KR102512378B1 - 유기 전계 발광 소자 - Google Patents

유기 전계 발광 소자 Download PDF

Info

Publication number
KR102512378B1
KR102512378B1 KR1020197018081A KR20197018081A KR102512378B1 KR 102512378 B1 KR102512378 B1 KR 102512378B1 KR 1020197018081 A KR1020197018081 A KR 1020197018081A KR 20197018081 A KR20197018081 A KR 20197018081A KR 102512378 B1 KR102512378 B1 KR 102512378B1
Authority
KR
South Korea
Prior art keywords
formula
ring
aryl
substituted
alkyl
Prior art date
Application number
KR1020197018081A
Other languages
English (en)
Other versions
KR20190116976A (ko
Inventor
다쿠지 하타케야마
아키오 다지마
다이스케 바바
유키히로 후지타
유코 야마가
히로유키 이마이
Original Assignee
가꼬우 호징 관세이 가쿠잉
에스케이머티리얼즈제이엔씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가꼬우 호징 관세이 가쿠잉, 에스케이머티리얼즈제이엔씨 주식회사 filed Critical 가꼬우 호징 관세이 가쿠잉
Publication of KR20190116976A publication Critical patent/KR20190116976A/ko
Application granted granted Critical
Publication of KR102512378B1 publication Critical patent/KR102512378B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/28Anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

최적인 발광 특성을 가지는 유기 전계 발광 소자를 제공한다. 식(1)의 화합물 또는 식(1)의 구조를 복수 가지는 다량체 화합물 및 식(2A) 또는 식(2B)의 화합물을 포함하는 발광층을 가지는 유기 전계 발광 소자에 의해, 전술한 문제점을 해결한다.
Figure 112019064006022-pct00150

(식(1) 중, A환, B환 및 C환은 아릴환 등, X1 및 X2는 >O 또는 >N-R, 상기 R은 아릴 등, 식(2A) 또는 식(2B) 중, X는 아릴 등, Z는 단결합 또는 2가의 기 등이다.)

Description

유기 전계 발광 소자
본 발명은, 도펀트(dopant) 재료로서의 특정 화합물과 호스트 재료로서의 특정 화합물을 포함하는 발광층을 가지는 유기 전계 발광 소자, 이것을 사용한 표시 장치 및 조명 장치에 관한 것이다.
종래, 전계 발광하는 발광 소자를 사용한 표시 장치는, 전력 절약화나 박형화가 가능하므로, 다양하게 연구되고, 또한 유기 재료로 이루어지는 유기 전계 발광 소자(이하, 유기 EL 소자)는, 경량화나 대형화가 용이하므로 활발하게 검토되어 왔다. 특히, 광의 3원색 중 하나인 청색 등의 발광 특성을 가지는 유기 재료의 개발, 및 최적 발광 특성을 나타내는 복수 재료의 조합에 대해서는, 고분자 화합물, 저분자 화합물을 불문하고 지금까지 활발하게 연구되어 왔다.
유기 EL 소자는, 양극 및 음극으로 이루어지는 한 쌍의 전극과, 상기 한 쌍의 전극 사이에 배치되고, 유기 화합물을 포함하는 한층 또는 복수의 층으로 이루어지는 구조를 가진다. 유기 화합물을 포함하는 층에는, 발광층이나, 정공(正孔), 전자 등의 전하를 수송 또는 주입하는 전하 수송/주입층 등이 있지만, 이들 층에 적절한 각종 유기 재료가 개발되어 있다.
발광층용 재료로서는, 예를 들면, 벤조플루오렌계 화합물 등이 개발되어 있다(국제 공개 제2004/061047호 공보). 또한, 정공 수송 재료로서는, 예를 들면, 트리페닐아민계 화합물 등이 개발되어 있다(일본 공개특허 제2001-172232호 공보). 또한, 전자 수송 재료로서는, 예를 들면, 안트라센계 화합물 등이 개발되어 있다(일본 공개특허 제2005-170911호 공보).
또한, 최근에는 붕소 등을 중심 원자로 한 복수의 방향족환을 축합한 화합물도 보고되어 있다(국제공개 제2015/102118호 공보). 이 문헌에서는 발광층의 도펀트 재료로서 상기 복수의 방향족환을 축합한 화합물을 선택하고, 호스트 재료로서 매우 많은 재료가 기재되어 있는 것 중에 특히 안트라센계 화합물(442페이지의 BH1) 등을 선택한 경우의 유기 EL 소자 평가가 실시되어 있지만, 그 이외의 조합에 대해서는 구체적으로는 검증되어 있지 않으며, 또한, 발광층을 구성하는 조합이 상이하면 발광 특성이 상이하므로, 다른 조합으로부터 얻어지는 특성도 아직 알려져 있지 않다.
국제공개 제2004/061047호 공보 일본공개특허 제2001-172232호 공보 일본공개특허 제2005-170911호 공보 국제공개 제2015/102118호 공보
전술한 바와 같이, 유기 EL 소자로 사용되는 재료로서는 다양한 것이 개발되어 있지만, 발광 특성을 더욱 높이거나, 발광층용 재료의 선택사항을 증가시키기 위하여, 종래의 것과는 상이한 재료 조합의 개발이 요망되고 있다. 특히, 특허문헌 4의 실시예에서 보고된 구체적인 호스트 및 도펀트의 조합 이외로부터 얻어지는 유기 EL 특성(특히 최적인 발광 특성)에 대해서는 알려져 있지 않다.
본 발명자들은, 상기 문제점을 해결하기 위해 예의(銳意) 검토한 결과, 붕소 원자와 질소 원자 또는 산소 원자로 복수의 방향족환을 연결한 화합물과 특정한 화합물을 함유하는 발광층을 한 쌍의 전극 사이에 배치하여 유기 EL 소자를 구성함으로써, 우수한 유기 EL 소자가 얻어지는 것을 발견하고, 본 발명을 완성시켰다.
항 1.
양극 및 음극으로 이루어지는 한 쌍의 전극과, 상기 한 쌍의 전극 사이에 배치되는 발광층을 가지는 유기 전계 발광 소자로서,
상기 발광층은, 하기 일반식(1)으로 표시되는 화합물 및 하기 일반식(1)으로 표시되는 구조를 복수 가지는 화합물의 다량체 중 적어도 1개와, 하기 일반식(2A) 또는 일반식(2B)으로 표시되는 화합물을 포함하는, 유기 전계 발광 소자.
Figure 112019064006022-pct00001
(상기 식(1) 중,
A환, B환 및 C환은, 각각 독립적으로, 아릴환 또는 헤테로아릴환이며, 이들 환에서의 적어도 1개의 수소는 치환되어 있어도 되고,
X1 및 X2는 각각 독립적으로 >O 또는 >N-R이며, 상기 >N-R의 R은 치환되어 있어도 되는 아릴, 치환되어 있어도 되는 헤테로아릴 또는 알킬이며, 또한 상기 N-R의 R은 연결기 또는 단결합에 의해 상기 A환, B환 및/또는 C환과 결합하고 있어도 되고, 그리고,
식(1)으로 표시되는 화합물 또는 구조에서의 적어도 1개의 수소가 할로겐, 시아노 또는 중수소로 치환되어 있어도 된다.)
Figure 112019064006022-pct00002
(상기 식(2A) 또는 식(2B) 중,
X는, 각각 독립적으로, 알킬로 치환되어 있어도 되는, 탄소수 6∼30의 아릴 또는 탄소수 2∼30의 헤테로아릴이며,
Z는, 단결합, 또는, 상기 식(2-Z1)∼식(2-Z7) 중 어느 하나로 표시되는 2가의 기이며, 식(2-Z1)∼식(2-Z7) 중의 *에서 식(2A) 또는 식(2B)의 안트라센 골격과 결합하고,
식(2-Z1)∼식(2-Z5) 중, n은 1 또는 2이며,
식(2-Z6) 또는 식(2-Z7) 중, Y는 >O, >S, >N-R 또는 >C(-R)2이며, 상기 R은 탄소수 1∼4의 알킬 또는 탄소수 6∼12의 아릴이며, >C(-R)2에서의 R끼리 결합하여 스피로 구조를 형성해도 되고, 그리고,
식(2A) 또는 식(2B)으로 표시되는 화합물에서의 적어도 1개의 수소가 할로겐, 시아노 또는 중수소로 치환되어 있어도 된다.)
항 2.
상기 식(2A) 또는 식(2B) 중,
X는, 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 쿼터페닐릴, 나프틸, 플루오레닐, 페날레닐, 페난트레닐, 트리페닐레닐, 벤조플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 나프토벤조퓨라닐, 또는, 나프토벤조티오페닐이며, 이들에서의 적어도 1개의 수소는 탄소수 1∼12의 알킬로 치환되어 있어도 되고,
Z는, 단결합, 또는, 상기 식(2-Z1)∼식(2-Z7) 중 어느 하나로 표시되는 2가의 기이며, 식(2-Z1)∼식(2-Z7) 중의 *에서 식(2A) 또는 식(2B)의 안트라센 골격과 결합하고,
식(2-Z2) 또는 식(2-Z3) 중, n은 1이며,
식(2-Z1), 식(2-Z4) 또는 식(2-Z5) 중, n은 1 또는 2이며,
식(2-Z6) 또는 식(2-Z7) 중, Y는 >O, >S, >N-R 또는 >C(-R)2이며, 상기 R은 메틸, 에틸, 페닐 또는 나프틸이며, >C(-R)2에서의 R끼리 결합하여 스피로 구조를 형성해도 되고, 그리고,
식(2A) 또는 식(2B)으로 표시되는 화합물에서의 적어도 1개의 수소가 할로겐, 시아노 또는 중수소로 치환되어 있어도 되는, 항 1에 기재된 유기 전계 발광 소자.
항 3.
상기 식(2A) 또는 식(2B) 중,
X는, 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 플루오레닐, 페날레닐, 페난트레닐, 트리페닐레닐, 디벤조퓨라닐, 디벤조티오페닐, 나프토벤조퓨라닐, 또는, 나프토벤조티오페닐이며, 이들에서의 적어도 1개의 수소는 탄소수 1∼4의 알킬로 치환되어 있어도 되고,
Z는, 단결합, 또는, 상기 식(2-Z1)∼식(2-Z7) 중 어느 하나로 표시되는 2가의 기이며, 식(2-Z1)∼식(2-Z7) 중의 *에서 식(2A) 또는 식(2B)의 안트라센 골격과 결합하고,
식(2-Z2) 또는 식(2-Z3) 중, n은 1이며,
식(2-Z1), 식(2-Z4) 또는 식(2-Z5) 중, n은 1 또는 2이며,
식(2-Z6) 또는 식(2-Z7) 중, Y는 >O, >S 또는 >N-R이며, 상기 R은 페닐이며, 그리고,
식(2A) 또는 식(2B)으로 표시되는 화합물에서의 적어도 1개의 수소가 할로겐, 시아노 또는 중수소로 치환되어 있어도 되는, 항 1에 기재된 유기 전계 발광 소자.
항 4.
상기 식(2A) 또는 식(2B)으로 표시되는 화합물이 하기 어느 하나의 구조식으로 표시되는 화합물인, 항 1에 기재된 유기 전계 발광 소자.
Figure 112019064006022-pct00003
항 5.
상기 식(1) 중,
A환, B환 및 C환은, 각각 독립적으로, 아릴환 또는 헤테로아릴환이며, 이들 환에서의 적어도 1개의 수소는 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 디아릴아미노, 치환 또는 무치환의 디헤테로아릴아미노, 치환 또는 무치환의 아릴헤테로아릴아미노, 치환 또는 무치환의 알킬, 치환 또는 무치환의 알콕시 또는 치환 또는 무치환의 아릴옥시로 치환되어 있어도 되고, 또한, 이들 환은 B, X1 및 X2로 구성되는 상기 식 중앙의 축합 2환 구조와 결합을 공유하는 5원환 또는 6원환을 가지고,
X1 및 X2는 각각 독립적으로 >O 또는 >N-R이며, >N-R의 R은, 각각 독립적으로, 알킬로 치환되어 있어도 되는 아릴, 알킬로 치환되어 있어도 되는 헤테로아릴 또는 알킬이며, 또한 상기 >N-R의 R은 -O-, -S-, -C(-R)2- 또는 단결합에 의해 상기 A환, B환 및/또는 C환과 결합하고 있어도 되고, 상기 -C(-R)2-의 R은 수소 또는 알킬이며,
식(1)으로 표시되는 화합물 또는 구조에서의 적어도 1개의 수소가 할로겐, 시아노 또는 중수소로 치환되어 있어도 되고, 그리고,
다량체의 경우에는, 식(1)으로 표시되는 구조를 2 또는 3개 가지는 2량체 또는 3량체인, 항 1 내지 4 중 어느 한 항에 기재된 유기 전계 발광 소자.
항 6.
상기 일반식(1)으로 표시되는 화합물이 하기 일반식(1')으로 표시되는 화합물인, 항 1 내지 5 중 어느 한 항에 기재된 유기 전계 발광 소자.
Figure 112019064006022-pct00004
(상기 식(1') 중,
R1∼R11은, 각각 독립적으로, 수소, 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시이며, 이들에서의 적어도 1개의 수소는 아릴, 헤테로아릴 또는 알킬로 치환되어 있어도 되고, 또한, R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에서의 적어도 1개의 수소는 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시로 치환되어 있어도 되고, 이들에서의 적어도 1개의 수소는 아릴, 헤테로아릴 또는 알킬로 치환되어 있어도 되고,
X1 및 X2는 각각 독립적으로 >N-R이며, 상기 >N-R의 R은 탄소수 6∼12의 아릴, 탄소수 2∼15의 헤테로아릴 또는 탄소수 1∼6의 알킬이며, 또한 상기 >N-R의 R은 -O-, -S-, -C(-R)2- 또는 단결합에 의해 상기 a환, b환 및/또는 c환과 결합하고 있어도 되고, 상기 -C(-R)2-의 R은 탄소수 1∼6의 알킬이며, 그리고,
식(1')으로 표시되는 화합물에서의 적어도 1개의 수소가 할로겐 또는 중수소로 치환되어 있어도 된다.)
항 7.
상기 식(1') 중,
R1∼R11은, 각각 독립적으로, 수소, 탄소수 6∼30의 아릴, 탄소수 2∼30의 헤테로아릴 또는 디아릴아미노(단 아릴은 탄소수 6∼12의 아릴이며, 또한 R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 탄소수 9∼16의 아릴환 또는 탄소수 6∼15의 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에서의 적어도 1개의 수소는 탄소수 6∼10의 아릴에서 치환되어 있어도 되고,
X1 및 X2는 각각 독립적으로 >N-R이며, 상기 >N-R의 R은 탄소수 6∼10의 아릴이며, 그리고,
식(1')으로 표시되는 화합물에서의 적어도 1개의 수소가 할로겐 또는 중수소로 치환되어 있어도 되는, 항 6에 기재된 유기 전계 발광 소자.
항 8.
상기 식(1)으로 표시되는 화합물이 하기 어느 하나의 구조식으로 표시되는 화합물인, 항 1∼7 중 어느 한 항에 기재된 유기 전계 발광 소자.
Figure 112019064006022-pct00005
항 9.
상기 음극과 상기 발광층 사이에 배치되는 전자 수송층 및/또는 전자 주입층을 더 가지고, 상기 전자 수송층 및 전자 주입층 중 적어도 1개는, 보란 유도체, 피리딘 유도체, 플루오란텐 유도체, BO계 유도체, 안트라센 유도체, 벤조플루오렌 유도체, 포스핀옥사이드 유도체, 피리미딘 유도체, 카르바졸 유도체, 트리아진 유도체, 벤즈이미다졸 유도체, 페난트롤린 유도체, 및 퀴놀리놀계 금속 착체로 이루어지는 군으로부터 선택되는 적어도 1개를 함유하는, 항 1∼8 중 어느 한 항에 기재된 유기 전계 발광 소자.
항 10.
상기 전자 수송층 및/또는 전자 주입층이, 알칼리 금속, 알칼리토류 금속, 희토류 금속, 알칼리 금속의 산화물, 알칼리 금속의 할로겐화물, 알칼리토류 금속의 산화물, 알칼리토류 금속의 할로겐화물, 희토류 금속의 산화물, 희토류 금속의 할로겐화물, 알칼리 금속의 유기 착체, 알칼리토류 금속의 유기 착체 및 희토류 금속의 유기 착체로 이루어지는 군으로부터 선택되는 적어도 1개를 더 함유하는, 항 9에 기재된 유기 전계 발광 소자.
항 11.
항 1∼10 중 어느 한 항에 기재된 유기 전계 발광 소자를 구비한 표시 장치.
항 12.
항 1∼10 중 어느 한 항에 기재된 유기 전계 발광 소자를 구비한 조명 장치.
본 발명의 바람직한 태양에 의하면, 식(1)으로 표시되는 화합물과, 그것과 조합하여 최적 발광 특성이 얻어지는 식(2A) 또는 식(2B)으로 표시되는 화합물을 제공할 수 있고, 이들을 조합하여 이루어지는 발광층용 재료를 사용하여 유기 EL 소자를 제작함으로써, 구동 전압 및 양자 효율 중 하나 이상이 우수한 유기 EL 소자를 제공할 수 있다.
도 1은 본 실시형태에 따른 유기 EL 소자를 나타내는 개략 단면도이다.
1. 유기 EL 소자에서의 특징적인 발광층
본 발명은, 양극 및 음극으로 이루어지는 한 쌍의 전극과, 상기 한 쌍의 전극 사이에 배치되는 발광층을 가지는 유기 EL 소자로서, 상기 발광층은, 하기 일반식(1)으로 표시되는 화합물 및 하기 일반식(1)으로 표시되는 구조를 복수 가지는 화합물의 다량체 중 적어도 1개와, 하기 일반식(2A) 또는 일반식(2B)으로 표시되는 화합물과을 포함하는, 유기 EL 소자이다.
Figure 112019064006022-pct00006
1-1. 식(1)으로 표시되는 화합물 및 그의 다량체
일반식(1)으로 표시되는 화합물 및 일반식(1)으로 표시되는 구조를 복수 가지는 화합물의 다량체는 기본적으로는 도펀트로서 기능한다. 상기 화합물 및 그의 다량체는, 바람직하게는, 하기 일반식(1')으로 표시되는 화합물, 또는 하기 일반식(1')으로 표시되는 구조를 복수 가지는 화합물의 다량체이다. 그리고 식(1)에 있어서 중심 원자의 「B」는 붕소 원자를 의미하고, 「A」 및 「C」와 함께 링 내의 「B」는 각각 링으로 표시되는 환 구조를 나타내는 부호이다.
Figure 112019064006022-pct00007
일반식(1)에서의 A환, B환 및 C환은, 각각 독립적으로, 아릴환 또는 헤테로아릴환이며, 이들 환에서의 적어도 1개의 수소는 치환기로 치환되어 있어도 된다. 이 치환기는, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 디아릴아미노, 치환 또는 무치환의 디헤테로아릴아미노, 치환 또는 무치환의 아릴헤테로아릴아미노(아릴과 헤테로아릴을 가지는 아미노기), 치환 또는 무치환의 알킬, 치환 또는 무치환의 알콕시 또는 치환 또는 무치환의 아릴옥시가 바람직하다. 이들 기가 치환기를 가지는 경우의 치환기로서는, 아릴, 헤테로아릴 또는 알킬을 예로 들 수 있다. 또한, 상기 아릴환 또는 헤테로아릴환은, 「B」, 「X1」 및 「X2」로 구성되는 일반식(1) 중앙의 축합 2환 구조(이하, 이 구조를 「D 구조」라고도 함)와 결합을 공유하는 5원환 또는 6원환을 가지는 것이 바람직하다.
여기서, 「축합 2환 구조(D 구조)」는, 일반식(1)의 중앙에 나타낸, 「B」, 「X1」 및 「X2」를 포함하여 구성되는 2개의 포화 탄화 수소환이 축합한 구조를 의미한다. 또한, 「축합 2환 구조와 결합을 공유하는 6원환」은, 예를 들면, 상기 일반식(1')으로 나타낸 바와 같이 상기 D 구조에 축합한 a환(벤젠환(6원환))을 의미한다. 또한, 「(A환인) 아릴환 또는 헤테로아릴환이 이 6원환을 가지는」이란, 이 6원환만으로 A환이 형성되거나, 또는, 이 6원환을 포함하여 이 6원환에 또 다른 환 등이 축합하여 A환이 형성되는 것을 의미한다. 바꾸어 말하면, 여기서 말하는 「6원환을 가지는 (A환인) 아릴환 또는 헤테로아릴환」은, A환의 전부 또는 일부를 구성하는 6원환이, 상기 D 구조에 축합하고 있는 것을 의미한다. 「B환(b환)」, 「C환(c환)」, 또한 「5원환」에 대해서도 동일한 설명이 적용된다.
일반식(1)에서의 A환 (또는 B환, C환)은, 일반식(1')에서의 a환과 그 치환기R1∼R3(또는 b환과 그 치환기 R4∼R7, c환과 그 치환기 R8∼R11)에 대응한다. 즉, 일반식(1')은, 일반식(1)의 A∼C 환으로서 「6원환을 가지는 A∼C 환」이 선택된 것에 대응한다. 이러한 의미에서, 일반식(1')의 각 환을 소문자 a∼c로 나타낸다.
일반식(1')에서는, a환, b환 및 c환의 치환기 R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에서의 적어도 1개의 수소는 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시로 치환되어 있어도 되고, 이들에서의 적어도 1개의 수소는 아릴, 헤테로아릴 또는 알킬로 치환되어 있어도 된다. 따라서, 일반식(1')으로 표시되는 화합물은, a환, b환 및 c환에서의 치환기의 상호 결합 형태에 의해, 하기 식(1'-1) 및 식(1'-2)에 나타낸 바와 같이, 화합물을 구성하는 환 구조가 변화한다. 각 식 중의 A'환, B'환 및 C'환은, 일반식(1)에서의 각각 A환, B환 및 C환에 대응한다. 또한, 각 식 중의 R1∼R11, a, b, c, X1 및 X2의 정의는 일반식(1')에서의 정의와 동일하다.
Figure 112019064006022-pct00008
상기 식(1'-1) 및 식(1'-2) 중의 A'환, B'환 및 C'환은, 일반식(1')으로 설명하면, 치환기 R1∼R11 중 인접하는 기끼리 결합하여, 각각 a환, b환 및 c환과 함께 형성한 아릴환 또는 헤테로아릴환을 나타낸다(a환, b환 또는 c환에 다른 환 구조가 축합하여 형성된 축합환이라고도 할 수 있다). 그리고, 식에서는 나타내지는 않지만, a환, b환 및 c환 모두 A'환, B'환 및 C'환으로 변화된 화합물도 있다. 또한, 상기 식(1'-1) 및 식(1'-2)으로부터 알 수 있는 바와 같이, 예를 들면, b환의 R8과 c환의 R7, b환의 R11과 a환의 R1, c환의 R4와 a환의 R3 등은 「인접하는 기끼리」에는 해당되지 않우묘, 이들이 결합하지는 않는다. 즉, 「인접하는 기」는 동일 환 상(上)에서 인접하는 기를 의미한다.
상기 식(1'-1)이나 식(1'-2)으로 표시되는 화합물은, 예를 들면, 후술하는 구체적 화합물로서 열거한 식(1-402)∼식(1-409) 또는 식(1-412)∼식(1-419)으로 표시되는 화합물에 대응한다. 즉, 예를 들면, a환(또는 b환 또는 c환)인 벤젠환에 대하여 벤젠환, 인돌환, 피롤환, 벤조퓨란환 또는 벤조티오펜환 등이 축합하여 형성되는 A'환(또는 B'환 또는 C'환)을 가지는 화합물이며, 형성되어 생긴 축합환 A'(또는 축합환 B'또는 축합환 C')는 각각 나프탈렌환, 카르바졸환, 인돌환, 디벤조퓨란환 또는 디벤조티오펜환 등이다.
일반식(1)에서의 X1 및 X2는, 각각 독립적으로, >O 또는 >N-R이며, 상기 >N-R의 R은 치환되어 있어도 되는 아릴, 치환되어 있어도 되는 헤테로아릴 또는 알킬이며, 상기 >N-R의 R은 연결기 또는 단결합에 의해 상기 B환 및/또는 C환과 결합하고 있어도 되고, 연결기로서는, -O-, -S- 또는 -C(-R)2-이 바람직하다. 그리고, 상기 「-C(-R)2-」의 R은 수소 또는 알킬이다. 이 설명은 일반식(1')에서의 X1 및 X2에서도 동일하다.
여기서, 일반식(1)에서의 「>N-R의 R은 연결기 또는 단결합에 의해 상기 A환, B환 및/또는 C환과 결합되어 있는」의 규정은, 일반식(1')에서는 「>N-R의 R은 -O-, -S-, -C(-R)2- 또는 단결합에 의해 상기 a환, b환 및/또는 c환과 결합되어 있는」의 규정에 대응한다.
이 규정은, 하기 식(1'-3-1)으로 표시되는, X1이나 X2가 축합환 B' 및 축합환 C'에 받아들여진 환 구조를 가지는 화합물로 표현할 수 있다. 즉, 예를 들면, 일반식(1')에서의 b환(또는 c환)인 벤젠환에 대하여 X1(또는 X2)을 받아들이도록 하여 다른 환이 축합하여 형성되는 B'환(또는 C'환)을 가지는 화합물이다. 이 화합물은, 예를 들면, 후술하는 구체적 화합물로서 열거한, 식(1-451)∼식(1-462)으로 표시되는 화합물 및 식(1-1401)∼식(1-1460)으로 표시되는 화합물에 대응하고, 형성되어 생긴 축합환 B'(또는 축합환 C')은, 예를 들면, 페녹사진환, 페노티아진환 또는 아크리딘환이다.
또한, 상기 규정은, 하기 식(1'-3-2)이나 식(1'-3-3)으로 표시되는, X1 및/또는 X2가 축합환 A'에 받아들여진 환 구조를 가지는 화합물로도 표현할 수 있다. 즉, 예를 들면, 일반식(1')에서의 a환인 벤젠환에 대하여 X1(및/또는 X2)을 받아들이도록 하여 다른 환이 축합하여 형성되는 A'환을 가지는 화합물이다. 이 화합물은, 예를 들면, 후술하는 구체적 화합물로서 열거한 식(1-471)∼식(1-479)으로 표시되는 화합물에 대응하고, 형성되어 생긴 축합환 A'는, 예를 들면, 페녹사진환, 페노티아진환 또는 아크리딘환이다. 그리고, 하기 식(1'-3-1), 식(1'-3-2) 및 식(1'-3-3) 중의 R1∼R11, a, b, c, X1 및 X2의 정의는 일반식(1')에서의 정의와 동일하다.
Figure 112019064006022-pct00009
일반식(1)의 A환, B환 및 C환인 「아릴환」으로서는, 예를 들면, 탄소수 6∼30의 아릴환이 있으며, 탄소수 6∼16의 아릴환이 바람직하고, 탄소수 6∼12의 아릴환이 보다 바람직하고, 탄소수 6∼10의 아릴환이 특히 바람직하다. 그리고, 이 「아릴환」은, 일반식(1')에서 규정된 「R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 형성된 아릴환」에 대응하고, 또한, a환(또는 b환, c환)이 이미 탄소수 6의 벤젠환으로 구성되어 있으므로, 여기에 5원환이 축합한 축합환의 합계 탄소수 9가 하한의 탄소수로 된다.
구체적인 「아릴환」으로서는, 단환계인 벤젠환, 2환계인 비페닐환, 축합 2환계인 나프탈렌환, 3환계인 터페닐환(m-터페닐, o-터페닐, p-터페닐), 축합 3환계인, 아세나프틸렌환, 플루오렌환, 페날렌환, 페난트렌환, 축합 4환계인 트리페닐렌환, 피렌환, 나프타센환, 축합 5환계인 페릴렌환, 펜타센환 등을 예로 들 수 있다.
일반식(1)의 A환, B환 및 C환인 「헤테로아릴환」으로서는, 예를 들면, 탄소수 2∼30의 헤테로아릴환이 있으며, 탄소수 2∼25의 헤테로아릴환이 바람직하고, 탄소수 2∼20의 헤테로아릴환이 보다 바람직하고, 탄소수 2∼15의 헤테로아릴환이 보다 바람직하고, 탄소수 2∼10의 헤테로아릴이 특히 바람직하다. 또한, 「헤테로아릴환」으로서는, 예를 들면, 환 구성 원자로서 탄소 이외에 산소, 유황 및 질소로부터 선택되는 헤테로 원자를 1개∼5개 함유하는 복소환 등이 있다. 그리고, 이 「헤테로아릴환」은, 일반식(1')에서 규정된 「R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 형성된 헤테로아릴환」에 대응하고, 또한, a환(또는 b환, c환)이 이미 탄소수 6의 벤젠환으로 구성되어 있으므로, 여기에 5원환이 축합한 축합환의 합계 탄소수 6이 하한의 탄소수가 된다.
구체적인 「헤테로아릴환」으로서는, 예를 들면, 피롤환, 옥사졸환, 이소옥사졸환, 티아졸환, 이소티아졸환, 이미다졸환, 옥사디아졸환, 티아디아졸환, 트리아졸환, 테트라졸환, 피라졸환, 피리딘환, 피리미딘환, 피리다진환, 피라진환, 트리아진환, 인돌환, 이소인돌환, 1H-인다졸환, 벤즈이미다졸환, 벤즈옥사졸환, 벤조티아졸환, 1H-벤조트리아졸환, 퀴놀린환, 이소퀴놀린환, 신놀린환, 퀴나졸린환, 퀴녹살린 환, 프탈라진환, 나프티리딘환, 퓨린환, 프테리딘환, 카르바졸환, 아크리딘환, 페녹사틴환, 페녹사진환, 페노티아진환, 페나진환, 인돌리진환, 퓨란환, 벤조퓨란환, 이소벤조퓨란환, 디벤조퓨란환, 티오펜환, 벤조티오펜환, 디벤조티오펜환, 퓨라잔환, 옥사디아졸환, 티안트렌환 등이 있다.
상기 「아릴환」 또는 「헤테로아릴환」에 있어서의 1개 이상의 수소는, 제1 치환기인, 치환 또는 무치환의 「아릴」, 치환 또는 무치환의 「헤테로아릴」, 치환 또는 무치환의 「디아릴아미노」, 치환 또는 무치환의 「디헤테로아릴아미노」, 치환 또는 무치환의 「아릴헤테로아릴아미노」, 치환 또는 무치환의 「알킬」, 치환 또는 무치환의 「알콕시」, 또는 치환 또는 무치환의 「아릴옥시」로 치환되어 있어도 되지만, 이 제1 치환기로서의 「아릴」이나 「헤테로아릴」, 「디아릴아미노」의 아릴, 「디헤테로아릴아미노」의 헤테로아릴, 「아릴헤테로아릴아미노」의 아릴과 헤테로아릴, 또한 「아릴옥시」의 아릴로서는 전술한 「아릴환」또는 「헤테로아릴환」의 1가의 기를 예로 들 수 있다.
또한 제1 치환기로서의 「알킬」로서는, 직쇄 및 분지쇄 중 어느 것이라도 되고, 예를 들면, 탄소수 1∼24의 직쇄 알킬 또는 탄소수 3∼24의 분지쇄 알킬이 있다. 탄소수 1∼18의 알킬(탄소수 3∼18의 분지쇄 알킬)이 바람직하고, 탄소수 1∼12의 알킬(탄소수 3∼12의 분지쇄 알킬)이 보다 바람직하고, 탄소수 1∼6의 알킬(탄소수 3∼6의 분지쇄 알킬)이 더욱 바람직하고, 탄소수 1∼4의 알킬(탄소수 3∼4의 분지쇄 알킬)이 특히 바람직하다.
구체적인 알킬로서는, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, n-헥실, 1-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, n-헵틸, 1-메틸헥실, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 2,6-디메틸-4-헵틸, 3,5,5-트리메틸헥실, n-데실, n-운데실, 1-메틸데실, n-도데실, n-트리데실, 1-헥실헵틸, n-테트라데실, n-펜타데실, n-헥사데실, n-헵타데실, n-옥타데실, n-에이코실 등을 예로 들 수 있다.
또한 제1 치환기로서의 「알콕시」로서는, 예를 들면, 탄소수 1∼24의 직쇄 또는 탄소수 3∼24의 분지쇄의 알콕시가 있다. 탄소수 1∼18의 알콕시(탄소수 3∼18의 분지쇄의 알콕시)가 바람직하고, 탄소수 1∼12의 알콕시(탄소수 3∼12의 분지쇄의 알콕시)가 더욱 바람직하고, 탄소수 1∼6의 알콕시(탄소수 3∼6의 분지쇄의 알콕시)가 보다 바람직하고, 탄소수 1∼4의 알콕시(탄소수 3∼4의 분지쇄의 알콕시)가 특히 바람직하다.
구체적인 알콕시로서는, 메톡시, 에톡시, 프로폭시, 이소프로폭시, 부톡시, 이소부톡시, sec-부톡시, tert-부톡시, 펜틸옥시, 헥실옥시, 헵틸옥시, 옥틸옥시 등을 예로 들 수 있다.
제1 치환기인, 치환 또는 무치환의 「아릴」, 치환 또는 무치환의 「헤테로아릴」, 치환 또는 무치환의 「디아릴아미노」, 치환 또는 무치환의 「디헤테로아릴아미노」, 치환 또는 무치환의 「아릴헤테로아릴아미노」, 치환 또는 무치환의 「알킬」, 치환 또는 무치환의 「알콕시」, 또는 치환 또는 무치환의 「아릴옥시」는, 치환 또는 무치환으로 설명되어 있는 바와 같이, 이들에 있어서 1개 이상의 수소가 제2 치환기로 치환되어 있어도 된다. 이 제2 치환기로서는, 예를 들면, 아릴, 헤테로아릴 또는 알킬이 있고, 이들의 구체적인 것은, 전술한 「아릴환」 또는 「헤테로아릴환」의 1가의 기, 또 제1 치환기로서의 「알킬」의 설명을 참조할 수 있다. 또한, 제2 치환기로서의 아릴이나 헤테로아릴에는, 이들에 있어서 1개 이상의 수소가 페닐 등의 아릴(구체예는 전술한 바와 같음)이나 메틸 등의 알킬(구체예는 전술한 바와 같음)로 치환된 것도 제2 치환기로서의 아릴이나 헤테로아릴에 포함된다. 그 일례로서는, 제2 치환기가 카르바졸릴기인 경우에는, 9번 위치에 있어서의 1개 이상의 수소가 페닐 등의 아릴이나 메틸 등의 알킬로 치환된 카르바졸릴기도 제2 치환기로서의 헤테로아릴에 포함된다.
일반식(1')의 R1∼R11에 있어서의 아릴, 헤테로아릴, 디아릴아미노의 아릴, 디헤테로아릴아미노의 헤테로아릴, 아릴헤테로아릴아미노의 아릴과 헤테로아릴, 또는 아릴옥시의 아릴로서는, 일반식(1)에서 설명한 「아릴환」또는 「헤테로아릴환」의 1가의 기를 예로 들 수 있다. 또한, R1∼R11에 있어서의 알킬 또는 알콕시로서는, 전술한 일반식(1)의 설명에 있어서의 제1 치환기로서의 「알킬」이나 「알콕시」의 설명을 참조할 수 있다. 또한, 이들 기로의 치환기로서의 아릴, 헤테로아릴 또는 알킬도 마찬가지이다. 또한, R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 아릴환 또는 헤테로아릴환을 형성한 경우의, 이들 환으로의 치환기인 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시, 및, 새로운 치환기인 아릴, 헤테로아릴 또는 알킬에 대해서도 마찬가지이다.
일반식(1)의 X1 및 X2에 있어서의 N-R의 R은 전술한 제2 치환기로 치환되어 있어도 되는 아릴, 헤테로아릴 또는 알킬이며, 아릴이나 헤테로아릴에 있어서의 1개 이상의 수소는, 예를 들면, 알킬로 치환되어 있어도 된다. 이 아릴, 헤테로아릴이나 알킬로서는 전술한 것을 예로 들 수 있다. 특히 탄소수 6∼10의 아릴(예를 들면, 페닐, 나프틸 등), 탄소수 2∼15의 헤테로아릴(예를 들면, 카르바졸릴 등), 탄소수 1∼4의 알킬(예를 들면, 메틸, 에틸 등)이 바람직하다. 이 설명은 일반식(1')에 있어서의 X1 및 X2에서도 동일하다.
일반식(1)에 있어서의 연결기인 「-C(-R)2-」의 R은 수소 또는 알킬이지만, 이 알킬로서는 전술한 것을 예로 들 수 있다. 특히 탄소수 1∼4의 알킬(예를 들면, 메틸, 에틸 등)이 바람직하다. 이 설명은 일반식(1')에 있어서의 연결기인 「-C(-R)2-」에서도 동일하다.
또한, 발광층에는, 일반식(1)으로 표시되는 단위 구조를 복수 가지는 화합물의 다량체, 바람직하게는, 일반식(1')으로 표시되는 단위 구조를 복수 가지는 화합물의 다량체가 포함되어도 된다. 다량체는, 2∼6 량체가 바람직하고, 2∼3 량체가 보다 바람직하고, 2량체가 특히 바람직하다. 다량체는, 1개의 화합물 중에 상기 단위 구조를 복수 가지는 형태이면 되며, 예를 들면, 상기 단위 구조가 단결합, 탄소수 1∼3의 알킬렌기, 페닐렌기, 나프틸렌기 등의 연결기로 복수 결합한 형태에 더하여, 상기 단위 구조에 포함되는 임의의 환(A환, B환 또는 C환, a환, b환 또는 c환)을 복수의 단위 구조에서 공유하도록 하여 결합한 형태라도 되고, 또한, 상기 단위 구조에 포함되는 임의의 환(A환, B환 또는 C환, a환, b환 또는 c환)끼리 축합하도록 하여 결합한 형태라도 된다.
이와 같은 다량체로서는, 예를 들면, 하기 식(1'-4), 식(1'-4-1), 식(1'-4-2), 식(1'-5-1)∼식(1'-5-4) 또는 식(1'-6)으로 표시되는 다량체 화합물이 있다. 하기 식(1'-4)으로 표시되는 다량체 화합물은, 예를 들면, 후술하는 식(1-423)으로 표시되는 화합물에 대응한다. 즉, 일반식(1')으로 설명하면, a환인 벤젠환을 공유하도록 하여, 복수의 일반식(1')으로 표시되는 단위 구조를 하나의 화합물 중에 가지는 다량체 화합물이다. 또한, 하기 식(1'-4-1)으로 표시되는 다량체 화합물은, 예를 들면, 후술하는 식(1-2665)으로 표시되는 화합물에 대응한다. 즉, 일반식(1')으로 설명하면, a환인 벤젠환을 공유하도록 하여, 2개의 일반식(1')으로 표시되는 단위 구조를 하나의 화합물 중에 가지는 다량체 화합물이다. 또한, 하기 식(1'-4-2)으로 표시되는 다량체 화합물은, 예를 들면, 후술하는 식(1-2666)으로 표시되는 화합물에 대응한다. 즉, 일반식(1')으로 설명하면, a환인 벤젠환을 공유하도록 하여, 2개의 일반식(1')으로 표시되는 단위 구조를 하나의 화합물 중에 가지는 다량체 화합물이다. 또한, 하기 식(1'-5-1)∼식(1'-5-4)으로 표시되는 다량체 화합물은, 예를 들면, 후술하는 식(1-421), 식(1-422), 식(1-424) 또는 식(1-425)으로 표시되는 화합물에 대응한다. 즉, 일반식(1')으로 설명하면, b환(또는 c환)인 벤젠환을 공유하도록 하여, 복수의 일반식(1')으로 표시되는 단위 구조를 하나의 화합물 중에 가지는 다량체 화합물이다. 또한, 하기 식(1'-6)으로 표시되는 다량체 화합물은, 예를 들면, 후술하는 식(1-431)∼식(1-435)으로 표시되는 화합물에 대응한다. 즉, 일반식(1')으로 설명하면, 예를 들면 어떤 단위 구조를 가지는 b환(또는 a환, c환)인 벤젠환과 어떤 단위 구조를 가지는 b환(또는 a환, c환)인 벤젠환이 축합하도록 하여, 복수의 일반식(2)으로 표시되는 단위 구조를 하나의 화합물 중에 가지는 다량체 화합물이다. 그리고 하기 구조식 중의 각 부호의 정의는 일반식(1')에서와 동일하다.
Figure 112019064006022-pct00010
다량체 화합물은, 식(1'-4), 식(1'-4-1) 또는 식(1'-4-2)으로 표현되는 다량화 형태와, 식(1'-5-1)∼식(1'-5-4) 중 어느 하나 또는 식(1'-6)으로 표현되는 다량화 형태가 조합된 다량체라도 되고, 식(1'-5-1)∼식(1'-5-4) 중 어느 하나로 표현되는 다량화 형태와, 식(1'-6)으로 표현되는 다량화 형태가 조합된 다량체라도 되고, 식(1'-4), 식(1'-4-1) 또는 식(1'-4-2)으로 표현되는 다량화 형태와 식(1'-5-1)∼식(1'-5-4) 중 어느 하나로 표현되는 다량화 형태와 식(1'-6)으로 표현되는 다량화 형태가 조합된 다량체라도 된다.
또한, 일반식(1) 또는 일반식(1')으로 표시되는 화합물 및 그의 다량체의 화학 구조 중의 수소는, 그 전부 또는 일부가 할로겐, 시아노 또는 중수소로 치환되어 있어도 된다. 예를 들면, 식(1)에 있어서는, A환, B환, C환(A∼C 환은 아릴환 또는 헤테로아릴환), A∼C 환으로의 치환기, 및 X1 및 X2인 >N-R에서의 R(=알킬, 아릴)에서의 수소가 할로겐, 시아노 또는 중수소로 치환될 수 있지만, 이들 중에서도 아릴이나 헤테로아릴에서의 전부 또는 일부의 수소가 할로겐, 시아노 또는 중수소로 치환된 태양을 예로 들 수 있다. 할로겐은, 불소, 염소, 브롬 또는 요오드이며, 바람직하게는 불소, 염소 또는 브롬, 보다 바람직하게는 염소이다.
식(1)으로 표시되는 화합물 및 그의 다량체의 보다 구체적인 예로서는, 예를 들면, 하기 구조식으로 표시되는 화합물이 있다.
Figure 112019064006022-pct00011
Figure 112019064006022-pct00012
Figure 112019064006022-pct00013
Figure 112019064006022-pct00014
Figure 112019064006022-pct00015
Figure 112019064006022-pct00016
Figure 112019064006022-pct00017
Figure 112019064006022-pct00018
Figure 112019064006022-pct00019
Figure 112019064006022-pct00020
Figure 112019064006022-pct00021
Figure 112019064006022-pct00022
Figure 112019064006022-pct00023
Figure 112019064006022-pct00024
Figure 112019064006022-pct00025
Figure 112019064006022-pct00026
Figure 112019064006022-pct00027
Figure 112019064006022-pct00028
Figure 112019064006022-pct00029
Figure 112019064006022-pct00030
Figure 112019064006022-pct00031
Figure 112019064006022-pct00032
Figure 112019064006022-pct00033
Figure 112019064006022-pct00034
Figure 112019064006022-pct00035
Figure 112019064006022-pct00036
또한, 식(1)으로 표시되는 화합물 및 그의 다량체는, A환, B환 및 C환(a환, b환 및 c환 중 적어도 1개에서의, 중심 원자 「B」(붕소)에 대한 파라 위치에 페닐옥시기, 카르바졸릴기 또는 디페닐아미노기를 도입함으로써, T1 에너지의 향상(약 0.01∼0.1 eV 향상)을 기대할 수 있다. 특히, B(붕소)에 대한 파라 위치에 페닐옥시기를 도입함으로써, A환, B환 및 C환(a환, b환 및 c환)인 벤젠환 상의 HOMO가 보다 붕소에 대한 메타 위치에 국재화(局在化)하고, LUMO가 붕소에 대한 오르토 및 파라 위치에 국재화하므로, T1 에너지의 향상을 특히 기대할 수 있다.
이와 같은 구체예로서는, 예를 들면, 하기 식(1-4501)∼식(1-4522)으로 표시되는 화합이 있다.
그리고, 식 중의 R은 알킬이며, 직쇄 및 분지쇄 중 어느 것이라도 되고, 예를 들면, 탄소수 1∼24의 직쇄 알킬 또는 탄소수 3∼24의 분지쇄 알킬이 있다. 탄소수 1∼18의 알킬(탄소수 3∼18의 분지쇄 알킬)이 바람직하고, 탄소수 1∼12의 알킬(탄소수 3∼12의 분지쇄 알킬)이 보다 바람직하고, 탄소수 1∼6의 알킬(탄소수 3∼6의 분지쇄 알킬)이 더욱 바람직하고, 탄소수 1∼4의 알킬(탄소수 3∼4의 분지쇄 알킬)이 특히 바람직하다. 또한, R로서는 그 외에 페닐을 예로 들 수 있다.
또한, 「PhO-」는 페닐옥시기이며, 이 페닐은 직쇄 또는 분지쇄의 알킬로 치환되어 있어도 되고, 예를 들면, 탄소수 1∼24의 직쇄 알킬 또는 탄소수 3∼24의 분지쇄 알킬, 탄소수 1∼18의 알킬(탄소수 3∼18의 분지쇄 알킬), 탄소수 1∼12의 알킬(탄소수 3∼12의 분지쇄 알킬,) 탄소수 1∼6의 알킬(탄소수 3∼6의 분지쇄 알킬), 탄소수 1∼4의 알킬(탄소수 3∼4의 분지쇄 알킬)로 치환되어 있어도 된다.
Figure 112019064006022-pct00037
또한, 식(1)으로 표시되는 화합물 및 그의 다량체의 구체적인 예로서는, 전술한 화합물에 있어서, 화합물 중의 1개 또는 복수 개의 방향환에서의 적어도 1개의 수소가 1개 또는 복수 개의 알킬이나 아릴로 치환된 화합물을 들 수 있으며, 보다 바람직하게는 1∼2 개의 탄소수 1∼12의 알킬이나 탄소수 6∼10의 아릴로 치환된 화합물을 예로 들 수 있다.
구체적으로는, 이하의 화합물을 예로 들 수 있다. 하기 식 중의 R은 각각 독립적으로 탄소수 1∼12의 알킬 또는 탄소수 6∼10의 아릴, 바람직하게는 탄소수 1∼4의 알킬 또는 페닐이며, n은 각각 독립적으로 0∼2, 바람직하게는 1이다.
Figure 112019064006022-pct00038
Figure 112019064006022-pct00039
또한, 식(1)으로 표시되는 화합물 및 그의 다량체의 구체적인 예로서는, 화합물 중의 1개 또는 복수 개의 페닐기 또는 1개의 페닐렌 기에서의 적어도 1개의 수소가 1개 또는 복수 개의 탄소수 1∼4의 알킬, 바람직하게는 탄소수 1∼3의 알킬(바람직하게는 1개 또는 복수 개의 메틸기)로 치환된 화합물을 들 수 있고, 보다 바람직하게는, 1개의 페닐기의 오르토 위치에서의 수소 (2개소 중 2개소 모두, 바람직하게는 어느 1개소) 또는 1개의 페닐렌기의 오르토 위치에서의 수소(최대 4개소 중 4개소 모두, 바람직하게는 어느 1개소)가 메틸기로 치환된 화합물을 들 수 있다.
화합물 중의 말단의 페닐기나 p-페닐렌기의 오르토 위치에서의 적어도 1개의 수소를 메틸기 등으로 치환함으로써, 이웃하는 방향환끼리 직교하기 쉽게 되어 공역이 약화되는 결과, 3중항 여기(勵起) 에너지(ET)를 높이는 것이 가능하게 된다.
1-2. 식(1)으로 표시되는 화합물 및 그의 다량체의 제조 방법
일반식(1)이나 일반식(1')로 표시되는 화합물 및 그의 다량체는, 기본적으로는, 먼저 A환(a환)과 B환(b환) 및 C환(c환)을 결합기(X1이나 X2를 포함하는 기)와 결합시킴으로써 중간체를 제조하고(제1 반응), 그 후에, A환(a환), B환(b환) 및 C환(c환)을 결합기(중심 원자 「B」(붕소)를 포함하는 기)로 결합시킴으로써 최종 생성물을 제조할 수 있다(제2 반응). 제1 반응에서는, 아미노화 반응이면 부흐발트-하트위그(Buchwald-Hartwig) 반응과 같은 일반적 반응을 이용할 수 있다. 또한, 제2 반응에서는, 탠덤 헤테로 플리델 크라프트(Tandem Hetero-Friedel-Crafts) 반응(연속적인 방향족 친전자 치환 반응, 이하 동일함)을 이용할 수 있다. 그리고, 후술하는 스킴(scheme)(1)∼스킴(13)에서는, X1이나 X2로서 >N-R인 경우에 대하여 설명하고 있지만, >O인 경우에 대해서도 동일하다. 또한, 스킴(1)∼스킴(13)에서의 구조식 중의 각 부호의 정의는 식(1) 및 식(1')에서의 정의와 동일하다.
제2 반응은, 하기 스킴(1)이나 스킴(2)에 나타낸 바와 같이, A환(a환), B환(b환) 및 C환(c환)을 결합하는 중심 원자 「B」(붕소)을 도입하는 반응이며, 먼저, X1과 X2(>N-R) 사이의 수소 원자를 n-부틸리튬, sec-부틸리튬 또는 tert-부틸리튬 등으로 오르토 메탈화한다. 다음으로, 3염화 붕소나 3브롬화 붕소 등을 가하여, 리튬-붕소의 금속 교환을 행한 후, N,N-디이소프로필에틸아민 등의 브뢴스테드 염기를 가함으로써, 탠덤 보라 프리델 크라프트(Tandem Bora-Friedel-Crafts) 반응시켜, 목적물을 얻을 수 있다. 제2 반응에 있어서는 반응을 촉진시키기 위하여 3염화 알루미늄 등의 루이스산을 가할 수도 있다.
Figure 112019064006022-pct00040
Figure 112019064006022-pct00041
그리고, 상기 스킴(1)이나 스킴(2)는, 일반식(1)이나 일반식(1')으로 표시되는 화합물의 제조 방법을 주로 나타내고 있지만, 그의 다량체에 대해서는, 복수의 A환(a환), B환(b환) 및 C환(c환)을 가지는 중간체를 사용함으로써 제조할 수 있다. 상세하게는 하기 스킴(3)∼스킴(5)에서 설명한다. 이 경우에, 사용하는 부틸리튬 등의 시약의 양을 2배량, 3배량으로 함으로써 목적물을 얻을 수 있다.
Figure 112019064006022-pct00042
Figure 112019064006022-pct00043
Figure 112019064006022-pct00044
상기 스킴에 있어서는, 오르토 메탈화에 의해 원하는 위치에 리튬을 도입하였지만, 하기 스킴(6) 및 스킴(7)과 같이 리튬을 도입하고자 하는 위치에 브롬 원자등을 도입하고, 할로겐-메탈 교환에 의해서도 원하는 위치에 리튬을 도입할 수 있다.
Figure 112019064006022-pct00045
Figure 112019064006022-pct00046
또한, 스킴(3)에서 설명한 다량체의 제조 방법에 대해서도, 상기 스킴(6) 및 스킴(7)과 같이 리튬을 도입하고자 하는 위치에 브롬 원자나 염소 원자 등의 할로겐을 도입하고, 할로겐-메탈 교환에 의해서도 원하는 위치에 리튬을 도입할 수 있다(하기 스킴(8), 스킴(9) 및 스킴(10)).
Figure 112019064006022-pct00047
Figure 112019064006022-pct00048
Figure 112019064006022-pct00049
이 방법에 의하면, 치환기의 영향으로 오르토 메탈화할 수 없는 케이스라도 목적물을 합성할 수 있어 유용하다.
이상의 반응에서 사용되는 용매의 구체예는, tert-부틸벤젠이나 크실렌 등이다.
전술한 합성법을 적절하게 선택하고, 사용하는 원료도 적절하게 선택함으로써, 원하는 위치에 치환기를 가지는 화합물 및 그의 다량체를 합성할 수 있다.
또한, 일반식(1')에서는, a환, b환 및 c환의 치환기 R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에서의 적어도 1개의 수소는 아릴 또는 헤테로아릴로 치환되어 있어도 된다. 따라서, 일반식(1')으로 표시되는 화합물은, a환, b환 및 c환에서의 치환기의 상호 결합 형태에 의해, 하기 스킴(11) 및 스킴(12)의 식(1'-1) 및 식(1'-2)에 나타낸 바와 같이, 화합물을 구성하는 환 구조가 변화한다. 이들 화합물은 하기 스킴(11) 및 스킴(12)에 나타낸 중간체에 상기 스킴(1)∼스킴(10)에서 나타낸 합성법을 적용함으로써 합성할 수 있다.
Figure 112019064006022-pct00050
Figure 112019064006022-pct00051
상기 식(1'-1) 및 식(1'-2) 중의 A'환, B'환 및 C'환은, 치환기 R1∼R11 중 인접하는 기끼리 결합하여, 각각 a환, b환 및 c환과 함께 형성된 아릴환 또는 헤테로아릴환을 나타낸다(a환, b환 또는 c환에 다른 환 구조가 축합하여 형성된 축합환이라고도 할 수 있다). 그리고, 식에서는 나타내지는 않고 있지만, a환, b환 및 c환이 모두 A'환, B'환 및 C'환로 변화된 화합물도 있다.
또한, 일반식(1')에서의 「>N-R의 R은 -O-, -S-, -C(-R)2- 또는 단결합에 의해 상기 a환, b환 및/또는 c환과 결합되어 있는」의 규정은, 하기 스킴(13)의 식(1'-3-1)으로 표시되는, X1이나 X2가 축합환 B' 및 축합환 C'에 받아들여진 환 구조를 가지는 화합물이나, 식(1'-3-2)이나 식(1'-3-3)으로 표시되는, X1이나 X2가 축합환 A'에 받아들여진 환 구조를 가지는 화합물로 표현할 수 있다. 이들 화합물은 하기 스킴(13)에 나타낸 중간체에 상기 스킴(1)∼스킴(10)에서 나타낸 합성법을 적용함으로써 합성할 수 있다.
Figure 112019064006022-pct00052
또한, 상기 스킴(1)∼스킴(13)의 합성법에서는, 3염화 붕소나 3브롬화 붕소등을 가하기 전에, X1과 X2 사이의 수소 원자(또는 할로겐 원자)를 부틸리튬 등으로 오르토 메탈화함으로써, 탠덤 헤테로 플리델 크라프트 반응시킨 예를 나타냈지만, 부틸리튬 등을 사용한 오르토 메탈화를 행하지 않고, 3염화 붕소나 3브롬화 붕소 등의 첨가에 의해 반응을 진행시킬 수도 있다.
그리고, 상기 스킴(1)∼스킴(13)에서 사용하는 오르토 메탈화 시약으로서는, 메틸리튬, n-부틸리튬, sec-부틸리튬, tert-부틸리튬 등의 알킬리튬, 리튬디이소프로필아미드, 리튬테트라메틸피페리디드, 리튬헥사메틸디실라디드, 칼륨헥사메틸디실라디드 등의 유기 알칼리 화합물을 예로 들 수 있다.
그리고, 상기 스킴(1)∼스킴(13)에서 사용하는 메탈-「B」(붕소)의 금속 교환 시약으로서는, 붕소의 3불화물, 붕소의 3염화물, 붕소의 3브롬화물, 붕소의 3요오드화물 등의 붕소의 할로겐화물, CIPN(NEt2)2 등의 붕소의 아미노화 할로겐화물, 붕소의 알콕시화물, 붕소의 아릴옥시화물 등을 예로 들 수 있다.
그리고, 상기 스킴(1)∼스킴(13)에서 사용하는 브뢴스테드 염기로서는, N,N-디이소프로필에틸아민, 트리에틸아민, 2,2,6,6-테트라메틸피페리딘, 1,2,2,6,6-펜타메틸피페리딘, N,N-디메틸아닐린, N,N-디메틸톨루이딘, 2,6-루티딘, 테트라페닐 붕산 나트륨, 테트라페닐 붕산 칼륨, 트리페닐보란, 테트라페닐실란, Ar4BNa, Ar4BK, Ar3B, Ar4Si(그리고, Ar은 페닐 등의 아릴) 등을 예로 들 수 있다.
상기 스킴(1)∼스킴(13)에서 사용하는 루이스산으로서는, AlCl3, AlBr3, AlF3, BF3·OEt2, BCl3, BBr3, GaCl3, GaBr3, InCl3, InBr3, In(OTf)3, SnCl4, SnBr4, AgOTf, ScCl3, Sc(OTf)3, ZnCl2, ZnBr2, Zn(OTf)2, MgCl2, MgBr2, Mg(OTf)2, LiOTf, NaOTf, KOTf, Me3SiOTf, Cu(OTf)2, CuCl2, YCl3, Y(OTf)3, TiCl4, TiBr4, ZrCl4, ZrBr4, FeCl3, FeBr3, CoCl3, CoBr3 등을 예로 들 수 있다.
상기 스킴(1)∼스킴13)에서는, 탠덤 헤테로 플리델 크라프트 반응의 촉진을 위하여 브뢴스테드 염기 또는 루이스산을 사용할 수도 있다. 다만, 붕소의 3불화물, 붕소의 3염화물, 붕소의 3브롬화물, 붕소의 3요오드화물 등의 붕소의 할로겐화물을 사용한 경우에는, 방향족 친전자 치환 반응의 진행과 함께, 불화 수소, 염화 수소, 브롬화 수소, 요오드화 수소와 같은 산이 생성되므로, 산을 포착하는 브뢴스테드 염기의 사용이 효과적이다. 한편, 붕소의 아미노화 할로겐화물, 붕소의 알콕시화물를 사용한 경우에는, 방향족 친전자 치환 반응의 진행과 함께, 아민, 알코올이 생성되므로, 대부분의 경우, 브뢴스테드 염기를 사용할 필요는 없지만, 아미노기나 알콕시기의 탈리능(脫離能)이 낮으므로, 그 탈리를 촉진하는 루이스산의 사용이 효과적이다.
또한, 식(1)으로 표시되는 화합물이나 그의 다량체에는, 적어도 일부 수소 원자가 중수소로 치환되어 있는 것이나 불소나 염소 등의 할로겐 또는 시아노로 치환되어 있는 것도 포함되지만, 이와 같은 화합물 등은 원하는 개소(箇所)가 중수소화, 불소화, 염소화 또는 시아노화된 원료를 사용함으로써, 상기한 것과 동일하게 합성할 수 있다.
1-3. 일반식(2A) 또는 일반식(2B)으로 표시되는 화합물
식(2A) 또는 식(2B)으로 표시되는 화합물은 기본적으로는 호스트로서 기능한다.
Figure 112019064006022-pct00053
상기 식(2A) 또는 식(2B) 중,
X는, 각각 독립적으로, 알킬로 치환되어 있어도 되는, 탄소수 6∼30의 아릴 또는 탄소수 2∼30의 헤테로아릴이며,
Z는, 단결합, 또는, 상기 식(2-Z1)∼식(2-Z7) 중 어느 하나로 표시되는 2가의 기이며, 식(2-Z1)∼식(2-Z7) 중의 *에서 식(2A) 또는 식(2B)의 안트라센 골격과 결합하고,
식(2-Z1)∼식(2-Z5) 중, n은 1 또는 2이며,
식(2-Z6) 또는 식(2-Z7) 중, Y는 >O, >S, >N-R 또는 >C(-R)2이며, 상기 R은 탄소수 1∼4의 알킬 또는 탄소수 6∼12의 아릴이며, >C(-R)2에서의 R끼리 결합하여 스피로 구조를 형성해도 되고, 그리고,
식(2A) 또는 식(2B)으로 표시되는 화합물에서의 적어도 1개의 수소가 할로겐, 시아노 또는 중수소로 치환되어 있어도 된다.
X에서의 「탄소수 6∼30의 아릴」로서는, 탄소수 6∼24의 아릴이 바람직하고, 탄소수 6∼18의 아릴이 보다 바람직하고, 탄소수 6∼16의 아릴이 더욱 바람직하고, 탄소수 6∼14의 아릴이 특히 바람직하고, 탄소수 6∼12의 아릴이 특히 더 바람직하고, 탄소수 6∼10의 아릴이 가장 바람직하다.
구체적인 아릴으로서는, 단환계인 페닐, 2환계인 비페닐릴(2-비페닐릴, 3-비페닐릴, 4-비페닐릴), 축합 2환계인 나프틸, 3환계인 터페닐릴(m-터페닐릴, o-터페닐릴, p-터페닐릴), 축합 3환계인, 안트라세닐, 아세나프틸레닐, 플루오레닐, 페날레닐, 페난트레닐, 4환계인 쿼터페닐릴, 축합 4환계인 벤조플루오레닐, 트리페닐레닐, 나프타세닐, 축합 5환계인 페릴레닐, 펜타세닐 등을 예로 들 수 있다.
X에서의 「탄소수 2∼30의 헤테로아릴」로서는, 탄소수 2∼25의 헤테로아릴이 바람직하고, 탄소수 2∼20의 헤테로아릴이 보다 바람직하고, 탄소수 4∼16의 헤테로아릴이 더욱 바람직하고, 탄소수 12∼16의 헤테로아릴이 특히 바람직하다. 또한, 헤테로아릴으로서는, 예를 들면, 환 구성 원자로서 탄소 이외에 산소, 유황 및 질소로부터 선택되는 헤테로 원자를 1∼5 개 함유하는 복소환 등을 예로 들 수 있다.
구체적인 헤테로아릴으로서는, 예를 들면, 피롤릴, 옥사졸릴, 이소옥사졸릴, 티아졸릴, 이소티아졸릴, 이미다졸릴, 옥사티아졸릴, 티아디아졸릴, 트리아졸릴, 테트라졸릴, 피라졸릴, 피리딜, 피리미디닐, 피리다지닐, 피라지닐, 트리아지닐, 인돌릴, 이소인돌릴, 1H-인다졸릴, 벤즈이미다졸릴, 벤즈옥사졸릴, 벤조티아졸릴, 1H-벤조트리아졸일, 퀴놀릴, 이소퀴놀릴, 신놀릴, 퀴나졸릴, 퀴녹살리닐, 프탈라지닐, 나프티리디닐, 퓨리닐, 프테리디닐, 카르바졸릴, 아크리디닐, 페녹사티이닐, 페녹사지딜, 페노티아지닐, 페나지닐, 인돌리디닐, 퓨릴, 벤조퓨라닐, 이소벤조퓨라닐, 디벤조퓨라닐, 티에닐, 벤조[b]티에닐, 디벤조티에닐, 퓨라자닐, 옥사티아졸릴, 티안트레닐, 나프토벤조퓨라닐, 나프토벤조티닐 등을 예로 들 수 있다.
X인 상기 아릴 또는 헤테로아릴에 있어서의 적어도 1개의 수소는 알킬로 치환되어 있어도 되고, 상기 「알킬」로서는, 직쇄 및 분지쇄 중 어느 것이라도 되고, 예를 들면, 탄소수 1∼30의 직쇄 알킬 또는 탄소수 3∼30의 분지쇄 알킬이 있다. 탄소수 1∼24의 알킬(탄소수 3∼24의 분지쇄 알킬)이 바람직하고, 탄소수 1∼18의 알킬(탄소수 3∼18의 분지쇄 알킬)이 보다 바람직하고, 탄소수 1∼12의 알킬(탄소수 3∼12의 분지쇄 알킬)이 더욱 바람직하고, 탄소수 1∼6의 알킬(탄소수 3∼6의 분지쇄 알킬)이 특히 바람직하고, 탄소수 1∼5의 알킬(탄소수 3∼5의 분지쇄 알킬)이 특히 더 바람직하고, 탄소수 1∼4의 알킬(탄소수 4의 분지쇄 알킬)이 가장 바람직하다.
구체적인 알킬로서는, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, s-부틸, tert-부틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, n-헥실, 1-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, n-헵틸, 1-메틸헥실, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 2,6-디메틸-4-헵틸, 3,5,5-트리메틸헥실, n-데실, n-운데실, 1-메틸데실, n-도데실, n-트리데실, 1-헥실헵틸, n-테트라데실, n-펜타데실, n-헥사데실, n-헵타데실, n-옥타데실, n-에이코실 등을 예로 들 수 있다.
식(2-Z1), 식(2-Z4) 및 식(2-Z5)에서의 n은, 각각 독립적으로, 1 또는 2이다. 식(2-Z2) 및 식(2-Z3)에서의 n은, 각각 독립적으로, 1 또는 2이며, 바람직하게는 1이다.
식(2-Z6) 또는 식(2-Z7)에서의 Y는, >O, >S, >N-R 또는 >C(-R)2이다. >N-R 또는 >C(-R)2에서의 R은, 탄소수 1∼4의 알킬 또는 탄소수 6∼12의 아릴이며, 이 알킬 및 아릴로서는 상기 X에서의 알킬이나 아릴의 설명을 인용할 수 있다.
>C(-R)2에서의 R끼리 결합하여 형성된 스피로 구조로서는, 예를 들면, R로서의 알킬기끼리 결합한 스피로-시클로알킬(예를 들면, 시클로헥산, 시클로펜탄, 시클로부탄 또는 시클로프로판 등) 구조, R로서의 아릴, 특히 페닐기끼리 결합한 스피로-플루오렌 구조 등이 있다.
또한, 식(2A) 또는 식(2B)으로 표시되는 화합물에서의 수소는, 그 전부 또는 일부가 할로겐, 시아노 또는 중수소로 치환되어 있어도 된다. 예를 들면, 식(2A) 또는 식(2B)에 있어서는, 안트라센 골격에서의 수소, Z인 식(2-Z1)∼식(2-Z7)의 구조에서의 수소, X에서의 아릴 또는 헤테로아릴에서의 수소, 이들로의 치환기에서의 수소가 할로겐, 시아노 또는 중수소로 치환될 수 있지만, 이들 중에서도 안트라센 골격, X에서의 아릴이나 헤테로아릴에 있어서의 전부 또는 일부의 수소가 할로겐, 시아노 또는 중수소로 치환된 태양이 있다. 할로겐은, 불소, 염소, 브롬 또는 요오드이며, 바람직하게는 불소, 염소 또는 브롬, 보다 바람직하게는 염소이다.
식(2A) 또는 식(2B)으로 표시되는 화합물의 더욱 구체적인 예로서는, 예를 들면, 하기 구조식으로 표시되는 화합물이 있다.
Figure 112019064006022-pct00054
Figure 112019064006022-pct00055
Figure 112019064006022-pct00056
Figure 112019064006022-pct00057
Figure 112019064006022-pct00058
Figure 112019064006022-pct00059
Figure 112019064006022-pct00060
Figure 112019064006022-pct00061
Figure 112019064006022-pct00062
Figure 112019064006022-pct00063
Figure 112019064006022-pct00064
Figure 112019064006022-pct00065
Figure 112019064006022-pct00066
Figure 112019064006022-pct00067
Figure 112019064006022-pct00068
Figure 112019064006022-pct00069
Figure 112019064006022-pct00070
Figure 112019064006022-pct00071
Figure 112019064006022-pct00072
Figure 112019064006022-pct00073
Figure 112019064006022-pct00074
상기한 화합물 중에서는, 식(2A-1)∼식(2A-9), 식(2A-11), 식(2A-12), 식(2A-21)∼식(2A-29), 식(2A-31), 식(2A-32), 식(2A-41)∼식(2A-49), 식(2A-51), 식(2A-52), 식(2A-61), 식(2A-63), 식(2A-64), 식(2A-67), 식(2A-69), 식(2A-71), 식(2A-72), 식(2A-81)∼식(2A-89), 식(2A-91), 식(2A-92), 식(2A-101), 식(2A-104)∼식(2A-107), 식(2A-111), 식(2A-112), 식(2A-201), 식(2A-202), 식(2A-204)∼식(2A-207), 식(2A-209), 식(2A-211), 식(2A-212), 식(2A-221), 식(2A-222), 식(2A-224), 식(2A-226), 식(2A-241), 식(2A-242), 식(2A-247)∼식(2A-249), 식(2A-301), 식(2A-401), 식(2A-501), 식(2A-521), 식(2A-541), 식(2A-561), 식(2A-601), 식(2A-701), 식(2A-721), 식(2A-741), 식(2A-801)∼식(2A-804), 식(2A-811)∼식(2A-816), 식(2A-831), 식(2A-832), 식(2A-833), 식(2A-842), 식(2A-846), 식(2A-848), 식(2B-1)∼식(2B-7), 식(2B-12)∼식(2B-14), 식(2B-16), 식(2B-17), 식(2B-22)∼식(2B-24), 식(2B-26), 식(2B-27) 및 식(2B-102) 중 어느 하나로 표시되는 화합물이 바람직하다.
또한, 식(2A-1), 식(2A-2), 식(2A-4)∼식(2A-7), 식(2A-9), 식(2A-11), 식(2A-12), 식(2A-21), 식(2A-22), 식(2A-24)∼식(2A-27), 식(2A-29), 식(2A-31), 식(2A-32), 식(2A-41), 식(2A-42), 식(2A-44)∼식(2A-47), 식(2A-49), 식(2A-51), 식(2A-52), 식(2A-61), 식(2A-64), 식(2A-67), 식(2A-71), 식(2A-72), 식(2A-81)∼식(2A-87), 식(2A-89), 식(2A-91), 식(2A-92), 식(2A-101), 식(2A-104), 식(2A-106), 식(2A-107), 식(2A-111), 식(2A-112), 식(2A-201), 식(2A-202), 식(2A-204), 식(2A-207), 식(2A-211), 식(2A-212), 식(2A-221), 식(2A-222), 식(2A-224), 식(2A-226), 식(2A-241), 식(2A-247), 식(2A-248), 식(2A-301), 식(2A-401), 식(2A-501), 식(2A-521), 식(2A-561), 식(2A-601), 식(2A-701), 식(2A-721), 식(2A-741), 식(2A-801)∼식(2A-804), 식(2A-811)∼식(2A-816), 식(2B-1)∼식(2B-7), 식(2B-13), 식(2B-14), 식(2B-16), 식(2B-23), 식(2B-24), 식(2B-26) 및 식(2B-102) 중 어느 하나로 표시되는 화합물이 보다 바람직하다.
또한, 식(2A-1), 식(2A-2), 식(2A-4), 식(2A-6), 식(2A-7), 식(2A-11), 식(2A-21), 식(2A-22), 식(2A-24), 식(2A-26), 식(2A-27), 식(2A-31), 식(2A-41), 식(2A-42), 식(2A-44)∼식(2A-47), 식(2A-51), 식(2A-61), 식(2A-67), 식(2A-71), 식(2A-81), 식(2A-82), 식(2A-85)∼식(2A-87), 식(2A-91), 식(2A-101), 식(2A-107), 식(2A-111), 식(2A-201), 식(2A-202), 식(2A-204), 식(2A-211), 식(2A-221), 식(2A-222), 식(2A-241), 식(2A-247), 식(2A-248), 식(2A-301), 식(2A-401), 식(2A-501), 식(2A-521), 식(2A-601), 식(2A-721), 식(2A-741), 식(2A-801)∼식(2A-804), 식(2A-811)∼식(2A-816), 식(2B-2)∼식(2B-4), 식(2B-6), 식(2B-23), 식(2B-24), 식(2B-26) 및 식(2B-102) 중 어느 하나로 표시되는 화합물이 특히 바람직하다.
그리고, 본 발명은 상기한 구체적인 구조의 개시에 의해 한정되지 않는다.
1-4. 식(2A) 또는 식(2B)으로 표시되는 화합물의 제조 방법
식(2A) 또는 식(2B)으로 표시되는 화합물은, 2개의 안트라센을 특정한 결합 기를 통하여 결합한 비안트라센 골격에 각종 치환기를 결합시킨 구조를 가지고, 공지의 방법을 사용하여 제조할 수 있다. 예를 들면, 일본공개특허 제2012-188416호 공보에 기재된 제조 방법(단락 [0049]∼[0074])이나 실시예에서의 합성예(단락 [0155]∼[0183]), 일본공개특허 제2013-227268호 공보에 기재된 제조 방법(단락 [0210]∼[0254])이나 실시예에서의 합성예(단락 [0330]∼[0431])을 참고로 하여 제조할 수 있다.
2. 유기 전계 발광 소자
이하, 본 실시형태에 따른 유기 EL 소자에 대하여 도면에 기초하여 상세하게 설명한다. 도 1은, 본 실시형태에 따른 유기 EL 소자를 나타내는 개략 단면도이다.
<유기 전계 발광 소자의 구조>
도 1에 나타낸 유기 EL 소자(100)는, 기판(101)과, 기판(101) 상에 설치된 양극(102)과, 양극(102) 상에 설치된 정공 주입층(103)과, 정공 주입층(103) 상에 설치된 정공 수송층(104)과, 정공 수송층(104) 상에 설치된 발광층(105)과, 발광층(105) 상에 설치된 전자 수송층(106)과, 전자 수송층(106) 상에 설치된 전자 주입층(107)과, 전자 주입층(107) 상에 설치된 음극(108)을 가진다.
그리고, 유기 EL 소자(100)는, 제작 순서를 반대로 하여, 예를 들면, 기판(101)과, 기판(101)상에 설치된 음극(108)과, 음극(108) 상에 설치된 전자 주입층(107)과, 전자 주입층(107) 상에 설치된 전자 수송층(106)과, 전자 수송층(106) 상에 설치된 발광층(105)과, 발광층(105) 상에 설치된 정공 수송층(104)과, 정공 수송층(104) 상에 설치된 정공 주입층(103)과, 정공 주입층(103) 상에 설치된 양극(102)을 가지는 구성으로 해도 된다.
전술한 각 층 모두 없으면 안되는 것은 아니며, 최소 구성 단위를 양극(102)과 발광층(105)과 음극(108)으로 이루어지는 구성으로서, 정공 주입층(103), 정공 수송층(104), 전자 수송층(106), 전자 주입층(107)은 임의로 설치되는 층이다. 또한, 전술한 각 층은, 각각 단일층으로 되어도 되고, 복수 층으로 되어도 된다.
유기 EL 소자를 구성하는 층의 태양으로서는, 전술한 「기판/양극/정공 주입층/정공 수송층/발광층/전자 수송층/전자 주입층/음극」의 구성 태양 외에, 「기판/양극/정공 수송층/발광층/전자 수송층/전자 주입층/음극」, 「기판/양극/정공 주입층/발광층/전자 수송층/전자 주입층/음극」, 「기판/양극/정공 주입층/정공 수송층/발광층/전자 주입층/음극」, 「기판/양극/정공 주입층/정공 수송층/발광층/전자 수송층/음극」, 「기판/양극/발광층/전자 수송층/전자 주입층/음극」, 「기판/양극/정공 수송층/발광층/전자 주입층/음극」, 「기판/양극/정공 수송층/발광층/전자 수송층/음극」, 「기판/양극/정공 주입층/발광층/전자 주입층/음극」, 「기판/양극/정공 주입층/발광층/전자 수송층/음극」, 「기판/양극/발광층/전자 수송층/음극」, 「기판/양극/발광층/전자 주입층/음극」의 구성 태양이라도 된다.
<유기 전계 발광 소자에 있어서의 기판>
기판(101)은, 유기 EL 소자(100)의 지지체가 되는 것이며, 통상, 석영, 유리, 금속, 플라스틱 등이 사용된다. 기판(101)은, 목적에 따라 판형, 필름형, 또는 시트형으로 형성되고, 예를 들면, 유리판, 금속판, 금속박, 플라스틱 필름, 플라스틱 시트 등이 사용된다. 그 중에서도, 유리판, 및, 폴리에스테르, 폴리메타크릴레이트, 폴리카보네이트, 폴리술폰 등의 투명한 합성 수지제의 판이 바람직하다. 유리 기판이면, 소다 라임 유리나 무알칼리 유리 등이 사용되고, 또한, 두께도 기계적 강도를 유지하기에 충분한 두께가 있으면 되므로, 예를 들면, 0.2 mm 이상이면 된다. 두께의 상한값으로서는, 예를 들면, 2 mm 이하, 바람직하게는 1 mm 이하이다. 유리의 재질에 대해서는, 유리로부터의 용출(溶出) 이온이 적은 것이 좋으므로, 무알칼리 유리인 것이 바람직하지만, SiO2 등의 배리어(barrier) 코팅을 행한 소다 라임 유리도 시판되고 있으므로 이것을 사용할 수 있다. 또한, 기판(101)에는, 가스 배리어성을 높이기 위해, 적어도 한쪽 면에 치밀한 실리콘 산화막 등의 가스 배리어막을 형성해도 되고, 특히 가스 배리어성이 낮은 합성 수지제의 판, 필름 또는 시트를 기판(101)으로서 사용하는 경우에는 가스 배리어막을 형성하는 것이 바람직하다.
<유기 전계 발광 소자에 있어서의 양극>
양극(102)은, 발광층(105)에 정공을 주입하는 역할을 하는 것이다. 그리고, 양극(102)과 발광층(105)의 사이에 정공 주입층(103) 및/또는 정공 수송층(104)이 설치되어 있는 경우에는, 이들을 통하여 발광층(105)에 정공을 주입하게 된다.
양극(102)을 형성하는 재료로서는, 무기 화합물 및 유기 화합물을 예로 들 수 있다. 무기 화합물로서는, 예를 들면, 금속(알루미늄, 금, 은, 니켈, 팔라듐, 크롬 등), 금속 산화물(인듐의 산화물, 주석의 산화물, 인듐-주석 산화물(ITO), 인듐-아연 산화물(IZO) 등), 할로겐화 금속(요오드화 구리 등), 황화 구리, 카본 블랙, ITO 유리나 네사 유리 등이 있다. 유기 화합물로서는, 예를 들면, 폴리(3-메틸티오펜) 등의 폴리티오펜, 폴리피롤, 폴리아닐린 등의 도전성(導電性) 폴리머 등이 있다. 그 외에, 유기 EL 소자의 양극으로서 사용되고 있는 물질 중에서 적절하게 선택하여 사용할 수 있다.
투명 전극의 저항은, 발광 소자의 발광에 충분한 전류를 공급할 수 있으면 되므로, 한정되지 않지만, 발광 소자의 소비 전력의 관점에서는 저저항인 것이 바람직하다. 예를 들면, 300Ω/□ 이하의 ITO 기판이면 소자 전극으로서 기능하지만, 현재에는 10Ω/□ 정도의 기판의 공급도 가능하므로, 예를 들면 100∼5 Ω/□, 50∼5 Ω/□의 저저항품을 사용하는 것이 특히 바람직하다. ITO의 두께는 저항값에 맞추어 임의로 선택할 수 있지만, 통상 50∼300 nm의 사이에서 사용되는 경우가 많다.
<유기 전계 발광 소자에 있어서의 정공 주입층, 정공 수송층>
정공 주입층(103)은, 양극(102)으로부터 이동하여 오는 정공을, 효율적으로 발광층(105) 내 또는 정공 수송층(104) 내에 주입하는 역할을 하는 것이다. 정공 수송층(104)은, 양극(102)으로부터 주입된 정공 또는 양극(102)으로부터 정공 주입층(103)를 통하여 주입된 정공을, 효율적으로 발광층(105)에 수송하는 역할을 하는 것이다. 정공 주입층(103) 및 정공 수송층(104)은, 각각, 정공 주입·수송 재료의 1종 또는 2종 이상을 적층, 혼합하거나, 정공 주입·수송 재료와 고분자 결착제(結着劑)의 혼합물에 의해 형성된다. 또한, 정공 주입·수송 재료에 염화 철(III)과 같은 무기염을 첨가하여 층을 형성해도 된다.
정공 주입·수송성 물질로서는 전계가 인가된 전극 사이에 있어서 양극으로부터의 정공을 효율적으로 주입·수송하는 것이 필요하며, 정공 주입 효율이 높고, 주입된 정공을 효율적으로 수송하는 것이 바람직하다. 이를 위해서는 이온화 포텐셜이 작고, 또한 정공 이동도가 크고, 또한 안정성이 우수하고, 트랩이 되는 불순물이 제조 시 및 사용 시에 쉽게 발생하지 않는 물질인 것이 바람직하다.
정공 주입층(103) 및 정공 수송층(104)를 형성하는 재료로서는, 광 도전(導電) 재료에 있어서, 정공의 전하 수송 재료로서 종래부터 관용되고 있는 화합물, p형 반도체, 유기 EL 소자의 정공 주입층 및 정공 수송층에 사용되고 있는 공지의 것 중으로부터 임의의 것을 선택하여 사용할 수 있다. 이러한 구체예는, 카르바졸 유도체(N-페닐카르바졸, 폴리비닐 카르바졸 등), 비스(N-아릴카르바졸) 또는 비스(N-알킬카르바졸) 등의 비스카르바졸 유도체, 트릴아릴아민 유도체(방향족 제3 급 아미노를 주쇄(主鎖) 혹은 측쇄(側鎖)에 가지는 폴리머, 1,1-비스(4-디-p-톨릴아미노페닐)시클로헥산, N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4'-디아미노페닐, N,N'-디페닐-N,N'-디나프틸-4,4'-디아미노페닐, N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4'-디페닐-1,1'-디아민, N,N'-디나프틸-N,N'-디페닐-4,4'-디페닐-1,1'-디아민, N4,N4'-디페닐-N4,N4'-비스(9-페닐-9H-카르바졸-3-일)-[1,1'-비페닐]-4,4'-디아민, N4,N4,N4',N4'-테트라[1,1'-비페닐]-4-일)-[1,1'-비페닐]-4,4'-디아민, 4,4',4'-트리스(3-메틸페닐(페닐)아미노)트리페닐아민 등의 트리페닐아민 유도체, 스타버스트 아민 유도체 등), 스틸벤 유도체, 프탈로시아닌 유도체(무금속, 구리 프탈로시아닌 등), 피라졸린 유도체, 히드라진계 화합물, 벤조퓨란 유도체나 티오펜 유도체, 옥사디아졸 유도체, 퀴녹살린 유도체(예를 들면, 1,4,5,8,9,12-헥사아자트리페닐렌-2,3,6,7,10,11-헥사카르보니트릴 등), 포르필린 유도체 등의 복소환 화합물, 폴리실란 등이다. 폴리머계에서는 상기 단량체를 측쇄에 가지는 폴리카보네이트나 스티렌 유도체, 폴리비닐카르바졸 및 폴리실란 등이 바람직하지만, 발광 소자의 제작에 필요한 박막을 형성하고, 양극으로부터 정공을 주입할 수 있고, 또한 정공을 수송할 수 있는 화합물이면 특별히 한정되는 것은 아니다.
또한, 유기 반도체의 도전성은, 그 도핑(doping)에 의해, 강한 영향을 받는 것도 알려져 있다. 이와 같은 유기 반도체 매트릭스 물질은, 전자 공여성이 양호한 화합물, 또는 전자 수용성이 양호한 화합물로 구성되어 있다. 전자 공여 물질의 도핑을 위해, 테트라시아노키논디메탄(TCNQ) 또는 2,3,5,6-테트라플루오로테트라시아노-1,4-벤조퀴논디메탄(F4TCNQ) 등의 강한 전자 수용체가 알려져 있다(예를 들면, 문헌 「M.Pfeiffer, A.Beyer, T.Fritz, K.Leo, Appl. Phys. Lett., 73(22), 3202-3204(1998)」 및 문헌 「J. Blochwitz, M. Pheiffer, T. Fritz, K. Leo, Appl. Phys. Lett., 73(6),729-731(1998)」를 참조). 이들은, 전자 공여형 베이스 물질(정공 수송 물질)에 있어서의 전자 이동 프로세스에 의해, 이른바 정공을 생성한다. 정공의 수 및 이동도에 의해, 베이스 물질의 전도성이, 매우 크게 변화한다. 정공 수송 특성을 가지는 매트릭스 물질로서는, 예를 들면, 벤지딘 유도체(TPD 등) 혹은, 스타버스트 아민 유도체(TDATA 등), 또는 특정한 금속 프탈로시아닌(특히, 아연 프탈로시아닌 ZnPc 등)이 알려져 있다(일본 공개특허 제2005-167175호 공보).
<유기 전계 발광 소자에 있어서의 발광층>
발광층(105)은, 전계가 인가된 전극 사이에 있어서, 양극(102)으로부터 주입된 정공과, 음극(108)으로부터 주입된 전자를 재결합시킴으로써 발광하는 것이다. 발광층(105)를 형성하는 재료로서는, 정공과 전자와의 재결합에 의해 여기되어 발광하는 화합물(발광성 화합물)이면 되고, 안정적인 박막 형상을 형성할 수 있고, 또한 고체 상태로 강한 발광(형광) 효율을 나타내는 화합물인 것이 바람직하다. 본 발명에서는, 발광층용 재료로서, 도펀트 재료로서 상기 일반식(1)으로 표시되는 화합물 및 상기 일반식(1)으로 표시되는 구조를 복수 가지는 화합물의 다량체 중 하나 이상과, 호스트 재료로서 상기 일반식(2A) 또는 일반식(2B)으로 표시되는 화합물을 사용할 수 있다.
발광층은 단일층이라도 되고 복수 층으로 이루어져도 되며 어느 쪽이라도 되고, 각각 발광층용 재료(호스트 재료, 도펀트 재료)에 의해 형성된다. 호스트 재료와 도펀트 재료는, 각각 1종류라도 되고, 복수의 조합이라도 되며, 어느 것이라도 된다. 도펀트 재료는 호스트 재료 전체에 포함되어 있어도, 부분적으로 포함되어 있어도 되며, 어느 것이라도 된다. 도핑 방법으로서는, 호스트 재료와의 공증착(共烝着)법에 의해 형성할 수 있지만, 호스트 재료와 사전에 혼합한 후 동시에 증착해도 된다.
호스트 재료의 사용량은 호스트 재료의 종류에 따라서 상이하며, 그 호스트 재료의 특성에 맞추어 결정하면 된다. 호스트 재료의 사용량의 기준은, 바람직하게는 발광층용 재료 전체의 50∼99.999 중량%이며, 보다 바람직하게는 80∼99.95 중량%이며, 더욱 바람직하게는 90∼99.9 중량%이다.
도펀트 재료의 사용량은 도펀트 재료의 종류에 따라 상이하며, 그 도펀트 재료의 특성에 맞추어 결정하면 된다. 도펀트의 사용량의 기준은, 바람직하게는 발광층용 재료 전체의 0.001∼50 중량%이며, 보다 바람직하게는 0.05∼20 중량%이며, 보다 바람직하게는 0.1∼10 중량%이다. 상기한 범위 내에서는, 예를 들면, 농도 소광 현상을 방지할 수 있는 점에서 바람직하다.
상기 일반식(2A) 또는 일반식(2B)으로 표시되는 화합물과 병용할 수 있는 호스트 재료로서는, 이전부터 발광체로서 알려져 있는 안트라센이나 피렌 등의 축합환 유도체, 비스스티릴안트라센 유도체나 디스티릴벤젠 유도체 등의 비스스티릴 유도체, 테트라페닐부타디엔 유도체, 시클로펜타디엔 유도체, 플루오렌 유도체, 벤조플루오렌 유도체 등을 예로 들 수 있다.
<유기 전계 발광 소자에 있어서의 전자 주입층, 전자 수송층>
전자 주입층(107)은, 음극(108)으로부터 이동하여 오는 전자를, 효율적으로 발광층(105) 내 또는 전자 수송층(106) 내에 주입하는 역할을 하는 것이다. 전자 수송층(106)은, 음극(108)으로부터 주입된 전자 또는 음극(108)으로부터 전자 주입층(107)을 통하여 주입된 전자를, 효율적으로 발광층(105)에 수송하는 역할을 하는 것이다. 전자 수송층(106) 및 전자 주입층(107)은, 각각, 전자 수송·주입 재료의 1종 또는 2종 이상을 적층, 혼합하거나, 전자 수송·주입 재료와 고분자 결착제의 혼합물에 의해 형성된다.
전자 주입·수송층은, 음극으로부터 전자가 주입되고, 또한 전자를 수송하는 것을 담당하는 층이며, 전자 주입 효율이 높고, 주입된 전자를 효율적으로 수송하는 것이 바람직하다. 이를 위해서는 전자 친화력이 크고, 또한 전자 이동도가 크고, 또한 안정성이 우수하고, 트랩이 되는 불순물이 제조 시 및 사용 시에 쉽게 발생하지 않는 물질인 것이 바람직하다. 그러나, 정공과 전자의 수송 밸런스를 고려할 경우, 양극으로부터의 정공이 재결합하지 않고 음극 측으로 흐르는 것을 효율적으로 저지할 수 있는 역할을 주로 행하는 경우에는, 전자 수송 능력이 그렇게 높지 않아도, 발광 효율을 향상시키는 효과는 전자 수송 능력이 높은 재료와 동등하게 가진다. 따라서, 본 실시형태에 있어서의 전자 주입·수송층은, 정공의 이동을 효율적으로 저지할 수 있는 층의 기능도 포함되어도 된다.
전자 수송층(106) 또는 전자 주입층(107)을 형성하는 재료(전자 수송 재료)로서는, 광 도전 재료에 있어서 전자 전달 화합물로서 종래부터 관용되고 있는 화합물, 유기 EL 소자의 전자 주입층 및 전자 수송층에 사용되고 있는 공지의 화합물 중에서 임의로 선택하여 사용할 수 있다.
전자 수송층 또는 전자 주입층에 사용되는 재료로서는, 탄소, 수소, 산소, 유황, 규소 및 인 중에서 선택되는 1종 이상의 원자로 구성되는 방향환 혹은 복소방향환으로 이루어지는 화합물, 피롤 유도체 및 그의 축합환 유도체 및 전자 수용성 질소를 가지는 금속 착체 중에서 선택되는 적어도 1종을 함유하는 것이 바람직하다. 구체적으로는, 나프탈렌, 안트라센 등의 축합환계 방향환 유도체, 4,4'-비스(디페닐에테닐)비페닐로 대표되는 스티릴계 방향환 유도체, 페리논 유도체, 쿠마린 유도체, 나프탈이미드 유도체, 안트라퀴논이나 디페노퀴논 등의 퀴논 유도체, 인옥사이드 유도체, 카르바졸 유도체 및 인돌 유도체 등을 예로 들 수 있다. 전자 수용성 질소를 가지는 금속 착체로서는, 예를 들면, 하이드록시페닐옥사졸 착체 등의 하이드록시아졸 착체, 아조메틴 착체, 트로폴론 금속 착체, 플라보놀 금속 착체 및 벤조퀴놀린 금속 착체 등을 예로 들 수 있다. 이들 재료는 단독으로도 사용되지만, 상이한 재료와 혼합하여 사용해도 된다.
또한, 다른 전자 전달 화합물의 구체예로서, 피리딘 유도체, 나프탈렌 유도체, 안트라센 유도체, 페난트롤린 유도체, 페리논 유도체, 쿠마린 유도체, 나프탈이미드 유도체, 안트라퀴논 유도체, 디페노퀴논 유도체, 디페닐퀴논 유도체, 페릴렌 유도체, 옥사디아졸 유도체(1,3-비스[(4-tert-부틸페닐)1,3,4-옥사디아졸릴]페닐렌 등), 티오펜 유도체, 트리아졸 유도체(N-나프틸-2,5-디페닐-1,3,4-트리아졸 등), 티아디아졸 유도체, 옥신 유도체의 금속 착체, 퀴놀리놀계 금속 착체, 퀴녹살린 유도체, 퀴녹살린 유도체의 폴리머, 벤자졸류 화합물, 갈륨 착체, 피라졸 유도체, 퍼플루오로화 페닐렌 유도체, 트리아진 유도체, 피라진 유도체, 벤조퀴놀린 유도체(2,2'-비스(벤조[h]퀴놀린-2-일)-9,9'-스피로비플루오렌 등), 이미다조피리딘 유도체, 보란 유도체, 벤즈이미다졸 유도체(트리스(N-페닐벤즈이미다졸-2-일)벤젠 등), 벤즈옥사졸 유도체, 벤조티아졸 유도체, 퀴놀린 유도체, 터피리딘 등의 올리고피리딘 유도체, 비피리딘 유도체, 터피리딘 유도체(1,3-비스(4'-(2,2':6'2"-터피리디닐))벤젠 등), 나프티리딘 유도체(비스(1-나프틸)-4-(1,8-나프티리딘-2-일)페닐포스핀옥사이드 등), 알다진 유도체, 카르바졸 유도체, 인돌 유도체, 인옥사이드 유도체, 비스스티릴 유도체 등을 들 수 있다.
또한, 전자 수용성 질소를 가지는 금속 착체를 사용할 수도 있고, 예를 들면, 퀴놀리놀계 금속 착체나 하이드록시페닐옥사졸 착체 등의 하이드록시아졸 착체, 아조메틴 착체, 트로폴론 금속 착체, 플라보놀 금속 착체 및 벤조퀴놀린 금속 착체 등이 있다.
전술한 재료는 단독으로도 사용되지만, 상이한 재료와 혼합하여 사용해도 된다.
전술한 재료 중에서도, 보란 유도체, 피리딘 유도체, 플루오란텐 유도체, BO계 유도체, 안트라센 유도체, 벤조플루오렌 유도체, 포스핀옥사이드 유도체, 피리미딘 유도체, 카르바졸 유도체, 트리아진 유도체, 벤즈이미다졸 유도체, 페난트롤린 유도체, 및 퀴놀리놀계 금속 착체가 바람직하다.
<보란 유도체>
보란 유도체는, 예를 들면, 하기 일반식(ETM-1)으로 표시되는 화합물이며, 상세하게는 일본공개특허 제2007-27587호 공보에 개시되어 있다.
Figure 112019064006022-pct00075
상기 식(ETM-1) 중, R11 및 R12는, 각각 독립적으로, 수소, 알킬, 치환되어 있어도 되는 아릴, 치환되어 있는 실릴, 치환되어 있어도 되는 질소 함유 복소환, 또는 시아노 중 적어도 하나이며, R13∼R16은, 각각 독립적으로, 치환되어 있어도 되는 알킬, 또는 치환되어 있어도 되는 아릴이며, X는, 치환되어 있어도 되는 알릴렌이며, Y는, 치환되어 있어도 되는 탄소수 16 이하의 아릴, 치환되고 있는 보릴, 또는 치환되어 있어도 되는 카르바졸릴이며, 그리고, n은 각각 독립적으로 0∼3의 정수이다.
상기 일반식(ETM-1)으로 표시되는 화합물 중에서도, 하기 일반식(ETM-1-1)으로 표시되는 화합물이나 하기 일반식(ETM-1-2)으로 표시되는 화합물이 바람직하다.
Figure 112019064006022-pct00076
식(ETM-1-1) 중, R11 및 R12는, 각각 독립적으로, 수소, 알킬, 치환되어 있어도 되는 아릴, 치환되어 있는 실릴, 치환되어 있어도 되는 질소 함유 복소환, 또는 시아노 중 적어도 하나이며, R13∼R16은, 각각 독립적으로, 치환되어 있어도 되는 알킬, 또는 치환되어 있어도 되는 아릴이며, R21 및 R22는, 각각 독립적으로, 수소, 알킬, 치환되어 있어도 되는 아릴, 치환되고 있는 시릴, 치환되어 있어도 되는 질소 함유 복소환, 또는 시아노 중 적어도 하나이며, X1은, 치환되어 있어도 되는 탄소수 20 이하의 알릴렌이며, n은 각각 독립적으로 0∼3의 정수이며, 그리고, m은 각각 독립적으로 0∼4의 정수이다.
Figure 112019064006022-pct00077
식(ETM-1-2) 중, R11 및 R12는, 각각 독립적으로, 수소, 알킬, 치환되어 있어도 되는 아릴, 치환되고 있는 시릴, 치환되어 있어도 되는 질소 함유 복소환, 또는 시아노중 적어도 하나이며, R13∼R16은, 각각 독립적으로, 치환되어 있어도 되는 알킬, 또는 치환되어 있어도 되는 아릴이며, X1은, 치환되어 있어도 되는 탄소수 20 이하의 알릴렌이며, 그리고, n은 각각 독립적으로 0∼3의 정수이다.
X1의 구체적인 예로서는, 하기 식(X-1)∼식(X-9)으로 표시되는 2가의 기를 들 수 있다.
Figure 112019064006022-pct00078
(각 식 중, Ra는, 각각 독립적으로 알킬기 또는 치환되어 있어도 되는 페닐기이다.)
이 보란 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure 112019064006022-pct00079
이 보란 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<피리딘 유도체>
피리딘 유도체는, 예를 들면, 하기 식(ETM-2)으로 표시되는 화합물이며, 바람직하게는 식(ETM-2-1) 또는 식(ETM-2-2)으로 표시되는 화합물이다.
Figure 112019064006022-pct00080
φ는, n가의 아릴환(바람직하게는 n가의 벤젠환, 나프탈렌환, 안트라센환, 플루오렌환, 벤조플루오렌환, 페날렌환, 페난트렌환 또는 트리페닐렌환)이며, n은 1∼4의 정수이다.
상기 식(ETM-2-1)에 있어서, R11∼R18은, 각각 독립적으로, 수소, 알킬(바람직하게는 탄소수 1∼24의 알킬), 시클로 알킬(바람직하게는 탄소수 3∼12의 시클로 알킬) 또는 아릴(바람직하게는 탄소수 6∼30의 아릴)이다.
상기 식(ETM-2-2)에 있어서, R11 및 R12는, 각각 독립적으로, 수소, 알킬(바람직하게는 탄소수 1∼24의 알킬, 시클로 알킬(바람직하게는 탄소수 3∼12의시클로 알킬) 또는 아릴(바람직하게는 탄소수 6∼30의 아릴)이며, R11 및 R12는 결합하여 환을 형성하고 있어도 된다.
각 식에 있어서, 「피리딘계 치환기」는, 하기 식(Py-1)∼식(Py-15) 중 어느 하나이며, 피리딘계 치환기는 각각 독립적으로 탄소수 1∼4의 알킬로 치환되어 있어도 된다. 또한, 피리딘계 치환기는 페닐렌 기나 나프틸렌기를 통하여 각 식에서의 φ, 안트라센환 또는 플루오렌환에 결합하고 있어도 된다.
Figure 112019064006022-pct00081
피리딘계 치환기는, 상기 식(Py-1)∼식(Py-15) 중 어느 하나이지만, 이들 중에서도, 하기 식(Py-21)∼식(Py-44) 중 어느 하나인 것이 바람직하다.
Figure 112019064006022-pct00082
각 피리딘 유도체에서의 적어도 1개의 수소가 중수소로 치환되어 있어도 되고, 또한, 상기 식(ETM-2-1) 및 식(ETM-2-2)에서의 2개의 「피리딘계 치환기」 중 한쪽은 아릴로 치환되어 있어도 된다.
R11∼R18에 있어서의 「알킬」로서는, 직쇄 및 분지쇄 중 어느 것이라도 되고, 예를 들면, 탄소수 1∼24의 직쇄 알킬 또는 탄소수 3∼24의 분지쇄 알킬이 있다. 바람직한 「알킬」은, 탄소수 1∼18의 알킬(탄소수 3∼18의 분지쇄 알킬)이다. 보다 바람직한 「알킬」은, 탄소수 1∼12의 알킬(탄소수 3∼12의 분지쇄 알킬)이다. 더욱 바람직한 「알킬」은, 탄소수 1∼6의 알킬(탄소수 3∼6의 분지쇄 알킬)이다. 특히 바람직한 「알킬」은, 탄소수 1∼4의 알킬(탄소수 3∼4의 분지쇄 알킬)이다.
구체적인 「알킬」로서는, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, n-헥실, 1-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, n-헵틸, 1-메틸헥실, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 2,6-디메틸-4-헵틸, 3,5,5-트리메틸헥실, n-데실, n-운데실, 1-메틸데실, n-도데실, n-트리데실, 1-헥실헵틸, n-테트라데실, n-펜타데실, n-헥사데실, n-헵타데실, n-옥타데실, n-에이코실 등을 예로 들 수 있다.
피리딘계 치환기로 치환하는 탄소수 1∼4의 알킬로서는, 상기 알킬의 설명을 인용할 수 있다.
R11∼R18에 있어서의 「시클로알킬」로서는, 예를 들면, 탄소수 3∼12의 시클로알킬을 들 수 있다.바람직한 「시클로알킬」은, 탄소수 3∼10의 시클로알킬이다. 더욱 바람직한 「시클로알킬」은, 탄소수 3∼8의 시클로알킬이다. 보다 바람직한 「시클로알킬」은, 탄소수 3∼6의 시클로알킬이다.
구체적인 「시클로알킬」로서는, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 메틸시클로펜틸, 시클로헵틸, 메틸시클로헥실, 시클로옥틸 또는 디메틸시클로헥실 등을 예로 들 수 있다.
R11∼R18에 있어서의 「아릴」로서는, 바람직한 아릴은 탄소수 6∼30의 아릴이며, 보다 바람직한 아릴은 탄소수 6∼18의 아릴이며, 더욱 바람직하게는 탄소수 6∼14의 아릴이며, 특히 바람직하게는 탄소수 6∼12의 아릴이다.
구체적인 「탄소수 6∼30의 아릴」로서는, 단환계 아릴인 페닐, 축합 2환계 아릴인 (1-, 2-)나프틸, 축합 3환계 아릴인, 아세나프틸렌-(1-, 3-, 4-, 5-)일, 플루오렌-(1-, 2-, 3-, 4-, 9-)일, 페날렌-(1-, 2-)일, (1-, 2-, 3-, 4-, 9-)페난트릴, 축합 4환계 아릴인 트리페닐렌-(1-, 2-)일, 피렌-(1-, 2-, 4-)일, 나프타센-(1-, 2-, 5-)일, 축합 5환계 아릴인 페릴렌-(1-, 2-, 3-)일, 펜타센-(1-, 2-, 5-, 6-)일 등을 예로 들 수 있다.
바람직한 「탄소수 6∼30의 아릴」은, 페닐, 나프틸, 페난트릴, 크리세닐 또는 트리페닐레닐 등을 예로 들 수 있고, 보다 바람직하게는 페닐, 1-나프틸, 2-나프틸 또는 페난트릴을 예로 들 수 있고, 특히 바람직하게는 페닐, 1-나프틸 또는 2-나프틸을 예로 들 수 있다.
상기 식(ETM-2-2)에 있어서의 R11 및 R12는 결합하여 환을 형성하고 있어도 되고, 그 결과, 플루오렌 골격의 5원환에는, 시클로부탄, 시클로펜탄, 시클로펜텐, 시클로펜타디엔, 시클로헥산, 플루오렌 또는 인덴 등이 스피로 결합하고 있어도 된다.
이 피리딘 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure 112019064006022-pct00083
이 피리딘 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<플루오란텐 유도체>
플루오란텐 유도체는, 예를 들면, 하기 일반식(ETM-3)으로 표시되는 화합물이며, 상세하게는 국제공개 제2010/134352호 공보에 개시되어 있다.
Figure 112019064006022-pct00084
상기 식(ETM-3) 중, X12∼X21은 수소, 할로겐, 직쇄, 분지 혹은 환형의 알킬, 직쇄, 분지 혹은 환형의 알콕시, 치환 혹은 무치환의 아릴, 또는 치환 혹은 무치환의 헤테로아릴을 나타낸다.
이 플루오란텐 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure 112019064006022-pct00085
<BO계 유도체>
BO계 유도체는, 예를 들면, 하기 식(ETM-4)으로 표시되는 다환 방향족 화합물, 또는 하기 식(ETM-4)으로 표시되는 구조를 복수 가지는 다환 방향족 화합물의 다량체이다.
Figure 112019064006022-pct00086
R1∼R11은, 각각 독립적으로, 수소, 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시이며, 이들에 있어서 1개 이상의 수소는 아릴, 헤테로아릴 또는 알킬로 치환되어 있어도 된다.
또한, R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에 있어서의 1개 이상의 수소는 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시로 치환되어 있어도 되고, 이들에 있어서 1개 이상의 수소는 아릴, 헤테로아릴 또는 알킬로 치환되어 있어도 된다.
또한, 식(ETM-4)으로 표시되는 화합물 또는 구조에 있어서의 1개 이상의 수소가 할로겐 또는 중수소로 치환되어 있어도 된다.
식(ETM-4)에 있어서의 치환기나 환 형성의 형태, 또한 식(ETM-4)의 구조가 복수 조합하여 형성된 다량체의 설명에 대해서는, 상기 일반식(1)이나 일반식(1')으로 표시되는 화합물이나 그의 다량체의 설명을 인용할 수 있다.
이 BO계 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure 112019064006022-pct00087
이 BO계 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<안트라센 유도체>
안트라센 유도체 중 하나는, 예를 들면, 하기 식(ETM-5-1)으로 표시되는 화합물이다.
Figure 112019064006022-pct00088
Ar은, 각각 독립적으로, 2가의 벤젠 또는 나프탈렌이며, R1∼R4는, 각각 독립적으로, 수소, 탄소수 1∼6의 알킬, 탄소수 3∼6의 시클로알킬 또는 탄소수 6∼20의 아릴이다.
Ar은, 각각 독립적으로, 2가의 벤젠 또는 나프탈렌으로부터 적절하게 선택할 수 있고, 2개의 Ar이 상이해도 되고 동일해도 되지만, 안트라센 유도체의 합성의 용이함의 관점에서는 동일한 것이 바람직하다. Ar은 피리딘과 결합하여, 「Ar 및 피리딘으로 이루어지는 부위」를 형성하고 있고, 이 부위는, 예를 들면, 하기 식(Py-1)∼식(Py-12) 중 어느 하나로 표시되는 기로서 안트라센에 결합되어 있다.
Figure 112019064006022-pct00089
이들 기 중에서도, 상기 식(Py-1)∼식(Py-9) 중 어느 하나로 표시되는 기가 바람직하고, 상기 식(Py-1)∼식(Py-6) 중 어느 하나로 표시되는 기가 더욱 바람직하다. 안트라센에 결합하는 2개의 「Ar 및 피리딘으로 이루어지는 부위」는, 그 구조가 동일해도 되고 상이해도 되지만, 안트라센 유도체의 합성의 용이함의 관점에서는 동일한 구조인 것이 바람직하다. 다만, 소자 특성의 관점에서는, 2개의 「Ar 및 피리딘으로 이루어지는 부위」의 구조가 동일해도 되고 상이해도 된다.
R1∼R4에 있어서의 탄소수 1∼6의 알킬에 대하여는 직쇄 및 분지쇄 중 어느 하나라도 된다. 즉, 탄소수 1∼6의 직쇄 알킬 또는 탄소수 3∼6의 분지쇄 알킬이다. 보다 바람직하게는, 탄소수 1∼4의 알킬(탄소수 3∼4의 분지쇄 알킬)이다. 구체예로서는, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, n-헥실, 1-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 또는 2-에틸부틸 등을 들 수 있고, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, 또는 tert-부틸이 바람직하고, 메틸, 에틸, 또는 tert-부틸이 더욱 바람직하다.
R1∼R4에 있어서의 탄소수 3∼6의 시클로알킬의 구체예로서는, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 메틸 시클로펜틸, 시클로헵틸, 메틸시클로헥실, 시클로옥틸 또는 디메틸시클로헥실 등을 예로 들 수 있다.
R1∼R4에 있어서의 탄소수 6∼20의 아릴에 대해서는, 탄소수 6∼16의 아릴이 바람직하고, 탄소수 6∼12의 아릴이 보다 바람직하고, 탄소수 6∼10의 아릴이 특히 바람직하다.
「탄소수 6∼20의 아릴」의 구체예로서는, 단환계 아릴인 페닐, (o-, m-, p-)톨릴, (2, 3-, 2, 4-, 2, 5-, 2, 6-, 3, 4-, 3,5-)크실릴, 메시틸(2,4,6-트리메틸페닐), (o-, m-, p-)쿠메닐, 2환계 아릴인 (2-, 3-, 4-)비페닐릴, 축합 2환계 아릴인 (1-, 2-)나프틸, 3환계 아릴인 터페닐릴(m-터페닐-2'-일, m-터페닐-4'-일, m-터페닐-5'-일, o-터페닐-3'-일, o-터페닐-4'-일, p-터페닐-2'-일, m-터페닐-2-일, m-터페닐-3-일, m-터페닐-4-일, o-터페닐-2-일, o-터페닐-3-일, o-터페닐-4-일, p-터페닐-2-일, p-터페닐-3-일, p-터페닐-4-일), 축합 3환계 아릴인, 안트라센(1-, 2-, 9-)일, 아세나프틸렌-(1-, 3-, 4-, 5-)일, 플루오렌-(1-, 2-, 3-, 4-, 9-)일, 페날렌-(1-, 2-)일, (1-, 2-, 3-, 4-, 9-)페난트릴, 축합 4환계 아릴인 트리페닐렌-(1-, 2-)일, 피렌-(1-, 2-, 4-)일, 테트라센(1-, 2-, 5-)일, 축합 5환계 아릴인 페릴렌-(1-, 2-, 3-)일 등을 들 수 있다.
바람직한 「탄소수 6∼20의 아릴」은, 페닐, 비페닐릴, 터페닐릴 또는 나프틸이며, 보다 바람직하게는, 페닐, 비페닐릴, 1-나프틸, 2-나프틸 또는 m-터페닐-5'-일이며, 더욱 바람직하게는, 페닐, 비페닐릴, 1-나프틸 또는 2-나프틸이며, 가장 바람직하게는 페닐이다.
안트라센 유도체 중 하나는, 예를 들면, 하기 식(ETM-5-2)으로 표시되는 화합물이다.
Figure 112019064006022-pct00090
Ar1은, 각각 독립적으로, 단결합, 2가의 벤젠, 나프탈렌, 안트라센, 플루오렌, 또는 페날렌이다.
Ar2는, 각각 독립적으로, 탄소수 6∼20의 아릴이며, 상기 식(ETM-5-1)에 있어서의 「탄소수 6∼20의 아릴」과 동일한 설명을 인용할 수 있다. 탄소수 6∼16의 아릴이 바람직하고, 탄소수 6∼12의 아릴이 보다 바람직하고, 탄소수 6∼10의 아릴이 특히 바람직하다. 구체예로서는, 페닐, 비페닐릴, 나프틸, 터페닐릴, 안트라세닐, 아세나프티레닐, 플루오레닐, 페날레닐, 페난트릴, 트리페닐레닐, 피레닐, 테트라세닐, 페릴레닐 등을 들 수 있다.
R1∼R4는, 각각 독립적으로, 수소, 탄소수 1∼6의 알킬, 탄소수 3∼6의 시클로알킬 또는 탄소수 6∼20의 아릴이며, 상기 식(ETM-5-1)에서와 동일한 설명을 인용할 수 있다.
이들 안트라센 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure 112019064006022-pct00091
이들 안트라센 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<벤조플루오렌 유도체>
벤조플루오렌 유도체는, 예를 들면, 하기 식(ETM-6)으로 표시되는 화합물이 있다.
Figure 112019064006022-pct00092
Ar1은, 각각 독립적으로, 탄소수 6∼20의 아릴이며, 상기 식(ETM-5-1)에 있어서의 「탄소수 6∼20의 아릴」과 동일한 설명을 인용할 수 있다. 탄소수 6∼16의 아릴이 바람직하고, 탄소수 6∼12의 아릴이 보다 바람직하고, 탄소수 6∼10의 아릴이 특히 바람직하다. 구체예로서는, 페닐, 비페닐릴, 나프틸, 터페닐릴, 안트라세닐, 아세나프티레닐, 플루오레닐, 페날레닐, 페난트릴, 트리페닐레닐, 피레닐, 테트라세닐, 페릴레닐 등을 들 수 있다.
Ar2는, 각각 독립적으로, 수소, 알킬(바람직하게는 탄소수 1∼24의 알킬), 시클로알킬(바람직하게는 탄소수 3∼12의 시클로알킬) 또는 아릴(바람직하게는 탄소수 6∼30의 아릴)이며, 2개의 Ar2는 결합하여 환을 형성하고 있어도 된다.
Ar2에 있어서의 「알킬」로서는, 직쇄 및 분지쇄 중 어느 것이라도 되고, 예를 들면, 탄소수 1∼24의 직쇄 알킬 또는 탄소수 3∼24의 분지쇄 알킬이 있다. 바람직한 「알킬」은, 탄소수 1∼18의 알킬(탄소수 3∼18의 분지쇄 알킬)이다. 보다 바람직한 「알킬」은, 탄소수 1∼12의 알킬(탄소수 3∼12의 분지쇄 알킬)이다. 더욱 바람직한 「알킬」은, 탄소수 1∼6의 알킬(탄소수 3∼6의 분지쇄 알킬)이다. 특히 바람직한 「알킬」은, 탄소수 1∼4의 알킬(탄소수 3∼4의 분지쇄 알킬)이다. 구체적인 「알킬」로서는, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, n-헥실, 1-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, n-헵틸, 1-메틸헥실 등을 예로 들 수 있다.
Ar2에 있어서의 「시클로알킬」로서는, 예를 들면, 탄소수 3∼12의 시클로알킬이 있다. 바람직한「시클로알킬」은, 탄소수 3∼10의 시클로알킬이다. 보다 바람직한 「시클로알킬」은, 탄소수 3∼8의 시클로알킬이다. 더욱 바람직한 「시클로알킬」은, 탄소수 3∼6의 시클로알킬이다. 구체적인 「시클로알킬」로서는, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 메틸시클로펜틸, 시클로헵틸, 메틸시클로헥실, 시클로옥틸 또는 디메틸시클로헥실 등을 예로 들 수 있다.
Ar2에 있어서의 「아릴」로서는, 바람직한 아릴은 탄소수 6∼30의 아릴이며, 보다 바람직한 아릴은 탄소수 6∼18의 아릴이며, 더욱 바람직하게는 탄소수 6∼14의 아릴이며, 특히 바람직하게는 탄소수 6∼12의 아릴이다.
구체적인 「탄소수 6∼30의 아릴」로서는, 페닐, 나프틸, 아세나프티레닐, 플루오레닐, 페날레닐, 페난트릴, 트리페닐레닐, 피레닐, 나프타세닐, 페릴레닐, 펜타세닐 등을 예로 들 수 있다.
2개의 Ar2는 결합하여 환을 형성하고 있어도 되고, 그 결과, 플루오렌 골격의 5원환에는, 시클로부탄, 시클로펜탄, 시클로펜텐, 시클로펜타디엔, 시클로헥산, 플루오렌 또는 인덴 등이 스피로 결합하고 있어도 된다.
이 벤조플루오렌 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure 112019064006022-pct00093
이 벤조플루오렌 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<포스핀옥사이드 유도체>
포스핀옥사이드 유도체는, 예를 들면, 하기 식(ETM-7-1)으로 표시되는 화합물이 있다. 상세한 것은 국제 공개 제2013/079217호 공보에도 기재되어 있다.
Figure 112019064006022-pct00094
R5는, 치환 또는 무치환의, 탄소수 1∼20의 알킬, 탄소수 6∼20의 아릴 또는 탄소수5∼20의 헤테로아릴이며,
R6는, CN, 치환 또는 무치환의, 탄소수 1∼20의 알킬, 탄소수 1∼20의 헤테로알킬, 탄소수 6∼20의 아릴, 탄소수5∼20의 헤테로아릴, 탄소수 1∼20의 알콕시 또는 탄소수 6∼20의 아릴옥시이며,
R7 및 R8은, 각각 독립적으로, 치환 또는 무치환의, 탄소수 6∼20의 아릴 또는 탄소수5∼20의 헤테로아릴이며,
R9은 산소 또는 유황이며,
j는 0 또는 1이며, k는 0 또는 1이며, r은 0∼4의 정수이며, q는 1∼3의 정수이다.
포스핀옥사이드 유도체는, 예를 들면, 하기 식(ETM-7-2)으로 표시되는 화합물이라도 된다.
Figure 112019064006022-pct00095
R1∼R3은, 동일할 수도 있고 상이할 수도 있으며, 수소, 알킬기, 시클로알킬기, 아랄킬기, 알케닐기, 시클로알케닐기, 알키닐기, 알콕시기, 알킬티오기, 아릴에테르기, 아릴티오에테르기, 아릴기, 복소환기, 할로겐, 시아노기, 알데히드기, 카르보닐기, 카르복실기, 아미노기, 니트로기, 실릴기, 및 인접 치환기와의 사이에 형성되는 축합환 중에서 선택된다.
Ar1은, 동일할 수도 있고 상이할 수도 있으며, 알릴렌기 또는 헤테로알릴렌기이며, Ar2는, 동일할 수도 있고 상이할 수도 있으며, 아릴기 또는 헤테로아릴기가 있다. 단, Ar1 및 Ar2 중 적어도 한쪽은 치환기를 가지고 있거나, 또는 인접 치환기와의 사이에 축합환을 형성하고 있다. n은 0∼3의 정수이며, n이 0일 때 불포화 구조 부분은 존재하지 않고, n이 3일 때 R1은 존재하지 않는다.
이들 치환기 중, 알킬기는, 예를 들면, 메틸기, 에틸기, 프로필기, 부틸기 등의 포화 지방족 탄화 수소기를 나타내고, 이것은 무치환이라도 되고 치환되어 있어도 된다. 치환되어 있는 경우의 치환기로는 특별히 제한은 없으며, 예를 들면, 알킬기, 아릴기, 복소환기 등이 있으며, 이 점은, 이하의 기재에서도 공통된다. 또한, 알킬기의 탄소수는 특별히 한정되지 않지만, 입수의 용이성이나 비용면을 고려하면, 통상, 1∼20의 범위이다.
또한, 시클로알킬기는, 예를 들면, 시클로프로필, 시클로헥실, 노르보르닐, 아다만틸 등의 포화 지환식 탄화 수소기를 나타내고, 이것은 무치환이라도 되고 치환되어 있어도 된다. 알킬기 부분의 탄소수는 특별히 한정되지 않지만, 통상, 3∼20의 범위이다.
또한, 아랄킬기는, 예를 들면, 벤질기, 페닐에틸기 등의 지방족 탄화수소를 통한 방향족 탄화 수소기를 나타내고, 지방족 탄화수소와 방향족 탄화수소는 모두 무치환이라도 되고 치환되어 있어도 된다. 지방족 부분의 탄소수는 특별히 한정되지 않지만, 통상, 1∼20의 범위이다.
또한, 알케닐기는, 예를 들면, 비닐기, 알릴기, 부타디에닐기 등의 2중 결합을 포함하는 불포화 지방족 탄화 수소기를 나타내고, 이것은 무치환이라도 되고 치환되어 있어도 된다. 알케닐기의 탄소수는 특별히 한정되지 않지만, 통상, 2∼20의 범위이다.
또한, 시클로알케닐기는, 예를 들면, 시클로펜테닐기, 시클로펜타디에닐기, 시클로헥센기 등의 2중 결합을 포함하는 불포화 지환식 탄화 수소기를 나타내고, 이것은 무치환이라도 되고 치환되어 있어도 된다.
또한, 알키닐기는, 예를 들면, 아세틸레닐기 등의 3중 결합을 포함하는 불포화 지방족 탄화 수소기를 나타내고, 이것은 무치환이라도 되고 치환되어 있어도 된다. 알키닐기의 탄소수는 특별히 한정되지 않지만, 통상, 2∼20의 범위이다.
또한, 알콕시기는, 예를 들면, 메톡시기 등의 에테르 결합을 통한 지방족 탄화 수소기를 나타내고, 지방족 탄화 수소기는 무치환이라도 되고 치환되어 있어도 된다. 알콕시기의 탄소수는 특별히 한정되지 않지만, 통상, 1∼20의 범위이다.
또한, 알킬 티오기는, 알콕시기의 에테르 결합의 산소 원자가 유황 원자로 치환된 것이다.
또한, 아릴에테르기는, 예를 들면, 페녹시기 등의 에테르 결합을 통한 방향족 탄화 수소기를 나타내고, 방향족 탄화 수소기는 무치환이라도 되고 치환되어 있어도 된다. 아릴에테르기의 탄소수는 특별히 한정되지 않지만, 통상, 6∼40의 범위이다.
또한, 아릴티오에테르기는, 아릴에테르기의 에테르 결합의 산소 원자가 유황 원자로 치환된 것이다.
또한, 아릴기는, 예를 들면, 페닐기, 나프틸기, 비페닐릴기, 페난트릴기, 터페닐기, 피레닐기 등의 방향족 탄화 수소기를 나타낸다. 아릴기는, 무치환이라도 되고 치환되어 있어도 된다. 아릴기의 탄소수는 특별히 한정되지 않지만, 통상, 6∼40의 범위이다.
또한, 복소환기는, 예를 들면, 퓨라닐기, 티오페닐기, 옥사졸릴기, 피리딜기, 퀴놀리닐기, 카르바졸릴기 등의 탄소 이외의 원자를 가지는 환형 구조기를 나타내고, 이것은 무치환이라도 되고 치환되어 있어도 된다. 복소환기의 탄소수는 특별히 한정되지 않지만, 통상, 2∼30의 범위이다.
할로겐은, 불소, 염소, 브롬, 요오드를 나타낸다.
알데히드기, 카르보닐기, 아미노기에는, 지방족 탄화수소, 지환식 탄화수소, 방향족 탄화 수소, 복소환 등으로 치환된 것도 포함할 수 있다.
또한, 지방족 탄화수소, 지환식 탄화수소, 방향족 탄화수소, 복소환은 무치환이라도 되고 치환되어 있어도 된다.
실릴기는, 예를 들면, 트리메틸실릴기 등의 규소 화합물기를 나타내고, 이것은 무치환이라도 되고 치환되어 있어도 된다. 실릴기의 탄소수는 특별히 한정되지 않지만, 통상, 3∼20의 범위이다. 또한, 규소수는, 통상, 1∼6이다.
인접 치환기와의 사이에 형성되는 축합환은, 예를 들면, Ar1과 R2, Ar1과 R3, Ar2와 R2, Ar2와 R3, R2와 R3, Ar1과 Ar2 등의 사이에서 공역 또는 비공역의 축합환을 형성하는 것이다. 여기서, n이 1인 경우, 2개의 R1끼리 공역 또는 비공역의 축합환을 형성해도 된다. 이들 축합환은, 환내 구조에 질소, 산소, 유황 원자를 포함해도 되고, 또 다른 환과 축합해도 된다.
이 포스핀옥사이드 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure 112019064006022-pct00096
이 포스핀옥사이드 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<피리미딘 유도체>
피리미딘 유도체는, 예를 들면, 하기 식(ETM-8)으로 표시되는 화합물이며, 바람직하게는 하기 식(ETM-8-1)으로 표시되는 화합물이다. 상세한 것은 국제 공개 제2011/021689호 공보에도 기재되어 있다.
Figure 112019064006022-pct00097
Ar은, 각각 독립적으로, 치환되어 있어도 되는 아릴, 또는 치환되어 있어도 되는 헤테로아릴이다. n은 1∼4의 정수이며, 바람직하게는 1∼3의 정수이며, 보다 바람직하게는 2 또는 3이다.
「치환되어 있어도 되는 아릴」의 「아릴로서는, 예를 들면, 탄소수 6∼30의 아릴이 있고, 바람직하게는 탄소수 6∼24의 아릴, 보다 바람직하게는 탄소수 6∼20의 아릴, 더욱 바람직하게는 탄소수 6∼12의 아릴이다.
구체적인 「아릴」로서는, 단환계 아릴인 페닐, 2환계 아릴인 (2-, 3-, 4-)비페닐릴, 축합 2환계 아릴인 (1-, 2-)나프틸, 3환계 아릴인 터페닐릴(m-터페닐-2'-일, m-터페닐-4'-일, m-터페닐-5'-일, o-터페닐-3'-일, o-터페닐-4'-일, p-터페닐-2'-일, m-터페닐-2-일, m-터페닐-3-일, m-터페닐-4-일, o-터페닐-2-일, o-터페닐-3-일, o-터페닐-4-일, p-터페닐-2-일, p-터페닐-3-일, p-터페닐-4-일), 축합 3환계 아릴인, 아세나프틸렌-(1-, 3-, 4-, 5-)일, 플루오렌-(1-, 2-, 3-, 4-, 9-)일, 페날렌-(1-, 2-)일, (1-, 2-, 3-, 4-, 9-)페난트릴, 4환계 아릴인 퀴터페닐릴(5'-페닐-m-터페닐-2-일, 5'-페닐-m-터페닐-3-일, 5'-페닐-m-터페닐-4-일, m-퀴터페닐릴), 축합 4환계 아릴인 트리페닐렌-(1-, 2-)일, 피렌-(1-, 2-, 4-)일, 나프타센-(1-, 2-, 5-)일, 축합 5환계 아릴인 페릴렌-(1-, 2-, 3-)일, 펜타센-(1-, 2-, 5-,6-) 일 등을 예로 들 수 있다.
「치환되어 있어도 되는 헤테로아릴」의 「헤테로아릴」로서는, 예를 들면, 탄소수 2∼30의 헤테로아릴이 있으며, 탄소수 2∼25의 헤테로아릴이 바람직하고, 탄소수 2∼20의 헤테로아릴이 보다 바람직하고, 탄소수 2∼15의 헤테로아릴이 더욱 바람직하고, 탄소수 2∼10의 헤테로아릴이 특히 바람직하다. 또한, 헤테로아릴로서는, 예를 들면, 환 구성 원자로서 탄소 이외에 산소, 유황 및 질소로부터 선택되는 헤테로 원자를 1개∼5개 함유하는 복소환 등이 있다.
구체적인 헤테로아릴로서는, 예를 들면, 퓨릴, 티에닐, 피롤릴, 옥사졸릴, 이소옥사졸릴, 티아졸릴, 이소티아졸릴, 이미다졸릴, 피라졸릴, 옥사디아졸릴, 퓨라자닐, 티아디아졸릴, 트리아졸릴, 테트라졸릴, 피리딜, 피리미디닐, 피리다지닐, 피라지닐, 트리아지닐, 벤조퓨라닐, 이소벤조퓨라닐, 벤조[b]티에닐, 인돌릴, 이소인돌릴, 1H-인다졸릴, 벤즈이미다졸릴, 벤즈옥사졸릴, 벤조티아졸릴, 1H-벤조트리아졸릴, 퀴놀릴, 이소퀴놀릴, 신놀릴, 퀴나졸릴, 퀴녹살리닐, 프탈라지닐, 나프티리디닐, 퓨리닐, 프테리디닐, 카르바졸릴, 아크리디닐, 페녹사지닐, 페노티아지닐, 페나지닐, 페녹사티이닐, 티안트레닐, 인돌리지닐 등이 있다.
또한, 상기 아릴 및 헤테로아릴은 치환되어 있어도 되고, 각각 예를 들면, 상기 아릴이나 헤테로아릴로 치환되어 있어도 된다.
이 피리미딘 유도체의 구체예로서는, 예를 들면 이하의 것이 있다.
Figure 112019064006022-pct00098
이 피리미딘 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<카르바졸 유도체>
카르바졸 유도체는, 예를 들면, 하기 식(ETM-9)으로 표시되는 화합물, 또는 그것이 단결합 등으로 복수 결합한 다량체이다. 상세한 것은 미국공개공보 2014/0197386호 공보에 기재되어 있다.
Figure 112019064006022-pct00099
Ar은, 각각 독립적으로, 치환되어 있어도 되는 아릴, 또는 치환되어 있어도 되는 헤테로아릴이다. n은 독립적으로 0∼4의 정수이며, 바람직하게는 0∼3의 정수이며, 보다 바람직하게는 0 또는 1이다.
「치환되어 있어도 되는 아릴」의 「아릴」로서는, 예를 들면, 탄소수 6∼30의 아릴이 있고, 바람직하게는 탄소수 6∼24의 아릴, 보다 바람직하게는 탄소수 6∼20의 아릴, 더욱 바람직하게는 탄소수 6∼12의 아릴이다.
구체적인 「아릴」로서는, 단환계 아릴인 페닐, 2환계 아릴인 (2-, 3-, 4-)비페닐릴, 축합 2환계 아릴인 (1-, 2-)나프틸, 3환계 아릴인 터페닐릴(m-터페닐-2'-일, m-터페닐-4'-일, m-터페닐-5'-일, o-터페닐-3'-일, o-터페닐-4'-일, p-터페닐-2'-일, m-터페닐-2-일, m-터페닐-3-일, m-터페닐-4-일, o-터페닐-2-일, o-터페닐-3-일, o-터페닐-4-일, p-터페닐-2-일, p-터페닐-3-일, p-터페닐-4-일), 축합 3환계 아릴인, 아세나프틸렌-(1-, 3-, 4-, 5-)일, 플루오렌-(1-, 2-, 3-, 4-, 9-)일, 페날렌-(1-, 2-)일, (1-, 2-, 3-, 4-, 9-)페난트릴, 4환계 아릴인 퀴터페닐릴(5'-페닐-m-터페닐-2-일, 5'-페닐-m-터페닐-3-일, 5'-페닐-m-터페닐-4-일, m-퀴터페닐릴), 축합 4환계 아릴인 트리페닐렌-(1-, 2-)일, 피렌-(1-, 2-, 4-)일, 나프타센-(1-, 2-, 5-)일, 축합 5환계 아릴인 페릴렌-(1-, 2-, 3-)일, 펜타센-(1-, 2-, 5-,6-)일 등을 예로 들 수 있다.
「치환되어 있어도 되는 헤테로아릴」의 「헤테로아릴」로서는, 예를 들면, 탄소수 2∼30의 헤테로아릴이 있고, 탄소수 2∼25의 헤테로아릴이 바람직하고, 탄소수 2∼20의 헤테로아릴이 보다 바람직하고, 탄소수 2∼15의 헤테로아릴이 더욱 바람직하고, 탄소수 2∼10의 헤테로아릴이 특히 바람직하다. 또한, 헤테로아릴로서는, 예를 들면, 환 구성 원자로서 탄소 이외에 산소, 유황 및 질소로부터 선택되는 헤테로 원자를 1개 내지 5개 함유하는 복소환 등이 있다.
구체적인 헤테로아릴로서는, 예를 들면, 퓨릴, 티에닐, 피롤릴, 옥사졸릴, 이소옥사졸릴, 티아졸릴, 이소티아졸릴, 이미다졸릴, 피라졸릴, 옥사디아졸릴, 퓨라자닐, 티아디아졸릴, 트리아졸릴, 테트라졸릴, 피리딜, 피리미디닐, 피리다지닐, 피라지닐, 트리아지닐, 벤조퓨라닐, 이소벤조퓨라닐, 벤조[b]티에닐, 인돌릴, 이소인돌릴, 1H-인다졸릴, 벤즈이미다졸릴, 벤즈옥사졸릴, 벤조티아졸릴, 1H-벤조트리아졸릴, 퀴놀릴, 이소퀴놀릴, 신놀릴, 퀴나졸릴, 퀴녹살리닐, 프탈라지닐, 나프티리디닐, 퓨리닐, 프테리디닐, 카르바졸릴, 아크리디닐, 페녹사지닐, 페노티아지닐, 페나지닐, 페녹사티이닐, 티안트레닐, 인돌리지닐 등이 있다.
또한, 상기 아릴 및 헤테로아릴은 치환되어 있어도 되고, 각각 예를 들면, 상기 아릴이나 헤테로아릴로 치환되어 있어도 된다.
카르바졸 유도체는, 상기 식(ETM-9)으로 표시되는 화합물이 단결합 등으로 복수 결합한 다량체라도 된다. 이 경우에, 단결합 이외에, 아릴환(바람직하게는 다가의 벤젠환, 나프탈렌환, 안트라센환, 플루오렌환, 벤조플루오렌환, 페날렌환, 페난트렌환 또는 트리페닐렌환)과 결합되어 있어도 된다.
이 카르바졸 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure 112019064006022-pct00100
이 카르바졸 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<트리아진 유도체>
트리아진 유도체는, 예를 들면, 하기 식(ETM-10)으로 표시되는 화합물이며, 바람직하게는 하기 식(ETM-10-1)으로 표시되는 화합물이다. 상세한 것은 미국 공개 공보2011/0156013호 공보에 기재되어 있다.
Figure 112019064006022-pct00101
Ar은, 각각 독립적으로, 치환되어 있어도 되는 아릴, 또는 치환되어 있어도 되는 헤테로아릴이다. n은 1∼4의 정수이며, 보다 바람직하게는 2 또는 3이다.
「치환되어 있어도 되는 아릴」의 「아릴」로서는, 예를 들면, 탄소수 6∼30의 아릴이 있으며, 바람직하게는 탄소수 6∼24의 아릴, 보다 바람직하게는 탄소수 6∼20의 아릴, 더욱 바람직하게는 탄소수 6∼12의 아릴이다.
구체적인 「아릴」로서는, 단환계 아릴인 페닐, 2환계 아릴인 (2-, 3-, 4-)비페닐릴, 축합 2환계 아릴인 (1-, 2-)나프틸, 3환계 아릴인 터페닐릴(m-터페닐-2'-일, m-터페닐-4'-일, m-터페닐-5'-일, o-터페닐-3'-일, o-터페닐-4'-일, p-터페닐-2'-일, m-터페닐-2-일, m-터페닐-3-일, m-터페닐-4-일, o-터페닐-2-일, o-터페닐-3-일, o-터페닐-4-일, p-터페닐-2-일, p-터페닐-3-일, p-터페닐-4-일), 축합 3환계 아릴인, 아세나프틸렌-(1-, 3-, 4-, 5-)일, 플루오렌-(1-, 2-, 3-, 4-, 9-)일, 페날렌-(1-, 2-)일, (1-, 2-, 3-, 4-, 9-)페난트릴, 4환계 아릴인 퀴터페닐릴(5'-페닐-m-터페닐-2-일, 5'-페닐-m-터페닐-3-일, 5'-페닐-m-터페닐-4-일, m-퀴터페닐릴), 축합 4환계 아릴인 트리페닐렌-(1-, 2-)일, 피렌-(1-, 2-, 4-)일, 나프타센-(1-, 2-, 5-)일, 축합 5환계 아릴인 페릴렌-(1-, 2-, 3-)일, 펜타센-(1-, 2-, 5-,6-)일 등을 예로 들 수 있다.
「치환되어 있어도 되는 헤테로아릴」의 「헤테로아릴」로서는, 예를 들면, 탄소수 2∼30의 헤테로아릴이 있으며, 탄소수 2∼25의 헤테로아릴이 바람직하고, 탄소수 2∼20의 헤테로아릴이 보다 바람직하고, 탄소수 2∼15의 헤테로아릴이 더욱 바람직하고, 탄소수 2∼10의 헤테로아릴이 특히 바람직하다. 또한, 헤테로아릴로서는, 예를 들면, 환 구성 원자로서 탄소 이외에 산소, 유황 및 질소로부터 선택되는 헤테로원자를 1개∼5개 함유하는 복소환 등이 있다.
구체적인 헤테로아릴로서는, 예를 들면, 퓨릴, 티에닐, 피롤릴, 옥사졸릴, 이소옥사졸릴, 티아졸릴, 이소티아졸릴, 이미다졸릴, 피라졸릴, 옥사디아졸릴, 퓨라자닐, 티아디아졸릴, 트리아졸릴, 테트라졸릴, 피리딜, 피리미디닐, 피리다지닐, 피라지닐, 트리아지닐, 벤조퓨라닐, 이소벤조퓨라닐, 벤조[b]티에닐, 인돌릴, 이소인돌릴, 1H-인다졸릴, 벤즈이미다졸릴, 벤즈옥사졸릴, 벤조티아졸릴, 1H-벤조트리아졸릴, 퀴놀릴, 이소퀴놀릴, 신놀릴, 퀴나졸릴, 퀴녹살리닐, 프탈라지닐, 나프티리디닐, 퓨리닐, 프테리디닐, 카르바졸릴, 아크리디닐, 페녹사지닐, 페노티아지닐, 페나지닐, 페녹사티이닐, 티안트레닐, 인돌리지닐 등이 있다.
또한, 상기 아릴 및 헤테로아릴은 치환되어 있어도 되고, 각각 예를 들면, 상기 아릴이나 헤테로아릴로 치환되어 있어도 된다.
이 트리아진 유도체의 구체예로서는, 예를 들면, 이하의 것이 있다.
Figure 112019064006022-pct00102
이 트리아진 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<벤즈이미다졸 유도체>
벤즈이미다졸 유도체는, 예를 들면, 하기 식(ETM-11)으로 표시되는 화합물이다.
Figure 112019064006022-pct00103
φ는, n가의 아릴환(바람직하게는 n가의 벤젠환, 나프탈렌환, 안트라센환, 플루오렌환, 벤조플루오렌환, 페날렌환, 페난트렌환 또는 트리페닐렌환)이며, n은 1∼4의 정수이며, 「벤즈이미다졸계 치환기」는, 상기 식(ETM-2), 식(ETM-2-1) 및 식(ETM-2-2)에 있어서의 「피리딘계 치환기」 중의 피리딜기가 벤즈이미다졸기로 치환한 것이며, 벤즈이미다졸 유도체에 있어서의 1개 이상의 수소는 중수소로 치환되어 있어도 된다.
Figure 112019064006022-pct00104
상기 벤즈이미다졸기에 있어서의 R11은, 수소, 탄소수 1∼24의 알킬, 탄소수 3∼12의 시클로알킬 또는 탄소수 6∼30의 아릴이며, 상기 식(ETM-2-1) 및 식(ETM-2-2)에 있어서의 R11의 설명을 인용할 수 있다.
φ는, 또한 안트라센환 또는 플루오렌환인 것이 바람직하고, 이 경우의 구조는 상기 식(ETM-2-1) 또는 식(ETM-2-2)의 것을 인용할 수 있고, 각 식 중의 R11∼R18은 상기 식(ETM-2-1) 또는 식(ETM-2-2)에서 설명한 것을 인용할 수 있다. 또한, 상기 식(ETM-2-1) 또는 식(ETM-2-2)에서는 2개의 피리딘계 치환기가 결합한 형태로 설명되고 있지만, 이들을 벤즈이미다졸계 치환기로 치환할 때는, 양쪽의 피리딘계 치환기를 벤즈이미다졸계 치환기로 치환해도 되고(즉 n=2), 어느 하나의 피리딘계 치환기를 벤즈이미다졸계 치환기로 치환하고 다른 쪽의 피리딘계 치환기를 R11∼R18로 치환해도 된다(즉 n=1). 또한, 예를 들면, 상기 식(ETM-2-1)에 있어서의 R11∼R18 중 하나 이상을 벤즈이미다졸계 치환기로 치환하고 「피리딘계 치환기」를 R11∼R18로 치환해도 된다.
이 벤즈이미다졸 유도체의 구체예로서는, 예를 들면 1-페닐-2-(4-(10-페닐안트라센-9-일)페닐)-1H-벤조[d]이미다졸, 2-(4-(10-(나프탈렌-2-일)안트라센-9-일)페닐)-1-페닐-1H-벤조[d]이미다졸, 2-(3-(10-(나프탈렌-2-일)안트라센-9-일)페닐)-1-페닐-1H-벤조[d]이미다졸, 5-(10-(나프탈렌-2-일)안트라센-9-일)-1,2-디페닐-1H-벤조[d]이미다졸, 1-(4-(10-(나프탈렌-2-일)안트라센-9-일)페닐)-2-페닐-1H-벤조[d]이미다졸, 2-(4-(9,10-디(나프탈렌-2-일)안트라센-2-일)페닐)-1-페닐-1H-벤조[d]이미다졸, 1-(4-(9,10-디(나프탈렌-2-일)안트라센-2-일)페닐)-2-페닐-1H-벤조[d]이미다졸, 5-(9,10-디(나프탈렌-2-일)안트라센-2-일)-1,2-디페닐-1H-벤조[d]이미다졸 등이 있다.
Figure 112019064006022-pct00105
이 벤즈이미다졸 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<페난트롤린 유도체>
페난트롤린 유도체는, 예를 들면, 하기 식(ETM-12) 또는 식(ETM-12-1)으로 표시되는 화합물이다. 상세한 것은 국제 공개2006/021982호 공보에 기재되어 있다.
Figure 112019064006022-pct00106
φ는, n가의 아릴환(바람직하게는 n가의 벤젠환, 나프탈렌환, 안트라센환, 플루오렌환, 벤조플루오렌환, 페날렌환, 페난트렌환 또는 트리페닐렌환)이며, n은 1∼4의 정수이다.
각 식의 R11∼R18은, 각각 독립적으로, 수소, 알킬(바람직하게는 탄소수 1∼24의 알킬), 시클로알킬(바람직하게는 탄소수 3∼12의 시클로알킬) 또는 아릴(바람직하게는 탄소수 6∼30의 아릴)이다. 또한, 상기 식(ETM-12-1)에 있어서는 R11∼R18 중 어느 하나가 아릴환인 φ와 결합한다.
각각의 페난트롤린 유도체에 있어서의 1개 이상의 수소가 중수소로 치환되어 있어도 된다.
R11∼R18에 있어서의 알킬, 시클로알킬 및 아릴로서는, 상기 식(ETM-2)에 있어서의 R11∼R18의 설명을 인용할 수 있다. 또한, φ는 상기한 것 외에, 예를 들면, 이하의 구조식의 것이 있다. 그리고, 하기 구조식 중의 R은, 각각 독립적으로, 수소, 메틸, 에틸, 이소프로필, 시클로헥실, 페닐, 1-나프틸, 2-나프틸, 비페닐릴 또는 터페닐릴이다.
Figure 112019064006022-pct00107
이 페난트롤린 유도체의 구체예로서는, 예를 들면 4,7-디페닐-1,10-페난트롤린, 2,9-디메틸-4,7-디페닐-1,10-페난트롤린, 9,10-디(1,10-페난트롤린-2-일)안트라센, 2,6-디(1,10-페난트롤린-5-일)피리딘, 1,3,5-트리(1,10-페난트롤린-5-일)벤젠, 9,9'-디플루오로-비스(1,10-페난트롤린-5-일), 바소큐프로인이나 1,3-비스(2-페닐-1,10-페난트롤린-9-일)벤젠 등이 있다.
Figure 112019064006022-pct00108
이 페난트롤린 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<퀴놀리놀계 금속 착체>
퀴놀리놀계 금속 착체는, 예를 들면, 하기 일반식(ETM-13)으로 표시되는 화합물이 있다.
Figure 112019064006022-pct00109
식 중, R1∼R6는, 수소 또는 치환기이며, M은 Li, Al, Ga, Be 또는 Zn이며, n은 1∼3의 정수이다.
퀴놀리놀계 금속 착체의 구체예로서는, 8-퀴놀리놀리튬, 트리스(8-퀴놀리놀레이트)알루미늄, 트리스(4-메틸-8-퀴놀리놀레이트)알루미늄, 트리스(5-메틸-8-퀴놀리놀레이트)알루미늄, 트리스(3,4-디메틸-8-퀴놀리놀레이트)알루미늄, 트리스(4,5-디메틸-8-퀴놀리놀레이트)알루미늄, 트리스(4,6-디메틸-8-퀴놀리놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2-메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(3-메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(4-메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2-페닐페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(3-페닐페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(4-페닐페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2,3-디메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2,6-디메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(3,4-디메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(3,5-디메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(3,5-디-tert-부틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2,6-디페닐페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2,4,6-트리페닐페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2,4,6-트리메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2,4,5,6-테트라메틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(1-나프톨레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)(2-나프톨레이트)알루미늄, 비스(2,4-디메틸-8-퀴놀리놀레이트)(2-페닐페놀레이트)알루미늄, 비스(2,4-디메틸-8-퀴놀리놀레이트)(3-페닐페놀레이트)알루미늄, 비스(2,4-디메틸-8-퀴놀리놀레이트)(4-페닐페놀레이트)알루미늄, 비스(2,4-디메틸-8-퀴놀리놀레이트)(3,5-디메틸페놀레이트)알루미늄, 비스(2,4-디메틸-8-퀴놀리놀레이트)(3,5-디-tert-부틸페놀레이트)알루미늄, 비스(2-메틸-8-퀴놀리놀레이트)알루미늄-μ-옥소-비스(2-메틸-8-퀴놀리놀레이트)알루미늄, 비스(2,4-디메틸-8-퀴놀리놀레이트)알루미늄-μ-옥소-비스(2,4-디메틸-8-퀴놀리놀레이트)알루미늄, 비스(2-메틸-4-에틸-8-퀴놀리놀레이트)알루미늄-μ-옥소-비스(2-메틸-4-에틸-8-퀴놀리놀레이트)알루미늄, 비스(2-메틸-4-메톡시-8-퀴놀리놀레이트)알루미늄-μ-옥소-비스(2-메틸-4-메톡시-8-퀴놀리놀레이트)알루미늄, 비스(2-메틸-5-시아노-8-퀴놀리놀레이트)알루미늄-μ-옥소-비스(2-메틸-5-시아노-8-퀴놀리놀레이트)알루미늄, 비스(2-메틸-5-트리플루오로메틸-8-퀴놀리놀레이트)알루미늄-μ-옥소-비스(2-메틸-5-트리플루오로메틸-8-퀴놀리놀레이트)알루미늄, 비스(10-하이드록시벤조[h]퀴놀린)베릴륨 등을 들 수 있다.
이 퀴놀리놀계 금속 착체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
<티아졸 유도체 및 벤조티아졸 유도체>
티아졸 유도체는, 예를 들면, 하기 식(ETM-14-1)으로 표시되는 화합물이다.
Figure 112019064006022-pct00110
벤조티아졸 유도체는, 예를 들면, 하기 식(ETM-14-2)으로 표시되는 화합물이다.
Figure 112019064006022-pct00111
각 식의 φ는, n가의 아릴환(바람직하게는 n가의 벤젠환, 나프탈렌환, 안트라센환, 플루오렌환, 벤조플루오렌환, 페날렌환, 페난트렌환 또는 트리페닐렌환)이며, n은 1∼4의 정수이며, 「티아졸계 치환기」나 「벤조티아졸계 치환기」는, 상기 식(ETM-2), 식(ETM-2-1) 및 식(ETM-2-2)에 있어서의 「피리딘계 치환기」 중의 피리딜기가 티아졸기나 벤조티아졸기로 치환한 것이며, 티아졸 유도체 및 벤조티아졸 유도체에 있어서의 1개 이상의 수소가 중수소로 치환되어 있어도 된다.
Figure 112019064006022-pct00112
φ는, 또한 안트라센환 또는 플루오렌환인 것이 바람직하고, 이 경우의 구조는 상기 식(ETM-2-1) 또는 식(ETM-2-2)의 것을 인용할 수 있고, 각 식 중의 R11∼R18은 상기 식(ETM-2-1) 또는 식(ETM-2-2)에서 설명한 것을 인용할 수 있다. 또한, 상기 식(ETM-2-1) 또는 식(ETM-2-2)에서는 2개의 피리딘계 치환기가 결합한 형태로 설명되고 있지만, 이들을 티아졸계 치환기(또는 벤조티아졸계 치환기)로 치환할 때는, 양쪽의 피리딘계 치환기를 티아졸계 치환기(또는 벤조티아졸계 치환기)로 치환해도 되고(즉 n=2), 어느 하나의 피리딘계 치환기를 티아졸계 치환기(또는 벤조티아졸계 치환기)로 치환하고 다른 쪽의 피리딘계 치환기를 R11∼R18로 치환해도 된다(즉 n=1). 또한, 예를 들면, 상기 식(ETM-2-1)에 있어서의 R11∼R18 중 하나 이상을 티아졸계 치환기(또는 벤조티아졸계 치환기)로 치환하고 「피리딘계 치환기」를 R11∼R18로 치환해도 된다.
이들 티아졸 유도체 또는 벤조티아졸 유도체는 공지의 원료와 공지의 합성 방법을 사용하여 제조할 수 있다.
전자 수송층 또는 전자 주입층에는, 전자 수송층 또는 전자 주입층을 형성하는 재료를 환원할 수 있는 물질을 더 포함해도 된다. 이 환원성 물질은, 일정한 환원성을 가지는 것이면, 다양한 것이 사용되며, 예를 들면, 알칼리 금속, 알칼리토류 금속, 희토류 금속, 알칼리 금속의 산화물, 알칼리 금속의 할로겐화물, 알칼리토류 금속의 산화물, 알칼리토류 금속의 할로겐화물, 희토류 금속의 산화물, 희토류 금속의 할로겐화물, 알칼리 금속의 유기 착체, 알칼리토류 금속의 유기 착체 및 희토류 금속의 유기 착체로 이루어지는 군으로부터 선택되는 하나 이상을 바람직하게 사용할 수 있다.
바람직한 환원성 물질로서는, Na(일함수 2.36eV), K(일함수 2.28eV), Rb(일함수 2.16eV) 또는 Cs(일함수 1.95eV) 등의 알칼리 금속이나, Ca(일함수 2.9eV), Sr(일함수 2.0∼2.5eV) 또는 Ba(일함수 2.52eV) 등의 알칼리토류 금속을 예로 들 수 있으며, 일함수가 2.9eV 이하인 것이 특히 바람직하다. 이들 중, 보다 바람직한 환원성 물질은, K, Rb 또는 Cs의 알칼리 금속이며, 더욱 바람직하게는 Rb 또는 Cs이며, 가장 바람직한 것은 Cs이다. 이들 알칼리 금속은, 특히 환원 능력이 높고, 전자 수송층 또는 전자 주입층을 형성하는 재료로의 비교적 소량의 첨가에 의해, 유기 EL 소자에 있어서의 발광 휘도의 향상이나 장수명화가 도모된다. 또한, 일함수가 2.9eV 이하인 환원성 물질로서, 이들 2종 이상의 알칼리 금속의 조합도 바람직하고, 특히, Cs를 포함한 조합, 예를 들면, Cs와 Na, Cs와 K, Cs와 Rb, 또는 Cs와 Na와 K의 조합이 바람직하다. Cs을 포함하는 것에 의해, 환원 능력을 효율적으로 발휘할 수 있고, 전자 수송층 또는 전자 주입층을 형성하는 재료로의 첨가에 의해, 유기 EL 소자에 있어서의 발광 휘도의 향상이나 장수명화가 도모된다.
<유기 전계 발광 소자에 있어서의 음극>
음극(108)은, 전자 주입층(107) 및 전자 수송층(106)을 통하여, 발광층(105)에 전자를 주입하는 역할을 하는 것이다.
음극(108)을 형성하는 재료로서는, 전자를 유기층에 효율적으로 주입할 수 있는 물질이면 특별히 한정되지 않지만, 양극(102)을 형성하는 재료와 동일한 것을 사용할 수 있다. 그 중에서도, 주석, 인듐, 칼슘, 알루미늄, 은, 동, 니켈, 크롬, 김, 백금, 철, 아연, 리튬, 나트륨, 칼륨, 세슘 및 마그네슘 등의 금속 또는 이들의 합금(마그네슘-은 합금, 마그네슘-인듐 합금, 불화 리튬/알루미늄 등의 알루미늄-리튬 합금 등) 등이 바람직하다. 전자 주입 효율을 높여 소자 특성을 향상시키기 위해서는, 리튬, 나트륨, 칼륨, 세슘, 칼슘, 마그네슘 또는 이들 낮은 일함수 금속을 포함하는 합금이 유효하다. 그러나, 이들 낮은 일함수 금속은 일반적으로 대기중에서 불안정한 경우가 많다. 이 점을 개선하기 위해, 예를 들면, 유기층에 미량의 리튬, 세슘이나 마그네슘을 도핑하여, 안정성이 높은 전극을 사용하는 방법이 알려져 있다. 그 외의 도펀트로서는, 불화 리튬, 불화 세슘, 산화 리튬 및 산화 세슘과 같은 무기염도 사용할 수 있다. 다만, 이들로 한정되는 것은 아니다.
또한, 전극 보호를 위해 백금, 금, 은, 동, 철, 주석, 알루미늄 및 인듐 등의 금속, 또는 이들 금속을 사용한 합금, 그리고 실리카, 티타니아 및 질화 규소 등의 무기물, 폴리비닐알코올, 염화 비닐, 탄화수소계 고분자 화합물 등을 적층하는 것을, 바람직한 예로서 들 수 있다. 이들 전극의 제작법도, 저항 가열, 전자선 빔, 스퍼터링, 이온 플레이팅 및 코팅 등, 도통할 수 있다면, 특별히 한정되지 않는다.
<각 층에서 사용할 수도 있는 결착제>
이상의 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층에 사용되는 재료는 단독으로 각 층을 형성할 수 있지만, 고분자 결착제로서 폴리염화비닐, 폴리카보네이트, 폴리스티렌, 폴리(N-비닐카르바졸), 폴리메틸메타크릴레이트, 폴리부틸메타크릴레이트, 폴리에스테르, 폴리술폰, 폴리페닐렌옥사이드, 폴리부타디엔, 탄화수소 수지, 케톤 수지, 페녹시 수지, 폴리아미드, 에틸 셀룰로오스, 아세트산 비닐 수지, ABS 수지, 폴리우레탄 수지 등의 용제 가용성 수지나, 페놀 수지, 크실렌 수지, 석유 수지, 우레아 수지, 멜라민 수지, 불포화 폴리에스테르 수지, 알키드 수지, 에폭시 수지, 실리콘 수지 등의 경화성 수지 등에 분산시켜 사용하는 것도 가능하다.
<유기 전계 발광 소자의 제작 방법>
유기 EL 소자를 구성하는 각 층은, 각 층을 구성할 재료를 증착법(蒸着法), 저항 가열 증착, 전자빔 증착, 스퍼터링, 분자 적층법, 인쇄법, 스핀 코팅법 또는 캐스팅법, 코팅법 등의 방법으로 박막으로 함으로써, 형성할 수 있다. 이와 같이 하여 형성된 각 층의 막 두께에 대해서는 특별히 한정되지 않고, 재료의 성질에 따라 적절하게 설정할 수 있지만, 통상 2 nm∼5000 nm의 범위이다. 막 두께는 통상, 수정 발진(發振)식 막 두께 측정 장치 등으로 측정할 수 있다. 증착법을 사용하여 박막화하는 경우, 그 증착 조건은, 재료의 종류, 막의 목적으로 하는 결정(結晶) 구조 및 회합 구조 등에 의해 따라 상이하다. 증착 조건은 일반적으로, 보트 가열 온도 +50∼+400 ℃, 진공도 10-6∼10- 3 Pa, 증착 속도 0.01∼50 nm/초, 기판 온도 -150∼+300 ℃, 막 두께 2nm∼5㎛의 범위에서 적절하게 설정하는 것이 바람직하다.
다음으로, 유기 EL 소자를 제작하는 방법의 일례로서, 양극/정공 주입층/정공 수송층/호스트 재료와 도펀트 재료로 이루어지는 발광층/전자 수송층/전자 주입층/음극으로 이루어지는 유기 EL 소자의 제작법에 대하여 설명한다. 적절한 기판 상에, 양극 재료의 박막을 증착법 등에 의해 형성시켜 양극을 제작한 후, 이 양극 상에 정공 주입층 및 정공 수송층의 박막을 형성한다. 이 위에 호스트 재료와 도펀트 재료를 공증착하여 박막을 형성시켜 발광층으로 하고, 이 발광층 상에 전자 수송층, 전자 주입층을 형성시키고, 또한 음극용 물질로 이루어지는 박막을 증착법 등에 의해 형성시켜 음극으로 함으로써, 목적으로 하는 유기 EL 소자를 얻을 수 있다. 그리고, 전술한 유기 EL 소자의 제작에 있어서는, 제작 순서를 반대로 하여, 음극, 전자 주입층, 전자 수송층, 발광층, 정공 수송층, 정공 주입층, 양극의 순서로 제작할 수도 있다.
이와 같이 하여 얻어진 유기 EL 소자에 직류 전압을 인가하는 경우에는, 양극을 +, 음극을 ―의 극성으로서 인가하면 되고, 전압 2∼40 V 정도를 인가하면, 투명 또는 반투명의 전극측(양극 또는 음극, 및 양쪽)으로부터 발광을 관측할 수 있다. 또한, 이 유기 EL 소자는, 펄스 전류나 교류 전류를 인가한 경우에도 발광한다. 그리고, 인가하는 교류의 파형은 임의로 할 수 있다.
<유기 전계 발광 소자의 응용예>
또한, 본 발명은, 유기 EL 소자를 구비한 표시 장치 또는 유기 EL 소자를 구비한 조명 장치 등에도 응용할 수 있다.
유기 EL 소자를 구비한 표시 장치 또는 조명 장치는, 본 실시형태에 따른 유기 EL 소자와 공지의 구동 장치를 접속하는 등 공지의 방법에 의해 제조할 수 있고, 직류 구동, 펄스 구동, 교류 구동 등 공지의 구동 방법을 적절하게 사용하여 구동할 수 있다.
표시 장치로서는, 예를 들면, 컬러 평판 디스플레이 등의 패널 디스플레이, 플렉시블 컬러 유기 전계 발광(EL) 디스플레이 등의 플렉시블 디스플레이 등이 있다(예를 들면, 일본 공개특허 평10-335066호 공보, 일본 공개특허 제2003-321546호 공보, 일본 공개특허 제2004-281086호 공보 등 참조). 또한, 디스플레이의 표시 방식으로서는, 예를 들면, 매트릭스 및/또는 세그먼트 방식 등이 있다. 그리고, 매트릭스 표시와 세그먼트 표시는 동일한 패널 중에 공존하고 있어도 된다.
매트릭스란, 표시를 위한 화소가 격자형이나 모자이크형 등 2차원적으로 배치된 것을 말하며, 화소의 집합으로 문자나 화상을 표시한다. 화소의 형상이나 사이즈는 용도에 따라 정해진다. 예를 들면, PC, 모니터, 텔레비전의 화상 및 문자 표시에는, 통상 1변 300㎛ 이하의 사각형의 화소가 사용되고, 또한, 표시 패널과 같은 대형 디스플레이의 경우에는, 1변이 mm 오더의 화소를 사용하게 된다. 흑백 표시의 경우에는, 동일한 색의 화소를 배열하는 것이 바람직하지만, 컬러 표시의 경우에는, 적, 녹, 청색 화소를 배열하여 표시시킨다. 이 경우에, 전형적으로는 델타 타입과 스트라이프 타입이 있다. 그리고, 이 매트릭스의 구동 방법으로서는, 선(線) 순차 구동 방법이나 액티브 매트릭스 중 어느 쪽이라도 된다. 선 순차 구동 쪽이 구조가 간단한 장점이 있지만, 동작 특성을 고려한 경우, 액티브 매트릭스 쪽이 우수한 경우가 있으므로, 이것도 용도에 따라 구분하여 사용할 필요가 있다.
세그먼트 방식(타입)에서는, 사전에 결정된 정보를 표시하도록 패턴을 형성하고, 결정된 영역을 발광 시키게 된다. 예를 들면, 디지털 시계나 온도계에 있어서의 시각이나 온도 표시, 오디오 기기나 전자(電磁) 조리기 등의 동작 상태 표시 및 자동차의 패널 표시 등이 있다.
조명 장치로서는, 예를 들면, 실내 조명 등의 조명 장치, 액정 표시 장치의 백라이트 등이 있다(예를 들면, 일본 공개특허 제2003-257621호 공보, 일본 공개특허 제2003-277741호 공보, 일본 공개특허 제2004-119211호 공보 등 참조). 백라이트는, 주로 자발광하지 않는 표시 장치의 시인성(視認性)을 향상시킬 목적으로 사용되고, 액정 표시 장치, 시계, 오디오 장치, 자동차 패널, 표시판 및 표식 등에 사용된다. 특히, 액정 표시 장치, 중에서도 박형화가 과제로 되어 있는 PC 용도의 백라이트로서는, 종래 방식의 것이 형광등이나 도광판(導光板)으로 되어 있으므로, 박형화가 곤란한 것을 고려하면, 본 실시형태에 따른 발광 소자를 사용한 백라이트는 박형이며 경량인 것으로 특징으로 한다.
[실시예]
이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하지만, 본 발명은 이들로 한정되는 것은 아니다. 먼저, 식(2)의 화합물 및 식(1)의 화합물의 합성예에 대하여, 이하에서 설명한다.
합성예(1)
화합물(2B-3): 1,3-비스(9,10-디페닐안트라센-2-일)벤젠의 합성
Figure 112019064006022-pct00113
2-브로모-9,10-디페닐안트라센(4.0g), 1,3-비스(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)벤젠(1.54g), 테트라메틸암모늄브로미드(0.15g), 탄산 칼륨(2.58g), 디클로로비스[디-tert-부틸(p-디메틸아미노페닐)포스피노]팔라듐(II)(Pd-132)(0.20g), 물(3ml) 및 톨루엔(30ml)이 들어간 플라스크를 질소 분위기 하, 환류 온도에서 8시간 교반하였다. 반응 혼합물을 냉각하고, 석출한 고체를 여과하고, 물 및 톨루엔으로 세정함으로써, 백색 고체로서 화합물(2B-3)(2.0g)을 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인했다.
1H-NMR(400MHz, CDCl3): δ=7.91∼7.90(m, 2H), 7.80∼7.78(m, 2H), 7.75∼7.40(m, 30H), 7.37∼7.32(m, 4H).
합성예(2)
화합물(2A-11): 10,10'-비스(나프토[2,3-b]벤조퓨란-2-일) 9,9'-비안트라센의 합성
Figure 112019064006022-pct00114
10,10'-디브로모-9,9'-비안트라센(2.0g), 4,4,5,5-테트라메틸-2-(나프토 [2,3-b]벤조퓨란-2-일)-1,3,2-디옥사보롤란(3.36g), Pd-132(0.14g), 테트라부틸암모늄브로미드(0.13g), 탄산 칼륨(1.62g), 물(10ml), 톨루엔(100ml)이 들어간 플라스크를 질소 분위기 하, 환류 온도에서 8시간 교반하였다. 반응 혼합액을 실온까지 냉각시키고 물로 세정한 후, 감압 하에서 용매를 제거했다. 석출 고체를 톨루엔을 사용하여 재결정하고, 백색 고체로서 화합물(2A-11)(2.8g)을 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인했다.
1H-NMR(400MHz, CDCl3): δ=8.45(s, 2H), 8.40∼8.30(m, 2H), 8.10∼8.00(m, 6H), 7.95∼7.85(m, 6H), 7.82∼7.75(m, 2H), 7.60∼7.55(m, 2H), 7.55∼7.48(m, 2H), 7.40∼7.30(m, 8H), 7.26∼7.20(m, 4H).
합성예(3)
화합물(2A-2): 10,10'-디([1,1'-비페닐]-4-일9)-9,9'-비안트라센의 합성
Figure 112019064006022-pct00115
10,10'-디브로모-9,9'-비안트라센(5.0g), [1,1-비페닐]-4-일보론산(5.8g), Pd-132(0.35g), 테트라부틸암모늄브로미드(0.31g), 탄산 칼륨(4.05g), 물(10ml), 톨루엔(100ml)이 들어간 플라스크를 질소 분위기 하, 환류 온도에서 5시간 교반하였다. 반응액을 실온까지 냉각시키고 반응액 중의 고체를 여과하고, 고체를 물로 세정함으로써 백색 고체를 얻었다. 이 고체를 클로로벤젠을 사용하여 재결정하고, 백색 고체로서 화합물(2A-2)(5.9g)을 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인했다.
1H-NMR(400MHz, CDCl3): δ=7.94∼7.90(m, 8H), 7.85∼7.80(m, 4H), 7.74∼7.71(m, 4H), 7.58∼7.54(m, 4H), 7.46∼7.42(m, 2H), 7.40∼7.35(m, 4H), 7.29∼7.26(m, 4H), 7.21∼7.15(m, 4H).
합성예(4)
화합물(2A-21): 1,4-비스(10-페닐안트라센-9-일)벤젠의 합성
Figure 112019064006022-pct00116
1,4-디브로모벤젠(3.0g), (10-페닐안트라센-9-일)보론산(9.5g), Pd-132(0.45g), 테트라부틸암모늄브로미드(0.41g), 탄산 칼륨(5.3g), 물(10ml), 톨루엔(100ml)이 들어간 플라스크를 질소 분위기 하, 환류 온도에서 2시간 교반하였다. 실온까지 냉각하고 반응액 중의 고체를 여과하고, 고체를 물로 세정함으로써 황색 고체를 얻었다. 이 고체를 클로로벤젠에 용해시키고, 실리카겔 컬럼을 사용하여 탈색하고 감압 농축함으로써, 화합물(2A-21)(6.8g)을 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인했다.
1H-NMR(400MHz, CDCl3): δ=8.01∼7.97(m, 4H), 7.79∼7.72(m, 8H), 7.67∼7.62(m, 4H), 7.61∼7.53(m, 6H), 7.52∼7.47(m, 4H), 7.44∼7.39(m, 4H).
합성예(5)
화합물(2B-2): 1,4-비스(9,10-디페닐안트라센-2-일)벤젠의 합성
Figure 112019064006022-pct00117
(9,10-디페닐안트라센-2-일)보론산(2.0g), 1,4-디브로모벤젠(0.55g), Pd-132(0.082g), 테트라부틸암모늄브로미드(0.075g), 탄산 칼륨(0.96g), 물(3ml), 톨루엔(30ml)이 들어간 플라스크를 질소 분위기 하, 환류 온도에서 2시간 교반하였다. 실온까지 냉각하고 반응액 중의 고체를 여과하고, 고체를 물로 세정함으로써 황색 고체를 얻었다. 이 고체를 클로로벤젠에 용해시키고 실리카겔 컬럼을 사용하여 탈색하고, 톨루엔을 사용하여 재결정함으로써, 화합물(2B-2)(1.3g)을 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인했다.
1H-NMR(400MHz, CDCl3): δ=7.94∼7.91(m, 2H), 7.80∼7.76(m, 2H), 7.73∼7.65(m, 4H), 7.65∼7.54(m, 18H) 7.53∼7.49(m, 8H), 7.35∼7.31(m, 4H).
합성예(6)
화합물(2A-22): 1,4-비스(10-([1,1'비페닐]-4-일)안트라센-9-일)벤젠의 합성
Figure 112019064006022-pct00118
1,4-디브로모벤젠(3.0g), (10-([1,1'비페닐]-4-일)안트라센-9-일)보론산(11.9g), Pd-132(0.45g), 테트라부틸암모늄브로미드(0.41g), 탄산 칼륨(5.30g), 물(10ml), 톨루엔(100ml)이 들어간 플라스크를 질소 분위기 하, 환류 온도에서 20시간 교반하였다. 실온까지 냉각하고 반응액 중의 고체를 여과하고, 물로 세정함으로써 담록색 고체를 얻었다. 이 고체를 가열한 오르토 디클로로벤젠으로 반복적으로 세정함으로써, 화합물(2A-22)(4.7g)을 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인했다.
1H-NMR(400MHz, CDCl3): 8.02∼8.00(m, 4H), 7.89∼7.86(m, 8H), 7.82∼7.80(m, 4H), 7, 76(s, 4H), 7.64∼7.62(m, 4H), 7.57∼7.50(m, 8H), 7.47∼6.43(m, 6H).
합성예(7)
화합물(2A-61): 4,4'-비스(10-페닐안트라센-9-일)-1,1'-비페닐의 합성
Figure 112019064006022-pct00119
4,4'-디브로모-1,1'-비페닐(3.0g), (10-페닐안트라센-9-일)보론산(7.2g), Pd-132(0.34g), 테트라부틸암모늄브로미드(0.31g), 탄산 칼륨(4.0g), 물(10ml), 톨루엔(100ml)이 들어간 플라스크를 질소 분위기 하, 환류 온도에서 16시간 교반하였다. 실온까지 냉각하고 반응액 중의 고체를 여과하고, 물로 세정함으로써 담록색 고체를 얻었다. 이 고체를 가열한 오르토 디클로로벤젠으로 세정함으로써, 화합물(2A-61)(4.2g)을 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인했다.
1H-NMR(400MHz, THF-d8): δ=8.15∼8.12(m, 4H), 7.85∼7.80(m, 4H), 7.72∼7.47(m, 18H), 7.39∼7.33(m, 8H).
합성예(8)
화합물(2A-41): 1,3-비스(10-페닐안트라센-9-일)벤젠의 합성
Figure 112019064006022-pct00120
1,3-디브로모벤젠(3.0g), (10-페닐안트라센-9-일)보론산(9.5g), Pd-132(0.45g), 테트라부틸암모늄브로미드(0.41g), 탄산 칼륨(5.3g), 물(10ml), 톨루엔(100ml)이 들어간 플라스크를 질소 분위기 하, 환류 온도에서 2시간 교반하였다. 실온까지 냉각하고 반응액을 분액하고, 얻어진 유기층을 물로 세정했다. 이 용액을 실리카겔을 사용하여 탈색하고, 감압 농축하여 석출한 고체를 솔믹스 A-11(상품명)로 세정함으로써, 화합물(2A-41)(7.0g)을 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인했다.
1H-NMR(400MHz, CDCl3): δ=8.02∼7.98(m, 4H), 7.88∼7.85(m, 1H), 7.73∼7.66(m, 6H), 7.65∼7.51(m, 9H), 7.47∼7.37(m, 6H), 7.38∼7.33(m, 4H).
합성예(9)
화합물(2A-201): 2,8-비스(10-페닐안트라센-9-일)디벤조[b,d]퓨란의 합성
Figure 112019064006022-pct00121
2,8-디브로모지벤조[b,d]퓨란(2.5g), (10-페닐안트라센-9-일)보론산(5.7g), Pd-132(0.27g), 테트라부틸암모늄브로미드(0.25g), 탄산 칼륨(3.2g), 물(10ml), 톨루엔(100ml)이 들어간 플라스크를 질소 분위기 하, 환류 온도에서 2시간 교반하였다. 실온까지 냉각하고 반응액을 분액하고, 얻어진 유기층을 물로 세정했다. 이 용액을 실리카겔을 사용하여 탈색하고, 감압 농축하여 석출한 고체를 헵탄으로 세정함으로써, 화합물(2A-201)(2.5g)을 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인했다.
1H-NMR(400MHz, CDCl3): δ=8.06∼8.05(m, 2H), 7.93∼7.90(m, 2H), 7.77∼7.70(m, 8H), 7.65∼7.55(m, 8H), 7.55∼7.47(m, 4H), 7.36∼7.31(m, 8H).
합성예(10)
화합물(2A-45): 1,3-비스(10-(1-나프틸)안트라센-9-일)벤젠의 합성
Figure 112019064006022-pct00122
1,3-디브로모벤젠(3.0g), (10-(1-나프틸)안트라센-9-일)보론산(9.7g), Pd-132(0.45g), 테트라부틸암모늄브로미드(0.41g), 탄산 칼륨(5.3g), 물(10ml), 톨루엔(100ml)이 들어간 플라스크를 질소 분위기 하, 환류 온도에서 8시간 교반하였다. 실온까지 냉각하고 반응액을 분액하고, 얻어진 유기층을 물로 세정했다. 이 용액을 실리카겔을 사용하여 탈색하고, 감압 농축하여 석출한 고체를 헵탄으로 세정함으로써, 화합물(2A-45)(6.5g)을 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인했다.
1H-NMR(400MHz, CDCl3): δ=8.10∼7.98(m, 7H), 7.96∼7.90(m, 1H), 7.84∼7.67(m, 4H), 7.65∼7.61(m, 1H), 7.55∼7.42(m, 10H), 7.30∼7.21(m, 8H), 7.20∼7.12(m, 2H), 7.08∼7.04(m, 1H).
합성예(11)
화합물(2A-241): 9-페닐-3,6-비스(10-페닐안트라센-9-일)-9H-카르바졸의 합성
Figure 112019064006022-pct00123
3,6-디브로모-9-페닐-9H-카르바졸(2.5g), (10-페닐안트라센-9-일)보론산(4.1g), Pd-132(0.22g), 테트라부틸암모늄브로미드(0.20g), 탄산 칼륨(2.6g), 물(10ml), 톨루엔(100ml)이 들어간 플라스크를 질소 분위기 하, 환류 온도에서 4시간 교반하였다. 실온까지 냉각하고 반응액을 분액하고, 얻어진 유기층을 물로 세정했다. 이 용액을 실리카겔을 사용하여 탈색하고, 감압 농축하여 석출한 고체를 헵탄으로 세정함으로써, 화합물(2A-241)(4.0g)을 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인했다.
1H-NMR(400MHz, CDCl3): δ=8.25∼8.20(m, 2H), 7.85∼7.81(m, 6H), 7.78∼7.68(m, 8H), 7.63∼7.48(m, 13H), 7.35∼7.30(m, 8H).
합성예(12)
화합물(2A-221): 2,8-비스(10-페닐안트라센-9-일)디벤조[b,d]티오펜의 합성
Figure 112019064006022-pct00124
2,8-디브로모디벤조[b,d]티오펜(1.0g), (10-페닐안트라센-9-일)보론산(1.9g), Pd-132(0.10g), 테트라부틸암모늄브로미드(0.10g), 탄산 칼륨(1.2g), 물(5ml), 톨루엔(50ml)이 들어간 플라스크를 질소 분위기 하, 환류 온도에서 2시간 교반하였다. 실온까지 냉각하고 반응액을 분액하고, 얻어진 유기층을 물로 세정했다. 이 용액을 실리카겔을 사용하여 탈색하고, 감압 농축하여 석출한 고체를 헵탄으로 세정함으로써, 화합물(2A-221)(1.9g)을 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인했다.
1H-NMR(400MHz, CDCl3): δ=8.25∼8.24(m, 2H), 8.20∼8.15(m, 2H), 7.78∼7.73(m, 4H), 7.70∼7.42(m, 16H), 7.33∼7.27(m, 8H).
합성예(13)
하기 화합물은, 전술한 합성예에 준하여 합성했다.
Figure 112019064006022-pct00125
합성예(14)
화합물(1-401): 5,9-디페닐-5,9-디하이드로-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센의 합성
Figure 112019064006022-pct00126
질소 분위기 하, 디페닐아민(66.0g), 1-브로모-2,3-디클로로벤젠(40.0g), Pd-132(존슨매티)(1.3g), NaOtBu(43.0g) 및 크실렌(400ml)이 들어간 플라스크를 80℃에서 2시간 가열 교반한 후, 120℃까지 승온여 3시간 더 가열 교반했다. 반응액을 실온까지 냉각한 후, 물 및 아세트산 에틸을 가하여, 석출한 고체를 흡인 여과로 채취했다. 다음으로, 실리카겔쇼트패스컬럼(용리액: 가열한 톨루엔)으로 정제했다. 용매를 감압 하에서 증류 제거하여 얻어진 고체를 헵탄으로 세정함으로써 2-클로로-N1,N1,N3,N3-테트라페닐벤젠-1,3-디아민(65.0g)을 얻었다.
Figure 112019064006022-pct00127
2-클로로-N1,N1,N3,N3-테트라페닐벤젠-1,3-디아민(20.0g) 및 tert-부틸벤젠(150ml)이 들어간 플라스크에, 질소 분위기 하, -30℃에서, 1.7M의 tert-부틸리튬펜탄 용액(27.6ml)을 가하였다. 적하(適下) 종료 후, 60℃까지 승온하고 2시간 교반한 후, tert-부틸벤젠보다 저비점의 성분을 감압 하에서 증류 제거했다. -30℃까지 냉각하고 3브롬화 붕소(5.1ml)를 가하고, 실온까지 승온하고 0.5시간 교반했다. 그 후, 다시 0℃까지 냉각하고 N,N-디이소프로필에틸아민(15.6ml)을 가하고, 발열이 안정될 때까지 실온에서 교반한 후, 120℃까지 승온하고 3시간 가열 교반했다. 반응액을 실온까지 냉각하고, 빙욕(氷浴)으로 냉각시킨 아세트산 나트륨 수용액, 이어서 헵탄을 가하여 분액했다. 다음으로, 실리카겔쇼트패스컬럼(용리액: 톨루엔)으로 정제한 후, 용매를 감압 하에서 증류 제거하여 얻어진 고체를 톨루엔에 용해하고, 헵탄을 가하여 재침전시켜, 화합물(1-401)(6.0g)을 얻었다.
Figure 112019064006022-pct00128
NMR 측정에 의해 얻어진 화합물의 구조를 확인했다.
1H-NMR(400MHz, CDCl3): δ=8.94(d, 2H), 7.70 (t, 4H), 7.60 (t, 2H), 7.42 (t, 2H), 7.38(d, 4H), 7.26(m, 3H), 6.76(d, 2H), 6.14(d, 2H).
합성예(15)
화합물(1-2619): 2,12-디-tert-부틸-5,9-비스(4-(tert-부틸)페닐)-7-메틸-5,9-디하이드로-5,9-디아자-13b-보라나프토[3,2,1-de]안트라센의 합성
Figure 112019064006022-pct00129
화합물(1-2619)은, 상기 합성예(14)에서 설명한 화합물(1-401)의 합성법에 준하여 합성했다.
합성예(16)
화합물(1-5001): 16,16,19,19-테트라메틸-N2,N2,N14,N14-테트라페닐-16,19-디하이드로-6,10-디옥사-17b-보라인데노[1,2-b]인데노[1',2':6,7]나프토[1,2,3-fg]안트라센-2,14-디아민의 합성
Figure 112019064006022-pct00130
질소 분위기 하, 4-메톡시살리실산 메틸(50.0g), 피리딘(탈수)(350ml)이 들어간 플라스크를, 빙욕으로 냉각했다. 다음으로, 트리플루오로메탄술폰산 무수물(154.9g)을 이 용액에 적하했다. 적하 종료 후에 빙욕을 제거하고, 실온에서 2시간 교반하고, 물을 첨가하여 반응을 정지시켰다. 톨루엔을 가하여 분액한 후, 실리카겔쇼트패스컬럼(용리액: 톨루엔)으로 정제함으로써, 메틸4-메톡시-2-((트리플루오로메틸)술포닐)옥시)벤조에이트(86.0g)를 얻었다.
Figure 112019064006022-pct00131
질소 분위기 하, 메틸4-메톡시-2-((트리플루오로메틸)술포닐)옥시)벤조에이트(23.0g), (4-(디페닐아미노)페닐)보론산(25.4g), 인산 삼칼륨(31.1g), 톨루엔(184ml), 에탄올(27.6ml) 및 물(27.6ml)의 현탁 용액에, Pd(PPh3)4(2.5g)를 가하고, 환류 온도에서 3시간 교반했다. 반응액을 실온까지 냉각하고, 물 및 톨루엔을 가하여 분액하고, 유기층의 용매를 감압 하에서 증류 제거했다. 얻어진 고체를 실리카겔 컬럼(용리액: 헵탄/톨루엔 혼합 용매)으로 정제하고, 메틸4'-(디페닐아미노)-5-메톡시-[1,1'-비페닐]-2-카르복시라토(29.7g)를 얻었다. 이 때, 「유기 화학 실험의 입문(1)-물질 취급법과 분리 정제법-」가부시키가이샤화학동인출판, 94페이지에 기재된 방법을 참고하여, 용리액 중의 톨루엔의 비율을 서서히 증가시켜 메틸4'-(디페닐아미노)-5-메톡시-[1,1'-비페닐]-2-카르복시라토를 용출(溶出)시켰다.
Figure 112019064006022-pct00132
질소 분위기 하, 메틸4'-(디페닐아미노)-5-메톡시-[1,1'-비페닐]-2-카르복시라토(11.4g)를 용해한 THF(111.4ml) 용액을 수조(water bath)로 냉각시키고, 그 용액에, 메틸마그네슘브로미드 THF 용액(1.0M, 295ml)을 적하했다. 적하 종료 후, 수조를 제거하고 환류 온도까지 승온하고 4시간 교반했다. 그 후, 빙욕으로 냉각하고, 염화 암모니아 수용액을 첨가하여 반응을 정지시키고, 아세트산 에틸을 가하여 분액한 후, 용매를 감압 하에서 증류 제거했다. 얻어진 고체를 실리카겔 컬럼(용리액: 톨루엔)으로 정제하여, 2-(5'-(디페닐아미노)-5-메톡시-[1,1'-비페닐]-2-일)프로판-2-올(8.3g)을 얻었다.
Figure 112019064006022-pct00133
질소 분위기 하, 2-(5'-(디페닐아미노)-5-메톡시-[1,1'-비페닐]-2-일)프로판-2-올(27.0g), TAYCACURE-15(13.5g) 및 톨루엔(162ml)이 들어간 플라스크를 환류 온도에서 2시간 교반했다. 반응액을 실온까지 냉각하고, 실리카겔쇼트패스컬럼(용리액: 톨루엔)을 통과시킴으로써, TAYCACURE-15를 제거한 후, 용매를 감압 하에서 증류 제거함으로써, 6-메톡시-9,9'-디메틸-N,N-디페닐-9H-플루오렌-2-아민(25.8g)을 얻었다.
Figure 112019064006022-pct00134
질소 분위기 하, 6-메톡시-9,9'-디메틸-N,N-디페닐-9H-플루오렌-2-아민(25.0g), 피리딘 염산염(36.9g) 및 NMP(22.5ml)가 들어간 플라스크를 환류 온도에서 6시간 교반했다. 반응액을 실온까지 냉각하고, 물 및 아세트산 에틸을 가하여 분액했다. 용매를 감압 하에서 증류 제거한 후, 실리카겔 컬럼(용리액: 톨루엔)으로 정제함으로써, 7-(디페닐아미노)-9,9'-디메틸-9H-플루오렌-3-올(22.0g)을 얻었다.
Figure 112019064006022-pct00135
질소 분위기 하, 7-(디페닐아미노)-9,9'-디메틸-9H-플루오렌-3-올(14.1g), 2-브로모-1,3-디플루오로벤젠(3.6g), 탄산 칼륨(12.9g) 및 NMP(30ml)이 들어간 플라스크를, 환류 온도에서 5시간 가열교반했다. 반응 정지 후, 반응액을 실온까지 냉각하고, 물을 첨가하여 석출한 침전물을 흡인 여과로 채취했다. 얻어진 침전물을 물, 이어서 메탄올로 세정한 후, 실리카겔 컬럼(용리액: 헵탄/톨루엔 혼합 용매)으로 정제하여, 6,6'-(2-브로모-1,3-페닐렌)비스(옥시)비스(9,9-디메틸-N,N-디페닐-9H-플루오렌-2-아민)(12.6g)을 얻었다. 이 때, 용리액 중의 톨루엔의 비율을 서서히 증가시켜 목적물을 용출시켰다.
Figure 112019064006022-pct00136
질소 분위기 하, 6,6'-(2-브로모-1,3-페닐렌)비스(옥시)비스(9,9-디메틸-N,N-디페닐-9H-플루오렌-2-아민)(11.0g) 및 크실렌(60.5ml)이 들어간 플라스크를 -40℃까지 냉각하고, 2.6M의 n-부틸리튬헥산 용액(5.1ml)을 적하했다. 적하 종료 후, 이 온도에서 0.5시간 교반한 후, 60℃까지 승온하고 3시간 교반했다. 그 후, 반응액을 압력을 저하시켜 저비점의 성분을 증류 제거한 후, -40℃까지 냉각하고 3브롬화 붕소(4.3g)를 가하였다. 실온까지 승온하고 0.5시간 교반한 후, 0℃까지 냉각하고 N-에틸-N-이소프로필프로판-2-아민(3.8g)을 첨가하고, 125℃에서 8시간 가열 교반했다. 반응액을 실온까지 냉각하고, 아세트산 나트륨 수용액을 가하여 반응을 정지시킨 후, 톨루엔을 가하여 분액했다. 유기층을 실리카겔쇼트패스컬럼, 이어서, 실리카겔 컬럼(용리액: 헵탄/톨루엔=4/1(용량비)), 그리고 활성탄 컬럼(용리액: 톨루엔)으로 정제하여, 화합물(1-5001)(1.2g)을 얻었다.
Figure 112019064006022-pct00137
NMR 측정에 의해 얻어진 화합물의 구조를 확인했다.
1H-NMR(400MHz, CDCl3): δ=8.64(s, 2H), 7.75(m, 3H), 7.69(d, 2H), 7.30 (t, 8H), 7.25(s, 2H), 7.20(m, 10H), 7.08(m, 6H), 1.58(s, 12H).
합성예(17)
전술한 합성예와 동일한 방법을 사용하여, 화합물(1-2621) 및 화합물(1-5109)을 합성했다.
Figure 112019064006022-pct00138
Figure 112019064006022-pct00139
원료의 화합물을 적절하게 변경함으로써, 전술한 합성예에 준한 방법으로, 본 발명에서 사용하는 다른 화합물을 합성할 수 있다.
이하, 본 발명을 더욱 상세하게 설명하기 위하여, 본 발명의 화합물을 사용한 유기 EL 소자의 실시예를 나타내지만, 본 발명은 이들로 한정되는 것은 아니다.
실시예 1∼16 및 비교예 1∼2에 관한 유기 EL 소자를 제작하고, 각각 1000cd/m2 발광 시의 특성인 전압(V), 발광 파장(nm), 외부 양자 효율(%)을 측정했다.
발광 소자의 양자 효율에는, 내부 양자 효율과 외부 양자 효율이 있지만, 발광 소자의 발광층에 전자(또는 정공)로서 주입되는 외부 에너지가 순수하게 광자로 변환되는 비율을 나타낸 것이 내부 양자 효율이다. 한편, 이 광자가 발광 소자의 외부로까지 방출된 양에 기초하여 산출되는 것이 외부 양자 효율이며, 발광층에 있어서 발생한 광자는, 그 일부가 발광 소자의 내부에서 계속적으로 흡수되거나 또는 반사되어, 발광 소자의 외부로 방출되지 않으므로, 외부 양자 효율은 내부 양자 효율보다 낮아진다.
외부 양자 효율의 측정 방법은 다음과 같다.
어드밴티스트사에서 제조한 전압/전류 발생기 R6144를 사용하여, 소자의 휘도가 1000cd/m2가 되는 전압을 인가하여 소자를 발광시켰다. TOPCON사에서 제조한 분광 방사 휘도계 SR-3AR을 사용하여, 발광면에 대하여 수직 방향으로부터 가시광 영역의 분광 방사 휘도를 측정했다. 발광면이 완전 확산면인 것으로 가정하여, 측정한 각 파장 성분의 분광 방사 휘도의 값을 파장 에너지로 나누고 π을 곱한 수치가 각 파장에서의 포톤수이다. 다음으로, 관측한 전체 파장 영역에서 포톤수를 적산하고, 소자로부터 방출된 전체 포톤수로 했다. 인가 전류값을 소전하로 나눈 수치로 소자에 주입한 캐리어수로 하고, 소자로부터 방출된 전체 포톤수를 소자에 주입한 캐리어수로 나눈 수치가 외부 양자 효율이다.
제작한 실시예 1∼16 및 비교예 1∼2에 관한 유기 EL 소자에서의 각 층의 재료 구성, 및 EL 특성 데이터를 하기 표 1에 나타낸다.
[표 1]
Figure 112019064006022-pct00140
표 1에 있어서, 「HI」는 N4,N4 '-디페닐-N4,N4 '-비스(9-페닐-9H-카르바졸-3-일)-[1,1'-비페닐]-4,4'-디아민이며, 「IL」은 1,4,5,8,9,12-헥사아자트리페닐렌헥사카르보니트릴이며, 「HT-1」은 N-([1,1'-비페닐]-4-일)-9,9-디메틸-N-(4-(9-페닐-9H-카르바졸-3-일)페닐)-9H-플루오렌-2-아민이며, 「HT-2」는 N,N-비스(4-(디벤조[b,d]퓨란-4-일)페닐)-[1,1':4',1"-터페닐]-4-아민이며, 「EM-1」은 9-페닐10-(4-페닐나프탈렌-1-일)안트라센이며, 「ET-1」은 4,6,8,10-테트라페닐[1,4]벤즈옥사볼리니노[2,3,4-kl]페녹사볼리닌이며, 「ET-2」는 3,3'-((2-페닐안트라센9,10-디일)비스(4,1-페닐렌))비스(4-메틸피리딘)이다. 화합물(1-2619), 화합물(1-5001) 및 「Liq」와 함께 이하에 화학 구조를 나타낸다.
Figure 112019064006022-pct00141
<실시예 1>
스퍼터링에 의해 180nm의 두께로 제막한 ITO를 150nm까지 연마한, 26mm×28mm×0.7mm의 유리 기판((주)오프토사이언스 제조)을 투명 지지 기판으로 했다. 이 투명 지지 기판을 시판하고 있는 증착 장치(쇼와(昭和) 진공(주) 제조)의 기판 홀더에 고정하고, HI, IL, HT-1, HT-2, 화합물(2B-3), 화합물(1-2619), ET-1 및 ET-2를 각각 넣은 몰리브덴제 증착용 보트, Liq, 마그네슘 및 은을 각각 넣은 질화 알루미늄제 증착용 보트를 장착했다.
투명 지지 기판의 ITO막 위에 순차적으로, 하기 각 층을 형성했다. 진공조를 5×10-4Pa까지 감압하고, 먼저, HI를 가열하여 막 두께 40nm로 되도록 증착하고, 다음으로, IL을 가열하여 막 두께 5nm로 되도록 증착하고, 다음으로, HT-1을 가열하여 막 두께 15nm로 되도록 증착하고, 다음으로, HT-2를 가열하여 막 두께 10nm로 되도록 증착하여, 4층으로 이루어지는 정공 주입/수송층을 형성했다. 다음으로, 화합물(2B-3)과 화합물(1-2619)을 동시에 가열하여 막 두께 25nm로 되도록 증착하여 발광층을 형성했다. 화합물(2B-3)과 화합물(1-2619)의 중량비가 약 98:2로 되도록 증착 속도를 조절했다. 다음으로, ET-1을 가열하여 막 두께 5nm로 되도록 증착하고, 다음으로, ET-2를 가열하여 막 두께 25nm로 되도록 증착하여, 2층으로 이루어지는 전자 수송층을 형성했다. 그 후, Liq를 가열하여 막 두께 1nm로 되도록 0.01∼0.1 nm/초의 증착 속도로 증착하고, 이어서, 마그네슘과 은을 동시에 가열하여 막 두께 100nm로 되도록 증착하여 음극을 형성하고, 유기 EL 소자를 얻었다. 이 때, 마그네슘과 은의 원자수비가 10:1로 되도록 0.1nm/초∼10nm/초 사이에서 증착 속도를 조절했다.
ITO 전극을 양극, 마그네슘/은 전극을 음극으로 하여 직류 전압을 인가하고, 1000cd/m2 발광 시의 특성을 측정했다.
<실시예 2∼16>
호스트 재료 및 도펀트 재료를 표 1에 기재한 것으로 한 점 이외에는 실시예 1에 준하여 유기 EL 소자를 제작하고, 1000cd/m2 발광 시의 특성을 측정했다.
<비교예 1 및 2>
호스트 재료 및 도펀트 재료를 표 1에 기재한 것으로 한 점 이외에는 실시예 1에 준하여 유기 EL 소자를 제작하고, 1000cd/m2 발광 시의 특성을 측정했다.
또한, 제작한 실시예 17 및 18에 따른 유기 EL 소자에서의 각 층의 재료 구성, 및 EL 특성 데이터, 또한 제작한 실시예 19 및 20, 비교예 3 및 4에 따른 유기 EL 소자에서의 각 층의 재료 구성, 및 EL 특성 데이터를 하기 표 2에 나타낸다.
[표 2]
Figure 112019064006022-pct00142
표 2에서의, 화합물(1-2621) 및 화합물(1-5109)의 화학 구조를 이하에 나타낸다.
Figure 112019064006022-pct00143
<실시예 17>
스퍼터링에 의해 180nm의 두께로 제막한 ITO를 150nm까지 연마한, 26mm×28mm×0.7mm의 유리 기판((주)오프토사이언스 제조)를 투명 지지 기판으로 했다. 이 투명 지지 기판을 시판하고 있는 증착 장치(쇼와 진공(주) 제조)의 기판 홀더에 고정하고, HI, IL, HT-1, HT-2, 화합물(2A-801), 화합물(1-2619), ET-1 및 ET-2를 각각 넣은 몰리브덴제 증착용 보트, Liq, 마그네슘 및 은을 각각 넣은 질화 알루미늄제 증착용 보트를 장착했다.
투명 지지 기판의 ITO막 위에 순차적으로, 하기 각 층을 형성했다. 진공조를 5×10-4Pa까지 감압하고, 먼저, HI를 가열하여 막 두께 40nm로 되도록 증착하고, 다음으로, IL을 가열하여 막 두께 5nm로 되도록 증착하고, 다음으로, HT-1을 가열하여 막 두께 15nm로 되도록 증착하고, 다음으로, HT-2를 가열하여 막 두께 10nm로 되도록 증착하여, 4층으로 이루어지는 정공 주입/수송층을 형성했다. 다음으로, 화합물(2A-801)과 화합물(1-2619)을 동시에 가열하여 막 두께 25nm로 되도록 증착하여 발광층을 형성했다. 화합물(2A-801)과 화합물(1-2619)의 중량비가 약 98:2로 되도록 증착 속도를 조절했다. 다음으로, ET-1을 가열하여 막 두께 5nm로 되도록 증착하고, 다음으로, ET-2를 가열하여 막 두께 25nm로 되도록 증착하여, 2층으로 이루어지는 전자 수송층을 형성했다. 그 후, Liq를 가열하여 막 두께 1nm로 되도록 0.01∼0.1 nm/초의 증착 속도로 증착하고, 이어서, 마그네슘과 은을 동시에 가열하여 막 두께 100nm로 되도록 증착하여 음극을 형성하고, 유기 EL 소자를 얻었다. 이 때, 마그네슘과 은의 원자수비가 10:1로 되도록 0.1nm/초∼10nm/초 사이에서 증착 속도를 조절했다.
ITO 전극을 양극, 마그네슘/은 전극을 음극으로 하여 직류 전압을 인가하고, 1000cd/m2 발광 시의 특성을 측정했다.
<실시예 18∼20>
호스트 재료 및 도펀트 재료를 표2에 기재한 것으로 한 점 이외에는 실시예 17에 준하여 유기 EL 소자를 제작하고, 1000cd/m2 발광 시의 특성을 측정했다.
<비교예 3 및 4>
호스트 재료 및 도펀트 재료를 표 2에 기재한 것으로 한 점 이외에는 실시예 17에 준하여 유기 EL 소자를 제작하고, 1000cd/m2 발광 시의 특성을 측정했다.
<실시예 21>
다음으로, 식(2A) 또는 식(2B)으로 표시되는 화합물과 비교예 화합물(EM-1)의 유리 전이 온도를 측정하고, 재료로서의 내열성을 평가했다. 그리고, 측정은, 시차주사열량계(Diamond DSC, PERKIN-ELMER 제조)를 사용하여, 냉각 속도 200℃/min 및 승온 속도 10℃/min의 조건에서 행하였다. 표 3에 나타낸 바와 같이, 본 발명에서 사용하는 화합물은 유리 전이 온도가 높고, 이것을 사용함으로써 내열성을 향상시킨 유기 EL 소자를 제작할 수 있다.
[표 3]
Figure 112019064006022-pct00144
이상, 본 발명에 따른 화합물의 일부에 대하여, 유기 EL 소자용 재료로서 우수한 것을 나타내었으나, 평가를 행하지 않은 다른 화합물도 동일한 기본 골격을 가지고, 전체로서도 유사한 구조를 가지는 화합물이며, 당업자에 있어서는 마찬가지로 우수한 유기 EL 소자용 재료인 것을 이해할 수 있다.
[산업상 이용가능성]
본 발명의 바람직한 태양에 의하면, 식(1)으로 표시되는 화합물과, 그것과 조합하여 최적인 발광 특성이 얻어지는 식(2A) 또는 식(2B)으로 표시되는 화합물을 제공할 수 있고, 이들을 조합하여 이루어지는 발광층용 재료를 사용하여 유기 EL 소자를 제작함으로써, 구동 전압 및 양자 효율 중 하나 이상이 우수한 유기 EL 소자를 제공할 수 있다.
100: 유기 전계 발광 소자
101: 기판
102: 양극
103: 정공 주입층
104: 정공 수송층
105: 발광층
106: 전자 수송층
107: 전자 주입층
108: 음극

Claims (12)

  1. 양극 및 음극으로 이루어지는 한 쌍의 전극과, 상기 한 쌍의 전극 사이에 배치되는 발광층을 가지는 유기 전계 발광 소자로서,
    상기 발광층은, 하기 일반식(1)으로 표시되는 화합물 및 하기 일반식(1)으로 표시되는 구조를 복수 가지는 화합물의 다량체 중 적어도 1개와, 하기 일반식(2A) 또는 일반식(2B)으로 표시되는 화합물을 포함하는, 유기 전계 발광 소자:
    Figure 112022096162451-pct00145

    (상기 일반식(1) 중에서,
    A환, B환 및 C환은, 각각 독립적으로, 아릴환 또는 헤테로아릴환이며, 이들 환에서의 적어도 1개의 수소는 치환되어 있어도 되고,
    X1 및 X2는 각각 독립적으로 >O 또는 >N-R이며, 상기 >N-R의 R은 치환되어 있어도 되는 아릴, 치환되어 있어도 되는 헤테로아릴 또는 알킬이며, 또한 상기 N-R의 R은 연결기 또는 단결합에 의해 상기 A환, B환 및/또는 C환과 결합하고 있어도 되고, 그리고,
    상기 일반식(1)으로 표시되는 화합물 또는 구조에서의 적어도 1개의 수소가 할로겐, 시아노 또는 중수소로 치환되어 있어도 됨)
    Figure 112022096162451-pct00146

    (상기 일반식(2A) 또는 일반식(2B) 중에서,
    X는 각각 독립적으로, 알킬로 치환되어 있어도 되는, 탄소수 6∼30의 아릴 또는 탄소수 2∼30의 헤테로아릴이며,
    Z는 상기 식(2-Z1)∼식(2-Z3), 식(2-Z6) 및 식(2-Z7) 중 어느 하나로 표시되는 2가의 기이며, 식(2-Z1)∼식(2-Z3), 식(2-Z6) 및 식(2-Z7) 중의 *에서 일반식(2A) 또는 일반식(2B)의 안트라센 골격과 결합하고,
    상기 식(2-Z1)∼식(2-Z3) 중에서, n은 1 또는 2이며,
    상기 식(2-Z6) 또는 식(2-Z7) 중에서, Y는 >O, >S, >N-R 또는 >C(-R)2이며, 상기 R은 탄소수 1∼4의 알킬 또는 탄소수 6∼12의 아릴이며, >C(-R)2에서의 R끼리 결합하여 스피로 구조를 형성해도 되고, 그리고,
    상기 일반식(2A) 또는 일반식(2B)으로 표시되는 화합물에서의 적어도 1개의 수소가 할로겐, 시아노 또는 중수소로 치환되어 있어도 됨).
  2. 제1항에 있어서,
    일반식(2A) 또는 일반식(2B) 중에서,
    X는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 쿼터페닐릴, 나프틸, 플루오레닐, 페날레닐, 페난트레닐, 트리페닐레닐, 벤조플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 나프토벤조퓨라닐 또는 나프토벤조티오페닐이며, 이들에서의 적어도 1개의 수소는 탄소수 1∼12의 알킬로 치환되어 있어도 되고,
    Z는 상기 식(2-Z1)∼식(2-Z3), 식(2-Z6) 및 식(2-Z7) 중 어느 하나로 표시되는 2가의 기이며, 식(2-Z1)∼식(2-Z3), 식(2-Z6) 및 식(2-Z7) 중의 *에서 일반식(2A) 또는 일반식(2B)의 안트라센 골격과 결합하고,
    식(2-Z2) 또는 식(2-Z3) 중에서, n은 1이며,
    식(2-Z1) 중에서, n은 1 또는 2이며,
    식(2-Z6) 또는 식(2-Z7) 중에서, Y는 >O, >S, >N-R 또는 >C(-R)2이며, 상기 R은 메틸, 에틸, 페닐 또는 나프틸이며, >C(-R)2에서의 R끼리 결합하여 스피로 구조를 형성해도 되고, 그리고,
    일반식(2A) 또는 일반식(2B)으로 표시되는 화합물에서의 적어도 1개의 수소가 할로겐, 시아노 또는 중수소로 치환되어 있어도 되는, 유기 전계 발광 소자.
  3. 제1항에 있어서,
    일반식(2A) 또는 일반식(2B) 중에서,
    X는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 플루오레닐, 페날레닐, 페난트레닐, 트리페닐레닐, 디벤조퓨라닐, 디벤조티오페닐, 나프토벤조퓨라닐 또는 나프토벤조티오페닐이며, 이들에서의 적어도 1개의 수소는 탄소수 1∼4의 알킬로 치환되어 있어도 되고,
    Z는 상기 식(2-Z1)∼식(2-Z3), 식(2-Z6) 및 식(2-Z7) 중 어느 하나로 표시되는 2가의 기이며, 식(2-Z1)∼식(2-Z3), 식(2-Z6) 및 식(2-Z7) 중의 *에서 일반식(2A) 또는 식(2B)의 안트라센 골격과 결합하고,
    식(2-Z2) 또는 식(2-Z3) 중에서, n은 1이며,
    식(2-Z1) 중에서, n은 1 또는 2이며,
    식(2-Z6) 또는 식(2-Z7) 중에서, Y는 >O, >S 또는 >N-R이며, 상기 R은 페닐이며, 그리고,
    일반식(2A) 또는 일빈식(2B)으로 표시되는 화합물에서의 적어도 1개의 수소가 할로겐, 시아노 또는 중수소로 치환되어 있어도 되는, 유기 전계 발광 소자.
  4. 제1항에 있어서,
    일반식(2A) 또는 일반식(2B)으로 표시되는 화합물이 하기 어느 하나의 구조식으로 표시되는 화합물인, 유기 전계 발광 소자.
    Figure 112022096162451-pct00147
  5. 제1항에 있어서,
    일반식(1) 중에서,
    A환, B환 및 C환은 각각 독립적으로 아릴환 또는 헤테로아릴환이며, 이들 환에서의 적어도 1개의 수소는 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 디아릴아미노, 치환 또는 무치환의 디헤테로아릴아미노, 치환 또는 무치환의 아릴헤테로아릴아미노, 치환 또는 무치환의 알킬, 치환 또는 무치환의 알콕시, 또는 치환 또는 무치환의 아릴옥시로 치환되어 있어도 되고, 또한, 이들 환은 B, X1 및 X2로 구성되는 일반식(1)의 중앙의 축합 2환 구조와 결합을 공유하는 5원환 또는 6원환을 가지고,
    X1 및 X2는 각각 독립적으로 >O 또는 >N-R이며, >N-R의 R은 각각 독립적으로, 알킬로 치환되어 있어도 되는 아릴, 알킬로 치환되어 있어도 되는 헤테로아릴 또는 알킬이며, 또한 상기 >N-R의 R은 -O-, -S-, -C(-R)2- 또는 단결합에 의해 상기 A환, B환 및/또는 C환과 결합하고 있어도 되고, 상기 -C(-R)2-의 R은 수소 또는 알킬이며,
    상기 일반식(1)으로 표시되는 화합물 또는 구조에서의 적어도 1개의 수소가 할로겐, 시아노 또는 중수소로 치환되어 있어도 되고, 그리고,
    다량체의 경우에는, 상기 일반식(1)으로 표시되는 구조를 2개 또는 3개 가지는 2량체 또는 3량체인, 유기 전계 발광 소자.
  6. 제1항에 있어서,
    일반식(1)으로 표시되는 화합물이 하기 일반식(1')으로 표시되는 화합물인, 유기 전계 발광 소자:
    Figure 112022096162451-pct00148

    (상기 일반식(1') 중에서,
    R1∼R11은 각각 독립적으로 수소, 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시이며, 이들에서의 적어도 1개의 수소는 아릴, 헤테로아릴 또는 알킬로 치환되어 있어도 되고, 또한, R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에서의 적어도 1개의 수소는 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 알킬, 알콕시 또는 아릴옥시로 치환되어 있어도 되고, 이들에서의 적어도 1개의 수소는 아릴, 헤테로아릴 또는 알킬로 치환되어 있어도 되고,
    X1 및 X2는 각각 독립적으로 >N-R이며, 상기 >N-R의 R은 탄소수 6∼12의 아릴, 탄소수 2∼15의 헤테로아릴 또는 탄소수 1∼6의 알킬이며, 또한 상기 >N-R의 R은 -O-, -S-, -C(-R)2- 또는 단결합에 의해 상기 a환, b환 및/또는 c환과 결합하고 있어도 되고, 상기 -C(-R)2-의 R은 탄소수 1∼6의 알킬이며, 그리고,
    상기 일반식(1')으로 표시되는 화합물에서의 적어도 1개의 수소가 할로겐 또는 중수소로 치환되어 있어도 됨).
  7. 제6항에 있어서,
    일반식(1') 중에서,
    R1∼R11은 각각 독립적으로 수소, 탄소수 6∼30의 아릴, 탄소수 2∼30의 헤테로아릴 또는 디아릴아미노(단 아릴은 탄소수 6∼12의 아릴)이며, 또한 R1∼R11 중 인접하는 기끼리 결합하여 a환, b환 또는 c환과 함께 탄소수 9∼16의 아릴환 또는 탄소수 6∼15의 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에서의 적어도 1개의 수소는 탄소수 6∼10의 아릴에서 치환되어 있어도 되고,
    X1 및 X2는 각각 독립적으로 >N-R이며, 상기 >N-R의 R은 탄소수 6∼10의 아릴이며, 그리고,
    상기 일반식(1')으로 표시되는 화합물에서의 적어도 1개의 수소가 할로겐 또는 중수소로 치환되어 있어도 되는, 유기 전계 발광 소자.
  8. 제1항에 있어서,
    일반식(1)으로 표시되는 화합물이 하기 어느 하나의 구조식으로 표시되는 화합물인, 유기 전계 발광 소자:
    Figure 112022096162451-pct00149
    .
  9. 제1항에 있어서,
    상기 음극과 상기 발광층 사이에 배치되는 전자 수송층 및/또는 전자 주입층을 더 포함하고, 상기 전자 수송층 및 전자 주입층 중 적어도 1개는, 보란 유도체, 피리딘 유도체, 플루오란텐 유도체, BO계 유도체, 안트라센 유도체, 벤조플루오렌 유도체, 포스핀옥사이드 유도체, 피리미딘 유도체, 카르바졸 유도체, 트리아진 유도체, 벤즈이미다졸 유도체, 페난트롤린 유도체 및 퀴놀리놀계 금속 착체로 이루어지는 군으로부터 선택되는 적어도 1개를 함유하는, 유기 전계 발광 소자.
  10. 제9항에 있어서,
    상기 전자 수송층 및/또는 전자 주입층이, 알칼리 금속, 알칼리토류 금속, 희토류 금속, 알칼리 금속의 산화물, 알칼리 금속의 할로겐화물, 알칼리토류 금속의 산화물, 알칼리토류 금속의 할로겐화물, 희토류 금속의 산화물, 희토류 금속의 할로겐화물, 알칼리 금속의 유기 착체, 알칼리토류 금속의 유기 착체 및 희토류 금속의 유기 착체로 이루어지는 군으로부터 선택되는 적어도 1개를 더 함유하는, 유기 전계 발광 소자.
  11. 제1항 내지 제10항 중 어느 한 항에 기재된 유기 전계 발광 소자를 포함하는 표시 장치.
  12. 제1항 내지 제10항 중 어느 한 항에 기재된 유기 전계 발광 소자를 포함하는 조명 장치.
KR1020197018081A 2017-02-16 2018-01-25 유기 전계 발광 소자 KR102512378B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017026666 2017-02-16
JPJP-P-2017-026666 2017-02-16
PCT/JP2018/002199 WO2018150832A1 (ja) 2017-02-16 2018-01-25 有機電界発光素子

Publications (2)

Publication Number Publication Date
KR20190116976A KR20190116976A (ko) 2019-10-15
KR102512378B1 true KR102512378B1 (ko) 2023-03-20

Family

ID=63170227

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197018081A KR102512378B1 (ko) 2017-02-16 2018-01-25 유기 전계 발광 소자

Country Status (6)

Country Link
US (1) US20190312207A1 (ko)
JP (1) JPWO2018150832A1 (ko)
KR (1) KR102512378B1 (ko)
CN (1) CN110383521A (ko)
TW (1) TW201831499A (ko)
WO (1) WO2018150832A1 (ko)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112020778A (zh) * 2018-04-05 2020-12-01 出光兴产株式会社 有机电致发光元件和电子设备
KR102091507B1 (ko) * 2018-07-24 2020-03-20 머티어리얼사이언스 주식회사 유기 전계 발광 소자
WO2020036197A1 (ja) * 2018-08-15 2020-02-20 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
KR102560522B1 (ko) * 2018-09-14 2023-07-26 주식회사 엘지화학 신규한 화합물, 이를 포함하는 코팅 조성물 및 이를 이용한 유기발광 소자
US20200111962A1 (en) * 2018-10-03 2020-04-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
EP3767694B1 (en) * 2018-10-12 2023-09-13 Lg Chem, Ltd. Organic light-emitting device
KR102213030B1 (ko) * 2018-11-19 2021-02-08 에스에프씨주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
JP2022513170A (ja) * 2018-11-29 2022-02-07 メルク パテント ゲーエムベーハー 電子デバイス
WO2020116561A1 (ja) * 2018-12-05 2020-06-11 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
KR20200081978A (ko) 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
KR20200081979A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
WO2020138867A1 (en) * 2018-12-28 2020-07-02 LG Display Co.,Ltd. Organic light emitting diode and organic light emitting device including the same
KR20200081977A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
KR102661411B1 (ko) * 2018-12-28 2024-04-25 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
KR20200081983A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
KR20200081976A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
CN109678645A (zh) * 2018-12-28 2019-04-26 陕西师范大学 一种基于双蒽的有机蓝色荧光材料及其制备方法和应用
US20200227658A1 (en) * 2019-01-15 2020-07-16 Luminescence Technology Corporation Organic compound and organic electroluminescence device using the same
CN112789742A (zh) * 2019-01-18 2021-05-11 株式会社Lg化学 有机发光器件
KR102541446B1 (ko) * 2019-01-22 2023-06-09 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
US20210167299A1 (en) * 2019-12-02 2021-06-03 Samsung Electronics Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
JP7245770B2 (ja) * 2019-12-26 2023-03-24 住友化学株式会社 発光素子及びその製造方法並びに発光素子用組成物及びその製造方法
CN112028918B (zh) * 2019-12-31 2023-04-28 陕西莱特光电材料股份有限公司 一种有机化合物、其应用以及有机电致发光器件
WO2021172905A1 (ko) * 2020-02-28 2021-09-02 주식회사 엘지화학 유기 발광 소자
CN111333671B (zh) * 2020-03-16 2022-12-23 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN112250701B (zh) * 2020-05-08 2023-02-24 陕西莱特光电材料股份有限公司 一种有机化合物以及使用其的电子元件和电子装置
KR20220039108A (ko) * 2020-09-21 2022-03-29 삼성전자주식회사 유기 발광 소자
CN112679534B (zh) * 2020-12-31 2023-09-26 武汉尚赛光电科技有限公司 一种杂环有机电致发光材料及其制备方法、应用和器件
CN117099507A (zh) 2021-04-09 2023-11-21 默克专利有限公司 用于有机电致发光器件的材料
WO2023239193A1 (ko) * 2022-06-10 2023-12-14 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356033A (ja) * 2003-05-30 2004-12-16 Tdk Corp 有機el素子
JP2009016693A (ja) * 2007-07-07 2009-01-22 Idemitsu Kosan Co Ltd ホスト材料および有機el素子
WO2016152418A1 (ja) * 2015-03-25 2016-09-29 学校法人関西学院 多環芳香族化合物および発光層形成用組成物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167488B1 (en) * 1999-09-21 2007-04-25 Idemitsu Kosan Company Limited Organic electroluminescent device and organic luminous medium
JP3735703B2 (ja) 1999-12-21 2006-01-18 大阪大学長 エレクトロルミネッセンス素子
JP2002164178A (ja) * 2000-11-27 2002-06-07 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
US20040131881A1 (en) 2002-12-31 2004-07-08 Eastman Kodak Company Complex fluorene-containing compounds for use in OLED devices
JP2005170911A (ja) 2003-12-15 2005-06-30 Idemitsu Kosan Co Ltd 芳香族化合物およびそれを用いた有機エレクトロルミネッセンス素子
US7247394B2 (en) * 2004-05-04 2007-07-24 Eastman Kodak Company Tuned microcavity color OLED display
KR101148859B1 (ko) * 2008-03-19 2012-05-29 도레이 카부시키가이샤 발광 소자 재료 및 발광 소자
JP5794155B2 (ja) * 2011-02-24 2015-10-14 Jnc株式会社 新規な2,7−ビスアントリルナフタレン化合物およびこれを用いた有機電界発光素子
KR20140016653A (ko) * 2012-07-30 2014-02-10 삼성디스플레이 주식회사 화합물을 포함하는 유기 발광 소자
TWI636056B (zh) * 2014-02-18 2018-09-21 學校法人關西學院 多環芳香族化合物及其製造方法、有機元件用材料及其應用
TWI688137B (zh) * 2015-03-24 2020-03-11 學校法人關西學院 有機電場發光元件、顯示裝置以及照明裝置
JP2018156721A (ja) * 2015-07-14 2018-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356033A (ja) * 2003-05-30 2004-12-16 Tdk Corp 有機el素子
JP2009016693A (ja) * 2007-07-07 2009-01-22 Idemitsu Kosan Co Ltd ホスト材料および有機el素子
WO2016152418A1 (ja) * 2015-03-25 2016-09-29 学校法人関西学院 多環芳香族化合物および発光層形成用組成物

Also Published As

Publication number Publication date
TW201831499A (zh) 2018-09-01
CN110383521A (zh) 2019-10-25
WO2018150832A1 (ja) 2018-08-23
JPWO2018150832A1 (ja) 2019-12-12
US20190312207A1 (en) 2019-10-10
KR20190116976A (ko) 2019-10-15

Similar Documents

Publication Publication Date Title
KR102512378B1 (ko) 유기 전계 발광 소자
JP7242283B2 (ja) 有機電界発光素子
KR102561085B1 (ko) 다환 방향족 화합물
JP7116405B2 (ja) 有機電界発光素子
KR102409257B1 (ko) 유기 전계 발광 소자
KR102595330B1 (ko) 유기 전계 발광 소자
KR102633060B1 (ko) 유기 전계 발광 소자
KR102657736B1 (ko) 유기 전계 발광 소자
WO2017138526A1 (ja) 遅延蛍光有機電界発光素子
WO2020054676A1 (ja) 有機電界発光素子
KR102509918B1 (ko) 유기 전계 발광 소자
JP7398711B2 (ja) フッ素置換多環芳香族化合物
KR20200140694A (ko) 다환 방향족 화합물
JP7113455B2 (ja) 有機電界発光素子
JP7340171B2 (ja) 有機電界発光素子
JP2021177526A (ja) 有機電界発光素子

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant