WO2012090268A1 - 単結晶炭化珪素エピタキシャル基板とその製造方法および単結晶SiCデバイス - Google Patents

単結晶炭化珪素エピタキシャル基板とその製造方法および単結晶SiCデバイス Download PDF

Info

Publication number
WO2012090268A1
WO2012090268A1 PCT/JP2010/073553 JP2010073553W WO2012090268A1 WO 2012090268 A1 WO2012090268 A1 WO 2012090268A1 JP 2010073553 W JP2010073553 W JP 2010073553W WO 2012090268 A1 WO2012090268 A1 WO 2012090268A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
silicon carbide
epitaxial film
substrate
crystal silicon
Prior art date
Application number
PCT/JP2010/073553
Other languages
English (en)
French (fr)
Inventor
佳孝 瀬戸口
Original Assignee
株式会社エコトロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エコトロン filed Critical 株式会社エコトロン
Priority to PCT/JP2010/073553 priority Critical patent/WO2012090268A1/ja
Publication of WO2012090268A1 publication Critical patent/WO2012090268A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth

Definitions

  • the present invention relates to a single crystal silicon carbide epitaxial substrate, a manufacturing method thereof, and a single crystal SiC device, and more specifically, a single crystal silicon carbide epitaxial substrate including a single crystal silicon carbide epitaxial film with reduced threading screw dislocations, a manufacturing method thereof, and The present invention relates to a single crystal SiC device using the single crystal silicon carbide epitaxial substrate.
  • SiC single-crystal silicon carbide
  • a single crystal SiC substrate obtained by processing a bulk crystal manufactured by a sublimation method or the like is used, and a single crystal serving as an active region of a semiconductor device is formed thereon.
  • a crystalline SiC epitaxial film is grown and formed.
  • a vapor phase growth method Vapor Phase Epitaxy method in which a raw material is supplied from a vapor phase to form a desired epitaxial film: VPE method
  • VPE method Vapor Phase Epitaxy method in which a raw material is supplied from a vapor phase to form a desired epitaxial film
  • the present applicant melts Si by sandwiching a Si raw material between a single crystal SiC substrate and a carbon (C) feedstock and heating it at a high temperature in a crucible so that a high quality is obtained on the single crystal SiC substrate.
  • a metastable solvent epitaxy (MSE) method capable of epitaxially growing single crystal SiC at high speed has been proposed (Patent Document 1).
  • single crystal SiC substrates on which single crystal SiC epitaxial films are grown generally have threading screw dislocation (Threading Dislocation: TSD), threading edge dislocation (Threading Edge Dislocation: TED), basal plane dislocation (Basal Plane Plane).
  • TSD threading screw dislocation
  • Threading Edge Dislocation: TED threading Edge Dislocation
  • Basal Plane Plane basal plane dislocation
  • BPD Dislocation
  • Non-Patent Document 1 When a single-crystal SiC epitaxial film (VPE epitaxial film) is formed on a single-crystal SiC substrate in which these crystal defects are inherent using the conventional VPE method, TSD in the substrate is directly propagated to the VPE epitaxial film. Then, there was a problem that a device failure occurred when the device was manufactured (for example, Non-Patent Document 1).
  • FIG. 7 is a cross-sectional view illustrating a configuration of a conventional single crystal SiC epitaxial substrate in which a VPE epitaxial film is formed on a single crystal SiC substrate.
  • 11 is a single crystal SiC substrate produced by a sublimation method or the like
  • 31 is a VPE epitaxial film.
  • the single crystal SiC substrate 11 includes defects such as TSD 41, TED 42, and BPD 43. It is well known that these dislocations propagate to the VPE epitaxial film 31.
  • TSD 41 propagates as TSD 41 as it is
  • TED 42 also propagates as TED 42 as it is.
  • the BPD 43 is classified into a type that propagates as the BPD 43 as it is and a type that propagates after being converted to the TED 42 depending on the formation conditions of the VPE epitaxial film 31.
  • the BPD 43 in the VPE epitaxial film 31 has been reported to cause forward characteristic deterioration in a high breakdown voltage device in which a pn junction is formed.
  • the BPD 43 in the VPE epitaxial film 31 has been reported to cause forward characteristic deterioration in a high breakdown voltage device in which a pn junction is formed.
  • TED42 does not have a bad influence on a device characteristic.
  • FIG. 8 is a cross-sectional view illustrating a configuration of a conventional single crystal SiC epitaxial substrate in which an MSE epitaxial film is formed on a single crystal SiC substrate, and 44 is SF.
  • the TSD 41 is converted into SF 44 in the MSE epitaxial film 32.
  • the propagation of TSD to the MSE epitaxial film can be suppressed by using the MSE method, if a device can be manufactured using the MSE epitaxial film, defects caused by TSD can be prevented. The generation can be reduced, which is preferable.
  • the present inventors formed an MSE epitaxial film as a buffer layer for reducing dislocations on a single crystal SiC substrate, and formed a single crystal SiC epitaxial film as an active layer thereon using the VPE method.
  • a hybrid structure is proposed (Patent Document 1).
  • the TSD in the substrate is converted to SF in the MSE epitaxial film, but is converted back to TSD in the VPE epitaxial film. It has been found that it is difficult to propagate all TSDs to a Frank type SF.
  • FIG. 9 is a cross-sectional view illustrating a configuration of a conventional single crystal SiC epitaxial substrate in which an MSE epitaxial film and then a VPE epitaxial film are formed on the single crystal SiC substrate. It is a VPE epitaxial film formed by the VPE method.
  • the TSD 41 inherent in the single crystal SiC substrate 11 is converted into SF 44 by the MSE epitaxial film 32, but is converted back to TSD 41 in the VPE epitaxial film formed on the MSE epitaxial film 32. And propagated to the VPE epitaxial film.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a single crystal SiC epitaxial substrate including a single crystal SiC epitaxial film in which TSD is sufficiently reduced, and a method for manufacturing the same.
  • the present inventor conducted various experiments and studies for solving the above-described problems.
  • Si droplets are formed on the surface of the MSE epitaxial film prior to the formation of the VPE epitaxial film by the vapor phase growth method.
  • re-conversion of TSD converted from TSD to TSD does not occur in the MSE epitaxial film, and can be propagated as SF to the VPE epitaxial film. It has been found that a sufficiently reduced single crystal SiC epitaxial film can be formed.
  • traces of Si droplets remain on the VPE epitaxial film, but after forming a sufficiently thick VPE epitaxial film by vapor deposition, the surface is flattened by polishing.
  • a single crystal SiC epitaxial substrate suitable for device fabrication can be obtained.
  • Si droplets can be easily formed by devising the composition of the source gas when forming a VPE epitaxial film by vapor deposition, or by forming a Si thin film in advance before vapor deposition. Can do.
  • Claim 2 is A single crystal silicon carbide epitaxial substrate manufactured using the method for manufacturing a single crystal silicon carbide epitaxial substrate according to claim 1.
  • the present inventor further conducted an experimental study, and as a result, the VPE epitaxial film was formed directly on the single crystal SiC substrate by the vapor phase growth method without providing the MSE epitaxial film as the buffer layer. Even if it is performed, by applying means for forming Si droplets on the single crystal SiC substrate, TSD inherent in the single crystal SiC substrate can be converted into SF in the VPE epitaxial film, It was found that a single crystal SiC epitaxial film having a sufficiently reduced TSD can be formed.
  • Claim 4 is A single crystal silicon carbide epitaxial substrate manufactured using the method for manufacturing a single crystal silicon carbide epitaxial substrate according to claim 3.
  • the present inventor conducted experiments and studies on a preferable method for forming Si droplets.
  • the vapor phase growth method by adjusting the supply ratio (C / Si) of the raw material carbon (C) and Si, specifically, by lowering (C / Si) and increasing the amount of Si, It has been found that Si droplets can be formed.
  • the ratio of the source carbon (C) contained in C 3 H 8 and Si contained in SiH 4 By adjusting (C / Si) to a low ratio, particularly preferably to a ratio lower than 0.3, excess Si appropriately forms Si droplets, so that the TSD inherent in the single crystal silicon carbide substrate is reduced. It can be sufficiently reduced.
  • Invention of Claim 5 is an invention based on the said knowledge, By adjusting the supply ratio (C / Si) of carbon (C) and silicon (Si) as a raw material for forming a single crystal silicon carbide epitaxial film by vapor phase growth, single crystal silicon carbide epitaxial by vapor phase growth is used. 4. The method for producing a single crystal silicon carbide epitaxial substrate according to claim 1, wherein silicon droplets are formed prior to formation of the film.
  • the Si droplet is formed by adjusting the supply ratio of the raw material for forming the silicon carbide epitaxial film in the vapor phase growth method, the formation of the Si droplet is easy. Therefore, it is not necessary to provide special equipment for Si droplets.
  • disilane (Si 2 H 6 ), chlorosilane (SiCl 4 ), or dichlorosilane (SiH 2 Cl 2 ) can be used instead of the above-described SiH 4 .
  • C source in place of the C 3 H 8 above, methane (CH 4), ethane (C 2 H 6), butane (C 4 H 10), ethylene (C 2 H 4), acetylene ( C 2 H 2 ), propylene (C 3 H 6 ), butylene (C 2 H 6 ) can also be used.
  • a Si thin film is formed in advance on the single crystal SiC substrate or the first single crystal silicon carbide epitaxial film prior to the formation of the VPE epitaxial film. It was also found that the method of keeping was preferable.
  • a thin film of Si or a material containing Si is formed on the first single crystal silicon carbide epitaxial film based on the MSE method or a single crystal SiC substrate using a sputtering method or the like, and then When the vapor phase growth method is performed, since the melting point of Si is about 1410 ° C., the Si melts before reaching the temperature (1500 ° C. to 1700 ° C.) at which the vapor phase growth of the VPE epitaxial film starts. A droplet is formed. Then, since vapor phase growth of the VPE epitaxial film starts, TSD inherent in the single crystal silicon carbide substrate can be sufficiently reduced.
  • Invention of Claim 6 is an invention based on the said knowledge, Prior to forming a single crystal silicon carbide epitaxial film by vapor phase growth, a thin film of Si or Si is included in advance on the surface of the first single crystal silicon carbide epitaxial film or the surface of the single crystal SiC substrate. 4. The method for producing a single crystal silicon carbide epitaxial substrate according to claim 1, wherein a silicon droplet is formed by forming a thin film of a raw material.
  • a single crystal SiC epitaxial substrate including a single crystal SiC epitaxial film in which TSD is sufficiently reduced, a manufacturing method thereof, and a high quality single crystal SiC device.
  • (A) is the microscope picture of the surface of the VPE epitaxial film of an Example
  • (b) is the etching photograph of the single crystal SiC epitaxial substrate of the Example. It is sectional drawing explaining the structure of the conventional single crystal SiC epitaxial substrate in which the VPE epitaxial film was formed on the single crystal SiC substrate. It is sectional drawing explaining the structure of the conventional single crystal SiC epitaxial substrate in which the MSE epitaxial film was formed on the single crystal SiC substrate. It is sectional drawing explaining the structure of the conventional single crystal SiC epitaxial substrate in which the MSE epitaxial film and then the VPE epitaxial film were formed on the single crystal SiC substrate.
  • a VPE epitaxial film is directly formed after forming Si droplets on a single crystal SiC substrate.
  • FIG. 1 is a diagram schematically showing one step in the method of manufacturing a single crystal SiC epitaxial substrate of the present embodiment.
  • 21 is a single crystal SiC substrate
  • 41 is a TSD inherent in the single crystal SiC substrate
  • 15 is a Si droplet.
  • Si droplets 15 are formed on the surface of a single crystal SiC substrate 21 in which TSD 41 is contained prior to the formation of the VPE epitaxial film. Form.
  • the method of forming Si droplets is not particularly limited, but is preferably formed by the following method.
  • the first method is to adjust the supply ratio of propane and silane, which are raw material gases of the vapor phase growth method for forming the VPE epitaxial film, so that C and silane contained in propane This is a method of forming silicon droplets by reducing the Si ratio (C / Si) contained. Specifically, by adjusting the supply amount of propane and silane so that C / Si is smaller than 0.3, Si is supplied excessively to form Si droplets. C / Si is appropriately adjusted according to the desired amount of Si droplets.
  • the second method is to form a Si thin film on the single crystal SiC substrate 21 by using, for example, a sputtering method, and then perform conventional vapor phase growth to thereby obtain a single crystal SiC substrate 21.
  • This is a method of forming Si droplets on the substrate.
  • FIG. 2 is a diagram for explaining a method of forming a VPE epitaxial film by the VPE method based on the present embodiment.
  • FIG. 2 shows a vapor phase growth apparatus.
  • the vapor phase growth apparatus includes a quartz reaction furnace 22 in which a heat insulating material 23 is contained, a graphite susceptor 24, and a high frequency coil 25. Yes.
  • the single crystal SiC substrate 21 is placed on the susceptor 24, and the inside of the reaction furnace 22 is sufficiently replaced with a gas such as hydrogen, and then the susceptor 24 is induction-heated by the high frequency coil 25, whereby the single crystal SiC substrate 21 is Heat to a predetermined temperature.
  • the raw material gas 26 is thermally decomposed by introducing the raw material gas 26 containing C and Si such as propane and silane into the reaction furnace 22.
  • Si droplets 15 are formed on the single crystal SiC substrate 21 (see FIG. 1).
  • FIG. 3 is a diagram schematically showing a configuration of the single crystal SiC epitaxial substrate of the present embodiment.
  • 21 is a single crystal SiC substrate
  • 31 is a VPE epitaxial film of SiC
  • 41 is TSD
  • 42 is TED
  • 43 is BPD
  • 44 is SF.
  • the single crystal SiC substrate 21 is formed in the VPE epitaxial film 31.
  • the underlying TSD 41 is converted to SF44. Therefore, the TSD 41 does not propagate to the VPE epitaxial film 31, and a single crystal SiC epitaxial substrate on which the VPE epitaxial film 31 in which the TSD 41 is sufficiently reduced is formed can be obtained.
  • the TSD 41 in the VPE epitaxial film can be sufficiently reduced by forming the VPE epitaxial film after forming the Si droplets 15 on the single crystal SiC substrate 21.
  • the first method is employed as a method for forming Si droplets, but the second method may be employed.
  • an MSE epitaxial film (buffer layer) is formed on a single crystal SiC substrate, and then an Si thin film is formed on the MSE epitaxial film by the second method, Thereafter, a VPE epitaxial film is formed.
  • FIG. 4 is a diagram schematically showing one step of the method of manufacturing the single crystal SiC epitaxial substrate of the present embodiment.
  • 21 is a single crystal SiC substrate
  • 32 is an MSE epitaxial film
  • 41 is a TSD inherent in the single crystal SiC substrate
  • 44 is an SF formed on the MSE epitaxial film 32
  • 15 is a Si droplet. It is.
  • an MSE epitaxial film 32 is formed on the single crystal SiC substrate 21.
  • the TSD 41 inherent in the single crystal SiC substrate 21 is converted to SF 44 by the MSE epitaxial film 32.
  • a Si thin film is formed on the MSE epitaxial film 32.
  • the single crystal SiC substrate 21 having the Si thin film formed on the MSE epitaxial film 32 is placed in the vapor phase growth apparatus and heated to form the Si droplet 15 and the VPE epitaxial film. Done.
  • FIG. 5 is a diagram schematically showing the configuration of the single crystal SiC epitaxial substrate of the present embodiment.
  • 21 is a single crystal SiC substrate
  • 31 is a VPE epitaxial film
  • 32 is an MSE epitaxial film
  • 41 is TSD
  • 42 is TED
  • 43 is BPD
  • 44 is SF.
  • the TSD 41 existing in the single crystal SiC substrate 21 is converted into SF 44 by the MSE epitaxial film 32, and the SF 44 is propagated as it is to the VPE epitaxial film 31 without being converted back to the TSD 41. Therefore, it is possible to form a single crystal SiC epitaxial substrate on which the VPE epitaxial film 31 in which the TSD 41 is sufficiently reduced is formed.
  • the TSD 41 in the VPE epitaxial film can be sufficiently reduced.
  • the second method is employed as a method for forming Si droplets.
  • the first method may be employed.
  • an MSE epitaxial film is formed on a single crystal SiC substrate, Si droplets are formed on the MSE epitaxial film by the first method, and then a VPE epitaxial film is formed. . This will be specifically described below.
  • (B) Formation of MSE epitaxial film A single crystal SiC substrate is set in an MSE epitaxial apparatus, and after the inside of the MSE epitaxial apparatus is reduced to a pressure of 1 ⁇ 10 ⁇ 2 Pa or less, this pressure state is maintained.
  • the temperature in the sealed container is raised to 1800 ° C. at 20 ° C./min by heating means (programmable rate of temperature increase and decrease), maintained at 1800 ° C. for 300 minutes, and then the temperature in the sealed container is set to 500 The temperature was lowered to 20 ° C. at a rate of 20 ° C./min, and naturally cooled from 500 ° C. to room temperature.
  • an MSE epitaxial film made of a SiC epitaxial film (4H—SiC) having a carrier concentration of 9 ⁇ 10 17 to 2 ⁇ 10 19 cm 2 (n-type) and a film thickness of 40 ⁇ m is formed on the single crystal SiC substrate. Formed.
  • Step B Step of forming Si droplets and epitaxial film
  • the gas in the reaction furnace 22 was replaced with hydrogen gas, and the pressure for epitaxial growth was adjusted while supplying a predetermined amount of hydrogen gas with a mass flow controller.
  • the pressure adjustment was performed by measuring the pressure in the reaction furnace 22 with a Baratron vacuum gauge and feeding back the pressure adjustment valve opening of the exhaust system.
  • Si droplets were formed in the ⁇ -1-120> direction from the position where SF exists on the MSE epitaxial film.
  • the shape of the etch pit differs depending on the type of each dislocation.
  • the MSE epitaxial film formed under specific conditions When the surface is subjected to molten alkali salt etching, the TSD etch pit is a large hexagon, and the TED etch pit is a small hexagon. In SF, a shell-like etch pit is formed.
  • FIG. 6A shows a surface photograph of the VPE epitaxial film.
  • FIG. 6B shows a molten alkali salt (KOH) etching photograph on the VPE epitaxial film from which the Si droplets 15 have been removed.
  • KOH molten alkali salt
  • the SF of the MSE epitaxial film is propagated to the VPE epitaxial film without being reconverted into TSD by growing the VPE epitaxial film under the condition where Si droplets are present.
  • Si droplets are present.
  • Single-crystal SiC substrate 32 MSE epitaxial film 41 TSD (through screw dislocation) 44 SF (stacking fault) 15 Si droplet 22 Reactor 23 Heat insulation material 24 Susceptor 25 High frequency coil 26 Source gas 31 VPE epitaxial film 42 TED (through-edge dislocation) 43 BPD (basal plane dislocation)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 TSDが充分に低減された単結晶SiCエピタキシャル膜を備える単結晶SiCエピタキシャル基板及びその製造方法を提供する。 単結晶炭化珪素基板上に準安定溶媒エピタクシー法を用いて単結晶炭化珪素基板に内在する貫通螺旋転位が積層欠陥に変換された第1の単結晶炭化珪素エピタキシャル膜を形成し、その上にシリコン液滴を形成した後、気相成長法を用いて、第1の単結晶炭化珪素エピタキシャル膜における積層欠陥が伝播された第2の単結晶炭化珪素エピタキシャル膜を形成する単結晶炭化珪素エピタキシャル基板の製造方法。単結晶炭化珪素基板上にシリコン液滴を形成した後、シリコン液滴が形成された単結晶炭化珪素基板上に気相成長法を用いて単結晶炭化珪素基板に内在する貫通螺旋転位が積層欠陥に変換された単結晶炭化珪素エピタキシャル膜を形成する単結晶炭化珪素エピタキシャル基板の製造方法。

Description

単結晶炭化珪素エピタキシャル基板とその製造方法および単結晶SiCデバイス
 本発明は、単結晶炭化珪素エピタキシャル基板とその製造方法および単結晶SiCデバイスに関し、詳しくは、貫通螺旋転位が低減された単結晶炭化珪素エピタキシャル膜を備える単結晶炭化珪素エピタキシャル基板とその製造方法および前記単結晶炭化珪素エピタキシャル基板を用いた単結晶SiCデバイスに関する。
 単結晶炭化珪素(SiC)を用いた半導体は、シリコン(Si)を用いた半導体と比較して、低損失で耐高温性に優れているため、高温動作可能な種々のデバイスへの応用が期待されている。
 そして、一般的に、単結晶SiCデバイスを作製する際には、昇華法等により作製されたバルク結晶を加工して得られる単結晶SiC基板を用い、この上に半導体デバイスの活性領域となる単結晶SiCエピタキシャル膜を成長させて、形成することが行われており、具体的な方法としては、気相から原料を供給して所望のエピタキシャル膜を形成する気相成長法(Vapor Phase Epitaxy法:VPE法)が主流となっている。
 このような単結晶デバイスの作製方法としては、上記の気相成長法の他に、液相から原料を供給してエピタキシャル膜の成長を行う液相成長法もあり、GaAs等の化合物半導体の作製に採用されている。
 しかし、SiCは温度に対して非常に安定であり、安定した液相状態を形成することが困難なために、液相成長法を採用して、高品質なエピタキシャル膜を形成することが困難であった。
 そこで、本出願人は、単結晶SiC基板と炭素(C)供給原料との間にSi原料を挟み、坩堝内で高温加熱することにより、Siを溶融して、単結晶SiC基板上に良質な単結晶SiCを高速でエピタキシャル成長させることができる準安定溶媒エピタクシー(Metastable Solvent Epitaxy:MSE)法を提案している(特許文献1)。
 一方、単結晶SiCピタキシャル膜を成長させる単結晶SiC基板には、一般的に、貫通螺旋転位(Threading Screw Dislocation:TSD)、貫通刃状転位(Threading Edge Dislocation:TED)、基底面転位(Basal Plane Dislocation:BPD)と呼ばれる結晶欠陥が内在している。
 これらの結晶欠陥が内在する単結晶SiC基板上に、従来のVPE法を用いて単結晶SiCエピタキシャル膜(VPEエピタキシャル膜)を形成させた場合、基板中のTSDが、そのままVPEエピタキシャル膜に伝播されてしまい、その後、デバイスを作製した際にデバイス不良が発生するという問題があった(例えば非特許文献1)。
 これを、単結晶SiC基板上にVPEエピタキシャル膜を形成した場合の転位伝播の概要を示す図7を用いて説明する。図7は、単結晶SiC基板上にVPEエピタキシャル膜を形成させた従来の単結晶SiCエピタキシャル基板の構成を説明する断面図である。図7において、11は昇華法等により作製された単結晶SiC基板、31はVPEエピタキシャル膜である。
 図7に示すように、単結晶SiC基板11中には、TSD41、TED42、BPD43等の欠陥が含まれている。そして、これらの転位はVPEエピタキシャル膜31へ伝播することが良く知られている。
 即ち、TSD41はそのままTSD41として伝播し、TED42もそのままTED42として伝播する。そして、BPD43は、VPEエピタキシャル膜31の形成条件によって、そのままBPD43として伝播するものと、TED42へ変換されて伝播するものとに分けられる。
 このVPEエピタキシャル膜31中のBPD43は、pn接合を形成した高耐圧デバイスにおいて、順方向特性劣化を生じることが報告されているが、各機関で鋭意研究開発が進められ、VPE法を用いた場合であってもBPD43を低減させることが可能となって来た。そして、TED42は、デバイス特性に悪影響を与えないことが報告されている。
 一方、TSD41は、デバイス特性に悪影響を与える報告がなされているが、VPE法を用いた場合において、TSD41を低減させる方法が現在に至るまで見出されていない。
 これに対して、単結晶SiC基板上に前記のMSE法に基づくMSEエピタキシャル膜を形成した場合には、単結晶SiC基板に内在するTSDの大半がFrank型の積層欠陥(stacking fault:SF)に変換されることが報告されている(例えば非特許文献2)。そして、このSFは、前記したTSDやBPDと異なり、デバイス特性には悪影響を与えない。
 この様子を図8に示す。図8は、単結晶SiC基板上にMSEエピタキシャル膜を形成させた従来の単結晶SiCエピタキシャル基板の構成を説明する断面図であり、44はSFである。
 図8に示すように、TSD41は、MSEエピタキシャル膜32中ではSF44に変換されている。このように、MSE法を用いることにより、MSEエピタキシャル膜へのTSDの伝播を抑制することができるため、MSEエピタキシャル膜を用いてデバイスを作製することが可能となれば、TSDに起因する不良の発生を低減することが可能となり好ましい。
 しかし、パワーデバイスに採用されるエピタキシャル膜を形成するためには、膜厚や不純物濃度を精細に制御する必要があるが、MSE法はVPE法に比べて、これらの制御が容易とは言えなかった。
 そこで、本発明者等は、単結晶SiC基板上に、転位低減のためのバッファ層としてMSEエピタキシャル膜を形成させ、その上に、VPE法を用いて活性層である単結晶SiCエピタキシャル膜を形成するハイブリッド構造を提案している(特許文献1)。
WO2009/013914 A1公報
「パワーエレクトロニクスインバータ基盤技術開発プロジェクト」(事後評価)第1回分科会 資料5-2(2)18/27、産業技術総合研究所他、(2009年9月) 「準安定溶媒エピタクシー法によるSiC結晶欠陥の変換」浜田 信吉他、SiC及び関連ワイドギャップ半導体研究会 第17回講演会 予稿集 P-7(2008年12月)
 しかしながら、上記のハイブリッド構造の場合、BPDの低減は可能であるものの、基板中のTSDがMSEエピタキシャル膜でSFに変換されているにも拘わらず、VPEエピタキシャル膜中でTSDに再変換される場合があり、全てのTSDについてFrank型のSFに伝播させることは困難であることが判明した。
 この様子を図9に示す。図9は、単結晶SiC基板上にMSEエピタキシャル膜、次いでVPEエピタキシャル膜を形成させた従来の単結晶SiCエピタキシャル基板の構成を説明する断面図であり、31は、MSEエピタキシャル膜32上に従来のVPE法で形成されたVPEエピタキシャル膜である。
 図9に示すように、単結晶SiC基板11に内在するTSD41は、MSEエピタキシャル膜32でSF44に変換されているが、MSEエピタキシャル膜32上に形成されたVPEエピタキシャル膜において、TSD41に再変換されて、VPEエピタキシャル膜に伝播されている。
 このように、従来の方法では、単結晶SiCエピタキシャル基板上に、TSDが充分に低減された単結晶SiCエピタキシャル膜を形成させることが困難であった。
 本発明は、上記の事情に鑑みてなされたものであって、TSDが充分に低減された単結晶SiCエピタキシャル膜を備える単結晶SiCエピタキシャル基板とその製造方法を提供することを課題とする。
 本発明者は、上記した課題の解決につき、種々の実験、検討を行った。その結果、単結晶SiC基板上に、MSEエピタキシャル膜をバッファ層として形成した後、気相成長法によるVPEエピタキシャル膜の形成に先立って、MSEエピタキシャル膜の表面にSi液滴を形成させるという極めて簡便な手段を適用することにより、VPEエピタキシャル膜上では、MSEエピタキシャル膜においてTSDから変換されたSFのTSDへの再変換が発生せず、VPEエピタキシャル膜にSFのまま伝播することができ、TSDが充分に低減された単結晶SiCエピタキシャル膜が形成できることを見出した。
 従来、エピタキシャル膜の表面に液滴を形成させることは、膜の表面状態を悪化させるため、好ましくないと考えられていた。しかし、本発明者は、従来の概念にとらわれず、種々の実験を行ったところ、意外にも、MSEエピタキシャル膜の表面にSi液滴を形成させた場合、その上に形成されたVPEエピタキシャル膜では、TSDが充分に低減されていることを見出した。
 即ち、単結晶SiC基板に内在するTSDは、MSEエピタキシャル膜でSFに変換されるが、Si液滴が形成されていることにより、VPEエピタキシャル膜において、このSFがTSDに再変換されることなく伝播されるため、TSDが充分に低減された単結晶SiCエピタキシャル膜が形成されることが分かった。
 そして、VPEエピタキシャル膜上には、Si液滴が形成された痕が残留しているが、気相成長法により充分な厚みのVPEエピタキシャル膜を形成した後に、研磨によって表面を平坦化することにより、デバイス製作に適した単結晶SiCエピタキシャル基板を得ることができる。
 Si液滴は、気相成長法によるVPEエピタキシャル膜の形成時に原料ガスの組成を工夫したり、気相成長の前に予めSi薄膜を形成しておいたりすることなどにより、容易に形成することができる。
 請求項1および請求項2の発明は、上記の知見に基づく発明である。
 即ち、請求項1に記載の発明は、
 単結晶炭化珪素基板上に、準安定溶媒エピタクシー法を用いて、前記単結晶炭化珪素基板に内在する貫通螺旋転位が積層欠陥に変換された第1の単結晶炭化珪素エピタキシャル膜を形成し、
 前記第1の単結晶炭化珪素エピタキシャル膜上に、シリコン液滴を形成した後、
 前記シリコン液滴が形成された第1の単結晶炭化珪素エピタキシャル膜上に、気相成長法を用いて、前記第1の単結晶炭化珪素エピタキシャル膜における積層欠陥が伝播された第2の単結晶炭化珪素エピタキシャル膜を形成する
ことを特徴とする単結晶炭化珪素エピタキシャル基板の製造方法である。
 そして、請求項2に記載の発明は、
 請求項1に記載の単結晶炭化珪素エピタキシャル基板の製造方法を用いて製造されていることを特徴とする単結晶炭化珪素エピタキシャル基板である。
 本発明者は、上記の知見に基づき、さらに、実験検討を行った結果、バッファ層としてのMSEエピタキシャル膜を設けず、単結晶SiC基板上に直接、気相成長法によるVPEエピタキシャル膜の形成を行う場合であっても、単結晶SiC基板上にSi液滴を形成させるという手段を適用することにより、単結晶SiC基板に内在するTSDを、VPEエピタキシャル膜では、SFに変換することができ、TSDが充分に低減された単結晶SiCエピタキシャル膜が形成できることが分かった。
 請求項3および請求項4の発明は、この知見に基づく発明である。
 即ち、請求項3に記載の発明は、
 単結晶炭化珪素基板上に、シリコン液滴を形成した後、
 前記シリコン液滴が形成された単結晶炭化珪素基板上に、気相成長法を用いて、前記単結晶炭化珪素基板に内在する貫通螺旋転位が積層欠陥に変換された単結晶炭化珪素エピタキシャル膜を形成する
ことを特徴とする単結晶炭化珪素エピタキシャル基板の製造方法である。
 そして、請求項4に記載の発明は、
 請求項3に記載の単結晶炭化珪素エピタキシャル基板の製造方法を用いて製造されていることを特徴とする単結晶炭化珪素エピタキシャル基板である。
 さらに、本発明者は、好ましいSi液滴の形成方法につき、実験、検討を行った。その結果、気相成長法において、原料カーボン(C)とSiの供給比率(C/Si)を調整、具体的には(C/Si)を下げ、Si量を過剰にすることにより、適切にSi液滴を形成できることが分かった。
 具体的には、例えば、原料ガスとして、シラン(SiH)およびプロパン(C)を使用した場合、Cに含まれる原料カーボン(C)とSiHに含まれるSiの比率(C/Si)を低い比率、特に好ましくは、0.3よりも低い比率に調整することにより、過剰なSiが適切にSi液滴を形成するため、単結晶炭化珪素基板に内在するTSDを充分に低減することができる。
 請求項5に記載の発明は、前記の知見に基づく発明であり、
 気相成長法により単結晶炭化珪素エピタキシャル膜を形成する原料となる炭素(C)とシリコン(Si)の供給比率(C/Si)を調整することにより、気相成長法による単結晶炭化珪素エピタキシャル膜の形成に先立って、シリコン液滴を形成することを特徴とする請求項1または請求項3に記載の単結晶炭化珪素エピタキシャル基板の製造方法である。
 本請求項の発明においては、気相成長法において、炭化珪素エピタキシャル膜を形成するための原料の供給比率を調整することにより、Si液滴の形成が行われるため、Si液滴の形成が容易であり、Si液滴のための特別な設備を設ける必要もない。
 なお、Si供給源としては、上記のSiHに替えて、ジシラン(Si)、クロルシラン(SiCl)、ジクロルシラン(SiHCl)を用いることもできる。また、C供給源としては、上記のCに替えて、メタン(CH)、エタン(C)、ブタン(C10)、エチレン(C)、アセチレン(C)、プロピレン(C)、ブチレン(C)を用いることもできる。
 また、適切にSi液滴を形成できる別の方法として、VPEエピタキシャル膜の形成に先立って、単結晶SiC基板や第1の単結晶炭化珪素エピタキシャル膜の上に、予め、Siの薄膜を形成しておく方法も好ましいことが分かった。
 具体的には、スパッタ法などを用いて、MSE法に基づく第1の単結晶炭化珪素エピタキシャル膜や、単結晶SiC基板の上に、Siの薄膜やSiを含む材料の薄膜を形成し、その後、気相成長法を行うと、Siの融点は、1410℃程度であるため、VPEエピタキシャル膜の気相成長が開始する温度(1500~1700℃)に達する前に、Siは溶融して、Si液滴が形成される。そして、その後、VPEエピタキシャル膜の気相成長が開始するため、単結晶炭化珪素基板に内在するTSDを充分に低減させることができる。
 請求項6に記載の発明は、前記の知見に基づく発明であり、
 気相成長法により単結晶炭化珪素エピタキシャル膜を形成するに先立って、予め、前記第1の単結晶炭化珪素エピタキシャル膜の表面、または前記単結晶SiC基板の表面に、Siの薄膜またはSiを含む原料の薄膜を形成しておくことにより、シリコン液滴を形成することを特徴とする請求項1または請求項3に記載の単結晶炭化珪素エピタキシャル基板の製造方法である。
 請求項7に記載の発明は、
 請求項2または請求項4に記載の単結晶炭化珪素エピタキシャル基板を用いて作製されていることを特徴とする単結晶SiCデバイスである。
 前記の単結晶炭化珪素エピタキシャル基板においては、TSDが充分に低減されたVPEエピタキシャル膜が形成されているため、低損失で高品質の単結晶SiCデバイスを提供することができる。
 本発明によれば、TSDが充分に低減された単結晶SiCエピタキシャル膜を備える単結晶SiCエピタキシャル基板とその製造方法および高品質の単結晶SiCデバイスを提供することができる。
本発明の第1の実施の形態の単結晶SiCエピタキシャル基板の製造方法の一工程を模式的に示す図である。 本発明の第1の実施の形態においてVPE法によりSiCエピタキシャル膜の形成する方法を説明する図である。 本発明の第1の実施の形態の単結晶SiCエピタキシャル基板の構成を模式的に示す図である。 本発明の第2の実施の形態の単結晶SiCエピタキシャル基板の製造方法の一工程を模式的に示す図である。 本発明の第2の実施の形態の単結晶SiCエピタキシャル基板の構成を模式的に示す図である。 (a)は、実施例のVPEエピタキシャル膜の表面の顕微鏡写真、(b)は同実施例の単結晶SiCエピタキシャル基板のエッチング写真である。 単結晶SiC基板上にVPEエピタキシャル膜を形成させた従来の単結晶SiCエピタキシャル基板の構成を説明する断面図である。 単結晶SiC基板上にMSEエピタキシャル膜を形成させた従来の単結晶SiCエピタキシャル基板の構成を説明する断面図である。 単結晶SiC基板上にMSEエピタキシャル膜、次いでVPEエピタキシャル膜を形成させた従来の単結晶SiCエピタキシャル基板の構成を説明する断面図である。
 次に、本発明を実施の形態に基づいて、図面を用いて説明する。
(第1の実施の形態)
 本実施の形態は、単結晶SiC基板上に、Si液滴を形成した後、直接VPEエピタキシャル膜を形成するものである。
 図1は、本実施の形態の単結晶SiCエピタキシャル基板の製造方法の一工程を模式的に示す図である。図1において、21は単結晶SiC基板であり、41は単結晶SiC基板21に内在するTSDであり、15はSi液滴である。
 図1に示すように、本実施の形態の単結晶SiCエピタキシャル基板の製造方法においては、TSD41が内在する単結晶SiC基板21の表面に、VPEエピタキシャル膜の形成に先立って、Si液滴15を形成する。
(1)Si液滴の形成態様
 Si液滴を形成する方法としては、特に限定されないが、次の方法により形成することが好ましい。
(a)第1の方法
 第1の方法は、VPEエピタキシャル膜を形成するための気相成長法の原料ガスであるプロパンとシランの供給比率を調整して、プロパンに含まれるCとシラン中に含まれるSiの比率(C/Si)を小さくすることにより、シリコン液滴を形成する方法である。具体的には、C/Siが0.3よりも小さくなるように、プロパンとシランの供給量を調整することにより、Siを過剰に供給してSi液滴を形成する。C/Siは、所望するSi液滴の量に応じて適宜調整される。
(b)第2の方法
 第2の方法は、例えばスパッタ法を用いて、単結晶SiC基板21の上にSi薄膜を形成した後、従来の気相成長を行うことにより、単結晶SiC基板21の上にSi液滴を形成する方法である。
(2)Si液滴およびVPEエピタキシャル膜の形成方法
 図2は、本実施の形態に基づいて、VPE法によりVPEエピタキシャル膜を形成する方法を説明する図である。図2には気相成長装置が示されており、この気相成長装置は、断熱材23が内包される石英製の反応炉22と、グラファイト製のサセプタ24と、高周波コイル25とを備えている。
 そして、単結晶SiC基板21をサセプタ24上に設置し、反応炉22内を充分に水素等のガスに置換した後、高周波コイル25でサセプタ24を誘導加熱することにより、単結晶SiC基板21を所定の温度まで加熱する。
 次に、プロパンおよびシラン等のCおよびSiを含有する原料ガス26を、反応炉22内に導入することにより、原料ガス26が熱分解される。
 これにより、単結晶SiC基板21の上に、Si液滴15が形成される(図1参照)。
 その後、単結晶SiC基板21の上に、SiCのVPEエピタキシャル膜が形成される。
(3)SiCエピタキシャル膜の構成
 図3は、本実施の形態の単結晶SiCエピタキシャル基板の構成を模式的に示す図である。図3において、21は単結晶SiC基板、31はSiCのVPEエピタキシャル膜、41はTSD、42はTED、43はBPD、44はSFである。
 上記のように、Si液滴の形成後に形成されたVPEエピタキシャル膜は、図3に示すように、予めSi液滴を形成しているため、VPEエピタキシャル膜31内で、単結晶SiC基板21に内在するTSD41がSF44に変換されている。このため、TSD41がVPEエピタキシャル膜31に伝播することがなく、TSD41が充分に低減されたVPEエピタキシャル膜31が形成された単結晶SiCエピタキシャル基板を得ることができる。
 このように、単結晶SiC基板21の上にSi液滴15を形成した後に、VPEエピタキシャル膜を形成することにより、VPEエピタキシャル膜中のTSD41を充分に低減させることができる。
 なお、本実施の形態においては、Si液滴の形成方法として、前記の第1の方法を採用しているが、第2の方法を採用してもよい。
(第2の実施の形態)
 本実施の形態においては、まず、単結晶SiC基板上に、MSEエピタキシャル膜(バッファ層)を形成し、次に、MSEエピタキシャル膜上において、前記の第2の方法により、Si薄膜を形成し、その後、VPEエピタキシャル膜を形成する。
 図4は、本実施の形態の単結晶SiCエピタキシャル基板の製造方法の一工程を模式的に示す図である。図4において、21は単結晶SiC基板であり、32はMSEエピタキシャル膜、41は単結晶SiC基板21に内在するTSDであり、44はMSEエピタキシャル膜32に形成されるSF、15はSi液滴である。
 図4に示すように、単結晶SiC基板21の上にMSEエピタキシャル膜32を形成する。これにより、単結晶SiC基板21に内在するTSD41は、MSEエピタキシャル膜32でSF44に変換される。そして、その後、MSEエピタキシャル膜32の上に、Si薄膜を形成する。
 その後、MSEエピタキシャル膜32上にSi薄膜が形成された単結晶SiC基板21を、前記の気相成長装置に設置し、加熱することにより、Si液滴15の形成、およびVPEエピタキシャル膜の形成が行われる。
 図5は、本実施の形態の単結晶SiCエピタキシャル基板の構成を模式的に示す図である。図5において、21は単結晶SiC基板、31はVPEエピタキシャル膜、32はMSEエピタキシャル膜、41はTSD、42はTED、43はBPD、44はSFである。
 図5に示すように、単結晶SiC基板21に内在するTSD41は、MSEエピタキシャル膜32でSF44に変換され、SF44は、TSD41に再変換されることなく、そのままVPEエピタキシャル膜31に伝播される。このため、TSD41を充分に低減させたVPEエピタキシャル膜31が形成された単結晶SiCエピタキシャル基板を形成することができる。
 このように、MSEエピタキシャル膜32の上にSi液滴15を形成した後に、VPEエピタキシャル膜を形成することにより、VPEエピタキシャル膜中のTSD41を充分に低減させることができる。
 なお、本実施の形態においては、Si液滴の形成方法として、前記の第2の方法を採用しているが、第1の方法を採用してもよい。
 本実施例は、先ず、単結晶SiC基板上にMSEエピタキシャル膜を形成し、MSEエピタキシャル膜上に、前記第1の方法によりSi液滴を形成し、その後、VPEエピタキシャル膜を形成したものである。以下、具体的に説明する。
(1)MSEエピタキシャル膜の作製
(a)単結晶SiC基板の平坦化加工
 <11-20>方向に8°のoff角を設けた単結晶SiC基板(市販の4H-SiC)に対してCMP法(化学的機械的研磨法)によって平坦化加工を施した。
(b)MSEエピタキシャル膜の形成
 単結晶SiC基板をMSEエピタキシャル装置にセットし、MSEエピタキシャル装置の密閉容器の内部を1×10-2Pa以下の圧力まで減圧した後、この圧力状態を保持して密閉容器内の温度を加熱手段(昇温速度および降温速度をプログラム制御可能)によって1800℃まで20℃/分で昇温させ、1800℃で300分間維持し、その後、密閉容器内の温度を500℃まで20℃/分で降温させ、500℃から室温までは自然冷却した。これにより、単結晶SiC基板上に、キャリア濃度9×1017~2×1019cm(n型)、膜厚40μmのSiCエピタキシャル膜(4H-SiC)からなるMSEエピタキシャル膜(バッファ層)を形成した。
(c)MSEエピタキシャル膜の平坦化加工
 MSEエピタキシャル膜は、表面に凹凸(ステップバンチング)が形成されているため、半導体デバイスを作製する際、不都合が生じる恐れがある。このため、研磨によって平坦に加工した。平坦化加工の際には、CMP法によって平坦度(Ra)を0.5nm以下にした。なお、MSEバッファ層の厚みは、SiC単結晶基板中に内在する基底面転位等の欠陥を充分に抑制できる厚みであればよいため、15μmの厚みを残してCMP加工を行った。
(2)Si液滴およびVPEエピタキシャル膜の形成
(a)準備工程
 次に、MSEエピタキシャル膜を形成した単結晶SiC基板を、有機溶剤による脱脂洗浄や、酸あるいはアルカリを用いて、基板表面に付着した重金属系の汚染物を除去し、さらに、MSEエピタキシャル膜のエッチピットや凹凸を除去するのに充分な厚みを研磨除去した後、図2に示した反応炉22に設置した。なお、設置に際して大気中の窒素ガスや酸素ガスを除去するため、ターボ分子ポンプ等の真空排気装置で充分に排気した後、不活性ガスであるArガス置換を行った。
(b)Si液滴およびエピタキシャル膜の形成工程
 次に、反応炉22内のガスを水素ガスに置換して、マスフローコントローラで所定量の水素ガスを供給しながら、エピタキシャル成長を行う圧力に調整した。圧力調整は、反応炉22内の圧力をバラトロン真空計で測定し、排気系の圧力調整バルブ開度へフィードバックをかけて実施した。
 ガス流量や成長圧力は、各装置固有の最適値に合わせた。ガス流量と圧力が安定した後、高周波コイルに電力供給を行い、誘導加熱によってサセプタ24を加熱して単結晶SiC基板を昇温した。その後、原料ガスを導入した。気相成長温度はパイロメータを用いてモニターし、単結晶SiC基板温度1650℃でエピタキシャル成長を行った。具体的には、原料ガスを供給する前に水素ガスによるエッチングを20分間実施した後、原料ガスであるプロパンガスを0.5sccm、シランガス15sccm(C/Si=0.1)で180分間供給して行った。
 このとき、MSEエピタキシャル膜上でSFが存在する位置を基点として、<-1-120>方向にSi液滴が形成されたことが確認された。
(c)エピタキシャル成長後の工程
 エピタキシャル成長後、原料ガス26の供給を停止し、高周波コイル25への電力供給を制御してSiC単結晶基板21の温度を低下させた。温度が充分に低下したことを確認後、反応炉22内のガスを水素ガスから不活性ガスであるArガスへ真空排気置換し、反応炉22から取り出して、単結晶SiCエピタキシャル単結晶基板の作製を完了した。
(3)転位の伝播の確認
(a)確認方法
 本実施例で形成された単結晶SiCエピタキシャル膜における転位の伝播は、膜の表面を溶融アルカリ塩エッチングした後、現れたエッチピットの形状を観察することにより確認することができる。
 即ち、単結晶SiCエピタキシャル膜の表面を溶融アルカリ塩エッチングした場合、それぞれの転位の種類に応じてエッチピット形状が異なることは良く知られており、例えば、特定の条件で形成したMSEエピタキシャル膜の表面を溶融アルカリ塩エッチングを行った場合、TSDのエッチピットは大型の六角形、TEDのエッチピットは小型の六角形となる。また、SFでは貝殻状のエッチピットとなる。
(b)確認結果
 図6(a)にVPEエピタキシャル膜の表面写真を示す。そして、図6(b)にSi液滴15が除去されたVPEエピタキシャル膜上での溶融アルカリ塩(KOH)エッチング写真を示す。
 図6(b)に示すように、Si液滴が形成されていた場所では貝殻状のエッチピットとなっており、SF44がVPEエピタキシャル膜中に伝播していることが分かる。一方、Si液滴が形成されていなかった場所では、SF44がTSD41に再変換していることが分かる。なお、42はTEDである。
(4)考察
 以上のように、Si液滴が存在する条件下で、VPEエピタキシャル膜を成長させることにより、MSEエピタキシャル膜のSFがTSDに再変換することなく、VPEエピタキシャル膜へ伝播されることにより、TSDが充分に低減されたSiCエピタキシャル膜が形成された単結晶SiCエピタキシャル基板を作製することが可能となることが確認できた。
(5)その他
 このように製造されたSiC単結晶エピタキシャル基板は、Si液滴形成による表面凹凸が残っているため、半導体デバイスの作製段階で、リソグラフィー工程での位置合わせ不良や配線形成工程での断線等の不都合が生じる。しかし、CMP法で平坦度(Ra)を0.5nm以下にすることにより、かかる不都合が発生しないことが確認できた。
 以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。
 21     単結晶SiC基板
 32     MSEエピタキシャル膜
 41     TSD(貫通螺旋転位)
 44     SF(積層欠陥)
 15     Si液滴
 22     反応炉
 23     断熱材
 24     サセプタ
 25     高周波コイル
 26     原料ガス
 31     VPEエピタキシャル膜
 42     TED(貫通刃状転位)
 43     BPD(基底面転位)

Claims (7)

  1.  単結晶炭化珪素基板上に、準安定溶媒エピタクシー法を用いて、前記単結晶炭化珪素基板に内在する貫通螺旋転位が積層欠陥に変換された第1の単結晶炭化珪素エピタキシャル膜を形成し、
     前記第1の単結晶炭化珪素エピタキシャル膜上に、シリコン液滴を形成した後、
     前記シリコン液滴が形成された第1の単結晶炭化珪素エピタキシャル膜上に、気相成長法を用いて、前記第1の単結晶炭化珪素エピタキシャル膜における積層欠陥が伝播された第2の単結晶炭化珪素エピタキシャル膜を形成する
    ことを特徴とする単結晶炭化珪素エピタキシャル基板の製造方法。
  2.  請求項1に記載の単結晶炭化珪素エピタキシャル基板の製造方法を用いて製造されていることを特徴とする単結晶炭化珪素エピタキシャル基板。
  3.  単結晶炭化珪素基板上に、シリコン液滴を形成した後、
     前記シリコン液滴が形成された単結晶炭化珪素基板上に、気相成長法を用いて、前記単結晶炭化珪素基板に内在する貫通螺旋転位が積層欠陥に変換された単結晶炭化珪素エピタキシャル膜を形成する
    ことを特徴とする単結晶炭化珪素エピタキシャル基板の製造方法。
  4.  請求項3に記載の単結晶炭化珪素エピタキシャル基板の製造方法を用いて製造されていることを特徴とする単結晶炭化珪素エピタキシャル基板。
  5.  気相成長法により単結晶炭化珪素エピタキシャル膜を形成する原料となる炭素(C)とシリコン(Si)の供給比率(C/Si)を調整することにより、気相成長法による単結晶炭化珪素エピタキシャル膜の形成に先立って、シリコン液滴を形成することを特徴とする請求項1または請求項3に記載の単結晶炭化珪素エピタキシャル基板の製造方法。
  6.  気相成長法により単結晶炭化珪素エピタキシャル膜を形成するに先立って、予め、前記第1の単結晶炭化珪素エピタキシャル膜の表面、または前記単結晶SiC基板の表面に、Siの薄膜またはSiを含む原料の薄膜を形成しておくことにより、シリコン液滴を形成することを特徴とする請求項1または請求項3に記載の単結晶炭化珪素エピタキシャル基板の製造方法。
  7.  請求項2または請求項4に記載の単結晶炭化珪素エピタキシャル基板を用いて作製されていることを特徴とする単結晶SiCデバイス。
PCT/JP2010/073553 2010-12-27 2010-12-27 単結晶炭化珪素エピタキシャル基板とその製造方法および単結晶SiCデバイス WO2012090268A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073553 WO2012090268A1 (ja) 2010-12-27 2010-12-27 単結晶炭化珪素エピタキシャル基板とその製造方法および単結晶SiCデバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073553 WO2012090268A1 (ja) 2010-12-27 2010-12-27 単結晶炭化珪素エピタキシャル基板とその製造方法および単結晶SiCデバイス

Publications (1)

Publication Number Publication Date
WO2012090268A1 true WO2012090268A1 (ja) 2012-07-05

Family

ID=46382419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073553 WO2012090268A1 (ja) 2010-12-27 2010-12-27 単結晶炭化珪素エピタキシャル基板とその製造方法および単結晶SiCデバイス

Country Status (1)

Country Link
WO (1) WO2012090268A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103726106A (zh) * 2012-10-11 2014-04-16 铼钻科技股份有限公司 外延成长方法
WO2015097852A1 (ja) * 2013-12-27 2015-07-02 日新電機株式会社 単結晶SiCエピタキシャル膜の形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527339A (ja) * 1998-10-09 2002-08-27 クリー インコーポレイテッド 炭化珪素のバルク単結晶の生成
JP2008260650A (ja) * 2007-04-11 2008-10-30 Toyota Motor Corp SiC単結晶エピタキシャル薄膜の成長方法
WO2009107188A1 (ja) * 2008-02-25 2009-09-03 財団法人地球環境産業技術研究機構 単結晶SiCの成長方法
JP2010111569A (ja) * 2008-10-08 2010-05-20 Tokai Carbon Co Ltd 炭化珪素単結晶の製造方法および該製造方法により得られる炭化珪素単結晶

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527339A (ja) * 1998-10-09 2002-08-27 クリー インコーポレイテッド 炭化珪素のバルク単結晶の生成
JP2008260650A (ja) * 2007-04-11 2008-10-30 Toyota Motor Corp SiC単結晶エピタキシャル薄膜の成長方法
WO2009107188A1 (ja) * 2008-02-25 2009-09-03 財団法人地球環境産業技術研究機構 単結晶SiCの成長方法
JP2010111569A (ja) * 2008-10-08 2010-05-20 Tokai Carbon Co Ltd 炭化珪素単結晶の製造方法および該製造方法により得られる炭化珪素単結晶

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103726106A (zh) * 2012-10-11 2014-04-16 铼钻科技股份有限公司 外延成长方法
WO2015097852A1 (ja) * 2013-12-27 2015-07-02 日新電機株式会社 単結晶SiCエピタキシャル膜の形成方法

Similar Documents

Publication Publication Date Title
JP4964672B2 (ja) 低抵抗率炭化珪素単結晶基板
CN106435733B (zh) 碳化硅单晶和碳化硅单晶晶片
US8927396B2 (en) Production process of epitaxial silicon carbide single crystal substrate
JP4842094B2 (ja) エピタキシャル炭化珪素単結晶基板の製造方法
JP4818754B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP4694144B2 (ja) SiC単結晶の成長方法およびそれにより成長したSiC単結晶
WO2011126145A1 (ja) エピタキシャル炭化珪素単結晶基板の製造方法、及びこの方法によって得られたエピタキシャル炭化珪素単結晶基板
WO2006115148A1 (ja) 炭化ケイ素単結晶ウェハ及びその製造方法
JP6304699B2 (ja) エピタキシャル炭化珪素ウエハの製造方法
JP6248532B2 (ja) 3C−SiCエピタキシャル層の製造方法、3C−SiCエピタキシャル基板および半導体装置
JP2008110907A (ja) 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
JP4408247B2 (ja) 炭化珪素単結晶育成用種結晶と、それを用いた炭化珪素単結晶の製造方法
WO2012090268A1 (ja) 単結晶炭化珪素エピタキシャル基板とその製造方法および単結晶SiCデバイス
JP2006253617A (ja) SiC半導体およびその製造方法
JPWO2007023722A1 (ja) GaxIn1−xN(0≦x≦1)結晶の製造方法、GaxIn1−xN(0≦x≦1)結晶基板、GaN結晶の製造方法、GaN結晶基板および製品
JP4850807B2 (ja) 炭化珪素単結晶育成用坩堝、及びこれを用いた炭化珪素単結晶の製造方法
JP5573725B2 (ja) 立方晶炭化珪素半導体基板の製造方法
JP5370025B2 (ja) 炭化珪素単結晶インゴット
WO2013150587A1 (ja) 単結晶SiCエピタキシャル基板の製造方法および単結晶SiCエピタキシャル基板
WO2015097852A1 (ja) 単結晶SiCエピタキシャル膜の形成方法
JP4311217B2 (ja) 3C−SiC結晶の成長方法
JP2013035731A (ja) 単結晶炭化シリコン膜の製造方法及び単結晶炭化シリコン膜付き基板の製造方法
JP2012041204A (ja) 立方晶炭化ケイ素膜の製造方法及び立方晶炭化ケイ素膜付き基板の製造方法
JP7218832B1 (ja) ヘテロエピタキシャルウェーハの製造方法
JP7259906B2 (ja) ヘテロエピタキシャルウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10861390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP