JP5935199B2 - 多環芳香族化合物 - Google Patents

多環芳香族化合物 Download PDF

Info

Publication number
JP5935199B2
JP5935199B2 JP2015555894A JP2015555894A JP5935199B2 JP 5935199 B2 JP5935199 B2 JP 5935199B2 JP 2015555894 A JP2015555894 A JP 2015555894A JP 2015555894 A JP2015555894 A JP 2015555894A JP 5935199 B2 JP5935199 B2 JP 5935199B2
Authority
JP
Japan
Prior art keywords
ring
formula
following formula
aryl
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015555894A
Other languages
English (en)
Other versions
JPWO2015102118A1 (ja
Inventor
琢次 畠山
琢次 畠山
宗一郎 中塚
宗一郎 中塚
貴一 中嶋
貴一 中嶋
大貴 平井
大貴 平井
洋平 小野
洋平 小野
一志 枝連
一志 枝連
静萍 倪
静萍 倪
松下 武司
武司 松下
利昭 生田
利昭 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Kwansei Gakuin Educational Foundation
Original Assignee
JNC Corp
Kwansei Gakuin Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53493456&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5935199(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JNC Corp, Kwansei Gakuin Educational Foundation filed Critical JNC Corp
Application granted granted Critical
Publication of JP5935199B2 publication Critical patent/JP5935199B2/ja
Publication of JPWO2015102118A1 publication Critical patent/JPWO2015102118A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657163Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6568Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms
    • C07F9/65685Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms the ring phosphorus atom being part of a phosphine oxide or thioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6568Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms
    • C07F9/65683Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms the ring phosphorus atom being part of a phosphine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、多環芳香族化合物と、これを用いた有機電界発光素子、有機電界効果トランジスタおよび有機薄膜太陽電池、並びに、表示装置および照明装置に関する。
従来、電界発光する発光素子を用いた表示装置は、小電力化や薄型化が可能なことから、種々研究され、さらに、有機材料から成る有機電界発光素子は、軽量化や大型化が容易なことから活発に検討されてきた。特に、光の三原色の一つである青色などの発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能(半導体や超電導体となる可能性を有する)を備えた有機材料の開発については、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。
有機EL素子は、陽極および陰極からなる一対の電極と、当該一対の電極間に配置され、有機化合物を含む一層または複数の層とからなる構造を有する。有機化合物を含む層には、発光層や、正孔、電子などの電荷を輸送または注入する電荷輸送/注入層などがあるが、これらの層に適当な種々の有機材料が開発されている。
発光層用材料としては、例えばベンゾフルオレン系化合物などが開発されている(国際公開第2004/061047号公報)。また、正孔輸送材料としては、例えばトリフェニルアミン系化合物などが開発されている(特開2001-172232号公報)。また、電子輸送材料としては、例えばアントラセン系化合物などが開発されている(特開2005-170911号公報)。
また、近年では有機EL素子や有機薄膜太陽電池に使用する材料としてトリフェニルアミン誘導体を改良した材料も報告されている(国際公開第2012/118164号公報)。この材料は既に実用化されていたN,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン(TPD)を参考にして、トリフェニルアミンを構成する芳香環同士を連結することでその平面性を高めたことを特徴とする材料である。この文献では例えばNO連結系化合物(63頁の化合物1)の電荷輸送特性が評価されているが、NO連結系化合物以外の材料の製造方法については記載されておらず、また、連結する元素が異なれば化合物全体の電子状態が異なるため、NO連結系化合物以外の材料から得られる特性も未だ知られていない。このような化合物の例は他にも見られる(国際公開第2011/107186号公報)。例えば、三重項励起子のエネルギー(T1)が大きい共役構造を有する化合物は、より短い波長の燐光を発することができるため、青色の発光層用材料として有益である。また、発光層を挟む電子輸送材料や正孔輸送材料としてもT1が大きい新規共役構造を有する化合物が求められている。
有機EL素子のホスト材料は、一般に、ベンゼンやカルバゾールなどの既存の芳香環を単結合やリン原子やケイ素原子で複数連結した分子である。これは、比較的共役系の小さな芳香環を多数連結することで、ホスト材料に必要とされる大きなHOMO−LUMOギャップ(薄膜におけるバンドギャップEg)が担保されるからである。さらに、燐光材料や熱活性型遅延蛍光材料を用いた有機EL素子のホスト材料には、高い三重項励起エネルギー(E)も必要となるが、分子にドナーあるいはアクセプター性の芳香環や置換基を連結することで、三重項励起状態(T1)のSOMO1およびSOMO2を局在化させ、両軌道間の交換相互作用を小さくすることで、三重項励起エネルギー(E)を向上させることが可能となる。しかし、共役系の小さな芳香環はレドックス安定性が十分ではなく、既存の芳香環を連結していった分子をホスト材料として用いた素子は寿命が十分ではない。一方、拡張π共役系を有する多環芳香族化合物は、一般に、レドックス安定性は優れているが、HOMO−LUMOギャップ(薄膜におけるバンドギャップEg)や三重項励起エネルギー(E)が低いため、ホスト材料に不向きと考えられてきた。
国際公開第2004/061047号公報 特開2001-172232号公報 特開2005-170911号公報 国際公開第2012/118164号公報 国際公開第2011/107186号公報
上述するように、有機EL素子に用いられる材料としては種々のものが開発されているが、有機EL素子用材料の選択肢を増やすために、従来のものとは異なる化合物からなる材料の開発が望まれている。特に、特許文献1〜4で報告されたNO連結系化合物以外の材料から得られる有機EL特性やその製造方法は未だ知られていない。
本発明者らは、上記課題を解決するため鋭意検討した結果、ホウ素原子と酸素原子などで複数の芳香族環を連結した新規な多環芳香族化合物を見出し、その製造に成功した。また、この多環芳香族化合物を含有する層を一対の電極間に配置して有機EL素子を構成することにより、優れた有機EL素子が得られることを見出し、本発明を完成させた。すなわち本発明は、以下のような多環芳香族化合物またはその多量体、さらには以下のような多環芳香族化合物またはその多量体を含む有機EL素子用材料を提供する。
[1]
下記一般式(1)で表される多環芳香族化合物、または下記一般式(1)で表される構造を複数有する多環芳香族化合物の多量体。
Figure 0005935199
(上記式(1)中、
A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
は、B、P、P=O、P=S、Al、Ga、As、Si−RまたはGe−Rであり、前記Si−RおよびGe−RのRはアリールまたはアルキルであり、
およびXは、それぞれ独立して、O、N−R、SまたはSeであり、前記N−RのRは置換されていてもよいアリール、置換されていてもよいヘテロアリールまたはアルキルであり、また、前記N−RのRは連結基または単結合により前記A環、B環および/またはC環と結合していてもよく、そして、
式(1)で表される化合物または構造における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい。)
[2]
A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換または無置換のアリール、置換または無置換のヘテロアリール、置換または無置換のジアリールアミノ、置換または無置換のジヘテロアリールアミノ、置換または無置換のアリールヘテロアリールアミノ、置換または無置換のアルキル、置換または無置換のアルコキシまたは置換または無置換のアリールオキシで置換されていてもよく、また、これらの環はY、XおよびXから構成される上記式中央の縮合2環構造と結合を共有する5員環または6員環を有し、
は、B、P、P=O、P=S、Al、Ga、As、Si−RまたはGe−Rであり、前記Si−RおよびGe−RのRはアリールまたはアルキルであり、
およびXは、それぞれ独立して、O、N−R、SまたはSeであり、前記N−RのRはアルキルで置換されていてもよいアリール、アルキルで置換されていてもよいヘテロアリールまたはアルキルであり、また、前記N−RのRは−O−、−S−、−C(−R)−または単結合により前記A環、B環および/またはC環と結合していてもよく、前記−C(−R)−のRは水素またはアルキルであり、
式(1)で表される化合物または構造における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよく、そして、
多量体の場合には、一般式(1)で表される構造を2または3個有する2または3量体である、
上記[1]に記載する多環芳香族化合物またはその多量体。
[3]
下記一般式(2)で表される、上記[1]に記載する多環芳香族化合物。
Figure 0005935199
(上記式(2)中、
、R、R、R、R、R、R、R、R、R10およびR11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、また、R〜R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、
は、B、P、P=O、P=S、Al、Ga、As、Si−RまたはGe−Rであり、前記Si−RおよびGe−RのRは炭素数6〜12のアリールまたは炭素数1〜6のアルキルであり、
およびXは、それぞれ独立して、O、N−R、SまたはSeであり、前記N−RのRは炭素数6〜12のアリール、炭素数2〜15のヘテロアリールまたは炭素数1〜6のアルキルであり、また、前記N−RのRは−O−、−S−、−C(−R)−または単結合により前記a環、b環および/またはc環と結合していてもよく、前記−C(−R)−のRは炭素数1〜6のアルキルであり、そして、
式(2)で表される化合物における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい。)
[4]
、R、R、R、R、R、R、R、R、R10およびR11は、それぞれ独立して、水素、炭素数6〜30のアリール、炭素数2〜30のヘテロアリールまたはジアリールアミノ(ただしアリールは炭素数6〜12のアリール)であり、また、R〜R11のうちの隣接する基同士が結合してa環、b環またはc環と共に炭素数9〜16のアリール環または炭素数6〜15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は炭素数6〜10のアリールで置換されていてもよく、
は、B、P、P=O、P=SまたはSi−Rであり、前記Si−RのRは炭素数6〜10のアリールまたは炭素数1〜4のアルキルであり、
およびXは、それぞれ独立して、O、N−RまたはSであり、前記N−RのRは炭素数6〜10のアリールまたは炭素数1〜4のアルキルであり、そして、
式(2)で表される化合物における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい、
上記[3]に記載する多環芳香族化合物。
[5]
前記ハロゲンはフッ素である、上記[1]〜[4]のいずれかに記載する多環芳香族化合物またはその多量体。
[6]
下記式(1−1)、下記式(1−2)、下記式(1−4)、下記式(1−10)、下記式(1−49)、下記式(1−81)、下記式(1−91)、下記式(1−100)、下記式(1−141)、下記式(1−151)、下記式(1−176)、下記式(1−411)、下記式(1−447)、下記式(1−501)、下記式(1−601)または下記式(1−701)で表される、上記[1]に記載する多環芳香族化合物。
Figure 0005935199
[7]
下記式(1−21)、下記式(1−23)、下記式(1−24)、下記式(1−50)、下記式(1−152)、下記式(1−201)、下記式(1−401)、下記式(1−422)、下記式(1−1048)、下記式(1−1049)、下記式(1−1050)、下記式(1−1069)、下記式(1−1084)、下記式(1−1090)、下記式(1−1092)、下記式(1−1101)、下記式(1−1102)、下記式(1−1103)、下記式(1−1145)、下記式(1−1152)、下記式(1−1159)、下記式(1−1187)、下記式(1−1190)、下記式(1−1191)、下記式(1−1192)、下記式(1−1201)、下記式(1−1210)、下記式(1−1247)、下記式(1−1250)、下記式(1−1251)、下記式(1−1252)または下記式(1−1271)で表される、上記[1]に記載する多環芳香族化合物。
Figure 0005935199
Figure 0005935199
[8]
下記式(1-1-1)、下記式(1-79)、下記式(1-142)、下記式(1-152-2)、下記式(1-158)、下記式(1-159)、下記式(1-721)、下記式(1-1006)、下記式(1-1104)、下記式(1-1149)、下記式(1-1150)、下記式(1-1301)、下記式(1-1351)、下記式(1-2305)、下記式(1-2626)、下記式(1-2657)、下記式(1-2662)、下記式(1-2665)、下記式(1-2676)、下記式(1-2678)、下記式(1-2679)、下記式(1-2680)、下記式(1-2681)、下記式(1-2682)、下記式(1-2683)、下記式(1-2691)、下記式(1-2699)、下記式(1-3588)、下記式(1-3654)、下記式(1-3690)、下記式(1-3806)、下記式(1-3824)、下記式(1-4114)、下記式(1-4150)、下記式(1-4341)、下記式(1-4346)、下記式(1-4401)、下記式(1-4421-1)で表される、上記[1]に記載する多環芳香族化合物。
Figure 0005935199
Figure 0005935199
[9]
上記[1]ないし[8]のいずれかに記載する多環芳香族化合物またはその多量体を含有する、有機デバイス用材料。
[10]
前記有機デバイス用材料が、有機電界発光素子用材料、有機電界効果トランジスタ用材料または有機薄膜太陽電池用材料である、上記[9]に記載する有機デバイス用材料。
[11]
発光層用材料である、上記[10]に記載する有機電界発光素子用材料。
[12]
電子注入層用材料または電子輸送層用材料である、上記[10]に記載する有機電界発光素子用材料。
[13]
正孔注入層用材料または正孔輸送層用材料である、上記[10]に記載する有機電界発光素子用材料。
[14]
陽極および陰極からなる一対の電極と、該一対の電極間に配置され、上記[11]に記載する発光層用材料を含有する発光層とを有する、有機電界発光素子。
[15]
陽極および陰極からなる一対の電極と、該一対の電極間に配置された発光層と、前記陰極および前記発光層の間に配置され、上記[12]に記載する電子注入層用材料および/または電子輸送層用材料を含有する電子注入層および/または電子輸送層とを有する、有機電界発光素子。
[16]
陽極および陰極からなる一対の電極と、該一対の電極間に配置された発光層と、前記陽極および前記発光層の間に配置され、上記[13]に記載する正孔注入層用材料および/または正孔輸送層用材料を含有する正孔注入層および/または正孔輸送層とを有する、有機電界発光素子。
[17]
さらに、前記陰極と該発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、上記[14]〜[16]のいずれかに記載する有機電界発光素子。
[18]
前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、上記[17]に記載の有機電界発光素子。
[19]
上記[14]〜[18]のいずれかに記載する有機電界発光素子を備えた表示装置。
[20]
上記[14]〜[18]のいずれかに記載する有機電界発光素子を備えた照明装置。
[21]
のハロゲン化物、Yのアミノ化ハロゲン化物、Yのアルコキシ化物およびYのアリールオキシ化物からなる群から選択される試薬と、場合によりブレンステッド塩基とを用いて、連続的な芳香族求電子置換反応により、下記中間体におけるA環とB環とC環とを前記Yにより結合する反応工程を含む、上記[1]に記載する下記一般式(1)で表される多環芳香族化合物、または下記一般式(1)で表される構造を複数有する多環芳香族化合物の多量体を製造する方法。
Figure 0005935199
[22]
有機アルカリ化合物を用いて下記中間体におけるXとXの間の水素原子をオルトメタル化する反応工程と、
のハロゲン化物、Yのアミノ化ハロゲン化物、Yのアルコキシ化物およびYのアリールオキシ化物からなる群から選択される試薬を用いて前記メタルとYとを交換する反応工程と、
ブレンステッド塩基を用いて連続的な芳香族求電子置換反応により前記YでB環とC環とを結合する反応工程と
を含む、上記[1]に記載する下記一般式(1)で表される多環芳香族化合物、または下記一般式(1)で表される構造を複数有する多環芳香族化合物の多量体を製造する方法。
Figure 0005935199
[23]
さらにルイス酸を加えて反応を促進させることを特徴とする、上記[21]または[22]に記載する製造方法。
[24]
さらに中間体におけるXとXの間の水素原子をあらかじめハロゲン化する反応工程を含む、上記[21]〜[23]のいずれかに記載する製造方法。
本発明の好ましい態様によれば、例えば有機EL素子用材料として用いることができる、新規な多環芳香族化合物を提供することができ、この多環芳香族化合物を用いることで優れた有機EL素子を提供することができる。
具体的には、本発明者らは、芳香環をホウ素、リン、酸素、窒素、硫黄などのヘテロ元素で連結した多環芳香族化合物が、大きなHOMO−LUMOギャップ(薄膜におけるバンドギャップEg)と高い三重項励起エネルギー(E)を有することを見出した。これは、ヘテロ元素を含む6員環は芳香属性が低いため、共役系の拡張に伴うHOMO−LUMOギャップの減少が抑制されること、ヘテロ元素の電子的な摂動により三重項励起状態(T1)のSOMO1およびSOMO2が局在化することが原因となっていると考えられる。また、本発明に係るヘテロ元素を含有する多環芳香族化合物は、三重項励起状態(T1)におけるSOMO1およびSOMO2の局在化により、両軌道間の交換相互作用が小さくなるため、三重項励起状態(T1)と一重項励起状態(S1)のエネルギー差が小さく、熱活性型遅延蛍光を示すため、有機EL素子の蛍光材料としても有用である。また、高い三重項励起エネルギー(E)を有する材料は、燐光有機EL素子や熱活性型遅延蛍光を利用した有機EL素子の電子輸送層や正孔輸送層としても有用である。更に、これらの多環芳香族化合物は、置換基の導入により、HOMOとLUMOのエネルギーを任意に動かすことができるため、イオン化ポテンシャルや電子親和力を周辺材料に応じて最適化することが可能である。
本実施形態に係る有機EL素子を示す概略断面図である。
1.多環芳香族化合物およびその多量体
本願発明は、下記一般式(1)で表される多環芳香族化合物、または下記一般式(1)で表される構造を複数有する多環芳香族化合物の多量体である。本願発明は、好ましくは、下記一般式(2)で表される多環芳香族化合物、または下記一般式(2)で表される構造を複数有する多環芳香族化合物の多量体である。
Figure 0005935199
一般式(1)におけるA環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換基で置換されていてもよい。この置換基は、置換または無置換のアリール、置換または無置換のヘテロアリール、置換または無置換のジアリールアミノ、置換または無置換のジヘテロアリールアミノ、置換または無置換のアリールヘテロアリールアミノ(アリールとヘテロアリールを有するアミノ基)、置換または無置換のアルキル、置換または無置換のアルコキシまたは置換または無置換のアリールオキシが好ましい。これらの基が置換基を有する場合の置換基としては、アリール、ヘテロアリールまたはアルキルがあげられる。また、上記アリール環またはヘテロアリール環は、Y、XおよびXから構成される一般式(1)中央の縮合2環構造(以下、この構造を「D構造」とも言う)と結合を共有する5員環または6員環を有することが好ましい。
ここで、「縮合2環構造(D構造)」とは、一般式(1)の中央に示した、Y、XおよびXを含んで構成される2つの飽和炭化水素環が縮合した構造を意味する。また、「縮合2環構造と結合を共有する6員環」とは、例えば上記一般式(2)で示すように前記D構造に縮合したa環(ベンゼン環(6員環))を意味する。また、「(A環である)アリール環またはヘテロアリール環がこの6員環を有する」とは、この6員環だけでA環が形成されるか、または、この6員環を含むようにこの6員環にさらに他の環などが縮合してA環が形成されることを意味する。言い換えれば、ここで言う「6員環を有する(A環である)アリール環またはヘテロアリール環」とは、A環の全部または一部を構成する6員環が、前記D構造に縮合していることを意味する。「B環(b環)」、「C環(c環)」、また「5員環」についても同様の説明が当てはまる。
一般式(1)におけるA環(またはB環、C環)は、一般式(2)におけるa環とその置換基R〜R(またはb環とその置換基R〜R、c環とその置換基R〜R11)に対応する。すなわち、一般式(2)は、一般式(1)のA〜C環として「6員環を有するA〜C環」が選択されたものに対応する。その意味で、一般式(2)の各環を小文字のa〜cで表した。
一般式(2)では、a環、b環およびc環の置換基R〜R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよい。したがって、一般式(2)で表される多環芳香族化合物は、a環、b環およc環における置換基の相互の結合形態によって、下記式(2−1)および式(2−2)に示すように、化合物を構成する環構造が変化する。各式中のA’環、B’環およびC’環は、一般式(1)におけるそれぞれA環、B環およびC環に対応する。
Figure 0005935199
上記式(2−1)および式(2−2)中のA’環、B’環およびC’環は、一般式(2)で説明すれば、置換基R〜R11のうちの隣接する基同士が結合して、それぞれa環、b環およびc環と共に形成したアリール環またはヘテロアリール環を示す(a環、b環またはc環に他の環構造が縮合してできた縮合環ともいえる)。なお、式では示してはいないが、a環、b環およびc環の全てがA’環、B’環およびC’環に変化した化合物もある。また、上記式(2−1)および式(2−2)から分かるように、例えば、b環のRとc環のR、b環のR11とa環のR、c環のRとa環のRなどは「隣接する基同士」には該当せず、これらが結合することはない。すなわち、「隣接する基」とは同一環上で隣接する基を意味する。
上記式(2−1)や式(2−2)で表される化合物は、例えば後述する具体的化合物として列挙した式(1−2)〜(1−17)で表されるような化合物に対応する。すなわち、例えばa環(またはb環またはc環)であるベンゼン環に対してベンゼン環、インドール環、ピロール環、ベンゾフラン環またはベンゾチオフェン環が縮合して形成されるA’環(またはB’環またはC’環)を有する化合物であり、形成されてできた縮合環A’(または縮合環B’または縮合環C’)はそれぞれナフタレン環、カルバゾール環、インドール環、ジベンゾフラン環またはジベンゾチオフェン環である。
一般式(1)におけるYは、B、P、P=O、P=S、Al、Ga、As、Si−RまたはGe−Rであり、前記Si−RおよびGe−RのRはアリールまたはアルキルである。P=O、P=S、Si−RまたはGe−Rの場合には、A環、B環またはC環と結合する原子はP、SiまたはGeである。Yは、B、P、P=O、P=SまたはSi−Rが好ましく、Bが特に好ましい。この説明は一般式(2)におけるYでも同じである。
一般式(1)におけるXおよびXは、それぞれ独立して、O、N−R、SまたはSeであり、前記N−RのRは置換されていてもよいアリール、置換されていてもよいヘテロアリールまたはアルキルであり、前記N−RのRは連結基または単結合により前記B環および/またはC環と結合していてもよく、連結基としては、−O−、−S−または−C(−R)−が好ましい。なお、前記「−C(−R)−」のRは水素またはアルキルである。この説明は一般式(2)におけるXおよびXでも同じである。
ここで、一般式(1)における「N−RのRは連結基または単結合により前記A環、B環および/またはC環と結合している」との規定は、一般式(2)では「N−RのRは−O−、−S−、−C(−R)−または単結合により前記a環、b環および/またはc環と結合している」との規定に対応する。
この規定は、下記式(2−3−1)で表される、XやXが縮合環B’および縮合環C’に取り込まれた環構造を有する化合物で表現できる。すなわち、例えば一般式(2)におけるb環(またはc環)であるベンゼン環に対してX(またはX)を取り込むようにして他の環が縮合して形成されるB’環(またはC’環)を有する化合物である。この化合物は、例えば後述する具体的化合物として列挙した、式(1−451)〜(1−462)で表されるような化合物および式(1−1401)〜(1−1460)で表されるような化合物に対応し、形成されてできた縮合環B’(または縮合環C’)は例えばフェノキサジン環、フェノチアジン環またはアクリジン環である。
また、上記規定は、下記式(2−3−2)や式(2−3−3)で表される、Xおよび/またはXが縮合環A’に取り込まれた環構造を有する化合物でも表現できる。すなわち、例えば一般式(2)におけるa環であるベンゼン環に対してX(および/またはX)を取り込むようにして他の環が縮合して形成されるA’環を有する化合物である。この化合物は、例えば後述する具体的化合物として列挙した式(1−471)〜(1−479)で表されるような化合物に対応し、形成されてできた縮合環A’は例えばフェノキサジン環、フェノチアジン環またはアクリジン環である。
Figure 0005935199
一般式(1)のA環、B環およびC環である「アリール環」としては、例えば、炭素数6〜30のアリール環があげられ、炭素数6〜16のアリール環が好ましく、炭素数6〜12のアリール環がより好ましく、炭素数6〜10のアリール環が特に好ましい。なお、この「アリール環」は、一般式(2)で規定された「R〜R11のうちの隣接する基同士が結合してa環、b環またはc環と共に形成されたアリール環」に対応し、また、a環(またはb環、c環)がすでに炭素数6のベンゼン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数9が下限の炭素数となる。
具体的な「アリール環」としては、単環系であるベンゼン環、二環系であるビフェニル環、縮合二環系であるナフタレン環、三環系であるテルフェニル環(m−テルフェニル、o−テルフェニル、p−テルフェニル)、縮合三環系である、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、縮合四環系であるトリフェニレン環、ピレン環、ナフタセン環、縮合五環系であるペリレン環、ペンタセン環などがあげられる。
一般式(1)のA環、B環およびC環である「ヘテロアリール環」としては、例えば、炭素数2〜30のヘテロアリール環があげられ、炭素数2〜25のヘテロアリール環が好ましく、炭素数2〜20のヘテロアリール環がより好ましく、炭素数2〜15のヘテロアリール環がさらに好ましく、炭素数2〜10のヘテロアリールが特に好ましい。また、「ヘテロアリール環」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。なお、この「ヘテロアリール環」は、一般式(2)で規定された「R〜R11のうちの隣接する基同士が結合してa環、b環またはc環と共に形成されたヘテロアリール環」に対応し、また、a環(またはb環、c環)がすでに炭素数6のベンゼン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数6が下限の炭素数となる。
具体的な「ヘテロアリール環」としては、例えば、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H−インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H−ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラザン環、オキサジアゾール環、チアントレン環などがあげられる。
上記「アリール環」または「ヘテロアリール環」における少なくとも1つの水素は、第1の置換基である、置換または無置換の「アリール」、置換または無置換の「ヘテロアリール」、置換または無置換の「ジアリールアミノ」、置換または無置換の「ジヘテロアリールアミノ」、置換または無置換の「アリールヘテロアリールアミノ」、置換または無置換の「アルキル」、置換または無置換の「アルコキシ」、または、置換または無置換の「アリールオキシ」で置換されていてもよいが、この第1の置換基としての「アリール」や「へテルアリール」、「ジアリールアミノ」のアリール、「ジヘテロアリールアミノ」のヘテロアリール、「アリールヘテロアリールアミノ」のアリールとヘテロアリール、また「アリールオキシ」のアリールとしては上述した「アリール環」または「ヘテロアリール環」の一価の基があげられる。
また第1の置換基としての「アルキル」としては、直鎖および分枝鎖のいずれでもよく、例えば、炭素数1〜24の直鎖アルキルまたは炭素数3〜24の分枝鎖アルキルがあげられる。炭素数1〜18のアルキル(炭素数3〜18の分枝鎖アルキル)が好ましく、炭素数1〜12のアルキル(炭素数3〜12の分枝鎖アルキル)がより好ましく、炭素数1〜6のアルキル(炭素数3〜6の分枝鎖アルキル)がさらに好ましく、炭素数1〜4のアルキル(炭素数3〜4の分枝鎖アルキル)が特に好ましい。
具体的なアルキルとしては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル、t−ブチル、n−ペンチル、イソペンチル、ネオペンチル、t−ペンチル、n−ヘキシル、1−メチルペンチル、4−メチル−2−ペンチル、3,3−ジメチルブチル、2−エチルブチル、n−ヘプチル、1−メチルヘキシル、n−オクチル、t−オクチル、1−メチルヘプチル、2−エチルヘキシル、2−プロピルペンチル、n−ノニル、2,2−ジメチルヘプチル、2,6−ジメチル−4−ヘプチル、3,5,5−トリメチルヘキシル、n−デシル、n−ウンデシル、1−メチルデシル、n−ドデシル、n−トリデシル、1−ヘキシルヘプチル、n−テトラデシル、n−ペンタデシル、n−ヘキサデシル、n−ヘプタデシル、n−オクタデシル、n−エイコシルなどがあげられる。
また第1の置換基としての「アルコキシ」としては、例えば、炭素数1〜24の直鎖または炭素数3〜24の分枝鎖のアルコキシがあげられる。炭素数1〜18のアルコキシ(炭素数3〜18の分枝鎖のアルコキシ)が好ましく、炭素数1〜12のアルコキシ(炭素数3〜12の分枝鎖のアルコキシ)がより好ましく、炭素数1〜6のアルコキシ(炭素数3〜6の分枝鎖のアルコキシ)がさらに好ましく、炭素数1〜4のアルコキシ(炭素数3〜4の分枝鎖のアルコキシ)が特に好ましい。
具体的なアルコキシとしては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s−ブトキシ、t−ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシなどがあげられる。
第1の置換基である、置換または無置換の「アリール」、置換または無置換の「ヘテロアリール」、置換または無置換の「ジアリールアミノ」、置換または無置換の「ジヘテロアリールアミノ」、置換または無置換の「アリールヘテロアリールアミノ」、置換または無置換の「アルキル」、置換または無置換の「アルコキシ」、または、置換または無置換の「アリールオキシ」は、置換または無置換と説明されているとおり、それらにおける少なくとも1つの水素が第2の置換基で置換されていてもよい。この第2の置換基としては、例えば、アリール、ヘテロアリールまたはアルキルがあげられ、それらの具体的なものは、上述した「アリール環」または「ヘテロアリール環」の一価の基、また第1の置換基としての「アルキル」の説明を参照することができる。また、第2の置換基としてのアリールやヘテロアリールには、それらにおける少なくとも1つの水素がフェニルなどのアリール(具体例は上述したもの)やメチルなどのアルキル(具体例は上述したもの)で置換されたものも第2の置換基としてのアリールやヘテロアリールに含まれる。その一例としては、第2の置換基がカルバゾリル基の場合には、9位における少なくとも1つの水素がフェニルなどのアリールやメチルなどのアルキルで置換されたカルバゾリル基も第2の置換基としてのヘテロアリールに含まれる。
一般式(2)のR〜R11におけるアリール、へテルアリール、ジアリールアミノのアリール、ジヘテロアリールアミノのヘテロアリール、アリールヘテロアリールアミノのアリールとヘテロアリール、またはアリールオキシのアリールとしては、一般式(1)で説明した「アリール環」または「ヘテロアリール環」の一価の基があげられる。また、R〜R11におけるアルキルまたはアルコキシとしては、上述した一般式(1)の説明における第1の置換基としての「アルキル」や「アルコキシ」の説明を参照することができる。さらに、これらの基への置換基としてのアリール、ヘテロアリールまたはアルキルも同様である。また、また、R〜R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成した場合の、これらの環への置換基であるヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシまたはアリールオキシ、および、さらなる置換基であるアリール、ヘテロアリールまたはアルキルについても同様である。
一般式(1)のYにおけるSi−RおよびGe−RのRはアリールまたはアルキルであるが、このアリールやアルキルとしては上述するものがあげられる。特に炭素数6〜10のアリール(例えばフェニル、ナフチルなど)、炭素数1〜4のアルキル(例えばメチル、エチルなど)が好ましい。この説明は一般式(2)におけるYでも同じである。
一般式(1)のXおよびXにおけるN−RのRは上述した第2の置換基で置換されていてもよいアリール、ヘテロアリールまたはアルキルであり、アリールやヘテロアリールにおける少なくとも1つの水素は例えばアルキルで置換されていてもよい。このアリール、ヘテロアリールやアルキルとしては上述するものがあげられる。特に炭素数6〜10のアリール(例えばフェニル、ナフチルなど)、炭素数2〜15のヘテロアリール(例えばカルバゾリルなど)、炭素数1〜4のアルキル(例えばメチル、エチルなど)が好ましい。この説明は一般式(2)におけるXおよびXでも同じである。
一般式(1)における連結基である「−C(−R)−」のRは水素またはアルキルであるが、このアルキルとしては上述するものがあげられる。特に炭素数1〜4のアルキル(例えばメチル、エチルなど)が好ましい。この説明は一般式(2)における連結基である「−C(−R)−」でも同じである。
また、本願発明は、一般式(1)で表される単位構造を複数有する多環芳香族化合物の多量体、好ましくは、一般式(2)で表される単位構造を複数有する多環芳香族化合物の多量体である。多量体は、2〜6量体が好ましく、2〜3量体がより好ましく、2量体が特に好ましい。多量体は、一つの化合物の中に上記単位構造を複数有する形態であればよく、例えば、上記単位構造が単結合、炭素数1〜3のアルキレン基、フェニレン基、ナフチレン基などの連結基で複数結合した形態に加えて、上記単位構造に含まれる任意の環(A環、B環またはC環、a環、b環またはc環)を複数の単位構造で共有するようにして結合した形態であってもよく、また、上記単位構造に含まれる任意の環(A環、B環またはC環、a環、b環またはc環)同士が縮合するようにして結合した形態であってもよい。
このような多量体としては、例えば、下記式(2−4)、式(2−4−1)、式(2−4−2)、式(2−5−1)〜式(2−5−4)または式(2−6)で表される多量体化合物が挙げられる。下記式(2−4)で表される多量体化合物は、例えば後述する式(1−21)で表されるような化合物に対応する。すなわち、一般式(2)で説明すれば、a環であるベンゼン環を共有するようにして、複数の一般式(2)で表される単位構造を一つの化合物中に有する多量体化合物である。また、下記式(2−4−1)で表される多量体化合物は、例えば後述する式(1−2665)で表されるような化合物に対応する。すなわち、一般式(2)で説明すれば、a環であるベンゼン環を共有するようにして、二つの一般式(2)で表される単位構造を一つの化合物中に有する多量体化合物である。また、下記式(2−4−2)で表される多量体化合物は、例えば後述する式(1−2666)で表されるような化合物に対応する。すなわち、一般式(2)で説明すれば、a環であるベンゼン環を共有するようにして、二つの一般式(2)で表される単位構造を一つの化合物中に有する多量体化合物である。また、下記式(2−5−1)〜式(2−5−4)で表される多量体化合物は、例えば後述する式(1−22)〜(1−25)で表されるような化合物に対応する。すなわち、一般式(2)で説明すれば、b環(またはc環)であるベンゼン環を共有するようにして、複数の一般式(2)で表される単位構造を一つの化合物中に有する多量体化合物である。また、下記式(2−6)で表される多量体化合物は、例えば後述する式(1−31)〜(1−37)で表されるような化合物に対応する。すなわち、一般式(2)で説明すれば、例えばある単位構造のb環(またはa環、c環)であるベンゼン環とある単位構造のb環(またはa環、c環)であるベンゼン環とが縮合するようにして、複数の一般式(2)で表される単位構造を一つの化合物中に有する多量体化合物である。
Figure 0005935199
多量体化合物は、式(2−4)、式(2−4−1)または式(2−4−2)で表現される多量化形態と、式(2−5−1)〜式(2−5−4)のいずれかまたは式(2−6)で表現される多量化形態とが組み合わさった多量体であってもよく、式(2−5−1)〜式(2−5−4)のいずれかで表現される多量化形態と、式(2−6)で表現される多量化形態とが組み合わさった多量体であってもよく、式(2−4)、式(2−4−1)または式(2−4−2)で表現される多量化形態と式(2−5−1)〜式(2−5−4)のいずれかで表現される多量化形態と式(2−6)で表現される多量化形態とが組み合わさった多量体であってもよい。
また、一般式(1)または(2)で表される多環芳香族化合物およびその多量体の化学構造中の水素は、その全てまたは一部が重水素であってもよい。
また、一般式(1)または(2)で表される多環芳香族化合物およびその多量体の化学構造中の水素は、その全てまたは一部がハロゲンであってもよい。例えば、式(1)においては、A環、B環、C環(A〜C環はアリール環またはヘテロアリール環)、A〜C環への置換基、YがSi−RまたはGe−RであるときのR(=アルキル、アリール)、ならびに、XおよびXがN−RであるときのR(=アルキル、アリール)における水素がハロゲンで置換されうるが、これらの中でもアリールやヘテロアリールにおける全てまたは一部の水素がハロゲンで置換された態様が挙げられる。ハロゲンは、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくは塩素である。
また、本発明に係る多環芳香族化合物およびその多量体は、有機デバイス用材料として用いることができる。有機デバイスとしては、例えば、有機電界発光素子、有機電界効果トランジスタまたは有機薄膜太陽電池などがあげられる。特に、有機電界発光素子においては、発光層のドーパント材料として、YがB、XおよびXがN−Rである化合物、YがB、XがO、XがN−Rである化合物、YがB、XおよびXがOである化合物が好ましく、発光層のホスト材料として、YがB、XがO、XがN−Rである化合物、YがB、XおよびXがOである化合物が好ましく、電子輸送材料として、YがB、XおよびXがOである化合物、YがP=O、XおよびXがOである化合物が好ましく用いられる。
本発明の多環芳香族化合物およびその多量体のさらに具体的な例としては、例えば、下記式(1−1)〜(1−825)で表される化合物、下記式(1−1001)〜(1−1281)で表される化合物、下記式(1−1301)〜(1−1311)で表される化合物、下記式(1−1351)〜(1−1361)で表される化合物、および下記式(1−1401)〜(1−1460)で表される化合物が挙げられる。
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
本発明の多環芳香族化合物およびその多量体のさらに具体的な例としては、例えば、下記式(1−2001)〜(1−2299)で表される化合物、下記式(1−2301)〜(1−2619)で表される化合物、下記式(1−2621)〜(1−2705)で表される化合物、下記式(1−3581)〜(1−3828)で表される化合物、下記式(1−3831)〜(1−4033)で表される化合物、下記式(1−4041)〜(1−4288)で表される化合物、および、下記式(1−4301)〜(1−4349)で表される化合物が挙げられる。
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
また、本発明の多環芳香族化合物およびその多量体は、A環、B環およびC環(a環、b環およびc環)の少なくとも1つにおける、Yに対するパラ位にフェニルオキシ基、カルバゾリル基またはジフェニルアミノ基を導入することで、T1エネルギーの向上(およそ0.01〜0.1eV向上)が期待できる。特に、YがB(ホウ素)、XおよびXがOまたはN−R(Rは上記説明どおり)の場合に、B(ホウ素)に対するパラ位にフェニルオキシ基を導入することで、A環、B環およびC環(a環、b環およびc環)であるベンゼン環上のHOMOがよりホウ素に対するメタ位に局在化し、LUMOがホウ素に対するオルトおよびパラ位に局在化するため、T1エネルギーの向上が特に期待できる。
このような具体例としては、例えば、下記式(1−4401)〜(1−4422)で表される化合物、および、下記式(1−4501)〜(1−4522)で表される化合物が挙げられる。
なお、式中のRはアルキルであり、直鎖および分枝鎖のいずれでもよく、例えば、炭素数1〜24の直鎖アルキルまたは炭素数3〜24の分枝鎖アルキルがあげられる。炭素数1〜18のアルキル(炭素数3〜18の分枝鎖アルキル)が好ましく、炭素数1〜12のアルキル(炭素数3〜12の分枝鎖アルキル)がより好ましく、炭素数1〜6のアルキル(炭素数3〜6の分枝鎖アルキル)がさらに好ましく、炭素数1〜4のアルキル(炭素数3〜4の分枝鎖アルキル)が特に好ましい。また、Rとしては他にフェニルが挙げられる。
また、「PhO−」はフェニルオキシ基であり、このフェニルは例えば式(1−4421−1)のように直鎖または分枝鎖のアルキルで置換されていてもよく、例えば、炭素数1〜24の直鎖アルキルまたは炭素数3〜24の分枝鎖アルキル、炭素数1〜18のアルキル(炭素数3〜18の分枝鎖アルキル)、炭素数1〜12のアルキル(炭素数3〜12の分枝鎖アルキル)、炭素数1〜6のアルキル(炭素数3〜6の分枝鎖アルキル)、炭素数1〜4のアルキル(炭素数3〜4の分枝鎖アルキル)で置換されていてもよい。
Figure 0005935199
Figure 0005935199
また、本発明の多環芳香族化合物およびその多量体の具体的な例としては、上述した式(1−1)〜(1−825)、式(1−1001)〜(1−1281)、式(1−1301)〜(1−1311)、式(1−1351)〜(1−1361)、式(1−1401)〜(1−1460)、式(1−2001)〜(1−2299)、式(1−2301)〜(1−2619)、式(1−2621)〜(1−2705)、式(1−3581)〜(1−3828)、式(1−3831)〜(1−4033)、式(1−4041)〜(1−4288)、式(1−4301)〜(1−4349)、式(1−4401)〜(1−4422)、および、式(1−4501)〜(1−4522)で表される化合物において、化合物中の1個または複数個の芳香環における少なくとも1つの水素が1個または複数個のアルキルやアリールで置換された化合物が挙げられ、より好ましくは1〜2個の炭素数1〜12のアルキルや炭素数6〜10のアリールで置換された化合物が挙げられる。
具体的には、以下の式(1−1−R)〜式(1−4401−R)で表される化合物が挙げられる。下記式中のRはそれぞれ独立して炭素数1〜12のアルキルまたは炭素数6〜10のアリール、好ましくは炭素数1〜4のアルキルまたはフェニルであり、nはそれぞれ独立して0〜2、好ましくは1である。
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
また、本発明の多環芳香族化合物およびその多量体の具体的な例としては、化合物中の1個または複数個のフェニル基または1個のフェニレン基における少なくとも1つの水素が1個または複数個の炭素数1〜4のアルキル、好ましくは炭素数1〜3のアルキル(好ましくは1個または複数個のメチル基)で置換された化合物が挙げられ、より好ましくは、1個のフェニル基のオルト位における水素(2箇所のうち2箇所とも、好ましくはいずれか一箇所)または1個のフェニレン基のオルト位における水素(最大4箇所のうち4箇所とも、好ましくはいずれか1箇所)がメチル基で置換された化合物が挙げられる。
このような化合物としては、上記式(1−1)〜(1−825)で表される化合物、式(1−1001)〜(1−1281)で表される化合物、式(1−1301)〜(1−1311)で表される化合物、式(1−1351)〜(1−1361)で表される化合物、式(1−1401)〜(1−1460)で表される化合物、式(1−2001)〜(1−2299)で表される化合物、式(1−2301)〜(1−2619)で表される化合物、式(1−2621)〜(1−2705)で表される化合物、式(1−3581)〜(1−3828)で表される化合物、式(1−3831)〜(1−4033)で表される化合物、式(1−4041)〜(1−4288)で表される化合物、および、式(1−4301)〜(1−4349)で表される化合物の中でもフェニル基やフェニレン基が含まれる化合物において、その1個または複数個のフェニル基または1個のフェニレン基における少なくとも1つの水素が炭素数1〜4のアルキル、好ましくは1個または複数個の炭素数1〜3のアルキル(好ましくは1個または複数個のメチル基)で置換された化合物が挙げられ、より好ましくは、1個のフェニル基のオルト位における水素(2箇所のうち2箇所とも、好ましくはいずれか1箇所)または1個のフェニレン基のオルト位における水素(最大4箇所のうち4箇所とも、好ましくはいずれか1箇所)がメチル基で置換された化合物が挙げられる。
特に、式(1−1)、式(1−41)、式(1−42)、式(1−45)、式(1−50)、式(1−79)、式(1−83)、式(1−84)、式(1−91)、式(1−94)、式(1−95)、式(1−97)、式(1−151)、式(1−152)、式(1−1021)〜式(1−1036)、式(1−1037)、式(1−1038)、式(1−1039)、式(1−1048)、式(1−1049)、式(1−1050)、式(1−1077)、式(1−1078)、式(1−1079)、式(1−1187)、式(1−1190)、式(1−1191)および式(1−1192)で表される化合物における1個または複数個のフェニル基または1個のフェニレン基における少なくとも1つの水素が1個または複数個の炭素数1〜4のアルキル、好ましくは炭素数1〜3のアルキル(好ましくは1個または複数個のメチル基)で置換された化合物が挙げられ、より好ましくは、1個のフェニル基のオルト位における水素(2箇所のうち2箇所とも、好ましくはいずれか1箇所)または1個のフェニレン基のオルト位における水素(最大4箇所のうち4箇所とも、好ましくはいずれか1箇所)がメチル基で置換された化合物が挙げられる。
化合物中の末端のフェニル基やp−フェ二レン基のオルト位における少なくとも1つの水素をメチル基などで置換することにより、隣り合う芳香環同士が直交しやすくなって共役が弱まる結果、三重項励起エネルギー(E)を高めることが可能となる。
具体的には、以下の式(1−1−1)で表される化合物、および式(1−41−1)〜式(1−1192−9)で表される化合物が挙げられる。
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
Figure 0005935199
2.多環芳香族化合物およびその多量体の製造方法
一般式(1)や(2)で表される多環芳香族化合物およびその多量体は、基本的には、まずA環(a環)とB環(b環)およびC環(c環)とを結合基(XやXを含む基)で結合させることで中間体を製造し(第1反応)、その後に、A環(a環)、B環(b環)およびC環(c環)を結合基(Yを含む基)で結合させることで最終生成物を製造することができる(第2反応)。第1反応では、例えばエーテル化反応であれば、求核置換反応、ウルマン反応といった一般的反応が利用でき、アミノ化反応で有ればブッフバルト−ハートウィッグ反応といった一般的反応が利用できる。また、第2反応では、タンデムヘテロフリーデルクラフツ反応(連続的な芳香族求電子置換反応、以下同様)が利用できる。
第2反応は、下記スキーム(1)や(2)に示すように、A環(a環)、B環(b環)およびC環(c環)を結合するYを導入する反応であり、例としてYがホウ素原子、XおよびXが酸素原子の場合を以下に示す。まず、XとXの間の水素原子をn−ブチルリチウム、sec−ブチルリチウムまたはt−ブチルリチウム等でオルトメタル化する。次いで、三塩化ホウ素や三臭化ホウ素等を加え、リチウム−ホウ素の金属交換を行った後、N,N−ジイソプロピルエチルアミン等のブレンステッド塩基を加えることで、タンデムボラフリーデルクラフツ反応させ、目的物を得ることができる。第2反応においては反応を促進させるために三塩化アルミニウム等のルイス酸を加えてもよい。
Figure 0005935199
なお、上記スキーム(1)や(2)は、一般式(1)や(2)で表される多環芳香族化合物の製造方法を主に示しているが、その多量体については、複数のA環(a環)、B環(b環)およびC環(c環)を有する中間体を用いることで製造することができる。詳細には下記スキーム(3)〜(5)で説明する。この場合、使用するブチルリチウム等の試薬の量を2倍量、3倍量とすることで目的物を得ることができる。
Figure 0005935199
上記スキームにおいては、オルトメタル化により所望の位置へリチウムを導入したが、下記スキーム(6)および(7)のようにリチウムを導入したい位置に臭素原子等を導入し、ハロゲン−メタル交換によっても所望の位置へリチウムを導入することができる。
Figure 0005935199
また、スキーム(3)で説明した多量体の製造方法についても、上記スキーム(6)および(7)のようにリチウムを導入したい位置に臭素原子や塩素原子等のハロゲンを導入し、ハロゲン−メタル交換によっても所望の位置へリチウムを導入することができる(下記スキーム(8)、(9)および(10))。
Figure 0005935199
この方法によれば、置換基の影響でオルトメタル化ができないようなケースでも目的物を合成することができ有用である。
上述の合成法を適宜選択し、使用する原料も適宜選択することで、所望の位置に置換基を有し、Yがホウ素原子、XおよびXが酸素原子である多環芳香族化合物およびその多量体を合成することができる。
次に、例としてYがホウ素原子、XおよびXが窒素原子の場合を下記スキーム(11)および(12)に示す。XおよびXが酸素原子である場合と同様に、まずXとXの間の水素原子をn−ブチルリチウム等でオルトメタル化する。次いで、三臭化ホウ素等を加え、リチウム−ホウ素の金属交換を行った後、N,N−ジイソプロピルエチルアミン等のブレンステッド塩基を加えることで、タンデムボラフリーデルクラフツ反応させ、目的物を得ることができる。ここでは反応を促進させるために三塩化アルミニウム等のルイス酸を加えてもよい。
Figure 0005935199
また、Yがホウ素原子、XおよびXが窒素原子の場合の多量体についても、上記スキーム(6)および(7)のようにリチウムを導入したい位置に臭素原子や塩素原子等のハロゲンを導入し、ハロゲン−メタル交換によっても所望の位置へリチウムを導入することができる(下記スキーム(13)、(14)および(15))。
Figure 0005935199
次に、例としてYがリンスルフィド、リンオキサイドまたはリン原子であり、XおよびXが酸素原子である場合を下記スキーム(16)〜(19)に示す。これまでと同様に、まずXとXの間の水素原子をn−ブチルリチウム等でオルトメタル化する。次いで、三塩化リン、硫黄の順に添加し、最後に三塩化アルミニウム等のルイス酸およびN,N−ジイソプロピルエチルアミン等のブレンステッド塩基を加えることで、タンデムホスファフリーデルクラフツ反応させ、Yがリンスルフィドである化合物を得ることができる。また、得られたリンスルフィド化合物をm−クロロ過安息香酸(m−CPBA)で処理することでYがリンオキサイドである化合物を得ることができ、トリエチルホスフィンで処理することでYがリン原子である化合物を得ることができる。
Figure 0005935199
また、Yがリンスルフィド、XおよびXが酸素原子の場合の多量体についても、上記スキーム(6)および(7)のようにリチウムを導入したい位置に臭素原子や塩素原子等のハロゲンを導入し、ハロゲン−メタル交換によっても所望の位置へリチウムを導入することができる(下記スキーム(20)、(21)および(22))。また、このようにしてできたYがリンスルフィド、XおよびXが酸素原子の場合の多量体も、上記スキーム(18)および(19)のようにして、m−クロロ過安息香酸(m−CPBA)で処理することでYがリンオキサイドである化合物を得ることができ、トリエチルホスフィンで処理することでYがリン原子である化合物を得ることができる。
Figure 0005935199
ここでは、Yが、B、P、P=OまたはP=Sであり、XおよびXがOまたはNRである例を記載したが、原料を適宜変更することで、Yが、Al、Ga、As、Si−RまたはGe−Rであったり、XおよびXがSである化合物も合成することができる。
以上の反応で用いられる溶媒の具体例は、t−ブチルベンゼンやキシレンなどである。
また、一般式(2)では、a環、b環およびc環の置換基R〜R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリールまたはヘテロアリールで置換されていてもよい。したがって、一般式(2)で表される多環芳香族化合物は、a環、b環およびc環における置換基の相互の結合形態によって、下記スキーム(23)および(24)の式(2−1)および式(2−2)に示すように、化合物を構成する環構造が変化する。これらの化合物は下記スキーム(23)および(24)に示す中間体に上記スキーム(1)〜(19)で示した合成法を適用することで合成することができる。
Figure 0005935199
上記式(2−1)および式(2−2)中のA’環、B’環およびC’環は、置換基R〜R11のうちの隣接する基同士が結合して、それぞれa環、b環およびc環と共に形成したアリール環またはヘテロアリール環を示す(a環、b環またはc環に他の環構造が縮合してできた縮合環ともいえる)。なお、式では示してはいないが、a環、b環およびc環の全てがA’環、B’環およびC’環に変化した化合物もある。
また、一般式(2)における「N−RのRは−O−、−S−、−C(−R)−または単結合により前記a環、b環および/またはc環と結合している」との規定は、下記スキーム(25)の式(2−3−1)で表される、XやXが縮合環B’および縮合環C’に取り込まれた環構造を有する化合物や、式(2−3−2)や式(2−3−3)で表される、XやXが縮合環A’に取り込まれた環構造を有する化合物で表現することができる。これらの化合物は下記スキーム(25)に示す中間体に上記スキーム(1)〜(19)で示した合成法を適用することで合成することができる。
Figure 0005935199
また、上記スキーム(1)〜(17)および(20)〜(25)の合成法では、三塩化ホウ素や三臭化ホウ素等を加える前に、XとXの間の水素原子(またはハロゲン原子)をブチルリチウム等でオルトメタル化することで、タンデムヘテロフリーデルクラフツ反応させた例を示したが、ブチルリチウム等を用いたオルトメタル化を行わずに、三塩化ホウ素や三臭化ホウ素等の添加により反応を進行させることもできる。
また、Yがリン系の場合には、下記スキーム(26)や(27)に示すように、XとX(下記式ではO)の間の水素原子をn−ブチルリチウム、sec−ブチルリチウムまたはt−ブチルリチウム等でオルトメタル化し、次いで、ビスジエチルアミノクロロホスフィンを加え、リチウム−リンの金属交換を行った後、三塩化アルミニウム等のルイス酸を加えることで、タンデムホスファフリーデルクラフツ反応させ、目的物を得ることができる。この反応方法は国際公開第2010/104047号公報(例えば27頁)にも記載されている。
Figure 0005935199
Figure 0005935199
なお、上記スキーム(26)や(27)においても、ブチルリチウム等のオルトメタル化試薬を中間体1のモル量に対して2倍、3倍のモル量を使用することで多量体化合物を合成することができる。また、リチウム等のメタルを導入したい位置にあらかじめ臭素原子や塩素原子等のハロゲンを導入しておき、ハロゲン−メタル交換することで所望の位置へメタルを導入することができる。
なお、上記スキーム(1)〜(27)で使用するオルトメタル化試薬としては、メチルリチウム、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム等のアルキルリチウム、リチウムジイソプロピルアミド、リチウムテトラメチルピペリジド、リチウムヘキサメチルジシラジド、カリウムヘキサメチルジシラジドなどの有機アルカリ化合物が挙げられる。
なお、上記スキーム(1)〜(27)で使用するメタル−Yの金属交換試薬としては、Yの三フッ化物、Yの三塩化物、Yの三臭化物、Yの三ヨウ化物などのYのハロゲン化物、CIPN(NEtなどのYのアミノ化ハロゲン化物、Yのアルコキシ化物、Yのアリールオキシ化物などが挙げられる。
なお、上記スキーム(1)〜(27)で使用するブレンステッド塩基としては、N,N−ジイソプロピルエチルアミン、トリエチルアミン、2,2,6,6−テトラメチルピペリジン、1,2,2,6,6−ペンタメチルピペリジン、N,N−ジメチルアニリン、N,N−ジメチルトルイジン、2,6−ルチジン、テトラフェニルホウ酸ナトリウム、テトラフェニルホウ酸カリウム、トリフェニルボラン、テトラフェニルシラン、ArBNa、ArBK、ArB、ArSi(なお、Arはフェニルなどのアリール)などが挙げられる。
上記スキーム(1)〜(27)で使用するルイス酸としては、AlCl、AlBr、AlF、BF・OEt、BCl、BBr、GaCl、GaBr、InCl、InBr、In(OTf)、SnCl、SnBr、AgOTf、ScCl、Sc(OTf)、ZnCl、ZnBr、Zn(OTf)、MgCl、MgBr、Mg(OTf)、LiOTf、NaOTf、KOTf、MeSiOTf、Cu(OTf)、CuCl、YCl、Y(OTf)、TiCl、TiBr、ZrCl、ZrBr、FeCl、FeBr、CoCl、CoBrなどが挙げられる。
上記スキーム(1)〜(27)では、タンデムヘテロフリーデルクラフツ反応の促進のためにブレンステッド塩基またはルイス酸を使用してもよい。ただし、Yの三フッ化物、Yの三塩化物、Yの三臭化物、Yの三ヨウ化物などのYのハロゲン化物を用いた場合は、芳香族求電子置換反応の進行とともに、フッ化水素、塩化水素、臭化水素、ヨウ化水素といった酸が生成するため、酸を捕捉するブレンステッド塩基の使用が効果的である。一方、Yのアミノ化ハロゲン化物、Yのアルコキシ化物を用いた場合は、芳香族求電子置換反応の進行とともに、アミン、アルコールが生成するために、多くの場合、ブレンステッド塩基を使用する必要はないが、アミノ基やアルコキシ基の脱離能が低いために、その脱離を促進するルイス酸の使用が効果的である。
また、本発明の多環芳香族化合物やその多量体には、少なくとも一部の水素原子が重水素で置換されているものやフッ素や塩素などのハロゲンで置換されているものも含まれるが、このような化合物などは所望の箇所が重水素化、フッ素化または塩素化された原料を用いることで、上記と同様に合成することができる。
本発明に係る多環芳香族化合物およびその多量体は、有機デバイス用材料として用いることができる。有機デバイスとしては、例えば、有機電界発光素子、有機電界効果トランジスタまたは有機薄膜太陽電池などがあげられる。
3.有機電界発光素子
本発明に係る多環芳香族化合物およびその多量体は、例えば、有機電界発光素子の材料として用いることができる。以下に、本実施形態に係る有機EL素子について図面に基づいて詳細に説明する。図1は、本実施形態に係る有機EL素子を示す概略断面図である。
<有機電界発光素子の構造>
図1に示された有機電界発光素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
なお、有機電界発光素子100は、作製順序を逆にして、例えば、基板101と、基板101上に設けられた陰極108と、陰極108の上に設けられた電子注入層107と、電子注入層107の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた発光層105と、発光層105の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた陽極102とを有する構成としてもよい。
上記各層すべてがなくてはならないわけではなく、最小構成単位を陽極102と発光層105と陰極108とからなる構成として、正孔注入層103、正孔輸送層104、電子輸送層106、電子注入層107は任意に設けられる層である。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。
有機電界発光素子を構成する層の態様としては、上述する「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」の構成態様の他に、「基板/陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子注入層/陰極」の構成態様であってもよい。
<有機電界発光素子における基板>
基板101は、有機電界発光素子100の支持体となるものであり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状、またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルム、プラスチックシートなどが用いられる。なかでも、ガラス板、および、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
<有機電界発光素子における陽極>
陽極102は、発光層105へ正孔を注入する役割を果たすものである。なお、陽極102と発光層105との間に正孔注入層103および/または正孔輸送層104が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
陽極102を形成する材料としては、無機化合物および有機化合物があげられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム−スズ酸化物(ITO)、インジウム−亜鉛酸化物(IZO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどがあげられる。有機化合物としては、例えば、ポリ(3−メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどがあげられる。その他、有機電界発光素子の陽極として用いられている物質の中から適宜選択して用いることができる。
透明電極の抵抗は、発光素子の発光に十分な電流が供給できればよいので限定されないが、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、例えば100〜5Ω/□、好ましくは50〜5Ω/□の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常50〜300nmの間で用いられることが多い。
<有機電界発光素子における正孔注入層、正孔輸送層>
正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たすものである。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たすものである。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。
正孔注入層103および正孔輸送層104を形成する材料としては、上記一般式(1)で表される多環芳香族化合物またはその多量体を使用することができる。また、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機電界発光素子の正孔注入層および正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。それらの具体例は、カルバゾール誘導体(N−フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N−アリールカルバゾール)またはビス(N−アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(芳香族第3級アミノを主鎖あるいは側鎖に持つポリマー、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジアミノビフェニル、N,N’−ジフェニル−N,N’−ジナフチル−4,4’−ジアミノビフェニル、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミン、N,N4’−ジフェニル−N,N4’−ビス(9−フェニル−9H−カルバゾール−3−イル)−[1,1’−ビフェニル]−4,4’−ジアミン、N,N,N4’,N4’−テトラ[1,1’−ビフェニル]−4−イル)−[1,1’−ビフェニル]−4,4’−ジアミン、4,4’,4”−トリス(3−メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など)、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、キノキサリン誘導体(例えば、1,4,5,8,9,12−ヘキサアザトリフェニレン−2,3,6,7,10,11−ヘキサカルボニトリルなど)、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。
また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または、電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6−テトラフルオロテトラシアノ−1,4−ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pheiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、あるいは、特定の金属フタロシアニン(特に、亜鉛フタロシアニンZnPcなど)が知られている(特開2005-167175号公報)。
<有機電界発光素子における発光層>
発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光するものである。発光層105を形成する材料としては、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光)効率を示す化合物であるのが好ましい。本発明では、発光層用の材料として、上記一般式(1)で表される多環芳香族化合物またはその多量体を用いることができる。
発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光層用材料(ホスト材料、ドーパント材料)により形成される。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
ホスト材料の使用量はホスト材料の種類によって異なり、そのホスト材料の特性に合わせて決めればよい。ホスト材料の使用量の目安は、好ましくは発光層用材料全体の50〜99.999重量%であり、より好ましくは80〜99.95重量%であり、さらに好ましくは90〜99.9重量%である。上記一般式(1)で表される多環芳香族化合物またはその多量体はホスト材料としても使用することもできる。
ドーパント材料の使用量はドーパント材料の種類によって異なり、そのドーパント材料の特性に合わせて決めればよい。ドーパントの使用量の目安は、好ましくは発光層用材料全体の0.001〜50重量%であり、より好ましくは0.05〜20重量%であり、さらに好ましくは0.1〜10重量%である。上記の範囲であれば、例えば、濃度消光現象を防止できるという点で好ましい。上記一般式(1)で表される多環芳香族化合物またはその多量体はドーパント材料としても使用することもできる
上記一般式(1)で表される多環芳香族化合物またはその多量体と併用することができるホスト材料としては、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、フルオレン誘導体、ベンゾフルオレン誘導体などが挙げられる。
また、上記一般式(1)で表される多環芳香族化合物またはその多量体と併用することができるドーパント材料としては、特に限定されるものではなく、既知の化合物を用いることができ、所望の発光色に応じて様々な材料の中から選択することができる。具体的には、例えば、フェナンスレン、アントラセン、ピレン、テトラセン、ペンタセン、ペリレン、ナフトピレン、ジベンゾピレン、ルブレンおよびクリセンなどの縮合環誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、イミダゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラゾリン誘導体、スチルベン誘導体、チオフェン誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体(特開平1−245087号公報)、ビススチリルアリーレン誘導体(特開平2−247278号公報)、ジアザインダセン誘導体、フラン誘導体、ベンゾフラン誘導体、フェニルイソベンゾフラン、ジメシチルイソベンゾフラン、ジ(2−メチルフェニル)イソベンゾフラン、ジ(2−トリフルオロメチルフェニル)イソベンゾフラン、フェニルイソベンゾフランなどのイソベンゾフラン誘導体、ジベンゾフラン誘導体、7−ジアルキルアミノクマリン誘導体、7−ピペリジノクマリン誘導体、7−ヒドロキシクマリン誘導体、7−メトキシクマリン誘導体、7−アセトキシクマリン誘導体、3−ベンゾチアゾリルクマリン誘導体、3−ベンゾイミダゾリルクマリン誘導体、3−ベンゾオキサゾリルクマリン誘導体などのクマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、ポリメチン誘導体、シアニン誘導体、オキソベンゾアンスラセン誘導体、キサンテン誘導体、ローダミン誘導体、フルオレセイン誘導体、ピリリウム誘導体、カルボスチリル誘導体、アクリジン誘導体、オキサジン誘導体、フェニレンオキサイド誘導体、キナクリドン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、フロピリジン誘導体、1,2,5−チアジアゾロピレン誘導体、ピロメテン誘導体、ペリノン誘導体、ピロロピロール誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、アクリドン誘導体、デアザフラビン誘導体、フルオレン誘導体およびベンゾフルオレン誘導体などがあげられる。
発色光ごとに例示すると、青〜青緑色ドーパント材料としては、ナフタレン、アントラセン、フェナンスレン、ピレン、トリフェニレン、ペリレン、フルオレン、インデン、クリセンなどの芳香族炭化水素化合物やその誘導体、フラン、ピロール、チオフェン、シロール、9−シラフルオレン、9,9’−スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどの芳香族複素環化合物やその誘導体、ジスチリルベンゼン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、クマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミンに代表される芳香族アミン誘導体などがあげられる。
また、緑〜黄色ドーパント材料としては、クマリン誘導体、フタルイミド誘導体、ナフタルイミド誘導体、ペリノン誘導体、ピロロピロール誘導体、シクロペンタジエン誘導体、アクリドン誘導体、キナクリドン誘導体およびルブレンなどのナフタセン誘導体などがあげられ、さらに上記青〜青緑色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。
さらに、橙〜赤色ドーパント材料としては、ビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのナフタルイミド誘導体、ペリノン誘導体、アセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体などの希土類錯体、4−(ジシアノメチレン)−2−メチル−6−(p−ジメチルアミノスチリル)−4H−ピランやその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、キナクリドン誘導体、フェノキサジン誘導体、オキサジン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、フェノキサゾン誘導体およびチアジアゾロピレン誘導体などあげられ、さらに上記青〜青緑色および緑〜黄色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。
その他、ドーパントとしては、化学工業2004年6月号13頁、および、それにあげられた参考文献などに記載された化合物などの中から適宜選択して用いることができる。
上述するドーパント材料の中でも、特にスチルベン構造を有するアミン、ペリレン誘導体、ボラン誘導体、芳香族アミン誘導体、クマリン誘導体、ピラン誘導体またはピレン誘導体が好ましい。
スチルベン構造を有するアミンは、例えば、下記式で表される。
Figure 0005935199
当該式中、Arは炭素数6〜30のアリールに由来するm価の基であり、ArおよびArは、それぞれ独立して炭素数6〜30のアリールであるが、Ar〜Arの少なくとも1つはスチルベン構造を有し、Ar〜Arは置換されていてもよく、そして、mは1〜4の整数である。
スチルベン構造を有するアミンは、下記式で表されるジアミノスチルベンがより好ましい。
Figure 0005935199
当該式中、ArおよびArは、それぞれ独立して炭素数6〜30のアリールであり、ArおよびArは置換されていてもよい。
炭素数6〜30のアリールの具体例は、ベンゼン、ナフタレン、アセナフチレン、フルオレン、フェナレン、フェナントレン、アントラセン、フルオランテン、トリフェニレン、ピレン、クリセン、ナフタセン、ペリレン、スチルベン、ジスチリルベンゼン、ジスチリルビフェニル、ジスチリルフルオレンなどが挙げられる。
スチルベン構造を有するアミンの具体例は、N,N,N’,N’−テトラ(4−ビフェニリル)−4,4’−ジアミノスチルベン、N,N,N’,N’−テトラ(1−ナフチル)−4,4’−ジアミノスチルベン、N,N,N’,N’−テトラ(2−ナフチル)−4,4’−ジアミノスチルベン、N,N’−ジ(2−ナフチル)−N,N’−ジフェニル−4,4’−ジアミノスチルベン、N,N’−ジ(9−フェナントリル)−N,N’−ジフェニル−4,4’−ジアミノスチルベン、4,4’−ビス[4”−ビス(ジフェニルアミノ)スチリル]−ビフェニル、1,4−ビス[4’−ビス(ジフェニルアミノ)スチリル]−ベンゼン、2,7−ビス[4’−ビス(ジフェニルアミノ)スチリル]−9,9−ジメチルフルオレン、4,4’−ビス(9−エチル−3−カルバゾビニレン)−ビフェニル、4,4’−ビス(9−フェニル−3−カルバゾビニレン)−ビフェニルなどが挙げられる。
また、特開2003-347056号公報、および特開2001-307884号公報などに記載されたスチルベン構造を有するアミンを用いてもよい。
ペリレン誘導体としては、例えば、3,10−ビス(2,6−ジメチルフェニル)ペリレン、3,10−ビス(2,4,6−トリメチルフェニル)ペリレン、3,10−ジフェニルペリレン、3,4−ジフェニルペリレン、2,5,8,11−テトラ−t−ブチルペリレン、3,4,9,10−テトラフェニルペリレン、3−(1’−ピレニル)−8,11−ジ(t−ブチル)ペリレン、3−(9’−アントリル)−8,11−ジ(t−ブチル)ペリレン、3,3’−ビス(8,11−ジ(t−ブチル)ペリレニル)などがあげられる。
また、特開平11-97178号公報、特開2000-133457号公報、特開2000-26324号公報、特開2001-267079号公報、特開2001-267078号公報、特開2001-267076号公報、特開2000-34234号公報、特開2001-267075号公報、および特開2001-217077号公報などに記載されたペリレン誘導体を用いてもよい。
ボラン誘導体としては、例えば、1,8−ジフェニル−10−(ジメシチルボリル)アントラセン、9−フェニル−10−(ジメシチルボリル)アントラセン、4−(9’−アントリル)ジメシチルボリルナフタレン、4−(10’−フェニル−9’−アントリル)ジメシチルボリルナフタレン、9−(ジメシチルボリル)アントラセン、9−(4’−ビフェニリル)−10−(ジメシチルボリル)アントラセン、9−(4’−(N−カルバゾリル)フェニル)−10−(ジメシチルボリル)アントラセンなどがあげられる。
また、国際公開第2000/40586号パンフレットなどに記載されたボラン誘導体を用いてもよい。
芳香族アミン誘導体は、例えば、下記式で表される。
Figure 0005935199
当該式中、Arは炭素数6〜30のアリールに由来するn価の基であり、ArおよびArはそれぞれ独立して炭素数6〜30のアリールであり、Ar〜Arは置換されていてもよく、そして、nは1〜4の整数である。
特に、Arがアントラセン、クリセン、フルオレン、ベンゾフルオレンまたはピレンに由来する2価の基であり、ArおよびArがそれぞれ独立して炭素数6〜30のアリールであり、Ar〜Arは置換されていてもよく、そして、nは2である、芳香族アミン誘導体がより好ましい。
炭素数6〜30のアリールの具体例は、ベンゼン、ナフタレン、アセナフチレン、フルオレンフェナレン、フェナントレン、アントラセン、フルオランテン、トリフェニレン、ピレン、クリセン、ナフタセン、ペリレン、ペンタセンなどが挙げられる。
芳香族アミン誘導体としては、クリセン系としては、例えば、N,N,N’,N’−テトラフェニルクリセン−6,12−ジアミン、N,N,N’,N’−テトラ(p−トリル)クリセン−6,12−ジアミン、N,N,N’,N’−テトラ(m−トリル)クリセン−6,12−ジアミン、N,N,N’,N’−テトラキス(4−イソプロピルフェニル)クリセン−6,12−ジアミン、N,N,N’,N’−テトラ(ナフタレン−2−イル)クリセン−6,12−ジアミン、N,N’−ジフェニル−N,N’−ジ(p−トリル)クリセン−6,12−ジアミン、N,N’−ジフェニル−N,N’−ビス(4−エチルフェニル)クリセン−6,12−ジアミン、N,N’−ジフェニル−N,N’−ビス(4−エチルフェニル)クリセン−6,12−ジアミン、N,N’−ジフェニル−N,N’−ビス(4−イソプロピルフェニル)クリセン−6,12−ジアミン、N,N’−ジフェニル−N,N’−ビス(4−t−ブチルフェニル)クリセン−6,12−ジアミン、N,N’−ビス(4−イソプロピルフェニル)−N,N’−ジ(p−トリル)クリセン−6,12−ジアミンなどが挙げられる。
また、ピレン系としては、例えば、N,N,N’,N’−テトラフェニルピレン−1,6−ジアミン、N,N,N’,N’−テトラ(p−トリル)ピレン−1,6−ジアミン、N,N,N’,N’−テトラ(m−トリル)ピレン−1,6−ジアミン、N,N,N’,N’−テトラキス(4−イソプロピルフェニル)ピレン−1,6−ジアミン、N,N,N’,N’−テトラキス(3,4−ジメチルフェニル)ピレン−1,6−ジアミン、N,N’−ジフェニル−N,N’−ジ(p−トリル)ピレン−1,6−ジアミン、N,N’−ジフェニル−N,N’−ビス(4−エチルフェニル)ピレン−1,6−ジアミン、N,N’−ジフェニル−N,N’−ビス(4−エチルフェニル)ピレン−1,6−ジアミン、N,N’−ジフェニル−N,N’−ビス(4−イソプロピルフェニル)ピレン−1,6−ジアミン、N,N’−ジフェニル−N,N’−ビス(4−t−ブチルフェニル)ピレン−1,6−ジアミン、N,N’−ビス(4−イソプロピルフェニル)−N,N’−ジ(p−トリル)ピレン−1,6−ジアミン、N,N,N’,N’−テトラキス(3,4−ジメチルフェニル)−3,8−ジフェニルピレン−1,6−ジアミン、N,N,N,N−テトラフェニルピレン−1,8−ジアミン、N,N’−ビス(ビフェニル−4−イル)−N,N’−ジフェニルピレン−1,8−ジアミン、N,N−ジフェニル−N,N−ビス−(4−トリメチルシラニル−フェニル)−1H,8H−ピレン−1,6−ジアミンなどが挙げられる。
また、アントラセン系としては、例えば、N,N,N,N−テトラフェニルアントラセン−9,10−ジアミン、N,N,N’,N’−テトラ(p−トリル)アントラセン−9,10−ジアミン、N,N,N’,N’−テトラ(m−トリル)アントラセン−9,10−ジアミン、N,N,N’,N’−テトラキス(4−イソプロピルフェニル)アントラセン−9,10−ジアミン、N,N’−ジフェニル−N,N’−ジ(p−トリル)アントラセン−9,10−ジアミン、N,N’−ジフェニル−N,N’−ジ(m−トリル)アントラセン−9,10−ジアミン、N,N’−ジフェニル−N,N’−ビス(4−エチルフェニル)アントラセン−9,10−ジアミン、N,N’−ジフェニル−N,N’−ビス(4−エチルフェニル)アントラセン−9,10−ジアミン、N,N’−ジフェニル−N,N’−ビス(4−イソプロピルフェニル)アントラセン−9,10−ジアミン、N,N’−ジフェニル−N,N’−ビス(4−t−ブチルフェニル)アントラセン−9,10−ジアミン、N,N’−ビス(4−イソプロピルフェニル)−N,N’−ジ(p−トリル)アントラセン−9,10−ジアミン、2,6−ジ−t−ブチル−N,N,N’,N’−テトラ(p−トリル)アントラセン−9,10−ジアミン、2,6−ジ−t−ブチル−N,N’−ジフェニル−N,N’−ビス(4−イソプロピルフェニル)アントラセン−9,10−ジアミン、2,6−ジ−t−ブチル−N,N’−ビス(4−イソプロピルフェニル)−N,N’−ジ(p−トリル)アントラセン−9,10−ジアミン、2,6−ジシクロヘキシル−N,N’−ビス(4−イソプロピルフェニル)−N,N’−ジ(p−トリル)アントラセン−9,10−ジアミン、2,6−ジシクロヘキシル−N,N’−ビス(4−イソプロピルフェニル)−N,N’−ビス(4−t−ブチルフェニル)アントラセン−9,10−ジアミン、9,10−ビス(4−ジフェニルアミノ−フェニル)アントラセン、9,10−ビス(4−ジ(1−ナフチルアミノ)フェニル)アントラセン、9,10−ビス(4−ジ(2−ナフチルアミノ)フェニル)アントラセン、10−ジ−p−トリルアミノ−9−(4−ジ−p−トリルアミノ−1−ナフチル)アントラセン、10−ジフェニルアミノ−9−(4−ジフェニルアミノ−1−ナフチル)アントラセン、10−ジフェニルアミノ−9−(6−ジフェニルアミノ−2−ナフチル)アントラセンなどが挙げられる。
また、他には、[4−(4−ジフェニルアミノ−フェニル)ナフタレン−1−イル]−ジフェニルアミン、[6−(4−ジフェニルアミノ−フェニル)ナフタレン−2−イル]−ジフェニルアミン、4,4’−ビス[4−ジフェニルアミノナフタレン−1−イル]ビフェニル、4,4’−ビス[6−ジフェニルアミノナフタレン−2−イル]ビフェニル、4,4”−ビス[4−ジフェニルアミノナフタレン−1−イル]−p−テルフェニル、4,4”−ビス[6−ジフェニルアミノナフタレン−2−イル]−p−テルフェニルなどがあげられる。
また、特開2006-156888号公報などに記載された芳香族アミン誘導体を用いてもよい。
クマリン誘導体としては、クマリン−6、クマリン−334などがあげられる。
また、特開2004-43646号公報、特開2001-76876号公報、および特開平6-298758号公報などに記載されたクマリン誘導体を用いてもよい。
ピラン誘導体としては、下記のDCM、DCJTBなどがあげられる。
Figure 0005935199
また、特開2005-126399号公報、特開2005-097283号公報、特開2002-234892号公報、特開2001-220577号公報、特開2001-081090号公報、および特開2001-052869号公報などに記載されたピラン誘導体を用いてもよい。
<有機電界発光素子における電子注入層、電子輸送層>
電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たすものである。電子輸送層106は、陰極108から注入された電子または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たすものである。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合するか、電子輸送・注入材料と高分子結着剤の混合物により形成される。
電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することをつかさどる層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。
電子輸送層106または電子注入層107を形成する材料(電子輸送材料)としては、上記一般式(1)で表される多環芳香族化合物またはその多量体を使用することができる。また、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機電界発光素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。
電子輸送層または電子注入層に用いられる材料としては、炭素、水素、酸素、硫黄、ケイ素およびリンの中から選ばれる一種以上の原子で構成される芳香環もしくは複素芳香環からなる化合物、ピロール誘導体およびその縮合環誘導体および電子受容性窒素を有する金属錯体の中から選ばれる少なくとも一種を含有することが好ましい。具体的には、ナフタレン、アントラセンなどの縮合環系芳香環誘導体、4,4’−ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体およびインドール誘導体などがあげられる。電子受容性窒素を有する金属錯体としては、例えば、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
また、他の電子伝達化合物の具体例として、ピリジン誘導体、ナフタレン誘導体、アントラセン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体(1,3−ビス[(4−t−ブチルフェニル)1,3,4−オキサジアゾリル]フェニレンなど)、チオフェン誘導体、トリアゾール誘導体(N−ナフチル−2,5−ジフェニル−1,3,4−トリアゾールなど)、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノリノール系金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体(2,2’−ビス(ベンゾ[h]キノリン−2−イル)−9,9’−スピロビフルオレンなど)、イミダゾピリジン誘導体、ボラン誘導体、ベンゾイミダゾール誘導体(トリス(N−フェニルベンゾイミダゾール−2−イル)ベンゼンなど)、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、テルピリジンなどのオリゴピリジン誘導体、ビピリジン誘導体、テルピリジン誘導体(1,3−ビス(4’−(2,2’:6’2”−テルピリジニル))ベンゼンなど)、ナフチリジン誘導体(ビス(1−ナフチル)−4−(1,8−ナフチリジン−2−イル)フェニルホスフィンオキサイドなど)、アルダジン誘導体、カルバゾール誘導体、インドール誘導体、リンオキサイド誘導体、ビススチリル誘導体などがあげられる。
また、電子受容性窒素を有する金属錯体を用いることもでき、例えば、キノリノール系金属錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。
上述した材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
上述した材料の中でも、キノリノール系金属錯体、ビピリジン誘導体、フェナントロリン誘導体またはボラン誘導体が好ましい。
キノリノール系金属錯体は、下記一般式(E−1)で表される化合物である。
Figure 0005935199
式中、R〜Rは水素または置換基であり、MはLi、Al、Ga、BeまたはZnであり、nは1〜3の整数である。
キノリノール系金属錯体の具体例としては、8−キノリノールリチウム、トリス(8−キノリノラート)アルミニウム、トリス(4−メチル−8−キノリノラート)アルミニウム、トリス(5−メチル−8−キノリノラート)アルミニウム、トリス(3,4−ジメチル−8−キノリノラート)アルミニウム、トリス(4,5−ジメチル−8−キノリノラート)アルミニウム、トリス(4,6−ジメチル−8−キノリノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(フェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(4−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(4−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,3−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,6−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,4−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,5−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,5−ジ−t−ブチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,6−ジフェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,6−トリフェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,6−トリメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,5,6−テトラメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(1−ナフトラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−ナフトラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(2−フェニルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(3−フェニルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(4−フェニルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(3,5−ジメチルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(3,5−ジ−t−ブチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−8−キノリノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2,4−ジメチル−8−キノリノラート)アルミニウム、ビス(2−メチル−4−エチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−4−エチル−8−キノリノラート)アルミニウム、ビス(2−メチル−4−メトキシ−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−4−メトキシ−8−キノリノラート)アルミニウム、ビス(2−メチル−5−シアノ−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−5−シアノ−8−キノリノラート)アルミニウム、ビス(2−メチル−5−トリフルオロメチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−5−トリフルオロメチル−8−キノリノラート)アルミニウム、ビス(10−ヒドロキシベンゾ[h]キノリン)ベリリウムなどがあげられる。
ビピリジン誘導体は、下記一般式(E−2)で表される化合物である。
Figure 0005935199
式中、Gは単なる結合手またはn価の連結基を表し、nは2〜8の整数である。また、ピリジン−ピリジンまたはピリジン−Gの結合に用いられない炭素は置換されていてもよい。
一般式(E−2)のGとしては、例えば、以下の構造式のものがあげられる。なお、下記構造式中のRは、それぞれ独立して、水素、メチル、エチル、イソプロピル、シクロヘキシル、フェニル、1−ナフチル、2−ナフチル、ビフェニリルまたはテルフェニリルである。
Figure 0005935199
ピリジン誘導体の具体例としては、2,5−ビス(2,2’−ピリジン−6−イル)−1,1−ジメチル−3,4−ジフェニルシロール、2,5−ビス(2,2’−ピリジン−6−イル)−1,1−ジメチル−3,4−ジメシチルシロール、2,5−ビス(2,2’−ピリジン−5−イル)−1,1−ジメチル−3,4−ジフェニルシロール、2,5−ビス(2,2’−ピリジン−5−イル)−1,1−ジメチル−3,4−ジメシチルシロール、9,10−ジ(2,2’−ピリジン−6−イル)アントラセン、9,10−ジ(2,2’−ピリジン−5−イル)アントラセン、9,10−ジ(2,3’−ピリジン−6−イル)アントラセン、9,10−ジ(2,3’−ピリジン−5−イル)アントラセン、9,10−ジ(2,3’−ピリジン−6−イル)−2−フェニルアントラセン、9,10−ジ(2,3’−ピリジン−5−イル)−2−フェニルアントラセン、9,10−ジ(2,2’−ピリジン−6−イル)−2−フェニルアントラセン、9,10−ジ(2,2’−ピリジン−5−イル)−2−フェニルアントラセン、9,10−ジ(2,4’−ピリジン−6−イル)−2−フェニルアントラセン、9,10−ジ(2,4’−ピリジン−5−イル)−2−フェニルアントラセン、9,10−ジ(3,4’−ピリジン−6−イル)−2−フェニルアントラセン、9,10−ジ(3,4’−ピリジン−5−イル)−2−フェニルアントラセン、3,4−ジフェニル−2,5−ジ(2,2’−ピリジン−6−イル)チオフェン、3,4−ジフェニル−2,5−ジ(2,3’−ピリジン−5−イル)チオフェン、6’6”−ジ(2−ピリジル)2,2’:4’,4”:2”,2”’−クアテルピリジンなどがあげられる。
フェナントロリン誘導体は、下記一般式(E−3−1)または(E−3−2)で表される化合物である。
Figure 0005935199
式中、R〜Rは水素または置換基であり、隣接する基は互いに結合して縮合環を形成してもよく、Gは単なる結合手またはn価の連結基を表し、nは2〜8の整数である。また、一般式(E−3−2)のGとしては、例えば、ビピリジン誘導体の欄で説明したものと同じものがあげられる。
フェナントロリン誘導体の具体例としては、4,7−ジフェニル−1,10−フェナントロリン、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン、9,10−ジ(1,10−フェナントロリン−2−イル)アントラセン、2,6−ジ(1,10−フェナントロリン−5−イル)ピリジン、1,3,5−トリ(1,10−フェナントロリン−5−イル)ベンゼン、9,9’−ジフルオル−ビス(1,10−フェナントロリン−5−イル)、バソクプロインや1,3−ビス(2−フェニル−1,10−フェナントロリン−9−イル)ベンゼンなどがあげられる。
特に、フェナントロリン誘導体を電子輸送層、電子注入層に用いた場合について説明する。長時間にわたって安定な発光を得るには、熱的安定性や薄膜形成性に優れた材料が望まれ、フェナントロリン誘導体の中でも、置換基自身が三次元的立体構造を有するか、フェナントロリン骨格とのあるいは隣接置換基との立体反発により三次元的立体構造を有するもの、あるいは複数のフェナントロリン骨格を連結したものが好ましい。さらに、複数のフェナントロリン骨格を連結する場合、連結ユニット中に共役結合、置換もしくは無置換の芳香族炭化水素、置換もしくは無置換の芳香複素環を含んでいる化合物がより好ましい。
ボラン誘導体は、下記一般式(E−4)で表される化合物であり、詳細には特開2007-27587号公報に開示されている。
Figure 0005935199
式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13〜R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよいアリーレンであり、Yは、置換されていてもよい炭素数16以下のアリール、置換されているボリル、または置換されていてもよいカルバゾリルであり、そして、nはそれぞれ独立して0〜3の整数である。
上記一般式(E−4)で表される化合物の中でも、下記一般式(E−4−1)で表される化合物、さらに下記一般式(E−4−1−1)〜(E−4−1−4)で表される化合物が好ましい。具体例としては、9−[4−(4−ジメシチルボリルナフタレン−1−イル)フェニル]カルバゾール、9−[4−(4−ジメシチルボリルナフタレン−1−イル)ナフタレン−1−イル]カルバゾールなどがあげられる。
Figure 0005935199
式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13〜R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、R21およびR22は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、nはそれぞれ独立して0〜3の整数であり、そして、mはそれぞれ独立して0〜4の整数である。
Figure 0005935199
各式中、R31〜R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
上記一般式(E−4)で表される化合物の中でも、下記一般式(E−4−2)で表される化合物、さらに下記一般式(E−4−2−1)で表される化合物が好ましい。
Figure 0005935199
式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13〜R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、そして、nはそれぞれ独立して0〜3の整数である。
Figure 0005935199
式中、R31〜R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
上記一般式(E−4)で表される化合物の中でも、下記一般式(E−4−3)で表される化合物、さらに下記一般式(E−4−3−1)または(E−4−3−2)で表される化合物が好ましい。
Figure 0005935199
式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13〜R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数10以下のアリーレンであり、Yは、置換されていてもよい炭素数14以下のアリールであり、そして、nはそれぞれ独立して0〜3の整数である。
Figure 0005935199
各式中、R31〜R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
ベンゾイミダゾール誘導体は、下記一般式(E−5)で表される化合物である。
Figure 0005935199
式中、Ar〜Arはそれぞれ独立に水素または置換されてもよい炭素数6〜30のアリールである。特に、Arが置換されてもよいアントリルであるベンゾイミダゾール誘導体が好ましい。
炭素数6〜30のアリールの具体例は、フェニル、1−ナフチル、2−ナフチル、アセナフチレン−1−イル、アセナフチレン−3−イル、アセナフチレン−4−イル、アセナフチレン−5−イル、フルオレン−1−イル、フルオレン−2−イル、フルオレン−3−イル、フルオレン−4−イル、フルオレン−9−イル、フェナレン−1−イル、フェナレン−2−イル、1−フェナントリル、2−フェナントリル、3−フェナントリル、4−フェナントリル,9−フェナントリル、1−アントリル、2−アントリル、9−アントリル、フルオランテン−1−イル、フルオランテン−2−イル、フルオランテン−3−イル、フルオランテン−7−イル、フルオランテン−8−イル、トリフェニレン−1−イル、トリフェニレン−2−イル、ピレン−1−イル、ピレン−2−イル、ピレン−4−イル、クリセン−1−イル、クリセン−2−イル、クリセン−3−イル、クリセン−4−イル、クリセン−5−イル、クリセン−6−イル、ナフタセン−1−イル、ナフタセン−2−イル、ナフタセン−5−イル、ペリレン−1−イル、ペリレン−2−イル、ペリレン−3−イル、ペンタセン−1−イル、ペンタセン−2−イル、ペンタセン−5−イル、ペンタセン−6−イルである。
ベンゾイミダゾール誘導体の具体例は、1−フェニル−2−(4−(10−フェニルアントラセン−9−イル)フェニル)−1H−ベンゾ[d]イミダゾール、2−(4−(10−(ナフタレン−2−イル)アントラセン−9−イル)フェニル)−1−フェニル−1H−ベンゾ[d]イミダゾール、2−(3−(10−(ナフタレン−2−イル)アントラセン−9−イル)フェニル)−1−フェニル−1H−ベンゾ[d]イミダゾール、5−(10−(ナフタレン−2−イル)アントラセン−9−イル)−1,2−ジフェニル−1H−ベンゾ[d]イミダゾール、1−(4−(10−(ナフタレン−2−イル)アントラセン−9−イル)フェニル)−2−フェニル−1H−ベンゾ[d]イミダゾール、2−(4−(9,10−ジ(ナフタレン−2−イル)アントラセン−2−イル)フェニル)−1−フェニル−1H−ベンゾ[d]イミダゾール、1−(4−(9,10−ジ(ナフタレン−2−イル)アントラセン−2−イル)フェニル)−2−フェニル−1H−ベンゾ[d]イミダゾール、5−(9,10−ジ(ナフタレン−2−イル)アントラセン−2−イル)−1,2−ジフェニル−1H−ベンゾ[d]イミダゾールである。
電子輸送層または電子注入層には、さらに、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを好適に使用することができる。
好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0〜2.5eV)またはBa(同2.52eV)などのアルカリ土類金属が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
<有機電界発光素子における陰極>
陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たすものである。
陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様のものを用いることができる。なかでも、スズ、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウムおよびマグネシウムなどの金属またはそれらの合金(マグネシウム−銀合金、マグネシウム−インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム−リチウム合金など)などが好ましい。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウムおよび酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されるものではない。
さらに、電極保護のために白金、金、銀、銅、鉄、スズ、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例としてあげられる。これらの電極の作製法も、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。
<各層で用いてもよい結着剤>
以上の正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N−ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル樹脂、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
<有機電界発光素子の作製方法>
有機電界発光素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法またはキャスト法、コーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm〜5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、ボート加熱温度+50〜+400℃、真空度10−6〜10−3Pa、蒸着速度0.01〜50nm/秒、基板温度−150〜+300℃、膜厚2nm〜5μmの範囲で適宜設定することが好ましい。
次に、有機電界発光素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機電界発光素子の作製法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上にホスト材料とドーパント材料を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機電界発光素子が得られる。なお、上述の有機電界発光素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
このようにして得られた有機電界発光素子に直流電圧を印加する場合には、陽極を+、陰極を−の極性として印加すればよく、電圧2〜40V程度を印加すると、透明または半透明の電極側(陽極または陰極、および両方)より発光が観測できる。また、この有機電界発光素子は、パルス電流や交流電流を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。
<有機電界発光素子の応用例>
また、本発明は、有機電界発光素子を備えた表示装置または有機電界発光素子を備えた照明装置などにも応用することができる。
有機電界発光素子を備えた表示装置または照明装置は、本実施形態にかかる有機電界発光素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどがあげられる(例えば、特開平10-335066号公報、特開2003-321546号公報、特開2004-281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクスおよび/またはセグメント方式などがあげられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
マトリクスとは、表示のための画素が格子状やモザイク状など二次元的に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などがあげられる。
照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどがあげられる(例えば、特開2003-257621号公報、特開2003-277741号公報、特開2004-119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式のものが蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本実施形態に係る発光素子を用いたバックライトは薄型で軽量が特徴になる。
4.その他の有機デバイス
本発明に係る多環芳香族化合物およびその多量体は、上述した有機電界発光素子の他に、有機電界効果トランジスタまたは有機薄膜太陽電池などの作製に用いることができる。
有機電界効果トランジスタは、電圧入力によって発生させた電界により電流を制御するトランジスタのことであり、ソース電極とドレイン電極の他にゲート電極が設けられている。ゲート電極に電圧を印加すると電界が生じ、ソース電極とドレイン電極間を流れる電子(あるいはホール)の流れを任意にせき止めて電流を制御することができるものである。電界効果トランジスタは、単なるトランジスタ(バイポーラトランジスタ)に比べて小型化が容易であり、集積回路などを構成する素子としてよく用いられている。
有機電界効果トランジスタの構造は、通常、本発明に係る多環芳香族化合物およびその多量体を用いて形成される有機半導体活性層に接してソース電極及びドレイン電極が設けられており、さらに有機半導体活性層に接した絶縁層(誘電体層)を挟んでゲート電極が設けられていればよい。その素子構造としては、例えば以下の構造があげられる。
(1)基板/ゲート電極/絶縁体層/ソース電極・ドレイン電極/有機半導体活性層
(2)基板/ゲート電極/絶縁体層/有機半導体活性層/ソース電極・ドレイン電極
(3)基板/有機半導体活性層/ソース電極・ドレイン電極/絶縁体層/ゲート電極
(4)基板/ソース電極・ドレイン電極/有機半導体活性層/絶縁体層/ゲート電極
このように構成された有機電界効果トランジスタは、アクティブマトリックス駆動方式の液晶ディスプレイや有機エレクトロルミネッセンスディスプレイの画素駆動スイッチング素子等として適用できる。
有機薄膜太陽電池は、ガラスなどの透明基板上にITOなどの陽極、ホール輸送層、光電変換層、電子輸送層、陰極が積層された構造を有する。光電変換層は陽極側にp型半導体層を有し、陰極側にn型半導体層を有している。本発明に係る多環芳香族化合物およびその多量体は、その物性に応じて、ホール輸送層、p型半導体層、n型半導体層、電子輸送層の材料として用いることが可能である。本発明に係る多環芳香族化合物およびその多量体は、有機薄膜太陽電池においてホール輸送材料や電子輸送材料として機能しうる。有機薄膜太陽電池は、上記の他にホールブロック層、電子ブロック層、電子注入層、ホール注入層、平滑化層などを適宜備えていてもよい。有機薄膜太陽電池には、有機薄膜太陽電池に用いられる既知の材料を適宜選択して組み合わせて用いることができる。
以下、実施例により本発明をさらに具体的に説明していくが、本発明はこれらに限定されるものではない。まず、多環芳香族化合物の合成例について、以下に説明する。
合成例(1)
5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
まず、ジフェノキシベンゼン(0.26g)およびオルトキシレン(3.0ml)の入ったフラスコに、窒素雰囲気下で、1.6Mのn−ブチルリチウムヘキサン溶液(0.75ml)を0℃で加えた。30分間撹拌した後、70℃まで昇温し、更に4時間撹拌した。窒素気流下、100℃で加熱撹拌することでヘキサンを留去した後、−20℃まで冷却して三臭化ホウ素(0.114ml)を加え、1時間撹拌した。室温まで昇温して1時間撹拌した後、N,N−ジイソプロピルエチルアミン(0.342ml)を加えて120℃で5時間加熱撹拌した。その後、N,N−ジイソプロピルエチルアミン(0.171ml)を追加して、フロリジルショートパスカラムを用いて濾過し、溶媒を減圧留去して粗精製物を得た。メタノールを用いて粗成生物を洗浄することで白色固体として式(1−1)で表される化合物(0.121g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.69(dd,2H)、7.79(t,1H)、7.70(ddd,2H)、7.54(dt,2H)、7.38(ddd,2H)、7.22(d,2H).
合成例(2)
15b−ボラ−5,9−ジオキサフェナントロ[1,2,3−ij]テトラフェンの合成
Figure 0005935199
まずヨウ化銅(I)(19.7mg)、α−ピコリン酸(26.2mg)、リン酸カリウム(0.429g)、レゾルシノール(57.5mg)およびジメチルスルホオキシド(2.0ml)の入ったフラスコに、窒素雰囲気下、室温で1−ブロモナフタレン(0.154ml)を添加した。90℃で33.5時間加熱撹拌した後、1規定アンモニア水(3.0ml)を室温で加え、トルエンで水層を三回抽出した後、溶媒を減圧留去した。得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン)で精製し、1,3−ビス(1−ナフチルオキシ)ベンゼン(0.155g)を白色固体として得た。
Figure 0005935199
1,3−ビス(1−ナフチルオキシ)ベンゼン(4.45g)およびオルトキシレン(36ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(9.0ml)を滴下した。70℃まで昇温して4時間撹拌した後、更に100℃まで昇温してヘキサンを留去した。0℃まで冷却して三臭化ホウ素(1.37ml)を加えて2時間撹拌した後、室温まで昇温して12時間撹拌した。再度0℃まで冷却してN,N−ジイソプロピルエチルアミン(6.16ml)を添加した後、120℃まで昇温して8時間撹拌した。N,N−ジイソプロピルエチルアミン(3.08ml)を0℃で添加した後、フロリジルショートパスカラムを用いて濾過し、溶媒を減圧留去して粗生成物を得た。メタノールとアセトニトリルを用いて洗浄することにより、白色固体として式(1−2)で表される化合物(0.405g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.82−8.85(m,2H)、8.71(d,2H)、7.94−7.97(m,2H)、7.89(t,1H)、7.78(d,2H)、7.66−7.71(m,4H)、7.48(d,2H)
合成例(3)
2,12−ジフェニル−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
1,3−ジブロモベンゼン(25g)、[1,1’−ビフェニル]−4−オール(39.7g)および炭酸カリウム(58.6g)のNMP(120ml)溶液に、窒素雰囲気下でヨウ化銅(I)(1.0g)および鉄(III)アセチルアセトナート(3.7g)を加え、150℃まで昇温して4時間撹拌した。反応液を室温まで冷却し、酢酸エチルおよびアンモニア水を加えることで析出した塩を、セライトを敷いた桐山ロートを用いた吸引ろ過にて除去した。ろ液を分液し、有機層の溶媒を減圧留去した後、酢酸エチルに溶解させ、ヘプタン加えることで再沈殿させた。更にシリカゲルショートパスカラム(展開液:加熱したクロロベンゼン)を通し、溶媒を減圧留去して得られた固体を酢酸エチル/ヘプタンで再沈殿させ、1,3−ビス([1,1’−ビフェニル]−4−イルオキシ)ベンゼン(33.0g)を得た。
Figure 0005935199
1,3−ビス([1,1’−ビフェニル]−4−イルオキシ)ベンゼン(30.0g)およびオルトキシレン(500ml)の入ったフラスコに、窒素雰囲気下、0℃で、2.6Mのn−ブチルリチウムヘキサン溶液(29.2ml)を加えた。滴下終了後、70℃まで昇温して1時間撹拌し、更に100℃まで昇温してヘキサンを留去した。室温で一晩撹拌した後、−30℃まで冷却して三臭化ホウ素(8.4ml)を加え、室温で昇温して1時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(25.0ml)を加え、発熱が収まるまで室温で撹拌した後、120℃で4時間加熱撹拌した。反応液を室温まで冷却して、析出した結晶を吸引ろ過にて採取し、酢酸ナトリウム水溶液で洗浄した。更にヘプタン、酢酸エチルそしてメタノールの順に洗浄することで、式(1−151)で表される化合物(16.6g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.96(m,2H)、7.97(dd,2H)、7.83(t,1H)、7.74(m,4H)、7.64(d,2H)、7.51(t,4H)、7.40(t,2H)、7.28(d,2H).
合成例(4)
6,8−ジフェニル−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
1,5−ジブロモ−2,4−ジフルオロベンゼン(30.0g)、フェノール(31.2g)、炭酸カリウム(45.7g)およびNMP(150ml)の入ったフラスコを160℃で加熱撹拌した。反応液を室温まで冷却して、NMPを減圧留去した後、水およびトルエンを加え分液した。溶媒を減圧留去した後、シリカゲルショートパスカラム(展開液:ヘプタン/トルエン=1(容積比))で精製することで、((4,6−ジブロモ−1,3−フェニレン)ビス(オキシ))ジベンゼン(44.0g)を得た。
Figure 0005935199
窒素雰囲気下、((4,6−ジブロモ−1,3−フェニレン)ビス(オキシ))ジベンゼン(44.0g)、フェニルボロン酸(34.8g)、炭酸ナトリウム(60.6g)、トルエン(500ml)、イソプロパノール(100ml)および水(100ml)の懸濁溶液に、Pd(PPh(5.5g)を加え、還流温度で8時間撹拌した。反応液を室温まで冷却し、水およびトルエンを加え分液し、有機層の溶媒を減圧留去した。得られた固体を加熱したクロロベンゼンに溶解させ、シリカゲルショートパスカラム(展開液:トルエン)に通した。溶媒を適当量留去した後、ヘプタンを加えることで再沈殿させ、4’,6’−ジフェノキシ−1,1’:3’,1”−テルフェニル(41.0g)を得た。
Figure 0005935199
4’,6’−ジフェノキシ−1,1’:3’,1”−テルフェニル(30.0g)およびオルトキシレン(300ml)の入ったフラスコに、窒素雰囲気下、0℃で、2.6Mのn−ブチルリチウムヘキサン溶液(29.0ml)を加えた。滴下終了後、70℃まで昇温して4時間撹拌し、更に100℃まで昇温してヘキサンを留去した。−50℃まで冷却して三臭化ホウ素(8.4ml)を加え、室温で昇温して1時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(25.0ml)を加え、発熱が収まるまで室温で撹拌した後、120℃で4時間加熱撹拌した。反応液を室温まで冷却して、有機物をトルエンで抽出した。得られたトルエン溶液に水を加え、分液し、溶媒を減圧留去した。得られた固体をクロロベンゼンに溶解させた後、適当量を減圧留去し、ヘプタンを加えることで再沈殿させた。更にヘプタンを酢酸エチルに代えて同様に再沈殿させることで、式(1−91)で表される化合物(4.2g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.74(d,2H)、8.00(s,1H)、7.81(d,4H)、7.69(t,2H)、7.54(t,4H)、7.49(m,2H)、7.37−7.46(m,4H).
合成例(5)
6,8−ジ(9H−カルバゾール−9−イル)−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
窒素雰囲気下、1,5−ジブロモ−2,4−ジフルオロベンゼン(600.0g)、カルバゾール(81.1g)、炭酸カリウム(91.0g)およびNMP(300ml)の溶液を155℃に加熱して4時間撹拌した。反応液を室温まで冷却し、水を加え無機塩を溶解させ、吸引ろ過にて有機物を採取した。酢酸エチルで洗浄した後、加熱したオルトジクロロベンゼンに溶解させ、シリカゲルショートパスカラム(展開液:オルトジクロロベンゼン)に通した。溶媒を減圧留去した後、更に酢酸エチルで洗浄し、9,9’−(4,6−ジブロモ−1,3−フェニレン)ビス(9H−カルバゾール)(108.0g)を得た。
Figure 0005935199
9,9’−(4,6−ジブロモ−1,3−フェニレン)ビス(9H−カルバゾール)(50.0g)、フェノール(10.0g)および炭酸カリウム(49.0g)のNMP(200ml)溶液に、窒素雰囲気下でヨウ化銅(I)(0.84g)および鉄(III)アセチルアセトナート(3.1g)を加え、150℃まで昇温して4時間撹拌した。反応液を室温まで冷却し、酢酸エチルおよびアンモニア水を加え分液し、有機層の溶媒を減圧留去した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1(容積比))で精製した後、溶媒を減圧留去して得られた固体をヘプタンで洗浄して、9,9’−(4,6−ジフェノキシ−1,3−フェニレン)ビス(9H−カルバゾール)(16.8g)を得た。
Figure 0005935199
9,9’−(4,6−ジフェノキシ−1,3−フェニレン)ビス(9H−カルバゾール)(16.5g)およびオルトキシレン(150ml)の入ったフラスコに、窒素雰囲気下、0℃で、2.6Mのn−ブチルリチウムヘキサン溶液(11.2ml)を加えた。滴下終了後、70℃まで昇温して4時間撹拌し、更に100℃まで昇温してヘキサンを留去した。−50℃まで冷却して三臭化ホウ素(3.2ml)を加え、室温で昇温して1時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(25.0ml)を加え、発熱が収まるまで室温で撹拌した後、120℃で4時間加熱撹拌した。反応液を室温まで冷却して、酢酸ナトリウム水溶液および酢酸エチルを加え分液した。溶媒を減圧留去することで析出した固体を吸引ろ過にて採取し、ヘプタンで洗浄した。得られた固体のクロロベンゼン溶液から適当量の溶媒を減圧留去し、更に酢酸エチルを加えて再沈殿させることで、式(1−100)で表される化合物(9.5g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.77(d,2H)、8.25(s,1H)、8.21(d,4H)、7.61(t,2H)、7.42(m,6H)、7.33(m,8H)、7.10(d,2H).
合成例(6)
,N,N,N−テトラフェニル−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−6,8−ジアミンの合成
Figure 0005935199
((4,6−ジブロモ−1,3−フェニレン)ビス(オキシ))ジベンゼン(45.0g)、ジフェニルアミン(45.0g)、Pd(dba)(1.2g)、(4−(N,N−ジメチルアミノ)フェニル)ジ−tブチルホスフィン(A−taPhos)(1.1g)、NaOtBu(25.7g)およびトルエン(250ml)の入ったフラスコを100℃に加熱し、4時間撹拌した。反応液を室温まで冷却し、水および酢酸エチルを加え分液した後、溶媒を減圧留去した。次いでシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1(容積比))で精製し、酢酸エチルに溶解させたところにヘプタンを加えることで再沈殿させ、4,6−ジフェノキシ−N,N,N,N−テトラフェニルベンゼン−1,3−ジアミン(17.6g)を得た。
Figure 0005935199
4,6−ジフェノキシ−N,N,N,N−テトラフェニルベンゼン−1,3−ジアミン(17.5g)およびオルトキシレン(130ml)の入ったフラスコに、窒素雰囲気下、0℃で、2.6Mのn−ブチルリチウムヘキサン溶液(11.8ml)を加えた。滴下終了後、70℃まで昇温して4時間撹拌し、更に100℃まで昇温してヘキサンを留去した。−50℃まで冷却して三臭化ホウ素(3.4ml)を加え、室温で昇温して1時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(10.0ml)を加え、発熱が収まるまで室温で撹拌した後、120℃で4時間加熱撹拌した。反応液を室温まで冷却して、酢酸ナトリウム水溶液および酢酸エチルを加え分液した。溶媒を減圧留去することで析出した後、シリカゲルカラムクロマトグラフィー(展開液:ヘプタン/トルエン=3/2(容積比))で精製した。更にクロロベンゼンに溶かした後、適当量の溶媒を減圧留去することで再沈殿させ、式(1−141)で表される化合物(5.5g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.60(d,2H)、7.80(s,1H)、7.55(t,2H)、7.30(t,2H)、7.22(m,8H)、7.12(m,8H)、7.02(d,2H)、6.94(t,4H).
合成例(7)
5,13−ジフェニル−5,13−ジヒドロ−7,11−ジオキサ−18b−ボラフェナレノ[2,1−b:8,9−b’]ジカルバゾールの合成
Figure 0005935199
窒素雰囲気下、9H−カルバゾール−2−オール(25.0g)、ヨードベンゼン(30.6g)、Pd(dba)(2.4g)、1Mトリt−ブチルホスフィントルエン溶液(8.2ml)、NaOtBu(33.0g)および1,2,4−トリメチルベンゼン(250ml)の入ったフラスコを120℃まで加熱して6時間撹拌した。反応液を室温まで冷却し、水および酢酸エチルを加えた後、希塩酸を加え中和した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1(容積比))で精製し、更にヘプタンで洗浄することで、9−フェニル−9H−カルバゾール−2−オール(30.8g)を得た。
Figure 0005935199
9−フェニル−9H−カルバゾール−2−オール(30.7g)、1,3−ジブロモベンゼン(12.7g)および炭酸カリウム(30.0g)のNMP(150ml)溶液に、窒素雰囲気下でヨウ化銅(I)(0.51g)および鉄(III)アセチルアセトナート(1.9g)を加え、150℃まで昇温して8時間撹拌した。反応液を室温まで冷却し、酢酸エチルおよびアンモニア水を加え分液し、有機層の溶媒を減圧留去した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=4/6(容積比))で精製して、1,3−ビス((9−フェニル−9H−カルバゾール−2−イル)オキシ)ベンゼン(22.0g)を得た。
Figure 0005935199
1,3−ビス((9−フェニル−9H−カルバゾール−2−イル)オキシ)ベンゼン(22.0g)およびtブチルベンゼン(120ml)の入ったフラスコに、窒素雰囲気下、0℃で、2.6Mのn−ブチルリチウムヘキサン溶液(15.0ml)を加えた。滴下終了後、70℃まで昇温して4時間撹拌し、更に100℃まで昇温してヘキサンを留去した。−50℃まで冷却して三臭化ホウ素(11g)を加え、室温で昇温して1時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(9.6g)を加え、発熱が収まるまで室温で撹拌した後、120℃で2時間加熱撹拌した。反応液を室温まで冷却し、酢酸ナトリウム水溶液を加えたことで生じた析出物を吸引ろ過にて採取した。ヘプタン、酢酸エチル、メタノールの順で洗浄し、更に還流させたクロロベンゼンで洗浄することで、式(1−10)で表される化合物(6.8g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=9.61(s,2H)、8.42(m,2H)、7.64−7.77(m,9H)、7.52−7.58(m,2H)、7.42−7.51(m,8H)、7.13(d,2H).
合成例(8)
,N,N11,N11−テトラフェニル−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−3,11−ジアミンの合成
Figure 0005935199
ジフェニルアミン(41.0g)、3−ブロモフェノール(40.0g)、Pd(dba)(0.7g)、A−taPhos(0.6g)、NaOtBu(56.0g)およびトルエン(400ml)の入ったフラスコを80℃に加熱し、1時間撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加え分液し、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1(容積比))で精製し、得られた固体をヘプタンで洗浄することで3−(ジフェニルアミノ)フェノール(69.5g)を得た。
Figure 0005935199
3−(ジフェニルアミノ)フェノール(34.1g)、1,3−ジブロモベンゼン(14.0g)および炭酸カリウム(33.0g)のNMP(150ml)溶液に、窒素雰囲気下でヨウ化銅(I)(0.56g)および鉄(III)アセチルアセトナート(2.1g)を加え、150℃まで昇温して10時間撹拌した。反応液を室温まで冷却し、酢酸エチルおよびアンモニア水を加え分液し、有機層の溶媒を減圧留去した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=4/6(容積比))で精製して、3,3’−(1,3−フェニレンビス(オキシ))ビス(N,N−ジフェニルア二リン)(27.0g)を得た。
Figure 0005935199
3,3’−(1,3−フェニレンビス(オキシ))ビス(N,N−ジフェニルア二リン)(27.0g)およびキシレン(150ml)の入ったフラスコに、窒素雰囲気下、0℃で、2.6Mのn−ブチルリチウムヘキサン溶液(18.3ml)を加えた。滴下終了後、70℃まで昇温して4時間撹拌し、更に100℃まで昇温してヘキサンを留去した。−50℃まで冷却して三臭化ホウ素(13.6g)を加え、室温で昇温して1時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(11.7g)を加え、発熱が収まるまで室温で撹拌した後、120℃で2時間加熱撹拌した。反応液を室温まで冷却し、酢酸ナトリウム水溶液を加えたことで生じた析出物を吸引ろ過にて採取した。得られた固体をオルトジクロロベンゼンに溶解させた後、濃縮することで再沈殿させ、式(1−176)で表される化合物(6.2g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.35(d,2H)、7.61(t,1H)、7.34(t,8H)、7.23(d,8H)、7.15(t,4H)、7.02(m,4H)、6.98(m,2H).
合成例(9)
9−(5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−7−イル)−9H−カルバゾールの合成
Figure 0005935199
窒素雰囲気下、1,3−ジブロモ−5−フルオロベンゼン(50.0g)、カルバゾール(39.5g)、炭酸セシウム(96.2g)およびDMSO(500ml)の入ったフラスコを150℃に加熱して10時間撹拌した。反応液を室温まで冷却し、水を加えて析出した沈殿を吸引ろ過にて採取した。得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/10(容積比))で精製した後、トルエン/ヘプタン混合溶媒から再結晶させることで、9−(3,5−ジブロモフェニル)−9H−カルバゾール(49.0g)を得た。
Figure 0005935199
フェノール(21.1g)、9−(3,5−ジブロモフェニル)−9H−カルバゾール(30.0g)および炭酸カリウム(41.3g)のNMP(240ml)溶液に、窒素雰囲気下でヨウ化銅(I)(0.71g)および鉄(III)アセチルアセトナート(2.6g)を加え、150℃まで昇温して6時間撹拌した。反応液を室温まで冷却後、トルエンを加え、セライトを敷いた桐山ロートを用いて吸引ろ過した。ろ液に飽和塩化ナトリウムして分液した後、有機層を減圧留去し、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=2/1(容積比))で精製することで、9−(3,5−ジフェノキシフェニル)−9H−カルバゾール(27.3g)を得た。
Figure 0005935199
9−(3,5−ジフェノキシフェニル)−9H−カルバゾール(10.0g)およびキシレン(100ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(16.1ml)を加えた。滴下終了後、70℃まで昇温して4時間撹拌し、更に100℃まで昇温してヘキサンを留去した。−50℃まで冷却して三臭化ホウ素(2.7ml)を加え、室温で昇温して1時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(8.1ml)を加え、発熱が収まるまで室温で撹拌した後、120℃で8時間加熱撹拌した。反応液を室温まで冷却し、酢酸ナトリウム水溶液およびトルエンを加えて分液した後、溶媒を減圧留去した。得られた固体をトルエンから再結晶させることで、式(1−49)で表される化合物(1.7g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.75(d,2H)、8.18(d,2H)、7.75(t,2H)、7.71(d,2H)、7.58(d,2H)、7.50(s,2H)、7.42−7.49(m,4H)、7.35(t,2H).
合成例(10)
10−(5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−7−イル)−10H−フェノキサジンの合成
Figure 0005935199
窒素雰囲気下、1−ブロモ−3,5−ジフルオロベンゼン(23.0g)、フェノール(33.6g)、炭酸カリウム(49.4g)およびNMP(150ml)の溶液を、170℃に加熱して10時間撹拌した。反応液を室温まで冷却し、トルエンおよび飽和塩化ナトリウム水溶液を加え分液し、溶媒を減圧留去した。次いで、シリカゲルカラムクロマトグラフィー(展開液:ヘプタン)で精製し、((5−ブロモ−1,3−フェニレン)ビス(オキシ))ジベンゼン(35.9g)を得た。
Figure 0005935199
窒素雰囲気下、((5−ブロモ−1,3−フェニレン)ビス(オキシ))ジベンゼン(14.0g)、フェノキサジン(8.3g)、Pd(dba)(0.71g)、A−taPhos(0.98g)、NaOtBu(5.9g)およびオルトキシレン(100ml)の入ったフラスコを120℃に加熱して1時間撹拌した。反応液を室温まで冷却後、水およびトルエンを加えて分液し、溶媒を減圧留去した。得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/5(容積比))で精製することで、10−(3,5−ジフェノキシフェニル)−10H−フェノキサジン(18.0g)を得た。
Figure 0005935199
10−(3,5−ジフェノキシフェニル)−10H−フェノキサジン(10.0g)およびキシレン(100ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(15.5ml)を加えた。滴下終了後、70℃まで昇温して4時間撹拌し、更に100℃まで昇温してヘキサンを留去した。−50℃まで冷却して三臭化ホウ素(2.6ml)を加え、室温で昇温して1時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(7.8ml)を加え、発熱が収まるまで室温で撹拌した後、120℃で8時間加熱撹拌した。反応液を室温まで冷却し、酢酸ナトリウム水溶液およびトルエンを加えて分液した後、溶媒を減圧留去した。得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/10(容積比))で精製し、更にトルエンから再結晶させることで、式(1−81)で表される化合物(1.8g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.73(d,2H)、7.75(t,2H)、7.56(d,2H)、7.44(t,2H)、7.25(s,2H)、6.57−6.80(m,6H)、6.13(br,2H).
合成例(11)
5,9−ジメチル−5,9−ジヒドロ−5,9−ジアザ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
,N−ジメチル−N,N−ジフェニルベンゼン−1,3−ジアミン(2.9g)のt−ブチルベンゼン(20ml)溶液に、窒素雰囲気下、0℃で1.6Mのn−ブチルリチウムヘキサン溶液(25.0ml)を加えた。100℃まで昇温してヘキサンを留去し、更に21時間加熱撹拌した。−40℃まで冷却してTHF(10ml)を加えた後、三臭化ホウ素(1.9ml)を加え、1時間かけて室温まで昇温した後、0℃まで冷却してN,N−ジイソプロピルアミン(5.2ml)を加え、フロリジルショートパスカラムを用いて濾過した。溶媒を減圧留去した後、アセトニトリルで洗浄することで、黄緑色固体として式(1−411)で表される化合物(0.96g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.73(dd,2H)、7.75(t,1H)、7.67(m,2H)、7.57(dd,2H)、7.29(m,2H)、7.00(d,2H)、3.91(s,6H).
合成例(12)
5,9−ジオキサ−13b−チオホスファナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
m−ジフェノキシベンゼン(5.25g)のベンゼン(60mL)溶液に、窒素雰囲気下、0℃で1.6Mのn−ブチルリチウムのヘキサン溶液(15.0mL)を加えた。70℃で昇温し、4時間攪拌した後、0℃まで冷却した三塩化リン(4.12g)を加えた。80℃まで加熱して1時間攪拌した後、硫黄(1.15g)を添加し、更に80℃で1時間撹拌した。再び0℃まで冷却して三塩化アルミニウム(18.7g)およびN,N−ジイソプロピルエチルアミン(6.20g)を加えた後、80℃まで昇温して20時間撹拌した。室温まで冷却した後、反応液を1,4−ジアザビシクロ[2.2.2]オクタン(31.4g)のジクロロメタン(300ml)溶液に加えた。次いでセライト敷いた桐山ロートを用いて吸引濾過し、溶媒を減圧留去して得られた黄褐色の油状物質を、シリカゲルショートパスカラム(展開液:ジクロロメタン)で精製した。溶媒を減圧留去して粗生成物をアセトニトリルを用いて洗浄することで、白色固体の式(1−701)で表される化合物(3.56g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.14(m,2H)、7.55(m,2H)、7.53(t,1H)、7.35−7.37(m,4H)、7.12(dd,2H).
H NMR (δppm in CDCl); 7.13 (dd, 2H, J = 4.4 Hz, 8.0 Hz), 7.34-7.40 (m, 4H), 7.53 (t, 1H, J = 8.0 Hz), 7.55 (ddd, 2H, J = 0.8 Hz, 1.6, 7.6 Hz), 8.15 (ddd, 2H, J = 1.6 Hz, 7.6 Hz, 13.2 Hz)
13C NMR (δppm in CDCl); 102.5(d, 1C, J = 82.8 Hz), 112.8 (d, 2C, J = 4.8 Hz), 119.7 (d, 2C, J = 92.4 Hz), 119.8 (d, 2C, J = 5.8 Hz), 125.1 (d, 2C, J = 10.6 Hz), 129.0 (d, 2C, J = 6.7 Hz), 132.9 (2C), 133.2, 155.7 (2C), 156.1 (2C)
合成例(13)
5,9−ジオキサ−13b−オキソホスファナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
5,9−ジオキサ−13b−チオホスファナフト[3,2,1−de]アントラセン(1.79g)のジクロロメタン(100mL)溶液に、0℃でm−クロロ過安息香酸(m−CPBA)(1.61g)を加えた後、室温で22時間撹拌した。飽和亜硫酸ナトリウム水溶液(10.0ml)を添加して室温で撹拌した後、不溶物をろ別し、分液した。溶媒を減圧留去し、シリカゲルショートパスカラム(展開液:ジクロロメタン/酢酸エチル=1(容積比))で精製した後、得られた粗生成物をヘキサンを用いて洗浄することで、式(1−601)で表される化合物(1.07g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.22(m,2H)、7.64(dd,2H)、7.62(t,1H)、7.39−7.43(m,4H)、7.17(dd,2H).
また、13b−チオホスファ−5,9−ジオキサナフト[3,2,1-de]アントラセン(1.79g、5.55mmol)およびジクロロメタン(100mL)に、0℃でm−クロロ過安息香酸(1.24g、77w%、5.55mmol)を添加して室温で撹拌した。22時間後、0℃でm−クロロ過安息香酸(0.373g、77w%、1.66mmol)を添加して室温で撹拌した。1時間後、亜硫酸ナトリウム飽和溶液(10.0ml)を添加して室温で撹拌した。濾過により不溶物を取り除き、ジクロロメタン層を分けた後、水層をジクロロメタンで抽出した。得られた有機層を合わせて濃縮した後、ジクロロメタンおよび酢酸エチルを展開溶媒として用いてシリカゲルショートパスカラムを行い、濾液の溶媒を減圧下に留去した。得られた粗生成物をヘキサンを用いて洗浄することで、白色固体として式(1−601)で表される化合物を得た(1.07g、収率63%)。
NMR測定により得られた化合物の構造を確認した。
H NMR (δppm in CDCl); 7.16 (dd, 2H, J = 4.0 Hz, 8.4 Hz), 7.37-7.44 (m, 4H), 7.61 (t, 1H, J = 8.4 Hz), 7.62 (dd, 2H, J = 1.6 Hz, 7.6 Hz), 8.21 (ddd, 2H, J = 1.6 Hz, 7.6 Hz, 12.0 Hz)
13C NMR (δppm in CDCl); 103.7(d, 1C, J = 98.2 Hz), 112.2 (d, 2C , J = 4.8 Hz), 117.6 (d, 2C , J = 116.3 Hz), 119.9 (d, 2C , J = 5.8 Hz), 124.5 (d, 2C , J = 11.5 Hz), 129.4 (d, 2C , J = 4.8 Hz), 133.6 (2C), 134.1, 156.6 (2C), 157.4 (2C)
合成例(14)
5,9−ジオキサ−13b−ホスファナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
5,9−ジオキサ−13b−チオホスファナフト[3,2,1−de]アントラセン(0.32g)および脱気したo−キシレン(3.0mL)の入ったフラスコに、窒素雰囲気下でトリエチルホスフィン(0.168g)を加えた後、120℃で21時間撹拌した。溶媒及び副生するトリエチルホスフィンスルフィドを減圧留去し、式(1−501)で表される化合物(0.08g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=7.77(m,2H)、7.33(m,2H)、7.25(m,1H)、7.18−7.22(m,4H)、6.93(dd,2H).
また、5,9−ジオキサ−13b−チオホスファナフト[3,2,1-de]アントラセン(0.322g、1.00mmol)および脱気したo−キシレン(6.0mL)に、窒素雰囲気下でトリエチルホスフィン(0.130g、1.10mmol)を添加して120℃で撹拌した。14時間後、溶媒及び副生するトリエチルホスフィンスルフィドを減圧下に留去することで、白色固体として式(1−501)で表される化合物を得た(0.283g、収率97%)。
NMR測定により得られた化合物の構造を確認した。
H NMR (δppm in CDCl); 6.94 (dd, 2H, J = 2.0 Hz, 8.4 Hz), 7.18-7.22 (m, 4H), 7.25 (dt, 1H, J = 1.2 Hz, 8.4 Hz), 7.33 (ddd, 2H, J = 0.8 Hz, 1.6 Hz, 7.6 Hz), 7.77 (ddd, 2H, J = 1.6 Hz, 6.4 Hz, 7.6 Hz)
13C NMR (δppm in CDCl); 107.2 (d, 1C, J = 4.8 Hz), 112.5 (2C), 118.7 (2C), 121.5 (d, 2C, J = 28.0 Hz), 124.6 (d, 2C, J = 3.8 Hz), 129.7 (d, 2C, J = 4.8 Hz), 129.8, 129.9 (2C), 153.7 (d, 2C, J = 8.7 Hz), 154.5 (d, 2C, J = 6.8 Hz)
合成例(15)
7,11−ジオキサ−17c−ボラフェナントロ[2,3,4−no]テトラフェンの合成
Figure 0005935199
まず、ヨウ化銅(4.9g)、α−ピコリン酸(6.3g)、リン酸カリウム(101.9g)、レゾルシノール(12.8g)およびジメチルスルホオキシド(DMSO)(400ml)の入ったフラスコに、窒素雰囲気下、2−ブロモナフタレン(50.6g)を添加し、130℃で17時間加熱撹拌した。反応停止後、反応液を0℃まで冷却し、1規定アンモニア水(160ml)を加え、トルエンを加えて分液した。溶媒を減圧留去して得られた固体をメタノールで洗浄することで、1,3−ビス(2−ナフチルオキシ)ベンゼン(34.5g)を白色固体として得た。
Figure 0005935199
窒素雰囲気下、1,3−ビス(2−ナフチルオキシ)ベンゼン(1.8g)およびt−ブチルベンゼン(15ml)の入ったフラスコを0℃まで冷却し、1.6Mのn−ブチルリチウムヘキサン溶液(4.7ml)を滴下した。滴下終了後、90℃で0.5時間加熱撹拌することでヘキサンを留去し、この温度で更に3.5時間加熱撹拌した。その後、反応液を−40℃まで冷却して三臭化ホウ素(0.95ml)を加えて2時間撹拌した。更に室温で13時間撹拌した後、0℃まで冷却してN,N−ジイソプロピルエチルアミン(1.74ml)添加した。更に100℃で24時間加熱撹拌した後、フロリジルショートパスカラムを用いて濾過し、溶媒を減圧留去した。得られた固体をアセトニトリルを用いて洗浄することで、式(1−4)で表される化合物(0.6g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.16(d,2H)、7.91(d,2H)、7.80(t,1H)、7.76(d,2H)、7.74(d,2H)、7.42(dd,2H)、7.39(d,2H)、7.09(dd,2H).
合成例(16)
N,N,5,9−テトラフェニル−5,9−ジヒドロ−5,9−ジアザ−13b−ボラナフト[3,2,1−de]アントラセン−7−アミンの合成
Figure 0005935199
窒素雰囲気下、N,N,N,N,N,N−ヘキサフェニル−1,3,5−ベンゼントリアミン(11.6g,20mmol)およびo−ジクロロベンゼン(120ml)の入ったフラスコに、室温で三臭化ホウ素(3.78ml,40mmol)を加えた後、170℃で48時間加熱撹拌した。その後、60℃で減圧下、反応溶液を留去した。フロリジルショートパスカラムを用いてろ過し、溶媒を減圧留去して粗生成物を得た。ヘキサンを用いて粗成生物を洗浄することで、黄色固体である式(1−447)で表される化合物(11.0g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.89(dd,2H)、7.47(t,4H)、7.39(m,4H)、7.24(m,6H)、7.10(m,4H)、6.94(m,6H)、6.72(d,2H)、5.22(m,2H).
また、N,N,N,N,N,N−ヘキサフェニルベンゼン−1,3,5−トリアミン(11.6g、20mmol)およびオルトジクロロベンゼン(ODCB、120mL)に、窒素雰囲気下、室温で三臭化ホウ素(3.78mL、40mmol)を加えた後、170℃で48時間加熱撹拌した。その後、60℃で減圧下、反応溶液を留去した。フロリジルショートパスカラムを用いて濾過し、溶媒を減圧留去して粗成生物を得た。ヘキサンを用いて粗成生物を洗浄することで、黄色固体として式(1−447)で表される化合物を得た(11.0g、収率94%)。
NMR測定により得られた化合物の構造を確認した。
H NMR (400MHz,CDCl) δ 5.62 (brs, 2H), 6.71 (d, 2H), 6.90-6.93 (m, 6H), 7.05-7.09 (m, 4H), 7.20-7.27(m, 6H), 7.33-7.38 (m, 4H), 7.44-7.48 (m, 4H), 8.90 (dd, 2H)
13C NMR (101MHz,CDCl) δ 98.4 (2C), 116.8 (2C), 119.7 (2C), 123.5 (2C), 125.6 (4C), 128.1 (2C), 128.8 (4C), 130.2 (4C), 130.4 (2C), 130.7 (4C), 134.8 (2C), 142.1 (2C), 146.6 (2C), 147.7 (2C), 147.8 (2C), 151.1
合成例(17)
3,11−ジフェニル−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
2−ブロモ−1,3−ジフルオロベンゼン(12.0g)、[1,1’−ビフェニル]−3−オール(23.0g)、炭酸カリウム(34.0g)およびNMP(130ml)の入ったフラスコを、窒素雰囲気下、170℃で10時間加熱撹拌した。反応停止後、反応液を室温まで冷却し、水およびトルエンを加えて分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:へプタン/トルエン=7/3(容積比))で精製することで、3,3”−((2−ブロモ−1,3−フェニレン)ビス(オキシ))ジ−1,1’−ビフェニル(26.8g)を得た。
Figure 0005935199
窒素雰囲気下、3,3”−((2−ブロモ−1,3−フェニレン)ビス(オキシ))ジ−1,1’−ビフェニル(14.0g)およびキシレン(100ml)の入ったフラスコを−40℃まで冷却し、2.6Mのn−ブチルリチウムヘキサン溶液(11.5ml)を滴下した。滴下終了後、室温まで昇温した後、再び−40℃まで冷却して三臭化ホウ素(3.3ml)を加えた。室温まで昇温して13時間撹拌した後、0℃まで冷却してN,N−ジイソプロピルエチルアミン(9.7ml)を添加し、130℃で5時間加熱撹拌した。反応液を室温まで冷却して、氷浴で冷却した酢酸ナトリウム水溶液を加えて撹拌し、吸引ろ過にて析出した固体を採取した。得られた固体を水、メタノール次いでへプタンの順に洗浄し、更にクロロベンゼンから再結晶させることで、式(1−152)で表される化合物(8.9g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.75(d,2H)、7.75−7.84(m,7H)、7.65(d,2H)、7.53(t,4H)、7.44(t,2H)、7.25(d,2H).
合成例(18)
2,6,8,12−テトラフェニル−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
1,5−ブロモ−2,4−ジフルオロベンゼン(90.0g)、フェニルボロン酸(88.6g)、リン酸三カリウム(154.0g)、Pd−132(ジョンソンマッセイ)(1.6g)、トルエン(900ml)、イソプロパノール(300ml)および水(150ml)の入ったフラスコを、窒素雰囲気下、還流温度で1時間加熱撹拌した。反応停止後、反応液を室温まで冷却し、水を加えて分液した。溶媒を減圧留去した後、シリカゲルショートパスカラム(展開液:へプタン/トルエン=1(容積比))で精製することで、4’,6’−ジフルオロ−1,1’:3’,1”−テルフェニル(86.0g)を得た。
Figure 0005935199
窒素雰囲気下、4’,6’−ジフルオロ−1,1’:3’,1”−テルフェニル(35.0g)およびTHF(200ml)の入ったフラスコを−78℃まで冷却して、1Mのsec−ブチルリチウムシクロヘキサン溶液(138ml)を滴下した。30分撹拌した後、臭素(23.0g)を滴下した。滴下終了後、亜硫酸ナトリウム水溶液を加え、室温で撹拌し、水およびトルエンを加え、分液した。溶媒を減圧留去し得られた油状の粗精製物にへプタンを加えることで再沈殿させ、5’−ブロモ−4’,6’−ジフルオロ−1,1’:3’,1”−テルフェニル(41.7g)を得た。
Figure 0005935199
5’−ブロモ−4’,6’−ジフルオロ−1,1’:3’,1”−テルフェニル(23.0g)、[1,1’−ビフェニル]−4−オール(25.0g)、炭酸カリウム(37.0g)およびNMP(120ml)の入ったフラスコを、窒素雰囲気下200℃で2時間加熱撹拌した。反応停止後、反応液を室温まで冷却し、NMPを減圧留去した後、水およびトルエンを加えて分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:へプタン/トルエン=7/3(容積比))で精製した。更に酢酸エチルに溶解させた後、へプタンを加えることで再沈殿させ、4’,6’−ビス([1,1’−ビフェニル]−4−イルオキシ)−5’−ブロモ−1,1’:3’,1”−テルフェニル(38.2g)を得た。
Figure 0005935199
窒素雰囲気下、4’,6’−ビス([1,1’−ビフェニル]−4−イルオキシ)−5’−ブロモ−1,1’:3’,1”−テルフェニル(19.0g)およびキシレン(200ml)の入ったフラスコを−40℃まで冷却し、1.0Mのsec−ブチルリチウムシクロヘキサン溶液(31.0ml)を滴下した。滴下終了後、約60℃まで昇温して減圧蒸留を行い、再び−40℃まで冷却して三臭化ホウ素(3.3ml)を加えた。室温まで昇温して0.5時間撹拌した後、0℃まで冷却してN,N−ジイソプロピルエチルアミン(9.7ml)を添加し、130℃で昇温して3時間加熱撹拌した。反応液を室温まで冷却して、氷浴で冷却した酢酸ナトリウム水溶液を加えて撹拌し、吸引ろ過にて析出した固体を採取した。得られた固体を水、メタノール次いでへプタンの順に洗浄し、更に還流温度まで加熱したトルエン、還流温度まで加熱したクロロベンゼンで洗浄し、式(1−1048)で表される化合物(9.2g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=9.00(m,2H)、8.03(s,1H)、7.96(dd,2H)、7.84(d,4H)、7.75(d,4H)、7.50−7.60(m,10H)、7.46(t,2H)、7.40(t,2H).
合成例(19)
3,6,8,11−テトラフェニル−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
5’−ブロモ−4’,6’−ジフルオロ−1,1’:3’,1”−テルフェニル(23.0g)、[1,1’−ビフェニル]−3−オール(25.0g)、炭酸カリウム(37.0g)およびNMP(120ml)の入ったフラスコを、窒素雰囲気下200℃で2時間加熱撹拌した。反応停止後、反応液を室温まで冷却し、NMPを減圧留去した後、水およびトルエンを加えて分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:へプタン/トルエン=7/3(容積比))で精製し、更にへプタンで洗浄することで、4’,6’−ビス([1,1’−ビフェニル]−3−イルオキシ)−5’−ブロモ−1,1’:3’,1”−テルフェニル(40.0g)を得た。
Figure 0005935199
窒素雰囲気下、4’,6’−ビス([1,1’−ビフェニル]−3−イルオキシ)−5’−ブロモ−1,1’:3’,1”−テルフェニル(20.0g)およびキシレン(150ml)の入ったフラスコを−40℃まで冷却し、1.0Mのsec−ブチルリチウムシクロヘキサン溶液(33.0ml)を滴下した。滴下終了後、約60℃まで昇温して減圧蒸留を行い、再び−40℃まで冷却して三臭化ホウ素(3.5ml)を加えた。室温まで昇温して0.5時間撹拌した後、0℃まで冷却してN,N−ジイソプロピルエチルアミン(10.8ml)を添加し、120℃まで昇温して3時間加熱撹拌した。反応液を室温まで冷却して、氷浴で冷却した酢酸ナトリウム水溶液を加えて撹拌し、吸引ろ過にて析出した固体を採取した。得られた固体を水、メタノール次いでへプタンの順に洗浄し、更に還流温度まで加熱した酢酸エチル、還流温度まで加熱したクロロベンゼンで洗浄し、式(1−1049)で表される化合物(10.0g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.76(d,2H)、7.98(s,1H)、7.82(d,4H)、7.71(d,4H)、7.64(m,4H)、7.55(t,4H)、7.50(t,4H)、7.40−7.47(m,4H).
合成例(20)
3,6,8,11−テトラフェニル−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
5’−ブロモ−4’,6’−ジフルオロ−1,1’:3’,1”−テルフェニル(23.0g)、[1,1’−ビフェニル]−2−オール(25.0g)、炭酸カリウム(37.0g)およびNMP(120ml)の入ったフラスコを、窒素雰囲気下200℃で4時間加熱撹拌した。反応停止後、反応液を室温まで冷却し、NMPを減圧留去した後、水およびトルエンを加えて分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:へプタン/トルエン=7/3(容積比))で精製して、4’,6’−ビス([1,1’−ビフェニル]−2−イルオキシ)−5’−ブロモ−1,1’:3’,1”−テルフェニル(38.2g)を得た。
Figure 0005935199
窒素雰囲気下、4’,6’−ビス([1,1’−ビフェニル]−2−イルオキシ)−5’−ブロモ−1,1’:3’,1”−テルフェニル(20.0g)およびキシレン(150ml)の入ったフラスコを−40℃まで冷却し、1.0Mのsec−ブチルリチウムシクロヘキサン溶液(33.0ml)を滴下した。滴下終了後、約60℃まで昇温してキシレンより低沸点の成分を減圧留去し、再び−40℃まで冷却して三臭化ホウ素(3.5ml)を加えた。室温まで昇温して0.5時間撹拌した後、0℃まで冷却してN,N−ジイソプロピルエチルアミン(10.8ml)を添加し、130℃まで昇温して4時間加熱撹拌した。反応液を室温まで冷却して、氷浴で冷却した酢酸ナトリウム水溶液を加えて撹拌し、吸引ろ過にて析出した固体を採取した。得られた固体を水、メタノール次いでへプタンの順に洗浄し、更にトルエンから再結晶させることで、式(1−1050)で表される化合物(14.1g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.78(d,2H)、7.81(s,1H)、7.68(d,2H)、7.48(t,2H)、7.38(d,4H)、7.35(d,4H)、7.27(m,2H)、7.19(m,6H)、7.10(t,4H).
合成例(21)
6,8−ジフェニル−N,N,N11,N11−テトラ−p−トリル−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−3,11−ジアミンの合成
Figure 0005935199
ジ−p−トリルアミン(36.0g)、3−ブロモフェノール(30.0g)、Pd−132(ジョンソンマッセイ)(0.6g)、NaOtBu(42.0g)およびトルエン(300ml)の入ったフラスコを90℃に加熱し、1時間撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。更にシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/1(容積比))で精製し、得られた固体をヘプタンで洗浄することで3−(ジ−p−トリルアミノ)フェノール(60.0g)を得た。
Figure 0005935199
窒素雰囲気下、1,5−ジブロモ−2,4−ジフルオロベンゼン(30.0g)、フェニルボロン酸(29.6g)、Pd(PPh(2.6g)、リン酸三カリウム(51.0g)、トルエン(400ml)、イソプロパノール(100ml)および水(50ml)の入ったフラスコを還流温度で5時間加熱撹拌した。反応液を室温まで冷却し、水及びトルエンを加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:へプタン)で精製して、4’,6’−ジフルオロ−1,1’:3’,1”−テルフェニル(25.0g)を得た。
Figure 0005935199
窒素雰囲気下、3−(ジ−p−トリルアミノ)フェノール(28.7g)、4’,6’−ジフルオロ−1,1’:3’,1”−テルフェニル(12.0g)、炭酸カリウム(19.0g)およびNMP(120ml)の入ったフラスコを200℃で5時間加熱撹拌した。反応液を室温まで冷却し、水および酢酸エチルを加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=4/6(容積比))で精製して、3,3’−([1,1’:3’,1”−テルフェニル]−4’,6’−ジイルビス(オキシ))ビス(N,N−ジ−p−トリルア二リン)(33.0g)を得た。
Figure 0005935199
3,3’−([1,1’:3’,1”−テルフェニル]−4’,6’−ジイルビス(オキシ))ビス(N,N−ジ−p−トリルア二リン)(27.0g)およびキシレン(150ml)の入ったフラスコに、窒素雰囲気下、0℃で、2.6Mのn−ブチルリチウムヘキサン溶液(18.3ml)を加えた。滴下終了後、70℃まで昇温して4時間撹拌し、更に100℃まで昇温してヘキサンを留去した。−50℃まで冷却して三臭化ホウ素(13.6g)を加え、室温で昇温して1時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(11.7g)を加え、発熱が収まるまで室温で撹拌した後、120℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、酢酸ナトリウム水溶液および酢酸エチルを加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=3/7(容積比))で精製し、更に活性炭カラムクロマトグラフィー(展開液:トルエン)で精製した。溶媒を減圧留去し得られた固体をクロロベンゼンに溶かし、へプタンを加えることで再沈殿させ、式(1−1145)で表される化合物(2.5g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.34(d,2H)、7.79(s,1H)、7.71(d,4H)、7.43(t,4H)、7.34(t,2H)、7.05−7.15(m,16H)、6.90(m,4H)、2.34(s,12H).
合成例(22)
9−(4−(5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−7−イル)フェニル)−9H−カルバゾールの合成
Figure 0005935199
窒素雰囲気下、((5−ブロモ−1,3−フェニレン)ビス(オキシ))ジベンゼン(27.0g)、(4−(9H−カルバゾール−9−イル)フェニル)ボロン酸(25.0g)、リン酸三カリウム(34.0g)、Pd−132(ジョンソンマッセイ)(0.3g)、トルエン(400ml)、イソプロパノール(100ml)および水(50ml)の入ったフラスコを、還流温度で1時間加熱撹拌した。反応停止後、反応液を室温まで冷却し、水を加えて分液した。溶媒を減圧留去した後、シリカゲルショートパスカラム(展開液:トルエン)で精製することで、9−(3’,5’−ジフェノキシ−[1,1’−ビフェニル]−4−イル)−9H−カルバゾール(38.0g)を得た。
Figure 0005935199
9−(3’,5’−ジフェノキシ−[1,1’−ビフェニル]−4−イル)−9H−カルバゾール(19.0g)およびキシレン(130ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.0Mのsec−ブチルリチウムシクロヘキサン溶液(39.6ml)を加えた。滴下終了後、70℃まで昇温して3時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(4.3ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(13.1ml)を加え、発熱が収まるまで室温で撹拌した後、120℃まで昇温して2時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液次いでへプタンを加えて生じた固体を吸引ろ過にて採取した。得られた固体を水次いでトルエンで洗浄した後、還流した酢酸エチルで洗浄した。更にクロロベンゼンから再結晶させることで、式(1−50)で表される化合物(15.6g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.73(d,2H)、8.17(d,2H)、8.01(d,2H)、7.74(m,4H)、7.60(d,2H)、7.58(s,2H)、7.53(d,2H)、7.40−7.48(m,4H)、7.32(t,2H).
合成例(23)
9−(4−(5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−2−イル)フェニル)−9H−カルバゾールの合成
Figure 0005935199
窒素雰囲気下、1−ブロモ−3−フルオロベンゼン(50.0g)、フェノール(30.0g)および炭酸カリウム(79.0g)のNMP(300ml)溶液に、窒素雰囲気下でヨウ化銅(I)(1.6g)および鉄(III)アセチルアセトナート(6.1g)を加え、150℃まで昇温して4時間撹拌した。反応液を室温まで冷却し、酢酸エチルおよびアンモニア水を加えることで析出した塩を、セライトを敷いた桐山ロートを用いた吸引ろ過にて除去した。ろ液を分液し、有機層の溶媒を減圧留去した後、シリカゲルショートパスカラム(展開液:トルエン/ヘプタン=2/8(容積比))で精製して、1−フルオロ−3−フェノキシベンゼン(41.0g)を得た。
Figure 0005935199
4’−ブロモ−[1,1’−ビフェニル]−4−オール(25.0g)、カルバゾール(18.5g)、Pd(dba)、1Mのトリt−ブチルホスフィントルエン溶液(4.0ml)、NaOtBu(24.0g)および1,2,4−トリメチルベンゼン(300ml)の入ったフラスコを150℃で2時間加熱撹拌した。反応液を室温まで冷却した後、希塩酸を加えて析出した固体を吸引ろ過にて採取した。得られた固体を水洗し、シリカゲルショートパスカラム(クロロベンゼン/酢酸エチル/エタノール=5/4/1(容積比))で精製した。溶媒を減圧留去して得られた固体をクロロベンゼンで洗浄した。更に、クロロベンゼンに溶かし、酢酸エチルおよびエタノールを加えることで再沈殿させ、4’−(9H−カルバゾール−9−イル)−[1,1’−ビフェニル]−4−オール(29.3g)を得た。
Figure 0005935199
1−フルオロ−3−フェノキシベンゼン(16.3g)、4’−(9H−カルバゾール−9−イル)−[1,1’−ビフェニル]−4−オール(29.0g)、炭酸カリウム(29.0g)およびNMP(150ml)の入ったフラスコを、窒素雰囲気下200℃で4時間加熱撹拌した。この時点で反応の進行が遅かったため、炭酸セシウム(31.0g)を追加して、更に8時間加熱撹拌した。反応停止後、反応液を室温まで冷却し、NMPを減圧留去した後、水および酢酸エチルを加えて分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:へプタン/トルエン=8/2(容積比))で精製して、9−(4’−(3−フェノキシフェノキシ)−[1,1’−ビフェニル]−4−イル)−9H−カルバゾール(37.1g)を得た。
Figure 0005935199
9−(4’−(3−フェノキシフェノキシ)−[1,1’−ビフェニル]−4−イル)−9H−カルバゾール(18.0g)およびキシレン(130ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.0Mのsec−ブチルリチウムシクロヘキサン溶液(37.5ml)を加えた。滴下終了後、70℃まで昇温して4時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(4.0ml)を加え、室温で昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(13.4ml)を加え、発熱が収まるまで室温で撹拌した後、120℃まで昇温して2時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液次いで酢酸エチルを加え、生じた固体を吸引ろ過にて採取した。得られた固体を還流した酢酸エチルで洗浄し、次いで、シリカゲルショートパスカラム(展開液:加熱したクロロベンゼン)で精製した。更にクロロベンゼンから再結晶させることで、式(1−1101)で表される化合物(6.9g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.98(m,1H)、8.80(d,1H)、8.18(d,2H)、8.04(dd,1H)、7.96(d,2H)、7.84(t,1H)、7.72−7.78(m,3H)、7.70(d,1H)、7.60(d,1H)、7.54(d,2H)、7.43−7.48(m,3H)、7.26−7.34(m,4H).
合成例(24)
9−(4−(5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−3−イル)フェニル)−9H−カルバゾールの合成
Figure 0005935199
窒素雰囲気下、1−ブロモ−3−フルオロベンゼン(50.0g)、フェノール(30.0g)、炭酸カリウム(80.0g)およびNMP(300ml)の入ったフラスコを、200℃で12時間加熱撹拌した。反応液を室温まで冷却し、NMPを減圧留去した後、水および酢酸エチルを加えて分液した。有機層の溶媒を減圧留去した後、シリカゲルショートパスカラム(展開液:トルエン/ヘプタン=2/8(容積比))で精製して、1−ブロモ−3−フェノキシベンゼン(58.2g)を得た。
Figure 0005935199
3−ブロモフェノール(10.0g)、(4−(9H−カルバゾール−9−イル)フェニル)ボロン酸(18.5g)、Pd−132(ジョンソンマッセイ)(0.2g)、リン酸三カリウム(25.0g)、トルエン(200ml)、イソプロパノール(50ml)および水(25ml)の入ったフラスコを還流温度で1時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。次いで、シリカゲルショートパスカラム(展開液:加熱したクロロベンゼン)で精製し、溶媒を減圧留去して得られた固体を還流させたへプタンで洗浄し、4’−(9H−カルバゾール−9−イル)−[1,1’−ビフェニル]−3−オール(18.5g)を得た。
Figure 0005935199
1−ブロモ−3−フェノキシベンゼン(12.5g)、4’−(9H−カルバゾール−9−イル)−[1,1’−ビフェニル]−3−オール(18.5g)および炭酸カリウム(14.0g)のNMP(100ml)溶液に、窒素雰囲気下でヨウ化銅(I)(0.3g)および鉄(III)アセチルアセトナート(1.1g)を加え、160℃まで昇温して6時間撹拌した。反応液を室温まで冷却し、NMPを減圧留去した後、酢酸エチルおよびアンモニア水を加えることで析出した固体を、セライトを敷いた桐山ロートを用いた吸引ろ過にて除去した。ろ液を分液し、有機層の溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=3/7(容積比))で精製して、9−(3’−(3−フェノキシフェノキシ)−[1,1’−ビフェニル]−4−イル)−9H−カルバゾール(21.0g)を得た。
Figure 0005935199
9−(3’−(3−フェノキシフェノキシ)−[1,1’−ビフェニル]−4−イル)−9H−カルバゾール(21.0g)およびキシレン(130ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.0Mのsec−ブチルリチウムシクロヘキサン溶液(43.8ml)を加えた。滴下終了後、70℃まで昇温して3時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(4.7ml)を加え、室温で昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(14.6ml)を加え、発熱が収まるまで室温で撹拌した後、130℃まで昇温して2時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液次いでへプタンを加え、生じた固体を吸引ろ過にて採取した。得られた固体を還流させた酢酸エチルで洗浄し、次いで、クロロベンゼンから再結晶させることで、式(1−1102)で表される化合物(13.6g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.81(d,1H)、8.75(d,1H)、8.18(d,2H)、8.00(d,2H)、7.89(m,1H)、7.83(t,1H)、7.71−7.77(m,4H)、7.58(d,1H)、7.53(d,2H)、7.41−7.48(m,3H)、7.26−7.34(m,4H).
合成例(25)
9−(4−(5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−4−イル)フェニル)−9H−カルバゾールの合成
Figure 0005935199
2−ブロモフェノール(10.0g)、(4−(9H−カルバゾール−9−イル)フェニル)ボロン酸(18.2g)、Pd−132(ジョンソンマッセイ)(0.2g)、リン酸三カリウム(25.0g)、トルエン(200ml)、イソプロパノール(50ml)および水(25ml)の入ったフラスコを還流温度で1時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。次いで、シリカゲルショートパスカラム(展開液:加熱したトルエン)で精製した後、溶媒を減圧留去して得られた固体を還流させたへプタンで洗浄して、4’−(9H−カルバゾール−9−イル)−[1,1’−ビフェニル]−2−オール(18.7g)を得た。
Figure 0005935199
1−ブロモ−3−フェノキシベンゼン(12.6g)、4’−(9H−カルバゾール−9−イル)−[1,1’−ビフェニル]−2−オール(18.7g)および炭酸カリウム(14.0g)のNMP(100ml)溶液に、窒素雰囲気下でヨウ化銅(I)(0.5g)および鉄(III)アセチルアセトナート(1.8g)を加え、150℃まで昇温して6時間撹拌した。反応液を室温まで冷却し、NMPを減圧留去した後、酢酸エチルおよびアンモニア水を加えることで析出した固体を、セライトを敷いた桐山ロートを用いた吸引ろ過にて除去した。ろ液を分液し、有機層の溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=3/7(容積比))で精製して、9−(2’−(3−フェノキシフェノキシ)−[1,1’−ビフェニル]−4−イル)−9H−カルバゾール(20.0g)を得た。
Figure 0005935199
9−(2’−(3−フェノキシフェノキシ)−[1,1’−ビフェニル]−4−イル)−9H−カルバゾール(20.0g)およびキシレン(130ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.0Mのsec−ブチルリチウムシクロヘキサン溶液(41.7ml)を加えた。滴下終了後、70℃まで昇温して3時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(4.5ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(13.9ml)を加え、発熱が収まるまで室温で撹拌した後、130℃まで昇温して3時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液次いでへプタンを加え、生じた固体を吸引ろ過にて採取した。得られた固体を還流させた酢酸エチルで洗浄した後、クロロベンゼンに溶かし、へプタンを加えることで再沈殿させ、式(1−1103)で表される化合物(8.5g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.77(t,2H)、8.19(d,2H)、7.96(d,2H)、7.86(d,1H)、7.80(t,1H)、7.72−7.77(m,3H)、7.59(d,3H)、7.54(t,1H)、7.47(t,2H)、7.44(t,1H)、7.33(t,2H)、7.26(m,1H)、7.19(d,1H).
合成例(26)
9−(4−(5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−8−イル)フェニル)−9H−カルバゾールの合成
Figure 0005935199
窒素雰囲気下、1−ブロモ−2,4−ジフルオロベンゼン(46.6g)、フェノール(50.0g)、炭酸カリウム(133.0g)およびNMP(300ml)の入ったフラスコを、200℃で8時間加熱撹拌した。反応液を室温まで冷却し、NMPを減圧留去した後、水および酢酸エチルを加えて分液した。有機層の溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=2/8(容積比))で精製して、((4−ブロモ−1,3−フェニレン)ビス(オキシ))ジベンゼン(58.2g)を得た。
Figure 0005935199
((4−ブロモ−1,3−フェニレン)ビス(オキシ))ジベンゼン(15.0g)、(4−(9H−カルバゾール−9−イル)フェニル)ボロン酸(13.9g)、Pd−132(ジョンソンマッセイ)(0.2g)、リン酸三カリウム(19.0g)、トルエン(200ml)、イソプロパノール(50ml)および水(25ml)の入ったフラスコを還流温度で2時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン混合溶媒)で精製し、9−(2’,4’−ジフェノキシ−[1,1’−ビフェニル]−4−イル)−9H−カルバゾール(20.0g)を得た。この際、「有機化学実験のてびき(1)−物質取扱法と分離精製法−」株式会社化学同人出版、94頁に記載の方法を参考にして、展開液中のトルエンの比率を徐々に増加させて目的物を溶出させた。
Figure 0005935199
9−(2’,4’−ジフェノキシ−[1,1’−ビフェニル]−4−イル)−9H−カルバゾール(20.0g)およびキシレン(130ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.0Mのsec−ブチルリチウムシクロヘキサン溶液(41.7ml)を加えた。滴下終了後、70℃まで昇温して3時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(4.5ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(13.9ml)を加え、発熱が収まるまで室温で撹拌した後、130℃まで昇温して3時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液次いでへプタンを加え、生じた固体を吸引ろ過にて採取した。得られた固体を還流した酢酸エチルで洗浄し、次いで、クロロベンゼンから再結晶させることで、式(1−1092)で表される化合物(12.9g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.75(d,2H)、8.19(d,2H)、8.02(m,3H)、7.70−7.78(m,4H)、7.54−7.62(m,4H)、7.38−7.50(m,5H)、7.32(t,2H).
合成例(27)
9−(5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−7−イル)−9’−フェニル−9H,9’H−3,3’−ビカルバゾールの合成
Figure 0005935199
(9−フェニル−9H−カルバゾール−3−イル)ボロン酸(50.0g)、3−ブロモ−9H−カルバゾール(39.0g)、Pd−132(ジョンソンマッセイ)(1.2g)、炭酸ナトリウム(46.1g)、トルエン(400ml)、エタノール(100ml)および水(100ml)の入ったフラスコを還流温度で2時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。次いで、アミノ基修飾シリカゲル(NH DM1020:富士シリシア製)カラムクロマトグラフィー(展開液:トルエン)で精製し、9−フェニル−9H,9’H−3,3’−ビカルバゾール(52.0g)を得た。
Figure 0005935199
((5−ブロモ−1,3−フェニレン)ビス(オキシ))ジベンゼン(29.2g)、9−フェニル−9H,9’H−3,3’−ビカルバゾール(35.0g)、Pd(dba)(0.5g)、ジシクロヘキシル(1−メチル−2,2−ジフェニルシクロプロピル)ホスフィン(Cy−cBRIDP)(0.9g)、NaOtBu(24.7g)およびキシレン(300ml)の入ったフラスコを150℃に加熱し、17時間撹拌した。反応液を室温まで冷却し、水を加え分液した後、溶媒を減圧留去した。次いでシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/4(容積比))で精製し、9−(3,5−ジフェノキシフェニル)−9’−フェニル−9H,9’H−3,3’−ビカルバゾール(46.5g)を得た。
Figure 0005935199
9−(3,5−ジフェノキシフェニル)−9’−フェニル−9H,9’H−3,3’−ビカルバゾール(20.0g)およびキシレン(100ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.0Mのsec−ブチルリチウムシクロヘキサン溶液(28.5ml)を加えた。滴下終了後、70℃まで昇温して3時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(3.4ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(10.4ml)を加え、発熱が収まるまで室温で撹拌した後、130℃まで昇温して4時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いでトルエンを加えて分液した。シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=1/1(容積比))で精製した後、溶媒を減圧留去して得られた固体をトルエンに溶かし、へプタンを加えることで再沈殿させ、式(1−1069)で表される化合物(1.0g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.76(dd,2H)、8.48(s,2H)、8.26(t,2H)、7.73−7.86(m,6H)、7.58−7.67(m,6H)、7.41−7.57(m,9H)、7.38(t,1H)、7.33(m,1H).
合成例(28)
8−(ナフタレン−1−イル)−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
((4−ブロモ−1,3−フェニレン)ビス(オキシ))ジベンゼン(25.0g)、1−ナフタレンボロン酸(13.9g)、Pd−132(ジョンソンマッセイ)(0.1g)、炭酸カリウム(20.2g)、テトラブチルアンモニウムブロマイド(TBAB)(0.7g)、ソルミックスA−11(200ml)および水(50ml)の入ったフラスコを還流温度で2時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン混合溶媒)で精製した。この際、展開液中のトルエンの比率を徐々に増加させて目的物を溶出させた。更にソルミックスA−11/トルエン混合溶媒から再結晶させ、1−(2,4−ジフェノキシフェニル)ナフタレン(22.9g)を得た。
Figure 0005935199
1−(2,4−ジフェノキシフェニル)ナフタレン(13.0g)およびキシレン(100ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(22.6ml)を加えた。滴下終了後、80℃まで昇温して4時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(3.8ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(11.7ml)を加え、発熱が収まるまで室温で撹拌した後、120℃まで昇温して4時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いでトルエンを加えて分液した。次いで、トルエン/へプタンから再結晶させることで、式(1−1084)で表される化合物(4.0g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.87(m,2H)、7.98(d,2H)、7.85(d,1H)、7.75(t,1H)、7.67(d,1H)、7.62(m,3H)、7.51(m,2H)、7.30−7.43(m,4H)、7.02(d,1H).
合成例(29)
8−(ピレン−1−イル)−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
((4−ブロモ−1,3−フェニレン)ビス(オキシ))ジベンゼン(12.0g)、1−ピレンボロン酸(9.5g)、Pd−132(ジョンソンマッセイ)(0.03g)、炭酸カリウム(9.7g)、TBAB(3.4g)、ソルミックスA−11(60ml)および水(24ml)の入ったフラスコを還流温度で1時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。次いで、シリカゲルショートパスカラム(展開液:トルエン)で精製し、更にソルミックスA−11/酢酸エチル混合溶媒から再結晶させ、1−(2,4−ジフェノキシフェニル)ピレン(13.3g)を得た。
Figure 0005935199
1−(2,4−ジフェノキシフェニル)ピレン(12.5g)およびキシレン(100ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(18.2ml)を加えた。滴下終了後、80℃まで昇温して4時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(3.1ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(9.4ml)を加え、発熱が収まるまで室温で撹拌した後、120℃まで昇温して4時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いでへプタンを加え、析出した固体を吸引ろ過にて採取した。水、ソルミックスA11の順で洗浄した後、キシレンから再結晶させた。更にクロロベンゼンから再結晶させることで、式(1−1090)で表される化合物(3.3g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.76(d,1H)、8.71(d,1H)、8.32(d,1H)、8.23(d,1H)、8.18(m,4H)、7.95−8.05(m,4H)、7.79(t,1H)、7.64(d,1H)、7.45(m,3H)、7.35(t,1H)、6.97(d,1H).
合成例(30)
3,6,8,11−テトラフェニル−5,9−ジオキサ−13b−チオホスファナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
窒素雰囲気下、4’,6’−ビス([1,1’−ビフェニル]−2−イルオキシ)−5’−ブロモ−1,1’:3’,1”−テルフェニル(17.0g)およびキシレン(150ml)の入ったフラスコを−40℃まで冷却し、1.0Mのsec−ブチルリチウムシクロヘキサン溶液(27.1ml)を滴下した。滴下終了後、約80℃まで昇温してキシレンより低沸の成分を減圧蒸留した後、−10℃まで冷却して三塩化リン(3.5ml)を加えた。80℃まで昇温して1時間撹拌した後、硫黄(12.2g)を加え、更に1時間加熱撹拌した。次いで、一旦、−10℃まで冷却して塩化アルミニウム(24.6g)およびN,N−ジイソプロピルエチルアミン(11.0ml)を加えた後、120℃まで昇温して12時間加熱攪拌した。反応液を室温まで冷却し、反応液を1,4−ジアザビシクロ[2.2.2]オクタンのトルエン溶液に加えて撹拌した。水、トルエンおよび酢酸エチルを加えて分液した後、溶媒を減圧留去した。次いで、得られた粗製物をトルエンに溶かし、へプタンを加えることで析出した固体を濾別し、ろ液をシリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン混合溶媒)で精製した。この際、展開液中のトルエンの比率を徐々に増加させて目的物を溶出させた。更に酢酸エチルで洗浄して、式(1−1252)で表される化合物(4.7g)を得た。
Figure 0005935199
合成例(31)
3,6,8,11−テトラフェニル−5,9−ジオキサ−13b−オキソホスファナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
上記式(1−1252)で表される化合物(4.7g)のジクロロメタン(150mL)溶液に、0℃でm−CPBA(1.9g)を加えた後、室温まで昇温して5時間撹拌した。飽和亜硫酸ナトリウム水溶液を添加して室温で撹拌した後、不溶物をろ別し、更に分液した。溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル混合溶媒)で精製した。この際、展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。溶媒を減圧留去し、得られた固体をトルエンに溶かし、へプタンを加えることで再沈殿させ、式(1−1192)で表される化合物(1.1g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.29(m,2H)、7.56(d,2H)、7.53(s,1H)、7.47(t,2H)、7.16−7.23(m,12H)、7.07−7.10(m,8H).
合成例(32)
5,9−ジフェニル−5,9−ジヒドロ−5,9−ジアザ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
窒素雰囲気下、ジフェニルアミン(66.0g)、1−ブロモ−2,3−ジクロロベンゼン(40.0g)、Pd−132(ジョンソンマッセイ)(1.3g)、NaOtBu(43.0g)およびキシレン(400ml)の入ったフラスコを80℃で2時間加熱撹拌した後、120℃まで昇温して更に3時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加え、析出した固体を吸引ろ過にて採取した。次いで、シリカゲルショートパスカラム(展開液:加熱したトルエン)で精製した。溶媒を減圧留去して得られた固体をヘプタンで洗浄することで2−クロロ−N,N,N,N−テトラフェニルベンゼン−1,3−ジアミン(65.0g)を得た。
Figure 0005935199
2−クロロ−N,N,N,N−テトラフェニルベンゼン−1,3−ジアミン(20.0g)およびtert−ブチルベンゼン(150ml)の入ったフラスコに、窒素雰囲気下、−30℃で、1.7Mのtert−ブチルリチウムペンタン溶液(27.6ml)を加えた。滴下終了後、60℃まで昇温して2時間撹拌した後、tert−ブチルベンゼンより低沸点の成分を減圧留去した。−30℃まで冷却して三臭化ホウ素(5.1ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(15.6ml)を加え、発熱が収まるまで室温で撹拌した後、120℃まで昇温して3時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いでへプタンを加えて分液した。次いで、シリカゲルショートパスカラム(添加液:トルエン)で精製した後、溶媒を減圧留去し得られた固体をトルエンに溶かし、へプタンを加えて再沈殿させ、式(1−401)で表される化合物(6.0g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.94(d,2H)、7.70(t,4H)、7.60(t,2H)、7.42(t,2H)、7.38(d,4H)、7.26(m,3H)、6.76(d,2H)、6.14(d,2H).
合成例(33)
9−([1,1’−ビフェニル]−4−イル)−5,12−ジフェニル−5,9−ジヒドロ−5,9−ジアザ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
窒素雰囲気下、ジフェニルアミン(37.5g)、1−ブロモ−2,3−ジクロロベンゼン(50.0g)、Pd−132(ジョンソンマッセイ)(0.8g)、NaOtBu(32.0g)およびキシレン(500ml)の入ったフラスコを80℃で4時間加熱撹拌した後、120℃まで昇温して更に3時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=1/20(容積比))で精製し、2,3−ジクロロ−N,N−ジフェニルアニリン(63.0g)を得た。
Figure 0005935199
窒素雰囲気下、2,3−ジクロロ−N,N−ジフェニルアニリン(16.2g)、ジ([1,1’−ビフェニル]−4−イル)アミン(15.0g)、Pd−132(ジョンソンマッセイ)(0.3g)、NaOtBu(6.7g)およびキシレン(150ml)の入ったフラスコを120℃で1時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルショートパスカラム(展開液:加熱したトルエン)で精製し、更にへプタン/酢酸エチル=1(容積比)混合溶媒で洗浄することで、N,N−ジ([1,1’−ビフェニル]−4−イル)−2−クロロ−N,N−ジフェニルベンゼン−1,3−ジアミン(22.0g)を得た。
Figure 0005935199
,N−ジ([1,1’−ビフェニル]−4−イル)−2−クロロ−N,N−ジフェニルベンゼン−1,3−ジアミン(22.0g)およびtert−ブチルベンゼン(130ml)の入ったフラスコに、窒素雰囲気下、−30℃で、1.6Mのtert−ブチルリチウムペンタン溶液(37.5ml)を加えた。滴下終了後、60℃まで昇温して1時間撹拌した後、tert−ブチルベンゼンより低沸点の成分を減圧留去した。−30℃まで冷却して三臭化ホウ素(6.2ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(12.8ml)を加え、発熱が収まるまで室温で撹拌した後、120℃まで昇温して2時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。次いで、シリカゲルショートパスカラム(展開液:加熱したクロロベンゼン)で精製した。還流したへプタンおよび還流した酢酸エチルで洗浄後、更にクロロベンゼンから再沈殿させることで、式(1−1152)で表される化合物(5.1g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=9.17(s,1H)、8.99(d,1H)、7.95(d,2H)、7.68−7.78(m,7H)、7.60(t,1H)、7.40−7.56(m,10H)、7.36(t,1H)、7.30(m,2H)、6.95(d,1H)、6.79(d,1H)、6.27(d,1H)、6.18(d,1H).
合成例(34)
5,9,11,15−テトラフェニル−5,9,11,15−テトラヒドロ−5,9,11,15−テトラアザ−19b,20b−ジボラナフト[3,2,1−de:1’,2’,3’−jk]ペンタセンの合成
Figure 0005935199
窒素雰囲気下、2,3−ジクロロ−N,N−ジフェニルアニリン(36.0g)、N,N−ジフェニルベンゼン−1,3−ジアミン(12.0g)、Pd−132(ジョンソンマッセイ)(0.3g)、NaOtBu(11.0g)およびキシレン(150ml)の入ったフラスコを120℃で3時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン混合溶媒)で精製した。この際、展開液中のトルエンの比率を徐々に増加させて目的物を溶出させた。更に活性炭カラムクロマトグラフィー(展開液:トルエン)で精製することで、N,N1’−(1,3−フェニレン)ビス(2−クロロ−N,N,N−トリフェニルベンゼン−1,3−ジアミン)(22.0g)を得た。
Figure 0005935199
,N1’−(1,3−フェニレン)ビス(2−クロロ−N,N,N−トリフェニルベンゼン−1,3−ジアミン)(22.0g)およびtert−ブチルベンゼン(150ml)の入ったフラスコに、窒素雰囲気下、−30℃で、1.6Mのtert−ブチルリチウムペンタン溶液(42.0ml)を加えた。滴下終了後、60℃まで昇温して5時間撹拌した後、tert−ブチルベンゼンより低沸点の成分を減圧留去した。−30℃まで冷却して三臭化ホウ素(7.6ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(18.9ml)を加え、発熱が収まるまで室温で撹拌した後、120℃まで昇温して2時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液を加え、析出した固体を濾別した。ろ液を分液し、有機層をシリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=1(容積比))で精製した。溶媒を減圧留去して得られた固体をクロロベンゼンに溶かし、酢酸エチルを加えることで再沈殿させ、式(1−422)で表される化合物(0.6g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,DMSO−d6):δ=10.38(s,1H)、9.08(d,2H)、7.81(t,4H)、7.70(t,2H)、7.38−7.60(m,14H)、7.30(t,2H)、7.18(d,4H)、6.74(d,2H)、6.07(d,2H)、6.02(d,2H)、5.78(s,1H).
合成例(35)
−(5,9−ジフェニル−5,9−ジヒドロ−5,9−ジアザ−13b−ボラナフト[3,2,1−de]アントラセン−3−イル)−N,N,N−トリフェニルベンゼン−1,3−ジアミンの合成
Figure 0005935199
式(1−422)で表される化合物(0.6g)のシリカゲルカラムクロマト精製において、当該誘導体を含むフラクションを分取した。更に還流したへプタンで洗浄後、クロロベンゼン/酢酸エチルから再沈殿させることで、式(1−1159)で表される化合物(1.1g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,DMSO−d6):δ=8.78(d,1H)、8.66(d,1H)、7.69(t,2H)、7.59(t,1H)、7.59(t,2H)、7.49(m,2H)、7.40(d,2H)、7.22−7.32(m,10H)、7.18(t,1H)、6.97−7.07(m,9H)、6.89(d,1H)、6.60−6.70(m,4H)、6.11(s,1H)、5.96(m,2H).
合成例(36)
9−フェニル−9H−5−オキサ−9−アザ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
窒素雰囲気下、1−ブロモ−2−クロロ−3−フルオロベンゼン(25.0g)、フェノール(12.3g)、炭酸カリウム(33.0g)およびNMP(150ml)の入ったフラスコを180℃で4時間加熱撹拌した。反応液を室温まで冷却し、NMPを減圧留去した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルショートパスカラム(展開液:トルエン/へプタン=1/1(容積比))で精製し、1−ブロモ−2−クロロ−3−フェノキシベンゼン(32.0g)を得た。
Figure 0005935199
窒素雰囲気下、ジフェニルアミン(21.0g)、1−ブロモ−2−クロロ−3−フェノキシベンゼン(32.0g)、Pd−132(ジョンソンマッセイ)(0.4g)、NaOtBu(16.0g)およびキシレン(200ml)の入ったフラスコを80℃で4時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=2/8(容積比))で精製し、更にへプタンから再沈殿させ、2−クロロ−3−フェノキシ−N,N−ジフェニルアニリン(35.0g)を得た。
Figure 0005935199
2−クロロ−3−フェノキシ−N,N−ジフェニルアニリン(16.0g)およびtert−ブチルベンゼン(150ml)の入ったフラスコに、窒素雰囲気下、−30℃で、1.7Mのtert−ブチルリチウムペンタン溶液(26.5ml)を加えた。滴下終了後、15℃まで昇温して2時間撹拌し、再び−30℃まで冷却して三臭化ホウ素(4.9ml)を加えた。次いで、減圧しながら60℃まで昇温してtert−ブチルベンゼンより低沸点の成分を減圧留去した。その後、0℃まで冷却してN,N−ジイソプロピルエチルアミン(15.0ml)を加え、発熱が収まるまで室温で撹拌した後、120℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン混合溶媒)で精製した。この際、展開液中のトルエンの比率を徐々に増加させて目的物を溶出させた。更に活性炭カラムクロマトグラフィー(展開液:トルエン)で精製し、式(1−1201)で表される化合物(0.8g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.92(d,1H)、8.78(d,1H)、7.70(t,2H)、7.66(t,1H)、7.61(t,1H)、7.53(m,2H)、7.47(t,1H)、7.37(m,3H)、7.27(t,1H)、7.11(d,1H)、6.80(d,1H)、6.31(d,1H).
合成例(37)
N,N,9−トリフェニル−9H−5−オキサ−9−アザ−13b−ボラナフト[3,2,1−de]アントラセン−3−アミンの合成
Figure 0005935199
窒素雰囲気下、1−ブロモ−2−クロロ−3−フルオロベンゼン(20.0g)、3−(ジフェニルアミノ)フェノール(27.4g)、炭酸カリウム(26.4g)およびNMP(150ml)の入ったフラスコを180℃で6時間加熱撹拌した。反応液を室温まで冷却し、NMPを減圧留去した後、水およびトルエンを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=2/1(容積比))で精製し、3−(3−ブロモ−2−クロロフェノキシ)−N,N’−ジフェニルアニリン(31.6g)を得た。
Figure 0005935199
窒素雰囲気下、ジフェニルアミン(13.0g)、3−(3−ブロモ−2−クロロフェノキシ)−N,N’−ジフェニルアニリン(31.6g)、Pd−132(ジョンソンマッセイ)(0.5g)、NaOtBu(10.1g)および1,2,4−トリメチルベンゼン(150ml)の入ったフラスコを還流温度で1時間加熱撹拌した。反応液を室温まで冷却した後、吸引ろ過にて不溶性の塩を除去した。次いで、活性炭ショートパスカラム(展開液:トルエン)で精製し、更にシリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=1/6(容積比))で精製し、2−クロロ−3−(3−ジフェニルアミノ)フェノキシ−N,N−ジフェニルアニリン(26.3g)を得た。
Figure 0005935199
2−クロロ−3−(3−ジフェニルアミノ)フェノキシ−N,N−ジフェニルアニリン(26.3g)およびtert−ブチルベンゼン(150ml)の入ったフラスコに、窒素雰囲気下、−30℃で、1.6Mのtert−ブチルリチウムペンタン溶液(31.4ml)を加えた。滴下終了後、室温まで昇温して終夜で撹拌し、再び−30℃まで冷却して三臭化ホウ素(5.4ml)を加えた。次いで、減圧しながら60℃まで昇温してtert−ブチルベンゼンより低沸点の成分を減圧留去した。その後、0℃まで冷却してN,N−ジイソプロピルエチルアミン(17.0ml)を加え、発熱が収まるまで室温で撹拌した後、120℃まで昇温して5.5時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。シリカゲルカラムクロマトグラフィー(展開液:トルエン)で精製し、更にトルエンから再結晶させ、式(1−1210)で表される化合物(0.6g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.81(d,1H)、8.57(d,1H)、7.70(t,2H)、7.61(t,1H)、7.44(m,2H)、7.37(t,6H)、7.12−7.30(m,7H)、7.03(m,2H)、6.92(d,1H)、6.76(d,1H)、6.26(d,1H).
合成例(38)
5,11−ジフェニル−6,10−ジオキサ−16b−ボラアントラ[3,2,1−de]テトラセンの合成
Figure 0005935199
Angew. Chem. Int. Ed. 2013, 52, 10598-10601に記載されている方法で合成した1−フェニルナフタレン−2−オール(20.0g)、1,3−ジブロモベンゼン(9.7g)および炭酸カリウム(23.0g)のNMP(100ml)溶液に、窒素雰囲気下でヨウ化銅(I)(0.8g)および鉄(III)アセチルアセトナート(3.0g)を加え、150℃まで昇温して6時間撹拌した。反応液を室温まで冷却し、アンモニア水を加えることで析出した塩を、セライトを敷いた桐山ロートを用いた吸引ろ過にて除去した。ろ液に酢酸エチルを加えて分液した後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=3/7)で精製することで、1,3−ビス((1−フェニルナフタレン−2−イル)オキシ)ベンゼン(12.0g)を得た。
Figure 0005935199
1,3−ビス((1−フェニルナフタレン−2−イル)オキシ)ベンゼン(12.0g)およびオルトキシレン(100ml)の入ったフラスコに、窒素雰囲気下、0℃で、2.6Mのn−ブチルリチウムヘキサン溶液(24.5ml)を加えた。滴下終了後、70℃まで昇温して2時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(4.9ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(8.1ml)を加え、発熱が収まるまで室温で撹拌した後、120℃まで昇温して3時間加熱撹拌した。更に反応を促進させる為に塩化アルミニウム(6.2g)を加え、130℃で2時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液を加えて生じた懸濁液をそのまま分液した。次いで、有機層にへプタンを加えることで生じた固体を吸引ろ過にて採取した。得られた固体を還流させた酢酸エチル、トルエン、クロロベンゼンの順に洗浄して、式(1−1271)で表される化合物(5.3g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=9.56(s,2H)、8.28(d,2H)、7.74(m,2H)、7.50−7.66(m,15H)、6.90(d,2H).
合成例(39)
5,9−ジチア−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
窒素雰囲気下、2−ブロモ−1,3−ジフルオロベンゼン(23.6g)、ベンゼンチオール(27.2g)、炭酸カリウム(67.0g)およびNMP(150ml)の溶液を、180℃に加熱して12時間撹拌した。反応液を室温まで冷却し、NMPを減圧留去した後、水および酢酸エチルを加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/9(容積比))で精製した。得られた粗精製品をトルエンに溶かし、へプタンを加えて再沈殿させることで、(2−ブロモ−1,3−フェニレン)ビス(フェニルサルファン)(9.5g)を得た。
Figure 0005935199
窒素雰囲気下、(2−ブロモ−1,3−フェニレン)ビス(フェニルサルファン)(9.5g)およびキシレン(100ml)の入ったフラスコを−40℃まで冷却し、1.0Mのsec−ブチルリチウムシクロヘキサン溶液(26.7ml)を滴下した。滴下終了後、約60℃まで昇温してキシレンより低沸点の成分を減圧留去し、再び−40℃まで冷却して三臭化ホウ素(2.9ml)を加えた。室温まで昇温して0.5時間撹拌した後、0℃まで冷却してN,N−ジイソプロピルエチルアミン(8.9ml)を添加し、120℃まで昇温して2時間加熱撹拌した。反応液を室温まで冷却して、氷浴で冷却した酢酸ナトリウム水溶液および酢酸エチルを加えて分液した。溶媒を減圧留去して得られた油状物質にへプタンを加えることで再沈殿させ、得られた固体を還流させた酢酸エチルで洗浄することで、式(1−201)で表される化合物(4.6g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.30(d,2H)、7.72(d,2H)、7.54−7.62(m,4H)、7.50(t,1H)、7.43(t,2H).
合成例(40)
9,10,19,20−テトラオキサ−4b,14b−ジボラジナフト[1,2,3−fg:1’,2’,3’−qr]ペンタセンの合成
Figure 0005935199
窒素雰囲気下、1,4−ジブロモ−2,3,5,6−テトラフルオロベンゼン(6.24g)、フェノール(9.53g)、炭酸カリウム(14.0g)およびNMP(20ml)の入ったフラスコを140℃で18時間加熱撹拌した。反応液を室温まで冷却して、飽和食塩水およびトルエンを加え分液した。溶媒を減圧留去した後、シリカゲルショートパスカラム(展開液:トルエン)で精製した。溶媒を減圧留去して,粗精製物をメタノールを用いて洗浄することで1,4−ジブロモ−2,3,5,6−テトラフェノキシベンゼン(9.64g)を得た。
Figure 0005935199
1,4−ジブロモ−2,3,5,6−テトラフェノキシベンゼン(0.604g)のt−ブチルベンゼン(3.0ml)溶液に、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(0.610ml)を加えた。1時間撹拌した後,室温まで昇温し、t−ブチルベンゼン(4.0ml)を加えた。−50℃まで冷却して三臭化ホウ素(0.105ml)を加え、30分間撹拌した。0℃まで昇温して30分間撹拌した後、60℃まで昇温して10時間撹拌した。その後、0℃まで冷却してN,N−ジイソプロピルエチルアミン(0.350ml)を加え、還流温度で17時間加熱撹拌した。反応液を室温まで冷却した後、フロリジルショートパスカラムを用いて濾過した。溶媒を減圧留去した後、ヘキサンで洗浄することで、淡橙色個体として、7−ブロモ−6,8−ジフェノキシ−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン(0.106g)を得た。
Figure 0005935199
7−ブロモ−6,8−ジフェノキシ−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン(0.103g)のt−ブチルベンゼン(2.5ml)溶液に、窒素雰囲気下、−50℃で、1.1Mのsec−ブチルリチウムヘキサン溶液(1.98ml)を加えた。30分間撹拌した後,0℃まで昇温して2時間撹拌した。再度−50℃まで冷却して三臭化ホウ素(0.220ml)を加え、室温まで昇温して30分間撹拌した。その後、N,N−ジイソプロピルエチルアミン(65.9μl)を加え、還流温度で11時間加熱撹拌した。反応液を室温まで冷却して、セライト敷いたガラスフィルターで吸引ろ過し、溶媒を減圧留去して粗生成物を得た。ヘキサンとクロロホルムを用いて洗浄することにより、橙色固体として式(1−21)で表される化合物(4.10mg)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H NMR(δppm in CDCl);8.80(dd,J=1.6,7.8 Hz,4H)、7.83(ddd,J=1.6,6.0,8.4 Hz,4H)、7.81(dd,J=2.0,8.4 Hz,4H)、7.46(ddd,J=2.0,6.0,7.8 Hz,4H).
LRMS(EI+) m/z 462(M
合成例(41)及び(42)
19b,20b−ジボラ−5,9,11,15−テトラオキサジナフト[3,2,1−de:1’,2’,3’−jk]ペンタセンの合成
Figure 0005935199
4b,13b−ジボラ−5,9,16,20−テトラオキサジナフト[3,2,1−de:3’,2’,1’−pq]ペンタフェンの合成
Figure 0005935199
フェノール(12.3g、0.130mol)、炭酸カリウム(18.0g、0.130mol)およびN−メチルピロリドン(NMP、250mL)に、窒素雰囲気下、室温で1−ブロモ−2,6−ジフルオロベンゼン(25.2g、0.130mol)を添加し、120℃で160時間加熱撹拌した。その後、NMPを減圧留去した後、トルエンを加えた。シリカゲルショートパスカラムを用いて濾過し、溶媒を減圧留去することで2−ブロモ−1−フルオロ−3−フェノキシベンゼンを淡赤色の液体として得た(26.4g、収率76%)。
Figure 0005935199
レゾルシノール(14.4g、14.4mmol)、炭酸カリウム(3.97g、28.7mmol)およびNMP(57.4mL)に、窒素雰囲気下、室温で2−ブロモ−1−フルオロ−3−フェノキシベンゼン(7.67g、28.7mmol)を添加し、150℃で160時間加熱撹拌した後、160℃で22時間加熱撹拌した。その後、NMPを減圧留去した後、トルエンを加えた。フロリジルショートパスカラムを用いて濾過し、溶媒を減圧留去して粗生成物を得た。トルエンを用いて再結晶することで、白色固体として1,3−ビス(2−ブロモ−3−フェノキシフェノキシ)ベンゼンを得た(5.35g、収率62%)。
Figure 0005935199
1,3−ビス(2−ブロモ−3−フェノキシフェノキシ)ベンゼン(0.302g、0.50mmol)およびtert−ブチルベンゼン(5.0mL)に、窒素雰囲気下、−42℃でブチルリチウムのヘキサン溶液(0.688mL、1.64M、1.1mmol)を添加した後、室温で22時間撹拌した。−42℃で三臭化ホウ素(0.142mL、1.5mmol)を加え、50℃で3時間撹拌した。70℃で17時間撹拌した後、減圧下、0℃で反応溶液の10%を留去した。N,N−ジイソプロピルエチルアミン(0.348mL、2.0mmol)を0℃で添加し、150℃で20時間加熱撹拌した後、フロリジルショートパスカラムを用いて濾過し、溶媒を減圧留去して粗生成物を得た。ジクロロメタンおよびアセトニトリルを用いて洗浄することで白色固体を得た。次いで、酢酸エチルを用いて再結晶することで白色固体として式(1−24)で表される化合物を得た(19.2mg、収率8.3%)。更に、ろ液の溶媒を減圧留去することで淡黄色の固体として式(1−24)で表される化合物と式(1−23)で表される化合物を1:5の混合物として得た(30.8mg、収率13%)。これらの結果より、式(1−24)で表される化合物の収率は11%(24.3mg)、式(1−23)で表される化合物の収率は11%(25.7mg)と算出される。
Figure 0005935199
NMR測定により式(1−24)で表される化合物の構造を確認した。
H NMR(δppm in CDCl);10.13 (s, 1H), 8.92 (dd, J = 1.6, 8.0 Hz, 2H), 7.82 (t, J = 8.0 Hz, 2H), 7.78 (ddd, J = 1.6, 6.8, 8.0 Hz, 2H), 7.62 (d, J = 7.6 Hz, 4H), 7.51-7.54 (m, 4H), 6.98 (s, 1H).
LRMS(EI+) m/z 462 (M+)
NMR測定により式(1−23)で表される化合物の構造を確認した。
H NMR(δppm in DMSO−D6);8.92 (d, J = 8.8 Hz, 1H), 8.77 (dd, J = 1.6, 7.6 Hz, 1H), 8.57 (d, J = 8.4 Hz, 1H), 7.93 (t, J = 8.0 Hz, 1H), 7.81 (ddd, J = 1.6, 7.2, 8.4 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.58-7.63 (m, 2H), 7.47-7.50 (m, 3H), 7.35 (dd, J = 1.6, 8.4 Hz, 1H), 7.31 (t, J = 8.0 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.19 (t, J = 8.0 Hz, 2H).
LRMS(EI+) m/z 462 (M+)
合成例(43)
2,6,8,12−テトラフェニル−5,9−ジオキサ−13b−チオホスファナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
まず、4’,6’−ビス([1,1’−ビフェニル]−4−イルオキシ)−5’−ブロモ−1,1’:3’,1”−ターフェニル(12.9g、20.0mmol)およびベンゼン(36mL)に、窒素雰囲気下、0℃でブチルリチウムのヘキサン溶液(12.2mL、1.64M、20.0mmol)を添加し、室温で1時間攪拌した。0℃で三塩化リン(1.90mL、22.0mmol)を加えて80℃で1時間攪拌した。溶媒を減圧下留去し、硫黄(0.770g、24.0mmol)およびo−ジクロロベンゼン(60mL)を添加し、80℃で1時間撹拌した。−70℃で三塩化アルミニウム(18.6g、0.140mol)および0℃でN,N−ジイソプロピルエチルアミン(8.20mL、48.0mmol)を添加し、100℃で16時間撹拌した。室温まで冷却した後、反応液を1,4−ジアザビシクロ[2.2.2]オクタン(31.4g、0.280mol)のジクロロメタン(300ml)溶液に加えた。次いでセライト敷いたガラスフィルターを用いて吸引濾過し、濾液の溶媒を減圧下に留去した。トルエンに溶かして、シリカゲルを敷いたガラスフィルターを用いて吸引濾過した後、濾液の溶媒を減圧留去した。ジクロロメタンに溶かして水を加えた後、ジクロロメタン層を分けて水層をジクロロメタンで抽出した。溶媒を減圧留去して粗生成物をヘキサン、メタノール、アセトニトリル、酢酸エチルを用いて洗浄することで白色固体として式(1−1250)で表される化合物(0.723g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H NMR(δppm in CDCl);7.33 (dd, JHP = 6.2 Hz, J = 8.7 Hz, 2H), 7.38-7.55 (m, 12H), 7.68 (d, J = 7.2 Hz, 4H), 7.63 (d, J = 7.3 Hz, 4H), 7.71 (s, 1H), 7.74 (dd, JHP = 2.2 Hz, J = 8.7 Hz, 2H), 8.41 (dd, JHP = 13.4 Hz, J = 2.2 Hz, 2H).
13C NMR(δppm in CDCl);103.2 (d, JCP = 81.9 Hz), 119.9 (d, JCP = 81.4 Hz, 2C), 120.3(2C), 126.9(2C), 127.0(4C), 127.3 (d, JCP = 7.3 Hz, 2C), 127.8 (2C), 128.0 (2C), 128.4 (4C), 129.1 (4C), 129.6 (4C), 131.7 (2C), 135.9, 136.0 (2C), 138.6 (d, JCP = 10.1 Hz, 2C), 139.3 (2C), 151.8(2C), 155.2 (2C).
合成例(44)
2,6,8,12−テトラフェニル−5,9−ジオキサ−13b−オキソホスファナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
上記式(1−1250)で表わされる化合物(0.633g、1.01mmol)およびジクロロメタン(100mL)に、0℃でm−クロロ過安息香酸(0.247g、77w%、1.10mmol)を添加して室温で撹拌した。6時間後、0℃でm−クロロ過安息香酸(44.9mg、77w%、0.200mmol)を添加して室温で撹拌した。14時間後、亜硫酸ナトリウム飽和溶液(10.0ml)を添加して室温で撹拌した。濾過により不溶物を取り除き、ジクロロメタン層を分けた後、水層をジクロロメタンで抽出した。得られた有機層を合わせて濃縮した後、ジクロロメタンおよび酢酸エチルを展開溶媒として用いてシリカゲルショートパスカラムを行い、濾液の溶媒を減圧下に留去した。得られた粗生成物をメタノールを用いて洗浄することで,白色固体として式(1−1190)で表される化合物(0.580g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H NMR(δppm in CDCl);7.37-7.56 (m, 14H), 7.62 (d, J = 7.3 Hz, 4H), 7.69 (d, J = 7.9 Hz, 4H), 7.79 (s, 1H), 7.80 (dd, J = 2.3, 8.7 Hz, 2H), 8.44 (dd, J = 2.3 Hz, 2H).
13C NMR(δppm in CDCl);104.0 (d, JCP = 97.3 Hz), 117.6 (d, JCP = 116.6 Hz, 2C), 120.4 (2C), 126.3 (2C), 127.0 (4C), 127.4 (d, JCP = 4.8 Hz, 2C), 127.7 (2C), 127.9 (2C), 128.4 (4C), 129.0 (4C), 129.6 (4C), 132.4 (2C), 136.0, 136.7 (2C), 138.0 (d, JCP= 10.6 Hz, 2C), 139.3 (2C), 152.1 (2C), 156.7 (2C).
合成例(45)
2,12−ジフェニル−5,9−ジオキサ−13b−チオホスファナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
まず、1,3−ビス([1,1’−ビフェニル]−4−イルオキシ)ベンゼン(6.22g、15.0mmol)およびベンゼン(120mL)に、窒素雰囲気下、0℃でブチルリチウムのヘキサン溶液(11.0mL、1.64M、18.0mmol)を添加し、70℃で18時間攪拌した。0℃で三塩化リン(1.76mL、22.5mmol)を加えて80℃で2時間攪拌した。溶媒を減圧下留去した後、硫黄(0.866g、27.0mmol)およびo−ジクロロベンゼン(60mL)を添加し、80℃で1時間撹拌した。−95℃で三塩化アルミニウム(14.0g、105mmol)および0℃でN,N−ジイソプロピルエチルアミン(6.18mL、36.0mmol)を添加し、80℃で16時間撹拌した。室温まで冷却した後、反応混合液を1,4−ジアザビシクロ[2.2.2]オクタン(23.6g、210mmol)のジクロロメタン(300ml)溶液に加えた。次いでセライト敷いたガラスフィルターを用いて吸引濾過し、シリカゲルショートパスカラム(展開液:ジクロロメタン)で精製した。溶媒を減圧留去して粗生成物をメタノールおよびトルエンを用いて洗浄することで白色固体として式(1−1247)で表される化合物(1.31g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H NMR(δppm in CDCl);7.17 (dd, JHP = 4.1 Hz, J = 8.2 Hz, 2H), 7.41 (tt, J = 1.4, 7.3 Hz, 2H), 7.46 (dd, JHP = 2.3 Hz, J = 8.7 Hz, 2H), 7.49 (dd, J = 7.3, 8.0 Hz, 4H), 7.57 (t, J = 8.2 Hz 1H), 7.63 (d, J = 8.0 Hz, 4H), 7.78 (dd, J = 2.3, 8.7 Hz, 2H), 8.39 (dd J = 2.3 Hz, JHP = 13.5 Hz, 2H).
13C NMR(δppm in CDCl);102.4 (d, JCP = 82.4 Hz), 112.9 (d, JCP = 4.8 Hz, 2C), 120.1 (d, JCP = 92 Hz, 2C), 120.3 (d, JCP = 6.7 Hz 2C), 127.0 (4C), 127.5 (d, JCP = 5.8 Hz, 2C), 127.9 (2C), 129.1 (4C), 131.7 (JCP = 1.9 Hz, 2C), 133.3, 138.5 (JCP = 11.5 Hz, 2C), 139.3 (2C), 155.1 (JCP =2.9 Hz, 2C), 156.2 (2C).
合成例(46)
2,12−ジフェニル−5,9−ジオキサ−13b−オキソホスファナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
式(1−1247)で表される化合物(2.45g、5.17mmol)およびジクロロメタン(500mL)に、0℃でm−クロロ過安息香酸(1.16g、77wt%、5.16mmol)を添加して室温で撹拌した。5時間後、0℃でm−クロロ過安息香酸(0.350g、77wt%、1.56mmol)を添加して室温で撹拌した。16時間後、亜硫酸ナトリウム飽和溶液(20.0ml)を添加して室温で撹拌した。ジクロロメタン層を分けた後、水層をジクロロメタンで抽出した。得られた有機層を合わせて濃縮した後、ジクロロメタンおよびジクロロメタン/酢酸エチル=1(容積比)を展開溶媒として用いてシリカゲルショートパスカラムで精製した。得られた濾液を減圧下留去して、白色固体として式(1−1187)で表される化合物(2.32g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H NMR(δppm in CDCl); 7.20 (dd, JHP = 4.1 Hz, J = 8.5 Hz, 2H), 7.41 (tt, J= 1.4, 7.4 Hz, 2H), 7.48 (d, J = 7.4 Hz, 2H), 7.52 (d, J = 8.7, Hz, 4H), 7.62 (dd, J = 1.4, 7.5 Hz, 4H), 7.64 (t, J = 8.5 Hz, 1H), 7.83 (dd, J = 2.2, 8.7 Hz, 2H ), 8.41 (dd, JHP= 12.4 Hz, J = 2.2 Hz, 2H ).
13C NMR(δppm in CDCl); 103.6 (d, JCP = 97.8 Hz), 112.4 (d, JCP = 4.8 Hz, 2C), 118.0 (d, JCP = 116.0 Hz, 2C), 120.5 (d, JCP = 6.7 Hz, 2C), 127.1 (4C), 127.5 (d, JCP = 5.8 Hz, 2C), 128.0 (2C), 129.2 (4C), 132.6 (2C), 134.3, 138.0 (d, JCP = 10.5 Hz, 2C), 139.5 (2C), 156.8 (2C), 156.8 (d, JCP = 6.9 Hz, 2C).
合成例(47)
3,6,8,11−テトラフェニル−5,9−ジオキサ−13b−チオホスファナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
まず、4’,6’−ビス([1,1’−ビフェニル−3−イルオキシ])−5’−ブロモ−1,1’;3’,1”−テルフェニル(12.9g、20.0mmol)およびベンゼン(70mL)に、窒素雰囲気下、0℃でブチルリチウムのヘキサン溶液(12.2mL、1.64M、20.0mmol)を添加し、2時間攪拌した。0℃で三塩化リン(1.92mL、22.0mmol)を加えて80℃で1時間攪拌した。溶媒を減圧下留去し、硫黄(0.769g、24.0mmol)およびo−ジクロロベンゼン(60mL)を添加し、80℃で1時間撹拌した。−95℃で三塩化アルミニウム(18.7g、140mmol)および0℃でN,N−ジイソプロピルエチルアミン(8.20mL、48.0mmol)を添加し、100℃で16時間撹拌した。室温まで冷却した後、反応液を1,4−ジアザビシクロ[2.2.2]オクタン(31.4g、280mmol)のジクロロメタン(300ml)溶液に加えた。次いでセライト敷いたガラスフィルターを用いて吸引濾過し、濾液を減圧下に濃縮した後、トルエンを用いて希釈し、不溶物を濾過により除去した。濾液の溶媒を減圧留去した後、シリカゲルショートパスカラム(展開液:ジクロロメタン)で精製した。溶媒を減圧留去した後、シリカゲルショートパスカラム(展開液:トルエン)で精製した。溶媒を減圧留去して粗生成物をアセトニトリルおよびヘキサンを用いて洗浄することで白色固体として式(1−1251)で表される化合物(1.22g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H NMR(δppm in CDCl);7.40-7.50 (m, 10H), 7.52 (dd, J = 7.2 Hz, 7.6 Hz, 4H), 7.59 (d, J = 7.2 Hz, 4H), 7.63 (ddd, JHP = 1.8 Hz, J = 1.8 Hz, 8.0 Hz, 2H), 7.67-7.70 (m, 5H), 8.26 (dd, JHP =12.8 Hz, J = 8.0 Hz, 2H).
13C NMR(δppm in CDCl);103.5 (d, JCP = 80.5 Hz), 117.9 (d, JCP = 93.9 Hz, 2C), 118.2 (d, JCP = 5.8 Hz, 2C), 124.2 (d, JCP = 11.5 Hz, 2C), 126.9 (d, JCP = 5.8 Hz, 2C), 127.3 (4C), 127.7 (2C), 128.4 (4C), 128.6 (2C), 129.0 (4C), 129.3 (d, JCP = 5.8 Hz, 2C), 129.6 (4C), 135.9, 136.1 (2C), 139.0 (2C), 146.3 (2C), 151.7 (2C), 156.1 (2C).
合成例(48)
3,6,8,11−テトラフェニル−5,9−ジオキサ−13b−オキソホスファナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
上記式(1−1251)で表わされる化合物(1.12g、1.79mmol)およびジクロロメタン(150mL)に、0℃でm−クロロ過安息香酸(0.404g、77w%、1.79mmol)を添加して室温で撹拌した。5時間後、0℃でm−クロロ過安息香酸(0.674g、77w%、0.391mmol)を添加して室温で撹拌した。16時間後、亜硫酸ナトリウム飽和溶液(10ml)および水(40ml)を添加して室温で撹拌した。濾過により不溶物を取り除き、ジクロロメタン層を分けた後、水層をジクロロメタンで抽出した。得られた有機層を合わせて濃縮した後、ジクロロメタンおよびジクロロメタン/酢酸エチル=1(容積比)を展開溶媒として用いてシリカゲルショートパスカラムを行い、濾液の溶媒を減圧下に留去した。得られた粗生成物をメタノールを用いて洗浄することで、白色固体として式(1−1191)で表される化合物(1.04g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H NMR(δppm in CDCl);7.40-7.50 (m, 10H), 7.53 (t, J = 7.1 Hz, 4H), 7.61 (d, J = 6.9 Hz, 4H), 7.64 (dt, JHP= 1.9 Hz, J = 1.9 Hz, 8.0 Hz, 2H), 7.69 (d, J = 7.1 Hz, 4H), 7.77 (s, 1H), 8.32 (dd, JHP = 11.7 Hz, J = 8.0 Hz, 2H).
13C NMR(δppm in CDCl);104.3 (d, JCP = 96.8 Hz), 115.9 (d, JCP = 117.9 Hz, 2C), 118.2 (d, JCP = 5.8 Hz, 2C), 123.5 (d, JCP = 10.5 Hz, 2C), 126.3 (d, JCP = 4.8 Hz, 2C), 127.3 (4C), 127.7 (2C), 128.5 (4C), 128.6 (2C), 129.0 (4C), 129.6 (4C), 129.7 (d, JCP = 8.6 Hz, 2C), 136.1, 136.7 (2C), 139.0 (2C), 146.9 (2C), 152.2 (2C), 157.7 (2C).
合成例(49)
4−(5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−7−イル)−N,N−ジフェニルアニリンの合成
Figure 0005935199
窒素雰囲気下、((5−ブロモ−1,3−フェニレン)ビス(オキシ))ジベンゼン(5.0g)、N,N−ジフェニル−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)アニリン(5.7g)、Pd−132(0.31g)、炭酸カリウム(4.1g)、テトラブチルアンモニウムブロミド(TBAB)(0.24g)、トルエン(40ml)および水(5ml)の入ったフラスコを還流温度に加熱して4時間撹拌した。反応液を室温まで冷却後、水およびトルエンを加えて分液し、溶媒を減圧留去した。得られた固体をトルエンに溶解させ、シリカゲルショートパスカラムを行った。更にシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/2(容積比))で精製することで、3,5−ジフェノキシ−N,N−ジフェニル−[1,1’−ビフェニル]−4−アミン(7.2g)を得た。
Figure 0005935199
3,5−ジフェノキシ−N,N−ジフェニル−[1,1’−ビフェニル]−4−アミン(7.2g)およびキシレン(72ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(9.8ml)を加えた。滴下終了後、70℃まで昇温して3時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−30℃まで冷却して三臭化ホウ素(1.6ml)を加え、室温まで昇温して30分撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(5.0ml)を加え、発熱が収まるまで室温で撹拌した後、120℃で2時間加熱撹拌した。反応液を室温まで冷却し、水およびトルエンを加えて分液した後、溶媒を減圧留去した。得られた固体をトルエンに溶解させ、シリカゲルショートパスカラムを行った。次いでシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/4(容積比))で精製し、更にへプタンで再沈殿させることで、式(1−79)で表される化合物(1.5g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.70(dd,2H)、7.72(t,2H)、7.66(d,2H)、7.56(d,2H)、7.46(s,2H)、7.40(t,2H)、7.30(t,4H)、7.19(m,6H)、7.08(t,2H).
合成例(50)
4−(5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−7−イル)−N,N−ジフェニルナフタレン−1−アミンの合成
Figure 0005935199
窒素雰囲気下、4−ブロモ−N,N−ジフェニルナフタレン−1−アミン(30.0g)、ビスピナコラートジボロン(24.4g)、(1,1’−ビス(ジフェニルホスフィノ)フェロセン)ジクロロパラジウム(II)(PdCl(dppf)・CHCl)(2.0g)、酢酸カリウム(23.6g)およびシクロペンチルメチルエーテル(300ml)の入ったフラスコを還流温度に加熱して4時間撹拌した。反応液を室温まで冷却後、水および酢酸エチルを加えて分液し、溶媒を減圧留去した。得られた固体をトルエンに溶解させ、活性炭ショートパスカラムを行った。更にへプタンで再沈殿させることで、N,N−ジフェニル−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ナフタレン−1−アミン(33.0g)を得た。
Figure 0005935199
窒素雰囲気下、((5−ブロモ−1,3−フェニレン)ビス(オキシ))ジベンゼン(5.0g)、N,N−ジフェニル−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ナフタレン−1−アミン(7.4g)、Pd−132(0.31g)、炭酸カリウム(4.1g)、テトラブチルアンモニウムブロミド(TBAB)(0.24g)、トルエン(40ml)および水(5ml)の入ったフラスコを還流温度に加熱して4時間撹拌した。反応液を室温まで冷却後、水およびトルエンを加えて分液し、溶媒を減圧留去した。得られた固体をトルエンに溶解させ、シリカゲルショートパスカラムを行った。更にシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/2(容積比))で精製することで、4−(3,5−ジフェノキシ)−N,N−ジフェニルナフタレン−1−アミン(7.7g)を得た。
Figure 0005935199
4−(3,5−ジフェノキシ)−N,N−ジフェニルナフタレン−1−アミン(7.0g)およびキシレン(105ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(8.7ml)を加えた。滴下終了後、70℃まで昇温して3時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−30℃まで冷却して三臭化ホウ素(1.4ml)を加え、室温まで昇温して30分撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(5.3ml)を加え、発熱が収まるまで室温で撹拌した後、120℃で2時間加熱撹拌した。反応液を室温まで冷却し、水およびトルエンを加えて分液した後、溶媒を減圧留去した。得られた固体をトルエンに溶解させ、シリカゲルショートパスカラムを行った。次いでシリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/4(容積比))で精製し、更にメタノール溶液、次いでへプタンで再沈殿させることで、式(1−2305)で表される化合物(0.9g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.73(dd,2H)、8.08(m,2H)、7.73(t,2H)、7.57(d,2H)、7.54(d,1H)、7.37−6.46(m,7H)、7.24(m,4H)、7.11(d,4H)、6.97(t,2H).
合成例(51)
4−(5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−6−イル)−N,N−ジフェニルアニリンの合成
Figure 0005935199
窒素雰囲気下、5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン(9.0g)、N−ブロモスクシンイミド(6.5g)およびTHF(180ml)の入ったフラスコを室温で3時間撹拌した。反応液を室温まで冷却後、水を加えて塩分を溶解させ、吸引ろ過にて目的物を採取した。更にメタノールで洗浄することで、5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンのブロモ体およびジブロモ体の混合物(10.9g)を得た。
Figure 0005935199
窒素雰囲気下、5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン(2.0g)のブロモ体およびジブロモ体の混合物、N,N−ジフェニル−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)アニリン(2.1g)、Pd−132(0.12g)、炭酸カリウム(1.6g)、テトラブチルアンモニウムブロミド(TBAB)(0.09g)、トルエン(24ml)および水(4ml)の入ったフラスコを還流温度に加熱して5時間撹拌した。反応液を室温まで冷却後、水およびトルエンを加えて分液し、溶媒を減圧留去した。得られた固体をトルエンに溶解させ、シリカゲルショートパスカラムを行った。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/4(容積比))で精製し、更にトルエンから再結晶させることで、式(1−1104)で表される化合物(0.9g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.72(m,2H)、7.91(d,1H)、7.65−7.75(m,4H)、7.57(d,1H)、7.50(d,1H)、7.39(m,2H)、7.30(m,5H)、7.22(m,6H)、7.25(t,2H).
合成例(52)
4,4’−(5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセン−6,8−ジイル)ビス(N,N−ジフェニルアニリン)の合成
Figure 0005935199
上記合成例(51)において、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/4(容積比))で精製し、当該化合物に該当するバンドを分取し、更にトルエンから再結晶させることで、式(1−142)で表される化合物(0.2g)を得た。
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.73(d,2H)、8.01(s,1H)、7.70(m,6H)、7.52(d,2H)、7.40(t,2H)、7.19−7.35(m,20H)、7.06(t,4H).
合成例(53)
2,12−ジ(9H−カルバゾリル−9−イル)−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
窒素雰囲気下、9−(4-ブロモフェニル)−9H−カルバゾール(109.7g)、レゾルシノール(15.0g)、ヨウ化銅(2.6g)、Fe(acac)(57.7g)、炭酸カリウム(75.3g)、およびNMP(150ml)の入ったフラスコを、130℃で56時間加熱撹拌した。反応液を室温まで冷却し、酢酸エチルを加えた後、セライトを敷いた桐山ロートでろ過を行い、固形分を除去した。ろ液に水を加えて分液した後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/10(容積比))で精製した。更にトルエン/へプタン混合溶媒から再結晶させることで、1,3−ビス(4−(9H−カルバゾール−9−イル)フェノキシ)ベンゼン(15.0g)を得た。
Figure 0005935199
1,3−ビス(4−(9H−カルバゾール−9−イル)フェノキシ)ベンゼン(13.5g)およびキシレン(105ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(16.0ml)を加えた。滴下終了後、80℃まで昇温して4時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−60℃まで冷却して三臭化ホウ素(2.6ml)を加え、室温まで昇温して30分撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(7.9ml)を加え、発熱が収まるまで室温で撹拌した後、120℃で3時間加熱撹拌した。反応液を室温まで冷却し、酢酸カリウム水溶液およびへプタンを加えて吸引ろ過を行った。得られた固体を水ついでソルミックスで洗浄し、クロロベンゼンから再結晶させることで、式(1−158)で表される化合物(5.6g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.68(m,2H)、8.06(m,4H)、7.92(t,1H)、7.89(dd,2H)、7.80(d,2H)、7.38(m,6H)、7.20(m,8H).
合成例(54)
3,11−ジ(9H−カルバゾリル−9−イル)−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
窒素雰囲気下、9−(3-ブロモフェニル)−9H−カルバゾール(131.7g)、レゾルシノール(15.0g)、ヨウ化銅(2.6g)、Fe(acac)(115.4g)、炭酸カリウム(75.3g)、およびNMP(350ml)の入ったフラスコを、130℃で30時間加熱撹拌した。反応液を室温まで冷却し、水および酢酸エチルを加えた後、セライトを敷いた桐山ロートでろ過を行い、固形分を除去した。ろ液に水を加えて分液した後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/10(容積比))で精製することで、1,3−ビス(3−(9H−カルバゾール−9−イル)フェノキシ)ベンゼン(11.6g)を得た。
Figure 0005935199
1,3−ビス(3−(9H−カルバゾール−9−イル)フェノキシ)ベンゼン(11.6g)およびキシレン(100ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(13.5ml)を加えた。滴下終了後、80℃まで昇温して4時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−60℃まで冷却して三臭化ホウ素(2.2ml)を加え、室温まで昇温して30分撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(6.8ml)を加え、発熱が収まるまで室温で撹拌した後、120℃で3時間加熱撹拌した。反応液を室温まで冷却し、酢酸カリウム水溶液およびへプタンを加えて吸引ろ過を行った。得られた固体を水ついでソルミックスで洗浄し、クロロベンゼンから再結晶させることで、式(1−159)で表される化合物(3.0g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.96(d,2H)、8.19(d,4H)、7.87(m,3H)、7.70(m,6H)、7.49(t,4H)、7.36(t,4H)、7.33(d,2H).
合成例(55)
3,11−ジ−o−トリル−(5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
3−ヨードフェノール(25.0g)、オルトトリルボロン酸(18.5g)、Pd(PPh(3.9g)、炭酸カリウム(47.1g)、トルエン(150ml)、t−ブタノール(30ml)および水(10ml)の入ったフラスコを還流温度で1時間加熱撹拌した。反応液を室温まで冷却した後、トルエンを加えて吸引ろ過を行い、無機塩を除去した。ろ液に希塩酸を加え分液した後、活性炭ショートパスカラム(展開液:トルエン)で精製した。更にシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=1/1(容積比))で精製して、2’−メチル−[1,1’−ビフェニル]−3−オール(14.8g)を得た。
Figure 0005935199
1,3−ジブロモベンゼン(10.0g)、2’−メチル−[1,1’−ビフェニル]−3−オール(18.0g)および炭酸カリウム(23.4g)のNMP(30ml)溶液に、窒素雰囲気下でヨウ化銅(I)(0.4g)および鉄(III)アセチルアセトナート(1.5g)を加え、200℃まで昇温して6時間撹拌した。反応液を室温まで冷却し、NMPを減圧留去した後、水及びトルエンを加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/5(容積比))で精製して、1,3−ビス(2’−メチル−[1,1’−ビフェニル]−3−イル)オキシ)ベンゼン(8.4g)を得た。
Figure 0005935199
1,3−ビス(2’−メチル−[1,1’−ビフェニル]−3−イル)オキシ)ベンゼン(8.4g)およびキシレン(50ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(13.1ml)を加えた。滴下終了後、70℃まで昇温して3時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(2.2ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(6.6ml)を加え、発熱が収まるまで室温で撹拌した後、130℃まで昇温して3時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液次いでへプタンを加え、生じた固体を吸引ろ過にて採取した。得られた固体をへプタンで洗浄し、更にトルエンから再結晶させることで、式(1−152−2)で表される化合物(1.0g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.75(d,2H)、7.81(t,1H)、7.54(m,2H)、7.28−7.40(m,8H)、7.25(m,4H)、2.39(s,6H).
合成例(56)
5,9−ジオキサ−19b−ボラナジベンゾ[a,c]ナフト[1,2,3−hi]テトラセンの合成
Figure 0005935199
2−ブロモトリフェニレン(25.0g)、3−フェノキシフェノール(19.7g)および炭酸カリウム(45.0g)のNMP(150ml)溶液に、窒素雰囲気下でヨウ化銅(I)(0.8g)および鉄(III)アセチルアセトナート(5.8)を加え、180℃で6時間加熱撹拌した。NMPを減圧留去した後、水及びトルエンを加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/5(容積比))で精製して、2−(3−フェノキシフェノキシ)トリフェニレン(23.3g)を得た。
Figure 0005935199
2−(3−フェノキシフェノキシ)トリフェニレン(23.3g)およびキシレン(200ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(38.8ml)を加えた。滴下終了後、70℃まで昇温して3時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(11.6ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(19.3ml)を加え、発熱が収まるまで室温で撹拌した後、130℃まで昇温して3時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液を加え、生じた固体を吸引ろ過にて採取した。得られた固体のオルトジクロロベンゼン溶液から再結晶させることで、式(1−1006)で表される化合物(4.8g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=10.00(s,1H)、8.97(d,1H)、8.86(d,1H)、8.75(d,1H)、8.72(s,1H)、8.67(m,2H)、7.86(t,1H)、7.67−7.83(m,5H)、7.63(d,1H)、7.56(t,1H)、7.31(d,1H)、7.28(d,1H).
合成例(57)
9−(ナフタレン−1−イル)−7,11−ジオキサ−17c−チオホスファフェナントロ[2,3,4−no]テトラフェンの合成
Figure 0005935199
窒素雰囲気下、1−ブロモ−3,5−ジフロオロベンゼン(25.0g)、1−ナフタレンボロン酸(24.0g)、Pd−132(1.8g)、炭酸カリウム(41.2g)、トルエン(200ml)、エタノール(50ml)および水(50ml)の入ったフラスコを還流温度で1時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加えて分液した。更にシリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=1/4(容積比))で精製して、1−(3,5−ジフルオロフェニル)ナフタレン(32.0g)を得た。
Figure 0005935199
窒素雰囲気下、1−(3,5−ジフルオロフェニル)ナフタレン(13.0g)、2−ナフトール(25.0g)、炭酸ナトリウム(39.9g)およびNMP(100ml)の入ったフラスコを、200℃で14時間加熱撹拌した。反応液を室温まで冷却した後、水、トルエン、酢酸エチルを加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/1(容積比))で精製し、更にへプタン/トルエン混合溶媒で再沈殿させることで、2,2’−((5−(ナフタレン−1−イル)−1,3−フェニレン)ビス(オキシ))ジナフタレン(20.0g)を得た。
Figure 0005935199
2,2’−((5−(ナフタレン−1−イル)−1,3−フェニレン)ビス(オキシ))ジナフタレン(7.7g)およびトルエン(120ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(9.9ml)を加えた。滴下終了後、70℃まで昇温して4時間撹拌した。一旦、−50℃まで冷却してビスジエチルアミノクロロホスフィン(5.0ml)を加え、100℃まで昇温して0.5時間撹拌した。その後、再び−20℃まで冷却して硫黄(1.0g)を加え、室温で終夜撹拌した。反応液に水を加え、トルエン/酢酸エチル混合溶液で抽出した。溶媒を減圧留去した後、加熱したへプタンで洗浄することで、(4−(ナフタレン−1−イル)−2,6−ビス(ナフタレン−2−イルオキシ)−1−(N,N,N’,N’−テトラエチルジアミノチオホスファ)ベンゼン(6.8g)を得た。
Figure 0005935199
窒素雰囲気下、(4−(ナフタレン−1−イル)−2,6−ビス(ナフタレン−2−イルオキシ)−1−(N,N,N’,N’−テトラエチルジアミノチオホスファ)ベンゼン(5.8g)、塩化アルミニウム(3.3g)およびオルトジクロロベンゼン(120ml)の入ったフラスコを155℃で10時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン)で精製することで式(1−4114)で表される化合物(1.0g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=9.10(br,1H)、7.80−8.20(m,20H).
合成例(58)
9−(ナフタレン−1−イル)−7,11−ジオキサ−17c−オキソホスファフェナントロ[2,3,4−no]テトラフェンの合成
Figure 0005935199
合成例(57)で得られた9−(ナフタレン−1−イル)−7,11−ジオキサ−17c−チオホスファフェナントロ[2,3,4−no]テトラフェン(1.0g)のジクロロメタン(80mL)溶液に、0℃でm−クロロ過安息香酸(m−CPBA)(0.8g)を加えた後、室温で1時間撹拌した。飽和亜硫酸ナトリウム水溶液を添加して室温で撹拌した後、トルエン/酢酸エチル混合溶液で分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=4/1(容積比))で精製し、目的物を含むフラクションの溶媒を減圧留去することで再沈殿させ、式(1−3654)で表される化合物(0.5g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.19(br,1H)、8.14(br,1H)、7.92−8.00(m,4H)、7.89(br,1H)、7.78(br,1H)、7.30−7.76(m,12H)、7.05(br,1H).
合成例(59)
7−(ナフタレン−1−イル)−5,9−ジオキサ−15b−チオホスファフェナントロ[1,2,3−ij]テトラフェンの合成
Figure 0005935199
窒素雰囲気下、1−(3,5−ジフルオロフェニル)ナフタレン(13.9g)、1−ナフトール(25.0g)、炭酸カリウム(39.9g)およびNMP(100ml)の入ったフラスコを、200℃で24時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/4(容積比))で精製し、更にへプタン/トルエン混合溶液から再結晶させることで、1,1’−((5−(ナフタレン−1−イル)−1,3−フェニレン)ビス(オキシ))ジナフタレン(15.0g)を得た。
Figure 0005935199
1,1’−((5−(ナフタレン−1−イル)−1,3−フェニレン)ビス(オキシ))ジナフタレン(7.7g)およびトルエン(120ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(9.9ml)を加えた。滴下終了後、70℃まで昇温して4時間撹拌した。一旦、−50℃まで冷却してビスジエチルアミノクロロホスフィン(5.0ml)を加え、室温まで昇温して2時間撹拌した。その後、再び−20℃まで冷却して硫黄(1.0g)を加え、室温で終夜撹拌した。反応液に水を加え、トルエンで抽出した。次いで、シリカゲルショートパスカラム(トルエン)で精製しすることで、(4−(ナフタレン−1−イル)−2,6−ビス(ナフタレン−1−イルオキシ)−1−(N,N,N’,N’−テトラエチルジアミノチオホスファ)ベンゼン(5.4g)を得た。
Figure 0005935199
窒素雰囲気下、(4−(ナフタレン−1−イル)−2,6−ビス(ナフタレン−1−イルオキシ)−1−(N,N,N’,N’−テトラエチルジアミノチオホスファ)ベンゼン(5.4g)、塩化アルミニウム(3.4g)およびオルトジクロロベンゼン(120ml)の入ったフラスコを130℃で2時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=3/1(容積比))で精製することで式(1−4150)で表される化合物(1.0g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.60(d,2H)、8.25(m,2H)、8.03(br,1H)7.85−7.99(m,6H)、7.66(m,4H)、7.50−7.62(m,6H).
合成例(60)
7−(ナフタレン−1−イル)−5,9−ジオキサ−15b−オキソホスファフェナントロ[1,2,3−ij]テトラフェンの合成
Figure 0005935199
合成例(59)で得られた7−(ナフタレン−1−イル)−5,9−ジオキサ−15b−チオホスファフェナントロ[1,2,3−ij]テトラフェン(1.0g)のジクロロメタン(80mL)溶液に、0℃でm−クロロ過安息香酸(m−CPBA)(1.0g)を加えた後、室温で1時間撹拌した。飽和亜硫酸ナトリウム水溶液を添加して室温で撹拌した後、トルエン/酢酸エチル混合溶液で分液した。溶媒を減圧留去した後、クロロベンゼンから再結晶させることで、式(1−3690)で表される化合物(0.5g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.64(d,2H)、8.28(t,2H)、7.85−8.05(m,7H)、7.68(m,4H)、7.48−7.62(m,6H).
合成例(61)
9−(4−(5,9−ジオキサ−13b−オキソホスファナフト[3,2,1−de]アントラセン−8−イル)フェニル)−9H−カルバゾールの合成
Figure 0005935199
窒素雰囲気下、5,9−ジオキサ−13b−チオホスファナフト[3,2,1−de]アントラセン(3.5g)、N−ブロモスクシンイミド(7.7g)およびDMF(60ml)の入ったフラスコを室温で3時間撹拌した。反応液を室温まで冷却後、水を加えて塩分を溶解させ、吸引ろ過にて目的物を採取した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=3/1(容積比))で精製することで、8−ブロモ−5,9−ジオキサ−13b−オキソホスファナフト[3,2,1−de]アントラセン(2.9g)を得た。
Figure 0005935199
窒素雰囲気下、8−ブロモ−5,9−ジオキサ−13b−オキソホスファナフト[3,2,1−de]アントラセン(1.6g)、(4−(9H−カルバゾール−9−イル)フェニル)ボロン酸(1.3g)、Pd−132(0.03g)、炭酸ナトリウム(1.1g)、トルエン(40ml)、エタノール(10ml)および水(10ml)の入ったフラスコを還流温度で4時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=2/1(容積比))で精製した。目的物を含むフラクションの溶媒を減圧留去することで再沈殿させ、式(1−3588)で表される化合物(1.2g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.21−8.30(m,2H)、8.18(d,2H)、7.87(d,2H)、7.80(d,1H)、7.73(d,2H)、7.67(t,1H)、7.63(d,1H)、7.56(d,2H)、7.29−7.50(m,9H).
合成例(62)
4−(5,9−ジオキサ−13b−オキソホスファナフト[3,2,1−de]アントラセン−8−イル)キノリンの合成
Figure 0005935199
窒素雰囲気下、8−ブロモ−5,9−ジオキサ−13b−オキソホスファナフト[3,2,1−de]アントラセン(1.5g)、4−キノリンボロン酸(0.8g)、Pd−132(0.03g)、炭酸ナトリウム(1.0g)、トルエン(40ml)、エタノール(10ml)および水(10ml)の入ったフラスコを還流温度で2時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加えて分液した。次いで、活性アルミナカラムクロマトグラフィー(展開液:トルエン/酢酸エチル混合溶媒)で精製した。その際、「有機化学実験のてびき(1)−物質取扱法と分離精製法−」株式会社化学同人出版、94頁に記載の方法を参考にして、展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。目的物を含むフラクションの溶媒を減圧留去することで再沈殿させ、式(1−3824)で表される化合物(0.8g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=9.00−9.10(m,1H)、8.19−8.32(m,4H)、7.26−7.95(m,10H)、6.68−6.98(m,1H)).
合成例(63)
3−(4−(5,9−ジオキサ−13b−オキソホスファナフト[3,2,1−de]アントラセン−8−イル)フェニル)ピリジンの合成
Figure 0005935199
窒素雰囲気下、8−ブロモ−5,9−ジオキサ−13b−オキソホスファナフト[3,2,1−de]アントラセン(1.7g)、(4−(ピリジン−3−イル)フェニル)ボロン酸(1.0g)、Pd−132(0.03g)、炭酸ナトリウム(1.2g)、トルエン(40ml)、エタノール(10ml)および水(10ml)の入ったフラスコを還流温度で4時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加えて分液した。次いで、活性アルミナカラムクロマトグラフィー(展開液:トルエン/酢酸エチル混合溶媒)で精製した。その際、展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。目的物を含むフラクションの溶媒を減圧留去することで再沈殿させ、式(1−3806)で表される化合物(1.4g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.96(m,1H)、8.64(m,1H)、8.18−8.29(m,2H)、7.98(m,1H)、7.71−7.78(m,5H)、7.66(t,1H)、7.58(t,1H)、7.37−7.49(m,4H)、7.26−7.37(m,2H).
合成例(64)および(65)
3,7−ジフェニル−3,7−ジヒドロ−3,7−ジアザ−11b−ボラナフト[3,2,1−no]テトラフェンの合成
Figure 0005935199
9−(ナフタレン−2−イル)−5−フェニル−5,9−ジヒドロ−5,9−ジアザ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
窒素雰囲気下、2,3−ジクロロ−N,N−ジフェニルアニリン(15.0g)、N−フェニルナフタレン−1−アミン(10.0g)、Pd−132(0.3g)、NaOtBu(6.9g)およびキシレン(100ml)の入ったフラスコを120℃で1時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルショートパスカラム(展開液:トルエン/へプタン=1/1(容積比))で精製し、更にへプタン溶媒で再沈殿させることで、2−クロロ−N−(ナフタレン−2−イル)−N,N,N−トリフェニルベンゼン−1,3−ジアミン(18.0g)を得た。
Figure 0005935199
2−クロロ−N−(ナフタレン−2−イル)−N,N,N−トリフェニルベンゼン−1,3−ジアミン(18.0g)およびt−ブチルベンゼン(150ml)の入ったフラスコに、窒素雰囲気下、氷浴で冷却しながら、1.6Mのt−ブチルリチウムペンタン溶液(45.3ml)を加えた。滴下終了後、60℃まで昇温して2時間撹拌した後、t−ブチルベンゼンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(6.8ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び氷浴で冷却してN,N−ジイソプロピルエチルアミン(12.5ml)を加えた。発熱が収まるまで室温で撹拌した後、120℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=3/7)で精製した。更に加熱したへプタンで洗浄後、更にトルエン/酢酸エチル混合溶液から再沈殿させることで、式(1−2657)で表される化合物(3.2g)を得た。また、この再沈殿のろ液を活性炭カラムクロマトグラフィー(展開液:トルエン/へプタン=1/1)で精製した後、へプタン/酢酸エチル混合溶媒で再沈殿させることで、式(1−2699)で表される化合物(0.1g)を得た。
Figure 0005935199
NMR測定により得られた化合物(1−2657)の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.94(m,1H)、8.50(d,1H)、7.80(m,1H)、7.77(d,1H)、7.70(m,4H)、7.61(m,2H)、7.46(m,2H)、7.35−7.44(m,5H)、7.25(m,1H)、7.03(t,1H)、6.95(d,1H)、6.77(d,1H)、6.23(d,1H)、6.18(d,1H).
NMR測定により得られた化合物(1−2699)の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.97(m,2H)、8.18(d,1H)、8.03(d,1H)、7.92(m,2H)、7.70(t,2H)、7.56−66(m,3H)、7.36−48(m,5H)、7.20−7.32(m,3H)、6.78(t,2H)、6.15(m,2H).
合成例(66)
,N,N11,N11,5,9−ヘキサフェニル−5,9−ジアザ−13b−ボラナフト[3,2,1−de]アントラセン−3,11−ジアミンの合成
Figure 0005935199
窒素雰囲気下、3−ニトロアニリン(25.0g)、ヨードベンゼン(81.0g)、ヨウ化銅(3.5g)、炭酸カリウム(100.0g)およびオルトジクロロベンゼン(250ml)の入ったフラスコを還流温度で14時間加熱撹拌した。反応液を室温まで冷却した後、アンモニア水を加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=3/7(容積比))で精製することで、3−ニトロ−N,N−ジフェニルアニリン(44.0g)を得た。
Figure 0005935199
窒素雰囲気下、氷浴で冷却した酢酸を加えて撹拌した。この溶液に、3−ニトロ−N,N−ジフェニルアニリン(44.0g)を反応温度が著しく上昇しない程度に分割して添加した。添加終了後、室温で30分間撹拌し、原料の消失を確認した。反応終了後、上澄みをデカンテーションにて採取して炭酸ナトリウムで中和し、酢酸エチルで抽出した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=9/1(容積比))で精製した。目的物の入ったフラクションから溶媒を減圧留去し、へプタンを加えることで再沈殿させ、N,N−ジフェニルベンゼン−1,3−ジアミン(36.0g)を得た。
Figure 0005935199
窒素雰囲気下、N,N−ジフェニルベンゼン−1,3−ジアミン(60.0g)、Pd−132(1.3g)、NaOtBu(33.5g)およびキシレン(300ml)の入ったフラスコを120℃で加熱撹拌した。この溶液に、ブロモベンゼン(36.2g)のキシレン(50ml)溶液をゆっくり滴下し、滴下終了後、1時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=5/5(容積比))で精製することで、N,N,N−トリフェニルベンゼン−1,3−ジアミン(73.0g)を得た。
Figure 0005935199
窒素雰囲気下、N,N,N−トリフェニルベンゼン−1,3−ジアミン(20.0g)、1−ブロモ−2,3−ジクロロベンゼン(6.4g)、Pd−132(0.2g)、NaOtBu(6.8g)およびキシレン(70ml)の入ったフラスコを120℃で2時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=4/6(容積比))で精製することで、N,N1’−(2−クロロ−1,3−フェニレン)ビス(N,N,N−トリフェニルベンゼン−1,3−ジアミン)(15.0g)を得た。
Figure 0005935199
,N1’−(2−クロロ−1,3−フェニレン)ビス(N,N,N−トリフェニルベンゼン−1,3−ジアミン)(12.0g)およびt−ブチルベンゼン(100ml)の入ったフラスコに、窒素雰囲気下、氷浴で冷却しながら、1.7Mのt−ブチルリチウムペンタン溶液(18.1ml)を加えた。滴下終了後、60℃まで昇温して2時間撹拌した後、t−ブチルベンゼンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(2.9ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び氷浴で冷却してN,N−ジイソプロピルエチルアミン(5.4ml)を加えた。発熱が収まるまで室温で撹拌した後、120℃まで昇温して3時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加え、不溶性の固体を濾別した後分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=5/5)で精製した。更に加熱したへプタン、酢酸エチルで洗浄後、トルエン/酢酸エチル混合溶媒で再沈殿させることで、式(1−2680)で表される化合物(2.0g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.65(d,2H)、7.44(t,4H)、7.33(t,2H)、7.20(m,12H)、7.13(t,1H)、7.08(m,8H)、7.00(t,4H)、6.89(dd,2H)、6.16(m,2H)、6.03(d,2H).
合成例(67)
9−([1,1’−ビフェニル]−4−イル)−N,N,5,12−テトラフェニル−5,9−ジヒドロ−5,9−ジアザ−13b−ボラナフト[3,2,1−de]アントラセン−3−アミンの合成
Figure 0005935199
窒素雰囲気下、N,N,N−トリフェニルベンゼン−1,3−ジアミン(51.7g)、1−ブロモ−2,3−ジクロロベンゼン(35.0g)、Pd−132(0.6g)、NaOtBu(22.4g)およびキシレン(350ml)の入ったフラスコを90℃で2時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=5/5(容積比))で精製することで、N−(2,3−ジクロロフェニル)−N,N,N−トリフェニルベンゼン−1,3−ジアミン(61.8g)を得た。
Figure 0005935199
窒素雰囲気下、N−(2,3−ジクロロフェニル)−N,N,N−トリフェニルベンゼン−1,3−ジアミン(15.0g)、ジ([1,1’−ビフェニル]−4−イル)アミン(10.0g)、Pd−132(0.2g)、NaOtBu(4.5g)およびキシレン(70ml)の入ったフラスコを120℃で1時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加えて分液した。次いで、シリカゲルショートパスカラム(展開液:トルエン)で精製した。得られた油状物を酢酸エチル/へプタン混合溶媒で再沈殿させることで、N,N−ジ([1,1’−ビフェニル]−4−イル)−2クロロ−N−(3−(ジフェニルアミノ)フェニル)−N−フェニルベンゼン−1,3−ジアミン(18.5g)を得た。
Figure 0005935199
,N−ジ([1,1’−ビフェニル]−4−イル)−2クロロ−N−(3−(ジフェニルアミノ)フェニル)−N−フェニルベンゼン−1,3−ジアミン(18.0g)およびt−ブチルベンゼン(130ml)の入ったフラスコに、窒素雰囲気下、氷浴で冷却しながら、1.7Mのt−ブチルリチウムペンタン溶液(27.6ml)を加えた。滴下終了後、60℃まで昇温して3時間撹拌した後、t−ブチルベンゼンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(4.5ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び氷浴で冷却してN,N−ジイソプロピルエチルアミン(8.2ml)を加えた。発熱が収まるまで室温で撹拌した後、120℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。次いで、加熱したクロロベンゼンに溶解させ、シリカゲルショートパスカラム(展開液:加熱したトルエン)で精製した。更にクロロベンゼンから再結晶させることで、式(1−2679)で表される化合物(3.0g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=9.09(m,1H)、8.79(d,1H)、7.93(d,2H)、7.75(d,2H)、7.72(d,2H)、7.67(m,1H)、7.52(t,2H)、7.40−7.50(m,7H)、7.27−7.38(m,2H)、7.19−7.26(m,7H)、7.11(m,4H)、7.03(t,2H)、6.96(dd,1H)、6.90(d,1H)、6.21(m,2H)、6.12(d,1H).
合成例(68)および(69)
N,N,5,9,11−ペンタフェニル−9,11−ジヒドロ−5H−5,9,11−トリアザ−16b−ボラインデノ[2,1−b]ナフト[1,2,3−fg]アントラセン−3−アミンの合成
Figure 0005935199
N,N,5−トリフェニル−9−(9−フェニル−9H−カルバゾール−2−イル)−5,9−ジヒドロ−5H−5,9−ジアザ−13b−ボラナフト[3,2,1−de]アントラセン−3−アミンの合成
Figure 0005935199
窒素雰囲気下、2−ブロモ−9−フェニル−9H−カルバゾール(10.0g)、アニリン(3.5g)、Pd−132(0.2g)、NaOtBu(4.5g)およびキシレン(100ml)の入ったフラスコを120℃で4時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液し、更に有機層を希塩酸で洗浄し、未反応のアニリンを除去した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=4/6(容積比))で精製することで、N,9−ジフェニル−9H−カルバゾール−2−アミン(10.4g)を得た。
Figure 0005935199
窒素雰囲気下、N−(2,3−ジクロロフェニル)−N,N,N−トリフェニルベンゼン−1,3−ジアミン(14.0g)、N,9−ジフェニル−9H−カルバゾール−2−アミン(10.4g)、Pd−132(0.2g)、NaOtBu(4.1g)およびキシレン(90ml)の入ったフラスコを120℃で1時間加熱撹拌した。反応液を室温まで冷却した後、水およびトルエンを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=4/6(容積比))で精製することで、2−クロロ−N−(3−(ジフェニルアミノ)フェニル)−N,N−ジフェニル−N−(9−フェニル−9H−カルバゾール−2−イル)ベンゼン−1,3−ジアミン(18.5g)を得た。
Figure 0005935199
2−クロロ−N−(3−(ジフェニルアミノ)フェニル)−N,N−ジフェニル−N−(9−フェニル−9H−カルバゾール−2−イル)ベンゼン−1,3−ジアミン(18.0g)およびt−ブチルベンゼン(100ml)の入ったフラスコに、窒素雰囲気下、氷浴で冷却しながら、1.7Mのt−ブチルリチウムペンタン溶液(27.2ml)を加えた。滴下終了後、60℃まで昇温して3時間撹拌した後、t−ブチルベンゼンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(4.4ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び氷浴で冷却してN,N−ジイソプロピルエチルアミン(8.1ml)を加えた。発熱が収まるまで室温で撹拌した後、120℃まで昇温して1時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液および酢酸エチルを加えることで析出した沈殿を吸引ろ過にて採取した。次いで、加熱したクロロベンゼンに溶解させ、シリカゲルショートパスカラム(展開液:加熱したトルエン)で精製した。加熱したへプタンで洗浄した後、クロロベンゼン/酢酸エチル混合溶媒で再沈殿させることで、式(1−2681)で表される化合物(3.0g)を得た。
反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液および酢酸エチルを加えることで析出した沈殿を採取した際のろ液を、活性炭カラムクロマトグラフィー(展開液:トルエン/へプタン=5/5(容積比))、次いでシリカゲルカラムクロマトグラフィー(トルエン/へプタン=4/6(容積比))で精製した。更にへプタン/酢酸エチル混合溶媒、次いでへプタン/トルエン混合溶媒で再沈殿させることで、式(1−2682)で表される化合物(0.6g)を得た。
Figure 0005935199
NMR測定により得られた化合物(1−2681)の構造を確認した。
H−NMR(400MHz,CDCl):δ=9.57(s,1H)、8.93(d,1H)、8.26(d,1H)、7.61(t,2H)、7.10−7.50(m,25H)、7.04(m,3H)、6.59(s,1H)、6.25(m,1H)、6.10(t,2H).
NMR測定により得られた化合物(1−2682)の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.86(d,1H)、8.73(d,1H)、8.43(d,1H)、8.24(d,1H)、7.31−7.56(m,13H)、7.29(dd,1H)、7.12−24(m,8H)、7.10(m,4H)、7.02(t,2H)、6.94(dd,1H)、6.79(d,1H)、6.16(m,2H)、6.07(d,1H).
合成例(70)
12−メチル−N,N,5−トリフェニル−9−(p−トリル)−5,9−ジヒドロ−5,9−ジアザ−13b−ボラナフト[3,2,1−de]アントラセン−3−アミンの合成
Figure 0005935199
窒素雰囲気下、N−(2,3−ジクロロフェニル)−N,N,N−トリフェニルベンゼン−1,3−ジアミン(15.0g)、ジ−p−トリルアミン(6.1g)、Pd−132(0.2g)、NaOtBu(4.5g)およびキシレン(70ml)の入ったフラスコを120℃で1時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=4/6(容積比))で精製した。目的物を含むフラクションを減圧留去することで再沈殿させ、2−クロロ−N−(3−(ジフェニルアミノ)フェニル)−N−フェニル−N,N−ジ−p−トリルベンゼン−1,3−ジアミン(15.0g)を得た。
Figure 0005935199
2−クロロ−N−(3−(ジフェニルアミノ)フェニル)−N−フェニル−N,N−ジ−p−トリルベンゼン−1,3−ジアミン(15.0g)およびt−ブチルベンゼン(100ml)の入ったフラスコに、窒素雰囲気下、氷浴で冷却しながら、1.6Mのt−ブチルリチウムペンタン溶液(29.2ml)を加えた。滴下終了後、60℃まで昇温して2時間撹拌した後、t−ブチルベンゼンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(4.4ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び氷浴で冷却してN,N−ジイソプロピルエチルアミン(8.1ml)を加えた。発熱が収まるまで室温で撹拌した後、120℃まで昇温して2時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=4/6)で精製した。更に加熱したへプタンで洗浄後、トルエン/酢酸エチル混合溶媒で再沈殿させることで、式(1−2626)で表される化合物(2.0g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.74(d,1H)、8.64(m,1H)、7.42−7.50(m,4H)、7.35(t,1H)、7.15−7.25(m,10H)、7.10(d,4H)、7.02(t,2H)、7.94(dd,1H)、6.68(d,1H)、6.20(m,1H)、6.11(d,1H)、6.04(d,1H)、2.52(s,3H)、2.48(s,3H).
合成例(71)
5−([1,1’−ビフェニル]−4−イル)−N,N,9−トリフェニル−5,9−ジヒドロ−5,9−ジアザ−13b−ボラナフト[3,2,1−de]アントラセン−3−アミンの合成
Figure 0005935199
窒素雰囲気下、N,N−ジフェニルベンゼン−1,3−ジアミン(12.0g)、4−ブロモ−1,1’−ビフェニル(30.2g)、Pd−132(0.3g)、NaOtBu(6.6g)およびキシレン(100ml)の入ったフラスコを100℃で2時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=4/6(容積比))で精製した。溶媒を減圧留去して得られた固体をへプタンで洗浄し、N,([1,1’−ビフェニル]−4−イル)−N,N−ジフェニルベンゼン−1,3−ジアミン(17.4g)を得た。
Figure 0005935199
窒素雰囲気下、2,3−ジクロロ−N,N−ジフェニルアニリン(12.0g)、N,([1,1’−ビフェニル]−4−イル)−N,N−ジフェニルベンゼン−1,3−ジアミン(15.0g)、Pd−132(0.3g)、NaOtBu(5.5g)およびキシレン(100ml)の入ったフラスコを120℃で1時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=4/6(容積比))で精製することで、N−([1,1’−ビフェニル]−4−イル)−2−クロロ−N−(3−(ジフェニルアミノ)フェニル)−N,N−ジフェニルベンゼン−1,3−ジアミン(20.2g)を得た。
Figure 0005935199
−([1,1’−ビフェニル]−4−イル)−2−クロロ−N−(3−(ジフェニルアミノ)フェニル)−N,N−ジフェニルベンゼン−1,3−ジアミン(16.0g)およびt−ブチルベンゼン(100ml)の入ったフラスコに、窒素雰囲気下、氷浴で冷却しながら、1.6Mのt−ブチルリチウムペンタン溶液(26.1ml)を加えた。滴下終了後、60℃まで昇温して2時間撹拌した後、t−ブチルベンゼンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(4.0ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び氷浴で冷却してN,N−ジイソプロピルエチルアミン(8.1ml)を加えた。発熱が収まるまで室温で撹拌した後、120℃まで昇温して2時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えることで析出した沈殿を吸引ろ過にて採取した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=4/6)で精製した。加熱したへプタンで洗浄した後、クロロベンゼン/酢酸エチル混合溶媒で再沈殿させることで、式(1−2683)で表される化合物(2.7g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.87(d,1H)、8.74(d,1H)、7.68(t,2H)、7.64(d,2H)、7.58(m,3H)、7.50(t,2H)、7.36−7.44(m,4H)、7.16−7.28(m,8H)、7.10(m,4H)、6.97(m,3H)、6.72(d,1H)、6.22(m,2H)、6.10(d,1H).
合成例(72)
16−フェニル−16H−8−オキサ−12b,16−ジアザ−4b−ボラジベンゾ[a,j]ペリレンの合成
Figure 0005935199
窒素雰囲気下、2,3−ジクロロ−N,N−ジフェニルアニリン(18.0g)、10H−フェノキサジン(15.0g)、Pd−132(0.4g)、NaOtBu(8.3g)およびキシレン(100ml)の入ったフラスコを120℃で1時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン)で精製するした。目的物を含むフラクションから溶媒を減圧留去し、へプタンを加えることで再沈殿させ、2−クロロ−3−(10H−フェノキサジン−10−イル)−N,N−ジフェニルアニリン(23.0g)を得た。
Figure 0005935199
2−クロロ−3−(10H−フェノキサジン−10−イル)−N,N−ジフェニルアニリン(20.0g)およびt−ブチルベンゼン(150ml)の入ったフラスコに、窒素雰囲気下、氷浴で冷却しながら、1.6Mのt−ブチルリチウムペンタン溶液(54.0ml)を加えた。滴下終了後、60℃まで昇温して3時間撹拌した後、t−ブチルベンゼンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(8.2ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び氷浴で冷却してN,N−ジイソプロピルエチルアミン(15.1ml)を加えた。発熱が収まるまで室温で撹拌した後、120℃まで昇温して2時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=3/7)で精製し、更に活性炭クロマトグラフィー(展開液:トルエン/へプタン=5/5(容積比))で精製した。クロロベンゼン/酢酸エチル混合溶媒で再沈殿させることで、式(1−2691)で表される化合物(2.8g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.73(d,1H)、8.20(d,1H)、7.65−7.80(m,3H)、7.56−7.64(d,2H)、7.38−7.54(m,3H)、7.20−7.37(m,3H)、7.16(m,1H)、7.11(m,1H)、7.05(t,1H)、6.97(t,1H)、6.77(d,1H)、6.27(d,1H)).
合成例(73)
9−([1,1’−ビフェニル]−3−イル)−N,N,5,11−テトラフェニル−5,9−ジヒドロ−5,9−ジアザ−13b−ボラナフト[3,2,1−de]アントラセン−3−アミンの合成
Figure 0005935199
窒素雰囲気下、[1,1’−ビフェニル]−3−アミン(19.0g)、4−ブロモ−1,1’−ビフェニル(25.0g)、Pd−132(0.8g)、NaOtBu(15.5g)およびキシレン(200ml)の入ったフラスコを120℃で6時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=5/5(容積比))で精製した。溶媒を減圧留去して得られた固体をへプタンで洗浄し、ジ([1,1’−ビフェニル]−3−イル)アミン(30.0g)を得た。
Figure 0005935199
窒素雰囲気下、N−(2,3−ジクロロフェニル)−N,N,N−トリフェニルベンゼン−1,3−ジアミン(15.0g)、ジ([1,1’−ビフェニル]−3−イル)アミン(10.0g)、Pd−132(0.2g)、NaOtBu(4.5g)およびキシレン(70ml)の入ったフラスコを120℃で1時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=5/5(容積比))で精製した。目的物を含むフラクションを減圧留去することで再沈殿させ、N,N−ジ([1,1’−ビフェニル]−3−イル)−2−クロロ−N−(3−(ジフェニルアミノ)フェニル)−N−フェニルベンゼン−1,3−ジアミン(20.3g)を得た。
Figure 0005935199
,N−ジ([1,1’−ビフェニル]−3−イル)−2−クロロ−N−(3−(ジフェニルアミノ)フェニル)−N−フェニルベンゼン−1,3−ジアミン(20.0g)およびt−ブチルベンゼン(150ml)の入ったフラスコに、窒素雰囲気下、氷浴で冷却しながら、1.6Mのt−ブチルリチウムペンタン溶液(32.6ml)を加えた。滴下終了後、60℃まで昇温して2時間撹拌した後、t−ブチルベンゼンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(5.0ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び氷浴で冷却してN,N−ジイソプロピルエチルアミン(9.0ml)を加えた。発熱が収まるまで室温で撹拌した後、120℃まで昇温して1.5時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=5/5)で精製した。更に、トルエン/へプタン混合溶媒、クロロベンゼン/酢酸エチル混合溶媒で再沈殿させることで、式(1−2676)で表される化合物(5.0g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.93(d,1H)、8.77(d,1H)、7.84(m,1H)、7.77(t,1H)、7.68(m,3H)、7.33−7.50(m,12H)、7.30(t,1H)、7.22(m,7H)、7.11(m,4H)、7.03(m,3H)、6.97(dd,1H)、6.20(m,2H)、6.11(d,1H)).
合成例(74)
5−オキサ−9−チア−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
窒素雰囲気下、1−ブロモ−3−フェノキシベンゼン(28.5g)、ベンゼンチオール(11.7ml)、ヨウ化銅(I)(2.2g)、炭酸カリウム(32.0g)およびNMP(120ml)の入ったフラスコを170℃まで加熱して6時間撹拌した。反応液を室温まで冷却し、NMPを減圧留去した後、アンモニア水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/9(容積比))で精製することで、(3−フェノキシフェニル)(フェニル)スルファン(23.0g)を得た。
Figure 0005935199
(3−フェノキシフェニル)(フェニル)スルファン(20.0g)およびキシレン(250ml)の入ったフラスコに、窒素雰囲気下、0℃で、1.0Mのsec−ブチルリチウムシクロヘキサン溶液(75.0ml)を加えた。滴下終了後、70℃まで昇温して2時間撹拌した後、キシレンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(8.2ml)を加え、室温で昇温して0.5時間撹拌した。その後、再び0℃まで冷却してN,N−ジイソプロピルエチルアミン(24.9ml)を加え、発熱が収まるまで室温で撹拌した後、120℃まで昇温して2時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=1/9)で精製した。得られた油状物質にへプタンを加え再沈殿させた後、酢酸エチル/へプタン混合溶媒で再沈殿させることで、式(1−1351)で表される化合物(4.4g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.72(d,1H)、8.58(d,1H)、7.65−7.75(m,3H)、7.53−7.61(m,2H)、7.47(m,2H)、7.38(t,1H)、7.34(d,1H).
合成例(75)
9−フェニル−9H−5−チア−9−アザ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
窒素雰囲気下、1−ブロモ−2−クロロ−3−フルオロベンゼン(27.4g)、ベンゼンチオール(13.3ml)、炭酸カリウム(36.0g)およびNMP(150ml)を120℃まで加熱して2時間撹拌した。反応液を室温まで冷却し、NMPを減圧留去した後、アンモニア水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:ヘプタン)で精製することで、(3−ブロモ−2−クロロフェニル)(フェニル)スルファン(27.4g)を得た。
Figure 0005935199
窒素雰囲気下、(3−ブロモ−2−クロロフェニル)(フェニル)スルファン(27.4g)、ジフェニルアミン(11.0g)、Pd−132(0.4g)、NaOtBu(8.0g)およびキシレン(120ml)の入ったフラスコを90℃で1.5時間加熱撹拌した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=1/9(容積比))で精製することで、2−クロロ−N,N−ジフェニル−3−(フェニルチオ)アニリン(19.0g)を得た。
Figure 0005935199
2−クロロ−N,N−ジフェニル−3−(フェニルチオ)アニリン(19.0g)およびt−ブチルベンゼン(150ml)の入ったフラスコに、窒素雰囲気下、氷浴で冷却しながら、1.7Mのt−ブチルリチウムペンタン溶液(30.0ml)を加えた。滴下終了後、25℃まで昇温して1時間撹拌した後、t−ブチルベンゼンより低沸点の成分を減圧留去した。−50℃まで冷却して三臭化ホウ素(5.6ml)を加え、室温まで昇温して0.5時間撹拌した。その後、再び氷浴で冷却してN,N−ジイソプロピルエチルアミン(19.8ml)を加えた。発熱が収まるまで室温で撹拌した後、120℃まで昇温して2時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加えて分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/へプタン=3/7)で精製した。更に、活性炭カラムクロマトグラフィー(展開液:トルエン/へプタン=5/5(容積比))で精製することで、式(1−1301)で表される化合物(0.1g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.66(d,1H)、8.59(d,1H)、7.70(m,3H)、7.62(t,1H)、7.42−7.54(m,3H)、7.37(m,3H)、7.32(d,1H)、7.27(m,1H)、6.80(d,1H)、6.51(d,1H).
合成例(76)
2,12−ジクロロ−5,9−ジオキサ−13b−チオホスファナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
2−ブロモ−1,3−ジフルオロベンゼン(12.0g)、4−クロロフェノール(25.0g)、炭酸カリウム(38.4g)およびNMP(150ml)の入ったフラスコを200℃で6時間加熱撹拌した。反応液を室温まで冷却して、NMPを減圧留去した後、水およびトルエンを加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:ヘプタン/トルエン=4/1(容積比))で精製し、更にへプタン溶液から再結晶させることで、4,4’−((2−ブロモ−1,3−フェニレン)ビス(オキシ))ビス(クロロベンゼン)(21.0g)を得た。
Figure 0005935199
4,4’−((2−ブロモ−1,3−フェニレン)ビス(オキシ))ビス(クロロベンゼン)(5.0g)およびトルエン(50ml)の入ったフラスコに、窒素雰囲気下、−75℃で、1.6Mのn−ブチルリチウムヘキサン溶液(7.6ml)を加えた。滴下終了後、1時間撹拌した後、ビスジエチルアミノクロロホスフィン(5.1ml)を加え、−20℃まで昇温して1時間撹拌した。その後、硫黄(0.9g)を加え、室温で終夜撹拌した。反応液に水を加え、トルエンで抽出した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=4/1(容積比))で精製した。更にへプタン溶液から再結晶させることで、2,6−ビス(4−クロロフェノキシ)−1−(N,N,N’,N’−テトラエチルジアミノチオホスファ)ベンゼン(4.6g)を得た。
Figure 0005935199
窒素雰囲気下、2,6−ビス(4−クロロフェノキシ)−1−(N,N,N’,N’−テトラエチルジアミノチオホスファ)ベンゼン(3.6g)、塩化アルミニウム(3.9g)およびオルトジクロロベンゼン(120ml)の入ったフラスコを150℃で6時間加熱撹拌した。反応液を室温まで冷却した後、水を加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=2/1(容積比))で精製することで式(1−4341)で表される化合物(1.5g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.01(dd,2H)、7.56(t,1H)、7.52(dd,2H)、7.32(m,2H)、7.15(m,2H).
合成例(77)
3,11−ジクロロ−5,9−ジオキサ−13b−チオホスファナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
2−ブロモ−1,3−ジフルオロベンゼン(12.0g)、3−クロロフェノール(25.0g)、炭酸カリウム(38.4g)およびNMP(150ml)の入ったフラスコを200℃で6時間加熱撹拌した。反応液を室温まで冷却して、NMPを減圧留去した後、水およびトルエンを加え分液した。次いで、シリカゲルカラムクロマトグラフィー(展開液:ヘプタン/トルエン=4/1(容積比))で精製し、更にへプタン溶液から再結晶させることで、3,3’−((2−ブロモ−1,3−フェニレン)ビス(オキシ))ビス(クロロベンゼン)(22.0g)を得た。
Figure 0005935199
3,3’−((2−ブロモ−1,3−フェニレン)ビス(オキシ))ビス(クロロベンゼン)(6.5g)およびトルエン(70ml)の入ったフラスコに、窒素雰囲気下、−75℃で、1.6Mのn−ブチルリチウムヘキサン溶液(10.0ml)を加えた。滴下終了後、1時間撹拌した後、ビスジエチルアミノクロロホスフィン(5.0ml)を加え、−20℃まで昇温して1時間撹拌した。その後、硫黄(1.0g)を加え、室温で終夜撹拌した。反応液に水を加え、トルエンで抽出した。次いで、シリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル=4/1(容積比))で精製した。更にへプタン溶液から再結晶させることで、2,6−ビス(3−クロロフェノキシ)−1−(N,N,N’,N’−テトラエチルジアミノチオホスファ)ベンゼン(6.8g)を得た。
Figure 0005935199
窒素雰囲気下、2,6−ビス(3−クロロフェノキシ)−1−(N,N,N’,N’−テトラエチルジアミノチオホスファ)ベンゼン(4.6g)、塩化アルミニウム(7.2g)およびオルトジクロロベンゼン(100ml)の入ったフラスコを150℃で7時間加熱撹拌した。反応液を室温まで冷却した後、水を加え分液した。次いで、クロロベンゼン溶液から再結晶させることで、式(1−4346)で表される化合物(2.2g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ=8.0(m,2H)、7.56(t,1H)、7.35−7.42(m,4H)、7.15(m,2H).
合成例(78)
9,10,19,20−テトラオキサ−4b,14b−ジチオホスファジナフト[1,2,3−fg:1’,2’,3’−qr]ペンタセンの合成
Figure 0005935199
窒素雰囲気下、1,4−ジブロモ−2,3,5,6−テトラフルオロベンゼン(6.24g)、フェノール(9.53g)、炭酸カリウム(14.0g)およびNMP(20ml)の入ったフラスコを140℃で18時間加熱撹拌した。反応液を室温まで冷却して、飽和食塩水およびトルエンを加え分液した。溶媒を減圧留去した後、シリカゲルショートパスカラム(展開液:トルエン)で精製した。溶媒を減圧留去して、粗精製物をメタノールを用いて洗浄することで1,4−ジブロモ−2,3,5,6−テトラフェノキシベンゼン(9.64g)を得た。
Figure 0005935199
1,4−ジブロモ−2,3,5,6−テトラフェノキシベンゼン(0.604g)のジエチルエーテル(4.0ml)溶液に、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(1.52ml)を加えた。1時間撹拌した後、室温まで昇温して1時間撹拌した。溶媒を減圧留去した後、0℃まで冷却してテトラヒドロフラン(5.0ml)およびビスジエチルアミノクロロホスフィン(0.590ml)を加え、1時間撹拌した。室温まで昇温して1時間撹拌した後、硫黄(80.1mg)を加え、1時間撹拌した。溶媒を減圧留去した後、メタノールで洗浄することで、白色固体として、1,4−ビス(N,N,N’,N’−テトラエチルジアミノホスファ)−2,3,5,6−テトラフェノキシベンゼン(0.685g)を得た。
Figure 0005935199
1,4−ビス(N,N,N’,N’−テトラエチルジアミノホスファ)−2,3,5,6−テトラフェノキシベンゼン(0.172g)のo−ジクロロベンゼン(2.4ml)溶液に、窒素雰囲気下、塩化アルミニウム(0.160g)を加えた。140℃で3時間加熱撹拌した後、150℃まで昇温して3時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やしたリン酸緩衝液(3.0ml)に注ぎ、次いでクロロホルムとジクロロメタンを加えて分液した。溶媒を減圧留去した後、ジクロロメタンを用いて洗浄することにより、淡黄色固体として式(1−721)で表される化合物(42.6mg)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H NMR(δppm in CDCl); 8.16 (dd, JHP = 13.2 Hz, J = 7.4 Hz, 4H), 7.61 (dd, J = 7.4, 8.0 Hz, 4H), 7.53 (dd, JHP = 6.2 Hz, J = 8.0 Hz, 4H), 7.42 (t, J = 7.4 Hz, 4H).
LRMS (DART) m/z 567 ([M+H]+)
合成例(79)
3,6,13,16−テトラブチル−9,10,19,20−テトラオキサ−4b,14b−ジボラジナフト[1,2,3−fg:1’,2’,3’−qr]ペンタセンの合成
Figure 0005935199
窒素雰囲気下、1,4−ジブロモ−2,3,5,6−テトラフルオロベンゼン(3.08g)、4−ブチルフェノール(7.70ml)、炭酸カリウム(6.91g)およびNMP(20ml)の入ったフラスコを140℃で33時間加熱撹拌した。反応液を室温まで冷却して、飽和食塩水およびトルエンを加え分液した。溶媒を減圧留去した後、シリカゲルショートパスカラム(展開液:トルエン)で精製した。溶媒を減圧留去して、粗精製物をメタノールを用いて洗浄することで1,4−ジブロモ−2,3,5,6−テトラ(4−ブチルフェノキシ)ベンゼン(4.13g)を得た。
Figure 0005935199
1,4−ジブロモ−2,3,5,6−テトラ(4−ブチルフェノキシ)ベンゼン(0.414g)のトルエン(3.0ml)溶液に、窒素雰囲気下、0℃で、1.6Mのn−ブチルリチウムヘキサン溶液(0.612ml)を加えた。室温まで昇温して1時間撹拌した後、溶媒を減圧留去した。0℃まで冷却してo−ジクロロベンゼン(4.0ml)および三臭化ホウ素(0.118ml)を加え、60℃まで昇温して3時間撹拌した。0℃まで冷却してN,N−ジイソプロピルエチルアミン(0.350ml)を加えた後、140℃で16時間加熱撹拌した。反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液に注ぎ、次いでクロロホルムを加えて分液した。溶媒を減圧留去した後、クロロホルムを用いて再結晶することにより、橙色固体として式(1−1149)で表される化合物(67.9mg)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H NMR(δppm in CDCl); 8.37 (d, J = 2.0 Hz, 4H), 7.54 (d, J = 8.4 Hz, 4H), 7.48 (dd, J = 2.0 Hz, 8.4 Hz, 4H), 2.78 (t, J = 7.6 Hz, 8H), 1.77 (m, 8H), 1.50 (sex, J = 7.3 Hz, 8H)、1.03 (t, J = 7.3 Hz, 12H).
LRMS (DART) m/z 686 (M+)
合成例(80)
10−メチル−5,9,11,15−テトラオキサ−19b,20b−ジボラジナフト[3,2,1−de:1’,2’,3’−jk]ペンタセンの合成
Figure 0005935199
フェノール(12.3g、0.130mol)、炭酸カリウム(18.0g、0.130mol)およびN−メチルピロリドン(NMP、250mL)に、窒素雰囲気下、室温で1−ブロモ−2,6−ジフルオロベンゼン(25.2g、0.130mol)を添加し、120℃で160時間加熱撹拌した。その後、NMPを減圧留去した後、トルエンを加えた。シリカゲルショートパスカラムを用いて濾過し、溶媒を減圧留去することで2−ブロモ−1−フルオロ−3−フェノキシベンゼンを淡赤色の液体として得た(26.4g、収率76%)。
Figure 0005935199
2−メチルレゾルシノール(6.03g、49mmol)、炭酸カリウム(53.7g、0.39mol)およびNMP(0.400L)に,窒素雰囲気下、室温で2−ブロモ−1−フルオロ−3−フェノキシベンゼン(27.3g、97.1mmol)を添加し、150℃で30時間加熱撹拌した後、160℃で18時間、170℃で26時間加熱撹拌した。その後、NMPを減圧留去した後、水およびトルエンを加え分液した。有機層をシリカゲルショートパスカラムを用いて濾過し、溶媒を減圧留去して粗生成物を得た。トルエンを用いて再結晶することで、白色固体として1,3−ビス(2−ブロモ−3−フェノキシフェノキシ)−2−メチルベンゼンを得た(1番晶;10.44g、71%純度、2番晶;3.73g、68%純度、合計収率33%)。
Figure 0005935199
1,3−ビス(2−ブロモ−3−フェノキシフェノキシ)−2−メチルベンゼン(0.228g、0.25mmol、純度68%)およびo−ジクロロベンゼン(4.0mL)に、窒素雰囲気下、0℃でブチルリチウムのヘキサン溶液(0.335mL、1.64M、0.55mmol)を添加した後、室温で21時間撹拌した。その後、更に0℃でブチルリチウムのヘキサン溶液(0.152mL、1.64M、0.25mmol)を添加した後、室温で4時間撹拌した。0℃で三臭化ホウ素(99.2μL、1.05mmol)を加え、室温で5時間撹拌した後、N,N−ジイソプロピルエチルアミン(0.174mL、1.0mmol)を0℃で添加した。窒素気流下、100℃で1時間加熱撹拌することでヘキサンを留去した後,170℃で24時間加熱撹拌した。溶媒を減圧留去し,トルエンおよびアセトニトリルを用いて洗浄することで白色固体として式(1−1150)で表される化合物を得た(24.0mg、収率20%)。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(δppm in CDCl);10.03 (s, 1H), 8.93 (d, 2H), 7.82 (t, 2H), 7.76 (t, 2H), 7.61 (d, 2H), 7.51 (t, 2H), 7.33 (d, 2H), 7.28 (d, 2H), 2.84 (s, 3H).
LRMS(DART) calcd for C31H18B2O4 [(M + H)+] : 477.1, found : 477.2
合成例(81)
2,12−ジメチル−N,N,5,9−テトラ−p−トリル−5,13−ジヒドロ−5,9−ジアザ−13b−ボラナフト[3,2,1−de]アントラセン−7−アミンの合成
Figure 0005935199
まず、N,N,N,N,N,N−ヘキサキス(4−メチルフェニル)−1,3,5−ベンゼントリアミン(16.6g、25mmol)およびo−ジクロロベンゼン(150ml)に窒素雰囲気下、室温で三臭化ホウ素(4.73ml、50mmol)を加えた後、170℃で20時間加熱撹拌した。その後、60℃で減圧下、反応溶液を留去した。フロリジルショートパスカラムを用いて濾過し、溶媒を減圧留去して粗成生物を得た。ヘキサンを用いてその粗生成物を洗浄し、得られた固体に対してトルエンを用いて洗浄することで黄色固体として式(1−2662)で表される化合物(8.08g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ = 2.27 (s, 6H), 2.39 (s, 6H),2.50 (s, 6H), 5.48 (brs, 2H), 6.68 (d, 2H), 6.83 (ddd, 4H), 6.89 (ddd, 4H), 7.07 (ddd, 4H), 7.17 (dd, 2H), 7.25 (ddd, 4H), 8.68 (sd, 2H).
13C−NMR(101MHz,CDCl):δ = 20.78 (2C), 21.06 (2C), 21.11 (2C), 96.5 (2C), 116.7 (2C), 126.0 (4C), 128.2 (2C), 129.3 (4C), 129.9 (4C), 131.1 (4C), 131.3 (2C), 133.0 (2C), 134.6 (2C), 137.6 (2C), 139.8 (2C), 143.9 (2C), 145.9 (2C), 148.0 (2C), 151.0.
合成例(82)
9,11−ジフェニル−4b,11,15b,19b−テトラヒドロ−9H−9,11,19b−トリアザ−4b,15b−ジボラベンゾ[3,4]フェナントロ[2,1,10,9−fghi]ペンタセンの合成
Figure 0005935199
まず、N,N,5,9−テトラフェニル−5,13−ジヒドロ−5,9−ジアザ−13b−ボラナフト[3,2,1−de]アントラセン−7−アミン(0.294g、0.5mmol)およびo−ジクロロベンゼン(3.0ml)に、オートクレーブ内、窒素雰囲気下、室温で三臭化ホウ素(0.142ml、1.5mmol)を加えた後、260℃で48時間加熱撹拌した。その後、N,N−ジイソプロピルエチルアミン(0.775ml、4.5mmol)を加え、フロリジルショートパスカラムを用いて濾過し、溶媒を減圧留去して粗成生物を得た。酢酸エチルを用いて粗成生物を洗浄することで、黄色固体として式(1−2665)で表される化合物(0.118g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ = 5.24 (s, 1H), 6.81 (d, 2H), 7.12 - 7.18 (m, 6H), 7.34 (td, 2H), 7.41 - 7.49 (m, 8H), 7.45 (ddd, 2H), 8.31 (dd, 2H), 8.81 (dd, 2H), 8.91 (dd, 2H).
HRMS (DART) m/z [M+H]+ Calcd for C42H28B2N3596.2483, observed 596.2499.
合成例(83)
3,6,14,17−テトラメチル−9,11−ジ−p−トリル−4b,11,15b,19b−テトラヒドロ−9H−9,11,19b−トリアザ−4b,15b−ジボラベンゾ[3,4]フェナントロ[2,1,10,9−fghi]ペンタセンの合成
Figure 0005935199
まず、N,N,N,N,N,N−ヘキサキス(4−メチルフェニル)−1,3,5−ベンゼントリアミン(0.322g、0.5mmol)およびo−ジクロロベンゼン(3.0ml)に、オートクレーブ内、窒素雰囲気下、室温でトリフェニルボラン(0.730g、3.0mmol)、三臭化ホウ素(0.284ml、3.0mmol)を加えた後、260℃で20時間加熱撹拌した。その後、N,N−ジイソプロピルエチルアミン(1.55ml、9.1mmol)を加え、フロリジルショートパスカラムを用いて濾過し、溶媒を減圧留去して粗生成物を得た。ヘキサンを用いてその粗生成物を洗浄し、得られた固体に対して酢酸エチルを用いて洗浄することで、黄色固体として式(1−2678)で表される化合物(0.188g)を得た。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(400MHz,CDCl):δ = 2.45 (s, 6H), 2.65 (s, 6H), 2.58 (s, 6H), 5.24 (brs, 1H), 6.74 (d, 2H), 6.97 (d, 4H), 7.15 - 7.27 (m, 6H), 7.34 (dd, 2H), 8.18 (d, 2H), 8.58 (d, 2H), 8.68 (d, 2H).
HRMS (DART) m/z [M+H]+ Calcd for C48H40B2N3680.3424, observed 680.3404.
合成例(84)
7−フェノキシ−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
フェノール(6.35g、67.5mmol)、炭酸カリウム(9.33g、67.5mmol)およびN−メチルピロリドン(NMP、80mL)に、窒素雰囲気下、室温で1−ブロモ−2,4,6−トリフルオロベンゼン(1.77mL、15.0mol)を添加し、150℃で20時間加熱撹拌した。水およびトルエンを加え分液した後、有機層をシリカゲルショートパスカラムを用いて濾過した。溶媒を減圧留去しメタノールで洗浄することで1−ブロモ−2,4,6−トリフェノキシベンゼンを白色の固体として得た(5.33g、収率82%)。
Figure 0005935199
1−ブロモ−2,4,6−トリフェノキシベンゼン(0.217g、0.5mmol)およびt−ブチルベンゼン(2.0mL)に、窒素雰囲気下、0℃でブチルリチウムのヘキサン溶液(0.335mL、1.64M、0.55mmol)を添加した後、室温で3.5時間撹拌した。その後、0℃で三臭化ホウ素(71.1μL、0.75mmol)を加え、室温で12.5時間撹拌した後、N,N−ジイソプロピルエチルアミン(0.174mL、1.0mmol)を0℃で添加した。窒素気流下、100℃で1時間加熱撹拌することでヘキサンを留去した後、120℃で5時間加熱撹拌した。150℃で16.5時間加熱撹拌した後、溶媒を減圧留去した。トルエンを加えた後、シリカゲルショートパスカラムを用いて濾過し、溶媒を減圧留去して粗生成物を得た。アセトニトリルを用いて洗浄することで、白色固体として式(1−4401)で表される化合物を得た(0.101g、収率56%)。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(δppm in CDCl);δ = 8.67 (dd, 2H), 7.68 (ddd, 2H), 7.50 - 7.66 (m, 4H), 7.38 (ddd, 2H), 7.25 (td, 1H), 7.19 (dd, 2H), 7.19 (S, 2H).
LRMS (DART) calcd for C24H16B1O3 [(M + H)+] : 363.1, found : 363.1
合成例(85):
3,11−ジメチル−7−(m−トリルオキシ)−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
m−クレゾール(5.76g、32mmol)、炭酸カリウム(4.42g、32mmol)およびN−メチルピロリドン(NMP、30mL)に、窒素雰囲気下、室温で1−ブロモ−2,4,6−トリフルオロベンゼン(1.50g、7.1mmol)を添加し、150℃で48時間加熱撹拌した。水およびトルエンを加え分液した後、有機層をシリカゲルショートパスカラムを用いて濾過した。溶媒を減圧留去することで1−ブロモ−,4,6−トリス(m−トリルオキシ)ベンゼンを無色の液体として得た(3.29g、収率97%)。
NMR測定により得られた化合物の構造を確認した。
H−NMR(δppm in CDCl);δ = 7.21 (t, 2H), 7.15 (t, 1H), 6.93 (d, 2H), 6.80-6.88 (m, 5H), 6.74 (s, 1H), 6.73 (d, 1H), 6.36 (s, 2H), 2.33 (s, 6H), 2.28 (s, 3H).
Figure 0005935199
1−ブロモ−2,4,6−トリス(m−トリルオキシ)ベンゼン(0.146g、0.31mmol)およびt−ブチルベンゼン(1.0mL)に、窒素雰囲気下、0℃でブチルリチウムのヘキサン溶液(0.205mL、1.64M、0.34mmol)を添加した後、室温で10時間撹拌した。その後、0℃で三臭化ホウ素(44.1μL、0.47mmol)を加え、室温で5時間撹拌した後、N,N−ジイソプロピルエチルアミン(0.108mL、0.62mmol)を0℃で添加した。150℃で27時間加熱撹拌した後、N,N−ジイソプロピルエチルアミン(0.108mL、0.62mmol)を0℃で添加した。トルエンを加えた後、フロリジルショートパスカラムを用いて濾過し、溶媒を減圧留去して粗生成物を得た。粗生成物に対して、アセトニトリルを用いて洗浄することで白色固体として、式(1−4421−1)で表される化合物を得た(57.0mg、収率45%)。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(δppm in CDCl);δ = 8.51 (d, 2H), 7.26-7.33 (m, 3H), 7.18 (d, 2H), 6.97-7.06 (m, 3H), 6.76 (s, 2H), 2.50 (s, 6H), 2.39 (s, 3H).
LRMS(EI+) m/z 404 (M+)
合成例(86):
2,12−ジブチル−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンの合成
Figure 0005935199
p−ブチルフェノール(13.8mL、90mmol)、炭酸カリウム(12.4g、90mmol)およびN−メチルピロリドン(NMP、120mL)に、窒素雰囲気下、室温で1−ブロモ−2,6−ジフルオロベンゼン(3.36mL、30mmol)を添加し、150℃で84時間加熱撹拌した。水およびトルエンを加え分液した後、有機層をシリカゲルショートパスカラムを用いて濾過した。溶媒を減圧留去することで、1−ブロモ−2,6−ビス(p−ブチルフェノキシ)ベンゼンを褐色の液体として得た(9.46g、収率70%)。
NMR測定により得られた化合物の構造を確認した。
H−NMR(δppm in CDCl);δ = 7.16 (d, 4H), 7.11 (t, 1H), 6.95 (d, 4H), 6.63 (d, 2H), 2.60 (t, 4H), 1.60 (m, 4H), 1.36 (m, 4H), 0.93 (t, 6H).
Figure 0005935199
1−ブロモ−2,6−ビス(p−ブチルフェノキシ)ベンゼン(0.453g、1.0mmol)およびt−ブチルベンゼン(4.0mL)に、窒素雰囲気下、0℃でブチルリチウムのヘキサン溶液(0.671mL、1.64M、1.1mmol)を添加した後、室温で2時間撹拌した。その後、0℃で三臭化ホウ素(0.142mL、1.5mmol)を加え、室温で20時間撹拌した後、N,N−ジイソプロピルエチルアミン(0.348mL、2.0mmol)を0℃で添加した。窒素気流下、100℃で2時間加熱撹拌することでヘキサンを留去した後、130℃で8時間加熱撹拌した。150℃で20時間加熱撹拌した後、N,N−ジイソプロピルエチルアミン(0.348mL、2.0mmol)を0℃で添加した。トルエンを加えた後、フロリジルショートパスカラムを用いて濾過し、溶媒を減圧留去して粗生成物を得た。粗生成物に対し、アセトニトリルを用いて洗浄することで白色固体として、式(1−1−1)で表される化合物を得た(0.130mg、収率34%)。
Figure 0005935199
NMR測定により得られた化合物の構造を確認した。
H−NMR(δppm in CDCl);δ = 8.46 (s, 2H), 7.76 (t, 1H), 7.54 (d, 2H), 7.47 (d, 2H), 7.19 (d, 2H), 2.82 (t, 4H), 1.75 (m, 4H), 1.46 (m, 4H), 1.00 (t, 6H).
LRMS(EI+) m/z 382 (M+)
原料の化合物を適宜変更することにより、上述した合成例に準じた方法で、本発明の他の多環芳香族化合物を合成することができる。
以下、本発明をさらに詳細に説明するために各実施例を示すが、本発明はこれらに限定されるものではない。
実施例1および2に係る有機EL素子を作製し、それぞれ100cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表1に示す。
Figure 0005935199
表1において、「HI」はN,N4’−ジフェニル−N,N4’−ビス(9−フェニル−9H−カルバゾール−3−イル)−[1,1’−ビフェニル]−4,4’−ジアミン、「HAT−CN」は1,4,5,8,9,12−ヘキサアザトリフェニレンヘキサカルボニトリル、「HT」はN−([1,1’−ビフェニル]−4−イル)−N−(4−(9−フェニル−9H−カルバゾール−3−イル)フェニル)−[1,1’−ビフェニル]−4−アミン、「BH1」は9−フェニル−10−(4−フェニルナフタレン−1−イル)アントラセン、「ET−2」は9−(4’−(ジメシチルボリル)−[1,1’−ビナフタレン]−4−イル)−9H−カルバゾール、「ET−1」は5,5“−(2−フェニルアントラセン−9,10−ジイル)ジ−2,2’−ビピリジンである(以降の表でも同じ)。以下に化学構造を示す。
Figure 0005935199
<実施例1>
<化合物(1−176)を発光層のドーパント材料に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨して得られる26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HAT−CNを入れたモリブデン製蒸着ボート、HTを入れたモリブデン製蒸着用ボート、BH1を入れたモリブデン製蒸着用ボート、本発明の化合物(1−176)を入れたモリブデン製蒸着用ボート、ET−2を入れたモリブデン製蒸着用ボート、ET−1を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10−4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚65nmになるように蒸着して正孔注入層1を形成し、次いで、HAT−CNが入った蒸着用ボートを加熱して膜厚5nmになるように蒸着して正孔注入層2を形成した。更に、HTが入った蒸着用ボートを加熱して膜厚60nmになるように蒸着し、正孔輸送層を形成した。次に、BH1が入った蒸着用ボートと化合物(1−176)が入った蒸着用ボートを同時に加熱して膜厚25nmになるように蒸着して発光層を形成した。BH1と化合物(1−176)の重量比がおよそ80対20になるように蒸着速度を調節した。次に、ET−2の入った蒸着用ボートを加熱して膜厚20nmになるように蒸着して電子輸送層2を形成し、更にET−1の入った蒸着用ボートを加熱して膜厚10nmに電子輸送層1を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムが入った蒸着用ボートを加熱して膜厚100nmになるように0.01〜2nm/秒の蒸着速度で蒸着することにより陰極を形成し、有機EL素子を得た。
ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約437nmにピークトップを有する青色発光が得られた。輝度100cd/mにおける外部量子効率は3.39%であった。
<実施例2>
<化合物(1−100)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−176)を化合物(1−100)に替えた以外は実施例1に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約457nmにピークトップを有する青色発光が得られた。輝度100cd/mにおける外部量子効率は2.78%であった。
更に、実施例3および4に係る有機EL素子を作製し、それぞれ100cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表2に示す。
Figure 0005935199
表2において、「TBB」はN,N,N’,N’−テトラ([1,1’−ビフェニル]−4−イル)−[1,1’−ビフェニル]−4,4’−ジアミン、「CBP」は4,4’−ジ(9H−カルバゾリル−9−イル)−1,1’−ビフェニル、「TPBi」は1,3,5−トリス(1−フェニル−1H−ベンゾ[d]イミダゾール−2−イル)ベンゼンである。以下に化学構造を示す。
Figure 0005935199
<実施例3>
<化合物(1−141)を発光層のドーパント材料に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨して得られる26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HAT−CNを入れたモリブデン製蒸着用ボート、TBBを入れたモリブデン製蒸着用ボート、CBPを入れたモリブデン製蒸着ボート、本発明の化合物(1−141)を入れたモリブデン製蒸着用ボート、TPBiを入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10−4Paまで減圧し、まず、HAT−CNが入った蒸着用ボートを加熱して膜厚10nmになるように蒸着して正孔注入層を形成し、次いで、TBBが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔輸送層を形成した。次に、CBPが入った蒸着用ボートと化合物(1−141)が入った蒸着用ボートを同時に加熱して膜厚30nmになるように蒸着して発光層を形成した。CBPと化合物(1−141)の重量比がおよそ80対20になるように蒸着速度を調節した。次に、TPBiの入った蒸着用ボートを加熱して膜厚50nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムが入った蒸着用ボートを加熱して膜厚100nmになるように0.01〜2nm/秒の蒸着速度で蒸着することにより陰極を形成し、有機EL素子を得た。
ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約534nmにピークトップを有する緑色発光が得られた。輝度100cd/mにおける外部量子効率は6.29%だった。
<実施例4>
<化合物(1−81)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−141)を化合物(1−81)に替えた以外は実施例3に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度100cd/mにおける外部量子効率は8.37%であった。
更に、実施例5に係る有機EL素子を作製し、1000cd/mまたは100cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表3に示す。
Figure 0005935199
表3において、「Ir(PPy)」はトリス(2−フェニルピリジン)イリジウム(III)である。以下に化学構造を示す。
Figure 0005935199
<実施例5>
<化合物(1−91)を発光層のホスト材料に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨して得られる26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HAT−CNを入れたモリブデン製蒸着用ボート、TBBを入れたモリブデン製蒸着用ボート、本発明の化合物(1−91)を入れたモリブデン製蒸着ボート、Ir(PPy)を入れたモリブデン製蒸着用ボート、TPBiを入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10−4Paまで減圧し、まず、HAT−CNが入った蒸着用ボートを加熱して膜厚10nmになるように蒸着して正孔注入層を形成し、次いで、TBBが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔輸送層を形成した。次に、化合物(1−91)が入った蒸着用ボートとIr(PPy)が入った蒸着用ボートを同時に加熱して膜厚30nmになるように蒸着して発光層を形成した。化合物(1−91)とIr(PPy)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、TPBiの入った蒸着用ボートを加熱して膜厚50nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムが入った蒸着用ボートを加熱して膜厚100nmになるように0.01〜2nm/秒の蒸着速度で蒸着することにより陰極を形成し、有機EL素子を得た。
ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は10.88%だった。また、輝度100cd/mにおける外部量子効率は14.76%だった。
更に、実施例6〜14に係る有機EL素子を作製し、1000cd/mまたは100cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表4に示す。
Figure 0005935199
<実施例6>
<化合物(1−152)を発光層のホスト材料に用いた素子>
発光層のホスト材料である化合物(1−91)を化合物(1−152)に替えた以外は実施例5に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は9.36%であった。また、輝度100cd/mにおける外部量子効率は13.26%であった。
<実施例7>
<化合物(1−1048)を発光層のホスト材料に用いた素子>
発光層のホスト材料である化合物(1−91)を化合物(1−1048)に替えた以外は実施例5に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は9.50%であった。また、輝度100cd/mにおける外部量子効率は12.43%であった。
<実施例8>
<化合物(1−1049)を発光層のホスト材料に用いた素子>
発光層のホスト材料である化合物(1−91)を化合物(1−1049)に替えた以外は実施例5に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は6.54%であった。また、輝度100cd/mにおける外部量子効率は7.44%であった。
<実施例9>
<化合物(1−1050)を発光層のホスト材料に用いた素子>
発光層のホスト材料である化合物(1−91)を化合物(1−1050)に替えた以外は実施例5に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は10.98%であった。また、輝度100cd/mにおける外部量子効率は12.32%であった。
<実施例10>
<化合物(1−100)を発光層のホスト材料に用いた素子>
発光層のホスト材料である化合物(1−91)を化合物(1−100)に替えた以外は実施例5に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は5.73%であった。また、輝度100cd/mにおける外部量子効率は8.75%であった。
<実施例11>
<化合物(1−49)を発光層のホスト材料に用いた素子>
発光層のホスト材料である化合物(1−91)を化合物(1−49)に替えた以外は実施例5に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は7.33%であった。また、輝度100cd/mにおける外部量子効率は10.36%であった。
<実施例12>
<化合物(1−176)を発光層のホスト材料に用いた素子>
発光層のホスト材料である化合物(1−91)を化合物(1−176)に替えた以外は実施例5に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は10.74%であった。また、輝度100cd/mにおける外部量子効率は11.77%であった。
<実施例13>
<化合物(1−1069)を発光層のホスト材料に用いた素子>
発光層のホスト材料である化合物(1−91)を化合物(1−1069)に替えた以外は実施例5に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は8.96%であった。また、輝度100cd/mにおける外部量子効率は11.80%であった。
<実施例14>
<化合物(1−1201)を発光層のホスト材料に用いた素子>
発光層のホスト材料である化合物(1−91)を化合物(1−1201)に替えた以外は実施例5に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は10.14%であった。また、輝度100cd/mにおける外部量子効率は12.17%であった。
更に、実施例15および16に係る有機EL素子を作製し、それぞれ1000cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表5に示す。
Figure 0005935199
<実施例15>
<化合物(1−1145)を発光層のドーパント材料に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨して得られる26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、HAT−CNを入れたモリブデン製蒸着ボート、HTを入れたモリブデン製蒸着用ボート、BH1を入れたモリブデン製蒸着用ボート、本発明の化合物(1−1145)を入れたモリブデン製蒸着用ボート、ET−2を入れたモリブデン製蒸着用ボート、ET−1を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10−4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層1を形成し、次いで、HAT−CNが入った蒸着用ボートを加熱して膜厚5nmになるように蒸着して正孔注入層2を形成した。更に、HTが入った蒸着用ボートを加熱して膜厚25nmになるように蒸着し、正孔輸送層を形成した。次に、BH1が入った蒸着用ボートと化合物(1−1145)が入った蒸着用ボートを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。BH1と化合物(1−1145)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、ET−2の入った蒸着用ボートを加熱して膜厚20nmになるように蒸着して電子輸送層2を形成し、更にET−1の入った蒸着用ボートを加熱して膜厚10nmに電子輸送層1を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムが入った蒸着用ボートを加熱して膜厚100nmになるように0.01〜2nm/秒の蒸着速度で蒸着することにより陰極を形成し、有機EL素子を得た。
ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約449nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は4.75%であった。
<実施例16>
<化合物(1−401)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−1145)を化合物(1−401)に替えた以外は実施例15に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約458nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は4.33%であった。
更に、実施例17〜19に係る有機EL素子を作製し、1000cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表6に示す。
Figure 0005935199
表6において、「TcTa」はトリス(4−カルバゾリル−9−イルフェニル)アミンである。以下に化学構造を示す。
Figure 0005935199
<実施例17>
<化合物(1−1101)を発光層のホスト材料に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、HAT−CNを入れたタンタル製蒸着ルツボ、TBBを入れたタンタル製蒸着用ルツボ、TcTaを入れたタンタル製蒸着用ルツボ、本発明の化合物(1−1101)を入れたタンタル製蒸着用ルツボ、Ir(PPy)を入れたタンタル製蒸着用ルツボ、TPBiを入れたタンタル製蒸着用ルツボ、LiFを入れたタンタル製蒸着用ルツボおよびアルミニウムを入れた窒化アルミニウム製蒸着用ルツボを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を2.0×10−4Paまで減圧し、まず、HAT−CNが入った蒸着用ルツボを加熱して膜厚10nmになるように蒸着し、次いで、TBBが入った蒸着用ルツボを加熱して膜厚20nmになるように蒸着し、更にTcTaが入った蒸着用ルツボをを加熱して膜厚20nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成した。次に、本発明の化合物(1−1101)が入った蒸着用ルツボとIr(PPy)の入った蒸着用ルツボを同時に加熱して膜厚30nmになるように蒸着して発光層を形成した。本発明の化合物(1−1101)とIr(PPy)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、TPBiの入った蒸着用ボートを加熱して膜厚50nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、LiFが入った蒸着用ルツボを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムの入った蒸着用ルツボを加熱して膜厚100nmになるように蒸着して陰極を形成した。このとき、蒸着速度が0.1nm〜2nm/秒になるように蒸着して陰極を形成し有機電界発光素子を得た。
ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は10.09%だった。
<実施例18>
<化合物(1−1102)を発光層のホスト材料に用いた素子>
発光層のホスト材料である化合物(1−1101)を化合物(1−1102)に替えた以外は実施例17に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は7.99%だった。
<実施例19>
<化合物(1−1103)を発光層のホスト材料に用いた素子>
発光層のホスト材料である化合物(1−1101)を化合物(1−1103)に替えた以外は実施例17に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は9.05%だった。
更に、実施例20および21に係る有機EL素子を作製し、1000cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表7に示す。
Figure 0005935199
表7において、「ET−3」は3−(3−10−(ナフタレン−2−イル)アントラセン−9−イル)フェニル)ピリジンである。以下に化学構造を示す。
Figure 0005935199
<実施例20>
<化合物(1−1192)を電子輸送層に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、HAT−CNを入れたタンタル製蒸着用ルツボ、TBBを入れたタンタル製蒸着用ルツボ、TcTaを入れたタンタル製蒸着用ルツボ、CBPを入れたタンタル製蒸着用ルツボ、Ir(PPy)を入れたタンタル製蒸着用ルツボ、本発明の化合物(1−1192)を入れたタンタル製蒸着用ルツボ、ET−3を入れたタンタル製蒸着用ルツボ、LiFを入れたタンタル製蒸着用ルツボおよびアルミニウムを入れた窒化アルミニウム製蒸着用ルツボを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を2.0×10−4Paまで減圧し、まず、HAT−CNが入った蒸着用ルツボを加熱して膜厚10nmになるように蒸着し、次いで、TBBが入った蒸着用ルツボを加熱して膜厚20nmになるように蒸着し、更にTcTaが入った蒸着用ルツボをを加熱して膜厚10nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成した。次に、CBPが入った蒸着用ルツボとIr(PPy)の入った蒸着用ルツボを同時に加熱して膜厚30nmになるように蒸着して発光層を形成した。CBPとIr(PPy)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、本発明の化合物(1−1192)の入った蒸着用ルツボを加熱して膜厚50nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、LiFが入った蒸着用ルツボを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムの入った蒸着用ルツボを加熱して膜厚100nmになるように蒸着して陰極を形成した。このとき、蒸着速度が0.1nm〜2nm/秒になるように蒸着して陰極を形成し有機電界発光素子を得た。
ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は13.49%だった。
<実施例21>
<化合物(1−1192)を電子輸送層1、ET−3を電子輸送層2に用いた素子>
電子輸送層1として化合物(1−1192)を10nm蒸着した後、電子輸送層2としてET−3を40nm蒸着することで電子輸送層を2層に替えた以外は実施例20に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約512nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は11.54%だった。
更に、実施例22に係る有機EL素子を作製し、1000cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表8に示す。
Figure 0005935199
表8において、「BH2」は1,3−ジ(ピレン−1−イル)ベンゼン、「ET−4」は3,9−ジ(ナフタレン−2−イル)スピロ[ベンゾ[a]フルオレン−11,9’−フルオレン]である。以下に化学構造を示す。
Figure 0005935199
<実施例22>
<化合物(1−447)を発光層のドーパントに用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、HIを入れたタンタル製蒸着ルツボ、HAT−CNを入れたタンタル製蒸着用ルツボ、HTを入れたタンタル製蒸着用ルツボ、BH2を入れたタンタル製蒸着用ルツボ、本発明の化合物(1−447)を入れたタンタル製蒸着用ルツボ、ET−4を入れたタンタル製蒸着用ルツボ、ET−3を入れたタンタル製蒸着用ルツボ、LiFを入れたタンタル製蒸着用ルツボおよびアルミニウムを入れた窒化アルミニウム製蒸着用ルツボを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を2.0×10−4Paまで減圧し、まず、HIが入った蒸着用ルツボを加熱して膜厚40nmになるように蒸着し、次いで、HAT−CNが入った蒸着用ルツボを加熱して膜厚5nmになるように蒸着し、更にHTが入った蒸着用ルツボを加熱して膜厚25nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成した。次に、BH2が入った蒸着用ルツボと本発明の化合物(1−447)の入った蒸着用ルツボを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。BH2と本発明の化合物(1−447)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、ET−4の入った蒸着用ルツボを加熱して膜厚20nmになるように蒸着し、次いで、ET−3の入った蒸着用ルツボを加熱して膜厚10nmになるように蒸着することで2層からなる電子輸送層を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、LiFが入った蒸着用ルツボを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムの入った蒸着用ルツボを加熱して膜厚100nmになるように蒸着して陰極を形成した。このとき、蒸着速度が0.1nm〜2nm/秒になるように蒸着して陰極を形成し有機電界発光素子を得た。
ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約457nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は6.15%だった。
更に、実施例23〜27に係る有機EL素子を作製し、1000cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表9に示す。
Figure 0005935199
表9において、「BD1」は7,7−ジメチル−N,N−ジフェニル−N,N−ビス(4−(トリメチルシリル)フェニル)−7H−ベンゾ[c]フルオレン−5,9−ジアミンである。以下に化学構造を示す。
Figure 0005935199
<実施例23>
<化合物(1−50)を電子輸送層1/ET−1を電子輸送層2に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、HIを入れたタンタル製蒸着用ルツボ、HAT−CNを入れたタンタル製蒸着用ルツボ、HTを入れたタンタル製蒸着用ルツボ、BH1を入れたタンタル製蒸着用ルツボ、BD1を入れたタンタル製蒸着用ルツボ、本発明の化合物(1−50)を入れたタンタル製蒸着用ルツボ、ET−1を入れたタンタル製蒸着用ルツボ、ET−3を入れたタンタル製蒸着用ルツボ、LiFを入れたタンタル製蒸着用ルツボおよびアルミニウムを入れた窒化アルミニウム製蒸着用ルツボを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を2.0×10−4Paまで減圧し、まず、HIが入った蒸着用ルツボを加熱して膜厚40nmになるように蒸着し、次いで、HAT−CNが入った蒸着用ボートを加熱して膜厚5nmになるように蒸着し、更にHTが入った蒸着用ルツボをを加熱して膜厚25nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成した。次に、BH1が入った蒸着用ルツボとBD1が入った蒸着用ルツボを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。BH1とBD1の重量比がおよそ95対5になるように蒸着速度を調節した。次に、本発明の化合物(1−50)の入った蒸着用ルツボを加熱して膜厚10nmになるように蒸着し、次いで、ET−1の入った蒸着用ルツボを加熱して膜厚20nmになるように蒸着することで2層からなる電子輸送層を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、LiFが入った蒸着用ルツボを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムの入った蒸着用ルツボを加熱して膜厚100nmになるように蒸着して陰極を形成した。このとき、蒸着速度が0.1nm〜2nm/秒になるように蒸着して陰極を形成し有機電界発光素子を得た。
ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は8.08%だった。
<実施例24>
<化合物(1−49)を電子輸送層1、ET−1を電子輸送層2に用いた素子>
電子輸送層1を化合物(1−49)に替えた以外は実施例23に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は8.86%だった。
<実施例25>
<化合物(1−50)を電子輸送層1、ET−3を電子輸送層2に用いた素子>
電子輸送層2をET−3に替えた以外は実施例23に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は8.16%だった。
<実施例26>
<化合物(1−49)を電子輸送層1、ET−3を電子輸送層2に用いた素子>
電子輸送層1を化合物(1−49)、電子輸送層2をET−3に替えた以外は実施例23に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は8.94%だった。
<実施例27>
<化合物(1−50)を電子輸送層1に用いた素子>
電子輸送層2をなくして、電子輸送層1の膜厚を30nmに変えた以外は実施例23に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は4.63%だった。
<実施例28>
<化合物(1−1050)を電子輸送層1に用いた素子>
電子輸送層2をなくして、電子輸送層1の膜厚を30nmに変えた以外は実施例23に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は3.39%だった。
<実施例29>
<化合物(1−1102)を電子輸送層1に用いた素子>
電子輸送層2をなくして、電子輸送層1の膜厚を30nmに変えた以外は実施例23に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は4.54%だった。
<実施例30>
<化合物(1−1050)を電子輸送層1、ET−1を電子輸送層2に用いた素子>
電子輸送層1を化合物(1−1050)に替えた以外は実施例23に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は7.88%だった。
<実施例31>
<化合物(1−1102)を電子輸送層1、ET−1を電子輸送層2に用いた素子>
電子輸送層1を化合物(1−1102)に替えた以外は実施例23に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は8.54%だった。
更に、実施例32〜34に係る有機EL素子を作製し、1000cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表10に示す。
Figure 0005935199
<実施例32>
<化合物(1−422)を発光層のドーパントに、化合物(1−49)を電子輸送層に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、HIを入れたタンタル製蒸着ルツボ、HAT−CNを入れたタンタル製蒸着用ルツボ、HTを入れたタンタル製蒸着用ルツボ、BH1を入れたタンタル製蒸着用ルツボ、本発明の化合物(1−422)を入れたタンタル製蒸着用ルツボ、本発明の化合物(1−49)を入れたタンタル製蒸着用ルツボ、ET−1を入れたタンタル製蒸着用ルツボ、LiFを入れたタンタル製蒸着用ルツボおよびアルミニウムを入れた窒化アルミニウム製蒸着用ルツボを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を2.0×10−4Paまで減圧し、まず、HIが入った蒸着用ルツボを加熱して膜厚40nmになるように蒸着し、次いで、HAT−CNが入った蒸着用ルツボを加熱して膜厚5nmになるように蒸着し、更にHTが入った蒸着用ルツボを加熱して膜厚25nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成した。次に、BH1が入った蒸着用ルツボと本発明の化合物(1−422)の入った蒸着用ルツボを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。BH1と本発明の化合物(1−422)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、本発明の化合物(1−49)の入った蒸着用ルツボを加熱して膜厚10nmになるように蒸着し、次いで、ET−1の入った蒸着用ルツボを加熱して膜厚20nmになるように蒸着することで2層からなる電子輸送層を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、LiFが入った蒸着用ルツボを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムの入った蒸着用ルツボを加熱して膜厚100nmになるように蒸着して陰極を形成した。このとき、蒸着速度が0.1nm〜2nm/秒になるように蒸着して陰極を形成し有機電界発光素子を得た。
ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約479nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.096,0.189)であり、輝度1000cd/mにおける外部量子効率は4.74%だった。
<実施例33>
<化合物(1−1152)を発光層のドーパント材料に、化合物(1−49)を電子輸送層に用いた素子>
発光層のドーパント材料である化合物(1−422)を化合物(1−1152)に替えた以外は実施例32に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約465nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.127,0.099)であり、輝度1000cd/mにおける外部量子効率は5.47%であった。
<実施例34>
<化合物(1−1159)を発光層のドーパント材料に、化合物(1−49)を電子輸送層に用いた素子>
発光層のドーパント材料である化合物(1−422)を化合物(1−1159)に替えた以外は実施例32に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.140,0.057)であり、輝度1000cd/mにおける外部量子効率は6.92%であった。
更に、実施例35〜53に係る有機EL素子を作製し、1000cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表11に示す。
Figure 0005935199
表11において、「ET−5」は9−(7−(ジメシチルボリル)−9,9−ジメチル−9H−フルオレン−2−イル)−3,6−ジメチル−9H−カルバゾール、「ET−6」は5,5’−((2−フェニルアントラセン−9,10−ジイル)ビス(3,1−フェニレン))ビス(3−メチルピリジン)である。陰極に用いた「Liq」と共に以下に化学構造を示す。
Figure 0005935199
<実施例35>
<化合物(1−79)を発光層のドーパントに用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、HIを入れたタンタル製蒸着ルツボ、HAT−CNを入れたタンタル製蒸着用ルツボ、HTを入れたタンタル製蒸着用ルツボ、BH1を入れたタンタル製蒸着用ルツボ、本発明の化合物(1−79)を入れたタンタル製蒸着用ルツボ、ET−5を入れたタンタル製蒸着用ルツボ、ET−6を入れたタンタル製蒸着用ルツボ、Liqを入れた窒化アルミニウム製蒸着用ルツボ、マグネシウムを入れた窒化アルミニウム製ルツボおよび銀を入れた窒化アルミニウム製蒸着用ルツボを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を2.0×10−4Paまで減圧し、まず、HIが入った蒸着用ルツボを加熱して膜厚40nmになるように蒸着し、次いで、HAT−CNが入った蒸着用ルツボを加熱して膜厚5nmになるように蒸着し、更にHTが入った蒸着用ルツボを加熱して膜厚25nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成した。次に、BH1が入った蒸着用ルツボと本発明の化合物(1−79)の入った蒸着用ルツボを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。BH1と本発明の化合物(1−79)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、ET−5の入った蒸着用ルツボを加熱して膜厚5nmになるように蒸着し、次いで、ET−6の入った蒸着用ルツボを加熱して膜厚25nmになるように蒸着することで2層からなる電子輸送層を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、Liqが入った蒸着用ルツボを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱して、膜厚100nmになるように蒸着して陰極を形成し、有機電界発光素子を得た。このとき、マグネシウムと銀の原子数比が10対1となるように0.1nm〜10nm/秒の間で蒸着速度を調節した。
ITO電極を陽極、マグネシウム/銀電極を陰極として、直流電圧を印加すると、約445nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.148,0.065)であり、輝度1000cd/mにおける外部量子効率は3.54%だった。
<実施例36>
<化合物(1−2305)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−2305)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約459nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.142,0.113)であり、輝度1000cd/mにおける外部量子効率は4.50%であった。
<実施例37>
<化合物(1−2680)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−2680)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約455nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.142,0.051)であり、輝度1000cd/mにおける外部量子効率は6.14%であった。
<実施例38>
<化合物(1−2679)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−2679)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約463nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.129,0.084)であり、輝度1000cd/mにおける外部量子効率は6.42%であった。
<実施例39>
<化合物(1−422)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−422)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約464nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.127,0.094)であり、輝度1000cd/mにおける外部量子効率は5.66%であった。
<実施例40>
<化合物(1−447)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−447)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約449nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.148,0.041)であり、輝度1000cd/mにおける外部量子効率は4.49%であった。
<実施例41>
<化合物(1−1145)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−1145)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約451nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.146,0.059)であり、輝度1000cd/mにおける外部量子効率は6.50%であった。
<実施例42>
<化合物(1−1104)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−1104)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約462nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.145,0.144)であり、輝度1000cd/mにおける外部量子効率は2.75%であった。
<実施例43>
<化合物(1−142)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−142)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約470nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.140,0.196)であり、輝度1000cd/mにおける外部量子効率は3.85%であった。
<実施例44>
<化合物(1−2681)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−2681)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約465nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.127,0.091)であり、輝度1000cd/mにおける外部量子効率は5.25%であった。
<実施例45>
<化合物(1−2682)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−2682)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約457nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.139,0.059)であり、輝度1000cd/mにおける外部量子効率は5.83%であった。
<実施例46>
<化合物(1−422)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−422)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約478nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.096,0.184)であり、輝度1000cd/mにおける外部量子効率は5.53%であった。
<実施例47>
<化合物(1−1210)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−1210)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約439nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.155,0.029)であり、輝度1000cd/mにおける外部量子効率は4.38%であった。
<実施例48>
<化合物(1−1201)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−1201)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約439nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.153,0.042)であり、輝度1000cd/mにおける外部量子効率は3.67%であった。
<実施例49>
<化合物(1−2626)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−2626)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約462nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.131,0.078)であり、輝度1000cd/mにおける外部量子効率は5.66%であった。
<実施例50>
<化合物(1−2683)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−2683)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.140,0.057)であり、輝度1000cd/mにおける外部量子効率は5.64%であった。
<実施例51>
<化合物(1−2657)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−2657)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約466nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.124,0.125)であり、輝度1000cd/mにおける外部量子効率は5.28%であった。
<実施例52>
<化合物(1−2699)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−2699)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約459nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.133,0.091)であり、輝度1000cd/mにおける外部量子効率は5.18%であった。
<実施例53>
<化合物(1−2676)を発光層のドーパント材料に用いた素子>
発光層のドーパント材料である化合物(1−79)を化合物(1−2676)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約459nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.124,0.111)であり、輝度1000cd/mにおける外部量子効率は6.82%であった。
<比較例1>
<比較化合物1を発光層のドーパント材料に用いた素子>
比較化合物1は、国際公開第2012/118164号公報の63頁に化合物1として開示されている。発光層のドーパント材料である化合物(1−79)を(比較化合物1)に替えた以外は実施例35に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約471nmにピークトップを有する青色発光が得られた。その時のCIE色度は(x,y)=(0.145,0.170)であり、輝度1000cd/mにおける外部量子効率は3.67%であった。
Figure 0005935199
更に、実施例54〜61に係る有機EL素子を作製し、1000cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表12に示す。
Figure 0005935199
<実施例54>
<化合物(1−3588)を電子輸送層1に用いた燐光発光素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、HAT−CNを入れたタンタル製蒸着用ルツボ、TBBを入れたタンタル製蒸着用ルツボ、TcTaを入れたタンタル製蒸着用ルツボ、CBPを入れたタンタル製蒸着用ルツボ、Ir(PPy)を入れたタンタル製蒸着用ルツボ、本発明の化合物(1−3588)を入れたタンタル製蒸着用ルツボ、ET−1を入れたタンタル製蒸着用ルツボ、LiFを入れたタンタル製蒸着用ルツボおよびアルミニウムを入れた窒化アルミニウム製蒸着用ルツボを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を2.0×10−4Paまで減圧し、まず、HAT−CNが入った蒸着用ルツボを加熱して膜厚5nmになるように蒸着し、次いで、TBBが入った蒸着用ルツボを加熱して膜厚55nmになるように蒸着し、更にTcTaが入った蒸着用ルツボを加熱して膜厚10nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成した。次に、CBPが入った蒸着用ルツボとIr(PPy)の入った蒸着用ルツボを同時に加熱して膜厚30nmになるように蒸着して発光層を形成した。CBPとIr(PPy)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、本発明の化合物(1−3588)の入った蒸着用ルツボを加熱して膜厚5nmになるように蒸着し、次いで、ET−1の入った蒸着用ルツボを加熱して膜厚35nmになるように蒸着することで2層からなる電子輸送層を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、LiFが入った蒸着用ルツボを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムの入った蒸着用ルツボを加熱して膜厚100nmになるように蒸着して陰極を形成した。このとき、蒸着速度が0.1nm〜2nm/秒になるように蒸着して陰極を形成し有機電界発光素子を得た。
ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約510nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は7.94%だった。
<実施例55>
<化合物(1−1192)を電子輸送層1に用いた燐光発光素子>
電子輸送層1である化合物(1−3588)を化合物(1−1192)に替えた以外は実施例54に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約510nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は11.08%であった。
<実施例56>
<化合物(1−3824)を電子輸送層1に用いた燐光発光素子>
電子輸送層1である化合物(1−3588)を化合物(1−3824)に替えた以外は実施例54に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約510nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は14.75%であった。
<実施例57>
<化合物(1−3806)を電子輸送層1に用いた燐光発光素子>
電子輸送層1である化合物(1−3588)を化合物(1−3806)に替えた以外は実施例54に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約510nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は14.06%であった。
<実施例58>
<化合物(1−601)を電子輸送層1に用いた燐光発光素子>
電子輸送層1である化合物(1−3588)を化合物(1−601)に替えた以外は実施例54に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約510nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は11.50%であった。
<実施例59>
<化合物(1−152)を発光層のホスト、化合物(1−601)を電子輸送層1に用いた燐光発光素子>
発光層のホストであるCBPを化合物(1−152)、電子輸送層1である化合物(1−3588)を化合物(1−601)に替えた以外は実施例54に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約510nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は17.24%であった。
<実施例60>
<化合物(1−49)を電子輸送層2に用いた燐光発光素子>
電子輸送層1である化合物(1−3588)を化合物(1−49)に替えた以外は実施例54に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約510nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は12.63%であった。
<実施例61>
<化合物(1−152)を発光層のホスト、化合物(1−49)を電子輸送層1に用いた燐光発光素子>
発光層のホストであるCBPを化合物(1−152)、電子輸送層1である化合物(1−3588)を化合物(1−49)に替えた以外は実施例54に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約510nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は12.55%であった。
<比較例2>
<比較化合物1を電子輸送層1に用いた燐光発光素子>
電子輸送層1である化合物(1−3588)を比較化合物1に替えた以外は実施例54に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約510nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は7.50%であった。
更に、実施例62〜64に係る有機EL素子を作製し、1000cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表13に示す。
Figure 0005935199
表13において、「4CzIPN」は、2,4,5,6−テトラ(9H−カルバゾール−9−イル)イソフタロニトリル「T2T」は2,4,6−トリ([1,1’−ビフェニル]−3−イル)−1,3,5−トリアジンである。以下に化学構造を示す。
Figure 0005935199
<実施例62>
<化合物(1−152)を発光層のホスト材料に用いたTADF(熱活性化遅延蛍光)有機EL素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、HAT−CNを入れたタンタル製蒸着用ルツボ、TBBを入れたタンタル製蒸着用ルツボ、TcTaを入れたタンタル製蒸着用ルツボ、本発明の化合物(1−152)を入れたタンタル製蒸着用ルツボ、4CzIPNを入れたタンタル製蒸着用ルツボ、T2Tを入れたタンタル製蒸着用ルツボ、ET−1を入れたタンタル製蒸着用ルツボ、LiFを入れたタンタル製蒸着用ルツボおよびアルミニウムを入れた窒化アルミニウム製蒸着用ルツボを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を2.0×10−4Paまで減圧し、まず、HAT−CNが入った蒸着用ルツボを加熱して膜厚5nmになるように蒸着し、次いで、TBBが入った蒸着用ルツボを加熱して膜厚55nmになるように蒸着し、更にTcTaが入った蒸着用ルツボを加熱して膜厚10nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成した。次に、本発明の化合物(1−152)が入った蒸着用ルツボと4CzIPNの入った蒸着用ルツボを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(1−152)と4CzIPNの重量比がおよそ95対5になるように蒸着速度を調節した。次に、T2Tの入った蒸着用ルツボを加熱して膜厚5nmになるように蒸着し、次いで、ET−1の入った蒸着用ルツボを加熱して膜厚25nmになるように蒸着することで2層からなる電子輸送層を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、LiFが入った蒸着用ルツボを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムの入った蒸着用ルツボを加熱して膜厚100nmになるように蒸着して陰極を形成した。このとき、蒸着速度が0.1nm〜2nm/秒になるように蒸着して陰極を形成し有機電界発光素子を得た。
ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約508nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は15.02%だった。
<実施例63>
<化合物(1−152)を発光層のホスト材料に、化合物(1−49)を電子輸送層1に用いたTADF(熱活性化遅延蛍光)有機EL素子>
電子輸送層1であるT2Tを化合物(1−49)に替えた以外は実施例62に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約508nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は13.25%であった。
<実施例64>
<化合物(1−152)を発光層のホスト材料に用いたTADF(熱活性化遅延蛍光)有機EL素子>
電子輸送層1であるT2TをET−5に替えた以外は実施例62に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約508nmにピークトップを有する緑色発光が得られた。輝度1000cd/mにおける外部量子効率は11.5%であった。
更に、実施例65に係る有機EL素子を作製し、100cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表14に示す。
Figure 0005935199
表14において、「mCP」は、1,3−ジ(9H−カルバゾール−9−イル)ベンゼンである。以下に化学構造を示す。
Figure 0005935199
<実施例65>
<化合物(1−81)を発光層のドーパント材料に用いたTADF有機EL素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨して得られる26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)昭和真空製)の基板ホルダーに固定し、HAT−CNを入れたモリブデン製蒸着用ボート、TBBを入れたモリブデン製蒸着用ボート、TcTaを入れたモリブデン製蒸着ボート、mCPを入れたモリブデン製蒸着ボート、本発明の化合物(1−81)を入れたモリブデン製蒸着用ボート、TPBiを入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボートおよびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10−4Paまで減圧し、まず、HAT−CNが入った蒸着用ルツボを加熱して膜厚10nmになるように蒸着し、次いで、TBBが入った蒸着用ルツボを加熱して膜厚60nmになるように蒸着し、更にTcTaが入った蒸着用ルツボを加熱して膜厚10nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成した。次に、mCPが入った蒸着用ボートと化合物(1−81)が入った蒸着用ボートを同時に加熱して膜厚30nmになるように蒸着して発光層を形成した。mCPと化合物(1−81)の重量比がおよそ80対20になるように蒸着速度を調節した。次に、TPBiの入った蒸着用ボートを加熱して膜厚50nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、LiFが入った蒸着用ボートを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムが入った蒸着用ボートを加熱して膜厚100nmになるように0.01〜2nm/秒の蒸着速度で蒸着することにより陰極を形成し、有機EL素子を得た。
ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約506nmにピークトップを有する緑色発光が得られた。輝度100cd/mにおける外部量子効率は13.66%だった。
更に、実施例66〜69に係る有機EL素子を作製し、1000cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表15に示す。
Figure 0005935199
<実施例66>
<化合物(1−3824)を電子輸送層1に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、HIを入れたタンタル製蒸着ルツボ、HAT−CNを入れたタンタル製蒸着用ルツボ、HTを入れたタンタル製蒸着用ルツボ、BH1を入れたタンタル製蒸着用ルツボ、BD1を入れたタンタル製蒸着用ルツボ、本発明の化合物(1−3824)を入れたタンタル製蒸着用ルツボ、ET−1を入れたタンタル製蒸着用ルツボ、LiFを入れたタンタル製蒸着用ルツボおよびアルミニウムを入れた窒化アルミニウム製蒸着用ルツボを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を2.0×10−4Paまで減圧し、まず、HIが入った蒸着用ルツボを加熱して膜厚40nmになるように蒸着し、次いで、HAT−CNが入った蒸着用ルツボを加熱して膜厚5nmになるように蒸着し、更にHTが入った蒸着用ルツボを加熱して膜厚25nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成した。次に、BH1が入った蒸着用ルツボとBD1の入った蒸着用ルツボを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。BH1とBD1の重量比がおよそ95対5になるように蒸着速度を調節した。次に、本発明の化合物(1−3824)の入った蒸着用ルツボを加熱して膜厚5nmになるように蒸着し、次いで、ET−1の入った蒸着用ルツボを加熱して膜厚25nmになるように蒸着することで2層からなる電子輸送層を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、LiFが入った蒸着用ルツボを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、アルミニウムの入った蒸着用ルツボを加熱して膜厚100nmになるように蒸着して陰極を形成した。このとき、蒸着速度が0.1nm〜2nm/秒になるように蒸着して陰極を形成し有機電界発光素子を得た。
ITO電極を陽極、LiF/アルミニウム電極を陰極として、直流電圧を印加すると、約455nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は5.31%だった。
<実施例67>
<化合物(1−3806)を電子輸送層1に用いた素子>
電子輸送層1である化合物(1−3824)を化合物(1−3806)に替えた以外は実施例66に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約455nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は4.84%であった。
<実施例68>
<化合物(1−601)を電子輸送層1に用いた素子>
電子輸送層1である化合物(1−3824)を化合物(1−601)に替えた以外は実施例66に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約455nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は6.47%であった。
<実施例69>
<化合物(1−701)を電子輸送層1に用いた素子>
電子輸送層1である化合物(1−3824)を化合物(1−701)に替えた以外は実施例66に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約455nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は6.55%であった。
更に、実施例70〜80に係る有機EL素子を作製し、1000cd/mの輝度が得られる電流密度で駆動した際の外部量子効率を測定した。作製した有機EL素子における、各層の材料構成を下記表16に示す。
Figure 0005935199
表16において、「BD2」は、N,N−ビス(ジベンゾ[b,d]フラン−4−イル)−N,N−ジフェニルピレン−1,6−ジアミン、「BD3」は、N,N−ビス(5’−フルオロ−[1,1’:3’,1’’−テルフェニル]−4’−イル)−N,N−ジフェニルピレン−1,6−ジアミン、「ET−7」は3−メチル−(5−(3−(10−ナフタレン−1−イル)アントラセン−9−イル)フェニル)ピリジンである。以下に化学構造を示す。
Figure 0005935199
<実施例70>
<化合物(1−3690)を電子輸送層1に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス)を透明支持基板とした。この透明支持基板を市販の蒸着装置((株)長州産業)の基板ホルダーに固定し、HIを入れたタンタル製蒸着ルツボ、HAT−CNを入れたタンタル製蒸着用ルツボ、HTを入れたタンタル製蒸着用ルツボ、BH1を入れたタンタル製蒸着用ルツボ、BD1を入れタンタル製蒸着用ルツボ、本発明の化合物(1−3690)を入れたタンタル製蒸着用ルツボ、ET−6を入れたタンタル製蒸着用ルツボ、Liqを入れた窒化アルミニウム製蒸着用ルツボ、マグネシウムを入れた窒化アルミニウム製ルツボおよび銀を入れた窒化アルミニウム製蒸着用ルツボを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を2.0×10−4Paまで減圧し、まず、HIが入った蒸着用ルツボを加熱して膜厚40nmになるように蒸着し、次いで、HAT−CNが入った蒸着用ルツボを加熱して膜厚5nmになるように蒸着し、更にHTが入った蒸着用ルツボを加熱して膜厚25nmになるように蒸着することで3層からなる正孔注入層および正孔輸送層を形成した。次に、BH1が入った蒸着用ルツボとBD1の入った蒸着用ルツボを同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。BH1とBD1の重量比がおよそ95対5になるように蒸着速度を調節した。次に、本発明の化合物(1−3690)の入った蒸着用ルツボを加熱して膜厚5nmになるように蒸着し、次いで、ET−6の入った蒸着用ルツボを加熱して膜厚25nmになるように蒸着することで2層からなる電子輸送層を形成した。各層の蒸着速度は0.01〜1nm/秒であった。
その後、Liqが入った蒸着用ルツボを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着した。次いで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱して、膜厚100nmになるように蒸着して陰極を形成し、有機電界発光素子を得た。このとき、マグネシウムと銀の原子数比が10対1となるように0.1nm〜10nm/秒の間で蒸着速度を調節した。
ITO電極を陽極、マグネシウム/銀電極を陰極として、直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。
<実施例71>
<化合物(1−1187)を電子輸送層1に用いた素子>
電子輸送層1である化合物(1−3690)を化合物(1−1187)に替えた以外は実施例70に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。
<実施例72>
<化合物(1−1191)を電子輸送層1に用いた素子>
電子輸送層1である化合物(1−3690)を化合物(1−1191)に替えた以外は実施例70に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。
<実施例73>
<化合物(1−1006)を電子輸送層1に用いた素子>
電子輸送層1である化合物(1−3690)を化合物(1−1006)に替えた以外は実施例70に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は6.68%であった。
<実施例74>
<化合物(1−152−2)を電子輸送層1に用いた素子>
電子輸送層1である化合物(1−3690)を化合物(1−152−2)に替えた以外は実施例70に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は7.56%であった。
<実施例75>
<化合物(1−601)を電子輸送層1に用いた素子>
電子輸送層1である化合物(1−3690)を化合物(1−601)に替えた以外は実施例70に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は5.78%であった。
<実施例76>
<化合物(1−3654)を電子輸送層1に用いた素子>
電子輸送層1である化合物(1−3690)を化合物(1−3654)に替えた以外は実施例70に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。
<実施例77>
<化合物(1−49)を電子輸送層1に用いた素子>
電子輸送層1である化合物(1−3690)を化合物(1−49)に替えた以外は実施例70に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は6.73%であった。
<実施例78>
<化合物(1−49)を電子輸送層1に用いた素子>
発光層のドーパント材料であるBD1をBD2に替えた以外は実施例77に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約454nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は6.10%であった。
<実施例79>
<化合物(1−49)を電子輸送層1に用いた素子>
発光層のドーパント材料であるBD1をBD3に替えた以外は実施例77に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は6.28%であった。
<実施例80>
<化合物(1−3588)を電子輸送層1に用いた素子>
電子輸送層1である化合物(1−3690)を化合物(1−3588)に、電子輸送層2であるET−6をET−7に替えた以外は実施例70に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は5.33%であった。
<比較例3>
<比較化合物2を電子輸送層1に用いた素子>
比較化合物2は、国際公開第2011/107186号公報の99頁に化合物(H10)として開示されている。電子輸送層1である化合物(1−3690)を(比較化合物2)に替えた以外は実施例70に準じた方法で有機EL素子を得た。両電極に直流電圧を印加すると、約456nmにピークトップを有する青色発光が得られた。輝度1000cd/mにおける外部量子効率は5.10%であった。
Figure 0005935199
本発明では、新規な多環芳香族化合物を提供することで、有機EL素子用材料の選択肢を増やすことができる。また、新規な多環芳香族化合物を有機電界発光素子用材料として用いることで、優れた有機EL素子、それを備えた表示装置およびそれを備えた照明装置などを提供することができる。
100 有機電界発光素子
101 基板
102 陽極
103 正孔注入層
104 正孔輸送層
105 発光層
106 電子輸送層
107 電子注入層
108 陰極

Claims (24)

  1. 下記一般式(1)で表される多環芳香族化合物、または下記一般式(1)で表される構造を複数有する多環芳香族化合物の多量体。
    Figure 0005935199
    (上記式(1)中、
    A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
    は、B、P=OまたはP=Sであり、
    がBのとき、およびXは、それぞれ独立して、O、N−R、SまたはSeであり、前記N−RのRは置換されていてもよいアリール、置換されていてもよいヘテロアリールまたはアルキルであり、また、前記N−RのRは−O−、−S−、−C(−R または単結合により前記A環、B環および/またはC環におけるX またはX との結合位置(原子)に隣接する炭素と結合していてもよく、前記R は水素またはアルキルであり、前記隣接する炭素はY 、X およびX から構成される上記式(1)の中央の縮合2環構造を構成する炭素ではなく、
    がP=OまたはP=Sのとき、およびX共にO、SまたはSeであるか、一方がOで他方がSもしくはSeであるか、一方がN−Rで他方がSeであるか、または、一方がSで他方がSeであり、前記N−RのRは置換されていてもよいアリール、置換されていてもよいヘテロアリールまたはアルキルであり、また、前記N−RのRは−O−、−S−、−C(−R または単結合により前記A環、B環および/またはC環におけるX またはX との結合位置(原子)に隣接する炭素と結合していてもよく、前記R は水素またはアルキルであり、前記隣接する炭素はY 、X およびX から構成される上記式(1)の中央の縮合2環構造を構成する炭素ではなく、そして、
    式(1)で表される化合物または構造における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい。)
  2. A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換または無置換のアリール、置換または無置換のヘテロアリール、置換または無置換のジアリールアミノ、置換または無置換のジヘテロアリールアミノ、置換または無置換のアリールヘテロアリールアミノ、置換または無置換のアルキル、置換または無置換のアルコキシまたは置換または無置換のアリールオキシで置換されていてもよく、また、これらの環はY、XおよびXから構成される上記式中央の縮合2環構造と結合を共有する5員環または6員環を有し、
    は、B、P=OまたはP=Sであり、
    がBのとき、およびXは、それぞれ独立して、O、N−R、SまたはSeであり、前記N−RのRはアルキルで置換されていてもよいアリール、アルキルで置換されていてもよいヘテロアリールまたはアルキルであり、また、前記N−RのRは−O−、−S−、−C(− −または単結合により前記A環、B環および/またはC環におけるX またはX との結合位置(原子)に隣接する炭素と結合していてもよく、前記 は水素またはアルキルであり、前記隣接する炭素はY 、X およびX から構成される上記式(1)の中央の縮合2環構造を構成する炭素ではなく、
    がP=OまたはP=Sのとき、およびX共にO、SまたはSeであるか、一方がOで他方がSもしくはSeであるか、一方がN−Rで他方がSeであるか、または、一方がSで他方がSeであり、前記N−RのRはアルキルで置換されていてもよいアリール、アルキルで置換されていてもよいヘテロアリールまたはアルキルであり、また、前記N−RのRは−O−、−S−、−C(− −または単結合により前記A環、B環および/またはC環におけるX またはX との結合位置(原子)に隣接する炭素と結合していてもよく、前記 は水素またはアルキルであり、前記隣接する炭素はY 、X およびX から構成される上記式(1)の中央の縮合2環構造を構成する炭素ではなく、
    式(1)で表される化合物または構造における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよく、そして、
    多量体の場合には、一般式(1)で表される構造を2または3個有する2または3量体である、
    請求項1に記載する多環芳香族化合物またはその多量体。
  3. 下記一般式(2)で表される、請求項1に記載する多環芳香族化合物。
    Figure 0005935199
    (上記式(2)中、
    、R、R、R、R、R、R、R、R、R10およびR11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、また、R〜R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、
    は、B、P=OまたはP=Sであり、
    がBのとき、およびXは、それぞれ独立して、O、N−R、SまたはSeであり、前記N−RのRは炭素数6〜12のアリール、炭素数2〜15のヘテロアリールまたは炭素数1〜6のアルキルであり、また、前記N−RのRは−O−、−S−、−C(− −または単結合により前記a環、b環および/またはc環におけるX またはX との結合位置(原子)に隣接する炭素と結合していてもよく、前記 は炭素数1〜6のアルキルであり、前記隣接する炭素はY 、X およびX から構成される上記式(2)の中央の縮合2環構造を構成する炭素ではなく、
    がP=OまたはP=Sのとき、およびX共にO、SまたはSeであるか、一方がOで他方がSもしくはSeであるか、一方がN−Rで他方がSeであるか、または、一方がSで他方がSeであり、前記N−RのRは炭素数6〜12のアリール、炭素数2〜15のヘテロアリールまたは炭素数1〜6のアルキルであり、また、前記N−RのRは−O−、−S−、−C(− −または単結合により前記a環、b環および/またはc環におけるX またはX との結合位置(原子)に隣接する炭素と結合していてもよく、前記 は炭素数1〜6のアルキルであり、前記隣接する炭素はY 、X およびX から構成される上記式(1)の中央の縮合2環構造を構成する炭素ではなく、そして、
    式(2)で表される化合物における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい。)
  4. 、R、R、R、R、R、R、R、R、R10およびR11は、それぞれ独立して、水素、炭素数6〜30のアリール、炭素数2〜30のヘテロアリールまたはジアリールアミノ(ただしアリールは炭素数6〜12のアリール)であり、また、R〜R11のうちの隣接する基同士が結合してa環、b環またはc環と共に炭素数9〜16のアリール環または炭素数6〜15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は炭素数6〜10のアリールで置換されていてもよく、
    は、B、P=OまたはP=Sであり、
    がBのとき、およびXは、それぞれ独立して、O、N−RまたはSであり、前記N−RのRは炭素数6〜10のアリールまたは炭素数1〜4のアルキルであり、
    がP=OまたはP=Sのとき、およびX共にOまたはSであるか、一方がOで他方がSであり、前記N−RのRは炭素数6〜10のアリールまたは炭素数1〜4のアルキルであり、そして、
    式(2)で表される化合物における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい、
    請求項3に記載する多環芳香族化合物。
  5. 前記ハロゲンはフッ素である、請求項1〜4のいずれかに記載する多環芳香族化合物またはその多量体。
  6. 下記式(1−1)、下記式(1−2)、下記式(1−4)、下記式(1−10)、下記式(1−49)、下記式(1−81)、下記式(1−91)、下記式(1−100)、下記式(1−141)、下記式(1−151)、下記式(1−176)、下記式(1−411)、下記式(1−447)下記式(1−601)または下記式(1−701)で表される、請求項1に記載する多環芳香族化合物。
    Figure 0005935199
  7. 下記式(1−21)、下記式(1−23)、下記式(1−24)、下記式(1−50)、下記式(1−152)、下記式(1−201)、下記式(1−401)、下記式(1−422)、下記式(1−1048)、下記式(1−1049)、下記式(1−1050)、下記式(1−1069)、下記式(1−1084)、下記式(1−1090)、下記式(1−1092)、下記式(1−1101)、下記式(1−1102)、下記式(1−1103)、下記式(1−1145)、下記式(1−1152)、下記式(1−1159)、下記式(1−1187)、下記式(1−1190)、下記式(1−1191)、下記式(1−1192)、下記式(1−1201)、下記式(1−1210)、下記式(1−1247)、下記式(1−1250)、下記式(1−1251)、下記式(1−1252)または下記式(1−1271)で表される、請求項1に記載する多環芳香族化合物。
    Figure 0005935199
    Figure 0005935199
  8. 下記式(1-1-1)、下記式(1-79)、下記式(1-142)、下記式(1-152-2)、下記式(1-158)、下記式(1-159)、下記式(1-721)、下記式(1-1006)、下記式(1-1104)、下記式(1-1149)、下記式(1-1150)、下記式(1-1301)、下記式(1-1351)、下記式(1-2305)、下記式(1-2626)、下記式(1-2657)、下記式(1-2662)、下記式(1-2665)、下記式(1-2676)、下記式(1-2678)、下記式(1-2679)、下記式(1-2680)、下記式(1-2681)、下記式(1-2682)、下記式(1-2683)、下記式(1-2691)、下記式(1-2699)、下記式(1-3588)、下記式(1-3654)、下記式(1-3690)、下記式(1-3806)、下記式(1-3824)、下記式(1-4114)、下記式(1-4150)、下記式(1-4341)、下記式(1-4346)、下記式(1-4401)、下記式(1-4421-1)で表される、請求項1に記載する多環芳香族化合物。
    Figure 0005935199
    Figure 0005935199
  9. 請求項1ないし8のいずれかに記載する多環芳香族化合物またはその多量体を含有する、有機デバイス用材料。
  10. 前記有機デバイス用材料が、有機電界発光素子用材料、有機電界効果トランジスタ用材料または有機薄膜太陽電池用材料である、請求項9に記載する有機デバイス用材料。
  11. 発光層用材料である、請求項10に記載する有機電界発光素子用材料。
  12. 電子注入層用材料または電子輸送層用材料である、請求項10に記載する有機電界発光素子用材料。
  13. 正孔注入層用材料または正孔輸送層用材料である、請求項10に記載する有機電界発光素子用材料。
  14. 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項11に記載する発光層用材料を含有する発光層とを有する、有機電界発光素子。
  15. 陽極および陰極からなる一対の電極と、該一対の電極間に配置された発光層と、前記陰極および前記発光層の間に配置され、請求項12に記載する電子注入層用材料および/または電子輸送層用材料を含有する電子注入層および/または電子輸送層とを有する、有機電界発光素子。
  16. 陽極および陰極からなる一対の電極と、該一対の電極間に配置された発光層と、前記陽極および前記発光層の間に配置され、請求項13に記載する正孔注入層用材料および/または正孔輸送層用材料を含有する正孔注入層および/または正孔輸送層とを有する、有機電界発光素子。
  17. さらに、前記陰極と該発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、請求項14〜16のいずれかに記載する有機電界発光素子。
  18. 前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項17に記載の有機電界発光素子。
  19. 請求項14〜18のいずれかに記載する有機電界発光素子を備えた表示装置。
  20. 請求項14〜18のいずれかに記載する有機電界発光素子を備えた照明装置。
  21. のハロゲン化物、Yのアミノ化ハロゲン化物、Yのアルコキシ化物およびYのアリールオキシ化物からなる群から選択される試薬と、場合によりブレンステッド塩基とを用いて、連続的な芳香族求電子置換反応により、下記中間体におけるA環とB環とC環とを前記Yにより結合する反応工程を含む、下記一般式(1)で表される多環芳香族化合物、または下記一般式(1)で表される構造を複数有する多環芳香族化合物の多量体を製造する方法。
    Figure 0005935199
    (上記(中間体)および式(1)中、
    A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
    は、B、P=OまたはP=Sであり、
    およびXは、それぞれ独立して、O、N−R、SまたはSeであり、前記N−RのRは置換されていてもよいアリール、置換されていてもよいヘテロアリールまたはアルキルであり、また、前記N−RのRは−O−、−S−、−C(−R または単結合により前記A環、B環および/またはC環におけるX またはX との結合位置(原子)に隣接する炭素と結合していてもよく、前記R は水素またはアルキルであり、前記隣接する炭素はY 、X およびX から構成される上記式(1)の中央の縮合2環構造を構成する炭素ではなく、そして、
    式(1)で表される化合物または構造における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい。)
  22. 有機アルカリ化合物を用いて下記中間体におけるXとXの間の水素原子をオルトメタル化する反応工程と、
    のハロゲン化物、Yのアミノ化ハロゲン化物、Yのアルコキシ化物およびYのアリールオキシ化物からなる群から選択される試薬を用いて前記メタルとYとを交換する反応工程と、
    ブレンステッド塩基を用いて連続的な芳香族求電子置換反応により下記中間体におけるA環とB環とC環とを前記Y により結合する反応工程と
    を含む、請求項21に記載する下記一般式(1)で表される多環芳香族化合物、または下記一般式(1)で表される構造を複数有する多環芳香族化合物の多量体を製造する方法。
    Figure 0005935199
  23. 前記連続的な芳香族求電子置換反応により前記中間体におけるA環とB環とC環とを前記Y により結合する反応工程において、さらにルイス酸を加えて反応を促進させることを特徴とする、請求項21または22に記載する製造方法。
  24. さらに中間体におけるXとXの間の水素原子をあらかじめハロゲン化する反応工程を含む、請求項21〜23のいずれかに記載する製造方法。
JP2015555894A 2014-02-18 2015-02-18 多環芳香族化合物 Active JP5935199B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014028750 2014-02-18
JP2014028750 2014-02-18
JP2014206049 2014-10-07
JP2014206049 2014-10-07
PCT/JP2015/054426 WO2015102118A1 (ja) 2014-02-18 2015-02-18 多環芳香族化合物

Publications (2)

Publication Number Publication Date
JP5935199B2 true JP5935199B2 (ja) 2016-06-15
JPWO2015102118A1 JPWO2015102118A1 (ja) 2017-03-23

Family

ID=53493456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015555894A Active JP5935199B2 (ja) 2014-02-18 2015-02-18 多環芳香族化合物

Country Status (6)

Country Link
EP (2) EP3345911B1 (ja)
JP (1) JP5935199B2 (ja)
KR (5) KR101955648B1 (ja)
CN (5) CN111892615A (ja)
TW (1) TWI636056B (ja)
WO (1) WO2015102118A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016152544A1 (ja) * 2015-03-24 2018-02-15 学校法人関西学院 有機電界発光素子
WO2019003615A1 (ja) * 2017-06-30 2019-01-03 学校法人関西学院 有機電界発光素子
JP2019204941A (ja) * 2018-05-21 2019-11-28 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
KR20200010130A (ko) * 2018-07-19 2020-01-30 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
JP2020520976A (ja) * 2017-05-22 2020-07-16 マテリアル サイエンス カンパニー リミテッドMaterial Science Co.,Ltd. 有機化合物及びこれを含む有機電界発光素子
US10804482B2 (en) 2017-09-25 2020-10-13 Samsung Display Co., Ltd. Silicon-containing compound and organic electroluminescence device including the same
DE102020133439A1 (de) 2020-01-03 2021-07-08 Rohm And Haas Electronic Materials Korea Ltd. Mehrere organische elektrolumineszierende materialien und diese umfassende organische elektrolumineszierende vorrichtung
DE102021122804A1 (de) 2020-09-04 2022-03-10 Rohm And Haas Electronic Materials Korea Ltd. Organische elektrolumineszierende Vorrichtung
US11276836B2 (en) 2018-12-10 2022-03-15 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
KR20220065407A (ko) 2020-11-13 2022-05-20 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2023282676A1 (ko) 2021-07-07 2023-01-12 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
JP2023504783A (ja) * 2020-02-13 2023-02-07 エスエフシー カンパニー リミテッド 新規なホウ素化合物及びこれを含む有機発光素子
TWI799937B (zh) * 2020-12-29 2023-04-21 南韓商樂金顯示科技股份有限公司 發光化合物、具有此化合物的有機發光二極體及有機發光裝置
US11832506B2 (en) 2019-12-13 2023-11-28 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
US11856848B2 (en) 2020-05-28 2023-12-26 Samsung Display Co., Ltd. Organic Electroluminescence device and polycyclic compound for organic electroluminescence device
US11889752B2 (en) 2020-02-18 2024-01-30 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
US11937495B2 (en) 2018-08-23 2024-03-19 Kyushu University, National University Corporation Organic light emitting element, composition and membrane

Families Citing this family (279)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636056B (zh) * 2014-02-18 2018-09-21 學校法人關西學院 多環芳香族化合物及其製造方法、有機元件用材料及其應用
CN107406759B (zh) * 2015-03-09 2020-10-30 学校法人关西学院 多环芳香族化合物及发光层形成用组合物与其用途
CN107735879B (zh) 2015-03-25 2020-03-13 学校法人关西学院 多环芳香族化合物、多环芳香族多聚体化合物及发光层形成用组合物与其用途
WO2017018326A1 (ja) * 2015-07-24 2017-02-02 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2017028217A (ja) * 2015-07-28 2017-02-02 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
CN106469738B (zh) * 2015-08-21 2020-02-14 群创光电股份有限公司 电子装置及其制作方法
CN113937228A (zh) * 2015-12-01 2022-01-14 株式会社半导体能源研究所 发光元件、发光装置、电子设备及照明装置
EP3176161A1 (de) * 2015-12-02 2017-06-07 Umicore AG & Co. KG Buchwald-hartwig arylierungsverfahren zur herstellung tertiärer arylamine
WO2017092508A1 (zh) * 2015-12-04 2017-06-08 广州华睿光电材料有限公司 D-a型化合物及其应用
US10336772B2 (en) 2015-12-28 2019-07-02 Samsung Electronics Co., Ltd. Bicarbazole compound, material for organic light-emitting device including bicarbazole compound, and organic light-emitting device including bicarbazole compound
US10811613B2 (en) * 2016-01-21 2020-10-20 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound
WO2017138526A1 (ja) * 2016-02-10 2017-08-17 学校法人関西学院 遅延蛍光有機電界発光素子
KR102165718B1 (ko) * 2016-03-23 2020-10-14 코니카 미놀타 가부시키가이샤 π 공액계 붕소 화합물, 전자 디바이스, 및 트리아릴보란과 그의 중간체의 제조 방법
US11723263B2 (en) 2016-04-26 2023-08-08 Kwansei Gakuin Educational Foundation Organic electroluminescent element
WO2017195669A1 (ja) * 2016-05-13 2017-11-16 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
CN106467554A (zh) * 2016-07-29 2017-03-01 江苏三月光电科技有限公司 一种含硼有机电致发光化合物及其应用
CN108409769A (zh) * 2016-07-29 2018-08-17 江苏三月光电科技有限公司 一种发光效率高的含硼有机电致发光化合物及其应用
WO2018047639A1 (ja) 2016-09-07 2018-03-15 学校法人関西学院 多環芳香族化合物
US10686141B2 (en) 2016-09-07 2020-06-16 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound
WO2018062278A1 (ja) 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
JP7030302B2 (ja) 2016-10-28 2022-03-07 学校法人関西学院 ボロン酸またはボロン酸エステル、もしくはそれらを用いて多環芳香族化合物または多環芳香族多量体化合物を製造する方法
US11239428B2 (en) 2016-11-23 2022-02-01 Guangzhou Chinaray Optoelectronic Materials Ltd. Boron-containing organic compound and applications thereof, organic mixture, and organic electronic device
WO2018110497A1 (ja) * 2016-12-16 2018-06-21 学校法人関西学院 多環芳香族アミノ化合物
WO2018146894A1 (ja) 2017-02-09 2018-08-16 学校法人関西学院 有機電界発光素子
US20190372023A1 (en) 2017-02-09 2019-12-05 Kwansei Gakuin Education Foundation Organic electroluminescent element
CN106831875B (zh) * 2017-02-15 2019-04-19 黑龙江大学 基于膦杂芳基衍生物的热激发延迟荧光主体材料及其制备方法和应用
CN110383521A (zh) * 2017-02-16 2019-10-25 学校法人关西学院 有机电场发光元件
JP2018174279A (ja) 2017-03-31 2018-11-08 国立大学法人九州大学 有機半導体レーザー素子
US20200035922A1 (en) 2017-03-31 2020-01-30 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and electronic device
WO2018203666A1 (ko) 2017-05-02 2018-11-08 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
CN116987108A (zh) 2017-05-16 2023-11-03 学校法人关西学院 多环芳香族化合物、有机元件用材料、发光层形成用组合物、有机电场发光元件及装置
JP7018171B2 (ja) * 2017-05-30 2022-02-10 学校法人関西学院 アルケニル基を有する多環芳香族化合物およびその多量体
CN110799571B (zh) * 2017-06-30 2022-09-20 住友化学株式会社 高分子化合物及使用其的发光元件
JP7148932B2 (ja) * 2017-07-07 2022-10-06 学校法人関西学院 多環芳香族化合物
CN107417715A (zh) * 2017-07-14 2017-12-01 瑞声科技(南京)有限公司 一种有机电致发光材料及其发光器件
CN107501311A (zh) * 2017-07-14 2017-12-22 瑞声科技(南京)有限公司 有机电致发光材料及其发光器件
KR20240052073A (ko) * 2017-08-17 2024-04-22 가꼬우 호징 관세이 가쿠잉 유기 전계 발광 소자
WO2019052940A1 (en) * 2017-09-12 2019-03-21 Cynora Gmbh ORGANIC MOLECULES, ESPECIALLY FOR USE IN OPTOELECTRONIC DEVICES
KR102144173B1 (ko) * 2017-09-19 2020-08-12 주식회사 엘지화학 유기 발광 소자
KR102117765B1 (ko) * 2017-09-28 2020-06-02 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
KR102633062B1 (ko) 2017-10-13 2024-02-02 가꼬우 호징 관세이 가쿠잉 다환 방향족계 2량체 화합물
KR102544981B1 (ko) * 2017-10-16 2023-06-21 삼성디스플레이 주식회사 유기 발광 소자 및 발광 장치
JP7232448B2 (ja) 2017-11-24 2023-03-03 学校法人関西学院 有機デバイス用材料およびそれを用いた有機電界発光素子
KR102618236B1 (ko) 2017-12-11 2023-12-26 가꼬우 호징 관세이 가쿠잉 중수소 치환 다환 방향족 화합물
JP7264392B2 (ja) * 2017-12-11 2023-04-25 学校法人関西学院 重水素置換多環芳香族化合物
CN109956870A (zh) 2017-12-14 2019-07-02 南京卡文迪许生物工程技术有限公司 一种罗沙司他的合成方法及其中间体化合物
WO2019131079A1 (ja) 2017-12-25 2019-07-04 学校法人関西学院 ホウ素をスピロ原子とした化合物およびその高分子化合物
JP7044547B2 (ja) * 2017-12-28 2022-03-30 出光興産株式会社 新規化合物及び有機エレクトロルミネッセンス素子
WO2019132028A1 (ja) * 2017-12-28 2019-07-04 出光興産株式会社 新規化合物及び有機エレクトロルミネッセンス素子
US20210062078A1 (en) * 2017-12-28 2021-03-04 Idemitsu Kosan Co.,Ltd. Novel compound and organic electroluminescence device
JP7340171B2 (ja) * 2018-01-24 2023-09-07 学校法人関西学院 有機電界発光素子
US11139438B2 (en) 2018-01-24 2021-10-05 Kwansei Gakuin Educational Foundation Organic electroluminescent element
JP2021061262A (ja) * 2018-02-05 2021-04-15 学校法人関西学院 多環芳香族化合物の発光材料を用いた有機電界発光素子
KR102030309B1 (ko) * 2018-02-23 2019-10-08 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
JP6738063B2 (ja) * 2018-04-12 2020-08-12 学校法人関西学院 シクロアルキル置換多環芳香族化合物
WO2019198699A1 (ja) * 2018-04-12 2019-10-17 学校法人関西学院 シクロアルキル置換多環芳香族化合物
KR20190119701A (ko) 2018-04-12 2019-10-23 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
KR20200141983A (ko) 2018-04-12 2020-12-21 가꼬우 호징 관세이 가쿠잉 불소 치환 다환 방향족 화합물
KR20190138477A (ko) 2018-06-05 2019-12-13 에스에프씨 주식회사 저전압구동이 가능하며 고효율의 유기 발광 소자
JP7445923B2 (ja) * 2018-06-06 2024-03-08 学校法人関西学院 ターシャリーアルキル置換多環芳香族化合物
WO2019240080A1 (ja) * 2018-06-11 2019-12-19 学校法人関西学院 多環芳香族化合物およびその多量体
WO2019240464A1 (ko) * 2018-06-11 2019-12-19 주식회사 엘지화학 유기 발광 소자
KR102221978B1 (ko) * 2018-06-11 2021-03-04 주식회사 엘지화학 유기 발광 소자
KR102648402B1 (ko) 2018-06-12 2024-03-18 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
WO2019239897A1 (ja) * 2018-06-14 2019-12-19 学校法人関西学院 アルキル置換多環芳香族化合物を含有する電子輸送材料または電子注入材料
KR20190143558A (ko) 2018-06-20 2019-12-31 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 함규소 화합물
KR102659436B1 (ko) 2018-06-27 2024-04-23 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함하는 유기 발광 소자
EP3587423A1 (en) 2018-06-27 2020-01-01 Idemitsu Kosan Co., Ltd. Organic compounds and an organic electroluminescence device comprising the same
KR102053569B1 (ko) * 2018-07-03 2019-12-11 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
KR20200007256A (ko) 2018-07-12 2020-01-22 에스에프씨 주식회사 저전압구동이 가능하며 고효율의 유기 발광 소자
KR102260883B1 (ko) * 2018-07-19 2021-06-07 엘지디스플레이 주식회사 유기 전계 발광 소자
US20200028084A1 (en) * 2018-07-19 2020-01-23 Lg Display Co., Ltd. Organic electroluminescent device
KR20200009865A (ko) * 2018-07-20 2020-01-30 엘지디스플레이 주식회사 헤드 장착형 표시 장치 및 이에 포함된 표시 패널
KR20200020538A (ko) * 2018-08-17 2020-02-26 엘지디스플레이 주식회사 유기전계발광소자
US20220093868A1 (en) * 2018-08-20 2022-03-24 Lg Chem, Ltd. Organic light emitting diode
JP7325731B2 (ja) * 2018-08-23 2023-08-15 国立大学法人九州大学 有機エレクトロルミネッセンス素子
KR20210050537A (ko) 2018-08-23 2021-05-07 가꼬우 호징 관세이 가쿠잉 유기전계 발광소자, 표시장치, 조명장치, 발광층형성용 조성물, 및 화합물
KR20210053945A (ko) 2018-08-31 2021-05-12 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물의 발광 재료를 이용한 유기 전계 발광 소자
WO2020075783A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 新規な化合物、有機エレクトロルミネッセンス素子、電子機器
WO2020075757A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2020075769A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
KR102250389B1 (ko) * 2018-10-12 2021-05-11 주식회사 엘지화학 유기발광소자
WO2020080528A1 (ja) * 2018-10-18 2020-04-23 学校法人関西学院 多環芳香族化合物
WO2020085829A1 (en) * 2018-10-26 2020-04-30 Rohm And Haas Electronic Materials Korea Ltd. A plurality of light-emitting materials and organic electroluminescent device comprising the same
EP3651225A1 (en) 2018-11-09 2020-05-13 Idemitsu Kosan Co., Ltd. Novel organic compounds and an organic electroluminescence device comprising the same
TW202030306A (zh) * 2018-11-15 2020-08-16 學校法人關西學院 有機電場發光元件、顯示裝置以及照明裝置
KR102640489B1 (ko) 2018-11-16 2024-02-26 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
US20210408390A1 (en) * 2018-11-19 2021-12-30 Sfc Co., Ltd. Novel boron compound and organic light-emitting diode comprising same
KR102640485B1 (ko) 2018-11-20 2024-02-26 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
US11456428B2 (en) * 2018-11-21 2022-09-27 Sfc Co., Ltd. Indolocarbazole derivatives and organic electroluminescent devices using the same
WO2020111728A1 (ko) * 2018-11-26 2020-06-04 주식회사 엘지화학 유기 발광 소자
KR20200065174A (ko) 2018-11-29 2020-06-09 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
CN112534593A (zh) * 2018-12-07 2021-03-19 株式会社Lg化学 有机发光二极管
KR20200075986A (ko) * 2018-12-18 2020-06-29 삼성디스플레이 주식회사 붕소 및 질소를 포함하는 헤테로고리 화합물을 포함하는 유기 발광 소자
JP7468857B2 (ja) 2018-12-27 2024-04-16 学校法人関西学院 多環芳香族化合物、有機デバイス用材料、有機el素子、表示装置および照明装置
KR20200087906A (ko) 2019-01-11 2020-07-22 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
CN112888695B (zh) * 2019-01-18 2023-12-22 株式会社Lg化学 化合物及包含其的有机发光二极管
CN112867723B (zh) * 2019-01-23 2024-01-26 株式会社Lg化学 化合物及包含其的有机发光二极管
KR20200094262A (ko) 2019-01-29 2020-08-07 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
CN113412265B (zh) * 2019-02-07 2024-05-03 学校法人关西学院 多环芳香族化合物
JP7283688B2 (ja) 2019-02-12 2023-05-30 学校法人関西学院 有機電界発光素子
KR20200099107A (ko) 2019-02-13 2020-08-21 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물 및 그의 다량체
KR102339702B1 (ko) * 2019-02-13 2021-12-15 주식회사 엘지화학 보론 함유 화합물 및 이를 포함하는 유기 발광 소자
JP2020147563A (ja) 2019-03-07 2020-09-17 学校法人関西学院 多環芳香族化合物およびその多量体
CN111718364A (zh) * 2019-03-19 2020-09-29 赛诺拉有限公司 用于光电器件的有机分子
KR20200115795A (ko) * 2019-03-26 2020-10-08 삼성디스플레이 주식회사 유기 발광 소자 및 전자 장치
JP6827135B2 (ja) 2019-03-29 2021-02-10 住友化学株式会社 発光素子及び発光素子用組成物
JP6902640B2 (ja) 2019-03-29 2021-07-14 住友化学株式会社 発光素子及びその製造方法並びに発光素子用組成物及びその製造方法
JP6894025B2 (ja) 2019-03-29 2021-06-23 住友化学株式会社 発光素子及びその製造方法並びに発光素子用組成物及びその製造方法
JP6934967B2 (ja) * 2019-03-29 2021-09-15 住友化学株式会社 発光素子及び発光素子用組成物
KR102407971B1 (ko) 2019-03-29 2022-06-13 스미또모 가가꾸 가부시키가이샤 발광 소자 및 그의 제조 방법 그리고 발광 소자용 조성물 및 그의 제조 방법
KR20200119453A (ko) 2019-04-09 2020-10-20 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102352576B1 (ko) * 2019-04-15 2022-01-18 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기전계발광소자
WO2020218079A1 (ja) 2019-04-22 2020-10-29 学校法人関西学院 シクロアルカン縮合多環芳香族化合物
KR20220004116A (ko) * 2019-04-26 2022-01-11 가꼬우 호징 관세이 가쿠잉 화합물, 유기 디바이스용 재료, 발광층 형성용 조성물, 유기 전계효과 트랜지스터, 유기 박막 태양전지, 유기 전계 발광 소자, 표시 장치, 및 조명 장치
CN114026101A (zh) * 2019-04-26 2022-02-08 出光兴产株式会社 多环化合物和包含多环化合物或组合物的有机电致发光器件
US20220173318A1 (en) * 2019-05-15 2022-06-02 Lg Chem, Ltd. Organic light-emitting device
JP2020191442A (ja) 2019-05-17 2020-11-26 学校法人関西学院 有機電界発光素子
US11597734B2 (en) 2019-05-20 2023-03-07 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
WO2020242165A1 (ko) * 2019-05-24 2020-12-03 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기전계발광소자
JP2020196700A (ja) 2019-05-29 2020-12-10 学校法人関西学院 多環芳香族化合物
JP2021014446A (ja) 2019-06-07 2021-02-12 学校法人関西学院 アミノ置換多環芳香族化合物
JP7302813B2 (ja) * 2019-06-07 2023-07-04 学校法人関西学院 多環芳香族化合物
KR20200141585A (ko) 2019-06-10 2020-12-21 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
US20200395553A1 (en) * 2019-06-12 2020-12-17 Sfc Co., Ltd. Organic electroluminescent device
KR102191018B1 (ko) * 2019-06-12 2020-12-14 에스에프씨 주식회사 유기발광소자
KR20200143560A (ko) 2019-06-13 2020-12-24 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
JPWO2020251049A1 (ja) 2019-06-14 2020-12-17
KR20200145888A (ko) * 2019-06-19 2020-12-31 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합 다환 화합물
JP2021001163A (ja) 2019-06-21 2021-01-07 学校法人関西学院 多環芳香族化合物
CN112110943A (zh) * 2019-06-21 2020-12-22 南京高光半导体材料有限公司 一种长寿命深蓝色荧光掺杂材料及oled有机电致发光器件
KR20200145945A (ko) 2019-06-21 2020-12-31 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 화합물
JP7239924B2 (ja) * 2019-06-25 2023-03-15 学校法人関西学院 有機電界発光素子、表示装置および照明装置、ならびに化合物
KR20210002265A (ko) 2019-06-28 2021-01-08 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
KR20210006554A (ko) 2019-07-08 2021-01-19 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합 다환 화합물
KR20210006553A (ko) * 2019-07-08 2021-01-19 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합 다환 화합물
EP3763719A1 (en) * 2019-07-11 2021-01-13 Cynora Gmbh Organic molecules for optoelectronic devices
WO2021010770A1 (ko) 2019-07-17 2021-01-21 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
KR102148296B1 (ko) 2019-07-29 2020-08-26 에스에프씨주식회사 보론 화합물을 포함하는 유기발광소자
JP7267868B2 (ja) * 2019-07-30 2023-05-02 住友化学株式会社 含ホウ素縮合環化合物の製造方法
US11944005B2 (en) 2019-07-30 2024-03-26 Samsung Display Co., Ltd. Organic molecules in particular for use in optoelectronic devices
WO2021020931A1 (ko) * 2019-07-31 2021-02-04 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR102239440B1 (ko) * 2019-07-31 2021-04-13 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
KR20210018574A (ko) 2019-08-05 2021-02-18 삼성디스플레이 주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자
KR20210019621A (ko) 2019-08-12 2021-02-23 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합 다환 화합물
JP2021038206A (ja) 2019-08-30 2021-03-11 学校法人関西学院 多環芳香族化合物
WO2021049889A1 (ko) * 2019-09-10 2021-03-18 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR102505881B1 (ko) 2019-10-04 2023-03-06 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 장치
KR102508499B1 (ko) * 2019-10-04 2023-03-10 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 장치
JP2021063067A (ja) * 2019-10-11 2021-04-22 学校法人関西学院 多環芳香族化合物、有機デバイス用材料、有機電界発光素子、表示装置および照明装置
JP2021063074A (ja) 2019-10-16 2021-04-22 学校法人関西学院 シアノ置換多環芳香族化合物
US11968898B2 (en) 2019-10-24 2024-04-23 Lg Display Co., Ltd. Organic light emitting diode and organic light emitting device including the same
US11919914B2 (en) 2019-10-25 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
CN112707923A (zh) * 2019-10-25 2021-04-27 环球展览公司 有机电致发光材料和装置
US11532794B2 (en) 2019-10-28 2022-12-20 Samsung Display Co., Ltd. Compound and light-emitting device including the same
KR20210055841A (ko) 2019-11-07 2021-05-18 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환화합물
KR20210056497A (ko) 2019-11-08 2021-05-20 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
US11746254B2 (en) 2019-11-19 2023-09-05 Rohm And Haas Electronic Materials Llc Tunable refractive index polymers
CN110981899B (zh) * 2019-11-20 2023-02-03 苏州久显新材料有限公司 多环有机硼衍生物和电子器件
KR20210062778A (ko) 2019-11-21 2021-06-01 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함하는 유기 발광 소자
CN110818738B (zh) * 2019-11-22 2023-05-30 西安交通大学 基于醚键构象锁定三苯基氧膦受体的热活化延迟荧光材料
CN112838168A (zh) 2019-11-22 2021-05-25 学校法人关西学院 有机电场发光元件、显示装置、照明装置及苯并蒽化合物
KR20210064496A (ko) 2019-11-25 2021-06-03 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR20210064486A (ko) 2019-11-25 2021-06-03 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 유기 금속 화합물
KR20210065258A (ko) 2019-11-26 2021-06-04 삼성디스플레이 주식회사 화합물 및 이를 포함하는 발광 소자
US11943998B2 (en) * 2019-11-28 2024-03-26 Lg Display Co., Ltd. Organic light emitting diode and organic light emitting device including the same
KR20210067946A (ko) * 2019-11-29 2021-06-08 주식회사 엘지화학 유기 발광 소자
US20230106317A1 (en) * 2019-11-29 2023-04-06 Lg Chem, Ltd. Polycyclic compound and organic light-emitting element comprising same
KR102437216B1 (ko) * 2019-11-29 2022-08-29 주식회사 엘지화학 유기 발광 소자
KR20210067843A (ko) 2019-11-29 2021-06-08 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR20210073694A (ko) 2019-12-10 2021-06-21 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
US11882757B2 (en) 2019-12-18 2024-01-23 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Thermally activated delayed fluorescence green polymer material and preparation method thereof
CN111116623B (zh) * 2019-12-18 2021-04-27 武汉华星光电半导体显示技术有限公司 一种热活化延迟荧光绿光高分子材料及其制备方法
KR20210078637A (ko) 2019-12-18 2021-06-29 삼성디스플레이 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR20210080216A (ko) 2019-12-19 2021-06-30 가꼬우 호징 관세이 가쿠잉 유기전계 발광소자 및 안트라센 화합물
CN114830366A (zh) 2019-12-25 2022-07-29 日铁化学材料株式会社 有机电场发光元件
CN111138494B (zh) 2019-12-31 2022-12-09 武汉天马微电子有限公司 化合物、显示面板以及显示装置
KR102629455B1 (ko) * 2020-01-22 2024-01-24 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20210095363A (ko) 2020-01-23 2021-08-02 에스에프씨 주식회사 신규한 유기 화합물 및 이를 포함하는 유기발광소자
JP2021118354A (ja) 2020-01-27 2021-08-10 学校法人関西学院 有機電界発光素子およびアントラセン系化合物
JP6716145B1 (ja) 2020-02-13 2020-07-01 株式会社フラスク 含ホウ素化合物および有機el素子
KR20210106047A (ko) 2020-02-19 2021-08-30 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
KR20210109111A (ko) 2020-02-26 2021-09-06 삼성디스플레이 주식회사 화합물 및 이를 포함하는 발광 장치
KR102329815B1 (ko) * 2020-02-27 2021-11-19 경희대학교 산학협력단 광전자 소자
EP4116393A4 (en) * 2020-03-03 2024-03-20 Hodogaya Chemical Co Ltd ORGANIC ELECTROLUMINESCENT ELEMENT
TW202200529A (zh) 2020-03-13 2022-01-01 德商麥克專利有限公司 有機電致發光裝置
CN115298188A (zh) * 2020-03-18 2022-11-04 九州有机光材股份有限公司 化合物、发光材料及有机发光装置
KR20210118293A (ko) 2020-03-19 2021-09-30 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합환 화합물
KR20210117972A (ko) 2020-03-19 2021-09-29 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
EP4122937A4 (en) * 2020-03-23 2024-02-28 Sfc Co Ltd POLYCYCLIC AROMATIC COMPOUND AND ORGANIC ELECTROLUMINESCENT DEVICE USING SAME
WO2021200251A1 (ja) 2020-03-31 2021-10-07 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
TW202138542A (zh) 2020-03-31 2021-10-16 日商日鐵化學材料股份有限公司 有機電場發光元件
JP7216754B2 (ja) 2020-03-31 2023-02-01 住友化学株式会社 組成物及びそれを含有する発光素子
KR20210123215A (ko) 2020-04-02 2021-10-13 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
WO2021210501A1 (ja) 2020-04-15 2021-10-21 国立大学法人九州大学 ホウ素含有化合物、発光材料およびそれを用いた発光素子
WO2021210894A1 (ko) 2020-04-16 2021-10-21 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
JPWO2021215446A1 (ja) 2020-04-22 2021-10-28
CN115867558A (zh) * 2020-05-13 2023-03-28 学校法人关西学院 多环芳香族化合物
KR20210145898A (ko) 2020-05-25 2021-12-03 삼성디스플레이 주식회사 헤테로고리 화합물을 포함한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
KR20210148504A (ko) 2020-05-28 2021-12-08 삼성디스플레이 주식회사 축합환 화합물을 포함한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
KR20210154288A (ko) 2020-06-11 2021-12-21 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합 다환 화합물
KR20210156915A (ko) * 2020-06-18 2021-12-28 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 축합 다환 화합물
KR20230028315A (ko) 2020-06-29 2023-02-28 메르크 파텐트 게엠베하 유기 전계 발광 디바이스용 복소환 화합물
EP4172164A1 (de) 2020-06-29 2023-05-03 Merck Patent GmbH Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
KR20220007271A (ko) 2020-07-10 2022-01-18 주식회사 엘지화학 조성물, 증착소스, 이를 포함하는 유기 전계 발광 소자 및 이의 제조방법
KR20220009543A (ko) 2020-07-15 2022-01-25 삼성디스플레이 주식회사 축합환 화합물을 포함한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
WO2022017998A1 (en) 2020-07-22 2022-01-27 Merck Patent Gmbh Materials for organic electroluminescent devices
US20220037596A1 (en) 2020-07-22 2022-02-03 Rohm And Haas Electronic Materials Korea Ltd. Plurality of light-emitting materials, organic electroluminescent compound, and organic electroluminescent device comprising the same
WO2022017997A1 (en) 2020-07-22 2022-01-27 Merck Patent Gmbh Materials for organic electroluminescent devices
JP2022024744A (ja) 2020-07-28 2022-02-09 住友化学株式会社 組成物及び発光素子
KR20230054676A (ko) * 2020-08-21 2023-04-25 삼성디스플레이 주식회사 광전자 소자용 유기 분자
CN116194549A (zh) 2020-08-28 2023-05-30 日铁化学材料株式会社 有机电场发光元件
KR20230068381A (ko) 2020-09-18 2023-05-17 삼성디스플레이 주식회사 유기 전계 발광 소자
KR20220039108A (ko) * 2020-09-21 2022-03-29 삼성전자주식회사 유기 발광 소자
CN116406531A (zh) * 2020-10-14 2023-07-07 浙江光昊光电科技有限公司 有机化合物及其在光电领域的应用
EP4234562A1 (en) 2020-10-20 2023-08-30 NIPPON STEEL Chemical & Material Co., Ltd. Light-emitting material, and organic electroluminescent element
KR20220063368A (ko) * 2020-11-10 2022-05-17 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
KR20220063369A (ko) * 2020-11-10 2022-05-17 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
KR20220064474A (ko) 2020-11-11 2022-05-19 삼성디스플레이 주식회사 발광 소자
TW202237797A (zh) 2020-11-30 2022-10-01 德商麥克專利有限公司 用於有機電致發光裝置之材料
CN112480156B (zh) * 2020-12-03 2022-02-22 中国科学院长春应用化学研究所 一种含有硼原子和硫原子的稠环化合物及其制备方法和应用
KR20220084871A (ko) * 2020-12-14 2022-06-21 솔루스첨단소재 주식회사 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR20220086224A (ko) * 2020-12-16 2022-06-23 솔루스첨단소재 주식회사 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR20220098520A (ko) * 2021-01-04 2022-07-12 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
CN112920211A (zh) * 2021-02-02 2021-06-08 吉林奥来德光电材料股份有限公司 含硼多环芳族化合物、其制备方法及有机电致发光器件
EP4059915A3 (en) * 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
CN113072570B (zh) * 2021-03-01 2022-11-22 北京大学深圳研究生院 热激活延迟红光荧光材料、有机电致发光器件与显示装置
WO2022183900A1 (zh) * 2021-03-01 2022-09-09 北京大学深圳研究生院 一种以热激活延迟荧光材料为发光层材料的有机发光器件
KR20220126479A (ko) * 2021-03-09 2022-09-16 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20220126481A (ko) * 2021-03-09 2022-09-16 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20220126480A (ko) * 2021-03-09 2022-09-16 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
CN116964063A (zh) 2021-03-15 2023-10-27 学校法人关西学院 多环芳香族化合物
EP4068404A1 (en) 2021-03-31 2022-10-05 Idemitsu Kosan Co., Ltd. An organic electroluminescence device comprising a light emitting layer comprising three different compounds and an electronic equipment comprising said organic electroluminescence device
KR20220140063A (ko) 2021-04-08 2022-10-18 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
WO2022214507A1 (en) 2021-04-09 2022-10-13 Merck Patent Gmbh Materials for organic electroluminescent devices
TW202309243A (zh) 2021-04-09 2023-03-01 德商麥克專利有限公司 用於有機電致發光裝置之材料
EP4320648A1 (en) 2021-04-09 2024-02-14 Merck Patent GmbH Materials for organic electroluminescent devices
EP4079742A1 (de) 2021-04-14 2022-10-26 Merck Patent GmbH Metallkomplexe
KR20220142937A (ko) 2021-04-15 2022-10-24 가꼬우 호징 관세이 가쿠잉 다환방향족 화합물
KR20220142863A (ko) * 2021-04-15 2022-10-24 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20220146211A (ko) 2021-04-23 2022-11-01 에스에프씨 주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
WO2022240219A1 (ko) * 2021-05-14 2022-11-17 에스에프씨 주식회사 신규한 유기 화합물 및 이를 포함하는 유기발광소자
KR20220156748A (ko) * 2021-05-19 2022-11-28 김진우 신규한 유기화합물 및 이를 포함하는 유기전계발광소자
KR20220159851A (ko) 2021-05-26 2022-12-05 에스에프씨 주식회사 방향족 헤테로고리를 포함하는 보론 화합물 및 이로부터 보론 도판트를 제조하는 방법
KR20220166188A (ko) 2021-06-09 2022-12-16 에스케이머티리얼즈제이엔씨 주식회사 다환방향족 화합물
CN115477662A (zh) 2021-06-15 2022-12-16 学校法人关西学院 多环芳香族化合物及其应用
JP2023008043A (ja) 2021-07-05 2023-01-19 エスケーマテリアルズジェイエヌシー株式会社 アントラセン化合物
DE112022003409A5 (de) 2021-07-06 2024-05-23 MERCK Patent Gesellschaft mit beschränkter Haftung Materialien für organische elektrolumineszenzvorrichtungen
CN117616101A (zh) * 2021-07-16 2024-02-27 国立大学法人九州大学 含硼化合物、发光材料和使用该发光材料的发光元件
KR20230025535A (ko) 2021-08-05 2023-02-22 에스에프씨 주식회사 유기발광소자
KR20240058919A (ko) 2021-09-13 2024-05-03 메르크 파텐트 게엠베하 유기 전계 발광 디바이스용 재료
CN115819444A (zh) 2021-09-17 2023-03-21 学校法人关西学院 多环芳香族化合物、有机电场发光元件、显示装置及照明装置
WO2023052313A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052275A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052272A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052314A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
KR20230051852A (ko) * 2021-10-12 2023-04-19 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
WO2023090811A1 (ko) 2021-11-17 2023-05-25 에스에프씨 주식회사 고효율과 저전압 특성을 가지는 유기발광소자
KR20230072426A (ko) 2021-11-17 2023-05-24 에스에프씨 주식회사 고효율과 장수명을 가지는 유기발광소자
CN117343078A (zh) 2021-11-25 2024-01-05 北京夏禾科技有限公司 有机电致发光材料和器件
TW202340422A (zh) * 2021-12-02 2023-10-16 國立大學法人九州大學 延遲螢光材料、雷射振盪材料及雷射元件
CN116249423A (zh) 2021-12-08 2023-06-09 学校法人关西学院 多环芳香族化合物、有机电场发光元件、显示装置及照明装置
EP4199130A1 (en) 2021-12-15 2023-06-21 Idemitsu Kosan Co.,Ltd. An organic electroluminescence device comprising a light emitting layer comprising three different compounds and an electronic equipment comprising said organic electroluminescence device
CN116917299A (zh) * 2022-01-13 2023-10-20 株式会社Lg化学 多环化合物及包含其的有机发光器件
KR20230119604A (ko) 2022-02-07 2023-08-16 가꼬우 호징 관세이 가쿠잉 유기 전계 발광 소자
CN114456202B (zh) * 2022-02-17 2023-11-14 中国科学院长春应用化学研究所 一种含有四个硼原子的稠环化合物及其制备方法和电致发光器件
KR20230136039A (ko) 2022-03-17 2023-09-26 가꼬우 호징 관세이 가쿠잉 다환방향족 화합물
KR20230140484A (ko) 2022-03-22 2023-10-06 가꼬우 호징 관세이 가쿠잉 다환방향족 화합물
WO2023208899A1 (en) 2022-04-28 2023-11-02 Merck Patent Gmbh Materials for organic electroluminescent devices
CN114716467B (zh) * 2022-05-18 2024-01-26 上海钥熠电子科技有限公司 含硼氮的杂环化合物及其在有机电致发光器件中的应用
WO2023228005A1 (en) 2022-05-24 2023-11-30 Idemitsu Kosan Co., Ltd. Compound and an organic electroluminescence device comprising the compound
CN117143122A (zh) * 2022-05-31 2023-12-01 江苏三月科技股份有限公司 一种含硼有机化合物及其制备的有机电致发光器件
WO2024013004A1 (de) 2022-07-11 2024-01-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2024033282A1 (en) 2022-08-09 2024-02-15 Merck Patent Gmbh Materials for organic electroluminescent devices
KR20240047307A (ko) 2022-10-04 2024-04-12 고쿠리츠 다이가쿠 호진 교토 다이가쿠 다환방향족 화합물
KR20240050295A (ko) 2022-10-11 2024-04-18 고쿠리츠 다이가쿠 호진 교토 다이가쿠 다환 방향족 화합물
KR20240052692A (ko) 2022-10-14 2024-04-23 고쿠리츠 다이가쿠 호진 교토 다이가쿠 다환 방향족 화합물
KR20240052689A (ko) 2022-10-14 2024-04-23 고쿠리츠 다이가쿠 호진 교토 다이가쿠 다환 방향족 화합물
KR20240054189A (ko) 2022-10-18 2024-04-25 고쿠리츠 다이가쿠 호진 교토 다이가쿠 다환 방향족 화합물

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234873A (ja) * 2011-04-28 2012-11-29 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置および照明装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245087A (ja) 1987-12-11 1989-09-29 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPH07119407B2 (ja) 1989-03-20 1995-12-20 出光興産株式会社 エレクトロルミネッセンス素子
JP3278975B2 (ja) 1993-04-16 2002-04-30 チッソ株式会社 クマリン誘導体
JP3804715B2 (ja) 1997-09-24 2006-08-02 三井化学株式会社 有機電界発光素子
JP3794827B2 (ja) 1998-07-02 2006-07-12 三井化学株式会社 炭化水素化合物および有機電界発光素子
JP3792052B2 (ja) 1998-07-15 2006-06-28 三井化学株式会社 炭化水素化合物および有機電界発光素子
JP3794840B2 (ja) 1998-10-30 2006-07-12 三井化学株式会社 炭化水素化合物および有機電界発光素子
EP1142895B1 (en) 1999-01-08 2006-07-05 Chisso Corporation Borane derivatives and organic electroluminescents
JP4652516B2 (ja) 1999-03-09 2011-03-16 株式会社林原生物化学研究所 ピラン誘導体
JP4544732B2 (ja) 1999-03-09 2010-09-15 株式会社林原生物化学研究所 ピラン誘導体
JP3840003B2 (ja) 1999-08-11 2006-11-01 株式会社林原生物化学研究所 有機電界発光素子
JP3604596B2 (ja) 1999-09-01 2004-12-22 株式会社林原生物化学研究所 有機電界発光素子
JP3735703B2 (ja) 1999-12-21 2006-01-18 大阪大学長 エレクトロルミネッセンス素子
JP3789272B2 (ja) 2000-02-01 2006-06-21 三井化学株式会社 有機電界発光素子
JP3792097B2 (ja) 2000-03-16 2006-06-28 三井化学株式会社 炭化水素化合物および有機電界発光素子
JP3789281B2 (ja) 2000-03-16 2006-06-21 三井化学株式会社 炭化水素化合物および有機電界発光素子
JP3792099B2 (ja) 2000-03-23 2006-06-28 三井化学株式会社 炭化水素化合物および有機電界発光素子
JP3792100B2 (ja) 2000-03-23 2006-06-28 三井化学株式会社 炭化水素化合物および有機電界発光素子
JP2001307884A (ja) 2000-04-26 2001-11-02 Toray Ind Inc 発光素子
JP4754699B2 (ja) 2000-11-07 2011-08-24 株式会社林原生物化学研究所 ピラン誘導体
JP2003347056A (ja) 2002-05-30 2003-12-05 Fuji Photo Film Co Ltd 発光素子
JP3796468B2 (ja) 2002-07-11 2006-07-12 株式会社林原生物化学研究所 有機電界発光素子
US20040131881A1 (en) 2002-12-31 2004-07-08 Eastman Kodak Company Complex fluorene-containing compounds for use in OLED devices
JP4683882B2 (ja) 2003-08-29 2011-05-18 株式会社半導体エネルギー研究所 ピラン誘導体とその製造方法、並びにピラン誘導体を用いた発光素子及び発光装置。
JP4413577B2 (ja) 2003-10-27 2010-02-10 株式会社半導体エネルギー研究所 ピラン誘導体及びそれを用いた発光素子、発光装置、電子機器
DE10357044A1 (de) 2003-12-04 2005-07-14 Novaled Gmbh Verfahren zur Dotierung von organischen Halbleitern mit Chinondiiminderivaten
JP2005170911A (ja) * 2003-12-15 2005-06-30 Idemitsu Kosan Co Ltd 芳香族化合物およびそれを用いた有機エレクトロルミネッセンス素子
JP4653469B2 (ja) 2004-12-01 2011-03-16 出光興産株式会社 有機電界発光素子
DE102005043163A1 (de) * 2005-09-12 2007-03-15 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
JP5615261B2 (ja) 2009-03-11 2014-10-29 学校法人関西学院 多環芳香族化合物
DE102009048791A1 (de) * 2009-10-08 2011-04-14 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102010009903A1 (de) 2010-03-02 2011-09-08 Merck Patent Gmbh Verbindungen für elektronische Vorrichtungen
KR20140013001A (ko) * 2011-03-03 2014-02-04 고쿠리쓰다이가쿠호진 규슈다이가쿠 신규 화합물, 전하 수송 재료 및 유기 디바이스
EP2872589B1 (de) * 2012-07-10 2017-07-26 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
TWI636056B (zh) * 2014-02-18 2018-09-21 學校法人關西學院 多環芳香族化合物及其製造方法、有機元件用材料及其應用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234873A (ja) * 2011-04-28 2012-11-29 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置および照明装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6015018916; KREBS, Frederik C. et al.: 'Synthesis, Structure, and Properties of 4,8,12-Trioxa-12c-phospha-4,8,12,12c-tetrahydrodibenzo[cd,mn' Journal of the American Chemical Society 119(6), 1997, 1208-1216 *
JPN6015018917; TAI, Truong Ba et al.: 'Theoretical Design of pi-Conjugated Heteropolycyclic Compounds Containing a Tricoordinated Boron Cen' Journal of Physical Chemistry C 117(29), 2013, 14999-15008 *
JPN6015018918; Hatakeyama, T. et al.: 'Tandem Phospha-Friedel-Crafts Reacction toward Curved pi-Conjugated Frameworks with a Phosphorus Rin' Organic Letters Vol.13, No.8, 2011, 2130-2133 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016152544A1 (ja) * 2015-03-24 2018-02-15 学校法人関西学院 有機電界発光素子
JP7026405B2 (ja) 2017-05-22 2022-02-28 マテリアル サイエンス カンパニー リミテッド 有機化合物及びこれを含む有機電界発光素子
JP2020520976A (ja) * 2017-05-22 2020-07-16 マテリアル サイエンス カンパニー リミテッドMaterial Science Co.,Ltd. 有機化合物及びこれを含む有機電界発光素子
WO2019003615A1 (ja) * 2017-06-30 2019-01-03 学校法人関西学院 有機電界発光素子
US11647666B2 (en) 2017-06-30 2023-05-09 Kwansei Gakuin Educational Foundation Organic electroluminescent element
JP7117699B2 (ja) 2017-06-30 2022-08-15 学校法人関西学院 有機電界発光素子
JPWO2019003615A1 (ja) * 2017-06-30 2020-04-30 学校法人関西学院 有機電界発光素子
US10804482B2 (en) 2017-09-25 2020-10-13 Samsung Display Co., Ltd. Silicon-containing compound and organic electroluminescence device including the same
US11158829B2 (en) 2018-05-21 2021-10-26 Sumitomo Chemical Company, Limited Method for producing a composition for a light-emitting element and method for evaluating same
JP2019204941A (ja) * 2018-05-21 2019-11-28 住友化学株式会社 発光素子用組成物及びそれを含有する発光素子
KR20200010130A (ko) * 2018-07-19 2020-01-30 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
KR102216430B1 (ko) * 2018-07-19 2021-02-17 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
US11937495B2 (en) 2018-08-23 2024-03-19 Kyushu University, National University Corporation Organic light emitting element, composition and membrane
US11276836B2 (en) 2018-12-10 2022-03-15 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
US11832506B2 (en) 2019-12-13 2023-11-28 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
DE102020133439A1 (de) 2020-01-03 2021-07-08 Rohm And Haas Electronic Materials Korea Ltd. Mehrere organische elektrolumineszierende materialien und diese umfassende organische elektrolumineszierende vorrichtung
JP2023504783A (ja) * 2020-02-13 2023-02-07 エスエフシー カンパニー リミテッド 新規なホウ素化合物及びこれを含む有機発光素子
JP7346740B2 (ja) 2020-02-13 2023-09-19 エスエフシー カンパニー リミテッド 新規なホウ素化合物及びこれを含む有機発光素子
US11889752B2 (en) 2020-02-18 2024-01-30 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
US11856848B2 (en) 2020-05-28 2023-12-26 Samsung Display Co., Ltd. Organic Electroluminescence device and polycyclic compound for organic electroluminescence device
DE102021122804A1 (de) 2020-09-04 2022-03-10 Rohm And Haas Electronic Materials Korea Ltd. Organische elektrolumineszierende Vorrichtung
KR20220065407A (ko) 2020-11-13 2022-05-20 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
TWI799937B (zh) * 2020-12-29 2023-04-21 南韓商樂金顯示科技股份有限公司 發光化合物、具有此化合物的有機發光二極體及有機發光裝置
WO2023282676A1 (ko) 2021-07-07 2023-01-12 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자

Also Published As

Publication number Publication date
CN111892615A (zh) 2020-11-06
WO2015102118A1 (ja) 2015-07-09
CN111662314B (zh) 2021-10-26
EP3345911B1 (en) 2018-11-28
CN106905367A (zh) 2017-06-30
EP3109253B1 (en) 2018-10-24
KR101886773B1 (ko) 2018-08-08
CN105431439B (zh) 2020-09-25
CN111662314A (zh) 2020-09-15
CN111909189A (zh) 2020-11-10
TW201538513A (zh) 2015-10-16
KR20160134881A (ko) 2016-11-23
EP3109253A1 (en) 2016-12-28
TWI636056B (zh) 2018-09-21
KR102058028B1 (ko) 2019-12-20
KR20160119683A (ko) 2016-10-14
KR101955648B1 (ko) 2019-03-07
JPWO2015102118A1 (ja) 2017-03-23
CN105431439A (zh) 2016-03-23
KR101955647B1 (ko) 2019-03-07
EP3109253A4 (en) 2017-08-16
KR20190025065A (ko) 2019-03-08
KR20170121345A (ko) 2017-11-01
EP3345911A1 (en) 2018-07-11
KR20170122296A (ko) 2017-11-03
CN106905367B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
JP5935199B2 (ja) 多環芳香族化合物
JP6703149B2 (ja) 有機電界発光素子
KR102512378B1 (ko) 유기 전계 발광 소자
JP6611825B2 (ja) 多環芳香族化合物
JP2022033287A (ja) 多環芳香族化合物
JP7117699B2 (ja) 有機電界発光素子
WO2017188111A1 (ja) 有機電界発光素子
WO2019009052A1 (ja) 多環芳香族化合物
JP7197861B2 (ja) 有機電界発光素子
KR20200141983A (ko) 불소 치환 다환 방향족 화합물
JP7113455B2 (ja) 有機電界発光素子
JP2021177526A (ja) 有機電界発光素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160421

R150 Certificate of patent or registration of utility model

Ref document number: 5935199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250