FI57975C - Foerfarande och anordning vid uppbyggande av tunna foereningshinnor - Google Patents

Foerfarande och anordning vid uppbyggande av tunna foereningshinnor Download PDF

Info

Publication number
FI57975C
FI57975C FI790680A FI790680A FI57975C FI 57975 C FI57975 C FI 57975C FI 790680 A FI790680 A FI 790680A FI 790680 A FI790680 A FI 790680A FI 57975 C FI57975 C FI 57975C
Authority
FI
Finland
Prior art keywords
gas
characterized
reaction
source
substrate
Prior art date
Application number
FI790680A
Other languages
English (en)
Swedish (sv)
Other versions
FI57975B (fi
Inventor
Tuomo Suntola
Arto Pakkala
Sven Lindfors
Original Assignee
Lohja Ab Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lohja Ab Oy filed Critical Lohja Ab Oy
Priority to FI790680A priority Critical patent/FI57975C/fi
Priority to FI790680 priority
Priority claimed from AT80100568T external-priority patent/AT15820T/de
Publication of FI57975B publication Critical patent/FI57975B/fi
Application granted granted Critical
Publication of FI57975C publication Critical patent/FI57975C/fi

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • C23C16/306AII BVI compounds, where A is Zn, Cd or Hg and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te

Description

ESjF^l [B] (11)KW^UTUSjULKAISU γπλπγ

ΉΕΓα LJ ^ ' UTLÄGG N I NGSSKRI FT O f y f O

C,_ Patentti eyennetty 10 11 1^80 f45» Patent «dielet ^ ^ (51) κ».»?/ι«.α3 c 23 C 11/00 SUOMI —FINLAND {21) P«t*»ittfh*k*»mi* —ftrt*nt»iweiciMng 79068ο (22) HakmnltpUvt —AnatMcnlngadag 28.02.79 ^ ^ (23) AlkupUv»—GIMthMsdai 28.02.79 (41) Tullut julktMksI — Bllvlt off anti lg tmtmnttU Ja rekisterihallitut NlKtlvUulp^ j. ku„L|Ulk.tem pvm.-

Patent- och ragisterstyralsan Αη·ΰΙ»η uti»g<J och uti.sknftan pubik«rvi 31.07.80 (32)(33)(31) Pyy<l««r «tuolle·» —B«gtrd prlorltuc (71) Oy Lohja Ab, Ahertajantie 3, 02100 Espoo 10, Suomi-Finland(Fl) (72) Tuomo Suntola, Espoo, Arto Pakkala, Espoo, Sven Lindfors, Espoo,

Suomi-Finland(FI) (7*0 Forssen & Salomaa Oy (5*0 Menetelmä ja laite yhdisteohutkalvojen kasvatuksessa - Förfarande och anordning vid uppbyggande av tunna föreningshinnor

Keksinnön kohteena on menetelmä yhdisteohutkalvojen kasvatuksessa yhdistekomponentti-kohtaisten pintareaktioiden avulla, jossa menetelmässä substraatin pinta asetetaan altiiksi sanotun yhdisteen komponentteja sisältävien eri aineiden vuorottaisille pintareaktioille syöttämällä mainittujen aineiden kaasuja toistuvasti ja vuorottai-sesti reaktiotilaan, johon mainittu substraatti on sijoitettu ja antamalla mainittujen kaasujen reagoida substraatin pinnan kanssa, jolle pinnalle täten kasvaa kiinteässä olomuodossa oleva yhdisteohutkalvotuote mainitun substraattipinnan lämpötilassa.

Lisäksi keksinnön kohteena on menetelmää soveltava laite.

Yksittäisiä yhdistekomponenttiatomikerroksia muodostaviin pintareaktioihin perustuva yhdisteohutkalvojen kasvatus on ennestään tunnettua hakijan Fi-patentissa 52359 (vast. US-pat. 4 058 430), jossa on myös esitetty eräitä menetelmää soveltavia laiteratkaisuja. Kyseiset laiteratkaisut on kehitetty tyypillisistä tyhjiöhöyrystys-laitteista yhdistämällä niihin Fi-patentin 52359 mukaisen 'Atomic Layer Epitaxy'-= 'ALE'-menetelmän edellyttämät erilliset reaktiotilat. Reaktiotilojen erotus perustuu tunnetuissa laitteissa joko tarkkoihin mekaanisiin välyksiin ja tehokkaaseen reaktiojäännösten keräämiseen kylmäloukkujen ja tyhjiöpumpun avulla tai vain jälkimmäiseen esitetyistä keinoista kuten mainitun Fi-patentin alivaatimuksen 9 (kuvion 5) mukaisessa tapauksessa.

Koska ALE-menetelmälle sinänsä on tunnusomaista se, että kasvatettavaan pintaan voidaan, ja on edullistakin, kohdistaa kussakin reaktiovaiheessa suurempi annos pinta-reaktion edellyttämää kaasua kuin ko. reaktiossa sitä kuluu, ylimääräkaasun poistaminen kasvatettavan pinnan vaikutuspiiristä muodostuu vaikeaksi. Kylmäloukkuja käytettäessä on tulos alhaisen höyrynpaineen omaavilla materiaaleilla, kuten metal- 2 57975 leiliä, kohtalainen, mutta esim. alkuaineryhmän VI komponenteilla on kylmäloukuilla vaikea päästä tyydyttävään tulokseen. Jäännöskaasujen poisto ALE-prosessin yhteydessä ennestään tunnetuilla ratkaisuilla on erityisen vaikea silloin, kuin yksi tai useampi alkuainekomponentti tuodaan kasvatettavaan pintaan yhdisteenä, jolloin ko. yhdisteestä vapautuva osa muodostaa myös jäännöskaasua.

Reaktiojäännösten poiston ongelma on samalla ongelma reaktiovaiheiden erottamisessa, mikä sinänsä on ALE-menetelmälle keskeinen ominaisuus. Tämä ongelma on ilmeinen myös em. Fi-patentin 52359 kuvion 1 laiteratkaisulle, sillä jos laitteelle yhteisessä tyhjiötilassa esiintyy jokin lähdemateriaali, se myös kulkeutuu muiden lähdemateriaalien reaktioalueille substraattien liikutteluun tarvittavien mekaanisten välysten kautta.

Edellä esitetyt epäkohdat korostuvat pyrittäessä suuriin substraattipinta-aloihin, | jolloin vastaavasti joudutaan käyttämään suuria lähdemateriaalien annostuksia.

Keksinnön päätarkoituksena on ALE-menetelmän edelleen kehittäminen ja edellä esiintuotujen epäkohtien eliminoiminen. Näiden ja keksinnön muiden myöhemmin selviävien päämäärien saavuttamiseksi keksinnön menetelmälle on pääasiallisesti tunnusomaista se, että menetelmässä syötetään kaasufaasissa olevaa väliainetta mainittuun reaktioillaan ainakin sanottujen aineiden vuorottaisten syöttöjen väliaikoina, ja että mainitun kaasumaisen väliaineen syötöllä aikaansaadulla diffuusiovallilla estetään mainittujen vuorottaisesti syötettyjen kaasujen samanaikainen vuorovaikutus kasvatettavan pinnan kanssa.

Keksinnön mukaiselle laitteelle tunnusomaiset piirteet selviävät laitesivuvaatimus-ten tunnusmerkeistä.

Tämän keksinnön menetelmän edullisen sovellutusmuodon mukaisesti reaktiovaiheiden erotus ja jäännöskaasujen poisto on ratkaistu ohutkalvon kasvuun osallistumattoman väliaineen avulla, joka muodostaa diffuusiovallin reaktiovaiheiden välille ja jota myös voidaan käyttää pintareaktioon osallistuvien kaasujen ja reaktiojäännösten kuljettamiseen kasvatuslaitteessa. Kuljetuskaasua on edullista käyttää tämän keksinnön toteutuksissa diffuusiovallin muodostamisen lisäksi myös määrättyjen reaktiivisten kaasujen lähteiden sulkemiseen mekaanisten venttiileiden korvaamiseksi tilanteissa, joissa korkea lämpötila ja korroosio-ongelmat tekevät mekaanisen venttiilin käytön vaikeaksi.

j Paitsi ALE-reaktiovaiheiden erotuksen entistä paremman hallinnan diffuusiovallien i avulla, tämän keksinnön mukainen menetelmä tuo huomattavia parannuksia myös ALE-menetelmän käyttöalueeseen, tuotannolliseen hyödyntämiseen sekä ALE-menetelmän etujen hyväksikäyttöön.

i i 3 57975

Kaasuvirtauksen käyttö ei-toivottujen vuorovaikutusten estämiseen ja määrättyjen kaasujen kuljettamiseen on sinänsä tunnettu eräistä toisista yhteyksistä, kuten esim. suojakaasuhitsauksesta ja esillä olevan keksinnön käyttöalaa lähempänä CVD-("chemical vapour deposition")-ohutkalvojen ja epitaksiaalikerros-ten kasvatusmenetelmistä, joissa suojakaasuvirtausta käytetään myös reagoivien kaasujen kuljetukseen. Pisimmälle suojakaasun virtauksen ja sen sisältämien erillisten kaasupitoisuuksien tutkiminen on viety kaasukromatografian menetelmissä ja laitteissa.

Käyttöalueen laajennukseksi on katsottava kaasufaasissa esiintyviä reaktio-jäännöksiä aiheuttavien vaihtoreaktioiden aikaisempaa yksinkertaisempi hyväksikäyttö, mikä on johtanut ALE-prosessin, erityisesti laitteiston osalta, lähemmäksi CVD-prosessin menetelmiä ja samalla kaueammaksi MBE-(Molecular Beam Epitaxy)-menetelmistä. Tunnettuihin CVD-menetelmiin nähden tällä keksinnöllä saavutetaan kuitenkin vastaavia etuja kuin verrattaessa ALE-prosessia tavanomaisiin tyhjiöhöyrystys-, sputraus- ja MBE-menetelmiin. Lisäksi tämän keksinnön mukaisella menetelmällä automaattisesti eliminoituu aikaisemmin ennestään tunnetuissa CVD-menetelmissä ongelmia tuottavat kaasufaasireaktiot, jotka voivat aiheuttaa kasvuhäiriöitä valmistettaviin kalvoihin.

Seuraavassa keksintöä selostetaan yksityiskohtaisesti esittämällä keksinnön mukaisen diffuusiovallin teoriaa sekä viittaamalla oheisen piirustuksen kuvioissa esitettyihin keksinnön eräisiin sovellutusesimerkkeihin, joihin keksintö ei ole rajoitettu.

Kuvio 1 esittää yhdisteen alkuainekomponenttien AX ja BY materiaalipulsseja ja niiden välistä diffuusiovallia V (pituus x ) suuntaan x nopeudella v vir-

D

taavassa väliaineessa C.

Kuvio 2 esittää keskeistä pitkittäistä leikkausta eräästä keksinnön mukaisesta laitteesta.

Kuvio 3 esittää leikkausta III-III kuviossa 2.

Kuvio 4 esittää keksinnön mukaisella menetelmällä, kuvion 2 periaatteella toimivalla laitteella kasvatetun kalvon paksuusjakautumaa (käyrä a) verrattuna siihen, että reaktiiviset kaasut tuodaan substraatille samanaikaisesti (käyrä b).

4 57975

Kuvio 5 esittää sinänsä ennestään tunnetun magneettiventtiilin sovellutusta keksinnön mukaisessa menetelmässä.

Kuvio 6 esittää erästä keksinnön mukaista materiaalilähteen toteutusta.

Kuvio 7 esittää kuvion 6 mukaisen laitteen vastinpiiriä.

Kuvio 8 esittää erästä keksinnön menetelmää soveltavaa laitetta pystyleikka-uksena.

Kuvio 9A esittää leikkausta kuvion 8 viivaa IXA-IXA pitkin, kuvio 9B viivaa IXB-IXB ja kuvio 9C viivaa IXC-IXC pitkin.

Kuvio 10 esittää sellaista keksinnön sovellutusta, jossa reaktiotila on sijoitettu lasilla vuoratun teräsputken sisään.

Kuvio 11 esittää kuvion 10 laitetta päältä katsottuna.

Kuvio 12 esittää kuvion 6 mukaisen lähteen erästä modifikaatiota.

Kuvio 13 esittää sellaista keksinnön sovellutusta, jossa substraatti järjestetään lineaariliikkeellä kulkemaan useiden peräkkäisten lähdealueiden ja niiden välisten diffuusiovallialueiden ohi. Kuvio 13 on samalla keskeinen leikkaus kuvion 14 viivaa XIII-XI1I pitkin.

Kuvio 14 esittää samaa kuin kuvio 13 päältäpäin nähtynä kuvion 13 viivaa XIV-XIV pitkin.

Kuvio 15 esittää keksinnön mukaisella menetelmällä valmistettua elektrolumi-nenssirakennetta.

Kuvio 16 esittää kuvion 15 mukaisen rakenteen sähköoptisia ominaisuuksia sekä hyötysuhdetta käyttöjännitteen funktiona.

Kuvion 17 käyrät esittävät esimerkin 5. mukaisen, keksinnön menetelmällä valmistetun A^O^-kalvon kapasitanssia ja häviökulmaa taajuuden funktiona.

Kuvioissa 2 ja 3 esitetty keksinnön menetelmää toteuttava laite muodostuu lasiputkesta 10, jonka toinen pää on suljettu kannella 14 ja toinen pää on putkien 5 57975 12 kautta yhteydessä lähdelaitteisiin 20. Putki 10 sulkee sisäänsä reaktioti-lan 18, joka on yhteen 13 välityksellä liitetty imupumppuun 17. Putken 10 sisälle on sovitettu substraatti 11 tai useita substraatteja, joille ohutkalvo 100 kasvatetaan lähdelaitteista 20 syötettävistä reaktiivisista kaasuista atomikerroksittain keksinnön lähtökohtana olevan ALE-menetelmän mukaisesti. Putken 10 ympärillä on lämmityslai.tteet 15, joilla substraatin 11 ja reaktio-tilan 18 lämpötila pidetään ALE-menetelmän kannalta sopivana.

Kuviossa 5 on esitetty eräs yksinkertainen laiteratkaisu lähdemateriaalin annostelussa. Reaktioputki 10 on putkella 12 yhdistetty magneettiventtiiliin 21, jossa on sinänsä tunnetusti solenoidi 22 ja sen sisällä sulkukappale 23, jonka toinen pääty sulkee venttiilin vasteen 26 kohdalla. Solenoidia 21 ohjataan sinänsä tunnetulla impulssilaitteella 30. Magneettiventtiiliin 21 tuleva putki 25 on yhdistetty reaktiomateriaalilähteeseen ja putki 28 erotuskaasun lähteeseen. Putki 28 yhdistyy magneettiventtiilin 21 lähtöputkeen välittömästi venttiilin jälkeen. Impulssilaitetta 30 käyttäen magneettiventtiilillä 21 pulssi-tetaan putken 25 kautta tuleva reaktiivinen kaasuvirta. Venttiilin 21 ollessa suljettuna putkesta 28 tuleva erotuskaasuvirtaus huuhtelee putken 12 ja muodostaa diffuusiovallin, joka estää reaktiotilassa 10 olevia kaasuja diffundoi-tumasta putkeen 12.

Sovellettaessa keksinnön mukaista menetelmää kuvioiden 2 ja 3 mukaisella laitteella ja kuvion 1 periaatteella, jossa reaktiiviset kaasupulssit ohittavat substraatin 11 pituussuunnassa x, ALE-menetelmän itsestabiloiva vaikutus tulee erittäin tehokkaasti hyödynnettyä, sillä vaikka substraatin 11 etureunat saavat pintareaktion aiheuttavan reaktiivisen kaasupulssin A,B osapaineeltaan suurempana kuin substraattien 11 takareuna, kasvaa kalvo 100 samanpaksuisena koko pituudeltaan (kuvio 4, käyrä a). Kuvion 4 käyrä b kuvaa vastaavaa tilannetta, jossa reaktiiviset kaasut on tuotu substraateille 11 samanaikaisesti.

Seuraavassa selostetaan keksinnön fysikaalista taustaa.

Jos prosessoitavan ohutkalvon 100 paksuus on T, kerralla prosessoitava pinta-ala Ag ja prosessiaika t^, kuvaa prosessin ja prosessilaitteen suorituskykyä suure E, joka on muotoa E * T · A / (t + O (1) s p 1 6 57975 jossa t^ on laitteen uudelleen lataamiseen kuluva aika.

ALE-prosessissa voidaan kasvatettavan kalvon paksuus ilmaista muodossa T = N · T (2) o missä Tq on yhdessä reaktiojaksossa syntyvä kalvon paksuus ja N reaktiojakso-jen lukumäärä. Vastaavasti prosessiaika t on muotoa t = N · t (3) P o missä yhteen prosessijaksoon kuluva aika t muodostuu erillisenä syötettävien reaktiivisten kaasujen syöttöajoista **’ fcm ^°’ reaktiivisten kaasu- pulssien erottamiseen tarvittavista ajoista t.,,t._ ... t. . Yksinkertaisen ^ J il i2 im binääriyhdisteen AB valmistuksessa on t muotoa t = t. + t.A + t + t._ (4)

o Α ιΑ B lB

Yhdessä prosessissa käsiteltävän substraatin pinta-ala on pääasiallisesti laitteen geometristen mittojen määräämä ja sitä voidaan suurissa rajoissa muutella tämän keksinnön mukaisissa ratkaisuissa. Keksinnön mukaisen menetelmän toiminnallinen analysointi tapahtuu parhaiten yhteen prosessijaksoon t liittyviä osa-aikoja t ja t. tarkastelemalla.

1 J m im

Diffuusiovallin muodostamista kaasussa voidaan tarkastella yhtälöstä ^=DV2p (5) o1 lähtien, joka kuvaa osapaineen p (tässä tapauksessa reaktiivisen kaasun osa-paineen) leviämistä ympäröivässä väliaineessa (tässä tapauksessa kuljetus-kaasussa), jossa sen diffuusiovakio on D.

Kuvioiden 1,2 ja 3 mukaisessa laitteessa reaktiotilan 18 muodostaa suora reak-tioputki 10, johon substraatit 11 on asetettu kantajakaasun C virtauksen suuntaisesti siten, että ne mahdollisimman vähän häiritsevät kantajakaasun C virtausta. Reaktioputkessa 10 kantajakaasu C virtaa nopeudella v paineen ollessa p^ (kuvio 1). Kantajakaasuun C injektoidaan lähdelaitteista 20 pintareaktioon osallistuvat kaasut AX ja BY syöttöputkien 12 kautta. Reaktioputkessa 10 ete- 57975 nevä reaktiivinen kaasupulssi leviää diffuusion vaikutuksesta kulkusuunnassa x yhtälön 4? = D ^ (6) o t dx^ nmkaisesti. Tilanne approksimoidaan yksdimensionaaliseksi diffuusioksi, mikä kuvioiden 2 ja 3 laitegeometrialla antaa riittävän tarkan tuloksen. Injektoidun reaktiivisen kaasun osapaine syöttöpulssissa on pQ, joka oletetaan vakioksi pulssin reunoilla, jolloin p(x,t):lle pulssin etu- ja takareunassa saadaan ratkaisu p(x,t) pQ erfc (x/2·/Dt) (7) missä x ilmaisee etäisyyden pulssin reunasta poispäin ja t ajan injektiohet-kestä. Määrätyn vakiopitoisuusrintaman ρχ, etenemistä kuvaa tällöin yhtälö x / 2"/dT= C1 (8) missä 0χ saadaan yhtälöstä erfc C = p. / p (9) 1 1 o

Kuvioon 1 viitaten todetaan, että tahdottaessa kahden toisiaan seuraavan reaktiivisen pulssin AX ja BY välissä kummankin pulssin diffuusiosta aiheutuva pitoisuus kantajakaasussa C pienemmäksi kuin ρχ, ts. kun halutaan muodostaa ko. pulssien väliin diffuusiovalli V, joka pienentää kantajakaasussa C yhtäaikaisesti esiintyvien eri reaktiivisista pulsseista peräisin olevat reaktiivisten kaasujen AX ja BY pitoisuudet alle tason ρχ saadaan diffuusiovallin pituudelle lauseke xfi * 2 · χ^χ = V * CjV Dt'' (10)

Kantajakaasun nopeuden ollessa v, voidaan diffuusiovalli Xg etäisyydellä L reaktiivisten kaasujen injektiopisteestä ilmaista muodossa

Xg = V · cxVdl/v' (11) s 57975 χ :n muodostamiseen tarvittava injektiopulssien A,B syötön välinen aika tD on

D D

tällöin tB = Χβ/ν = V DL/v3 (12)

Diffuusiovakio D on riippuvainen ko. kaasuista, lämpötilasta ja paineesta. Jatkotarkastelujen kannalta on käytännöllistä ilmaista se muodossa D = D*/p (13)

«··«·. K

jolloin diffuusiovakion paineriippuvuus D :ssä on eliminoitu. Tällöin tB - v/ciVrDir λ/L/v3 p (14)

Yhtälöstä (14) voidaan todeta, että diffuusiovallin V muodostamiseen tarvittava pulssiväli t,, riippuu voimakkaimmin kantajakaasun C nopeudesta v

D

V -f <15> S = kaasun pumppausnopeus, A = reaktioputken vapaa poikkipinta.

Kaasuvirran (throughput) ja pulssivälin t samanaikainen minimointi johtaa

D

kantajakaasun suureen virtausnopeuteen ja sen pieneen paineeseen. Kantaja-kaasun paineen pienentämistä käytännössä rajoittaa vaatimus p^ > pQ.

Reaktiivisen kaasun A,B osapaine pQ puolestaan määräytyy siitä, että kasvatettavan kalvon 100 pintaan on kussakin reaktiovaiheessa saatava riittävä määrä reagoivia molekyylejä tai atomeja. Molekyylimäärä (atomimäärä) reaktiivisessa pulssissa saadaan kineettisen kaasuteorian mukaisesti yhtälöstä n. = v · t. · p * A/kT (16) missä t^ on reaktiivisen pulssin pituus. Tarvittava molekyyli-(atomi)-määrä n^ on täydellisen pintareaktion substraatin pinnalla synnyttämään tarvittava atomimäärä (molekyylimäärä) pinta-alayksikköä kohti Ng jaettuna materiaali-hyötysuhteella ^ , johon puolestaan vaikuttaa reaktiotilan 18 seinämäpinta-ala ja pintareaktion tapahtumistodennäköisyys pintaan "1-»,· \ '7 (l7) 9 57975 missä Ag = substraattien pinta-ala.

Kun merkitään ^ n^ saadaan v ' t. · p · A/kT = N · A /n (18) 1 o s s / josta

N ’A · kT

p = -S- (19) 0 v · ^ · A ·?

Yhtälöitä (14,15) tarkasteltaessa voidaan todeta, että paitsi käyttöparamet-reilla p ja v, voidaan t :hen vaikuttaa myös reaktioputken 10 poikkipinta-alalla A, joka on lähinnä laitteen rakenteeseen liittyvä parametri.

Edellä oli kantajakaasuvirtauksen pv arvon minimointiin pyritty tgin minimoinnin yhteydessä. Alhainen pv:n arvo on edullinen myös kantajakaasun kulutuksen ja mahdollisen puhdistustarpeen vuoksi. Lisäksi voidaan osoittaa, että PQ:n diffuusio radiaalisessa suunnassa, ts. kaasupitoisuuden tasoittaminen koko reaktioputken 10 poikkipinnalle, paranee, kun pvm arvo pienenee.

Edellä t :lle suoritettu analysointi edellyttää, että yksidimensionaalinen 15 diffuusiotarkastelu on käyttökelpoinen. Tämä edellyttää, että pulssien A,B etuja takareunat etenevät vakiopitoisuustasoina, jotka ovat kohtisuorassa kulje-tuskaasun C etenemissuuntaan x nähden. Tämä tilanne on verrattain hyvin saavutettavissa, jos pulssin pituus 1^ (= v/t^) sekä sen diffuusion alku- ja loppu-reunat X2 ovat suurempia kuin reaktioputken halkaisija d. Kuvioiden 2 ja 3 mukaisessa putkityyppisessä reaktiotilassa 18 tämän ehdon täyttäminen johtaa mahdollisimman alhaiseen paineeseen p^, käytännössä luokkaan 1 mb, joka toisaalta on samalla reaktiivisten materiaalien kuljetuksen edellyttämän vähim-mäispaineen suuruusluokka.

Edelleen t^m analysoinnissa oletettiin, että reaktioputken 10 kuljetuskaasu-virtaan injektoidut reaktiiviset kaasupulssit ΑΧ,ΒΥ ovat injektiohetkellä jyrkkäreunaisia, ts. pulssien nousu- ja laskuajat ovat lyhyitä verrattuna t_:en.

B

Kun käytetään kuvion 5 mukaista venttiilin kautta tapahtuvaa injektiotapaa, tämä ehto on helposti saavutettavissa tunnetuilla venttiiliratkaisuilla. Kuvion 5 tapauksessa on kuitenkin oletettava, että injektoitava reaktiivinen kaasu omaa riittävän höyrynpaineen lämpötilassa, jossa kyseinen venttiili 21 10 57975 on käyttökelpoinen. Useilla tärkeillä reaktiivisilla materiaaleilla, kuten esim. Zn, Cd, ZnC^, MnC^ jne. tämä ehto on kuitenkin vaikeasti täytettävissä, jolloin esitettyä diffuusiovallitekniikkaa on sovellettu myös injektiolähteiden toteuttamiseen, mistä on esitetty esimerkki kuviossa 6, jonka mukainen injektio-lähde muodostuu seuraavista osista: lähdetila 41, jossa lähdemateriaalia M, kondensaatioalue 42, lähteen syöttöputki 43, pulssiventtiili 44, sulkuputki 12, imuputki 46, lämmityselementti 47, jäähdytys element ti 48 ja kantajakaasun syöttöputki 49 sekä imupumppu 50. Kaasuvirtausten suhteen kuvion 6 rakenne vastaa kuvion 7 vastinpiiriä. Tilavuus C muodostuu materiaalit!lasta ja konden-saatioalueesta, konduktanssi e imuputki, g^ = lähteen syöttöputki, “ sulkuputki. Kytkin on pulssiventtiili 44, p^ on reaktiotilan paine ja p^ on paine imupumpussa 50. Sovittamalla p^ yhtä suureksi kuin paine imupura-pussa 17 kuvioissa 2 ja 10 voidaan erillinen imupumppu 50 eliminoida yhdistämällä imuputki 46 pumppuun 17. Lähde 20 on sulkutilassa, kun virtaukset f2 ja fj täyttävät diffuusiovallin muodostusehdot, jotka voidaan johtaa yhtälöstä (8), josta derivoimalla saadaan vakiopitoisuuden etenemisnopeus v^ kantajakaasussa.

v, = $ - C.VTTV·/?- 2 C 2 D / x - 2 C 2 D*/xp (20) d at 1 ! 1

Diffuusiovallin muodostamiseen tarvitaan läpivirtaus f^, jonka aiheuttama virtausnopeus v^ on suurempi tai yhtä suuri kuin v^ vf - fd / Af * p > 2^2 D* / xp (21) missä ko. virtauskanavan poikkipinta. Tällöin fd > 2Af Cx2 DK / x (22)

Kuvion 7 vastinpiirin kanavissa 43 ja 45 saadaan tällöin diffuusiovalliehdoiksi f2 “ 2A2 Cl2 D* 1 L2- (23) f3 il 2A3 Cx2 DK /L3 (24) missä A2 kanavan 43 poikkipinta ja ky kanavan 45 poikkipinta.

Kuvion 6 putkessa 43 muodostetun diffuusiovallin tarkoituksena on estää lähde-kaasua kulkeutumasta putken 10 sisällä olevaan reaktiotilaan 18 ja putkessa 45 11 57975 muodostetun diffuusiovallin tarkoituksen on estää reaktiotilassa 18 olevia kaasuja kulkeutumasta lähdetilaan. Sulkutilanne toteutuu näin ollen molempiin suuntiin reaktiotilan 18 ja lähdetilan 41 välillä.

Lähdemateriaalin M injektiopulssi saadaan syntymään ohjaamalla venttiilin kautta tilaan 41,42 kuljetuskaasua (C) siten, että sen paine nousee arvoon Pco> joka on suurempi kuin p^ Ja kääntää näin ollen kaasuvirtauksen suunnan putkessa 43, jolloin tämän kaasuvirtauksen mukana kulkeutuu lähdetilassa 41 olevan materiaalin M höyry lähteen 41 lämpötilan määräämän osapaineen omaavana reaktiotilaan 18. Paineen p^ avulla määrätään kuljetuskaasun virtaus in-jektiopulssissa. Pco:n kytkentä voidaan helposti saada hyvin nopeaksi, joten lähteen dynaaminen tarkastelu voidaan rajoittaa injektiopulssin lopettamiseen. Yleisesti voidaan kaasuvirta f kanavan lävitse ilmaista muodossa f - g (Pa2 " Pb2) (25) missä pa ja p^ ovat kanavan päissä vallitsevat paineet ja vakio g kanavan geometrisista mitoista sekä kaasun ominaisuuksista määräytyvä tekijä.

Kun hetkellä t = o syöttöventtiili s^ suljetaan, voidaan kuvion 7 vastin-piiristä lähteen paineelle p^ johtaa lauseke a e + 1 //-1/--1 P - -T77Z- · P (26) c . t'7 , c» a ' e ^ - 1.

missä a = (1 + p /p ) / (1 - p lp ) (27) co© co cw> co P^ = "^(gV42 + ΒχΡχ2) / (S* + ) (28) * - c / 2gH PCQo (29) g* - g2 / (1 + g2/g3) (30) * / 2 v P =V Pr + f0/g3 (31)

Paine p^ saa vastaavasti arvon π 57975 P22· <£0 + S2 pc2 + g3 Pr2> / (¾ + s3^ ¢32)

Uuniputkessa 43 syntyy diffuusiovalli, kun it f^» *»issä on diffuu-siovallin syntymiseen tarvittava virtaus yhtälön (22) mukaisesti.

f2 - 82 <p22 ' »e'» <33> g2 (fo + 83 ^pr pc ^ ^ (82+83^— £d2 (3*^

Sijoittamalla yhtälöön(34)yhtälö (26)voidaan ratkaista lähteelle sulkuaika (** diffuusiovallin muodostumisaika) e. a l"U <£r>] (35) missä b - V(£o * g3 pr2 - fd2 (g2*g3)/g2) / 63'/ Pcoo 06)

Reaktiovaiheiden erotus voidaan varmistaa diffuusiovallin käyttöön perustuvia pulssilähteitä käytettäessä, kun pulssien väliseksi ajaksi otetaan lähteen sulkuajän t :n ja t :n summa

S D

t. « t_ + t (37) 1 B s

Edellä esitetyissä laskelmissa ei ole huomioitu kanavassa virtaavan kaasun radiaalista nopeusjakautumaa, vaan on käytetty keskimääräisiä nopeuksia. Käytännössä on havaittu tästä nopeusjakautumasta johtuva virhe vähäiseksi paitsi, jos kuljetettava kaasu pyrkii adsorboitumaan kanavan seinämiin.

Tähän voidaan kuitenkin vaikuttaa seinämien materiaalivalinnoilla ja lämpötiloilla.

Kuvioissa 10 ja 11 on esitetty laiteratkaisu, jossa käytetään kuutta kuvion 7 vastinpiirin mukaista lähdettä kuvion 12 esittämässä muodossa. Lähteet sijoitetaan lähdetiloihin 20. Reaktiotilan seinämät 110 on suojattu laseilla 96. Reaktiotila lämmitetään tarvittavaan lämpötilaan lämmittimen 15 avulla ja lähdetilat lämmitetään läramittimillä 47. Yhteen 13 ja imupumpun 17 väliin on sijoitettu reaktiojäännösten kondensaatioalue 19, jonka yhteessä 13 muodostuva diffuusiovalli erottaa reaktiotilasta 18. Seinämä 115 ohjaa kaasuvirtauk- 13 57975 sen reaktiotilasta 18 yhteeseen 13. Lämmittimellä 116 pidetään yhteen 13 lämpötila sellaisena, että reaktiojäännökset eivät kondensoidu sen seinämiin. Lämmittimiä ohjataan säätöyksiköllä 90. Substraatit 11 tuodaan reaktiotilaan luukusta 14, reaktiotilan paine pf määräytyy tyhjöpumpun 17 pumppausnopeudes-ta sekä laitteeseen syötettävästä apukaasuvirrasta f^, joka puolestaan muor dostuu sulkuvirtauksista f sekä lähteiden syöttöpulsseista, jotka ohjataan venttiileiden S^, 44 avulla. Kuvion 12 lähderatkaisussa muodostuu erotuskaa-sun syöttökanava 49 koaksiaalisesta putkesta lähteen syöttöputken 43 ja lasiputken 84 välille. Putki 84 muodostaa samalla sulkuputken 12. Lähdetilan 20 runko 86 on ruostumatonta terästä. Lähdetiloihin voidaan sijoittaa myös kuvion 5 mukainen lähderatkaisu. Toiminnallisesti kuvioiden 10 ja 11 laite on samanlainen kuin kuvioiden 1,2 ja 3 perusratkaisu, jota edellä on yksityiskohtaisesti käsitelty.

Edellä suoritettu analyysi keskittyy diffuusiovallin synnyttämisehtoihin ja siihen liittyviin aikavakioihin laitekonstruktiossa, jossa kuvioiden 2,3 ja 10,11 mukaisesti reaktiotila 18 muodostuu putkesta, jonka läpi reaktiivisia kaasupulsseja kuljetetaan kuljetuskaasun avulla. Analyysiä voidaan käyttää myös tarkasteltaessa toteutusvaihtoehtoja, joissa ohutkalvosubstraatin ohi virtaavat reaktiiviset kaasut "pulssittuvat" substraatin liikkeen avulla.

Esimerkki tällaisesta laiteratkaisusta on kuvioissa 8 ja 9A,9B ja 9C. Näiden kuvioiden mukainen laite muodostuu lieriömäisistä runko-osasta 60, jonka sisällä on siipipyörää muistuttava pidin 61, jota laitteet 64 pyörittävät. Runko-osan 60 alaosassa on sisäpuolinen lieriöosa 59 ja näiden välillä tasomaiset erotusseinämät 57, jotka rajoittavat väliinsä sektorin muotoiset lähde-kaasukanavat 51 ja 52. Lähdekaasukanaviin 51 ja 52 on sijoitettu materiaaliläh-teet 53 ja 54. Materiaalilähteiden 53,54 ympärillä ovat lämmityslaitteet 56. Lähdekaasukanavien 51 ja 52 välillä on sektorin muotoiset erotuskaasukanavat 55, joiden pohjaosaan aukeavat tuloputket 66 ja 67 kaasulähteestä. Vastaavasti kuvion 9A mukaisesti runko-osan 60 yläosassa on lähdekaasukanavat 51' ja 52' sekä erotuskaasukanavat 55' seinämien 57' erottamina. Pitimeen 61 kiinnitetään substraatit 11', joille ohutkalvo 100 kasvatetaan. Substraatit 11' lämmitetään lämmitys-laitteella 56'. Pitimen 61 pyöriessä virtaa substraattipintojen ohi vuoroin erotuskaasua ja eri reaktiivisia kaasuja lähteistä 53 ja 54, jolloin tilanne on kussakin kahden substraatin välisessä kanavassa täysin verrattavissa kuvion 2 ja 3 mukaisen toteutusesimerkin toimintaan reaktioputkessa 10 substraattien kohdalla. Edellä esitetyn laitteen putki 63, joka on yhteydessä kanaviin 51',52' ja 55', on yhdistetty imupumppuun niin, että sekä lähdekaasujen että kuljetus-kaasujen tarvittavat virtaukset nuolen D suunnassa saadaan aikaan.

14 57975

Kuvioiden 8 ja 9 mukaisessa "siipirataslaitteessa" voidaan eliminoida reaktiivisten lähteiden pulssitustarve, jolloin lähteet yksinkertaistuvat. Toisaalta kuitenkin laitteen mekaaninen rakenne tulee jonkin verran monimutkaisemmaksi ja substraattien vaihto hankalammaksi.

Suoritetussa analyysissä todettiin reaktiotilan optimipaineen olevan mahdollisimman lähellä reaktiivisten kaasujen kuljetuksen määräämää minimipainetta.

Eräänä erityisratkaisuna toteutustavaksi, jossa painetta voidaan nostaa vaikka yli ilmanpaineen, on kuvioiden 13 ja 14 mukainen laite. Se muodostuu liikkuvasta substraatista 11", kaasujenjakokappaleesta 72, erotuskaasun syöttöau-koista 73, poistoaukoista 74, lähdekaasujen syöttöaukoista 75 sekä virtausvä-lyksestä 76, johon diffuusiovallit synnytetään erotuskaasun syöttöaukkojen kummallekin puolelle. Diffuusiovalleja synnyttäviä erotuskaasuvirtauksia on kuviossa 14 havainnollistettu nuolin E. Kuviosta 13 näkyvät erotuskaasun syöt-töputket 77, kaasujen poistoputket 78. Kuvioon 13 on lisäksi merkitty kaksi eri materiaalilähdettä 81 ja 82, joista johtavat putket 79 lähdekaasujen syöt-töaukkoihin 75. Lähdekaasujen virtauksia on kuviossa 14 havainnollistettu nuolin F. Seinämä 80 rajaa laitteen ilmanpainetta vastaan.

Diffuusiovalliehto saadaan yhtälöstä (22) sijoittamalla

Af = y? · b? (38) ja x = Xy (39) Tällöin fd7 - y7 * b7 Cl2 D* 1 x7 (40) 57975

Yhtälön 40 mukaisesti f ^ on riippumaton erotuskaasun paineesta (edellyttäen kuitenkin, että ko. paine on Xgrssa esiintyvää reaktiivisen kaasun painetta suurempi). Kuvioiden 13 ja 14 laitetta voidaankin käyttää myös ilmanpaineessa, jolloin laitteesta voidaan pumput eliminoida.

Reaktiovaiheiden vuorotteluun tarvitaan edestakainen substraatin 11 liike lähdealueiden 75 ohi. Edestakainen liike voidaan korvata pyörivällä liikkeellä, jos syöttö- ja poistoaukot 73...75 sijoitetaan ympyrän kehälle. Jos reaktiivisten kaasujen syöttöaukkoja sekä erotukseen tarvittavia erotuskaasun syöttö- ja poistoaukkoja sijoitetaan jakokappaleeseen yhtä monta jaksoa kuin kasvatuksessa reaktiojaksoja tarvitaan, voidaan substraatin edestakainen liike periaatteessa korvata jatkuvalla lineaariliikkeellä. Käytännössä tämä kuitenkin johtaa yleensä epäkäytännöllisen pitkään jakokappaleeseen, sillä tyypilliset ohutkalvot (0,1-1 /um) edellyttävät tuhansien reaktiovaiheiden käyttämistä.

Kuvioiden 13 ja 14 laite rajoittuu tasopintaisten substraattien, tyypillisesti lasilevyjen, käyttöön. Myös kuvioiden 2 ja 3 laitteet asettavat tiettyjä rajoituksia substraattien muodolle, jotta virtauskanavan aerodynaamisuus kohtuudella toteutuu. Kuvioiden 2 ja 3 tapauksessa ovat tasolevyjen lisäksi sopivia substraatteja mm. sauvat ja putket. Putken sisäpintaan tapahtuva kalvon kasvatus kuvioiden 2 ja 3 laitteella suoritetaan myös siten, että tämä putki itse muodostaa reaktiotilan. Putken sisäpintaan suoritettavaa kasvatusta tarvitaan mm. optisten aaltoputkien (lasikuitukaapeleiden) aihioiden valmistuksessa.

Seuraavassa esitetään viisi keksintöä kuvaavaa, ei rajoittavaa esimerkkiä: Esimerkki 1

Kuvion 10,11 laitteen mitoitusesimerkki.

Reaktiotila: pituus L„ = 40 cm K 2 poikkipinta A = 14 x 14 cm R . . 2 vapaa virtauspoikkipinta A 150 cm 3 poistopumpun 17 teho = 60 m /h

Diffuusiovallilähde (kuvio 12):

materiaalitilan 41 ja kondensaatiotilan 42 yhteinen tilavuus C = 210 cnP

16 57975 3 lähteen syöttöputki (43) 85 0 0,7 x 10 cm: = 1400 cm /mbs 3 sulkuputki (45) 84 0 1,1 x 10 cm * 8800 cm /mbs J 3 imuputki (46) = 100 cm /mbs

Tyypilliset käyttöparametrit prosessipaine pf = 2 mb sulkupumpun (50) paine p, = 0.4 mb d 3 sulkuvirtaus/lähde f = 5500 mb cm /s o lähteen syöttöpaine pcQ= 3 ^

Edellä esitetyistä arvoista saadaan: yht. (30) : g* = 1208 cm^/mbs (28) : PcÄ = 2,07 mb (36) : b = 1,067 p (22) : f = 89 mb cm3/s = 3,6; ^ = 10~6) (29) : r = 0,030 s (35) : t = 0,05 s (14) : tg = 0,74 s

Laskennolliseksi pulssiväliksi saadaan yhtälön (37) mukaan t. = 0,8 s 1 Käytännön prosesseissa on käytetty arvoa t. β 1 s 1 Käyttöesimerkkejä esimerkin 1 mukaisesti mitoitetulla laitteella.

Esimerkki 2

Tantaalioksidin (Ta^O^) valmistus. Substraatit 11 10x20 cm 3 mm: float-lasia, 6 kpl.

Reaktiotilan 18 lämpötila 300°C. Reaktiiviset kaasut: TaCl^ kuvion 12 mukaisesta Lähteestä, lähdelämpötila 140°C. Hapettavana komponenttina vesi H^O syöttö kuvion 5 mukaisesta lähteestä. ^0 lähteen lämpötila 15°C. Kuljetus-kaasu argon.

17 57975

Ajoitus (TaCl^) = 0,2 s t2 (H20) = 0,2 s t.. = t0. =1 s li 2i joten kokonaisjakso t = 2,4 s 2500 jaksoa antaa 1000 Ä:n ohutkalvon paksuuden substraattien 11 pintaan. Esimerkki 3

Mangaaniduupatun sinkkisulfidin valmistus ZnS (Mn).

Substraatit 11 samoin kuin edellä. Reaktiotilan 118 lämpötila 450°C.

Reaktiiviset kaasut: ZnCl2, MnCl^ ja H2S. ZnCl^ ja MnCl2 syötetään kuvion 12 mukaisista lähteistä, H^S kuvion 5 lähteestä. ZnCl2:n lähdelämpötila 380°C.

MnCl^n lähdelämpötila 510°C.

MnCl2 ja ZnCl2 lähdepulssit ajetaan samanaikaisesti. Kaikki lähdepulssit 0,2 s pulssivälit 1 s, joten kokonaisjakso 2,4 s.

4500 jakson prosessi antaa 4000 Ä:n ohutkalvon paksuuden substraateille. Esimerkki 4

Kasvattamalla indiumtinaoksidikalvolla päällystetylle substraatille Ta20^ + ZnS (Mn) + Ta20,. kalvot esimerkkien 2 ja 3 mukaisesti ja höyrystämäl-lä rakenteen päälle alumiinikontakti, saadaan kuvion 15 mukainen elektro-luminenssirakenne, jolla on kuvion 16 mukaiset sähköoptiset ominaisuudet. Kuviossa 15 kerros 101 on läpinäkyvä johde (indium-tinaoksidia), kerros 102 Ta20^ 1000 Ä, kerros 103 ZnS (Mn) 4000 Ä, kerros 104 Ta20^ 1000 Ä ja kerros 105 Al-kontakti.

Esimerkki 5

Alumiinioksidin Al^O^ valmistus. Prosessi samoin kuin esimerkissä 2; TaCl^rn tilalla A1C1_ lämpötilassa 95°C. 2800 jaksoa reaktiolämpötilassa 250 C antaa ... . . 2 2200 Ä:n A^O^kalvon. Alumiinielektrodeja (pinta-ala 25 mm ) käyttäen on ko. kalvoille mitattu kuvion 17 mukaiset häviökulma tan S ja kapasitanssi C taajuuden f funktiona.

Claims (15)

1. Menetelmä yhdisteohutkalvojen kasvatuksessa yhdistekomponenttikohtaisten pinta-reaktioiden avulla, jossa menetelmässä substraatin pinta asetetaan alttiiksi sanotun yhdisteen komponentteja sisältävien eri aineiden vuorottaisille pintareaktioille syöttämällä mainittujen aineiden kaasuja toistuvasti ja vuorottaisesti reaktio-tilaan, johon mainittu substraatti on sijoitettu ja antamalla mainittujen kaasujen reagoida substraatin pinnan kanssa, jolle pinnalle täten kasvaa kiinteässä olomuodossa oleva yhdisteohutkalvotuote mainitun substraattipinnan lämpötilassa, tunnettu siitä, että menetelmässä syötetään kaasufaasissa olevaa väliainetta mainittuun reaktio-tilaan ainakin sanottujen aineiden vuorottaisten syöttöjen väliaikoina, ja että mainitun kaasumaisen väliaineen syötöllä aikaansaadulla diffuusiovallilla estetään mainittujen vuorottaisesti syötettyjen kaasujen samanaikainen vuorovaikutus kasvatettavan pinnan kanssa.
2. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että kasvatettavan pinnan kanssa reagoivat kaasut tuodaan reaktiotilaan kantajakaasulla, joka samalla on mainittu väliaine, johon diffuusiovalli on muodostettu.
3. Patenttivaatimuksen 1 tai 2 mukainen menetelmä, tunnettu siitä, että reaktiivisten kaasujen lähdealueet on erotettu reaktiotilasta erotuskaasun avulla muodostetuilla diffuusiovalleilla.
4. Patenttivaatimuksen 1,2 tai 3 mukainen menetelmä, tunnettu siitä, että reaktiojäännösten kondensaatioalue on erotettu reaktiotilasta diffuusiovallin avulla.
5. Patenttivaatimuksen 1,2,3 tai 4 mukainen menetelmä, tunnettu siitä, että reaktiotilan virtaus ja lähteiden sulkuvirtaus aikaansaadaan erillisillä imupumpuilla. 19 57975
6. Patenttivaatimuksen 1,2,3 tai 4 mukainen menetelmä, tunnettu siitä, että reaktiotilan virtaus ja lähteiden sulkuvirtaus aikaansaadaan yhteisellä imupumpulla.
7. Laite patenttivaatimuksen 1-6 mukaisen menetelmän toteuttamiseen, tunnet-t u siitä, että laite käsittää kombinaationa seuraavat komponentit: reaktiokammion (10;60,61;72,73,74,75,80;110), joka rajoittaa sisäänsä reaktio-tilan (18;76), johon sijoitetaan substraatit (11;11’), joille yhdisteohutkalvo (100) kasvatetaan; tyhjöpumppulaitteet (17,50), jotka on kytketty mainittuun reaktiotilaan (18;76); ainakin kahden eri reaktiivisen kaasun lähdelaitteet (20;53;81,82), jotka on yhdistetty mainittuun reaktiotilaan (18;76); inertin kantaja- ja/tai erotuskaasun lähdelaitteet, jotka on yhdistetty mainittuun reaktiotilaan (18;76); lämmityslaitteet (15;47;56,56*), joilla reaktioilla (18) ja reaktiivisten kaasujen lähteet pidetään tietyssä lämpötilassa sekä säätö- ja ohjauslaitteet (22,23,26,30;44,S^;91), joilla edellä mainittujen laitteiden toimintaa ohjataan ja säädetään niin, että keksinnön menetelmän mukainen laitteen toiminta toteutuu.
8. Patenttivaatimuksen 7 mukainen laite, tunnettu siitä, että imupumppu (17) on yhdistetty inertin kantaja- ja/tai erotuskaasun virtauksen (v) suuntaan nähden reaktiokammion (10;60;110) lähtöpuolelle ja että reaktiivisten kaasujen lähteet (20;53,54;81,82) ja kantaja- ja/tai erotuskaasun lähteet on yhdistetty reaktio-kammion (10;60;110) tulopuolelle.
9. Patenttivaatimuksen 8 mukainen laite, tunnettu siitä, että inertin erotuskaasun lähde (f ) on yhdistetty reaktiivisen kaasun lähteen (20;41,42) ja reaktiokammion (10;110) väliseen yhdysputkeen (12) (kuviot 5,6,12).
10. Patenttivaatimuksen 9 mukainen laite, tunnettu siitä, että reaktiivisen kaasun lähteen (41,42) mainittuun yhdysputkeen (12) nähden vastakkainen puoli on yhdistetty imupumppuun (17;50), jolla saadaan aikaan mainitusta erotuskaasu-lähteestä (fQ) diffuusiovallia muodostava virtaus (f^).
11. Patenttivaatimuksen 7,8,9 tai 10 mukainen laite, tunnettu siitä, että inertin kantajakaasun lähde on yhdistetty pulssiventtiilin (44) tai vastaavan vä- 20 57975 lityksellä reaktiivisen kaasun lähteeseen (20;41,42) sen reaktiotilaan (18) johtavan yhdysputken (12) nähden vastakkaiselle puolelle.
12. Patenttivaatimuksen 7,8,9,10 tai 11 mukainen laite, tunnettu siitä, että reaktiotilaan (18) on järjestetty stationääriset pitimet, joihin substraatit (ll;lla,llb,llc) kiinnitetään.
13. Patenttivaatimuksen 7,8,9,10 tai 11 mukainen laite, tunnettu siitä, että substraatin tai substraattien (111) oidinlaite (61) on liikkuva, joko suoraviivaisesti (kuviot 13;14) tai pyörivästi (kuviot 8,9A,9B,9C) niin, että substraatin tietty kohta kulkee vuoron perään erotuskaasun alueen (55,55*;73, E,74) ja eri reaktiivisten kaasujen alueiden (51,52,51 *,52* ;75,F,74) kautta (kuviot 8,9A,9B,9C;13,14).
14. Patenttivaatimuksen 13 mukainen laite, tunnettu siitä, että liikkuva substraattien pidin muodostuu akselin (64) ympäri pyörivästä siipirattaan tai vastaavan tapaisesta osasta, joka on sovitettu reaktiokammion sektorimaisten osien välille, jotka sektorit vuoronperään muodostavat inertin erotuskaasun virtaussolat (55,55'), jotka on toisesta päästään (63) kytketty imupumppuun ja toisesta päästään (66,67) erotuskaasun lähteeseen ja eri reaktiivisten kaasujen virtaussolat (51,52,51* ,52'), jotka on toisesta päästään kytketty imu-pumppuun ja toisesta päästään reaktiivisten kaasujen lähteisiin (53,54) (kuviot 9A,9B,9C).
15. Patenttivaatimuksen 13 mukainen laite, tunnettu siitä, että laite käsittää erotuskaasun ja reaktiivisten kaasujen jakokappaleen (72), jonka ulkopintaan avautuvat vuoronperään mainittujen kaasujen syöttöaukot (73,75) ja pois-toaukot (74), joiden yhteyteen on järjestetty liikkumaan tietyllä välyksellä (76) substraatti (11*) niin, että substraatin tietty kohta kulkee vuoron perään erotuskaasun virtauksen (E) muodostaman diffuusiovallin ja eri reaktiivisten kaasujen virtausalueiden (F) kautta. 57975 21
FI790680A 1979-02-28 1979-02-28 Foerfarande och anordning vid uppbyggande av tunna foereningshinnor FI57975C (fi)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FI790680A FI57975C (fi) 1979-02-28 1979-02-28 Foerfarande och anordning vid uppbyggande av tunna foereningshinnor
FI790680 1979-02-28

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
FI790680A FI57975C (fi) 1979-02-28 1979-02-28 Foerfarande och anordning vid uppbyggande av tunna foereningshinnor
US06/050,606 US4413022A (en) 1979-02-28 1979-06-21 Method for performing growth of compound thin films
DE8080100568A DE3071110D1 (en) 1979-02-28 1980-02-04 Method and apparatus for performing growth of thin films of a compound
EP80100568A EP0015390B1 (en) 1979-02-28 1980-02-04 Method and apparatus for performing growth of thin films of a compound
AT80100568T AT15820T (de) 1979-02-28 1980-02-04 Verfahren und vorrichtung zum erzielen des wachstums duenner schichten einer verbindung.
ZA00800852A ZA8000852B (en) 1979-02-28 1980-02-14 Method and apparatus for performing growth of compound thin films
IL59393A IL59393A (en) 1979-02-28 1980-02-15 Method and apparatus for performing growth of compound thin films
IN193/CAL/80A IN152596B (en) 1979-02-28 1980-02-20 Method of producing a compound thin film of different elements on a substrate surface and apparatus for carrying out the same
AU55786/80A AU535151B2 (en) 1979-02-28 1980-02-21 Atomic layer epitaxial growth of thin films
MX181260A MX151518A (es) 1979-02-28 1980-02-21 Metodo y aparato mejorados para llevar a cabo el crecimiento de peliculas compuestas
BR8001087A BR8001087A (pt) 1979-02-28 1980-02-25 Processo e aparelho para desenvolvimento de uma pelicula fina composta de diferentes elementos em uma superficie de substrato
CA000346409A CA1166937A (en) 1979-02-28 1980-02-26 Method and apparatus for performing growth of compound thin films
NO800555A NO155106C (no) 1979-02-28 1980-02-27 Fremgangsmaate og apparat for gjennomfoering av en atomsjiktsepitaksivekst.
PL1980222293A PL138247B1 (en) 1979-02-28 1980-02-27 Method of producing thin films of compoenets of various elements,in particular thin oxide films on glass and apparatus therefor
HU80445A HU181779B (en) 1979-02-28 1980-02-27 Method and apparatus for growing thin film layer combined from atoms of various elements on some carrier surface
DK084680A DK157943C (da) 1979-02-28 1980-02-27 Fremgangsmaade og apparat til udfoerelse af en epitaksiel vaekst af atomare lag
SU802889600A SU1085510A3 (ru) 1979-02-28 1980-02-27 Способ получени составной пленки и устройство дл его осуществлени
JP55023480A JPS6021955B2 (fi) 1979-02-28 1980-02-28

Publications (2)

Publication Number Publication Date
FI57975B FI57975B (fi) 1980-07-31
FI57975C true FI57975C (fi) 1980-11-10

Family

ID=8512439

Family Applications (1)

Application Number Title Priority Date Filing Date
FI790680A FI57975C (fi) 1979-02-28 1979-02-28 Foerfarande och anordning vid uppbyggande av tunna foereningshinnor

Country Status (17)

Country Link
US (1) US4413022A (fi)
EP (1) EP0015390B1 (fi)
JP (1) JPS6021955B2 (fi)
AU (1) AU535151B2 (fi)
BR (1) BR8001087A (fi)
CA (1) CA1166937A (fi)
DE (1) DE3071110D1 (fi)
DK (1) DK157943C (fi)
FI (1) FI57975C (fi)
HU (1) HU181779B (fi)
IL (1) IL59393A (fi)
IN (1) IN152596B (fi)
MX (1) MX151518A (fi)
NO (1) NO155106C (fi)
PL (1) PL138247B1 (fi)
SU (1) SU1085510A3 (fi)
ZA (1) ZA8000852B (fi)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19581483B4 (de) * 1994-11-28 2010-03-11 Asm International N.V. Verfahren und Vorrichtung zur Bildung von Dünnschichten

Families Citing this family (303)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889821A (en) * 1981-11-24 1983-05-28 Canon Inc Manufacturing device of deposited film
JPS5898917A (en) * 1981-12-09 1983-06-13 Seiko Epson Corp Atomic layer epitaxial device
FI64878C (fi) * 1982-05-10 1984-01-10 Lohja Ab Oy Kombinationsfilm foer isynnerhet tunnfilmelektroluminensstrukturer
US4664960A (en) * 1982-09-23 1987-05-12 Energy Conversion Devices, Inc. Compositionally varied materials and method for synthesizing the materials
US4520039A (en) * 1982-09-23 1985-05-28 Sovonics Solar Systems Compositionally varied materials and method for synthesizing the materials
EP0145201A1 (en) * 1983-11-10 1985-06-19 Optical Coating Laboratory, Inc. Antireflection optical coating with antistatic properties
JPS60189928A (en) * 1984-03-12 1985-09-27 Fujitsu Ltd Vapor growth device under reduced pressure
JPH0715884B2 (ja) * 1984-07-26 1995-02-22 新技術事業団 選択型結晶の成長方法
JPH0766908B2 (ja) * 1984-07-26 1995-07-19 新技術事業団 半導体単結晶成長方法
JPH0766910B2 (ja) * 1984-07-26 1995-07-19 新技術事業団 半導体単結晶成長装置
JPH0787179B2 (ja) * 1984-07-26 1995-09-20 新技術事業団 超格子半導体装置の製造方法
GB2162207B (en) 1984-07-26 1989-05-10 Hitoshi Abe Semiconductor crystal growth apparatus
JPH0782991B2 (ja) * 1984-07-26 1995-09-06 新技術事業団 化合物半導体単結晶薄膜の成長法
GB2162862B (en) * 1984-07-26 1988-10-19 Hitoshi Abe A method of growing a thin film single crystalline semiconductor
JPH0766907B2 (ja) * 1984-07-26 1995-07-19 新技術事業団 半導体結晶成長方法
JPH0766906B2 (ja) * 1984-07-26 1995-07-19 新技術事業団 GaAsエピタキシャル成長方法
US5294286A (en) * 1984-07-26 1994-03-15 Research Development Corporation Of Japan Process for forming a thin film of silicon
JP2577542B2 (ja) * 1984-07-26 1997-02-05 新技術事業団 半導体結晶成長装置
JPH0782990B2 (ja) * 1984-07-26 1995-09-06 新技術事業団 半導体装置の製造方法
JP2577544B2 (ja) * 1984-08-08 1997-02-05 新技術事業団 半導体装置の製造方法
JPH07120625B2 (ja) * 1984-08-08 1995-12-20 新技術事業団 化合物半導体単結晶薄膜の形成方法
JP2577543B2 (ja) * 1984-08-08 1997-02-05 新技術事業団 単結晶薄膜成長装置
JPS62226892A (en) * 1986-03-29 1987-10-05 Univ Tohoku Production of thin single crystal sapphire film
JPS6328031A (en) * 1986-07-21 1988-02-05 Matsushita Electric Ind Co Ltd Vapor growth apparatus
JP2587623B2 (ja) * 1986-11-22 1997-03-05 三洋電機株式会社 化合物半導体のエピタキシヤル結晶成長方法
JPH0727861B2 (ja) * 1987-03-27 1995-03-29 富士通株式会社 ▲iii▼−▲v▼族化合物半導体結晶の成長方法
US5296087A (en) * 1987-08-24 1994-03-22 Canon Kabushiki Kaisha Crystal formation method
DE3743938C2 (de) * 1987-12-23 1995-08-31 Cs Halbleiter Solartech Verfahren zum Atomschicht-Epitaxie-Aufwachsen einer III/V-Verbindungshalbleiter-Dünnschicht
US4931132A (en) * 1988-10-07 1990-06-05 Bell Communications Research, Inc. Optical control of deposition of crystal monolayers
DE3889735D1 (de) * 1988-12-21 1994-06-30 Monkowski Rhine Inc Chemischer dampfniederschlagsreaktor und dessen verwendung.
DE3843157C1 (fi) * 1988-12-22 1990-05-10 Du Pont De Nemours (Deutschland) Gmbh, 6380 Bad Homburg, De
JPH0824191B2 (ja) * 1989-03-17 1996-03-06 富士通株式会社 薄膜トランジスタ
US5071670A (en) * 1990-06-11 1991-12-10 Kelly Michael A Method for chemical vapor deposition under a single reactor vessel divided into separate reaction chambers each with its own depositing and exhausting means
US5480818A (en) * 1992-02-10 1996-01-02 Fujitsu Limited Method for forming a film and method for manufacturing a thin film transistor
JP3351477B2 (ja) * 1993-02-04 2002-11-25 理化学研究所 固体レーザー結晶薄膜作成方法および固体レーザー結晶薄膜作成装置
JP3181171B2 (ja) * 1994-05-20 2001-07-03 シャープ株式会社 気相成長装置および気相成長方法
JP2654608B2 (ja) * 1994-09-09 1997-09-17 薫 本谷 GaAs半導体ダイオードの製造方法
FI97731C (fi) * 1994-11-28 1997-02-10 Mikrokemia Oy Menetelmä ja laite ohutkalvojen valmistamiseksi
FI97730C (fi) * 1994-11-28 1997-02-10 Mikrokemia Oy Laitteisto ohutkalvojen valmistamiseksi
JP3206375B2 (ja) * 1995-06-20 2001-09-10 信越半導体株式会社 単結晶薄膜の製造方法
US5759623A (en) * 1995-09-14 1998-06-02 Universite De Montreal Method for producing a high adhesion thin film of diamond on a Fe-based substrate
FI954922A (fi) * 1995-10-16 1997-04-17 Picopak Oy Valmistusmenetelmä sekä kontaktinystyrakenne puolijohdepalojen tiheitä pintaliitoksia varten
US6013583A (en) * 1996-06-25 2000-01-11 International Business Machines Corporation Low temperature BPSG deposition process
JPH10308283A (ja) 1997-03-04 1998-11-17 Denso Corp El素子およびその製造方法
FI972874A0 (fi) 1997-07-04 1997-07-04 Mikrokemia Oy Foerfarande och anordning foer framstaellning av tunnfilmer
US5972430A (en) * 1997-11-26 1999-10-26 Advanced Technology Materials, Inc. Digital chemical vapor deposition (CVD) method for forming a multi-component oxide layer
FI104383B (fi) * 1997-12-09 2000-01-14 Fortum Oil & Gas Oy Menetelmä laitteistojen sisäpintojen päällystämiseksi
US6974766B1 (en) 1998-10-01 2005-12-13 Applied Materials, Inc. In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application
FI118342B (fi) * 1999-05-10 2007-10-15 Asm Int Laite ohutkalvojen valmistamiseksi
US6812157B1 (en) 1999-06-24 2004-11-02 Prasad Narhar Gadgil Apparatus for atomic layer chemical vapor deposition
FI110311B (fi) 1999-07-20 2002-12-31 Asm Microchemistry Oy Menetelmä ja laitteisto aineiden poistamiseksi kaasuista
US7554829B2 (en) 1999-07-30 2009-06-30 Micron Technology, Inc. Transmission lines for CMOS integrated circuits
CN100371491C (zh) 1999-08-17 2008-02-27 东京电子株式会社 脉冲等离子体处理方法及其设备
US6391785B1 (en) * 1999-08-24 2002-05-21 Interuniversitair Microelektronica Centrum (Imec) Method for bottomless deposition of barrier layers in integrated circuit metallization schemes
US6727169B1 (en) 1999-10-15 2004-04-27 Asm International, N.V. Method of making conformal lining layers for damascene metallization
US6503330B1 (en) 1999-12-22 2003-01-07 Genus, Inc. Apparatus and method to achieve continuous interface and ultrathin film during atomic layer deposition
US6551399B1 (en) 2000-01-10 2003-04-22 Genus Inc. Fully integrated process for MIM capacitors using atomic layer deposition
US6319766B1 (en) 2000-02-22 2001-11-20 Applied Materials, Inc. Method of tantalum nitride deposition by tantalum oxide densification
JP4556282B2 (ja) * 2000-03-31 2010-10-06 株式会社デンソー 有機el素子およびその製造方法
FI117978B (fi) * 2000-04-14 2007-05-15 Asm Int Menetelmä ja laitteisto ohutkalvon kasvattamiseksi alustalle
US7060132B2 (en) * 2000-04-14 2006-06-13 Asm International N.V. Method and apparatus of growing a thin film
US6759325B2 (en) 2000-05-15 2004-07-06 Asm Microchemistry Oy Sealing porous structures
US6482733B2 (en) 2000-05-15 2002-11-19 Asm Microchemistry Oy Protective layers prior to alternating layer deposition
WO2001094662A1 (fr) * 2000-06-07 2001-12-13 Commissariat A L'energie Atomique Procede de preparation d'un revetement sur un substrat par le procede ald utilisant un reactant deutere
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US7405158B2 (en) 2000-06-28 2008-07-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US7101795B1 (en) 2000-06-28 2006-09-05 Applied Materials, Inc. Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
FI20001694A0 (fi) * 2000-07-20 2000-07-20 Asm Microchemistry Oy Menetelmä ohutkalvon kasvattamiseksi substraatille
US6461909B1 (en) 2000-08-30 2002-10-08 Micron Technology, Inc. Process for fabricating RuSixOy-containing adhesion layers
US6903005B1 (en) 2000-08-30 2005-06-07 Micron Technology, Inc. Method for the formation of RuSixOy-containing barrier layers for high-k dielectrics
US6617173B1 (en) 2000-10-11 2003-09-09 Genus, Inc. Integration of ferromagnetic films with ultrathin insulating film using atomic layer deposition
US20030190424A1 (en) * 2000-10-20 2003-10-09 Ofer Sneh Process for tungsten silicide atomic layer deposition
WO2002045871A1 (en) * 2000-12-06 2002-06-13 Angstron Systems, Inc. System and method for modulated ion-induced atomic layer deposition (mii-ald)
US9255329B2 (en) 2000-12-06 2016-02-09 Novellus Systems, Inc. Modulated ion-induced atomic layer deposition (MII-ALD)
US20020144786A1 (en) * 2001-04-05 2002-10-10 Angstron Systems, Inc. Substrate temperature control in an ALD reactor
US6630201B2 (en) * 2001-04-05 2003-10-07 Angstron Systems, Inc. Adsorption process for atomic layer deposition
US6800173B2 (en) * 2000-12-15 2004-10-05 Novellus Systems, Inc. Variable gas conductance control for a process chamber
US6998579B2 (en) 2000-12-29 2006-02-14 Applied Materials, Inc. Chamber for uniform substrate heating
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US6765178B2 (en) * 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
US6811814B2 (en) 2001-01-16 2004-11-02 Applied Materials, Inc. Method for growing thin films by catalytic enhancement
US20020127336A1 (en) * 2001-01-16 2002-09-12 Applied Materials, Inc. Method for growing thin films by catalytic enhancement
US6951804B2 (en) 2001-02-02 2005-10-04 Applied Materials, Inc. Formation of a tantalum-nitride layer
KR100408733B1 (ko) 2001-02-02 2003-12-11 주성엔지니어링(주) 박막 증착 방법
WO2002080244A2 (en) 2001-02-12 2002-10-10 Asm America, Inc. Improved process for deposition of semiconductor films
US6613656B2 (en) * 2001-02-13 2003-09-02 Micron Technology, Inc. Sequential pulse deposition
US6852167B2 (en) 2001-03-01 2005-02-08 Micron Technology, Inc. Methods, systems, and apparatus for uniform chemical-vapor depositions
US6660126B2 (en) 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6939579B2 (en) * 2001-03-07 2005-09-06 Asm International N.V. ALD reactor and method with controlled wall temperature
US6734020B2 (en) 2001-03-07 2004-05-11 Applied Materials, Inc. Valve control system for atomic layer deposition chamber
WO2002090614A1 (en) * 2001-03-20 2002-11-14 Mattson Technology, Inc. Method for depositing a coating having a relatively high dielectric constant onto a substrate
US6627268B1 (en) 2001-05-03 2003-09-30 Novellus Systems, Inc. Sequential ion, UV, and electron induced chemical vapor deposition
US7056278B2 (en) * 2001-06-01 2006-06-06 Adamed Sp. Z.O.O. Method of treating overactive bladder in women
JP2002367990A (ja) 2001-06-04 2002-12-20 Tokyo Electron Ltd 半導体装置の製造方法
US6849545B2 (en) 2001-06-20 2005-02-01 Applied Materials, Inc. System and method to form a composite film stack utilizing sequential deposition techniques
US7211144B2 (en) 2001-07-13 2007-05-01 Applied Materials, Inc. Pulsed nucleation deposition of tungsten layers
US6878206B2 (en) 2001-07-16 2005-04-12 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US20030029715A1 (en) 2001-07-25 2003-02-13 Applied Materials, Inc. An Apparatus For Annealing Substrates In Physical Vapor Deposition Systems
US9051641B2 (en) 2001-07-25 2015-06-09 Applied Materials, Inc. Cobalt deposition on barrier surfaces
US8110489B2 (en) 2001-07-25 2012-02-07 Applied Materials, Inc. Process for forming cobalt-containing materials
WO2003030224A2 (en) 2001-07-25 2003-04-10 Applied Materials, Inc. Barrier formation using novel sputter-deposition method
US20090004850A1 (en) 2001-07-25 2009-01-01 Seshadri Ganguli Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US6835414B2 (en) 2001-07-27 2004-12-28 Unaxis Balzers Aktiengesellschaft Method for producing coated substrates
US7085616B2 (en) 2001-07-27 2006-08-01 Applied Materials, Inc. Atomic layer deposition apparatus
US6844203B2 (en) 2001-08-30 2005-01-18 Micron Technology, Inc. Gate oxides, and methods of forming
US8026161B2 (en) 2001-08-30 2011-09-27 Micron Technology, Inc. Highly reliable amorphous high-K gate oxide ZrO2
US6718126B2 (en) 2001-09-14 2004-04-06 Applied Materials, Inc. Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition
US7049226B2 (en) * 2001-09-26 2006-05-23 Applied Materials, Inc. Integration of ALD tantalum nitride for copper metallization
US6936906B2 (en) 2001-09-26 2005-08-30 Applied Materials, Inc. Integration of barrier layer and seed layer
US6916398B2 (en) 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US7780785B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US6773507B2 (en) 2001-12-06 2004-08-10 Applied Materials, Inc. Apparatus and method for fast-cycle atomic layer deposition
US7081271B2 (en) 2001-12-07 2006-07-25 Applied Materials, Inc. Cyclical deposition of refractory metal silicon nitride
US6729824B2 (en) 2001-12-14 2004-05-04 Applied Materials, Inc. Dual robot processing system
US6953730B2 (en) 2001-12-20 2005-10-11 Micron Technology, Inc. Low-temperature grown high quality ultra-thin CoTiO3 gate dielectrics
US6939801B2 (en) * 2001-12-21 2005-09-06 Applied Materials, Inc. Selective deposition of a barrier layer on a dielectric material
US6911092B2 (en) * 2002-01-17 2005-06-28 Sundew Technologies, Llc ALD apparatus and method
US6767795B2 (en) 2002-01-17 2004-07-27 Micron Technology, Inc. Highly reliable amorphous high-k gate dielectric ZrOXNY
WO2003065424A2 (en) 2002-01-25 2003-08-07 Applied Materials, Inc. Apparatus for cyclical deposition of thin films
US6998014B2 (en) 2002-01-26 2006-02-14 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
US6866746B2 (en) * 2002-01-26 2005-03-15 Applied Materials, Inc. Clamshell and small volume chamber with fixed substrate support
US6911391B2 (en) 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers
US6827978B2 (en) 2002-02-11 2004-12-07 Applied Materials, Inc. Deposition of tungsten films
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US6972267B2 (en) 2002-03-04 2005-12-06 Applied Materials, Inc. Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor
US7250083B2 (en) * 2002-03-08 2007-07-31 Sundew Technologies, Llc ALD method and apparatus
US6812100B2 (en) 2002-03-13 2004-11-02 Micron Technology, Inc. Evaporation of Y-Si-O films for medium-k dielectrics
US7439191B2 (en) 2002-04-05 2008-10-21 Applied Materials, Inc. Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications
US6846516B2 (en) 2002-04-08 2005-01-25 Applied Materials, Inc. Multiple precursor cyclical deposition system
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US6869838B2 (en) 2002-04-09 2005-03-22 Applied Materials, Inc. Deposition of passivation layers for active matrix liquid crystal display (AMLCD) applications
US6875271B2 (en) 2002-04-09 2005-04-05 Applied Materials, Inc. Simultaneous cyclical deposition in different processing regions
US7279432B2 (en) 2002-04-16 2007-10-09 Applied Materials, Inc. System and method for forming an integrated barrier layer
US20040247787A1 (en) * 2002-04-19 2004-12-09 Mackie Neil M. Effluent pressure control for use in a processing system
US20040025787A1 (en) * 2002-04-19 2004-02-12 Selbrede Steven C. System for depositing a film onto a substrate using a low pressure gas precursor
US7045430B2 (en) 2002-05-02 2006-05-16 Micron Technology Inc. Atomic layer-deposited LaAlO3 films for gate dielectrics
US7589029B2 (en) 2002-05-02 2009-09-15 Micron Technology, Inc. Atomic layer deposition and conversion
US7160577B2 (en) 2002-05-02 2007-01-09 Micron Technology, Inc. Methods for atomic-layer deposition of aluminum oxides in integrated circuits
US7041335B2 (en) 2002-06-04 2006-05-09 Applied Materials, Inc. Titanium tantalum nitride silicide layer
US7205218B2 (en) 2002-06-05 2007-04-17 Micron Technology, Inc. Method including forming gate dielectrics having multiple lanthanide oxide layers
US7135421B2 (en) 2002-06-05 2006-11-14 Micron Technology, Inc. Atomic layer-deposited hafnium aluminum oxide
JP4292777B2 (ja) * 2002-06-17 2009-07-08 ソニー株式会社 薄膜形成装置
US7154140B2 (en) 2002-06-21 2006-12-26 Micron Technology, Inc. Write once read only memory with large work function floating gates
US7193893B2 (en) 2002-06-21 2007-03-20 Micron Technology, Inc. Write once read only memory employing floating gates
US6804136B2 (en) 2002-06-21 2004-10-12 Micron Technology, Inc. Write once read only memory employing charge trapping in insulators
US7221586B2 (en) 2002-07-08 2007-05-22 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US7221017B2 (en) 2002-07-08 2007-05-22 Micron Technology, Inc. Memory utilizing oxide-conductor nanolaminates
US6838125B2 (en) 2002-07-10 2005-01-04 Applied Materials, Inc. Method of film deposition using activated precursor gases
US6955211B2 (en) 2002-07-17 2005-10-18 Applied Materials, Inc. Method and apparatus for gas temperature control in a semiconductor processing system
US7186385B2 (en) 2002-07-17 2007-03-06 Applied Materials, Inc. Apparatus for providing gas to a processing chamber
US7066194B2 (en) 2002-07-19 2006-06-27 Applied Materials, Inc. Valve design and configuration for fast delivery system
US6772072B2 (en) 2002-07-22 2004-08-03 Applied Materials, Inc. Method and apparatus for monitoring solid precursor delivery
US6915592B2 (en) 2002-07-29 2005-07-12 Applied Materials, Inc. Method and apparatus for generating gas to a processing chamber
US6921702B2 (en) 2002-07-30 2005-07-26 Micron Technology Inc. Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US7186630B2 (en) 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films
US6884739B2 (en) 2002-08-15 2005-04-26 Micron Technology Inc. Lanthanide doped TiOx dielectric films by plasma oxidation
US6790791B2 (en) 2002-08-15 2004-09-14 Micron Technology, Inc. Lanthanide doped TiOx dielectric films
US20040036129A1 (en) * 2002-08-22 2004-02-26 Micron Technology, Inc. Atomic layer deposition of CMOS gates with variable work functions
US6967154B2 (en) * 2002-08-26 2005-11-22 Micron Technology, Inc. Enhanced atomic layer deposition
US7199023B2 (en) 2002-08-28 2007-04-03 Micron Technology, Inc. Atomic layer deposited HfSiON dielectric films wherein each precursor is independendently pulsed
US7084078B2 (en) 2002-08-29 2006-08-01 Micron Technology, Inc. Atomic layer deposited lanthanide doped TiOx dielectric films
US6936086B2 (en) * 2002-09-11 2005-08-30 Planar Systems, Inc. High conductivity particle filter
US6821563B2 (en) 2002-10-02 2004-11-23 Applied Materials, Inc. Gas distribution system for cyclical layer deposition
US20040069227A1 (en) 2002-10-09 2004-04-15 Applied Materials, Inc. Processing chamber configured for uniform gas flow
US6905737B2 (en) 2002-10-11 2005-06-14 Applied Materials, Inc. Method of delivering activated species for rapid cyclical deposition
US7204886B2 (en) 2002-11-14 2007-04-17 Applied Materials, Inc. Apparatus and method for hybrid chemical processing
US7101813B2 (en) 2002-12-04 2006-09-05 Micron Technology Inc. Atomic layer deposited Zr-Sn-Ti-O films
US6958302B2 (en) 2002-12-04 2005-10-25 Micron Technology, Inc. Atomic layer deposited Zr-Sn-Ti-O films using TiI4
US20040142558A1 (en) 2002-12-05 2004-07-22 Granneman Ernst H. A. Apparatus and method for atomic layer deposition on substrates
US7262133B2 (en) 2003-01-07 2007-08-28 Applied Materials, Inc. Enhancement of copper line reliability using thin ALD tan film to cap the copper line
WO2004064147A2 (en) 2003-01-07 2004-07-29 Applied Materials, Inc. Integration of ald/cvd barriers with porous low k materials
JP4528489B2 (ja) * 2003-01-27 2010-08-18 独立行政法人理化学研究所 p型半導体を用いた紫外発光素子
US6753248B1 (en) 2003-01-27 2004-06-22 Applied Materials, Inc. Post metal barrier/adhesion film
US6994319B2 (en) * 2003-01-29 2006-02-07 Applied Materials, Inc. Membrane gas valve for pulsing a gas
US6868859B2 (en) * 2003-01-29 2005-03-22 Applied Materials, Inc. Rotary gas valve for pulsing a gas
US7192892B2 (en) 2003-03-04 2007-03-20 Micron Technology, Inc. Atomic layer deposited dielectric layers
US20040177813A1 (en) 2003-03-12 2004-09-16 Applied Materials, Inc. Substrate support lift mechanism
US7135369B2 (en) 2003-03-31 2006-11-14 Micron Technology, Inc. Atomic layer deposited ZrAlxOy dielectric layers including Zr4AlO9
US7294360B2 (en) * 2003-03-31 2007-11-13 Planar Systems, Inc. Conformal coatings for micro-optical elements, and method for making the same
US20040198069A1 (en) 2003-04-04 2004-10-07 Applied Materials, Inc. Method for hafnium nitride deposition
US7537662B2 (en) 2003-04-29 2009-05-26 Asm International N.V. Method and apparatus for depositing thin films on a surface
US7601223B2 (en) 2003-04-29 2009-10-13 Asm International N.V. Showerhead assembly and ALD methods
JP2007523994A (ja) 2003-06-18 2007-08-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated バリヤ物質の原子層堆積
US7192824B2 (en) 2003-06-24 2007-03-20 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectric layers
US7049192B2 (en) 2003-06-24 2006-05-23 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectrics
US20100129548A1 (en) * 2003-06-27 2010-05-27 Sundew Technologies, Llc Ald apparatus and method
WO2005003406A2 (en) * 2003-06-27 2005-01-13 Sundew Technologies, Llc Apparatus and method for chemical source vapor pressure control
US20050067103A1 (en) 2003-09-26 2005-03-31 Applied Materials, Inc. Interferometer endpoint monitoring device
US20050221004A1 (en) * 2004-01-20 2005-10-06 Kilpela Olli V Vapor reactant source system with choked-flow elements
US20050233477A1 (en) * 2004-03-05 2005-10-20 Tokyo Electron Limited Substrate processing apparatus, substrate processing method, and program for implementing the method
US20050252449A1 (en) 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US8323754B2 (en) 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
US8119210B2 (en) 2004-05-21 2012-02-21 Applied Materials, Inc. Formation of a silicon oxynitride layer on a high-k dielectric material
US7241686B2 (en) 2004-07-20 2007-07-10 Applied Materials, Inc. Atomic layer deposition of tantalum-containing materials using the tantalum precursor TAIMATA
US7601649B2 (en) 2004-08-02 2009-10-13 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US7081421B2 (en) 2004-08-26 2006-07-25 Micron Technology, Inc. Lanthanide oxide dielectric layer
US7588988B2 (en) 2004-08-31 2009-09-15 Micron Technology, Inc. Method of forming apparatus having oxide films formed using atomic layer deposition
US7494939B2 (en) 2004-08-31 2009-02-24 Micron Technology, Inc. Methods for forming a lanthanum-metal oxide dielectric layer
US7966969B2 (en) 2004-09-22 2011-06-28 Asm International N.V. Deposition of TiN films in a batch reactor
US7429402B2 (en) 2004-12-10 2008-09-30 Applied Materials, Inc. Ruthenium as an underlayer for tungsten film deposition
US7235501B2 (en) 2004-12-13 2007-06-26 Micron Technology, Inc. Lanthanum hafnium oxide dielectrics
US7846499B2 (en) 2004-12-30 2010-12-07 Asm International N.V. Method of pulsing vapor precursors in an ALD reactor
DE102005003336B3 (de) * 2005-01-25 2006-07-13 Bte Bedampfungstechnik Gmbh Verfahren zur Bildung einer dünnen Schicht auf einer Substratoberfläche
US7438760B2 (en) 2005-02-04 2008-10-21 Asm America, Inc. Methods of making substitutionally carbon-doped crystalline Si-containing materials by chemical vapor deposition
US7608549B2 (en) * 2005-03-15 2009-10-27 Asm America, Inc. Method of forming non-conformal layers
US7687409B2 (en) 2005-03-29 2010-03-30 Micron Technology, Inc. Atomic layer deposited titanium silicon oxide films
US7662729B2 (en) 2005-04-28 2010-02-16 Micron Technology, Inc. Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
US7473637B2 (en) 2005-07-20 2009-01-06 Micron Technology, Inc. ALD formed titanium nitride films
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7402534B2 (en) 2005-08-26 2008-07-22 Applied Materials, Inc. Pretreatment processes within a batch ALD reactor
US7464917B2 (en) 2005-10-07 2008-12-16 Appiled Materials, Inc. Ampoule splash guard apparatus
KR101019293B1 (ko) 2005-11-04 2011-03-07 어플라이드 머티어리얼스, 인코포레이티드 플라즈마-강화 원자층 증착 장치 및 방법
WO2007078802A2 (en) * 2005-12-22 2007-07-12 Asm America, Inc. Epitaxial deposition of doped semiconductor materials
FI121341B (fi) * 2006-02-02 2010-10-15 Beneq Oy Hopean suojapinnoitus
US7709402B2 (en) 2006-02-16 2010-05-04 Micron Technology, Inc. Conductive layers for hafnium silicon oxynitride films
US7235736B1 (en) 2006-03-18 2007-06-26 Solyndra, Inc. Monolithic integration of cylindrical solar cells
US7413982B2 (en) * 2006-03-29 2008-08-19 Eastman Kodak Company Process for atomic layer deposition
US7456429B2 (en) 2006-03-29 2008-11-25 Eastman Kodak Company Apparatus for atomic layer deposition
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US8278176B2 (en) 2006-06-07 2012-10-02 Asm America, Inc. Selective epitaxial formation of semiconductor films
US7691757B2 (en) 2006-06-22 2010-04-06 Asm International N.V. Deposition of complex nitride films
US7801623B2 (en) * 2006-06-29 2010-09-21 Medtronic, Inc. Implantable medical device having a conformal coating
US7563730B2 (en) 2006-08-31 2009-07-21 Micron Technology, Inc. Hafnium lanthanide oxynitride films
US7871678B1 (en) 2006-09-12 2011-01-18 Novellus Systems, Inc. Method of increasing the reactivity of a precursor in a cyclic deposition process
US8053372B1 (en) 2006-09-12 2011-11-08 Novellus Systems, Inc. Method of reducing plasma stabilization time in a cyclic deposition process
US8092695B2 (en) 2006-10-30 2012-01-10 Applied Materials, Inc. Endpoint detection for photomask etching
US7775508B2 (en) 2006-10-31 2010-08-17 Applied Materials, Inc. Ampoule for liquid draw and vapor draw with a continuous level sensor
US20090130858A1 (en) * 2007-01-08 2009-05-21 Levy David H Deposition system and method using a delivery head separated from a substrate by gas pressure
US7789961B2 (en) * 2007-01-08 2010-09-07 Eastman Kodak Company Delivery device comprising gas diffuser for thin film deposition
US20080166880A1 (en) * 2007-01-08 2008-07-10 Levy David H Delivery device for deposition
US8207063B2 (en) * 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
US8821637B2 (en) 2007-01-29 2014-09-02 Applied Materials, Inc. Temperature controlled lid assembly for tungsten nitride deposition
DE112008000368T5 (de) 2007-02-12 2009-12-24 Lotus Applied Technology, LLC, Beaverton Herstellung von Verbundmaterialien unter Verwendung von Atomschichtabscheidung
US8043432B2 (en) * 2007-02-12 2011-10-25 Tokyo Electron Limited Atomic layer deposition systems and methods
US7629256B2 (en) 2007-05-14 2009-12-08 Asm International N.V. In situ silicon and titanium nitride deposition
US7939932B2 (en) * 2007-06-20 2011-05-10 Analog Devices, Inc. Packaged chip devices with atomic layer deposition protective films
US7759199B2 (en) 2007-09-19 2010-07-20 Asm America, Inc. Stressor for engineered strain on channel
US7678298B2 (en) 2007-09-25 2010-03-16 Applied Materials, Inc. Tantalum carbide nitride materials by vapor deposition processes
US7585762B2 (en) 2007-09-25 2009-09-08 Applied Materials, Inc. Vapor deposition processes for tantalum carbide nitride materials
US8211231B2 (en) * 2007-09-26 2012-07-03 Eastman Kodak Company Delivery device for deposition
US8398770B2 (en) * 2007-09-26 2013-03-19 Eastman Kodak Company Deposition system for thin film formation
US20090081360A1 (en) 2007-09-26 2009-03-26 Fedorovskaya Elena A Oled display encapsulation with the optical property
US7858144B2 (en) * 2007-09-26 2010-12-28 Eastman Kodak Company Process for depositing organic materials
US8182608B2 (en) * 2007-09-26 2012-05-22 Eastman Kodak Company Deposition system for thin film formation
US20090081356A1 (en) * 2007-09-26 2009-03-26 Fedorovskaya Elena A Process for forming thin film encapsulation layers
US7972898B2 (en) * 2007-09-26 2011-07-05 Eastman Kodak Company Process for making doped zinc oxide
US7572686B2 (en) * 2007-09-26 2009-08-11 Eastman Kodak Company System for thin film deposition utilizing compensating forces
US8030212B2 (en) * 2007-09-26 2011-10-04 Eastman Kodak Company Process for selective area deposition of inorganic materials
US20090079328A1 (en) * 2007-09-26 2009-03-26 Fedorovskaya Elena A Thin film encapsulation containing zinc oxide
US8017183B2 (en) * 2007-09-26 2011-09-13 Eastman Kodak Company Organosiloxane materials for selective area deposition of inorganic materials
US7851380B2 (en) * 2007-09-26 2010-12-14 Eastman Kodak Company Process for atomic layer deposition
US7824743B2 (en) 2007-09-28 2010-11-02 Applied Materials, Inc. Deposition processes for titanium nitride barrier and aluminum
US7939447B2 (en) 2007-10-26 2011-05-10 Asm America, Inc. Inhibitors for selective deposition of silicon containing films
WO2009070574A2 (en) * 2007-11-27 2009-06-04 North Carolina State University Methods for modification of polymers, fibers and textile media
US7655543B2 (en) * 2007-12-21 2010-02-02 Asm America, Inc. Separate injection of reactive species in selective formation of films
US20100123993A1 (en) * 2008-02-13 2010-05-20 Herzel Laor Atomic layer deposition process for manufacture of battery electrodes, capacitors, resistors, and catalyzers
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US9238867B2 (en) 2008-05-20 2016-01-19 Asm International N.V. Apparatus and method for high-throughput atomic layer deposition
US20090291209A1 (en) * 2008-05-20 2009-11-26 Asm International N.V. Apparatus and method for high-throughput atomic layer deposition
FI122941B (fi) * 2008-06-12 2012-09-14 Beneq Oy Sovitelma ALD-reaktorin yhteydessä
US20100062149A1 (en) 2008-09-08 2010-03-11 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
US8491967B2 (en) 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
US8146896B2 (en) 2008-10-31 2012-04-03 Applied Materials, Inc. Chemical precursor ampoule for vapor deposition processes
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition
US8486191B2 (en) 2009-04-07 2013-07-16 Asm America, Inc. Substrate reactor with adjustable injectors for mixing gases within reaction chamber
US20100266765A1 (en) * 2009-04-21 2010-10-21 White Carl L Method and apparatus for growing a thin film onto a substrate
US8657959B2 (en) * 2009-07-31 2014-02-25 E I Du Pont De Nemours And Company Apparatus for atomic layer deposition on a moving substrate
US20110023775A1 (en) * 2009-07-31 2011-02-03 E.I. Du Pont De Nemours And Company Apparatus for atomic layer deposition
US8883270B2 (en) 2009-08-14 2014-11-11 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen—oxygen species
US20110097489A1 (en) * 2009-10-27 2011-04-28 Kerr Roger S Distribution manifold including multiple fluid communication ports
US20110097493A1 (en) * 2009-10-27 2011-04-28 Kerr Roger S Fluid distribution manifold including non-parallel non-perpendicular slots
US20110097494A1 (en) * 2009-10-27 2011-04-28 Kerr Roger S Fluid conveyance system including flexible retaining mechanism
US20110097488A1 (en) 2009-10-27 2011-04-28 Kerr Roger S Fluid distribution manifold including mirrored finish plate
US20110097490A1 (en) * 2009-10-27 2011-04-28 Kerr Roger S Fluid distribution manifold including compliant plates
US20110097491A1 (en) 2009-10-27 2011-04-28 Levy David H Conveyance system including opposed fluid distribution manifolds
US20110097487A1 (en) * 2009-10-27 2011-04-28 Kerr Roger S Fluid distribution manifold including bonded plates
US20110097492A1 (en) 2009-10-27 2011-04-28 Kerr Roger S Fluid distribution manifold operating state management system
FI20096154A0 (fi) 2009-11-06 2009-11-06 Beneq Oy Menetelmä kalvon muodostamiseksi, kalvo ja sen käyttöjä
FI20096153A0 (fi) 2009-11-06 2009-11-06 Beneq Oy Menetelmä koristepäällysteen muodostamiseksi, koristepäällyste ja sen käyttötapoja
US8367528B2 (en) 2009-11-17 2013-02-05 Asm America, Inc. Cyclical epitaxial deposition and etch
WO2011062779A1 (en) 2009-11-20 2011-05-26 Eastman Kodak Company Method for selective deposition and devices
FI20096262A0 (fi) 2009-11-30 2009-11-30 Beneq Oy Menetelmä koristepinnoitteen muodostamiseksi jalokiveen, jalokiven koristepinnoite, ja sen käytöt
FI122616B (fi) 2010-02-02 2012-04-30 Beneq Oy Vahvistettu rakennemoduuli ja sen valmistusmenetelmä
US8778204B2 (en) 2010-10-29 2014-07-15 Applied Materials, Inc. Methods for reducing photoresist interference when monitoring a target layer in a plasma process
US8747964B2 (en) 2010-11-04 2014-06-10 Novellus Systems, Inc. Ion-induced atomic layer deposition of tantalum
US8809170B2 (en) 2011-05-19 2014-08-19 Asm America Inc. High throughput cyclical epitaxial deposition and etch process
US8961804B2 (en) 2011-10-25 2015-02-24 Applied Materials, Inc. Etch rate detection for photomask etching
US8808559B2 (en) 2011-11-22 2014-08-19 Applied Materials, Inc. Etch rate detection for reflective multi-material layers etching
US8618003B2 (en) 2011-12-05 2013-12-31 Eastman Kodak Company Method of making electronic devices using selective deposition
US8900469B2 (en) 2011-12-19 2014-12-02 Applied Materials, Inc. Etch rate detection for anti-reflective coating layer and absorber layer etching
WO2013171360A1 (en) * 2012-05-14 2013-11-21 Picosun Oy Powder particle coating using atomic layer deposition cartridge
RU2600462C2 (ru) * 2012-06-15 2016-10-20 Пикосан Ой Покрытие полотна подложки осаждением атомных слоев
SG11201407817RA (en) * 2012-06-15 2015-01-29 Picosun Oy Coating a substrate web by atomic layer deposition
US9805939B2 (en) 2012-10-12 2017-10-31 Applied Materials, Inc. Dual endpoint detection for advanced phase shift and binary photomasks
US8778574B2 (en) 2012-11-30 2014-07-15 Applied Materials, Inc. Method for etching EUV material layers utilized to form a photomask
US20150376787A1 (en) * 2013-05-17 2015-12-31 Universal Display Corporation Spatial control of vapor condensation using convection
WO2014131043A1 (en) 2013-02-25 2014-08-28 Solan, LLC Methods for fabricating graphite-based structures and devices made therefrom
JP6398761B2 (ja) * 2015-02-04 2018-10-03 東京エレクトロン株式会社 基板処理装置
TWI571526B (en) * 2015-12-18 2017-02-21 Nat Chung-Shan Inst Of Science And Tech A gas inlet array for atomic layer deposition system
TWI620830B (fi) * 2016-12-30 2018-04-11 Nat Chung Shan Inst Science & Tech

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1057845B (de) * 1954-03-10 1959-05-21 Licentia Gmbh Verfahren zur Herstellung von einkristallinen halbleitenden Verbindungen
BE618264A (fi) * 1959-06-18
US3218203A (en) * 1961-10-09 1965-11-16 Monsanto Co Altering proportions in vapor deposition process to form a mixed crystal graded energy gap
NL6709379A (fi) * 1967-07-06 1969-01-08
US3602192A (en) * 1969-05-19 1971-08-31 Ibm Semiconductor wafer processing
US3721583A (en) * 1970-12-08 1973-03-20 Ibm Vapor phase epitaxial deposition process for forming superlattice structure
US4015558A (en) * 1972-12-04 1977-04-05 Optical Coating Laboratory, Inc. Vapor deposition apparatus
US3964937A (en) * 1973-08-13 1976-06-22 Materials Technology Corporation Method of making a composite coating
SE393967B (sv) * 1974-11-29 1977-05-31 Sateko Oy Forfarande och for utforande av stroleggning mellan lagren i ett virkespaket
US4048955A (en) * 1975-09-02 1977-09-20 Texas Instruments Incorporated Continuous chemical vapor deposition reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19581483B4 (de) * 1994-11-28 2010-03-11 Asm International N.V. Verfahren und Vorrichtung zur Bildung von Dünnschichten

Also Published As

Publication number Publication date
DK157943B (da) 1990-03-05
DK84680A (da) 1980-08-29
DK157943C (da) 1990-08-27
FI57975B (fi) 1980-07-31
PL222293A1 (fi) 1980-11-03
US4413022A (en) 1983-11-01
IN152596B (en) 1984-02-18
IL59393A (en) 1983-06-15
BR8001087A (pt) 1980-10-29
IL59393D0 (en) 1980-05-30
ZA8000852B (en) 1981-02-25
EP0015390B1 (en) 1985-09-25
DE3071110D1 (en) 1985-10-31
JPS55130896A (en) 1980-10-11
AU535151B2 (en) 1984-03-08
MX151518A (es) 1984-12-10
AU5578680A (en) 1980-09-04
NO800555L (no) 1980-08-29
NO155106C (no) 1987-02-11
PL138247B1 (en) 1986-08-30
CA1166937A (en) 1984-05-08
EP0015390A1 (en) 1980-09-17
NO155106B (no) 1986-11-03
CA1166937A1 (fi)
JPS6021955B2 (fi) 1985-05-30
HU181779B (en) 1983-11-28
SU1085510A3 (ru) 1984-04-07

Similar Documents

Publication Publication Date Title
US3558877A (en) Method and apparatus for mass separation by selective light absorption
CA1209091A (en) Photo and heat assisted chemical vapour deposition
US9388492B2 (en) Vapor flow control apparatus for atomic layer deposition
JP5372757B2 (ja) 反応気体の噴射速度を積極的に調節するシャワーヘッドを備えた化学気相蒸着装置およびその方法
JP2930960B2 (ja) 大気圧化学蒸着装置および方法
US20070095286A1 (en) Apparatus and method for thin film deposition
US5879519A (en) Geometries and configurations for magnetron sputtering apparatus
US7858151B2 (en) Formation of CIGS absorber layer materials using atomic layer deposition and high throughput surface treatment
US20060073276A1 (en) Multi-zone atomic layer deposition apparatus and method
US6720260B1 (en) Sequential electron induced chemical vapor deposition
US20080247737A1 (en) Nozzle-based, vapor-phase, plume delivery structure for use in production of thin-film deposition layer
US6511539B1 (en) Apparatus and method for growth of a thin film
EP0716160A1 (en) Geometries and configurations for magnetron sputtering apparatus
EP2334842B1 (en) Apparatus and method for atomic layer deposition
Kessels et al. Hydrogenated amorphous silicon deposited at very high growth rates by an expanding Ar–H 2–SiH 4 plasma
US6905547B1 (en) Method and apparatus for flexible atomic layer deposition
US20070117383A1 (en) Precursor material delivery system with staging volume for atomic layer deposition
CN1104930C (zh) 固体电解离子导电体反应器
US8137464B2 (en) Atomic layer deposition system for coating flexible substrates
US6890596B2 (en) Deposition methods
US6994319B2 (en) Membrane gas valve for pulsing a gas
Chou et al. Entropy-driven pumping in zeolites and biological channels
US4593644A (en) Continuous in-line deposition system
KR101145559B1 (ko) 반도체 제조 장치 및 반도체 장치의 제조 방법
US4729341A (en) Method and apparatus for making electrophotographic devices

Legal Events

Date Code Title Description
MA Patent expired
MA Patent expired

Owner name: ELKOTRADE AG