JP2021038206A - 多環芳香族化合物 - Google Patents

多環芳香族化合物 Download PDF

Info

Publication number
JP2021038206A
JP2021038206A JP2020142749A JP2020142749A JP2021038206A JP 2021038206 A JP2021038206 A JP 2021038206A JP 2020142749 A JP2020142749 A JP 2020142749A JP 2020142749 A JP2020142749 A JP 2020142749A JP 2021038206 A JP2021038206 A JP 2021038206A
Authority
JP
Japan
Prior art keywords
carbon atoms
ring
aryl
formula
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020142749A
Other languages
English (en)
Inventor
琢次 畠山
Takuji Hatakeyama
琢次 畠山
一志 枝連
Kazushi Shiren
一志 枝連
馬場 大輔
Daisuke Baba
大輔 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Kwansei Gakuin Educational Foundation
Original Assignee
JNC Corp
Kwansei Gakuin Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp, Kwansei Gakuin Educational Foundation filed Critical JNC Corp
Publication of JP2021038206A publication Critical patent/JP2021038206A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron

Abstract

【課題】有機電界発光素子等の有機デバイス用材料として有用な化合物の提供。【解決手段】下式で表される多環芳香族化合物、またはその多量体;式中、A環、B環、C環およびD環は、置換されていてもよいアリール環又はヘテロアリール環;Y1はB等;Xは>N−R(Rは置換されていてもよいアリール等)等;Zはアリール環、ヘテロアリール環又はシクロアルキル環から選択される環が2つ以上連結されてなる基;Z及びNは、D環を構成し互いに隣接する炭素原子にそれぞれ直接結合しており;式中における少なくとも1つの水素は、重水素等で置換されていてもよい。【選択図】なし

Description

本発明は、多環芳香族化合物に関する。本発明はまた、上記多環芳香族化合物を用いた有機電界発光素子、有機電界効果トランジスタおよび有機薄膜太陽電池、並びに、表示装置および照明装置に関する。
従来、電界発光する発光素子を用いた表示装置は、省電力化や薄型化が可能なことから、種々研究され、さらに、有機材料からなる有機電界発光素子は、軽量化や大型化が容易なことから活発に検討されてきた。特に、光の三原色の一つである青色などの発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能(半導体や超電導体となる可能性を有する)を備えた有機材料の開発については、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。
有機EL素子は、陽極および陰極からなる一対の電極と、当該一対の電極間に配置され、有機化合物を含む一層または複数の層とからなる構造を有する。有機化合物を含む層には、発光層や、正孔、電子などの電荷を輸送または注入する電荷輸送/注入層などがあるが、これらの層に適当な種々の有機材料が開発されている。
その中で、特許文献1では、芳香環をホウ素、リン、酸素、窒素、硫黄などのヘテロ元素で連結した多環芳香族化合物が、有機電界発光素子等の材料として有用であることが開示されている。この多環芳香族化合物は、大きなHOMO−LUMOギャップおよび高い三重項励起エネルギー(ET)を有するとともに、熱活性型遅延蛍光を示すため、特に有機EL素子の蛍光材料として有用であることが報告されている。
国際公開第2015/102118号 国際公開第2019/102936号
特許文献1で開示される多環芳香族化合物は、分子の平面性が高く、発光層において発光ドーパントとして高い濃度で用いる場合に、濃度消光による発光効率の低下が見られることがある。しかし、濃度消光を避けるために発光ドーパントの濃度を低くして有機EL素子を製造するためには、より精密なドーパント濃度の制御が要求されるため、素子製造工程におけるプロセスマージンが低下する。
本発明の課題は、上記課題を解決しうる化合物であって、有機電界発光素子等の有機デバイス用材料として有用な化合物を提供することである。
特許文献2では、上記課題の解決のため、上記多環芳香族化合物に嵩高い置換基を導入し、分子間の会合を抑制し濃度消光を抑えることが提案されている。本発明者らは、多環芳香族化合物に、さらに嵩高い置換基を導入することで、濃度消光を抑制する効果をさらに増強することを試みて検討を重ね、上記課題の解決に至った。
すなわち、本発明は以下のような多環芳香族化合物または多量体および有機デバイス用材料等を提供する。
<1> 下記式(1)で表される多環芳香族化合物、または下記式(1)で表される構造を複数有する多環芳香族化合物の多量体;
式(1)中、
A環、B環、C環およびD環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
B環およびC環は単結合または連結基を介して結合していてもよく、
D環は単結合または連結基を介して前記A環およびC環からなる群より選択される少なくとも1つの環と結合していてもよく、
1は、B、P、P=O、P=S、Al、Ga、As、Si−RまたはGe−Rであり、前記Si−RおよびGe−RのRは、アリール、アルキルまたはシクロアルキルであり、
Xは、>O、>N−R、>Si(−R)2、>C(−R)2、>Sまたは>Seであり、前記>N−RのRは、置換されていてもよいアリール(ただし置換基としてアミノ基を除く)、置換されていてもよいヘテロアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、前記>Si(−R)2のRは、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、前記>C(−R)2のRは、水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、2つのRは互いに環を形成していてもよく、また、前記>N−R、>Si(−R)2および>C(−R)2の少なくとも1つにおけるRは連結基または単結合により前記A環およびB環からなる群より選択される少なくとも1つの環と結合していてもよく、
Zはアリール環、ヘテロアリール環およびシクロアルキル環からなる群より選択される環が2つ以上連結されてなる基であり、かつ
ZおよびNは、D環を構成する炭素原子であって互いに隣接する炭素原子にそれぞれ直接結合しており、
式(1)で表される化合物または構造における、アリール環およびヘテロアリール環からなる群より選択される少なくとも1つは、少なくとも1つのシクロアルカンで縮合されていてもよく、当該シクロアルカンにおける少なくとも1つの水素は置換されていてもよく、当該シクロアルカンにおける少なくとも1つの−CH2−は−O−で置換されていてもよく、
式(1)で表される化合物または構造における少なくとも1つの水素は、重水素、シアノまたはハロゲンで置換されていてもよい。
<2> 下記式(2)で表される多環芳香族化合物、または下記式(2)で表される構造を複数有する多環芳香族化合物の多量体である<1>に記載の多環芳香族化合物または多量体;
式(2)中、
1〜R3、R4〜R7、R8〜R11およびR12〜R15は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、また、R1〜R3、R4〜R7、R8〜R11およびR12〜R15のうちの隣接する基同士が結合してa環、b環、c環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
1は−O−または>N−Rであり、前記>N−RのRは炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルであり、これらにおける少なくとも1つの水素は炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルで置換されていてもよく、また、前記>N−RのRは−O−、−S−、−C(−R)2−または単結合により前記a環および/またはb環と結合していてもよく、前記−C(−R)2−のRは炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルであり、2つのRは互いに環を形成していてもよく、
Zは式(Z1)で表される置換基であり、
式(Z1)において、Yはシクロアルカンで縮合されていてもよいアリールあるいはシクロアルキルであり、式(Z1)における少なくとも1つの水素はアルキルで置換されていてもよく、*は結合位置を示し、
式(2)で表される化合物における少なくとも1つの水素はハロゲンまたは重水素で置換されていてもよい。
<3> R1〜R3、R4〜R7、R8〜R11およびR12〜R15は、それぞれ独立して、水素、炭素数6〜30のアリール、炭素数2〜30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6〜12のアリール)、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数1〜6のアルコキシまたは炭素数6〜12のアリールオキシであり、これらにおける少なくとも1つの水素は炭素数6〜12のアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルで置換されていてもよく、また、R1〜R3、R4〜R7、R8〜R11およびR12〜R15のうちの隣接する基同士が結合してa環、b環、c環またはd環と共に炭素数9〜16のアリール環または炭素数6〜15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は炭素数6〜30のアリール、炭素数2〜30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6〜12のアリール)、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数1〜6のアルコキシまたは炭素数6〜12のアリールオキシで置換されていてもよく、
1は>N−Rであり、前記>N−RのRは炭素数6〜12のアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルであり、これらにおける少なくとも1つの水素は炭素数6〜12のアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルで置換されていてもよく、
式(Z1)におけるYはシクロアルカンで縮合されていてもよい炭素数6〜12のアリールあるいは炭素数3〜14のシクロアルキルシクロアルキルであり、式(Z1)における少なくとも1つの水素は炭素数1〜6のアルキルで置換されていてもよい、<2>に記載の多環芳香族化合物または多量体。
<4> R1〜R3、R4〜R7、R8〜R11およびR12〜R15は、それぞれ独立して、水素、炭素数6〜16のアリール、炭素数2〜20のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6〜12のアリール)、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数1〜6のアルコキシまたは炭素数6〜12のアリールオキシであり、また、R1〜R3、R4〜R7、R8〜R11およびR12〜R15のうちの隣接する基同士が結合してa環、b環、c環またはd環と共に炭素数9〜16のアリール環または炭素数6〜15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は炭素数6〜16のアリール、炭素数2〜20のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6〜12のアリール)、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数1〜6のアルコキシまたは炭素数6〜12のアリールオキシで置換されていてもよく、
1は>N−Rであり、前記>N−RのRは炭素数6〜12のアリール、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、または、炭素数1〜6のアルキルもしくは炭素数3〜14のシクロアルキルで置換された炭素数6〜12のアリールであり、
式(Z1)におけるYはシクロアルカンで縮合されていてもよい炭素数6〜12のアリールあるいは炭素数3〜14のシクロアルキルシクロアルキルであり、式(Z1)における少なくとも1つの水素は炭素数1〜6のアルキルで置換されていてもよい、<2>に記載の多環芳香族化合物または多量体。
<5> R1〜R3、R4〜R7、R8〜R11およびR12〜R15は、それぞれ独立して、水素、炭素数6〜16のアリール、炭素数2〜20のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6〜12のアリール)、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数1〜6のアルコキシまたは炭素数6〜12のアリールオキシであり、また、R1〜R3、R4〜R7、R8〜R11およびR12〜R15のうちの隣接する基同士が結合してa環、b環、c環またはd環と共にナフタレン環、フルオレン環またはカルバゾール環を形成していてもよく、形成された環における少なくとも1つの水素は炭素数6〜16のアリール、炭素数2〜20のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6〜12のアリール)、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数1〜6のアルコキシまたは炭素数6〜12のアリールオキシで置換されていてもよく、
1は>N−Rであり、前記>N−RのRは炭素数6〜12のアリール、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、または、炭素数1〜6のアルキルもしくは炭素数3〜14のシクロアルキルで置換された炭素数6〜12のアリールであり、
式(Z1)におけるYはシクロアルカンで縮合されていてもよい炭素数6〜12のアリールあるいは炭素数3〜14のシクロアルキルシクロアルキルであり、式(Z1)における少なくとも1つの水素は炭素数1〜6のアルキルで置換されていてもよい、<2>に記載の多環芳香族化合物または多量体。
<6> 式(Z1)におけるYが炭素数1〜6のアルキルで置換されていてもよいフェニル、シクロヘキシルあるいはアダマンチルである、
<2>〜<5>のいずれかに記載の多環芳香族化合物または多量体。
<7> 式(2)で表される多環芳香族化合物が下記いずれかの構造式で表される化合物である、<2>に記載の多環芳香族化合物または多量体;
上記構造式中、Meはメチル、t−Buはtブチルである。
<8> 下記式(2−a−1)で表される多環芳香族化合物、または下記式(2−a−1)で表される構造を複数有する多環芳香族化合物の多量体である<1>に記載の多環芳香族化合物または多量体;
式(2−a−1)中、
1、R2、R3、R4、R5、R6、R7、R12、R13、R14、R15はそれぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
8b、R9b、R10b、R11bは水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
Xは、>O、>S、>N−R、または>C(−R)2であり、前記>N−RのRは置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキル、または置換されていてもよいシクロアルキルであり、前記>C(−R)2のRは、それぞれ独立して、水素、アルキルもしくはシクロアルキルで置換されていてもよいアリール、アルキルもしくはシクロアルキルで置換されていてもよいヘテロアリール、アルキル、またはシクロアルキルであり、前記>C(−R)2における2つのRは互いに環を形成していてもよく、
1は−O−または>N−Rであり、前記>N−RのRは炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルであり、これらにおける少なくとも1つの水素は炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルで置換されていてもよく、
Zは式(Z1)で表される置換基であり、
式(Z1)において、Yはシクロアルカンで縮合されていてもよいアリールあるいはシクロアルキルであり、式(Z1)における少なくとも1つの水素はアルキルで置換されていてもよく、*は結合位置を示し、
式(2−a−1)で表される化合物における少なくとも1つの水素はハロゲンまたは重水素で置換されていてもよい。)
<9> 式(2−a−1)で表される多環芳香族化合物が下記いずれかの構造式で表される化合物である、<8>に記載の多環芳香族化合物または多量体;
上記構造式中、Meはメチル、t−Buはtブチルである。
<10> <1>〜<9>のいずれかに記載の多環芳香族化合物または多量体に反応性置換基が置換した、反応性化合物。
<11> <10>に記載の反応性化合物をモノマーとして高分子化させた高分子化合物、または、当該高分子化合物をさらに架橋させた高分子架橋体。
<12> 主鎖型高分子に<10>に記載の反応性化合物を置換させたペンダント型高分子化合物、または、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体。
<13> <1>〜<9>のいずれかに記載の多環芳香族化合物または多量体を含有する、有機デバイス用材料。
<14> <10>に記載の反応性化合物を含有する、有機デバイス用材料。
<15> <11>に記載の高分子化合物または高分子架橋体を含有する、有機デバイス用材料。
<16> <12>に記載のペンダント型高分子化合物またはペンダント型高分子架橋体を含有する、有機デバイス用材料。
<17> 有機電界発光素子用材料、有機電界効果トランジスタ用材料または有機薄膜太陽電池用材料である、<13>〜<16>のいずれかに記載の有機デバイス用材料。
<18> 前記有機電界発光素子用材料が発光層用材料である、<17>に記載の有機デバイス用材料。
<19> <1>〜<9>のいずれかに記載の多環芳香族化合物または多量体と、有機溶媒とを含む、組成物。
<20> <10>に記載の反応性化合物と、有機溶媒とを含む、組成物。
<21> 主鎖型高分子と、<10>に記載の反応性化合物と、有機溶媒とを含む、組成物。
<22> <11>に記載の高分子化合物または高分子架橋体と、有機溶媒とを含む、組成物。
<23> <12>に記載のペンダント型高分子化合物またはペンダント型高分子架橋体と、有機溶媒とを含む、組成物。
<24> 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、<1>〜<9>のいずれかに記載の多環芳香族化合物もしくは多量体、<10>に記載の反応性化合物、<11>に記載の高分子化合物もしくは高分子架橋体、または、<12>に記載のペンダント型高分子化合物もしくはペンダント型高分子架橋体を含有する有機層とを有する、有機電界発光素子。
<25> 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、<1>〜<9>のいずれかに記載の多環芳香族化合物もしくは多量体、<10>に記載の反応性化合物、<11>に記載の高分子化合物もしくは高分子架橋体、または、<12>に記載のペンダント型高分子化合物もしくはペンダント型高分子架橋体を含有する発光層とを有する、有機電界発光素子。
<26> 前記発光層が、ホストと、ドーパントとを含み、
前記ドーパントが前記多環芳香族化合物もしくは多量体、前記反応性化合物、前記高分子化合物もしくは高分子架橋体、または前記ペンダント型高分子化合物もしくはペンダント型高分子架橋体を含む、<25>に記載の有機電界発光素子。
<27> 前記ホストが、アントラセン系化合物、フルオレン系化合物またはジベンゾクリセン系化合物である、<26>に記載の有機電界発光素子。
<28> 前記陰極と前記発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、アリールニトリル誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体、キノリノール系金属錯体、チアゾール誘導体、ベンゾチアゾール誘導体、シロール誘導体およびアゾリン誘導体からなる群から選択される少なくとも1つを含有する、<24>〜<27>のいずれかに記載の有機電界発光素子。
<29> 前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、<28>に記載の有機電界発光素子。
<30> 前記一対の電極間に配置される正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層のうちの少なくとも1つの層を有し、該の少なくとも1つの層が、各層を形成し得る低分子化合物をモノマーとして高分子化させた高分子化合物、もしくは、当該高分子化合物をさらに架橋させた高分子架橋体、または、各層を形成し得る低分子化合物を主鎖型高分子と反応させたペンダント型高分子化合物、もしくは、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体を含む、<24>〜<29>のいずれかに記載の有機電界発光素子。
<31> <24>〜<30>のいずれかに記載の有機電界発光素子を備えた表示装置または照明装置。
本発明により、有機電界発光素子等の有機デバイス用材料として有用な新規化合物が提供される。本発明の化合物は、有機電界発光素子の発光層において発光ドーパントとして高い濃度で用いても濃度消光を抑えることができるため、デバイス製造プロセスにおいて有利である。
本実施形態に係る有機EL素子を示す概略断面図である。 バンクを有する基板にインクジェット法を用いて有機EL素子を作製する方法を説明する図である。
以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は「〜」前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本明細書において構造式の説明における「水素」は「水素原子(H)」を意味する。
本明細書において、有機電界発光素子を有機EL素子ということがある。
本明細書において化学構造や置換基を炭素数で表すことがあるが、化学構造に置換基が置換した場合や、置換基にさらに置換基が置換した場合などにおける炭素数は、化学構造や置換基それぞれの炭素数を意味し、化学構造と置換基の合計の炭素数や、置換基と置換基の合計の炭素数を意味するものではない。例えば、「炭素数Xの置換基Aで置換された炭素数Yの置換基B」とは、「炭素数Yの置換基B」に「炭素数Xの置換基A」が置換することを意味し、炭素数Yは置換基Aおよび置換基Bの合計の炭素数ではない。また例えば、「置換基Aで置換された炭素数Yの置換基B」とは、「炭素数Yの置換基B」に「(炭素数限定がない)置換基A」が置換することを意味し、炭素数Yは置換基Aおよび置換基Bの合計の炭素数ではない。
1.多環芳香族化合物およびその多量体等
本発明の化合物は、芳香環をホウ素、リン、酸素、窒素、硫黄などのヘテロ元素で連結した多環構造を有し、大きなHOMO−LUMOギャップ(薄膜におけるバンドギャップEg)と高い三重項励起エネルギー(ET)を有する。これは、ヘテロ元素を含む6員環は芳香属性が低いため、共役系の拡張に伴うHOMO−LUMOギャップの減少が抑制されること、ヘテロ元素の電子的な摂動により三重項励起状態(T1)のSOMO1およびSOMO2が局在化することが原因となっていると考えられる。また、本発明に係るヘテロ元素を含有する多環芳香族化合物は、三重項励起状態(T1)におけるSOMO1およびSOMO2の局在化により、両軌道間の交換相互作用が小さくなるため、三重項励起状態(T1)と一重項励起状態(S1)のエネルギー差が小さく、熱活性型遅延蛍光を示すため、有機EL素子の蛍光材料としても有用である。また、高い三重項励起エネルギー(ET)を有する材料は、燐光有機EL素子や熱活性型遅延蛍光を利用した有機EL素子の電子輸送層や正孔輸送層としても有用である。更に、これらの多環芳香族化合物は、置換基の導入により、HOMOとLUMOのエネルギーを任意に動かすことができるため、イオン化ポテンシャルや電子親和力を周辺材料に応じて最適化することが可能である。本発明の化合物は、上記の芳香族性多環構造にさらに嵩高い置換基が導入されていることによって分子間の会合が抑制され、発光ドーパントとして高い濃度で用いても濃度消光を抑えることができる。
<多環芳香族化合物またはその多量体>
本発明にかかる多環芳香族化合物は下記式(1)で表される。本発明にかかる多環芳香族化合物は上述のような嵩高い置換基としてアリール環、ヘテロアリール環およびシクロアルキル環からなる群より選択される環が2つ以上連結されてなる基であるZを有する。
式(1)において「A」〜「D」は環構造を示す符号である。
式(1)で表される多環芳香族化合物は下記式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、または式(2−h)で表される多環芳香族化合物であることが好ましい。なお、式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、または式(2−h)において、Zは後述する式(Z1)で表される置換基である。
各構造式において、「a」〜「d」はそれぞれ環構造を示す符号である。
式(1)におけるA環、B環、C環およびD環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は、置換基で置換されていてもよい。この置換基は、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のジアリールアミノ、置換もしくは無置換のジヘテロアリールアミノ、置換もしくは無置換のアリールヘテロアリールアミノ(アリールとヘテロアリールを有するアミノ)、置換もしくは無置換のジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、置換もしくは無置換のアルキル、置換もしくは無置換のシクロアルキル、置換もしくは無置換のアルコキシ、置換もしくは無置換のアリールオキシ、または、置換シリルが好ましい。これらの基が置換基を有する場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルがあげられる。また、A環、B環、C環、D環は、Y1、XおよびNから構成される式(1)中央の縮合2環構造と結合を共有する5員環または6員環を有することが好ましい。
ここで、「縮合2環構造」とは、式(1)の中央に示した、Y1、XおよびNを含んで構成される2つの飽和炭化水素環が縮合した構造を意味する。また、「縮合2環構造と結合を共有する6員環」とは、例えば式(2)で示すように前記縮合2環構造に縮合したa環(ベンゼン環(6員環))を意味する。また、「(A環である)アリール環またはヘテロアリール環がこの6員環を有する」とは、この6員環だけでA環が形成されるか、または、この6員環を含むようにこの6員環にさらに他の環などが縮合してA環が形成されることを意味する。言い換えれば、ここで言う「6員環を有する(A環である)アリール環またはヘテロアリール環」とは、A環の全部または一部を構成する6員環が、前記縮合2環構造に縮合していることを意味する。「B環(b環)」、「C環(c環)」、「D環(d環)」、また「5員環」についても同様の説明が当てはまる。
式(1)におけるA環は、式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)におけるa環とその置換基R1〜R3に対応する。式(1)におけるB環は、式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)におけるb環とその置換基R8〜R11に対応する。式(1)におけるC環は式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)におけるc環とその置換基R4〜R7に対応する。式(1)におけるD環は、式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)におけるd環とその置換基R12〜R15に対応する。すなわち、例えば、式(2)は、式(1)のA〜D環として「6員環を有するA〜D環」が選択された構造に対応する。その意味で、式(2)等における各環を小文字のa〜dで表した。
式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)におけるXXは、それぞれ独立して、>O、>S、>N−R、または>C(−R)2である。ここで前記>N−RのRは置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキル、または置換されていてもよいシクロアルキルであり、置換されていてもよいアリールであることが好ましく、無置換のアリールであることがより好ましい。また、前記>C(−R)2のRは、それぞれ独立して、水素、アルキルもしくはシクロアルキルで置換されていてもよいアリール、アルキルもしくはシクロアルキルで置換されていてもよいヘテロアリール、アルキル、またはシクロアルキルであり、アルキルであることが好ましく、メチルであることがより好ましい。>C(−R)2における2つのRは同一であることが好ましい。また>C(−R)2における2つのRは互いに環を形成していることも好ましい。XXは、それぞれ独立して、>O、>Sまたは>N−Rであることが好ましく、>Oまたは>Sであることがより好ましく、>Sであることがさらに好ましい。
式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)中、R1〜R3、R4〜R7、R8〜R11およびR12〜R15は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、また、R1〜R3、R4〜R7、R8〜R11およびR12〜R15のうちの隣接する基同士が結合してa環、b環、c環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。
式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)それぞれにおいては、a環、b環、c環およびd環の置換基R1〜R3、R4〜R7、R8〜R11およびR12〜R15のうちの隣接する基同士が結合して、それぞれa環、b環、c環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。したがって、例えば、式(2)で表される多環芳香族化合物は、a環、b環、c環およびd環における置換基の相互の結合形態によって、下記式(2−1)、式(2−2)および式(2−3)に示すように、化合物を構成する環構造が変化する。なお、式(2−1)、式(2−2)および式(2−3)における各符号の定義は式(1)または式(2)中の定義と同じである。
式(2−1)、式(2−2)および式(2−3)中のa'環、b'環、c'環およびd'環は、置換基R1〜R3、R8〜R11、R4〜R7およびR12〜R15のうちの隣接する基同士が結合して、それぞれa環、b環、c環およびd環と共に形成したアリール環またはヘテロアリール環を示す(b環、c環またはd環に他の環構造が縮合してできた縮合環ともいえる)。なお、式では示してはいないが、a環、b環、c環およびd環の全てがa’環、b’環、c’環およびd’環に変化した化合物もある。また、式(2−1)、式(2−2)および式(2−3)から分かるように、例えば、c環のR7とb環のR8、c環のR4とd環のR15などは「隣接する基同士」には該当せず、これらが結合することはない。すなわち、「隣接する基」とは同一環上で隣接する基(同一環上で互いに隣接する炭素原子にそれぞれ直接結合する基)を意味する。
式(2−1)、式(2−2)および式(2−3)で表される化合物は、例えばb環(またはa環、またはc環またはd環)であるベンゼン環に対してベンゼン環、インドール環、ピロール環、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、シクロペンタジエン環、インデン環が縮合して形成されるb’環(またはa’環、またはc’環またはd’環)を有する化合物であり、形成されてできた縮合環b’(縮合環a’、または縮合環c’または縮合環d’)はそれぞれナフタレン環、カルバゾール環、インドール環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、インデン環、フルオレン環である。
また、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)においてもそれぞれ同様に、a環、b環、c環またはd環に他の環構造が縮合してできた縮合環が形成されていてもよい。例えばa環、d環、b環またはc環であるベンゼン環は上記式(2)におけるベンゼン環と同様に他の環構造が縮合し縮合環を形成していてもよい。
式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)においては、b環またはc環である5員環において、R4〜R11のうちの隣接する基同士が結合して環を形成し縮合環が形成されていることが特に好ましい。例えば、式(2−a)、式(2−c)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)のb環、ならびに式(2−b)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)のc環において、R4〜R11のうちの隣接する基同士が結合して環を形成することにより、縮合環であるb'環またはc'環を形成することができる。形成される環がベンゼン環である場合の縮合環の例としてはインドール環、ベンゾフラン環、ベンゾチオフェン環があげられる。
例えば、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)では、XXが>Oであるとき、b環および/またはc環はフラン環となるが、このフラン環に対してベンゼン環が縮合して形成される式(2−2)のb'環および/またはc'環に対応する環はベンゾフラン環である。
また、例えば式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)では、XXが>Sであるとき、b環および/またはc環はチオフェン環となるが、このチオフェン環に対してベンゼン環が縮合して形成される式(2−2)のb'環および/またはc'環に対応する環に対応する環はベンゾチオフェン環である。
一例として、式(2−a)のb環である5員環において、R10およびR11同士が結合してベンゼン環を形成し縮合環が形成された例を以下に示す。
式(2−a−1)中、R1、R2、R3、R4、R5、R6、R7、R12、R13、R14、R15、XXおよびZは式(2−a)中のそれぞれと同義であり、好ましい範囲も同一である。R8b、R9b、R10b、R11bは水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。R8b、R9b、R10b、R11b中、0〜2個が水素以外の置換基であり、かつその他が水素であることが好ましく、1個が水素以外の置換基であり、かつその他が水素であることがより好ましい。水素以外の置換基として、好ましい範囲は、第1の置換基(第2置換基を有していてもよい。)として後述する置換基の記載を参照することができる。水素以外の置換基としては、アルキル(特に、ターシャリ−アルキル、ネオペンチルなど)、シクロアルキル(例えば、アダマンチルなど)、または置換もしくは無置換のジアリールアミノであることが特に好ましい。
式(2−a−1)中、X1は−O−または>N−Rであり、前記>N−RのRは炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルであり、これらにおける少なくとも1つの水素は炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルで置換されていてもよい。式(2−a−1)におけるX1の好ましい範囲は、式(2−a)におけるX1の好ましい範囲と同一である。
式(2−a−1)において、XXが>Sである構造の例としては、後述の式(D−162)または式(D−170)で表される化合物などがあげられる。
式(1)のA環、B環、C環およびD環である「アリール環」としては、例えば、炭素数6〜30のアリール環があげられ、炭素数6〜16のアリール環が好ましく、炭素数6〜12のアリール環がより好ましく、炭素数6〜10のアリール環が特に好ましい。
具体的な「アリール環」としては、単環系であるベンゼン環、二環系であるビフェニル環、縮合二環系であるナフタレン環、インデン環、三環系であるテルフェニル環(m−テルフェニル、o−テルフェニル、p−テルフェニル)、縮合三環系である、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、縮合四環系であるトリフェニレン環、ピレン環、ナフタセン環、縮合五環系であるペリレン環、ペンタセン環などがあげられる。
式(1)のA環、B環、C環およびD環である「ヘテロアリール環」としては、例えば、炭素数2〜30のヘテロアリール環があげられ、炭素数2〜25のヘテロアリール環が好ましく、炭素数2〜20のヘテロアリール環がより好ましく、炭素数2〜15のヘテロアリール環がさらに好ましく、炭素数2〜10のヘテロアリール環が特に好ましい。また、「ヘテロアリール環」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。なお、この「ヘテロアリール環」は、後述の式(2)で規定された「R1〜R11のうちの隣接する基同士が結合してa環、b環またはc環と共に形成されたヘテロアリール環」に対応し、また、a環(またはb環、c環)がすでに炭素数6のベンゼン環で構成されているため、これに5員環が縮合した縮合環の合計炭素数6が下限の炭素数となる。
具体的な「ヘテロアリール環」としては、例えば、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H−インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H−ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、フェナザシリン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラザン環、チアントレン環、インドロカルバゾール環、ベンゾインドロカルバゾール環、ベンゾベンゾインドロカルバゾール環、ナフトベンゾフラン環などがあげられる。式(1)のA環、B環またはC環がヘテロアリール環である場合の「ヘテロアリール環」としては、インドール環、カルバゾール環、ベンゾフラン環、ジベンゾフラン環、ベンゾチオフェン環、ジベンゾチオフェン環が好ましく、カルバゾール環、ベンゾチオフェン環、ジベンゾフラン環がより好ましい。
式(1)のA環、B環、およびC環のいずれか1つ以上がヘテロアリール環である場合は、B環および/またはC環がヘテロアリール環であり、かつA環を含めた残りの環がアリール環である形態が好ましく、B環またはC環のいずれか1つがヘテロアリール環であり、かつA環を含めた残りの環がアリール環である形態がより好ましい。
上記「アリール環」または「ヘテロアリール環」における少なくとも1つの水素は、第1の置換基である、置換もしくは無置換の「アリール」、置換もしくは無置換の「ヘテロアリール」、置換もしくは無置換の「ジアリールアミノ」、置換もしくは無置換の「ジヘテロアリールアミノ」、置換もしくは無置換の「アリールヘテロアリールアミノ」、置換もしくは無置換の「ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)」、置換もしくは無置換の「アルキル」、置換もしくは無置換の「シクロアルキル」、置換もしくは無置換の「アルコキシ」、置換もしくは無置換の「アリールオキシ」、または、置換の「シリル」で置換されていてもよいが、この第1の置換基としての「アリール」や「ヘテロアリール」、「ジアリールアミノ」のアリール、「ジヘテロアリールアミノ」のヘテロアリール、「アリールヘテロアリールアミノ」のアリールとヘテロアリール、「ジアリールボリル」のアリール、また「アリールオキシ」のアリールとしては上述した「アリール環」または「ヘテロアリール環」の一価の基があげられる。
具体的な「アリール」としては、単環系であるフェニル、二環系であるビフェニリル、縮合二環系であるナフチル(1−ナフチルまたは2−ナフチル)、インデン、三環系であるテルフェニリル(m−テルフェニリル、o−テルフェニリルまたはp−テルフェニリル)、縮合三環系である、アセナフチレニル、フルオレニル、フェナレニル、フェナントレニル、縮合四環系であるトリフェニレニル、ピレニル、ナフタセニル、縮合五環系であるペリレニル、ペンタセニルなどがあげられる。
「ヘテロアリール」(第1置換基)としては、例えば、炭素数2〜30のヘテロアリールがあげられ、炭素数2〜25のヘテロアリールが好ましく、炭素数2〜20のヘテロアリールがより好ましく、炭素数2〜15のヘテロアリールがさらに好ましく、炭素数2〜10のヘテロアリールが特に好ましい。また、「ヘテロアリール」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。
具体的な「ヘテロアリール」としては、例えば、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジニル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H−インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H−ベンゾトリアゾリル、キノリニル、イソキノリニル、シンノリニル、キナゾリニル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサチイニル、フェノキサジニル、フェノチアジニル、フェナジニル、インドリジニル、フラニル、ベンゾフラニル、イソベンゾフラニル、ジベンゾフラニル、ナフトベンゾフラニル、チエニル、ベンゾチエニル、イソベンゾチエニル、ジベンゾチエニル、ナフトベンゾチエニル、フラザニル、チアントレニルなどがあげられる。
また第1の置換基としての「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1〜24の直鎖アルキルまたは炭素数3〜24の分岐鎖アルキルがあげられる。炭素数1〜18のアルキル(炭素数3〜18の分岐鎖アルキル)が好ましく、炭素数1〜12のアルキル(炭素数3〜12の分岐鎖アルキル)がより好ましく、炭素数1〜8のアルキル(炭素数3〜8の分岐鎖アルキル)がさらに好ましく、炭素数1〜6のアルキル(炭素数3〜6の分岐鎖アルキル)が特に好ましく、炭素数1〜5のアルキル(炭素数3〜5の分岐鎖アルキル)が最も好ましい。
具体的なアルキルとしては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル、t−ブチル、n−ペンチル、イソペンチル、ネオペンチル、t−ペンチル(t−アミル)、n−ヘキシル、1−メチルペンチル、4−メチル−2−ペンチル、3,3−ジメチルブチル、2−エチルブチル、n−ヘプチル、1−メチルヘキシル、n−オクチル、t−オクチル(1,1,3,3−テトラメチルブチル)、1−メチルヘプチル、2−エチルヘキシル、2−プロピルペンチル、n−ノニル、2,2−ジメチルヘプチル、2,6−ジメチル−4−ヘプチル、3,5,5−トリメチルヘキシル、n−デシル、n−ウンデシル、1−メチルデシル、n−ドデシル、n−トリデシル、1−ヘキシルヘプチル、n−テトラデシル、n−ペンタデシル、n−ヘキサデシル、n−ヘプタデシル、n−オクタデシル、n−エイコシルなどがあげられる。
また、例えば、1−エチル−1−メチルプロピル、1,1−ジエチルプロピル、1,1−ジメチルブチル、1−エチル−1−メチルブチル、1,1,4−トリメチルペンチル、1,1,2−トリメチルプロピル、1,1−ジメチルオクチル、1,1−ジメチルペンチル、1,1−ジメチルヘプチル、1,1,5−トリメチルヘキシル、1−エチル−1−メチルヘキシル、1−エチル−1,3−ジメチルブチル、1,1,2,2−テトラメチルプロピル、1−ブチル−1−メチルペンチル、1,1−ジエチルブチル、1−エチル−1−メチルペンチル、1,1,3−トリメチルブチル、1−プロピル−1−メチルペンチル、1,1,2−トリメチルプロピル、1−エチル−1,2,2−トリメチルプロピル、1−プロピル−1−メチルブチル、1,1−ジメチルヘキシルなどもあげられる。
また第1の置換基としての「シクロアルキル」としては、炭素数3〜24のシクロアルキル、炭素数3〜20のシクロアルキル、炭素数3〜16のシクロアルキル、炭素数3〜14のシクロアルキル、炭素数5〜10のシクロアルキル、炭素数5〜8のシクロアルキル、炭素数5〜6のシクロアルキル、炭素数5のシクロアルキルなどがあげられる。
具体的なシクロアルキルとしては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、およびこれらの炭素数1〜5のアルキル(特にメチル)置換体や、ノルボルネニル、ビシクロ[1.0.1]ブチル、ビシクロ[1.1.1]ペンチル、ビシクロ[2.0.1]ペンチル、ビシクロ[1.2.1]ヘキシル、ビシクロ[3.0.1]ヘキシル、ビシクロ[2.1.2]ヘプチル、ビシクロ[2.2.2]オクチル、アダマンチル、ジアマンチル、デカヒドロナフタレニル、デカヒドロアズレニルなどがあげられる。
なお、本発明の化合物にシクロアルキルを導入することによっては、融点や昇華温度の低下が期待できる。このことは、高い純度が要求される有機EL素子などの有機デバイス用の材料の精製法としてほぼ不可欠な昇華精製において、比較的低温で精製することができるため材料の熱分解などが避けられることを意味する。またこれは、有機EL素子などの有機デバイスを作製するのに有力な手段である真空蒸着プロセスについても同様であり、比較的低温でプロセスを実施できるため、材料の熱分解を避けることができ、結果として高性能な有機デバイスを得ることができる。また、シクロアルキルの導入により有機溶媒への溶解性が向上するため、塗布プロセスを利用した素子作製にも適用することが可能となる。ただし、本発明は特にこれらの原理に限定されるわけではない。
また第1の置換基としての「アルコキシ」としては、例えば、炭素数1〜24の直鎖または炭素数3〜24の分岐鎖のアルコキシがあげられる。炭素数1〜18のアルコキシ(炭素数3〜18の分岐鎖のアルコキシ)が好ましく、炭素数1〜12のアルコキシ(炭素数3〜12の分岐鎖のアルコキシ)がより好ましく、炭素数1〜6のアルコキシ(炭素数3〜6の分岐鎖のアルコキシ)がさらに好ましく、炭素数1〜5のアルコキシ(炭素数3〜5の分岐鎖のアルコキシ)が特に好ましい。
具体的なアルコキシとしては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s−ブトキシ、t−ブトキシ、t−アミルオキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシなどがあげられる。
「ジアリールアミノ」(第1置換基)、「ジヘテロアリールアミノ」(第1置換基)、「アリールヘテロアリールアミノ」(第1置換基)および「アリールオキシ」(第1置換基)における「アリール」や「ヘテロアリール」の詳細は、上述した「アリール」や「ヘテロアリール」の説明を引用することができる。
また第1の置換基としての「置換シリル」としては、例えば、アルキル、シクロアルキル、およびアリールからなる群より選択される3つの置換基で置換されたシリルがあげられる。例えば、トリアルキルシリル、トリシクロアルキルシリル、ジアルキルシクロアルキルシリル、アルキルジシクロアルキルシリル、トリアリールシリル、ジアルキルアリールシリル、およびアルキルジアリールシリルがあげられる。
「トリアルキルシリル」としては、シリルにおける3つの水素がそれぞれ独立してアルキルで置換された基があげられ、このアルキルは上述した第1の置換基における「アルキル」として説明した基を引用することができる。置換するのに好ましいアルキルは、炭素数1〜5のアルキルであり、具体的にはメチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、t−アミルなどがあげられる。
具体的なトリアルキルシリルとしては、トリメチルシリル、トリエチルシリル、トリプロピルシリル、トリi−プロピルシリル、トリブチルシリル、トリsec−ブチルシリル、トリt−ブチルシリル、トリt−アミルシリル、エチルジメチルシリル、プロピルジメチルシリル、i−プロピルジメチルシリル、ブチルジメチルシリル、sec−ブチルジメチルシリル、t−ブチルジメチルシリル、t−アミルジメチルシリル、メチルジエチルシリル、プロピルジエチルシリル、i−プロピルジエチルシリル、ブチルジエチルシリル、sec−ブチルジエチルシリル、t−ブチルジエチルシリル、t−アミルジエチルシリル、メチルジプロピルシリル、エチルジプロピルシリル、ブチルジプロピルシリル、sec−ブチルジプロピルシリル、t−ブチルジプロピルシリル、t−アミルジプロピルシリル、メチルジi−プロピルシリル、エチルジi−プロピルシリル、ブチルジi−プロピルシリル、sec−ブチルジi−プロピルシリル、t−ブチルジi−プロピルシリル、t−アミルジi−プロピルシリルなどがあげられる。
「トリシクロアルキルシリル」としては、シリルにおける3つの水素がそれぞれ独立してシクロアルキルで置換された基があげられ、このシクロアルキルは上述した第1の置換基における「シクロアルキル」として説明した基を引用することができる。置換するのに好ましいシクロアルキルは、炭素数5〜10のシクロアルキルであり、具体的にはシクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、ビシクロ[1.1.1]ペンチル、ビシクロ[2.0.1]ペンチル、ビシクロ[1.2.1]ヘキシル、ビシクロ[3.0.1]ヘキシル、ビシクロ[2.1.2]ヘプチル、ビシクロ[2.2.2]オクチル、アダマンチル、デカヒドロナフタレニル、デカヒドロアズレニルなどがあげられる。
具体的なトリシクロアルキルシリルとしては、トリシクロペンチルシリル、トリシクロヘキシルシリルなどがあげられる。
2つのアルキルと1つのシクロアルキルが置換したジアルキルシクロアルキルシリルと、1つのアルキルと2つのシクロアルキルが置換したアルキルジシクロアルキルシリルの具体例としては、上述した具体的なアルキルおよびシクロアルキルから選択される基が置換したシリルがあげられる。
2つのアルキルと1つのアリールが置換したジアルキルアリールシリル、1つのアルキルと2つのアリールが置換したアルキルジアリールシリル、および3つのアリールが置換したトリアリールシリルの具体例としては、上述した具体的なアルキルおよびアリールから選択される基が置換したシリルがあげられる。トリアリールシリルの具体例としては、特にトリフェニルシリルがあげられる。
また第1の置換基の「ジアリールボリル」中の「アリール」としては、上述したアリールの説明を引用できる。また、この2つのアリールは単結合または連結基(例えば>C(−R)2、>O、>Sまたは>N−R)を介して結合していてもよい。ここで、>C(−R)2および>N−RのRは、アリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)であり、当該第1置換基にはさらにアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)が置換していてもよく、これらの基の具体例としては、上述した第1置換基としてのアリール、ヘテロアリール、ジアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシの説明を引用できる。
第1置換基の構造の立体障害性、電子供与性および電子吸引性によって、発光波長を調整することができる。好ましくは以下の構造式で表される基であり、より好ましくは、メチル、t−ブチル、t−アミル、t−オクチル、フェニル、o−トリル、p−トリル、2,4−キシリル、2,5−キシリル、2,6−キシリル、2,4,6−メシチル、ジフェニルアミノ、ジ−p−トリルアミノ、ビス(p−(t−ブチル)フェニル)アミノ、カルバゾリル、3,6−ジメチルカルバゾリル、3,6−ジ−t−ブチルカルバゾリルおよびフェノキシであり、さらに好ましくは、メチル、t−ブチル、t−アミル、t−オクチル、フェニル、o−トリル、2,6−キシリル、2,4,6−メシチル、ジフェニルアミノ、ジ−p−トリルアミノ、ビス(p−(t−ブチル)フェニル)アミノ、カルバゾリル、3,6−ジメチルカルバゾリルおよび3,6−ジ−t−ブチルカルバゾリルである。合成の容易さの観点からは、立体障害が大きい方が選択的な合成のために好ましく、具体的には、t−ブチル、t−アミル、t−オクチル、o−トリル、p−トリル、2,4−キシリル、2,5−キシリル、2,6−キシリル、2,4,6−メシチル、ジ−p−トリルアミノ、ビス(p−(t−ブチル)フェニル)アミノ、3,6−ジメチルカルバゾリルおよび3,6−ジ−t−ブチルカルバゾリルが好ましい。
下記構造式において、「Me」はメチル、「tBu」はt−ブチル、「tAm」はt−アミル、「tOct」はt−オクチル、*は結合位置を表す。
式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)それぞれにおけるR1〜R3中、0〜1個が水素以外の置換基であり、かつその他が水素であり、R4〜R7中、0〜1個が水素以外の置換基であり、かつその他が水素であり、R8〜R11中、0〜1個が水素以外の置換基であり、かつその他が水素であることが好ましく、
1〜R3中、1個が水素以外の置換基であり、かつその他が水素であり、R4〜R7中、1個が水素以外の置換基であり、かつその他が水素であり、R8〜R11中、1個が水素以外の置換基であり、かつその他が水素であることがより好ましい。水素以外の置換基として、好ましい範囲は、第1の置換基(第2置換基を有していてもよい。)として後述する置換基の記載を参照することができる。水素以外の置換基としては、アルキル(特に、ターシャリ−アルキル(t−ブチル、t−アミルなど)、ネオペンチルなど)、シクロアルキル(例えば、アダマンチルなど)、または置換もしくは無置換のジアリールアミノであることが特に好ましい。
第1の置換基である、置換もしくは無置換の「アリール」、置換もしくは無置換の「ヘテロアリール」、置換もしくは無置換の「ジアリールアミノ」、置換もしくは無置換の「ジヘテロアリールアミノ」、置換もしくは無置換の「アリールヘテロアリールアミノ」、置換もしくは無置換の「ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)」、置換もしくは無置換の「アルキル」、置換もしくは無置換の「シクロアルキル」、置換もしくは無置換の「アルコキシ」、または、置換もしくは無置換の「アリールオキシ」は、置換または無置換と説明されているとおり、それらにおける少なくとも1つの水素が第2の置換基で置換されていてもよい。この第2の置換基としては、例えば、アリール、ヘテロアリール、アルキルまたはシクロアルキルがあげられ、それらの具体例は、上述した「アリール環」または「ヘテロアリール環」の一価の基、また第1の置換基としての「アルキル」または「シクロアルキル」の説明を参照することができる。また、第2の置換基としてのアリールやヘテロアリールには、それらにおける少なくとも1つの水素が、フェニルなどのアリール(具体例は上述した基)や、メチルなどのアルキル(具体例は上述した基)またはシクロヘキシルなどのシクロアルキル(具体例は上述した基)で置換された構造も第2の置換基としてのアリールやヘテロアリールに含まれる。その一例としては、第2の置換基がカルバゾリルの場合には、9位における少なくとも1つの水素が、フェニルなどのアリール、メチルなどのアルキルまたはシクロヘキシルなどのシクロアルキルで置換されたカルバゾリルも第2の置換基としてのヘテロアリールに含まれる。
式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)のR1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15におけるアリール、ヘテロアリール、ジアリールアミノのアリール、ジヘテロアリールアミノのヘテロアリール、アリールヘテロアリールアミノのアリールとヘテロアリール、ジアリールボリルのアリール、またはアリールオキシのアリールとしては、式(1)で説明した「アリール」または「ヘテロアリール」があげられる。また、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15におけるアルキル、シクロアルキルまたはアルコキシとしては、上述した式(1)の説明における第1の置換基としての「アルキル」、「シクロアルキル」または「アルコキシ」の説明を参照することができる。さらに、これらの基への置換基としてのアリール、ヘテロアリール、アルキルまたはシクロアルキルも同様である。また、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14およびR15のうちの隣接する基同士が結合してb環、c環、d環と共にアリール環またはヘテロアリール環を形成した場合の、これらの環への置換基であるヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル、アルキル、シクロアルキル、アルコキシまたはアリールオキシ、および、さらなる置換基であるアリール、ヘテロアリール、アルキルまたはシクロアルキルについても同様である。
上記第1置換基における少なくとも1つの水素は、第2置換基である「アリール」、「ヘテロアリール」、「アルキル」または「シクロアルキル」で置換されていてもよく、これらの詳細は上述した第1置換基の「アリール」、「ヘテロアリール」、「アルキル」または「シクロアルキル」の説明を引用することができる。また、第2置換基としての「アリール」や「ヘテロアリール」には、それらにおける少なくとも1つの水素がフェニルなどのアリール(具体例は上述した基)やメチルなどのアルキル(具体例は上述した基)やシクロヘキシルなどのシクロアルキル(具体例は上述した基)で置換された基も第2置換基としてのアリールやヘテロアリールに含まれる。その一例としては、第2置換基がカルバゾリルの場合には、9位における水素がフェニルなどのアリールやメチルなどのアルキルやシクロヘキシルなどのシクロアルキルで置換されたカルバゾリルも第2置換基としてのヘテロアリールに含まれる。
1〜R3、R4〜R7、R8〜R11およびR12〜R15のうちの隣接する基同士が結合して形成されたアリール環またはヘテロアリール環の詳細は、上述した第1置換基の「アリール」または「ヘテロアリール」の説明を無価の環構造として引用することができる。
形成された環における少なくとも1つの水素は、「アリール」、「ヘテロアリール」、「ジアリールアミノ」、「ジヘテロアリールアミノ」、「アリールヘテロアリールアミノ」、「アルキル」、「シクロアルキル」、「アルコキシ」または「アリールオキシ」で置換されていてもよく、これらにおける少なくとも1つの水素は「アリール」、「ヘテロアリール」、「アルキル」または「シクロアルキル」で置換されていてもよいが、これらの詳細は、上述した第1置換基および第2置換基の説明を引用することができる。
式(1)において、B環およびC環は単結合または連結基を介して結合していてもよい。連結基としては>O、>N−R、>Si(−R)2、>C(−R)2、>Sまたは>Seがあげられる。前記>N−Rおよび>Si(−R)2のRは、それぞれ独立して、アルキルもしくはシクロアルキルで置換されていてもよいアリール、アルキルもしくはシクロアルキルで置換されていてもよいヘテロアリール、アルキルまたはシクロアルキルであり、前記>C(−R)2のRは、水素、アルキルもしくはシクロアルキルで置換されていてもよいアリール、アルキルもしくはシクロアルキルで置換されていてもよいヘテロアリール、アルキルまたはシクロアルキルであり、また、前記>N−R、>Si(−R)2および>C(−R)2の少なくとも1つにおけるRは、−O−、−S−、−C(−R)2−または単結合により、前記B環またはC環の少なくとも1つの環と結合していてもよく、前記−C(−R)2−のRは、水素、アルキルまたはシクロアルキルである。
式(1)において、D環は単結合または連結基を介してA環およびC環からなる群より選択される少なくとも1つの環と結合していてもよい。連結基としては、−O−、−S−または−C(−R)2−が好ましい。なお、前記「−C(−R)2−」のRは、水素、アルキルまたはシクロアルキルである。
式(1)におけるY1は、B、P、P=O、P=S、Al、Ga、As、Si−RまたはGe−Rであり、前記Si−RおよびGe−RのRは、アリール、アルキルまたはシクロアルキルである。P=O、P=S、Si−RまたはGe−Rの場合には、A環、B環またはC環と結合する原子はP、SiまたはGeである。Y1は、B、P、P=O、P=SまたはSi−Rが好ましく、Bが特に好ましい。
式(1)におけるXは、>O、>N−R、>Si(−R)2、>C(−R)2、>Sまたは>Seであり、>O、>N−Rであることが好ましく、>N−Rであることがより好ましい。
Xにおける>N−RのRは、置換されていてもよいアリール(ただし置換基としてアミノを除く)、置換されていてもよいヘテロアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、>Si(−R)2のRは、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、>C(−R)2のRは、水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルである。>Si(−R)2、>C(−R)2における2つのRは互いに環を形成していてもよい。また、前記>N−R、>Si(−R)2および>C(−R)2の少なくとも1つにおけるRは連結基または単結合により前記A環およびB環からなる群より選択される少なくとも1つの環と結合していてもよい。連結基としては、−O−、−S−または−C(−R)2−が好ましい。なお、前記「−C(−R)2−」のRは、水素、アルキルまたはシクロアルキルである。
式(1)におけるXがN−Rであり、前記N−RのRが環状基で置換されているフェニル(環が2つ以上連結されてなる基)である場合は環状基の置換位置はNに対し、パラ位またはメタ位であるもの(例えば、後述の式(D−177)または式(D−178)で表される化合物)が好ましい。分離困難なアトロプ異性体を生じさせないためである。
式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)におけるX1は−O−または>N−Rであり、>N−Rであることが好ましい。
前記>N−RのRは炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルであり、これらにおける少なくとも1つの水素は炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルで置換されていてもよく、また、前記>N−RのRは−O−、−S−、−C(−R)2−または単結合によりa環および/またはc環と結合していてもよく、前記−C(−R)2−のRは炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルであり、2つのRは互いに環を形成していてもよい。
式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)におけるX1がN−Rであり、前記N−RのRがフェニルであって、炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、および炭素数3〜14のシクロアルキルからなる群より選択される置換基で置換されている基(環が2つ以上連結されてなる基)である場合は置換基の置換位置はNに対し、パラ位またはメタ位であるもの(例えば、後述の式(D−177)または式(D−178)で表される化合物)が好ましい。分離困難なアトロプ異性体を生じさせないためである。
1としての>N−RのRにおける「炭素数6〜12のアリール」、「炭素数2〜15のヘテロアリール」、「炭素数1〜6のアルキル」または「炭素数3〜14のシクロアルキル」、およびこれらに置換し得る「炭素数6〜12のアリール」、「炭素数2〜15のヘテロアリール」、「炭素数1〜6のアルキル」または「炭素数3〜14のシクロアルキル」の詳細は、上述した第1置換基および第2置換基の説明を引用することができる。また、「−C(−R)2−」におけるRの「炭素数1〜6のアルキル」または「炭素数3〜14のシクロアルキル」の詳細は、上述した第1置換基の説明を引用することができる。特に炭素数1〜4のアルキル(例えばメチル、エチルなど)、炭素数3〜14のシクロアルキル(例えばビシクロオクチルやアダマンチルなど)が好ましい。
式(2)における「>N−RのRは−O−、−S−、−C(−R)2−または単結合により前記a環および/またはb環と結合」との規定は、下記式(2−4−1)で表される、X1が縮合環b'に取り込まれた環構造を有する化合物で表現できる。すなわち、式(2)におけるb環であるベンゼン環に対してX1を取り込むようにして他の環が縮合して形成されるb'環を有する化合物である。また、上記規定は、下記式(2−4−2)で表される、X1が縮合環a'に取り込まれた環構造を有する化合物でも表現できる。すなわち、式(2)におけるa環であるベンゼン環に対してX1を取り込むようにして他の環が縮合して形成されるa'環を有する化合物である。なお、式(2−4−1)および式(2−4−2)における各符号の定義は式(1)または式(2)中の定義と同じである。例えばb環であるベンゼン環に対してX1を取り込むようにして他の環が縮合して形成される縮合環b’は例えばフェノキサジン環、フェノチアジン環またはアクリジン環である。
式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)におけるX1は、N−R(特に、>N−RのRが炭素数6〜12のアリール、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、または、炭素数1〜6のアルキルもしくは炭素数3〜14のシクロアルキルで置換された炭素数6〜12のアリールであるもの)であることが好ましく、Rが置換されていてもよい炭素数6〜12のアリールであるN−Rであることがより好ましく、Rが炭素数1〜6のアルキルで置換されていてもよいフェニルであるN−Rであることがさらに好ましく、Rが4位(パラ位)が炭素数1〜6のアルキルで置換されているフェニルであるN−Rであることが特に好ましい。
式(1)において、Zはアリール環、ヘテロアリール環およびシクロアルキル環からなる群より選択される環が2つ以上連結されてなる基である。また、ZおよびN(窒素原子)は、D環を構成する2つの炭素原子であって互いに隣接している炭素原子にそれぞれ直接結合している。すなわち、Zが直接結合しているD環の炭素原子は、Nが直接結合しているD環の炭素原子と隣接している。式(1)で表される化合物では、このように嵩高い置換基がZとして周囲の空間が制限された位置に存在することによって、分子間の会合を抑制し濃度消光を抑えることができる。
Zにおけるアリール環、ヘテロアリール環およびシクロアルキル環からなる群より選択される環が2つ以上連結されてなる基においては、上記環が2つ連結されていることが好ましい。また、環の連結は単結合によってなされていることが好ましい。
Zの好ましい例としては、式(Z1)で表される置換基をあげることができる。各記号の定義および好ましい範囲については、以下の式(2)等での説明を参照することができる。
式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)それぞれにおいて、Zは式(Z1)で表される置換基である。式(2)、式(2−a)、式(2−b)、式(2−c)、式(2−d)、式(2−e)、式(2−f)、式(2−g)、および式(2−h)において、嵩高い式(Z1)で表される置換基が周囲の空間が制限された、>N−フェニルにおけるオルト位に存在し、分子間の会合を抑制し濃度消光を抑えることができる。
式(Z1)においてYはシクロアルカンで縮合されていてもよいアリールあるいはシクロアルキルであり、式(Z1)における少なくとも1つの水素はアルキルで置換されていてもよい。
Yにおける「アリール」または「シクロアルキル」の詳細は、上述した第1置換基および第2置換基の説明を引用することができる。また、式(Z1)における少なくとも1つの水素がアルキルで置換されているときの「アルキル」の詳細は、上述した第1置換基および第2置換基の説明を引用することができる。また、「シクロアルカンで縮合されている」場合については、後述する。
Yとしては、好ましくは、炭素数1〜6のアルキルで置換されていてもよいフェニル、シクロヘキシル、アダマンチル、および5,8−テトラメチル−5,6,7,8−テトラヒドロナフチル(特に、5,8−テトラメチル−5,6,7,8−テトラヒドロ−2−ナフチル)があげられ、フェニル、シクロヘキシル、またはアダマンチルがより好ましい。
式(Z1)中、*は式(Z1)で表される置換基が式(2)の他の部分に結合する結合位置を示す。
式(Z1)中、Yはフェニルにおける*以外のいずれの位置に置換していてもよいが、*を1位としたときに4位となる位置に置換していることが好ましい。
式(Z1)で表される置換基の具体的な例としては以下の構造式で表される化合物があげられる。なお、構造式中の「Me」はメチルであり、「tBu」はt−ブチルであり、*は結合位置を示す。
式(1)で表される多環芳香族化合物およびその多量体における、アリール環およびヘテロアリール環からなる群より選択される少なくとも1つは、少なくとも1つのシクロアルカンで縮合されていてもよく、当該シクロアルカンにおける少なくとも1つの水素は置換されていてもよく、当該シクロアルカンにおける少なくとも1つの−CH2−は−O−で置換されていてもよい。
式(1)で表される多環芳香族化合物およびその多量体における、アリール環およびヘテロアリール環としては、例えば、A環、B環、C環、D環であるアリール環およびヘテロアリール環、これらの環への第1および第2の置換基としてのアリール(上記と同様)およびヘテロアリール(上記と同様)におけるアリール環およびヘテロアリール環、Y1であるSi−RおよびGe−RのRとしてのアリール(上記と同様)におけるアリール環およびヘテロアリール環、ならびに、Xである>N−R、>Si(−R)2および>C(−R)2のRとしてのアリール(上記と同様)およびヘテロアリール(上記と同様)におけるアリール環およびヘテロアリール環があげられる。
好ましくは、A環、B環、C環、D環であるアリール環およびヘテロアリール環、これらの環への第1の置換基としてのアリール(アリール、ジアリールアミノ、ジアリールボリルまたはアリールオキシにおけるアリール部分)およびヘテロアリール(ヘテロアリールまたはジヘテロアリールアミノにおけるヘテロアリール部分)におけるアリール環およびヘテロアリール環、ならびに、Xである>N−R、>Si(−R)2および>C(−R)2のRとしてのアリール(上記と同様)およびヘテロアリール(上記と同様)におけるアリール環およびヘテロアリール環のうちの少なくとも1つが、少なくとも1つのシクロアルカンで縮合されていてもよい。
より好ましくは、A環、B環、C環、D環であるアリール環、この環への第1の置換基としてのアリール(アリールまたはジアリールアミノにおけるアリール部分)およびヘテロアリールにおけるアリール環およびヘテロアリール環、A環、B環、C環、D環であるアリール環およびヘテロアリール環への第1の置換基としてのアリール(上記と同様)およびヘテロアリールにおけるアリール環およびヘテロアリール環、ならびに、Xである>N−R、>Si(−R)2および>C(−R)2のRとしてのアリールにおけるアリール環のうちの少なくとも1つが、少なくとも1つのシクロアルカンで縮合されていてもよい。
さらに好ましくは、A環、B環、C環、D環であるアリール環、この環への第1の置換基としてのアリール(アリールまたはジアリールアミノにおけるアリール部分)におけるアリール環、A環、B環、C環、D環であるアリール環およびヘテロアリール環への第1の置換基としてのアリール(上記と同様)におけるアリール環、ならびに、Xである>N−R、>Si(−R)2および>C(−R)2のRとしてのアリール(上記と同様)におけるアリール環のうちの少なくとも1つが、少なくとも1つのシクロアルカンで縮合されていてもよい。
「シクロアルカン」としては、炭素数3〜24のシクロアルカン、炭素数3〜20のシクロアルカン、炭素数3〜16のシクロアルカン、炭素数3〜14のシクロアルカン、炭素数5〜10のシクロアルカン、炭素数5〜8のシクロアルカン、炭素数5〜6のシクロアルカン、炭素数5のシクロアルカンなどがあげられる。
具体的なシクロアルカンとしては、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、ノルボルネン、ビシクロ[1.0.1]ブタン、ビシクロ[1.1.1]ペンタン、ビシクロ[2.0.1]ペンタン、ビシクロ[1.2.1]ヘキサン、ビシクロ[3.0.1]ヘキサン、ビシクロ[2.1.2]ヘプタン、ビシクロ[2.2.2]オクタン、アダマンタン、ジアマンタン、デカヒドロナフタレンおよびデカヒドロアズレン、ならびに、これらの炭素数1〜5のアルキル(特にメチル)置換体、ハロゲン(特にフッ素)置換体および重水素置換体などがあげられる。
これらの中でも、例えば下記構造式に示すような、シクロアルカンのα位の炭素(芳香族環または複素芳香族環に縮合するシクロアルカンにおいて、縮合部位の炭素に隣接する位置の炭素)における少なくとも1つの水素が置換された構造が好ましく、α位の炭素における2つの水素が置換された構造がより好ましく、2つのα位の炭素における合計4つの水素が置換された構造がさらに好ましい。この置換基としては、炭素数1〜5のアルキル(特にメチル)置換体、ハロゲン(特にフッ素)置換体および重水素置換体などがあげられる。
1つの芳香族環または複素芳香族環に縮合するシクロアルカンの数は、1〜3個が好ましく、1個または2個がより好ましく、1個がさらに好ましい。例えば1つのベンゼン環(フェニル)に1個または複数のシクロアルカンが縮合した例を以下に示す。*は結合位置を表し、ベンゼン環を構成し、かつシクロアルカンを構成していない炭素原子のいずれの位置であってもよい。式(Cy−1−4)および式(Cy−2−4)のように縮合したシクロアルカン同士が縮合してもよい。縮合される環(基)がベンゼン環(フェニル)以外の他の芳香族環または複素芳香族環の場合であっても、縮合するシクロアルカンがシクロペンタンまたはシクロヘキサン以外の他のシクロアルカンの場合であっても、同様である。
シクロアルカンにおける少なくとも1つの−CH2−は−O−で置換されていてもよい。例えば1つのベンゼン環(フェニル)に縮合したシクロアルカンにおける1個または複数の−CH2−が−O−で置換された例を以下に示す。縮合される環(基)がベンゼン環(フェニル)以外の他の芳香族環または複素芳香族環の場合であっても、縮合するシクロアルカンがシクロペンタンまたはシクロヘキサン以外の他のシクロアルカンの場合であっても、同様である。
シクロアルカンにおける少なくとも1つの水素は置換されていてもよく、この置換基としては、例えば、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、置換シリル、重水素、シアノまたはハロゲンがあげられ、これらの詳細は、上述した第1の置換基の説明を引用することができる。これらの置換基の中でも、アルキル(例えば炭素数1〜6のアルキル)、シクロアルキル(例えば炭素数3〜14のシクロアルキル)、ハロゲン(例えばフッ素)および重水素などが好ましい。また、シクロアルキルが置換する場合はスピロ構造を形成する置換形態でもよく、この例を以下に示す。
シクロアルカン縮合の他の形態としては、式(1)で表される多環芳香族化合物およびその多量体が、例えば、シクロアルカンで縮合されたジアリールアミノ(このアリール部分へ縮合)、シクロアルカンで縮合されたカルバゾリル(このベンゼン環部分へ縮合)またはシクロアルカンで縮合されたベンゾカルバゾリル(このベンゼン環部分へ縮合)で置換された例があげられる。「ジアリールアミノ」については上記「第1の置換基」として説明した基があげられる。
また、さらに具体的な例としては、式(1)で表される多環芳香族化合物およびその多量体におけるR2が、シクロアルカンで縮合されたジアリールアミノ(このアリール部分へ縮合)またはシクロアルカンで縮合されたカルバゾリル(このベンゼン環部分へ縮合)である例があげられる。
この一例として、下記式(2−A)で表される多環芳香族化合物、または下記式(2−A)で表される構造を複数有する多環芳香族化合物の多量体があげられる。Cyはシクロアルカン、nは、それぞれ独立して、1〜3(好ましくは1)の整数であり、「=(Cy)n」はn個のシクロアルカンが縮合対象となる構造の任意の位置に縮合すること(下記式(2−A)ではベンゼン環(フェニル)にn個のシクロアルカンが縮合すること)を意味し、構造式中の各符号の定義は式(2)中の各符号の定義と同じである。
具体的には、以下の式で表される化合物があげられる。以下の式において式(1)または(2)中のZはZとしてのみ示すが、Z中のアリール環にも同様にシクロアルカンが縮合していてもよい。下記式中の「Cy」はシクロアルカンを表し、nはそれぞれ独立して0〜最大縮合可能な数(ただしすべてのnが0になることはない)、好ましくは0〜2(ただしすべてのnが0になることはない)、より好ましくは1であり、「=(Cy)n」はn個のシクロアルカンが縮合対象となる構造の任意の位置に縮合すること(例えば下記式「1−Cy−(401)」では各ベンゼン環の任意の位置にn個のシクロアルカンが縮合すること)を意味する。なお、下記構造式で表される化合物は上述した第1の置換基および第2の置換基で置換されていてもよい。
本発明の化合物は式(1)で表される単位構造を複数有する多環芳香族化合物の多量体であってもよい。多量体は、好ましくは、式(2)で表される単位構造を複数有する多環芳香族化合物の多量体である。多量体は、2〜6量体が好ましく、2〜3量体がより好ましく、2量体が特に好ましい。多量体は、一つの化合物の中に上記単位構造を複数有する形態であればよく、例えば、上記単位構造が単結合、炭素数1〜3のアルキレン、フェニレン、ナフチレンなどの連結基で複数結合した形態に加えて、上記単位構造に含まれる任意の環、特に、A環、B環またはC環、a環、b環またはc環、を複数の単位構造で共有するようにして結合した形態であってもよく、また、上記単位構造に含まれる任意の環、特にA環、B環またはC環、a環、b環またはc環同士が縮合するようにして結合した形態であってもよい。
このような多量体としては、例えば、下記式(2−5−1)〜式(2−5−4)または式(2−6)で表される多量体化合物があげられる。下記式(2−5−1)〜式(2−5−4)で表される多量体化合物は、式(2)で説明すれば、c環(またはb環)であるベンゼン環を共有するようにして、複数の式(2)で表される単位構造を一つの化合物中に有する多量体化合物である。また、下記式(2−6)で表される多量体化合物は、式(2)で説明すれば、例えば、ある単位構造のc環(またはa環、b環)であるベンゼン環とある単位構造のc環(またはa環、b環)であるベンゼン環とが縮合するようにして、複数の式(2)で表される単位構造を一つの化合物中に有する多量体化合物である。
多量体化合物は、式(2−5−1)〜式(2−5−4)のいずれかまたは式(2−6)で表現される多量化形態が組み合わさった多量体であってもよく、式(2−5−1)〜式(2−5−4)のいずれかで表現される多量化形態と、式(2−6)で表現される多量化形態とが組み合わさった多量体であってもよい。
式(1)で表される多環芳香族化合物または構造(単位構造)における少なくとも1つの水素は、重水素、シアノまたはハロゲンで置換されていてもよい。また、式(2)で表される化合物における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい。ここで、ハロゲンは、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素または臭素、より好ましくはフッ素である。
式(1)で表される多環芳香族化合物の具体的な例としては以下の構造式で表される化合物があげられる。なお、構造式中の「D」は重水素、であり、「Me」はメチルであり、「tBu」はt−ブチルであり、「tAm」はt−アミルである。
<反応性化合物、高分子化合物、高分子架橋体、ペンダント型高分子化合物、ペンダント型高分子架橋体>
式(1)で表される多環芳香族化合物およびその多量体は、反応性置換基を導入し、反応性化合物としてもよい。本発明の化合物は、この反応性化合物をモノマーとして高分子化させた高分子化合物(この高分子化合物を得るための前記モノマーは重合性置換基を有する)、もしくは当該高分子化合物をさらに架橋させた高分子架橋体(この高分子架橋体を得るための前記高分子化合物は架橋性置換基を有する)、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物(このペンダント型高分子化合物を得るための前記反応性化合物は反応性置換基を有する)、もしくは当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体(このペンダント型高分子架橋体を得るための前記ペンダント型高分子化合物は架橋性置換基を有する)としても、有機デバイス用材料、例えば、有機電界発光素子用材料、有機電界効果トランジスタ用材料または有機薄膜太陽電池用材料に用いることができる。
上述した反応性置換基(前記重合性置換基、前記架橋性置換基、および、ペンダント型高分子を得るための反応性置換基を含み、以下、単に「反応性置換基」とも言う)としては、上記多環芳香族化合物またはその多量体を高分子量化できる置換基、そのようにして得られた高分子化合物をさらに架橋化できる置換基、また、主鎖型高分子にペンダント反応し得る置換基であれば特に限定されないが、アルケニル、アルキニル、シクロアルキルの不飽和体(例えばシクロブテニル)、シクロアルキルにおける少なくとも1つの−CH2−が−O−で置換された基(例えばエポキシ)、縮合したシクロアルカンの不飽和体(例えば縮合したシクロブテン)などがあげられ、以下の構造の置換基が好ましい。各構造式中の*は結合位置を示す。
Lは、それぞれ独立して、単結合、−O−、−S−、>C=O、−O−C(=O)−、炭素数1〜12のアルキレン、炭素数1〜12のオキシアルキレンおよび炭素数1〜12のポリオキシアルキレンである。上記置換基の中でも、式(XLS−1)、式(XLS−2)、式(XLS−3)、式(XLS−9)、式(XLS−10)または式(XLS−17)で表される基が好ましく、式(XLS−1)、式(XLS−3)または式(XLS−17)で表される基がより好ましい。
このような高分子化合物、高分子架橋体、ペンダント型高分子化合物およびペンダント型高分子架橋体(以下、単に「高分子化合物および高分子架橋体」とも言う)の用途の詳細については後述する。
2.多環芳香族化合物の製造方法
式(1)または(2)で表される、嵩高い置換基(Z)を有する多環芳香族化合物は、例えば国際公開第2015/102118号で開示されている方法を応用することで合成することができる。すなわち、下記スキーム(1)のように、Z基を有する中間体を合成して、それを環化させることで所望の嵩高い置換基を有する多環芳香族化合物を合成できる。
スキーム(1)中、Halはハロゲンまたは水素を表し、その他の符号の定義は上述した定義と同じである。
スキーム(1)中の環化前の中間体も、同様に国際公開第2015/102118号などに示されている方法で合成することができる。すなわちBuchwald−Hartwig反応や鈴木カップリング反応、または求核置換反応やUllmann反応などによるエーテル化反応などを適宜組み合わせることで、所望の置換基を有する中間体を合成することができる。これらの反応において、嵩高い置換基(Z)の前駆体となる原料は市販品を利用することもできる。
また、多環芳香族化合物には、少なくとも1つの水素がハロゲンや重水素で置換されている化合物も含まれるが、このような化合物などは所望の箇所がハロゲン化(フッ素化または塩素化など)または重水素化された原料を用いることで、上記と同様に合成することができる。
3.有機デバイス
本発明の化合物(式(1)で表される多環芳香族化合物およびその多量体、上記いずれかに反応性置換基が置換した、反応性化合物、上記いずれかを高分子化させた高分子化合物、高分子架橋体、ペンダント型高分子化合物、またはペンダント型高分子架橋体)は、有機デバイス用材料として用いることができる。有機デバイスとしては、例えば、有機電界発光素子、有機電界効果トランジスタまたは有機薄膜太陽電池などがあげられる。
3−1.有機電界発光素子
<有機電界発光素子の構造>
図1は、有機EL素子の一例を示す概略断面図である。
図1に示された有機EL素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
なお、有機EL素子100は、作製順序を逆にして、例えば、基板101と、基板101上に設けられた陰極108と、陰極108の上に設けられた電子注入層107と、電子注入層107の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた発光層105と、発光層105の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた陽極102とを有する構成としてもよい。
上記各層すべてがなくてはならないわけではなく、最小構成単位を陽極102と発光層105と陰極108とからなる構成として、正孔注入層103、正孔輸送層104、電子輸送層106、電子注入層107は任意に設けられる層である。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。
有機EL素子を構成する層の態様としては、上述する「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」の構成態様の他に、「基板/陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子注入層/陰極」の構成態様であってもよい。
<有機電界発光素子における発光層>
本発明の化合物は、有機電界発光素子における、いずれか1つ以上の有機層を形成する材料として用いられることが好ましく、発光層を形成する材料として用いられることがより好ましい。
発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光する層である。発光層105を形成する材料としては、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光)効率を示す化合物であるのが好ましい。
本発明の化合物は、有機電界発光素子中の発光層に用いられる発光材料であることが好ましく、特にドーパント材料であることが好ましい。本発明では、発光層用の材料として、ドーパント材料としての本発明の化合物とホスト材料とを用いることができる。
発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光層用材料(ホスト材料、ドーパント材料)により形成される。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
ホスト材料の使用量はホスト材料の種類によって異なり、そのホスト材料の特性に合わせて決めればよい。ホスト材料の使用量の目安は、好ましくは発光層用材料全体の50〜99.999質量%であり、より好ましくは80〜99.95質量%であり、さらに好ましくは90〜99.9質量%である。
ドーパント材料の使用量はドーパント材料の種類によって異なり、そのドーパント材料の特性に合わせて決めればよい。ドーパントの使用量の目安は、好ましくは発光層用材料全体の0.001〜50質量%であり、より好ましくは0.05〜20質量%であり、さらに好ましくは0.1〜10質量%である。上記の範囲であれば、例えば、濃度消光現象を防止できるという点で好ましい。
ホスト材料としては、以前から発光体として知られていたアントラセン、ピレン、ジベンゾクリセンまたはフルオレンなどの縮合環誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体などがあげられる。アントラセン系化合物、フルオレン系化合物またはジベンゾクリセン系化合物が好ましく、アントラセン系化合物がより好ましい。
[ホスト材料:アントラセン系化合物]
ホストとしてのアントラセン系化合物は、例えば下記式(3)で表される化合物である。
また、下記式(3')で表されるアントラセン化合物のように、式(3)で表される構造が2つ結合した二量体化合物であってもよい。式(3')中のXおよびAr4の定義は式(3)における定義と同じであり、連結基Yとしては単結合、アリーレン(例えばフェニレンやナフチレンなど)またはヘテロアリーレン(例えば後述する式(A−1)〜式(A−11)の構造の二価の基、具体的にはカルバゾール、ジベンゾフランまたはジベンゾチオフェンの二価の基)などがあげられる。具体的には後述する式(3−272)〜式(3−296)の化合物があげられる。
式(3)では、Xはそれぞれ独立して式(3−X1)、式(3−X2)または式(3−X3)で表される基であり、式(3−X1)、式(3−X2)または式(3−X3)で表される基は*において式(3)のアントラセン環と結合する。好ましくは、2つのXが同時に式(3−X3)で表される基になることはない。より好ましくは2つのXが同時に式(3−X2)で表される基になることもない。
式(3−X1)および式(3−X2)におけるナフチレン部位は1つのベンゼン環で縮合されていてもよい。このようにして縮合した構造は以下のとおりである。
Ar1およびAr2は、それぞれ独立して、水素、フェニル、ビフェニリル、テルフェニリル、クアテルフェニリル、ナフチル、フェナントリル、フルオレニル、ベンゾフルオレニル、クリセニル、トリフェニレニル、ピレニリル、または、式(A)で表される基(カルバゾリル、ベンゾカルバゾリルおよびフェニル置換カルバゾリルも含む)である。なお、Ar1またはAr2が式(A)で表される基である場合は、式(A)で表される基はその*において式(3−X1)または式(3−X2)中のナフタレン環と結合する。
Ar3は、フェニル、ビフェニリル、テルフェニリル、クアテルフェニリル、ナフチル、フェナントリル、フルオレニル、ベンゾフルオレニル、クリセニル、トリフェニレニル、ピレニリル、または、式(A)で表される基(カルバゾリル、ベンゾカルバゾリルおよびフェニル置換カルバゾリルも含む)である。なお、Ar3が式(A)で表される基である場合は、式(A)で表される基はその*において式(3−X3)中の直線で表される単結合と結合する。すなわち、式(3)のアントラセン環と式(A)で表される基が直接結合する。
また、Ar3は置換基を有していてもよく、Ar3における少なくとも1つの水素はさらにフェニル、ビフェニリル、テルフェニリル、ナフチル、フェナントリル、フルオレニル、クリセニル、トリフェニレニル、ピレニリル、または、式(A)で表される基(カルバゾリルおよびフェニル置換カルバゾリルも含む)で置換されていてもよい。なお、Ar3が有する置換基が式(A)で表される基である場合は、式(A)で表される基はその*において式(3−X3)中のAr3と結合する。
Ar4は、それぞれ独立して、水素、フェニル、ビフェニリル、ターフェニリル、ナフチル、または炭素数1〜4のアルキル(メチル、エチル、t−ブチルなど)または炭素数5〜10のシクロアルキルで置換されているシリルである。
また、式(3)で表されるアントラセン系化合物の化学構造中の水素は式(A)で表される基で置換されていてもよい。式(A)で表される基で置換される場合は、式(A)で表される基はその*において式(3)で表される化合物における少なくとも1つの水素と置換する。
式(A)中、Yは−O−、−S−または>N−R29であり、R21〜R28はそれぞれ独立して水素、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルコキシ、置換されていてもよいアリールオキシ、置換されていてもよいアリールチオ、トリアルキルシリル、トリシクロアルキルシリル、置換されていてもよいアミノ、ハロゲン、ヒドロキシまたはシアノであり、R21〜R28のうち隣接する基は互いに結合して炭化水素環、アリール環またはヘテロアリール環を形成していてもよく、R29は水素または置換されていてもよいアリールである。
21〜R28のうち隣接する基は互いに結合して炭化水素環、アリール環またはヘテロアリール環を形成していてもよい。環を形成しない場合が下記式(A−1)で表される基であり、環を形成した場合としては例えば下記式(A−2)〜式(A−11)で表される基があげられる。なお、式(A−1)〜式(A−11)のいずれかで表される基における少なくとも1つの水素はアルキル、シクロアルキル、アリール、ヘテロアリール、アルコキシ、アリールオキシ、アリールチオ、トリアルキルシリル、トリシクロアルキルシリル、ジアリール置換アミノ、ジヘテロアリール置換アミノ、アリールヘテロアリール置換アミノ、ハロゲン、ヒドロキシまたはシアノで置換されていてもよい。
また、式(3)で表されるアントラセン系化合物の化学構造中の水素は、その全てまたは一部が重水素であってもよい。
式(3)で表されるアントラセン系化合物の具体的な例としては以下の構造式で表される化合物があげられる。なお、以下構造式中の「Me」はメチルであり、「Et」はエチルであり、「iPr」はイソプロピルであり、「tBu」はt−ブチルである。
[ホスト材料:フルオレン系化合物]
式(4)で表される化合物は基本的にはホストとして機能する。
式(4)中、
1からR10は、それぞれ独立して、水素、アリール、ヘテロアリール(当該ヘテロアリールは連結基を介して式(4)におけるフルオレン骨格と結合していてもよい)、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
また、R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8またはR9とR10がそれぞれ独立して結合して縮合環またはスピロ環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール(当該ヘテロアリールは連結基を介して当該形成された環と結合していてもよい)、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、そして、
式(4)で表される化合物における少なくとも1つの水素がハロゲン、シアノまたは重水素で置換されていてもよい。
式(4)の定義における各基の詳細は、上述した、式(1)の多環芳香族化合物における説明を引用することができる。
1からR10におけるアルケニルとしては、例えば、炭素数2〜30のアルケニルがあげられ、炭素数2〜20のアルケニルが好ましく、炭素数2〜10のアルケニルがより好ましく、炭素数2〜6のアルケニルがさらに好ましく、炭素数2〜4のアルケニルが特に好ましい。好ましいアルケニルは、ビニル、1−プロペニル、2−プロペニル、1−ブテニル、2−ブテニル、3−ブテニル、1−ペンテニル、2−ペンテニル、3−ペンテニル、4−ペンテニル、1−ヘキセニル、2−ヘキセニル、3−ヘキセニル、4−ヘキセニル、または5−ヘキセニルである。
なお、ヘテロアリールの具体例として、下記式(4−Ar1)、式(4−Ar2)、式(4−Ar3)、式(4−Ar4)または式(4−Ar5)の構造を有する1価の基もあげられる。
式(4−Ar1)から式(4−Ar5)中、Y1は、それぞれ独立して、O、SまたはN−Rであり、Rはフェニル、ビフェニリル、ナフチル、アントラセニルまたは水素であり、
式(4−Ar1)から式(4−Ar5)の構造における少なくとも1つの水素はフェニル、ビフェニリル、ナフチル、アントラセニル、フェナントレニル、メチル、エチル、プロピル、または、ブチルで置換されていてもよい。
これらのヘテロアリールは、連結基を介して、式(4)におけるフルオレン骨格と結合していてもよい。すなわち、式(4)におけるフルオレン骨格と上記ヘテロアリールとが直接結合するだけでなく、それらの間に連結基を介して結合してもよい。この連結基としては、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、メチレン、エチレン、−OCH2CH2−、−CH2CH2O−、または、−OCH2CH2O−などがあげられる。
また、式(4)中のR1とR2、R2とR3、R3とR4、R5とR6、R6とR7またはR7とR8がそれぞれ独立して結合して縮合環を、R9とR10が結合してスピロ環を形成していてもよい。R1からR8により形成された縮合環は、式(4)におけるベンゼン環に縮合する環であり、脂肪族環または芳香族環である。好ましくは芳香族環であり、式(4)におけるベンゼン環を含めた構造としてはナフタレン環やフェナントレン環などがあげられる。R9とR10により形成されたスピロ環は、式(4)における5員環にスピロ結合する環であり、脂肪族環または芳香族環である。好ましくは芳香族環であり、フルオレン環などがあげられる。
式(4)で表される化合物は、好ましくは、下記式(4−1)、式(4−2)または式(4−3)で表される化合物であり、それぞれ、式(4)においてR1とR2が結合して形成されたベンゼン環が縮合した化合物、式(4)においてR3とR4が結合して形成されたベンゼン環が縮合した化合物、式(4)においてR1からR8のいずれもが結合していない化合物である。
式(4−1)、式(4−2)および式(4−3)におけるR1からR10の定義は式(4)において対応するR1からR10と同じであり、式(4−1)および式(4−2)におけるR11からR14の定義も式(4)におけるR1からR10と同じである。
式(4)で表される化合物は、さらに好ましくは、下記式(4−1A)、式(4−2A)または式(4−3A)で表される化合物であり、それぞれ、式(4−1)、式(4−2)または式(4−3)においてR9とR10が結合してスピロ−フルオレン環が形成された化合物である。
式(4−1A)、式(4−2A)および式(4−3A)におけるR2からR7の定義は式(4−1)、式(4−2)および式(4−3)において対応するR2からR7と同じであり、式(4−1A)および式(4−2A)におけるR11からR14の定義も式(4−1)および式(4−2)におけるR11からR14と同じである。
また、式(4)で表される化合物における水素は、その全てまたは一部がハロゲン、シアノまたは重水素で置換されていてもよい。
[ホスト材料:ジベンゾクリセン系化合物]
ホストとしてのジベンゾクリセン系化合物は、例えば下記式(5−H)で表される化合物である。
式(5−H)中、
1からR16は、それぞれ独立して、水素、アリール、ヘテロアリール(当該ヘテロアリールは連結基を介して式(5−H)におけるジベンゾクリセン骨格と結合していてもよい)、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
また、R1からR16のうち隣接する基同士が結合して縮合環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール(当該ヘテロアリールは連結基を介して当該形成された環と結合していてもよい)、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルケニル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
式(5−H)で表される化合物における少なくとも1つの水素がハロゲン、シアノまたは重水素で置換されていてもよい。
式(5−H)の定義における各基の詳細は、上述した、式(1)の多環芳香族化合物における説明を引用することができる。
式(5−H)の定義におけるアルケニルとしては、例えば、炭素数2〜30のアルケニルがあげられ、炭素数2〜20のアルケニルが好ましく、炭素数2〜10のアルケニルがより好ましく、炭素数2〜6のアルケニルがさらに好ましく、炭素数2〜4のアルケニルが特に好ましい。好ましいアルケニルは、ビニル、1−プロペニル、2−プロペニル、1−ブテニル、2−ブテニル、3−ブテニル、1−ペンテニル、2−ペンテニル、3−ペンテニル、4−ペンテニル、1−ヘキセニル、2−ヘキセニル、3−ヘキセニル、4−ヘキセニル、または5−ヘキセニルである。
なお、ヘテロアリールの具体例として、下記式(5−Ar1)、式(5−Ar2)、式(5−Ar3)、式(5−Ar4)または式(5−Ar5)の化合物から任意の1つの水素原子を除いて表される1価の基もあげられる。
式(5−Ar1)から式(5−Ar5)中、Y1は、それぞれ独立して、O、SまたはN−Rであり、Rはフェニル、ビフェニリル、ナフチル、アントラセニルまたは水素であり、
式(5−Ar1)から式(5−Ar5)の構造における少なくとも1つの水素はフェニル、ビフェニリル、ナフチル、アントラセニル、フェナントレニル、メチル、エチル、プロピル、または、ブチルで置換されていてもよい。
これらのヘテロアリールは、連結基を介して、式(5−H)におけるジベンゾクリセン骨格と結合していてもよい。すなわち、式(5−H)におけるジベンゾクリセン骨格と上記ヘテロアリールとが直接結合するだけでなく、それらの間に連結基を介して結合してもよい。この連結基としては、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、メチレン、エチレン、−OCH2CH2−、−CH2CH2O−、または、−OCH2CH2O−などがあげられる。
式(5−H)で表される化合物は、好ましくは、R1、R4、R5、R8、R9、R12、R13およびR16は水素である。この場合、式(5−H)中のR2、R3、R6、R7、R10、R11、R14およびR15は、それぞれ独立して、水素、フェニル、ビフェニリル、ナフチル、アントラセニル、フェナントレニル、式(5−Ar1)、式(5−Ar2)、式(5−Ar3)、式(5−Ar4)もしくは式(5−Ar5)の構造を有する1価の基(当該構造を有する1価の基は、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、メチレン、エチレン、−OCH2CH2−、−CH2CH2O−、または、−OCH2CH2O−を介して、式(5−H)におけるジベンゾクリセン骨格と結合していてもよい)、メチル、エチル、プロピル、または、ブチルであることが好ましい。
式(5−H)で表される化合物は、より好ましくは、R1、R2、R4、R5、R7、R8、R9、R10、R12、R13、R15およびR16は水素である。この場合、式(5−H)中のR3、R6、R11およびR14の少なくとも1つ(好ましくは1つまたは2つ、より好ましくは1つ)は、単結合、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、メチレン、エチレン、−OCH2CH2−、−CH2CH2O−、または、−OCH2CH2O−を介した、式(5−Ar1)、式(5−Ar2)、式(5−Ar3)、式(5−Ar4)または式(5−Ar5)の構造を有する1価の基であり、
前記少なくとも1つ以外(すなわち、前記構造を有する1価の基が置換した位置以外)は水素、フェニル、ビフェニリル、ナフチル、アントラセニル、メチル、エチル、プロピル、または、ブチルであり、これらにおける少なくとも1つの水素は、フェニル、ビフェニリル、ナフチル、アントラセニル、メチル、エチル、プロピル、または、ブチルで置換されていてもよい。
また、式(5−H)中のR2、R3、R6、R7、R10、R11、R14およびR15として、式(5−Ar1)から式(5−Ar5)で表される構造を有する1価の基が選択された場合には、当該構造における少なくとも1つの水素は式(5−H)中のR1からR16のいずれかと結合して単結合を形成していてもよい。
[高分子化合物等]
上述した発光層用材料(ホスト材料およびドーパント材料)は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物、もしくはその高分子架橋体、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物、もしくはそのペンダント型高分子架橋体としても、発光層用材料に用いることができる。この場合の反応性置換基としては、式(1)で表される多環芳香族化合物での説明を引用できる。
[高分子ホスト材料の一例]
式(SPH−1)において、
MUはそれぞれ独立して2価の芳香族化合物、ECはそれぞれ独立して1価の芳香族化合物であり、MU中の2つの水素がECまたはMUと置換され、kは2〜50000の整数である。
より具体的には、
MUは、それぞれ独立して、アリーレン、ヘテロアリーレン、ジアリーレンアリールアミノ、ジアリーレンアリールボリル、オキサボリン−ジイル、アザボリン−ジイルであり、
ECは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノまたはアリールオキシであり、
MUおよびECにおける少なくとも1つの水素はさらに、アリール、ヘテロアリール、ジアリールアミノ、アルキルおよびシクロアルキルで置換されていてもよく、
kは2〜50000の整数である。
kは20〜50000の整数であることが好ましく、100〜50000の整数であることがより好ましい。
式(SPH−1)中のMUおよびECにおける少なくとも1つの水素は、炭素数1〜24のアルキル、炭素数3〜24のシクロアルキル、ハロゲンまたは重水素で置換されていてもよく、さらに、前記アルキルにおける任意の−CH2−は−O−または−Si(CH32−で置換されていてもよく、前記アルキルにおける式(SPH−1)中のECに直結している−CH2−を除く任意の−CH2−は炭素数6〜24のアリーレンで置換されていてもよく、前記アルキルにおける任意の水素はフッ素で置換されていてもよい。
MUとしては、例えば、以下の構造の2価の誘導体(例えば以下の構造のいずれかの化合物から任意の2つの水素原子を除いて表される2価の基、以下の構造のいずれかの化合物から任意の2つの水素原子を除いて表される2価の基の2つ以上の組み合わせから構成される2価の基、それらの基における水素の少なくとも1つがアルキル等で置換された2価の基など)があげられる。
より具体的には、以下のいずれかの構造で表される2価の基があげられる。これらにおいて、MUは*において他のMUまたはECと結合する。
また、ECとしては、例えば以下のいずれかの構造で表される1価の基があげられる。これらにおいて、ECは*においてMUと結合する。
式(SPH−1)で表される化合物は、溶解性および塗布成膜性の観点から、分子中のMU総数(k)の10〜100%のMUが炭素数1〜24のアルキルを有することが好ましく、分子中のMU総数(k)の30〜100%のMUが炭素数1〜18のアルキル(炭素数3〜18の分岐鎖アルキル)を有することがより好ましく、分子中のMU総数(k)の50〜100%のMUが炭素数1〜12のアルキル(炭素数3〜12の分岐鎖アルキル)を有することがさらに好ましい。一方、面内配向性および電荷輸送の観点からは、分子中のMU総数(k)の10〜100%のMUが炭素数7〜24のアルキルを有することが好ましく、分子中のMU総数(k)の30〜100%のMUが炭素数7〜24のアルキル(炭素数7〜24の分岐鎖アルキル)を有することがより好ましい。
このような高分子化合物および高分子架橋体の用途の詳細については後述する。
<有機電界発光素子における基板>
基板101は、有機EL素子100の支持体であり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状、またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルム、プラスチックシートなどが用いられる。なかでも、ガラス板、および、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiO2などのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
<有機電界発光素子における陽極>
陽極102は、発光層105へ正孔を注入する役割を果たす。なお、陽極102と発光層105との間に正孔注入層103および/または正孔輸送層104が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
陽極102を形成する材料としては、無機化合物および有機化合物があげられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム−スズ酸化物(ITO)、インジウム−亜鉛酸化物(IZO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどがあげられる。有機化合物としては、例えば、ポリ(3−メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどがあげられる。その他、有機EL素子の陽極として用いられている物質の中から適宜選択して用いることができる。
透明電極の抵抗は、発光素子の発光に十分な電流が供給できればよいので限定されないが、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、例えば100〜5Ω/□、好ましくは50〜5Ω/□の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常50〜300nmの間で用いられることが多い。
<有機電界発光素子における正孔注入層、正孔輸送層>
正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たす。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たす。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。
正孔注入層103および正孔輸送層104を形成する材料としては、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機EL素子の正孔注入層および正孔輸送層に使用されている公知の化合物の中から任意の化合物を選択して用いることができる。それらの具体例は、カルバゾール誘導体(N−フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N−アリールカルバゾール)またはビス(N−アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(芳香族第3級アミノを主鎖または側鎖に持つポリマー、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン、N,N'−ジフェニル−N,N'−ジ(3−メチルフェニル)−4,4'−ジアミノビフェニル、N,N'−ジフェニル−N,N'−ジナフチル−4,4'−ジアミノビフェニル、N,N'−ジフェニル−N,N'−ジ(3−メチルフェニル)−4,4'−ジフェニル−1,1'−ジアミン、N,N'−ジナフチル−N,N'−ジフェニル−4,4'−ジフェニル−1,1'−ジアミン、N4,N4'−ジフェニル−N4,N4'−ビス(9−フェニル−9H−カルバゾール−3−イル)−[1,1'−ビフェニル]−4,4'−ジアミン、N4,N4,N4',N4'−テトラ[1,1'−ビフェニル]−4−イル)−[1,1'−ビフェニル]−4,4'−ジアミン、4,4',4"−トリス(3−メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など)、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、キノキサリン誘導体(例えば、1,4,5,8,9,12−ヘキサアザトリフェニレン−2,3,6,7,10,11−ヘキサカルボニトリルなど)、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されない。
また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または、電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6−テトラフルオロテトラシアノ−1,4−ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pfeiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、または、特定の金属フタロシアニン(特に、亜鉛フタロシアニン(ZnPc)など)が知られている(特開2005−167175号公報)。
上述した正孔注入層用材料および正孔輸送層用材料は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物、もしくはその高分子架橋体、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物、もしくはそのペンダント型高分子架橋体としても、正孔層用材料に用いることができる。この場合の反応性置換基としては、式(1)で表される多環芳香族化合物での説明を引用できる。
<有機電界発光素子における電子注入層、電子輸送層>
電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たす。電子輸送層106は、陰極108から注入された電子または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たす。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合するか、電子輸送・注入材料と高分子結着剤の混合物により形成される。
電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することをつかさどる層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。
電子輸送層106または電子注入層107を形成する材料(電子輸送材料)としては、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機EL素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。
電子輸送層または電子注入層に用いられる材料としては、炭素、水素、酸素、硫黄、ケイ素およびリンの中から選ばれる一種以上の原子で構成される芳香族環または複素芳香族環からなる化合物、ピロール誘導体およびその縮合環誘導体および電子受容性窒素を有する金属錯体の中から選ばれる少なくとも一種を含有することが好ましい。具体的には、ナフタレン、アントラセンなどの縮合環系芳香族環誘導体、4,4'−ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香族環誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、アリールニトリル誘導体およびインドール誘導体などがあげられる。電子受容性窒素を有する金属錯体としては、例えば、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
また、他の電子伝達化合物の具体例として、ピリジン誘導体、ナフタレン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体(1,3−ビス[(4−t−ブチルフェニル)1,3,4−オキサジアゾリル]フェニレンなど)、チオフェン誘導体、トリアゾール誘導体(N−ナフチル−2,5−ジフェニル−1,3,4−トリアゾールなど)、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノリノール系金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体(2,2'−ビス(ベンゾ[h]キノリン−2−イル)−9,9'−スピロビフルオレンなど)、イミダゾピリジン誘導体、ボラン誘導体、ベンゾイミダゾール誘導体(トリス(N−フェニルベンゾイミダゾール−2−イル)ベンゼンなど)、ベンゾオキサゾール誘導体、チアゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、テルピリジンなどのオリゴピリジン誘導体、ビピリジン誘導体、テルピリジン誘導体(1,3−ビス(4'−(2,2':6'2"−テルピリジニル))ベンゼンなど)、ナフチリジン誘導体(ビス(1−ナフチル)−4−(1,8−ナフチリジン−2−イル)フェニルホスフィンオキサイドなど)、アルダジン誘導体、ピリミジン誘導体、アリールニトリル誘導体、インドール誘導体、リンオキサイド誘導体、ビススチリル誘導体、シロール誘導体およびアゾリン誘導体などがあげられる。
また、電子受容性窒素を有する金属錯体を用いることもでき、例えば、キノリノール系金属錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。
上述した材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
上述した材料の中でも、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、アリールニトリル誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体、キノリノール系金属錯体、チアゾール誘導体、ベンゾチアゾール誘導体、シロール誘導体およびアゾリン誘導体が好ましい。
[ボラン誘導体]
ボラン誘導体は、例えば下記式(ETM−1)で表される化合物であり、詳細には特開2007−27587号公報に開示されている。
式(ETM−1)中、R11およびR12は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13〜R16は、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいシクロアルキルまたは置換されていてもよいアリールであり、Xは、置換されていてもよいアリーレンであり、Yは、置換されていてもよい炭素数16以下のアリール、置換されているボリル、または置換されていてもよいカルバゾリルであり、そして、nはそれぞれ独立して0〜3の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。
式(ETM−1)で表される化合物の中でも、下記式(ETM−1−1)で表される化合物や下記式(ETM−1−2)で表される化合物が好ましい。
式(ETM−1−1)中、R11およびR12は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13〜R16は、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいシクロアルキルまたは置換されていてもよいアリールであり、R21およびR22は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、X1は、置換されていてもよい炭素数20以下のアリーレンであり、nはそれぞれ独立して0〜3の整数であり、そして、mはそれぞれ独立して0〜4の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。
式(ETM−1−2)中、R11およびR12は、それぞれ独立して、水素、アルキル、シクロアルキル、置換されていてもよいアリール、置換されているシリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13〜R16は、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいシクロアルキルまたは置換されていてもよいアリールであり、X1は、置換されていてもよい炭素数20以下のアリーレンであり、そして、nはそれぞれ独立して0〜3の整数である。また、「置換されていてもよい」または「置換されている」場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。
1の具体的な例としては、下記式(X−1)〜式(X−9)で表される2価の基があげられる。
(各式中、Raは、それぞれ独立してアルキル、シクロアルキルまたは置換されていてもよいフェニルであり、*は結合位置を表す。)
このボラン誘導体の具体例としては、例えば以下の化合物があげられる。
このボラン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
[ピリジン誘導体]
ピリジン誘導体は、例えば下記式(ETM−2)で表される化合物であり、好ましくは式(ETM−2−1)または式(ETM−2−2)で表される化合物である。
φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1〜4の整数である。
式(ETM−2−1)において、R11〜R18は、それぞれ独立して、水素、アルキル(好ましくは炭素数1〜24のアルキル)、シクロアルキル(好ましくは炭素数3〜12のシクロアルキル)またはアリール(好ましくは炭素数6〜30のアリール)である。
式(ETM−2−2)において、R11およびR12は、それぞれ独立して、水素、アルキル(好ましくは炭素数1〜24のアルキル)、シクロアルキル(好ましくは炭素数3〜12のシクロアルキル)またはアリール(好ましくは炭素数6〜30のアリール)であり、R11およびR12は結合して環を形成していてもよい。
各式において、「ピリジン系置換基」は、下記式(Py−1)〜式(Py−15)のいずれか(式中の*は、結合位置を表す。)であり、ピリジン系置換基はそれぞれ独立して炭素数1〜4のアルキルまたは炭素数5〜10のシクロアルキルで置換されていてもよい。また、ピリジン系置換基はフェニレン基やナフチレン基を介して各式におけるφ、アントラセン環またはフルオレン環に結合していてもよい。
ピリジン系置換基は、式(Py−1)〜式(Py−15)のいずれかであるが、これらの中でも、下記式(Py−21)〜式(Py−44)のいずれかであることが好ましい。
各ピリジン誘導体における少なくとも1つの水素が重水素で置換されていてもよく、また、式(ETM−2−1)および式(ETM−2−2)における2つの「ピリジン系置換基」のうちの一方はアリールで置き換えられていてもよい。
11〜R18における「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1〜24の直鎖アルキルまたは炭素数3〜24の分岐鎖アルキルがあげられる。好ましい「アルキル」は、炭素数1〜18のアルキル(炭素数3〜18の分岐鎖アルキル)である。より好ましい「アルキル」は、炭素数1〜12のアルキル(炭素数3〜12の分岐鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1〜6のアルキル(炭素数3〜6の分岐鎖アルキル)である。特に好ましい「アルキル」は、炭素数1〜4のアルキル(炭素数3〜4の分岐鎖アルキル)である。
具体的な「アルキル」としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル、t−ブチル、n−ペンチル、イソペンチル、ネオペンチル、t−ペンチル、n−ヘキシル、1−メチルペンチル、4−メチル−2−ペンチル、3,3−ジメチルブチル、2−エチルブチル、n−ヘプチル、1−メチルヘキシル、n−オクチル、t−オクチル、1−メチルヘプチル、2−エチルヘキシル、2−プロピルペンチル、n−ノニル、2,2−ジメチルヘプチル、2,6−ジメチル−4−ヘプチル、3,5,5−トリメチルヘキシル、n−デシル、n−ウンデシル、1−メチルデシル、n−ドデシル、n−トリデシル、1−ヘキシルヘプチル、n−テトラデシル、n−ペンタデシル、n−ヘキサデシル、n−ヘプタデシル、n−オクタデシル、n−エイコシルなどがあげられる。
ピリジン系置換基に置換する炭素数1〜4のアルキルとしては、上記アルキルの説明を引用することができる。
11〜R18における「シクロアルキル」としては、例えば、炭素数3〜12のシクロアルキルがあげられる。好ましい「シクロアルキル」は、炭素数3〜10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3〜8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3〜6のシクロアルキルである。
具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。
ピリジン系置換基に置換する炭素数5〜10のシクロアルキルとしては、上記シクロアルキルの説明を引用することができる。
11〜R18における「アリール」としては、好ましいアリールは炭素数6〜30のアリールであり、より好ましいアリールは炭素数6〜18のアリールであり、さらに好ましくは炭素数6〜14のアリールであり、特に好ましくは炭素数6〜12のアリールである。
具体的な「炭素数6〜30のアリール」としては、単環系アリールであるフェニル、縮合二環系アリールである(1−,2−)ナフチル、縮合三環系アリールである、アセナフチレン−(1−,3−,4−,5−)イル、フルオレン−(1−,2−,3−,4−,9−)イル、フェナレン−(1−,2−)イル、(1−,2−,3−,4−,9−)フェナントリル、縮合四環系アリールであるトリフェニレン−(1−,2−)イル、ピレン−(1−,2−,4−)イル、ナフタセン−(1−,2−,5−)イル、縮合五環系アリールであるペリレン−(1−,2−,3−)イル、ペンタセン−(1−,2−,5−,6−)イルなどがあげられる。
好ましい「炭素数6〜30のアリール」は、フェニル、ナフチル、フェナントリル、クリセニルまたはトリフェニレニルなどがあげられ、さらに好ましくはフェニル、1−ナフチル、2−ナフチルまたはフェナントリルがあげられ、特に好ましくはフェニル、1−ナフチルまたは2−ナフチルがあげられる。
式(ETM−2−2)におけるR11およびR12は結合して環を形成していてもよく、この結果、フルオレン骨格の5員環には、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、フルオレンまたはインデンなどがスピロ結合していてもよい。
このピリジン誘導体の具体例としては、例えば以下の化合物があげられる。
ピリジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
[フルオランテン誘導体]
フルオランテン誘導体は、例えば下記式(ETM−3)で表される化合物であり、詳細には国際公開第2010/134352号に開示されている。
式(ETM−3)中、X12〜X21は水素、ハロゲン、直鎖、分岐もしくは環状のアルキル、直鎖、分岐もしくは環状のアルコキシ、置換もしくは無置換のアリール、または置換もしくは無置換のヘテロアリールを表す。ここで、置換されている場合の置換基としては、アリール、ヘテロアリールアルキルまたはシクロアルキルなどがあげられる。
このフルオランテン誘導体の具体例としては、例えば以下の化合物があげられる。
[BO系誘導体]
BO系誘導体は、例えば下記式(ETM−4)で表される多環芳香族化合物、または下記式(ETM−4)で表される構造を複数有する多環芳香族化合物の多量体である。
1〜R11は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。
また、R1〜R11のうちの隣接する基同士が結合してa環、b環またはc環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよい。
また、式(ETM−4)で表される化合物または構造における少なくとも1つの水素がハロゲンまたは重水素で置換されていてもよい。
式(ETM−4)における置換基や環形成の形態の説明については、式(1)で表される多環芳香族化合物の説明を引用することができる。
このBO系誘導体の具体例としては、例えば以下の化合物があげられる。
このBO系誘導体は公知の原料と公知の合成方法を用いて製造することができる。
[アントラセン誘導体]
アントラセン誘導体の一つは、例えば下記式(ETM−5)で表される化合物である。
Ar2は、それぞれ独立して、炭素数6〜20のアリールであり、炭素数6〜16のアリールが好ましく、炭素数6〜12のアリールがより好ましく、炭素数6〜10のアリールが特に好ましい。「炭素数6〜20のアリール」の具体例としては、単環系アリールであるフェニル、(o−,m−,p−)トリル、(2,3−,2,4−,2,5−,2,6−,3,4−,3,5−)キシリル、メシチル(2,4,6−トリメチルフェニル)、(o−,m−,p−)クメニル、二環系アリールである(2−,3−,4−)ビフェニリル、縮合二環系アリールである(1−,2−)ナフチル、三環系アリールであるテルフェニリル(m−テルフェニル−2’−イル、m−テルフェニル−4’−イル、m−テルフェニル−5’−イル、o−テルフェニル−3’−イル、o−テルフェニル−4’−イル、p−テルフェニル−2’−イル、m−テルフェニル−2−イル、m−テルフェニル−3−イル、m−テルフェニル−4−イル、o−テルフェニル−2−イル、o−テルフェニル−3−イル、o−テルフェニル−4−イル、p−テルフェニル−2−イル、p−テルフェニル−3−イル、p−テルフェニル−4−イル)、縮合三環系アリールである、アントラセン−(1−,2−,9−)イル、アセナフチレン−(1−,3−,4−,5−)イル、フルオレン−(1−,2−,3−,4−,9−)イル、フェナレン−(1−,2−)イル、(1−,2−,3−,4−,9−)フェナントリル、縮合四環系アリールであるトリフェニレン−(1−,2−)イル、ピレン−(1−,2−,4−)イル、テトラセン−(1−,2−,5−)イル、縮合五環系アリールであるペリレン−(1−,2−,3−)イルなどがあげられる。「炭素数6〜10のアリール」の具体例としては、フェニル、ビフェニリル、ナフチル、テルフェニリル、アントラセニル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、テトラセニル、ペリレニルなどがあげられる。
1〜R4は、それぞれ独立して、水素、炭素数1〜6のアルキル、炭素数3から6のシクロアルキルまたは炭素数6〜20のアリールである。
1〜R4における炭素数1〜6のアルキルについては直鎖および分岐鎖のいずれでもよい。すなわち、炭素数1〜6の直鎖アルキルまたは炭素数3〜6の分岐鎖アルキルである。より好ましくは、炭素数1〜4のアルキル(炭素数3〜4の分岐鎖アルキル)である。具体例としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル、t−ブチル、n−ペンチル、イソペンチル、ネオペンチル、t−ペンチル、n−ヘキシル、1−メチルペンチル、4−メチル−2−ペンチル、3,3−ジメチルブチル、または2−エチルブチルなどがあげられ、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル、またはt−ブチルが好ましく、メチル、エチル、またはt−ブチルがより好ましい。
1〜R4における炭素数3〜6のシクロアルキルの具体例としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。
1〜R4における炭素数6〜20のアリールについては、炭素数6〜16のアリールが好ましく、炭素数6〜12のアリールがより好ましく、炭素数6〜10のアリールが特に好ましい。「炭素数6〜20のアリール」の具体例としては、Ar2における「炭素数6〜20のアリール」の具体例を引用することができる。好ましい「炭素数6〜20のアリール」は、フェニル、ビフェニリル、テルフェニリルまたはナフチルであり、より好ましくは、フェニル、ビフェニリル、1−ナフチル、2−ナフチルまたはm−テルフェニル−5’−イルであり、さらに好ましくは、フェニル、ビフェニリル、1−ナフチルまたは2−ナフチルであり、最も好ましくはフェニルである。
これらのアントラセン誘導体の具体例としては、例えば以下の化合物があげられる。
これらのアントラセン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
[ベンゾフルオレン誘導体]
ベンゾフルオレン誘導体は、例えば下記式(ETM−6)で表される化合物である。
Ar1は、それぞれ独立して、炭素数6〜20のアリールであり、式(ETM−5−1)における「炭素数6〜20のアリール」と同じ説明を引用することができる。炭素数6〜16のアリールが好ましく、炭素数6〜12のアリールがより好ましく、炭素数6〜10のアリールが特に好ましい。具体例としては、フェニル、ビフェニリル、ナフチル、テルフェニリル、アントラセニル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、テトラセニル、ペリレニルなどがあげられる。
Ar2は、それぞれ独立して、水素、アルキル(好ましくは炭素数1〜24のアルキル)、シクロアルキル(好ましくは炭素数3〜12のシクロアルキル)またはアリール(好ましくは炭素数6〜30のアリール)であり、2つのAr2は結合して環を形成していてもよい。
Ar2における「アルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1〜24の直鎖アルキルまたは炭素数3〜24の分岐鎖アルキルがあげられる。好ましい「アルキル」は、炭素数1〜18のアルキル(炭素数3〜18の分岐鎖アルキル)である。より好ましい「アルキル」は、炭素数1〜12のアルキル(炭素数3〜12の分岐鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1〜6のアルキル(炭素数3〜6の分岐鎖アルキル)である。特に好ましい「アルキル」は、炭素数1〜4のアルキル(炭素数3〜4の分岐鎖アルキル)である。具体的な「アルキル」としては、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル、t−ブチル、n−ペンチル、イソペンチル、ネオペンチル、t−ペンチル、n−ヘキシル、1−メチルペンチル、4−メチル−2−ペンチル、3,3−ジメチルブチル、2−エチルブチル、n−ヘプチル、1−メチルヘキシルなどがあげられる。
Ar2における「シクロアルキル」としては、例えば、炭素数3〜12のシクロアルキルがあげられる。好ましい「シクロアルキル」は、炭素数3〜10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3〜8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3〜6のシクロアルキルである。具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。
Ar2における「アリール」としては、好ましいアリールは炭素数6〜30のアリールであり、より好ましいアリールは炭素数6〜18のアリールであり、さらに好ましくは炭素数6〜14のアリールであり、特に好ましくは炭素数6〜12のアリールである。
具体的な「炭素数6〜30のアリール」としては、フェニル、ナフチル、アセナフチレニル、フルオレニル、フェナレニル、フェナントリル、トリフェニレニル、ピレニル、ナフタセニル、ペリレニル、ペンタセニルなどがあげられる。
2つのAr2は結合して環を形成していてもよく、この結果、フルオレン骨格の5員環には、シクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、フルオレンまたはインデンなどがスピロ結合していてもよい。
このベンゾフルオレン誘導体の具体例としては、例えば以下の化合物があげられる。
このベンゾフルオレン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
[ホスフィンオキサイド誘導体]
ホスフィンオキサイド誘導体は、例えば下記式(ETM−7−1)で表される化合物である。詳細は国際公開第2013/079217号および国際公開第2013/079678号にも記載されている。
5は、置換または無置換の、炭素数1〜20のアルキル、炭素数3〜20のシクロアルキル、炭素数6〜20のアリールまたは炭素数5〜20のヘテロアリールであり、
6は、CN、置換または無置換の、炭素数1〜20のアルキル、炭素数3〜20のシクロアルキル、炭素数1〜20のヘテロアルキル、炭素数6〜20のアリール、炭素数5〜20のヘテロアリール、炭素数1〜20のアルコキシまたは炭素数6〜20のアリールオキシであり、
7およびR8は、それぞれ独立して、置換または無置換の、炭素数6〜20のアリールまたは炭素数5〜20のヘテロアリールであり、
9は酸素または硫黄であり、
jは0または1であり、kは0または1であり、rは0〜4の整数であり、qは1〜3の整数である。
ここで、置換されている場合の置換基としては、アリール、ヘテロアリール、アルキルまたはシクロアルキルなどがあげられる。
ホスフィンオキサイド誘導体は、例えば下記式(ETM−7−2)で表される化合物でもよい。
1〜R3は、同じでも異なっていてもよく、水素、アルキル、シクロアルキル、アラルキル、アルケニル、シクロアルケニル、アルキニル、アルコキシ、アルキルチオ、シクロアルキルチオ、アリールエーテル基、アリールチオエーテル基、アリール、ヘテロアリール、ハロゲン、シアノ、ホルミル、カルボニル、カルボキシル、アミノ、ニトロ、シリル、および隣接置換基との間に形成される縮合環の中から選ばれる。
Ar1は、同じでも異なっていてもよく、アリーレンまたはヘテロアリーレンである。Ar2は、同じでも異なっていてもよく、アリールまたはヘテロアリールである。ただし、Ar1およびAr2のうち少なくとも一方は置換基を有しているか、または隣接置換基との間に縮合環を形成している。nは0〜3の整数であり、nが0のとき不飽和構造部分は存在せず、nが3のときR1は存在しない。
これらの置換基の内、アルキルとは、例えば、メチル、エチル、プロピル、ブチルなどの飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。置換されている場合の置換基には特に制限は無く、例えば、アルキル、アリール、複素環基などをあげることができ、この点は、以下の記載にも共通する。また、アルキルの炭素数は特に限定されないが、入手の容易性やコストの点から、通常、1〜20の範囲である。
また、シクロアルキルとは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキル部分の炭素数は特に限定されないが、通常、3〜20の範囲である。
また、アラルキルとは、例えば、ベンジル、フェニルエチルなどの脂肪族炭化水素を介した芳香族炭化水素基を示し、脂肪族炭化水素と芳香族炭化水素はいずれも無置換でも置換されていてもかまわない。脂肪族部分の炭素数は特に限定されないが、通常、1〜20の範囲である。
また、アルケニルとは、例えば、ビニル、アリル、ブタジエニルなどの二重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルケニルの炭素数は特に限定されないが、通常、2〜20の範囲である。
また、シクロアルケニルとは、例えば、シクロペンテニル、シクロペンタジエニル、シクロヘキセニルなどの二重結合を含む不飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。
また、アルキニルとは、例えば、アセチレニルなどの三重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキニルの炭素数は特に限定されないが、通常、2〜20の範囲である。
また、アルコキシとは、例えば、メトキシなどのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。アルコキシの炭素数は特に限定されないが、通常、1〜20の範囲である。
また、アルキルチオとは、アルコキシのエーテル結合の酸素原子が硫黄原子に置換された基である。
また、シクロアルキルチオとは、シクロアルコキシのエーテル結合の酸素原子が硫黄原子に置換された基である。
また、アリールエーテル基とは、例えば、フェノキシなどのエーテル結合を介した芳香族炭化水素基を示し、芳香族炭化水素基は無置換でも置換されていてもかまわない。アリールエーテル基の炭素数は特に限定されないが、通常、6〜40の範囲である。
また、アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換された基である。
また、アリールとは、例えば、フェニル、ナフチル、ビフェニル、フェナントリル、ターフェニル、ピレニルなどの芳香族炭化水素基を示す。アリールは、無置換でも置換されていてもかまわない。アリールの炭素数は特に限定されないが、通常、6〜40の範囲である。
また、ヘテロアリールとは、例えば、フラニル、チエニル、オキサゾリル、ピリジル、キノリニル、カルバゾリルなどの炭素以外の原子を有する環状構造基を示し、これは無置換でも置換されていてもかまわない。ヘテロアリールの炭素数は特に限定されないが、通常、2〜30の範囲である。
ハロゲンとは、フッ素、塩素、臭素、ヨウ素を示す。
ホルミル、カルボニル、アミノには、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環などで置換された基も含むことができる。
また、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環は無置換でも置換されていてもかまわない。
シリルとは、例えば、トリメチルシリルなどのケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。シリルの炭素数は特に限定されないが、通常、3〜20の範囲である。また、ケイ素数は、通常、1〜6である。
隣接置換基との間に形成される縮合環とは、例えば、Ar1とR2、Ar1とR3、Ar2とR2、Ar2とR3、R2とR3、Ar1とAr2などの間で形成された共役または非共役の縮合環である。ここで、nが1の場合、2つのR1同士で共役または非共役の縮合環を形成してもよい。これら縮合環は、環内構造に窒素、酸素、硫黄原子を含んでいてもよいし、さらに別の環と縮合してもよい。
このホスフィンオキサイド誘導体の具体例としては、例えば以下の化合物があげられる。
このホスフィンオキサイド誘導体は公知の原料と公知の合成方法を用いて製造することができる。
[ピリミジン誘導体]
ピリミジン誘導体は、例えば下記式(ETM−8)で表される化合物であり、好ましくは下記式(ETM−8−1)で表される化合物である。詳細は国際公開第2011/021689号にも記載されている。
Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは1〜4の整数であり、好ましくは1〜3の整数であり、より好ましくは2または3である。
「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6〜30のアリールがあげられ、好ましくは炭素数6〜24のアリール、より好ましくは炭素数6〜20のアリール、さらに好ましくは炭素数6〜12のアリールである。
具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2−,3−,4−)ビフェニリル、縮合二環系アリールである(1−,2−)ナフチル、三環系アリールであるテルフェニリル(m−テルフェニル−2'−イル、m−テルフェニル−4'−イル、m−テルフェニル−5'−イル、o−テルフェニル−3'−イル、o−テルフェニル−4'−イル、p−テルフェニル−2'−イル、m−テルフェニル−2−イル、m−テルフェニル−3−イル、m−テルフェニル−4−イル、o−テルフェニル−2−イル、o−テルフェニル−3−イル、o−テルフェニル−4−イル、p−テルフェニル−2−イル、p−テルフェニル−3−イル、p−テルフェニル−4−イル)、縮合三環系アリールである、アセナフチレン−(1−,3−,4−,5−)イル、フルオレン−(1−,2−,3−,4−,9−)イル、フェナレン−(1−,2−)イル、(1−,2−,3−,4−,9−)フェナントリル、四環系アリールであるクアテルフェニリル(5'−フェニル−m−テルフェニル−2−イル、5'−フェニル−m−テルフェニル−3−イル、5'−フェニル−m−テルフェニル−4−イル、m−クアテルフェニリル)、縮合四環系アリールであるトリフェニレン−(1−,2−)イル、ピレン−(1−,2−,4−)イル、ナフタセン−(1−,2−,5−)イル、縮合五環系アリールであるペリレン−(1−,2−,3−)イル、ペンタセン−(1−,2−,5−,6−)イルなどがあげられる
「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2〜30のヘテロアリールがあげられ、炭素数2〜25のヘテロアリールが好ましく、炭素数2〜20のヘテロアリールがより好ましく、炭素数2〜15のヘテロアリールがさらに好ましく、炭素数2〜10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。
具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H−インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H−ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどがあげられる。
また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。
このピリミジン誘導体の具体例としては、例えば以下の化合物があげられる。
このピリミジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
[アリールニトリル誘導体]
アリールニトリル誘導体は、例えば下記式(ETM−9)で表される化合物、またはそれが単結合などで複数結合した多量体である。詳細は米国出願公開第2014/0197386号明細書に記載されている。
Arniは、速い電子輸送性の観点からは炭素数が多いことが好ましく、高いT1の観点からは炭素数が少ないことが好ましい。Arniは、具体的には、発光層に隣接する層に用いるには高いT1であることが好ましく、炭素数6〜20のアリールであり、好ましくは炭素数6〜14のアリール、より好ましくは炭素数6〜10のアリールである。また、ニトリル基の置換個数nは、高いT1の観点からは多いことが好ましく、高いS1の観点からは少ないことが好ましい。ニトリル基の置換個数nは、具体的には、1〜4の整数であり、好ましくは1〜3の整数であり、より好ましくは1〜2の整数であり、さらに好ましくは1である。
Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。高いS1および高いT1の観点からドナー性のヘテロアリールであることが好ましく、電子輸送層として用いるためドナー性のヘテロアリールは少ないことが好ましい。電荷輸送性の観点からは炭素数の多いアリールまたはヘテロアリールが好ましく、置換基を多く有することが好ましい。Arの置換個数mは、具体的には、1〜4の整数であり、好ましくは1〜3の整数であり、より好ましくは1〜2である。
「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6〜30のアリールがあげられ、好ましくは炭素数6〜24のアリール、より好ましくは炭素数6〜20のアリール、さらに好ましくは炭素数6〜12のアリールである。
具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2−,3−,4−)ビフェニリル、縮合二環系アリールである(1−,2−)ナフチル、三環系アリールであるテルフェニリル(m−テルフェニル−2'−イル、m−テルフェニル−4'−イル、m−テルフェニル−5'−イル、o−テルフェニル−3'−イル、o−テルフェニル−4'−イル、p−テルフェニル−2'−イル、m−テルフェニル−2−イル、m−テルフェニル−3−イル、m−テルフェニル−4−イル、o−テルフェニル−2−イル、o−テルフェニル−3−イル、o−テルフェニル−4−イル、p−テルフェニル−2−イル、p−テルフェニル−3−イル、p−テルフェニル−4−イル)、縮合三環系アリールである、アセナフチレン−(1−,3−,4−,5−)イル、フルオレン−(1−,2−,3−,4−,9−)イル、フェナレン−(1−,2−)イル、(1−,2−,3−,4−,9−)フェナントリル、四環系アリールであるクアテルフェニリル(5'−フェニル−m−テルフェニル−2−イル、5'−フェニル−m−テルフェニル−3−イル、5'−フェニル−m−テルフェニル−4−イル、m−クアテルフェニリル)、縮合四環系アリールであるトリフェニレン−(1−,2−)イル、ピレン−(1−,2−,4−)イル、ナフタセン−(1−,2−,5−)イル、縮合五環系アリールであるペリレン−(1−,2−,3−)イル、ペンタセン−(1−,2−,5−,6−)イルなどがあげられる。
「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2〜30のヘテロアリールがあげられ、炭素数2〜25のヘテロアリールが好ましく、炭素数2〜20のヘテロアリールがより好ましく、炭素数2〜15のヘテロアリールがさらに好ましく、炭素数2〜10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。
具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H−インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H−ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどがあげられる。
また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。
アリールニトリル誘導体は、式(ETM−9)で表される化合物が単結合などで複数結合した多量体であってもよい。この場合、単結合以外に、アリール環(好ましくは多価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)で結合されていてもよい。
このアリールニトリル誘導体の具体例としては、例えば以下の化合物があげられる。
このアリールニトリル誘導体は公知の原料と公知の合成方法を用いて製造することができる。
[トリアジン誘導体]
トリアジン誘導体は、例えば下記式(ETM−10)で表される化合物であり、好ましくは下記式(ETM−10−1)で表される化合物である。詳細は米国出願公開第2011/0156013号明細書に記載されている。
Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールである。nは1〜3の整数であり、好ましくは2または3である。
「置換されていてもよいアリール」の「アリール」としては、例えば、炭素数6〜30のアリールがあげられ、好ましくは炭素数6〜24のアリール、より好ましくは炭素数6〜20のアリール、さらに好ましくは炭素数6〜12のアリールである。
具体的な「アリール」としては、単環系アリールであるフェニル、二環系アリールである(2−,3−,4−)ビフェニリル、縮合二環系アリールである(1−,2−)ナフチル、三環系アリールであるテルフェニリル(m−テルフェニル−2'−イル、m−テルフェニル−4'−イル、m−テルフェニル−5'−イル、o−テルフェニル−3'−イル、o−テルフェニル−4'−イル、p−テルフェニル−2'−イル、m−テルフェニル−2−イル、m−テルフェニル−3−イル、m−テルフェニル−4−イル、o−テルフェニル−2−イル、o−テルフェニル−3−イル、o−テルフェニル−4−イル、p−テルフェニル−2−イル、p−テルフェニル−3−イル、p−テルフェニル−4−イル)、縮合三環系アリールである、アセナフチレン−(1−,3−,4−,5−)イル、フルオレン−(1−,2−,3−,4−,9−)イル、フェナレン−(1−,2−)イル、(1−,2−,3−,4−,9−)フェナントリル、四環系アリールであるクアテルフェニリル(5'−フェニル−m−テルフェニル−2−イル、5'−フェニル−m−テルフェニル−3−イル、5'−フェニル−m−テルフェニル−4−イル、m−クアテルフェニリル)、縮合四環系アリールであるトリフェニレン−(1−,2−)イル、ピレン−(1−,2−,4−)イル、ナフタセン−(1−,2−,5−)イル、縮合五環系アリールであるペリレン−(1−,2−,3−)イル、ペンタセン−(1−,2−,5−,6−)イルなどがあげられる
「置換されていてもよいヘテロアリール」の「ヘテロアリール」としては、例えば、炭素数2〜30のヘテロアリールがあげられ、炭素数2〜25のヘテロアリールが好ましく、炭素数2〜20のヘテロアリールがより好ましく、炭素数2〜15のヘテロアリールがさらに好ましく、炭素数2〜10のヘテロアリールが特に好ましい。また、ヘテロアリールとしては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。
具体的なヘテロアリールとしては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、ベンゾ[b]チエニル、インドリル、イソインドリル、1H−インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H−ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどがあげられる。
また、上記アリールおよびヘテロアリールは置換されていてもよく、それぞれ例えば上記アリールやヘテロアリールで置換されていてもよい。
このトリアジン誘導体の具体例としては、例えば以下の化合物があげられる。
このトリアジン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
[ベンゾイミダゾール誘導体]
ベンゾイミダゾール誘導体は、例えば下記式(ETM−11)で表される化合物である。
φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1〜4の整数であり、「ベンゾイミダゾール系置換基」は、式(ETM−2)、式(ETM−2−1)および式(ETM−2−2)における「ピリジン系置換基」の中のピリジルがベンゾイミダゾリルに置き換わった置換基であり、ベンゾイミダゾール誘導体における少なくとも1つの水素は重水素で置換されていてもよい。
上記ベンゾイミダゾリルにおけるR11は、水素、炭素数1〜24のアルキル、炭素数3〜12のシクロアルキルまたは炭素数6〜30のアリールであり、式(ETM−2−1)および式(ETM−2−2)におけるR11の説明を引用することができる。
φは、さらに、アントラセン環またはフルオレン環であることが好ましく、この場合の構造は式(ETM−2−1)または式(ETM−2−2)での説明を引用することができ、各式中のR11〜R18は式(ETM−2−1)または式(ETM−2−2)での説明を引用することができる。また、式(ETM−2−1)または式(ETM−2−2)では2つのピリジン系置換基が結合した形態で説明されているが、これらをベンゾイミダゾール系置換基に置き換えるときには、両方のピリジン系置換基をベンゾイミダゾール系置換基で置き換えてもよいし(すなわちn=2)、いずれか1つのピリジン系置換基をベンゾイミダゾール系置換基で置き換えて他方のピリジン系置換基をR11〜R18で置き換えてもよい(すなわちn=1)。さらに、例えば式(ETM−2−1)におけるR11〜R18の少なくとも1つをベンゾイミダゾール系置換基で置き換えて「ピリジン系置換基」をR11〜R18で置き換えてもよい。
このベンゾイミダゾール誘導体の具体例としては、例えば1−フェニル−2−(4−(10−フェニルアントラセン−9−イル)フェニル)−1H−ベンゾ[d]イミダゾール、2−(4−(10−(ナフタレン−2−イル)アントラセン−9−イル)フェニル)−1−フェニル−1H−ベンゾ[d]イミダゾール、2−(3−(10−(ナフタレン−2−イル)アントラセン−9−イル)フェニル)−1−フェニル−1H−ベンゾ[d]イミダゾール、5−(10−(ナフタレン−2−イル)アントラセン−9−イル)−1,2−ジフェニル−1H−ベンゾ[d]イミダゾール、1−(4−(10−(ナフタレン−2−イル)アントラセン−9−イル)フェニル)−2−フェニル−1H−ベンゾ[d]イミダゾール、2−(4−(9,10−ジ(ナフタレン−2−イル)アントラセン−2−イル)フェニル)−1−フェニル−1H−ベンゾ[d]イミダゾール、1−(4−(9,10−ジ(ナフタレン−2−イル)アントラセン−2−イル)フェニル)−2−フェニル−1H−ベンゾ[d]イミダゾール、5−(9,10−ジ(ナフタレン−2−イル)アントラセン−2−イル)−1,2−ジフェニル−1H−ベンゾ[d]イミダゾールなどがあげられる。
このベンゾイミダゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。
[フェナントロリン誘導体]
フェナントロリン誘導体は、例えば下記式(ETM−12)または式(ETM−12−1)で表される化合物である。詳細は国際公開2006/021982号に記載されている。
φは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1〜4の整数である。
各式のR11〜R18は、それぞれ独立して、水素、アルキル(好ましくは炭素数1〜24のアルキル)、シクロアルキル(好ましくは炭素数3〜12のシクロアルキル)またはアリール(好ましくは炭素数6〜30のアリール)である。また、式(ETM−12−1)においてはR11〜R18のいずれかがアリール環であるφとの結合手となる。
各フェナントロリン誘導体における少なくとも1つの水素が重水素で置換されていてもよい。
11〜R18におけるアルキル、シクロアルキルおよびアリールとしては、式(ETM−2)におけるR11〜R18の説明を引用することができる。また、φは上記した例のほかに、例えば、以下の構造式があげられる。なお、下記構造式中のRは、それぞれ独立して、水素、メチル、エチル、イソプロピル、シクロヘキシル、フェニル、1−ナフチル、2−ナフチル、ビフェニリルまたはテルフェニリルであり、*は、結合位置を表す。
このフェナントロリン誘導体の具体例としては、例えば4,7−ジフェニル−1,10−フェナントロリン、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン、9,10−ジ(1,10−フェナントロリン−2−イル)アントラセン、2,6−ジ(1,10−フェナントロリン−5−イル)ピリジン、1,3,5−トリ(1,10−フェナントロリン−5−イル)ベンゼン、9,9'−ジフルオロ−ビス(1,10−フェナントロリン−5−イル)、バソクプロインや1,3−ビス(2−フェニル−1,10−フェナントロリン−9−イル)ベンゼンなどがあげられる。
このフェナントロリン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
[キノリノール系金属錯体]
キノリノール系金属錯体は、例えば下記式(ETM−13)で表される化合物である。
式中、R1〜R6は、それぞれ独立して、水素、フッ素、アルキル、シクロアルキル、アラルキル、アルケニル、シアノ、アルコキシまたはアリールであり、MはLi、Al、Ga、BeまたはZnであり、nは1〜3の整数である。
キノリノール系金属錯体の具体例としては、8−キノリノールリチウム、トリス(8−キノリノラート)アルミニウム、トリス(4−メチル−8−キノリノラート)アルミニウム、トリス(5−メチル−8−キノリノラート)アルミニウム、トリス(3,4−ジメチル−8−キノリノラート)アルミニウム、トリス(4,5−ジメチル−8−キノリノラート)アルミニウム、トリス(4,6−ジメチル−8−キノリノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(フェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(4−メチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(4−フェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,3−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,6−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,4−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,5−ジメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(3,5−ジ−t−ブチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,6−ジフェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,6−トリフェニルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,6−トリメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2,4,5,6−テトラメチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(1−ナフトラート)アルミニウム、ビス(2−メチル−8−キノリノラート)(2−ナフトラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(2−フェニルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(3−フェニルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(4−フェニルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(3,5−ジメチルフェノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)(3,5−ジ−t−ブチルフェノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−8−キノリノラート)アルミニウム、ビス(2,4−ジメチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2,4−ジメチル−8−キノリノラート)アルミニウム、ビス(2−メチル−4−エチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−4−エチル−8−キノリノラート)アルミニウム、ビス(2−メチル−4−メトキシ−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−4−メトキシ−8−キノリノラート)アルミニウム、ビス(2−メチル−5−シアノ−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−5−シアノ−8−キノリノラート)アルミニウム、ビス(2−メチル−5−トリフルオロメチル−8−キノリノラート)アルミニウム−μ−オキソ−ビス(2−メチル−5−トリフルオロメチル−8−キノリノラート)アルミニウム、ビス(10−ヒドロキシベンゾ[h]キノリン)ベリリウムなどがあげられる。
このキノリノール系金属錯体は公知の原料と公知の合成方法を用いて製造することができる。
[チアゾール誘導体およびベンゾチアゾール誘導体]
チアゾール誘導体は、例えば下記式(ETM−14−1)で表される化合物である。
ベンゾチアゾール誘導体は、例えば下記式(ETM−14−2)で表される化合物である。
各式のφは、n価のアリール環(好ましくはn価のベンゼン環、ナフタレン環、アントラセン環、フルオレン環、ベンゾフルオレン環、フェナレン環、フェナントレン環またはトリフェニレン環)であり、nは1〜4の整数であり、「チアゾール系置換基」や「ベンゾチアゾール系置換基」は、式(ETM−2)、式(ETM−2−1)および式(ETM−2−2)における「ピリジン系置換基」の中のピリジルがチアゾリルやベンゾチアゾリルに置き換わった置換基であり、チアゾール誘導体およびベンゾチアゾール誘導体における少なくとも1つの水素が重水素で置換されていてもよい。
φは、さらに、アントラセン環またはフルオレン環であることが好ましく、この場合の構造は式(ETM−2−1)または式(ETM−2−2)での説明を引用することができ、各式中のR11〜R18は式(ETM−2−1)または式(ETM−2−2)での説明を引用することができる。また、式(ETM−2−1)または式(ETM−2−2)では2つのピリジン系置換基が結合した形態で説明されているが、これらをチアゾール系置換基(またはベンゾチアゾール系置換基)に置き換えるときには、両方のピリジン系置換基をチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えてもよいし(すなわちn=2)、いずれか1つのピリジン系置換基をチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えて他方のピリジン系置換基をR11〜R18で置き換えてもよい(すなわちn=1)。さらに、例えば式(ETM−2−1)におけるR11〜R18の少なくとも1つをチアゾール系置換基(またはベンゾチアゾール系置換基)で置き換えて「ピリジン系置換基」をR11〜R18で置き換えてもよい。
これらのチアゾール誘導体またはベンゾチアゾール誘導体は公知の原料と公知の合成方法を用いて製造することができる。
[シロール誘導体]
シロール誘導体は、例えば下記式(ETM−15)で表される化合物である。詳細は特開平9−194487号公報に記載されている。
XおよびYは、それぞれ独立して、アルキル、シクロアルキル、アルケニル、アルキニル、アルコキシ、アルケニルオキシ、アルキニルオキシ、アリール、ヘテロアリールであり、これらは置換されていてもよい。これらの基の詳細については、式(1)および式(2)における説明、さらに式(ETM−7−2)における説明を引用できる。また、アルケニルオキシおよびアルキニルオキシは、それぞれアルコキシにおけるアルキル部分がアルケニルまたはアルキニルに置き換わった基であり、これらのアルケニルおよびアルキニルの詳細については式(ETM−7−2)における説明を引用できる。
また、いずれもアルキルであるXとYが結合して環を形成していてもよい。
1〜R4は、それぞれ独立して、水素、ハロゲン、アルキル、シクロアルキル、アルコキシ、アリールオキシ、アミノ、アルキルカルボニル、アリールカルボニル、アルコキシカルボニル、アリールオキシカルボニル、アゾ基、アルキルカルボニルオキシ、アリールカルボニルオキシ、アルコキシカルボニルオキシ、アリールオキシカルボニルオキシ、スルフィニル、スルフォニル、スルファニル、シリル、カルバモイル、アリール、ヘテロアリール、アルケニル、アルキニル、ニトロ、ホルミル、ニトロソ、ホルミルオキシ、イソシアノ、シアネート基、イソシアネート基、チオシアネート基、イソチオシアネート基、または、シアノであり、これらはアルキル、シクロアルキル、アリールまたはハロゲンで置換されていてもよく、隣接置換基との間に縮合環を形成していてもよい。
1〜R4における、ハロゲン、アルキル、シクロアルキル、アルコキシ、アリールオキシ、アミノ、アリール、ヘテロアリール、アルケニルおよびアルキニルの詳細については、式(1)および式(2)における説明を引用できる。
1〜R4における、アルキルカルボニル、アリールカルボニル、アルコキシカルボニル、アリールオキシカルボニル、アルキルカルボニルオキシ、アリールカルボニルオキシ、アルコキシカルボニルオキシおよびアリールオキシカルボニルオキシ中の、アルキル、アリールおよびアルコキシの詳細についても、式(1)および式(2)における説明を引用できる。
シリルとしては、シリル、および、シリルの3つの水素の少なくとも1つが、それぞれ独立して、アリール、アルキルまたはシクロアルキルで置換された基があげられ、トリ置換シリルが好ましく、トリアリールシリル、トリアルキルシリル、トリシクロアルキルシリル、ジアルキルシクロアルキルシリルおよびアルキルジシクロアルキルシリル等があげられる。これらにおける、アリール、アルキルおよびシクロアルキルの詳細については、式(1)および式(2)における説明を引用できる。
隣接置換基との間に形成される縮合環とは、例えば、R1とR2、R2とR3、R3とR4等の間で形成された共役または非共役の縮合環である。これら縮合環は、環内構造に窒素、酸素、硫黄原子を含んでいてもよいし、さらに別の環と縮合してもよい。
ただし、好ましくは、R1およびR4がフェニルの場合、XおよびYは、アルキルまたはフェニルではない。また、好ましくは、R1およびR4がチエニルの場合、XおよびYは、アルキルを、R2およびR3は、アルキル、アリール、アルケニルまたはR2とR3が結合して環を形成するシクロアルキルを同時に満たさない構造である。また、好ましくは、R1およびR4がシリルの場合、R2、R3、XおよびYは、それぞれ独立して、水素または炭素数1から6のアルキルではない。また、好ましくは、R1およびR2でベンゼン環が縮合した構造の場合、XおよびYは、アルキルおよびフェニルではない。
これらのシロール誘導体は公知の原料と公知の合成方法を用いて製造することができる。
[アゾリン誘導体]
アゾリン誘導体は、例えば下記式(ETM−16)で表される化合物である。詳細は国際公開第2017/014226号に記載されている。
式(ETM−16)中、
φは炭素数6〜40の芳香族炭化水素に由来するm価の基または炭素数2〜40の芳香族複素環に由来するm価の基であり、φの少なくとも1つの水素は炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数6〜18のアリールまたは炭素数2〜18のヘテロアリールで置換されていてもよく、
Yは、それぞれ独立して、−O−、−S−または>N−Arであり、Arは炭素数6〜12のアリールまたは炭素数2〜12のヘテロアリールであり、Arの少なくとも1つの水素は炭素数1〜4のアルキル、炭素数5〜10のシクロアルキル、炭素数6〜12のアリールまたは炭素数2〜12のヘテロアリールで置換されていてもよく、R1〜R5はそれぞれ独立して水素、炭素数1〜4のアルキルまたは炭素数5〜10のシクロアルキルであり、ただし、前記>N−ArにおけるArおよび前記R1〜R5のうちのいずれか1つはLと結合する部位であり、
Lは、それぞれ独立して、下記式(L−1)で表される2価の基、および下記式(L−2)で表される2価の基からなる群から選ばれ、
式(L−1)中、X1〜X6はそれぞれ独立して=CR6−または=N−であり、X1〜X6のうちの少なくとも2つは=CR6−であり、X1〜X6のうちの2つの=CR6−におけるR6はφまたはアゾリン環と結合する部位であり、それ以外の=CR6−におけるR6は水素であり、
式(L−2)中、X7〜X14はそれぞれ独立して=CR6−または=N−であり、X7〜X14のうちの少なくとも2つは=CR6−であり、X7〜X14のうちの2つの=CR6−におけるR6はφまたはアゾリン環と結合する部位であり、それ以外の=CR6−におけるR6は水素であり、
Lの少なくとも1つの水素は炭素数1〜4のアルキル、炭素数5〜10のシクロアルキル、炭素数6〜10のアリールまたは炭素数2〜10のヘテロアリールで置換されていてもよく、
mは1〜4の整数であり、mが2〜4であるとき、アゾリン環とLとで形成される基は同一であっても異なっていてもよく、そして、
式(ETM−16)で表される化合物中の少なくとも1つの水素は重水素で置換されていてもよい。
具体的なアゾリン誘導体は、下記式(ETM−16−1)または式(ETM−16−2)で表される化合物である。
式(ETM−16−1)および式(ETM−16−2)中、
φは炭素数6〜40の芳香族炭化水素に由来するm価の基または炭素数2〜40の芳香族複素環に由来するm価の基であり、φの少なくとも1つの水素は炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数6〜18のアリールまたは炭素数2〜18のヘテロアリールで置換されていてもよく、
式(ETM−16−1)中、Yは、それぞれ独立して、−O−、−S−または>N−Arであり、Arは炭素数6〜12のアリールまたは炭素数2〜12のヘテロアリールであり、Arの少なくとも1つの水素は炭素数1〜4のアルキル、炭素数5〜10のシクロアルキル、炭素数6〜12のアリールまたは炭素数2〜12のヘテロアリールで置換されていてもよく、
式(ETM−16−1)中、R1〜R4はそれぞれ独立して水素、炭素数1〜4のアルキルまたは炭素数5〜10のシクロアルキルであり、ただし、R1とR2は同一であり、またR3とR4は同一であり、
式(ETM−16−2)中、R1〜R5はそれぞれ独立して水素、炭素数1〜4のアルキルまたは炭素数5〜10のシクロアルキルであり、ただし、R1とR2は同一であり、またR3とR4は同一であり、
式(ETM−16−1)および式(ETM−16−2)中、
Lは、それぞれ独立して、下記式(L−1)で表される2価の基、および下記式(L−2)で表される2価の基からなる群から選ばれ、
式(L−1)中、X1〜X6はそれぞれ独立して=CR6−または=N−であり、X1〜X6のうちの少なくとも2つは=CR6−であり、X1〜X6のうちの2つの=CR6−におけるR6はφまたはアゾリン環と結合する部位であり、それ以外の=CR6−におけるR6は水素であり、
式(L−2)中、X7〜X14はそれぞれ独立して=CR6−または=N−であり、X7〜X14のうちの少なくとも2つは=CR6−であり、X7〜X14のうちの2つの=CR6−におけるR6はφまたはアゾリン環と結合する部位であり、それ以外の=CR6−におけるR6は水素であり、
Lの少なくとも1つの水素は炭素数1〜4のアルキル、炭素数5〜10のシクロアルキル、炭素数6〜10のアリールまたは炭素数2〜10のヘテロアリールで置換されていてもよく、
mは1〜4の整数であり、mが2〜4であるとき、アゾリン環とLとで形成される基は同一であっても異なっていてもよく、そして、
式(ETM−16−1)または式(ETM−16−2)で表される化合物中の少なくとも1つの水素は重水素で置換されていてもよい。
好ましくは、φは、下記式(φ1−1)〜式(φ1−18)で表される1価の基、下記式(φ2−1)〜式(φ2−34)で表される2価の基、下記式(φ3−1)〜式(φ3−3)で表される3価の基、および下記式(φ4−1)〜式(φ4−2)で表される4価の基からなる群から選択され、φの少なくとも1つの水素は炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数6〜18のアリールまたは炭素数2〜18のヘテロアリールで置換されていてもよい。
式中のZは、>CR2、>N−Ar、>N−L、−O−または−S−であり、>CR2におけるRは、それぞれ独立して、炭素数1〜4のアルキル、炭素数5〜10のシクロアルキル、炭素数6〜12のアリールまたは炭素数2〜12のヘテロアリールであり、Rは互いに結合して環を形成していてもよく、>N−ArにおけるArは炭素数6〜12のアリールまたは炭素数2〜12のヘテロアリールであり、>N−LにおけるLは式(ETM−16)、式(ETM−16−1)または式(ETM−16−2)におけるLである。式中の*は、結合位置を表す。
好ましくは、Lは、ベンゼン、ナフタレン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、イソキノリン、ナフチリジン、フタラジン、キノキサリン、キナゾリン、シンノリン、およびプテリジンからなる群から選択される環の2価の基であり、Lの少なくとも1つの水素は炭素数1〜4のアルキル、炭素数5〜10のシクロアルキル、炭素数6〜10のアリールまたは炭素数2〜10のヘテロアリールで置換されていてもよい。
好ましくは、YまたはZとしての>N−ArにおけるArは、フェニル、ナフチル、ピリジニル、ピラジニル、ピリミジニル、ピリダジニル、トリアジニル、キノリニル、イソキノリニル、ナフチリジニル、フタラジニル、キノキサリニル、キナゾリニル、シンノリニル、およびプテリジニルからなる群から選択され、Yとしての>N−ArにおけるArの少なくとも1つの水素は炭素数1〜4のアルキル、炭素数5〜10のシクロアルキルまたは炭素数6〜10のアリールで置換されていてもよい。
好ましくは、R1〜R4はそれぞれ独立して水素、炭素数1〜4のアルキルまたは炭素数5〜10のシクロアルキルであり、ただし、R1とR2は同一であり、R3とR4は同一であり、またR1〜R4の全てが同時に水素になることはなく、そして、mは1または2であり、mが2であるとき、アゾリン環とLとで形成される基は同一である。
アゾリン誘導体の具体例としては、例えば以下の化合物があげられる。なお、構造式中の「Me」はメチルを表す。
より好ましくは、φは、下記式(φ2−1)、式(φ2−31)、式(φ2−32)、式(φ2−33)および式(φ2−34)で表される2価の基からなる群から選択され、φの少なくとも1つの水素は炭素数6〜18のアリールで置換されていてもよく、
Lは、ベンゼン、ピリジン、ピラジン、ピリミジン、ピリダジン、およびトリアジンからなる群から選択される環の2価の基であり、Lの少なくとも1つの水素は炭素数1〜4のアルキル、炭素数5〜10のシクロアルキル、炭素数6〜10のアリールまたは炭素数2〜14のヘテロアリールで置換されていてもよく、
Yとしての>N−ArにおけるArは、フェニル、ピリジニル、ピラジニル、ピリミジニル、ピリダジニル、およびトリアジニルからなる群から選択され、当該Arの少なくとも1つの水素は炭素数1〜4のアルキル、炭素数5〜10のシクロアルキルまたは炭素数6〜10のアリールで置換されていてもよく、
1〜R4はそれぞれ独立して水素、炭素数1〜4のアルキルまたは炭素数5〜10のシクロアルキルであり、ただし、R1とR2は同一であり、R3とR4は同一であり、またR1〜R4の全てが同時に水素になることはなく、そして、
mは2であり、アゾリン環とLとで形成される基は同一である。
アゾリン誘導体の他の具体例としては、例えば以下の化合物があげられる。なお、構造式中の「Me」はメチルを表す。
このアゾリン誘導体を規定する上記各式中の、アルキル、シクロアルキル、アリールまたはヘテロアリールの詳細については、式(1)および式(2)における説明を引用できる。
このアゾリン誘導体は公知の原料と公知の合成方法を用いて製造することができる。
[還元性物質、その他]
電子輸送層または電子注入層には、さらに、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有する物質であれば、様々な物質が用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを好適に使用することができる。
好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0〜2.5eV)またはBa(同2.52eV)などのアルカリ土類金属があげられ、仕事関数が2.9eV以下の物質が特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
上述した電子注入層用材料および電子輸送層用材料は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物、もしくはその高分子架橋体、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物、もしくはそのペンダント型高分子架橋体としても、電子層用材料に用いることができる。この場合の反応性置換基としては、式(1)で表される多環芳香族化合物での説明を引用できる。
このような高分子化合物および高分子架橋体の用途の詳細については後述する。
<有機電界発光素子における陰極>
陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たす。
陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様の材料を用いることができる。なかでも、スズ、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウムおよびマグネシウムなどの金属またはそれらの合金(マグネシウム−銀合金、マグネシウム−インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム−リチウム合金など)などが好ましい。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウムおよび酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されない。
さらに、電極保護のために白金、金、銀、銅、鉄、スズ、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例としてあげられる。これらの電極の作製法も、抵抗加熱、電子線ビーム蒸着、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。
<各層で用いてもよい結着剤>
以上の正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N−ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル樹脂、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
<有機電界発光素子の作製方法>
有機EL素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法またはキャスト法、コーティング法、レーザー加熱描画法(LITI)などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm〜5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、ボート加熱温度+50〜+400℃、真空度10-6〜10-3Pa、蒸着速度0.01〜50nm/秒、基板温度−150〜+300℃、膜厚2nm〜5μmの範囲で適宜設定することが好ましい。
このようにして得られた有機EL素子に直流電圧を印加する場合には、陽極を+、陰極を−の極性として印加すればよく、電圧2〜40V程度を印加すると、透明または半透明の電極側(陽極または陰極、および両方)より発光が観測できる。また、この有機EL素子は、パルス電流や交流電流を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。
次に、有機EL素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法について説明する。
<蒸着法>
適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上にホスト材料とドーパント材料を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機EL素子が得られる。なお、上述の有機EL素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
<湿式成膜法>
湿式成膜法は、有機EL素子の各有機層を形成し得る低分子化合物を液状の有機層形成用組成物として準備し、これを用いることによって実施される。この低分子化合物を溶解する適当な有機溶媒がない場合には、当該低分子化合物に反応性置換基を置換させた反応性化合物として溶解性機能を有する他のモノマーや主鎖型高分子と共に高分子化させた高分子化合物などから有機層形成用組成物を準備してもよい。
湿式成膜法は、一般的には、基板に有機層形成用組成物を塗布する塗布工程および塗布された有機層形成用組成物から溶媒を取り除く乾燥工程を経ることで塗膜を形成する。上記高分子化合物が架橋性置換基を有する場合(これを架橋性高分子化合物ともいう)には、この乾燥工程によりさらに架橋して高分子架橋体が形成される。
塗布工程の違いにより、スピンコーターを用いる方法をスピンコート法、スリットコーターを用いる方法をスリットコート法、版を用いる方法をグラビア、オフセット、リバースオフセット、フレキソ印刷法、インクジェットプリンタを用いる方法をインクジェット法、霧状に吹付ける方法をスプレー法と呼ぶ。
一例として、図2を参考にして、バンクを有する基板にインクジェット法を用いて塗膜を形成する方法を説明する。まず、バンク(200)は基板(110)上の電極(120)の上に設けられている。この場合、インクジェットヘッド(300)より、バンク(200)間にインクの液滴(310)を滴下し、乾燥させることで塗膜(130)を作製することができる。これを繰り返し、次の塗膜(140)、さらに発光層(150)まで作製し、真空蒸着法を用い電子輸送層、電子注入層および電極を成膜すれば、バンク材で発光部位が区切られた有機EL素子を作製することができる。
乾燥工程には、風乾、加熱、減圧乾燥などの方法がある。乾燥工程は1回のみ行なってもよく、異なる方法や条件を用いて複数回行なってもよい。また、例えば、減圧下での焼成のように、異なる方法を併用してもよい。
湿式成膜法とは溶液を用いた成膜法であり、例えば、一部の印刷法(インクジェット法)、スピンコート法またはキャスト法、コーティング法などである。湿式成膜法は真空蒸着法と異なり高価な真空蒸着装置を用いる必要が無く、大気圧下で成膜することができる。加えて、湿式成膜法は大面積化や連続生産が可能であり、製造コストの低減につながる。
一方で、真空蒸着法と比較した場合には、湿式成膜法は積層化が難しい場合がある。湿式成膜法を用いて積層膜を作製する場合、上層の組成物による下層の溶解を防ぐ必要があり、溶解性を制御した組成物、下層の架橋および直交溶媒(Orthogonal solvent、互いに溶解し合わない溶媒)などが駆使される。しかしながら、それらの技術を用いても、全ての膜の塗布に湿式成膜法を用いるのは難しい場合がある。
そこで、一般的には、幾つかの層だけを湿式成膜法を用い、残りを真空蒸着法で有機EL素子を作製するという方法が採用される。
例えば、湿式成膜法を一部適用し有機EL素子を作製する手順を以下に示す。
(手順1)陽極の真空蒸着法による成膜
(手順2)正孔注入層用材料を含む正孔注入層形成用組成物の湿式成膜法による成膜
(手順3)正孔輸送層用材料を含む正孔輸送層形成用組成物の湿式成膜法による成膜
(手順4)ホスト材料とドーパント材料を含む発光層形成用組成物の湿式成膜法による成膜
(手順5)電子輸送層の真空蒸着法による成膜
(手順6)電子注入層の真空蒸着法による成膜
(手順7)陰極の真空蒸着法による成膜
この手順を経ることで、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機EL素子が得られる。
もちろん、下層の発光層の溶解を防ぐ手段があったり、また上記手順とは逆に陰極側から成膜する手段などを用いることで、電子輸送層用材料や電子注入層用材料を含む層形成用組成物として準備して、それらを湿式成膜法により成膜できる。
<その他の成膜法>
有機層形成用組成物の成膜化には、レーザー加熱描画法(LITI)を用いることができる。LITIとは基材に付着させた化合物をレーザーで加熱蒸着する方法で、基材へ塗布される材料に有機層形成用組成物を用いることができる。
<任意の工程>
成膜の各工程の前後に、適切な処理工程、洗浄工程および乾燥工程を適宜入れてもよい。処理工程としては、例えば、露光処理、プラズマ表面処理、超音波処理、オゾン処理、適切な溶媒を用いた洗浄処理および加熱処理等があげられる。さらには、バンク(隔壁材料)を作製する一連の工程もあげられる。
バンクの作製にはフォトリソグラフィ技術を用いることができる。フォトリソグラフィの利用可能なバンク材としては、ポジ型レジスト材料およびネガ型レジスト材料を用いることができる。また、インクジェット法、グラビアオフセット印刷、リバースオフセット印刷、スクリーン印刷などのパターン可能な印刷法も用いることができる。その際には永久レジスト材料を用いることもできる。
バンクに用いられる材料としては、多糖類およびその誘導体、ヒドロキシルを有するエチレン性モノマーの単独重合体および共重合体、生体高分子化合物、ポリアクリロイル化合物、ポリエステル、ポリスチレン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルフィド、ポリスルホン、ポリフェニレン、ポリフェニルエーテル、ポリウレタン、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、ポリオレフィン、環状ポリオレフィン、アクリロニトリル−ブタジエン−スチレン共重合ポリマー(ABS)、シリコーン樹脂、ポリ塩化ビニル、塩素化ポリエチレン、塩素化ポリプロピレン、ポリアセテート、ポリノルボルネン、合成ゴム、ポリフルオロビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン等のフッ化ポリマー、フルオロオレフィン−ヒドロカーボンオレフィンの共重合ポリマー、フルオロカーボンポリマーがあげられるが、それだけに限定されない。
<湿式成膜法に使用される有機層形成用組成物>
有機層形成用組成物は、有機EL素子の各有機層を形成し得る低分子化合物、または当該低分子化合物を高分子化させた高分子化合物を有機溶媒に溶解させて得られる。例えば、発光層形成用組成物は、第1成分として少なくとも1種のドーパント材料である多環芳香族化合物(またはその高分子化合物)と、第2成分として少なくとも1種のホスト材料と、第3成分として少なくとも1種の有機溶媒とを含有する。第1成分は、該組成物から得られる発光層のドーパント成分として機能し、第2成分は発光層のホスト成分として機能する。第3成分は、組成物中の第1成分と第2成分を溶解する溶媒として機能し、塗布時には第3成分自身の制御された蒸発速度により平滑で均一な表面形状を与える。
[有機溶媒]
有機層形成用組成物は少なくとも一種の有機溶媒を含む。成膜時に有機溶媒の蒸発速度を制御することで、成膜性および塗膜の欠陥の有無、表面粗さ、平滑性を制御および改善することができる。また、インクジェット法を用いた成膜時は、インクジェットヘッドのピンホールでのメニスカス安定性を制御し、吐出性を制御・改善することができる。加えて、膜の乾燥速度および誘導体分子の配向を制御することで、該有機層形成用組成物より得られる有機層を有する有機EL素子の電気特性、発光特性、効率、および寿命を改善することができる。
(1)有機溶媒の物性
少なくとも1種の有機溶媒の沸点は、130℃〜300℃であり、140℃〜270℃がより好ましく、150℃〜250℃がさらに好ましい。沸点が130℃より高い場合、インクジェットの吐出性の観点から好ましい。また、沸点が300℃より低い場合、塗膜の欠陥、表面粗さ、残留溶媒および平滑性の観点から好ましい。有機溶媒は、良好なインクジェットの吐出性、成膜性、平滑性および低い残留溶媒の観点から、2種以上の有機溶媒を含む構成がより好ましい。一方で、場合によっては、運搬性などを考慮し、有機層形成用組成物中から溶媒を除去することで固形状態とした組成物であってもよい。
さらに、有機溶媒が溶質の少なくとも1種に対する良溶媒(GS)と貧溶媒(PS)とを含み、良溶媒(GS)の沸点(BPGS)が貧溶媒(PS)の沸点(BPPS)よりも低い、構成が特に好ましい。
高沸点の貧溶媒を加えることで成膜時に低沸点の良溶媒が先に揮発し、組成物中の含有物の濃度と貧溶媒の濃度が増加し速やかな成膜が促される。これにより、欠陥が少なく、表面粗さが小さい、平滑性の高い塗膜が得られる。
溶解度の差(SGS−SPS)は、1%以上であることが好ましく、3%以上であることがより好ましく、5%以上であることがさらに好ましい。沸点の差(BPPS−BPGS)は、10℃以上であることが好ましく、30℃以上であることがより好ましく、50℃以上であることがさらに好ましい。
有機溶媒は、成膜後に、真空、減圧、加熱などの乾燥工程により塗膜より取り除かれる。加熱を行う場合、塗布成膜性改善の観点からは、溶質の少なくとも1種のガラス転移温度(Tg)+30℃以下で行うことが好ましい。また、残留溶媒の削減の観点からは、溶質の少なくとも1種のガラス転移点(Tg)−30℃以上で加熱することが好ましい。加熱温度が有機溶媒の沸点より低くても膜が薄いために、有機溶媒は十分に取り除かれる。また、異なる温度で複数回乾燥を行ってもよく、複数の乾燥方法を併用してもよい。
(2)有機溶媒の具体例
有機層形成用組成物に用いられる有機溶媒としては、アルキルベンゼン系溶媒、フェニルエーテル系溶媒、アルキルエーテル系溶媒、環状ケトン系溶媒、脂肪族ケトン系溶媒、単環性ケトン系溶媒、ジエステル骨格を有する溶媒および含フッ素系溶媒などがあげられ、具体例として、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、テトラデカノール、ヘキサン−2−オール、ヘプタン−2−オール、オクタン−2−オール、デカン−2−オール、ドデカン−2−オール、シクロヘキサノール、α−テルピネオール、β−テルピネオール、γ−テルピネオール、δ−テルピネオール、テルピネオール(混合物)、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、ポリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、p−キシレン、m−キシレン、o−キシレン、2,6−ルチジン、2−フルオロ−m−キシレン、3−フルオロ−o−キシレン、2−クロロベンゾ三フッ化物、クメン、トルエン、2−クロロ−6−フルオロトルエン、2−フルオロアニソール、アニソール、2,3−ジメチルピラジン、ブロモベンゼン、4−フルオロアニソール、3−フルオロアニソール、3−トリフルオロメチルアニソール、メシチレン、1,2,4−トリメチルベンゼン、t−ブチルベンゼン、2−メチルアニソール、フェネトール、ベンゾジオキソール、4−メチルアニソール、s−ブチルベンゼン、3−メチルアニソール、4−フルオロ−3−メチルアニソール、シメン、1,2,3−トリメチルベンゼン、1,2−ジクロロベンゼン、2−フルオロベンゾニトリル、4−フルオロベラトロール、2,6−ジメチルアニソール、n−ブチルベンゼン、3−フルオロベンゾニトリル、デカリン(デカヒドロナフタレン)、ネオペンチルベンゼン、2,5−ジメチルアニソール、2,4−ジメチルアニソール、ベンゾニトリル、3,5−ジメチルアニソール、ジフェニルエーテル、1−フルオロ−3,5−ジメトキシベンゼン、安息香酸メチル、イソペンチルベンゼン、3,4−ジメチルアニソール、o−トルニトリル、n−アミルベンゼン、ベラトロール、1,2,3,4−テトラヒドロナフタレン、安息香酸エチル、n−ヘキシルベンゼン、安息香酸プロピル、シクロヘキシルベンゼン、1−メチルナフタレン、安息香酸ブチル、2−メチルビフェニル、3−フェノキシトルエン、2,2'−ビトリル、ドデシルベンゼン、ジペンチルベンゼン、テトラメチルベンゼン、トリメトキシベンゼン、トリメトキシトルエン、2,3−ジヒドロベンゾフラン、1−メチル−4−(プロポキシメチル)ベンゼン、1-メチル−4−(ブチルオキシメチル)ベンゼン、1−メチル−4−(ペンチルオキシメチル)ベンゼン、1−メチル−4−(ヘキシルオキシメチル)ベンゼン、1−メチル−4−(ヘプチルオキシメチル)ベンゼンベンジルブチルエーテル、ベンジルペンチルエーテル、ベンジルヘキシルエーテル、ベンジルヘプチルエーテル、ベンジルオクチルエーテルなどがあげられるが、それだけに限定されない。また、溶媒は単一で用いてもよく、混合してもよい。
[任意成分]
有機層形成用組成物は、その性質を損なわない範囲で、任意成分を含んでいてもよい。任意成分としては、バインダーおよび界面活性剤等があげられる。
(1)バインダー
有機層形成用組成物は、バインダーを含有していてもよい。バインダーは、成膜時には膜を形成するとともに、得られた膜を基板と接合する。また、該有機層形成用組成物中で他の成分を溶解および分散および結着させる役割を果たす。
有機層形成用組成物に用いられるバインダーとしては、例えば、アクリル樹脂、ポリエチレンテレフタレート、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、アクリロニトリル−エチレン−スチレン共重合体(AES)樹脂、アイオノマー、塩素化ポリエーテル、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、テフロン、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)樹脂、アクリロニトリル−スチレン共重合体(AS)樹脂、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、ポリウレタン、および、上記樹脂およびポリマーの共重合体、があげられるが、それだけに限定されない。
有機層形成用組成物に用いられるバインダーは、1種のみであってもよく複数種を混合して用いてもよい。
(2)界面活性剤
有機層形成用組成物は、例えば、有機層形成用組成物の膜面均一性、膜表面の親溶媒性および撥液性の制御のために界面活性剤を含有してもよい。界面活性剤は、親水性基の構造からイオン性および非イオン性に分類され、さらに、疎水性基の構造からアルキル系およびシリコン系およびフッ素系に分類される。また、分子の構造から、分子量が比較的小さく単純な構造を有する単分子系および分子量が大きく側鎖や枝分かれを有する高分子系に分類される。また、組成から、単一系、二種以上の界面活性剤および基材を混合した混合系に分類される。該有機層形成用組成物に用いることのできる界面活性剤としては、全ての種類の界面活性剤を用いることができる。
界面活性剤としては、例えば、ポリフローNo.45、ポリフローKL−245、ポリフローNo.75、ポリフローNo.90、ポリフローNo.95(商品名、共栄社化学工業(株)製)、ディスパーベイク(Disperbyk)161、ディスパーベイク162、ディスパーベイク163、ディスパーベイク164、ディスパーベイク166、ディスパーベイク170、ディスパーベイク180、ディスパーベイク181、ディスパーベイク182、BYK300、BYK306、BYK310、BYK320、BYK330、BYK342、BYK344、BYK346(商品名、ビックケミー・ジャパン(株)製)、KP−341、KP−358、KP−368、KF−96−50CS、KF−50−100CS(商品名、信越化学工業(株)製)、サーフロンSC−101、サーフロンKH−40(商品名、セイミケミカル(株)製)、フタージェント222F、フタージェント251、FTX−218(商品名、(株)ネオス製)、EFTOP EF−351、EFTOP EF−352、EFTOP EF−601、EFTOP EF−801、EFTOP EF−802(商品名、三菱マテリアル(株)製)、メガファックF−470、メガファックF−471、メガファックF−475、メガファックR−08、メガファックF−477、メガファックF−479、メガファックF−553、メガファックF−554(商品名、DIC(株)製)、フルオロアルキルベンゼンスルホン酸塩、フルオロアルキルカルボン酸塩、フルオロアルキルポリオキシエチレンエーテル、フルオロアルキルアンモニウムヨージド、フルオロアルキルベタイン、フルオロアルキルスルホン酸塩、ジグリセリンテトラキス(フルオロアルキルポリオキシエチレンエーテル)、フルオロアルキルトリメチルアンモニウム塩、フルオロアルキルアミノスルホン酸塩、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンラウレート、ポリオキシエチレンオレエート、ポリオキシエチレンステアレート、ポリオキシエチレンラウリルアミン、ソルビタンラウレート、ソルビタンパルミテート、ソルビタンステアレート、ソルビタンオレエート、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタンラウレート、ポリオキシエチレンソルビタンパルミテート、ポリオキシエチレンソルビタンステアレート、ポリオキシエチレンソルビタンオレエート、ポリオキシエチレンナフチルエーテル、アルキルベンゼンスルホン酸塩およびアルキルジフェニルエーテルジスルホン酸塩をあげることができる。
また、界面活性剤は1種で用いてもよく、2種以上を併用してもよい。
<有機層形成用組成物の組成および物性>
有機層形成用組成物における各成分の含有量は、有機層形成用組成物中の各成分の良好な溶解性、保存安定性および成膜性、ならびに、該有機層形成用組成物から得られる塗膜の良質な膜質、また、インクジェット法を用いた場合の良好な吐出性、該組成物を用いて作製された有機層を有する有機EL素子の、良好な電気特性、発光特性、効率、寿命の観点を考慮して決定される。例えば、発光層形成用組成物の場合には、第1成分が発光層形成用組成物の全質量に対して、0.0001質量%〜2.0質量%、第2成分が発光層形成用組成物の全質量に対して、0.0999質量%〜8.0質量%、第3成分が発光層形成用組成物の全質量に対して、90.0質量%〜99.9質量%が好ましい。
より好ましくは、第1成分が発光層形成用組成物の全質量に対して、0.005質量%〜1.0質量%、第2成分が発光層形成用組成物の全質量に対して、0.095質量%〜4.0質量%、第3成分が発光層形成用組成物の全質量に対して、95.0質量%〜99.9質量%である。さらに好ましくは、第1成分が発光層形成用組成物の全質量に対して、0.05質量%〜0.5質量%、第2成分が発光層形成用組成物の全質量に対して、0.25質量%〜2.5質量%、第3成分が発光層形成用組成物の全質量に対して、97.0質量%〜99.7質量%である。
有機層形成用組成物は、上述した成分を、公知の方法で撹拌、混合、加熱、冷却、溶解、分散等を適宜選択して行うことによって製造できる。また、調製後に、ろ過、脱ガス(デガスとも言う)、イオン交換処理および不活性ガス置換・封入処理等を適宜選択して行ってもよい。
有機層形成用組成物の粘度としては、高粘度である方が、良好な成膜性とインクジェット法を用いた場合の良好な吐出性が得られる。一方、低粘度である方が薄い膜を作りやすい。このことから、該有機層形成用組成物の粘度は、25℃における粘度が0.3〜3mPa・sであることが好ましく、1〜3mPa・sであることがより好ましい。本発明において、粘度は円錐平板型回転粘度計(コーンプレートタイプ)を用いて測定した値である。
有機層形成用組成物の表面張力としては、低い方が良好な成膜性および欠陥のない塗膜が得られる。一方、高い方が良好なインクジェット吐出性を得られる。このことから、該有機層形成用組成物の粘度は、25℃における表面張力が20〜40mN/mであることが好ましく、20〜30mN/mであることがより好ましい。本発明において、表面張力は懸滴法を用いて測定した値である。
<架橋性高分子化合物:式(XLP−1)で表される化合物>
次に、上述した高分子化合物が架橋性置換基を有する場合について説明する。このような架橋性高分子化合物は例えば下記式(XLP−1)で表される化合物である。
式(XLP−1)において、
MUx、ECxおよびkは式(SPH−1)におけるMU、ECおよびkと同定義であり、ただし、式(XLP−1)で表される化合物は少なくとも1つの架橋性置換基(XLS)を有し、好ましくは架橋性置換基を有する1価または2価の芳香族化合物の含有量は、分子中0.1〜80質量%である。
架橋性置換基を有する1価または2価の芳香族化合物の含有量は、0.5〜50質量%が好ましく、1〜20質量%がより好ましい。
架橋性置換基(XLS)としては、上述した高分子化合物をさらに架橋化できる基であれば特に限定されないが、以下の構造の置換基が好ましい。各構造式中の*は結合位置を示す。
Lは、それぞれ独立して、単結合、−O−、−S−、>C=O、−O−C(=O)−、炭素数1〜12のアルキレン、炭素数1〜12のオキシアルキレンおよび炭素数1〜12のポリオキシアルキレンである。上記置換基の中でも、式(XLS−1)、式(XLS−2)、式(XLS−3)、式(XLS−9)、式(XLS−10)または式(XLS−17)で表される基が好ましく、式(XLS−1)、式(XLS−3)または式(XLS−17)で表される基がより好ましい。
架橋性置換基を有する2価の芳香族化合物としては、例えば下記部分構造を有する化合物があげられる。
<高分子化合物および架橋性高分子化合物の製造方法>
高分子化合物および架橋性高分子化合物の製造方法について、上述した式(SPH−1)で表される化合物および(XLP−1)で表される化合物を例にして説明する。これらの化合物は、公知の製造方法を適宜組み合わせて合成することができる。
反応で用いられる溶媒としては、芳香族溶媒、飽和/不飽和炭化水素溶媒、アルコール溶媒、エーテル系溶媒などがあげられ、例えば、ジメトキシエタン、2−(2−メトキシエトキシ)エタン、2−(2−エトキシエトキシ)エタン等があげられる。
また、反応は2相系で行ってもよい。2相系で反応させる場合は、必要に応じて、第4級アンモニウム塩等の相間移動触媒を加えてもよい。
式(SPH−1)の化合物および(XLP−1)の化合物を製造する際、一段階で製造してもよいし、多段階を経て製造してもよい。また、原料を反応容器に全て入れてから反応を開始する一括重合法により行ってもよいし、原料を反応容器に滴下し加える滴下重合法により行ってもよいし、生成物が反応の進行に伴い沈殿する沈殿重合法により行ってもよく、これらを適宜組み合わせて合成することができる。例えば、式(SPH−1)で表される化合物を一段階で合成する際、モノマーユニット(MU)およびエンドキャップユニット(EC)に重合性基が結合したモノマーを反応容器に加えた状態で反応を行うことで目的物を得る。また、式(SPH−1)で表される化合物を多段階で合成する際、モノマーユニット(MU)に重合性基が結合したモノマーを目的の分子量まで重合した後、エンドキャップユニット(EC)に重合性基が結合したモノマーを加えて反応させることで目的物を得る。多段階で異なる種類のモノマーユニット(MU)を有するモノマーを加え反応を行えば、モノマーユニットの構造について濃度勾配を有するポリマーを作ることができる。また、前駆体ポリマーを調製した後、あと反応により目的物ポリマーを得ることができる。
また、モノマーの重合性基を選べばポリマーの一次構造を制御することができる。例えば、合成スキームの1〜3に示すように、ランダムな一次構造を有するポリマー(合成スキームの1)、規則的な一次構造を有するポリマー(合成スキームの2および3)などを合成することが可能であり、目的物に応じて適宜組み合わせて用いることができる。さらには、重合性基を3つ以上有するモノマーを用いれば、ハイパーブランチポリマーやデンドリマーを合成することができる。
上記モノマーは、特開2010−189630号公報、国際公開第2012/086671号、国際公開第2013/191088号、国際公開第2002/045184号、国際公開第2011/049241号、国際公開第2013/146806号、国際公開第2005/049546号、国際公開第2015/145871号、特開2010−215886号、特開2008−106241号公報、特開2010−215886号公報、国際公開第2016/031639号、特開2011−174062号公報、国際公開第2016/031639号、国際公開第2016/031639号、国際公開第2002/045184号に記載の方法に準じて合成することができる。
また、具体的なポリマー合成手順については、特開2012−036388号公報、国際公開第2015/008851号、特開2012−36381号公報、特開2012−144722号公報、国際公開第2015/194448号、国際公開第2013/146806号、国際公開第2015/145871号、国際公開第2016/031639号、国際公開第2016/125560号、国際公開第2016/031639号、国際公開第2016/031639号、国際公開第2016/125560号、国際公開第2015/145871号、国際公開第2011/049241号、特開2012−144722号公報に記載の方法を参照することができる。
<有機電界発光素子の応用例>
また、本発明は、有機EL素子を備えた表示装置または有機EL素子を備えた照明装置などにも応用することができる。
有機EL素子を備えた表示装置または照明装置は、本実施形態にかかる有機EL素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどがあげられる(例えば、特開平10−335066号公報、特開2003−321546号公報、特開2004−281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクスおよび/またはセグメント方式などがあげられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
マトリクスでは、表示のための画素が格子状やモザイク状など二次元的に配置されており、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などがあげられる。
照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどがあげられる(例えば、特開2003-257621号公報、特開2003-277741号公報、特開2004-119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式が蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本実施形態に係る発光素子を用いたバックライトは薄型で軽量が特徴になる。
3−2.その他の有機デバイス
本発明に係る多環芳香族化合物は、上述した有機電界発光素子の他に、有機電界効果トランジスタまたは有機薄膜太陽電池などの作製に用いることができる。
有機電界効果トランジスタは、電圧入力によって発生させた電界により電流を制御するトランジスタのことであり、ソース電極とドレイン電極の他にゲート電極が設けられている。ゲート電極に電圧を印加すると電界が生じ、ソース電極とドレイン電極間を流れる電子(あるいはホール)の流れを任意にせき止めて電流を制御することができるトランジスタである。電界効果トランジスタは、単なるトランジスタ(バイポーラトランジスタ)に比べて小型化が容易であり、集積回路などを構成する素子としてよく用いられている。
有機電界効果トランジスタの構造は、通常、本発明に係る多環芳香族化合物を用いて形成される有機半導体活性層に接してソース電極およびドレイン電極が設けられており、さらに有機半導体活性層に接した絶縁層(誘電体層)を挟んでゲート電極が設けられていればよい。その素子構造としては、例えば以下の構造があげられる。
(1)基板/ゲート電極/絶縁体層/ソース電極・ドレイン電極/有機半導体活性層
(2)基板/ゲート電極/絶縁体層/有機半導体活性層/ソース電極・ドレイン電極
(3)基板/有機半導体活性層/ソース電極・ドレイン電極/絶縁体層/ゲート電極
(4)基板/ソース電極・ドレイン電極/有機半導体活性層/絶縁体層/ゲート電極
このように構成された有機電界効果トランジスタは、アクティブマトリックス駆動方式の液晶ディスプレイや有機エレクトロルミネッセンスディスプレイの画素駆動スイッチング素子などとして適用できる。
有機薄膜太陽電池は、ガラスなどの透明基板上にITOなどの陽極、ホール輸送層、光電変換層、電子輸送層、陰極が積層された構造を有する。光電変換層は陽極側にp型半導体層を有し、陰極側にn型半導体層を有している。本発明に係る多環芳香族化合物は、その物性に応じて、ホール輸送層、p型半導体層、n型半導体層、電子輸送層の材料として用いることが可能である。本発明に係る多環芳香族化合物は、有機薄膜太陽電池においてホール輸送材料や電子輸送材料として機能しうる。有機薄膜太陽電池は、上記の他にホールブロック層、電子ブロック層、電子注入層、ホール注入層、平滑化層などを適宜備えていてもよい。有機薄膜太陽電池には、有機薄膜太陽電池に用いられる既知の材料を適宜選択して組み合わせて用いることができる。
以下、実施例により本発明をさらに具体的に説明していくが、本発明はこれらに限定されない。
合成例(1):化合物(D−1)の合成
窒素雰囲気下、フラスコにX−1(40g)、X−2(36g)、パラジウム触媒としてジクロロビス[(ジ−t−ブチル(4−ジメチルアミノフェニル)ホスフィノ)パラジウム(Pd−132、0.78g)、リン酸三カリウム(75g)、トルエン(500mL)、t−ブチルアルコール(50mL)および水(50mL)を入れて80℃で30分加熱した。反応後、水を加えて有機層を分液抽出した後に、シリカゲルカラムクロマトグラフィー(展開液:トルエン)で精製することでX−3を49g得た。
窒素雰囲気下、X−3(32g)、1−ブロモ−4−t−ブチルベンゼン(23g)、Pd−132(0.75g)、ナトリウム−t−ブトキシド(15g)およびキシレン(200mL)をフラスコに入れて120℃で30分加熱した。反応後、水を加えて有機層を分液抽出した後に、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/1)で精製することでX−4を46g得た。
窒素雰囲気下、X−4(15g)、X−5(16g)、Pd−132(0.24g)、ナトリウム−t−ブトキシド(5.0g)およびキシレン(70mL)を入れ、120℃で1時間加熱した。反応後、水を加えて有機層を分液抽出した後に、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/1)で精製することでX−6を21g得た。
窒素囲気下、X−6(21g)およびt−ブチルベンゼン(130mL)をフラスコに入れて0℃に冷却した後に、t−ブチルリチウム/ペンタン溶液(1.61M、40mL)を加えた後に70℃で30分加熱した。60℃で低沸を除去し、−50℃に冷却した後に三臭化ホウ素(19.1g)を加えた。0℃に昇温してN,N−ジイソプロピルエチルアミン(6.6g)を加えた後に100℃で1時間加熱した。反応後、反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加え分液した後、溶媒を減圧留去しヘプタンで洗浄した。次いで、シリカゲルカラム(溶離液:トルエン/ヘプタン=1/1)で精製し、更に再沈殿することで式(D−1)で表される化合物を5.3g得た。
NMR測定により得られた化合物の構造を確認した。
1H−NMR(CDCl3):δ=1.4(s、18H)、1.5(s、9H)、1.5(s、9H)、6.1(d、1H),6,2(d、1H)、6.7(d、1H),6.8(d、1H),7.2〜7.3(m、11H)、7.4(d、2H)、7.5(d、2H)、7.6〜7.7(m、3H)、7.7(d、1H)、8.9(d、1H)、8.9(d、1H)
合成例(2):化合物(D−2)の合成
窒素雰囲気下、X−4(15g)、X−7(16g)、Pd−132(0.24g)、ナトリウム−t−ブトキシド(5.0g)およびキシレン(70mL)を入れ、120℃で1時間加熱した。反応後、水を加えて有機層を分液抽出した後に、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/1)で精製することでX−8を24g得た。
窒素囲気下、X−8(23g)およびt−ブチルベンゼン(140mL)をフラスコに入れて0℃に冷却した後に、t−ブチルリチウム/ペンタン溶液(1.61M、43mL)を加えた後に70℃で30分加熱した。60℃で低沸を除去し、−50℃に冷却した後に三臭化ホウ素(20.6g)を加えた。0℃に昇温してN,N−ジイソプロピルエチルアミン(7.1g)を加えた後に100℃で1時間加熱した。反応後、反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加え分液した後、溶媒を減圧留去しヘプタンで洗浄した。次いで、シリカゲルカラム(溶離液:トルエン/ヘプタン=1/1)で精製し、更に再沈殿することで式(D−2)で表される化合物を6.6g得た。
NMR測定により得られた化合物の構造を確認した。
1H−NMR(CDCl3):δ=1.4(s、9H)、1.4(s、9H)、1.5(s、9H)、1.5(s、9H)、2,2(s、3H)、5.9(s、1H),6.1(s、1H)、6.7(d、1H)、6.7(d、1H)、7.2〜7.3(m、10H)、7.4(d、2H)、7.5(m、2H)、7.6〜7.7(m、3H),7.7(d、1H)、8.9(d、1H),8.9(d、1H)
合成例(3):化合物(D−73)の合成
窒素雰囲気下、フラスコにX−1(39g)、X−9(51g)、Pd−132(1.2g)、リン酸三カリウム(73g)、トルエン(350mL)、t−ブチルアルコール(50mL)および水(50mL)を入れて80℃で1時間加熱した。反応後、水を加えて有機層を分液抽出した後に、シリカゲルカラムクロマトグラフィー(展開液:トルエン)で精製することでX−10を36g得た。
窒素雰囲気下、X−10(22g)、1−ブロモ−4−t−ブチルベンゼン(17g)、Pd−132(0.55g)、ナトリウム−t−ブトキシド(11g)およびキシレン(160mL)をフラスコに入れて120℃で30分加熱した。反応後、水を加えて有機層を分液抽出した後に、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/1)で精製することでX−11を24g得た。
窒素雰囲気下、X−5(12g)、X−11(12g)、Pd−132(0.19g)、ナトリウム−t−ブトキシド(3.9g)およびキシレン(60mL)を入れ、120℃で1時間加熱した。反応後、水を加えて有機層を分液抽出した後に、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/1)で精製することでX−12を21g得た。
窒素囲気下、X−12(23g)およびt−ブチルベンゼン(120mL)をフラスコに入れて0℃に冷却した後に、t−ブチルリチウム/ペンタン溶液(1.61M、43mL)を加えた後に70℃で30分加熱した。60℃で低沸を除去し、−50℃に冷却した後に三臭化ホウ素(20.8g)を加えた。0℃に昇温してN,N−ジイソプロピルエチルアミン(7.2g)を加えた後に100℃で1時間加熱した。反応後、反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加え分液した後、溶媒を減圧留去しヘプタンで洗浄した。次いで、シリカゲルカラム(溶離液:トルエン/ヘプタン=1/1)で精製し、更に再沈殿することで式(D−73)で表される化合物を7.0g得た。
NMR測定により得られた化合物の構造を確認した。
1H−NMR(CDCl3):δ=1.1〜1.3(m、5H)、1.4(s、9H),1.5(s、9H),1.5(s、9H)、1.5(s、9H)、1.6〜1.7(m、5H),2.2〜2.3(m、1H)、6.1(d、1H),6.2(d、1H),6.7(d、1H),6.8(d、1H),6.8(d、2H)、7.1(d、2H),7.2〜7.3(m、4H),7.5(dd、1H),7.5(dd、1H)、7.6(dd、1H)、7.7(s、2H)、7.7(m、1H)、8.9(d、1H)、8.9(d、1H).
合成例(4):化合物(D−74)の合成
窒素雰囲気下、X−11(12g)、X−7(12.6g)、Pd−132(0.19g)、ナトリウム−t−ブトキシド(3.9g)およびキシレン(60mL)を入れ、120℃で1時間加熱した。反応後、水を加えて有機層を分液抽出した後に、シリカゲルカラムクロマトグラフィー(展開液:トルエン/ヘプタン=1/1)で精製することでX−12を21g得た。
窒素囲気下、X−12(21g)およびt−ブチルベンゼン(110mL)をフラスコに入れて0℃に冷却した後に、t−ブチルリチウム/ペンタン溶液(1.61M、38.7mL)を加えた後に70℃で30分加熱した。60℃で低沸を除去し、−50℃に冷却した後に三臭化ホウ素(18.7g)を加えた。0℃に昇温してN,N−ジイソプロピルエチルアミン(6.4g)を加えた後に100℃で1時間加熱した。反応後、反応液を室温まで冷却し、氷浴で冷やした酢酸ナトリウム水溶液、次いで酢酸エチルを加え分液した後、溶媒を減圧留去しヘプタンで洗浄した。次いで、シリカゲルカラム(溶離液:トルエン/ヘプタン=1/1)で精製し、更に再沈殿することで式(D−74)で表される化合物を5.3g得た。
NMR測定により得られた化合物の構造を確認した。
1H−NMR(CDCl3):δ=1.1〜1.3(m、5H)、1.4(m、9H),1.5(m、9H),1.5(m、9H),1.5(m、9H)、1.6〜1.7(m、5H)、2.2(s、3H)、2.2〜2.3(m、1H)、5.9(m、1H),6.1(s、1H),6.7(d、1H),6.7(d、1H),6.8(d、2H)、7.1(d、2H)、7.2(m、3H)、7.4(dd、1H)、7.5(dd、1H),7.6(dd、1H)、7.7(s、2H)、7.7(m、1H)、8.9(d、1H)、8.9(d、1H)
合成例(5):化合物(D−162)の合成
合成例(1)と同様の方法を用いて、化合物(X−13)を用いて式(D−162)で表される化合物を得た。
EI−MS:m/z=1021.
合成例(6): 化合物(D−165)の合成
合成例(1)と同様の方法を用いて、化合物(X−14)を用いて式(D−165)で表される化合物を得た。
EI−MS:m/z=1073.
合成例(7): 化合物(D−170)の合成
合成例(1)と同様の方法を用いて、化合物(X−16)を用いて式(D−170)で表される化合物を得た。
EI−MS:m/z=1134.
合成例(8): 化合物(D−174)の合成
合成例(1)と同様の方法を用いて、化合物(X−17)を用いて式(D−174)で表される化合物を得た。
EI−MS:m/z=1055.
<蒸着型有機EL素子の評価>
合成した各化合物を利用して有機EL素子を作製し、1000cd/m2発光時の特性である電圧(V)、発光波長(nm)、外部量子効率(%)を測定し、次に10mA/cm2の電流密度で定電流駆動した際の初期輝度の90%以上の輝度を保持する時間を測定する。
発光素子の量子効率には、内部量子効率と外部量子効率とがあるが、内部量子効率は、発光素子の発光層に電子(または正孔)として注入される外部エネルギーが純粋に光子に変換される割合を示している。一方、外部量子効率は、この光子が発光素子の外部にまで放出された量に基づいて算出され、発光層において発生した光子は、その一部が発光素子の内部で吸収されたりまたは反射され続けたりして、発光素子の外部に放出されないため、外部量子効率は内部量子効率よりも低くなる。
外部量子効率の測定方法は次の通りである。アドバンテスト社製電圧/電流発生器R6144を用いて、素子の輝度が1000cd/m2になる電圧を印加して素子を発光させた。TOPCON社製分光放射輝度計SR−3ARを用いて、発光面に対して垂直方向から可視光領域の分光放射輝度を測定した。発光面が完全拡散面であると仮定して、測定した各波長成分の分光放射輝度の値を波長エネルギーで割ってπを掛けた数値が各波長におけるフォトン数である。次いで、観測した全波長領域でフォトン数を積算し、素子から放出された全フォトン数とした。印加電流値を素電荷で割った数値を素子へ注入したキャリア数として、素子から放出された全フォトン数を素子へ注入したキャリア数で割った数値が外部量子効率である。
各実施例および比較例に係る有機EL素子における各層の材料構成を下記表1に示す。
表1において、「HI」はN4,N4'−ジフェニル−N4,N4'−ビス(9−フェニル−9H−カルバゾール−3−イル)−[1,1'−ビフェニル]−4,4'−ジアミンであり、「HAT−CN」は1,4,5,8,9,12−ヘキサアザトリフェニレンヘキサカルボニトリルであり、「HT−1」はN−([1,1'−ビフェニル]−4−イル)−9,9−ジメチル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9H−フルオレン−2−アミンであり、「HT−2」はN,N−ビス(4−(ジベンゾ[b,d]フラン−4−イル)フェニル)−[1,1':4',1"−テルフェニル]−4−アミンであり、「ET−1」は、9,9'−[(5−(6−(1,1'−ビフェニル)−4−イル)−2−フェニルピリミジン−4−イル)−1,3−フェニレン]ビス(9H−カルバゾール)であり、「ET−2」は5',5' ' '−(2−フェニルアントラセン−9,10−ジイル)ビス(5−メチル−2,2'−ビピリジン)である。「Liq」、と共に以下に化学構造を示す。
スパッタリングにより180nmの厚さに成膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HI、HAT−CN、HT−1、HT−2、化合物(3−357)、化合物(D−1)、ET−1およびET−2をそれぞれ入れたモリブデン製蒸着用ボート、Liq、LiFおよびアルミニウムをそれぞれ入れた窒化アルミニウム製蒸着用ボートを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成する。真空槽を5×10-4Paまで減圧し、まず、HIを加熱して膜厚40nmになるように蒸着し、次に、HAT−CNを加熱して膜厚5nmになるように蒸着し、次に、HT−1を加熱して膜厚45nmになるように蒸着し、次に、HT−2を加熱して膜厚10nmになるように蒸着して、4層からなる正孔層を形成した。次に、化合物(3−357)と化合物(D−1)を同時に加熱して膜厚25nmになるように蒸着して発光層を形成した。化合物(3−357)と化合物(D−1)の質量比がおよそ98対2になるように蒸着速度を調節した。さらに、ET−1を加熱して膜厚5nmになるように蒸着し、次に、ET−2とLiqを同時に加熱して膜厚25nmになるように蒸着して、2層からなる電子層を形成した。ET−2とLiqの質量比がおよそ50対50になるように蒸着速度を調節した。各層の蒸着速度は0.01〜1nm/秒であった。その後、LiFを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成し、実施例1の有機EL素子を得た。
実施例2〜9および比較例1〜5についても表1に示す材料を用いて同様に有機EL素子を作製した。
ITO電極を陽極、LiF/アルミニウム電極を陰極として直流電圧を印加し、1000cd/m2発光時の特性を測定し、また、初期輝度の90%以上の輝度を保持する時間を測定した。
結果を表2に示す。
<塗布型有機EL素子の評価>
次に、有機層を塗布形成して得られる有機EL素子について説明する。
<高分子ホスト化合物:SPH−101の合成>
国際公開第2015/008851号に記載の方法に従い、SPH−101を合成した。M1の隣にはM2またはM3が結合した共重合体が得られ、仕込み比より各ユニットは50:26:24(モル比)であると推測される。
式中、Bpinはピナコラートボリルを表す。
<高分子正孔輸送化合物:XLP−101の合成>
特開2018−61028号公報に記載の方法に従い、XLP−101を合成した。M4、M5およびM6が結合した共重合体が得られ、仕込み比より各ユニットは40:10:50(モル比)であると推測される。下記式中、Bpinはピナコラートボリルを表す。
<実施例10〜18>
各層を形成する材料の塗布用溶液を調製して塗布型有機EL素子を作製する。
<実施例10〜12の有機EL素子の作製>
有機EL素子における、各層の材料構成を表3に示す。
表3における、「ET−A」の構造を以下に示す。
<発光層形成用組成物(1)の調製>
下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(1)を調製する。調製した発光層形成用組成物をガラス基板にスピンコートし、減圧下で加熱乾燥することによって、膜欠陥がなく平滑性に優れた塗布膜が得られる。
化合物(D−1) 0.04 質量%
SPH−101 1.96 質量%
キシレン 69.00 質量%
デカリン 29.00 質量%
<PEDOT:PSS溶液>
市販のPEDOT:PSS溶液(Clevios(TM) P VP AI4083、PEDOT:PSSの水分散液、Heraeus Holdings社製)を用いる。
<OTPD溶液の調製>
OTPD(LT-N159、Luminescence Technology Corp社製)およびIK−2(光カチオン重合開始剤、サンアプロ社製)をトルエンに溶解させ、OTPD濃度0.7質量%、IK−2濃度0.007質量%のOTPD溶液を調製する。
<XLP−101溶液の調製>
キシレンにXLP−101を0.6質量%の濃度で溶解させ、0.7質量%XLP−101溶液を調製する。
<PCz溶液の調製>
PCz(ポリビニルカルバゾール)をジクロロベンゼンに溶解させ、0.7質量%PCz溶液を調製する。
<実施例10>
ITOが150nmの厚さに蒸着されたガラス基板上に、PEDOT:PSS溶液をスピンコートし、200℃のホットプレート上で1時間焼成することで、膜厚40nmのPEDOT:PSS膜を成膜する(正孔注入層)。次いで、OTPD溶液をスピンコートし、80℃のホットプレート上で10分間乾燥した後、露光機で露光強度100mJ/cm2で露光し、100℃のホットプレート上で1時間焼成することで、溶液に不溶な膜厚30nmのOTPD膜を成膜する(正孔輸送層)。次いで、発光層形成用組成物(1)をスピンコートし、120℃のホットプレート上で1時間焼成することで、膜厚20nmの発光層を成膜する。
作製した多層膜を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、ET1を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボート、アルミニウムを入れたタングステン製蒸着用ボートを装着する。真空槽を5×10-4Paまで減圧した後、ET−Aを加熱して膜厚30nmになるように蒸着して電子輸送層を形成する。電子輸送層を形成する際の蒸着速度は1nm/秒とする。その後、LiFを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着する。次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成する。このようにして有機EL素子を得る。
<実施例11>
実施例10と同様の方法で有機EL素子を得る。なお、正孔輸送層は、XLP−101溶液をスピンコートし、200℃のホットプレート上で1時間焼成することで、膜厚30nmの膜を成膜する。
<実施例12>
実施例10と同様の方法で有機EL素子を得る。なお、正孔輸送層は、PCz溶液をスピンコートし、120℃のホットプレート上で1時間焼成することで、膜厚30nmの膜を成膜する。
<実施例13〜15の有機EL素子の作製>
有機EL素子における、各層の材料構成を表4に示す。
<発光層形成用組成物(2)〜(4)の調製>
下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(2)を調製する。
化合物(D−1) 0.02 質量%
mCBP 1.98 質量%
トルエン 98.00 質量%
下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(3)を調製する。
化合物(D−1) 0.02 質量%
SPH−101 1.98 質量%
キシレン 98.00 質量%
下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(4)を調製する。
化合物(D−1) 0.02 質量%
DOBNA 1.98 質量%
トルエン 98.00 質量%
表4において、「mCBP」は3,3'−ビス(N−カルバゾリル)−1,1'−ビフェニルであり、「DOBNA」は3,11−ジ−o−トリル−5,9−ジオキサ−13b−ボラナフト[3,2,1−de]アントラセンであり、「TSPO1」はジフェニル[4−(トリフェニルシリル)フェニル]ホスフィンオキサイドである。以下に化学構造を示す。
<実施例13>
ITOが45nmの厚さに成膜されたガラス基板上に、ND−3202(日産化学工業製)溶液をスピンコートした後、大気雰囲気下において、50℃、3分間加熱し、更に230℃、15分間加熱することで、膜厚50nmのND−3202膜を成膜する(正孔注入層)。次いで、XLP−101溶液をスピンコートし、窒素ガス雰囲気下において、ホットプレート上で200℃、30分間加熱させることで、膜厚20nmのXLP−101膜を成膜する(正孔輸送層)。次いで、発光層形成用組成物(2)をスピンコートし、窒素ガス雰囲気下において、130℃、10分間加熱させることで、20nmの発光層を成膜する。
作製した多層膜を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、TSPO1を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボート、アルミニウムを入れたタングステン製蒸着用ボートを装着する。真空槽を5×10-4Paまで減圧した後、TSPO1を加熱して膜厚30nmになるように蒸着して電子輸送層を形成する。電子輸送層を形成する際の蒸着速度は1nm/秒とする。その後、LiFを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着する。次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成する。このようにして有機EL素子を得る。
<実施例14および15>
発光層形成用組成物(3)または(4)を用いて、実施例13と同様の方法で有機EL素子を得る。
<実施例16〜18の有機EL素子の作製>
有機EL素子における、各層の材料構成を表5に示す。
<発光層形成用組成物(5)〜(7)の調製>
下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(5)を調製する。
化合物(D−1) 0.02 質量%
2PXZ−TAZ 0.18 質量%
mCBP 1.80 質量%
トルエン 98.00 質量%
下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(6)を調製する。
化合物(D−1) 0.02 質量%
2PXZ−TAZ 0.18 質量%
SPH−101 1.80 質量%
キシレン 98.00 質量%
下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(7)を調製する。
化合物(D−1) 0.02 質量%
2PXZ−TAZ 0.18 質量%
DOBNA 1.80 質量%
トルエン 98.00 質量%
表5において、「2PXZ−TAZ」は10,10'−((4−フェニル−4H−1,2,4−トリアゾール−3,5−ジイル)ビス(4,1−フェニルの))ビス(10H−フェノキサジン)である。以下に化学構造を示す。
<実施例16>
ITOが45nmの厚さに成膜されたガラス基板上に、ND−3202(日産化学工業製)溶液をスピンコートした後、大気雰囲気下において、50℃、3分間加熱し、更に230℃、15分間加熱することで、膜厚50nmのND−3202膜を成膜する(正孔注入層)。次いで、XLP−101溶液をスピンコートし、窒素ガス雰囲気下において、ホットプレート上で200℃、30分間加熱させることで、膜厚20nmのXLP−101膜を成膜する(正孔輸送層)。次いで、発光層形成用組成物(5)をスピンコートし、窒素ガス雰囲気下において、130℃、10分間加熱させることで、20nmの発光層を成膜する。
作製した多層膜を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、TSPO1を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボート、アルミニウムを入れたタングステン製蒸着用ボートを装着する。真空槽を5×10-4Paまで減圧した後、TSPO1を加熱して膜厚30nmになるように蒸着して電子輸送層を形成する。電子輸送層を形成する際の蒸着速度は1nm/秒とする。その後、LiFを加熱して膜厚1nmになるように0.01〜0.1nm/秒の蒸着速度で蒸着する。次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成する。このようにして有機EL素子を得る。
<実施例17および18>
発光層形成用組成物(6)または(7)を用いて、実施例16と同様の方法で有機EL素子を得る。
本発明の好ましい態様によれば、式(1)で表される、分子内に嵩高い置換基を有する多環芳香族化合物を有機デバイス用材料として用いることで、例えば量子効率が優れた有機EL素子を提供することができる。特に、使用濃度が比較的高くても濃度消光を抑えることができるため、デバイス製造プロセスにおいて有利である。
100 有機電界発光素子
101 基板
102 陽極
103 正孔注入層
104 正孔輸送層
105 発光層
106 電子輸送層
107 電子注入層
108 陰極
110 基板
120 電極
130 塗膜
140 塗膜
150 発光層
200 バンク
300 インクジェットヘッド
310 インクの液滴

Claims (31)

  1. 下記式(1)で表される多環芳香族化合物、または下記式(1)で表される構造を複数有する多環芳香族化合物の多量体;
    式(1)中、
    A環、B環、C環およびD環は、それぞれ独立して、アリール環またはヘテロアリール環であり、これらの環における少なくとも1つの水素は置換されていてもよく、
    B環およびC環は単結合または連結基を介して結合していてもよく、
    D環は単結合または連結基を介して前記A環およびC環からなる群より選択される少なくとも1つの環と結合していてもよく、
    1は、B、P、P=O、P=S、Al、Ga、As、Si−RまたはGe−Rであり、前記Si−RおよびGe−RのRは、アリール、アルキルまたはシクロアルキルであり、
    Xは、>O、>N−R、>Si(−R)2、>C(−R)2、>Sまたは>Seであり、前記>N−RのRは、置換されていてもよいアリール(ただし置換基としてアミノ基を除く)、置換されていてもよいヘテロアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、前記>Si(−R)2のRは、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、前記>C(−R)2のRは、水素、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、2つのRは互いに環を形成していてもよく、また、前記>N−R、>Si(−R)2および>C(−R)2の少なくとも1つにおけるRは連結基または単結合により前記A環およびB環からなる群より選択される少なくとも1つの環と結合していてもよく、
    Zはアリール環、ヘテロアリール環およびシクロアルキル環からなる群より選択される環が2つ以上連結されてなる基であり、かつ
    ZおよびNは、D環を構成する炭素原子であって互いに隣接する炭素原子にそれぞれ直接結合しており、
    式(1)で表される化合物または構造における、アリール環およびヘテロアリール環からなる群より選択される少なくとも1つは、少なくとも1つのシクロアルカンで縮合されていてもよく、当該シクロアルカンにおける少なくとも1つの水素は置換されていてもよく、当該シクロアルカンにおける少なくとも1つの−CH2−は−O−で置換されていてもよく、
    式(1)で表される化合物または構造における少なくとも1つの水素は、重水素、シアノまたはハロゲンで置換されていてもよい。
  2. 下記式(2)で表される多環芳香族化合物、または下記式(2)で表される構造を複数有する多環芳香族化合物の多量体である請求項1に記載の多環芳香族化合物または多量体;
    式(2)中、
    1〜R3、R4〜R7、R8〜R11およびR12〜R15は、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、また、R1〜R3、R4〜R7、R8〜R11およびR12〜R15のうちの隣接する基同士が結合してa環、b環、c環またはd環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素はアリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシで置換されていてもよく、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
    1は−O−または>N−Rであり、前記>N−RのRは炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルであり、これらにおける少なくとも1つの水素は炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルで置換されていてもよく、また、前記>N−RのRは−O−、−S−、−C(−R)2−または単結合により前記a環および/またはb環と結合していてもよく、前記−C(−R)2−のRは炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルであり、2つのRは互いに環を形成していてもよく、
    Zは式(Z1)で表される置換基であり、
    式(Z1)において、Yはシクロアルカンで縮合されていてもよいアリールあるいはシクロアルキルであり、式(Z1)における少なくとも1つの水素はアルキルで置換されていてもよく、*は結合位置を示し、
    式(2)で表される化合物における少なくとも1つの水素はハロゲンまたは重水素で置換されていてもよい。
  3. 1〜R3、R4〜R7、R8〜R11およびR12〜R15は、それぞれ独立して、水素、炭素数6〜30のアリール、炭素数2〜30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6〜12のアリール)、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数1〜6のアルコキシまたは炭素数6〜12のアリールオキシであり、これらにおける少なくとも1つの水素は炭素数6〜12のアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルで置換されていてもよく、また、R1〜R3、R4〜R7、R8〜R11およびR12〜R15のうちの隣接する基同士が結合してa環、b環、c環またはd環と共に炭素数9〜16のアリール環または炭素数6〜15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は炭素数6〜30のアリール、炭素数2〜30のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6〜12のアリール)、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数1〜6のアルコキシまたは炭素数6〜12のアリールオキシで置換されていてもよく、
    1は>N−Rであり、前記>N−RのRは炭素数6〜12のアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルであり、これらにおける少なくとも1つの水素は炭素数6〜12のアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルで置換されていてもよく、
    式(Z1)におけるYはシクロアルカンで縮合されていてもよい炭素数6〜12のアリールあるいは炭素数3〜14のシクロアルキルシクロアルキルであり、式(Z1)における少なくとも1つの水素は炭素数1〜6のアルキルで置換されていてもよい、請求項2に記載の多環芳香族化合物または多量体。
  4. 1〜R3、R4〜R7、R8〜R11およびR12〜R15は、それぞれ独立して、水素、炭素数6〜16のアリール、炭素数2〜20のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6〜12のアリール)、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数1〜6のアルコキシまたは炭素数6〜12のアリールオキシであり、また、R1〜R3、R4〜R7、R8〜R11およびR12〜R15のうちの隣接する基同士が結合してa環、b環、c環またはd環と共に炭素数9〜16のアリール環または炭素数6〜15のヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は炭素数6〜16のアリール、炭素数2〜20のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6〜12のアリール)、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数1〜6のアルコキシまたは炭素数6〜12のアリールオキシで置換されていてもよく、
    1は>N−Rであり、前記>N−RのRは炭素数6〜12のアリール、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、または、炭素数1〜6のアルキルもしくは炭素数3〜14のシクロアルキルで置換された炭素数6〜12のアリールであり、
    式(Z1)におけるYはシクロアルカンで縮合されていてもよい炭素数6〜12のアリールあるいは炭素数3〜14のシクロアルキルシクロアルキルであり、式(Z1)における少なくとも1つの水素は炭素数1〜6のアルキルで置換されていてもよい、請求項2に記載の多環芳香族化合物または多量体。
  5. 1〜R3、R4〜R7、R8〜R11およびR12〜R15は、それぞれ独立して、水素、炭素数6〜16のアリール、炭素数2〜20のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6〜12のアリール)、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数1〜6のアルコキシまたは炭素数6〜12のアリールオキシであり、また、R1〜R3、R4〜R7、R8〜R11およびR12〜R15のうちの隣接する基同士が結合してa環、b環、c環またはd環と共にナフタレン環、フルオレン環またはカルバゾール環を形成していてもよく、形成された環における少なくとも1つの水素は炭素数6〜16のアリール、炭素数2〜20のヘテロアリール、ジアリールアミノ(ただしアリールは炭素数6〜12のアリール)、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、炭素数1〜6のアルコキシまたは炭素数6〜12のアリールオキシで置換されていてもよく、
    1は>N−Rであり、前記>N−RのRは炭素数6〜12のアリール、炭素数1〜6のアルキル、炭素数3〜14のシクロアルキル、または、炭素数1〜6のアルキルもしくは炭素数3〜14のシクロアルキルで置換された炭素数6〜12のアリールであり、
    式(Z1)におけるYはシクロアルカンで縮合されていてもよい炭素数6〜12のアリールあるいは炭素数3〜14のシクロアルキルシクロアルキルであり、式(Z1)における少なくとも1つの水素は炭素数1〜6のアルキルで置換されていてもよい、請求項2に記載の多環芳香族化合物または多量体。
  6. 式(Z1)におけるYが炭素数1〜6のアルキルで置換されていてもよいフェニル、シクロヘキシルあるいはアダマンチルである、
    請求項2〜5のいずれか一項に記載の多環芳香族化合物または多量体。
  7. 式(2)で表される多環芳香族化合物が下記いずれかの構造式で表される化合物である、請求項2に記載の多環芳香族化合物または多量体;
    上記構造式中、Meはメチル、t−Buはtブチルである。
  8. 下記式(2−a−1)で表される多環芳香族化合物、または下記式(2−a−1)で表される構造を複数有する多環芳香族化合物の多量体である請求項1に記載の多環芳香族化合物または多量体;
    式(2−a−1)中、
    1、R2、R3、R4、R5、R6、R7、R12、R13、R14、R15はそれぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
    8b、R9b、R10b、R11bは水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、アルキル、シクロアルキル、アルコキシまたはアリールオキシであり、これらにおける少なくとも1つの水素はアリール、ヘテロアリール、アルキルまたはシクロアルキルで置換されていてもよく、
    Xは、>O、>S、>N−R、または>C(−R)2であり、前記>N−RのRは置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換されていてもよいアルキル、または置換されていてもよいシクロアルキルであり、前記>C(−R)2のRは、それぞれ独立して、水素、アルキルもしくはシクロアルキルで置換されていてもよいアリール、アルキルもしくはシクロアルキルで置換されていてもよいヘテロアリール、アルキル、またはシクロアルキルであり、前記>C(−R)2における2つのRは互いに環を形成していてもよく、
    1は−O−または>N−Rであり、前記>N−RのRは炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルであり、これらにおける少なくとも1つの水素は炭素数6〜12のアリール、炭素数2〜15のヘテロアリール、炭素数1〜6のアルキルまたは炭素数3〜14のシクロアルキルで置換されていてもよく、
    Zは式(Z1)で表される置換基であり、
    式(Z1)において、Yはシクロアルカンで縮合されていてもよいアリールあるいはシクロアルキルであり、式(Z1)における少なくとも1つの水素はアルキルで置換されていてもよく、*は結合位置を示し、
    式(2−a−1)で表される化合物における少なくとも1つの水素はハロゲンまたは重水素で置換されていてもよい。
  9. 式(2−a−1)で表される多環芳香族化合物が下記いずれかの構造式で表される化合物である、請求項8に記載の多環芳香族化合物または多量体;
    上記構造式中、Meはメチル、t−Buはtブチルである。
  10. 請求項1〜9のいずれか一項に記載の多環芳香族化合物または多量体に反応性置換基が置換した、反応性化合物。
  11. 請求項10に記載の反応性化合物をモノマーとして高分子化させた高分子化合物、または、当該高分子化合物をさらに架橋させた高分子架橋体。
  12. 主鎖型高分子に請求項10に記載の反応性化合物を置換させたペンダント型高分子化合物、または、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体。
  13. 請求項1〜9のいずれか一項に記載の多環芳香族化合物または多量体を含有する、有機デバイス用材料。
  14. 請求項10に記載の反応性化合物を含有する、有機デバイス用材料。
  15. 請求項11に記載の高分子化合物または高分子架橋体を含有する、有機デバイス用材料。
  16. 請求項12に記載のペンダント型高分子化合物またはペンダント型高分子架橋体を含有する、有機デバイス用材料。
  17. 有機電界発光素子用材料、有機電界効果トランジスタ用材料または有機薄膜太陽電池用材料である、請求項13〜16のいずれか一項に記載の有機デバイス用材料。
  18. 前記有機電界発光素子用材料が発光層用材料である、請求項17に記載の有機デバイス用材料。
  19. 請求項1〜9のいずれか一項に記載の多環芳香族化合物または多量体と、有機溶媒とを含む、組成物。
  20. 請求項10に記載の反応性化合物と、有機溶媒とを含む、組成物。
  21. 主鎖型高分子と、請求項10に記載の反応性化合物と、有機溶媒とを含む、組成物。
  22. 請求項11に記載の高分子化合物または高分子架橋体と、有機溶媒とを含む、組成物。
  23. 請求項12に記載のペンダント型高分子化合物またはペンダント型高分子架橋体と、有機溶媒とを含む、組成物。
  24. 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項1〜9のいずれか一項に記載の多環芳香族化合物もしくは多量体、請求項10に記載の反応性化合物、請求項11に記載の高分子化合物もしくは高分子架橋体、または、請求項12に記載のペンダント型高分子化合物もしくはペンダント型高分子架橋体を含有する有機層とを有する、有機電界発光素子。
  25. 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項1〜9のいずれか一項に記載の多環芳香族化合物もしくは多量体、請求項10に記載の反応性化合物、請求項11に記載の高分子化合物もしくは高分子架橋体、または、請求項12に記載のペンダント型高分子化合物もしくはペンダント型高分子架橋体を含有する発光層とを有する、有機電界発光素子。
  26. 前記発光層が、ホストと、ドーパントとを含み、
    前記ドーパントが前記多環芳香族化合物もしくは多量体、前記反応性化合物、前記高分子化合物もしくは高分子架橋体、または前記ペンダント型高分子化合物もしくはペンダント型高分子架橋体を含む、請求項25に記載の有機電界発光素子。
  27. 前記ホストが、アントラセン系化合物、フルオレン系化合物またはジベンゾクリセン系化合物である、請求項26に記載の有機電界発光素子。
  28. 前記陰極と前記発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、アリールニトリル誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体、キノリノール系金属錯体、チアゾール誘導体、ベンゾチアゾール誘導体、シロール誘導体およびアゾリン誘導体からなる群から選択される少なくとも1つを含有する、請求項24〜27のいずれか一項に記載の有機電界発光素子。
  29. 前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項28に記載の有機電界発光素子。
  30. 前記一対の電極間に配置される正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層のうちの少なくとも1つの層を有し、該の少なくとも1つの層が、各層を形成し得る低分子化合物をモノマーとして高分子化させた高分子化合物、もしくは、当該高分子化合物をさらに架橋させた高分子架橋体、または、各層を形成し得る低分子化合物を主鎖型高分子と反応させたペンダント型高分子化合物、もしくは、当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体を含む、請求項24〜29のいずれか一項に記載の有機電界発光素子。
  31. 請求項24〜30のいずれか一項に記載の有機電界発光素子を備えた表示装置または照明装置。
JP2020142749A 2019-08-30 2020-08-26 多環芳香族化合物 Pending JP2021038206A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019158210 2019-08-30
JP2019158210 2019-08-30

Publications (1)

Publication Number Publication Date
JP2021038206A true JP2021038206A (ja) 2021-03-11

Family

ID=74848965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020142749A Pending JP2021038206A (ja) 2019-08-30 2020-08-26 多環芳香族化合物

Country Status (2)

Country Link
JP (1) JP2021038206A (ja)
KR (1) KR20210027179A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022140425A (ja) * 2021-03-12 2022-09-26 エスエフシー カンパニー リミテッド 多環化合物及びこれを用いた有機発光素子
JP2022140426A (ja) * 2021-03-12 2022-09-26 エスエフシー カンパニー リミテッド 多環化合物及びこれを用いた有機発光素子
JP2022542626A (ja) * 2019-07-31 2022-10-06 エルジー・ケム・リミテッド 多環化合物およびこれを含む有機発光素子
WO2022244971A1 (ko) * 2021-05-20 2022-11-24 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023273416A1 (zh) * 2021-07-01 2023-01-05 陕西莱特光电材料股份有限公司 有机化合物、有机电致发光器件和电子装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210067845A (ko) * 2019-11-29 2021-06-08 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR20220128254A (ko) * 2021-03-12 2022-09-20 에스에프씨 주식회사 유기발광소자
CN113201003A (zh) * 2021-05-08 2021-08-03 吉林奥来德光电材料股份有限公司 一种有机电致发光化合物及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636056B (zh) 2014-02-18 2018-09-21 學校法人關西學院 多環芳香族化合物及其製造方法、有機元件用材料及其應用
US11800785B2 (en) 2017-11-24 2023-10-24 Kwansei Gakuin Educational Foundation Material for organic device and organic electroluminescent device using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022542626A (ja) * 2019-07-31 2022-10-06 エルジー・ケム・リミテッド 多環化合物およびこれを含む有機発光素子
JP7248229B2 (ja) 2019-07-31 2023-03-29 エルジー・ケム・リミテッド 多環化合物およびこれを含む有機発光素子
JP2022140425A (ja) * 2021-03-12 2022-09-26 エスエフシー カンパニー リミテッド 多環化合物及びこれを用いた有機発光素子
JP2022140426A (ja) * 2021-03-12 2022-09-26 エスエフシー カンパニー リミテッド 多環化合物及びこれを用いた有機発光素子
JP7407852B2 (ja) 2021-03-12 2024-01-04 エスエフシー カンパニー リミテッド 多環化合物及びこれを用いた有機発光素子
JP7407853B2 (ja) 2021-03-12 2024-01-04 エスエフシー カンパニー リミテッド 多環化合物及びこれを用いた有機発光素子
WO2022244971A1 (ko) * 2021-05-20 2022-11-24 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023273416A1 (zh) * 2021-07-01 2023-01-05 陕西莱特光电材料股份有限公司 有机化合物、有机电致发光器件和电子装置

Also Published As

Publication number Publication date
KR20210027179A (ko) 2021-03-10

Similar Documents

Publication Publication Date Title
WO2020251049A1 (ja) 多環芳香族化合物
WO2020218079A1 (ja) シクロアルカン縮合多環芳香族化合物
WO2019198699A1 (ja) シクロアルキル置換多環芳香族化合物
JP7445923B2 (ja) ターシャリーアルキル置換多環芳香族化合物
JP2021038206A (ja) 多環芳香族化合物
JP6738063B2 (ja) シクロアルキル置換多環芳香族化合物
JP2021014446A (ja) アミノ置換多環芳香族化合物
JP2020147563A (ja) 多環芳香族化合物およびその多量体
JP7445927B2 (ja) 多環芳香族化合物
WO2020250700A1 (ja) 多環芳香族化合物
JP2022074041A (ja) 多環芳香族化合物
JP2021113188A (ja) 多環芳香族化合物
JP7376892B2 (ja) 多環芳香族化合物
JP2021063067A (ja) 多環芳香族化合物、有機デバイス用材料、有機電界発光素子、表示装置および照明装置
JP2021095342A (ja) 多環芳香族化合物
JP2021063074A (ja) シアノ置換多環芳香族化合物
JP2021086978A (ja) 有機電界発光素子
JP2022017207A (ja) 多環芳香族化合物
JP2023138328A (ja) 多環芳香族化合物
JP2021113160A (ja) 多環芳香族化合物
JP2022082867A (ja) 多環芳香族化合物
JP2023148087A (ja) 金属錯体
JP2023152686A (ja) 有機電界発光素子
KR20230041616A (ko) 다환 방향족 화합물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
JP2022191159A (ja) 多環芳香族化合物

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230726