WO2019035268A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2019035268A1
WO2019035268A1 PCT/JP2018/022294 JP2018022294W WO2019035268A1 WO 2019035268 A1 WO2019035268 A1 WO 2019035268A1 JP 2018022294 W JP2018022294 W JP 2018022294W WO 2019035268 A1 WO2019035268 A1 WO 2019035268A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
aryl
alkyl
heteroaryl
substituted
Prior art date
Application number
PCT/JP2018/022294
Other languages
English (en)
French (fr)
Inventor
琢次 畠山
勝也 増田
梁井 元樹
Original Assignee
学校法人関西学院
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院, Jnc株式会社 filed Critical 学校法人関西学院
Priority to JP2019536430A priority Critical patent/JP7116405B2/ja
Priority to US16/636,432 priority patent/US11637249B2/en
Priority to KR1020197038426A priority patent/KR20200041832A/ko
Priority to KR1020247011561A priority patent/KR20240052073A/ko
Publication of WO2019035268A1 publication Critical patent/WO2019035268A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms

Definitions

  • the present invention relates to an organic electroluminescent device having a light emitting layer containing two or more types of specific compounds as dopant materials, and a display device and a lighting device using the same.
  • organic electroluminescent elements made of organic materials are lightweight It has been actively studied because it is easy to In particular, with regard to the development of organic materials having emission characteristics such as blue, which is one of the three primary colors of light, and the combination of multiple materials for achieving optimum emission characteristics, regardless of polymer compounds or low molecular compounds, It has been studied.
  • the organic EL element has a structure comprising a pair of electrodes comprising an anode and a cathode, and one or more layers disposed between the pair of electrodes and containing an organic compound.
  • Layers containing an organic compound include a light emitting layer, and a charge transport / injection layer that transports or injects a charge such as a hole or an electron, and various organic materials suitable for these layers have been developed.
  • benzofluorene compounds and the like As materials for light emitting layers, for example, benzofluorene compounds and the like have been developed (WO 2004/061047).
  • a hole transport material for example, triphenylamine compounds and the like have been developed (Japanese Patent Laid-Open No. 2001-172232).
  • an electron transport material for example, an anthracene compound and the like have been developed (Japanese Patent Laid-Open No. 2005-170911).
  • a compound having a conjugated structure with a large triplet exciton energy (T1) can emit phosphorescence of a shorter wavelength, and thus is useful as a material for a blue light emitting layer.
  • the present inventors combine two or more types of compounds in which a plurality of aromatic rings are linked by a boron atom and a nitrogen atom or an oxygen atom, and contain them in the light emitting layer.
  • the present invention has been accomplished by improving the carrier balance in the light emitting layer and finding that an organic EL device excellent in quantum efficiency and life can be obtained.
  • An organic electroluminescent device comprising a pair of electrodes comprising an anode and a cathode, and a light emitting layer disposed between the pair of electrodes, The light emitting layer is selected from a group of compounds consisting of a polycyclic aromatic compound represented by the following general formula (1) and a polycyclic aromatic compound having a plurality of structures represented by the following general formula (1)
  • An organic electroluminescent device comprising at least two polycyclic aromatic compounds and / or multimers as a dopant.
  • Ring A, ring B and ring C are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted.
  • X 1 and X 2 are each independently>O,>NR,>S,> Se or> C (-Ra) 2 and R in> NR is substituted even if it is substituted
  • R in> N—R may be bonded to the A ring, B ring and / or C ring via a linking group or a single bond.
  • Ra of> C (-Ra) 2 is a linear or branched group starting from a methylene group, represented by "-CH 2 -C n-1 H 2 (n-1) +1 (n is 1 or more)" Chain alkyl and and At least one hydrogen in the compound or structure represented by formula (1) may be substituted with deuterium.
  • the polycyclic aromatic compound and the multimer thereof can be a polycyclic aromatic compound represented by any one of the following general formulas (1A) to (1E) and any one of the following general formulas (1A) to (1E) Item 2.
  • the organic electroluminescent device according to item 1 selected from multimers of polycyclic aromatic compounds having a plurality of structures.
  • Ring A, ring B and ring C are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted.
  • R in> N—R is independently optionally substituted aryl, optionally substituted heteroaryl or alkyl, and said R is a ring, a ring and / or a ring according to a linking group or a single bond. It may be bonded to the C ring, Ra of C (-Ra) 2 is a linear or branched chain starting from a methylene group represented by "-CH 2 -C n-1 H 2 (n-1) +1 (n is 1 or more)" Is alkyl and At least one hydrogen in the compound or structure represented by any one of formulas (1A) to (1E) may be substituted with deuterium. )
  • the ring A, ring B and ring C are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings is a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, Substituted or unsubstituted diarylamino, substituted or unsubstituted diheteroarylamino, substituted or unsubstituted arylheteroarylamino, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, trialkylsilyl, substituted or unsubstituted Optionally substituted with aryloxy, cyano or halogen, R in the above> N—R is aryl optionally substituted with alkyl, heteroaryl or alkyl optionally substituted with alkyl, and R is —O—, —S— or —C (—R A) 2 -or a single bond which may
  • the polycyclic aromatic compound or the multimer thereof represented by the general formula (1A) is a polycyclic aromatic compound represented by the following general formula (1A ′) or the multimer thereof, described in item 2 or 3.
  • Organic electroluminescent device (In the above formula (1A ′), R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, aryloxy, cyano or halogen, and at least one of them is The hydrogen may be substituted with aryl, heteroaryl or alkyl, and adjacent groups of R 1 to R 11 may combine to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring.
  • At least one hydrogen in the ring formed may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, aryloxy, cyano or halogen Well, to these At least one hydrogen kicking aryl may be substituted with a heteroaryl or alkyl, R in> N—R is independently aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, or alkyl having 1 to 6 carbons, and said R is —O—, —S—, — And R may be bonded to the a ring, b ring and / or c ring by a C (-R) 2 -or a single bond, and R in -C (-R) 2- is alkyl having 1 to 6 carbon atoms Yes, and At least one hydrogen in the compound represented by the formula (1A ′) or a multimer thereof may be substituted with deuterium. )
  • R 1 to R 11 each independently represent hydrogen, an aryl having 6 to 30 carbon atoms, a heteroaryl having 2 to 30 carbon atoms or diarylamino (wherein aryl is an aryl having 6 to 12 carbon atoms), Adjacent groups among R 1 to R 11 may be combined to form an aryl ring having 9 to 16 carbon atoms or a heteroaryl ring having 6 to 15 carbon atoms together with the a ring, b ring or c ring.
  • At least one hydrogen in the formed ring may be substituted with aryl having 6 to 10 carbon atoms
  • R in NR is independently aryl having 6 to 10 carbon atoms
  • At least one hydrogen in the compound represented by the formula (1A ′) or a multimer thereof may be substituted with deuterium
  • Item 6 The organic electroluminescent device according to item 4, wherein the compound represented by the formula (1A ′) is a compound represented by any one of the following structural formulas.
  • the polycyclic aromatic compound represented by the general formula (1B) or an oligomer thereof is a polycyclic aromatic compound represented by the following general formula (1B ′) or the formula (1B ′ ′) or an oligomer thereof
  • R 1 to R 4 are each independently hydrogen, aryl, heteroaryl, alkyl, alkoxy, trialkylsilyl, aryloxy, cyano or halogen, and at least one hydrogen in these is aryl, heteroaryl, alkyl, It may be substituted by cyano or halogen,
  • R 4 is plural, adjacent R 4 's may combine to form an aryl ring or heteroaryl ring together with the c ring, and at least one hydrogen in the formed ring is aryl, heteroaryl, alkyl, Optionally substituted with alkoxy, trialkylsilyl, aryloxy, cyano or halogen, wherein at least one hydrogen is optionally substituted with aryl, heteroaryl, alkyl, cyano or halogen, and m is an integer of 0 to 3, n is each independently an integer of 0 to 5, and p is an integer of 0 to 4.
  • Each R 1 is independently hydrogen, aryl having 6 to 30 carbons or alkyl having 1 to 24 carbons
  • R 2 to R 4 each independently represent hydrogen, aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, alkyl having 1 to 24 carbon atoms, alkoxy having 1 to 24 carbon atoms, or 1 carbon atom
  • Trialkylsilyl having 4 to 4 alkyl or aryloxy having 6 to 30 carbon atoms at least one hydrogen in these is aryl having 6 to 16 carbons, heteroaryl having 2 to 25 carbons or 1 to 18 carbons May be substituted with alkyl of and and m is an integer of 0 to 3, n is each independently an integer of 0 to 5, and p is an integer of 0 to 2, 8.
  • Item 9 The organic electroluminescent device according to item 7, wherein the compound represented by the above formula (1B ′) is a compound represented by the following structural formula.
  • Polycyclic aromatic compound or a multimer represented by the general formula (1B) is represented by the following general formula (1B 3 ') or Formula (1B 4' polycyclic aromatic compound represented by) or multimers thereof 4.
  • R 2 to R 4 are each independently hydrogen, aryl, heteroaryl, alkyl, alkoxy, trialkylsilyl, aryloxy, cyano or halogen, and at least one hydrogen in these is aryl, heteroaryl, alkyl, It may be substituted by cyano or halogen,
  • R 4 is plural, adjacent R 4 's may combine to form an aryl ring or heteroaryl ring together with the c ring, and at least one hydrogen in the formed ring is aryl, heteroaryl, alkyl, Optionally substituted with alkoxy, trialkylsilyl, aryloxy, cyano or halogen, wherein at least one hydrogen is optionally substituted with aryl, heteroaryl, alkyl, cyano or halogen, and m is an integer of 0 to 3, n is each independently an integer of 0 to 5, and p is an integer of 0 to 4.
  • R 2 to R 4 each independently represent hydrogen, aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, alkyl having 1 to 24 carbon atoms, alkoxy having 1 to 24 carbon atoms, or 1 carbon atom
  • An organic electroluminescent device according to item 10.
  • the polycyclic aromatic compound represented by the general formula (1C) or a multimer thereof is a polycyclic aromatic compound represented by the following general formula (1C ′) or the formula (1C ′ ′) or a multimer thereof
  • R 1 to R 4 are each independently hydrogen, aryl, heteroaryl, alkyl, alkoxy, trialkylsilyl, aryloxy, cyano or halogen, and at least one hydrogen in these is aryl, heteroaryl, alkyl, It may be substituted by cyano or halogen
  • R 4 is plural, adjacent R 4 's may combine to form an aryl ring or heteroaryl ring together with the c ring, and at least one hydrogen in the formed ring is aryl, heteroaryl, alkyl, It may be substituted by alkoxy, trialkylsilyl, aryloxy, cyano or halogen, and at least one hydrogen in these may be substituted by aryl, heteroaryl, alkyl, cyano or halogen
  • m is an integer of 0 to 3
  • n is each independently an integer of 0 to 6
  • p is an integer of 0 to 4
  • Each R 1 is independently hydrogen, aryl having 6 to 30 carbons or alkyl having 1 to 24 carbons
  • R 2 to R 4 each independently represent hydrogen, aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, alkyl having 1 to 24 carbon atoms, alkoxy having 1 to 24 carbon atoms, or 1 carbon atom
  • Trialkylsilyl having 4 to 4 alkyl or aryloxy having 6 to 30 carbon atoms at least one hydrogen in these is aryl having 6 to 16 carbons, heteroaryl having 2 to 25 carbons or 1 to 18 carbons May be substituted by alkyl of m is an integer of 0 to 3, n is each independently an integer of 0 to 6, p is an integer of 0 to 2, and R in NR is aryl having 6 to 10 carbons, heteroaryl having 2 to 10 carbons or alkyl having 1 to 4 carbons, 14.
  • An organic electroluminescent device is independently hydrogen, aryl having 6 to 30 carbons or alky
  • Item 15. 14 The organic electroluminescent device according to item 13, wherein the compound represented by the above formula (1C ′ ′) is a compound represented by any one of the following structural formulas.
  • the polycyclic aromatic compound or the multimer thereof represented by the general formula (1D) is a polycyclic aromatic compound represented by the following general formula (1D ′) or the multimer thereof, Organic electroluminescent device.
  • R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, aryloxy, cyano or halogen, and at least one of them is Hydrogen may be substituted with aryl, heteroaryl, alkyl, cyano or halogen, and adjacent groups among R 1 to R 11 may be combined to form an aryl ring together with an a ring, b ring or c ring.
  • At least one hydrogen in the formed ring may be aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, aryloxy, cyano or Substituted by halogen May have at least one hydrogen in these, aryl, heteroaryl, alkyl, it may be substituted by cyano or halogen, Ra is a linear or branched alkyl represented by "-CH 2 -C n-1 H 2 (n-1) +1 (n is 1 to 6)" and starting from a methylene group, and In the case of a multimer of a polycyclic aromatic compound, it is a di- or tri-mer having two or three structures represented by formula (1D ′). )
  • R 1 to R 11 each independently represent hydrogen, aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 12 carbon atoms), or 1 to 6 carbon atoms 24 adjacent alkyl groups of R 1 to R 11 together with an a ring, a b ring or a c ring and an aryl ring having 9 to 16 carbon atoms or 6 to 6 carbon atoms
  • at least one hydrogen in the ring formed may be aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, diarylamino (wherein aryl has 6 carbon atoms).
  • the polycyclic aromatic compound represented by the above general formula (1E) or a multimer thereof is the polycyclic aromatic compound represented by the following general formula (1E ′) or the multimer thereof according to item 2 or 3.
  • Organic electroluminescent device In the above formula (1E ′), R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, aryloxy, cyano or halogen, and at least one of them is Hydrogen may be substituted with aryl, heteroaryl, alkyl, cyano or halogen, and adjacent groups among R 1 to R 11 may be combined to form an aryl ring together with an a ring, b ring or c ring.
  • At least one hydrogen in the formed ring may be aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, aryloxy, cyano or Substituted by halogen May have at least one hydrogen in these, aryl, heteroaryl, alkyl, it may be substituted by cyano or halogen, R in> N—R is aryl, heteroaryl or alkyl, and at least one hydrogen in R is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, aryloxy , Cyano or halogen, and at least one hydrogen in these may be substituted by aryl, heteroaryl, alkyl, cyano or halogen, Ra is a linear or branched alkyl represented by "-CH 2 -C n-1 H 2 (n-1) +1 (n is
  • R 1 to R 11 each independently represent hydrogen, aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, diarylamino (wherein aryl is aryl having 6 to 12 carbon atoms), or 1 to 6 carbon atoms 24 adjacent alkyl groups of R 1 to R 11 together with an a ring, a b ring or a c ring and an aryl ring having 9 to 16 carbon atoms or 6 to 6 carbon atoms
  • at least one hydrogen in the ring formed may be aryl having 6 to 30 carbon atoms, heteroaryl having 2 to 30 carbon atoms, diarylamino (wherein aryl has 6 carbon atoms).
  • Ra is a linear alkyl starting from a methylene group, represented by "-CH 2 -C n-1 H 2 (n-1) +1 (n is 1 to 4)", Item 19.
  • An organic electroluminescent device according to item 18.
  • Item 20 The organic electroluminescent device according to item 18, wherein the compound represented by the above formula (1E ′) is a compound represented by the following structural formula.
  • Item 21 The organic electroluminescent device according to any one of Items 1 to 20, wherein the light emitting layer contains 0.1 to 30% by weight of the at least two polycyclic aromatic compounds and / or multimers.
  • Item 22 The organic electroluminescent device according to any one of Items 1 to 21, wherein the light emitting layer contains at least one selected from an anthracene derivative, a fluorene derivative and a dibenzochrysene derivative.
  • Item 23 Furthermore, it has an electron transport layer and / or an electron injection layer disposed between the cathode and the light emitting layer, and at least one of the electron transport layer and the electron injection layer is a borane derivative, a pyridine derivative, a fluoranthene derivative And at least one selected from the group consisting of BO based derivatives, anthracene derivatives, benzofluorene derivatives, phosphine oxide derivatives, pyrimidine derivatives, carbazole derivatives, triazine derivatives, benzimidazole derivatives, phenanthroline derivatives and quinolinol based metal complexes, An organic electroluminescent device according to any one of Items 1 to 22.
  • the electron transport layer and / or the electron injection layer may further be selected from alkali metals, alkaline earth metals, rare earth metals, oxides of alkali metals, halides of alkali metals, oxides of alkaline earth metals, and alkaline earth metals.
  • Item 24 contains at least one selected from the group consisting of halides, oxides of rare earth metals, halides of rare earth metals, organic complexes of alkali metals, organic complexes of alkaline earth metals, and organic complexes of rare earth metals
  • the organic electroluminescent element as described in.
  • Item 25 A display comprising the organic electroluminescent device according to any one of Items 1 to 24.
  • Item 26 An illuminating device comprising the organic electroluminescent device according to any one of Items 1 to 24.
  • a material for a light emitting layer containing two or more kinds of the polycyclic aromatic compound represented by the above general formula (1) and its multimer is prepared and used for the light emitting layer
  • the organic EL device it is possible to provide an organic EL device excellent in quantum efficiency and life.
  • Characteristic light emitting layer in organic EL device is an organic EL device having a pair of electrodes comprising an anode and a cathode, and a light emitting layer disposed between the pair of electrodes, wherein the light emitting layer is At least two of the compound group consisting of the polycyclic aromatic compound represented by the general formula (1) and the multimer of the polycyclic aromatic compound having a plurality of structures represented by the following general formula (1), as a dopant It is an organic EL element containing a polycyclic aromatic compound and / or a multimer.
  • symbol in Formula (1) is the same as the definition mentioned above.
  • Polycyclic aromatic compound of general formula (1) and multimer thereof Polycyclic aromatic compound represented by general formula (1) and polycyclic aromatic compound having a plurality of structures represented by general formula (1)
  • the body basically functions as a dopant.
  • the polycyclic aromatic compound and the multimer thereof are preferably a polycyclic aromatic compound represented by the following general formula (1 ′) and a polycyclic aromatic having a plurality of structures represented by the following general formula (1 ′) It is a multimer of a family compound.
  • R 1 to R 11 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, trialkylsilyl, aryloxy, cyano or halogen; At least one hydrogen in the group may be substituted with aryl, heteroaryl or alkyl, and adjacent groups among R 1 to R 11 may be combined to form an aryl ring or a ring with b ring or c ring.
  • the heteroaryl ring may be formed, and at least one hydrogen in the formed ring is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, trialkylsilyl, aryloxy, Cyano or May be substituted with androgenic, at least one hydrogen in these Aryl may be substituted with a heteroaryl or alkyl, X 1 and X 2 are each independently>O,>NR,>S,> Se or> C (-Ra) 2 , and R in the above> NR has 6 to 12 carbon atoms Aryl, heteroaryl having 2 to 15 carbon atoms or alkyl having 1 to 6 carbon atoms, and R in> N—R is —O—, —S—, —C (—R) 2 — or a single bond And R may be bonded to the a ring, b ring and / or c ring, and R in -C (-R)
  • the ring A, ring B and ring C in the general formula (1) are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted by a substituent.
  • This substituent is substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted diarylamino, substituted or unsubstituted diheteroarylamino, substituted or unsubstituted arylheteroarylamino (aryl and An amino group having a heteroaryl), substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, trialkylsilyl, substituted or unsubstituted aryloxy, cyano or halogen is preferable.
  • aryl ring or heteroaryl ring is a fused two-ring structure at the center of the general formula (1) composed of central element B (boron), X 1 and X 2 (hereinafter, this structure is also referred to as “D structure” It is preferable to have a 5- or 6-membered ring which shares a bond with
  • fused 2-ring structure refers to two saturated hydrocarbons including the central element B (boron), X 1 and X 2 shown at the center of the general formula (1) It means a structure in which a ring is fused.
  • a six-membered ring sharing a bond with a fused two-ring structure means, for example, the a ring (benzene ring (six-membered ring)) fused to the D structure as shown in the general formula (1 ′) above.
  • an aryl ring or heteroaryl ring (which is a ring A) has this six-membered ring” means that only this six-membered ring forms an A ring or that it includes this six-membered ring. It means that another ring etc. is further condensed to this 6-membered ring to form an A ring.
  • an aryl ring or heteroaryl ring having a 6-membered ring (A ring) having a 6-membered ring” referred to herein means a 6-membered ring constituting all or part of the A ring fused to the D structure. Means to The same applies to "B ring (b ring)", “C ring (c ring)" and "5 membered ring”.
  • Ring A (or ring B, ring C) in the general formula (1) is the ring a in the general formula (1 ′) and its substituents R 1 to R 3 (or ring b and its substituents R 8 to R 11 , c ring and its substituents R 4 to R 7 ). That is, the general formula (1 ′) corresponds to a structure in which “A to C rings having a 6-membered ring” are selected as rings A to C in the general formula (1). In that sense, each ring of the general formula (1 ′) is represented by a to c in lower case.
  • the polycyclic aromatic compound represented by the general formula (1 ′) can be represented by the following formula (1′-1) and the formula (1 ′) depending on the mutual bonding form of the substituents in the a ring, b ring and c ring.
  • the ring structure constituting the compound changes.
  • the ring A ′, the ring B ′ and the ring C ′ in each formula correspond to the ring A, the ring B and the ring C in the general formula (1), respectively.
  • the respective symbols in the expressions (1′-1) and (1′-2) are the same as the definitions in the expression (1 ′).
  • the ring A ′, the ring B ′ and the ring C ′ in the above formula (1′-1) and the formula (1′-2) can be represented by the general formula (1 ′) by the substituents R 1 to R 11
  • Each of the adjacent groups is bonded to each other to represent an aryl ring or heteroaryl ring formed together with the a ring, the b ring and the c ring, respectively (other ring structures can be formed by condensing the a ring, the b ring or the c ring And fused rings).
  • R 8 in the b ring and R 7 in the c ring, R 11 in the b ring and R 1 and c in the a ring Ring R 4 and ring a R 3 and the like do not correspond to “adjacent groups”, and these are not bonded. That is, "adjacent group” means an adjacent group on the same ring.
  • the compounds represented by the above formulas (1′-1) and (1′-2) are represented, for example, by the formulas (1A-402) to (1-409) listed as specific compounds described later.
  • Compounds correspond to That is, for example, an A ′ ring (or B ′ ring) formed by condensing a benzene ring, an indole ring, a pyrrole ring, a benzofuran ring or a benzothiophene ring with a benzene ring which is a ring (or b ring or c ring) Or a fused ring A '(or fused ring B' or fused ring C ') formed and formed by a naphthalene ring, carbazole ring, indole ring, dibenzofuran ring or dibenzothiophene ring, respectively. is there.
  • X 1 and X 2 in the general formula (1) are each independently>O,>N—R,>S,> Se or> C (-Ra) 2 .
  • R in the above> N—R is optionally substituted aryl, optionally substituted heteroaryl or alkyl
  • R in the above> N—R is the ring A or B according to the linking group or a single bond And / or may be bonded to the C ring, and as a linking group, -O-, -S- or -C (-R) 2 -is preferable.
  • R in the above “—C (—R) 2 —” is hydrogen or alkyl.
  • the Ra of> C (-Ra) 2 is a linear or branched chain starting from a methylene group represented by "-CH 2 -C n-1 H 2 (n-1) +1 (n is 1 or more)" Alkyl. This description is the same for X 1 and X 2 in the general formula (1 ′).
  • the definition of “in R of> N—R is bonded to the ring A, ring B and / or ring C by a linking group or a single bond” in the general formula (1) is a group represented by the general formula (1 ′)
  • This definition can be expressed as a compound represented by the following formula (1′-3-1), which has a ring structure in which X 1 or X 2 is incorporated into fused ring B ′ and fused ring C ′.
  • This compound is represented, for example, by the compounds represented by the formulas (1A-451) to (1A-462) and the formulas (1A-1401) to (1A-1460) listed as specific compounds described later
  • the fused ring B '(or fused ring C') formed corresponding to such compounds and formed is, for example, a phenoxazine ring, a phenothiazine ring or an acridine ring.
  • the above definition is a ring structure in which X 1 and / or X 2 is incorporated into the fused ring A ′, which is represented by the following formula (1′-3-2) or the formula (1′-3-3) It can express also with the compound which it has. That is, for example, a compound having an A ′ ring formed by condensation of other rings such that X 1 (and / or X 2 ) is incorporated into a benzene ring which is a ring in the general formula (1 ′) is there.
  • This compound corresponds to, for example, compounds represented by the formulas (1A-471) to (1A-479) listed as specific compounds described later, and the fused ring A 'formed is, for example, a phenoxazine ring , Phenothiazine ring or acridine ring.
  • Each symbol in the formulas (1′-3-1) to (1′-3-3) is the same as the definition in the formula (1 ′).
  • Ra of C (-Ra) 2 starts from a methylene group (-CH 2- ) represented by "-CH 2 -C n-1 H 2 (n-1) +1 (n is 1 or more)" It is linear or branched alkyl.
  • the two Ras have the same structure, and “C (carbon)” in the “> C (-Ra) 2 ” portion as X 1 or X 2 in the general formula (1) can be an asymmetric carbon.
  • Ra is an alkyl group starting from a methylene group (-CH 2- ), when Ra is a branched alkyl, it is bonded to "C (carbon)" in the "> C (-Ra) 2 " portion It does not branch at carbon (i.e., carbon at 1-position) and can branch from carbon at position 2 or higher.
  • the description of this Ra is the same as Ra in the general formula (1 ').
  • Examples of the “aryl ring” which is ring A, ring B and ring C in the general formula (1) include an aryl ring having 6 to 30 carbon atoms, preferably an aryl ring having 6 to 16 carbon atoms, The aryl ring of 6 to 12 is more preferable, and the aryl ring of 6 to 10 carbon atoms is particularly preferable.
  • this "aryl ring” is an aryl ring defined by the general formula (1 ') and formed by "groups adjacent to each other of R 1 to R 11 being combined with the a ring, b ring or c ring
  • the a ring (or b ring, c ring) is already composed of a benzene ring having 6 carbon atoms, the total number of carbons 9 in the fused ring in which a 5-membered ring is fused is a lower limit It becomes carbon number.
  • aryl ring examples include a benzene ring which is a monocyclic ring, a biphenyl ring which is a bicyclic ring, a naphthalene ring which is a fused bicyclic ring, and a terphenyl ring which is a tricyclic ring (m-terphenyl, o -Terphenyl, p-terphenyl), fused tricyclic ring, acenaphthylene ring, fluorene ring, phenalene ring, phenanthrene ring, fused tetracyclic ring triphenylene ring, pyrene ring, naphthacene ring, fused pentacyclic ring Perylene ring, pentacene ring and the like can be mentioned.
  • heteroaryl ring which is ring A, ring B and ring C in the general formula (1)
  • heteroaryl rings having 2 to 30 carbon atoms preferably heteroaryl rings having 2 to 25 carbon atoms.
  • a heteroaryl ring having 2 to 20 carbon atoms is more preferable, a heteroaryl ring having 2 to 15 carbon atoms is more preferable, and a heteroaryl ring having 2 to 10 carbon atoms is particularly preferable.
  • a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituting atom can be mentioned.
  • this “heteroaryl ring” is a hetero ring formed by combining adjacent groups of “R 1 to R 11 ” defined by the general formula (1 ′) with a ring, b ring or c ring. Since the a ring (or b ring, c ring) is already composed of a benzene ring having 6 carbon atoms, the total carbon number 6 of the fused ring in which a 5-membered ring is fused is It becomes the lower limit carbon number.
  • heteroaryl ring includes, for example, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, oxadiazole ring, thiadiazole ring, triazole ring, tetrazole ring, pyrazole ring, Pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, triazine ring, indole ring, isoindole ring, 1H-indazole ring, benzoimidazole ring, benzoxazole ring, benzothiazole ring, 1H-benzotriazole ring, quinoline ring, isoquinoline ring , Cinnoline ring, quinazoline ring, quinoxaline ring, phthalazine ring, naphthyridine ring, purine ring
  • At least one hydrogen in the above “aryl ring” or “heteroaryl ring” is the first substituent, substituted or unsubstituted “aryl”, substituted or unsubstituted “heteroaryl”, substituted or unsubstituted "Diarylamino", substituted or unsubstituted "diheteroarylamino", substituted or unsubstituted "arylheteroarylamino", substituted or unsubstituted "alkyl", substituted or unsubstituted “alkoxy", trialkylsilyl Or a substituted or unsubstituted “aryloxy”, cyano or a halogen, but the “aryl” or “heteroaryl” or “diarylamino” aryl or “dihetero” as the first substituent “Arylamino” heteroaryl, “aryl heteroarylamino” aryl and heteroaryl , Also include monovalent groups of the aryl of
  • alkyl as the first substituent may be either linear or branched, and includes, for example, linear alkyl having 1 to 24 carbon atoms or branched alkyl having 3 to 24 carbon atoms. .
  • Alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons) is preferable, and alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons) is more preferable, and ones having 1 to 6 carbons Alkyl (branched alkyl having 3 to 6 carbon atoms) are more preferable, and alkyl having 1 to 4 carbons (branched alkyl having 3 to 4 carbon atoms) is particularly preferable.
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl and 1-methyl Pentyl, 4-methyl-2-pentyl, 3, 3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propyl Pentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl,
  • alkoxy as the first substituent includes, for example, linear or branched alkoxy having 1 to 24 carbon atoms.
  • C1-C18 alkoxy branched alkoxy having 3 to 18 carbon atoms
  • alkoxy having 1 to 12 carbons branched alkoxy having 3 to 12 carbon atoms
  • one carbon Alkoxy to 6 branched alkoxy having 3 to 6 carbon atoms
  • alkoxy having 1 to 4 carbon atoms branched alkoxy having 3 to 4 carbon atoms
  • alkoxy includes methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and the like.
  • “trialkylsilyl” as the first substituent includes a structure in which three hydrogens in the silyl group are each independently substituted with alkyl, and as the alkyl, “alkyl” as the first substituent is exemplified.
  • the groups described in the section can be mentioned.
  • Preferred alkyl for substitution is alkyl having 1 to 4 carbon atoms, and specific examples include methyl, ethyl, propyl, i-propyl, butyl, sec-butyl, t-butyl, cyclobutyl and the like.
  • trialkylsilyl include trimethylsilyl, triethylsilyl, tripropylsilyl, tri-i-propylsilyl, tributylsilyl, tri-sec-butylsilyl, tri-t-butylsilyl, ethyldimethylsilyl, propyldimethylsilyl and i-propyldimethylsilyl.
  • halogen as the first substituent is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably chlorine.
  • the first substituent substituted or unsubstituted "aryl”, substituted or unsubstituted “heteroaryl”, substituted or unsubstituted "diarylamino", substituted or unsubstituted "diheteroarylamino", substituted Or unsubstituted "arylheteroarylamino", substituted or unsubstituted "alkyl", substituted or unsubstituted "alkoxy", or substituted or unsubstituted "aryloxy” is described as being substituted or unsubstituted As such, at least one hydrogen in them may be substituted with a second substituent.
  • the second substituent includes, for example, aryl, heteroaryl or alkyl, and specific examples thereof include the aforementioned “aryl ring” or “heteroaryl ring” monovalent group, and also a first substitution See the description of "alkyl” as a group.
  • aryl or heteroaryl as the second substituent at least one hydrogen in them is substituted with an aryl such as phenyl (a specific example is the above-mentioned group) or an alkyl such as methyl (a specific example is the above-mentioned group)
  • aryl such as phenyl
  • alkyl such as methyl
  • a carbazolyl group in which at least one hydrogen at position 9 is substituted with an aryl such as phenyl or an alkyl such as methyl is also a hetero compound as a second substituent. Included in aryl.
  • Examples thereof include monovalent groups of the “aryl ring” or the “heteroaryl ring” described in the formula (1).
  • the alkyl or alkoxy in R 1 to R 11 the description of “alkyl” or “alkoxy” as the first substituent in the description of the general formula (1) described above can be referred to.
  • aryl, heteroaryl or alkyl as a substituent to these groups are also the same.
  • heteroaryl which is a substituent to these rings when adjacent groups among R 1 to R 11 are combined to form an aryl ring or a heteroaryl ring with the a ring, b ring or c ring.
  • R in> N—R in X 1 and X 2 of the general formula (1) is aryl, heteroaryl or alkyl which may be substituted by the above-mentioned second substituent, and at least one of aryl and heteroaryl Hydrogen may, for example, be substituted by alkyl.
  • the aryl, heteroaryl and alkyl include the groups described above. In particular, aryl having 6 to 10 carbons (eg, phenyl, naphthyl and the like), heteroaryl having 2 to 15 carbons (eg, carbazolyl and the like), and alkyl having 1 to 4 carbons (eg, methyl, ethyl and the like) are preferable. This description is the same for X 1 and X 2 in the general formula (1 ′).
  • R in the linking group “—C (—R) 2 —” in the general formula (1) is hydrogen or alkyl, and examples of the alkyl include the groups described above. In particular, alkyl having 1 to 4 carbon atoms (eg, methyl, ethyl etc.) is preferable. The description is the same for "-C (-R) 2- " which is a linking group in the general formula (1 ').
  • a multimer of a polycyclic aromatic compound having a plurality of unit structures represented by General Formula (1) preferably, a large amount of a polycyclic aromatic compound having a plurality of unit structures represented by General Formula (1 ′)
  • the body is preferably a 2- to 6-mer, more preferably a 2- to 3-mer, and particularly preferably a dimer.
  • the multimer may be in a form having a plurality of the above unit structures in one compound, and for example, the above unit structure is a single bond, or a linking group such as an alkylene group having 1 to 3 carbon atoms, a phenylene group or a naphthylene group
  • a form in which any of the rings (A ring, B ring or C ring, a ring, b ring or c ring) contained in the unit structure is bonded in a shared manner to a plurality of unit structures
  • any ring (A ring, B ring or C ring, a ring, b ring or c ring) contained in the unit structure may be bonded together in a fused manner. Good.
  • the multimeric compound represented by (1'-5-4) or Formula (1'-6) is mentioned.
  • the multimeric compound represented by the following formula (1′-4) corresponds to, for example, a compound represented by the formula (1A-423) described later. That is, if it explains with general formula (1 '), as it shares benzene ring which is a ring, the multimer compound which has unit structure represented by a plurality of general formula (1') in one compound It is.
  • the multimeric compounds represented by the following formula (1′-4-1) can be represented by two general formulas (2) by sharing the benzene ring which is a ring, if it is explained by the general formula (1 ′): It is a multimeric compound having a unit structure represented by 1 ′) in one compound.
  • a multimeric compound represented by the following formula (1′-4-2) corresponds to, for example, a compound represented by the formula (1A-2666) described later. That is, when it is described by the general formula (1 ′), a multimeric compound having unit structures represented by three general formulas (1 ′) in one compound so as to share the benzene ring which is a ring It is.
  • the multimer compounds represented by the following formulas (1′-5-1) to (1′-5-4) can be represented by b ring (or c ring), if it is described by the general formula (1 ′) It is a multimeric compound having unit structures represented by a plurality of general formulas (1 ') in one compound so as to share a certain benzene ring.
  • the multimeric compound represented by the following formula (1′-6) corresponds to, for example, a compound represented by the formula (1A-431) described later.
  • the multimeric compound is a multimerized form represented by the formula (1′-4), the formula (1′-4-1) or the formula (1′-4-2), and a formula (1′-5-1)
  • the multimer may be a combination of any of the formula (1′-5-4) or the multimerization form represented by the formula (1′-6), and the formula (1′-5-1)
  • the multimer may be a combination of a multimerization form represented by any one of the formulas (1′-5-4) and a multimerization form represented by the formula (1′-6), A multimerization form represented by (1′-4), formula (1′-4-1) or formula (1′-4-2) and formula (1′-5-1) to formula (1′-5)
  • the multimer may be a combination of the multimerization form represented by any of -4) and the multimerization form represented by formula (1'-6).
  • all or part of hydrogens in the chemical structure of the polycyclic aromatic compound represented by the general formula (1) or (1 ') and its multimer may be deuterium.
  • two or more of the above-described polycyclic aromatic compounds and / or monomers thereof are contained as dopants in the light emitting layer material, and as this combination, a compound of (combination 1) formula (1A) and its compound At least two compounds among multimers, (Combination 2) Compounds of formula (1B) and at least two compounds among multimers thereof, (Combination 3) compounds of formula (1C) and their multimers Combination of at least two compounds from among two compounds, (combination 4) compounds of formula (1D) and their multimers, (combination 5) compounds of formula (1E) and at least two compounds among their multimers Can be mentioned.
  • (Combination 6) at least one compound of the compound of Formula (1A) and its multimer, and at least one compound of the compound of Formula (1B) and its multimer, (Combination 7) Formula (1A) And at least one compound of the formula (1C) and at least one compound thereof among the compounds of the formula (1C), (combination 8) compounds of the formula (1A) and the polymer thereof And at least one compound of the compound of the formula (1D) and its multimer, (Combination 9) a compound of the formula (1A) and at least one compound of the multimer thereof, Among the compounds of 1E) and their multimers are combinations of at least one compound.
  • (Combination 13) at least one compound of the compound of Formula (1C) and its multimer, and at least one compound of the compound of Formula (1D) and its multimer, (Combination 14) Formula (1C) And the multimers thereof, and the combination of the compound of the formula (1E) and the multimers thereof with the compound of the formula (1E) and at least one compound thereof.
  • (Combination 15) includes a combination of at least one compound of the compound of formula (1D) and its multimer, and at least one compound of the compound of formula (1E) and its multimer.
  • Ring A, ring B and ring C are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings is a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaryl, a substituted Or unsubstituted diarylamino, substituted or unsubstituted diheteroarylamino, substituted or unsubstituted arylheteroarylamino, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, trialkylsilyl, substituted or unsubstituted It may be substituted by aryloxy, cyano or halogen, R in> N—R is independently an aryl which may be substituted with alkyl, a heteroaryl which may be substituted with alkyl,
  • Polycyclic aromatic compound of general formula (1A) and multimer thereof Polycyclic aromatic compound represented by general formula (1A) and polycyclic aromatic compound having a plurality of structures represented by general formula (1A)
  • the form is as follows, and preferably, a large amount of a polycyclic aromatic compound represented by the following general formula (1A ′) and a polycyclic aromatic compound having a plurality of structures represented by the following general formula (1A ′) It is a body.
  • Ring A, ring B and ring C in General Formula (1A) are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings may be substituted by a substituent.
  • This substituent may be substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted diarylamino, substituted or unsubstituted diheteroarylamino, substituted or unsubstituted arylheteroarylamino (aryl or An amino group having a heteroaryl), substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aryloxy, cyano or halogen is preferable.
  • aryl or heteroaryl ring is a fused two-ring structure at the center of general formula (1A) composed of central element B (boron) and left and right> N—R (hereinafter, this structure is referred to as “D structure” It is preferable to have a 5- or 6-membered ring which shares a bond with the
  • fused 2-ring structure refers to two saturated carbonizations including the central element B (boron) and the left and right> N—R shown at the center of the general formula (1A) It means a structure in which a hydrogen ring is fused.
  • a six-membered ring sharing a bond with a fused two-ring structure means, for example, the a ring (benzene ring (six-membered ring)) fused to the D structure as shown in the general formula (1A ′).
  • an aryl ring or heteroaryl ring (which is a ring A) has this six-membered ring” means that only this six-membered ring forms an A ring or that it includes this six-membered ring. It means that another ring etc. is further condensed to this 6-membered ring to form an A ring.
  • an aryl ring or heteroaryl ring having a 6-membered ring (A ring) having a 6-membered ring” referred to herein means a 6-membered ring constituting all or part of the A ring fused to the D structure. Means to The same applies to "B ring (b ring)", “C ring (c ring)" and "5 membered ring”.
  • Ring A (or ring B, ring C) in the general formula (1A) is the ring a in the general formula (1A ′) and its substituents R 1 to R 3 (or ring b and its substituents R 8 to R 11 , c ring and its substituents R 4 to R 7 ). That is, General Formula (1A ′) corresponds to a structure in which “A to C ring having a 6-membered ring” is selected as the A to C ring of General Formula (1A). In that sense, each ring of the general formula (1A′2) is represented by a to c in lower case.
  • adjacent groups among the substituents R 1 to R 11 in the a ring, b ring and c ring are combined to form an aryl ring or a heteroaryl ring together with the a ring, b ring or c ring.
  • at least one hydrogen in the ring formed is substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, aryloxy, cyano or halogen.
  • at least one hydrogen in these may be substituted with aryl, heteroaryl or alkyl.
  • the polycyclic aromatic compound represented by the general formula (1A ′) can be represented by the following formula (1A′-1) or the formula (1A) depending on the bonding form of the substituents in the a ring, b ring and c ring.
  • the ring structure constituting the compound changes.
  • the ring A ′, ring B ′ and ring C ′ in each formula correspond to ring A, ring B and ring C in general formula (1A), respectively.
  • Each symbol in the formula (1A′-1) and the formula (1A′-2) is the same as the definition in the formula (1A).
  • the ring A ′, the ring B ′ and the ring C ′ in the above formulas (1A′-1) and (1A′-2) can be represented by the general formula (1A ′) by the substituents R 1 to R 11
  • Each of the adjacent groups is bonded to each other to represent an aryl ring or heteroaryl ring formed together with the a ring, the b ring and the c ring, respectively (other ring structures can be formed by condensing the a ring, the b ring or the c ring And fused rings).
  • the compounds represented by the above formulas (1A′-1) and (1A′-2) are, for example, a benzene ring, an indole ring, a pyrrole ring, and a benzene ring which is an a ring (or a b ring or a c ring);
  • a compound having an A ′ ring (or a B ′ ring or a C ′ ring) formed by condensation of a benzofuran ring or a benzothiophene ring, which is formed by forming a fused ring A ′ (or a fused ring B ′ or a fused ring) C ′) is each a naphthalene ring, a carbazole ring, an indole ring, a dibenzofuran ring or a dibenzothiophene ring.
  • R in> N—R in General Formula (1A) is independently optionally substituted aryl, optionally substituted heteroaryl or alkyl, and said> N—R R is a linking group or a single atom
  • the bond may be bonded to the ring A, ring B and / or ring C, and the linking group is preferably —O—, —S— or —C (—R) 2 —.
  • R in the above “—C (—R) 2 —” is hydrogen or alkyl.
  • the definition that “R in> N—R is bonded to the ring A, ring B and / or ring C via a linking group or a single bond” is a general formula (1A ′)
  • the definition that “in R of> N—R is bound to the a ring, b ring and / or c ring by —O—, —S—, —C (—R) 2 — or a single bond” Corresponds to This definition can be expressed as a compound represented by the following formula (1A′-3-1), having a ring structure in which N is incorporated into fused ring B ′ and fused ring C ′.
  • the fused ring B '(or fused ring C') formed is, for example, a phenoxazine ring, a phenothiazine ring or an acridine ring.
  • the above definition can also be expressed as a compound having a ring structure in which N is incorporated into the fused ring A ′, which is represented by the following formula (1A′-3-2) or the formula (1A′-3-3).
  • the fused ring A ′ formed is, for example, a phenoxazine ring, a phenothiazine ring or an acridine ring.
  • Each symbol in the formulas (1A′-3-1) to (1A′-3-3) is the same as the definition in the formula (1A ′).
  • Examples of the “aryl ring” which is A ring, B ring and C ring of General Formula (1A) include an aryl ring having 6 to 30 carbon atoms, preferably an aryl ring having 6 to 16 carbon atoms, The aryl ring of 6 to 12 is more preferable, and the aryl ring of 6 to 10 carbon atoms is particularly preferable.
  • this "aryl ring” is an aryl ring defined by General Formula (1A ') and formed by combining adjacent groups of R 1 to R 11 together with the a ring, the b ring or the c ring.
  • the total number of carbons 9 in the fused ring in which a 5-membered ring is fused is a lower limit It becomes carbon number.
  • aryl ring examples include a benzene ring which is a monocyclic ring, a biphenyl ring which is a bicyclic ring, a naphthalene ring which is a fused bicyclic ring, and a terphenyl ring which is a tricyclic ring (m-terphenyl, o -Terphenyl, p-terphenyl), fused tricyclic ring, acenaphthylene ring, fluorene ring, phenalene ring, phenanthrene ring, fused tetracyclic ring triphenylene ring, pyrene ring, naphthacene ring, fused pentacyclic ring Perylene ring, pentacene ring and the like can be mentioned.
  • heteroaryl ring which is ring A, ring B and ring C in the general formula (1A) include heteroaryl rings having 2 to 30 carbon atoms, preferably heteroaryl rings having 2 to 25 carbon atoms.
  • the heteroaryl ring having 2 to 20 carbon atoms is more preferable, the heteroaryl ring having 2 to 15 carbon atoms is more preferable, and the heteroaryl having 2 to 10 carbon atoms is particularly preferable.
  • a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituting atom can be mentioned.
  • the “heteroaryl ring” is a hetero ring formed by combining adjacent groups of “R 1 to R 11 ” defined by the general formula (1A ′) with a ring, b ring or c ring. Since the a ring (or b ring, c ring) is already composed of a benzene ring having 6 carbon atoms, the total carbon number 6 of the fused ring in which a 5-membered ring is fused is It becomes the lower limit carbon number.
  • heteroaryl ring includes, for example, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, oxadiazole ring, thiadiazole ring, triazole ring, tetrazole ring, pyrazole ring, Pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, triazine ring, indole ring, isoindole ring, 1H-indazole ring, benzoimidazole ring, benzoxazole ring, benzothiazole ring, 1H-benzotriazole ring, quinoline ring, isoquinoline ring , Cinnoline ring, quinazoline ring, quinoxaline ring, phthalazine ring, naphthyridine ring, purine ring
  • At least one hydrogen in the above “aryl ring” or “heteroaryl ring” is the first substituent, substituted or unsubstituted “aryl”, substituted or unsubstituted “heteroaryl”, substituted or unsubstituted "Diarylamino", substituted or unsubstituted "diheteroarylamino", substituted or unsubstituted "arylheteroarylamino", substituted or unsubstituted "alkyl", substituted or unsubstituted "alkoxy", or substituted Or aryl of "diarylamino" as “aryl” or “diarylamino” as the first substituent, or heteroaryl of "diheteroarylamino" although it may be substituted by unsubstituted "aryloxy”.
  • Aryl and heteroaryl of "arylheteroarylamino” and aryl of "aryloxy” It is a monovalent radical of the above-described “aryl ring” or “heteroaryl ring” and the like as.
  • alkyl as the first substituent may be either linear or branched, and includes, for example, linear alkyl having 1 to 24 carbon atoms or branched alkyl having 3 to 24 carbon atoms. .
  • Alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons) is preferable, and alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons) is more preferable, and ones having 1 to 6 carbons Alkyl (branched alkyl having 3 to 6 carbon atoms) are more preferable, and alkyl having 1 to 4 carbons (branched alkyl having 3 to 4 carbon atoms) is particularly preferable.
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl and 1-methyl Pentyl, 4-methyl-2-pentyl, 3, 3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propyl Pentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl,
  • alkoxy as the first substituent includes, for example, linear or branched alkoxy having 1 to 24 carbon atoms.
  • C1-C18 alkoxy branched alkoxy having 3 to 18 carbon atoms
  • alkoxy having 1 to 12 carbons branched alkoxy having 3 to 12 carbon atoms
  • one carbon Alkoxy to 6 branched alkoxy having 3 to 6 carbon atoms
  • alkoxy having 1 to 4 carbon atoms branched alkoxy having 3 to 4 carbon atoms
  • alkoxy includes methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and the like.
  • halogen as the first substituent is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably chlorine.
  • the first substituent substituted or unsubstituted "aryl”, substituted or unsubstituted “heteroaryl”, substituted or unsubstituted "diarylamino", substituted or unsubstituted "diheteroarylamino", substituted Or unsubstituted "arylheteroarylamino", substituted or unsubstituted "alkyl", substituted or unsubstituted "alkoxy", or substituted or unsubstituted "aryloxy” is described as being substituted or unsubstituted As such, at least one hydrogen in them may be substituted with a second substituent.
  • the second substituent includes, for example, aryl, heteroaryl or alkyl, and specific examples thereof include the aforementioned “aryl ring” or “heteroaryl ring” monovalent group, and also a first substitution See the description of "alkyl” as a group.
  • aryl or heteroaryl as the second substituent at least one hydrogen in them is substituted with an aryl such as phenyl (a specific example is the above-mentioned group) or an alkyl such as methyl (a specific example is the above-mentioned group)
  • aryl such as phenyl
  • alkyl such as methyl
  • a carbazolyl group in which at least one hydrogen at position 9 is substituted with an aryl such as phenyl or an alkyl such as methyl is also a hetero compound as a second substituent. Included in aryl.
  • Examples of the aryl, heteraryl, aryl of diarylamino, heteroaryl of diheteroarylamino, aryl and heteroaryl of arylheteroarylamino, or aryl of aryloxy in general formula (1A ′) in R 1 to R 11 include Examples thereof include monovalent groups of the “aryl ring” or the “heteroaryl ring” described in the formula (1A).
  • the alkyl or alkoxy in R 1 to R 11 the description of “alkyl” or “alkoxy” as the first substituent in the description of the above-mentioned general formula (1A) can be referred to.
  • aryl, heteroaryl or alkyl as a substituent to these groups are also the same. Also, it is a substituent to a ring when adjacent groups among R 1 to R 11 combine to form an aryl ring or a heteroaryl ring with the a ring, b ring or c ring. The same applies to heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy or aryloxy, and further substituents aryl, heteroaryl or alkyl.
  • R in> N--R is aryl, heteroaryl or alkyl which may be substituted by the above-mentioned second substituent, and at least one hydrogen in aryl or heteroaryl is substituted with, for example, alkyl It may be done.
  • the aryl, heteroaryl and alkyl include the groups described above.
  • aryl having 6 to 10 carbons eg, phenyl, naphthyl and the like
  • heteroaryl having 2 to 15 carbons eg, carbazolyl and the like
  • alkyl having 1 to 4 carbons eg, methyl, ethyl and the like
  • R in the linking group “—C (—R) 2 —” in the general formula (1A) is hydrogen or alkyl, and examples of the alkyl include the groups described above. In particular, alkyl having 1 to 4 carbon atoms (eg, methyl, ethyl etc.) is preferable. This description is the same as “—C (—R) 2 —” which is a linking group in the general formula (1A ′).
  • a multimer of a polycyclic aromatic compound having a plurality of unit structures represented by General Formula (1A), preferably a polycyclic having a plurality of unit structures represented by General Formula (1A ′), in the light emitting layer Multimers of aromatic compounds may be included.
  • the multimer is preferably a 2- to 6-mer, more preferably a 2- to 3-mer, and particularly preferably a dimer.
  • the multimer may be in a form having a plurality of the above unit structures in one compound, and for example, the above unit structure is a single bond, or a linking group such as an alkylene group having 1 to 3 carbon atoms, a phenylene group or a naphthylene group
  • a form in which any of the rings (A ring, B ring or C ring, a ring, b ring or c ring) contained in the unit structure is bonded in a shared manner to a plurality of unit structures
  • any ring (A ring, B ring or C ring, a ring, b ring or c ring) contained in the unit structure may be bonded together in a fused manner. Good.
  • the multimeric compounds represented by (1A′-5-4) or the formula (1A′-6) can be mentioned.
  • the following formula (1A′-4) is a dimer compound, the formula (1A′-4-1) is a dimer compound, the formula (1A′-4-2) is a trimer compound, and the formula (1A′-5) -1) is a dimer compound, formula (1A'-5-2) is a dimer compound, formula (1A'-5-3) is a dimer compound, and formula (1A'-5-4) is 3
  • the monomeric compound, Formula (1A′-6), is a dimeric compound.
  • the multimeric compound represented by the following formula (1A′-4), when it is described by the general formula (1A ′), is such that a plurality of general formulas (1A ′) are shared so as to share the benzene ring which is a ring. It is a multimeric compound having the unit structure shown in one compound.
  • the multimeric compounds represented by the following formula (1A′-4-1) can be represented by two general formulas (A), It is a multimeric compound having a unit structure represented by 1A ′) in one compound.
  • the multimeric compounds represented by the following formula (1A′-4-2) may have three general formulas (A), It is a multimeric compound having a unit structure represented by 1A ′) in one compound.
  • the multimeric compounds represented by the following formulas (1A′-5-1) to (1A′-5-4) can be represented by the b ring (or c ring) if the general formula (1A ′) is described. It is a multimeric compound having unit structures represented by a plurality of general formulas (1A ′) in one compound so as to share a certain benzene ring.
  • the multimeric compound represented by the following formula (1A′-6) can be, for example, a benzene ring which is a b ring (or an a ring, a c ring) of a unit structure, if it is described by the general formula (1A ′)
  • Each symbol in the formula (1A′-6) is the same as the definition in the formula (1A ′).
  • the multimer compound is a multimerized form represented by the formula (1A′-4), the formula (1A′-4-1) or the formula (1A′-4-2), and the formula (1A′-5-1) It may be a multimer in which any of the formulas (1A'-5-4) or the multimerization form represented by the formula (1A'-6) is combined, and the formula (1A'-5-1)
  • the multimer may be a combination of a multimerization form represented by any one of the formulas (1A′-5-4) and a multimerization form represented by the formula (1A ′), '),
  • all or part of hydrogens in the chemical structure of the polycyclic aromatic compound represented by the general formula (1A) or (1A ′) and its multimer may be deuterium.
  • all or part of hydrogens in the chemical structure of the polycyclic aromatic compound represented by the general formula (1A) or (1A ′) and its multimer may be cyano or halogen.
  • Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably chlorine.
  • polycyclic aromatic compound represented by the general formula (1A) and the multimer thereof include a compound represented by the following structural formula.
  • polycyclic aromatic compounds and multimers thereof are phenyloxy groups para to the central element B (boron) in at least one of the A ring, B ring and C ring (a ring, b ring and c ring)
  • B central element
  • C ring a ring, b ring and c ring
  • HOMO on the benzene ring which is A ring, B ring and C ring (a ring, b ring and c ring) is more meta position to boron
  • improvement in T1 energy can be expected, since LUMO localizes to the ortho and para positions relative to boron.
  • R in the formula is alkyl, and may be linear or branched, and examples thereof include linear alkyl having 1 to 24 carbon atoms or branched alkyl having 3 to 24 carbon atoms.
  • Alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons) is preferable, and alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons) is more preferable, and ones having 1 to 6 carbons Alkyl (branched alkyl having 3 to 6 carbon atoms) are more preferable, and alkyl having 1 to 4 carbons (branched alkyl having 3 to 4 carbon atoms) is particularly preferable.
  • R includes phenyl.
  • “PhO-” is a phenyloxy group, and this phenyl may be substituted with linear or branched alkyl, for example, linear alkyl having 1 to 24 carbons or 3 to 24 carbons.
  • alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons), alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons), 1 to 6 carbons And C.sub.6-C 6 branched alkyl) and C.sub.1-C.sub.4 alkyl (C.sub.3-C 4 branched alkyl).
  • At least one hydrogen in one or more aromatic rings in the compound is one or more alkyl or aryl. And more preferably a compound substituted with 1 to 2 carbon atoms of 1 to 12 carbon atoms or an aryl of 6 to 10 carbon atoms.
  • R in the following formulas is each independently alkyl of 1 to 12 carbons or aryl of 6 to 10 carbons, preferably alkyl or phenyl of 1 to 4 carbons, and n is independently 0 to 2, Preferably it is 1.
  • At least one hydrogen in one or more phenyl groups or one phenylene group in the compound has one or more carbon atoms
  • examples thereof include compounds substituted with 1 to 4 alkyl, preferably alkyl having 1 to 3 carbon atoms (preferably one or more methyl groups), more preferably hydrogen at the ortho position of one phenyl group
  • a hydrogen at the ortho position of one or two phenylene groups (at any one of four at the maximum, preferably one) is substituted with a methyl group
  • the multimer of the group compound is as follows, and preferably, a polycyclic aromatic compound represented by the following general formula (1B ′) and a polycyclic aromatic having a plurality of structures represented by the following general formula (1B ′) It is a multimer of a multivalent compound, or a multimeric of a polycyclic aromatic compound represented by the following general formula (1B ′ ′) and a polycyclic aromatic compound having a plurality of structures represented by the following general formula (1B ′ ′) .
  • multimers of the polycyclic aromatic compound represented by the general formula (1C) and the polycyclic aromatic compound having a plurality of structures represented by the general formula (1C) are as follows, and preferably A multimer of the polycyclic aromatic compound represented by the formula (1C ′) and the polycyclic aromatic compound having a plurality of structures represented by the following general formula (1C ′), or a table of the following general formula (1C ′ ′) And a multimer of the polycyclic aromatic compound having a plurality of structures represented by the following general formula (1C ′ ′).
  • R 1 to R 4 in the subordinate concept formulas are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, trialkylsilyl or aryloxy; At least one hydrogen in may be substituted with aryl, heteroaryl, diarylamino or alkyl.
  • aryl examples include aryl having 6 to 30 carbon atoms, aryl having 6 to 16 carbon atoms is preferable, aryl having 6 to 12 carbon atoms is more preferable, and aryl having 6 to 10 carbon atoms is particularly preferable.
  • aryl examples include phenyl which is a single ring system, biphenylyl which is a bicyclic system, naphthyl which is a fused bicyclic system, terphenylyl which is a tricyclic system (m-terphenylyl, o-terphenylyl, p-terphenylyl), and condensation Tricyclic ring systems such as acenaphthylenyl, fluorenyl, phenalenyl, phenanthrenyl, fused tetracyclic ring triphenylenyl, pyrenyl, naphthacenyl, fused pentacyclic ring perylene, pentacenyl and the like can be mentioned.
  • heteroaryl examples include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbons, more preferably heteroaryl having 2 to 20 carbons, and heteroaryl having 2 to 15 carbons. Is more preferable, and heteroaryl having 2 to 10 carbon atoms is particularly preferable.
  • heteroaryl examples include, for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituting atom.
  • heteroaryl examples include pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, triazolyl, triazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H-indazolyl, Benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthyridinyl, purinyl, pteridinyl, carbazolyl, acridinyl, phenoxazinyl,
  • the diarylamino, diheteroarylamino and arylheteroarylamino as R 1 to R 4 in the lower concept formula respectively have two aryl groups, two heteroaryl groups, one aryl group and one heteroaryl group in amino group respectively Is a substituted group, and here the aryl and heteroaryl can be referred to the descriptions above.
  • the alkyl as R 1 to R 4 in the lower concept formula may be linear or branched, and examples thereof include linear alkyl having 1 to 24 carbon atoms or branched alkyl having 3 to 24 carbon atoms.
  • Alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons) is preferable, alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons) is more preferable, and alkyl having 1 to 6 carbons (C3-C6 branched alkyl) is more preferable, and C1-C4 alkyl (C3-C4 branched alkyl) is particularly preferable.
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl and 1-methyl Pentyl, 4-methyl-2-pentyl, 3, 3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propyl Pentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl,
  • Examples of the alkoxy as R 1 to R 4 in the lower concept formula include a linear alkoxy having 1 to 24 carbon atoms and a branched alkoxy having 3 to 24 carbon atoms.
  • C1-C18 alkoxy (branched alkoxy having 3 to 18 carbon atoms) is preferable, alkoxy having 1 to 12 carbons (branched alkoxy having 3 to 12 carbon atoms) is more preferable, and C1 to 6 carbons are preferable.
  • Methane preferably 3 to 6 carbon atoms in the branched chain
  • alkoxy includes methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and the like.
  • Examples of trialkylsilyl as R 1 to R 4 in the subordinate conceptual formula include structures in which three hydrogens in the silyl group are each independently substituted with alkyl, and examples of the alkyl include an alkyl column as R 1 to R 6 Groups described in the above.
  • Preferred alkyl for substitution is alkyl having 1 to 4 carbon atoms, and specific examples include methyl, ethyl, propyl, i-propyl, butyl, sec-butyl, t-butyl, cyclobutyl and the like.
  • trialkylsilyl include trimethylsilyl, triethylsilyl, tripropylsilyl, tri-i-propylsilyl, tributylsilyl, tri-sec-butylsilyl, tri-t-butylsilyl, ethyldimethylsilyl, propyldimethylsilyl and i-propyldimethylsilyl.
  • the aryloxy as R 1 to R 4 in the lower concept formula is a group in which hydrogen of a hydroxyl group is substituted with aryl, and the aryl here can also cite the above description.
  • At least one hydrogen in R 1 to R 4 in the subformula may be substituted with aryl, heteroaryl, diarylamino or alkyl, and the above description of these substituents can also be cited. .
  • R 4 in the general formula (1B ′ ′) and the general formula (1C ′ ′) is plural, adjacent R 4 s may be combined to form an aryl ring or heteroaryl ring with the c ring, At least one hydrogen in the substituted ring may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, trialkylsilyl or aryloxy, and at least one hydrogen in these May be substituted with aryl, heteroaryl, diarylamino or alkyl.
  • substituents on the formed ring aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, trialkylsilyl or aryloxy
  • substituents on the substituent As for aryl, heteroaryl, diarylamino or alkyl, the descriptions above can be cited.
  • the case where the substituent R 4 is adjacent means the case where two substituents R 4 are substituted on adjacent carbons on the c ring (benzene ring).
  • the polycyclic aromatic compound represented by the general formula (1B ′ ′) or the general formula (1C ′ ′) can be represented by the following general formula (1B ′ ′-c ′) and As shown in the formula (1C ′ ′-c ′), the ring structure constituting the compound changes (the c ring changes to a c ′ ring).
  • the compounds represented by the above general formula (1B ′ ′-c ′) or the general formula (1C ′ ′-c ′) have, for example, a c ′ ring formed by condensing a benzene ring to a benzene ring which is a c ring. It is a compound which it has, and the fused ring c 'formed and formed is a naphthalene ring.
  • an indole ring, a pyrrole ring, a benzofuran ring or a benzothiophene ring is formed by condensation with a benzene ring which is a ring c, and each carbazole ring (hydrogen on N is substituted with the above alkyl or aryl And indole ring (including a ring in which a hydrogen on N is substituted with the above alkyl or aryl), a dibenzofuran ring or a dibenzothiophene ring, and the like.
  • Formula (1B ') fluorene ring of R 3 and structural formula in the formula (1B "), the formula (1C') and formula (1C") (lower concept expression) is -O -, - S -, - C ( -R) 2 -or a single bond, and R in -C (-R) 2- may be hydrogen or alkyl having 1 to 6 carbon atoms (in particular, alkyl having 1 to 4 carbon atoms (eg, methyl, Such as ethyl)).
  • R 3 and the fluorene ring in the structural formula are bonded is shown below.
  • the point of attachment on the fluorene ring is indicated by R 6 .
  • n is an integer of 0 to 3
  • n is each independently an integer of 0 to 5
  • p is an integer of 0 to 4.
  • M is preferably an integer of 0 to 2, more preferably 0 or 1, and particularly preferably 0.
  • n is each independently preferably an integer of 0 to 3, more preferably an integer of 0 to 2, still more preferably 0 or 1, and most preferably 0.
  • p is preferably an integer of 0 to 2, more preferably 0 or 1, and particularly preferably 0.
  • R in> N—R in the formulas (1C ′) and (1C ′ ′) is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, or alkyl having 1 to 6 carbons.
  • R of> N—R in the formula (1C ′) and the formula (1C ′ ′) is bonded to the c ring by —O—, —S—, —C (—R) 2 — or a single bond. It is also preferable that R in -C (-R) 2- is hydrogen or alkyl having 1 to 6 carbon atoms (in particular, alkyl having 1 to 4 carbon atoms (eg, methyl, ethyl and the like)).
  • the alkyl as R of -C (-R) 2- can also be referred to the above description.
  • R in> N—R is bonded to the c ring by —O—, —S—, —C (—R) 2 — or a single bond is a compound represented by the following general formula (1C) It can be represented by a compound having a ring structure in which N is incorporated into the fused ring c ′ ′, which is represented by —c ′ ′). That is, for example, N is incorporated to the benzene ring which is c ring in the general formula Thus, it is a compound having a c "ring formed by condensation of other rings.
  • the fused ring c" thus formed is, for example, a phenoxazine ring, a phenothiazine ring or an acridine ring, etc. .
  • the polymer of the general formula (1C) polycyclic aromatic represented by the compounds and polycyclic aromatic compounds having a plurality of structure represented by the general formula (1C) represented multimers of polycyclic aromatic compounds having a plurality of structures represented by, or the following general formula (1C 4' polycyclic represented by)
  • the following general formula (1C 4' polycyclic represented by also preferred are multimers of aromatic compounds and polycyclic aromatic compounds having a plurality of structures represented by the following general formula (1C 4 ′).
  • R 2 to R 4 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, trialkylsilyl, aryloxy or cyano.
  • One hydrogen may be substituted with aryl, heteroaryl, diarylamino or alkyl.
  • aryl examples include, for example, aryl having 6 to 30 carbon atoms, aryl having 6 to 16 carbon atoms is preferable, aryl having 6 to 12 carbon atoms is more preferable, and aryl having 6 to 10 carbon atoms is particularly preferable.
  • aryl examples include phenyl which is a single ring system, biphenylyl which is a bicyclic system, naphthyl which is a fused bicyclic system, terphenylyl which is a tricyclic system (m-terphenylyl, o-terphenylyl, p-terphenylyl), and condensation Examples include tricyclic acenaphthylenyl, fluorenyl, phenalenyl, phenanthrenyl, fused tetracyclic triphenylenyl, pyrenyl, naphthacenyl, fused pentacyclic perylene, pentacenyl and the like.
  • heteroaryl examples include, for example, heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbons, more preferably heteroaryl having 2 to 20 carbons, and heteroaryl having 2 to 15 carbons. Is more preferable, and heteroaryl having 2 to 10 carbon atoms is particularly preferable.
  • heteroaryl examples include, for example, a heterocycle containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituent atom.
  • heteroaryl examples include pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, triazolyl, triazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H-indazolyl, Benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthyridinyl, purinyl, pteridinyl, carbazolyl, acridinyl, phenoxazinyl,
  • Each of diarylamino, diheteroarylamino and arylheteroarylamino as R 2 to R 4 is a group in which two aryl groups, two heteroaryl groups, one aryl group and one heteroaryl group are substituted for amino groups, respectively.
  • aryl and heteroaryl can refer to the descriptions of R 2 to R 4 above.
  • the alkyl as R 2 to R 4 may be either linear or branched and includes, for example, linear alkyl having 1 to 24 carbon atoms or branched alkyl having 3 to 24 carbon atoms.
  • Alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons) is preferable, alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons) is more preferable, and alkyl having 1 to 6 carbons (C3-C6 branched alkyl) is more preferable, and C1-C4 alkyl (C3-C4 branched alkyl) is particularly preferable.
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl and 1-methyl Pentyl, 4-methyl-2-pentyl, 3, 3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propyl Pentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl,
  • Examples of the alkoxy as R 2 to R 4 include linear or branched alkoxy having 1 to 24 carbon atoms.
  • C1-C18 alkoxy (branched alkoxy having 3 to 18 carbon atoms) is preferable, alkoxy having 1 to 12 carbons (branched alkoxy having 3 to 12 carbon atoms) is more preferable, and C1 to 6 carbons are preferable.
  • C1 to 6 carbons are preferable.
  • alkoxy examples include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and the like.
  • trialkylsilyl as R 2 to R 4 include those in which three hydrogens in the silyl group are each independently substituted with alkyl, and as alkyl, those described in the column of alkyl as R 2 to R 4 Can be mentioned.
  • Preferred alkyl for substitution is alkyl having 1 to 4 carbon atoms, and specific examples thereof include methyl, ethyl, propyl, i-propyl, butyl, sec-butyl, t-butyl, cyclobutyl and the like.
  • trialkylsilyl include trimethylsilyl, triethylsilyl, tripropylsilyl, tri-i-propylsilyl, tributylsilyl, tri-sec-butylsilyl, tri-t-butylsilyl, ethyldimethylsilyl, propyldimethylsilyl and i-propyldimethylsilyl.
  • Aryloxy as R 2 to R 4 is a group in which a hydrogen of a hydroxyl group is substituted with an aryl, and the aryl here can refer to the description of R 2 to R 4 above.
  • At least one hydrogen in R 2 to R 4 may be substituted with aryl, heteroaryl, diarylamino or alkyl, and the above description of these substituents can also be cited.
  • R 4 in the general formula (1B 4 ′) and the general formula (1C 4 ′) is plural, adjacent R 4 s may be bonded to form an aryl ring or heteroaryl ring with the c ring, At least one hydrogen in the ring formed may be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, trialkylsilyl, aryloxy or cyano, At least one hydrogen may be substituted with aryl, heteroaryl, diarylamino or alkyl.
  • substituents on the formed ring aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy, trialkylsilyl or aryloxy
  • substituents on the substituent As for aryl, heteroaryl, diarylamino or alkyl, the descriptions above can be cited.
  • the case where the substituent R 4 is adjacent means the case where two substituents R 4 are substituted on adjacent carbons on the c ring (benzene ring).
  • the polycyclic aromatic amino compound represented by the general formula (1B 4 ′) or the general formula (1C 4 ′) can be represented by the following general formula (1B 4 ′ -c) depending on the bonding form of the substituents in the c ring. As shown in ') and the general formula (1C 4 ' -c '), the ring structure constituting the compound is changed (the c ring is changed to the c' ring).
  • the compounds represented by the above general formula (1B 4 '-c') and the general formula (1C 4 '-c') are listed as specific compounds to be described later, for example, compounds represented by formulas (1B-321) to (1B-) 342), the compound represented by the formula (1B-346), the formula (1B-351), the formula (1B-352) or the formula (1B-356) or the like. That is, it is a compound having a c ′ ring formed by condensing a benzene ring or the like to a benzene ring which is a c ring, and the condensed ring c ′ formed is a naphthalene ring or the like.
  • an indole ring, a pyrrole ring, a benzofuran ring or a benzothiophene ring is formed by condensation with a benzene ring which is a ring c, and each carbazole ring (hydrogen on N is substituted with the above alkyl or aryl And indole rings (including those in which a hydrogen on N is substituted with the above alkyl or aryl), a dibenzofuran ring or a dibenzothiophene ring, and the like.
  • M is an integer of 0 to 3
  • n is each independently an integer of 0 to 5
  • p is an integer of 0 to 4.
  • M is preferably an integer of 0 to 2, more preferably 0 or 1, and particularly preferably 0.
  • n is each independently preferably an integer of 0 to 3, more preferably an integer of 0 to 2, still more preferably 0 or 1, and most preferably 0.
  • p is preferably an integer of 0 to 2, more preferably 0 or 1, and particularly preferably 0.
  • X 1 and X 2 are each independently O or N—R, and R in said N—R is aryl having 6 to 12 carbons, heteroaryl having 2 to 15 carbons, or 1 to 6 carbons It is an alkyl.
  • R is —O—, —S—, —C (—R) 2 — or a single bond.
  • R may be bonded to the c ring, and R in -C (-R) 2- is hydrogen or alkyl having 1 to 6 carbon atoms (in particular, alkyl having 1 to 4 carbon atoms (eg, methyl, ethyl etc.)) .
  • Alkyl as R of -C (-R) 2- can also be referred to the description of R 2 to R 4 above.
  • R of NR is linked to the a ring by —O—, —S—, —C (—R) 2 — or a single bond” is a compound represented by the following general formula (1B 4 ′ -c ”) or the general formula (1B 4 '-c" represented by), X 2 can be expressed by a compound having an incorporated ring structure fused c ".
  • the fused ring c ′ ′ thus formed can be, for example, a phenoxazine ring, a phenothiazine ring or an acridine ring.
  • At least one hydrogen in the compound represented by General Formula (1B) or General Formula (1C) may be substituted with cyano, halogen or deuterium.
  • Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, more preferably chlorine.
  • polycyclic aromatic compound represented by the general formula (1B) or the general formula (1C) and a multimer thereof include a compound represented by the following structural formula.
  • the polycyclic aromatic compound represented by the general formula (1B ′ ′) or the general formula (1C ′ ′) introduces a phenyloxy group, a carbazolyl group or a diphenylamino group at a position para to B (boron) in ring c.
  • an improvement in T1 energy (approximately 0.01 to 0.1 eV improvement) can be expected.
  • HOMO on the benzene ring which is c ring is more localized at the meta position to boron
  • LUMO is localized at the ortho and para positions to boron
  • improvement in T1 energy can be expected.
  • polycyclic aromatic compound represented by General Formula (1B) or General Formula (1C) include at least one of one or more phenyl groups or one phenylene group in the compound.
  • the multimer of the group compound is as follows, and preferably, a polycyclic aromatic compound represented by the following general formula (1D ′) and a polycyclic aromatic having a plurality of structures represented by the following general formula (1D ′) It is a multimer of a family compound.
  • multimers of the polycyclic aromatic compound represented by the general formula (1E) and the polycyclic aromatic compound having a plurality of structures represented by the general formula (1E) are as follows, and preferably It is a polymer of a polycyclic aromatic compound represented by the formula (1E ′) and a polycyclic aromatic compound having a plurality of structures represented by the following general formula (1E ′).
  • Ring A, ring B and ring C (a ring, ring b and ring c and substituents R 1 to R 11 )> Ring A, ring B and ring C in the general formulas (1D) and (1E) are each independently an aryl ring or a heteroaryl ring, and at least one hydrogen in these rings is substituted with a substituent May be
  • This substituent may be substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted diarylamino, substituted or unsubstituted diheteroarylamino, substituted or unsubstituted arylheteroarylamino (aryl or Amino group having heteroaryl), substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aryloxy, substituted or un
  • the aryl ring or heteroaryl ring may be formed of a central element B (boron),> C (-Ra) 2 , and> O or> N—R, wherein the center is a group represented by general formula (1D) and formula (1E) It is preferable to have a 5- or 6-membered ring sharing a bond with a fused two-ring structure (hereinafter, this structure is also referred to as “D structure”).
  • the “fused 2-ring structure (D structure)” refers to the central element B (boron),> C ( ⁇ Ra) 2 , and> O shown at the center of the general formula (1D) and the formula (1E) Alternatively, it means a structure in which two saturated hydrocarbon rings composed of> NR are fused.
  • a six-membered ring sharing a bond with a fused two-ring structure means, for example, an a ring (benzene ring (6 ring) fused to the D structure as shown in the general formula (1D ′) and the formula (1E ′) Member ring)).
  • an aryl ring or heteroaryl ring (which is a ring A) has this six-membered ring” means that only this six-membered ring forms an A ring or that it includes this six-membered ring. It means that another ring etc. is further condensed to this 6-membered ring to form an A ring.
  • an aryl ring or heteroaryl ring having a 6-membered ring (A ring) having a 6-membered ring” referred to herein means a 6-membered ring constituting all or part of the A ring fused to the D structure. Means to The same applies to "B ring (b ring)", “C ring (c ring)" and "5 membered ring”.
  • Ring A (or ring B, ring C) in the general formula (1D) and the formula (1E) is the ring a and its substituents R 1 to R 3 (or b in the general formula (1D ′) and the formula (E ′) It corresponds to the ring and its substituents R 8 to R 11 , the c ring and its substituents R 4 to R 7 ). That is, general formulas (1D ′) and (E ′) correspond to the formulas in which “A to C rings having a 6-membered ring” are selected as rings A to C in the general formulas (1D) and (E) Do. In that sense, each ring of General Formula (1D ′) and Formula (E ′) is represented by a to c in lower case.
  • aryl ring or heteroaryl ring may be formed, and at least one hydrogen in the formed ring is aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, fluoroalkyl, cycloalkyl
  • alkoxy, aryloxy, arylsulfonyl, diaryl phosphine, diaryl phosphine sulfide, silyl, germyl, sulfonic acid ester, boronic acid ester, boronic acid, halogen or cyano at least one hydrogen thereof being Aryl, heteroaryl, alkyl, halo It may be substituted with down or cyano
  • R in> N—R in the general formula (1E) is aryl, heteroaryl, alkyl or cycloalkyl, and at least one hydrogen in these may be substituted by a substituent.
  • This substituent may be substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted diarylamino, substituted or unsubstituted diheteroarylamino, substituted or unsubstituted arylheteroarylamino (aryl or Amino group having heteroaryl), substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aryloxy, substituted or unsubstituted arylsulfonyl, substituted or unsubstituted Diaryl phosphine, substituted or unsubstituted diaryl phosphin
  • R in> N—R may be linked to the ring A and / or ring C by a linking group or a single bond, and as the linking group, —O—, —S— or —C (—R) 2 — Is preferred.
  • R in the above “—C (—R) 2 —” is hydrogen or alkyl. The same applies to R of> N--R in the general formula (1E ').
  • the definition that “R of> N—R is bonded to the ring A and / or ring C by a linking group or a single bond” in the general formula (1E) is a lower general formula (1E ′) In this case, it corresponds to the definition that “R of> N—R is bound to the a ring and / or c ring by —O—, —S—, —C (—R) 2 — or a single bond”.
  • This definition can be expressed as a compound represented by the following formula (1E′-3-1), having a ring structure in which N is incorporated into the fused ring C ′. That is, for example, it is a compound having a C ′ ring which is formed by condensing another ring so as to incorporate N into the benzene ring which is c ring in the general formula (1E ′).
  • the fused ring C ′ formed is a carbazole ring, and other examples include a phenoxazine ring, a phenothiazine ring or an acridine ring.
  • the above definition can also be expressed as a compound represented by the following formula (1E′-3-2) and having a ring structure in which N is incorporated into the fused ring A ′. That is, for example, it is a compound having an A ′ ring which is formed by condensation of other rings such that N is incorporated into a benzene ring which is a ring in General Formula (1E ′).
  • the fused ring A ′ formed is a carbazole ring, and other examples include a phenoxazine ring, a phenothiazine ring or an acridine ring.
  • the definitions of the respective symbols in the following formula (1E′-3-1) and formula (1E′-3-2) are the same as the symbols in the general formula (1E ′).
  • the structures of R 3 , b ring and substituents R 8 to R 11 and c rings and substituents R 4 to R 7 may be variously changed depending on the types of rings and substituents, and the bonding form of the substituents.
  • the ring A, ring B and ring C (or the corresponding general formula (1D ′) and the part in the formula (1E ′) have the same structure)
  • Ra in C (-Ra) 2 starts from a methylene group (-CH 2- ) represented by "-CH 2 -C n-1 H 2 (n-1) +1 (n is 1 or more)" It is linear or branched alkyl.
  • the two Ras have the same structure, and “C (carbon)” in the “> C (-Ra) 2 ” portion in the general formula (1D) and the formula (1E) does not become an asymmetric carbon.
  • Ra is an alkyl group starting from a methylene group (-CH 2- ), when Ra is a branched alkyl, it is bonded to "C (carbon)" in the "> C (-Ra) 2 " portion It does not branch at carbon (i.e., carbon at 1-position) and can branch from carbon at position 2 or higher.
  • the description of this Ra is the same as Ra in the general formula (1D ′) and the formula (1E ′).
  • a ring, B ring and C ring (a ring, b ring and c ring and substituents R 1 to R 11 )>
  • Examples of the “aryl ring” which is ring A, ring B and ring C in the general formulas (1D) and (1E) include aryl rings having 6 to 30 carbon atoms, and aryl rings having 6 to 16 carbon atoms Is preferable, an aryl ring having 6 to 12 carbon atoms is more preferable, and an aryl ring having 6 to 10 carbon atoms is particularly preferable.
  • aryl ring examples include a benzene ring which is a monocyclic ring, a biphenyl ring which is a bicyclic ring, a naphthalene ring which is a fused bicyclic ring, and a terphenyl ring which is a tricyclic ring (m-terphenyl, o -Terphenyl, p-terphenyl), fused tricyclic ring, acenaphthylene ring, fluorene ring, phenalene ring, phenanthrene ring, fused tetracyclic ring triphenylene ring, pyrene ring, naphthacene ring, fused pentacyclic ring Perylene ring, pentacene ring and the like can be mentioned.
  • heteroaryl ring which is ring A, ring B and ring C in the general formula (1D) and formula (1E) include heteroaryl rings having 2 to 30 carbon atoms, and having 2 to 25 carbon atoms
  • a heteroaryl ring is preferable, a heteroaryl ring having 2 to 20 carbon atoms is more preferable, a heteroaryl ring having 2 to 15 carbon atoms is more preferable, and a heteroaryl ring having 2 to 10 carbon atoms is particularly preferable.
  • a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituting atom can be mentioned.
  • heteroaryl ring includes, for example, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, oxadiazole ring, thiadiazole ring, triazole ring, tetrazole ring, pyrazole ring, Pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring, triazine ring, indole ring, isoindole ring, 1H-indazole ring, benzoimidazole ring, benzoxazole ring, benzothiazole ring, 1H-benzotriazole ring, quinoline ring, isoquinoline ring , Cinnoline ring, quinazoline ring, quinoxaline ring, phthalazine ring, naphthyridine ring, purine ring
  • At least one hydrogen in the above “aryl ring” or “heteroaryl ring” is a first substituent, substituted or unsubstituted “aryl”, substituted or unsubstituted “heteroaryl”, substituted or unsubstituted "Diarylamino", substituted or unsubstituted "diheteroarylamino", substituted or unsubstituted "arylheteroarylamino", substituted or unsubstituted "alkyl", substituted or unsubstituted "cycloalkyl", substituted or unsubstituted Unsubstituted "alkoxy", substituted or unsubstituted "aryloxy”, substituted or unsubstituted "arylsulfonyl", substituted or unsubstituted "diarylphosphine", substituted or unsubstituted "diarylphosphine sulfide", substituted or unsubstituted Unsubstit
  • alkyl as the first substituent may be either linear or branched, and includes, for example, linear alkyl having 1 to 24 carbon atoms or branched alkyl having 3 to 24 carbon atoms. .
  • Alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons) is preferable, and alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons) is more preferable, and ones having 1 to 6 carbons Alkyl (branched alkyl having 3 to 6 carbon atoms) are more preferable, and alkyl having 1 to 4 carbons (branched alkyl having 3 to 4 carbon atoms) is particularly preferable.
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl and 1-methyl Pentyl, 4-methyl-2-pentyl, 3, 3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propyl Pentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl, 1-methyldecyl,
  • cycloalkyl as the first substituent, for example, cycloalkyl having 3 to 12 carbon atoms can be mentioned.
  • Preferred cycloalkyl is cycloalkyl having 3 to 10 carbon atoms. More preferred cycloalkyl is cycloalkyl having 3 to 8 carbon atoms. More preferable cycloalkyl is cycloalkyl having 3 to 6 carbon atoms.
  • cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl or dimethylcyclohexyl and the like.
  • alkoxy as the first substituent includes, for example, linear or branched alkoxy having 1 to 24 carbon atoms.
  • C1-C18 alkoxy branched alkoxy having 3 to 18 carbon atoms
  • alkoxy having 1 to 12 carbons branched alkoxy having 3 to 12 carbon atoms
  • one carbon Alkoxy to 6 branched alkoxy having 3 to 6 carbon atoms
  • alkoxy having 1 to 4 carbon atoms branched alkoxy having 3 to 4 carbon atoms
  • alkoxy includes methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy and the like.
  • halogen as the first substituent, fluorine, chlorine, bromine and iodine can be mentioned.
  • Examples of the second substituent include, for example, aryl, heteroaryl, alkyl, halogen or cyano, and specific examples thereof are monovalent groups of the above-mentioned "aryl ring” or "heteroaryl ring",
  • the description of “alkyl” and “halogen” as the first substituent can be referred to.
  • aryl, heteroaryl and alkyl as the second substituent at least one hydrogen thereof is aryl such as phenyl (specific examples are the aforementioned groups), alkyls such as methyl (specific examples are the aforementioned groups)
  • groups substituted with halogen such as fluorine (specific examples are the groups described above) are also included in aryl, heteroaryl and alkyl as the second substituent.
  • a carbazolyl group in which at least one hydrogen at position 9 is substituted with an aryl such as phenyl or an alkyl such as methyl is also a hetero compound as a second substituent. Included in aryl.
  • the aryl of arylsulfonyl of arylsulfonyl of arylsulfonyl of diarylphosphine or aryl of diarylphosphine sulfide is a monovalent of “aryl ring” or “heteroaryl ring” described in the general formula (1D) and the formula (1E) Groups are mentioned.
  • alkyl, cycloalkyl or alkoxy in R 1 to R 11 “alkyl”, “cycloalkyl” or “alkoxy as a first substituent in the description of the general formula (1D) and the formula (1E) described above Can be referred to.
  • aryl, heteroaryl, alkyl, halogen or cyano as a substituent to these groups are also the same.
  • aryl which is a substituent to these rings, Heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, fluoroalkyl, cycloalkyl, alkoxy, aryloxy, arylsulfonyl, diarylphosphine, diarylphosphine sulfide, silyl, germyl, sulfonic acid ester, boronic ester
  • boronic acids, halogens or cyano and further substituents such as aryl, heteroaryl, alkyl, halogen or cyano.
  • R in> N—R in the general formula (1E) is aryl, heteroaryl, alkyl or cycloalkyl; at least one hydrogen in these is substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted Or unsubstituted diarylamino, substituted or unsubstituted diheteroarylamino, substituted or unsubstituted arylheteroarylamino (amino group having aryl and heteroaryl), substituted or unsubstituted alkyl, substituted or unsubstituted cyclo Alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted aryloxy, substituted or unsubstituted arylsulfonyl, substituted or unsubstituted diaryl phosphine, substituted or unsubstituted diaryl phosphine, substituted or unsubstituted diaryl phos
  • aryl, heteroaryl or alkyl as R in particular, aryl having 6 to 10 carbon atoms (eg, phenyl, naphthyl etc.), heteroaryl having 2 to 15 carbon atoms (eg carbazolyl), alkyl having 1 to 4 carbon atoms (eg For example, methyl, ethyl and the like) are preferred.
  • R in “-C (-R) 2- " when R of N--R is bonded to A ring and / or C ring (a ring and / or c ring) is hydrogen or alkyl; Specific examples of include the groups described above. In particular, alkyl having 1 to 4 carbon atoms (eg, methyl, ethyl etc.) is preferable.
  • ⁇ About multimer> As a multimer of the polycyclic aromatic compound represented by any of the general formula (1D), the formula (1E), the formula (1D ′) and the formula (1E ′), a 2- to 6-mer is preferable, The 2- to 3-mer is more preferable, and the dimer is particularly preferable.
  • the multimer may be in a form having a plurality of unit structures represented by any of General Formula (1D), Formula (1E), Formula (1D ′) and Formula (1E ′) in one compound,
  • an arbitrary ring (A ring, B, etc.) contained in the unit structure in addition to a form in which the unit structure is plurally linked by a linking group such as a single bond, an alkylene group of 1 to 3 carbon atoms, a phenylene group or a phenylene group, It may be in a form in which ring or ring C, ring a, ring b or ring c is shared by a plurality of unit structures, and any ring (ring A, B) contained in the above unit structure
  • the ring or ring C, ring a, ring b or ring c) may be condensed to be bonded to each other.
  • polycyclic aromatic compounds and multimers thereof More specific examples of the polycyclic aromatic compound represented by the general formula (1D) or the formula (1E) and the multimer thereof include a compound represented by the following structural formula.
  • “Me” is methyl
  • “Et” is ethyl
  • “ n Pr” is normal propyl
  • “ i Pr” is isopropyl
  • “ n Bu” is normal butyl
  • “ t Bu” Represents tertiary butyl
  • Tf represents trifluoromethanesulfonyl
  • Nf represents nonafluorobutanesulfonyl.
  • the polycyclic aromatic compound represented by the general formula (1D), the formula (1E), the formula (1D ′) or the formula (1E ′) and the multimer thereof are each selected from ring A, ring B and ring C (a ring , A ring b and a ring c) by introducing a phenyloxy group, a carbazolyl group or a diphenylamino group at a position para to the central element B (boron), to improve T1 energy (approximately 0.01 to 0) .1 eV improvement) can be expected.
  • HOMO on the benzene ring which is A ring, B ring and C ring (a ring, b ring and c ring) is more localized at the meta position to boron, and LUMO is localized at the ortho and para positions to boron In particular, improvement in T1 energy can be expected.
  • polycyclic aromatic compound represented by the general formula (1D), the formula (1E), the formula (1D ′) or the formula (1E ′) and the multimer thereof examples thereof include compounds in which at least one hydrogen in one or more aromatic rings in the compound is substituted with one or more alkyl or aryl, and more preferably an alkyl having 1 to 2 carbons and having 1 to 12 carbons. And compounds substituted with aryl having 6 to 10 carbon atoms.
  • polycyclic aromatic compound represented by the general formula (1D), the formula (1E), the formula (1D ′) or the formula (1E ′) and its multimer include one in the compound Or at least one hydrogen in a plurality of phenyl groups or one phenylene group is one or more alkyls having 1 to 4 carbons, preferably alkyls having 1 to 3 carbons (preferably one or more) (A methyl group) substituted compound is mentioned, More preferably, a hydrogen at an ortho position of one phenyl group (both at two places, preferably any one place) or an ortho of one phenylene group And hydrogen in position (all four of the maximum four, preferably any one) is substituted with a methyl group.
  • Method for producing polycyclic aromatic compound and multimer thereof 2-1. Method for Producing Polycyclic Aromatic Compound of General Formula (1) and Multimer Thereof A polycyclic aromatic compound represented by General Formula (1) or Formula (1 ′) and a multimer thereof An intermediate is produced by combining the A ring (a ring) with the B ring (b ring) and the C ring (c ring) with a linking group (a group containing X 1 and X 2 ) (first reaction), Thereafter, the final product is produced by bonding A ring (a ring), B ring (b ring) and C ring (c ring) with a linking group (group containing central element B (boron)) Yes (second reaction).
  • first reaction for example, in the case of an etherification reaction, general reactions such as a nucleophilic substitution reaction and an Ullmann reaction can be used, and in the case of an amination reaction, a general reaction such as a Buchwald-Hartwig reaction can be used.
  • second reaction a tandem hetero Friedle-Crafts reaction (continuous aromatic electrophilic substitution reaction, the same applies hereinafter) can be used.
  • a central element B (boron) for bonding the A ring (a ring), the B ring (b ring) and the C ring (c ring) is introduced.
  • X 1 and X 2 are oxygen atoms
  • a hydrogen atom between X 1 and X 2 is ortho-metalated with n-butyllithium, sec-butyllithium, t-butyllithium or the like.
  • boron trichloride, boron tribromide and the like are added to transmetalate the lithium-boron, and then a Bronsted base such as N, N-diisopropylethylamine is added to make a tandem Bora Friedel-Crafts reaction. You can get things.
  • a Lewis acid such as aluminum trichloride may be added to accelerate the reaction.
  • said scheme (1) and (2) mainly show the manufacturing method of the polycyclic aromatic compound represented by General formula (1) or Formula (1 '), about the multimer, It can be produced by using an intermediate having a plurality of A ring (a ring), B ring (b ring) and C ring (c ring). The details will be described in the following schemes (3) to (5).
  • the target product can be obtained by doubling or triple the amount of the reagent such as butyllithium to be used.
  • lithium was introduced to a desired position by orthometalation, but a bromine atom or the like is introduced at a position where lithium is to be introduced as in the following schemes (6) and (7). Lithium can be introduced to the desired position.
  • halogen such as bromine atom or chlorine atom is introduced at the position where lithium is to be introduced as in the above schemes (6) and (7).
  • Lithium can also be introduced into the desired position by exchange (Scheme (8), (9) and (10) below).
  • X 1 and X 2 are nitrogen atoms
  • the hydrogen atom between X 1 and X 2 is ortho-metalated with n-butyllithium or the like.
  • boron tribromide or the like is added to transmetalate lithium-boron, and then a Bronsted Friedle-Crafts reaction is performed by adding a Bronsted base such as N, N-diisopropylethylamine to obtain a desired product.
  • a Bronsted base such as N, N-diisopropylethylamine
  • a Lewis acid such as aluminum trichloride may be added to accelerate the reaction.
  • halogen such as bromine atom or chlorine atom is introduced at the position where it is desired to introduce lithium as in the above schemes (6) and (7).
  • Lithium can also be introduced into the desired position by metal exchange (Scheme (13), (14) and (15) below).
  • the above scheme shows an example of the preparation of a compound in which X 1 or X 2 is> O or> NR, but a compound in which X 1 or X 2 is>S,> Se or> C (-Ra) 2 is also used.
  • a compound in which X 1 or X 2 is>S,> Se or> C (-Ra) 2 is also used.
  • the polycyclic aromatic compound and its multimer used in the present invention also include a structure in which at least a part of hydrogen atoms are substituted by deuterium and a structure substituted by halogen such as fluorine and chlorine.
  • halogen such as fluorine and chlorine.
  • such compounds and the like can be produced in the same manner as described above by using a raw material which is deuterated, fluorinated or chlorinated at a desired site.
  • Examples of the solvent used in the reactions of the above schemes (1) to (15) include t-butylbenzene and xylene.
  • the orthometalation reagents used in the above schemes (1) to (15) include alkyllithiums such as methyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, lithium diisopropylamide, lithium tetramethyl Organic alkali compounds such as piperidid, lithium hexamethyl disilazide, potassium hexamethyl disilazide and the like can be mentioned.
  • the metal-B (boron) transmetallation reagent used in the above schemes (1) to (15) includes boron trifluoride, trichloride, trichloride, tribromide, triiodide and other boron halides,
  • An aminated halide of boron such as CIPN (NEt 2 ) 2 , an alkoxylated compound of boron, an arylated compound of boron, and the like can be mentioned.
  • the Bronsted base used in the above schemes (1) to (15) is N, N-diisopropylethylamine, triethylamine, 2,2,6,6-tetramethylpiperidine, 1,2,2,6,6 -Pentamethylpiperidine, N, N-dimethylaniline, N, N-dimethyl toluidine, 2,6-lutidine, sodium tetraphenylborate, potassium tetraphenylborate, triphenylborane, tetraphenylsilane, Ar 4 BNa, Ar 4 BK, Ar 3 B, Ar 4 Si (wherein Ar is aryl such as phenyl) and the like.
  • Bronsted base or Lewis acid may be used to accelerate the tandem hetero Friedle-Crafts reaction.
  • a boron trifluoride, trichloride, tribromide, triiodide or other boron halide is used, hydrogen fluoride, hydrogen chloride, hydrogen bromide and the like progress with the progress of the aromatic electrophilic substitution reaction. Because an acid such as hydrogen iodide is generated, the use of a Bronsted base for trapping the acid is effective.
  • Process for producing polycyclic aromatic compounds and multimers of general formula (1D), (1E) Polycyclic aromatic ring represented by general formula (1D), formula (1D '), formula (1E) or formula (1E') Group compounds and their multimers basically combine the A ring (a ring) and the C ring (c ring) with a linking group (a group containing> O or> N-R) to form a first intermediate
  • symbol in the structural formula in scheme (21)-(27) mentioned later is the same as the definition in General formula (1D), Formula (1D '), Formula (1E), or Formula (1E') .
  • an E / Z isomer may be produced at the double bond except when Ra is a methyl group and Ra ′ is a hydrogen atom, but from the second intermediate and its multimer, a compound represented by the general formula (1D),
  • the double bond in the second intermediate and its multimer is The same polycyclic aromatic compound and its multimer are obtained whether in E form or in Z form.
  • the second intermediate and its multimer only describe the structural formula of a single isomer, but as the form of the double bond moiety in the polycyclic aromatic compound and its multimer Is either E isomer or Z isomer, and either isomer and may be a mixture of E and Z in any ratio.
  • the multimer of the second intermediate produced by the above schemes (21) and (22) is produced by using a first intermediate having a plurality of A rings (a rings) and C rings (c rings). be able to. Details are as shown in the following schemes (23) to (25).
  • a target multimer of a second intermediate can be produced by doubling or triple the amount of a reagent such as boron triiodide to be used.
  • X 2 in each scheme is> O or> N ⁇ R.
  • a compound having a reactive substituent such as halogen, sulfonic acid ester such as trifluoromethane sulfonic acid ester, boronic acid or boronic acid ester by the above-mentioned production method, Suzuki coupling, Negishi coupling or Kumada General such as coupling-like cross coupling reaction, Buchwald-Heartwig reaction, Ullmann reaction, halogen-metal exchange reaction using butyl lithium etc., metalation like Grignard reaction, and reaction with electrophilic reaction reagent Even if such reactions are used, it is possible to produce second intermediates and their multimers having substituents at desired positions.
  • the second intermediate having halogen and the multimer thereof can be produced by using a raw material having halogen, and using a generally known reaction, the second intermediate and the multimer thereof are halogenated Can also be manufactured.
  • the second intermediate having a sulfonic acid ester such as trifluoromethanesulfonic acid ester and its multimer can be produced by using a raw material having a sulfonic acid ester, and further has an alkoxy group such as a methoxy group After an alkoxy group is converted to a hydroxyl group by reacting a generally known reagent such as boron tribromide or pyridine hydrochloride with a compound produced using a raw material or the like, trifluoromethanesulfonic acid anhydride is It can also be produced by reacting such an anhydride or a halide such as nonafluoro-1-butanesulfonyl fluoride.
  • the second intermediate and its multimer also include compounds in which at least a part of the hydrogen atoms are substituted with deuterium, and such materials are also raw materials in which desired portions are substituted with deuterium Can be produced in the same manner as described above.
  • Lewis acids used in the above schemes (26) and (27) commonly known Lewis acids can be used, for example, AlCl 3 , AlBr 3 , AlF 3 , BF 3 ⁇ OEt 2 , BCl 3 , BBr 3, GaCl 3, GaBr 3 , InCl 3, InBr 3, In (OTf) 3, SnCl 4, SnBr 4, AgOTf, ScCl 3, Sc (OTf) 3, ZnCl 2, ZnBr 2, Zn (OTf) 2, MgCl 2 , MgBr 2 , Mg (OTf) 2 , LiOTf, NaOTf, KOTf, Me 3 SiOTf, Cu (OTf) 2 , CuCl 2 , YCl 3 , Y (OTf) 3 , TiCl 4 , TiBr 4 , ZrCl 4 , ZrBr 4 FeCl 3 FeBr 3 CoCl 3 and CoBr 3 etc. .
  • organic solvents can be used, for example, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, benzene, toluene, and each isomer of xylene And mixtures thereof, each isomer of trimethylbenzene and mixtures thereof, chlorobenzene, o-dichlorobenzene, benzotrifluorochloride, diethyl ether, methyl tertiary butyl ether, tetrahydrofuran, dioxane, cyclopentyl methyl ether, diphenyl ether, cyclopentane, pentane, cyclohexane Hexane, octane, dodecane and decalin etc., and mixtures of these arbitrary ratios can also be used.
  • the polycyclic aromatic compound represented by the general formula (1D), the formula (1E), the formula (1D ′) or the formula (1E ′) having a halogen and the multimer thereof are obtained by using a raw material having a halogen In addition to being able to manufacture, it can also be manufactured by halogenating the said polycyclic aromatic compound and its multimer using generally known reaction.
  • the polycyclic aromatic compound represented by the general formula (1D), the formula (1E), the formula (1D ′) or the formula (1E ′) having a sulfonic acid ester such as trifluoromethanesulfonic acid ester is a sulfone
  • a compound produced by using a raw material having an alkoxy group such as a methoxy group is generally known as boron tribromide or pyridine hydrochloride.
  • polycyclic aromatic compound represented by General Formula (1D), Formula (1E), Formula (1D ′) or Formula (1E ′ at least a part of hydrogen atoms is substituted with deuterium
  • compounds are also included, such polycyclic aromatic compounds and the like can also be produced in the same manner as described above by using a raw material in which a desired site is substituted with deuterium.
  • FIG. 1 is a schematic cross-sectional view showing the organic EL element according to the present embodiment.
  • the organic EL element 100 shown in FIG. 1 includes a substrate 101, an anode 102 provided on the substrate 101, a hole injection layer 103 provided on the anode 102, and a hole injection layer 103.
  • a hole transport layer 104 Provided on the hole transport layer 104 provided, the light emitting layer 105 provided on the hole transport layer 104, the electron transport layer 106 provided on the light emitting layer 105, and the electron transport layer 106 And the cathode 108 provided on the electron injection layer 107.
  • the organic EL element 100 is, for example, the substrate 101, the cathode 108 provided on the substrate 101, the electron injection layer 107 provided on the cathode 108, and the electron injection layer 107 in reverse manufacturing order.
  • An electron transport layer 106 provided on top of the light emitting layer 105 provided on the electron transport layer 106, a hole transport layer 104 provided on the light emitting layer 105, and a hole transport layer 104 provided on the light emitting layer 105.
  • the anode 102 provided on the hole injection layer 103 may be provided.
  • the minimum structural unit is configured of the anode 102, the light emitting layer 105 and the cathode 108, and the hole injection layer 103, the hole transport layer 104, the electron transport layer 106, the electron injection
  • the layer 107 is an optional layer.
  • Each of the layers may be a single layer or a plurality of layers.
  • the layer which comprises an organic EL element in addition to the above-mentioned structural aspect of "substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode", Substrate / anode / hole transport layer / luminescent layer / electron transport layer / electron injection layer / cathode], “substrate / anode / hole injection layer / luminescent layer / electron transport layer / electron injection layer / cathode”, “substrate / Anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode "," substrate / anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode "," substrate / Anode / light emitting layer / electron transport layer / electron injection layer / cathode "," substrate / anode / light emit
  • the substrate 101 is a support of the organic EL element 100, and usually, quartz, glass, metal, plastic or the like is used.
  • the substrate 101 is formed in a plate shape, a film shape, or a sheet shape according to the purpose, and for example, a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used.
  • a glass plate and a plate made of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate or polysulfone are preferable.
  • soda lime glass, alkali-free glass, or the like may be used, and the thickness may be sufficient to maintain mechanical strength.
  • the upper limit of the thickness is, for example, 2 mm or less, preferably 1 mm or less.
  • alkali-free glass is preferable because less elution ions from glass is preferable, but soda lime glass with a barrier coat such as SiO 2 may also be commercially available. it can.
  • the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one side in order to enhance the gas barrier properties, and a plate, a film or a sheet made of a synthetic resin having particularly low gas barrier properties is used as the substrate 101 When using it, it is preferable to provide a gas barrier film.
  • the anode 102 plays a role of injecting holes into the light emitting layer 105.
  • the hole injection layer 103 and / or the hole transport layer 104 is provided between the anode 102 and the light emitting layer 105, holes are injected into the light emitting layer 105 via these. .
  • Materials forming the anode 102 include inorganic compounds and organic compounds.
  • the inorganic compound for example, metal (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxide (oxide of indium, oxide of tin, indium-tin oxide (ITO), indium-zinc oxide Substances (IZO etc.), metal halides (copper iodide etc.), copper sulfide, carbon black, ITO glass, nesa glass etc.
  • the organic compound include polythiophenes such as poly (3-methylthiophene), and conductive polymers such as polypyrrole and polyaniline. In addition, it can select suitably and use it out of the substance used as an anode of organic EL element.
  • the resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the light emitting element can be supplied, and the resistance of the transparent electrode is not limited in view of the power consumption of the light emitting element.
  • an ITO substrate of 300 ⁇ / sq or less functions as a device electrode, but at present it is also possible to supply a substrate of about 10 ⁇ / sq, for example 100 to 5 ⁇ / sq, preferably 50 to 5 ⁇ It is particularly desirable to use a low resistance product of / ⁇ .
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but usually it is often used in the range of 50 to 300 nm.
  • the hole injection layer 103 plays a role of efficiently injecting holes moving from the anode 102 into the light emitting layer 105 or into the hole transport layer 104.
  • the hole transport layer 104 plays a role of efficiently transporting holes injected from the anode 102 or holes injected from the anode 102 via the hole injection layer 103 to the light emitting layer 105.
  • the hole injection layer 103 and the hole transport layer 104 are each formed by laminating and mixing one or two or more hole injecting / transporting materials, or a mixture of a hole injecting / transporting material and a polymer binder. Be done.
  • an inorganic salt such as iron (III) chloride may be added to the hole injecting / transporting material to form a layer.
  • the hole injecting / transporting substance As the hole injecting / transporting substance, it is necessary to efficiently inject / transport holes from the positive electrode between the electrodes given an electric field, the hole injection efficiency is high, and the injected holes are efficiently transported. It is desirable to do.
  • the substance has a small ionization potential, a large hole mobility, and a high stability, and is a substance which hardly generates an impurity serving as a trap during production and use.
  • the hole injection layer 103 and the hole transport layer 104 in photoconductive materials, compounds conventionally used conventionally as charge transport materials for holes, p-type semiconductor, hole injection layer of organic EL element Any compound can be selected and used from known compounds used for the hole transport layer.
  • carbazole derivatives N-phenylcarbazole, polyvinylcarbazole and the like
  • biscarbazole derivatives such as bis (N-arylcarbazole) or bis (N-alkylcarbazole)
  • triarylamine derivatives aromatic tertiary Polymer having amino in the main chain or side chain, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4 , 4'-Diaminobiphenyl, N, N'-diphenyl-N, N'-dinaphthyl-4,4'-diaminobiphenyl, N, N'-diphenyl-N, N'-di (3-methylphenyl) -4 , 4'-diphenyl-1,1'-diamine, N, N'-dinaphthyl -N,
  • Thiophene derivatives oxadiazole derivatives, quinoxaline derivatives (eg, 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,1 (11-hexacarbonitrile etc.), heterocyclic compounds such as porphyrin derivatives, polysilane etc.
  • polycarbonates or styrene derivatives having the above-mentioned monomer in the side chain, polyvinylcarbazole, polysilane etc. are preferred, but It is not particularly limited as long as it is a compound capable of forming a thin film necessary for the preparation of (1), injecting holes from the anode, and transporting the holes.
  • Such an organic semiconductor matrix material is composed of a compound having a good electron donating property or a compound having a good electron accepting property.
  • Strong electron acceptors such as tetracyanoquinone dimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane (F4TCNQ) are known for doping of electron donors.
  • TCNQ tetracyanoquinone dimethane
  • F4TCNQ 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane
  • the light emitting layer 105 is a layer that emits light by recombining holes injected from the anode 102 and electrons injected from the cathode 108 between electrodes to which an electric field is applied.
  • the material for forming the light emitting layer 105 may be a compound (light emitting compound) that emits light by being excited by the recombination of holes and electrons, and can form a stable thin film shape, and a solid state Preferably, they are compounds that exhibit strong luminescence (fluorescence) efficiency.
  • a dopant material in the light emitting layer a polymer of a polycyclic aromatic compound represented by the above general formula (1) and a polycyclic aromatic compound having a plurality of structures represented by the above general formula (1) And at least two polycyclic aromatic compounds and / or multimers are used.
  • the at least two polycyclic aromatic compounds and / or multimers are preferably contained in an amount of 0.1 to 30% by weight in the light emitting layer, more preferably 0.5 to 20% by weight, and more preferably 1 to 10 It is more preferable to incorporate by weight, and it is particularly preferable to incorporate by 2 to 6% by weight.
  • the light emitting layer may be a single layer or a plurality of layers, and is formed of the material for the light emitting layer (host material, dopant material).
  • Each host material may be of one type or a combination of two or more.
  • the dopant material may be contained in the entire host material, partially contained or may be contained. As a doping method, it can be formed by co-evaporation with a host material, but it may be simultaneously vapor-deposited after being previously mixed with the host material.
  • a method of co-evaporating the host material and two or more types of dopant materials uses a plurality of boats corresponding to individual materials
  • each material may be premixed and one boat may be used, or a method in which the host material and two or more kinds of dopant materials are dissolved in an appropriate solvent may be used.
  • the method of forming the light emitting layer is not particularly limited.
  • the amount of host material used varies depending on the type of host material, and may be determined in accordance with the characteristics of the host material.
  • the standard of the amount of the host material used is preferably 70 to 99.9% by weight, more preferably 80 to 99.5% by weight, and still more preferably 90 to 99% by weight of the entire light emitting layer material. And particularly preferably 94 to 98% by weight.
  • host materials include anthracene derivatives, fluorene derivatives, dibenzochrysene derivatives and carbazole derivatives which have been known as light emitters.
  • anthracene derivative examples include compounds represented by the following structural formula. At least one hydrogen in the compound may be substituted with alkyl having 1 to 6 carbon atoms, cyano, halogen or deuterium.
  • L 2 and L 3 are each independently aryl having 6 to 30 carbons or heteroaryl having 2 to 30 carbons.
  • the aryl is preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 16 carbon atoms, still more preferably aryl having 6 to 12 carbon atoms, and particularly preferably aryl having 6 to 10 carbon atoms.
  • monovalent groups such as benzene ring, biphenyl ring, naphthalene ring, terphenyl ring, acenaphthylene ring, fluorene ring, phenalene ring, phenanthrene ring, triphenylene ring, pyrene ring, naphthacene ring, perylene ring and pentacene ring .
  • the heteroaryl is preferably heteroaryl having 2 to 25 carbon atoms, more preferably heteroaryl having 2 to 20 carbon atoms, still more preferably heteroaryl having 2 to 15 carbon atoms, and especially heteroaryl having 2 to 10 carbon atoms Specifically, specifically, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, oxadiazole ring, thiadiazole ring, triazole ring, tetrazole ring, pyrazole ring, pyridine ring, pyrimidine ring, Pyridazine ring, pyrazine ring, triazine ring, indole ring, isoindole ring, 1H-indazole ring, benzimidazole ring, benzoxazole ring, benzothiazole ring, 1H-benzotriazole ring, quinoline
  • the compound represented by following Structural formula is mentioned. At least one hydrogen in the compound may be substituted with alkyl having 1 to 6 carbon atoms, cyano, halogen or deuterium.
  • R 1 to R 10 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkenyl, alkoxy or aryloxy, and at least one hydrogen in these is Optionally substituted with aryl, heteroaryl or alkyl,
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 or R 9 and R 10 are independently bonded to each other
  • at least one hydrogen in the formed ring may be aryl or heteroaryl (wherein the heteroaryl may be bonded to the formed ring through a linking group).
  • Diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkenyl, alkoxy or aryloxy, and at least one hydrogen in these may be substituted with aryl, heteroaryl or alkyl Good.
  • dibenzochrysene derivatives include compounds represented by the following structural formula. At least one hydrogen in the compound may be substituted with alkyl having 1 to 6 carbon atoms, cyano, halogen or deuterium.
  • R 1 to R 16 each independently represent hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkenyl, alkoxy or aryloxy, and at least one hydrogen in these is Optionally substituted with aryl, heteroaryl or alkyl
  • adjacent groups among R 1 to R 16 may be bonded to each other to form a condensed ring, and at least one hydrogen in the formed ring is aryl, heteroaryl (wherein the heteroaryl is via a linking group) Optionally substituted with the ring formed), diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkenyl, alkoxy or aryloxy, at least one hydrogen thereof May be substituted with aryl, heteroaryl or alkyl.
  • the compound represented by following Structural formula is mentioned. At least one hydrogen in the compound may be substituted with alkyl having 1 to 6 carbon atoms, cyano, halogen or deuterium.
  • L 1 is an arylene having 6 to 24 carbon atoms, preferably an arylene having 6 to 16 carbon atoms, more preferably an arylene having 6 to 12 carbon atoms, and particularly preferably an arylene having 6 to 10 carbon atoms.
  • bivalent groups such as benzene ring, biphenyl ring, naphthalene ring, terphenyl ring, acenaphthylene ring, fluorene ring, phenalene ring, phenanthrene ring, triphenylene ring, pyrene ring, naphthacene ring, perylene ring and pentacene ring It can be mentioned.
  • the electron injection layer 107 plays a role of efficiently injecting electrons moving from the cathode 108 into the light emitting layer 105 or into the electron transport layer 106.
  • the electron transport layer 106 plays a role of efficiently transporting electrons injected from the cathode 108 or electrons injected from the cathode 108 via the electron injection layer 107 to the light emitting layer 105.
  • the electron transport layer 106 and the electron injection layer 107 are each formed by laminating and mixing one or more electron transport / injection materials, or a mixture of an electron transport / injection material and a polymer binder.
  • the electron injecting / transporting layer is a layer that injects electrons from the cathode and is responsible for transporting the electrons. It is desirable that the electron injection efficiency is high and the injected electrons are efficiently transported. For this purpose, it is preferable that the substance has a large electron affinity, a large electron mobility, and is excellent in stability and in which impurities serving as traps are less likely to be generated during production and use. However, considering the transport balance of holes and electrons, the electron transport capacity is so large when it mainly plays a role of being able to efficiently block the flow of holes from the anode to the cathode side without recombination.
  • the electron injecting / transporting layer in the present embodiment may also include the function of a layer capable of efficiently blocking the movement of holes.
  • a material (electron transport material) which forms the electron transport layer 106 or the electron injection layer 107 a compound conventionally conventionally used as an electron transport compound in a photoconductive material, used for an electron injection layer and an electron transport layer of an organic EL element It can be selected arbitrarily from the known compounds.
  • a compound comprising an aromatic ring or a heteroaromatic ring composed of one or more atoms selected from carbon, hydrogen, oxygen, sulfur, silicon and phosphorus, It is preferable to contain at least one selected from pyrrole derivatives and condensed ring derivatives thereof and metal complexes having an electron accepting nitrogen.
  • fused ring aromatic ring derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4'-bis (diphenylethenyl) biphenyl, perinone derivatives, coumarin derivatives, naphthalimide derivatives And quinone derivatives such as anthraquinone and diphenoquinone, phosphorus oxide derivatives, carbazole derivatives and indole derivatives.
  • metal complexes having an electron accepting nitrogen include hydroxyazole complexes such as hydroxyphenyl oxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, and benzoquinoline metal complexes. These materials may be used alone or in combination with different materials.
  • pyridine derivatives naphthalene derivatives, anthracene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinone derivatives, diphenoquinone derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazoles Derivatives (1,3-bis [(4-t-butylphenyl) 1,3,4-oxadiazolyl] phenylene etc.), thiophene derivatives, triazole derivatives (N-naphthyl-2,5-diphenyl-1,3,4-) Triazole etc.), thiadiazole derivative, metal complex of oxine derivative, quinolinol metal complex, quinoxaline derivative, polymer of quinoxaline derivative, benzazole compound, gallium complex, pyrazole derivative, perfluorinated fluoride Nylene derivatives
  • metal complexes having an electron accepting nitrogen can also be used, for example, hydroxyazole complexes such as quinolinol metal complexes and hydroxyphenyl oxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, benzoquinoline metal complexes, etc. It can be mentioned.
  • borane derivatives pyridine derivatives, fluoranthene derivatives, BO based derivatives, anthracene derivatives, benzofluorene derivatives, phosphine oxide derivatives, pyrimidine derivatives, carbazole derivatives, triazine derivatives, benzoimidazole derivatives, phenanthroline derivatives, and quinolinol based metals Complexes are preferred.
  • the borane derivative is, for example, a compound represented by the following general formula (ETM-1), and is disclosed in detail in JP-A-2007-27587.
  • each of R 11 and R 12 independently represents hydrogen, alkyl, optionally substituted aryl, optionally substituted silyl, optionally substituted nitrogen-containing heterocycle, Or at least one of cyano, and R 13 to R 16 each independently represent optionally substituted alkyl or optionally substituted aryl, and X is optionally substituted arylene
  • Y is an optionally substituted aryl having 16 or less carbon atoms, a substituted boryl, or an optionally substituted carbazolyl, and n is each independently an integer of 0 to 3 is there.
  • the substituent “optionally substituted” or “substituted” includes aryl, heteroaryl or alkyl.
  • R 11 and R 12 each independently represent hydrogen, alkyl, optionally substituted aryl, optionally substituted silyl, optionally substituted nitrogen-containing heterocycle Or at least one of cyano
  • each of R 13 to R 16 independently represents optionally substituted alkyl or optionally substituted aryl
  • each of R 21 and R 22 independently represents And at least one of hydrogen, alkyl, optionally substituted aryl, optionally substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • X 1 is optionally substituted
  • n independently represents an integer of 0 to 3
  • m independently represents an integer of 0 to 4.
  • substituent “optionally substituted” or “substituted” includes aryl, heteroaryl or alkyl.
  • R 11 and R 12 each independently represent hydrogen, alkyl, optionally substituted aryl, optionally substituted silyl, optionally substituted nitrogen-containing heterocycle Or at least one of cyano
  • R 13 to R 16 each independently represent optionally substituted alkyl or optionally substituted aryl
  • X 1 is optionally substituted It is an arylene having a carbon number of 20 or less
  • n is each independently an integer of 0 to 3.
  • the substituent “optionally substituted” or “substituted” includes aryl, heteroaryl or alkyl.
  • X 1 include divalent groups represented by the following formulas (X-1) to (X-9). (In each formula, R a is each independently an alkyl group or a phenyl group which may be substituted.)
  • the borane derivative can be produced using known starting materials and known synthetic methods.
  • the pyridine derivative is, for example, a compound represented by the following formula (ETM-2), preferably a compound represented by the formula (ETM-2-1) or the formula (ETM-2-2).
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4 is there.
  • R 11 to R 18 each independently represent hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), or cycloalkyl (preferably cycloalkenyl having 3 to 12 carbon atoms). Alkyl) or aryl (preferably aryl having 6 to 30 carbon atoms).
  • R 11 and R 12 each independently represent hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkenyl having 3 to 12 carbon atoms). R 11 and R 12 may be combined to form a ring, which is alkyl) or aryl (preferably aryl having 6 to 30 carbon atoms).
  • the “pyridine-based substituent” is any of the following formulas (Py-1) to (Py-15), and the pyridine-based substituents are each independently substituted with an alkyl having 1 to 4 carbon atoms It may be done.
  • the pyridine-based substituent may be bonded to ⁇ ⁇ ⁇ ⁇ ⁇ , an anthracene ring or fluorene ring in each formula via a phenylene group or a naphthylene group.
  • the pyridine-based substituent is any of the above formulas (Py-1) to (Py-15), and among these, it is any of the following formulas (Py-21) to (Py-44) Is preferred.
  • At least one hydrogen in each pyridine derivative may be substituted with deuterium, and among the two “pyridine-based substituents” in the above formulas (ETM-2-1) and (ETM-2-2) One of them may be replaced by aryl.
  • the “alkyl” in R 11 to R 18 may be linear or branched, and examples thereof include linear alkyl having 1 to 24 carbon atoms or branched alkyl having 3 to 24 carbon atoms.
  • Preferred “alkyl” is alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons). More preferable “alkyl” is alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons). More preferable “alkyl” is alkyl having 1 to 6 carbons (branched alkyl having 3 to 6 carbons). Particularly preferred “alkyl” is alkyl having 1 to 4 carbons (branched alkyl having 3 to 4 carbons).
  • alkyl is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2 -Propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecyl,
  • alkyl having 1 to 4 carbon atoms to be substituted to the pyridine-based substituent.
  • cycloalkyl in R 11 to R 18 include cycloalkyl having 3 to 12 carbon atoms.
  • Preferred “cycloalkyl” is cycloalkyl having 3 to 10 carbon atoms. More preferable “cycloalkyl” is cycloalkyl having 3 to 8 carbon atoms. More preferable “cycloalkyl” is cycloalkyl having 3 to 6 carbon atoms.
  • Specific “cycloalkyl” includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl or dimethylcyclohexyl and the like.
  • aryl in R 11 to R 18 , preferable aryl is aryl having 6 to 30 carbon atoms, more preferable aryl is aryl having 6 to 18 carbon atoms, and more preferably aryl having 6 to 14 carbon atoms. And particularly preferably aryl having 6 to 12 carbon atoms.
  • aryl having 6 to 30 carbon atoms include phenyl which is monocyclic aryl, (1-, 2-) naphthyl which is fused bicyclic aryl, and acenaphthylene which is fused tricyclic aryl.
  • C6-C30 aryl includes phenyl, naphthyl, phenanthryl, chrysenyl or triphenylenyl and the like, more preferably phenyl, 1-naphthyl, 2-naphthyl or phenanthryl, particularly preferably phenyl, 1 And -naphthyl or 2-naphthyl.
  • R 11 and R 12 in the above formula (ETM-2-2) may combine to form a ring, and as a result, in the 5-membered ring of the fluorene skeleton, cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, Cyclohexane, fluorene or indene may be spiro linked.
  • this pyridine derivative include, for example, the following.
  • This pyridine derivative can be produced using known starting materials and known synthesis methods.
  • the fluoranthene derivative is, for example, a compound represented by the following general formula (ETM-3), and is specifically disclosed in WO 2010/134352.
  • X 12 to X 21 each represents hydrogen, halogen, linear, branched or cyclic alkyl, linear, branched or cyclic alkoxy, substituted or unsubstituted aryl, or substituted or unsubstituted Represents heteroaryl.
  • substituent when substituted include aryl, heteroaryl or alkyl.
  • this fluoranthene derivative include, for example, the following.
  • the BO-based derivative is, for example, a multimer of a polycyclic aromatic compound represented by the following formula (ETM-4) or a polycyclic aromatic compound having a plurality of structures represented by the following formula (ETM-4).
  • R 1 to R 11 are each independently hydrogen, aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy or aryloxy, and at least one hydrogen in these is aryl, It may be substituted by heteroaryl or alkyl.
  • adjacent groups among R 1 to R 11 may be combined to form an aryl ring or heteroaryl ring together with the a ring, b ring or c ring, and at least one hydrogen in the formed ring May be substituted with aryl, heteroaryl, diarylamino, diheteroarylamino, arylheteroarylamino, alkyl, alkoxy or aryloxy, and at least one hydrogen in these is substituted with aryl, heteroaryl or alkyl May be
  • At least one hydrogen in the compound or structure represented by Formula (ETM-4) may be substituted with halogen or deuterium.
  • This BO-based derivative can be produced using known starting materials and known synthesis methods.
  • One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-1).
  • Ar is each independently divalent benzene or naphthalene, and R 1 to R 4 are each independently hydrogen, alkyl having 1 to 6 carbons, cycloalkyl having 3 to 6 carbons or carbons 6 to 20 aryl.
  • Ar may be each independently selected from divalent benzene or naphthalene, and two Ar may be different or the same, but the same from the viewpoint of easiness of synthesis of anthracene derivative Is preferred.
  • Ar is bonded to pyridine to form "a moiety consisting of Ar and pyridine", and this moiety is, for example, anthracene as a group represented by any of the following formulas (Py-1) to (Py-12) Combined with
  • a group represented by any one of the above formulas (Py-1) to (Py-9) is preferable, and any one of the above formulas (Py-1) to (Py-6) can be used. More preferred.
  • the two “sites consisting of Ar and pyridine” bonded to anthracene may have the same or different structures, but preferably have the same structure from the viewpoint of the ease of synthesis of the anthracene derivative. However, from the viewpoint of the device characteristics, it is preferable that the structures of two “portions consisting of Ar and pyridine” be the same or different.
  • the alkyl having 1 to 6 carbons in R 1 to R 4 may be either linear or branched. That is, it is linear alkyl having 1 to 6 carbons or branched alkyl having 3 to 6 carbons. More preferably, it is an alkyl having 1 to 4 carbons (branched alkyl having 3 to 4 carbons).
  • cycloalkyl having 3 to 6 carbon atoms as R 1 to R 4 include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl or dimethylcyclohexyl and the like.
  • the aryl having 6 to 20 carbon atoms in R 1 to R 4 is preferably an aryl having 6 to 16 carbon atoms, more preferably an aryl having 6 to 12 carbon atoms, and particularly preferably an aryl having 6 to 10 carbon atoms.
  • aryl having 6 to 20 carbon atoms include phenyl which is a monocyclic aryl, (o-, m-, p-) tolyl, (2,3-, 2,4-, 2, 5- , 2,6-, 3,4-, 3,5-) xylyl, mesityl (2, 4, 6-trimethylphenyl), (o-, m-, p-) cumenyl, bicyclic aryl (2 -, 3-, 4-) Biphenylyl, (1-, 2-) naphthyl which is a fused bicyclic aryl, terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4 '-Yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o-terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2'-yl
  • C6-C20 aryl is phenyl, biphenylyl, terphenylyl or naphthyl, more preferably phenyl, biphenylyl, 1-naphthyl, 2-naphthyl or m-terphenyl-5′-yl More preferably, it is phenyl, biphenylyl, 1-naphthyl or 2-naphthyl, most preferably phenyl.
  • One of the anthracene derivatives is, for example, a compound represented by the following formula (ETM-5-2).
  • Ar 1 's each independently represent a single bond, divalent benzene, naphthalene, anthracene, fluorene or phenalene.
  • Each Ar 2 is independently an aryl having 6 to 20 carbon atoms, and the same description as “the aryl having 6 to 20 carbons” in the above formula (ETM-5-1) can be cited.
  • the aryl having 6 to 16 carbon atoms is preferable, the aryl having 6 to 12 carbon atoms is more preferable, and the aryl having 6 to 10 carbon atoms is particularly preferable.
  • phenyl examples thereof include phenyl, biphenylyl, naphthyl, terphenylyl, anthracenyl, acenaphthyrenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, tetracenyl, perylenyl and the like.
  • R 1 to R 4 each independently represent hydrogen, an alkyl having 1 to 6 carbon atoms, a cycloalkyl having 3 to 6 carbon atoms or an aryl having 6 to 20 carbon atoms, and the above formula (ETM-5-1) The explanation in can be cited.
  • the benzofluorene derivative is, for example, a compound represented by the following formula (ETM-6).
  • Ar 1 is each independently an aryl having 6 to 20 carbon atoms, and the same description as “the aryl having 6 to 20 carbons” in the above formula (ETM-5-1) can be cited.
  • the aryl having 6 to 16 carbon atoms is preferable, the aryl having 6 to 12 carbon atoms is more preferable, and the aryl having 6 to 10 carbon atoms is particularly preferable.
  • phenyl examples thereof include phenyl, biphenylyl, naphthyl, terphenylyl, anthracenyl, acenaphthyrenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, tetracenyl, perylenyl and the like.
  • Each Ar 2 independently represents hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) or aryl (preferably aryl having 6 to 30 carbon atoms) And two Ar 2 's may combine to form a ring.
  • the “alkyl” in Ar 2 may be linear or branched, and includes, for example, linear alkyl having 1 to 24 carbon atoms or branched alkyl having 3 to 24 carbon atoms.
  • Preferred “alkyl” is alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons). More preferable “alkyl” is alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons). More preferable “alkyl” is alkyl having 1 to 6 carbons (branched alkyl having 3 to 6 carbons). Particularly preferred “alkyl” is alkyl having 1 to 4 carbons (branched alkyl having 3 to 4 carbons).
  • alkyl is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl and the like.
  • cycloalkyl examples include cycloalkyl having 3 to 12 carbon atoms.
  • Preferred “cycloalkyl” is cycloalkyl having 3 to 10 carbon atoms. More preferable “cycloalkyl” is cycloalkyl having 3 to 8 carbon atoms. More preferable “cycloalkyl” is cycloalkyl having 3 to 6 carbon atoms.
  • Specific “cycloalkyl” includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl or dimethylcyclohexyl and the like.
  • aryl in Ar 2 , preferable aryl is aryl having 6 to 30 carbon atoms, more preferable aryl is aryl having 6 to 18 carbon atoms, more preferably aryl having 6 to 14 carbon atoms, and in particular Preferably, it is aryl having 6 to 12 carbon atoms.
  • aryl having 6 to 30 carbon atoms include phenyl, naphthyl, acenaphthylenyl, fluorenyl, phenalenyl, phenanthryl, triphenylenyl, pyrenyl, naphthacenyl, perylenyl, pentacenyl and the like.
  • Two Ar 2 may combine to form a ring, and as a result, cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, fluorene or indene etc. is spiro bonded to the 5-membered ring of the fluorene skeleton May be
  • benzofluorene derivative examples include the following.
  • This benzofluorene derivative can be produced using known raw materials and known synthetic methods.
  • the phosphine oxide derivative is, for example, a compound represented by the following formula (ETM-7-1). The details are also described in WO 2013/079217.
  • R 5 is a substituted or unsubstituted alkyl having 1 to 20 carbons, aryl having 6 to 20 carbons, or heteroaryl having 5 to 20 carbons
  • R 6 represents CN, substituted or unsubstituted alkyl having 1 to 20 carbons, heteroalkyl having 1 to 20 carbons, aryl having 6 to 20 carbons, heteroaryl having 5 to 20 carbons, or 1 to 6 carbons 20 alkoxy or aryloxy having 6 to 20 carbon atoms
  • R 7 and R 8 are each independently substituted or unsubstituted aryl having 6 to 20 carbon atoms or heteroaryl having 5 to 20 carbon atoms
  • R 9 is oxygen or sulfur
  • j is 0 or 1
  • k is 0 or 1
  • r is an integer of 0 to 4
  • q is an
  • the phosphine oxide derivative may be, for example, a compound represented by the following formula (ETM-7-2).
  • R 1 to R 3 which may be the same or different, are hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an alkenyl group, a cycloalkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an arylether group, an arylthioether group It is selected from an aryl group, a heterocyclic group, a halogen, a cyano group, an aldehyde group, a carbonyl group, a carboxyl group, an amino group, a nitro group, a silyl group, and a condensed ring formed between adjacent substituents.
  • Ar 1 may be the same or different, and is an arylene group or a heteroarylene group.
  • Ar 2 may be the same or different, and is an aryl group or a heteroaryl group. However, at least one of Ar 1 and Ar 2 has a substituent or forms a condensed ring with an adjacent substituent.
  • n is an integer of 0 to 3, no unsaturated structural moiety exists when n is 0, and R 1 does not exist when n is 3.
  • the alkyl group is, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group or a butyl group, which may be unsubstituted or substituted.
  • a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group or a butyl group, which may be unsubstituted or substituted.
  • an alkyl group, an aryl group, a heterocyclic group etc. can be mentioned, This point is common also to the following description.
  • the carbon number of the alkyl group is not particularly limited, but is usually in the range of 1 to 20 from the viewpoint of availability and cost.
  • the cycloalkyl group is a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl and the like, which may be unsubstituted or substituted.
  • the carbon number of the alkyl group moiety is not particularly limited, but is usually in the range of 3 to 20.
  • the aralkyl group is, for example, an aromatic hydrocarbon group via an aliphatic hydrocarbon such as benzyl group or phenylethyl group, and both the aliphatic hydrocarbon and the aromatic hydrocarbon may be substituted even without substitution. It does not matter.
  • the carbon number of the aliphatic moiety is not particularly limited, but is usually in the range of 1 to 20.
  • an alkenyl group shows the unsaturated aliphatic hydrocarbon group containing double bonds, such as a vinyl group, an allyl group, and a butadienyl group, for example, This may be unsubstituted or substituted.
  • the carbon number of the alkenyl group is not particularly limited, but is usually in the range of 2 to 20.
  • a cycloalkenyl group shows the unsaturated alicyclic hydrocarbon group containing double bonds, such as a cyclopentenyl group, a cyclopentadienyl group, a cyclohexene group etc., and this may be unsubstituted or substituted, I do not mind.
  • the alkynyl group means, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an acetylenyl group, which may be unsubstituted or substituted.
  • the carbon number of the alkynyl group is not particularly limited, but is usually in the range of 2 to 20.
  • an alkoxy group shows the aliphatic hydrocarbon group which intervened ether bonds, such as a methoxy group, for example, and the aliphatic hydrocarbon group may be unsubstituted or substituted.
  • the carbon number of the alkoxy group is not particularly limited, but is usually in the range of 1 to 20.
  • the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted by a sulfur atom.
  • the aryl ether group is, for example, an aromatic hydrocarbon group via an ether bond such as a phenoxy group, and the aromatic hydrocarbon group may be unsubstituted or substituted.
  • the carbon number of the aryl ether group is not particularly limited, but is usually in the range of 6 to 40.
  • the arylthioether group is a group in which the oxygen atom of the ether bond of the arylether group is substituted by a sulfur atom.
  • the aryl group is, for example, an aromatic hydrocarbon group such as phenyl group, naphthyl group, biphenyl group, phenanthryl group, terphenyl group, pyrenyl group and the like.
  • the aryl group may be unsubstituted or substituted.
  • the carbon number of the aryl group is not particularly limited, but is usually in the range of 6 to 40.
  • the heterocyclic group is a cyclic structural group having an atom other than carbon, such as furanyl group, thiophenyl group, oxazolyl group, pyridyl group, quinolinyl group, carbazolyl group, etc., and this group is unsubstituted or substituted. I don't care.
  • the carbon number of the heterocyclic group is not particularly limited, but is usually in the range of 2 to 30.
  • Halogen is fluorine, chlorine, bromine or iodine.
  • the aldehyde group, the carbonyl group and the amino group can also include a group substituted with an aliphatic hydrocarbon, an alicyclic hydrocarbon, an aromatic hydrocarbon, a heterocycle or the like.
  • the aliphatic hydrocarbon, the alicyclic hydrocarbon, the aromatic hydrocarbon and the heterocyclic ring may be unsubstituted or substituted.
  • the silyl group indicates, for example, a silicon compound group such as a trimethylsilyl group, which may be unsubstituted or substituted.
  • the carbon number of the silyl group is not particularly limited, but is usually in the range of 3 to 20.
  • the silicon number is usually 1 to 6.
  • the fused ring formed between adjacent substituents is, for example, Ar 1 and R 2 , Ar 1 and R 3 , Ar 2 and R 2 , Ar 2 and R 3 , R 2 and R 3 , Ar 1 and It is a conjugated or non-conjugated fused ring formed between Ar 2 and the like.
  • n is 1, two R 1 's may form a conjugated or non-conjugated fused ring.
  • These fused rings may contain nitrogen, oxygen and sulfur atoms in the ring structure, and may be fused to another ring.
  • this phosphine oxide derivative include the following.
  • the phosphine oxide derivative can be produced using known raw materials and known synthetic methods.
  • the pyrimidine derivative is, for example, a compound represented by the following formula (ETM-8), and preferably a compound represented by the following formula (ETM-8-1). The details are also described in International Publication No. WO 2011/01689.
  • Each Ar is independently an optionally substituted aryl or an optionally substituted heteroaryl.
  • n is an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 2 or 3.
  • aryl of “optionally substituted aryl” include aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferably, it is aryl having 6 to 12 carbon atoms.
  • aryl is phenyl which is monocyclic aryl, (2-, 3-, 4-) biphenylyl which is bicyclic aryl, (1-, 2-) naphthyl which is fused bicyclic aryl , A tricyclic aryl, terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-
  • heteroaryl examples include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, Aryl is more preferable, C2-C15 heteroaryl is more preferable, and C2-C10 heteroaryl is particularly preferable.
  • heteroaryl for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituent atom can be mentioned.
  • heteroaryl examples include furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanyl, thiadiazolyl, triazolyl, triazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indolyl, isoindolyl, 1H-indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthyridin
  • the aryl and heteroaryl may be substituted, and may be substituted, for example, with the aryl and the heteroaryl.
  • this pyrimidine derivative include, for example, the following.
  • the pyrimidine derivative can be produced using known starting materials and known synthetic methods.
  • the carbazole derivative is, for example, a compound represented by the following formula (ETM-9), or a multimer in which a plurality of compounds are linked via a single bond or the like. Details are described in US Patent Publication No. 2014/0197386.
  • Each Ar is independently an optionally substituted aryl or an optionally substituted heteroaryl.
  • n is independently an integer of 0 to 4, preferably an integer of 0 to 3, and more preferably 0 or 1.
  • aryl of “optionally substituted aryl” include aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferably, it is aryl having 6 to 12 carbon atoms.
  • aryl is phenyl which is monocyclic aryl, (2-, 3-, 4-) biphenylyl which is bicyclic aryl, (1-, 2-) naphthyl which is fused bicyclic aryl , A tricyclic aryl, terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-
  • heteroaryl examples include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, Aryl is more preferable, C2-C15 heteroaryl is more preferable, and C2-C10 heteroaryl is particularly preferable.
  • heteroaryl for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituent atom can be mentioned.
  • heteroaryl examples include furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanyl, thiadiazolyl, triazolyl, triazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indolyl, isoindolyl, 1H-indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthyridin
  • the aryl and heteroaryl may be substituted, and may be substituted, for example, with the aryl and the heteroaryl.
  • the carbazole derivative may be a multimer in which a compound represented by the above formula (ETM-9) is bound in plural by a single bond or the like.
  • an aryl ring preferably a polyvalent benzene ring, a naphthalene ring, an anthracene ring, a fluorene ring, a benzofluorene ring, a phenalene ring, a phenanthrene ring or a triphenylene ring
  • an aryl ring preferably a polyvalent benzene ring, a naphthalene ring, an anthracene ring, a fluorene ring, a benzofluorene ring, a phenalene ring, a phenanthrene ring or a triphenylene ring
  • Examples of this carbazole derivative include the following.
  • This carbazole derivative can be produced using known raw materials and known synthetic methods.
  • the triazine derivative is, for example, a compound represented by the following formula (ETM-10), and preferably a compound represented by the following formula (ETM-10-1). Details are described in U.S. Patent Publication No. 2011/0156013.
  • Each Ar is independently an optionally substituted aryl or an optionally substituted heteroaryl.
  • n is an integer of 1 to 3, preferably 2 or 3.
  • aryl of “optionally substituted aryl” include aryl having 6 to 30 carbon atoms, preferably aryl having 6 to 24 carbon atoms, more preferably aryl having 6 to 20 carbon atoms, More preferably, it is aryl having 6 to 12 carbon atoms.
  • aryl is phenyl which is monocyclic aryl, (2-, 3-, 4-) biphenylyl which is bicyclic aryl, (1-, 2-) naphthyl which is fused bicyclic aryl , A tricyclic aryl, terphenylyl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, p-
  • heteroaryl examples include heteroaryl having 2 to 30 carbon atoms, preferably heteroaryl having 2 to 25 carbon atoms, Aryl is more preferable, C2-C15 heteroaryl is more preferable, and C2-C10 heteroaryl is particularly preferable.
  • heteroaryl for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituent atom can be mentioned.
  • heteroaryl examples include furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanyl, thiadiazolyl, triazolyl, triazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, Isobenzofuranyl, benzo [b] thienyl, indolyl, isoindolyl, 1H-indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthyridin
  • the aryl and heteroaryl may be substituted, and may be substituted, for example, with the aryl and the heteroaryl.
  • this triazine derivative include, for example, the following.
  • the triazine derivative can be produced using known starting materials and known synthetic methods.
  • the benzimidazole derivative is, for example, a compound represented by the following formula (ETM-11).
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4
  • pyridyl group in the “pyridine-based substituent” in the above-mentioned formulas (ETM-2), (ETM-2-1) and (ETM-2-2). It is a group substituted with an imidazole group, and at least one hydrogen in the benzimidazole derivative may be substituted with deuterium.
  • R 11 in the benzimidazole group is hydrogen, alkyl having 1 to 24 carbons, cycloalkyl having 3 to 12 carbons or aryl having 6 to 30 carbons, and the above-mentioned formula (ETM-2-1) and formula ( The description of R 11 in ETM-2-2) can be cited.
  • is preferably an anthracene ring or a fluorene ring, and the structure in this case can refer to the structure of the above formula (ETM-2-1) or the formula (ETM-2-2).
  • R 11 to R 18 therein can be referred to the description of the above formula (ETM-2-1) or the formula (ETM-2-2).
  • the said Formula (ETM-2-1) or Formula (ETM-2-2) is demonstrated in the form which two pyridine type substituents couple
  • this benzimidazole derivative include, for example, 1-phenyl-2- (4- (10-phenylanthracen-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- Naphthalen-2-yl) anthracene-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracene-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracene-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4) -(10- (Naphthalen-2-yl) anthracen-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9,10) Di (
  • This benzimidazole derivative can be produced using known raw materials and known synthetic methods.
  • the phenanthroline derivative is, for example, a compound represented by the following formula (ETM-12) or the formula (ETM-12-1). Details are described in WO2006 / 021982.
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is an integer of 1 to 4 is there.
  • R 11 to R 18 in each formula are each independently hydrogen, alkyl (preferably alkyl having 1 to 24 carbon atoms), cycloalkyl (preferably cycloalkyl having 3 to 12 carbon atoms) or aryl (preferably carbon) 6 to 30 aryl).
  • alkyl preferably alkyl having 1 to 24 carbon atoms
  • cycloalkyl preferably cycloalkyl having 3 to 12 carbon atoms
  • aryl preferably carbon 6 to 30 aryl.
  • any one of R 11 to R 18 is bonded to ⁇ which is an aryl ring.
  • At least one hydrogen in each phenanthroline derivative may be substituted with deuterium.
  • each R is independently hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl.
  • this phenanthroline derivative include, for example, 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10- Phenanthrolin-2-yl) anthracene, 2,6-di (1,10-phenanthrolin-5-yl) pyridine, 1,3,5-tri (1,10-phenanthrolin-5-yl) benzene, 9,9 ' And -difluoro-bi (1,10-phenanthrolin-5-yl), vasocuproin and 1,3-bis (2-phenyl-1,10-phenanthrolin-9-yl) benzene.
  • This phenanthroline derivative can be produced using known starting materials and known synthetic methods.
  • the quinolinol metal complex is, for example, a compound represented by the following general formula (ETM-13).
  • R 1 to R 6 each independently represent hydrogen, fluorine, alkyl, aralkyl, alkenyl, cyano, alkoxy or aryl
  • M is Li, Al, Ga, Be or Zn
  • n is 1 It is an integer of ⁇ 3.
  • quinolinol metal complexes include 8-quinolinol lithium, tris (8-quinolinolato) aluminum, tris (4-methyl-8-quinolinolato) aluminum, tris (5-methyl-8-quinolinolato) aluminum, tris (3) , 4-Dimethyl-8-quinolinolato) aluminum, tris (4,5-dimethyl-8-quinolinolate) aluminum, tris (4,6-dimethyl-8-quinolinolato) aluminum, bis (2-methyl-8-quinolinolato) ( (Phenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-methylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3-methylphenolate) aluminum, bis (2-methyl-8-) Quinolinolate) (4- Tylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (2-phenylphenolate) aluminum, bis (2-methyl-8-quinolinolate) (3-phenylphenolate) aluminum, bis
  • This quinolinol metal complex can be produced using known raw materials and known synthetic methods.
  • the thiazole derivative is, for example, a compound represented by the following formula (ETM-14-1).
  • the benzothiazole derivative is, for example, a compound represented by the following formula (ETM-14-2).
  • is an n-valent aryl ring (preferably an n-valent benzene ring, naphthalene ring, anthracene ring, fluorene ring, benzofluorene ring, phenalene ring, phenanthrene ring or triphenylene ring), and n is 1 to 4
  • the “thiazole-based substituent” and the “benzothiazole-based substituent” are integers of “pyridine-based in the above-mentioned formulas (ETM-2), (ETM-2-1) and (ETM-2-2).
  • the pyridyl group in the “substituent group” may be substituted with a thiazole group or a benzothiazole group, and at least one hydrogen in the thiazole derivative and the benzothiazole derivative may be substituted with deuterium.
  • is preferably an anthracene ring or a fluorene ring, and the structure in this case can refer to the structure of the above formula (ETM-2-1) or the formula (ETM-2-2).
  • R 11 to R 18 therein can be referred to the description of the above formula (ETM-2-1) or the formula (ETM-2-2).
  • R 11 to R 18 in the above formula (ETM-2-1) is replaced with a thiazole substituent (or a benzothiazole substituent) to convert “pyridine based substituent” into R 11 to R 18 You may replace by.
  • thiazole derivatives or benzothiazole derivatives can be produced using known raw materials and known synthetic methods.
  • the electron transport layer or the electron injection layer may further contain a substance capable of reducing the material forming the electron transport layer or the electron injection layer.
  • a substance capable of reducing the material forming the electron transport layer or the electron injection layer As the reducing substance, various substances can be used as long as the substance has a certain reducibility, for example, alkali metals, alkaline earth metals, rare earth metals, oxides of alkali metals, halides of alkali metals, alkali From the group consisting of oxides of earth metals, halides of alkaline earth metals, oxides of rare earth metals, halides of rare earth metals, organic complexes of alkali metals, organic complexes of alkaline earth metals and organic complexes of rare earth metals At least one selected can be suitably used.
  • alkali metals such as Na (work function 2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), Ca (1.2. Examples thereof include alkaline earth metals such as 9 eV), Sr (2.0 to 2.5 eV) or Ba (2.52 eV), and substances having a work function of 2.9 eV or less are particularly preferable.
  • more preferable reducing substances are alkali metals of K, Rb or Cs, more preferably Rb or Cs, and most preferably Cs.
  • alkali metals are particularly high in reducing ability, and the addition of a relatively small amount to the material forming the electron transport layer or the electron injection layer can improve the emission luminance and prolong the life of the organic EL element.
  • a combination of two or more alkali metals is also preferable as a reducing substance having a work function of 2.9 eV or less, and in particular, a combination containing Cs, such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • Cs By including Cs, the reduction ability can be efficiently exhibited, and by addition to the material for forming the electron transport layer or the electron injection layer, the emission luminance in the organic EL element can be improved and the lifetime can be prolonged.
  • the cathode 108 plays a role of injecting electrons into the light emitting layer 105 via the electron injection layer 107 and the electron transport layer 106.
  • the material for forming the cathode 108 is not particularly limited as long as it can efficiently inject electrons into the organic layer, but the same material as the material for forming the anode 102 can be used.
  • metals such as tin, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium and magnesium or alloys thereof (magnesium-silver alloy, magnesium Indium alloy, aluminum-lithium alloy such as lithium fluoride / aluminum, etc. are preferable.
  • Lithium, sodium, potassium, cesium, calcium, magnesium or alloys containing these low work function metals are effective for improving the electron injection efficiency and improving the device characteristics.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals for electrode protection, and inorganic substances such as silica, titania and silicon nitride, polyvinyl alcohol, vinyl chloride It is preferable to stack a hydrocarbon-based polymer compound or the like as a preferred example.
  • the method of producing these electrodes is also not particularly limited as long as conduction can be taken, such as resistance heating, electron beam beam, sputtering, ion plating and coating.
  • ⁇ Binder which may be used in each layer>
  • the materials used for the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer described above can form each layer independently, but polyvinyl chloride, polycarbonate, or the like as a polymer binder Polystyrene, poly (N-vinylcarbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate resin, ABS resin, polyurethane resin Etc., and can be used by dispersing it in a solvent-soluble resin such as phenol resin, xylene resin, petroleum resin, urea resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone resin, etc. is there.
  • a solvent-soluble resin such as phenol resin, xylene
  • Each layer constituting the organic EL element is made of a thin film of a material to be constituted of each layer by a method such as evaporation, resistance heating evaporation, electron beam evaporation, sputtering, molecular lamination, printing, spin coating or casting, coating method It can be formed by There is no particular limitation on the film thickness of each layer formed in this way, and it can be appropriately set according to the property of the material, but it is usually in the range of 2 nm to 5000 nm. The film thickness can usually be measured by a crystal oscillation type film thickness measuring device or the like.
  • the vapor deposition conditions differ depending on the type of material, the desired crystal structure and association structure of the film, and the like.
  • the deposition conditions are generally: boat heating temperature +50 to + 400 ° C., vacuum degree 10 ⁇ 6 to 10 ⁇ 3 Pa, deposition rate 0.01 to 50 nm / sec, substrate temperature ⁇ 150 to + 300 ° C., film thickness 2 nm to 5 ⁇ m It is preferable to set appropriately in the range.
  • an organic EL element comprising a light emitting layer / electron transport layer / electron injection layer / cathode comprising anode / hole injection layer / hole transport layer / host material and dopant material
  • the production method of is described. After forming a thin film of an anode material on a suitable substrate by vapor deposition or the like to prepare an anode, thin films of a hole injection layer and a hole transport layer are formed on the anode.
  • a host material and a dopant material are co-deposited thereon to form a thin film to form a light emitting layer, an electron transporting layer and an electron injecting layer are formed on the light emitting layer, and a thin film made of a cathode material is deposited by evaporation or the like.
  • the intended organic EL element is obtained by forming it as a cathode.
  • the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode may be fabricated in the reverse order. It is.
  • the anode When a DC voltage is applied to the organic EL element thus obtained, the anode may be applied as + and the cathode may be applied as-polarity, and when a voltage of about 2 to 40 V is applied, a transparent or semitransparent electrode Luminescence can be observed from the side (anode or cathode, and both).
  • the organic EL element also emits light when a pulse current or an alternating current is applied.
  • the waveform of the alternating current to apply may be arbitrary.
  • the present invention can also be applied to a display device provided with an organic EL element or a lighting device provided with an organic EL element.
  • the display device or the illumination device provided with the organic EL element can be manufactured by a known method such as connecting the organic EL element according to the present embodiment and a known drive device, and DC drive, pulse drive, AC drive, etc. It can drive using a well-known drive method suitably.
  • Examples of the display device include a panel display such as a color flat panel display, a flexible display such as a flexible color organic electroluminescence (EL) display, and the like (for example, Japanese Patent Application Laid-Open Nos. 10-335066 and 2003-321546). See Japanese Patent Laid-Open Publication No. 2004-281086 etc.).
  • a display method of a display a matrix and / or a segment system etc. are mentioned, for example.
  • the matrix display and the segment display may coexist in the same panel.
  • pixels for display are two-dimensionally arranged in a lattice or mosaic, and a character or an image is displayed by a set of pixels.
  • the shape and size of the pixels depend on the application. For example, for displaying images and characters on personal computers, monitors, and televisions, square pixels with one side of 300 ⁇ m or less are usually used, and in the case of a large display such as a display panel, pixels with one side of mm order become.
  • monochrome display pixels of the same color may be arranged, but in color display, red, green and blue pixels are displayed side by side. In this case, there are typically delta types and stripe types.
  • a line sequential driving method or an active matrix may be used as a method of driving this matrix.
  • the line-sequential drive has an advantage that the structure is simple, in consideration of the operation characteristics, the active matrix may be superior in some cases, so it is necessary to use this in accordance with the application.
  • a pattern is formed so as to display predetermined information, and a predetermined area is made to emit light.
  • Examples include time and temperature displays on digital watches and thermometers, operation state displays on audio devices and induction cookers, and panel displays on automobiles.
  • Examples of the lighting device include a lighting device such as interior lighting, a backlight of a liquid crystal display device, and the like (for example, JP 2003-257621 A, JP 2003-277741 A, and JP 2004-119211 A). Etc.). Backlights are mainly used for the purpose of improving the visibility of display devices that do not emit light themselves, and are used for liquid crystal display devices, clocks, audio devices, automobile panels, display boards, signs, and the like.
  • the present embodiment is characterized by being thin and lightweight.
  • 6- (2,3-dibromophenoxy) -9,9-dimethyl-N, N-diphenyl-9H-fluoren-2-amine (10.0 g), di ([1,1'-biphenyl] -4-yl) amine (5.3 g), palladium acetate (0.15 g), dicyclohexyl (2 ', 6'-diisopropoxy- [1,1'-biphenyl] -2-yl) phosphane (0.61 g)
  • a flask containing NaOtBu (2.4 g) and toluene (35 ml) was heated at 80 ° C. for 6 hours.
  • 6- (2-bromo-3- (di ([1,1′-biphenyl] -4-yl) amino) phenoxy) -9,9-dimethyl-N, N-diphenyl-9H-fluorene- 2-Amine (7.9 g) and tetrahydrofuran (42 ml) were placed in a flask, cooled to -40 ° C., and 1.6 M n-butyllithium hexane solution (6 ml) was added dropwise. After completion of the dropwise addition, after stirring for 1 hour at this temperature, trimethyl borate (1.7 g) was added. The temperature was raised to room temperature and stirred for 2 hours.
  • the glass transition temperature (Tg) of the compound (1C-2) was 165.6 ° C.
  • the obtained solid is purified by silica gel column (eluent: heptane / toluene mixed solvent), and methyl 4 '-(diphenylamino) -5-methoxy- [1,1'-biphenyl] -2-carboxylate (29. I got 7g).
  • silica gel column eluent: heptane / toluene mixed solvent
  • methyl 4 '-(diphenylamino) -5-methoxy- [1,1'-biphenyl] -2-carboxylate 29. I got 7g.
  • the proportion of toluene in the eluent was gradually determined.
  • the target was eluted by increasing.
  • a flask containing amine (15.5 g), Pd-132 (Johnson Massey) (1.2 g), NaOtBu (13.9 g) and xylene (160 ml) was heated and stirred at 85 ° C. for 2 hours.
  • purified in heptane 1/3 (volume ratio).
  • the obtained crude product is dissolved in toluene, reprecipitated with Solmix several times, further recrystallized several times with ethyl acetate, and finally purified by sublimation to obtain Compound (1C-1) as a yellow solid. (0.7 g).
  • the glass transition temperature (Tg) of the compound was 194.7 ° C. [Measurement equipment: Diamond DSC (manufactured by PERKIN-ELMER); Measurement conditions: cooling rate 200 ° C./Min., Heating rate 10 ° C./Min.]
  • Synthesis example (8) Compound (H-2): Synthesis of 2- (10-phenylanthracene-9-yl) naphtho [2,3-b] benzofuran Compound (H-2) was synthesized according to the method described in paragraph [0106] of WO 2014/141725.
  • polycyclic aromatic compounds and their multimers can be produced according to the method according to the above-mentioned synthesis example by appropriately changing the starting compounds.
  • the quantum efficiency of the light emitting element includes internal quantum efficiency and external quantum efficiency.
  • the internal quantum efficiency is obtained by pure conversion of external energy injected as electrons (or holes) into the light emitting layer of the light emitting element. Rate is shown.
  • the external quantum efficiency is calculated based on the amount of this photon emitted to the outside of the light emitting element, and a part of the photon generated in the light emitting layer continues to be absorbed or reflected inside the light emitting element. In some cases, the external quantum efficiency is lower than the internal quantum efficiency because it is not emitted outside the light emitting device.
  • the measurement method of the external quantum efficiency is as follows. Using a voltage / current generator R6144 manufactured by ADVANTEST CORPORATION, a voltage at which the luminance of the device reached 1000 cd / m 2 was applied to cause the device to emit light. The spectral radiance in the visible light region was measured from the direction perpendicular to the light emitting surface using a TOPCON Spectroradiometer SR-3AR. Assuming that the light emitting surface is a complete diffusion surface, the number of photons at each wavelength is a value obtained by dividing the measured value of the spectral radiance of each wavelength component by the wavelength energy and multiplying by ⁇ .
  • the external quantum efficiency is the value obtained by dividing the total number of photons emitted from the device by the number of carriers injected into the device, where the number of carriers injected into the device is the value obtained by dividing the applied current value by the elementary charge.
  • HI is N 4, N 4 '- diphenyl -N 4, N 4' - bis (9-phenyl -9H- carbazol-3-yl) - [1,1'-biphenyl] -4, 4'-diamine
  • HAT-CN is 1,4,5,8,9,12-hexaazatriphenylene hexacarbonitrile
  • HT-1 is N-([1,1'-biphenyl] ] -4-yl) -9,9-dimethyl-N- (4- (9-phenyl-9H-carbazol-3-yl) phenyl) -9H-fluoren-2-amine
  • HT-2 is N, N-bis (4- (dibenzo [b, d] furan-4-yl) phenyl)-[1,1 ′: 4 ′, 1 ′ ′-terphenyl] -4-amine
  • ET-1 Is 4,6,8,10-tetraphenyl [1,4
  • Example 1 A 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate (manufactured by Opto Science Co., Ltd.) was used as a transparent support substrate, in which ITO formed to a thickness of 180 nm by sputtering was polished to 150 nm.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and HI, HAT-CN, HT-1, HT-2, H-1, compound (1A-2619), compound A molybdenum deposition boat containing (1C-2), ET-1 and ET-2, and an aluminum nitride deposition boat containing Liq, LiF, and Al, respectively, were mounted.
  • the following layers were formed sequentially on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, HI is heated to deposit 40 nm thick, and then HAT-CN is heated to 5 nm thick, Next, HT-1 is heated to deposit 15 nm thick, and then HT-2 is heated to 10 nm thick to form a four-hole layer. did.
  • H-1 of the host, the compound (1A-2619) of the dopant and the compound (1C-2) were simultaneously heated and vapor deposited to a film thickness of 20 nm to form a light emitting layer.
  • the weight ratio of compound (1A-2619) to compound (1C-2) is approximately 25 to 75
  • H-1 of the host compound (1A-2619) of the dopant and compound (1C-2)
  • the deposition rate was adjusted so that the weight ratio to .about.96) was approximately 96 to 4.
  • ET-1 is heated to deposit to a film thickness of 5 nm
  • ET-2 and Liq are simultaneously heated to deposit a film to a thickness of 25 nm to form a two-layer electron transport A layer was formed.
  • the deposition rate was adjusted so that the weight ratio of ET-2 to Liq was approximately 50 to 50.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then Al is heated to deposit 100 nm in thickness to form a cathode.
  • Al is heated to deposit 100 nm in thickness to form a cathode.
  • Example 2 An organic EL device was obtained by the method according to Example 1, except that the weight ratio of the compound (1A-2619) of the dopant to the compound (1C-2) was changed to about 50 to 50 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 1B).
  • Example 3 An organic EL device is obtained by the method according to Example 1, except that the weight ratio of the compound (1A-2619) to the compound (1C-2) of the dopant is changed to about 75 to 25 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 1B).
  • Comparative Example 1 An organic EL device was obtained by the method according to Example 1 except that the compound (1A-2619) was used alone as a dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 1B).
  • Comparative Example 2 An organic EL device was obtained by the method according to Example 1 except that the compound (1C-2) was used alone as a dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 1B).
  • Example 4 A 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate (manufactured by Opto Science Co., Ltd.) was used as a transparent support substrate, in which ITO formed to a thickness of 180 nm by sputtering was polished to 150 nm.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Choshu Sangyo Co., Ltd.), and HI, HAT-CN, HT-1, HT-2, H-1, compound (1A-2619), compound A tantalum evaporation boat containing (1B-101), ET-1 and ET-2, and an aluminum nitride evaporation boat containing Liq, LiF and Al, respectively, were mounted.
  • the following layers were formed sequentially on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, HI is heated to deposit 40 nm thick, and then HAT-CN is heated to 5 nm thick, Next, HT-1 is heated to deposit 15 nm thick, and then HT-2 is heated to 10 nm thick to form a four-hole layer. did. Further, H-1 of the host, the compound (1A-2619) of the dopant and the compound (1B-101) were simultaneously heated and vapor deposited to a film thickness of 20 nm to form a light emitting layer.
  • the weight ratio of compound (1A-2619) to compound (1B-101) is approximately 25 to 75
  • H-1 of the host compound (1A-2619) of the dopant and compound (1B-101)
  • the deposition rate was adjusted so that the weight ratio to .about.96) was approximately 96 to 4.
  • ET-1 is heated to deposit to a film thickness of 5 nm
  • ET-2 and Liq are simultaneously heated to deposit a film to a thickness of 25 nm to form a two-layer electron transport A layer was formed.
  • the deposition rate was adjusted so that the weight ratio of ET-2 to Liq was approximately 50 to 50.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then Al is heated to deposit 100 nm in thickness to form a cathode.
  • Al is heated to deposit 100 nm in thickness to form a cathode.
  • Example 5 An organic EL device was obtained by the method according to Example 4, except that the weight ratio of the compound (1A-2619) to the compound (1B-101) was changed to about 50 to 50 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at 1000 cd / m 2 emission were measured (Table 2B).
  • Example 6 An organic EL device was obtained by the method according to Example 4 except that the weight ratio of the compound (1A-2619) to the compound (1B-101) was changed to about 75 to 25 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at 1000 cd / m 2 emission were measured (Table 2B).
  • Comparative Example 3 An organic EL device was obtained by the method according to Example 4 except that the compound (1A-2619) was used alone as a dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at 1000 cd / m 2 emission were measured (Table 2B).
  • Comparative Example 4 An organic EL device was obtained by the method according to Example 4 except that the compound (1B-101) was used alone as a dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at 1000 cd / m 2 emission were measured (Table 2B).
  • Example 7 A 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate (manufactured by Opto Science Co., Ltd.) was used as a transparent support substrate, in which ITO formed to a thickness of 180 nm by sputtering was polished to 150 nm.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Choshu Sangyo Co., Ltd.), and HI, HAT-CN, HT-1, HT-2, H-1, compound (1A-2619), compound A tantalum evaporation boat containing (1A-2687), ET-1 and ET-2, and an aluminum nitride evaporation boat containing Liq, LiF and Al, respectively, were mounted.
  • the following layers were formed sequentially on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, HI is heated to deposit 40 nm thick, and then HAT-CN is heated to 5 nm thick, Next, HT-1 is heated to deposit 15 nm thick, and then HT-2 is heated to 10 nm thick to form a four-hole layer. did. Further, H-1 of the host, the compound (1A-2619) of the dopant and the compound (1A-2687) were simultaneously heated and vapor deposited to a film thickness of 20 nm to form a light emitting layer.
  • the weight ratio of the compound (1A-2619) to the compound (1A-2687) is approximately 25 to 75, and the host H-1, the compound of the dopant (1A-2619) and the compound (1A-2687)
  • the deposition rate was adjusted so that the weight ratio to .about.96) was approximately 96 to 4.
  • ET-1 is heated to deposit to a film thickness of 5 nm, and then ET-2 and Liq are simultaneously heated to deposit a film to a thickness of 25 nm to form a two-layer electron transport A layer was formed.
  • the deposition rate was adjusted so that the weight ratio of ET-2 to Liq was approximately 50 to 50.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then Al is heated to deposit 100 nm in thickness to form a cathode.
  • Al is heated to deposit 100 nm in thickness to form a cathode.
  • Example 8 An organic EL device was obtained by the method according to Example 7, except that the weight ratio of the compound (1A-2619) to the compound (1A-2687) was changed to about 50 to 50 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at a light emission of 1000 cd / m 2 were measured (Table 3B).
  • Example 9 An organic EL device was obtained by the method according to Example 7, except that the weight ratio of the compound (1A-2619) to the compound (1A-2687) was changed to about 75 to 25 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at a light emission of 1000 cd / m 2 were measured (Table 3B).
  • Comparative Example 5 An organic EL device was obtained by the method according to Example 7 except that the compound (1A-2619) was used alone as a dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at a light emission of 1000 cd / m 2 were measured (Table 3B).
  • Comparative Example 6 An organic EL device was obtained by the method according to Example 7 except that the compound (1A-2687) was used alone as a dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at a light emission of 1000 cd / m 2 were measured (Table 3B).
  • Example 10 A 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate (manufactured by Opto Science Co., Ltd.) was used as a transparent support substrate, in which ITO formed to a thickness of 180 nm by sputtering was polished to 150 nm.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Choshu Sangyo Co., Ltd.), and HI, HAT-CN, HT-1, HT-2, H-1, compound (1C-2), compound A tantalum evaporation boat containing (1B-101), ET-1 and ET-2, and an aluminum nitride evaporation boat containing Liq, LiF and Al, respectively, were mounted.
  • the following layers were formed sequentially on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, HI is heated to deposit 40 nm thick, and then HAT-CN is heated to 5 nm thick, Next, HT-1 is heated to deposit 15 nm thick, and then HT-2 is heated to 10 nm thick to form a four-hole layer. did. Further, H-1 of the host, the compound (1C-2) of the dopant and the compound (1B-101) were simultaneously heated and vapor deposited to a film thickness of 20 nm to form a light emitting layer.
  • the weight ratio of compound (1C-2) to compound (1B-101) is approximately 25 to 75
  • H-1 of the host compound (1C-2) of the dopant and compound (1B-101)
  • the deposition rate was adjusted so that the weight ratio to .about.96) was approximately 96 to 4.
  • ET-1 is heated to deposit to a film thickness of 5 nm
  • ET-2 and Liq are simultaneously heated to deposit a film to a thickness of 25 nm to form a two-layer electron transport A layer was formed.
  • the deposition rate was adjusted so that the weight ratio of ET-2 to Liq was approximately 50 to 50.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then Al is heated to deposit 100 nm in thickness to form a cathode.
  • Al is heated to deposit 100 nm in thickness to form a cathode.
  • Example 11 An organic EL device is obtained by the method according to Example 10 except that the weight ratio of the compound (1C-2) of the dopant to the compound (1B-101) is changed to about 50 to 50 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 4B).
  • Example 12 An organic EL device is obtained by the method according to Example 10 except that the weight ratio of the compound (1C-2) of the dopant to the compound (1B-101) is changed to about 75 to 25 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 4B).
  • Comparative Example 7 An organic EL device was obtained by the method according to Example 10 except that the compound (1C-2) was used alone as a dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 4B).
  • Comparative Example 8 An organic EL device was obtained by the method according to Example 10 except that the compound (1B-101) was used alone as a dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 4B).
  • H-2 is 2- (10-phenylanthracene-9-yl) naphtho [2,3-b] benzofuran, and the chemical structure is shown below.
  • Example 13 A 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate (manufactured by Opto Science Co., Ltd.) was used as a transparent support substrate, in which ITO formed to a thickness of 180 nm by sputtering was polished to 150 nm.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Choshu Sangyo Co., Ltd.), and HI, HAT-CN, HT-1, HT-2, H-2, compound (1A-2619), compound A tantalum evaporation boat containing (1C-2), ET-1 and ET-2, and an aluminum nitride evaporation boat containing Liq, LiF and Al, respectively, were mounted.
  • the following layers were formed sequentially on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, HI is heated to deposit 40 nm thick, and then HAT-CN is heated to 5 nm thick, Next, HT-1 is heated to deposit 15 nm thick, and then HT-2 is heated to 10 nm thick to form a four-hole layer. did. Further, the host H-2, the compound of the dopant (1A-2619) and the compound (1C-2) were simultaneously heated to form a light emitting layer by vapor deposition to a film thickness of 20 nm.
  • the weight ratio of compound (1A-2619) to compound (1C-2) is approximately 25 to 75, and the host H-2, dopant compound (1A-2619) and compound (1C-2) The deposition rate was adjusted so that the weight ratio to .about.96) was approximately 96 to 4.
  • ET-1 is heated to deposit to a film thickness of 5 nm, and then ET-2 and Liq are simultaneously heated to deposit a film to a thickness of 25 nm to form a two-layer electron transport A layer was formed.
  • the deposition rate was adjusted so that the weight ratio of ET-2 to Liq was approximately 50 to 50.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then Al is heated to deposit 100 nm in thickness to form a cathode.
  • Al is heated to deposit 100 nm in thickness to form a cathode.
  • Example 14 An organic EL device was obtained by the method according to Example 13, except that the weight ratio of the compound (1A-2619) to the compound (1C-2) was changed to about 50 to 50 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at 1000 cd / m 2 emission were measured (Table 5B).
  • Example 15 An organic EL device is obtained by the method according to Example 13 except that the weight ratio of the compound (1A-2619) to the compound (1C-2) of the dopant is changed to about 75 to 25 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at 1000 cd / m 2 emission were measured (Table 5B).
  • Comparative Example 9 An organic EL device was obtained by the method according to Example 13 except that the compound (1A-2619) was used alone as a dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at 1000 cd / m 2 emission were measured (Table 5B).
  • Comparative Example 10 An organic EL device was obtained by the method according to Example 13 except that the compound (1C-2) was used alone as a dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at 1000 cd / m 2 emission were measured (Table 5B).
  • Example 16 A 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate (manufactured by Opto Science Co., Ltd.) was used as a transparent support substrate, in which ITO formed to a thickness of 180 nm by sputtering was polished to 150 nm.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Choshu Sangyo Co., Ltd.), and HI, HAT-CN, HT-1, HT-2, H-2, compound (1A-2619), compound A tantalum evaporation boat containing (1C-2), ET-3 and ET-4, and an aluminum nitride evaporation boat containing Liq, LiF and Al, respectively, were mounted.
  • the following layers were formed sequentially on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, HI is heated to deposit 40 nm thick, and then HAT-CN is heated to 5 nm thick, Next, HT-1 is heated to deposit 15 nm thick, and then HT-2 is heated to 10 nm thick to form a four-hole layer. did. Further, the host H-2, the compound of the dopant (1A-2619) and the compound (1C-2) were simultaneously heated to form a light emitting layer by vapor deposition to a film thickness of 20 nm.
  • the weight ratio of compound (1A-2619) to compound (1C-2) is approximately 25 to 75, and the host H-2, dopant compound (1A-2619) and compound (1C-2) The deposition rate was adjusted so that the weight ratio to .about.96) was approximately 96 to 4.
  • ET-3 is heated to deposit to a film thickness of 5 nm, and then ET-4 and Liq are simultaneously heated to deposit to a film thickness of 25 nm, and electron transport consisting of two layers is performed. A layer was formed.
  • the deposition rate was adjusted so that the weight ratio of ET-4 to Liq was approximately 50 to 50.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then Al is heated to deposit 100 nm in thickness to form a cathode.
  • Al is heated to deposit 100 nm in thickness to form a cathode.
  • Example 17 An organic EL device was obtained by the method according to Example 16 except that the weight ratio of the compound (1A-2619) to the compound (1C-2) was changed to about 50 to 50 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at a light emission of 1000 cd / m 2 were measured (Table 6B).
  • Example 18 An organic EL device was obtained by the method according to Example 16 except that the weight ratio of the compound (1A-2619) to the compound (1C-2) was changed to about 75 to 25 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at a light emission of 1000 cd / m 2 were measured (Table 6B).
  • Comparative Example 11 An organic EL device was obtained by the method according to Example 16 except that the compound (1A-2619) was used alone as a dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at a light emission of 1000 cd / m 2 were measured (Table 6B).
  • Comparative Example 12 An organic EL device was obtained by the method according to Example 16 except that the compound (1C-2) was used alone as a dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at a light emission of 1000 cd / m 2 were measured (Table 6B).
  • Example 19 A 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate (manufactured by Opto Science Co., Ltd.) was used as a transparent support substrate, in which ITO formed to a thickness of 180 nm by sputtering was polished to 150 nm.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Choshu Sangyo Co., Ltd.), and HI, HAT-CN, HT-1, HT-2, H-2, compound (1B-1), compound A tantalum evaporation boat containing (1B-101), ET-1 and ET-2, and an aluminum nitride evaporation boat containing Liq, LiF and Al, respectively, were mounted.
  • the following layers were formed sequentially on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, HI is heated to deposit 40 nm thick, and then HAT-CN is heated to 5 nm thick, Next, HT-1 is heated to deposit 15 nm thick, and then HT-2 is heated to 10 nm thick to form a four-hole layer. did. Further, H-2 of the host, the compound (1B-1) of the dopant and the compound (1B-101) were simultaneously heated and vapor deposited to a film thickness of 20 nm to form a light emitting layer.
  • the weight ratio of compound (1B-1) to compound (1B-101) is approximately 25 to 75, and host H-2, dopant compound (1B-1) and compound (1B-101)
  • the deposition rate was adjusted so that the weight ratio to .about.96) was approximately 96 to 4.
  • ET-1 is heated to deposit to a film thickness of 5 nm, and then ET-2 and Liq are simultaneously heated to deposit a film to a thickness of 25 nm to form a two-layer electron transport A layer was formed.
  • the deposition rate was adjusted so that the weight ratio of ET-2 to Liq was approximately 50 to 50.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then Al is heated to deposit 100 nm in thickness to form a cathode.
  • Al is heated to deposit 100 nm in thickness to form a cathode.
  • Example 20 An organic EL device is obtained by the method according to Example 19 except that the weight ratio of the compound (1B-1) of the dopant to the compound (1B-101) is changed to about 50 to 50 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 7B).
  • Example 21 An organic EL device is obtained by the method according to Example 19 except that the weight ratio of the compound (1B-1) of the dopant to the compound (1B-101) is changed to about 75 to 25 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 7B).
  • Comparative Example 13 An organic EL device was obtained by the method according to Example 19 except that the compound (1B-1) was used alone as the dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 7B).
  • Comparative Example 14 An organic EL device was obtained by the method according to Example 19 except that the compound (1B-101) was used alone as the dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 7B).
  • Example 22 A 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate (manufactured by Opto Science Co., Ltd.) was used as a transparent support substrate, in which ITO formed to a thickness of 180 nm by sputtering was polished to 150 nm.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Choshu Sangyo Co., Ltd.), and HI, HAT-CN, HT-1, HT-2, H-2, compound (1C-2), compound A tantalum evaporation boat containing (1C-10), ET-1 and ET-2, and an aluminum nitride evaporation boat containing Liq, LiF and Al, respectively, were mounted.
  • the following layers were formed sequentially on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, HI is heated to deposit 40 nm thick, and then HAT-CN is heated to 5 nm thick, Next, HT-1 is heated to deposit 15 nm thick, and then HT-2 is heated to 10 nm thick to form a four-hole layer. did. Further, H-2 of the host, the compound (1C-2) of the dopant and the compound (1C-10) were simultaneously heated and evaporated to a film thickness of 20 nm to form a light emitting layer.
  • the weight ratio of compound (1C-2) to compound (1C-10) is approximately 25 to 75, and the host H-1, dopant compound (1C-2) and compound (1C-10) The deposition rate was adjusted so that the weight ratio to .about.96) was approximately 96 to 4.
  • ET-1 is heated to deposit to a film thickness of 5 nm, and then ET-2 and Liq are simultaneously heated to deposit a film to a thickness of 25 nm to form a two-layer electron transport A layer was formed.
  • the deposition rate was adjusted so that the weight ratio of ET-2 to Liq was approximately 50 to 50.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then Al is heated to deposit 100 nm in thickness to form a cathode.
  • Al is heated to deposit 100 nm in thickness to form a cathode.
  • Example 23 An organic EL device is obtained by the method according to Example 22 except that the weight ratio of the compound (1C-2) of the dopant to the compound (1C-10) is changed to about 50 to 50 when forming the light emitting layer.
  • the A DC voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at 1000 cd / m 2 emission were measured (Table 8B).
  • Example 24 An organic EL device is obtained by the method according to Example 22 except that the weight ratio of the compound (1C-2) of the dopant to the compound (1C-10) is changed to about 75 to 25 when forming the light emitting layer.
  • the A DC voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at 1000 cd / m 2 emission were measured (Table 8B).
  • Comparative Example 15 An organic EL device was obtained by the method according to Example 22 except that the compound (1C-2) was used alone as a dopant when forming the light emitting layer. A DC voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at 1000 cd / m 2 emission were measured (Table 8B).
  • Comparative Example 16 An organic EL device was obtained by the method according to Example 22 except that the compound (1C-10) was used alone as a dopant when forming the light emitting layer. A DC voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics and device life at 1000 cd / m 2 emission were measured (Table 8B).
  • Example 25 A 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate (manufactured by Opto Science Co., Ltd.) was used as a transparent support substrate, in which ITO formed to a thickness of 180 nm by sputtering was polished to 150 nm.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (made by Choshu Sangyo Co., Ltd.), and HI, HAT-CN, HT-1, HT-2, H-2, compound (1A-2619), compound A tantalum evaporation boat containing (1E-1), ET-1 and ET-2, and an aluminum nitride evaporation boat containing Liq, LiF and Al, respectively, were mounted.
  • the following layers were formed sequentially on the ITO film of the transparent support substrate.
  • the vacuum chamber is depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, HI is heated to deposit 40 nm thick, and then HAT-CN is heated to 5 nm thick, Next, HT-1 is heated to deposit 15 nm thick, and then HT-2 is heated to 10 nm thick to form a four-hole layer. did. Further, H-2 of the host, the compound (1A-2619) of the dopant and the compound (1E-1) were simultaneously heated and evaporated to a film thickness of 20 nm to form a light emitting layer.
  • the weight ratio of compound (1A-2619) to compound (1E-1) is approximately 25 to 75, and host H-2, dopant compound (1A-2619) and compound (1E-1)
  • the deposition rate was adjusted so that the weight ratio to .about.96) was approximately 96 to 4.
  • ET-1 is heated to deposit to a film thickness of 5 nm, and then ET-2 and Liq are simultaneously heated to deposit a film to a thickness of 25 nm to form a two-layer electron transport A layer was formed.
  • the deposition rate was adjusted so that the weight ratio of ET-2 to Liq was approximately 50 to 50.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • LiF is heated to deposit 1 nm in film thickness at a deposition rate of 0.01 to 0.1 nm / sec, and then Al is heated to deposit 100 nm in thickness to form a cathode.
  • Al is heated to deposit 100 nm in thickness to form a cathode.
  • Example 26 An organic EL device was obtained by the method according to Example 25 except that the weight ratio of the compound (1A-2619) to the compound (1E-1) was changed to about 50 to 50 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 9B).
  • Example 27 An organic EL device was obtained by the method according to Example 25 except that the weight ratio of the compound (1A-2619) to the compound (1E-1) was changed to about 75 to 25 when forming the light emitting layer.
  • the A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 9B).
  • Comparative Example 17 An organic EL device was obtained by the method according to Example 25 except that the compound (1A-2619) was used alone as a dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 9B).
  • Comparative Example 18 An organic EL device was obtained by the method according to Example 25 except that the compound (1E-1) was used alone as a dopant when forming the light emitting layer. A direct current voltage was applied with the ITO electrode as an anode and the LiF / Al electrode as a cathode, and the characteristics at the time of light emission at 1000 cd / m 2 and the device life were measured (Table 9B).
  • the light emitting layer contains two or more kinds of compounds in which a plurality of aromatic rings are linked by a boron atom and a nitrogen atom or an oxygen atom, etc., whereby quantum efficiency and lifetime characteristics are excellent.
  • An organic EL element can be provided.
  • organic electroluminescent device 101 substrate 102 anode 103 hole injection layer 104 hole transport layer 105 light emitting layer 106 electron transport layer 107 electron injection layer 108 cathode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】量子効率と寿命特性が優れた有機EL素子を提供する。 【解決手段】下記一般式(1)で表される多環芳香族化合物およびその多量体からなる化合物群の中から、ドーパントとして少なくとも2種類の化合物を含む発光層とした有機電界発光素子により上記課題を解決する。 (上記式(1)中、 A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、 XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは>C(-Ra)であり、前記>N-RのRは、置換されていてもよいアリール、置換されていてもよいヘテロアリールまたはアルキルであり、また、前記>N-RのRは連結基または単結合により前記A環、B環および/またはC環と結合していてもよく、前記>C(-Ra)のRaは、「-CH-Cn-12(n-1)+1(nは1以上)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルであり、そして、 式(1)で表される化合物または構造における少なくとも1つの水素は重水素で置換されていてもよい。)

Description

有機電界発光素子
 本発明は、ドーパント材料としての特定の化合物を2種類以上含む発光層を有する有機電界発光素子、これを用いた表示装置および照明装置に関する。
 従来、電界発光する発光素子を用いた表示装置は、省電力化や薄型化が可能なことから、種々研究され、さらに、有機材料から成る有機電界発光素子(以下、有機EL素子)は、軽量化や大型化が容易なことから活発に検討されてきた。特に、光の三原色の一つである青色などの発光特性を有する有機材料の開発、および最適な発光特性となる複数材料の組み合わせについては、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。
 有機EL素子は、陽極および陰極からなる一対の電極と、当該一対の電極間に配置され、有機化合物を含む一層または複数の層とからなる構造を有する。有機化合物を含む層には、発光層や、正孔、電子などの電荷を輸送または注入する電荷輸送/注入層などがあるが、これらの層に適当な種々の有機材料が開発されている。
 発光層用材料としては、例えばベンゾフルオレン系化合物などが開発されている(国際公開第2004/061047号公報)。また、正孔輸送材料としては、例えばトリフェニルアミン系化合物などが開発されている(特開2001-172232号公報)。また、電子輸送材料としては、例えばアントラセン系化合物などが開発されている(特開2005-170911号公報)。
 また、近年ではトリフェニルアミン誘導体を改良した材料も報告されている(国際公開第2012/118164号公報)。この材料は既に実用化されていたN,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン(TPD)を参考にして、トリフェニルアミンを構成する芳香環同士を連結することでその平面性を高めたことを特徴とする材料である。この文献では例えばNO連結系化合物(63頁の化合物1)の電荷輸送特性が評価されているが、NO連結系化合物以外の材料の製造方法については記載されておらず、また、連結する元素が異なれば化合物全体の電子状態が異なるため、NO連結系化合物以外の材料から得られる特性も未だ知られていない。このような化合物の例は他にも見られる(国際公開第2011/107186号公報)。例えば、三重項励起子のエネルギー(T1)が大きい共役構造を有する化合物は、より短い波長の燐光を発することができるため、青色の発光層用材料として有益である。
国際公開第2004/061047号公報 特開2001-172232号公報 特開2005-170911号公報 国際公開第2012/118164号公報 国際公開第2011/107186号公報
 上述するように、有機EL素子に用いられる材料としては種々の材料が開発されているが、さらに高い量子効率や長寿命の特性を有する有機EL素子を実現可能な材料、特に発光層用材料として優れた材料が望まれている。
 本発明者らは、上記課題を解決するため鋭意検討した結果、ホウ素原子と窒素原子または酸素原子などで複数の芳香族環を連結した化合物を2種類以上組み合わせて、発光層に含有させることで、発光層内のキャリアバランスを向上させ、量子効率と寿命に優れた有機EL素子が得られることを見出し、本発明を完成させた。
項1.
 陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層とを有する有機電界発光素子であって、
 前記発光層は、下記一般式(1)で表される多環芳香族化合物および下記一般式(1)で表される構造を複数有する多環芳香族化合物の多量体からなる化合物群の中から、ドーパントとして少なくとも2つの多環芳香族化合物および/または多量体を含む、有機電界発光素子。
Figure JPOXMLDOC01-appb-C000014
(上記式(1)中、
 A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
 XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは>C(-Ra)であり、前記>N-RのRは、置換されていてもよいアリール、置換されていてもよいヘテロアリールまたはアルキルであり、また、前記>N-RのRは連結基または単結合により前記A環、B環および/またはC環と結合していてもよく、前記>C(-Ra)のRaは、「-CH-Cn-12(n-1)+1(nは1以上)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルであり、そして、
 式(1)で表される化合物または構造における少なくとも1つの水素は重水素で置換されていてもよい。)
項2.
 前記多環芳香族化合物およびその多量体は、下記一般式(1A)~(1E)のいずれかで表される多環芳香族化合物および下記一般式(1A)~(1E)のいずれかで表される構造を複数有する多環芳香族化合物の多量体から選択される、項1に記載する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000015
(上記式(1A)~(1E)中、
 A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
 >N-RのRは独立して、置換されていてもよいアリール、置換されていてもよいヘテロアリールまたはアルキルであり、当該Rは連結基または単結合により前記A環、B環および/またはC環と結合していてもよく、
 >C(-Ra)のRaは、「-CH-Cn-12(n-1)+1(nは1以上)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルであり、そして、
 式(1A)~(1E)のいずれかで表される化合物または構造における少なくとも1つの水素は重水素で置換されていてもよい。)
項3.
 前記A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のジアリールアミノ、置換もしくは無置換のジヘテロアリールアミノ、置換もしくは無置換のアリールヘテロアリールアミノ、置換もしくは無置換のアルキル、置換もしくは無置換のアルコキシ、トリアルキルシリル、置換もしくは無置換のアリールオキシ、シアノまたはハロゲンで置換されていてもよく、
 前記>N-RのRは、アルキルで置換されていてもよいアリール、アルキルで置換されていてもよいヘテロアリールまたはアルキルであり、当該Rは-O-、-S-、-C(-R)-または単結合により前記A環、B環および/またはC環と結合していてもよく、前記-C(-R)-のRは水素またはアルキルであり、
 前記>C(-Ra)のRaは、「-CH-Cn-12(n-1)+1(nは1~6)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルであり、
 式(1A)~(1E)で表される化合物または構造における少なくとも1つの水素は重水素で置換されていてもよく、そして、
 多量体の場合には、式(1A)~(1E)で表される構造を2または3個有する2または3量体である、
 項2に記載する有機電界発光素子。
項4.
 前記一般式(1A)で表される多環芳香族化合物またはその多量体は、下記一般式(1A’)で表される多環芳香族化合物またはその多量体である、項2または3に記載する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000016
(上記式(1A’)中、
 R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、
 >N-RのRは独立して、炭素数6~12のアリール、炭素数2~15のヘテロアリールまたは炭素数1~6のアルキルであり、当該Rは-O-、-S-、-C(-R)-または単結合により前記a環、b環および/またはc環と結合していてもよく、前記-C(-R)-のRは炭素数1~6のアルキルであり、そして、
 式(1A’)で表される化合物またはその多量体における少なくとも1つの水素は重水素で置換されていてもよい。)
項5.
 上記式(1A’)中、
 R~R11は、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリールまたはジアリールアミノ(ただしアリールは炭素数6~12のアリール)であり、また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共に炭素数9~16のアリール環または炭素数6~15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は炭素数6~10のアリールで置換されていてもよく、
 >N-RのRは独立して、炭素数6~10のアリールであり、そして、
 式(1A’)で表される化合物またはその多量体における少なくとも1つの水素は重水素で置換されていてもよい、
 項4に記載する有機電界発光素子。
項6.
 上記式(1A’)で表される化合物が下記いずれかの構造式で表される化合物である、項4に記載する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000017
項7.
 前記一般式(1B)で表される多環芳香族化合物またはその多量体は、下記一般式(1B’)または式(1B”)で表される多環芳香族化合物またはその多量体である、項2または3に記載する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000018
(上記式(1B’)または式(1B”)中、
 R~Rは、それぞれ独立して、水素、アリール、ヘテロアリール、アルキル、アルコキシ、トリアルキルシリル、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、
 Rが複数の場合、隣接するR同士が結合してc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、アルキル、アルコキシ、トリアルキルシリル、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、そして、
 mは0~3の整数であり、nはそれぞれ独立して0~5の整数であり、pは0~4の整数である。)
項8.
 上記式(1B’)または式(1B”)中、
 Rは、それぞれ独立して、水素、炭素数6~30のアリールまたは炭素数1~24のアルキルであり、
 R~Rは、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキル、炭素数1~24のアルコキシ、炭素数1~4のアルキルを有するトリアルキルシリルまたは炭素数6~30のアリールオキシであり、これらにおける少なくとも1つの水素は炭素数6~16のアリール、炭素数2~25のヘテロアリールまたは炭素数1~18のアルキルで置換されていてもよく、そして、
 mは0~3の整数であり、nはそれぞれ独立して0~5の整数であり、pは0~2の整数である、
 項7に記載する有機電界発光素子。
項9.
 上記式(1B’)で表される化合物が下記構造式で表される化合物である、項7に記載する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000019
項10.
 前記一般式(1B)で表される多環芳香族化合物またはその多量体は、下記一般式(1B’)または式(1B’)で表される多環芳香族化合物またはその多量体である、項2または3に記載する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000020
(上記式(1B’)または式(1B’)中、
 R~Rは、それぞれ独立して、水素、アリール、ヘテロアリール、アルキル、アルコキシ、トリアルキルシリル、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、
 Rが複数の場合、隣接するR同士が結合してc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、アルキル、アルコキシ、トリアルキルシリル、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、そして、
 mは0~3の整数であり、nはそれぞれ独立して0~5の整数であり、pは0~4の整数である。)
項11.
 上記式(1B’)または式(1B’)中、
 R~Rは、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキル、炭素数1~24のアルコキシ、炭素数1~4のアルキルを有するトリアルキルシリルまたは炭素数6~30のアリールオキシであり、これらにおける少なくとも1つの水素は炭素数6~16のアリール、炭素数2~25のヘテロアリールまたは炭素数1~18のアルキルで置換されていてもよく、そして、
 mは0~3の整数であり、nはそれぞれ独立して0~5の整数であり、pは0~2の整数である、
 項10に記載する有機電界発光素子。
項12.
 上記式(1B’)で表される化合物が下記構造式で表される化合物である、項10に記載する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000021
項13.
 前記一般式(1C)で表される多環芳香族化合物またはその多量体は、下記一般式(1C’)または式(1C”)で表される多環芳香族化合物またはその多量体である、項2または3に記載する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000022
(上記式(1C’)または式(1C”)中、
 R~Rは、それぞれ独立して、水素、アリール、ヘテロアリール、アルキル、アルコキシ、トリアルキルシリル、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、
 Rが複数の場合、隣接するR同士が結合してc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、アルキル、アルコキシ、トリアルキルシリル、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、
 mは0~3の整数であり、nはそれぞれ独立して0~6の整数であり、pは0~4の整数であり、そして、
 >N-RのRは、炭素数6~12のアリール、炭素数2~15のヘテロアリールまたは炭素数1~6のアルキルである。)
項14.
 上記式(1C’)または式(1C”)中、
 Rは、それぞれ独立して、水素、炭素数6~30のアリールまたは炭素数1~24のアルキルであり、
 R~Rは、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキル、炭素数1~24のアルコキシ、炭素数1~4のアルキルを有するトリアルキルシリルまたは炭素数6~30のアリールオキシであり、これらにおける少なくとも1つの水素は炭素数6~16のアリール、炭素数2~25のヘテロアリールまたは炭素数1~18のアルキルで置換されていてもよく、
 mは0~3の整数であり、nはそれぞれ独立して0~6の整数であり、pは0~2の整数であり、そして、
 N-RのRは炭素数6~10のアリール、炭素数2~10のヘテロアリールまたは炭素数1~4のアルキルである、
 項13に記載する有機電界発光素子。
項15.
 上記式(1C”)で表される化合物が下記いずれかの構造式で表される化合物である、項13に記載する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000023
項16.
 前記一般式(1D)で表される多環芳香族化合物またはその多量体は、下記一般式(1D’)で表される多環芳香族化合物またはその多量体である、項2または3に記載する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000024
(上記式(1D’)中、
 R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、また、R~R11のうちの隣接する基同士は結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、
 Raは、「-CH-Cn-12(n-1)+1(nは1~6)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルであり、そして、
 多環芳香族化合物の多量体の場合には、式(1D’)で表される構造を2または3個有する2または3量体である。)
項17.
 上記式(1D’)中、
 R~R11は、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~24のアルキル、シアノまたはハロゲンであり、また、R~R11のうちの隣接する基同士は結合してa環、b環またはc環と共に炭素数9~16のアリール環または炭素数6~15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~24のアルキル、シアノまたはハロゲンで置換されていてもよく、そして、
 Raは、「-CH-Cn-12(n-1)+1(nは1~4)」で表される、メチレン基から始まる直鎖のアルキルである、
 項16に記載する有機電界発光素子。
項18.
 前記一般式(1E)で表される多環芳香族化合物またはその多量体は、下記一般式(1E’)で表される多環芳香族化合物またはその多量体である、項2または3に記載する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000025
(上記式(1E’)中、
 R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、また、R~R11のうちの隣接する基同士は結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、
 >N-RのRは、アリール、ヘテロアリールまたはアルキルであり、当該Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、
 Raは、「-CH-Cn-12(n-1)+1(nは1~6)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルであり、そして、
 多環芳香族化合物の多量体の場合には、式(1E’)で表される構造を2または3個有する2または3量体である。)
項19.
 上記式(1E’)中、
 R~R11は、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~24のアルキル、シアノまたはハロゲンであり、また、R~R11のうちの隣接する基同士は結合してa環、b環またはc環と共に炭素数9~16のアリール環または炭素数6~15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~24のアルキル、シアノまたはハロゲンで置換されていてもよく、
 >N-RのRは、炭素数6~30のアリール、炭素数2~30のヘテロアリール、または炭素数1~24のアルキルであり、これらにおける少なくとも1つの水素はシアノまたはハロゲンで置換されていてもよく、そして、
 Raは、「-CH-Cn-12(n-1)+1(nは1~4)」で表される、メチレン基から始まる直鎖のアルキルである、
 項18に記載する有機電界発光素子。
項20.
 上記式(1E’)で表される化合物が下記構造式で表される化合物である、項18に記載する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000026
項21.
 前記発光層が、前記少なくとも2つの多環芳香族化合物および/または多量体を0.1~30重量%含有する、項1~20のいずれかに記載の有機電界発光素子。
項22.
 前記発光層が、アントラセン誘導体、フルオレン誘導体およびジベンゾクリセン誘導体の中から選択される少なくとも1つを含有する、項1~21のいずれかに記載する有機電界発光素子。
項23.
 さらに、前記陰極と該発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、カルバゾール誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体およびキノリノール系金属錯体からなる群から選択される少なくとも1つを含有する、項1~22のいずれかに記載する有機電界発光素子。
項24.
 前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、項23に記載の有機電界発光素子。
項25.
 項1~24のいずれかに記載する有機電界発光素子を備えた表示装置。
項26.
 項1~24のいずれかに記載する有機電界発光素子を備えた照明装置。
 本発明の好ましい態様によれば、上記一般式(1)で表される多環芳香族化合物およびその多量体の中から2種類以上含有する発光層用材料を調製し、これを発光層に用いた有機EL素子を作製することで、量子効率および寿命が優れた有機EL素子を提供することができる。
本実施形態に係る有機EL素子を示す概略断面図である。
1.有機EL素子における特徴的な発光層
 本発明は、陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層とを有する有機EL素子であって、前記発光層は、下記一般式(1)で表される多環芳香族化合物および下記一般式(1)で表される構造を複数有する多環芳香族化合物の多量体からなる化合物群の中から、ドーパントとして少なくとも2つの多環芳香族化合物および/または多量体を含む、有機EL素子である。なお、式(1)における各符号は上述した定義と同じである。
Figure JPOXMLDOC01-appb-C000027
1-1.一般式(1)の多環芳香族化合物およびその多量体
 一般式(1)で表される多環芳香族化合物および一般式(1)で表される構造を複数有する多環芳香族化合物の多量体は基本的にはドーパントとして機能する。上記多環芳香族化合物およびその多量体は、好ましくは、下記一般式(1’)で表される多環芳香族化合物および下記一般式(1’)で表される構造を複数有する多環芳香族化合物の多量体である。
Figure JPOXMLDOC01-appb-C000028
 上記式(1’)中、
 R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、トリアルキルシリル、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、トリアルキルシリル、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、
 XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは>C(-Ra)であり、前記>N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリールまたは炭素数1~6のアルキルであり、また、前記>N-RのRは-O-、-S-、-C(-R)-または単結合により前記a環、b環および/またはc環と結合していてもよく、前記-C(-R)-のRは炭素数1~6のアルキルであり、前記>C(-Ra)のRaは、「-CH-Cn-12(n-1)+1(nは1以上)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルであり、そして、
 式(1’)で表される化合物における少なくとも1つの水素は重水素で置換されていてもよい。
 一般式(1)におけるA環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換基で置換されていてもよい。この置換基は、置換または無置換のアリール、置換または無置換のヘテロアリール、置換または無置換のジアリールアミノ、置換または無置換のジヘテロアリールアミノ、置換または無置換のアリールヘテロアリールアミノ(アリールとヘテロアリールを有するアミノ基)、置換または無置換のアルキル、置換または無置換のアルコキシ、トリアルキルシリル、置換または無置換のアリールオキシ、シアノまたはハロゲンが好ましい。これらの基が置換基を有する場合の置換基としては、アリール、ヘテロアリールまたはアルキルが挙げられる。また、上記アリール環またはヘテロアリール環は、中心元素B(ホウ素)、XおよびXから構成される一般式(1)中央の縮合2環構造(以下、この構造を「D構造」とも言う)と結合を共有する5員環または6員環を有することが好ましい。
 ここで、「縮合2環構造(D構造)」とは、一般式(1)の中央に示した、中心元素B(ホウ素)、XおよびXを含んで構成される2つの飽和炭化水素環が縮合した構造を意味する。また、「縮合2環構造と結合を共有する6員環」とは、例えば上記一般式(1’)で示すように前記D構造に縮合したa環(ベンゼン環(6員環))を意味する。また、「(A環である)アリール環またはヘテロアリール環がこの6員環を有する」とは、この6員環だけでA環が形成されるか、または、この6員環を含むようにこの6員環にさらに他の環などが縮合してA環が形成されることを意味する。言い換えれば、ここで言う「6員環を有する(A環である)アリール環またはヘテロアリール環」とは、A環の全部または一部を構成する6員環が、前記D構造に縮合していることを意味する。「B環(b環)」、「C環(c環)」、また「5員環」についても同様の説明が当てはまる。
 一般式(1)におけるA環(またはB環、C環)は、一般式(1’)におけるa環とその置換基R~R(またはb環とその置換基R~R11、c環とその置換基R~R)に対応する。すなわち、一般式(1’)は、一般式(1)のA~C環として「6員環を有するA~C環」が選択された構造に対応する。その意味で、一般式(1’)の各環を小文字のa~cで表した。
 一般式(1’)では、a環、b環およびc環の置換基R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよい。したがって、一般式(1’)で表される多環芳香族化合物は、a環、b環およびc環における置換基の相互の結合形態によって、下記式(1’-1)および式(1’-2)に示すように、化合物を構成する環構造が変化する。各式中のA’環、B’環およびC’環は、一般式(1)におけるそれぞれA環、B環およびC環に対応する。なお、式(1’-1)および式(1’-2)における各符号は式(1’)における定義と同じである。
Figure JPOXMLDOC01-appb-C000029
 上記式(1’-1)および式(1’-2)中のA’環、B’環およびC’環は、一般式(1’)で説明すれば、置換基R~R11のうちの隣接する基同士が結合して、それぞれa環、b環およびc環と共に形成したアリール環またはヘテロアリール環を示す(a環、b環またはc環に他の環構造が縮合してできた縮合環ともいえる)。なお、式では示してはいないが、a環、b環およびc環の全てがA’環、B’環およびC’環に変化した化合物もある。また、上記式(1’-1)および式(1’-2)から分かるように、例えば、b環のRとc環のR、b環のR11とa環のR、c環のRとa環のRなどは「隣接する基同士」には該当せず、これらが結合することはない。すなわち、「隣接する基」とは同一環上で隣接する基を意味する。
 上記式(1’-1)や式(1’-2)で表される化合物は、例えば後述する具体的化合物として列挙した式(1A-402)~(1-409)などで表されるような化合物に対応する。すなわち、例えばa環(またはb環またはc環)であるベンゼン環に対してベンゼン環、インドール環、ピロール環、ベンゾフラン環またはベンゾチオフェン環が縮合して形成されるA’環(またはB’環またはC’環)を有する化合物であり、形成されてできた縮合環A’(または縮合環B’または縮合環C’)はそれぞれナフタレン環、カルバゾール環、インドール環、ジベンゾフラン環またはジベンゾチオフェン環である。
 一般式(1)におけるXおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは>C(-Ra)である。前記>N-RのRは、置換されていてもよいアリール、置換されていてもよいヘテロアリールまたはアルキルであり、前記>N-RのRは連結基または単結合により前記A環、B環および/またはC環と結合していてもよく、連結基としては、-O-、-S-または-C(-R)-が好ましい。なお、前記「-C(-R)-」のRは水素またはアルキルである。前記>C(-Ra)のRaは、「-CH-Cn-12(n-1)+1(nは1以上)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルである。この説明は一般式(1’)におけるXおよびXでも同じである。
 ここで、一般式(1)における「>N-RのRは連結基または単結合により前記A環、B環および/またはC環と結合している」との規定は、一般式(1’)では「>N-RのRは-O-、-S-、-C(-R)-または単結合により前記a環、b環および/またはc環と結合している」との規定に対応する。
 この規定は、下記式(1’-3-1)で表される、XやXが縮合環B’および縮合環C’に取り込まれた環構造を有する化合物で表現できる。すなわち、例えば一般式(1’)におけるb環(またはc環)であるベンゼン環に対してX(またはX)を取り込むようにして他の環が縮合して形成されるB’環(またはC’環)を有する化合物である。この化合物は、例えば後述する具体的化合物として列挙した、式(1A-451)~(1A-462)で表されるような化合物および式(1A-1401)~(1A-1460)で表されるような化合物に対応し、形成されてできた縮合環B’(または縮合環C’)は例えばフェノキサジン環、フェノチアジン環またはアクリジン環である。
 また、上記規定は、下記式(1’-3-2)や式(1’-3-3)で表される、Xおよび/またはXが縮合環A’に取り込まれた環構造を有する化合物でも表現できる。すなわち、例えば一般式(1’)におけるa環であるベンゼン環に対してX(および/またはX)を取り込むようにして他の環が縮合して形成されるA’環を有する化合物である。この化合物は、例えば後述する具体的化合物として列挙した式(1A-471)~(1A-479)で表されるような化合物に対応し、形成されてできた縮合環A’は例えばフェノキサジン環、フェノチアジン環またはアクリジン環である。
 なお、式(1’-3-1)~式(1’-3-3)における各符号は式(1’)における定義と同じである。
Figure JPOXMLDOC01-appb-C000030
 >C(-Ra)のRaは、「-CH-Cn-12(n-1)+1(nは1以上)」で表される、メチレン基(-CH-)から始まる直鎖または分岐鎖のアルキルである。2つのRaは同一構造であって、一般式(1)におけるXまたはXとしての「>C(-Ra)」部分の中の「C(炭素)」は不斉炭素になることはない。nは1以上であって、好ましくはn=1~6であり、より好ましくはn=1~4であり、さらに好ましくはn=1~3であり、特に好ましくはn=1または2であり、最も好ましくはn=1(メチル基)である。Raとしてのアルキルの具体例については、詳細には後述するが、直鎖および分枝鎖のいずれでもよく、直鎖のアルキルが特に好ましい。Raはメチレン基(-CH-)から始まるアルキル基であるため、Raが分岐鎖アルキルの場合には、「>C(-Ra)」部分の中の「C(炭素)」に結合する炭素(すなわち1位の炭素)で分岐することはなく、2位以降の炭素から分岐し得る。例えば、Raとして「-CH-C(-CH」の分岐鎖アルキルはあり得るが、「-CH(-CH)-CH」の分岐鎖アルキルはあり得ない。このRaについての説明は一般式(1’)におけるRaでも同じである。
 一般式(1)のA環、B環およびC環である「アリール環」としては、例えば、炭素数6~30のアリール環が挙げられ、炭素数6~16のアリール環が好ましく、炭素数6~12のアリール環がより好ましく、炭素数6~10のアリール環が特に好ましい。なお、この「アリール環」は、一般式(1’)で規定された「R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共に形成されたアリール環」に対応し、また、a環(またはb環、c環)がすでに炭素数6のベンゼン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数9が下限の炭素数となる。
 具体的な「アリール環」としては、単環系であるベンゼン環、二環系であるビフェニル環、縮合二環系であるナフタレン環、三環系であるテルフェニル環(m-テルフェニル、o-テルフェニル、p-テルフェニル)、縮合三環系である、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、縮合四環系であるトリフェニレン環、ピレン環、ナフタセン環、縮合五環系であるペリレン環、ペンタセン環などが挙げられる。
 一般式(1)のA環、B環およびC環である「ヘテロアリール環」としては、例えば、炭素数2~30のヘテロアリール環が挙げられ、炭素数2~25のヘテロアリール環が好ましく、炭素数2~20のヘテロアリール環がより好ましく、炭素数2~15のヘテロアリール環がさらに好ましく、炭素数2~10のヘテロアリール環が特に好ましい。また、「ヘテロアリール環」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。なお、この「ヘテロアリール環」は、一般式(1’)で規定された「R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共に形成されたヘテロアリール環」に対応し、また、a環(またはb環、c環)がすでに炭素数6のベンゼン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数6が下限の炭素数となる。
 具体的な「ヘテロアリール環」としては、例えば、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラザン環、オキサジアゾール環、チアントレン環などが挙げられる。
 上記「アリール環」または「ヘテロアリール環」における少なくとも1つの水素は、第1の置換基である、置換または無置換の「アリール」、置換または無置換の「ヘテロアリール」、置換または無置換の「ジアリールアミノ」、置換または無置換の「ジヘテロアリールアミノ」、置換または無置換の「アリールヘテロアリールアミノ」、置換または無置換の「アルキル」、置換または無置換の「アルコキシ」、トリアルキルシリル、置換または無置換の「アリールオキシ」、シアノまたはハロゲンで置換されていてもよいが、この第1の置換基としての「アリール」や「ヘテロアリール」、「ジアリールアミノ」のアリール、「ジヘテロアリールアミノ」のヘテロアリール、「アリールヘテロアリールアミノ」のアリールとヘテロアリール、また「アリールオキシ」のアリールとしては上述した「アリール環」または「ヘテロアリール環」の一価の基が挙げられる。
 また第1の置換基としての「アルキル」としては、直鎖および分枝鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分枝鎖アルキルが挙げられる。炭素数1~18のアルキル(炭素数3~18の分枝鎖アルキル)が好ましく、炭素数1~12のアルキル(炭素数3~12の分枝鎖アルキル)がより好ましく、炭素数1~6のアルキル(炭素数3~6の分枝鎖アルキル)がさらに好ましく、炭素数1~4のアルキル(炭素数3~4の分枝鎖アルキル)が特に好ましい。
 具体的なアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどが挙げられる。
 また第1の置換基としての「アルコキシ」としては、例えば、炭素数1~24の直鎖または炭素数3~24の分枝鎖のアルコキシが挙げられる。炭素数1~18のアルコキシ(炭素数3~18の分枝鎖のアルコキシ)が好ましく、炭素数1~12のアルコキシ(炭素数3~12の分枝鎖のアルコキシ)がより好ましく、炭素数1~6のアルコキシ(炭素数3~6の分枝鎖のアルコキシ)がさらに好ましく、炭素数1~4のアルコキシ(炭素数3~4の分枝鎖のアルコキシ)が特に好ましい。
 具体的なアルコキシとしては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシなどが挙げられる。
 また第1の置換基としての「トリアルキルシリル」は、シリル基における3つの水素がそれぞれ独立してアルキルで置換された構造が挙げられ、アルキルとしては第1の置換基としての「アルキル」の欄で説明した基が挙げられる。置換するのに好ましいアルキルは、炭素数1~4のアルキルであり、具体的にはメチル、エチル、プロピル、i-プロピル、ブチル、sec-ブチル、t-ブチル、シクロブチルなどが挙げられる。
 具体的なトリアルキルシリルとしては、トリメチルシリル、トリエチルシリル、トリプロピルシリル、トリi-プロピルシリル、トリブチルシリル、トリsec-ブチルシリル、トリt-ブチルシリル、エチルジメチルシリル、プロピルジメチルシリル、i-プロピルジメチルシリル、ブチルジメチルシリル、sec-ブチルジメチルシリル、t-ブチルジメチルシリル、メチルジエチルシリル、プロピルジエチルシリル、i-プロピルジエチルシリル、ブチルジエチルシリル、sec-ブチルジエチルシリル、t-ブチルジエチルシリル、メチルジプロピルシリル、エチルジプロピルシリル、ブチルジプロピルシリル、sec-ブチルジプロピルシリル、t-ブチルジプロピルシリル、メチルジi-プロピルシリル、エチルジi-プロピルシリル、ブチルジi-プロピルシリル、sec-ブチルジi-プロピルシリル、t-ブチルジi-プロピルシリルなどが挙げられる。
 また第1の置換基としての「ハロゲン」は、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくは塩素である。
 第1の置換基である、置換または無置換の「アリール」、置換または無置換の「ヘテロアリール」、置換または無置換の「ジアリールアミノ」、置換または無置換の「ジヘテロアリールアミノ」、置換または無置換の「アリールヘテロアリールアミノ」、置換または無置換の「アルキル」、置換または無置換の「アルコキシ」、または、置換または無置換の「アリールオキシ」は、置換または無置換と説明されているとおり、それらにおける少なくとも1つの水素が第2の置換基で置換されていてもよい。この第2の置換基としては、例えば、アリール、ヘテロアリールまたはアルキルが挙げられ、それらの具体例は、上述した「アリール環」または「ヘテロアリール環」の一価の基、また第1の置換基としての「アルキル」の説明を参照することができる。また、第2の置換基としてのアリールやヘテロアリールには、それらにおける少なくとも1つの水素がフェニルなどのアリール(具体例は上述した基)やメチルなどのアルキル(具体例は上述した基)で置換された基も第2の置換基としてのアリールやヘテロアリールに含まれる。その一例としては、第2の置換基がカルバゾリル基の場合には、9位における少なくとも1つの水素がフェニルなどのアリールやメチルなどのアルキルで置換されたカルバゾリル基も第2の置換基としてのヘテロアリールに含まれる。
 一般式(1’)のR~R11におけるアリール、ヘテロアリール、ジアリールアミノのアリール、ジヘテロアリールアミノのヘテロアリール、アリールヘテロアリールアミノのアリールとヘテロアリール、またはアリールオキシのアリールとしては、一般式(1)で説明した「アリール環」または「ヘテロアリール環」の一価の基が挙げられる。また、R~R11におけるアルキルまたはアルコキシとしては、上述した一般式(1)の説明における第1の置換基としての「アルキル」や「アルコキシ」の説明を参照することができる。さらに、これらの基への置換基としてのアリール、ヘテロアリールまたはアルキルも同様である。また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成した場合の、これらの環への置換基であるヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシまたはアリールオキシ、および、さらなる置換基であるアリール、ヘテロアリールまたはアルキルについても同様である。
 一般式(1)のXおよびXにおける>N-RのRは上述した第2の置換基で置換されていてもよいアリール、ヘテロアリールまたはアルキルであり、アリールやヘテロアリールにおける少なくとも1つの水素は例えばアルキルで置換されていてもよい。このアリール、ヘテロアリールやアルキルとしては上述する基が挙げられる。特に炭素数6~10のアリール(例えばフェニル、ナフチルなど)、炭素数2~15のヘテロアリール(例えばカルバゾリルなど)、炭素数1~4のアルキル(例えばメチル、エチルなど)が好ましい。この説明は一般式(1’)におけるXおよびXでも同じである。
 一般式(1)における連結基である「-C(-R)-」のRは水素またはアルキルであるが、このアルキルとしては上述する基が挙げられる。特に炭素数1~4のアルキル(例えばメチル、エチルなど)が好ましい。この説明は一般式(1’)における連結基である「-C(-R)-」でも同じである。
 また、一般式(1)で表される単位構造を複数有する多環芳香族化合物の多量体、好ましくは、一般式(1’)で表される単位構造を複数有する多環芳香族化合物の多量体は、2~6量体が好ましく、2~3量体がより好ましく、2量体が特に好ましい。多量体は、一つの化合物の中に上記単位構造を複数有する形態であればよく、例えば、上記単位構造が単結合、炭素数1~3のアルキレン基、フェニレン基、ナフチレン基などの連結基で複数結合した形態に加えて、上記単位構造に含まれる任意の環(A環、B環またはC環、a環、b環またはc環)を複数の単位構造で共有するようにして結合した形態であってもよく、また、上記単位構造に含まれる任意の環(A環、B環またはC環、a環、b環またはc環)同士が縮合するようにして結合した形態であってもよい。
 このような多量体としては、例えば、下記式(1’-4)、式(1’-4-1)、式(1’-4-2)、式(1’-5-1)~式(1’-5-4)または式(1’-6)で表される多量体化合物が挙げられる。下記式(1’-4)で表される多量体化合物は、例えば後述する式(1A-423)で表されるような化合物に対応する。すなわち、一般式(1’)で説明すれば、a環であるベンゼン環を共有するようにして、複数の一般式(1’)で表される単位構造を一つの化合物中に有する多量体化合物である。また、下記式(1’-4-1)で表される多量体化合物は、一般式(1’)で説明すれば、a環であるベンゼン環を共有するようにして、二つの一般式(1’)で表される単位構造を一つの化合物中に有する多量体化合物である。また、下記式(1’-4-2)で表される多量体化合物は、例えば後述する式(1A-2666)で表されるような化合物に対応する。すなわち、一般式(1’)で説明すれば、a環であるベンゼン環を共有するようにして、三つの一般式(1’)で表される単位構造を一つの化合物中に有する多量体化合物である。また、下記式(1’-5-1)~式(1’-5-4)で表される多量体化合物は、一般式(1’)で説明すれば、b環(またはc環)であるベンゼン環を共有するようにして、複数の一般式(1’)で表される単位構造を一つの化合物中に有する多量体化合物である。また、下記式(1’-6)で表される多量体化合物は、例えば後述する式(1A-431)で表されるような化合物に対応する。すなわち、一般式(1’)で説明すれば、例えばある単位構造のb環(またはa環、c環)であるベンゼン環とある単位構造のb環(またはa環、c環)であるベンゼン環とが縮合するようにして、複数の一般式(1’)で表される単位構造を一つの化合物中に有する多量体化合物である。
 なお、式(1’-4)、式(1’-4-1)、式(1’-4-2)、式(1’-5-1)~式(1’-5-4)または式(1’-6)における各符号は式(1’)における定義と同じである。
Figure JPOXMLDOC01-appb-C000031
 多量体化合物は、式(1’-4)、式(1’-4-1)または式(1’-4-2)で表現される多量化形態と、式(1’-5-1)~式(1’-5-4)のいずれかまたは式(1’-6)で表現される多量化形態とが組み合わさった多量体であってもよく、式(1’-5-1)~式(1’-5-4)のいずれかで表現される多量化形態と、式(1’-6)で表現される多量化形態とが組み合わさった多量体であってもよく、式(1’-4)、式(1’-4-1)または式(1’-4-2)で表現される多量化形態と式(1’-5-1)~式(1’-5-4)のいずれかで表現される多量化形態と式(1’-6)で表現される多量化形態とが組み合わさった多量体であってもよい。
 また、一般式(1)または(1’)で表される多環芳香族化合物およびその多量体の化学構造中の水素は、その全てまたは一部が重水素であってもよい。
1-2.一般式(1A)~(1E)の多環芳香族化合物およびその多量体
 本発明で使用する多環芳香族化合物およびその多量体の具体的な例としては、下記一般式(1A)~(1E)のいずれかで表される多環芳香族化合物および下記一般式(1A)~(1E)のいずれかで表される構造を複数有する多環芳香族化合物の多量体が挙げられる。下記式(1A)~(1E)における各符号は上述した定義と同じである。
Figure JPOXMLDOC01-appb-C000032
 本発明では、発光層用材料におけるドーパントとして、2種類以上の上記多環芳香族化合物および/またはその単量体を含むが、この組合せとしては、(組合せ1)式(1A)の化合物およびその多量体の中から少なくとも2つの化合物、(組合せ2)式(1B)の化合物およびその多量体の中から少なくとも2つの化合物、(組合せ3)式(1C)の化合物およびその多量体の中から少なくとも2つの化合物、(組合せ4)式(1D)の化合物およびその多量体の中から少なくとも2つの化合物、(組合せ5)式(1E)の化合物およびその多量体の中から少なくとも2つの化合物、の組合せが挙げられる。
 また、(組合せ6)式(1A)の化合物およびその多量体の中から少なくとも1つの化合物と、式(1B)の化合物およびその多量体の中から少なくとも1つの化合物、(組合せ7)式(1A)の化合物およびその多量体の中から少なくとも1つの化合物と、式(1C)の化合物およびその多量体の中から少なくとも1つの化合物、(組合せ8)式(1A)の化合物およびその多量体の中から少なくとも1つの化合物と、式(1D)の化合物およびその多量体の中から少なくとも1つの化合物、(組合せ9)式(1A)の化合物およびその多量体の中から少なくとも1つの化合物と、式(1E)の化合物およびその多量体の中から少なくとも1つの化合物、の組合せが挙げられる。
 また、(組合せ10)式(1B)の化合物およびその多量体の中から少なくとも1つの化合物と、式(1C)の化合物およびその多量体の中から少なくとも1つの化合物、(組合せ11)式(1B)の化合物およびその多量体の中から少なくとも1つの化合物と、式(1D)の化合物およびその多量体の中から少なくとも1つの化合物、(組合せ12)式(1B)の化合物およびその多量体の中から少なくとも1つの化合物と、式(1E)の化合物およびその多量体の中から少なくとも1つの化合物、の組合せが挙げられる。
 また、(組合せ13)式(1C)の化合物およびその多量体の中から少なくとも1つの化合物と、式(1D)の化合物およびその多量体の中から少なくとも1つの化合物、(組合せ14)式(1C)の化合物およびその多量体の中から少なくとも1つの化合物と、式(1E)の化合物およびその多量体の中から少なくとも1つの化合物、の組合せが挙げられる。
 また、(組合せ15)式(1D)の化合物およびその多量体の中から少なくとも1つの化合物と、式(1E)の化合物およびその多量体の中から少なくとも1つの化合物、の組合せが挙げられる。
 上記式(1A)~(1E)における各符号は上述した定義と同じであるが、好ましくは、式(1A)~(1E)において、
 A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のジアリールアミノ、置換もしくは無置換のジヘテロアリールアミノ、置換もしくは無置換のアリールヘテロアリールアミノ、置換もしくは無置換のアルキル、置換もしくは無置換のアルコキシ、トリアルキルシリル、置換もしくは無置換のアリールオキシ、シアノまたはハロゲンで置換されていてもよく、
 >N-RのRは独立して、アルキルで置換されていてもよいアリール、アルキルで置換されていてもよいヘテロアリールまたはアルキルであり、当該Rは-O-、-S-、-C(-R)-または単結合により前記A環、B環および/またはC環と結合していてもよく、前記-C(-R)-のRは水素またはアルキルであり、
 >C(-Ra)のRaは、「-CH-Cn-12(n-1)+1(nは1~6)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルであり、
 式(1A)~(1E)で表される化合物または構造における少なくとも1つの水素は重水素で置換されていてもよく、そして、
 多量体の場合には、式(1A)~(1E)で表される構造を2または3個有する2または3量体である。
 式(1A)~(1E)のいずれかで表される多環芳香族化合物およびその多量体については、上述した式(1)における各符号の説明を引用することができるが、以下に各式についてそれぞれ説明する。
1-2(1).一般式(1A)の多環芳香族化合物およびその多量体
 一般式(1A)で表される多環芳香族化合物および一般式(1A)で表される構造を複数有する多環芳香族化合物の多量体は以下のとおりであり、好ましくは、下記一般式(1A’)で表される多環芳香族化合物および下記一般式(1A’)で表される構造を複数有する多環芳香族化合物の多量体である。
Figure JPOXMLDOC01-appb-C000033
 一般式(1A)におけるA環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換基で置換されていてもよい。この置換基は、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のジアリールアミノ、置換もしくは無置換のジヘテロアリールアミノ、置換もしくは無置換のアリールヘテロアリールアミノ(アリールとヘテロアリールを有するアミノ基)、置換もしくは無置換のアルキル、置換もしくは無置換のアルコキシ、置換もしくは無置換のアリールオキシ、シアノまたはハロゲンが好ましい。これらの基が置換基を有する場合の置換基としては、アリール、ヘテロアリールまたはアルキルが挙げられる。また、上記アリール環またはヘテロアリール環は、中心元素B(ホウ素)および左右の>N-Rから構成される一般式(1A)中央の縮合2環構造(以下、この構造を「D構造」とも言う)と結合を共有する5員環または6員環を有することが好ましい。
 ここで、「縮合2環構造(D構造)」とは、一般式(1A)の中央に示した、中心元素B(ホウ素)および左右の>N-Rを含んで構成される2つの飽和炭化水素環が縮合した構造を意味する。また、「縮合2環構造と結合を共有する6員環」とは、例えば上記一般式(1A’)で示すように前記D構造に縮合したa環(ベンゼン環(6員環))を意味する。また、「(A環である)アリール環またはヘテロアリール環がこの6員環を有する」とは、この6員環だけでA環が形成されるか、または、この6員環を含むようにこの6員環にさらに他の環などが縮合してA環が形成されることを意味する。言い換えれば、ここで言う「6員環を有する(A環である)アリール環またはヘテロアリール環」とは、A環の全部または一部を構成する6員環が、前記D構造に縮合していることを意味する。「B環(b環)」、「C環(c環)」、また「5員環」についても同様の説明が当てはまる。
 一般式(1A)におけるA環(またはB環、C環)は、一般式(1A’)におけるa環とその置換基R~R(またはb環とその置換基R~R11、c環とその置換基R~R)に対応する。すなわち、一般式(1A’)は、一般式(1A)のA~C環として「6員環を有するA~C環」が選択された構造に対応する。その意味で、一般式(1A’2)の各環を小文字のa~cで表した。
 一般式(1A’)では、a環、b環およびc環の置換基R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよい。したがって、一般式(1A’)で表される多環芳香族化合物は、a環、b環およc環における置換基の相互の結合形態によって、下記式(1A’-1)および式(1A’-2)に示すように、化合物を構成する環構造が変化する。各式中のA’環、B’環およびC’環は、一般式(1A)におけるそれぞれA環、B環およびC環に対応する。なお、式(1A’-1)および式(1A’-2)における各符号は式(1A)における定義と同じである。
Figure JPOXMLDOC01-appb-C000034
 上記式(1A’-1)および式(1A’-2)中のA’環、B’環およびC’環は、一般式(1A’)で説明すれば、置換基R~R11のうちの隣接する基同士が結合して、それぞれa環、b環およびc環と共に形成したアリール環またはヘテロアリール環を示す(a環、b環またはc環に他の環構造が縮合してできた縮合環ともいえる)。なお、式では示してはいないが、a環、b環およびc環の全てがA’環、B’環およびC’環に変化した化合物もある。また、上記式(1A’-1)および式(1A’-2)から分かるように、例えば、b環のRとc環のR、b環のR11とa環のR、c環のRとa環のRなどは「隣接する基同士」には該当せず、これらが結合することはない。すなわち、「隣接する基」とは同一環上で隣接する基を意味する。
 上記式(1A’-1)や式(1A’-2)で表される化合物は、例えばa環(またはb環またはc環)であるベンゼン環に対してベンゼン環、インドール環、ピロール環、ベンゾフラン環またはベンゾチオフェン環が縮合して形成されるA’環(またはB’環またはC’環)を有する化合物であり、形成されてできた縮合環A’(または縮合環B’または縮合環C’)はそれぞれナフタレン環、カルバゾール環、インドール環、ジベンゾフラン環またはジベンゾチオフェン環である。
 一般式(1A)における>N-RのRは独立して、置換されていてもよいアリール、置換されていてもよいヘテロアリールまたはアルキルであり、前記>N-RのRは連結基または単結合により前記A環、B環および/またはC環と結合していてもよく、連結基としては、-O-、-S-または-C(-R)-が好ましい。なお、前記「-C(-R)-」のRは水素またはアルキルである。この説明は一般式(1A’)における>N-Rでも同じである。
 ここで、一般式(1A)における「>N-RのRは連結基または単結合により前記A環、B環および/またはC環と結合している」との規定は、一般式(1A’)では「>N-RのRは-O-、-S-、-C(-R)-または単結合により前記a環、b環および/またはc環と結合している」との規定に対応する。
 この規定は、下記式(1A’-3-1)で表される、Nが縮合環B’および縮合環C’に取り込まれた環構造を有する化合物で表現できる。すなわち、例えば一般式(1A’)におけるb環(またはc環)であるベンゼン環に対してNを取り込むようにして他の環が縮合して形成されるB’環(またはC’環)を有する化合物である。形成された縮合環B’(または縮合環C’)は例えばフェノキサジン環、フェノチアジン環またはアクリジン環である。
 また、上記規定は、下記式(1A’-3-2)や式(1A’-3-3)で表される、Nが縮合環A’に取り込まれた環構造を有する化合物でも表現できる。すなわち、例えば一般式(1A’)におけるa環であるベンゼン環に対してNを取り込むようにして他の環が縮合して形成されるA’環を有する化合物である。形成された縮合環A’は例えばフェノキサジン環、フェノチアジン環またはアクリジン環である。なお、式(1A’-3-1)~式(1A’-3-3)における各符号は式(1A’)における定義と同じである。
Figure JPOXMLDOC01-appb-C000035
 一般式(1A)のA環、B環およびC環である「アリール環」としては、例えば、炭素数6~30のアリール環が挙げられ、炭素数6~16のアリール環が好ましく、炭素数6~12のアリール環がより好ましく、炭素数6~10のアリール環が特に好ましい。なお、この「アリール環」は、一般式(1A’)で規定された「R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共に形成されたアリール環」に対応し、また、a環(またはb環、c環)がすでに炭素数6のベンゼン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数9が下限の炭素数となる。
 具体的な「アリール環」としては、単環系であるベンゼン環、二環系であるビフェニル環、縮合二環系であるナフタレン環、三環系であるテルフェニル環(m-テルフェニル、o-テルフェニル、p-テルフェニル)、縮合三環系である、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、縮合四環系であるトリフェニレン環、ピレン環、ナフタセン環、縮合五環系であるペリレン環、ペンタセン環などが挙げられる。
 一般式(1A)のA環、B環およびC環である「ヘテロアリール環」としては、例えば、炭素数2~30のヘテロアリール環が挙げられ、炭素数2~25のヘテロアリール環が好ましく、炭素数2~20のヘテロアリール環がより好ましく、炭素数2~15のヘテロアリール環がさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、「ヘテロアリール環」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。なお、この「ヘテロアリール環」は、一般式(1A’)で規定された「R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共に形成されたヘテロアリール環」に対応し、また、a環(またはb環、c環)がすでに炭素数6のベンゼン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数6が下限の炭素数となる。
 具体的な「ヘテロアリール環」としては、例えば、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラザン環、オキサジアゾール環、チアントレン環などが挙げられる。
 上記「アリール環」または「ヘテロアリール環」における少なくとも1つの水素は、第1の置換基である、置換または無置換の「アリール」、置換または無置換の「ヘテロアリール」、置換または無置換の「ジアリールアミノ」、置換または無置換の「ジヘテロアリールアミノ」、置換または無置換の「アリールヘテロアリールアミノ」、置換または無置換の「アルキル」、置換または無置換の「アルコキシ」、または、置換または無置換の「アリールオキシ」で置換されていてもよいが、この第1の置換基としての「アリール」や「へテルアリール」、「ジアリールアミノ」のアリール、「ジヘテロアリールアミノ」のヘテロアリール、「アリールヘテロアリールアミノ」のアリールとヘテロアリール、また「アリールオキシ」のアリールとしては上述した「アリール環」または「ヘテロアリール環」の一価の基が挙げられる。
 また第1の置換基としての「アルキル」としては、直鎖および分枝鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分枝鎖アルキルが挙げられる。炭素数1~18のアルキル(炭素数3~18の分枝鎖アルキル)が好ましく、炭素数1~12のアルキル(炭素数3~12の分枝鎖アルキル)がより好ましく、炭素数1~6のアルキル(炭素数3~6の分枝鎖アルキル)がさらに好ましく、炭素数1~4のアルキル(炭素数3~4の分枝鎖アルキル)が特に好ましい。
 具体的なアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどが挙げられる。
 また第1の置換基としての「アルコキシ」としては、例えば、炭素数1~24の直鎖または炭素数3~24の分枝鎖のアルコキシが挙げられる。炭素数1~18のアルコキシ(炭素数3~18の分枝鎖のアルコキシ)が好ましく、炭素数1~12のアルコキシ(炭素数3~12の分枝鎖のアルコキシ)がより好ましく、炭素数1~6のアルコキシ(炭素数3~6の分枝鎖のアルコキシ)がさらに好ましく、炭素数1~4のアルコキシ(炭素数3~4の分枝鎖のアルコキシ)が特に好ましい。
 具体的なアルコキシとしては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシなどが挙げられる。
 また第1の置換基としての「ハロゲン」は、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくは塩素である。
 第1の置換基である、置換または無置換の「アリール」、置換または無置換の「ヘテロアリール」、置換または無置換の「ジアリールアミノ」、置換または無置換の「ジヘテロアリールアミノ」、置換または無置換の「アリールヘテロアリールアミノ」、置換または無置換の「アルキル」、置換または無置換の「アルコキシ」、または、置換または無置換の「アリールオキシ」は、置換または無置換と説明されているとおり、それらにおける少なくとも1つの水素が第2の置換基で置換されていてもよい。この第2の置換基としては、例えば、アリール、ヘテロアリールまたはアルキルが挙げられ、それらの具体例は、上述した「アリール環」または「ヘテロアリール環」の一価の基、また第1の置換基としての「アルキル」の説明を参照することができる。また、第2の置換基としてのアリールやヘテロアリールには、それらにおける少なくとも1つの水素がフェニルなどのアリール(具体例は上述した基)やメチルなどのアルキル(具体例は上述した基)で置換された基も第2の置換基としてのアリールやヘテロアリールに含まれる。その一例としては、第2の置換基がカルバゾリル基の場合には、9位における少なくとも1つの水素がフェニルなどのアリールやメチルなどのアルキルで置換されたカルバゾリル基も第2の置換基としてのヘテロアリールに含まれる。
 一般式(1A’)のR~R11におけるアリール、へテルアリール、ジアリールアミノのアリール、ジヘテロアリールアミノのヘテロアリール、アリールヘテロアリールアミノのアリールとヘテロアリール、またはアリールオキシのアリールとしては、一般式(1A)で説明した「アリール環」または「ヘテロアリール環」の一価の基が挙げられる。また、R~R11におけるアルキルまたはアルコキシとしては、上述した一般式(1A)の説明における第1の置換基としての「アルキル」や「アルコキシ」の説明を参照することができる。さらに、これらの基への置換基としてのアリール、ヘテロアリールまたはアルキルも同様である。また、また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成した場合の、これらの環への置換基であるヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシまたはアリールオキシ、および、さらなる置換基であるアリール、ヘテロアリールまたはアルキルについても同様である。
 一般式(1A)の>N-RのRは上述した第2の置換基で置換されていてもよいアリール、ヘテロアリールまたはアルキルであり、アリールやヘテロアリールにおける少なくとも1つの水素は例えばアルキルで置換されていてもよい。このアリール、ヘテロアリールやアルキルとしては上述する基が挙げられる。特に炭素数6~10のアリール(例えばフェニル、ナフチルなど)、炭素数2~15のヘテロアリール(例えばカルバゾリルなど)、炭素数1~4のアルキル(例えばメチル、エチルなど)が好ましい。この説明は一般式(1A’)における>N-RのRでも同じである。
 一般式(1A)における連結基である「-C(-R)-」のRは水素またはアルキルであるが、このアルキルとしては上述する基が挙げられる。特に炭素数1~4のアルキル(例えばメチル、エチルなど)が好ましい。この説明は一般式(1A’)における連結基である「-C(-R)-」でも同じである。
 また、発光層には、一般式(1A)で表される単位構造を複数有する多環芳香族化合物の多量体、好ましくは、一般式(1A’)で表される単位構造を複数有する多環芳香族化合物の多量体が含まれてもよい。多量体は、2~6量体が好ましく、2~3量体がより好ましく、2量体が特に好ましい。多量体は、一つの化合物の中に上記単位構造を複数有する形態であればよく、例えば、上記単位構造が単結合、炭素数1~3のアルキレン基、フェニレン基、ナフチレン基などの連結基で複数結合した形態に加えて、上記単位構造に含まれる任意の環(A環、B環またはC環、a環、b環またはc環)を複数の単位構造で共有するようにして結合した形態であってもよく、また、上記単位構造に含まれる任意の環(A環、B環またはC環、a環、b環またはc環)同士が縮合するようにして結合した形態であってもよい。
 このような多量体としては、例えば、下記式(1A’-4)、式(1A’-4-1)、式(1A’-4-2)、式(1A’-5-1)~式(1A’-5-4)または式(1A’-6)で表される多量体化合物が挙げられる。下記式(1A’-4)は2量体化合物、式(1A’-4-1)は2量体化合物、式(1A’-4-2)は3量体化合物、式(1A’-5-1)は2量体化合物、式(1A’-5-2)は2量体化合物、式(1A’-5-3)は2量体化合物、式(1A’-5-4)は3量体化合物、式(1A’-6)は2量体化合物である。下記式(1A’-4)で表される多量体化合物は、一般式(1A’)で説明すれば、a環であるベンゼン環を共有するようにして、複数の一般式(1A’)で表される単位構造を一つの化合物中に有する多量体化合物である。また、下記式(1A’-4-1)で表される多量体化合物は、一般式(1A’)で説明すれば、a環であるベンゼン環を共有するようにして、二つの一般式(1A’)で表される単位構造を一つの化合物中に有する多量体化合物である。また、下記式(1A’-4-2)で表される多量体化合物は、一般式(1A’)で説明すれば、a環であるベンゼン環を共有するようにして、三つの一般式(1A’)で表される単位構造を一つの化合物中に有する多量体化合物である。また、下記式(1A’-5-1)~式(1A’-5-4)で表される多量体化合物は、一般式(1A’)で説明すれば、b環(またはc環)であるベンゼン環を共有するようにして、複数の一般式(1A’)で表される単位構造を一つの化合物中に有する多量体化合物である。また、下記式(1A’-6)で表される多量体化合物は、一般式(1A’)で説明すれば、例えばある単位構造のb環(またはa環、c環)であるベンゼン環とある単位構造のb環(またはa環、c環)であるベンゼン環とが縮合するようにして、複数の一般式(1A’)で表される単位構造を一つの化合物中に有する多量体化合物である。なお、式(1A’-4)、式(1A’-4-1)、式(1A’-4-2)、式(1A’-5-1)~式(1A’-5-4)および式(1A’-6)における各符号は式(1A’)における定義と同じである。
Figure JPOXMLDOC01-appb-C000036
 多量体化合物は、式(1A’-4)、式(1A’-4-1)または式(1A’-4-2)で表現される多量化形態と、式(1A’-5-1)~式(1A’-5-4)のいずれかまたは式(1A’-6)で表現される多量化形態とが組み合わさった多量体であってもよく、式(1A’-5-1)~式(1A’-5-4)のいずれかで表現される多量化形態と、式(1A’)で表現される多量化形態とが組み合わさった多量体であってもよく、式(1A’)、式(1A’-4-1)または式(1A’-4-2)で表現される多量化形態と式(1A’-5-1)~式(1A’-5-4)のいずれかで表現される多量化形態と式(1A’-6)で表現される多量化形態とが組み合わさった多量体であってもよい。
 また、一般式(1A)または(1A’)で表される多環芳香族化合物およびその多量体の化学構造中の水素は、その全てまたは一部が重水素であってもよい。
 また、一般式(1A)または(1A’)で表される多環芳香族化合物およびその多量体の化学構造中の水素は、その全てまたは一部がシアノまたはハロゲンであってもよい。例えば、式(1A)においては、A環、B環、C環(A~C環はアリール環またはヘテロアリール環)、A~C環への置換基、ならびに、>N-RにおけるR(=アルキル、アリール)における水素がシアノまたはハロゲンで置換されうるが、これらの中でもアリールやヘテロアリールにおける全てまたは一部の水素がシアノまたはハロゲンで置換された態様が挙げられる。ハロゲンは、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくは塩素である。
 一般式(1A)で表される多環芳香族化合物およびその多量体のさらに具体的な例としては、下記構造式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
 また、多環芳香族化合物およびその多量体は、A環、B環およびC環(a環、b環およびc環)の少なくとも1つにおける、中心元素B(ホウ素)に対するパラ位にフェニルオキシ基、カルバゾリル基またはジフェニルアミノ基を導入することで、T1エネルギーの向上(およそ0.01~0.1eV向上)が期待できる。特に、B(ホウ素)に対するパラ位にフェニルオキシ基を導入することで、A環、B環およびC環(a環、b環およびc環)であるベンゼン環上のHOMOがよりホウ素に対するメタ位に局在化し、LUMOがホウ素に対するオルトおよびパラ位に局在化するため、T1エネルギーの向上が特に期待できる。
 このような具体例としては、例えば、下記式(1A-4501)~(1A-4522)で表される化合物が挙げられる。
 なお、式中のRはアルキルであり、直鎖および分枝鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分枝鎖アルキルが挙げられる。炭素数1~18のアルキル(炭素数3~18の分枝鎖アルキル)が好ましく、炭素数1~12のアルキル(炭素数3~12の分枝鎖アルキル)がより好ましく、炭素数1~6のアルキル(炭素数3~6の分枝鎖アルキル)がさらに好ましく、炭素数1~4のアルキル(炭素数3~4の分枝鎖アルキル)が特に好ましい。また、Rとしては他にフェニルが挙げられる。
 また、「PhO-」はフェニルオキシ基であり、このフェニルは直鎖または分枝鎖のアルキルで置換されていてもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分枝鎖アルキル、炭素数1~18のアルキル(炭素数3~18の分枝鎖アルキル)、炭素数1~12のアルキル(炭素数3~12の分枝鎖アルキル)、炭素数1~6のアルキル(炭素数3~6の分枝鎖アルキル)、炭素数1~4のアルキル(炭素数3~4の分枝鎖アルキル)で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000054
 また、多環芳香族化合物およびその多量体の具体的な例としては、上述した化合物において、化合物中の1個または複数個の芳香環における少なくとも1つの水素が1個または複数個のアルキルやアリールで置換された化合物が挙げられ、より好ましくは1~2個の炭素数1~12のアルキルや炭素数6~10のアリールで置換された化合物が挙げられる。
 具体的には、以下の化合物が挙げられる。下記式中のRはそれぞれ独立して炭素数1~12のアルキルまたは炭素数6~10のアリール、好ましくは炭素数1~4のアルキルまたはフェニルであり、nはそれぞれ独立して0~2、好ましくは1である。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 また、多環芳香族化合物およびその多量体の具体的な例としては、化合物中の1個または複数個のフェニル基または1個のフェニレン基における少なくとも1つの水素が1個または複数個の炭素数1~4のアルキル、好ましくは炭素数1~3のアルキル(好ましくは1個または複数個のメチル基)で置換された化合物が挙げられ、より好ましくは、1個のフェニル基のオルト位における水素(2箇所のうち2箇所とも、好ましくはいずれか一箇所)または1個のフェニレン基のオルト位における水素(最大4箇所のうち4箇所とも、好ましくはいずれか1箇所)がメチル基で置換された化合物が挙げられる。
 化合物中の末端のフェニル基やp-フェ二レン基のオルト位における少なくとも1つの水素をメチル基などで置換することにより、隣り合う芳香環同士が直交しやすくなって共役が弱まる結果、三重項励起エネルギー(E)を高めることが可能となる。
1-2(2).一般式(1B)または(1C)の多環芳香族化合物およびその多量体
 一般式(1B)で表される多環芳香族化合物および一般式(1B)で表される構造を複数有する多環芳香族化合物の多量体は以下のとおりであり、好ましくは、下記一般式(1B’)で表される多環芳香族化合物および下記一般式(1B’)で表される構造を複数有する多環芳香族化合物の多量体、または、下記一般式(1B”)で表される多環芳香族化合物および下記一般式(1B”)で表される構造を複数有する多環芳香族化合物の多量体である。また、一般式(1C)で表される多環芳香族化合物および一般式(1C)で表される構造を複数有する多環芳香族化合物の多量体は以下のとおりであり、好ましくは、下記一般式(1C’)で表される多環芳香族化合物および下記一般式(1C’)で表される構造を複数有する多環芳香族化合物の多量体、または、下記一般式(1C”)で表される多環芳香族化合物および下記一般式(1C”)で表される構造を複数有する多環芳香族化合物の多量体である。
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
 なお、式(1B)、式(1B’)、式(1B”)、式(1C)、式(1C’)、式(1C”)における各符号は上述した定義と同じである。また、「縮合2環構造(D構造)」の定義、上位概念の式(1B)と下位概念の式(1B’)および式(1B”)、上位概念の式(1C)と下位概念の式(1C’)および式(1C”)との化学構造の関連性、これらの式で表される構造の説明、また、これらの式を単位構造とする多量体の説明については、上述した式(1A)および式(1A’)の説明を引用することができる。以下、式(1B’)、式(1B”)、式(1C’)および式(1C”)(以下、下位概念式ともいう)について、さらに詳細に説明する。
 下位概念式におけるR~Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、トリアルキルシリルまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよい。
 下位概念式におけるR~Rとしてのアリールおよびヘテロアリールについては以下のとおりである。
 アリールとしては、例えば、炭素数6~30のアリールが挙げられ、炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。
 具体的なアリールとしては、単環系であるフェニル、二環系であるビフェニリル、縮合二環系であるナフチル、三環系であるテルフェニリル(m-テルフェニリル、o-テルフェニリル、p-テルフェニリル)、縮合三環系である、アセナフチレニル、フルオレニル、フェナレニル、フェナントレニル、縮合四環系であるトリフェニレニル、ピレニル、ナフタセニル、縮合五環系であるペリレニル、ペンタセニルなどが挙げられる。
 ヘテロアリールとしては、例えば、炭素数2~30のヘテロアリールが挙げられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1~5個含有する複素環などが挙げられる。
 具体的なヘテロアリールとしては、例えば、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサチイニル、フェノキサジニル、フェノチアジニル、フェナジニル、インドリジニル、フリル、ベンゾフラニル、イソベンゾフラニル、ジベンゾフラニル、チエニル、ベンゾ[b]チエニル、ジベンゾチエニル、フラザニル、オキサジアゾリル、チアントレニル、ナフトベンゾフラニル、ナフトベンゾチエニルなどが挙げられる。
 下位概念式におけるR~Rとしてのジアリールアミノ、ジヘテロアリールアミノおよびアリールヘテロアリールアミノは、それぞれアミノ基に2つのアリール基、2つのヘテロアリール基、1つのアリール基と1つのヘテロアリール基が置換した基であり、ここでのアリールおよびヘテロアリールは上述した説明を引用することができる。
 下位概念式におけるR~Rとしてのアルキルとしては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルが挙げられる。炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)が好ましく、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)がより好ましく、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)がさらに好ましく、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)が特に好ましい。
 具体的なアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどが挙げられる。
 下位概念式におけるR~Rとしてのアルコキシとしては、例えば、炭素数1~24の直鎖または炭素数3~24の分岐鎖のアルコキシが挙げられる。炭素数1~18のアルコキシ(炭素数3~18の分岐鎖のアルコキシ)が好ましく、炭素数1~12のアルコキシ(炭素数3~12の分岐鎖のアルコキシ)がより好ましく、炭素数1~6のアルコキシ(炭素数3~6の分岐鎖のアルコキシ)がさらに好ましく、炭素数1~4のアルコキシ(炭素数3~4の分岐鎖のアルコキシ)が特に好ましい。
 具体的なアルコキシとしては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシなどが挙げられる。
 下位概念式におけるR~Rとしてのトリアルキルシリルは、シリル基における3つの水素がそれぞれ独立してアルキルで置換された構造が挙げられ、アルキルとしてはR~Rとしてのアルキルの欄で説明した基が挙げられる。置換するのに好ましいアルキルは、炭素数1~4のアルキルであり、具体的にはメチル、エチル、プロピル、i-プロピル、ブチル、sec-ブチル、t-ブチル、シクロブチルなどが挙げられる。
 具体的なトリアルキルシリルとしては、トリメチルシリル、トリエチルシリル、トリプロピルシリル、トリi-プロピルシリル、トリブチルシリル、トリsec-ブチルシリル、トリt-ブチルシリル、エチルジメチルシリル、プロピルジメチルシリル、i-プロピルジメチルシリル、ブチルジメチルシリル、sec-ブチルジメチルシリル、t-ブチルジメチルシリル、メチルジエチルシリル、プロピルジエチルシリル、i-プロピルジエチルシリル、ブチルジエチルシリル、sec-ブチルジエチルシリル、t-ブチルジエチルシリル、メチルジプロピルシリル、エチルジプロピルシリル、ブチルジプロピルシリル、sec-ブチルジプロピルシリル、t-ブチルジプロピルシリル、メチルジi-プロピルシリル、エチルジi-プロピルシリル、ブチルジi-プロピルシリル、sec-ブチルジi-プロピルシリル、t-ブチルジi-プロピルシリルなどが挙げられる。
 下位概念式におけるR~Rとしてのアリールオキシは、ヒドロキシル基の水素がアリールで置換された基であり、ここでのアリールも上述した説明を引用することができる。
 また、下位概念式におけるR~Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよく、これらの置換基についても上述した説明を引用することができる。
 一般式(1B”)および一般式(1C”)におけるRが複数の場合は、隣接するR同士が結合してc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、トリアルキルシリルまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよい。
 ここで、形成された環における置換基(アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、トリアルキルシリルまたはアリールオキシ)、当該置換基へのさらなる置換基(アリール、ヘテロアリール、ジアリールアミノまたはアルキル)については、上述した説明を引用することができる。
 置換基Rが隣接する場合とは、2つの置換基Rがc環(ベンゼン環)上において隣り合う炭素上に置換した場合を意味する。そして、一般式(1B”)または一般式(1C”)で表される多環芳香族化合物は、c環における置換基の相互の結合形態によって、下記一般式(1B”-c’)および一般式(1C”-c’)に示すように、化合物を構成する環構造が変化する(c環がc’環に変化する)。
Figure JPOXMLDOC01-appb-C000059
 上記一般式(1B”-c’)や一般式(1C”-c’)で表される化合物は、例えばc環であるベンゼン環に対してベンゼン環が縮合して形成されるc’環を有する化合物であり、形成されてできた縮合環c’はナフタレン環である。他には、c環であるベンゼン環に対して、インドール環、ピロール環、ベンゾフラン環またはベンゾチオフェン環が縮合して形成された、それぞれカルバゾール環(N上の水素が上記アルキルやアリールで置換された環も含む)、インドール環(N上の水素が上記アルキルやアリールで置換された環も含む)、ジベンゾフラン環またはジベンゾチオフェン環などもある。
 式(1B’)、式(1B”)、式(1C’)および式(1C”)(下位概念式)におけるRと構造式中のフルオレン環は-O-、-S-、-C(-R)-または単結合により結合していてもよく、前記-C(-R)-のRは水素または炭素数1~6のアルキル(特に炭素数1~4のアルキル(例えばメチル、エチルなど))である。
 Rと構造式中のフルオレン環とが結合した一例を以下に示す。フルオレン環における結合箇所をRで示す。
Figure JPOXMLDOC01-appb-C000060
 下位概念式におけるmは0~3の整数であり、nはそれぞれ独立して0から5の整数であり、pは0~4の整数である。
 mは、好ましくは0~2の整数であり、より好ましくは0または1であり、特に好ましくは0である。また、nは、それぞれ独立して、好ましくは0~3の整数であり、より好ましくは0~2の整数であり、さらに好ましくは0または1であり、最も好ましくは0である。pは、好ましくは0~2の整数であり、より好ましくは0または1であり、特に好ましくは0である。
 式(1C’)および式(1C”)における>N-RのRは、炭素数6~12のアリール、炭素数2~15のヘテロアリールまたは炭素数1~6のアルキルである。
 前記>N-RのRとしてのアリール、ヘテロアリール、アルキルは、上述した説明を引用することができる。
 また、式(1C’)および式(1C”)における>N-RのRは、-O-、-S-、-C(-R)-または単結合により前記c環と結合していてもよく、前記-C(-R)-のRは水素または炭素数1~6のアルキル(特に炭素数1~4のアルキル(例えばメチル、エチルなど))である。
 前記-C(-R)-のRとしてのアルキルも上述した説明を引用することができる。また、「>N-RのRは-O-、-S-、-C(-R)-または単結合により前記c環と結合している」との規定は、下記一般式(1C”-c”)で表される、Nが縮合環c”に取り込まれた環構造を有する化合物で表現できる。すなわち、例えば一般式(1C”)におけるc環であるベンゼン環に対してNを取り込むようにして他の環が縮合して形成されるc”環を有する化合物である。このようにして形成されてできた縮合環c”は、例えばフェノキサジン環、フェノチアジン環またはアクリジン環などである。
Figure JPOXMLDOC01-appb-C000061
 一般式(1B)で表される多環芳香族化合物および一般式(1B)で表される構造を複数有する多環芳香族化合物の多量体としては、下記一般式(1B’)で表される多環芳香族化合物および下記一般式(1B’)で表される構造を複数有する多環芳香族化合物の多量体、または、下記一般式(1B’)で表される多環芳香族化合物および下記一般式(1B’)で表される構造を複数有する多環芳香族化合物の多量体も好ましい。また、一般式(1C)で表される多環芳香族化合物および一般式(1C)で表される構造を複数有する多環芳香族化合物の多量体としては、下記一般式(1C’)で表される多環芳香族化合物および下記一般式(1C’)で表される構造を複数有する多環芳香族化合物の多量体、または、下記一般式(1C’)で表される多環芳香族化合物および下記一般式(1C’)で表される構造を複数有する多環芳香族化合物の多量体も好ましい。
Figure JPOXMLDOC01-appb-C000062
 R~Rは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、トリアルキルシリル、アリールオキシまたはシアノであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよい。
 アリールとしては、例えば、炭素数6~30のアリールがあげられ、炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。
 具体的なアリールとしては、単環系であるフェニル、二環系であるビフェニリル、縮合二環系であるナフチル、三環系であるテルフェニリル(m-テルフェニリル、o-テルフェニリル、p-テルフェニリル)、縮合三環系である、アセナフチレニル、フルオレニル、フェナレニル、フェナントレニル、縮合四環系であるトリフェニレニル、ピレニル、ナフタセニル、縮合五環系であるペリレニル、ペンタセニルなどがあげられる。
 ヘテロアリールとしては、例えば、炭素数2~30のヘテロアリールがあげられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1~5個含有する複素環などがあげられる。
 具体的なヘテロアリールとしては、例えば、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサチイニル、フェノキサジニル、フェノチアジニル、フェナジニル、インドリジニル、フリル、ベンゾフラニル、イソベンゾフラニル、ジベンゾフラニル、チエニル、ベンゾ[b]チエニル、ジベンゾチエニル、フラザニル、オキサジアゾリル、チアントレニル、ナフトベンゾフラニル、ナフトベンゾチエニルなどがあげられる。
 R~Rとしてのジアリールアミノ、ジヘテロアリールアミノおよびアリールヘテロアリールアミノは、それぞれアミノ基に2つのアリール基、2つのヘテロアリール基、1つのアリール基と1つのヘテロアリール基が置換した基であり、ここでのアリールおよびヘテロアリールは上記R~Rの説明を引用することができる。
 R~Rとしてのアルキルとしては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルがあげられる。炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)が好ましく、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)がより好ましく、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)がさらに好ましく、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)が特に好ましい。
 具体的なアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどがあげられる。
 R~Rとしてのアルコキシとしては、例えば、炭素数1~24の直鎖または炭素数3~24の分岐鎖のアルコキシがあげられる。炭素数1~18のアルコキシ(炭素数3~18の分岐鎖のアルコキシ)が好ましく、炭素数1~12のアルコキシ(炭素数3~12の分岐鎖のアルコキシ)がより好ましく、炭素数1~6のアルコキシ(炭素数3~6の分岐鎖のアルコキシ)がさらに好ましく、炭素数1~4のアルコキシ(炭素数3~4の分岐鎖のアルコキシ)が特に好ましい。
 具体的なアルコキシとしては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシなどがあげられる。
 R~Rとしてのトリアルキルシリルは、シリル基における3つの水素がそれぞれ独立してアルキルで置換されたものがあげられ、アルキルとしてはR~Rとしてのアルキルの欄で説明したものがあげられる。置換するのに好ましいアルキルは、炭素数1~4のアルキルであり、具体的にはメチル、エチル、プロピル、i-プロピル、ブチル、sec-ブチル、t-ブチル、シクロブチルなどがあげられる。
 具体的なトリアルキルシリルとしては、トリメチルシリル、トリエチルシリル、トリプロピルシリル、トリi-プロピルシリル、トリブチルシリル、トリsec-ブチルシリル、トリt-ブチルシリル、エチルジメチルシリル、プロピルジメチルシリル、i-プロピルジメチルシリル、ブチルジメチルシリル、sec-ブチルジメチルシリル、t-ブチルジメチルシリル、メチルジエチルシリル、プロピルジエチルシリル、i-プロピルジエチルシリル、ブチルジエチルシリル、sec-ブチルジエチルシリル、t-ブチルジエチルシリル、メチルジプロピルシリル、エチルジプロピルシリル、ブチルジプロピルシリル、sec-ブチルジプロピルシリル、t-ブチルジプロピルシリル、メチルジi-プロピルシリル、エチルジi-プロピルシリル、ブチルジi-プロピルシリル、sec-ブチルジi-プロピルシリル、t-ブチルジi-プロピルシリルなどがあげられる。
 R~Rとしてのアリールオキシは、ヒドロキシル基の水素がアリールで置換された基であり、ここでのアリールは上記R~Rの説明を引用することができる。
 また、R~Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよく、これらの置換基についても上述した説明を引用することができる。
 一般式(1B’)および一般式(1C’)におけるRが複数の場合は、隣接するR同士が結合してc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、トリアルキルシリル、アリールオキシまたはシアノで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノまたはアルキルで置換されていてもよい。
 ここで、形成された環における置換基(アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、トリアルキルシリルまたはアリールオキシ)、当該置換基へのさらなる置換基(アリール、ヘテロアリール、ジアリールアミノまたはアルキル)については、上述した説明を引用することができる。
 置換基Rが隣接する場合とは、2つの置換基Rがc環(ベンゼン環)上において隣り合う炭素上に置換した場合を意味する。そして、一般式(1B’)または一般式(1C’)で表される多環芳香族アミノ化合物は、c環における置換基の相互の結合形態によって、下記一般式(1B’-c’)および一般式(1C’-c’)に示すように、化合物を構成する環構造が変化する(c環がc’環に変化する)。
Figure JPOXMLDOC01-appb-C000063
 上記一般式(1B’-c’)や一般式(1C’-c’)で表される化合物は、後述する具体的化合物として列挙した、例えば式(1B-321)~式(1B-342)、式(1B-346)、式(1B-351)、式(1B-352)または式(1B-356)などで表されるような化合物に対応する。すなわち、c環であるベンゼン環に対してベンゼン環などが縮合して形成されるc’環を有する化合物であり、形成されてできた縮合環c’はナフタレン環などである。他には、c環であるベンゼン環に対して、インドール環、ピロール環、ベンゾフラン環またはベンゾチオフェン環が縮合して形成された、それぞれカルバゾール環(N上の水素が上記アルキルやアリールで置換されたものも含む)、インドール環(N上の水素が上記アルキルやアリールで置換されたものも含む)、ジベンゾフラン環またはジベンゾチオフェン環などもある。
 mは0~3の整数であり、nはそれぞれ独立して0から5までの整数であり、pは0~4の整数である。
 mは、好ましくは0~2の整数であり、より好ましくは0または1であり、特に好ましくは0である。また、nは、それぞれ独立して、好ましくは0~3の整数であり、より好ましくは0~2の整数であり、さらに好ましくは0または1であり、最も好ましくは0である。pは、好ましくは0~2の整数であり、より好ましくは0または1であり、特に好ましくは0である。
 XおよびXは、それぞれ独立して、OまたはN-Rであり、前記N-RのRは炭素数6~12のアリール、炭素数2~15のヘテロアリールまたは炭素数1~6のアルキルである。
 前記N-RのRとしてのアリール、ヘテロアリール、アルキルは上記R~Rでの説明を引用することができる。
 また、一般式(1B’)および(1C’)におけるXが前記N-Rである場合のRは-O-、-S-、-C(-R)-または単結合により前記c環と結合していてもよく、前記-C(-R)-のRは水素または炭素数1~6のアルキル(特に炭素数1~4のアルキル(例えばメチル、エチルなど))である。
 前記-C(-R)-のRとしてのアルキルも上記R~Rでの説明を引用することができる。また、「N-RのRは-O-、-S-、-C(-R)-または単結合により前記a環と結合している」との規定は、下記一般式(1B’-c”)や一般式(1B’-c”)で表される、Xが縮合環c”に取り込まれた環構造を有する化合物で表現できる。すなわち、例えば一般式(1B’)や一般式(1C’)におけるc環であるベンゼン環に対してXを取り込むようにして他の環が縮合して形成されるc”環を有する化合物である。このようにして形成されてできた縮合環c”は、例えばフェノキサジン環、フェノチアジン環またはアクリジン環などである。
Figure JPOXMLDOC01-appb-C000064
 一般式(1B)または一般式(1C)で表される化合物における少なくとも1つの水素はシアノ、ハロゲンまたは重水素で置換されていてもよい。
 ハロゲンは、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくは塩素である。
 一般式(1B)または一般式(1C)で表される多環芳香族化合物およびその多量体のさらに具体的な例としては、下記構造式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
 また、一般式(1B”)または一般式(1C”)で表される多環芳香族化合物は、c環における、B(ホウ素)に対するパラ位にフェニルオキシ基、カルバゾリル基またはジフェニルアミノ基を導入することで、T1エネルギーの向上(およそ0.01~0.1eV向上)が期待できる。特に、B(ホウ素)に対するパラ位にフェニルオキシ基を導入することで、c環であるベンゼン環上のHOMOがよりホウ素に対するメタ位に局在化し、LUMOがホウ素に対するオルトおよびパラ位に局在化するため、T1エネルギーの向上が特に期待できる。
 また、一般式(1B)または一般式(1C)で表される多環芳香族化合物の具体的な例としては、化合物中の1個または複数個のフェニル基または1個のフェニレン基における少なくとも1つの水素が1個または複数個の炭素数1~4のアルキル、好ましくは炭素数1~3のアルキル(好ましくは1個または複数個のメチル基)で置換された化合物が挙げられ、より好ましくは、1個のフェニル基のオルト位における水素(2箇所のうち2箇所とも、好ましくはいずれか一箇所)または1個のフェニレン基のオルト位における水素(最大4箇所のうち4箇所とも、好ましくはいずれか1箇所)がメチル基で置換された化合物が挙げられる。
 化合物中の末端のフェニル基やp-フェニレン基のオルト位における少なくとも1つの水素をメチル基などで置換することにより、隣り合う芳香環同士が直交しやすくなって共役が弱まる結果、三重項励起エネルギー(E)を高めることが可能となる。
1-2(3).一般式(1D)または(1E)の多環芳香族化合物およびその多量体
 一般式(1D)で表される多環芳香族化合物および一般式(1D)で表される構造を複数有する多環芳香族化合物の多量体は以下のとおりであり、好ましくは、下記一般式(1D’)で表される多環芳香族化合物および下記一般式(1D’)で表される構造を複数有する多環芳香族化合物の多量体である。また、一般式(1E)で表される多環芳香族化合物および一般式(1E)で表される構造を複数有する多環芳香族化合物の多量体は以下のとおりであり、好ましくは、下記一般式(1E’)で表される多環芳香族化合物および下記一般式(1E’)で表される構造を複数有する多環芳香族化合物の多量体である。
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
<A環、B環およびC環(a環、b環およびc環と置換基R ~R 11 )について>
 一般式(1D)および式(1E)におけるA環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換基で置換されていてもよい。この置換基は、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のジアリールアミノ、置換もしくは無置換のジヘテロアリールアミノ、置換もしくは無置換のアリールヘテロアリールアミノ(アリールとヘテロアリールを有するアミノ基)、置換もしくは無置換のアルキル、置換もしくは無置換のシクロアルキル、置換もしくは無置換のアルコキシ、置換もしくは無置換のアリールオキシ、置換もしくは無置換のアリールスルホニル、置換もしくは無置換のジアリールホスフィン、置換もしくは無置換のジアリールホスフィンスルフィド、置換もしくは無置換のシリル、置換もしくは無置換のゲルミル、置換もしくは無置換のスルホン酸エステル、置換もしくは無置換のボロン酸エステル、ボロン酸、ハロゲンまたはシアノが好ましい。また、これらの基が置換基を有する場合の置換基としては、アリール、ヘテロアリール、アルキル、ハロゲンまたはシアノが挙げられる。
 また、上記アリール環またはヘテロアリール環は、中心元素B(ホウ素)、>C(-Ra)、および>Oまたは>N-Rから構成される一般式(1D)および式(1E)中央の縮合2環構造(以下、この構造を「D構造」ともいう)と結合を共有する5員環または6員環を有することが好ましい。
 ここで、「縮合2環構造(D構造)」とは、一般式(1D)および式(1E)の中央に示した、中心元素B(ホウ素)、>C(-Ra)、および>Oまたは>N-Rを含んで構成される2つの飽和炭化水素環が縮合した構造を意味する。また、「縮合2環構造と結合を共有する6員環」とは、例えば上記一般式(1D’)および式(1E’)で示すように前記D構造に縮合したa環(ベンゼン環(6員環))を意味する。また、「(A環である)アリール環またはヘテロアリール環がこの6員環を有する」とは、この6員環だけでA環が形成されるか、または、この6員環を含むようにこの6員環にさらに他の環などが縮合してA環が形成されることを意味する。言い換えれば、ここで言う「6員環を有する(A環である)アリール環またはヘテロアリール環」とは、A環の全部または一部を構成する6員環が、前記D構造に縮合していることを意味する。「B環(b環)」、「C環(c環)」、また「5員環」についても同様の説明が当てはまる。
 一般式(1D)および式(1E)におけるA環(またはB環、C環)は、一般式(1D’)および式(E’)におけるa環とその置換基R~R(またはb環とその置換基R~R11、c環とその置換基R~R)に対応する。すなわち、一般式(1D’)および式(E’)は、一般式(1D)および式(E)のA~C環として「6員環を有するA~C環」が選択された式に対応する。その意味で、一般式(1D’)および式(E’)の各環を小文字のa~cで表した。
 一般式(1D’)および式(E’)では、a環、b環およびc環の置換基R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、フルオロアルキル、シクロアルキル、アルコキシ、アリールオキシ、アリールスルホニル、ジアリールホスフィン、ジアリールホスフィンスルフィド、シリル、ゲルミル、スルホン酸エステル、ボロン酸エステル、ボロン酸、ハロゲンまたはシアノで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、ハロゲンまたはシアノで置換されていてもよい。
 一般式(1E)における>N-RのRは、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、これらにおける少なくとも1つの水素は置換基で置換されていてもよい。この置換基は、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のジアリールアミノ、置換もしくは無置換のジヘテロアリールアミノ、置換もしくは無置換のアリールヘテロアリールアミノ(アリールとヘテロアリールを有するアミノ基)、置換もしくは無置換のアルキル、置換もしくは無置換のシクロアルキル、置換もしくは無置換のアルコキシ、置換もしくは無置換のアリールオキシ、置換もしくは無置換のアリールスルホニル、置換もしくは無置換のジアリールホスフィン、置換もしくは無置換のジアリールホスフィンスルフィド、置換もしくは無置換のシリル、置換もしくは無置換のゲルミル、置換もしくは無置換のスルホン酸エステル、置換もしくは無置換のボロン酸エステル、ボロン酸、ハロゲンまたはシアノが好ましい。また、これらの基が置換基を有する場合の置換基としては、アリール、ヘテロアリール、アルキル、ハロゲンまたはシアノが挙げられる。
 >N-RのRは連結基または単結合により前記A環および/またはC環と結合していてもよく、連結基としては、-O-、-S-または-C(-R)-が好ましい。なお、前記「-C(-R)-」のRは水素またはアルキルである。この説明は一般式(1E’)における>N-RのRでも同じである。ここで、一般式(1E)における「>N-RのRは連結基または単結合により前記A環および/またはC環と結合している」との規定は、下位の一般式(1E’)では「>N-RのRは-O-、-S-、-C(-R)-または単結合により前記a環および/またはc環と結合している」との規定に対応する。
 この規定は、下記式(1E’-3-1)で表される、Nが縮合環C’に取り込まれた環構造を有する化合物で表現できる。すなわち、例えば一般式(1E’)におけるc環であるベンゼン環に対してNを取り込むようにして他の環が縮合して形成されるC’環を有する化合物である。形成された縮合環C’はカルバゾール環であり、その他には例えばフェノキサジン環、フェノチアジン環またはアクリジン環などが挙げられる。
 また、上記規定は、下記式(1E’-3-2)で表される、Nが縮合環A’に取り込まれた環構造を有する化合物でも表現できる。すなわち、例えば一般式(1E’)におけるa環であるベンゼン環に対してNを取り込むようにして他の環が縮合して形成されるA’環を有する化合物である。形成された縮合環A’はカルバゾール環であり、その他には例えばフェノキサジン環、フェノチアジン環またはアクリジン環などが挙げられる。なお、下記式(1E’-3-1)および式(1E’-3-2)中の各符号の定義は一般式(1E’)における符号と同じである。
Figure JPOXMLDOC01-appb-C000105
 上述するように、一般式(1D)および式(1E)におけるA環、B環およびC環、これに対応する一般式(1D’)および式(1E’)におけるa環と置換基R~R、b環と置換基R~R11およびc環と置換基R~Rは、環や置換基の種類、さらに置換基同士の結合形態などによって構造が様々に変化し得る。しかしながら、製造の容易さやコストなどの観点からは、A環、B環およびC環(またはこれらに対応する一般式(1D’)および式(1E’)における部分)は同一構造の環であることが好ましく、特にA環およびC環(またはこれらに対応する一般式(1D’)および式(1E’)における部分)は同一構造の環であることが好ましい。
<Raについて>
 >C(-Ra)におけるRaは、「-CH-Cn-12(n-1)+1(nは1以上)」で表される、メチレン基(-CH-)から始まる直鎖または分岐鎖のアルキルである。2つのRaは同一構造であって、一般式(1D)および式(1E)における「>C(-Ra)」部分の中の「C(炭素)」は不斉炭素になることはない。nは1以上であって、好ましくはn=1~6であり、より好ましくはn=1~4であり、さらに好ましくはn=1~3であり、特に好ましくはn=1または2であり、最も好ましくはn=1(メチル基)である。Raとしてのアルキルの具体例については、詳細には後述するが、直鎖および分枝鎖のいずれでもよく、直鎖のアルキルが特に好ましい。Raはメチレン基(-CH-)から始まるアルキル基であるため、Raが分岐鎖アルキルの場合には、「>C(-Ra)」部分の中の「C(炭素)」に結合する炭素(すなわち1位の炭素)で分岐することはなく、2位以降の炭素から分岐し得る。例えば、Raとして「-CH-C(-CH」の分岐鎖アルキルはあり得るが、「-CH(-CH)-CH」の分岐鎖アルキルはあり得ない。このRaについての説明は一般式(1D’)および式(1E’)におけるRaでも同じである。
<A環、B環およびC環(a環、b環およびc環と置換基R ~R 11 )の詳細>
 一般式(1D)および式(1E)のA環、B環およびC環である「アリール環」としては、例えば、炭素数6~30のアリール環が挙げられ、炭素数6~16のアリール環が好ましく、炭素数6~12のアリール環がより好ましく、炭素数6~10のアリール環が特に好ましい。なお、この「アリール環」は、一般式(1D’)および式(1E’)で規定された「R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共に形成されたアリール環」に対応し、また、a環(またはb環、c環)がすでに炭素数6のベンゼン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数9が下限の炭素数となる。
 具体的な「アリール環」としては、単環系であるベンゼン環、二環系であるビフェニル環、縮合二環系であるナフタレン環、三環系であるテルフェニル環(m-テルフェニル、o-テルフェニル、p-テルフェニル)、縮合三環系である、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、縮合四環系であるトリフェニレン環、ピレン環、ナフタセン環、縮合五環系であるペリレン環、ペンタセン環などが挙げられる。
 一般式(1D)および式(1E)のA環、B環およびC環である「ヘテロアリール環」としては、例えば、炭素数2~30のヘテロアリール環が挙げられ、炭素数2~25のヘテロアリール環が好ましく、炭素数2~20のヘテロアリール環がより好ましく、炭素数2~15のヘテロアリール環がさらに好ましく、炭素数2~10のヘテロアリール環が特に好ましい。また、「ヘテロアリール環」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。なお、この「ヘテロアリール環」は、一般式(1D’)および式(1E’)で規定された「R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共に形成されたヘテロアリール環」に対応し、また、a環(またはb環、c環)がすでに炭素数6のベンゼン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数6が下限の炭素数となる。
 具体的な「ヘテロアリール環」としては、例えば、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラザン環、オキサジアゾール環、チアントレン環などが挙げられる。
 上記「アリール環」または「ヘテロアリール環」における少なくとも1つの水素は、第1の置換基である、置換もしくは無置換の「アリール」、置換もしくは無置換の「ヘテロアリール」、置換もしくは無置換の「ジアリールアミノ」、置換もしくは無置換の「ジヘテロアリールアミノ」、置換もしくは無置換の「アリールヘテロアリールアミノ」、置換もしくは無置換の「アルキル」、置換もしくは無置換の「シクロアルキル」、置換もしくは無置換の「アルコキシ」、置換もしくは無置換の「アリールオキシ」、置換もしくは無置換の「アリールスルホニル」、置換もしくは無置換の「ジアリールホスフィン」、置換もしくは無置換の「ジアリールホスフィンスルフィド」、置換もしくは無置換の「シリル」、置換もしくは無置換の「ゲルミル」、置換もしくは無置換の「スルホン酸エステル」、置換もしくは無置換の「ボロン酸エステル」、「ボロン酸」、「ハロゲン」または「シアノ」で置換されていてもよいが、この第1の置換基としての「アリール」、「ヘテロアリール」、「ジアリールアミノ」のアリール、「ジヘテロアリールアミノ」のヘテロアリール、「アリールヘテロアリールアミノ」のアリールとヘテロアリール、「アリールオキシ」のアリール、「アリールスルホニル」のアリール、「ジアリールホスフィン」のアリール、また「ジアリールホスフィンスルフィド」のアリールとしては上述した「アリール環」または「ヘテロアリール環」の一価の基が挙げられる。
 また第1の置換基としての「アルキル」としては、直鎖および分枝鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分枝鎖アルキルが挙げられる。炭素数1~18のアルキル(炭素数3~18の分枝鎖アルキル)が好ましく、炭素数1~12のアルキル(炭素数3~12の分枝鎖アルキル)がより好ましく、炭素数1~6のアルキル(炭素数3~6の分枝鎖アルキル)がさらに好ましく、炭素数1~4のアルキル(炭素数3~4の分枝鎖アルキル)が特に好ましい。
 具体的なアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどが挙げられる。
 また第1の置換基としての「シクロアルキル」としては、例えば、炭素数3~12のシクロアルキルが挙げられる。好ましいシクロアルキルは、炭素数3~10のシクロアルキルである。より好ましいシクロアルキルは、炭素数3~8のシクロアルキルである。さらに好ましいシクロアルキルは、炭素数3~6のシクロアルキルである。
 具体的なシクロアルキルとしては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどが挙げられる。
 また第1の置換基としての「アルコキシ」としては、例えば、炭素数1~24の直鎖または炭素数3~24の分枝鎖のアルコキシが挙げられる。炭素数1~18のアルコキシ(炭素数3~18の分枝鎖のアルコキシ)が好ましく、炭素数1~12のアルコキシ(炭素数3~12の分枝鎖のアルコキシ)がより好ましく、炭素数1~6のアルコキシ(炭素数3~6の分枝鎖のアルコキシ)がさらに好ましく、炭素数1~4のアルコキシ(炭素数3~4の分枝鎖のアルコキシ)が特に好ましい。
 具体的なアルコキシとしては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシなどが挙げられる。
 また第1の置換基としての「シリル」は「-SiH」であり、「ゲルミル」は「-GeH」であり、「スルホン酸エステル(-S(=O)-OR)」におけるRは上述したアルキルであり、「ボロン酸エステル(-B(-OR))」におけるRは上述したアルキルであって、2つのRは結合していてもよい。
 また第1の置換基としての「ハロゲン」としては、フッ素、塩素、臭素およびヨウ素が挙げられる。
 第1の置換基である、置換もしくは無置換の「アリール」、置換もしくは無置換の「ヘテロアリール」、置換もしくは無置換の「ジアリールアミノ」、置換もしくは無置換の「ジヘテロアリールアミノ」、置換もしくは無置換の「アリールヘテロアリールアミノ」、置換もしくは無置換の「アルキル」、置換もしくは無置換の「シクロアルキル」、置換もしくは無置換の「アルコキシ」、置換もしくは無置換の「アリールオキシ」、置換もしくは無置換の「アリールスルホニル」、置換もしくは無置換の「ジアリールホスフィン」、置換もしくは無置換の「ジアリールホスフィンスルフィド」、置換もしくは無置換の「シリル」、置換もしくは無置換の「ゲルミル」、置換もしくは無置換の「スルホン酸エステル」、または、置換もしくは無置換の「ボロン酸エステル」は、置換または無置換と説明されているとおり、それらにおける少なくとも1つの水素が第2の置換基で置換されていてもよい。この第2の置換基としては、例えば、アリール、ヘテロアリール、アルキル、ハロゲンまたはシアノが挙げられ、それらの具体例は、上述した「アリール環」または「ヘテロアリール環」の一価の基、また第1の置換基としての「アルキル」や「ハロゲン」の説明を参照することができる。また、第2の置換基としてのアリール、ヘテロアリールおよびアルキルには、それらにおける少なくとも1つの水素がフェニルなどのアリール(具体例は上述した基)、メチルなどのアルキル(具体例は上述した基)、フッ素などのハロゲン(具体例は上述した基)で置換された基も第2の置換基としてのアリール、ヘテロアリールおよびアルキルに含まれる。その一例としては、第2の置換基がカルバゾリル基の場合には、9位における少なくとも1つの水素がフェニルなどのアリールやメチルなどのアルキルで置換されたカルバゾリル基も第2の置換基としてのヘテロアリールに含まれる。
 一般式(1D’)および式(1E’)のR~R11における、アリール、ヘテロアリール、ジアリールアミノのアリール、ジヘテロアリールアミノのヘテロアリール、アリールヘテロアリールアミノのアリールとヘテロアリール、アリールオキシのアリール、アリールスルホニルのアリール、ジアリールホスフィンのアリール、または、ジアリールホスフィンスルフィドのアリールとしては、一般式(1D)および式(1E)で説明した「アリール環」または「ヘテロアリール環」の一価の基が挙げられる。また、R~R11におけるアルキル、シクロアルキルまたはアルコキシとしては、上述した一般式(1D)および式(1E)の説明における第1の置換基としての「アルキル」、「シクロアルキル」または「アルコキシ」の説明を参照することができる。さらに、これらの基への置換基としてのアリール、ヘテロアリール、アルキル、ハロゲンまたはシアノも同様である。また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成した場合の、これらの環への置換基であるアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、フルオロアルキル、シクロアルキル、アルコキシ、アリールオキシ、アリールスルホニル、ジアリールホスフィン、ジアリールホスフィンスルフィド、シリル、ゲルミル、スルホン酸エステル、ボロン酸エステル、ボロン酸、ハロゲンまたはシアノ、および、さらなる置換基であるアリール、ヘテロアリール、アルキル、ハロゲンまたはシアノについても同様である。
<一般式(1E)のXにおけるN-Rの詳細について>
 一般式(1E)における>N-RのRは、アリール、ヘテロアリール、アルキルまたはシクロアルキルであり、これらにおける少なくとも1つの水素は、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のジアリールアミノ、置換もしくは無置換のジヘテロアリールアミノ、置換もしくは無置換のアリールヘテロアリールアミノ(アリールとヘテロアリールを有するアミノ基)、置換もしくは無置換のアルキル、置換もしくは無置換のシクロアルキル、置換もしくは無置換のアルコキシ、置換もしくは無置換のアリールオキシ、置換もしくは無置換のアリールスルホニル、置換もしくは無置換のジアリールホスフィン、置換もしくは無置換のジアリールホスフィンスルフィド、置換もしくは無置換のシリル、置換もしくは無置換のゲルミル、置換もしくは無置換のスルホン酸エステル、置換もしくは無置換のボロン酸エステル、ボロン酸、ハロゲンまたはシアノで置換されていてもよく、また、これらの基が置換基を有する場合の置換基としては、アリール、ヘテロアリール、アルキル、ハロゲンまたはシアノが挙げられるが、これらの全ての説明は、式(1E)におけるA環、B環およびC環での説明を引用することができる。Rとしてのアリール、ヘテロアリールまたはアルキルとしては、特に炭素数6~10のアリール(例えばフェニル、ナフチルなど)、炭素数2~15のヘテロアリール(例えばカルバゾリルなど)、炭素数1~4のアルキル(例えばメチル、エチルなど)が好ましい。
 >N-RのRがA環および/またはC環(a環および/またはc環)と結合する際の「-C(-R)-」のRは水素またはアルキルであるが、このアルキルの具体例としては上述する基が挙げられる。特に炭素数1~4のアルキル(例えばメチル、エチルなど)が好ましい。
 これらの説明は一般式(1E’)における>N-RのRでも同じである。
<多量体について>
 また、一般式(1D)、式(1E)、式(1D’)および式(1E’)のいずれかで表される多環芳香族化合物の多量体としては、2~6量体が好ましく、2~3量体がより好ましく、2量体が特に好ましい。多量体は、一つの化合物の中に一般式(1D)、式(1E)、式(1D’)および式(1E’)のいずれかで表される単位構造を複数有する形態であればよく、例えば、上記単位構造が単結合、炭素数1~3のアルキレン基、フェニレン基、ナフチレン基などの連結基で複数結合した形態に加えて、上記単位構造に含まれる任意の環(A環、B環またはC環、a環、b環またはc環)を複数の単位構造で共有するようにして結合した形態であってもよく、また、上記単位構造に含まれる任意の環(A環、B環またはC環、a環、b環またはc環)同士が縮合するようにして結合した形態であってもよい。
<多環芳香族化合物およびその多量体の具体例について>
 一般式(1D)または式(1E)で表される多環芳香族化合物およびその多量体のさらに具体的な例としては、下記構造式で表される化合物が挙げられる。なお、構造式中の「Me」はメチルを、「Et」はエチルを、「Pr」はノルマルプロピルを、「Pr」はイソプロピルを、「Bu」はノルマルブチルを、「Bu」はターシャリーブチルを、「Tf」はトリフルオロメタンスルホニルを、そして「Nf」はノナフルオロブタンスルホニルを表す。
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
 また、一般式(1D)、式(1E)、式(1D’)または式(1E’)で表される多環芳香族化合物およびその多量体は、A環、B環およびC環(a環、b環およびc環)の少なくとも1つにおける、中心元素B(ホウ素)に対するパラ位にフェニルオキシ基、カルバゾリル基またはジフェニルアミノ基を導入することで、T1エネルギーの向上(およそ0.01~0.1eV向上)が期待できる。A環、B環およびC環(a環、b環およびc環)であるベンゼン環上のHOMOがよりホウ素に対するメタ位に局在化し、LUMOがホウ素に対するオルトおよびパラ位に局在化するため、T1エネルギーの向上が特に期待できる。
 また、一般式(1D)、式(1E)、式(1D’)または式(1E’)で表される多環芳香族化合物およびその多量体の具体的な例としては、上述した化合物において、化合物中の1個または複数個の芳香環における少なくとも1つの水素が1個または複数個のアルキルやアリールで置換された化合物が挙げられ、より好ましくは1~2個の炭素数1~12のアルキルや炭素数6~10のアリールで置換された化合物が挙げられる。
 また、一般式(1D)、式(1E)、式(1D’)または式(1E’)で表される多環芳香族化合物およびその多量体の具体的な例としては、化合物中の1個または複数個のフェニル基または1個のフェニレン基における少なくとも1つの水素が1個または複数個の炭素数1~4のアルキル、好ましくは炭素数1~3のアルキル(好ましくは1個または複数個のメチル基)で置換された化合物が挙げられ、より好ましくは、1個のフェニル基のオルト位における水素(2箇所のうち2箇所とも、好ましくはいずれか1箇所)または1個のフェニレン基のオルト位における水素(最大4箇所のうち4箇所とも、好ましくはいずれか1箇所)がメチル基で置換された化合物が挙げられる。
 化合物中の末端のフェニル基やp-フェニレン基のオルト位における少なくとも1つの水素をメチル基などで置換することにより、隣り合う芳香環同士が直交しやすくなって共役が弱まる結果、三重項励起エネルギー(E)を高めることが可能となる。
2.多環芳香族化合物およびその多量体の製造方法
2-1.一般式(1)の多環芳香族化合物およびその多量体の製造方法
 一般式(1)や式(1’)で表される多環芳香族化合物およびその多量体は、基本的には、まずA環(a環)とB環(b環)およびC環(c環)とを結合基(XやXを含む基)で結合させることで中間体を製造し(第1反応)、その後に、A環(a環)、B環(b環)およびC環(c環)を結合基(中心元素B(ホウ素)を含む基)で結合させることで最終生成物を製造することができる(第2反応)。第1反応では、例えばエーテル化反応であれば、求核置換反応、ウルマン反応といった一般的反応が利用でき、アミノ化反応で有ればブッフバルト-ハートウィッグ反応といった一般的反応が利用できる。また、第2反応では、タンデムヘテロフリーデルクラフツ反応(連続的な芳香族求電子置換反応、以下同様)が利用できる。
 第2反応は、下記スキーム(1)や(2)に示すように、A環(a環)、B環(b環)およびC環(c環)を結合する中心元素B(ホウ素)を導入する反応であり、例としてXおよびXが酸素原子の場合を以下に示す。まず、XとXの間の水素原子をn-ブチルリチウム、sec-ブチルリチウムまたはt-ブチルリチウム等でオルトメタル化する。次いで、三塩化ホウ素や三臭化ホウ素等を加え、リチウム-ホウ素の金属交換を行った後、N,N-ジイソプロピルエチルアミン等のブレンステッド塩基を加えることで、タンデムボラフリーデルクラフツ反応させ、目的物を得ることができる。第2反応においては反応を促進させるために三塩化アルミニウム等のルイス酸を加えてもよい。
Figure JPOXMLDOC01-appb-C000124
 なお、上記スキーム(1)や(2)は、一般式(1)や式(1’)で表される多環芳香族化合物の製造方法を主に示しているが、その多量体については、複数のA環(a環)、B環(b環)およびC環(c環)を有する中間体を用いることで製造することができる。詳細には下記スキーム(3)~(5)で説明する。この場合、使用するブチルリチウム等の試薬の量を2倍量、3倍量とすることで目的物を得ることができる。
Figure JPOXMLDOC01-appb-C000125
 上記スキームにおいては、オルトメタル化により所望の位置へリチウムを導入したが、下記スキーム(6)および(7)のようにリチウムを導入したい位置に臭素原子等を導入し、ハロゲン-メタル交換によっても所望の位置へリチウムを導入することができる。
Figure JPOXMLDOC01-appb-C000126
 また、スキーム(3)で説明した多量体の製造方法についても、上記スキーム(6)および(7)のようにリチウムを導入したい位置に臭素原子や塩素原子等のハロゲンを導入し、ハロゲン-メタル交換によっても所望の位置へリチウムを導入することができる(下記スキーム(8)、(9)および(10))。
Figure JPOXMLDOC01-appb-C000127
 この方法によれば、置換基の影響でオルトメタル化ができないようなケースでも目的物を製造することができ有用である。
 上述の製造法を適宜選択し、使用する原料も適宜選択することで、所望の位置に置換基を有し、XおよびXが酸素原子である多環芳香族化合物およびその多量体を製造することができる。
 次に、例としてXおよびXが窒素原子の場合を下記スキーム(11)および(12)に示す。XおよびXが酸素原子である場合と同様に、まずXとXの間の水素原子をn-ブチルリチウム等でオルトメタル化する。次いで、三臭化ホウ素等を加え、リチウム-ホウ素の金属交換を行った後、N,N-ジイソプロピルエチルアミン等のブレンステッド塩基を加えることで、タンデムボラフリーデルクラフツ反応させ、目的物を得ることができる。ここでは反応を促進させるために三塩化アルミニウム等のルイス酸を加えてもよい。
Figure JPOXMLDOC01-appb-C000128
 また、XおよびXが窒素原子の場合の多量体についても、上記スキーム(6)および(7)のようにリチウムを導入したい位置に臭素原子や塩素原子等のハロゲンを導入し、ハロゲン-メタル交換によっても所望の位置へリチウムを導入することができる(下記スキーム(13)、(14)および(15))。
Figure JPOXMLDOC01-appb-C000129
 以上のスキームでは、XやXが>Oや>N-Rの化合物の製造例を示したが、XやXが>S、>Seまたは>C(-Ra)の化合物も、まずA環(a環)とB環(b環)およびC環(c環)とを結合基(XやXを含む基)で結合させる第1反応において適切な反応を用いることで同様に製造することができる。
 また、本発明で使用する多環芳香族化合物やその多量体には、少なくとも一部の水素原子が重水素で置換されている構造やフッ素や塩素などのハロゲンで置換されている構造も含まれるが、このような化合物などは所望の箇所が重水素化、フッ素化または塩素化された原料を用いることで、上記と同様に製造することができる。
 なお、上記スキーム(1)~(15)の反応で用いられる溶媒としては、t-ブチルベンゼンやキシレンなどが挙げられる。
 なお、上記スキーム(1)~(15)で使用するオルトメタル化試薬としては、メチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム等のアルキルリチウム、リチウムジイソプロピルアミド、リチウムテトラメチルピペリジド、リチウムヘキサメチルジシラジド、カリウムヘキサメチルジシラジドなどの有機アルカリ化合物が挙げられる。
 なお、上記スキーム(1)~(15)で使用するメタル-B(ホウ素)の金属交換試薬としては、ホウ素の三フッ化物、三塩化物、三臭化物、三ヨウ化物などのホウ素のハロゲン化物、CIPN(NEtなどのホウ素のアミノ化ハロゲン化物、ホウ素のアルコキシ化物、ホウ素のアリールオキシ化物などが挙げられる。
 なお、上記スキーム(1)~(15)で使用するブレンステッド塩基としては、N,N-ジイソプロピルエチルアミン、トリエチルアミン、2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチルピペリジン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、2,6-ルチジン、テトラフェニルホウ酸ナトリウム、テトラフェニルホウ酸カリウム、トリフェニルボラン、テトラフェニルシラン、ArBNa、ArBK、ArB、ArSi(なお、Arはフェニルなどのアリール)などが挙げられる。
 上記スキーム(1)~(15)で使用するルイス酸としては、AlCl、AlBr、AlF、BF・OEt、BCl、BBr、GaCl、GaBr、InCl、InBr、In(OTf)、SnCl、SnBr、AgOTf、ScCl、Sc(OTf)、ZnCl、ZnBr、Zn(OTf)、MgCl、MgBr、Mg(OTf)、LiOTf、NaOTf、KOTf、MeSiOTf、Cu(OTf)、CuCl、YCl、Y(OTf)、TiCl、TiBr、ZrCl、ZrBr、FeCl、FeBr、CoCl、CoBrなどが挙げられる。
 上記スキーム(1)~(15)では、タンデムヘテロフリーデルクラフツ反応の促進のためにブレンステッド塩基またはルイス酸を使用してもよい。ただし、ホウ素の三フッ化物、三塩化物、三臭化物、三ヨウ化物などのホウ素のハロゲン化物を用いた場合は、芳香族求電子置換反応の進行とともに、フッ化水素、塩化水素、臭化水素、ヨウ化水素といった酸が生成するため、酸を捕捉するブレンステッド塩基の使用が効果的である。一方、ホウ素のアミノ化ハロゲン化物、ホウ素のアルコキシ化物を用いた場合は、芳香族求電子置換反応の進行とともに、アミン、アルコールが生成するために、多くの場合、ブレンステッド塩基を使用する必要はないが、アミノ基やアルコキシ基の脱離能が低いために、その脱離を促進するルイス酸の使用が効果的である。
2-2.一般式(1A)~(1E)の多環芳香族化合物およびその多量体の製造方法
 一般式(1A)~(1E)のいずれかで表される多環芳香族化合物および一般式(1A)~(1E)のいずれかで表される構造を複数有する多環芳香族化合物の多量体についても、一般式(1)の多環芳香族化合物およびその多量体の製造方法を参考にして製造することができる。
2-2(1).一般式(1A)の多環芳香族化合物およびその多量体の製造方法
 一般式(1)の化合物の製造方法で説明したスキーム(11)~(15)により、一般式(1A)または式(1A’)で表される多環芳香族化合物およびその多量体を製造することができる。
2-2(2).一般式(1B)の多環芳香族化合物およびその多量体の製造方法
 一般式(1)の化合物の製造方法で説明したスキーム(1)~(10)により、一般式(1B)または式(1B’)で表される多環芳香族化合物およびその多量体を製造することができる。
2-2(3).一般式(1C)の多環芳香族化合物およびその多量体の製造方法
 一般式(1)の化合物の製造方法で説明したスキーム(1)~(10)およびスキーム(11)~(15)を組み合わせることにより、一般式(1C)または式(1C’)で表される多環芳香族化合物およびその多量体を製造することができる。
2-2(4).一般式(1D)、(1E)の多環芳香族化合物および多量体の製造方法
 一般式(1D)、式(1D’)、式(1E)または式(1E’)で表される多環芳香族化合物およびその多量体は、基本的には、A環(a環)とC環(c環)とを結合基(>Oまたは>N-Rを含む基)で結合して第1中間体を製造する第1工程、三ヨウ化ホウ素などを用いたタンデムボラフリーデルクラフツ反応(連続的な芳香族求電子置換反応、以下同様)により中心元素B(ホウ素)を導入する第2工程、B環(b環)部分に相当する例えばイソプロペニル基などのアルケニル基が置換したアリールグリニャール試薬やアリールリチウムなどの有機金属化合物を反応させることにより第2中間体を製造する第3工程、この化合物に酸を作用させて環化反応させることにより一般式(1D)、式(1D’)、式(1E)または式(1E’)で表される多環芳香族化合物およびその多量体を製造する第4工程を経て、製造することができる。なお、後述するスキーム(21)~(27)における構造式中の各符号の定義は一般式(1D)、式(1D’)、式(1E)または式(1E’)における定義と同じである。
<第1工程>
 A環(a環)とC環(c環)とが結合基(>Oまたは>N-Rを含む基)で結合した化合物を製造するには、例えば結合基が>Oの場合は、求核置換反応やウルマン反応といった一般的なエーテル化反応が利用でき、>N-Rの場合は、ブッフバルト-ハートウィッグ反応といった一般的なアミノ化反応が利用できる。
<第2工程および第3工程>
 この工程を下記スキーム(21)および(22)により説明する。以下のとおり、三ヨウ化ホウ素などを用いたタンデムボラフリーデルクラフツ反応の後、アルケニル基「-C(-Ra)=CHRa’」が置換したアリールグリニャール試薬やアリールリチウムなどを反応させ、ホウ素原子上にB環(b環)部分を導入することで、第2中間体を製造することができる。なお、各スキーム中のXは>Oまたは>N-Rである。
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
 アルケニル基「-C(-Ra)=CHRa’」におけるRaは、「-CH-Cn-12(n-1)+1(nは1以上)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルであり、Ra’は、「-Cn-12(n-1)+1(nは1以上)」で表される直鎖または分岐鎖のアルキルであって、nが1の場合は水素を表し、Raにおけるメチレン基以外の「-Cn-12(n-1)+1」部分の構造と、Ra’である「-Cn-12(n-1)+1」の構造とは同じである。これは、一般式(1D)、式(1E)、式(1D’)および式(1E’)中の「>C(-Ra)」部分の「C(炭素)」が不斉炭素にならないようにするためである。nは1以上であって、好ましくはn=1~6であり、より好ましくはn=1~4であり、さらに好ましくはn=1~3であり、特に好ましくはn=1または2であり、最も好ましくはn=1(Ra=メチル基、Ra’=水素)である。
 ここでRaがメチル基であり、かつRa’が水素原子である場合以外は二重結合部分でE/Z異性体が生じうるが、第2中間体およびその多量体から一般式(1D)、式(1E)、式(1D’)または式(1E’)で表される多環芳香族化合物およびその多量体を製造する反応においては、第2中間体およびその多量体における二重結合部分がE体であっても、またZ体であっても同一の多環芳香族化合物およびその多量体を与える。故に本明細書中では、第2中間体およびその多量体は単一の異性体の構造式のみを記載しているが、当該多環芳香族化合物およびその多量体における二重結合部分の形態としては、E体またはZ体、どちらの異性体であってもよく、かつE体とZ体の任意の比の混合物であってもよい。
 上記スキーム(21)および(22)で製造される第2中間体の多量体については、複数のA環(a環)およびC環(c環)を有する第1中間体を用いることで製造することができる。詳細は下記スキーム(23)~(25)に示すとおりである。この場合、使用する三ヨウ化ホウ素などの試薬の量を2倍量、3倍量とすることで目的の第2中間体の多量体を製造することができる。なお、各スキーム中のXは>Oまたは>N-Rである。
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
 上記スキーム(21)~(25)においては、第2工程であるタンデムボラフリーデルクラフツ反応において三ヨウ化ホウ素を用いる例を示したが、三塩化ホウ素や三臭化ホウ素、または三フッ化ホウ素・ジエチルエーテル錯体のような、その他のハロゲン化ホウ素試薬を用いることもできる。またこれら反応におけるタンデムボラフリーデルクラフツ反応を促進させるために、例えば三塩化アルミニウム、三塩化ガリウムまたは四塩化チタンのようなルイス酸を添加してもよい。
 上述の製造法を適宜選択し、使用する原料も適宜選択することで、所望の位置に置換基を有する、第2中間体およびその多量体を製造することができる。
 また上述の製造法で、例えばハロゲン、トリフルオロメタンスルホン酸エステルのようなスルホン酸エステル、ボロン酸またはボロン酸エステルといった反応性置換基を有する化合物を製造した後に、鈴木カップリング、根岸カップリングまたは熊田カップリングのようなクロスカップリング反応、ブッフバルト-ハートウィッグ反応、ウルマン反応、ブチルリチウムなどを用いたハロゲン-金属交換反応やグリニャール反応のようなメタル化に続く求電子反応試薬との反応といった、一般的な反応を用いても、所望の位置に置換基を有する、第2中間体およびその多量体を製造することができる。
 ハロゲンを有する、第2中間体およびその多量体は、ハロゲンを有する原料を使用することで製造できるほか、一般的に知られている反応を利用して当該第2中間体およびその多量体をハロゲン化することでも製造できる。
 また、トリフルオロメタンスルホン酸エステルのようなスルホン酸エステルを有する、第2中間体およびその多量体は、スルホン酸エステルを有する原料を使用することで製造できるほか、メトキシ基のようなアルコキシ基を有する原料を用いるなどして製造した化合物に、三臭化ホウ素やピリジン塩酸塩のような一般的に知られている試薬を反応させることでアルコキシ基を水酸基に変換した後に、無水トリフルオロメタンスルホン酸のような無水物やノナフルオロ-1-ブタンスルホニルフルオリドのようなハロゲン化物などを反応させることでも製造できる。
 また、第2中間体およびその多量体には、少なくとも一部の水素原子が重水素で置換されている化合物も含まれるが、このような化合物も所望の箇所が重水素で置換されている原料を用いることで、上記と同様に製造することができる。
<第4工程>
 第4工程は、上述するようにして製造した、第2中間体およびその多量体に酸を作用させて環化反応させることにより、一般式(1D)、式(1E)、式(1D’)または式(1E’)で表される多環芳香族化合物およびその多量体を製造する工程である。この工程では、下記スキーム(26)および(27)に示すように、酸、特にSc(OTf)のようなルイス酸によるフリーデルクラフツ反応によって、一般式(1D)、式(1E)、式(1D’)または式(1E’)で表される多環芳香族化合物およびその多量体を製造することができる。
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
 ここでRaがメチル基であり、かつRa’が水素原子である場合以外は、二重結合部分でE/Z異性体が存在する。しかしながら上記スキーム(26)および(27)では、第2中間体はE体であっても、またZ体であっても同一の一般式(1D)、式(1E)、式(1D’)または式(1E’)で表される多環芳香族化合物およびその多量体を与える。故に、本明細書中の第2中間体の表記においては、単一の異性体の構造式のみを記載しているが、第2中間体における二重結合部分の形態としては、E体またはZ体、どちらの異性体であってもよく、かつE体とZ体の任意の比の混合物であってもよい。
 上記スキーム(26)および(27)で使用するルイス酸としては、一般的に知られているルイス酸が使用できるが、例えばAlCl、AlBr、AlF、BF・OEt、BCl、BBr、GaCl、GaBr、InCl、InBr、In(OTf)、SnCl、SnBr、AgOTf、ScCl、Sc(OTf)、ZnCl、ZnBr、Zn(OTf)、MgCl、MgBr、Mg(OTf)、LiOTf、NaOTf、KOTf、MeSiOTf、Cu(OTf)、CuCl、YCl、Y(OTf)、TiCl、TiBr、ZrCl、ZrBr、FeCl、FeBr、CoClおよびCoBrなどが挙げられる。
 上記スキーム(26)および(27)で使用する溶媒としては、一般的な有機溶媒が使用できるが、例えばジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、ベンゼン、トルエン、キシレンの各異性体およびその混合物、トリメチルベンゼンの各異性体およびその混合物、クロロベンゼン、o-ジクロロベンゼン、ベンゾトリフロリド、ジエチルエーテル、メチルターシャリーブチルエーテル、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテル、ジフェニルエーテル、シクロペンタン、ペンタン、シクロヘキサン、ヘキサン、オクタン、ドデカンおよびデカリンなどが挙げられ、またこれらの任意の比の混合物も用いることができる。
 上述の製造法を適宜選択し、使用する原料も適宜選択することで、所望の位置に置換基を有する、一般式(1D)、式(1E)、式(1D’)または式(1E’)で表される多環芳香族化合物およびその多量体を製造することができる。
 また上述の製造法で、例えばハロゲン、トリフルオロメタンスルホン酸エステルのようなスルホン酸エステル、ボロン酸またはボロン酸エステルといった反応性置換基を有する化合物を製造した後に、鈴木カップリング、根岸カップリングまたは熊田カップリングのようなクロスカップリング反応、ブッフバルト-ハートウィッグ反応、ウルマン反応、ブチルリチウムなどを用いたハロゲン-金属交換反応やグリニャール反応のようなメタル化に続く求電子反応試薬との反応といった、一般的な反応を用いても、所望の位置に置換基を有する、一般式(1D)、式(1E)、式(1D’)または式(1E’)で表される多環芳香族化合物およびその多量体を製造することができる。
 ハロゲンを有する、一般式(1D)、式(1E)、式(1D’)または式(1E’)で表される多環芳香族化合物およびその多量体は、ハロゲンを有する原料を使用することで製造できるほか、一般的に知られている反応を利用して当該多環芳香族化合物およびその多量体をハロゲン化することでも製造できる。
 また、トリフルオロメタンスルホン酸エステルのようなスルホン酸エステルを有する、一般式(1D)、式(1E)、式(1D’)または式(1E’)で表される多環芳香族化合物は、スルホン酸エステルを有する原料を使用することで製造できるほか、メトキシ基のようなアルコキシ基を有する原料を用いるなどして製造した化合物に、三臭化ホウ素やピリジン塩酸塩のような一般的に知られている試薬を反応させることでアルコキシ基を水酸基に変換した後に、無水トリフルオロメタンスルホン酸のような無水物やノナフルオロ-1-ブタンスルホニルフルオリドのようなハロゲン化物などを反応させることでも製造できる。
 また、一般式(1D)、式(1E)、式(1D’)または式(1E’)で表される多環芳香族化合物には、少なくとも一部の水素原子が重水素で置換されている化合物も含まれるが、このような多環芳香族化合物なども所望の箇所が重水素で置換されている原料を用いることで、上記と同様に製造することができる。
3.有機電界発光素子
 以下に、本実施形態に係る有機EL素子について図面に基づいて詳細に説明する。図1は、本実施形態に係る有機EL素子を示す概略断面図である。
<有機電界発光素子の構造>
 図1に示された有機EL素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
 なお、有機EL素子100は、作製順序を逆にして、例えば、基板101と、基板101上に設けられた陰極108と、陰極108の上に設けられた電子注入層107と、電子注入層107の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた発光層105と、発光層105の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた陽極102とを有する構成としてもよい。
 上記各層すべてがなくてはならないわけではなく、最小構成単位を陽極102と発光層105と陰極108とからなる構成として、正孔注入層103、正孔輸送層104、電子輸送層106、電子注入層107は任意に設けられる層である。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。
 有機EL素子を構成する層の態様としては、上述する「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」の構成態様の他に、「基板/陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子注入層/陰極」の構成態様であってもよい。
<有機電界発光素子における基板>
 基板101は、有機EL素子100の支持体であり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状、またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルム、プラスチックシートなどが用いられる。なかでも、ガラス板、および、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
<有機電界発光素子における陽極>
 陽極102は、発光層105へ正孔を注入する役割を果たす。なお、陽極102と発光層105との間に正孔注入層103および/または正孔輸送層104が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
 陽極102を形成する材料としては、無機化合物および有機化合物が挙げられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどが挙げられる。有機化合物としては、例えば、ポリ(3-メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどが挙げられる。その他、有機EL素子の陽極として用いられている物質の中から適宜選択して用いることができる。
 透明電極の抵抗は、発光素子の発光に十分な電流が供給できればよいので限定されないが、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、例えば100~5Ω/□、好ましくは50~5Ω/□の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常50~300nmの間で用いられることが多い。
<有機電界発光素子における正孔注入層、正孔輸送層>
 正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たす。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たす。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
 正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。
 正孔注入層103および正孔輸送層104を形成する材料としては、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機EL素子の正孔注入層および正孔輸送層に使用されている公知の化合物の中から任意の化合物を選択して用いることができる。それらの具体例は、カルバゾール誘導体(N-フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(芳香族第3級アミノを主鎖または側鎖に持つポリマー、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミン、N,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、N,N,N4’,N4’-テトラ[1,1’-ビフェニル]-4-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など)、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、キノキサリン誘導体(例えば、1,4,5,8,9,12-ヘキサアザトリフェニレン-2,3,6,7,10,11-ヘキサカルボニトリルなど)、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されない。
 また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または、電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6-テトラフルオロテトラシアノ-1,4-ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pheiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、または、特定の金属フタロシアニン(特に、亜鉛フタロシアニン(ZnPc)など)が知られている(特開2005-167175号公報)。
<有機電界発光素子における発光層>
 発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光する層である。発光層105を形成する材料としては、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光)効率を示す化合物であるのが好ましい。本発明では、発光層におけるドーパント材料として、上記一般式(1)で表される多環芳香族化合物および上記一般式(1)で表される構造を複数有する多環芳香族化合物の多量体からなる化合物群の中から少なくとも2つの多環芳香族化合物および/または多量体を用いる。この少なくとも2つの多環芳香族化合物および/または多量体は、発光層中に0.1~30重量%含有させることが好ましく、0.5~20重量%含有させることがより好ましく、1~10重量%含有させることがさらに好ましく、2~6重量%含有させることが特に好ましい。
 発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光層用材料(ホスト材料、ドーパント材料)により形成される。ホスト材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。また、本発明のように2種類以上のドーパント材料を使用する場合には、ホスト材料と2種類以上のドーパント材料を共蒸着する方法(蒸着ボートは個々の材料に対応した複数のボートを使用しても、各材料をプレミックスして1つのボートを使用してもよい)や、ホスト材料と2種類以上のドーパント材料を適当な溶媒に溶かした状態で塗布する方法などを使用することができ、発光層の形成方法は特に限定されない。
 ホスト材料の使用量はホスト材料の種類によって異なり、そのホスト材料の特性に合わせて決めればよい。ホスト材料の使用量の目安は、好ましくは発光層用材料全体の70~99.9重量%であり、より好ましくは80~99.5重量%であり、さらに好ましくは90~99重量%であり、特に好ましくは94~98重量%である。
 ホスト材料としては、以前から発光体として知られていたアントラセン誘導体、フルオレン誘導体、ジベンゾクリセン誘導体およびカルバゾール誘導体などが挙げられる。
 アントラセン誘導体としては、下記構造式で表される化合物が挙げられる。当該化合物における少なくとも1つの水素は、炭素数1~6のアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000137
 上記式中、LおよびLは、それぞれ独立して、炭素数6~30のアリールまたは炭素数2~30のヘテロアリールである。アリールとしては、炭素数6~24のアリールが好ましく、炭素数6~16のアリールがより好ましく、炭素数6~12のアリールがさらに好ましく、炭素数6~10のアリールが特に好ましく、具体的には、ベンゼン環、ビフェニル環、ナフタレン環、テルフェニル環、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、トリフェニレン環、ピレン環、ナフタセン環、ペリレン環およびペンタセン環などの一価の基が挙げられる。ヘテロアリールとしては、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましく、具体的には、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラザン環、オキサジアゾール環およびチアントレン環などの一価の基が挙げられる。
 フルオレン誘導体としては、下記構造式で表される化合物が挙げられる。当該化合物における少なくとも1つの水素は、炭素数1~6のアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000138
 上記式中、
 R1からR10は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルケニル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、
 また、RとR、RとR、RとR、RとR、RとR、RとRまたはRとR10がそれぞれ独立して結合して縮合環またはスピロ環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール(当該ヘテロアリールは連結基を介して当該形成された環と結合していてもよい)、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルケニル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよい。
 ジベンゾクリセン誘導体としては、下記構造式で表される化合物が挙げられる。当該化合物における少なくとも1つの水素は、炭素数1~6のアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000139
 上記式中、
 R1からR16は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルケニル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、
 また、RからR16のうち隣接する基同士が結合して縮合環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール(当該ヘテロアリールは連結基を介して当該形成された環と結合していてもよい)、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルケニル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよい。
 カルバゾール誘導体としては、下記構造式で表される化合物が挙げられる。当該化合物における少なくとも1つの水素は、炭素数1~6のアルキル、シアノ、ハロゲンまたは重水素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000140
 上記式中、Lは炭素数6~24のアリーレンであり、炭素数6~16のアリーレンが好ましく、炭素数6~12のアリーレンがより好ましく、炭素数6~10のアリーレンが特に好ましく、具体的には、ベンゼン環、ビフェニル環、ナフタレン環、テルフェニル環、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、トリフェニレン環、ピレン環、ナフタセン環、ペリレン環およびペンタセン環などの二価の基が挙げられる。
<有機電界発光素子における電子注入層、電子輸送層>
 電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たす。電子輸送層106は、陰極108から注入された電子または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たす。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合するか、電子輸送・注入材料と高分子結着剤の混合物により形成される。
 電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することをつかさどる層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。
 電子輸送層106または電子注入層107を形成する材料(電子輸送材料)としては、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機EL素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。
 電子輸送層または電子注入層に用いられる材料としては、炭素、水素、酸素、硫黄、ケイ素およびリンの中から選ばれる一種以上の原子で構成される芳香族環または複素芳香族環からなる化合物、ピロール誘導体およびその縮合環誘導体および電子受容性窒素を有する金属錯体の中から選ばれる少なくとも一種を含有することが好ましい。具体的には、ナフタレン、アントラセンなどの縮合環系芳香族環誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香族環誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体およびインドール誘導体などが挙げられる。電子受容性窒素を有する金属錯体としては、例えば、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などが挙げられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
 また、他の電子伝達化合物の具体例として、ピリジン誘導体、ナフタレン誘導体、アントラセン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体(1,3-ビス[(4-t-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなど)、チオフェン誘導体、トリアゾール誘導体(N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなど)、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノリノール系金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体(2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなど)、イミダゾピリジン誘導体、ボラン誘導体、ベンゾイミダゾール誘導体(トリス(N-フェニルベンゾイミダゾール-2-イル)ベンゼンなど)、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、テルピリジンなどのオリゴピリジン誘導体、ビピリジン誘導体、テルピリジン誘導体(1,3-ビス(4’-(2,2’:6’2”-テルピリジニル))ベンゼンなど)、ナフチリジン誘導体(ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなど)、アルダジン誘導体、カルバゾール誘導体、インドール誘導体、リンオキサイド誘導体、ビススチリル誘導体などが挙げられる。
 また、電子受容性窒素を有する金属錯体を用いることもでき、例えば、キノリノール系金属錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などが挙げられる。
 上述した材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
 上述した材料の中でも、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、カルバゾール誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体、およびキノリノール系金属錯体が好ましい。
<ボラン誘導体>
 ボラン誘導体は、例えば下記一般式(ETM-1)で表される化合物であり、詳細には特開2007-27587号公報に開示されている。
Figure JPOXMLDOC01-appb-C000141
 上記式(ETM-1)中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよいアリーレンであり、Yは、置換されていてもよい炭素数16以下のアリール、置換されているボリル、または置換されていてもよいカルバゾリルであり、そして、nはそれぞれ独立して0~3の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリールまたはアルキルなどが挙げられる。
 上記一般式(ETM-1)で表される化合物の中でも、下記一般式(ETM-1-1)で表される化合物や下記一般式(ETM-1-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000142
 式(ETM-1-1)中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、R21およびR22は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、nはそれぞれ独立して0~3の整数であり、そして、mはそれぞれ独立して0~4の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリールまたはアルキルなどが挙げられる。
Figure JPOXMLDOC01-appb-C000143
 式(ETM-1-2)中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、そして、nはそれぞれ独立して0~3の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリールまたはアルキルなどが挙げられる。
 Xの具体的な例としては、下記式(X-1)~式(X-9)で表される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000144
(各式中、Rは、それぞれ独立してアルキル基または置換されていてもよいフェニル基である。)
 このボラン誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000145
 このボラン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<ピリジン誘導体>
 ピリジン誘導体は、例えば下記式(ETM-2)で表される化合物であり、好ましくは式(ETM-2-1)または式(ETM-2-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000146
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数である。
 上記式(ETM-2-1)において、R11~R18は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)である。
 上記式(ETM-2-2)において、R11およびR12は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)であり、R11およびR12は結合して環を形成していてもよい。
 各式において、「ピリジン系置換基」は、下記式(Py-1)~式(Py-15)のいずれかであり、ピリジン系置換基はそれぞれ独立して炭素数1~4のアルキルで置換されていてもよい。また、ピリジン系置換基はフェニレン基やナフチレン基を介して各式におけるφ、アントラセン環またはフルオレン環に結合していてもよい。
Figure JPOXMLDOC01-appb-C000147
 ピリジン系置換基は、上記式(Py-1)~式(Py-15)のいずれかであるが、これらの中でも、下記式(Py-21)~式(Py-44)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000148
 各ピリジン誘導体における少なくとも1つの水素が重水素で置換されていてもよく、また、上記式(ETM-2-1)および式(ETM-2-2)における2つの「ピリジン系置換基」のうちの一方はアリールで置き換えられていてもよい。
 R11~R18における「アルキル」としては、直鎖および分枝鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分枝鎖アルキルが挙げられる。好ましい「アルキル」は、炭素数1~18のアルキル(炭素数3~18の分枝鎖アルキル)である。より好ましい「アルキル」は、炭素数1~12のアルキル(炭素数3~12の分枝鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1~6のアルキル(炭素数3~6の分枝鎖アルキル)である。特に好ましい「アルキル」は、炭素数1~4のアルキル(炭素数3~4の分枝鎖アルキル)である。
 具体的な「アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどが挙げられる。
 ピリジン系置換基に置換する炭素数1~4のアルキルとしては、上記アルキルの説明を引用することができる。
 R11~R18における「シクロアルキル」としては、例えば、炭素数3~12のシクロアルキルが挙げられる。好ましい「シクロアルキル」は、炭素数3~10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3~8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3~6のシクロアルキルである。
 具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどが挙げられる。
 R11~R18における「アリール」としては、好ましいアリールは炭素数6~30のアリールであり、より好ましいアリールは炭素数6~18のアリールであり、さらに好ましくは炭素数6~14のアリールであり、特に好ましくは炭素数6~12のアリールである。
 具体的な「炭素数6~30のアリール」としては、単環系アリールであるフェニル、縮合二環系アリールである(1-,2-)ナフチル、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどが挙げられる。
 好ましい「炭素数6~30のアリール」は、フェニル、ナフチル、フェナントリル、クリセニルまたはトリフェニレニルなどが挙げられ、さらに好ましくはフェニル、1-ナフチル、2-ナフチルまたはフェナントリルが挙げられ、特に好ましくはフェニル、1-ナフチルまたは2-ナフチルが挙げられる。
 上記式(ETM-2-2)におけるR11およびR12は結合して環を形成していてもよく、この結果、フルオレン骨格の5員環には、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、フルオレンまたはインデンなどがスピロ結合していてもよい。
 このピリジン誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000149
 このピリジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<フルオランテン誘導体>
 フルオランテン誘導体は、例えば下記一般式(ETM-3)で表される化合物であり、詳細には国際公開第2010/134352号公報に開示されている。
Figure JPOXMLDOC01-appb-C000150
 上記式(ETM-3)中、X12~X21は水素、ハロゲン、直鎖、分岐もしくは環状のアルキル、直鎖、分岐もしくは環状のアルコキシ、置換もしくは無置換のアリール、または置換もしくは無置換のヘテロアリールを表す。ここで、置換されている場合の置換基としては、アリール、ヘテロアリールまたはアルキルなどが挙げられる。
 このフルオランテン誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000151
<BO系誘導体>
 BO系誘導体は、例えば下記式(ETM-4)で表される多環芳香族化合物、または下記式(ETM-4)で表される構造を複数有する多環芳香族化合物の多量体である。
Figure JPOXMLDOC01-appb-C000152
 R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよい。
 また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよい。
 また、式(ETM-4)で表される化合物または構造における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい。
 式(ETM-4)における置換基や環形成の形態、また式(ETM-4)の構造が複数合わさってできる多量体の説明については、上記一般式(1)や式(1’)で表される多環芳香族化合物やその多量体の説明を引用することができる。
 このBO系誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000153
 このBO系誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<アントラセン誘導体>
 アントラセン誘導体の一つは、例えば下記式(ETM-5-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000154
 Arは、それぞれ独立して、2価のベンゼンまたはナフタレンであり、R~Rは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3から6のシクロアルキルまたは炭素数6~20のアリールである。
 Arは、それぞれ独立して、2価のベンゼンまたはナフタレンから適宜選択することができ、2つのArが異なっていても同じであってもよいが、アントラセン誘導体の合成の容易さの観点からは同じであることが好ましい。Arはピリジンと結合して、「Arおよびピリジンからなる部位」を形成しており、この部位は例えば下記式(Py-1)~式(Py-12)のいずれかで表される基としてアントラセンに結合している。
Figure JPOXMLDOC01-appb-C000155
 これらの基の中でも、上記式(Py-1)~式(Py-9)のいずれかで表される基が好ましく、上記式(Py-1)~式(Py-6)のいずれかで表される基がより好ましい。アントラセンに結合する2つの「Arおよびピリジンからなる部位」は、その構造が同じであっても異なっていてもよいが、アントラセン誘導体の合成の容易さの観点からは同じ構造であることが好ましい。ただし、素子特性の観点からは、2つの「Arおよびピリジンからなる部位」の構造が同じであっても異なっていても好ましい。
 R~Rにおける炭素数1~6のアルキルについては直鎖および分枝鎖のいずれでもよい。すなわち、炭素数1~6の直鎖アルキルまたは炭素数3~6の分枝鎖アルキルである。より好ましくは、炭素数1~4のアルキル(炭素数3~4の分枝鎖アルキル)である。具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、または2-エチルブチルなどが挙げられ、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、またはt-ブチルが好ましく、メチル、エチル、またはt-ブチルがより好ましい。
 R~Rにおける炭素数3~6のシクロアルキルの具体例としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどが挙げられる。
 R~Rにおける炭素数6~20のアリールについては、炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。
 「炭素数6~20のアリール」の具体例としては、単環系アリールであるフェニル、(o-,m-,p-)トリル、(2,3-,2,4-,2,5-,2,6-,3,4-,3,5-)キシリル、メシチル(2,4,6-トリメチルフェニル)、(o-,m-,p-)クメニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アントラセン-(1-,2-,9-)イル、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、テトラセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イルなどが挙げられる。
 好ましい「炭素数6~20のアリール」は、フェニル、ビフェニリル、テルフェニリルまたはナフチルであり、より好ましくは、フェニル、ビフェニリル、1-ナフチル、2-ナフチルまたはm-テルフェニル-5’-イルであり、さらに好ましくは、フェニル、ビフェニリル、1-ナフチルまたは2-ナフチルであり、最も好ましくはフェニルである。
 アントラセン誘導体の一つは、例えば下記式(ETM-5-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000156
 Arは、それぞれ独立して、単結合、2価のベンゼン、ナフタレン、アントラセン、フルオレン、またはフェナレンである。
 Arは、それぞれ独立して、炭素数6~20のアリールであり、上記式(ETM-5-1)における「炭素数6~20のアリール」と同じ説明を引用することができる。炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。具体例としては、フェニル、ビフェニリル、ナフチル、テルフェニリル、アントラセニル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、テトラセニル、ペリレニルなどが挙げられる。
 R~Rは、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数3から6のシクロアルキルまたは炭素数6~20のアリールであり、上記式(ETM-5-1)における説明を引用することができる。
 これらのアントラセン誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000157
 これらのアントラセン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<ベンゾフルオレン誘導体>
 ベンゾフルオレン誘導体は、例えば下記式(ETM-6)で表される化合物である。
Figure JPOXMLDOC01-appb-C000158
 Arは、それぞれ独立して、炭素数6~20のアリールであり、上記式(ETM-5-1)における「炭素数6~20のアリール」と同じ説明を引用することができる。炭素数6~16のアリールが好ましく、炭素数6~12のアリールがより好ましく、炭素数6~10のアリールが特に好ましい。具体例としては、フェニル、ビフェニリル、ナフチル、テルフェニリル、アントラセニル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、テトラセニル、ペリレニルなどが挙げられる。
 Arは、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)であり、2つのArは結合して環を形成していてもよい。
 Arにおける「アルキル」としては、直鎖および分枝鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分枝鎖アルキルが挙げられる。好ましい「アルキル」は、炭素数1~18のアルキル(炭素数3~18の分枝鎖アルキル)である。より好ましい「アルキル」は、炭素数1~12のアルキル(炭素数3~12の分枝鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1~6のアルキル(炭素数3~6の分枝鎖アルキル)である。特に好ましい「アルキル」は、炭素数1~4のアルキル(炭素数3~4の分枝鎖アルキル)である。具体的な「アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシルなどが挙げられる。
 Arにおける「シクロアルキル」としては、例えば、炭素数3~12のシクロアルキルが挙げられる。好ましい「シクロアルキル」は、炭素数3~10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3~8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3~6のシクロアルキルである。具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどが挙げられる。
 Arにおける「アリール」としては、好ましいアリールは炭素数6~30のアリールであり、より好ましいアリールは炭素数6~18のアリールであり、さらに好ましくは炭素数6~14のアリールであり、特に好ましくは炭素数6~12のアリールである。
 具体的な「炭素数6~30のアリール」としては、フェニル、ナフチル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、ナフタセニル、ペリレニル、ペンタセニルなどが挙げられる。
 2つのArは結合して環を形成していてもよく、この結果、フルオレン骨格の5員環には、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、フルオレンまたはインデンなどがスピロ結合していてもよい。
 このベンゾフルオレン誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000159
 このベンゾフルオレン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<ホスフィンオキサイド誘導体>
 ホスフィンオキサイド誘導体は、例えば下記式(ETM-7-1)で表される化合物である。詳細は国際公開第2013/079217号公報にも記載されている。
Figure JPOXMLDOC01-appb-C000160
 Rは、置換または無置換の、炭素数1~20のアルキル、炭素数6~20のアリールまたは炭素数5~20のヘテロアリールであり、
 Rは、CN、置換または無置換の、炭素数1~20のアルキル、炭素数1~20のヘテロアルキル、炭素数6~20のアリール、炭素数5~20のヘテロアリール、炭素数1~20のアルコキシまたは炭素数6~20のアリールオキシであり、
 RおよびRは、それぞれ独立して、置換または無置換の、炭素数6~20のアリールまたは炭素数5~20のヘテロアリールであり、
 Rは酸素または硫黄であり、
 jは0または1であり、kは0または1であり、rは0~4の整数であり、qは1~3の整数である。
 ここで、置換されている場合の置換基としては、アリール、ヘテロアリールまたはアルキルなどが挙げられる。
 ホスフィンオキサイド誘導体は、例えば下記式(ETM-7-2)で表される化合物でもよい。
Figure JPOXMLDOC01-appb-C000161
 R~Rは、同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、アミノ基、ニトロ基、シリル基、および隣接置換基との間に形成される縮合環の中から選ばれる。
 Arは、同じでも異なっていてもよく、アリーレン基またはヘテロアリーレン基である。Arは、同じでも異なっていてもよく、アリール基またはヘテロアリール基である。ただし、ArおよびArのうち少なくとも一方は置換基を有しているか、または隣接置換基との間に縮合環を形成している。nは0~3の整数であり、nが0のとき不飽和構造部分は存在せず、nが3のときR1は存在しない。
 これらの置換基の内、アルキル基とは、例えば、メチル基、エチル基、プロピル基、ブチル基などの飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。置換されている場合の置換基には特に制限は無く、例えば、アルキル基、アリール基、複素環基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、通常、1~20の範囲である。
 また、シクロアルキル基とは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキル基部分の炭素数は特に限定されないが、通常、3~20の範囲である。
 また、アラルキル基とは、例えば、ベンジル基、フェニルエチル基などの脂肪族炭化水素を介した芳香族炭化水素基を示し、脂肪族炭化水素と芳香族炭化水素はいずれも無置換でも置換されていてもかまわない。脂肪族部分の炭素数は特に限定されないが、通常、1~20の範囲である。
 また、アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルケニル基の炭素数は特に限定されないが、通常、2~20の範囲である。
 また、シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセン基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。
 また、アルキニル基とは、例えば、アセチレニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキニル基の炭素数は特に限定されないが、通常、2~20の範囲である。
 また、アルコキシ基とは、例えば、メトキシ基などのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。アルコキシ基の炭素数は特に限定されないが、通常、1~20の範囲である。
 また、アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換された基である。
 また、アリールエーテル基とは、例えば、フェノキシ基などのエーテル結合を介した芳香族炭化水素基を示し、芳香族炭化水素基は無置換でも置換されていてもかまわない。アリールエーテル基の炭素数は特に限定されないが、通常、6~40の範囲である。
 また、アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換された基である。
 また、アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基などの芳香族炭化水素基を示す。アリール基は、無置換でも置換されていてもかまわない。アリール基の炭素数は特に限定されないが、通常、6~40の範囲である。
 また、複素環基とは、例えば、フラニル基、チオフェニル基、オキサゾリル基、ピリジル基、キノリニル基、カルバゾリル基などの炭素以外の原子を有する環状構造基を示し、これは無置換でも置換されていてもかまわない。複素環基の炭素数は特に限定されないが、通常、2~30の範囲である。
 ハロゲンとは、フッ素、塩素、臭素、ヨウ素を示す。
 アルデヒド基、カルボニル基、アミノ基には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環などで置換された基も含むことができる。
 また、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環は無置換でも置換されていてもかまわない。
 シリル基とは、例えば、トリメチルシリル基などのケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。シリル基の炭素数は特に限定されないが、通常、3~20の範囲である。また、ケイ素数は、通常、1~6である。
 隣接置換基との間に形成される縮合環とは、例えば、ArとR、ArとR、ArとR、ArとR、RとR、ArとAr等の間で形成された共役または非共役の縮合環である。ここで、nが1の場合、2つのR同士で共役または非共役の縮合環を形成してもよい。これら縮合環は、環内構造に窒素、酸素、硫黄原子を含んでいてもよいし、さらに別の環と縮合してもよい。
 このホスフィンオキサイド誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000162
 このホスフィンオキサイド誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<ピリミジン誘導体>
 ピリミジン誘導体は、例えば下記式(ETM-8)で表される化合物であり、好ましくは下記式(ETM-8-1)で表される化合物である。詳細は国際公開第2011/021689号公報にも記載されている。
Figure JPOXMLDOC01-appb-C000163
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは1~4の整数であり、好ましくは1~3の整数であり、より好ましくは2または3である。
 「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールが挙げられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。
 具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどが挙げられる
 「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールが挙げられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。
 具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどが挙げられる。
 また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。
 このピリミジン誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000164
 このピリミジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<カルバゾール誘導体>
 カルバゾール誘導体は、例えば下記式(ETM-9)で表される化合物、またはそれが単結合などで複数結合した多量体である。詳細は米国公開公報2014/0197386号公報に記載されている。
Figure JPOXMLDOC01-appb-C000165
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは独立して0~4の整数であり、好ましくは0~3の整数であり、より好ましくは0または1である。
 「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールが挙げられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。
 具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどが挙げられる
 「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールが挙げられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。
 具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどが挙げられる。
 また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。
 カルバゾール誘導体は、上記式(ETM-9)で表される化合物が単結合などで複数結合した多量体であってもよい。この場合、単結合以外に、アリール環(好ましくは多価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)で結合されていてもよい。
 このカルバゾール誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000166
 このカルバゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<トリアジン誘導体>
 トリアジン誘導体は、例えば下記式(ETM-10)で表される化合物であり、好ましくは下記式(ETM-10-1)で表される化合物である。詳細は米国公開公報2011/0156013号公報に記載されている。
Figure JPOXMLDOC01-appb-C000167
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは1~3の整数であり、好ましくは2または3である。
 「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6~30のアリールが挙げられ、好ましくは炭素数6~24のアリール、より好ましくは炭素数6~20のアリール、さらに好ましくは炭素数6~12のアリールである。
 具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニリル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどが挙げられる
 「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールが挙げられ、炭素数2~25のヘテロアリールが好ましく、炭素数2~20のヘテロアリールがより好ましく、炭素数2~15のヘテロアリールがさらに好ましく、炭素数2~10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などが挙げられる。
 具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどが挙げられる。
 また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。
 このトリアジン誘導体の具体例としては、例えば以下が挙げられる。
Figure JPOXMLDOC01-appb-C000168
 このトリアジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<ベンゾイミダゾール誘導体>
 ベンゾイミダゾール誘導体は、例えば下記式(ETM-11)で表される化合物である。
Figure JPOXMLDOC01-appb-C000169
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数であり、「ベンゾイミダゾール系置換基」は、上記式(ETM-2)、式(ETM-2-1)および式(ETM-2-2)における「ピリジン系置換基」の中のピリジル基がベンゾイミダゾール基に置き換わった基であり、ベンゾイミダゾール誘導体における少なくとも1つの水素は重水素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000170
 上記ベンゾイミダゾール基におけるR11は、水素、炭素数1~24のアルキル、炭素数3~12のシクロアルキルまたは炭素数6~30のアリールであり、上記式(ETM-2-1)および式(ETM-2-2)におけるR11の説明を引用することができる。
 φは、さらに、アントラセン環またはフルオレン環であることが好ましく、この場合の構造は上記式(ETM-2-1)または式(ETM-2-2)の構造を引用することができ、各式中のR11~R18は上記式(ETM-2-1)または式(ETM-2-2)での説明を引用することができる。また、上記式(ETM-2-1)または式(ETM-2-2)では2つのピリジン系置換基が結合した形態で説明されているが、これらをベンゾイミダゾール系置換基に置き換えるときには、両方のピリジン系置換基をベンゾイミダゾール系置換基で置き換えてもよいし(すなわちn=2)、いずれか1つのピリジン系置換基をベンゾイミダゾール系置換基で置き換えて他方のピリジン系置換基をR11~R18で置き換えてもよい(すなわちn=1)。さらに、例えば上記式(ETM-2-1)におけるR11~R18の少なくとも1つをベンゾイミダゾール系置換基で置き換えて「ピリジン系置換基」をR11~R18で置き換えてもよい。
 このベンゾイミダゾール誘導体の具体例としては、例えば1-フェニル-2-(4-(10-フェニルアントラセン-9-イル)フェニル)-1H-ベンゾ[d]イミダゾール、2-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、5-(10-(ナフタレン-2-イル)アントラセン-9-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾール、1-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、2-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、1-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、5-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾールなどが挙げられる。
Figure JPOXMLDOC01-appb-C000171
 このベンゾイミダゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<フェナントロリン誘導体>
 フェナントロリン誘導体は、例えば下記式(ETM-12)または式(ETM-12-1)で表される化合物である。詳細は国際公開2006/021982号公報に記載されている。
Figure JPOXMLDOC01-appb-C000172
 φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数である。
 各式のR11~R18は、それぞれ独立して、水素、アルキル(好ましくは炭素数1~24のアルキル)、シクロアルキル(好ましくは炭素数3~12のシクロアルキル)またはアリール(好ましくは炭素数6~30のアリール)である。また、上記式(ETM-12-1)においてはR11~R18のいずれかがアリール環であるφと結合する。
 各フェナントロリン誘導体における少なくとも1つの水素が重水素で置換されていてもよい。
 R11~R18におけるアルキル、シクロアルキルおよびアリールとしては、上記式(ETM-2)におけるR11~R18の説明を引用することができる。また、φは上記した構造のほかに、例えば、以下の構造式が挙げられる。なお、下記構造式中のRは、それぞれ独立して、水素、メチル、エチル、イソプロピル、シクロヘキシル、フェニル、1-ナフチル、2-ナフチル、ビフェニリルまたはテルフェニリルである。
Figure JPOXMLDOC01-appb-C000173
 このフェナントロリン誘導体の具体例としては、例えば4,7-ジフェニル-1,10-フェナントロリン、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、9,10-ジ(1,10-フェナントロリン-2-イル)アントラセン、2,6-ジ(1,10-フェナントロリン-5-イル)ピリジン、1,3,5-トリ(1,10-フェナントロリン-5-イル)ベンゼン、9,9’-ジフルオロ-ビ(1,10-フェナントロリン-5-イル)、バソクプロインや1,3-ビス(2-フェニル-1,10-フェナントロリン-9-イル)ベンゼンなどが挙げられる。
Figure JPOXMLDOC01-appb-C000174
 このフェナントロリン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
<キノリノール系金属錯体>
 キノリノール系金属錯体は、例えば下記一般式(ETM-13)で表される化合物である。
Figure JPOXMLDOC01-appb-C000175
 式中、R~Rは、それぞれ独立して、水素、フッ素、アルキル、アラルキル、アルケニル、シアノ、アルコキシまたはアリールであり、MはLi、Al、Ga、BeまたはZnであり、nは1~3の整数である。
 キノリノール系金属錯体の具体例としては、8-キノリノールリチウム、トリス(8-キノリノラート)アルミニウム、トリス(4-メチル-8-キノリノラート)アルミニウム、トリス(5-メチル-8-キノリノラート)アルミニウム、トリス(3,4-ジメチル-8-キノリノラート)アルミニウム、トリス(4,5-ジメチル-8-キノリノラート)アルミニウム、トリス(4,6-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(フェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,3-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,4-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,5,6-テトラメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(1-ナフトラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-ナフトラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-8-キノリノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2,4-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム、ビス(10-ヒドロキシベンゾ[h]キノリン)ベリリウムなどが挙げられる。
 このキノリノール系金属錯体は公知の原料と公知の合成方法を用いて製造することができる。
<チアゾール誘導体およびベンゾチアゾール誘導体>
 チアゾール誘導体は、例えば下記式(ETM-14-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000176
 ベンゾチアゾール誘導体は、例えば下記式(ETM-14-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000177
 各式のφは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1~4の整数であり、「チアゾール系置換基」や「ベンゾチアゾール系置換基」は、上記式(ETM-2)、式(ETM-2-1)および式(ETM-2-2)における「ピリジン系置換基」の中のピリジル基がチアゾール基やベンゾチアゾール基に置き換わった基であり、チアゾール誘導体およびベンゾチアゾール誘導体における少なくとも1つの水素が重水素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000178
 φは、さらに、アントラセン環またはフルオレン環であることが好ましく、この場合の構造は上記式(ETM-2-1)または式(ETM-2-2)の構造を引用することができ、各式中のR11~R18は上記式(ETM-2-1)または式(ETM-2-2)での説明を引用することができる。また、上記式(ETM-2-1)または式(ETM-2-2)では2つのピリジン系置換基が結合した形態で説明されているが、これらをチアゾール系置換基(またはベンゾチアゾール系置換基)に置き換えるときには、両方のピリジン系置換基をチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えてもよいし(すなわちn=2)、いずれか1つのピリジン系置換基をチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えて他方のピリジン系置換基をR11~R18で置き換えてもよい(すなわちn=1)。さらに、例えば上記式(ETM-2-1)におけるR11~R18の少なくとも1つをチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えて「ピリジン系置換基」をR11~R18で置き換えてもよい。
 これらのチアゾール誘導体またはベンゾチアゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。
 電子輸送層または電子注入層には、さらに、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有する物質であれば、様々な物質が用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを好適に使用することができる。
 好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0~2.5eV)またはBa(同2.52eV)などのアルカリ土類金属が挙げられ、仕事関数が2.9eV以下の物質が特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
<有機電界発光素子における陰極>
 陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たす。
 陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様の材料を用いることができる。なかでも、スズ、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウムおよびマグネシウムなどの金属またはそれらの合金(マグネシウム-銀合金、マグネシウム-インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム-リチウム合金など)などが好ましい。電子注入効率を上げて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウムおよび酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されない。
 さらに、電極保護のために白金、金、銀、銅、鉄、スズ、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例として挙げられる。これらの電極の作製法も、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。
<各層で用いてもよい結着剤>
 以上の正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N-ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル樹脂、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
<有機電界発光素子の作製方法>
 有機EL素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法またはキャスト法、コーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、ボート加熱温度+50~+400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚2nm~5μmの範囲で適宜設定することが好ましい。
 次に、有機EL素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上にホスト材料とドーパント材料を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機EL素子が得られる。なお、上述の有機EL素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
 このようにして得られた有機EL素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として印加すればよく、電圧2~40V程度を印加すると、透明または半透明の電極側(陽極または陰極、および両方)より発光が観測できる。また、この有機EL素子は、パルス電流や交流電流を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。
<有機電界発光素子の応用例>
 また、本発明は、有機EL素子を備えた表示装置または有機EL素子を備えた照明装置などにも応用することができる。
 有機EL素子を備えた表示装置または照明装置は、本実施形態にかかる有機EL素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
 表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどが挙げられる(例えば、特開平10-335066号公報、特開2003-321546号公報、特開2004-281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクスおよび/またはセグメント方式などが挙げられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
 マトリクスは、表示のための画素が格子状やモザイク状など二次元的に配置されており、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
 セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。
 照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどが挙げられる(例えば、特開2003-257621号公報、特開2003-277741号公報、特開2004-119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式では蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本実施形態に係る発光素子を用いたバックライトは薄型で軽量が特徴になる。
 以下、実施例により本発明をさらに具体的に説明していくが、本発明はこれらに限定されない。まず、多環芳香族化合物の合成例について、以下に説明する。
 合成例(1)
 化合物(1C-2):5-([1,1’-ビフェニル]-4-イル)-15,15-ジメチル-N,N,2-トリフェニル-5H,15H-9-オキサ-5-アザ-16b-ボラインデノ[1,2-b]ナフト[1,2,3-fg]アントラセン-13-アミンの合成
Figure JPOXMLDOC01-appb-C000179
 窒素雰囲気下、7-(ジフェニルアミノ)-9,9’-ジメチル-9H-フルオレン-3-オール(9.0g)、1,2-ジブロモ-3-フルオロベンゼン(7.9g)、炭酸カリウム(8.2g)およびNMP(45ml)の入ったフラスコを、還流温度で2時間加熱撹拌した。反応停止後、反応液を室温まで冷却し、水を加えて析出した沈殿物を吸引ろ過にて採取した。得られた沈殿物を水、次いでソルミックスで洗浄した後、シリカゲルカラムクロマトグラフィー(溶離液:へプタン/トルエン=3/1(容量比))で精製して、6-(2,3-ジブロモフェノキシ)-9,9-ジメチル-N,N-ジフェニル-9H-フルオレン-2-アミンを12.4g(収率:84.8%)得た。
Figure JPOXMLDOC01-appb-C000180
 窒素雰囲気下、6-(2,3-ジブロモフェノキシ)-9,9-ジメチル-N,N-ジフェニル-9H-フルオレン-2-アミン(10.0g)、ジ([1,1’-ビフェニル]-4-イル)アミン(5.3g)、酢酸パラジウム(0.15g)、ジシクロヘキシル(2’,6’-ジイソプロポキシ-[1,1’-ビフェニル]-2-イル)ホスファン(0.61g)、NaOtBu(2.4g)およびトルエン(35ml)の入ったフラスコを80℃で6時間加熱した。反応液を室温まで冷却した後、水およびトルエンを加えて分液した。更にシリカゲルカラムクロマトグラフィー(溶離液:へプタン/トルエン=2/1(容量比))で精製して、6-(2-ブロモ-3-(ジ([1,1’-ビフェニル]-4-イル)アミノ)フェノキシ)-9,9-ジメチル-N,N-ジフェニル-9H-フルオレン-2-アミンを7.4g(収率:53.1%)得た。
Figure JPOXMLDOC01-appb-C000181
 窒素雰囲気下、6-(2-ブロモ-3-(ジ([1,1’-ビフェニル]-4-イル)アミノ)フェノキシ)-9,9-ジメチル-N,N-ジフェニル-9H-フルオレン-2-アミン(7.9g)およびテトラヒドロフラン(42ml)をフラスコに入れ、-40℃まで冷却し、1.6Mのn-ブチルリチウムヘキサン溶液(6ml)を滴下した。滴下終了後、この温度で1時間撹拌した後、トリメチルボレート(1.7g)を加えた。室温まで昇温して2時間撹拌した。その後、水(100ml)をゆっくり滴下した。次に、反応混合液を酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥した後、乾燥剤を除去して、ジメチル (2-(ジ([1,1’-ビフェニル]-4-イル)アミノ)-6-((7-(ジフェニルアミノ)-9,9-ジメチル-9H-フルオレン-3-イル)オキシ)フェニル)ボロネートを7.0g(収率:100%)得た。
Figure JPOXMLDOC01-appb-C000182
 窒素雰囲気下、ジメチル (2-(ジ([1,1’-ビフェニル]-4-イル)アミノ)-6-((7-(ジフェニルアミノ)-9,9-ジメチル-9H-フルオレン-3-イル)オキシ)フェニル)ボロネート(6.5g)、塩化アルミニウム(10.3g)およびトルエン(39ml)をフラスコに入れて3分間攪拌した。その後、N-エチル-N-イソプロピルプロパン-2-アミン(2.5g)を加え、105℃で1時間加熱撹拌した。加熱終了後に反応液を冷却し、氷水(20ml)を添加した。その後、反応混合液をトルエンで抽出し、有機層をシリカゲルショートパスカラム(溶離液:トルエン)、次いでシリカゲルカラムクロマトグラフィー(溶離液:へプタン/トルエン=3/1(容量比))で精製した後、ヘプタンで再沈殿を行い、さらに、NH2シリカゲルでカラム(溶媒:ヘプタン/トルエン=1/1(容量比))で精製した。最後に、昇華精製をして、式化合物(1C-2)を0.74g(収率:12.3%)得た。
Figure JPOXMLDOC01-appb-C000183
 MSスペクトルおよびNMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.22(s,1H)、8.78(s,1H)、7.96(d,2H)、7.80~7.77(m,6H)、7.71(d,1H)、7.59~7.44(m,8H)、7.39(t,1H)、7.32~7.29(m,4H)、7.71(d,1H)、7.19(dd,4H)、7.12~7.06(m,4H)、7.00(d,1H)、6.45(d,1H)、1.57(s,6H).
 また化合物(1C-2)のガラス転移温度(Tg)は165.6℃であった。
[測定機器:Diamond DSC (PERKIN-ELMER社製); 測定条件:冷却速度200℃/Min.、昇温速度10℃/Min.]
 合成例(2)
 化合物(1A-2619):2,12-ジ-t-ブチル-5,9-ビス(4-(t-ブチル)フェニル)-7-メチル-5,9-ジヒドロ-5,9-ジアザ-13b-ボラナフト[3,2,1-de]アントラセンの合成
Figure JPOXMLDOC01-appb-C000184
 NMR測定により得られた化合物の構造を確認した。
H-NMR(500MHz,CDCl):δ=1.47(s,36H)、2.17(s,3H)、5.97(s,2H)、6.68(d,2H)、7.28(d,4H)、7.49(dd,2H)、7.67(d,4H)、8.97(d,2H).
 合成例(3)
 式(1B-101)の化合物:N,N,N13,N13-テトラフェニル-7,11-ジオキサ-17c-ボラフェナントロ[2,3,4-no]テトラフェン-5,13-ジアミンの合成
Figure JPOXMLDOC01-appb-C000185
 窒素雰囲気下、ジフェニルアミン(22.3g)、4-ブロモナフタレン-2-オール(28.0g)、Pd-132(ジョンソン・マッセイ)(0.9g)、NaOtBu(30.0g)およびトルエン(252ml)の入ったフラスコを加熱し、4時間還流した。反応液を室温まで冷却した後、水および酢酸エチルを加えて分液した。更にシリカゲルカラムクロマトグラフィー(溶離液:トルエン)で精製し、4-(ジフェニルアミノ)ナフタレン-2-オールを35g(収率:89.5%)得た。
Figure JPOXMLDOC01-appb-C000186
 窒素雰囲気下、4-(ジフェニルアミノ)ナフタレン-2-オール(16.0g)、2-ブロモ-1,3-ジフルオロベンゼン(5.0g)、炭酸カリウム(17.8g)および1-メチル-2-ピロリドン(30ml)の入ったフラスコを、還流温度で8時間加熱撹拌した。反応停止後、反応液を室温まで冷却し、水を加えて析出した沈殿物を吸引ろ過にて採取した。得られた沈殿物を水、次いでメタノールで洗浄した後、シリカゲルカラムクロマトグラフィー(溶離液:へプタン/トルエン=2/1(容量比)の混合溶媒)で精製して、3,3’-((2-ブロモ-1,3-フェニレン)ビス(オキシ))ビス(N,N-ジフェニルナフタレン-1-アミン)を15.2g(収率:76.2%)得た。
Figure JPOXMLDOC01-appb-C000187
 窒素雰囲気下、3,3’-((2-ブロモ-1,3-フェニレン)ビス(オキシ))ビス(N,N-ジフェニルナフタレン-1-アミン)(8.6g)およびテトラヒドロフラン(52ml)をフラスコに入れ、-40℃まで冷却し、1.6Mのn-ブチルリチウムヘキサン溶液(8ml)を滴下した。滴下終了後、この温度で1時間撹拌した後、トリメチルボレート(1.7g)を加えた。室温まで昇温して2時間撹拌した。その後、水(100ml)をゆっくり滴下した。次に、反応混合液を酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥した後、乾燥剤を除去して、ジメチル(2,6-ビス((4-ジフェニルアミノ)ナフタレン-2-イル)オキシ)フェニル)ボロネートを8.5g(収率:99.4%)得た。
Figure JPOXMLDOC01-appb-C000188
 窒素雰囲気下、ジメチル(2,6-ビス((4-ジフェニルアミノ)ナフタレン-2-イル)オキシ)フェニル)ボロネート(7.9g)、塩化アルミニウム(AlCl)(13.7g)およびクロロベンゼン(50ml)をフラスコに入れて5分間攪拌した。その後、N-エチルジイソプロピルアミン(16.7g)を加え、125℃で1時間加熱撹拌した。加熱終了後に反応液を冷却し、氷水(50ml)を添加した。その後、反応混合液をトルエンで抽出し、無水硫酸ナトリウムで乾燥した後、乾燥剤を除去し、溶媒を減圧留去して得られた粗製品をシリカゲルでカラム精製(溶離液:ヘプタン/トルエン=3/1(容量比))を行った後、ヘプタンで再沈殿を行った。次にNH2シリカゲルでカラム精製(溶離液:ヘプタン/トルエン=1/1(容量比))を行い、更に昇華精製をして、化合物(1B-101)を0.8g(収率:11%)得た。
Figure JPOXMLDOC01-appb-C000189
 MSスペクトルおよびNMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=8.00(d,2H)、7.88(d,2H)、7.70(t,1H)、7.47(s,2H)、7.31~7.22(m,12H)、7.18~7.16(m,8H)、7.09~7.04(m,6H).
 合成例(4)
 化合物(1A-2687):2,12-ジ-t-ブチル-5,9-ビス(4-(t-ブチル)フェニル)-N,N-ジフェニル-5,9-ジヒドロ-5,9-ジアザ-13b-ボラナフト[3,2,1-de]アントラセン-7-アミンの合成
Figure JPOXMLDOC01-appb-C000190
 前述した合成実施例と同様の方法を用い、化合物(1A-2687)を合成した。
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=1.33(s,18H)、1.46(s,18H)、5.55(s,2H)、6.75(d,2H)、6.89(t,2H)、6.94(d,4H)、7.06(t,4H)、7.13(d,4H)、7.43~7.46(m,6H)、8.95(d,2H).
 合成例(5)
 式(1B-1)の化合物:16,16,19,19-テトラメチル-N,N,N14,N14-テトラフェニル-16,19-ジヒドロ-6,10-ジオキサ-17b-ボラインデノ[1,2-b]インデノ[1’,2’:6,7]ナフト[1,2,3-fg]アントラセン-2,14-ジアミンの合成
Figure JPOXMLDOC01-appb-C000191
 窒素雰囲気下、4-メトキシサリチル酸メチル(50.0g)、ピリジン(脱水)(350ml)の入ったフラスコを、氷浴で冷却した。次いで、トリフルオロメタンスルホン酸無水物(154.9g)をこの溶液に滴下した。滴下終了後に氷浴を外し、室温で2時間撹拌し、水を加えて反応を停止した。トルエンを加えて分液した後、シリカゲルショートパスカラム(溶離液:トルエン)で精製することで、メチル 4-メトキシ-2-(((トリフルオロメチル)スルホニル)オキシ)ベンゾアート(86.0g)を得た。
Figure JPOXMLDOC01-appb-C000192
 窒素雰囲気下、メチル 4-メトキシ-2-(((トリフルオロメチル)スルホニル)オキシ)ベンゾアート(23.0g)、(4-(ジフェニルアミノ)フェニル)ボロン酸(25.4g)、リン酸三カリウム(31.1g)、トルエン(184ml)、エタノール(27.6ml)および水(27.6ml)の懸濁溶液に、Pd(PPh(2.5g)を加え、還流温度で3時間撹拌した。反応液を室温まで冷却し、水およびトルエンを加えて分液し、有機層の溶媒を減圧留去した。得られた固体をシリカゲルカラム(溶離液:ヘプタン/トルエン混合溶媒)で精製し、メチル 4’-(ジフェニルアミノ)-5-メトキシ-[1,1’-ビフェニル]-2-カルボキシラート(29.7g)を得た。この際、「有機化学実験のてびき(1)-物質取扱法と分離精製法-」株式会社化学同人出版、94頁に記載の方法を参考にして、溶離液中のトルエンの比率を徐々に増加させて目的物を溶出させた。
Figure JPOXMLDOC01-appb-C000193
 窒素雰囲気下、メチル 4’-(ジフェニルアミノ)-5-メトキシ-[1,1’-ビフェニル]-2-カルボキシラート(11.4g)を溶解したTHF(111.4ml)溶液を水浴で冷却し、その溶液に、メチルマグネシウムブロミドTHF溶液(1.0M、295ml)を滴下した。滴下終了後、水浴を外して還流温度まで昇温して4時間撹拌した。その後、氷浴で冷却し、塩化アンモニウム水溶液を加えて反応を停止し、酢酸エチルを加えて分液した後、溶媒を減圧留去した。得られた固体をシリカゲルカラム(溶離液:トルエン)で精製し、2-(5’-(ジフェニルアミノ)-5-メトキシ-[1,1’-ビフェニル]-2-イル)プロパン-2-オール(8.3g)を得た。
Figure JPOXMLDOC01-appb-C000194
 窒素雰囲気下、2-(5’-(ジフェニルアミノ)-5-メトキシ-[1,1’-ビフェニル]-2-イル)プロパン-2-オール(27.0g)、TAYCACURE-15(13.5g)およびトルエン(162ml)の入ったフラスコを還流温度で2時間撹拌した。反応液を室温まで冷却し、シリカゲルショートパスカラム(溶離液:トルエン)を通過させることで、TAYCACURE-15を除去した後、溶媒を減圧留去することで、6-メトキシ-9,9’-ジメチル-N,N-ジフェニル-9H-フルオレン-2-アミン(25.8g)を得た。
Figure JPOXMLDOC01-appb-C000195
 窒素雰囲気下、6-メトキシ-9,9’-ジメチル-N,N-ジフェニル-9H-フルオレン-2-アミン(25.0g)、ピリジン塩酸塩(36.9g)およびN-メチル-2-ピロリドン(NMP)(22.5ml)の入ったフラスコを還流温度で6時間撹拌した。反応液を室温まで冷却し、水および酢酸エチルを加えて分液した。溶媒を減圧留去した後、シリカゲルカラム(溶離液:トルエン)で精製することで、7-(ジフェニルアミノ)-9,9’-ジメチル-9H-フルオレン-3-オール(22.0g)を得た。
Figure JPOXMLDOC01-appb-C000196
 窒素雰囲気下、7-(ジフェニルアミノ)-9,9’-ジメチル-9H-フルオレン-3-オール(14.1g)、2-ブロモ-1,3-ジフルオロベンゼン(3.6g)、炭酸カリウム(12.9g)およびNMP(30ml)の入ったフラスコを、還流温度で5時間加熱撹拌した。反応停止後、反応液を室温まで冷却し、水を加えて析出した沈殿物を吸引ろ過にて採取した。得られた沈殿物を水、次いでメタノールで洗浄した後、シリカゲルカラム(溶離液:へプタン/トルエン混合溶媒)で精製して、6,6’-((2-ブロモ-1,3-フェニレン)ビス(オキシ))ビス(9,9-ジメチル-N,N-ジフェニル-9H-フルオレン-2-アミン)(12.6g)を得た。この際、溶離液中のトルエンの比率を徐々に増加させて目的物を溶出させた。
Figure JPOXMLDOC01-appb-C000197
 窒素雰囲気下、6,6’-((2-ブロモ-1,3-フェニレン)ビス(オキシ))ビス(9,9-ジメチル-N,N-ジフェニル-9H-フルオレン-2-アミン)(11.0g)およびキシレン(60.5ml)の入ったフラスコを-40℃まで冷却し、2.6Mのn-ブチルリチウムヘキサン溶液(5.1ml)を滴下した。滴下終了後、この温度で0.5時間撹拌した後、60℃まで昇温して3時間撹拌した。その後、反応液を減圧して低沸点の成分を留去した後、-40℃まで冷却して三臭化ホウ素(4.3g)を加えた。室温まで昇温して0.5時間撹拌した後、0℃まで冷却してN-エチル-N-イソプロピルプロパン-2-アミン(3.8g)を添加し、125℃で8時間加熱撹拌した。反応液を室温まで冷却し、酢酸ナトリウム水溶液を加えて反応を停止させた後、トルエンを加えて分液した。有機層をシリカゲルショートパスカラム、次いでシリカゲルカラム(溶離液:へプタン/トルエン=4/1(容量比))、更に活性炭カラム(溶離液:トルエン)で精製し、化合物(1B-1)を得た(1.2g)。
Figure JPOXMLDOC01-appb-C000198
 NMR測定により得られた化合物の構造を確認した。
H-NMR(400MHz,CDCl):δ=8.64(s,2H)、7.75(m,3H)、7.69(d,2H)、7.30(t,8H)、7.25(s,2H)、7.20(m,10H)、7.08(m,6H)、1.58(s,12H).
 合成例(6)
 化合物(1C-1)の合成
Figure JPOXMLDOC01-appb-C000199
 窒素雰囲気下、6-(3-ブロモ-2-クロロフェノキシ)-9,9-ジメチル-N,N-ジフェニル-9H-フルオレン-2-アミン(32.7g)、ジ(ナフタレン-2-イル)アミン(15.5g)、Pd-132(ジョンソン・マッセイ)(1.2g)、NaOtBu(13.9g)およびキシレン(160ml)の入ったフラスコを加熱し、85℃で2時間攪拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液し、有機層をシリカゲルショートパスカラム(溶離液:トルエン)で精製した後、シリカゲルカラム(溶離液:トルエン/ヘプタン=1/3(容量比))で精製し、6-(2-クロロ-3-(ジ(ナフタレン-2-イル)アミノ)フェノキシ)-9,9-ジメチル-N,N-ジフェニル-9H-フルオレン-2-アミン(34.7g)を得た。
Figure JPOXMLDOC01-appb-C000200
 窒素雰囲気下、6-(2-クロロ-3-(ジ(ナフタレン-2-イル)アミノ)フェノキシ)-9,9-ジメチル-N,N-ジフェニル-9H-フルオレン-2-アミン(27g)およびキシレン(200ml)の入ったフラスコを0℃まで冷却し、2.6Mのn-ブチルリチウムヘキサン溶液(41.2ml)を滴下した。滴下終了後、この温度で0.5時間撹拌した後、70℃まで昇温して2時間撹拌した。その後、反応液を減圧して低沸点の成分を留去した後、-30℃まで冷却して三臭化ホウ素(30.0g)を加えた。室温まで昇温して1時間撹拌した後、0℃まで冷却してN-エチル-N-イソプロピルプロパン-2-アミン(9.2g)を添加し、120℃で3時間加熱した。反応液を室温まで冷却し、酢酸ナトリウム水溶液を加えて反応を停止させた後、酢酸エチルを加えて分液した。有機層をシリカゲルショートパスカラム(溶離液:トルエン)、次いで、シリカゲルカラム(溶離液:トルエン/ヘプタン=1/3(容量比))精製を行い、その後、NH2シリカゲルカラム(溶離液:酢酸エチル/へプタン=1/3(容量比))で精製した。得られた粗製品をトルエンに溶かして、ソルミックスで数回再沈殿し、更に酢酸エチルで数回再結晶を行った後、最後に昇華精製することで、黄色固体として化合物(1C-1)を得た(0.7g)。
Figure JPOXMLDOC01-appb-C000201
 MSスペクトルおよびNMR測定により化合物の構造を確認した。
H-NMR(CDCl):δ=9.10(d,1H)、8.47(s,1H)、8.20(d,1H)、8.06(d,1H)、7.94(d,1H)、7.92(s,1H)、7.83~7.63(m,6H)、7.49~7.44(m,4H)、7.31~7.00(m,14H)、6.38(d,1H)、1.54(s,6H).
 また化合物のガラス転移温度(Tg)は194.7℃であった。
[測定機器:Diamond DSC (PERKIN-ELMER社製);測定条件:冷却速度200℃/Min.、昇温速度10℃/Min.]
 合成例(7)
 化合物(1E-1)の合成
Figure JPOXMLDOC01-appb-C000202
 トリ-p-トリルアミン(0.287g、1.00mmol)、三ヨウ化ホウ素(0.783g、2.00mmol)およびo-ジクロロベンゼン(10.0mL)を窒素雰囲気下、150℃で2時間加熱撹拌した。反応液を室温まで冷やし、2-イソプロペニルフェニルマグネシウムブロミド(5.25mL、1.2M、6.30mmol)を加えた。その後、フロリジルショートパスカラム(溶離液:トルエン)を用いてろ過し、溶媒を減圧留去した。得られた粗生成物をヘキサンで洗浄することによって単離精製して、化合物(1E-1’)を0.309g、収率75%で得た。
Figure JPOXMLDOC01-appb-C000203
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=2.05(s,3H)、2.31(s,6H)、2.54(s,3H)、4.78(s,2H)、6.74(d,2H)7.20-7.28(m,4H)、7.37-7.48(m,5H)、7.56(d,1H)、7.68(s,2H).
13C-NMR(CDCl): δ=20.6(s,2C)、21.3(s,1C)、23.8(s,1C)、116.7(s,2C)、116.9(s,1C)、126.0(d,2C)、126.8(s,1C)、128.2(s,2C)、130.0(d,4C)、131.4(d,4C)、133.0(s,1C)、133.7(s,2C)、136.4(s,2C)、138.6(s,1C)、139.3(s,1C)、145.1(s,1C)、147.0(d,2C).
 化合物(1E-1’)(82.2mg、0.20mmol)、トリフルオロメタンスルホン酸スカンジウム(0.100g、0.20mmol)および1,2-ジクロロエタン(55.0mL)を窒素雰囲気下、95℃で24時間加熱撹拌した。反応液を室温まで冷やした後、フロリジルショートパスカラム(溶離液:トルエン)を用いてろ過し、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラム(溶離液:ヘキサン/トルエン=6/1(容量比))により単離精製して、化合物(1E-1)を32.0mg、収率39%で得た。
Figure JPOXMLDOC01-appb-C000204
 NMR測定により得られた化合物の構造を確認した。
H-NMR(CDCl): δ=1.98(s,6H)、2.48(s,3H)、2.53(s,3H)、2.76(s,3H)、6.61(d,1H)、6.75(d,1H)、7.14-7.31(m,4H)、7.40-7.47(m,3H)、7.57(dt,1H)、7.81(d,1H)、8.44(d,1H)、8.50(s,1H).
13C-NMR(CDCl): δ=20.9(s,1C)、21.4(s,1C)、24.3(s,1C)、32.6(s,2C)、43.5(s,1C)、114.0(s,1C)、116.6(s,1C)、124.7(s,1C)、125.8(s,1C)、127.0(s,1C)、128.4(s,2C)、130.1(s,2C)、130.5(s,1C)、131.4(s,2C)、133.0(s,1C)、135.2(s,1C)、135.5(s,1C)、137.7(s,1C)、138.4(s,1C)、139.5(s,1C)、144.3(s,1C)、145.4(s,1C)、151.4(s,1C)、159.5(s,1C).
 合成例(8)
 化合物(H-2):2-(10-フェニルアントラセン-9-イル)ナフト[2,3-b]ベンゾフランの合成
Figure JPOXMLDOC01-appb-C000205
 化合物(H-2)は、国際公開第2014/141725号公報の段落[0106]に記載された方法に準じて合成した。
 原料の化合物を適宜変更することにより、上述した合成例に準じた方法で、他の多環芳香族化合物およびその多量体を製造することができる。
 有機EL素子の評価
 実施例1~27および比較例1~18に係る有機EL素子を作製し、それぞれ1000cd/m発光時の特性である電圧(V)、発光波長(nm)、CIE色度(x,y)、外部量子効率(%)測定し、素子寿命として電流値10mA/cmで発光させた時、初期輝度の90%以上の輝度を保持する時間(hr)を測定した。
 発光素子の量子効率には、内部量子効率と外部量子効率とがあるが、内部量子効率は、発光素子の発光層に電子(または正孔)として注入される外部エネルギーが純粋に光子に変換される割合を示している。一方、外部量子効率は、この光子が発光素子の外部にまで放出された量に基づいて算出され、発光層において発生した光子は、その一部が発光素子の内部で吸収されたりまたは反射され続けたりして、発光素子の外部に放出されないため、外部量子効率は内部量子効率よりも低くなる。
 外部量子効率の測定方法は次の通りである。アドバンテスト社製電圧/電流発生器R6144を用いて、素子の輝度が1000cd/mになる電圧を印加して素子を発光させた。TOPCON社製分光放射輝度計SR-3ARを用いて、発光面に対して垂直方向から可視光領域の分光放射輝度を測定した。発光面が完全拡散面であると仮定して、測定した各波長成分の分光放射輝度の値を波長エネルギーで割ってπを掛けた数値が各波長におけるフォトン数である。次いで、観測した全波長領域でフォトン数を積算し、素子から放出された全フォトン数とした。印加電流値を素電荷で割った数値を素子へ注入したキャリア数として、素子から放出された全フォトン数を素子へ注入したキャリア数で割った数値が外部量子効率である。
 作製した実施例1~3および比較例1~2に係る有機EL素子における各層の材料構成を下記表1Aに示す。
Figure JPOXMLDOC01-appb-T000206
 表1Aにおいて、「HI」はN,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミンであり、「HAT-CN」は1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリルであり、「HT-1」はN-([1,1’-ビフェニル]-4-イル)-9,9-ジメチル-N-(4-(9-フェニル-9H-カルバゾール-3-イル)フェニル)-9H-フルオレン-2-アミンであり、「HT-2」はN,N-ビス(4-(ジベンゾ[b,d]フラン-4-イル)フェニル)-[1,1’:4’,1”-テルフェニル]-4-アミンであり、「ET-1」は4,6,8,10-テトラフェニル[1,4]ベンゾキサボリニノ[2,3,4-kl]フェノキサボリニンであり、「ET-2」は3,3’-((2-フェニルアントラセン-9,10-ジイル)ビス(4,1-フェニレン))ビス(4-メチルピリジン)である。「Liq」と共に以下に化学構造を示す。
Figure JPOXMLDOC01-appb-C000207
<実施例1>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HI、HAT-CN、HT-1、HT-2、H-1、化合物(1A-2619)、化合物(1C-2)、ET-1およびET-2をそれぞれ入れたモリブデン製蒸着用ボート、Liq、LiFおよびAlをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HAT-CNを加熱して膜厚5nmになるように蒸着し、次に、HT-1を加熱して膜厚15nmになるように蒸着し、次に、HT-2を加熱して膜厚10nmになるように蒸着して、4層からなる正孔層を形成した。さらに、ホストのH-1、ドーパントの化合物(1A-2619)および化合物(1C-2)を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(1A-2619)と化合物(1C-2)との重量比がおよそ25対75になるように、また、ホストのH-1と、ドーパントの化合物(1A-2619)および化合物(1C-2)との重量比がおよそ96対4になるように、蒸着速度を調節した。次に、ET-1を加熱して膜厚5nmになるように蒸着し、次に、ET-2とLiqを同時に加熱して膜厚25nmになるように蒸着して、2層からなる電子輸送層を形成した。ET-2とLiqの重量比がおよそ50対50になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、Alを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表1B)。
<実施例2>
 発光層を形成する際に、ドーパントの化合物(1A-2619)と化合物(1C-2)との重量比をおよそ50対50に替えた以外は実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表1B)。
<実施例3>
 発光層を形成する際に、ドーパントの化合物(1A-2619)と化合物(1C-2)との重量比をおよそ75対25に替えた以外は実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表1B)。
<比較例1>
 発光層を形成する際に、ドーパントとして化合物(1A-2619)を単独で用いた以外は実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表1B)。
<比較例2>
 発光層を形成する際に、ドーパントとして化合物(1C-2)を単独で用いた以外は実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表1B)。
 実施例1~3および比較例1~2の有機EL評価結果を下記表1Bに示す。
Figure JPOXMLDOC01-appb-T000208
 作製した実施例4~6および比較例3~4に係る有機EL素子における各層の材料構成を下記表2Aに示す。
Figure JPOXMLDOC01-appb-T000209
<実施例4>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、HI、HAT-CN、HT-1、HT-2、H-1、化合物(1A-2619)、化合物(1B-101)、ET-1およびET-2をそれぞれ入れたタンタル製蒸着用ボート、Liq、LiFおよびAlをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HAT-CNを加熱して膜厚5nmになるように蒸着し、次に、HT-1を加熱して膜厚15nmになるように蒸着し、次に、HT-2を加熱して膜厚10nmになるように蒸着して、4層からなる正孔層を形成した。さらに、ホストのH-1、ドーパントの化合物(1A-2619)および化合物(1B-101)を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(1A-2619)と化合物(1B-101)との重量比がおよそ25対75になるように、また、ホストのH-1と、ドーパントの化合物(1A-2619)および化合物(1B-101)との重量比がおよそ96対4になるように、蒸着速度を調節した。次に、ET-1を加熱して膜厚5nmになるように蒸着し、次に、ET-2とLiqを同時に加熱して膜厚25nmになるように蒸着して、2層からなる電子輸送層を形成した。ET-2とLiqの重量比がおよそ50対50になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、Alを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表2B)。
<実施例5>
 発光層を形成する際に、ドーパントの化合物(1A-2619)と化合物(1B-101)との重量比をおよそ50対50に替えた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表2B)。
<実施例6>
 発光層を形成する際に、ドーパントの化合物(1A-2619)と化合物(1B-101)との重量比をおよそ75対25に替えた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表2B)。
<比較例3>
 発光層を形成する際に、ドーパントとして化合物(1A-2619)を単独で用いた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表2B)。
<比較例4>
 発光層を形成する際に、ドーパントとして化合物(1B-101)を単独で用いた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表2B)。
 実施例4~6および比較例3~4の有機EL評価結果を下記表2Bに示す。
Figure JPOXMLDOC01-appb-T000210
 作製した実施例7~9および比較例5~6に係る有機EL素子における各層の材料構成を下記表3Aに示す。
Figure JPOXMLDOC01-appb-T000211
<実施例7>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、HI、HAT-CN、HT-1、HT-2、H-1、化合物(1A-2619)、化合物(1A-2687)、ET-1およびET-2をそれぞれ入れたタンタル製蒸着用ボート、Liq、LiFおよびAlをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HAT-CNを加熱して膜厚5nmになるように蒸着し、次に、HT-1を加熱して膜厚15nmになるように蒸着し、次に、HT-2を加熱して膜厚10nmになるように蒸着して、4層からなる正孔層を形成した。さらに、ホストのH-1、ドーパントの化合物(1A-2619)および化合物(1A-2687)を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(1A-2619)と化合物(1A-2687)との重量比がおよそ25対75になるように、また、ホストのH-1と、ドーパントの化合物(1A-2619)および化合物(1A-2687)との重量比がおよそ96対4になるように、蒸着速度を調節した。次に、ET-1を加熱して膜厚5nmになるように蒸着し、次に、ET-2とLiqを同時に加熱して膜厚25nmになるように蒸着して、2層からなる電子輸送層を形成した。ET-2とLiqの重量比がおよそ50対50になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、Alを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表3B)。
<実施例8>
 発光層を形成する際に、ドーパントの化合物(1A-2619)と化合物(1A-2687)との重量比をおよそ50対50に替えた以外は実施例7に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表3B)。
<実施例9>
 発光層を形成する際に、ドーパントの化合物(1A-2619)と化合物(1A-2687)との重量比をおよそ75対25に替えた以外は実施例7に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表3B)。
<比較例5>
 発光層を形成する際に、ドーパントとして化合物(1A-2619)を単独で用いた以外は実施例7に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表3B)。
<比較例6>
 発光層を形成する際に、ドーパントとして化合物(1A-2687)を単独で用いた以外は実施例7に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表3B)。
 実施例7~9および比較例5~6の有機EL評価結果を下記表3Bに示す。
Figure JPOXMLDOC01-appb-T000212
 作製した実施例10~12および比較例7~8に係る有機EL素子における各層の材料構成を下記表4Aに示す。
Figure JPOXMLDOC01-appb-T000213
<実施例10>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、HI、HAT-CN、HT-1、HT-2、H-1、化合物(1C-2)、化合物(1B-101)、ET-1およびET-2をそれぞれ入れたタンタル製蒸着用ボート、Liq、LiFおよびAlをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HAT-CNを加熱して膜厚5nmになるように蒸着し、次に、HT-1を加熱して膜厚15nmになるように蒸着し、次に、HT-2を加熱して膜厚10nmになるように蒸着して、4層からなる正孔層を形成した。さらに、ホストのH-1、ドーパントの化合物(1C-2)および化合物(1B-101)を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(1C-2)と化合物(1B-101)との重量比がおよそ25対75になるように、また、ホストのH-1と、ドーパントの化合物(1C-2)および化合物(1B-101)との重量比がおよそ96対4になるように、蒸着速度を調節した。次に、ET-1を加熱して膜厚5nmになるように蒸着し、次に、ET-2とLiqを同時に加熱して膜厚25nmになるように蒸着して、2層からなる電子輸送層を形成した。ET-2とLiqの重量比がおよそ50対50になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、Alを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表4B)。
<実施例11>
 発光層を形成する際に、ドーパントの化合物(1C-2)と化合物(1B-101)との重量比をおよそ50対50に替えた以外は実施例10に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表4B)。
<実施例12>
 発光層を形成する際に、ドーパントの化合物(1C-2)と化合物(1B-101)との重量比をおよそ75対25に替えた以外は実施例10に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表4B)。
<比較例7>
 発光層を形成する際に、ドーパントとして化合物(1C-2)を単独で用いた以外は実施例10に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表4B)。
<比較例8>
 発光層を形成する際に、ドーパントとして化合物(1B-101)を単独で用いた以外は実施例10に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表4B)。
 実施例10~12および比較例7~8の有機EL評価結果を下記表4Bに示す。
Figure JPOXMLDOC01-appb-T000214
 作製した実施例13~15および比較例9~10に係る有機EL素子における各層の材料構成を下記表5Aに示す。
Figure JPOXMLDOC01-appb-T000215
 表5Aにおいて、「H-2」は2-(10-フェニルアントラセン-9-イル)ナフト[2,3-b]ベンゾフランであり、以下に化学構造を示す。
Figure JPOXMLDOC01-appb-C000216
<実施例13>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、HI、HAT-CN、HT-1、HT-2、H-2、化合物(1A-2619)、化合物(1C-2)、ET-1およびET-2をそれぞれ入れたタンタル製蒸着用ボート、Liq、LiFおよびAlをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HAT-CNを加熱して膜厚5nmになるように蒸着し、次に、HT-1を加熱して膜厚15nmになるように蒸着し、次に、HT-2を加熱して膜厚10nmになるように蒸着して、4層からなる正孔層を形成した。さらに、ホストのH-2、ドーパントの化合物(1A-2619)および化合物(1C-2)を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(1A-2619)と化合物(1C-2)との重量比がおよそ25対75になるように、また、ホストのH-2と、ドーパントの化合物(1A-2619)および化合物(1C-2)との重量比がおよそ96対4になるように、蒸着速度を調節した。次に、ET-1を加熱して膜厚5nmになるように蒸着し、次に、ET-2とLiqを同時に加熱して膜厚25nmになるように蒸着して、2層からなる電子輸送層を形成した。ET-2とLiqの重量比がおよそ50対50になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、Alを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表5B)。
<実施例14>
 発光層を形成する際に、ドーパントの化合物(1A-2619)と化合物(1C-2)との重量比をおよそ50対50に替えた以外は実施例13に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表5B)。
<実施例15>
 発光層を形成する際に、ドーパントの化合物(1A-2619)と化合物(1C-2)との重量比をおよそ75対25に替えた以外は実施例13に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表5B)。
<比較例9>
 発光層を形成する際に、ドーパントとして化合物(1A-2619)を単独で用いた以外は実施例13に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表5B)。
<比較例10>
 発光層を形成する際に、ドーパントとして化合物(1C-2)を単独で用いた以外は実施例13に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表5B)。
 実施例13~15および比較例9~10の有機EL評価結果を下記表5Bに示す。
Figure JPOXMLDOC01-appb-T000217
 作製した実施例16~18および比較例11~12に係る有機EL素子における各層の材料構成を下記表6Aに示す。
Figure JPOXMLDOC01-appb-T000218
 表6Aにおける「ET-3」および「ET-4」の化学構造を以下に示す。
Figure JPOXMLDOC01-appb-C000219
<実施例16>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、HI、HAT-CN、HT-1、HT-2、H-2、化合物(1A-2619)、化合物(1C-2)、ET-3およびET-4をそれぞれ入れたタンタル製蒸着用ボート、Liq、LiFおよびAlをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HAT-CNを加熱して膜厚5nmになるように蒸着し、次に、HT-1を加熱して膜厚15nmになるように蒸着し、次に、HT-2を加熱して膜厚10nmになるように蒸着して、4層からなる正孔層を形成した。さらに、ホストのH-2、ドーパントの化合物(1A-2619)および化合物(1C-2)を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(1A-2619)と化合物(1C-2)との重量比がおよそ25対75になるように、また、ホストのH-2と、ドーパントの化合物(1A-2619)および化合物(1C-2)との重量比がおよそ96対4になるように、蒸着速度を調節した。次に、ET-3を加熱して膜厚5nmになるように蒸着し、次に、ET-4とLiqを同時に加熱して膜厚25nmになるように蒸着して、2層からなる電子輸送層を形成した。ET-4とLiqの重量比がおよそ50対50になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、Alを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表6B)。
<実施例17>
 発光層を形成する際に、ドーパントの化合物(1A-2619)と化合物(1C-2)との重量比をおよそ50対50に替えた以外は実施例16に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表6B)。
<実施例18>
 発光層を形成する際に、ドーパントの化合物(1A-2619)と化合物(1C-2)との重量比をおよそ75対25に替えた以外は実施例16に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表6B)。
<比較例11>
 発光層を形成する際に、ドーパントとして化合物(1A-2619)を単独で用いた以外は実施例16に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表6B)。
<比較例12>
 発光層を形成する際に、ドーパントとして化合物(1C-2)を単独で用いた以外は実施例16に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表6B)。
 実施例16~18および比較例11~12の有機EL評価結果を下記表6Bに示す。
Figure JPOXMLDOC01-appb-T000220
 作製した実施例19~21および比較例13~14に係る有機EL素子における各層の材料構成を下記表7Aに示す。
Figure JPOXMLDOC01-appb-T000221
<実施例19>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、HI、HAT-CN、HT-1、HT-2、H-2、化合物(1B-1)、化合物(1B-101)、ET-1およびET-2をそれぞれ入れたタンタル製蒸着用ボート、Liq、LiFおよびAlをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HAT-CNを加熱して膜厚5nmになるように蒸着し、次に、HT-1を加熱して膜厚15nmになるように蒸着し、次に、HT-2を加熱して膜厚10nmになるように蒸着して、4層からなる正孔層を形成した。さらに、ホストのH-2、ドーパントの化合物(1B-1)および化合物(1B-101)を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(1B-1)と化合物(1B-101)との重量比がおよそ25対75になるように、また、ホストのH-2と、ドーパントの化合物(1B-1)および化合物(1B-101)との重量比がおよそ96対4になるように、蒸着速度を調節した。次に、ET-1を加熱して膜厚5nmになるように蒸着し、次に、ET-2とLiqを同時に加熱して膜厚25nmになるように蒸着して、2層からなる電子輸送層を形成した。ET-2とLiqの重量比がおよそ50対50になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、Alを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表7B)。
<実施例20>
 発光層を形成する際に、ドーパントの化合物(1B-1)と化合物(1B-101)との重量比をおよそ50対50に替えた以外は実施例19に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表7B)。
<実施例21>
 発光層を形成する際に、ドーパントの化合物(1B-1)と化合物(1B-101)との重量比をおよそ75対25に替えた以外は実施例19に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表7B)。
<比較例13>
 発光層を形成する際に、ドーパントとして化合物(1B-1)を単独で用いた以外は実施例19に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表7B)。
<比較例14>
 発光層を形成する際に、ドーパントとして化合物(1B-101)を単独で用いた以外は実施例19に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表7B)。
 実施例19~21および比較例13~14の有機EL評価結果を下記表7Bに示す。
Figure JPOXMLDOC01-appb-T000222
 作製した実施例22~24および比較例15~16に係る有機EL素子における各層の材料構成を下記表8Aに示す。
Figure JPOXMLDOC01-appb-T000223
<実施例22>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、HI、HAT-CN、HT-1、HT-2、H-2、化合物(1C-2)、化合物(1C-10)、ET-1およびET-2をそれぞれ入れたタンタル製蒸着用ボート、Liq、LiFおよびAlをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HAT-CNを加熱して膜厚5nmになるように蒸着し、次に、HT-1を加熱して膜厚15nmになるように蒸着し、次に、HT-2を加熱して膜厚10nmになるように蒸着して、4層からなる正孔層を形成した。さらに、ホストのH-2、ドーパントの化合物(1C-2)および化合物(1C-10)を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(1C-2)と化合物(1C-10)との重量比がおよそ25対75になるように、また、ホストのH-1と、ドーパントの化合物(1C-2)および化合物(1C-10)との重量比がおよそ96対4になるように、蒸着速度を調節した。次に、ET-1を加熱して膜厚5nmになるように蒸着し、次に、ET-2とLiqを同時に加熱して膜厚25nmになるように蒸着して、2層からなる電子輸送層を形成した。ET-2とLiqの重量比がおよそ50対50になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、Alを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表8B)。
<実施例23>
 発光層を形成する際に、ドーパントの化合物(1C-2)と化合物(1C-10)との重量比をおよそ50対50に替えた以外は実施例22に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表8B)。
<実施例24>
 発光層を形成する際に、ドーパントの化合物(1C-2)と化合物(1C-10)との重量比をおよそ75対25に替えた以外は実施例22に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表8B)。
<比較例15>
 発光層を形成する際に、ドーパントとして化合物(1C-2)を単独で用いた以外は実施例22に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表8B)。
<比較例16>
 発光層を形成する際に、ドーパントとして化合物(1C-10)を単独で用いた以外は実施例22に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表8B)。
 実施例22~24および比較例15~16の有機EL評価結果を下記表8Bに示す。
Figure JPOXMLDOC01-appb-T000224
 作製した実施例25~27および比較例17~18に係る有機EL素子における各層の材料構成を下記表9Aに示す。
Figure JPOXMLDOC01-appb-T000225
<実施例25>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(長州産業(株)製)の基板ホルダーに固定し、HI、HAT-CN、HT-1、HT-2、H-2、化合物(1A-2619)、化合物(1E-1)、ET-1およびET-2をそれぞれ入れたタンタル製蒸着用ボート、Liq、LiFおよびAlをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HAT-CNを加熱して膜厚5nmになるように蒸着し、次に、HT-1を加熱して膜厚15nmになるように蒸着し、次に、HT-2を加熱して膜厚10nmになるように蒸着して、4層からなる正孔層を形成した。さらに、ホストのH-2、ドーパントの化合物(1A-2619)および化合物(1E-1)を同時に加熱して膜厚20nmになるように蒸着して発光層を形成した。化合物(1A-2619)と化合物(1E-1)との重量比がおよそ25対75になるように、また、ホストのH-2と、ドーパントの化合物(1A-2619)および化合物(1E-1)との重量比がおよそ96対4になるように、蒸着速度を調節した。次に、ET-1を加熱して膜厚5nmになるように蒸着し、次に、ET-2とLiqを同時に加熱して膜厚25nmになるように蒸着して、2層からなる電子輸送層を形成した。ET-2とLiqの重量比がおよそ50対50になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、Alを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。
 ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表9B)。
<実施例26>
 発光層を形成する際に、ドーパントの化合物(1A-2619)と化合物(1E-1)との重量比をおよそ50対50に替えた以外は実施例25に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表9B)。
<実施例27>
 発光層を形成する際に、ドーパントの化合物(1A-2619)と化合物(1E-1)との重量比をおよそ75対25に替えた以外は実施例25に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表9B)。
<比較例17>
 発光層を形成する際に、ドーパントとして化合物(1A-2619)を単独で用いた以外は実施例25に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表9B)。
<比較例18>
 発光層を形成する際に、ドーパントとして化合物(1E-1)を単独で用いた以外は実施例25に準じた方法で有機EL素子を得た。ITO電極を陽極、LiF/Al電極を陰極として直流電圧を印加し、1000cd/m発光時の特性および素子寿命を測定した(表9B)。
 実施例25~27および比較例17~18の有機EL評価結果を下記表9Bに示す。
Figure JPOXMLDOC01-appb-T000226
 本発明の好ましい態様によれば、ホウ素原子と窒素原子または酸素原子などで複数の芳香族環を連結した、2種類以上の化合物を発光層に含有させることで、量子効率と寿命特性が優れた有機EL素子を提供することができる。
 100  有機電界発光素子
 101  基板
 102  陽極
 103  正孔注入層
 104  正孔輸送層
 105  発光層
 106  電子輸送層
 107  電子注入層
 108  陰極

Claims (26)

  1.  陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層とを有する有機電界発光素子であって、
     前記発光層は、下記一般式(1)で表される多環芳香族化合物および下記一般式(1)で表される構造を複数有する多環芳香族化合物の多量体からなる化合物群の中から、ドーパントとして少なくとも2つの多環芳香族化合物および/または多量体を含む、有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、
     A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
     XおよびXは、それぞれ独立して、>O、>N-R、>S、>Seまたは>C(-Ra)であり、前記>N-RのRは、置換されていてもよいアリール、置換されていてもよいヘテロアリールまたはアルキルであり、また、前記>N-RのRは連結基または単結合により前記A環、B環および/またはC環と結合していてもよく、前記>C(-Ra)のRaは、「-CH-Cn-12(n-1)+1(nは1以上)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルであり、そして、
     式(1)で表される化合物または構造における少なくとも1つの水素は重水素で置換されていてもよい。)
  2.  前記多環芳香族化合物およびその多量体は、下記一般式(1A)~(1E)のいずれかで表される多環芳香族化合物および下記一般式(1A)~(1E)のいずれかで表される構造を複数有する多環芳香族化合物の多量体から選択される、請求項1に記載する有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000002
    (上記式(1A)~(1E)中、
     A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
     >N-RのRは独立して、置換されていてもよいアリール、置換されていてもよいヘテロアリールまたはアルキルであり、当該Rは連結基または単結合により前記A環、B環および/またはC環と結合していてもよく、
     >C(-Ra)のRaは、「-CH-Cn-12(n-1)+1(nは1以上)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルであり、そして、
     式(1A)~(1E)のいずれかで表される化合物または構造における少なくとも1つの水素は重水素で置換されていてもよい。)
  3.  前記A環、B環およびC環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のジアリールアミノ、置換もしくは無置換のジヘテロアリールアミノ、置換もしくは無置換のアリールヘテロアリールアミノ、置換もしくは無置換のアルキル、置換もしくは無置換のアルコキシ、トリアルキルシリル、置換もしくは無置換のアリールオキシ、シアノまたはハロゲンで置換されていてもよく、
     前記>N-RのRは、アルキルで置換されていてもよいアリール、アルキルで置換されていてもよいヘテロアリールまたはアルキルであり、当該Rは-O-、-S-、-C(-R)-または単結合により前記A環、B環および/またはC環と結合していてもよく、前記-C(-R)-のRは水素またはアルキルであり、
     前記>C(-Ra)のRaは、「-CH-Cn-12(n-1)+1(nは1~6)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルであり、
     式(1A)~(1E)で表される化合物または構造における少なくとも1つの水素は重水素で置換されていてもよく、そして、
     多量体の場合には、式(1A)~(1E)で表される構造を2または3個有する2または3量体である、
     請求項2に記載する有機電界発光素子。
  4.  前記一般式(1A)で表される多環芳香族化合物またはその多量体は、下記一般式(1A’)で表される多環芳香族化合物またはその多量体である、請求項2または3に記載する有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000003
    (上記式(1A’)中、
     R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリールまたはアルキルで置換されていてもよく、
     >N-RのRは独立して、炭素数6~12のアリール、炭素数2~15のヘテロアリールまたは炭素数1~6のアルキルであり、当該Rは-O-、-S-、-C(-R)-または単結合により前記a環、b環および/またはc環と結合していてもよく、前記-C(-R)-のRは炭素数1~6のアルキルであり、そして、
     式(1A’)で表される化合物またはその多量体における少なくとも1つの水素は重水素で置換されていてもよい。)
  5.  上記式(1A’)中、
     R~R11は、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリールまたはジアリールアミノ(ただしアリールは炭素数6~12のアリール)であり、また、R~R11のうちの隣接する基同士が結合してa環、b環またはc環と共に炭素数9~16のアリール環または炭素数6~15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は炭素数6~10のアリールで置換されていてもよく、
     >N-RのRは独立して、炭素数6~10のアリールであり、そして、
     式(1A’)で表される化合物またはその多量体における少なくとも1つの水素は重水素で置換されていてもよい、
     請求項4に記載する有機電界発光素子。
  6.  上記式(1A’)で表される化合物が下記いずれかの構造式で表される化合物である、請求項4に記載する有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000004
  7.  前記一般式(1B)で表される多環芳香族化合物またはその多量体は、下記一般式(1B’)または式(1B”)で表される多環芳香族化合物またはその多量体である、請求項2または3に記載する有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000005
    (上記式(1B’)または式(1B”)中、
     R~Rは、それぞれ独立して、水素、アリール、ヘテロアリール、アルキル、アルコキシ、トリアルキルシリル、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、
     Rが複数の場合、隣接するR同士が結合してc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、アルキル、アルコキシ、トリアルキルシリル、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、そして、
     mは0~3の整数であり、nはそれぞれ独立して0~5の整数であり、pは0~4の整数である。)
  8.  上記式(1B’)または式(1B”)中、
     Rは、それぞれ独立して、水素、炭素数6~30のアリールまたは炭素数1~24のアルキルであり、
     R~Rは、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキル、炭素数1~24のアルコキシ、炭素数1~4のアルキルを有するトリアルキルシリルまたは炭素数6~30のアリールオキシであり、これらにおける少なくとも1つの水素は炭素数6~16のアリール、炭素数2~25のヘテロアリールまたは炭素数1~18のアルキルで置換されていてもよく、そして、
     mは0~3の整数であり、nはそれぞれ独立して0~5の整数であり、pは0~2の整数である、
     請求項7に記載する有機電界発光素子。
  9.  上記式(1B’)で表される化合物が下記構造式で表される化合物である、請求項7に記載する有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000006
  10.  前記一般式(1B)で表される多環芳香族化合物またはその多量体は、下記一般式(1B’)または式(1B’)で表される多環芳香族化合物またはその多量体である、請求項2または3に記載する有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000007
    (上記式(1B’)または式(1B’)中、
     R~Rは、それぞれ独立して、水素、アリール、ヘテロアリール、アルキル、アルコキシ、トリアルキルシリル、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、
     Rが複数の場合、隣接するR同士が結合してc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、アルキル、アルコキシ、トリアルキルシリル、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、そして、
     mは0~3の整数であり、nはそれぞれ独立して0~5の整数であり、pは0~4の整数である。)
  11.  上記式(1B’)または式(1B’)中、
     R~Rは、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキル、炭素数1~24のアルコキシ、炭素数1~4のアルキルを有するトリアルキルシリルまたは炭素数6~30のアリールオキシであり、これらにおける少なくとも1つの水素は炭素数6~16のアリール、炭素数2~25のヘテロアリールまたは炭素数1~18のアルキルで置換されていてもよく、そして、
     mは0~3の整数であり、nはそれぞれ独立して0~5の整数であり、pは0~2の整数である、
     請求項10に記載する有機電界発光素子。
  12.  上記式(1B’)で表される化合物が下記構造式で表される化合物である、請求項10に記載する有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000008
  13.  前記一般式(1C)で表される多環芳香族化合物またはその多量体は、下記一般式(1C’)または式(1C”)で表される多環芳香族化合物またはその多量体である、請求項2または3に記載する有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000009
    (上記式(1C’)または式(1C”)中、
     R~Rは、それぞれ独立して、水素、アリール、ヘテロアリール、アルキル、アルコキシ、トリアルキルシリル、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、
     Rが複数の場合、隣接するR同士が結合してc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、アルキル、アルコキシ、トリアルキルシリル、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、
     mは0~3の整数であり、nはそれぞれ独立して0~6の整数であり、pは0~4の整数であり、そして、
     >N-RのRは、炭素数6~12のアリール、炭素数2~15のヘテロアリールまたは炭素数1~6のアルキルである。)
  14.  上記式(1C’)または式(1C”)中、
     Rは、それぞれ独立して、水素、炭素数6~30のアリールまたは炭素数1~24のアルキルであり、
     R~Rは、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキル、炭素数1~24のアルコキシ、炭素数1~4のアルキルを有するトリアルキルシリルまたは炭素数6~30のアリールオキシであり、これらにおける少なくとも1つの水素は炭素数6~16のアリール、炭素数2~25のヘテロアリールまたは炭素数1~18のアルキルで置換されていてもよく、
     mは0~3の整数であり、nはそれぞれ独立して0~6の整数であり、pは0~2の整数であり、そして、
     N-RのRは炭素数6~10のアリール、炭素数2~10のヘテロアリールまたは炭素数1~4のアルキルである、
     請求項13に記載する有機電界発光素子。
  15.  上記式(1C”)で表される化合物が下記いずれかの構造式で表される化合物である、請求項13に記載する有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000010
  16.  前記一般式(1D)で表される多環芳香族化合物またはその多量体は、下記一般式(1D’)で表される多環芳香族化合物またはその多量体である、請求項2または3に記載する有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000011
    (上記式(1D’)中、
     R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、また、R~R11のうちの隣接する基同士は結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、
     Raは、「-CH-Cn-12(n-1)+1(nは1~6)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルであり、そして、
     多環芳香族化合物の多量体の場合には、式(1D’)で表される構造を2または3個有する2または3量体である。)
  17.  上記式(1D’)中、
     R~R11は、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~24のアルキル、シアノまたはハロゲンであり、また、R~R11のうちの隣接する基同士は結合してa環、b環またはc環と共に炭素数9~16のアリール環または炭素数6~15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~24のアルキル、シアノまたはハロゲンで置換されていてもよく、そして、
     Raは、「-CH-Cn-12(n-1)+1(nは1~4)」で表される、メチレン基から始まる直鎖のアルキルである、
     請求項16に記載する有機電界発光素子。
  18.  前記一般式(1E)で表される多環芳香族化合物またはその多量体は、下記一般式(1E’)で表される多環芳香族化合物またはその多量体である、請求項2または3に記載する有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000012
    (上記式(1E’)中、
     R~R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンであり、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、また、R~R11のうちの隣接する基同士は結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、
     >N-RのRは、アリール、ヘテロアリールまたはアルキルであり、当該Rにおける少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、アルコキシ、アリールオキシ、シアノまたはハロゲンで置換されていてもよく、これらにおける少なくとも1つの水素は、アリール、ヘテロアリール、アルキル、シアノまたはハロゲンで置換されていてもよく、
     Raは、「-CH-Cn-12(n-1)+1(nは1~6)」で表される、メチレン基から始まる直鎖または分岐鎖のアルキルであり、そして、
     多環芳香族化合物の多量体の場合には、式(1E’)で表される構造を2または3個有する2または3量体である。)
  19.  上記式(1E’)中、
     R~R11は、それぞれ独立して、水素、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~24のアルキル、シアノまたはハロゲンであり、また、R~R11のうちの隣接する基同士は結合してa環、b環またはc環と共に炭素数9~16のアリール環または炭素数6~15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、炭素数6~30のアリール、炭素数2~30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6~12のアリール)、炭素数1~24のアルキル、シアノまたはハロゲンで置換されていてもよく、
     >N-RのRは、炭素数6~30のアリール、炭素数2~30のヘテロアリール、または炭素数1~24のアルキルであり、これらにおける少なくとも1つの水素はシアノまたはハロゲンで置換されていてもよく、そして、
     Raは、「-CH-Cn-12(n-1)+1(nは1~4)」で表される、メチレン基から始まる直鎖のアルキルである、
     請求項18に記載する有機電界発光素子。
  20.  上記式(1E’)で表される化合物が下記構造式で表される化合物である、請求項18に記載する有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000013
  21.  前記発光層が、前記少なくとも2つの多環芳香族化合物および/または多量体を0.1~30重量%含有する、請求項1~20のいずれかに記載の有機電界発光素子。
  22.  前記発光層が、アントラセン誘導体、フルオレン誘導体およびジベンゾクリセン誘導体の中から選択される少なくとも1つを含有する、請求項1~21のいずれかに記載する有機電界発光素子。
  23.  さらに、前記陰極と該発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、カルバゾール誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体およびキノリノール系金属錯体からなる群から選択される少なくとも1つを含有する、請求項1~22のいずれかに記載する有機電界発光素子。
  24.  前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項23に記載の有機電界発光素子。
  25.  請求項1~24のいずれかに記載する有機電界発光素子を備えた表示装置。
  26.  請求項1~24のいずれかに記載する有機電界発光素子を備えた照明装置。
PCT/JP2018/022294 2017-08-17 2018-06-12 有機電界発光素子 WO2019035268A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019536430A JP7116405B2 (ja) 2017-08-17 2018-06-12 有機電界発光素子
US16/636,432 US11637249B2 (en) 2017-08-17 2018-06-12 Organic electroluminescent element
KR1020197038426A KR20200041832A (ko) 2017-08-17 2018-06-12 유기 전계 발광 소자
KR1020247011561A KR20240052073A (ko) 2017-08-17 2018-06-12 유기 전계 발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-157318 2017-08-17
JP2017157318 2017-08-17

Publications (1)

Publication Number Publication Date
WO2019035268A1 true WO2019035268A1 (ja) 2019-02-21

Family

ID=65362335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022294 WO2019035268A1 (ja) 2017-08-17 2018-06-12 有機電界発光素子

Country Status (4)

Country Link
US (1) US11637249B2 (ja)
JP (1) JP7116405B2 (ja)
KR (2) KR20200041832A (ja)
WO (1) WO2019035268A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151204A1 (ja) * 2018-02-05 2019-08-08 学校法人関西学院 多環芳香族化合物の発光材料を用いた有機電界発光素子
WO2020075760A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2020203212A1 (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及びその製造方法並びに発光素子用組成物及びその製造方法
WO2020203211A1 (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
KR20200125583A (ko) * 2019-04-22 2020-11-04 가꼬우 호징 관세이 가쿠잉 시클로알칸 축합 다환 방향족 화합물
WO2021010767A1 (ko) * 2019-07-16 2021-01-21 주식회사 엘지화학 화합물, 이를 포함하는 코팅 조성물 및 이를 이용한 유기 발광 소자
KR20210009597A (ko) * 2019-07-17 2021-01-27 주식회사 엘지화학 화합물, 이를 포함하는 코팅 조성물 및 이를 이용한 유기 발광 소자
WO2021025163A1 (ja) * 2019-08-08 2021-02-11 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2021065772A1 (ja) * 2019-10-04 2021-04-08 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
CN112679534A (zh) * 2020-12-31 2021-04-20 武汉尚赛光电科技有限公司 一种杂环有机电致发光材料及其制备方法、应用和器件
EP3825343A1 (en) 2019-11-19 2021-05-26 Rohm and Haas Electronic Materials LLC Tunable refractive index polymers
WO2021122740A1 (de) 2019-12-19 2021-06-24 Merck Patent Gmbh Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021187507A1 (ja) * 2020-03-18 2021-09-23 株式会社Kyulux 化合物、発光材料および有機発光デバイス
CN114026101A (zh) * 2019-04-26 2022-02-08 出光兴产株式会社 多环化合物和包含多环化合物或组合物的有机电致发光器件
JP2022077011A (ja) * 2020-11-10 2022-05-20 エルジー ディスプレイ カンパニー リミテッド 有機発光ダイオードおよび有機発光装置
EP4131456A1 (en) 2021-08-05 2023-02-08 SFC Co., Ltd. Organic light-emitting device
JP7376892B2 (ja) 2019-11-18 2023-11-09 学校法人関西学院 多環芳香族化合物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102544981B1 (ko) * 2017-10-16 2023-06-21 삼성디스플레이 주식회사 유기 발광 소자 및 발광 장치
CN111433216B (zh) * 2018-02-23 2023-07-18 株式会社Lg化学 杂环化合物和包含其的有机发光器件
US20200111962A1 (en) * 2018-10-03 2020-04-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
KR102213030B1 (ko) * 2018-11-19 2021-02-08 에스에프씨주식회사 신규한 보론 화합물 및 이를 포함하는 유기발광소자
JP7283688B2 (ja) * 2019-02-12 2023-05-30 学校法人関西学院 有機電界発光素子
CN114685538A (zh) * 2020-12-30 2022-07-01 江苏三月科技股份有限公司 一种硼氮类化合物及其制备的有机发光器件
EP4068404A1 (en) 2021-03-31 2022-10-05 Idemitsu Kosan Co., Ltd. An organic electroluminescence device comprising a light emitting layer comprising three different compounds and an electronic equipment comprising said organic electroluminescence device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102118A1 (ja) * 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
WO2016143624A1 (ja) * 2015-03-09 2016-09-15 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
WO2016152418A1 (ja) * 2015-03-25 2016-09-29 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
WO2016152544A1 (ja) * 2015-03-24 2016-09-29 学校法人関西学院 有機電界発光素子
WO2017126443A1 (ja) * 2016-01-21 2017-07-27 学校法人関西学院 多環芳香族化合物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735703B2 (ja) 1999-12-21 2006-01-18 大阪大学長 エレクトロルミネッセンス素子
US20040131881A1 (en) 2002-12-31 2004-07-08 Eastman Kodak Company Complex fluorene-containing compounds for use in OLED devices
JP2005170911A (ja) 2003-12-15 2005-06-30 Idemitsu Kosan Co Ltd 芳香族化合物およびそれを用いた有機エレクトロルミネッセンス素子
DE102010009903A1 (de) 2010-03-02 2011-09-08 Merck Patent Gmbh Verbindungen für elektronische Vorrichtungen
JP5591996B2 (ja) 2011-03-03 2014-09-17 国立大学法人九州大学 新規化合物、電荷輸送材料および有機デバイス
US10374166B2 (en) 2014-02-18 2019-08-06 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102118A1 (ja) * 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
WO2016143624A1 (ja) * 2015-03-09 2016-09-15 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
WO2016152544A1 (ja) * 2015-03-24 2016-09-29 学校法人関西学院 有機電界発光素子
WO2016152418A1 (ja) * 2015-03-25 2016-09-29 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
WO2017126443A1 (ja) * 2016-01-21 2017-07-27 学校法人関西学院 多環芳香族化合物

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151204A1 (ja) * 2018-02-05 2019-08-08 学校法人関西学院 多環芳香族化合物の発光材料を用いた有機電界発光素子
WO2020075760A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2020203212A1 (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及びその製造方法並びに発光素子用組成物及びその製造方法
JP2020167392A (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及びその製造方法並びに発光素子用組成物及びその製造方法
WO2020203211A1 (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
JP2020167391A (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
EP3950883A4 (en) * 2019-03-29 2022-11-16 Sumitomo Chemical Company Limited ELECTROLUMINESCENT ELEMENT AND METHOD FOR MANUFACTURING THEREOF, AND COMPOSITION FOR ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCTION THEREOF
KR20200125583A (ko) * 2019-04-22 2020-11-04 가꼬우 호징 관세이 가쿠잉 시클로알칸 축합 다환 방향족 화합물
KR102373524B1 (ko) * 2019-04-22 2022-03-10 가꼬우 호징 관세이 가쿠잉 시클로알칸 축합 다환 방향족 화합물
CN114026101A (zh) * 2019-04-26 2022-02-08 出光兴产株式会社 多环化合物和包含多环化合物或组合物的有机电致发光器件
TWI777192B (zh) * 2019-07-16 2022-09-11 南韓商Lg化學股份有限公司 化合物、包括其的塗覆組成物以及使用其的有機發光元件
JP2022535343A (ja) * 2019-07-16 2022-08-08 エルジー・ケム・リミテッド 化合物、これを含むコーティング組成物およびこれを用いた有機発光素子
CN113825761B (zh) * 2019-07-16 2023-12-12 株式会社Lg化学 化合物、包含其的涂覆组合物和使用其的有机发光器件
JP7286220B2 (ja) 2019-07-16 2023-06-05 エルジー・ケム・リミテッド 化合物、これを含むコーティング組成物およびこれを用いた有機発光素子
WO2021010767A1 (ko) * 2019-07-16 2021-01-21 주식회사 엘지화학 화합물, 이를 포함하는 코팅 조성물 및 이를 이용한 유기 발광 소자
CN113825761A (zh) * 2019-07-16 2021-12-21 株式会社Lg化学 化合物、包含其的涂覆组合物和使用其的有机发光器件
KR102412787B1 (ko) 2019-07-17 2022-06-23 주식회사 엘지화학 화합물, 이를 포함하는 코팅 조성물 및 이를 이용한 유기 발광 소자
KR20210009597A (ko) * 2019-07-17 2021-01-27 주식회사 엘지화학 화합물, 이를 포함하는 코팅 조성물 및 이를 이용한 유기 발광 소자
WO2021025163A1 (ja) * 2019-08-08 2021-02-11 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2021065772A1 (ja) * 2019-10-04 2021-04-08 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
JP7376892B2 (ja) 2019-11-18 2023-11-09 学校法人関西学院 多環芳香族化合物
EP3825343A1 (en) 2019-11-19 2021-05-26 Rohm and Haas Electronic Materials LLC Tunable refractive index polymers
WO2021122740A1 (de) 2019-12-19 2021-06-24 Merck Patent Gmbh Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021187507A1 (ja) * 2020-03-18 2021-09-23 株式会社Kyulux 化合物、発光材料および有機発光デバイス
JP2022077011A (ja) * 2020-11-10 2022-05-20 エルジー ディスプレイ カンパニー リミテッド 有機発光ダイオードおよび有機発光装置
JP7246453B2 (ja) 2020-11-10 2023-03-27 エルジー ディスプレイ カンパニー リミテッド 有機発光ダイオードおよび有機発光装置
CN112679534A (zh) * 2020-12-31 2021-04-20 武汉尚赛光电科技有限公司 一种杂环有机电致发光材料及其制备方法、应用和器件
CN112679534B (zh) * 2020-12-31 2023-09-26 武汉尚赛光电科技有限公司 一种杂环有机电致发光材料及其制备方法、应用和器件
EP4131456A1 (en) 2021-08-05 2023-02-08 SFC Co., Ltd. Organic light-emitting device

Also Published As

Publication number Publication date
US11637249B2 (en) 2023-04-25
US20200176680A1 (en) 2020-06-04
JPWO2019035268A1 (ja) 2020-07-30
KR20200041832A (ko) 2020-04-22
JP7116405B2 (ja) 2022-08-10
KR20240052073A (ko) 2024-04-22

Similar Documents

Publication Publication Date Title
JP7116405B2 (ja) 有機電界発光素子
JP6703149B2 (ja) 有機電界発光素子
JP7242283B2 (ja) 有機電界発光素子
KR102512378B1 (ko) 유기 전계 발광 소자
KR102657736B1 (ko) 유기 전계 발광 소자
JP7117699B2 (ja) 有機電界発光素子
WO2017188111A1 (ja) 有機電界発光素子
WO2020054676A1 (ja) 有機電界発光素子
WO2019009052A1 (ja) 多環芳香族化合物
WO2019102936A1 (ja) 有機デバイス用材料およびそれを用いた有機電界発光素子
KR102509918B1 (ko) 유기 전계 발광 소자
JP7398711B2 (ja) フッ素置換多環芳香族化合物
JP2019156822A (ja) 重水素置換多環芳香族化合物
JP2020105171A (ja) 多環芳香族化合物、有機デバイス用材料、有機el素子、表示装置および照明装置
JP7113455B2 (ja) 有機電界発光素子
JP2020200254A (ja) 多環芳香族化合物
JP7018171B2 (ja) アルケニル基を有する多環芳香族化合物およびその多量体
JP2019129309A (ja) 有機電界発光素子
WO2019239897A1 (ja) アルキル置換多環芳香族化合物を含有する電子輸送材料または電子注入材料
KR20210080216A (ko) 유기전계 발광소자 및 안트라센 화합물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18846803

Country of ref document: EP

Kind code of ref document: A1