si-containing films
EP2027305B1 (en) 2006-05-26 2010-05-05 Airbus Operations GmbH Method for repairing a damaged outer skin region on an aircraft
US8278176B2 (en) 2006-06-07 2012-10-02 Asm America, Inc. Selective epitaxial formation of semiconductor films
US7534689B2 (en) 2006-11-21 2009-05-19 Advanced Micro Devices, Inc. Stress enhanced MOS transistor and methods for its fabrication
US7759199B2 (en) 2007-09-19 2010-07-20 Asm America, Inc. Stressor for engineered strain on channel
US8367528B2 (en) 2009-11-17 2013-02-05 Asm America, Inc. Cyclical epitaxial deposition and etch

Also Published As

Publication number Publication date
CN101454874A (zh) 2009-06-10
US20120244688A1 (en) 2012-09-27
US9312131B2 (en) 2016-04-12
KR20090037424A (ko) 2009-04-15
KR101544931B1 (ko) 2015-08-17
TW200805460A (en) 2008-01-16
JP2009540565A (ja) 2009-11-19
CN101454874B (zh) 2011-03-23
KR101521878B1 (ko) 2015-05-20
US8278176B2 (en) 2012-10-02
EP2022083A2 (en) 2009-02-11
KR20140089404A (ko) 2014-07-14
WO2007145758A3 (en) 2008-02-07
US20070287272A1 (en) 2007-12-13
TWI404123B (zh) 2013-08-01

Similar Documents

Publication Publication Date Title
US8278176B2 (en) Selective epitaxial formation of semiconductor films
US7759199B2 (en) Stressor for engineered strain on channel
JP5173140B2 (ja) 電気的に活性なドープト結晶性Si含有膜の堆積方法
US7598178B2 (en) Carbon precursors for use during silicon epitaxial film formation
US7682940B2 (en) Use of Cl2 and/or HCl during silicon epitaxial film formation
US8685845B2 (en) Epitaxial growth of silicon doped with carbon and phosphorus using hydrogen carrier gas
US20130320429A1 (en) Processes and structures for dopant profile control in epitaxial trench fill
US20140120678A1 (en) Methods for Selective and Conformal Epitaxy of Highly Doped Si-containing Materials for Three Dimensional Structures
US20080026149A1 (en) Methods and systems for selectively depositing si-containing films using chloropolysilanes
US20080138955A1 (en) Formation of epitaxial layer containing silicon

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019831.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07777014

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009514271

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007777014

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097000140

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU