WO2023058355A1 - ヘテロエピタキシャル膜の作製方法 - Google Patents

ヘテロエピタキシャル膜の作製方法 Download PDF

Info

Publication number
WO2023058355A1
WO2023058355A1 PCT/JP2022/032016 JP2022032016W WO2023058355A1 WO 2023058355 A1 WO2023058355 A1 WO 2023058355A1 JP 2022032016 W JP2022032016 W JP 2022032016W WO 2023058355 A1 WO2023058355 A1 WO 2023058355A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
film
sic
heteroepitaxial
sic single
Prior art date
Application number
PCT/JP2022/032016
Other languages
English (en)
French (fr)
Inventor
剛 大槻
和徳 萩本
順也 石崎
達夫 阿部
温 鈴木
寿樹 松原
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to EP22878226.4A priority Critical patent/EP4414483A1/en
Priority to CN202280067121.0A priority patent/CN118176329A/zh
Priority to JP2023552739A priority patent/JPWO2023058355A1/ja
Priority to KR1020247010927A priority patent/KR20240088776A/ko
Publication of WO2023058355A1 publication Critical patent/WO2023058355A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments

Definitions

  • the present invention relates to a method for producing a heteroepitaxial film.
  • CMOS Complementary Metal Oxide Silicon
  • IGBT Insulated Gate Bipolar Transistor
  • chip-on-wafer integration in which cut-out elements are attached to a wafer on which metal wiring has been provided in advance, has been adopted. Also in this case, the cut out element is thinned and most of the silicon substrate is removed.
  • SiC has a wide bandgap of 2.2 to 3.3 eV compared to Si of 1.1 eV, so it has high dielectric breakdown strength. It is a material expected as a semiconductor material for various semiconductor devices.
  • Patent Documents 1, 2 and 3 propose a technique in which ions such as hydrogen are implanted into SiC or silicon and the substrate is separated from the implanted layer. With these methods, after peeling, the thin film side can be reused as a device, and the thick film side can be reused as a substrate (although surface polishing is required), which is a highly advantageous method.
  • these methods delaminate by creating a fragile layer by implanting ions such as hydrogen. It is extremely difficult to form a brittle layer at the beginning of the process. There are hurdles to commercialization.
  • JP 2010-251724 A Japanese Unexamined Patent Application Publication No. 2011-223011 Japanese Patent Publication No. 2010-502023
  • the present invention has been made to solve the above problems, and is to efficiently obtain a thin heteroepitaxial film with less damage to the device and less material loss.
  • the present invention includes a step of separating the 3C-SiC single crystal film from the single crystal silicon substrate after heteroepitaxially growing the 3C-SiC single crystal film on the single crystal silicon substrate.
  • a method for producing a heteroepitaxial film Using a reduced pressure CVD apparatus, a first step of removing a native oxide film on the surface of the single crystal silicon substrate by hydrogen baking; A second step of forming nuclei of SiC on the single crystal silicon substrate under conditions of a pressure of 1333 Pa or less and a temperature of 300° C. or more and 950° C. or less while supplying a source gas containing carbon and silicon into the low pressure CVD apparatus.
  • a SiC single crystal is grown under the conditions of a pressure of 1333 Pa or less and a temperature of 800° C. or more and less than 1200° C. to form a 3C—SiC single crystal film, and vacancies are formed immediately below the 3C—SiC single crystal film.
  • a method for fabricating a heteroepitaxial film comprising:
  • SiC nuclei can be formed in the second step.
  • a heteroepitaxial film having a high-quality 3C-SiC single crystal film can be obtained. Wafers can be manufactured efficiently.
  • the pressure to 1333 Pa (10 Torr) or less, it is possible to prevent the occurrence of secondary or higher-order reactions, such as reaction of the reactive species with the raw material gas in the vapor phase, thereby enabling heteroepitaxial growth. can be made certain.
  • vacancies are formed in the silicon layer (single crystal silicon substrate) directly below the 3C-SiC single crystal film (hereinafter also referred to as the 3C-SiC/silicon interface).
  • the presence of these vacancies not only alleviates the lattice mismatch between 3C-SiC and silicon, but also alleviates the stress in the entire epitaxial layer, so even a thick 3C-SiC single crystal film It also becomes possible to more reliably form a 3C-SiC single crystal film free of crystal defects.
  • 3C-SiC A heteroepitaxial wafer having a single crystal film can be efficiently obtained. Furthermore, by separating and exfoliating at the vacancies at the 3C-SiC/silicon interface in the fourth step, it is possible to efficiently obtain the desired heteroepitaxial film containing the 3C-SiC single crystal film. Moreover, since the separation is at the 3C-SiC/silicon interface, the single crystal silicon substrate can be separated with little loss. That is, a thicker single crystal silicon substrate can be obtained after separation, which is effective in terms of reuse. Also, even if the device is formed on the 3C—SiC single crystal film and then peeled off, the damage to the device is small.
  • monomethylsilane or trimethylsilane can be used as the source gas.
  • the first step can be performed under the condition that the temperature is 1000°C or higher and 1200°C or lower.
  • the natural oxide film on the surface of the single crystal silicon substrate can be removed more efficiently, and the 3C-SiC single crystal film can be formed more reliably. Also, the occurrence of slip dislocations can be prevented.
  • the third step can be performed under the condition that the pressure is 133 Pa or less.
  • vacancies can be more reliably formed at the 3C-SiC/silicon interface while growing the 3C-SiC single crystal film.
  • the 3C—SiC single crystal film (heteroepitaxial film) can be separated more reliably in the fourth step.
  • the third step can be performed with one or more of pressure and temperature higher than the conditions of the second step.
  • the growth rate of the 3C—SiC single crystal film can be increased in the third step by doing so. , it is possible to efficiently form a thick 3C-SiC single crystal film.
  • the third step can be performed at a temperature of 1000°C or more and less than 1200°C.
  • the single-crystal silicon substrate is grown. It is not subject to restrictions that limit the plane orientation of It is possible to more reliably grow a 3C-SiC single crystal film by ion implantation without forming a fragile layer such as hydrogen. Furthermore, a 3C—SiC single crystal film can be more easily formed on a large diameter single crystal silicon substrate such as 300 mm in diameter.
  • one or more of pressure and temperature can be increased during the third step.
  • the pressure in the initial stage of the third step, for example, can be set to 133 Pa (1 Torr) or less, and then the pressure can be increased to increase the deposition rate.
  • the film formation speed can be increased by increasing the temperature from the middle.
  • the second step and the third step are performed under conditions in which the temperature is gradually increased from the range of 300° C. or higher and 950° C. or lower to the range of 1000° C. or higher and lower than 1200° C.
  • the formation of the SiC nuclei and the formation of the 3C-SiC single crystal film following the formation of the SiC nuclei can be carried out continuously.
  • the heteroepitaxial growth is rate-determining the transport of the supply gas, the limitation of the plane orientation of the single-crystal silicon substrate can be avoided, and the necessity of containing hydrogen can be eliminated. can. In addition, it becomes easier to form a 3C-SiC single crystal film on a large diameter single crystal silicon substrate.
  • the temperature increase can be performed at a temperature increase rate of 0.5°C/sec or more and 2°C/sec or less.
  • GaN may be further grown on the surface of the formed 3C—SiC single crystal film to form a GaN layer, or the third step.
  • a Si layer can be formed by further growing Si on the surface of the formed 3C-SiC single crystal film.
  • the 3C-SiC single crystal film grown as described above has a flat surface, a GaN layer and a Si layer can be heteroepitaxially grown on the surface of the 3C-SiC single crystal film.
  • the fourth step can be performed after forming a protective film on the formed 3C-SiC single crystal film.
  • a device may be formed on the formed 3C—SiC single crystal film, a protective film may be formed, and then the fourth step may be performed.
  • a protective film is formed after cutting out the device along the scribe line of the device, and then the fourth step is performed. It can be carried out.
  • the 3C-SiC single crystal film can be peeled off as it is, or it can be peeled off after the device is formed.
  • heteroepitaxial film manufacturing method of the present invention 3C such that vacancies are generated in the silicon substrate (3C-SiC/silicon interface) while maintaining good 3C-SiC single crystallinity on the single crystal silicon substrate.
  • a thin heteroepitaxial film can be efficiently obtained by efficiently performing heteroepitaxial growth of a -SiC single crystal film and peeling off the 3C-SiC single crystal film from the silicon substrate using the vacancies.
  • it is extremely effective in terms of damage to devices and loss of materials.
  • SiC as a base, it is possible to improve the cooling efficiency by isolating elements by insulating properties that take advantage of the characteristics of wide bandgap and by high thermal conductivity.
  • FIG. 1 is a flowchart showing an example of a method for producing a heteroepitaxial film of the present invention
  • FIG. 5 is a graph showing an example of a growth sequence from the first step to the third step of the first embodiment
  • FIG. 2 is a flowchart showing an example of how a heteroepitaxial film is produced by peeling a 3C—SiC single crystal film from a single crystal silicon substrate.
  • FIG. 10 is a flowchart showing another example of how a heteroepitaxial film is produced by peeling a 3C—SiC single crystal film from a single crystal silicon substrate; 9 is a graph showing an example of a growth sequence in the first to third steps of the second embodiment; It is a graph which shows an example of the growth sequence from the 1st process of 3rd Embodiment to the 3rd process. 4 is a graph showing the results of in-plane XRD analysis of SiC on Si (111) grown in Example 1 (first embodiment).
  • 1 is a measurement diagram showing a cross-sectional TEM image of SiC-on-Si of Example 1 (first embodiment).
  • FIG. FIG. 10 is a measurement diagram showing a cross-sectional TEM image of SiC-on-Si of Example 2 (second embodiment).
  • second step SiC single crystals easily grow And, by combining predetermined conditions [pressure: 1333 Pa or less, temperature: 800 ° C. or more and less than 1200 ° C.] (third step) to form holes at the 3C-SiC / silicon interface, high-quality 3C- A SiC single crystal film can be efficiently formed, and furthermore, if the 3C-SiC single crystal film is separated from the single crystal silicon substrate by the vacancies and peeled off (fourth step), a heteroepitaxial film can be obtained efficiently. and completed the present invention.
  • FIG. 1 is a flowchart showing an example of the method for producing a heteroepitaxial film of the present invention.
  • the first step of hydrogen baking hereinafter also referred to as H 2 annealing
  • the second step of SiC nucleation step and the third step of SiC single crystal growth step (3C-SiC single crystal film formation step) , if necessary, a device process, a dicing process, and a fourth process of peeling off the heteroepitaxial film (3C-SiC single crystal film).
  • FIG. 2 shows an example of a growth sequence in the first to third steps of the first embodiment. Each step will be described below.
  • a single crystal silicon substrate is placed in a low pressure CVD apparatus (hereinafter also referred to as an RP-CVD apparatus), hydrogen gas is introduced, and a natural oxide film on the surface is removed by H 2 annealing. If the oxide film remains, SiC nucleation cannot be formed on the single crystal silicon substrate.
  • the H 2 annealing at this time is preferably carried out under the condition that the temperature is, for example, 1000° C. or more and 1200° C. or less. By setting the temperature to 1000° C.
  • H 2 annealing pressure and time are not particularly limited as long as the natural oxide film can be removed. In the example shown in FIG. 2, H 2 annealing is performed at 1080° C. for 1 minute.
  • hydrogen gas can be continuously introduced after the first step and also in the second and third steps (carrier gas).
  • the single crystal silicon substrate is set to a predetermined pressure and temperature, and a source gas containing carbon and silicon is introduced into the RP-CVD apparatus as a source gas for SiC to form SiC nuclei.
  • a source gas containing carbon and silicon is introduced into the RP-CVD apparatus as a source gas for SiC to form SiC nuclei.
  • monomethylsilane or trimethylsilane (TMS) can be introduced as the source gas. It is simpler and easier to control than the case of using multiple kinds of gases, and it is possible to form a 3C—SiC single crystal film more reliably.
  • TMS trimethylsilane
  • C atoms are smaller than Si and easily vaporize
  • trimethylsilane is easier to set conditions in consideration of raw material efficiency.
  • Such introduction of the source gas is performed in this second step and the following third step.
  • this SiC nucleation can be performed on the surface of the single crystal silicon substrate at a pressure of 1333 Pa (10 Torr) or less and a temperature of 300° C. or more and 950° C. or less.
  • the temperature is higher than 950° C., the reaction between the single crystal silicon substrate and the raw material gas proceeds, making it impossible to form SiC nuclei on the surface of the single crystal silicon substrate.
  • the temperature is less than 300° C., the temperature is too low to efficiently form SiC nuclei.
  • heteroepitaxial growth of SiC does not proceed if the temperature is lower than 800° C. in the third step.
  • the SiC nucleation temperature can be set to preferably 800° C. or higher and 950° C. or lower, more preferably 850° C. or higher and 900° C. or lower.
  • the SiC nucleation step (second step) and the subsequent third step of forming the 3C—SiC single crystal film should be set.
  • the temperature ranges can overlap, in particular these second and third steps can be carried out under the same temperature conditions.
  • the pressure is set to 1333 Pa (10 Torr) or less, it is possible to prevent the occurrence of secondary or higher-order reactions such as reaction of the reactive species with the raw material gas in the gas phase, which is efficient.
  • the lower limit of the pressure is not particularly limited, it can be set to 13 Pa (0.1 Torr), for example.
  • the pressure can be set to the same conditions in the second and third steps. In the example shown in FIG. 2, the second step and the following third step are performed under the same conditions, the same pressure, and the same holding temperature (900° C.).
  • the 3C—SiC single crystal film forming step which is the third step, is performed under the conditions of a pressure of 1333 Pa (10 Torr) or less and a temperature of 800° C. or more and less than 1200° C. Under such conditions, the SiC single crystal can be efficiently grown to form the 3C-SiC single crystal film.
  • the pressure is set to 1333 Pa (10 Torr) or less in the third step, polycrystallization of the 3C-SiC to be formed can be prevented. Furthermore, higher-order reactions can be suppressed, and a 3C—SiC single crystal film can be reliably and efficiently formed.
  • the lower limit of the pressure is not particularly limited, it can be set to 13 Pa (0.1 Torr), for example.
  • the temperature if the temperature is less than 800° C., the growth of the SiC single crystal does not proceed as described above, and if it is 1200° C. or more, slip dislocations may occur. Therefore, the temperature is set to 800° C. or more and less than 1200° C. as described above. In the example shown in FIG. 2, the second and third steps are performed under the same conditions as described above, and SiC nucleation and 3C—SiC single crystal film formation are continuously performed.
  • the film formation time can be appropriately set based on the pressure and temperature conditions set so as to obtain the desired film thickness.
  • the thickness of the 3C-SiC single crystal film can range from a thin film of about 2 nm to a thick film of several ⁇ m.
  • layered growth in the two-dimensional growth mode shown in FIG. 2 is layer-by-layer epitaxial growth.
  • GaN is grown by MOCVD using organometallic materials such as trimethylgallium and trimethylammonium to grow GaN to a thickness of about 3 ⁇ m.
  • this 3C--SiC single crystal film becomes a withstand voltage holding layer in the IGBT.
  • the dielectric breakdown field strength of silicon is 0.3 MV/cm
  • the dielectric breakdown field strength of 3C-SiC is 3 MV/cm, which is 10 times greater than that of 3C-SiC. That is, equivalent performance can be obtained with a thickness of 1/10 of the thickness of the breakdown voltage holding layer of the conventional silicon IGBT.
  • the breakdown voltage holding layer only with the 3C-SiC single crystal film, and a combination of SiC and Si is sufficient.
  • a Si epitaxial layer is grown on the SiC grown to a predetermined thickness in this manner.
  • the gate insulating film is formed using SiC, and there was a reliability problem. , it becomes possible to ensure the same gate reliability as the conventional silicon IGBT.
  • the thickness of the silicon layer at this time may be set arbitrarily as long as it is thicker than the required gate structure.
  • FIG. 3 shows an example of how a heteroepitaxial film is produced by peeling a 3C—SiC single crystal film from a single crystal silicon substrate.
  • the heteroepitaxial film 3 is formed on the single crystal silicon substrate 1 by the steps up to this point.
  • the heteroepitaxial film 3 contains at least a 3C-SiC single crystal film. , a case of having a 3C—SiC film and a Si film in order from the single crystal silicon substrate side.
  • a vacancy region 2 (3C - is a region in which vacancies are formed at the SiC/silicon interface, and is also referred to as a vacancy forming portion) is formed.
  • a protective film 4 is formed on the 3C—SiC single crystal film (in other words, on the surface of the heteroepitaxial film 3).
  • the material of the protective film 4 include resin such as polyimide and an oxide film deposited by CVD.
  • FIG. 4 shows another example of how a heteroepitaxial film is produced.
  • a device is formed on the 3C—SiC single crystal film (on the surface of the heteroepitaxial film 3) ( ⁇ device process> in FIG. 1: heteroepitaxial film 3′ after device formation), for example, a dicing machine. 5 ( ⁇ dicing step> in FIG. 1), and in the fourth step, the heteroepitaxial film 3′ is separated at the hole region 2 and peeled off.
  • the heteroepitaxial film 3' obtained by peeling is chip-shaped (chip 6).
  • a clipper, a picker, or the like can be used for the peeling, and the single-crystal silicon substrate 1 can be easily removed with these. After that, it can be attached to another wafer or a substrate made of a different material to fabricate an element. Note that scribing can also be performed instead of dicing.
  • the fourth step may be performed after forming a protective film.
  • a device may be formed on the 3C—SiC single crystal film, the device may be cut out along the scribe lines of the device, and then the protective film may be formed before performing the fourth step.
  • the fourth step can also be performed after adhering to a holding base (for example, various substrates) with an adhesive with or without a protective film. In this manner, necessary treatments can be appropriately performed between the third step and the fourth step depending on the form of the desired heteroepitaxial film.
  • heteroepitaxial film manufacturing method of the present invention it is possible to efficiently form a heteroepitaxial film with holes, and even if a device has already been formed by separation and separation in the hole region, A heteroepitaxial film can be obtained efficiently and simply with little damage to the device. Moreover, since the 3C-SiC single crystal film and the single crystal silicon substrate can be separated at the interface, the loss of the single crystal silicon substrate obtained after the separation can be greatly reduced, and can be reused for the production of the next heteroepitaxial film. can be done.
  • FIG. 5 shows an example of the growth sequence in the first to third steps of the second embodiment.
  • the single crystal silicon substrate is set to a temperature of 300° C. or higher and 950° C. or lower, preferably 800° C. or higher and 950° C. or lower, more preferably 850° C. or higher and 900° C. or lower. Introduce monomethylsilane or trimethylsilane. Nucleation time can be, for example, 5 minutes.
  • ⁇ Third step> As a step of forming a 3C—SiC single crystal film, the single crystal silicon substrate is heated to a temperature of 1000° C. or more and less than 1200° C., and monomethylsilane or trimethylsilane is introduced as a source gas for SiC.
  • the third step which is the step of forming the 3C—SiC single crystal film
  • high-speed growth is facilitated (between steps change in ).
  • High-speed growth can also be facilitated by increasing one or more of the pressure and temperature during the third step (change during the step). Either one of the above inter-process and intra-process changes may be made, or both may be made.
  • the temperature in the third step can be set to 1000°C or higher and lower than 1200°C. In this case, heteroepitaxial growth can be rate-limiting for feed gas transport. It is not subject to the restrictions of the plane orientation of the single-crystal silicon substrate, and can easily deal with large-diameter substrates such as 300 mm in diameter.
  • FIG. 5 shows an example in which only changes are made between steps, in which the second step is held at 900° C., and the third step is held at 1190° C. (the pressure is, for example, same for ).
  • the pressure is, for example, same for .
  • the introduction of trimethylsilane is resumed in the third step to 900 ° C., or It is also possible to raise the temperature to 1190° C. and hold it after maintaining the temperature above 900° C. and below 1190° C. for a predetermined period of time.
  • the growth is performed at a higher temperature (1190° C.) than in the first embodiment (900° C.). 2 is flowing, the effect of H2 , or the effect of changing the growth mode by changing the temperature during the growth (that is, when moving from the second step to the third step). can be considered.
  • the sequence of FIG. 5 also proceeds from nucleation to two-dimensional growth.
  • the pressure is set to 1333 Pa (10 Torr) or less, preferably 133 Pa (1 Torr) or less to form vacancies directly under the 3C-SiC single crystal film. Then, by changing the pressure to a condition higher than the initial stage within the range of 1333 Pa (10 Torr) or less, it is possible to achieve both relaxation of the stress in the entire heteroepitaxial layer and efficient formation of the 3C-SiC single crystal film. can be done.
  • a heteroepitaxial film is produced by separating the formed 3C—SiC single crystal film from the single crystal silicon substrate by vacancies. It can be performed in the same manner as in the first embodiment.
  • FIG. 6 shows an example of the growth sequence of the third embodiment.
  • ⁇ Second step, third step> in order to continuously form SiC nuclei on the surface of the single crystal silicon substrate and subsequently form a 3C—SiC single crystal film, the temperature is maintained at 300° C. or more and 950° C. or less while introducing monomethylsilane or trimethylsilane as a raw material gas. to a temperature in the range of 1000°C or higher and lower than 1200°C. In this manner, the second step and the third step can be performed continuously while the temperature is being raised. It is preferable that the heating rate is, for example, 0.5° C./sec or more and 2° C./sec or less.
  • This level of temperature increase rate is not too high, so it is possible to effectively prevent deviation between the set temperature and the actual temperature, and the temperature can be appropriately controlled.
  • the heating rate is not too slow, it is possible to suppress the increase in transit time of the nucleation temperature zone of SiC, which tends to cause non-uniform nucleation, and the tendency for defect formation during heteroepitaxial growth to occur. .
  • the growth may be stopped there, or the temperature may be maintained until the predetermined film thickness is reached. May continue to grow. Alternatively, even if the temperature reaches 1000° C. or higher but does not reach the predetermined temperature, the growth may be stopped when the predetermined film thickness is reached during the temperature rise.
  • the temperature is raised from 300° C. to 1130° C. at a temperature elevation rate of 1° C./sec and maintained at 1130° C. for a predetermined time.
  • the pressure is set to 1333 Pa (10 Torr) or less, preferably 133 Pa (1 Torr) or less to form vacancies directly under the 3C-SiC single crystal film. Then, by changing the pressure to a condition higher than the initial stage within the range of 1333 Pa (10 Torr) or less, it is possible to achieve both relaxation of the stress in the entire heteroepitaxial layer and efficient formation of the 3C-SiC single crystal film. can be done.
  • a heteroepitaxial film is produced by separating the formed 3C—SiC single crystal film from the single crystal silicon substrate by vacancies. It can be performed in the same manner as in the first embodiment.
  • Example 1 A 300 mm diameter, (111) plane orientation, boron-doped high resistivity single crystal silicon substrate was prepared, the wafer was placed on a susceptor in a reactor of an RP-CVD apparatus, and H 2 annealing was performed at 1080° C. for 1 minute. (first step). Subsequently, trimethylsilane gas was introduced at a growth temperature of 900° C. and a growth pressure of 133 Pa (1 Torr), and a SiC nucleation step (second step) and a 3C—SiC single crystal film were grown (third step). . As a result of growing for 5 minutes, the film thickness was 13 nm.
  • the 3C-SiC single crystal film (heteroepitaxial film) could be separated and peeled from the vacancy formation part at the 3C-SiC/silicon interface ( fourth step).
  • the substrate on which the 3C-SiC single crystal film is grown is diced from the 3C-SiC single crystal film side to a size of 1 mm ⁇ 1 mm (the dicing depth is 3C-SiC single crystal film). It was slightly deeper than the thickness of the crystal film), and the 3C—SiC single crystal film could be peeled off at the hole forming portion as a chip by sucking the surface with a clipper.
  • Example 2 A boron-doped high-resistivity single-crystal silicon substrate with a diameter of 300 mm and a plane orientation of (111) was prepared. (First step). Subsequently, trimethylsilane gas was introduced for 5 minutes at a growth temperature of 900° C. as a second step (nucleation step of SiC nuclei). Next, in the third step (3C-SiC single crystal film forming step), the growth temperature was raised to 1190° C. and trimethylsilane gas was introduced to grow a 3C-SiC single crystal film. The growth pressure at this time was uniformly 133 Pa (1 Torr). As a result of growing for 1 minute, the film thickness was about 30 nm.
  • Example 3 A 3C—SiC single crystal film was formed under the same conditions as in Example 1 except that the growth pressure in the second and third steps was 1333 Pa (10 Torr) and the growth temperature was 950°C. As a result, the film thickness was about 20 nm. After that, when the XRD spectrum was confirmed in the In Plane arrangement, a peak of 3C-SiC (220) parallel to Si (220) could be confirmed, and it was confirmed that a single crystal 3C-SiC film was growing. confirmed. Also, it was confirmed that vacancies were formed directly under the 3C—SiC single crystal film. Furthermore, when the fourth step was performed in the same manner as in Example 1 using an adhesive and a quartz substrate, the 3C-SiC single crystal film could be peeled off from the vacancy formation portion at the 3C-SiC/silicon interface. rice field.
  • Example 4 A 3C—SiC single crystal film was formed under the same conditions as in Example 2 except that the growth temperatures in the second and third steps were 300° C. and 800° C., respectively. As a result, the film thickness was about 12 nm. After that, when the XRD spectrum was confirmed in the In Plane arrangement, a peak of 3C-SiC (220) parallel to Si (220) could be confirmed, and it was confirmed that a single crystal 3C-SiC film was growing. confirmed. Also, it was confirmed that vacancies were formed directly under the 3C—SiC single crystal film. Furthermore, when the fourth step was performed in the same manner as in Example 2 using an adhesive and a quartz substrate, the 3C-SiC single crystal film could be peeled off from the hole formation portion at the 3C-SiC/silicon interface. rice field.
  • Example 1 A 3C—SiC single crystal film was formed under the same conditions as in Example 2 except that the growth pressure in the second and third steps was 3999 Pa (30 Torr). As a result, the film thickness was about 33 nm. After that, when the XRD spectrum was confirmed in the In Plane arrangement, a peak of 3C-SiC (220) parallel to Si (220) could be confirmed, and it was confirmed that a single crystal 3C-SiC film was growing. confirmed. However, formation of vacancies directly below the 3C--SiC single crystal film could not be confirmed. Furthermore, an attempt was made to separate the 3C-SiC single crystal film using an adhesive and a quartz substrate in the same manner as in Example 2, but the separation could not be achieved. It is considered that this is because the above-mentioned voids could not be formed.
  • Example 2 A 3C—SiC single crystal film was formed under the same conditions as in Example 2 except that the growth temperature in the second step was set to 200°C or 1000°C. As a result, the film thicknesses were approximately 2 nm and 4 nm, respectively. The film thickness formed in this way was extremely thin compared to Example 2, and the efficiency was extremely poor. This is probably because SiC was not sufficiently nucleated because the temperature in the second step was either too low or too high, and therefore heteroepitaxial growth hardly occurred in the third step.
  • Example 3 A 3C—SiC single crystal film was formed under the same conditions as in Example 2, except that the growth temperature in the third step was set to 700°C or 1250°C. As a result, the film thicknesses were about 7 nm and 50 nm, respectively. Thus, in the case of 700° C., the formed film thickness was extremely thin as compared with that of Example 2, and the efficiency was extremely poor. Moreover, in the case of 1250° C., slip dislocation occurred.
  • the present invention is not limited to the above embodiments.
  • the above embodiment is an example, and any device that has substantially the same configuration as the technical idea described in the claims of the present invention and produces similar effects is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本発明は、単結晶Si基板上に3C-SiC単結晶膜をヘテロエピタキシャル成長させた後に剥離するヘテロエピタキシャル膜の作製方法であって、減圧CVD装置で、単結晶Si基板の表面の自然酸化膜を水素ベイクにより除去する第一工程と、炭素とケイ素を含むソースガスを供給しつつ、1333Pa以下、300~950℃以下でSiCの核形成を行う第二工程と、1333Pa以下、800℃以上1200℃未満で3C-SiC単結晶膜を形成し、かつ3C-SiC単結晶膜直下に空孔を形成する第三工程と、3C-SiC単結晶膜を空孔で剥離してヘテロエピタキシャル膜を作製する第四工程と、を含むヘテロエピタキシャル膜の作製方法である。これにより、デバイスへのダメージが少なく、かつ材料のロスを少なくして効率良く薄膜状のヘテロエピタキシャル膜を入手する方法が提供される。

Description

ヘテロエピタキシャル膜の作製方法
 本発明はヘテロエピタキシャル膜の作製方法に関する。
 先端CMOS(Complementary Metal Oxide Silicon)やIGBT(Insulated Gate Bipolar Transistor)などシリコン基板上に形成されるデバイスのほとんどが、初期のシリコン基板厚のまま使用するのではなく、たいていの場合グラインド等の方法によって薄膜化して使用されている。これは、シリコン基板が厚いと基板が抵抗になり支障があるためである。一方で、最初から薄いシリコン基板ではプロセス中に反ったりしてデバイスプロセスを通すことができなくなるため、厚みが必要である。一方、最近のデバイスでは、従来の微細化以外に、切り出した素子をあらかじめ金属配線を施したウエーハに貼り付けるChip on Wafer等の手法での集積化が採用されるようになってきた。この際も、切り出される素子は薄片化されシリコン基板のほとんどが除去される。
 さらに、デバイスではシリコン以外の材料が積極的に利用され、高性能化に寄与してきた。その中でも、SiCはSiの1.1eVに比べ、2.2~3.3eVという広いバンドギャップを有することから高い絶縁破壊強度を有し、また熱伝導率も大きいためパワーデバイスや高周波用デバイスなどの各種半導体デバイス用の半導体材料として期待されている材料である。
 そこで、これらのことを考慮して例えば特許文献1、2および3には、SiCやシリコンに水素などのイオン注入を施しておき、この注入層から基板を剥離する技術が提案されている。これらの方法であれば、剥離後に薄膜側はデバイスとして、厚膜側はもう一度基板として再利用(表面研磨は必要だが)することが可能になり、メリットの大きい方法である。しかしながら、これらの方法は、水素のようなイオン注入にて脆弱層を作りこむことで剥離を行っており、イオン注入装置が必要である点(大口径基板では特に高額になる)、また脆弱層を形成するタイミングが極めて難しい(プロセス初期で脆弱層を形成するとプロセス中の熱工程で割れが発生する可能が高い。一方で、プロセス後半ではそれまでに形成されたデバイスがイオン注入で破壊されてしまう)ために、実用化にハードルがある。
特開2010-251724号公報 特開2011-223011号公報 特表2010-502023号公報
 本発明は、上記問題を解決するためになされたものであり、デバイスへのダメージが少なく、かつ材料のロスを少なくして、効率良く薄膜状のヘテロエピタキシャル膜を入手することである。
 上記目的を達成するために、本発明は、単結晶シリコン基板上に3C-SiC単結晶膜をヘテロエピタキシャル成長させた後に、前記単結晶シリコン基板から前記3C-SiC単結晶膜を剥離する工程を含む、ヘテロエピタキシャル膜の作製方法であって、
 減圧CVD装置を用いて、
 前記単結晶シリコン基板の表面の自然酸化膜を水素ベイクにより除去する第一工程と、
 前記減圧CVD装置内に炭素とケイ素を含むソースガスを供給しつつ、圧力が1333Pa以下、温度が300℃以上950℃以下の条件で前記単結晶シリコン基板上にSiCの核形成を行う第二工程と、圧力が1333Pa以下、温度が800℃以上1200℃未満の条件でSiC単結晶を成長させて3C-SiC単結晶膜を形成するとともに該3C-SiC単結晶膜直下に空孔を形成する第三工程と、
 前記単結晶シリコン基板から前記3C-SiC単結晶膜を前記空孔で分離して剥離することにより前記ヘテロエピタキシャル膜を作製する第四工程と、
 を含むことを特徴とするヘテロエピタキシャル膜の作製方法を提供する。
 このように、第一工程で単結晶シリコン基板表面の自然酸化膜を除去することで、第二工程でSiCの核形成が可能となる。
 また、第二工程のSiCの核形成がしやすい圧力及び温度条件と第三工程のSiC単結晶が成長しやすい圧力及び温度条件を組み合わせることにより、良質な3C-SiC単結晶膜を有するヘテロエピタキシャルウェーハを効率良く製造することが可能となる。
 また、圧力を1333Pa(10Torr)以下とすることで、反応活性種が気相中で原料ガスと反応するなど、二次あるいはさらに高次の反応が起こるのを防ぐことができるので、ヘテロエピタキシャル成長を確実なものとすることができる。これにより3C-SiCが多結晶化してしまうのを防ぐことができる。しかも、3C-SiC単結晶膜を成長させつつ、この3C-SiC単結晶膜の直下のシリコン層(単結晶シリコン基板)(以下、3C-SiC/シリコン界面とも言う)に空孔を形成することができる。この空孔が存在することで、3C-SiCとシリコンの格子不整合を緩和できるだけでなく、エピタキシャル層全体の応力を緩和することができるので、厚膜の3C-SiC単結晶膜であっても結晶欠陥のない3C-SiC単結晶膜をより確実に形成することも可能となる。
 以上のように、SiCの核形成がしやすい圧力及び温度条件と、SiC単結晶が成長しやすく、かつ、SiC/シリコン界面に空孔を形成する圧力及び温度条件を組み合わせることにより、3C-SiC単結晶膜を有するヘテロエピタキシャルウェーハを効率良く得ることができる。さらには第四工程で3C-SiC/シリコン界面の空孔で分離して剥離することによって、目的とする3C-SiC単結晶膜を含むヘテロエピタキシャル膜を効率良く得ることが可能となる。
 また、3C-SiC/シリコン界面での剥離であるため単結晶シリコン基板のロスも少なく分離することができる。つまり分離後により厚い単結晶シリコン基板を得ることができ、再利用の面で効果的である。
 また例えば3C-SiC単結晶膜上にデバイスを形成した後に剥離する場合であっても、デバイスへのダメージが少ない。
 このとき、前記ソースガスとしてモノメチルシランまたはトリメチルシランを用いることができる。
 このような原料ガスであれば、単一ガスでSiとCの両方を供給可能であるので、従来法で行っていたような3C-SiC単結晶膜成長前の炭化処理と呼ばれる、炭素源前駆体を含むガスにより単結晶シリコン基板表面に炭素原子を付着させて核形成を行う工程も不要となり、非常にシンプルな条件で3C-SiC単結晶膜の形成が可能になる。
 また、最初に炭素源前駆体を含むガスにより単結晶シリコン基板表面に炭素原子を付着させて核形成をしてから、炭素源前駆体を含むガスとシリコン源前駆体を含むガスで3C-SiC単結晶膜を形成する従来の方法と比較して、気相中の反応活性種を制御しやすく、ヘテロエピタキシャル成長をより一層確実なものとすることができ、3C-SiC単結晶の成長が停止することなく厚膜の3C-SiC単結晶膜の形成もより容易となる。
 また、前記第一工程を、温度が1000℃以上1200℃以下の条件で行うことができる。
 このような温度条件とすることで、単結晶シリコン基板表面の自然酸化膜をより効率良く除去でき、より確実に3C-SiC単結晶膜の形成が可能となる。また、スリップ転位の発生を防止することができる。
 また、前記第三工程を、圧力が133Pa以下の条件で行うことができる。
 このように、第三工程において圧力を133Pa(1Torr)以下とすることで、3C-SiC単結晶膜を成長させつつ、3C-SiC/シリコン界面に空孔をより確実に形成することができ、第四工程で3C-SiC単結晶膜(ヘテロエピタキシャル膜)をより確実に剥離することができる。
 また、前記第三工程を、前記第二工程の条件よりも、圧力と温度のうち1つ以上を高くして行うことができる。
 第三工程の条件を第二工程の条件と同じ条件で行うことも可能であるが、上記のようにすれば第三工程において3C-SiC単結晶膜の成長速度をより速くすることができるので、厚膜の3C-SiC単結晶膜を形成する場合であっても効率的に行うことが可能となる。
 このとき、前記第三工程を、温度が1000℃以上1200℃未満の条件で行うことができる。
 この成長条件であれば、ヘテロエピキシャル成長を供給ガスの輸送律速とすることが可能であり、別の従来法で生じていたシリコンとSiCの格子不整合をより小さくするために単結晶シリコン基板の面方位を限定するような制約を受けない。イオン注入により水素のような脆弱層を形成する必要もなく3C-SiC単結晶膜をより確実に成長させることが可能である。さらに、例えば直径300mmのような大直径の単結晶シリコンの基板上に3C-SiC単結晶膜をより容易に形成することができる。
 また、前記第三工程中に、圧力と温度のうち1つ以上を高くすることができる。
 この方法であれば、第三工程の初期段階で、例えば圧力を133Pa(1Torr)以下の条件としてから圧力を上げて成膜速度を早くすることも可能となる。同様に、温度も途中からより高温にすることで成膜速度を早くすることができる。
 このとき、前記第二工程、前記第三工程を、温度が300℃以上950℃以下の範囲から1000℃以上1200℃未満の範囲に徐々に昇温する条件で行うことにより、
 前記SiCの核形成と、該SiCの核形成に引き続いて前記3C-SiC単結晶膜の形成を連続して行うことができる。
 このようにすれば、ヘテロエピキシャル成長を供給ガスの輸送律速とし、単結晶シリコン基板の面方位の制約を受けないようにすることができたり、水素を含ませたりする必要性をなくすことができる。また、大直径の単結晶シリコン基板上への3C-SiC単結晶膜の形成がより容易になる。
 そして前記昇温を、0.5℃/sec以上2℃/sec以下の昇温速度で行うことができる。
 このような昇温速度であれば温度制御をより確実に行うことができる。また、均一なSiCの核形成を行うことができるし、ヘテロエピタキシャル成長時の欠陥の発生を効果的に防止することができる。
 また、前記第三工程後、前記第四工程前に、前記形成した3C-SiC単結晶膜の表面に、さらにGaNを成長させてGaN層を形成することもできるし、あるいは、前記第三工程後、前記第四工程前に、前記形成した3C-SiC単結晶膜の表面に、さらにSiを成長させてSi層を形成することもできる。
 上記のようにして成長させた3C-SiC単結晶膜は表面が平坦であるので、該3C-SiC単結晶膜の表面に、さらにGaN層やSi層をヘテロエピタキシャル成長させることができる。
 また、前記第三工程後、前記形成した3C-SiC単結晶膜上に保護膜を形成してから前記第四工程を行うことができる。または、前記第三工程後、前記形成した3C-SiC単結晶膜上にデバイスを形成し、保護膜を形成してから前記第四工程を行うことができる。あるいは、前記第三工程後、前記形成した3C-SiC単結晶膜上にデバイスを形成し、該デバイスのスクライブラインに沿ってデバイスを切り出した後に保護膜を形成してから、前記第四工程を行うことができる。
 このように3C-SiC単結晶膜のまま剥離することもできるし、デバイスを形成後に剥離することも可能である。
 本発明のヘテロエピタキシャル膜の作製方法によって、単結晶シリコン基板上に、良質な3C-SiC単結晶性を維持しつつ、シリコン基板(3C-SiC/シリコン界面)に空孔が発生するような3C-SiC単結晶膜のヘテロエピタキシャル成長を効率良く行い、この空孔を使ってシリコン基板から3C-SiC単結晶膜を剥離することで効率良く薄膜状のヘテロエピタキシャル膜を入手することができる。また、デバイスへのダメージや材料のロスの点で極めて有効である。さらに、このようなヘテロエピタキシャル膜であれば、SiCを下地とすることで、ワイドバンドギャップの特徴を生かした絶縁性による素子分離と高い熱伝導率による冷却効率の向上が可能になる。
本発明のヘテロエピタキシャル膜の作製方法の一例を示すフロー図である。 第1の実施形態の第一工程から第三工程における成長シーケンスの一例を示すグラフである。 単結晶シリコン基板からの3C-SiC単結晶膜の剥離によりヘテロエピタキシャル膜を作製するときの様子の一例を示すフロー図である。 単結晶シリコン基板からの3C-SiC単結晶膜の剥離によりヘテロエピタキシャル膜を作製するときの様子の別の一例を示すフロー図である。 第2の実施形態の第一工程から第三工程における成長シーケンスの一例を示すグラフである。 第3の実施形態の第一工程から第三工程における成長シーケンスの一例を示すグラフである。 実施例1(第1の実施形態)で成長したSiC on Si(111)のIn plane XRD解析の結果を示すグラフである。 実施例1(第1の実施形態)のSiC on Siの断面TEM像を示す測定図である。 実施例2(第2の実施形態)のSiC on Siの断面TEM像を示す測定図である。
 以下、本発明の実施形態について図面を参照して説明するが、本発明はこれに限定されるものではない。
 前述したようにヘテロエピタキシャル膜(3C-SiC単結晶膜)を効率良く得る方法が求められていた。そこで本発明者らが鋭意研究を行ったところ、減圧CVD装置を用いて、単結晶シリコン基板表面の自然酸化膜除去のための水素ベイク(第一工程)に加え、ソースガス(炭素とケイ素を含む)を供給しつつ、圧力・温度についてSiCの核形成がしやすい所定の条件[圧力:1333Pa以下、温度:300℃以上950℃以下](第二工程)と、SiC単結晶が成長しやすく、かつ、3C-SiC/シリコン界面に空孔を形成する所定の条件[圧力:1333Pa以下、温度:800℃以上1200℃未満](第三工程)を組み合わせて行うことで、高品質の3C-SiC単結晶膜を効率良く形成できること、さらには、その空孔で単結晶シリコン基板から3C-SiC単結晶膜を分離して剥離すれば(第四工程)、効率良くヘテロエピタキシャル膜を得られることを見出し、本発明を完成させた。
 以下では、各工程の種々の具体例を挙げて説明する。
 図1は本発明のヘテロエピタキシャル膜の作製方法の一例を示すフロー図である。ここでは、水素ベイク(以下、Hアニールとも言う)の第一工程、SiCの核形成工程の第二工程、SiC単結晶の成長工程(3C-SiC単結晶膜の形成工程)の第三工程、必要に応じてデバイス工程やダイシング工程、また、ヘテロエピタキシャル膜(3C-SiC単結晶膜)を剥離する第四工程を順に行っている。
(第1の実施形態)
 図2は第1の実施形態の第一工程から第三工程における成長シーケンスの一例を示したものである。以下、各工程について説明する。
 <第一工程>
 まず、減圧CVD装置(以下、RP-CVD装置とも言う)に単結晶シリコン基板を配置し、水素ガスを導入し、表面の自然酸化膜をHアニールにより除去する。酸化膜が残っていると、単結晶シリコン基板上にSiCの核形成が出来なくなってしまう。この時のHアニールは、例えば温度が1000℃以上1200℃以下の条件とすることが好ましい。温度を1000℃以上とすることで、自然酸化膜の残留を防ぐための処理時間が長時間になるのを防ぐことができ、効率的である。また1200℃以下とすれば、高温によるスリップ転位の発生を効果的に防止することができる。ただし、このときのHアニールの圧力や時間は自然酸化膜が除去できればよく、特に制約はない。
 図2に示す例ではHアニールを1080℃で1分間行っている。また、水素ガスの導入はこの第一工程後においても、第二、第三工程においても引き続き行うことができる(キャリアガス)。
 <第二工程>
 次に、単結晶シリコン基板を所定の圧力と温度に設定し、SiCの原料ガスとして、炭素とケイ素を含むソースガスをRP-CVD装置内に導入してSiCの核形成を行う。ソースガスとしては例えばモノメチルシランまたはトリメチルシラン(TMS)を導入することができる。複数種のガスを用いる場合よりもシンプルであり制御も容易になり、より確実に3C-SiC単結晶膜の形成が可能である。なお、Siと比較してCは原子が小さく気化しやすいので、原料効率を考慮するとトリメチルシランの方が条件設定をより一層しやすい。
 このようなソースガスの導入は、この第二工程および次の第三工程で行われる。
 また、このSiCの核形成は、圧力1333Pa(10Torr)以下、温度が300℃以上950℃以下であれば単結晶シリコン基板の表面に行うことができる。
 SiCの核形成工程において、950℃よりも高温の条件では単結晶シリコン基板と原料ガスとの反応が進行してしまい、単結晶シリコン基板表面にSiCの核形成ができなくなってしまう。また、温度が300℃未満の場合においては、温度が低すぎてSiCの核形成を効率良く行うことができない。
 なお、ここで次に説明する第三工程についても併せて考えると、第三工程時に温度が800℃よりも低いとSiCのヘテロエピタキシャル成長が進まない。そこで、例えば第二工程の時点からそのSiCの核形成の温度を好ましくは800℃以上950℃以下、より好ましくは850℃以上900℃以下に設定することができる。このように第二工程の温度を800℃以上950℃以下とすることで、SiCの核形成工程(第二工程)とその後の3C-SiC単結晶膜形成である第三工程とで設定すべき温度範囲が重複するようにすることができ、特にはこれらの第二、第三工程を同一の温度条件で行うことができる。
 また、圧力を1333Pa(10Torr)以下とするので、反応活性種が気相中で原料ガスと反応するなど、二次あるいはさらに高次の反応が生じてしまうのを防止できるため、効率的である。圧力の下限値は特に限定されないが、例えば13Pa(0.1Torr)とすることができる。なお、圧力についても温度と同様に、第二、第三工程で同じ条件とすることができる。
 図2に示す例ではこの第二工程および次の第三工程が同一条件であり、同じ圧力、同じ保持温度(900℃)としている。
 <第三工程>
 また、第三工程である3C-SiC単結晶膜形成工程では、圧力が1333Pa(10Torr)以下、温度が800℃以上1200℃未満の条件で行う。このような条件により、効率良くSiC単結晶を成長させて3C-SiC単結晶膜を形成することができる。
 なお、本発明ではこの第三工程において圧力を1333Pa(10Torr)以下とするので、形成する3C-SiCが多結晶化するのを防ぐことができるし、前述したように気相中で二次あるいはさらに高次の反応を抑制することができ、3C-SiC単結晶膜を確実かつ効率良く形成することができる。同時に、3C-SiC単結晶膜直下に空孔が形成されるようになり、ヘテロエピタキシャル層全体の応力を緩和する効果を得ることができる。そして好ましくは133Pa(1Torr)以下とすることができ、上記空孔をより確実に形成することができ、上記応力を緩和する効果をより確実に得ることができる。圧力の下限値は特に限定されないが、例えば13Pa(0.1Torr)とすることができる。
 また温度については、800℃未満では前述したようにSiC単結晶の成長が進まなく、1200℃以上ではスリップ転位が発生し得る。そのため、上記のように800℃以上1200℃未満とする。
 図2に示す例では、前述したように第二、第三工程は同一条件であり、SiCの核形成と3C-SiC単結晶膜の形成が連続して行われる。
 このときの膜厚は圧力と温度に依存するので、目的の膜厚となるように設定した圧力と温度条件に基づいて成膜時間を適宜設定することができる。
 この場合、3C-SiC単結晶膜の膜厚は例えば2nm程度の薄い膜から数μmの厚膜まで成膜が可能である。
 なお、図2に示す2次元成長モードでの層状成長とは、layer by layerのエピタキシャル成長である。
 このようにして成長させた3C-SiC単結晶膜の上にGaNを成長させると、高品質なGaN層を有するヘテロエピタキシャルウェーハを得ることが可能になる。
 この時のGaN成長は、トリメチルガリウムとトリメチルアンモニウムのような有機金属材料を用いたMOCVDによる成膜を行い、GaNを3μm程度成長させる。
 さらに、このようにして成長させた3C-SiC単結晶膜の上にSiを成長させると、高品質なSiエピタキシャル層をもった基板を得ることが可能になる。本構造であれば、例えばIGBTのようなパワーデバイスの場合、この3C-SiC単結晶膜がIGBTでの耐圧保持層となる。シリコンの絶縁破壊電界強度は0.3MV/cm、一方の3C-SiCの絶縁破壊電界強度は3MV/cmであり3C-SiCは10倍大きい。すなわち、従来のシリコンIGBTの耐圧保持層の厚みの1/10で同等の性能を得ることができる。もちろんこの場合、3C-SiC単結晶膜だけで耐圧保持層を形成する必要はなく、SiCとSiの組み合わせでも十分である。このようにして所定の厚さに成長させたSiCの上に、Siエピタキシャル層を成長させる。従来のSiCデバイスでは、ゲート絶縁膜をSiCを使用して形成しており、信頼性に問題があったが、本構造ではシリコンを成長させ、このシリコンを使用してゲート絶縁膜を成長させるため、従来のシリコンIGBTと同じゲート信頼性を確保することが可能になる。また、この時のシリコン層の厚さは、必要とされるゲート構造よりも厚ければよく、任意に設定することが可能である。
 <第四工程>
 次に、第四工程として、単結晶シリコン基板から、形成した3C-SiC単結晶膜を空孔で分離して剥離することによりヘテロエピタキシャル膜を作製する。
 図3に単結晶シリコン基板からの3C-SiC単結晶膜の剥離によりヘテロエピタキシャル膜を作製するときの様子の一例を示す。図3の上段に示すように、今までの工程により、単結晶シリコン基板1上にヘテロエピタキシャル膜3が形成されている。なお、へトロエピタキシャル膜3は少なくとも3C-SiC単結晶膜を含んでおり、例えば3C-SiC単結晶膜のみの場合や、単結晶シリコン基板側から順に3C-SiC膜およびGaN膜を有する場合や、単結晶シリコン基板側から順に3C-SiC膜およびSi膜を有する場合などが挙げられる。そして単結晶シリコン基板1とヘテロエピタキシャル膜3との間(より具体的には、単結晶シリコン基板1とヘテロエピタキシャル膜3中の3C-SiC膜との間)には、空孔領域2(3C-SiC/シリコン界面の空孔が形成されている領域であり、空孔形成部とも言う)が形成されている。
 そして図3の中段に示すように、3C-SiC単結晶膜上に(言い換えると、ヘテロエピタキシャル膜3の表面に)保護膜4を形成する。この保護膜4の材質としては、例えばポリイミドなどの樹脂や、CVDで堆積した酸化膜などが挙げられる。
 その後図3の下段に示すように、第四工程として、空孔領域2を境に単結晶シリコン基板1から3C-SiC単結晶膜を有するヘテロエピタキシャル膜3を分離して剥離し、入手することができる。
 また図4にヘテロエピタキシャル膜の作製の様子の別の一例を示す。図4の例では、3C-SiC単結晶膜上に(ヘテロエピタキシャル膜3の表面に)デバイスを形成し(図1の<デバイス工程>:デバイス形成後のヘテロエピタキシャル膜3’)、例えばダイシング装置5によってダイシングを行い(図1の<ダイシング工程>)、第四工程としてヘテロエピタキシャル膜3’を空孔領域2で分離して剥離する。この場合、剥離により得られるヘテロエピタキシャル膜3’はチップ状となる(チップ6)。上記剥離には例えばクリッパーまたはピッカーなどを用いることができ、これらにより単結晶シリコン基板1から簡便に取り外すことができる。その後、他のウェーハないしは別材質の基板に貼り付けて素子を作製できる。
 なお、ダイシングの代わりにスクライブを行うこともできる。
 なお別の例として、3C-SiC単結晶膜上にデバイスを形成後、保護膜を形成してから第四工程を行うこともできる。また、3C-SiC単結晶膜上にデバイスを形成し、該デバイスのスクライブラインに沿ってデバイスを切り出した後に保護膜を形成してから、第四工程を行っても良い。さらには、保護膜有りまたは保護膜無しで、保持台(例えば各種基板)に接着剤で接着後、第四工程を行うこともできる。
 このように、所望のヘテロエピタキシャル膜の形態に応じて、第三工程と第四工程との間に適宜必要な処理を行うことができる。
 このような本発明のヘテロエピタキシャル膜の作製方法であれば、ヘテロエピタキシャル膜を空孔付きで効率良く形成できるとともに、空孔領域での分離・剥離によって、既にデバイスが形成されていたとしてもそのデバイスへのダメージも少なく、効率良く簡便にヘテロエピタキシャル膜を得ることができる。しかも3C-SiC単結晶膜と単結晶シリコン基板の界面で分離できるので、剥離後に得られる単結晶シリコン基板のロスを極めて少なくすることができるし、次のヘテロエピタキシャル膜の作製に再利用することができる。
(第2の実施形態)
 図5は第2の実施形態の第一工程から第三工程における成長シーケンスの一例を示したものである。
 <第一工程>
 まず、RP-CVD装置に単結晶シリコン基板を配置し、表面の自然酸化膜をHアニールにより除去する。第1の実施形態と同様にして行うことができる。
 <第二工程>
 次に、SiCの核形成工程として単結晶シリコン基板を300℃以上950℃以下、好ましくは800℃以上950℃以下、より好ましくは850℃以上900℃以下の温度に設定し、SiCの原料ガスとしてモノメチルシランまたはトリメチルシランを導入する。核形成時間は例えば5分間とすることができる。
 <第三工程>
 次に、3C-SiC単結晶膜の形成工程として、単結晶シリコン基板温度を1000℃以上1200℃未満の温度まで加熱するとともにSiCの原料ガスとしてモノメチルシランまたはトリメチルシランを導入する。
 この3C-SiC単結晶膜の形成工程である第三工程では、SiCの核形成工程の第二工程よりも圧力と温度のうち1つ以上を上げることで高速成長がしやすくなる(工程同士間での変更)。また、第三工程中に圧力と温度のうち1つ以上を高くすることでも、高速成長をしやすくすることができる(工程中での変更)。上記の工程同士間での変更と工程中での変更のうち1つのみを行うこともできるし、両方を行うこともできる。
 そして、第三工程における温度を1000℃以上1200℃未満とすることができる。この場合、ヘテロエピキシャル成長を供給ガスの輸送律速とすることが可能である。単結晶シリコン基板の面方位の制約を受けず、また、直径300mmといった大直径のものへの対応も容易になる。
 図5は工程同士間での変更のみ行う例であり、第二工程を900℃で保持して行い、第三工程では1190℃で保持して行っている(圧力は例えば第二、第三工程で同じ)。ただし、これに限定されず、例えば、第二工程を900℃で保持して行い、一旦トリメチルシランの導入を停止した後、第三工程として、トリメチルシランの導入を再開して900℃、または、900℃より高温かつ1190℃より低温の条件で所定時間保持後に、1190℃に昇温して保持することもできる。
 なお、図5では第1の実施形態(900℃)よりも高温(1190℃)での成長を行っているが、このような条件でもヘテロエピタキシャル成長が可能であるのは、温度を上げるときにHを流しており、そのHによる効果か、あるいは、成長中に途中で(つまり、第二工程から第三工程に移るときに)温度を変えることで、成長モードが変化したことによる効果などが考えられる。図5に示すように、図5のシーケンスでも核形成から2次元成長となる。
 また特に、SiCの核形成工程及び3C-SiC単結晶膜の形成工程の初期段階では圧力を1333Pa(10Torr)以下、好ましくは133Pa(1Torr)以下として3C-SiC単結晶膜直下に空孔を形成してから、圧力を1333Pa(10Torr)以下の範囲内で初期段階より高い条件に変更することにより、ヘテロエピタキシャル層全体の応力の緩和と効率的な3C-SiC単結晶膜の形成を両立させることができる。
 そして、このようにして成長させた3C-SiC単結晶膜の上にGaNまたはSiを成長させると、高品質なGaNエピタキシャル層またはSiエピタキシャル層をもった基板を得ることが可能になる。
 <第四工程>
 単結晶シリコン基板から、形成した3C-SiC単結晶膜を空孔で分離して剥離することによりヘテロエピタキシャル膜を作製する。第1の実施形態と同様にして行うことができる。
(第3の実施形態)
 図6は第3の実施形態の成長シーケンスの一例を示したものである。
 <第一工程>
 まず、RP-CVD装置に単結晶シリコン基板を配置し、表面の自然酸化膜を第1の実施形態と同様の条件でHアニールを行い除去する。
 <第二工程、第三工程>
 次に、単結晶シリコン基板表面にSiCの核形成及びそれに続いて3C-SiC単結晶膜の形成を連続して行うため、原料ガスとしてモノメチルシランまたはトリメチルシランを導入しながら300℃以上950℃以下の範囲の温度から1000℃以上1200℃未満の範囲の温度まで徐々に昇温させる。このように、昇温していく過程で第二工程と第三工程を連続して行うことができる。
 昇温速度は例えば0.5℃/sec以上2℃/sec以下とすることが好ましい。このレベルの昇温速度であれば、速すぎる昇温速度でもないため、設定温度と実温度に乖離が生じるのを効果的に防ぐことができ、温度制御を適切に行える。また遅すぎる昇温速度でもないため、SiCの核形成温度帯の通過時間が長くなり不均一な核形成が生じやすくなったり、ヘテロエピタキシャル成長中の欠陥形成が発生しやすくなったりするのを抑制できる。
 このとき、1000℃以上1200℃未満の範囲内で予め設定していた所定の温度まで昇温したのちに、そこで成長を止めてもよいし、その温度で保持したまま所定の膜厚になるまで成長を継続させてもよい。あるいは、1000℃以上には達したものの上記の所定の温度にまで達していなくとも、昇温の途中で所定の膜厚に達したら、そこで成長を止めても構わない。温度を変化させながら成長することで、成長モードを連続的に変化させながら(核形成から2次元成長へ変化)成長させることで成膜速度を徐々に高速化させることが可能になる。
 図6では、300℃から1130℃まで1℃/secの昇温速度で昇温し、そのまま1130℃で所定時間保持している。
 また特に、SiCの核形成工程及び3C-SiC単結晶膜の形成工程の初期段階では圧力を1333Pa(10Torr)以下、好ましくは133Pa(1Torr)以下として3C-SiC単結晶膜直下に空孔を形成してから、圧力を1333Pa(10Torr)以下の範囲内で初期段階より高い条件に変更することにより、ヘテロエピタキシャル層全体の応力の緩和と効率的な3C-SiC単結晶膜の形成を両立させることができる。
 そして、このようにして成長させた3C-SiC単結晶膜の上にGaNまたはSiを成長させると、高品質なGaNエピタキシャル層またはSiエピタキシャル層をもった基板を得ることが可能になる。
 <第四工程>
 単結晶シリコン基板から、形成した3C-SiC単結晶膜を空孔で分離して剥離することによりヘテロエピタキシャル膜を作製する。第1の実施形態と同様にして行うことができる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 直径300mm、面方位(111)、ボロンドープの高抵抗率単結晶シリコン基板を準備し、RP-CVD装置の反応炉内のサセプター上にウェーハを配置し、1080℃で1分間のHアニールを行った(第一工程)。
 続いて、成長温度を900℃、成長圧力を133Pa(1Torr)としてトリメチルシランガスを導入し、SiCの核形成工程(第二工程)及び3C-SiC単結晶膜の成長を行った(第三工程)。5分間の成長を行った結果、膜厚は13nmとなっていた。
 その後、In Plane配置にてXRD(X線回折)スペクトルを確認したところ、図7のXRD解析結果のグラフに示すようにSi(220)に平行な3C-SiC(220)のピークを確認することが出来、単結晶の3C-SiC膜が成長していることが確認された。
 また、その断面TEM像を図8に示す。その結果、3C-SiC単結晶膜(ヘテロエピタキシャル膜3)の直下に空孔が形成されていることが確認できた(空孔形成部2)。なお、符号10は断面TEM撮影用の表面保護膜を示す。
 この後、3C-SiC単結晶膜上の保護膜の表面に接着剤を塗布して石英基板に貼り付けを行った。そして、この基板をチャックした状態で引きはがしを行ったところ、3C-SiC/シリコン界面の空孔形成部から3C-SiC単結晶膜(ヘテロエピタキシャル膜)の分離・剥離を行うことができた(第四工程)。
 また別の剥離方法として、3C-SiC単結晶膜を成長させた基板に対し、3C-SiC単結晶膜側から1mm×1mmの大きさにダイシングを行った後(ダイシング深さは3C-SiC単結晶膜の厚さよりわずかに深い程度)、クリッパーで表面を吸着してチップとして3C-SiC単結晶膜を空孔形成部で剥離することができた。
(実施例2)
 直径300mm、面方位(111)、ボロンドープの高抵抗率単結晶シリコン基板を準備し、RP-CVD装置の反応炉内のサセプター上にウェーハを配置し、1080℃で1分間のH2アニールを行った(第一工程)。
 続いて、第二工程(SiC核の核形成工程)として成長温度を900℃で5分間トリメチルシランガスを導入した。
 次に第三工程(3C-SiC単結晶膜形成工程)として成長温度を1190℃まで昇温させてトリメチルシランガスを導入し、3C-SiC単結晶膜の成長を行った。このときの成長圧力は一律133Pa(1Torr)とした。1分間の成長を行った結果、膜厚は30nm程度となっていた。
 成膜後、In Plane配置にてXRDスペクトルを確認したところ、実施例1と同様にSi(220)に平行な3C-SiC(220)のピークを確認することが出来、単結晶の3C-SiC膜が成長していることが確認された。
 また、その断面TEM像を図9に示す。その結果、3C-SiC単結晶膜の直下に空孔が形成されていることが確認できた。
 この後、接着剤と石英基板を用いて実施例1と同様にして第四工程を行ったところ、3C-SiC/シリコン界面の空孔形成部から3C-SiC単結晶膜の剥離を行うことができた。
 また別の剥離方法に関しても実施例1と同様にして行ったところ、チップとして3C-SiC単結晶膜を空孔形成部で剥離することができた。
(実施例3)
 第二工程、第三工程の成長圧力を1333Pa(10Torr)、成長温度を950℃とした以外は実施例1と同じ条件で3C-SiC単結晶膜の形成を行った。その結果、膜厚は20nm程度となっていた。
 その後、In Plane配置にてXRDスペクトルを確認したところ、Si(220)に平行な3C-SiC(220)のピークを確認することが出来、単結晶の3C-SiC膜が成長していることが確認された。また3C-SiC単結晶膜の直下に空孔が形成されていることが確認できた。
 さらには接着剤と石英基板を用いて実施例1と同様にして第四工程を行ったところ、3C-SiC/シリコン界面の空孔形成部から3C-SiC単結晶膜の剥離を行うことができた。
(実施例4)
 第二工程、第三工程の成長温度をそれぞれ300℃、800℃とした以外は実施例2と同じ条件で3C-SiC単結晶膜の形成を行った。その結果、膜厚は12nm程度となっていた。
 その後、In Plane配置にてXRDスペクトルを確認したところ、Si(220)に平行な3C-SiC(220)のピークを確認することが出来、単結晶の3C-SiC膜が成長していることが確認された。また3C-SiC単結晶膜の直下に空孔が形成されていることが確認できた。
 さらには接着剤と石英基板を用いて実施例2と同様にして第四工程を行ったところ、3C-SiC/シリコン界面の空孔形成部から3C-SiC単結晶膜の剥離を行うことができた。
(比較例1)
 第二工程、第三工程の成長圧力を3999Pa(30Torr)とした以外は実施例2と同じ条件で3C-SiC単結晶膜の形成を行った。その結果、膜厚は33nm程度となっていた。
 その後、In Plane配置にてXRDスペクトルを確認したところ、Si(220)に平行な3C-SiC(220)のピークを確認することが出来、単結晶の3C-SiC膜が成長していることが確認された。しかしながら、3C-SiC単結晶膜の直下に空孔の形成は確認できなかった。
 さらには接着剤と石英基板を用いて実施例2と同様にして3C-SiC単結晶膜の剥離を試みたが、剥離できなかった。これは上記空孔を形成できなかったためと考えられる。
(比較例2)
 第二工程の成長温度を200℃または1000℃とした以外は実施例2と同じ条件で3C-SiC単結晶膜の形成を行った。その結果、膜厚はそれぞれ2nm、4nm程度となっていた。
 このように形成された膜厚は実施例2に比べて極めて薄く、効率が著しく悪かった。これは、第二工程の温度が低すぎたり高すぎたりしたためSiCの核形成が十分に行われず、そのため第三工程でヘテロエピタキシャル成長がほとんどなされなかったためと考えられる。
(比較例3)
 第三工程の成長温度を700℃または1250℃とした以外は実施例2と同じ条件で3C-SiC単結晶膜の形成を行った。その結果、膜厚はそれぞれ7nm、50nm程度となっていた。
 このように700℃の場合は形成された膜厚が実施例2に比べて極めて薄く、効率が著しく悪かった。また、1250℃の場合はスリップ転位が発生してしまった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (14)

  1.  単結晶シリコン基板上に3C-SiC単結晶膜をヘテロエピタキシャル成長させた後に、前記単結晶シリコン基板から前記3C-SiC単結晶膜を剥離する工程を含む、ヘテロエピタキシャル膜の作製方法であって、
     減圧CVD装置を用いて、
     前記単結晶シリコン基板の表面の自然酸化膜を水素ベイクにより除去する第一工程と、
     前記減圧CVD装置内に炭素とケイ素を含むソースガスを供給しつつ、圧力が1333Pa以下、温度が300℃以上950℃以下の条件で前記単結晶シリコン基板上にSiCの核形成を行う第二工程と、圧力が1333Pa以下、温度が800℃以上1200℃未満の条件でSiC単結晶を成長させて3C-SiC単結晶膜を形成するとともに該3C-SiC単結晶膜直下に空孔を形成する第三工程と、
     前記単結晶シリコン基板から前記3C-SiC単結晶膜を前記空孔で分離して剥離することにより前記ヘテロエピタキシャル膜を作製する第四工程と、
     を含むことを特徴とするヘテロエピタキシャル膜の作製方法。
  2.  前記ソースガスとしてモノメチルシランまたはトリメチルシランを用いることを特徴とする請求項1に記載のヘテロエピタキシャル膜の作製方法。
  3.  前記第一工程を、温度が1000℃以上1200℃以下の条件で行うことを特徴とする請求項1または請求項2に記載のヘテロエピタキシャル膜の作製方法。
  4.  前記第三工程を、圧力が133Pa以下の条件で行うことを特徴とする請求項1から請求項3のいずれか一項に記載のヘテロエピタキシャル膜の作製方法。
  5.  前記第三工程を、前記第二工程の条件よりも、圧力と温度のうち1つ以上を高くして行うことを特徴とする請求項1から請求項4のいずれか一項に記載のヘテロエピタキシャル膜の作製方法。
  6.  前記第三工程を、温度が1000℃以上1200℃未満の条件で行うことを特徴とする請求項5に記載のヘテロエピタキシャル膜の作製方法。
  7.  前記第三工程中に、圧力と温度のうち1つ以上を高くすることを特徴とする請求項1から請求項6のいずれか一項に記載のヘテロエピタキシャル膜の作製方法。
  8.  前記第二工程、前記第三工程を、温度が300℃以上950℃以下の範囲から1000℃以上1200℃未満の範囲に徐々に昇温する条件で行うことにより、
     前記SiCの核形成と、該SiCの核形成に引き続いて前記3C-SiC単結晶膜の形成を連続して行うことを特徴とする請求項7に記載のヘテロエピタキシャル膜の作製方法。
  9.  前記昇温を、0.5℃/sec以上2℃/sec以下の昇温速度で行うことを特徴とする請求項8に記載のヘテロエピタキシャル膜の作製方法。
  10.  前記第三工程後、前記第四工程前に、前記形成した3C-SiC単結晶膜の表面に、さらにGaNを成長させてGaN層を形成することを特徴とする請求項1から請求項9のいずれか一項に記載のヘテロエピタキシャル膜の作製方法。
  11.  前記第三工程後、前記第四工程前に、前記形成した3C-SiC単結晶膜の表面に、さらにSiを成長させてSi層を形成することを特徴とする請求項1から請求項9のいずれか一項に記載のヘテロエピタキシャル膜の作製方法。
  12.  前記第三工程後、前記形成した3C-SiC単結晶膜上に保護膜を形成してから前記第四工程を行うことを特徴とする請求項1から請求項11のいずれか一項に記載のヘテロエピタキシャル膜の作製方法。
  13.  前記第三工程後、前記形成した3C-SiC単結晶膜上にデバイスを形成し、保護膜を形成してから前記第四工程を行うことを特徴とする請求項1から請求項11のいずれか一項に記載のヘテロエピタキシャル膜の作製方法。
  14.  前記第三工程後、前記形成した3C-SiC単結晶膜上にデバイスを形成し、該デバイスのスクライブラインに沿ってデバイスを切り出した後に保護膜を形成してから、前記第四工程を行うことを特徴とする請求項1から請求項11のいずれか一項に記載のヘテロエピタキシャル膜の作製方法。
PCT/JP2022/032016 2021-10-06 2022-08-25 ヘテロエピタキシャル膜の作製方法 WO2023058355A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22878226.4A EP4414483A1 (en) 2021-10-06 2022-08-25 Method for forming heteroepitaxial film
CN202280067121.0A CN118176329A (zh) 2021-10-06 2022-08-25 异质外延膜的制作方法
JP2023552739A JPWO2023058355A1 (ja) 2021-10-06 2022-08-25
KR1020247010927A KR20240088776A (ko) 2021-10-06 2022-08-25 헤테로에피택셜막의 제작방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021164648 2021-10-06
JP2021-164648 2021-10-06

Publications (1)

Publication Number Publication Date
WO2023058355A1 true WO2023058355A1 (ja) 2023-04-13

Family

ID=85803388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032016 WO2023058355A1 (ja) 2021-10-06 2022-08-25 ヘテロエピタキシャル膜の作製方法

Country Status (6)

Country Link
EP (1) EP4414483A1 (ja)
JP (1) JPWO2023058355A1 (ja)
KR (1) KR20240088776A (ja)
CN (1) CN118176329A (ja)
TW (1) TW202321507A (ja)
WO (1) WO2023058355A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036609A (ja) * 2004-07-29 2006-02-09 Fuji Electric Holdings Co Ltd 炭化珪素半導体基板の製造方法
JP2010502023A (ja) 2006-08-30 2010-01-21 ジルトロニック アクチエンゲゼルシャフト 多層半導体ウエハ及びその製造方法
JP2010251724A (ja) 2009-03-26 2010-11-04 Semiconductor Energy Lab Co Ltd 半導体基板の作製方法
JP2011071219A (ja) * 2009-09-24 2011-04-07 Seiko Epson Corp 半導体基板の製造方法
JP2011223011A (ja) 2002-11-07 2011-11-04 Commiss Energ Atom 同時注入により基板内に脆性領域を生成する方法
JP2014237581A (ja) * 2014-07-01 2014-12-18 セイコーエプソン株式会社 立方晶炭化珪素半導体基板
JP2018070435A (ja) * 2016-11-04 2018-05-10 セイコーエプソン株式会社 半導体基板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223011A (ja) 2002-11-07 2011-11-04 Commiss Energ Atom 同時注入により基板内に脆性領域を生成する方法
JP2006036609A (ja) * 2004-07-29 2006-02-09 Fuji Electric Holdings Co Ltd 炭化珪素半導体基板の製造方法
JP2010502023A (ja) 2006-08-30 2010-01-21 ジルトロニック アクチエンゲゼルシャフト 多層半導体ウエハ及びその製造方法
JP2010251724A (ja) 2009-03-26 2010-11-04 Semiconductor Energy Lab Co Ltd 半導体基板の作製方法
JP2011071219A (ja) * 2009-09-24 2011-04-07 Seiko Epson Corp 半導体基板の製造方法
JP2014237581A (ja) * 2014-07-01 2014-12-18 セイコーエプソン株式会社 立方晶炭化珪素半導体基板
JP2018070435A (ja) * 2016-11-04 2018-05-10 セイコーエプソン株式会社 半導体基板の製造方法

Also Published As

Publication number Publication date
JPWO2023058355A1 (ja) 2023-04-13
EP4414483A1 (en) 2024-08-14
CN118176329A (zh) 2024-06-11
TW202321507A (zh) 2023-06-01
KR20240088776A (ko) 2024-06-20

Similar Documents

Publication Publication Date Title
JP5498163B2 (ja) 多層半導体ウエハ及びその製造方法並びに素子
TWI736554B (zh) SiC複合基板之製造方法
US8030176B2 (en) Method for preparing substrate having monocrystalline film
US9200379B2 (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
US20100178234A1 (en) Multilayer substrate and method for producing the same, diamond film and method for producing the same
EP2602812B1 (en) High-quality gan high-voltage hfets on silicon
US9099308B2 (en) Semiconductor wafer and method for manufacturing the same
CN113994032A (zh) 电子器件用基板及其制造方法
CN112262456A (zh) GaN层叠基板的制造方法
EP3352197A1 (en) METHOD FOR PRODUCING SiC COMPOSITE SUBSTRATE
KR20140055338A (ko) 에피택셜 웨이퍼 및 그 제조 방법
KR100288473B1 (ko) 단결정탄화규소 및 그 제조방법
WO2023058355A1 (ja) ヘテロエピタキシャル膜の作製方法
CN116590795A (zh) 一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法
JP7259906B2 (ja) ヘテロエピタキシャルウェーハの製造方法
JP6763347B2 (ja) 窒化物半導体基板の製造方法および窒化物半導体基板
JP7218832B1 (ja) ヘテロエピタキシャルウェーハの製造方法
JP2004349522A (ja) 半導体基板の製造方法
WO2024116506A1 (ja) ヘテロエピタキシャル基板の製造方法
CN118215987A (zh) 氮化物半导体基板及氮化物半导体基板的制造方法
JP2024042982A (ja) 窒化物半導体層付き単結晶シリコン基板及び窒化物半導体層付き単結晶シリコン基板の製造方法
TW202332044A (zh) 用於製作包含多晶碳化矽底材及單晶碳化矽主動層之半導體結構之方法
JP2023098137A (ja) 高特性エピタキシャル成長用基板とその製造方法
JP2023544984A (ja) ガリウムベースのiii-n合金の層をエピタキシャル成長させるための基板を製造するための方法
JP2009059939A (ja) 歪み緩和シリコンゲルマニウム薄膜及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878226

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552739

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280067121.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022878226

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022878226

Country of ref document: EP

Effective date: 20240506