JP7259906B2 - ヘテロエピタキシャルウェーハの製造方法 - Google Patents
ヘテロエピタキシャルウェーハの製造方法 Download PDFInfo
- Publication number
- JP7259906B2 JP7259906B2 JP2021153418A JP2021153418A JP7259906B2 JP 7259906 B2 JP7259906 B2 JP 7259906B2 JP 2021153418 A JP2021153418 A JP 2021153418A JP 2021153418 A JP2021153418 A JP 2021153418A JP 7259906 B2 JP7259906 B2 JP 7259906B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- sic
- temperature
- pressure
- sic single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000013078 crystal Substances 0.000 claims description 99
- 239000000758 substrate Substances 0.000 claims description 54
- 239000007789 gas Substances 0.000 claims description 43
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 41
- 230000015572 biosynthetic process Effects 0.000 claims description 28
- 229910052710 silicon Inorganic materials 0.000 claims description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 17
- 239000010703 silicon Substances 0.000 claims description 17
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 claims description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 claims description 7
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 4
- 239000010408 film Substances 0.000 description 121
- 230000006911 nucleation Effects 0.000 description 20
- 238000010899 nucleation Methods 0.000 description 20
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 18
- 229910002601 GaN Inorganic materials 0.000 description 17
- 238000002441 X-ray diffraction Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 16
- 235000012431 wafers Nutrition 0.000 description 14
- 238000001228 spectrum Methods 0.000 description 10
- 239000002994 raw material Substances 0.000 description 9
- 238000000137 annealing Methods 0.000 description 8
- 238000003917 TEM image Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/16—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/186—Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/20—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02428—Structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/02447—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02609—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66234—Bipolar junction transistors [BJT]
- H01L29/66325—Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02502—Layer structure consisting of two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
- H01L29/7395—Vertical transistors, e.g. vertical IGBT
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Recrystallisation Techniques (AREA)
Description
これらの特許文献では、シリコン基板上に3C-SiC単結晶膜が成長できること、ならびにリアクタの種類を選べば直径300mm基板のような大口径基板へ3C-SiC単結晶膜が成長できることが開示されている。
これらの特許文献における3C-SiC単結晶膜の形成は、炭素源前駆体を含むガスとシリコン源前駆体を含むガスの2種類の原料ガスをキャリアガスとともにリアクタ内に導入し、高温処理(~1200℃)ないしは高温処理とプラズマ処理を組合せてこれらの原料ガスを分解して成長することを特徴としている。
また、特許文献5には、原料ガスとしてモノメチルシランを用いて、面方位が(111)で直径が8インチ(200mm)未満の単結晶シリコン基板上に3C-SiC単結晶層を成長する方法が公開されているが、このときの成膜条件は単結晶シリコン基板の温度が1050~1100℃の成膜条件に達した後で、5~12時間の間、チャンバー内の圧力を2×10-4~3×10-4Torr(0.02~0.03Pa)の条件で行うというものであり、極めて圧力が低い条件で3C-SiC単結晶層の形成を行っているので形成速度が遅いという問題がある。
減圧CVD装置を用いて、
前記単結晶シリコン基板の表面の自然酸化膜を水素ベイクにより除去する第一工程と、
前記減圧CVD装置内に炭素とケイ素を含むソースガスを供給しつつ、圧力が13332Pa以下、温度が300℃以上950℃以下の条件で前記単結晶シリコン基板上にSiCの核形成を行う第二工程と、圧力が13332Pa以下、温度が800℃以上1200℃未満の条件でSiC単結晶を成長させて前記3C-SiC単結晶膜を形成する第三工程と、
を含むことを特徴とするヘテロエピタキシャルウェーハの製造方法を提供する。
また、第二工程のSiCの核形成がしやすい圧力及び温度条件と第三工程のSiC単結晶が成長しやすい圧力及び温度条件を組み合わせることにより、目的とする良質な3C-SiC単結晶膜厚を有するヘテロエピタキシャルウェーハを効率よく製造することが可能となる。
また、圧力を13332Pa(100Torr)以下とすることで、反応活性種が気相中で原料ガスと反応するなど、二次あるいはさらに高次の反応が起こるのを防ぐことができるので、ヘテロエピタキシャル成長を確実なものとすることができる。これにより3C-SiCが多結晶化してしまうのを防ぐことができる。
また、最初に炭素源前駆体を含むガスにより単結晶シリコン基板表面に炭素原子を付着させて核形成をしてから、炭素源前駆体を含むガスとシリコン源前駆体を含むガスで3C-SiC単結晶膜を形成する方法と比較して、気相中の反応活性種を制御しやすく、ヘテロエピタキシャル成長をより一層確実なものとすることができ、3C-SiC単結晶の成長が停止することなく厚膜の3C-SiC単結晶膜の形成もより容易となる。
前記SiCの核形成と、該SiCの核形成に引き続いて前記3C-SiC単結晶膜の形成を連続して行うことができる。
前述したように単結晶シリコン基板上への3C-SiC単結晶膜の形成が可能なヘテロエピタキシャルウェーハの製造方法が求められていた。そこで本発明者らが鋭意研究を行ったところ、減圧CVD装置を用いて、単結晶シリコン基板表面の自然酸化膜除去のための水素ベイク(第一工程)に加え、ソースガス(炭素とケイ素を含む)を供給しつつ、圧力・温度についてSiCの核形成がしやすい所定の条件[圧力:13332Pa以下、温度:300℃以上950℃以下](第二工程)とSiC単結晶が成長しやすい所定の条件[圧力:13332Pa以下、温度:800℃以上1200℃未満](第三工程)を組み合わせて行うことで、高品質の3C-SiC単結晶膜を効率よく形成できることを見出し、本発明を完成させた。
(第1の実施形態)
図1は第1の実施形態の成長シーケンスの一例を示したものである。水素ベイク(以下、H2アニールとも言う)の第一工程、SiCの核形成工程の第二工程、SiC単結晶の成長工程(3C-SiC単結晶膜の形成工程)の第三工程を順に行っている。以下、各工程について説明する。
<第一工程>
まず、減圧CVD装置(以下、RP-CVD装置とも言う)に単結晶シリコン基板を配置し、水素ガスを導入し、表面の自然酸化膜をH2アニールにより除去する。酸化膜が残っていると、単結晶シリコン基板上にSiCの核形成が出来なくなってしまう。この時のH2アニールは、例えば温度が1000℃以上1200℃以下の条件とすることが好ましい。温度を1000℃以上とすることで、自然酸化膜の残留を防ぐための処理時間が長時間になるのを防ぐことができ、効率的である。また1200℃以下とすれば、高温によるスリップ転位の発生を効果的に防止することができる。ただし、このときのH2アニールの圧力や時間は自然酸化膜が除去できればよく、特に制約はない。
図1に示す例ではH2アニールを1080℃で1分間行っている。また、水素ガスの導入はこの第一工程後においても、第二、第三工程においても引き続き行うことができる(キャリアガス)。
次に、単結晶シリコン基板を所定の圧力と温度に設定し、SiCの原料ガスとして、炭素とケイ素を含むソースガスをRP-CVD装置内に導入してSiCの核形成を行う。ソースガスとしては例えばモノメチルシランまたはトリメチルシラン(TMS)を導入することができる。複数種のガスを用いる場合よりもシンプルであり制御も容易になり、より確実に3C-SiC単結晶膜の形成が可能である。なお、Siと比較してCは原子が小さく気化しやすいので、原料効率を考慮するとトリメチルシランの方が条件設定をより一層しやすい。
このようなソースガスの導入は、この第二工程および次の第三工程で行われる。
SiCの核形成工程において、950℃よりも高温の条件では単結晶シリコン基板と原料ガスとの反応が進行してしまい、単結晶シリコン基板表面にSiCの核形成ができなくなってしまう。また、温度が300℃未満の場合においては、温度が低すぎてSiCの核形成を効率良く行うことができない。
なお、ここで次に説明する第三工程についても併せて考えると、第三工程時に温度が800℃よりも低いとSiCのヘテロエピタキシャル成長が進まない。そこで、例えば第二工程の時点からそのSiCの核形成の温度を好ましくは800℃以上950℃以下、より好ましくは850℃以上900℃以下に設定することができる。このように第二工程の温度を800℃以上950℃以下とすることで、SiCの核形成工程(第二工程)とその後の3C-SiC単結晶膜形成である第三工程とで設定すべき温度範囲が重複するようにすることができ、特にはこれらの第二、第三工程を同一の温度条件で行うことができる。
また、圧力を13332Pa(100Torr)以下とするので、反応活性種が気相中で原料ガスと反応するなど、二次あるいはさらに高次の反応が生じてしまうのを防止できるため、効率的である。圧力の下限値は特に限定されないが、例えば133Pa(1Torr)とすることができる。なお、圧力についても温度と同様に、第二、第三工程で同じ条件とすることができる。
図1に示す例ではこの第二工程および次の第三工程が同一条件であり、同じ圧力、同じ保持温度(900℃)としている。
また、第三工程である3C-SiC単結晶膜形成工程では、圧力が13332Pa(100Torr)以下、温度が800℃以上1200℃未満の条件で行う。このような条件により、効率良くSiC単結晶を成長させて3C-SiC単結晶膜を形成することができる。
なお、成長圧力が13332Paよりも大きいと、形成する3C-SiCが多結晶化してしまう。一方、本発明ではこの第三工程において圧力を13332Pa(100Torr)以下とするので、前述したように気相中で二次あるいはさらに高次の反応を抑制することができ、3C-SiC単結晶膜を確実かつ効率良く形成することができる。そして好ましくは1333Pa(10Torr)以下、さらには133Pa(1Torr)以下とすることができ、これらの条件では3C-SiC単結晶膜直下に空孔が形成されるようになり、ヘテロエピタキシャル層全体の応力を緩和する効果を得ることができる。圧力の下限値は特に限定されないが、例えば133Pa(1Torr)とすることができる。
また温度については、800℃未満では前述したようにSiC単結晶の成長が進まなく、1200℃以上ではスリップ転位が発生し得る。そのため、上記のように800℃以上1200℃未満とする。
図1に示す例では、前述したように第二、第三工程は同一条件であり、SiCの核形成と3C-SiC単結晶膜の形成が連続して行われる。
この場合、3C-SiC単結晶膜の膜厚は例えば2nm程度の薄い膜から数μmの厚膜まで成膜が可能である。
この時のGaN成長は、トリメチルガリウムとトリメチルアンモニウムのような有機金属材料を用いたMOCVDによる成膜を行い、GaNを3μm程度成長させる。
図2は第2の実施形態の成長シーケンスの一例を示したものである。
<第一工程:H2アニール>
まず、RP-CVD装置に単結晶シリコン基板を配置し、表面の自然酸化膜をH2アニールにより除去する。第1の実施形態と同様にして行うことができる。
次に、SiCの核形成工程として単結晶シリコン基板を300℃以上950℃以下、好ましくは800℃以上950℃以下、より好ましくは850℃以上900℃以下の温度に設定し、SiCの原料ガスとしてモノメチルシランまたはトリメチルシランを導入する。核形成時間は例えば5分間とすることができる。
次に、3C-SiC単結晶膜の形成工程として、単結晶シリコン基板温度を1000℃以上1200℃未満の温度まで加熱するとともにSiCの原料ガスとしてモノメチルシランまたはトリメチルシランを導入する。
そして、第三工程における温度を1000℃以上1200℃未満とすることができる。この場合、ヘテロエピキシャル成長を供給ガスの輸送律速とすることが可能である。単結晶シリコン基板の面方位の制約を受けず、また、直径300mmといった大直径のものへの対応も容易になる。
図3は第3の実施形態の成長シーケンスの一例を示したものである。
<第一工程>
まず、RP-CVD装置に単結晶シリコン基板を配置し、表面の自然酸化膜を第1の実施形態と同様の条件でH2アニールを行い除去する。
次に、単結晶シリコン基板表面にSiCの核形成及びそれに続いて3C-SiC単結晶膜の形成を連続して行うため、原料ガスとしてモノメチルシランまたはトリメチルシランを導入しながら300℃以上950℃以下の範囲の温度から1000℃以上1200℃未満の範囲の温度まで徐々に昇温させる。このように、昇温していく過程で第二工程と第三工程を連続して行うことができる。
昇温速度は例えば1℃/sec程度が好ましい。このレベルの昇温速度であれば、速すぎる昇温速度でもないため、設定温度と実温度に乖離が生じるのを効果的に防ぐことができ、温度制御を適切に行える。また遅すぎる昇温速度でもないため、SiCの核形成温度帯の通過時間が長くなり不均一な核形成が生じやすくなったり、ヘテロエピタキシャル成長中の欠陥形成が発生しやすくなったりするのを抑制できる。
図3では、300℃から1130℃まで1℃/secの昇温速度で昇温し、そのまま1130℃で所定時間保持している。
(実施例1)
直径300mm、面方位(111)、ボロンドープの高抵抗単結晶シリコン基板を準備し、RP-CVD装置の反応炉内のサセプター上にウェーハを配置し、1080℃で1分間のH2アニールを行った(第一工程)。
続いて、成長温度を900℃、成長圧力を133Pa、6666Pa、13332Pa(1Torr、50Torr、100Torr)としてトリメチルシランガスを導入し、SiCの核形成工程(第二工程)及び3C-SiC単結晶膜の成長を行った(第三工程)。5分間の成長を行った結果、膜厚はそれぞれ13nm、18nm、31nmとなっていた。
また、成長圧力が133Pa(1Torr)のときの断面TEM像を図5に示す。その結果、3C-SiC単結晶層の直下に空孔が形成されていることが確認できた。
直径300mm、面方位(111)、ボロンドープの高抵抗単結晶シリコン基板を準備し、RP-CVD装置の反応炉内のサセプター上にウェーハを配置し、1080℃で1分間のH2アニールを行った(第一工程)。
続いて、第二工程(SiCの核形成工程)として成長温度を900℃で5分間トリメチルシランガスを導入した。
次に第三工程(3C-SiC単結晶膜形成工程)として成長温度を1190℃まで昇温させてトリメチルシランガスを導入し、3C-SiC単結晶膜の成長を行った。このときの成長圧力は一律133Pa、6666Pa、13332Pa(1Torr、50Torr、100Torr)とした。1分間の成長を行った結果、膜厚はそれぞれ30nm、39nm、45nm程度となっていた。
また、成長圧力が133Pa(1Torr)のときの断面TEM像を図7に示す。その結果、3C-SiC単結晶層の直下に空孔が形成されていることが確認できた。
直径300mm、面方位(111)、ボロンドープの高抵抗単結晶シリコン基板を準備し、RP-CVD装置の反応炉内のサセプター上にウェーハを配置し、1080℃で1分間のH2アニールを行った(第一工程)。
続いて、炉内温度を300℃まで降温させた後、昇温レート1℃/secで1130℃まで昇温させながらトリメチルシランガスを導入して、SiCの核形成工程(第二工程)とそれに続く3C-SiC単結晶膜の形成工程(第三工程)を連続して行った。この時の成長圧力は一律133Pa、6666Pa、13332Pa(1Torr、50Torr、1Torrとした。さらに1130℃まで到達後に10min保持し、3C-SiC単結晶膜の成長を行った結果、膜厚はそれぞれ100nm、115nm、120nm程度となっていた。
また、成長圧力が133Pa(1Torr)のときの断面TEM像を図9に示す。その結果、3C-SiC単結晶層の直下に空孔が形成されていることが確認できた。
直径300mm、面方位(111)、ボロンドープの高抵抗単結晶シリコン基板を準備し、RP-CVD装置の反応炉内のサセプター上にウェーハを配置し、1080℃で1分間のH2アニールを行った(第一工程)。
続いて、成長温度を900℃、成長圧力を13332Pa(100Torr)としてトリメチルシランガスを導入し、SiCの核形成工程(第二工程)及び3C-SiC単結晶膜の成長を行った(第三工程)。このとき、最初の成長圧力を133Pa(1Torr)とし、途中から13332Pa(100Torr)まで上昇させ、5分間の成長を行った結果、膜厚は89nmとなっていた。
3C-SiCの成長圧力(第二工程、第三工程)を19998Pa(150Torr)とした以外は実施例1と同じ条件で3C-SiC単結晶膜の形成を行った。その結果、膜厚は20nm程度となっていた。
その後、In Plane配置にてXRDスペクトルを確認したところ、Si(220)に平行な3C-SiC(220)のピークの他に3C-SiC(111),3C-SiC(311)のピークが確認され、多結晶の3C-SiC膜が成長していることが確認された。
3C-SiCの成長圧力(第二工程、第三工程)を一律19998Pa(150Torr)とした以外は実施例2と同じ条件で3C-SiC単結晶膜の形成を行った。その結果、膜厚は50nm程度となっていた。
成膜後、In Plane配置にてXRDスペクトルを確認したところ、Si(220)に平行な3C-SiC(220)のピークの他に3C-SiC(111),3C-SiC(311)のピークが確認され、多結晶の3C-SiC膜が成長していることが確認された。
3C-SiCの成長圧力(第二工程、第三工程)を一律19998Pa(150Torr)とした以外は実施例3と同じ条件で3C-SiC単結晶膜の形成を行った。その結果、膜厚は130nm程度となっていた。
成膜後、In plane配置にてXRDスペクトルを確認したところ、Si(220)に平行な3C-SiC(220)のピークの他に3C-SiC(111),3C-SiC(311)のピークが確認され、多結晶の3C-SiC膜が成長していることが確認された。
つぎに、実施例1の方法で成長させた3C-SiC基板をMO-CVD装置に配置し、1100℃の成長温度でAlNバッファ層を形成し、その上に1190℃でGaNを成長させた。
その後、Out of Plane配置でGaNのロッキングカーブの半値幅をXRDスペクトルで測定したところ、640となり、3C-SiCエピタキシャル層が形成されていない単結晶シリコン基板上に同条件でGaNを成長させたときの半値幅774と比べて同等かそれ以上の膜質のGaN層が成長できることがわかった。
第二工程、第三工程の成長温度を950℃とした以外は実施例1の成長圧力が13332Pa(100Torr)の場合と同じ条件で3C-SiC単結晶膜の形成を行った。その結果、膜厚は33nm程度となっていた。
その後、In Plane配置にてXRDスペクトルを確認したところ、Si(220)に平行な3C-SiC(220)のピークを確認することが出来、単結晶の3C-SiC膜が成長していることが確認された。
第二工程、第三工程の成長温度をそれぞれ300℃、800℃とした以外は実施例2の成長圧力が13332Pa(100Torr)の場合と同じ条件で3C-SiC単結晶膜の形成を行った。その結果、膜厚は29nm程度となっていた。
その後、In Plane配置にてXRDスペクトルを確認したところ、Si(220)に平行な3C-SiC(220)のピークを確認することが出来、単結晶の3C-SiC膜が成長していることが確認された。
第二工程の成長温度を200℃または1000℃とした以外は実施例2と同じ条件で3C-SiC単結晶膜の形成を行った。その結果、膜厚はそれぞれ2nm、4nm程度となっていた。
このように形成された膜厚は実施例2に比べて極めて薄く、効率が著しく悪かった。これは、第二工程の温度が低すぎたり高すぎたりしたためSiCの核形成が十分に行われず、そのため第三工程でヘテロエピタキシャル成長がほとんどなされなかったためと考えられる。
第三工程の成長温度を700℃または1250℃とした以外は実施例2と同じ条件で3C-SiC単結晶膜の形成を行った。その結果、膜厚はそれぞれ7nm、50nm程度となっていた。
このように700℃の場合は形成された膜厚が実施例2に比べて極めて薄く、効率が著しく悪かった。また、1250℃の場合はスリップ転位が発生してしまった。
Claims (11)
- 単結晶シリコン基板上に3C-SiC単結晶膜をヘテロエピタキシャル成長させるヘテロエピタキシャルウェーハの製造方法であって、
減圧CVD装置を用いて、
面方位(111)の前記単結晶シリコン基板の表面の自然酸化膜を水素ベイクにより除去する第一工程と、
前記減圧CVD装置内に炭素とケイ素を含むソースガスを供給しつつ、圧力が13332Pa以下、温度が300℃以上950℃以下の条件で前記単結晶シリコン基板上にSiCの核形成を行う第二工程と、圧力が133Pa以上13332Pa以下、温度が800℃以上1200℃未満の条件でSiC単結晶を成長させて前記3C-SiC単結晶膜を形成する第三工程と、
を含み、
前記第三工程の少なくとも初期段階を、圧力が1333Pa以下の条件で行うことにより、前記3C-SiC単結晶膜直下に空孔を形成することを特徴とするヘテロエピタキシャルウェーハの製造方法。 - 前記ソースガスとしてモノメチルシランまたはトリメチルシランを用いることを特徴とする請求項1に記載のヘテロエピタキシャルウェーハの製造方法。
- 前記第一工程を、温度が1000℃以上1200℃以下の条件で行うことを特徴とする請求項1または請求項2に記載のヘテロエピタキシャルウェーハの製造方法。
- 前記第二工程を、133Pa以上1333Pa以下の条件で行うことを特徴とする請求項1から請求項3のいずれか一項に記載のヘテロエピタキシャルウェーハの製造方法。
- 前記第三工程を、前記第二工程の条件よりも、圧力と温度のうち1つ以上を高くして行うことを特徴とする請求項1から請求項4のいずれか一項に記載のヘテロエピタキシャルウェーハの製造方法。
- 前記第三工程を、温度が1000℃以上1200℃未満の条件で行うことを特徴とする請求項5に記載のヘテロエピタキシャルウェーハの製造方法。
- 前記第三工程中に、圧力と温度のうち1つ以上を高くすることを特徴とする請求項1から請求項6のいずれか一項に記載のヘテロエピタキシャルウェーハの製造方法。
- 前記第二工程、前記第三工程を、温度が300℃以上950℃以下の範囲から1000℃以上1200℃未満の範囲に徐々に昇温する条件で行うことにより、
前記SiCの核形成と、該SiCの核形成に引き続いて前記3C-SiC単結晶膜の形成を連続して行うことを特徴とする請求項7に記載のヘテロエピタキシャルウェーハの製造方法。 - 前記昇温を、1℃/secの昇温速度で行うことを特徴とする請求項8に記載のヘテロエピタキシャルウェーハの製造方法。
- 前記形成した3C-SiC単結晶膜の表面に、さらにGaNを成長させてGaN層を形成することを特徴とする請求項1から請求項9のいずれか一項に記載のヘテロエピタキシャルウェーハの製造方法。
- 前記形成した3C-SiC単結晶膜の表面に、さらにSiを成長させてSi層を形成することを特徴とする請求項1から請求項9のいずれか一項に記載のヘテロエピタキシャルウェーハの製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021153418A JP7259906B2 (ja) | 2021-09-21 | 2021-09-21 | ヘテロエピタキシャルウェーハの製造方法 |
KR1020247008353A KR20240069717A (ko) | 2021-09-21 | 2022-06-30 | 헤테로 에피택셜 웨이퍼의 제조방법 |
PCT/JP2022/026315 WO2023047755A1 (ja) | 2021-09-21 | 2022-06-30 | ヘテロエピタキシャルウェーハの製造方法 |
CN202280062298.1A CN117940621A (zh) | 2021-09-21 | 2022-06-30 | 异质外延晶圆的制造方法 |
EP22872512.3A EP4407077A1 (en) | 2021-09-21 | 2022-06-30 | Method for producing heteroepitaxial wafer |
TW111125087A TW202314035A (zh) | 2021-09-21 | 2022-07-05 | 異質磊晶晶圓的製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021153418A JP7259906B2 (ja) | 2021-09-21 | 2021-09-21 | ヘテロエピタキシャルウェーハの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023045163A JP2023045163A (ja) | 2023-04-03 |
JP7259906B2 true JP7259906B2 (ja) | 2023-04-18 |
Family
ID=85720430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021153418A Active JP7259906B2 (ja) | 2021-09-21 | 2021-09-21 | ヘテロエピタキシャルウェーハの製造方法 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4407077A1 (ja) |
JP (1) | JP7259906B2 (ja) |
KR (1) | KR20240069717A (ja) |
CN (1) | CN117940621A (ja) |
TW (1) | TW202314035A (ja) |
WO (1) | WO2023047755A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002234799A (ja) | 2001-02-01 | 2002-08-23 | Univ Tohoku | SiC膜の製造方法、及びSiC多層膜構造の製造方法 |
JP2003212694A (ja) | 2002-01-28 | 2003-07-30 | Toshiba Ceramics Co Ltd | 電子素子基板上へのSiC又はGaN単結晶の成長方法 |
JP2004103671A (ja) | 2002-09-06 | 2004-04-02 | Toshiba Ceramics Co Ltd | エピタキシャル成長によるSiC膜の製造方法 |
JP2005347666A (ja) | 2004-06-07 | 2005-12-15 | Toshiba Ceramics Co Ltd | SiC半導体及びその製造方法 |
JP2006036613A (ja) | 2004-07-30 | 2006-02-09 | Nagaoka Univ Of Technology | ケイ素基板上に立方晶炭化ケイ素結晶膜を形成する方法 |
JP2012204602A (ja) | 2011-03-25 | 2012-10-22 | Seiko Epson Corp | 立方晶炭化珪素膜の製造方法 |
JP2016092399A (ja) | 2014-10-31 | 2016-05-23 | セイコーエプソン株式会社 | 炭化ケイ素膜付き基板、炭化ケイ素膜付き基板の製造方法、及び、半導体装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006253617A (ja) | 2005-02-14 | 2006-09-21 | Toshiba Ceramics Co Ltd | SiC半導体およびその製造方法 |
JP2008184361A (ja) | 2007-01-30 | 2008-08-14 | Covalent Materials Corp | 3C−SiC単結晶膜の形成方法 |
JP2018522412A (ja) | 2015-07-23 | 2018-08-09 | ザ ユニヴァーシティ オブ ウォーリック | 単結晶シリコン上でのエピタキシャル3C−SiCの成長 |
JP6450282B2 (ja) | 2015-08-19 | 2019-01-09 | エア・ウォーター株式会社 | 化合物半導体基板および化合物半導体基板の製造方法 |
JP7259615B2 (ja) | 2019-07-24 | 2023-04-18 | 株式会社Sumco | ヘテロエピタキシャルウェーハの製造方法 |
-
2021
- 2021-09-21 JP JP2021153418A patent/JP7259906B2/ja active Active
-
2022
- 2022-06-30 EP EP22872512.3A patent/EP4407077A1/en active Pending
- 2022-06-30 WO PCT/JP2022/026315 patent/WO2023047755A1/ja active Application Filing
- 2022-06-30 CN CN202280062298.1A patent/CN117940621A/zh active Pending
- 2022-06-30 KR KR1020247008353A patent/KR20240069717A/ko unknown
- 2022-07-05 TW TW111125087A patent/TW202314035A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002234799A (ja) | 2001-02-01 | 2002-08-23 | Univ Tohoku | SiC膜の製造方法、及びSiC多層膜構造の製造方法 |
JP2003212694A (ja) | 2002-01-28 | 2003-07-30 | Toshiba Ceramics Co Ltd | 電子素子基板上へのSiC又はGaN単結晶の成長方法 |
JP2004103671A (ja) | 2002-09-06 | 2004-04-02 | Toshiba Ceramics Co Ltd | エピタキシャル成長によるSiC膜の製造方法 |
JP2005347666A (ja) | 2004-06-07 | 2005-12-15 | Toshiba Ceramics Co Ltd | SiC半導体及びその製造方法 |
JP2006036613A (ja) | 2004-07-30 | 2006-02-09 | Nagaoka Univ Of Technology | ケイ素基板上に立方晶炭化ケイ素結晶膜を形成する方法 |
JP2012204602A (ja) | 2011-03-25 | 2012-10-22 | Seiko Epson Corp | 立方晶炭化珪素膜の製造方法 |
JP2016092399A (ja) | 2014-10-31 | 2016-05-23 | セイコーエプソン株式会社 | 炭化ケイ素膜付き基板、炭化ケイ素膜付き基板の製造方法、及び、半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
CN117940621A (zh) | 2024-04-26 |
WO2023047755A1 (ja) | 2023-03-30 |
EP4407077A1 (en) | 2024-07-31 |
KR20240069717A (ko) | 2024-05-20 |
TW202314035A (zh) | 2023-04-01 |
JP2023045163A (ja) | 2023-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4946264B2 (ja) | 炭化珪素半導体エピタキシャル基板の製造方法 | |
WO2011126145A1 (ja) | エピタキシャル炭化珪素単結晶基板の製造方法、及びこの方法によって得られたエピタキシャル炭化珪素単結晶基板 | |
US10907273B2 (en) | Growing epitaxial 3C-SiC on single-crystal silicon | |
JP5316612B2 (ja) | 炭化珪素半導体エピタキシャル基板の製造方法 | |
JP2008290898A (ja) | 低抵抗率炭化珪素単結晶基板 | |
JP7290135B2 (ja) | 半導体基板の製造方法及びsoiウェーハの製造方法 | |
WO2023079880A1 (ja) | ヘテロエピタキシャルウェーハの製造方法 | |
CN117672815A (zh) | 一种SiC外延片及其制备方法 | |
JP7259906B2 (ja) | ヘテロエピタキシャルウェーハの製造方法 | |
JP2006253617A (ja) | SiC半導体およびその製造方法 | |
JP7218832B1 (ja) | ヘテロエピタキシャルウェーハの製造方法 | |
WO2023058355A1 (ja) | ヘテロエピタキシャル膜の作製方法 | |
WO2012090268A1 (ja) | 単結晶炭化珪素エピタキシャル基板とその製造方法および単結晶SiCデバイス | |
WO2023100578A1 (ja) | 単結晶ダイヤモンド膜の形成方法 | |
JP2004103671A (ja) | エピタキシャル成長によるSiC膜の製造方法 | |
KR20190026471A (ko) | 에피택셜 웨이퍼 및 그 제조 방법 | |
CN114709130A (zh) | 基于MOCVD法在硅酸镓镧类晶体衬底上生长GaN单晶薄膜的方法 | |
JP2024042982A (ja) | 窒化物半導体層付き単結晶シリコン基板及び窒化物半導体層付き単結晶シリコン基板の製造方法 | |
CN118380317A (zh) | 一种硅基氮化镓外延片及其制备方法 | |
GB2555451A (en) | Coated wafer | |
WO2011111647A1 (ja) | 窒化物系化合物半導体基板の製造方法、窒化物系化合物半導体基板及び窒化物系化合物半導体自立基板 | |
JP2004022581A (ja) | エピタキシャル成長による半導体の製造方法 | |
KR20150002062A (ko) | 에피택셜 웨이퍼 | |
JP2007149739A (ja) | 半導体基板およびその製造方法 | |
JPH084073B2 (ja) | 半導体素子の製法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211006 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220613 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230320 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7259906 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |