JP3557457B2 - SiC膜の製造方法、及びSiC多層膜構造の製造方法 - Google Patents

SiC膜の製造方法、及びSiC多層膜構造の製造方法 Download PDF

Info

Publication number
JP3557457B2
JP3557457B2 JP2001025523A JP2001025523A JP3557457B2 JP 3557457 B2 JP3557457 B2 JP 3557457B2 JP 2001025523 A JP2001025523 A JP 2001025523A JP 2001025523 A JP2001025523 A JP 2001025523A JP 3557457 B2 JP3557457 B2 JP 3557457B2
Authority
JP
Japan
Prior art keywords
sic
film
main surface
manufacturing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001025523A
Other languages
English (en)
Other versions
JP2002234799A (ja
Inventor
眞希 末光
日出樹 中澤
Original Assignee
東北大学長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東北大学長 filed Critical 東北大学長
Priority to JP2001025523A priority Critical patent/JP3557457B2/ja
Priority to US09/938,584 priority patent/US6566279B2/en
Priority to CA002356229A priority patent/CA2356229C/en
Publication of JP2002234799A publication Critical patent/JP2002234799A/ja
Application granted granted Critical
Publication of JP3557457B2 publication Critical patent/JP3557457B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、SiC膜の製造方法、及びSiC多層膜構造の製造方法に関し、詳しくは、耐環境デバイス、各種半導体デバイスに対して好適に用いることのできるSiC膜の製造方法、及びSiC多層膜構造の製造方法に関する。
【0002】
【従来の技術】
SiCはSiに比べてバンドギャップ、絶縁破壊電界、飽和ドリフト速度、熱伝導率が大きく、SiやGaAsでは対処できない高温、放射線下での耐環境デバイス、あるいは高周波・パワーデバイス用半導体材料として有望である。
また、SiCは、マイクロ波デバイス、青紫レーザなどGaNデバイス用基板としても有望である。これはSiCが導電性を有するために、基板裏面に容易に電極を形成できること、さらには高い熱伝導度により放射性に優れることなどに起因する。また、璧開により共振器ミラーを容易に作製できること、GaN系結晶との格子不整合が小さい(3%)ことなどの理由にもよる。
【0003】
従来、SiC基板は昇華法又はSi基板上へのヘテロエピタキシー法によって形成していた。昇華法による場合、マイクロパイプと呼ばれる中空貫通欠陥ができやすく、また大型のSiC基板を作製することが困難であるという問題があった。
【0004】
一方、へテロエピタキシー法は、安価で大面積のSiウエハ上へのSiC膜の形成が容易であることから、大面積のSiC基板を容易に形成できる。しかしながら、SiとSiCとは約20%の格子定数差を有するため、へテロエピタキシー法においては、前記SiC膜を形成する以前に、Si基板の情報を保持したSiC下地膜を形成する必要がある。
【0005】
SiC下地膜は、いわゆる炭化法によって形成される。すなわち、前記Si基板を約900℃以上の高温に加熱するとともに、分子中に炭素源のみを有する炭化水素ガスを前記Si基板上に供給し、前記Si基板のSi原子と前記炭化水素ガスの炭素原子との表面化学反応によって、前記Si基板上に極薄で単結晶のSiC下地膜を形成するものである。
【0006】
【発明が解決しようとする課題】
しかしながら、炭化法によってSiC下地膜を形成すると、Si基板内で中空ボイドが発生したり、Si原子の外方拡散によって界面平坦性が劣化する。したがって、SiC下地膜の結晶性が劣化し、その結果として平坦性も劣化する。このため、SiC下地膜上に形成するSiC膜の結晶性及び平坦性も劣化し、良好な特性を有するSiC基板を提供することができないでいた。
【0007】
本発明は、SiC膜を形成する部材を高温加熱することなく、結晶性及び平坦性に優れたSiC膜を製造する方法を提供することを目的するとともに、この方法を利用してSiC下地膜を形成する工程を含む、SiC多層膜構造を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成すべく、本発明は、Siを含んだ部材の主面上にSi−H結合とSi−C結合とを有する有機珪素ガスを供給するとともに、前記主面上に飽和吸着させた後、前記部材の前記主面上にSiC膜を形成することを特徴とする、SiC膜の製造方法に関する。
【0009】
本発明者らは、高温加熱を必要としない、新規なSiC膜の製造方法を見いだすべく鋭意検討を実施した。その結果、数々の製造方法を試みるとともに、製造条件を種々変化させる過程において、従来の炭化水素ガスに代えて、Si−H結合及びSi−C結合を有する有機珪素ガスを用いることによって、SiC膜を形成すべき部材の高温加熱を必要とすることなく、前記SiC膜を形成できることを見いだした。
【0010】
したがって、本発明のSiC膜の製造方法によれば、SiC膜を形成すべきSi含有部材を900℃以上の高温に加熱する必要がない。このため、前記部材内の中空ボイドやSi原子の外方拡散に起因した界面平坦性の劣化を抑制することができ、この結果、結晶性及びその結果として平坦性に優れたSiC膜を形成することができる。
【0011】
なお、本発明の方法においては、Si含有部材を加熱する操作を全く排除するものではない。好ましくは、前記Si含有部材を800℃以下、さらには450〜650℃に加熱する。これによって、SiC膜の高い結晶性を維持した状態で、前記SiC膜の平坦性をさらに向上させることができる。
【0012】
さらに、本発明のSiC膜の製造方法によれば、前記部材の前記主面上に前記有機珪素ガスを飽和吸着した後に、例えば加熱処理を施すことによって前記SiC膜を形成するようにしている。この場合、前記部材の前記主面を酸化などから防止するとともに、前記主面上において構成元素以外の不純物を介在させることなく、清浄な状態に保持しておくことができる。
【0013】
本発明のSiC膜の製造方法は、SiC基板などのSiC多層膜構造に対して好ましく用いることができる。すなわち、Siを含んだ部材の主面上に形成すべきSiC下地膜を、前述した本発明のSiC膜の製造方法によって形成するものであり、Siを含んだ部材の主面上にSi−H結合とSi−C結合とを有する有機珪素ガスを供給し、前記部材の前記主面上にSiC下地膜を形成することを特徴とする。
【0014】
本発明のSiC多層膜構造の製造方法によれば、上述したSiC膜の製造方法と同様の効果によって、結晶性及び平坦性に優れたSiC下地膜を形成することができ、その結果、前記SiC下地膜上に形成するSiC膜の結晶性及び平坦性をも良好なものとすることができる。
したがって、本発明のSiC多層膜構造の製造方法によれば、結晶性及び平坦性に優れたSiC基板を提供することができる。
【0015】
【発明の実施の形態】
以下、本発明を発明の実施の形態に則して詳細に説明する。
本発明においては、上述したように、Si−H結合及びSi−C結合を有する有機珪素ガスを用いることが必要である。有機珪素ガスの種類は、本発明にしたがって高結晶性かつ高平坦性のSiC膜を形成できれば特には限定されない。
【0016】
しかしながら、モノメチルシラン、モノエチルシラン、及びモノプロピルシランなどのモノシラン系ガスを用いることが好ましい。これらのモノシラン系ガスは容易に分解するとともに、反応性に富むため、目的とする高結晶性かつ高平坦性のSiC膜を簡易に形成することができる。また、SiC膜を形成する際に、Si含有部材を加熱することが好ましい場合においても、その加熱温度を低減することができる。
【0017】
上記モノシラン系ガスの中でも、反応性が極めて高く、上記作用効果をより効果的に奏することができることから、モノメチルシランを用いることが好ましい。
【0018】
これらのガスは、反応容器中に設置されたSi含有部材の主面上に対して、例えば、7.5×10 −8 Pa〜7.5×10 −7 Paの圧力下において供給する。但し、上記ガスの供給条件は、本製造方法に用いる反応容器の形状、大きさ、並びに前記Si含有部材の設置位置と前記ガスの導入位置との相対関係などによって決定される。
【0019】
また、Si含有部材は、前述したように、好ましくは800℃以下、さらに好ましくは、450〜650℃の温度に加熱する。これによって、SiC膜の高い結晶性を維持したまま、平坦性をさらに向上させることができる。上記加熱処理は、基板を支持するホルダー内に設置されたヒータを用いて、あるいは基板の上方に設けた赤外線ヒータなどによって行うことができる。
【0020】
加熱処理を伴う場合においては、Si含有部材を所定の反応容器内に設置し、このSi含有部材を上記温度範囲内に加熱した後、例えば、上述したようなモノシラン系ガスを前記反応容器内に導入し、前記Si含有部材の主面上に供給することによってSiC膜の形成を行うことができる。
【0021】
また、前記モノシラン系ガスの前記Si含有部材の前記主面に対する飽和吸着は、前記Si含有部材を前記反応容器内に設置した後、前記モノシラン系ガスなどを前記反応容器内に導入し、前記Si含有部材を前記温度範囲にまで加熱する以前に行う。
【0022】
前記モノシラン系ガスの飽和吸着により、Si含有部材の主面を酸化などから防止するとともに、前記主面上においてSiC膜の構成元素以外の不純物を介在させることなく、清浄な状態に保持しておくことができる。なお、飽和吸着の際には、前記Si含有部材をSiC膜が形成しないような低温度に加熱しても良い。
【0023】
本発明の製造方法においては、SiC膜をSi含有部材の主面上に形成するが、Si含有部材としては、Si部材、SiC部材、SiGe部材及びSiGeC部材などを例示することができる。しかしながら、安価であって大面積のものを容易に準備することができ、その結果として、本発明の製造方法を、半導体デバイスのSiC基板などの製造に対して好適に用いることのできることから、Si部材を用いることが好ましい。
また、Si含有部材は、必ずしも単結晶である必要はなく、多結晶であっても良い。
【0024】
上述した製造方法は、SiC膜を含むSiC多層膜構造の製造に対しても用いることができる。この場合においては、上述した要件及び各種の好ましい態様にしたがって、所定のSi含有部材の主面上にSiC下地膜を形成する。すなわち、上述した本発明の製造方法をSiC下地膜に対して適用する。その後、このSiC下地膜上に、目的とする1層あるいは2層以上のSiC膜を形成してSiC多層膜構造を得る。
【0025】
SiC膜は、上記モノシラン系ガスなどの有機珪素ガスを用いて、Si含有部材を、例えば、900〜1000℃に加熱して形成する。
【0026】
前記SiC下地膜上に1層のSiC膜を形成した場合、このSiC膜は厚さ350Åで、その(200)面からのX線回折による結晶ピークの半値幅が0.68度以下の高い結晶性を示す。
【0027】
Si含有部材としてSi部材を用い、このSi部材の主面上に上記SiC下地膜を形成し、このSiC下地膜上に1層のSiC膜を形成してSiC多層膜構造を製造することにより、このSiC膜は上述したような高い結晶性及びこれに起因して高い平坦性を有するようになるため、半導体デバイスなどのSiC基板として好適に用いることができる。
【0028】
【実施例】
本実施例においては、上記製造方法を用いてSiC多層膜構造を作製した。
(SiC下地膜の形成)
最初に、Si(100)単結晶部材を反応容器内に設置し、1000℃に加熱することによってフラッシュアニールを20分間実施して、前記Si単結晶部材の主面を清浄した。次いで、前記Si単結晶部材を300℃に加熱するとともに、前記反応容器内にモノメチルシランを圧力が3.7×10 −7 Paとなるように導入して、前記モノメチルシランを前記Si単結晶部材の主面上に10秒間飽和吸着させた。
【0029】
次いで、前記Si単結晶部材を650℃に加熱し、5分間保持して前記主面上にSiC下地膜を形成した。
【0030】
図1は、このようにして形成したSiC下地膜の反射高速電子線回折像である。図1においては、立方晶のSiCに基づくスポットのみが観察され、結晶性のSiC下地膜が一様に形成されていることが判明した。すなわち、Si単結晶部材を900℃以上に加熱する従来の炭化法に比較して、約250℃以上低い温度でSiC下地膜を形成できることが分かる。
【0031】
(SiC膜の形成)
次いで、モノメチルシランの圧力を3.7×10 −7 Paに保持した状態で、前記Si単結晶部材を900℃に加熱し、60分間保持することによって前記SiC下地膜上にSiC膜を形成した。
【0032】
図2は、上記SiC膜の反射高速電子線回折像である。図2から明らかなように、前記SiC膜は立方晶系のSiC単結晶であり、SiCの1×1スポットが<001>方向へのストリークを伴っていることから、前記SiC膜は平坦な成長表面を有していることが分かる。
【0033】
図3は、上記SiC膜のX線回折パターンである。41.36度において立方晶系のSiC単結晶からの結晶ピークが観察されるとともに、90.1度において(400)面からのピークが観察され、Si(100)基板の結晶情報を正しく保持した立方晶系のSiC薄膜が成長していることが分かる。また、(200)面からのピーク半値幅は約0.68度(厚さ350Å)である。
【0034】
図4は、上記SiC膜と、SiC下地膜を形成することなく、前記Si単結晶上に900℃の温度で直接形成したSiC膜との赤外吸収スペクトルを比較して示すグラフである。
【0035】
本発明にしたがって形成した上記SiC膜の赤外吸収スペクトルを示すグラフ(a)は、半値幅約38cm−1で対称性の良好な立方晶系のSiC単結晶に基づく光学フォノン吸収ピーク(795cm−1)を示し、SiC薄膜が歪みの緩和された高品質のものであることが分かる。
一方、Si単結晶基板上に直接形成されたSiC膜の赤外吸収スペクトルを示すグラフ(b)には、850〜950cm−1にエキストラ成分が見られる。このエキストラ成分はSi/SiC界面の粗れ、及び界面の粗れによって発生したSiC膜中の欠陥に起因するものである。
【0036】
図5は、上記のようにして作製したSiC多層膜構造の断面における透過型電子顕微鏡写真であり、図6は、アセチレンガスを用いた従来の炭化法によって形成したSiC多層膜構造の断面における透過型電子顕微鏡写真である。
【0037】
図5から明らかなように、上記実施例において得たSiC多層膜構造は、中空ボイドのない原子的に平坦なSi/SiC界面を有することが分かる。一方、図6から明らかなように、従来の炭化法によって作製したSiC多層膜構造においては、Si/SiC界面において巨大な中空ボイドが発生していることが分かる。
すなわち、上記実施例において、極めて平坦なSi/SiC界面を有するSiC多層膜構造が形成されていることが分かる。
【0038】
以上、具体例を示しながら発明の実施の形態に則して本発明を説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない範囲において、あらゆる変形や変更が可能である。
【0039】
【発明の効果】
以上説明したように、本発明によれば、SiC膜を形成する部材を高温加熱することなく、結晶性及び平坦性に優れたSiC膜を製造する方法を提供することができる。その結果、この方法を利用してSiC下地膜を形成することにより、結晶性及び平坦性に優れたSiC基板などのSiC多層膜構造を提供することができる。
【図面の簡単な説明】
【図1】本発明の方法により作製したSiC下地膜の反射高速電子線回折像である。
【図2】本発明の方法により作製したSiC下地膜上に形成したSiC膜の反射高速電子線回折像である。
【図3】本発明の方法により作製したSiC下地膜上に形成したSiC膜のX線回折パターンである。
【図4】本発明の方法により作製したSiC下地膜上に形成したSiC膜、及び従来の方法により、Si単結晶上に直接形成したSiC膜の赤外吸収スペクトルである。
【図5】本発明の方法により作製したSiC多層膜構造の断面における透過型電子顕微鏡写真である。
【図6】従来の炭化法によって形成したSiC多層膜構造の断面における原子間力顕微鏡写真である。

Claims (15)

  1. Siを含んだ部材の主面上にSi−H結合とSi−C結合とを有する有機珪素ガスを供給するとともに、前記主面上に飽和吸着させた後、前記部材の前記主面上にSiC膜を形成することを特徴とする、SiC膜の製造方法。
  2. 前記部材を800℃以下に加熱することを特徴とする、請求項1に記載のSiC膜の製造方法。
  3. 前記部材を450〜650℃に加熱することを特徴とする、請求項2に記載のSiC膜の製造方法。
  4. 前記有機珪素ガスは、モノシラン系ガスであることを特徴とする、請求項1〜3のいずれか一に記載のSiC膜の製造方法。
  5. 前記有機珪素ガスは、モノメチルシランであることを特徴とする、請求項4に記載のSiC膜の製造方法。
  6. 前記部材は、Si部材であることを特徴とする、請求項1〜5のいずれか一に記載のSiC膜の製造方法。
  7. Siを含んだ部材の主面上にSi−H結合とSi−C結合とを有する有機珪素ガスを供給するとともに、前記主面上に飽和吸着させた後、前記部材の前記主面上にSiC下地膜を形成することを特徴とする、SiC多層膜構造の製造方法。
  8. 前記部材を800℃以下に加熱することを特徴とする、請求項に記載のSiC多層膜構造の製造方法。
  9. 前記部材を450〜650℃に加熱することを特徴とする、請求項に記載のSiC多層膜構造の製造方法。
  10. 前記有機珪素ガスは、モノシラン系ガスであることを特徴とする、請求項7〜9のいずれか一に記載のSiC多層膜構造の製造方法。
  11. 前記有機珪素ガスは、モノメチルシランであることを特徴とする、請求項10に記載のSiC多層膜構造の製造方法。
  12. 前記部材は、Si部材であることを特徴とする、請求項7〜11のいずれか一に記載のSiC多層膜構造の製造方法。
  13. 前記SiC下地膜上に、SiC膜を形成することを特徴とする、請求項7〜12のいずれか一に記載のSiC多層膜構造の製造方法。
  14. 前記SiC膜は、厚さ350ÅにおいてX線回折による(200)面からの回折ピークの半値幅が0.68度以下であることを特徴とする、請求項13に記載のSiC多層膜構造の製造方法。
  15. 前記Siを含んだ部材はSi基板であり、前記SiC多層膜構造はSiC基板を構成することを特徴とする、請求項13又は14に記載のSiC多層膜構造の製造方法。
JP2001025523A 2001-02-01 2001-02-01 SiC膜の製造方法、及びSiC多層膜構造の製造方法 Expired - Lifetime JP3557457B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001025523A JP3557457B2 (ja) 2001-02-01 2001-02-01 SiC膜の製造方法、及びSiC多層膜構造の製造方法
US09/938,584 US6566279B2 (en) 2001-02-01 2001-08-27 Method for fabricating a SiC film and a method for fabricating a SiC multi-layered film structure
CA002356229A CA2356229C (en) 2001-02-01 2001-08-29 A method for fabricating a sic film and a method for fabricating a sic multi-layered film structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001025523A JP3557457B2 (ja) 2001-02-01 2001-02-01 SiC膜の製造方法、及びSiC多層膜構造の製造方法

Publications (2)

Publication Number Publication Date
JP2002234799A JP2002234799A (ja) 2002-08-23
JP3557457B2 true JP3557457B2 (ja) 2004-08-25

Family

ID=18890496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001025523A Expired - Lifetime JP3557457B2 (ja) 2001-02-01 2001-02-01 SiC膜の製造方法、及びSiC多層膜構造の製造方法

Country Status (3)

Country Link
US (1) US6566279B2 (ja)
JP (1) JP3557457B2 (ja)
CA (1) CA2356229C (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002305733A1 (en) * 2001-05-30 2002-12-09 Asm America, Inc Low temperature load and bake
US7153772B2 (en) * 2003-06-12 2006-12-26 Asm International N.V. Methods of forming silicide films in semiconductor devices
US8278176B2 (en) 2006-06-07 2012-10-02 Asm America, Inc. Selective epitaxial formation of semiconductor films
US7789965B2 (en) * 2006-09-19 2010-09-07 Asm Japan K.K. Method of cleaning UV irradiation chamber
US8367548B2 (en) * 2007-03-16 2013-02-05 Asm America, Inc. Stable silicide films and methods for making the same
US20080289650A1 (en) * 2007-05-24 2008-11-27 Asm America, Inc. Low-temperature cleaning of native oxide
US7759199B2 (en) 2007-09-19 2010-07-20 Asm America, Inc. Stressor for engineered strain on channel
US7871937B2 (en) 2008-05-16 2011-01-18 Asm America, Inc. Process and apparatus for treating wafers
US8367528B2 (en) * 2009-11-17 2013-02-05 Asm America, Inc. Cyclical epitaxial deposition and etch
US9885123B2 (en) 2011-03-16 2018-02-06 Asm America, Inc. Rapid bake of semiconductor substrate with upper linear heating elements perpendicular to horizontal gas flow
US8809170B2 (en) 2011-05-19 2014-08-19 Asm America Inc. High throughput cyclical epitaxial deposition and etch process
JP2013035731A (ja) * 2011-08-10 2013-02-21 Seiko Epson Corp 単結晶炭化シリコン膜の製造方法及び単結晶炭化シリコン膜付き基板の製造方法
JP6592961B2 (ja) * 2015-05-19 2019-10-23 セイコーエプソン株式会社 炭化ケイ素基板および炭化ケイ素基板の製造方法
JP2017069239A (ja) * 2015-09-28 2017-04-06 新日鐵住金株式会社 炭化珪素のエピタキシャル成長方法
KR101866869B1 (ko) * 2016-08-18 2018-06-14 주식회사 티씨케이 SiC 소재 및 SiC 복합 소재
JP7259615B2 (ja) * 2019-07-24 2023-04-18 株式会社Sumco ヘテロエピタキシャルウェーハの製造方法
JP7259906B2 (ja) * 2021-09-21 2023-04-18 信越半導体株式会社 ヘテロエピタキシャルウェーハの製造方法
CN118202096A (zh) * 2021-11-08 2024-06-14 信越半导体株式会社 异质外延片的制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313078A (en) * 1991-12-04 1994-05-17 Sharp Kabushiki Kaisha Multi-layer silicon carbide light emitting diode having a PN junction
US5677236A (en) * 1995-02-24 1997-10-14 Mitsui Toatsu Chemicals, Inc. Process for forming a thin microcrystalline silicon semiconductor film

Also Published As

Publication number Publication date
US20020102862A1 (en) 2002-08-01
JP2002234799A (ja) 2002-08-23
CA2356229C (en) 2004-10-26
CA2356229A1 (en) 2002-08-01
US6566279B2 (en) 2003-05-20

Similar Documents

Publication Publication Date Title
JP3557457B2 (ja) SiC膜の製造方法、及びSiC多層膜構造の製造方法
JP5304713B2 (ja) 炭化珪素単結晶基板、炭化珪素エピタキシャルウェハ、及び薄膜エピタキシャルウェハ
US20110091647A1 (en) Graphene synthesis by chemical vapor deposition
JP2007238377A (ja) 単結晶ダイヤモンド成長用基材の製造方法
JP7290135B2 (ja) 半導体基板の製造方法及びsoiウェーハの製造方法
JP3769642B2 (ja) n型半導体ダイヤモンド及びその製造方法
JP4301592B2 (ja) 窒化物半導体層付き基板の製造方法
JP2008222509A (ja) SiCエピタキシャル膜付き単結晶基板の製造方法
JP3508356B2 (ja) 半導体結晶成長方法及び半導体薄膜
JP6927429B2 (ja) SiCエピタキシャル基板の製造方法
JP4789035B2 (ja) n型ダイヤモンドを用いた半導体デバイス
JP2009274899A (ja) 炭化珪素エピタキシャル用基板の製造方法
JP2006036613A (ja) ケイ素基板上に立方晶炭化ケイ素結晶膜を形成する方法
JP7036163B2 (ja) 炭化珪素エピタキシャル基板
JP7259906B2 (ja) ヘテロエピタキシャルウェーハの製造方法
JPS6233422A (ja) シリコンカ−バイドのエピタキシヤル成長方法
JP2010225734A (ja) 半導体基板の製造方法
JP2010225733A (ja) 半導体基板の製造方法
JP3831764B2 (ja) 高誘電率金属酸化物膜の作製方法、高誘電率金属酸化物膜、多層膜構造体、ゲート絶縁膜、及び半導体素子
JPH06334171A (ja) ダイヤモンド薄膜素子の製造方法
KR101878335B1 (ko) 그래핀 시트, 이의 제조 방법, 및 이를 포함하는 전자 소자
JP4413558B2 (ja) ウルツ鉱型iii−v族窒化物薄膜結晶の製造法
JP2023082528A (ja) 単結晶ダイヤモンド膜の形成方法
JP2009302097A (ja) 単結晶SiC基板の製造方法および単結晶SiC基板
JP2001244199A (ja) ベータ鉄シリサイドの成膜方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3557457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040617

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20041006

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term