JP2023148087A - 金属錯体 - Google Patents

金属錯体 Download PDF

Info

Publication number
JP2023148087A
JP2023148087A JP2022055942A JP2022055942A JP2023148087A JP 2023148087 A JP2023148087 A JP 2023148087A JP 2022055942 A JP2022055942 A JP 2022055942A JP 2022055942 A JP2022055942 A JP 2022055942A JP 2023148087 A JP2023148087 A JP 2023148087A
Authority
JP
Japan
Prior art keywords
ring
substituted
group
formula
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022055942A
Other languages
English (en)
Inventor
琢次 畠山
Takuji Hatakeyama
康平 諌山
Kohei Isayama
亮介 川角
Ryosuke Kawakado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kwansei Gakuin Educational Foundation
SK Materials JNC Co Ltd
Original Assignee
Kwansei Gakuin Educational Foundation
SK Materials JNC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kwansei Gakuin Educational Foundation, SK Materials JNC Co Ltd filed Critical Kwansei Gakuin Educational Foundation
Priority to JP2022055942A priority Critical patent/JP2023148087A/ja
Priority to KR1020230040567A priority patent/KR20230141579A/ko
Priority to CN202310309127.0A priority patent/CN116891505A/zh
Publication of JP2023148087A publication Critical patent/JP2023148087A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1414Unsaturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】有機EL素子等の有機デバイス用材料として有用な化合物を提供する。【解決手段】式(1)で表される金属錯体。TIFF2023148087000153.tif57170(A環、B環、C環およびD環は置換/無置換のアリール環または置換/無置換のヘテロアリール環;E環およびF環は置換/無置換の含窒素ヘテロ環カルベン;Xは独立してNまたはP;MはNi、Pd、またはPt;A環~F環のうち、結合している少なくとも1組の2つの環は追加の単結合または連結基で互いに結合していてもよく、式(1)における少なくとも1つの水素は重水素で置き換えられていてもよい。)【選択図】なし

Description

本発明は、金属錯体に関する。本発明はまた、上記金属錯体を用いた有機電界発光素子、有機電界効果トランジスタおよび有機薄膜太陽電池などの有機デバイス、並びに、表示装置および照明装置に関する。
従来、電界発光する発光素子を用いた表示装置は、省電力化や薄型化が可能なことから、種々研究され、さらに、有機材料から成る有機電界発光素子は、軽量化や大型化が容易なことから活発に検討されてきた。特に、光の三原色の一つである青色などの発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能(半導体や超電導体となる可能性を有する)を備えた有機材料の開発については、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。
有機電界発光素子は、陽極および陰極からなる一対の電極と、当該一対の電極間に配置され、有機化合物を含む一層または複数の層とからなる構造を有する。有機化合物を含む層には、発光層や、正孔、電子などの電荷を輸送または注入する電荷輸送/注入層などがあるが、これらの層に適当な種々の有機材料が開発されている。
その中で、特許文献1、2、3では、金属錯体が、有機電界発光素子等の材料として有用であることが開示されている。
米国特許第10749122号明細書 米国特許第11189806号明細書 欧州特許出願公開第3715353号明細書
上述のように、有機EL素子に用いられる材料としては種々の材料が開発されているが、有機EL素子用材料の選択肢を増やすために、従来とは異なる化合物からなる材料の開発が望まれている。特に、有機EL素子等の有機デバイスの性能をさらに向上させることができる材料が求められている。
本発明は有機EL素子等の有機デバイス用材料として有用な新規化合物を提供することを課題とする。
本発明者らは、上記課題を解決するため鋭意検討し、特許文献1、2、3に記載の化合物と同様に金属を含有する金属錯体において、より発光特性に優れる新規金属錯体の製造に成功した。また、この金属錯体を含有する層を一対の電極間に配置して有機EL素子を構成することにより、優れた有機EL素子が得られることを見出し、本発明を完成させた。すなわち本発明は、以下のような金属錯体、さらには以下のような金属錯体を含む有機デバイス用材料等を提供する。
<1> 下記式(1)で表される金属錯体;
Figure 2023148087000001
式(1)中、
A環、B環、C環およびD環はそれぞれ独立して、置換もしくは無置換のアリール環または置換もしくは無置換のヘテロアリール環であり、
E環およびF環は置換または無置換の含窒素ヘテロ環カルベンであり、
Xはそれぞれ独立してNまたはPであり、
MはNi、Pd、またはPtであり、
A環、B環、C環、D環、E環およびF環のうち、直接またはXを介して結合している少なくとも1組の2つの環は追加の単結合または連結基で互いに結合していてもよく、
式(1)における少なくとも1つの水素は重水素で置き換えられていてもよい。
<2> 下記式(2)で表される、<1>に記載の金属錯体;
Figure 2023148087000002
式(2)中、
Zはそれぞれ独立して、-C(-RZ)=または-N=であり、
Zは、それぞれ独立して、水素もしくは置換基群Zαから選択されるいずれかの置換基であるか、または
隣接する2つのRZが互いに結合してそれらが結合する炭素とともに置換基群Zαから選択される少なくとも1つの置換基を有していてもよいアリール環または置換基群Zαから選択される少なくとも1つの置換基を有していてもよいヘテロアリール環を形成しているか、または
隣接する1つまたは2つのRZが互いに結合して、2価または3価の置換基を形成しており、
少なくとも1つのZ=Zは>N-RZN、>O、>C(-RZC2、>Si(-RZI2、>S、または>Seであってもよく、RZN、RZC、RZIはそれぞれ独立して水素、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のアルキル、または置換もしくは無置換のシクロアルキルであり、2つのRZCは互いに結合して環を形成していてもよく、2つのRZIは互いに結合して環を形成していてもよく、
eは、それぞれ独立して、水素もしくは置換基群Zαから選択される置換基であるか、または
2つのReが互いに結合してそれらが結合する炭素とともに置換基群Zαから選択される少なくとも1つの置換基を有していてもよいアリール環または置換基群Zαから選択される少なくとも1つの置換基を有していてもよいヘテロアリール環を形成しており、
fは、それぞれ独立して、水素もしくは置換基群Zαから選択される置換基であるか、または
2つのRfが互いに結合してそれらが結合する炭素とともに置換基群Zαから選択される少なくとも1つの置換基を有していてもよいアリール環または置換基群Zαから選択される少なくとも1つの置換基を有していてもよいヘテロアリール環を形成しており、
式(2)における、アリール環およびヘテロアリール環からなる群より選択される少なくとも1つの環は、アルキレンの置換により、シクロアルカンとの縮合環を形成していてもよく、上記アルキレンは置換基を有していてもよく、上記アルキレンの少なくとも1つの-CH2-は-O-で置き換えられてもよく、
式(2)における少なくとも1つの水素は重水素で置き換えられていてもよく;
置換基群Zαは、
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアリール;
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいヘテロアリール;
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいジアリールアミノ(2つのアリールは互いに連結基を介して結合していてもよい);
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいジヘテロアリールアミノ(2つのヘテロアリールは互いに連結基を介して結合していてもよい);
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアリールヘテロアリールアミノ(アリールとヘテロアリールとは互いに連結基を介して結合していてもよい);
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい);
アリール、ヘテロアリール、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアルキル;
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいシクロアルキル;
アリール、ヘテロアリール、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアルコキシ;
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアリールオキシ、
置換シリル、
式(A30)で表される基、
シアノ、ならびに
ハロゲンからなり、
Figure 2023148087000003
式(A30)中、
Akは水素、置換もしくは無置換のアルキル、置換もしくは無置換のアルケニル、置換もしくは無置換のシクロアルキルまたは置換もしくは無置換のシクロアルケニルであり、当該アルキルおよびシクロアルキルにおける少なくとも1つの-CH2-は-O-または-S-で置換されていてもよく、
Akは、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のアルキルまたは置換もしくは無置換のシクロアルキルであり、RAkは連結基または単結合によりAkと結合していてもよく、*は結合位置である。
<3> MがPtである、<2>に記載の金属錯体。
<4> 置換基群Zαから選択される置換基がいずれも、アルキル、アルキルで置換されていてもよいフェニル、アルキルで置換されていてもよいジフェニルアミノ、アルキルで置換されていてもよいカルバゾリル、シアノ、またはフッ素である、<2>または<3>に記載の金属錯体。
<5> ReおよびRfがいずれも水素であるか、いずれもメチルであるか、または
2つのReおよび2つのRfがいずれも互いに結合してそれらが結合する炭素とともにベンゼン環を形成している、<2>~<4>のいずれかに記載の金属錯体。
<6> 下記いずれかの式で表される、<1>に記載の金属錯体;
Figure 2023148087000004
式中、Meはメチル、tBuはt-ブチルである。
<7> <1>~<6>のいずれかに記載の金属錯体に反応性置換基が置換した反応性化合物をモノマーとして高分子化させた数平均分子量2000~1.0×108の高分子化合物。
<8> <1>~<6>のいずれかに記載の金属錯体を含有する、有機デバイス用材料。
<9> 上記有機デバイス用材料が、有機電界発光素子用材料、有機電界効果トランジスタ用材料、有機薄膜太陽電池用材料、または波長変換フィルタ用材料である、<8>に記載の有機デバイス用材料。
<10> 陽極および陰極からなる一対の電極と該一対の電極間に配置される有機層とを有し、上記有機層が<1>~<6>のいずれかに記載の金属錯体を含有する、有機電界発光素子。
<11> 上記有機層が発光層である、<10>に記載の有機電界発光素子。
<12> <10>または<11>に記載の有機電界発光素子を備えた表示装置または照明装置。
<13> 式(1-Int)で表される化合物のアミノ化反応を行なうことを含む<1>~<6>のいずれかに記載の金属錯体の製造方法;
Figure 2023148087000005
式(1-Int)中、Halはそれぞれ独立して、塩素、臭素またはヨウ素である。
<14> 式(1-Int)で表される化合物;
Figure 2023148087000006
式(1-Int)中、
A環、B環、C環およびD環はそれぞれ独立して、置換もしくは無置換のアリール環または置換もしくは無置換のヘテロアリール環であり、
E環およびF環は置換または無置換の含窒素ヘテロ環カルベンであり、
MはNi、Pd、またはPtであり、
Halはそれぞれ独立して、塩素、臭素またはヨウ素であり、
A環およびE環、E環およびB環、C環およびF環、ならびにD環およびF環からなる群より選択される少なくとも1組の2つの環は追加の単結合または連結基で互いに結合していてもよく、
式(1-Int)における少なくとも1つの水素は重水素で置き換えられていてもよい。
<15> 式(1-preNHC)で表される化合物;
Figure 2023148087000007
式(1-preNHC)中、
A環およびB環はそれぞれ独立して、置換もしくは無置換のアリール環または置換もしくは無置換のヘテロアリール環であり、
E環は置換または無置換の含窒素ヘテロ環であり、
Halはそれぞれ独立して、塩素、臭素またはヨウ素であり、
HalXはそれぞれ独立して、塩素、臭素またはヨウ素であり、
A環およびE環またはE環およびB環の少なくとも1組の2つの環は追加の単結合または連結基で互いに結合していてもよく、
式(1-preNHC)における少なくとも1つの水素は重水素で置き換えられていてもよい。
本発明により、有機電界発光素子等の有機デバイス用材料として有用な金属錯体が提供される。本発明の金属錯体は有機電界発光素子等の有機デバイスの製造に用いることができる。
有機電界発光素子の一例を示す概略断面図である。 一般的な蛍光ドーパントを用いたPSF素子のホスト、アシスティングドーパントおよびエミッティングドーパントのエネルギー関係を示すエネルギー準位図である。 本発明の一態様の有機電界発光素子における、ホスト、アシスティングドーパントおよびエミッティングドーパントのエネルギー関係の一例を示すエネルギー準位図である。
以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本明細書において構造式の説明における「水素」は「水素原子(H)」を意味する。同様に「炭素原子(C)」を「炭素」、「窒素原子(N)」を「窒素」ということがある。その他の元素についても同様である。
本明細書において、「隣接する基」というときは、構造式中で隣接する2つの原子(共有結合で直接結合する2つの原子)にそれぞれ結合している2つの基を意味する。
本明細書において「Me」はメチル、「Et」はエチル、「nBu」はn-ブチル(ノルマルブチル)、「tBu」はt-ブチル(ターシャリーブチル)、「iBu」はイソブチル、「secBu」はセカンダリーブチル、「nPr」はn-プロピル(ノルマルプロピル)、「iPr」はイソプロピル、「tAm」はt-アミル、「2EH」は2-エチルヘキシル、「tOct」はt-オクチル、「Ph」はフェニル、「Mes」はメシチル(2,4,6-トリメチルフェニル)、「Ad」は1-アダマンチル、「Tf」はトリフルオロメタンスルホニル、「TMS」はトリメチルシリル、「D」は重水素を表す。
本明細書において、有機電界発光素子を有機EL素子ということがある。
本明細書において化学構造や置換基を炭素数で表すことがあるが、化学構造に置換基が置換した場合や、置換基にさらに置換基が置換した場合などにおける炭素数は、化学構造や置換基それぞれの炭素数を意味し、化学構造と置換基の合計の炭素数や、置換基と置換基の合計の炭素数を意味するものではない。例えば、「炭素数Xの置換基Aで置換された炭素数Yの置換基B」とは、「炭素数Yの置換基B」に「炭素数Xの置換基A」が置換することを意味し、炭素数Yは置換基Aおよび置換基Bの合計の炭素数ではない。また例えば、「置換基Aで置換された炭素数Yの置換基B」とは、「炭素数Yの置換基B」に「(炭素数限定がない)置換基A」が置換することを意味し、炭素数Yは置換基Aおよび置換基Bの合計の炭素数ではない。
本明細書に記載されている化学構造式(後述する式(1)のようにマーカッシュ構造式で描かれた一般式を含む)は平面構造式であるために、実際にはエナンチオ異性体、ジアステレオ異性体、また回転異性体のような種々の異性体構造が存在する場合がある。本明細書においては、特に断らない限りは、記載されている化合物はその平面構造式から考えうるいずれの異性体構造であってもよく、また可能な異性体から構成される任意の比率の混合物であってもよい。
0.環および置換基の説明
まず、本明細書において使用する環および置換基の詳細について以下で説明する。
本明細書における「アリール環」としては、例えば、炭素数6~30のアリール環があげられ、炭素数6~16のアリール環が好ましく、炭素数6~12のアリール環がより好ましく、炭素数6~10のアリール環が特に好ましい。
具体的な「アリール環」としては、単環系であるベンゼン環、二環系であるビフェニル環、縮合二環系であるナフタレン環、インデン環、三環系であるテルフェニル環(m-テルフェニル、o-テルフェニル、p-テルフェニル)、縮合三環系である、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、アントラセン環、縮合四環系であるトリフェニレン環、ピレン環、ナフタセン環、クリセン環、縮合五環系であるペリレン環、ペンタセン環などがあげられる。また、フルオレン環、ベンゾフルオレン環、インデン環には、それぞれフルオレン環、ベンゾフルオレン環、シクロペンタン環などがスピロ結合した構造も含まれる。なお、フルオレン環、ベンゾフルオレン環およびインデン環には、その構造中のメチレンの2つの水素のうちの2つがそれぞれ後述の第1の置換基としてのメチルなどのアルキルに置き換わって、ジメチルフルオレン環、ジメチルベンゾフルオレン環、ジメチルインデン環などとなっているものも含まれる。スピロ構造を形成している環、例えばスピロビフルオレン環スピロフルオレンインデン環なども含む。
本明細書における「ヘテロアリール環」としては、例えば、炭素数2~30のヘテロアリール環があげられ、炭素数2~25のヘテロアリール環が好ましく、炭素数2~20のヘテロアリール環がより好ましく、炭素数2~15のヘテロアリール環がさらに好ましく、炭素数2~10のヘテロアリール環が特に好ましい。また、「ヘテロアリール環」としては、例えば環構成原子として炭素以外に酸素、硫黄、窒素、セレン、リン、テルルから選ばれるヘテロ原子を1ないし5個含有する複素環などがあげられる。
具体的な「ヘテロアリール環」としては、例えば、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾピロール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、ベンゾキサジノフェノキサジン環、フェノチアジン環、フェナジン環、フェナザシリン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラザン環、チアントレン環、インドロカルバゾール環、ベンゾインドロカルバゾール環、ジベンゾインドロカルバゾール環、ナフトベンゾフラン環、ジオキシン環、ジヒドロアクリジン環、キサンテン環、チオキサンテン環、ジベンゾジオキシン環、ジオキサボラナフトアントラセン環(5,9-ジオキサ-13b-ボラ-13bH-ナフト[3,2,1-de]アントラセン環など)、シロール環、ベンゾシロール環、ジベンゾシロール環、ベンゾセレノフェン環などがあげられる。また、ジヒドロアクリジン環、キサンテン環、チオキサンテン環は、その構造中のメチレンの2つの水素のうちの2つがそれぞれ後述の第1の置換基としてのメチルなどのアルキルに置き換わって、ジメチルジヒドロアクリジン環、ジメチルキサンテン環、ジメチルチオキサンテン環などとなっているものも好ましい。また二環系であるビピリジン環、フェニルピリジン環、ピリジルフェニル環、三環系であるテルピリジル環、ビスピリジルフェニル環、ピリジルビフェニル環も「ヘテロアリール環」としてあげられる。また、「ヘテロアリール環」にはピラン環も含まれるものとする。
本明細書において、置換基というとき、1価の置換基、2価の置換基、および3価の置換基が含まれる。例えば「置換もしくは無置換の」というときの置換基は、上記のいずれであってもよい。式(1)で表される金属錯体における2価の置換基および3価の置換基として具体的に説明される置換基以外の置換基は1価の置換基であることが好ましい。
本明細書において、置換基は、さらなる置換基で置換されていることがある。例えば、特定の置換基に関して、「置換もしくは無置換の」と説明がされることがある。これはその特定の置換基が少なくとも1つのさらなる置換基で置換されているか、または置換されていないことを意味する。同様の意味で「置換されていてもよい」ということもある。本明細書において、このときの上記特定の置換基を「第1の置換基」、上記のさらなる置換基を「第2の置換基」ということがある。
本明細書において、置換基群Zαは、置換基群Zの置換基および後述の式(A30)で表される置換基からなる。
本明細書において、置換基群Zは、
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアリール、
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいヘテロアリール、
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいジアリールアミノ(2つのアリールは互いに連結基を介して結合していてもよい)、
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいジヘテロアリールアミノ(2つのヘテロアリールは互いに連結基を介して結合していてもよい)、
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアリールヘテロアリールアミノ(アリールとヘテロアリールとは互いに連結基を介して結合していてもよい)、
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、
アリール、ヘテロアリール、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアルキル、
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいシクロアルキル、
アリール、ヘテロアリール、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアルコキシ、
アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアリールオキシ、
置換シリル、シアノ、ならびにハロゲンからなる。
置換基群Zの各基における第2置換基であるアリールは、さらにアリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、またはハロゲンで置換されていてもよい、同様に、第2置換基であるヘテロアリールはアリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、またはハロゲンで置換されていてもよい。
本明細書において、「置換基」という場合、特に別途の説明(例えば、式(1)のA環~F環におけるアリール環等の置換基やRZについての別途の説明)がないときは、置換基群Zから選択されるいずれかの基であればよい。例えば、「置換もしくは無置換の」とされる基が置換されているとき、当該基は置換基群Zから選択される少なくとも1つの基で置換されていればよい。
本明細書において、「アリール」は、例えば炭素数6~30のアリールであり、好ましくは、炭素数6~20のアリール、炭素数6~16のアリール、炭素数6~12のアリール、または炭素数6~10のアリールなどである。
具体的な「アリール」は、上述した「アリール環」の一価の基があげられ、例えば、単環系であるフェニル、二環系であるビフェニリル(2-ビフェニリル、3-ビフェニリル、もしくは4-ビフェニリル)、縮合二環系であるナフチル(1-ナフチルもしくは2-ナフチル)、三環系であるテルフェニリル(m-テルフェニル-2'-イル、m-テルフェニル-4'-イル、m-テルフェニル-5'-イル、o-テルフェニル-3'-イル、o-テルフェニル-4'-イル、p-テルフェニル-2'-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、もしくはp-テルフェニル-4-イル)、縮合三環系である、アセナフチレン-(1-、3-、4-、もしくは5-)イル、フルオレン-(1-、2-、3-、4-、もしくは9-)イル、フェナレン-(1-もしくは2-)イル、フェナントレン-(1-、2-、3-、4-、もしくは9-)イル、もしくはアントラセン-(1-、2-、もしくは9-)イル、四環系であるクアテルフェニリル(5'-フェニル-m-テルフェニル-2-イル、5'-フェニル-m-テルフェニル-3-イル、5'-フェニル-m-テルフェニル-4-イル、もしくはm-クアテルフェニル)、縮合四環系である、トリフェニレン-(1-もしくは2-)イル、ピレン-(1-、2-、もしくは4-)イル、もしくはナフタセン-(1-、2-、もしくは5-)イル、または、縮合五環系である、ペリレン-(1-、2-、もしくは3-)イル、もしくはペンタセン-(1-、2-、5-、もしくは6-)イルなどである。その他、スピロフルオレンの1価の基などがあげられる。
なお、第2置換基としてのアリールには、当該アリールが、フェニルなどのアリール(具体例は上述した基)、メチルなどのアルキル(具体例は後述する基)、およびシクロヘキシルもしくはアダマンチルなどのシクロアルキル(具体例は後述する基)からなる群より選択される少なくとも1つの基で置換された構造も含まれる。
その一例としては、第2置換基としてのフルオレニルの9位が、フェニルなどのアリール、メチルなどのアルキル、またはシクロヘキシルもしくはアダマンチルなどのシクロアルキルで置換された基があげられる。
「アリーレン」は、例えば炭素数6~30のアリーレンであり、好ましくは、炭素数6~20のアリーレン、炭素数6~16のアリーレン、炭素数6~12のアリーレン、または炭素数6~10のアリーレンなどである。
具体的な「アリーレン」は、例えば、上述した「アリール」(1価の基)から1つの水素を除いた2価の基があげられる。
「ヘテロアリール」は、例えば炭素数2~30のヘテロアリールであり、好ましくは、炭素数2~25のヘテロアリール、炭素数2~20のヘテロアリール、炭素数2~15のヘテロアリール、または炭素数2~10のヘテロアリールなどである。「ヘテロアリール」は、環構成原子として炭素以外に酸素、硫黄、および窒素等から選ばれるヘテロ原子を、1個以上、好ましくは1~5個含有する。
具体的な「ヘテロアリール」としては、上述した「ヘテロアリール環」の一価の基があげられ、例えば、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリニル、イソキノリニル、シンノリニル、キナゾリニル、キノキサリニル、フェナントロリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサチイニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェナザシリニル、インドリジニル、フラニル、ベンゾフラニル、イソベンゾフラニル、ジベンゾフラニル、ナフトベンゾフラニル、チエニル、ベンゾチエニル、イソベンゾチエニル、ジベンゾチエニル、ナフトベンゾチエニル、ベンゾホスホリル、ジベンゾホスホリル、ベンゾホスホールオキシド環の1価の基、ジベンゾホスホールオキシド環の1価の基、フラザニル、チアントレニル、インドロカルバゾリル、ベンゾインドロカルバゾリル、ジベンゾインドロカルバゾリル、イミダゾリニル、またはオキサゾリニルなどである。その他、スピロ[フルオレン-9、9’-キサンテン]の1価の基、スピロビ[シラフルオレン]の1価の基、ベンゾセレノフェンの1価の基があげられる。
なお、第2置換基としてのヘテロアリールには、当該ヘテロアリールが、フェニルなどのアリール(具体例は上述した基)、メチルなどのアルキル(具体例は後述する基)およびシクロヘキシルもしくはアダマンチルなどのシクロアルキル(具体例は後述する基)からなる群より選択される少なくとも1つの基で置換された構造も含まれる。
その一例としては、第2置換基としてのカルバゾリルの9位が、フェニルなどのアリール、メチルなどのアルキル、またはシクロヘキシルもしくはアダマンチルなどのシクロアルキルで置換された基があげられる。また、ピリジル、ピリミジニル、トリアジニル、カルバゾリルなどの含窒素ヘテロアリールがさらにフェニルまたはビフェニリルなどで置換された基も第2置換基としてのヘテロアリールに含まれる。
「ヘテロアリーレン」は、例えば炭素数2~30のヘテロアリーレンであり、好ましくは、炭素数2~25のヘテロアリーレン、炭素数2~20のヘテロアリーレン、炭素数2~15のヘテロアリーレン、または炭素数2~10のヘテロアリーレンなどである。また、「ヘテロアリーレン」は、例えば環構成原子として炭素以外に酸素、硫黄、および窒素から選ばれるヘテロ原子を1~5個含有する複素環などの二価の基である。
具体的な「ヘテロアリーレン」は、例えば、上述した「ヘテロアリール」(1価の基)から1つの水素を除いた2価の基があげられる。
「ジアリールアミノ」は、2つのアリールが置換したアミノであり、このアリールの詳細については上述した「アリール」の説明を引用できる。
「ジヘテロアリールアミノ」は、2つのヘテロアリールが置換したアミノ基であり、このヘテロアリールの詳細については上述した「ヘテロアリール」の説明を引用できる。
「アリールヘテロアリールアミノ」は、アリールおよびヘテロアリールが置換したアミノ基であり、このアリールおよびヘテロアリールの詳細については上述した「アリール」および「ヘテロアリール」の説明を引用できる。
第1の置換基としてのジアリールアミノにおける2つのアリールは互いに連結基を介して結合していてもよく、第1の置換基としてのジヘテロアリールアミノにおける2つのヘテロアリールは互いに連結基を介して結合していてもよく、第1の置換基としてのアリールヘテロアリールアミノのアリールとヘテロアリールは互いに連結基を介して結合していてもよい。ここで、「連結基を介して結合」という記載は、下記に示すように例えばジフェニルアミノの2つのフェニルが連結基で結合を形成することを表す。またこの説明はアリールやヘテロアリールで形成された、ジヘテロアリールアミノおよびアリールヘテロアリールアミノについても適用される。
Figure 2023148087000008
連結基としては具体的には、>O、>N-RX、>C(-RX2、-(C-RX)=(C-RX)-、>Si(-RX2、>S、>CO、>CS、>SO、>SO2、および>Seがあげられる。RXはそれぞれ独立してアルキル、シクロアルキル、アリール、またはヘテロアリールであり、これらはアルキル、シクロアルキル、アリール、またはヘテロアリールで置換されていてもよい。また、>C(-RX2、-(C-RX)=(C-RX)-、>Si(-RX2それぞれにおける2つのRXは、単結合または連結基XYを介して互いに結合して環を形成してもよい。XYとしては>O、>N-RY、>C(-RY2、>Si(-RY2、>S、>CO、>CS、>SO、>SO2、および>Seがあげられ、RYはそれぞれ独立してアルキル、シクロアルキル、アリールまたはヘテロアリールであり、これらはアルキル、シクロアルキル、アリール、またはヘテロアリールで置換されていてもよい。ただし、XYが>C(-RY2および>Si(-RY2の場合には、2つのRYは結合してさらに環を形成することはない。さらに連結基としては、アルケニレンもあげられる。該アルケニレンの任意の水素はそれぞれ独立してR2Xで置換されていてもよく、R2Xはそれぞれ独立してアルキル、シクロアルキル、置換シリル、アリールおよびヘテロアリールであり、これらはアルキル、シクロアルキル、置換シリル、アリールで置換されていてもよい。-(C-RX)=(C-RX)-における2つのRXは、互いに結合してそれらが結合するC=Cとともにアリール(ベンゼン環など)またはヘテロアリール環を形成していてもよい。すなわち、-(C-RX)=(C-RX)-は、アリーレン(1,2-フェニレンなど)またはヘテロアリーレンとなっていてもよい。
なお、本明細書で単に「ジアリールアミノ」、「ジヘテロアリールアミノ」、または「アリールヘテロアリールアミノ」と記載されている場合は、特に断りがない限りは、それぞれ「ジアリールアミノの2つのアリールは互いに連結基を介して結合していてもよい」、「前記ジヘテロアリールアミノの2つのヘテロアリールは互いに連結基を介して結合していてもよい」および「前記アリールヘテロアリールアミノのアリールとヘテロアリールは互いに連結基を介して結合していてもよい」という説明が加わっているものであるとする。
「ジアリールボリル」は、2つのアリールが置換したボリルであり、このアリールの詳細については上述した「アリール」の説明を引用できる。また、この2つのアリールは、単結合または連結基(例えば、-CH=CH-、-CR=CR-、-C≡C-、>N-R、>O、>S、>C(-R)2、>Si(-R)2、または>Se)を介して結合していてもよい。ここで、前記-CR=CR-のR、>N-RのR、>C(-R)2のR、および>Si(-R)のRは、アリール、ヘテロアリール、ジアリールアミノ、アルキル、アルケニル、アルキニル、シクロアルキル、アルコキシ、またはアリールオキシであり、当該Rにおける少なくとも1つの水素は、さらにアリール、ヘテロアリール、アルキル、アルケニル、アルキニル、またはシクロアルキルで置換されていてもよい。また、隣接する2つのR同士が結合して環を形成し、シクロアルキレン、アリーレン、およびヘテロアリーレンを形成していてもよい。ここで列挙した置換基の詳細については、上述した「アリール」、「アリーレン」、「ヘテロアリール」、「ヘテロアリーレン」、および「ジアリールアミノ」の説明、ならびに、後述する「アルキル」、「アルケニル」、「アルキニル」、「シクロアルキル」、「シクロアルキレン」、「アルコキシ」、および「アリールオキシ」の説明を引用できる。また、本明細書で単に「ジアリールボリル」と記載されている場合は、特に断りがない限りは、「ジアリールボリルの2つのアリールは互いに単結合または連結基を介して結合していてもよい」という説明が加わっているものであるとする。
「アルキル」は、直鎖および分岐鎖のいずれでもよく、例えば炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキルであり、好ましくは、炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)、炭素数1~5のアルキル(炭素数3~5の分岐鎖アルキル)、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)などである。
具体的な「アルキル」は、例えば、メチル、エチル、n-プロピル、イソプロピル、1-エチル-1-メチルプロピル、1,1-ジエチルプロピル、1,1,2-トリメチルプロピル、1,1,2,2-テトラメチルプロピル、1-エチル-1,2,2-トリメチルプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、2-エチルブチル、1,1-ジメチルブチル、3,3-ジメチルブチル、1,1-ジエチルブチル、1-エチル-1-メチルブチル、1-プロピル-1-メチルブチル、1,1,3-トリメチルブチル、1-エチル-1,3-ジメチルブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル(t-アミル)、1-メチルペンチル、2-プロピルペンチル、1,1-ジメチルペンチル、1-エチル-1-メチルペンチル、1-プロピル-1-メチルペンチル、1-ブチル-1-メチルペンチル、1,1,4-トリメチルペンチル、n-ヘキシル、1-メチルヘキシル、2-エチルヘキシル、1,1-ジメチルヘキシル、1-エチル-1-メチルヘキシル、1,1,5-トリメチルヘキシル、3,5,5-トリメチルヘキシル、n-ヘプチル、1-メチルヘプチル、1-ヘキシルヘプチル、1,1-ジメチルヘプチル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、n-オクチル、t-オクチル(1,1,3,3-テトラメチルブチル)、1,1-ジメチルオクチル、n-ノニル、n-デシル、1-メチルデシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、またはn-エイコシルなどである。
「アルキレン」は、「アルキル」のいずれかの水素を除いて得られる2価の基であり、例えばメチレン、エチレン、プロピレンである。
「アルケニル」については、上述した「アルキル」の説明を参考にすることができ、「アルキル」の構造中のC-C単結合をC=C二重結合に置換した基であり、1つだけでなく2つ以上の単結合が二重結合に置換された基(アルカジエン-イルやアルカントリエン-イルとも呼ばれる)も含める。
「アルケニレン」は「アルケニル」のいずれかの水素を除いて得られる2価の基であり、例えばビニレンがあげられる。
「アルキニル」については、上述した「アルキル」の説明を参考にすることができ、「アルキル」の構造中のC-C単結合をC≡C三重結合に置換した基であり、1つだけでなく2つ以上の単結合が三重結合に置換された基(アルカジイン-イルやアルカントリイン-イルとも呼ばれる)も含める。
「シクロアルキル」は、例えば炭素数3~24のシクロアルキルであり、好ましくは、炭素数3~20のシクロアルキル、炭素数3~16のシクロアルキル、炭素数3~14のシクロアルキル、炭素数3~12のシクロアルキル、炭素数5~10のシクロアルキル、炭素数5~8のシクロアルキル、炭素数5~6のシクロアルキル、または炭素数5のシクロアルキルなどである。
具体的な「シクロアルキル」は、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、もしくはこれらの炭素数1~5や炭素数1~4のアルキル(特にメチル)置換体、ノルボルネニル、ビシクロ[1.1.0]ブチル、ビシクロ[1.1.1]ペンチル、ビシクロ[2.1.0]ペンチル、ビシクロ[2.1.1]ヘキシル、ビシクロ[3.1.0]ヘキシル、ビシクロ[2.2.1]ヘプチル、ビシクロ[2.2.2]オクチル、アダマンチル、ジアマンチル、デカヒドロナフタレニル、またはデカヒドロアズレニルなどである。
「シクロアルキレン」は、例えば炭素数3~24のシクロアルキレンであり、好ましくは、炭素数3~20のシクロアルキレン、炭素数3~16のシクロアルキレン、炭素数3~14のシクロアルキレン、炭素数3~12のシクロアルキレン、炭素数5~10のシクロアルキレン、炭素数5~8のシクロアルキレン、炭素数5~6のシクロアルキレン、または炭素数5のシクロアルキレンなどである。
具体的な「シクロアルキレン」は、例えば、上述した「シクロアルキル」(1価の基)から1つの水素を除いて二価の基にした構造があげられる。
「シクロアルケニル」は、上述した「シクロアルキル」における少なくとも1組の2つの炭素の間の単結合が二重結合となった構造を有する基(例えば、-CH2-CH2-が-CH=CH-に置き換わった基)であって、アリールに該当しない基があげられる。具体的には、1-シクロヘキセニル、1-シクロペンテニル等があげられる。
「シクロアルケニレン」は、上述した「シクロアルキレン」における少なくとも1組の2つの炭素の間の単結合が二重結合となった構造を有する基であって、アリーレンに該当しない基があげられる。具体的には、1-シクロヘキセン-1、2-イレン、3-シクロヘキセン-1、2-イレン等があげられる。
「アルコキシ」は、「Alk-O-(Alkはアルキル)」で表される基であり、このアルキルの詳細については上述した「アルキル」の説明を引用できる。
「アリールオキシ」は、「Ar-O-(Arはアリール)」で表される基であり、このアリールの詳細については上述した「アリール」の説明を引用できる。
「置換シリル」は、例えば、アリール、アルキル、およびシクロアルキルの少なくとも1つで置換されたシリルであり、好ましくは、トリアリールシリル、トリアルキルシリル、トリシクロアルキルシリル、ジアルキルシクロアルキルシリル、またはアルキルジシクロアルキルシリルである。
「トリアリールシリル」は、3つのアリールで置換されたシリル基であり、このアリールの詳細については上述した「アリール」の説明を引用できる。
具体的な「トリアリールシリル」は、例えば、トリフェニルシリル、ジフェニルモノナフチルシリル、モノフェニルジナフチルシリル、またはトリナフチルシリルなどである。
「トリアルキルシリル」は、3つのアルキルで置換されたシリル基であり、このアルキルの詳細については上述した「アルキル」の説明を引用できる。
具体的な「トリアルキルシリル」は、例えば、トリメチルシリル、トリエチルシリル、トリn-プロピルシリル、トリイソプロピルシリル、トリn-ブチルシリル、トリイソブチルシリル、トリs-ブチルシリル、トリt-ブチルシリル、エチルジメチルシリル、n-プロピルジメチルシリル、イソプロピルジメチルシリル、n-ブチルジメチルシリル、イソブチルジメチルシリル、s-ブチルジメチルシリル、t-ブチルジメチルシリル、メチルジエチルシリル、n-プロピルジエチルシリル、イソプロピルジエチルシリル、n-ブチルジエチルシリル、s-ブチルジエチルシリル、t-ブチルジエチルシリル、メチルジn-プロピルシリル、エチルジn-プロピルシリル、n-ブチルジn-プロピルシリル、s-ブチルジn-プロピルシリル、t-ブチルジn-プロピルシリル、メチルジイソプロピルシリル、エチルジイソプロピルシリル、n-ブチルジイソプロピルシリル、s-ブチルジイソプロピルシリル、またはt-ブチルジイソプロピルシリルなどである。
「トリシクロアルキルシリル」は、3つのシクロアルキルで置換されたシリル基であり、このシクロアルキルの詳細については上述した「シクロアルキル」の説明を引用できる。
具体的な「トリシクロアルキルシリル」は、例えば、トリシクロペンチルシリルまたはトリシクロヘキシルシリルなどである。
「ジアルキルシクロアルキルシリル」は、2つのアルキルおよび1つのシクロアルキルで置換されたシリル基であり、このアルキルおよびシクロアルキルの詳細については上述した「アルキル」および「シクロアルキル」の説明を引用できる。
「アルキルジシクロアルキルシリル」は、1つのアルキルおよび2つのシクロアルキルで置換されたシリル基であり、このアルキルおよびシクロアルキルの詳細については上述した「アルキル」および「シクロアルキル」の説明を引用できる。
「ハロゲン」は、フッ素、塩素、臭素またはヨウ素であり、好ましくはフッ素、塩素、または臭素、より好ましくはフッ素または塩素であり、フッ素がさらに好ましい。
<同一の原子に結合する2つの基が互いに結合する場合>
本明細書において同一の原子に結合する2つの基について互いに結合して環を形成しているという場合、当該原子と2つの基で環が形成されていることを意味する。2つの基は単結合または連結基(これらをまとめて結合基ともいう)により結合していればよく、連結基としては、-CH2-CH2-、-CHR-CHR-、-CR2-CR2-、-CH=CH-、-CR=CR-、-C≡C-、-N(-R)-、-O-、-S-、-C(-R)2-、-Si(-R)2-、または-Se-があげられ、例えば以下の構造があげられる。なお、前記-CHR-CHR-のR、-CR2-CR2-のR、-CR=CR-のR、-N(-R)-のR、-C(-R)2-のR、および-Si(-R)2-のRは、それぞれ独立して、水素、アルキルもしくはシクロアルキルで置換されていてもよいアリール、アルキルもしくはシクロアルキルで置換されていてもよいヘテロアリール、シクロアルキルで置換されていてもよいアルキル、アルキルもしくはシクロアルキルで置換されていてもよいアルケニル、アルキルもしくはシクロアルキルで置換されていてもよいアルキニル、またはアルキルもしくはシクロアルキルで置換されていてもよいシクロアルキルである。また、隣接する2つのR同士が結合して環を形成し、シクロアルキレン、アリーレン、またはヘテロアリーレンを形成していてもよい。
Figure 2023148087000009
結合基としては、単結合、連結基としての-CR=CR-、-N(-R)-、-O-、-S-、-C(-R)2-、-Si(-R)2-、および-Se-が好ましく、単結合、連結基としての-CR=CR-、-N(-R)-、-O-、-S-、および-C(-R)2-がより好ましく、単結合、連結基としての-CR=CR-、-N(-R)-、-O-、および-S-がさらに好ましく、単結合が最も好ましい。
結合基により2つのRが結合する位置は、結合可能な位置であれば特に限定されないが、最も隣接する位置で結合することが好ましく、例えば2つの基がフェニルである場合、フェニルにおける「C」や「Si」の結合位置(1位)を基準としてオルト(2位)の位置同士で結合することが好ましい(上記構造式を参照)。
1.金属錯体
<化合物の全体構造の説明>
本発明の金属錯体は、式(1)で表される構造を有する。
Figure 2023148087000010
式(1)中、MはNi、Pd、またはPtである。本発明者らは、2価の第10族金属元素に環状の4座配位子が配位した、式(1)で表される構造単位を含む化合物の製造に成功し、この化合物が、発光半値幅が狭いスペクトルを示し、発光量子収率が高いことを見出した。この構造は4座配位子により剛直であるため、また、剛直な構造により励起状態のエネルギーが分子振動に変換されにくくなっているためと考えられる。さらに、本発明の金属錯体を発光層のドーパントとして用いた有機EL素子では長い駆動寿命が得られたが、これは剛直な構造によって切れやすい結合が減り、分子がより安定になっているためと考えられる。
<金属Mの説明>
式(1)中、MはNi、Pd、またはPtである。式(1)においてNi、Pd、およびPtはいずれも2価の金属である。
<化合物中の環構造の説明>
式(1)中、A環、B環、C環およびD環はそれぞれ独立して、置換もしくは無置換のアリール環または置換もしくは無置換のヘテロアリール環であり、E環およびF環は置換もしくは無置換の含窒素ヘテロ環カルベンである。
式(1)中、円内の「A」「B」、「C」、「D」、「E」、および「F」は各円で示される環構造を示す符号であり、式(1)で表される構造単位はA環、B環、C環、D環、E環、およびF環が単結合またはXを介して互いに結合して形成された平面状の4座配位子が2価の第10族金属元素に配位している構造を有する。A環、B環、C環およびD環はそれぞれ独立して、置換もしくは無置換のアリール環または置換もしくは無置換のヘテロアリール環であり、E環およびF環は置換または無置換の含窒素ヘテロ環カルベンである。
式(1)におけるA環、B環、C環およびD環はそれぞれ、その構造中のアリール環またはヘテロアリール環の環上で互いに隣接する2つの元素に結合手を有する2価の基を形成していればよい。A環、B環、C環およびD環はそれぞれ上記の2つの結合手でNおよびXに結合している。A環、B環、C環およびD環中で上記の2つの結合手を有する炭素を環構成元素とする環は5員環または6員環であることが好ましく、6員環であることがより好ましい。この環はさらに他の環と縮合していてもよい。6員環の例としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環などがあげられる。6員環がさらに他の環と縮合している例としては、ナフタレン環、キノリン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、フルオレン環、フェナントレン環、トリフェニレン環、ピレン環、ペリレン環などがあげられる。5員環の例としては、フラン環、チオフェン環、ピロール環、チアゾール環などがあげられる。5員環がさらに他の環と縮合している例としては、ベンゾフラン環、ベンゾチオフェン環、インドール環などがあげられる。
A環、B環、C環およびD環はいずれも異なっていても、いずれか1組または2組の2つが同じであってもよく、いずれか3つが同じであってもよく、いずれも同じであってもよい。A環、B環、C環およびD環はいずれも同じであることが好ましい。合成が容易であるからである。
式(1)における、E環およびF環は置換もしくは無置換の含窒素ヘテロ環カルベンである。本明細書において、「含窒素ヘテロ環カルベン」は窒素原子とカルベン炭素を含む環状構造を意味する。環状構造は単環構造であっても縮環構造であってもよい。式(1)において、E環またはF環である置換もしくは無置換の含窒素ヘテロ環カルベンは2つの窒素が有する結合手でA環およびB環またはC環およびD環と結合するとともに、この2つの窒素が直接結合するカルベン炭素で金属Mに結合する。2つの窒素およびカルベン炭素を含む環は5員環または6員環であることが好ましく、5員環であることがより好ましい。この環はさらに他の環と縮合していてもよい。この環を構成する部分構造であって、上記の2つの窒素を連結する2価の連結基としては、アルキレン(エチレン、1,3-プロピレン等)、シクロアルキレン(エチレン、1,3-プロピレン等)、アルケニレン(ビニレン等)、シクロアルケニレン(1-シクロヘキセン-1、2-イレン等)、アリーレン(1,2-フェニレン等)、およびヘテロアリーレン(2,3-ピラジニレン等)があげられる。
E環またはF環とその2つの結合手からなる部分構造の例としては以下の2価の基をあげることができる。以下の各式において、*は結合位置を示す。
Figure 2023148087000011
E環およびF環は互いに同一であっても異なっていてもよく、同一であってもよい。合成の容易性の観点からは同一である構造が好ましい。
式(1)において、A環、B環、C環、D環、E環およびF環のうち、直接またはXを介して結合している少なくとも1組の2つの環は追加の単結合または連結基で互いにさらに結合していてもよい。上記の2つの環が結合するときは、アリール環、ヘテロアリール環、または含窒素ヘテロ環カルベンの置換基において結合していてもよく、アリール環、ヘテロアリール環、または含窒素ヘテロ環カルベンの環構成原子において結合していてもよい。連結基としては、置換もしくは無置換のアルキレン、置換もしくは無置換のアルキニレン、置換もしくは無置換のアリーレン、置換もしくは無置換のヘテロアリーレン、>N-RNL、>O、>C(-RCL2、>Si(-RIL2、>S、または>Seがあげられる。RNLは水素、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のアルキル、または置換もしくは無置換のシクロアルキルであり、RCLは置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のアルキル、または置換もしくは無置換のシクロアルキルであり、2つのRCLは互いに結合して環を形成していてもよく、2つのRILは互いに結合して環を形成していてもよい。上記のように、追加の単結合または連結基で互いにさらに結合している構造としては、アリール環、ヘテロアリール環、または含窒素ヘテロ環カルベンの環構成原子において、単結合、ビニレン、>O、>C(-RCL2(RCLはメチル等)、>Sを介して結合している構造が好ましい。
式(1)で表される金属錯体は好ましくは下記式(2)で表される構造を有する金属錯体である。式(2)中のa環およびその置換基、b環およびその置換基、c環およびその置換基、d環およびその置換基、e環およびその置換基、ならびにf環およびその置換基は、それぞれ式(1)中の、A環、B環、C環、D環、E環、およびF環の環構造の一態様である。なお、式(2)中の各記号の意味については後述する。
Figure 2023148087000012
<Xの説明>
式(1)において、Xはそれぞれ独立してNまたはPである。XはいずれもNであることが好ましい。
<Zの説明>
式(2)においてZはそれぞれ、-C(-RZ)=または-N=である。
Zは、それぞれ独立して、水素もしくは置換基群Zαから選択されるいずれかの置換基であるか、隣接する2つのRZが互いに結合してそれらが結合する炭素とともに置換基群Zαから選択される少なくとも1つの置換基を有していてもよいアリール環または置換基群Zαから選択される少なくとも1つの置換基を有していてもよいヘテロアリール環を形成しているか、または隣接する1つまたは2つのRZが互いに結合して、2価または3価の置換基を形成している。また、少なくとも1つのZ=Zは>N-RZN、>O、>C(-RZC2、>Si(-RZI2、>S、または>Seであってもよい。RZN、RZC、RZIはそれぞれ独立して水素、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のアルキル、または置換もしくは無置換のシクロアルキルであり、2つのRZCは互いに結合して環を形成していてもよく、2つのRZIは互いに結合して環を形成していてもよい。
式(2)における4つの以下の式(2-4Z)で表される部分構造(2価の基)について以下説明する。
Figure 2023148087000013
式(2)の式(2-4Z)で表される各部分構造においてZは、0~2個が-N=であり残りが-C(-RZ)=であることが好ましく、0~1個が-N=であり残りが-C(-RZ)=であることがより好ましく、いずれも-C(-RZ)=であることがさらに好ましい。RZとしては、後述の好ましい置換基の記載が参照できる。一価の置換基としては、アルキル、アルキルで置換されていてもよいフェニル、アルキルで置換されていてもよいジフェニルアミノ、アルキルで置換されていてもよいカルバゾリル、シアノ、またはフッ素であることが好ましい。2つのRZが互いに結合して形成するアリール環またはヘテロアリール環に置換する置換基としては、後述の好ましい置換基の記載が参照できる。一価の置換基としては、アルキル、アルキルで置換されていてもよいフェニル、アルキルで置換されていてもよいジフェニルアミノ、アルキルで置換されていてもよいカルバゾリル、シアノ、またはフッ素であることが好ましい。
式(2-4Z)で表される部分構造はそれぞれ0~3個の置換基を有するアリーレンまたは0~3個の置換基を有するヘテロアリーレンであることが好ましく、0~2個の置換基を有するアリーレンまたは0~2個の置換基を有するヘテロアリーレンであることがより好ましく、0~1個の置換基を有するアリーレンまたは0~1個の置換基を有するヘテロアリーレンであることがさらに好ましい。式(2-4Z)で表される部分構造が1,2-フェニレンなどの6員環の2価の基である場合、置換基は、結合手(式(2-4Z)における「-*」)に隣接しないことが好ましい。すなわち、結合手のある炭素に隣接する炭素に結合するものではないことが好ましい。
式(2)中の4つの式(2-4Z)で表される部分構造はいずれも異なっていても、いずれか1組または2組の2つが同じであってもよく、いずれか3つが同じであってもよく、いずれも同じであってもよい。4つの式(2-4Z)で表される部分構造はいずれも同じであることが好ましい。
式(2-4Z)で表される部分構造の例を、以下に示す。これらの基はいずれも置換基を有していてもよい。置換基はいずれの結合手(-*)に対してもオルト位とならない位置にあることが好ましい。例えば、フェニレンであれば、いずれかの結合手のパラ位にあることが好ましい。
Figure 2023148087000014
<対称性>
本発明の金属錯体はC2対称性であることが好ましい。具体的には、金属Mを含むいずれかの方向の線を中心に180°回転した時に、回転前と回転後の構造が一致する構造であることが好ましい。
<好ましい置換基>
ドーパントとして用いられる金属錯体において(そのほかドーパントとして用いられる化合物において)、「アルキル」を含む置換基として、下記式(tR)で表されるターシャリ-アルキルはB環~I環におけるアリール環またはヘテロアリール環への置換基として、特に好ましいものの1つである。このような嵩高い置換基により分子間距離が増加するため発光量子収率(PLQY)が向上するからである。また、式(tR)で表されるターシャリ-アルキルが第2の置換基として他の置換基に置換している置換基も好ましい。具体的には、(tR)で表されるターシャリ-アルキルで置換されたジアリールアミノ、(tR)で表されるターシャリ-アルキルで置換されたカルバゾリル(好ましくは、N-カルバゾリル)または(tR)で表されるターシャリ-アルキルで置換されたベンゾカルバゾリル(好ましくは、N-ベンゾカルバゾリル)があげられる。ジアリールアミノ、カルバゾリルおよびベンゾカルバゾリルへの式(tR)の基の置換形態としては、これらの基におけるアリール環またはベンゼン環の一部または全ての水素が式(tR)の基で置き換えられた例があげられる。
Figure 2023148087000015
式(tR)中、Ra、Rb、およびRcはそれぞれ独立して炭素数1~24のアルキルであり、前記アルキルにおける任意の-CH2-は-O-で置き換えられていてもよく、式(tR)で表される基は*を結合位置とする。
a、RbおよびRcの「炭素数1~24のアルキル」としては、直鎖および分岐鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分岐鎖アルキル、炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)、炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)、炭素数1~6のアルキル(炭素数3~6の分岐鎖アルキル)、炭素数1~4のアルキル(炭素数3~4の分岐鎖アルキル)があげられる。
式(tR)におけるRa、Rb、およびRcの炭素数の合計は炭素数3~20が好ましく、炭素数3~10が特に好ましい。
a、Rb、およびRcの具体的なアルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどがあげられる。
式(tR)で表される基としては、例えばt-ブチル、t-アミル、1-エチル-1-メチルプロピル、1,1-ジエチルプロピル、1,1-ジメチルブチル、1-エチル-1-メチルブチル、1,1,3,3-テトラメチルブチル、1,1,4-トリメチルペンチル、1,1,2-トリメチルプロピル、1,1-ジメチルオクチル、1,1-ジメチルペンチル、1,1-ジメチルヘプチル、1,1,5-トリメチルヘキシル、1-エチル-1-メチルヘキシル、1-エチル-1,3-ジメチルブチル、1,1,2,2-テトラメチルプロピル、1-ブチル-1-メチルペンチル、1,1-ジエチルブチル、1-エチル-1-メチルペンチル、1,1,3-トリメチルブチル、1-プロピル-1-メチルペンチル、1,1,2-トリメチルプロピル、1-エチル-1,2,2-トリメチルプロピル、1-プロピル-1-メチルブチル、1,1-ジメチルヘキシルなどがあげられる。これらのうち、t-ブチルおよびt-アミルが好ましい。
置換基としては式(A30)で表される置換基も好ましい。なお、本明細書において、置換基群Zαは、置換基群Zの置換基および後述の式(A30)で表される置換基からなる。
Figure 2023148087000016
式(A30)中、
Akは水素、置換もしくは無置換のアルキル、置換もしくは無置換のアルケニル、置換もしくは無置換のシクロアルキルまたは置換もしくは無置換のシクロアルケニルであり、当該アルキル、シクロアルキルおよびシクロアルケニルにおける少なくとも1つの-CH2-は-O-または-S-で置き換えられていてもよく、
Akは、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のアルキルまたは置換もしくは無置換のシクロアルキルであり、RAkは連結基または単結合によりAkと結合していてもよく、*は結合位置である。
式(A30)中、Akが上記の置換基であることによりN上の非共有電子対と共役しないため、非共有電子対を結合先のπ電子と共役させることができ、同位置にアリール等がある場合と比べてより大きな波長変更が可能である。また、多重共鳴効果への影響についても同様であり、熱活性型遅延蛍光(TADF)性のより大きな改善が可能である。
Akはアルキルもしくはシクロアルキルで置換されていてもよいアリール、アルキルもしくはシクロアルキルで置換されていてもよいヘテロアリール、アルキルまたはシクロアルキルであることが好ましく、アルキルで置換されていてもよいアリール、アルキルで置換されていてもよいヘテロアリール、アルキルまたはシクロアルキルであることがより好ましく、アルキルで置換されていてもよいアリールであることがさらに好ましく、メチルで置換されていてもよいフェニルであることが特に好ましい。
式(A30)中、Akは炭素数1~6のアルキルまたは炭素数3~14のシクロアルキルであることが好ましく、炭素数1~4のアルキルまたは炭素数3~8のシクロアルキルであることが好ましく、炭素数1~4のアルキルであることがより好ましく、メチルであることがさらに好ましい。
式(A30)中のLが>N-RであるときのRはAkと同じであっても異なっていてもよく、異なっていることが好ましい。
Akは連結基または単結合によりAkと結合していてもよい。このときの連結基としては>O、>Sまたは>Si(-R)2などがあげられる。>Si(-R)2のRは、水素、炭素数6~12のアリール、炭素数1~6のアルキルまたは炭素数3~14のシクロアルキルである。RAkが連結基または単結合によりAkと結合した構造の例としては以下があげられる。
Figure 2023148087000017
上記各式中、*は結合位置である。
ドーパント(アシスティングドーパントまたはエミッティングドーパント)として用いられる化合物が有する置換基の構造の立体障害性、電子供与性および電子求引性によって、発光波長を調整することができる。好ましくは以下の構造式で表される基であり、より好ましくは、メチル、t-ブチル、t-アミル、t-オクチル、ネオペンチル、アダマンチル、フェニル、o-トリル、p-トリル、2,4-キシリル、2,5-キシリル、2,6-キシリル、2,4,6-メシチル、ジフェニルアミノ、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、カルバゾリル、3,6-ジメチルカルバゾリル、3,6-ジ-t-ブチルカルバゾリルおよびフェノキシであり、さらに好ましくは、メチル、t-ブチル、t-アミル、t-オクチル、ネオペンチル、アダマンチル、フェニル、o-トリル、2,6-キシリル、2,4,6-メシチル、ジフェニルアミノ、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、カルバゾリル、3,6-ジメチルカルバゾリル、3,6-ジ-t-ブチルカルバゾリル、およびトリベンゾアゼピニルである。合成の容易さの観点からは、立体障害が大きい方が選択的な合成のために好ましく、具体的には、t-ブチル、t-アミル、t-オクチル、アダマンチル(1-アダマンチルまたは2-アダマンチル、好ましくは1-アダマンチル)、o-トリル、p-トリル、2,4-キシリル、2,5-キシリル、2,6-キシリル、2,4,6-メシチル、ジ-p-トリルアミノ、ビス(p-(t-ブチル)フェニル)アミノ、3,6-ジメチルカルバゾリルおよび3,6-ジ-t-ブチルカルバゾリルが好ましい。
下記構造式において、*は結合位置を表す。
Figure 2023148087000018
Figure 2023148087000019
Figure 2023148087000020
Figure 2023148087000021
Figure 2023148087000022
Figure 2023148087000023
Figure 2023148087000024
Figure 2023148087000025
Figure 2023148087000026
Figure 2023148087000027
Figure 2023148087000028
Figure 2023148087000029
Figure 2023148087000030
Figure 2023148087000031
式(1)で表される金属錯体は、上述の式(tR)で表されるターシャリ-アルキル(t-ブチルあるいはt-アミルなど)、ネオペンチルまたはアダマンチルを少なくとも1つ含む構造であることが好ましく、式(tR)で表されるターシャリ-アルキル(t-ブチルあるいはt-アミルなど)を含むことが好ましい。このような嵩高い置換基により分子間距離が増加するため発光量子収率(PLQY)が向上するからである。また、置換基としては、ジアリールアミノも好ましい。さらに、式(tR)の基で置換されたジアリールアミノ、式(tR)の基で置換されたカルバゾリル(好ましくは、N-カルバゾリル)または式(tR)の基で置換されたベンゾカルバゾリル(好ましくは、N-ベンゾカルバゾリル)も好ましい。ジアリールアミノ、カルバゾリルおよびベンゾカルバゾリルへの式(tR)の基の置換形態としては、これらの基におけるアリール環またはベンゼン環の一部または全ての水素が式(tR)の基で置換された例があげられる。
置換基の好ましい1つの別の形態として、式(1)における、A環、B環、C環およびD環のそれぞれにおける、アリール環またはヘテロアリール環に置換する、2価または3価の置換基があげられる。これは式(2)においては隣接する2つのRZが互いに結合して2価の置換基、連続する3つのRZが互いに結合して3価の置換基を形成している構造などに該当する。
このような置換基の例として以下の式(A20)で表される置換基があげられる。
Figure 2023148087000032
式(A20)で表される置換基は、2つの*でアリール環またはヘテロアリール環の環上で隣接する2つの原子にそれぞれ結合し、
式(A20)中、Lは>N-R、>O、>Si(-R)2または>Sであり、前記>N-RのRは、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のアルキルまたは置換もしくは無置換のシクロアルキルであり、前記>Si(-R)2のRは、水素、置換されていてもよいアリール、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり、また連結基によって互いに結合していてもよく、また、前記>N-Rおよび前記>Si(-R)2のRの少なくとも1つは連結基または単結合により前記アリール環またはヘテロアリール環およびRAからなる群より選択される少なくとも1つと結合していてもよく、
rは1~4の整数であり、
Aはそれぞれ独立して水素、置換もしくは無置換のアルキルまたは置換もしくは無置換のシクロアルキルであり、任意のRAは他の任意のRAと連結基または単結合により互いに結合していてもよい。
上記の置換基の例としては以下のいずれかで表される置換基があげられる。
Figure 2023148087000033
各式中、*で、いずれかのアリール環またはヘテロアリール環の環上で連続(隣接)する2つまたは3つの原子にそれぞれ結合していればよい。
例えば、式(2)における、隣接する1つまたは2つのRZと互いに結合して、式(A20-a-1)~式(A20-b-4)のいずれかで表される多価の置換基を形成していることも好ましい。
置換基の好ましいさらなる1つの形態として、式(1)における、全てのアリール環および全てのヘテロアリール環からなる群より選択される少なくとも1つの環に置換する、2価または3価のアルキレンがあげられる。特にアリール環またはヘテロアリール環の環上で連続(隣接)する2つまたは3つの炭素に2価のアルキレンが結合して、2つまたは3つの炭素とともにシクロアルケンが形成された構造が好ましい。この構造はアリール環またはヘテロアリール環にシクロアルカンが縮合した構造が形成された構造であるということもできる。上記アルキレンは置換基を有していてもよく少なくとも1つの-CH2-は-O-で置き換えられてもよい。
アルキレンとしては、炭素数1~22のアルキレンンであればよい。置換基を有する場合の置換基は例えば、炭素数6~30のアリール、炭素数2~30のヘテロアリール、炭素数1~24のアルキルまたは炭素数3~24のシクロアルキルである。アルキレンにおける少なくとも1つの-CH2-は-O-で置き換えられていてもよい。
アルキレンは、炭素数1~18のアルキレンであって、置換基は、炭素数6~16のアリール、炭素数2~22のヘテロアリール、炭素数1~12のアルキルまたは炭素数3~16のシクロアルキルで置換されていてもよいアルキレンであることが好ましい。
「アルキレン」としては、炭素数1~22のアルキレン、炭素数1~18のアルキレン、炭素数1~14のアルキレン、炭素数1~12のアルキレン、炭素数3~8のアルキレン、炭素数3~6のアルキレン、炭素数3~4のアルキレン、炭素数3のアルキレンなどがあげられる。
アルキレンが結合した構造を、アリール環またはヘテロアリール環にシクロアルカンが縮合した構造として考えたときの、具体的なシクロアルカンとしては、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、ノルボルナン(ビシクロ[2.2.1]ヘプタン)、ビシクロ[1.1.0]ブタン、ビシクロ[1.1.1]ペンタン、ビシクロ[2.1.0]ペンタン、ビシクロ[2.1.1]ヘキサン、ビシクロ[3.1.0]ヘキサン、ビシクロ[2.2.2]オクタン、アダマンタン、ジアマンタン、デカヒドロナフタレンおよびデカヒドロアズレン、ならびに、これらの炭素数1~5のアルキル(特にメチル)置換体、ハロゲン(特にフッ素)置換体および重水素置換体などがあげられる。
上記の例の中でも、例えば下記構造式に示すような、結合位置のα位の炭素(アリール環またはヘテロアリール環に結合するアルキレンにおいて、縮合部位の炭素に隣接する位置の炭素)に少なくとも1つの置換基を有する構造が好ましく、α位の炭素に2つの置換基を有する構造がより好ましく、2つのα位の炭素がいずれも2つの置換基を有する(合計4つの置換基を有する)構造がさらに好ましい。この置換基としては、炭素数1~5のアルキル(特にメチル)、ハロゲン(特にフッ素)および重水素などがあげられる。特に、アリール環またはヘテロアリール環において隣接する炭素原子に下記式(B)で表される部分構造が結合した構造となっていることが好ましい。
Figure 2023148087000034
式(B)中、*は結合位置を示す。
1つのアリール環またはヘテロアリール環に置換するアルキレンの数は、1~3個が好ましく、1個または2個がより好ましく、1個がさらに好ましい。例えば1つのベンゼン環(フェニル)に1個または複数のアルキレンが置換した例を以下に示す。*は結合位置を示し、その位置はベンゼン環を構成しかつシクロアルカンを構成していない炭素のいずれであってもよい。式(Cy-1-4)および式(Cy-2-4)のように分岐アルキレンが置換してもよい。置換される環(基)がベンゼン環(フェニル)以外の他のアリール環またはヘテロアリール環の場合であっても、プロピレンまたはプロピレン以外の他のアルキレンの場合であっても、同様である。
Figure 2023148087000035
アルキレンにおける少なくとも1つの-CH2-は-O-で置換されていてもよい。例えば1つのベンゼン環(フェニル)に置換したアルキレンにおける1個または複数の-CH2-が-O-で置換された例を以下に示す。縮合される環(基)がベンゼン環(フェニル)以外の他のアリール環またプロピレンまたはプロピレン以外の他のアルキレンの場合であっても、同様である。
Figure 2023148087000036
アルキレンは少なくとも1つの置換基で置換されていてもよく、この置換基としては、置換基群Zαから選択されるいずれかの置換基をあげることができる。これらの置換基の中でも、アルキル(例えば炭素数1~6のアルキル)、シクロアルキル(例えば炭素数3~14のシクロアルキル)、ハロゲンが好ましい。また、シクロアルキルが置換する場合はスピロ構造を形成する置換形態でもよく、例えば1つのベンゼン環(フェニル)に縮合したシクロアルカンにスピロ構造が形成された例を以下に示す。各構造式における*は、ベンゼン環である場合には化合物の骨格構造に含まれるベンゼン環であることを意味し、フェニルである場合には化合物の骨格構造に置換する結合手を意味する。
Figure 2023148087000037
アルキレン置換の形態としては、まず、式(1)で表される金属錯体におけるA環、B環、C環、およびD環それぞれにおけるアリール環およびヘテロアリール環がアルキレンで置換された形態があげられる。これは式(2)においては隣接する2つのRZが互いに結合してアルキレンを形成した構造に該当する。
アルキレン置換の別の形態としては、E環およびF環における含窒素ヘテロ環カルベンに含まれるアリール環またはヘテロアリール環がアルキレンで置換された形態があげられる。
アルキレン置換のさらに別の形態としては、A環、B環、C環、D環、E環およびF環における置換基中のアリール環およびヘテロアリール環がアルキレンで置換された形態があげられる。
なお、式(1)で表される金属錯体にアルキレン置換構造を導入することによっては、融点や昇華温度のさらなる低下が期待できる。このことは、高い純度が要求される有機EL素子などの有機デバイス用の材料の精製法としてほぼ不可欠な昇華精製において、比較的低温で精製することができるため材料の熱分解などが避けられることを意味する。またこれは、有機EL素子などの有機デバイスを作製するのに有力な手段である真空蒸着プロセスについても同様であり、比較的低温でプロセスを実施できるため、材料の熱分解を避けることができ、結果として高性能な有機デバイスを得ることができる。また、アルキレン置換構造の導入により有機溶媒への溶解性が向上するため、塗布プロセスを利用した素子作製にも適用することが可能となる。ただし、本発明は特にこれらの原理に限定されるわけではない。
<重水素による置き換え>
式(1)で表される構造単位を含む構造中の水素は、その全てまたは一部が重水素であってもよい。式(2)で表される構造も同様であり、この後の説明は式(2)で表される金属錯体にも同様に当てはまる。
例えば、式(1)で表される構造単位を含む構造においては、A環、B環、C環、およびD環アリール環またはヘテロアリール環、E環、およびF環における含窒素ヘテロ環カルベン、A環、B環、C環、D環、E環、およびF環中の置換基、における水素が重水素で置き換えられうるが、これらの中でもアリールやヘテロアリールにおける全てまたは一部の水素が重水素で置き換えられた態様があげられる。また耐久性の観点から、式(1)で表される構造単位を含む構造中の水素は、その全てまたは一部が重水素化されていることも好ましい。
<本発明の金属錯体の具体例>
本発明の金属錯体具体例として、下記構造式のいずれかで表される化合物があげられる。
Figure 2023148087000038
Figure 2023148087000039
Figure 2023148087000040
Figure 2023148087000041
Figure 2023148087000042
Figure 2023148087000043
Figure 2023148087000044
Figure 2023148087000045
Figure 2023148087000046
Figure 2023148087000047
Figure 2023148087000048
Figure 2023148087000049
Figure 2023148087000050
Figure 2023148087000051
<金属錯体の高分子量化の説明>
式(1)で表される金属錯体は、これに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物(この高分子化合物を得るための前記モノマーは重合性置換基を有する)、もしくは当該高分子化合物をさらに架橋させた高分子架橋体(この高分子架橋体を得るための前記高分子化合物は架橋性置換基を有する)、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物(このペンダント型高分子化合物を得るための前記反応性化合物は反応性置換基を有する)、もしくは当該ペンダント型高分子化合物をさらに架橋させたペンダント型高分子架橋体(このペンダント型高分子架橋体を得るための前記ペンダント型高分子化合物は架橋性置換基を有する)としても、有機デバイス用材料、例えば、有機電界発光素子用材料、有機電界効果トランジスタ用材料、有機薄膜太陽電池用材料、または波長変換フィルタに用いることができる。
なお、本明細書において、「高分子化合物」とは、分子量分布を有し、かつポリスチレン換算の数平均分子量が1×103~1×108(1×10^3~1×10^8)である重合体を意味する。高分子化合物のポリスチレン換算の数平均分子量(Mn)は、移動相にテトラヒドロフランを用い、サイズエクスクル一ジョンクロマ卜グラフィ一(SEC)により求めることができる。具体的には測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入する。移動相の流量は、1.0mL/分、カラムとしてはPLgelMIXED_B(ポリマーラボラトリーズ製)を用いる。検出器にはUV_VIS検出器(東ソ一製、商品名:UV-8320GPC)を用いることができる。
本発明の高分子化合物は数平均分子量が2000~1×108であることが好ましく、5000~1×108であることがより好ましい。
上述した反応性置換基(前記重合性置換基、前記架橋性置換基、および、ペンダント型高分子を得るための反応性置換基を含み、以下、単に「反応性置換基」とも言う)としては、上記金属錯体を高分子量化できる置換基、そのようにして得られた高分子化合物をさらに架橋化できる置換基、また、主鎖型高分子にペンダント反応し得る置換基であれば特に限定されないが、以下の構造の置換基が好ましい。各構造式中の*は結合位置を示す。
Figure 2023148087000052
Lは、それぞれ独立して、単結合、-O-、-S-、>C=O、-O-C(=O)-、炭素数1~12のアルキレン、炭素数1~12のオキシアルキレンおよび炭素数1~12のポリオキシアルキレンである。上記置換基の中でも、式(XLS-1)、式(XLS-2)、式(XLS-3)、式(XLS-9)、式(XLS-10)または式(XLS-17)で表される基が好ましく、式(XLS-1)、式(XLS-3)または式(XLS-17)で表される基がより好ましい。
このような高分子化合物、高分子架橋体、ペンダント型高分子化合物、およびペンダント型高分子架橋体は、式(1)で表される構造単位の1つまたは2つ以上からなる構造を有する金属錯体の繰り返し単位以外にも、置換もしくは無置換のトリアリールアミン、置換もしくは無置換のフルオレン、置換もしくは無置換のアントラセン、置換もしくは無置換のテトラセン、置換もしくは無置換のトリアジン、置換もしくは無置換のカルバゾール、置換もしくは無置換のテトラフェニルシラン、置換もしくは無置換のスピロフルオレン、置換もしくは無置換のトリフェニルホスフィン、置換もしくは無置換のジベンゾチオフェン、および置換もしくは無置換のジベンゾフランからなるから選ばれる少なくとも1種を繰り返し単位として含んでもよい。
これらの繰り返し単位における置換基としては、例えば、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシ、アリールオキシ、トリアリールシリル、トリアルキルシリル、トリシクロアルキルシリル、ジアルキルシクロアルキルシリル、またはアルキルジシクロアルキルシリルなどがあげられる。
<金属錯体の製造方法>
式(1)や(2)で表される金属錯体は、基本的には、まずA環(a環)、B環(b環)およびE環(e環)を含むNHC(N-ヘテロ環式カルベン)前駆体と、C環(c環)、D環(d環)およびF環(f環)を含むNHC前駆体とを製造し、それぞれを脱プロトン化して生成したNHCを中心金属に配位させ中間体を製造したあと(第1反応)、アンモニアで縮環させることで最終生成物を製造することができる(第2反応)。
NHC前駆体は下記式(1-preNHC)、好ましくは式(2-preNHC)で表される化合物であり、中間体は下記式(1-Int)、好ましくは式(2-Int)で表される化合物である。
Figure 2023148087000053
式(1-preNHC)中、A環、B環は式(1)中のA環、B環(またはC環、D環)と同義であり、E環は含窒素ヘテロ環であり、A環およびE環またはE環およびB環の少なくとも1組の2つの環は追加の単結合または連結基で互いに結合していてもよい。式(2-preNHC)中、Zは式(2)中のZと同義である。式(1-preNHC)および式(2-preNHC)中、Halはそれぞれ独立して、塩素(Cl)、臭素(Br)またはヨウ素(I)であり、HalXは、塩素、臭素またはヨウ素である。式(1-preNHC)および式(2-preNHC)における少なくとも1つの水素は重水素で置き換えられていてもよい。
式(1-Int)中、M、A環、B環、C環、D環、E環、およびF環は、それぞれ式(1)中のM、A環、B環、C環、D環、E環、およびF環と同義である。式(2-Int)中、Zは式(2)中のZと同義である。式(1-Int)および式(2-Int)中、Halはそれぞれ独立して、塩素、臭素またはヨウ素である。各式における少なくとも1つの水素は重水素で置き換えられていてもよい。
[NHC前駆体の製造]
NHC前駆体は、構造(置換基など)に応じて公知文献(例えば、Angew. Chem. Int. Ed. 2018, 57, 4668-4672、Dalton Trans., 2012, 41, 10913-10918)に記載の方法を参照して合成することができる。一例として、NHC前駆体は、Dalton Trans., 2012, 41, 10913-10918に記載の方法に準じて、以下スキーム(i)に記載の手順で合成することができる。
Figure 2023148087000054
式中、Zは式(2)中のZと同義である。Halはそれぞれ独立して塩素、臭素またはヨウ素である。Halはいずれも臭素またはヨウ素であることが好ましく、いずれもヨウ素であることがより好ましい。
[第1反応]
第1反応では前駆体の構造(置換基など)に応じて、以下の文献で報告されている反応を適宜選択できる。この際、NHC前駆体を脱プロトン化して生じたNHCを直接配位させる方法の他に、NHC前駆体と酸化銀(I)との反応で生じた銀NHC錯体を作用させる方法も利用できる。(Organometallics, 2007, 26, 6225-6233、Synthesis, 2013, 45, 2251-2264、J. Am. Chem. Soc. 2010, 132, 27, 9420-9429)具体的には、以下スキーム(ii)に記載のように、NHC前駆体を塩基で処理することにより、NHCを発生させ、任意のNi、Pd、またはPtに配位させることができる。塩基として酸化銀(I)を用いることで、扱いが容易なNHC銀錯体を得て、これを加熱することでNHCを発生させることもできる。
Figure 2023148087000055
[第2反応]
第2反応はアミノ化反応であればブッフバルト-ハートウィッグ反応やゴールドバーグ反応といった一般的反応が利用できる。この際、反応させるアンモニアは文献(J. AM. CHEM. SOC. 2008, 130, 16562-16571)に従って事前に中心金属に配位させておく方法も利用できる。
第2反応は、下記スキーム(1)や(2)に示すように、A環(a環)およびC環(c環)、B環(b環)およびD環(d環)を連結する窒素を導入する反応である。A環(a環)のハロゲン原子を、ブッフバルト-ハートウィッグ反応によりアンモニアと反応させ、生じたアリールアミンを中心金属に配位させ、次いでC環(c環)のハロゲン原子とブッフバルト-ハートウィッグ反応を起こし、窒素原子を導入する。B環(b環)およびD環(d環)についても同様に窒素原子を導入し、目的物を得ることができる。なお、反応する環の順番、およびブッフバルト-ハートウィッグ反応と中心金属への配位反応の順番は問わない。
Figure 2023148087000056
使用する原料を適宜選択することで、所望の位置に置換基を有する金属錯体を合成することができる。
以上の反応で用いられる溶媒の具体例は、トルエン、キシレン、THF、ジオキサン、シクロヘキシルメチルエーテル、DME、DMF、NMP、ターシャリーブチルアルコールや水などである。
なお、上記スキーム(1)および(2)で使用する触媒としては、塩化パラジウム(II)、酢酸パラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、ビス(ジベンジリデンアセトン)パラジウム(0)、ジクロロビス[ジ-t-ブチル(4-ジメチルアミノフェニル)ホスフィノ]パラジウム(II)(Pd-132)、銅、酸化銅(I)、酸化銅(II)、ヨウ化銅(I)、酢酸銅(II)などがあげられる。
なお、上記スキーム(1)および(2)で使用する添加剤(触媒の配位子)としては、トリシクロヘキシルホスフィン、トリ-tert-ブチルホスホニウムテトラフルオロボラート、2-ジシクロヘキシルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル、トリ(o-トリル)ホスフィン、1,1′-フェロセンジイル-ビス(ジフェニルホスフィン),1,1′-フェロセンビス(ジフェニルホスフィン)、2-ジシクロへキシルホスフィノ-2′,6′-ジイソプロポキシビフェニル、2-tert-ブチルホスフィノ-2′,6′-ジイソプロポキシビフェニル、(R)-1-[(SP)-2-(ジシクロヘキシルホスフィノ)フェロセニル]エチルジ-tert-ブチルホスフィン、AmPhos、BINAP、DMEDAなどがあげられる。
なお、上記スキーム(1)および(2)で使用するブレンステッド塩基としては、炭酸カリウム、炭酸セシウム、リン酸カリウム、ナトリウムターシャリーブトキシド、ナトリウムエトキシド、ナトリウムメトキシド、水酸化ナトリウム、カリウムターシャリーブトキシド、カリウムエトキシド、カリウムメトキシド、水酸化カリウム、リチウムアミド、LDA、LiHMDS、ナトリウムアミド、水素化カリウム、水素化ナトリウム、水素化リチウムなどがあげられる。
また、本発明の金属錯体には、少なくとも一部の水素原子が重水素で置き換えられているもの、フッ素や塩素などのハロゲンで置換されているもの、およびシアノで置換されているものも含まれるが、このような化合物などは所望の箇所が重水素化、フッ素化、塩素化、またはシアノ化された原料を用いることで、上記と同様に合成することができる。
2.有機デバイス
本発明の金属錯体は、有機デバイス用材料として用いることができる。有機デバイスとしては、例えば、有機電界発光素子、有機電界効果トランジスタまたは有機薄膜太陽電池などがあげられる。
本発明に係る金属錯体は、有機デバイス用材料として用いることができる。有機デバイスとしては、例えば、有機電界発光素子、有機電界効果トランジスタまたは有機薄膜太陽電池などがあげられるが、有機電界発光素子であることが好ましい。本発明に係る金属錯体は、有機電界発光素子材料であることが好ましく、発光層用材料(発光材料)であることがより好ましく、発光層のドーパント材料であることが最も好ましい。
<2-1.有機電界発光素子>
<2-1-1.有機電界発光素子の構造>
図1は、有機EL素子の一例を示す概略断面図である。
図1に示された有機EL素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
なお、有機EL素子100は、作製順序を逆にして、例えば、基板101と、基板101上に設けられた陰極108と、陰極108の上に設けられた電子注入層107と、電子注入層107の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた発光層105と、発光層105の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた陽極102とを有する構成としてもよい。
上記各層すべてがなくてはならないわけではなく、最小構成単位を陽極102と発光層105と陰極108とからなる構成として、正孔注入層103、正孔輸送層104、電子輸送層106、電子注入層107は任意に設けられる層である。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。
有機EL素子を構成する層の態様としては、上述する「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」の構成態様の他に、「基板/陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子注入層/陰極」の構成態様であってもよい。
有機EL素子はさらに電子阻止層(電子ブロッキング層)および正孔阻止層(正孔ブロッキング層)から選択されるいずれかまたは双方を有していてもよい。電子阻止層は発光層より浅いLUMOおよび発光層または正孔輸送層と近いHOMOとを有し、発光層と正孔輸送層の間に配置される。電子が発光層内に留まり正孔輸送層へ漏れ出ないために、正孔輸送層の劣化による短寿命化と再結合効率低下による効率の低下を防ぐことができる。正孔阻止層は発光層より深いHOMOおよび発光層または正孔輸送層と近いLUMOとを有し、発光層と電子輸送層の間に配置される。正孔が発光層内に留まり電子輸送層へ漏れ出ないために、電子輸送層の劣化による短寿命化と再結合効率低下による効率の低下を防ぐことができる。正孔注入・輸送層が電子阻止層を兼ねていてもよい。電子注入・輸送層が正孔阻止層を兼ねていてもよい。
有機EL素子はさらに高T1層を有していてもよい。高T1層は、発光層に用いられるホスト化合物、アシスティングドーパント化合物またはエミッティングドーパント化合物より高いT1を有し、発光層と正孔輸送層の間および/または発光層と電子阻止層の間に配置される。T1エネルギーの値は素子の発光機構により異なるが、ホストに用いられる化合物より高いT1を有する。発光層の周囲に高T1層を有することで、三重項エネルギーを閉じ込め、通常蛍光分子では発光につながらない三重項エネルギーを一重項エネルギーへと変換し、高い効率を得ることができる。正孔注入・輸送層または電子阻止層が高T1層を兼ねていてもよい。電子注入・輸送層または正孔阻止層が高T1層を兼ねていてもよい。
<2-1-2.有機電界発光素子における基板>
基板101は、有機EL素子100の支持体であり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状、またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルム、プラスチックシートなどが用いられる。なかでも、ガラス板、および、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよい。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
<2-1-3.有機電界発光素子における陽極>
陽極102は、発光層105へ正孔を注入する役割を果たす。なお、陽極102と発光層105との間に正孔注入層103および正孔輸送層104の少なくとも1つの層が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
陽極102を形成する材料としては、無機化合物および有機化合物があげられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどがあげられる。有機化合物としては、例えば、ポリ(3-メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどがあげられる。その他、有機EL素子の陽極として用いられている物質の中から適宜選択して用いることができる。
<2-1-4.有機電界発光素子における正孔注入層、正孔輸送層>
正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たす。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たす。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層または混合により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。
正孔注入層103および正孔輸送層104を形成する材料としては、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機EL素子の正孔注入層および正孔輸送層に使用されている公知の化合物の中から任意の化合物を選択して用いることができる。それらの具体例は、カルバゾール誘導体(N-フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(芳香族第3級アミノを主鎖または側鎖に持つポリマー、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N'-ジフェニル-N,N'-ジ(3-メチルフェニル)-4,4'-ジアミノビフェニル、N,N'-ジフェニル-N,N'-ジナフチル-4,4'-ジアミノビフェニル、N,N'-ジフェニル-N,N'-ジ(3-メチルフェニル)-4,4'-ジフェニル-1,1'-ジアミン、N,N'-ジナフチル-N,N'-ジフェニル-4,4'-ジフェニル-1,1'-ジアミン、N4,N4'-ジフェニル-N4,N4'-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1'-ビフェニル]-4,4'-ジアミン、N4,N4,N4',N4'-テトラ[1,1'-ビフェニル]-4-イル)-[1,1'-ビフェニル]-4,4'-ジアミン、4,4',4"-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など)、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、キノキサリン誘導体(例えば、1,4,5,8,9,12-ヘキサアザトリフェニレン-2,3,6,7,10,11-ヘキサカルボニトリルなど)、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されない。
また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または、電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6-テトラフルオロテトラシアノ-1,4-ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pfeiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、または、特定の金属フタロシアニン(特に、亜鉛フタロシアニン(ZnPc)など)が知られている(特開2005-167175号公報)。
上述した正孔注入層用材料および正孔輸送層用材料は、これらに反応性置換基が置換した反応性化合物をモノマーとして高分子化させた高分子化合物、もしくはその高分子架橋体、または、主鎖型高分子と前記反応性化合物とを反応させたペンダント型高分子化合物、もしくはそのペンダント型高分子架橋体としても、正孔層用材料に用いることができる。
<2-1-5.有機電界発光素子における発光層>
発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光する層である。発光層105を形成する材料は、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光)効率を示す化合物が好ましく、用いられる。
発光層は、エミッティングドーパントと、正孔輸送性ホスト材料、電子輸送性ホスト材料、およびアシスティングドーパント材料からなる群より選択される少なくとも2つとを含むことが好ましい。発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光層用材料により形成される。発光層が複数層からなっている場合、いずれか1つの層が本発明の金属錯体を含むことが好ましい。発光層は単一層であることが好ましい。エミッティングドーパントはホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
ホスト材料の使用量はホスト材料の種類によって異なり、そのホスト材料の特性に合わせて決めればよい。ホスト材料の使用量の目安は、好ましくは発光層用材料全質量の50~99.999質量%であり、より好ましくは80~99.95質量%であり、さらに好ましくは90~99.9質量%である。ホスト材料が、正孔輸送性ホスト材料と電子輸送性ホスト材料との組み合わせである場合は、ホスト材料の使用量は正孔輸送性ホスト材料の使用量と電子輸送性ホスト材料の使用量とを合わせた質量である。正孔輸送性ホスト材料と電子輸送性ホスト材料との使用量の比は質量比で1:9~9:1であればよく、4:6~6;4であることが好ましく、略1:1であることがより好ましい。
エミッティングドーパントの使用量はエミッティングドーパントの種類によって異なり、その特性に合わせて決めればよい。エミッティングドーパントの使用量の目安は、好ましくは発光層用材料全質量の0.001~50質量%であり、より好ましくは0.05~20質量%であり、さらに好ましくは0.1~10質量%である。上記の範囲であれば、例えば、濃度消光現象を防止できるという点で好ましい。
ドーパント材料としては、エミッティングドーパントとアシスティングドーパント材料とを用いてもよい。アシスティングドーパント材料としては本発明の金属錯体を用いることが好ましい。アシスティングドーパント材料を用いた有機電界発光素子においては、エミッティングドーパント材料の使用量は低濃度である方が濃度消光現象を防止できるという点で好ましい。
アシスティングドーパント材料が使用される場合における、ホスト材料、アシスティングドーパント材料およびエミッティングドーパント材料の使用量の目安は、それぞれ、発光層用材料全質量に対し40~99質量%、59~1質量%および20~0.001質量%であり、好ましくは、それぞれ、60~95質量%、39~5質量%および10~0.01質量%であり、より好ましくは、70~90質量%、29~10質量%および5~0.05質量%である。
本発明の金属錯体は、発光層を形成する材料として用いられることがより好ましく、特にエミッティングドーパントまたはアシスティングドーパントとして用いられることがより好ましい。
本発明の金属錯体は、りん光材料としてエミッティングドーパントとして用いることができ、ホスト(1種類または2種類)とともに発光層を形成する材料として用いられることが好ましい。本発明の金属錯体は、りん光材料として、りん光アシスト素子(りん光増感蛍光(phosphor-sensitized fluorescent)素子、PSF素子)のアシスティングドーパントとして用いることもできる。本発明の金属錯体をアシスティングドーパントとして用いる場合、エミッティングドーパントとしては、後述するホウ素原子を有する多環芳香族化合物を用いることが好ましい。
図2に一般的な蛍光ドーパントをエミッティングドーパント(ED)に用いたPSF素子の発光層のエネルギー準位図を示す。図中、ホストの基底状態のエネルギー準位をE(1,G)、ホストの蛍光スペクトルの短波長側の肩より求められる最低励起一重項エネルギー準位をE(1,S,Sh)、ホストのリン光スペクトルの短波長側の肩より求められる最低励起三重項エネルギー準位をE(1,T,Sh)、アシスティングドーパントの基底状態のエネルギー準位をE(2,G)、アシスティングドーパントのDFT(密度汎関数理論)計算で求めた最低励起一重項エネルギー準位をE(2,S,Calc)、アシスティングドーパントのリン光スペクトルの短波長側の肩より求められる最低励起三重項エネルギー準位をE(2,T,Sh)、エミッティングドーパントの基底状態のエネルギー準位をE(3,G)、エミッティングドーパントの蛍光スペクトルの短波長側の肩より求められる最低励起一重項エネルギー準位をE(3,S,Sh)、エミッティングドーパントのリン光スペクトルの短波長側の肩より求められる最低励起三重項エネルギー準位をE(3,T,Sh)、正孔をh+、電子をe-、蛍光共鳴エネルギー移動をFRET(Fluorescence Resonance Energy Transfer)とする。TAF素子において、一般的な蛍光ドーパントをエミッティングドーパント(ED)として用いた場合、アシスティングドーパントのエネルギーはエミッティングドーパントの最低励起一重項エネルギー準位E(3,S,Sh)に移り発光する。しかし、アシスティングドーパント上の一部の最低励起三重項エネルギーE(2,T,Sh)がエミッティングドーパントの最低励起三重項エネルギー準位E(3,T,Sh)に移動したり、エミッティングドーパント上で最低励起一重項エネルギー準位E(3,S,Sh)から最低励起三重項エネルギー準位E(3,T,Sh)への項間交差が起こり、引き続いて基底状態E(3,G)へ熱的に失活する。この経路により一部のエネルギーは発光に利用されず、エネルギーの無駄が生じる。
これに対して、本発明の金属錯体をアシスティングドーパントに用い、かつホウ素原子を有する多環芳香族化合物をエミッティングドーパントに用いた有機電界発光素子では、アシスティングドーパントからエミッティングドーパントに移動したエネルギーを効率よく発光に利用することができ、これにより高い発光効率を実現することができる。これは、以下の発光メカニズムによるものと推測される。本態様の有機電界発光素子における好ましいエネルギー関係を図3に示す。本態様の有機電界発光素子においては、エミッティングドーパントとしての、ホウ素原子を有する化合物が高い最低励起三重項エネルギー準位E(3,T,Sh)を有する。そのため、アシスティングドーパントのエネルギーが、例え、エミッティングドーパントで最低励起三重項エネルギー準位E(3,T,Sh)へ項間交差した場合にも、エミッティングドーパント上でアップコンバージョンされるか、アシスティングドーパント(本発明の金属錯体)上の最低励起三重項エネルギー準位E(2,T,Sh)へ回収される。したがって、生成した励起エネルギーを無駄なく発光に使用することができる。また、アップコンバージョンおよび発光の機能をそれぞれが得意な2種の分子に分けることで、高いエネルギーの滞留時間が減少し、化合物への負担が減少すると予想される。
<ホスト材料>
ホスト材料としては、以前から発光体として知られていたN-フェニルカルバゾール誘導体、カルバゾニトリル誘導体、トリアジン誘導体、ピリミジン誘導体、ピリジン誘導体、ピラジン誘導体、ベンゾニトリル誘導体などがあげられる。
ホスト材料の最低励起三重項エネルギー準位(ET1)は、発光層内での励起エネルギーの漏れを防ぐ観点から、発光層内において最も高いET1を有するドーパントまたはアシスティングドーパントのET1に比べて高いことが好ましく、具体的には、ホスト材料のET1は、上記のドーパントまたはアシスティングドーパントのET1に比べて0.01eV以上高いことが好ましく、0.03eV以上高いことがより好ましく、0.1eV以上高いことがさらに好ましい。また、ホスト材料のET1は2.70eV以上が好ましく、2.73eV以上がより好ましく、2.80eV以上が更に好ましい。
ホスト材料は、一種類であっても、複数の組み合わせであってもよい。複数の組み合わせである場合、正孔輸送性ホスト材料と電子輸送性ホスト材料との組み合わせであることが好ましい。
正孔輸送性ホスト材料(HH)および電子輸送性ホスト材料(EH)は、HOMO(Highest Occupied Molecular Orbital)およびLUMO(Lowest Unoccupied Molecular Orbital)について、以下の関係を満たす。
正孔輸送性ホスト材料(HH)のHOMOは電子輸送性ホスト材料(EH)のHOMOより浅く、かつ電子輸送性ホスト材料(EH)のLUMOは正孔輸送性ホスト材料(HH)のLUMOより深い。
また、エミッティングドーパントのHOMOが正孔輸送性ホスト材料(HH)のHOMOより浅いか、または、エミッティングドーパントのLUMOが電子輸送性ホスト材料(EH)のLUMOより深いことが好ましい。
また、正孔輸送性ホスト材料(HH)および電子輸送性ホスト材料(EH)の最低励起三重項エネルギー準位(ET1)は、発光層内でのTADFの発生を阻害せず促進させる観点から、発光層内において最も高いET1を有するエミッティングドーパントまたはアシスティングドーパントのET1に比べて高いことが好ましく、具体的には、ホスト材料のET1は、上記のエミッティングドーパントまたはアシスティングドーパントのET1に比べて0.01eV以上高いことが好ましく、0.03eV以上高いことがより好ましく、0.1eV以上高いことがさらに好ましい。また、ホスト材料のET1は2.47eV以上が好ましく、2.49eV以上がより好ましく、2.56eV以上が更に好ましい。
なお、発光層に隣接する正孔輸送層に正孔輸送性ホスト材料を用い、かつこの発光層に隣接する電子輸送層に電子輸送性ホスト材料を用いることも好ましい。発光層から隣接層へのキャリア漏れ・エネルギー漏れが起こりにくくなり、高い効率の有機EL素子が得られるからである。発光層中のホスト材料(正孔輸送性ホスト材料)と正孔輸送層材料とは同じであっても異なっていてもよい。また、発光層中のホスト材料(電子輸送性ホスト材料)と電子輸送層の材料とは同じであっても異なっていてもよい。
[正孔輸送性ホスト材料(HH)]
好ましい正孔輸送性ホスト材料(HH)の例としては、式(HH-1)で表されるか、または式(HH-1)で表される部分構造を有し、アリール環およびヘテロアリール環からなる群より選択される少なくとも3つの環を含む構造を有する化合物をあげることができる。この化合物は、イミン構造(-N=C-;ヘテロアリール環の部分構造を含む)、ホウ素(>B-)、およびシアノ(CN)のいずれも含まないことが好ましい。
Figure 2023148087000057
式(HH-1)において、
Qは、>O、>S、または、>N-AHであり、
式(HH-1)における2つのフェニルそれぞれにおけるQの結合する炭素原子の隣の1つの炭素原子は、互いにLで結合していてもよく、
Lは、単結合、>O、>S、または>C(-AH2であり、
Hは、水素、アリール、またはヘテロアリールであり、>C(-AH2における2つのAHは互いに結合していてもよい。
正孔輸送性ホスト材料が式(HH-1)で表される構造を部分構造として含むとき、この部分構造1を1つ含むものであってもよいが2つ以上含むことも好ましい。2つ以上含む場合、その2つ以上の部分構造は互いに同じであっても異なっていてもよい。2つ以上の部分構造は互いに単結合で結合していてもよく、部分構造に含まれる任意の環を共有するようにして結合していてもよく、部分構造に含まれる任意の環同士が縮合するようにして結合していてもよい。部分構造はさらに、アリール、ヘテロアリール、ジアリールアミノ、またはアリールオキシから選択される置換基を有していてもよい。
上記の式(HH-1)で表されるか、または式(HH-1)で表される部分構造を有する化合物はアリール環およびヘテロアリール環からなる群より選択される少なくとも3つの環を含む構造を有する。含まれる環の数は6以上であることが好ましく、8以上であることがより好ましい。また、20以下であることが好ましく、15以下であることがより好ましく、10以下であることがさらに好ましい。環の数は単環としての数を意味し、縮合環については、縮合環を構成する単環を数えた数とする。
正孔輸送性ホスト材料は、トリアリールアミン構造、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、およびフェノキサジンもしくはフェノチアジンを含む縮合多環からなる群より選択される1つ以上の部分構造を含む化合物であることが好ましい。正孔輸送性ホスト材料はこのような部分構造1を1つ含むものであってもよいが2つ以上含むことも好ましい。2つ以上含む場合、その2つ以上の部分構造は互いに同じであっても異なっていてもよい。
正孔輸送性ホスト材料の具体例としては、以下の化合物をあげることができる。
Figure 2023148087000058
Figure 2023148087000059
Figure 2023148087000060
Figure 2023148087000061
Figure 2023148087000062
Figure 2023148087000063
Figure 2023148087000064
Figure 2023148087000065
Figure 2023148087000066
Figure 2023148087000067
Figure 2023148087000068
Figure 2023148087000069
Figure 2023148087000070
上記のうち、HH-1-1、HH-1-2、HH-1-4~HH-1-12、HH-1-17、HH-1-18、HH-1-20~HH-1-24、HH-1-82、HH-1-84~HH-1-89、HH-1-91、HH-1-92、HH-1-106~HH-1-108、およびHH-1-109~HH-1-113が好ましい。
[電子輸送性ホスト材料(EH)]
電子輸送性ホスト材料(EH)の例としては、式(EH-1A)~(EH-1D)で表されるか、または式(EH-1A)~(EH-1D)で表される部分構造を有し、アリール環およびヘテロアリール環からなる群より選択される少なくとも3つの環を含む構造を有する化合物をあげることができる。
Figure 2023148087000071
式(EH-1A)~(EH-1D)において、
Arは、N=Cを環を構成する部分構造として含むヘテロアリール環であり、
Zは、単結合、-O-、-S-、または-N(-AE)-であり、
Zの結合する炭素原子の隣の炭素原子とZの結合するAEとは、互いにLで結合していてもよく、
Lは、単結合、>O、>Sまたは>C(-AE2であり、
Eは、アリール、ヘテロアリール、またはトリアリールシリルであり、>C(-AE2における2つのAEは互いに結合していてもよく、
XはC,PまたはSであり、
XがCのとき、n=2、m=1であり、
XがPのとき、n=3、m=1であり、
XがSのとき、n=2、m=1~2である。
上記の式(EH-1A)~(EH-1D)で表されるか、または式(EH-1A)~(EH-1D)で表される部分構造を有する化合物はアリール環およびヘテロアリール環からなる群より選択される少なくとも3つの環を含む構造を有する。含まれる環の数は4以上であることが好ましく、6以上であることがより好ましく、8以上であることがさらに好ましい。また、20以下であることが好ましく、15以下であることがより好ましく、10以下であることがさらに好ましい。環の数は単環としての数を意味し、縮合環については、縮合環を構成する単環を数えた数とする。
電子輸送性ホスト材料が式(EH-1A)~(EH-1D)で表される構造を部分構造として含むとき、この部分構造を1つ含むものであってもよいが2つ以上含むことも好ましい。2つ以上含む場合、その2つ以上の部分構造は互いに同じであっても異なっていてもよい。2つ以上の部分構造は互いに単結合で結合していてもよく、部分構造に含まれる任意の環を共有するようにして結合していてもよく、部分構造に含まれる任意の環同士が縮合するようにして結合していてもよい。部分構造はさらに、アリール、ヘテロアリール、ジアリールアミノ、またはアリールオキシから選択される置換基を有していてもよい。
電子輸送性ホスト材料の具体例としては、以下の化合物をあげることができる。
Figure 2023148087000072
Figure 2023148087000073
Figure 2023148087000074
Figure 2023148087000075
Figure 2023148087000076
Figure 2023148087000077
Figure 2023148087000078
Figure 2023148087000079
Figure 2023148087000080
電子輸送性ホスト材料(式(EH-1)で表される部分構造を有する化合物)の別の好ましい例として、下記式(EH-1b)で表される多環芳香族化合物、または下記式(EH-1b)で表される構造を複数有する多環芳香族化合物の多量体をあげることができる。
Figure 2023148087000081
式(EH-1b)において、
1、R2、R3、R4およびR5(以降、「R1等」ともいう)は、それぞれ独立して、水素または置換基である。この置換基は置換基群Zより選択されるものであればよい。
式(EH-1b)において、X1およびX2は、それぞれ独立して、>N-R(アミン性窒素)、>O、>C(-R)2、>Sまたは>Seであり、X1およびX2が共に>C(-R)2になることはなく、
前記>N-Rおよび>C(-R)2におけるRは、それぞれ独立して、水素または置換基群Zより選択される置換基であり、さらに、アリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよく、前記>N-Rおよび>C(-R)2のRはそれぞれ独立して連結基または単結合により前記a環、b環およびc環の少なくとも1つの環と結合していてもよい。
1、Y2、Y3、Y4、Y5およびY6(以降、「Y1等」ともいう)は、それぞれ独立して、=C(-R)-または=N-(ピリジン性窒素)であり、少なくとも1つは=N-(ピリジン性窒素)である。
前記=C(-R)-におけるRは、それぞれ独立して、水素または置換基群Zより選択される置換基である。
前記R1、R2、R3、R4およびR5、ならびに、前記Y1~Y6としての=C(-R)-のRのうちの隣接する基同士が結合してa環、b環およびc環の少なくとも1つの環と共にアリール環またはヘテロアリール環を形成していてもよく、形成された環における少なくとも1つの水素は、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノ、ジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい)、アルキル、シクロアルキル、アルコキシまたはアリールオキシ(以上、第1置換基)で置換されていてもよく、これらにおける少なくとも1つの水素はさらにアリール、ヘテロアリール、アルキルまたはシクロアルキル(以上、第2置換基)で置換されていてもよい。
式(EH-1b)で表される化合物および構造における少なくとも1つの水素は、シアノ、ハロゲンまたは重水素で置換されていてもよい。
式(EH-1b)において、R1、R2、R3、R4およびR5はいずれも水素であるか、または、R3およびR4がいずれも水素であり、かつR1、R2およびR5からなる群より選択されるいずれか1つ以上が水素以外の置換基であり、その他が水素であることが好ましい。置換基としては、アルキル、アルキルもしくはヘテロアリールで置換されていてもよいアリール、アルキルもしくはアリールで置換されていてもよいヘテロアリール、またはアルキルもしくはアリールで置換されていてもよいジアリールアミノが好ましい。このとき、アルキルとしては、炭素数1~6のアルキル(メチル、t-ブチルなど)が好ましく、アリールとしてはフェニルまたはビフェニルが好ましく、ヘテロアリールとしては、トリアジニル、カルバゾリル(2-カルバゾリル、3-カルバゾリル、9-カルバゾリルなど)、ピリミジニル、ピリジニル、ジベンゾフラニルまたはジベンゾチエニルが好ましい。具体例としては、フェニル、ビフェニル、ジフェニルトリアジニル、カルバゾリルトリアジニル、モノフェニルピリミジニル、ジフェニルピリミジニル、カルバゾリルトリアジニル、ピリジニル、ジベンゾフラニルおよびジベンゾチエニルがあげられる。
1等は、それぞれ独立して、=C(-R)-または=N-であり、少なくとも1つは=N-である。Y1~Y6のいずれが=N-であってもよい。好ましくは、Y1およびY6が=N-(a環がピリミジン環)、Y1またはY6が=N-(a環がピリジン環)、Y2およびY5が=N-(b環およびc環がピリジン環)、Y3およびY4が=N-(b環およびc環がピリジン環)、Y2~Y5が=N-(b環およびc環がピリミジン環)、Y1、Y3、Y4およびY6が=N-(a環がピリミジン環、b環およびc環がピリジン環)、Y1、Y2、Y5およびY6が=N-(a環がピリミジン環、b環およびc環がピリジン環)、Y1~Y6が=N-(a環、b環およびc環がピリミジン環)、Y2またはY5が=N-(b環またはc環がピリジン環)である。
また、以上の=N-の配置関係に加えて、X1およびX2が>Oであることが好ましく、下記式のいずれかで表される部分構造を含む多環芳香族化合物が好ましい。
Figure 2023148087000082
特に、式(EH-1b-N1)で表される部分構造を含む多環芳香族化合物は、Nがない構造と比べ、高いES1、高いET1、小さいΔES1T1を有する。
式(EH-1b)で表される多環芳香族化合物の具体例を以下に示す。
Figure 2023148087000083
Figure 2023148087000084
Figure 2023148087000085
Figure 2023148087000086
Figure 2023148087000087
Figure 2023148087000088
上記のうち、EH-1-1~EH-1-4、EH-1-10、EH-1-21~EH-1-25、EH-1-32、EH-1-33、EH-1-51~EH-1-59、EH-1-61、EH-1-66、EH-1-68、EH-1-71、EH-1-72、EH-1-90、EH-1-94~EH-1-98、EH-1-100、EH-1-101、EH-1-104,EH-1-115、EH-1-117、EH-1-120、EH-1-122、EH-1-123、EH-1-127~EH-1-130が好ましい。
[正孔輸送性ホスト材料および電子輸送性ホスト材料の組み合わせ]
正孔輸送性ホスト材料および電子輸送性ホスト材料の組み合わせは、正孔輸送性ホスト材料、電子輸送性ホスト材料およびドーパント材料のHOMO、LUMOおよび最低励起三重項エネルギー準位(ET1)によって選択される。
HOMOおよびLUMOに関しては、正孔輸送性ホスト材料のHOMO(HH)が電子輸送性ホスト材料のHOMO(EH)より浅く、電子輸送性ホスト材料のLUMO(EH)が正孔輸送性ホスト材料のLUMO(HH)より深い組み合わせを選び、より具体的には、HOMO(HH)がHOMO(EH)より0.10eV以上浅く、LUMO(HH)がHOMO(EH)より0.10eV以上深い組み合わせが好ましく、HOMO(HH)がHOMO(EH)より0.20eV以上浅く、LUMO(HH)がHOMO(EH)より0.20eV以上深い組み合わせがより好ましく、HOMO(HH)がHOMO(EH)より0.25eV以上浅く、LUMO(HH)がHOMO(EH)より0.25eV以上深い組み合わせがさらに好ましい。
正孔輸送性ホスト材料および電子輸送性ホスト材料はエキサイプレックス(exciplex)と呼ばれる会合体を形成する組み合わせであってもよい。エキサイプレックスは、比較的深いLUMO準位をもつ材料と、浅いHOMO準位をもつ材料間との間で形成しやすいことが一般に知られている。正孔輸送性ホスト材料および電子輸送性ホスト材料の相互作用、具体的にはエキサイプレックスを形成しているか否かは、正孔輸送性ホスト材料および電子輸送性ホスト材料のみからなる単層膜を発光層の形成条件と同様にして形成して発光スペクトル(蛍光、りん光スペクトル)を測定し、得られた発光スペクトルを、正孔輸送性ホスト材料および電子輸送性ホスト材料それぞれが単独で示す発光スペクトルとを比較することで判断できる。正孔輸送性ホスト材料および電子輸送性ホスト材料を含む混合膜のスペクトルが、正孔輸送性ホスト材料の膜のスペクトル、および電子輸送性ホスト材料の膜のスペクトルのいずれとも異なる発光波長を示すことにより判断することができる。具体的には、スペクトルのピーク波長が10nm以上異なっていることを指標にすればよい。
エキサイプレックスを形成しない正孔輸送性ホスト材料および電子輸送性ホスト材料の組み合わせの具体例としては以下の組み合わせをあげることができる。前記のHOMO、LUMOおよびET1の物性値を満たすために、正孔輸送性ホスト材料においては、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、トリアリールアミン、インデロカルバゾールおよびベンゾオキサジノフェノキサジンを部分構造として有する化合物が好ましく、カルバゾール、ジベンゾフランおよびジベンゾチオフェンを部分構造として有する化合物がより好ましく、カルバゾールを部分構造として有する化合物がさらに好ましい。同様に、電子輸送性ホスト材料においては、ピリジン、トリアジン、ホスフィンオキシド、ベンゾフロピリジンおよびジベンゾオキサシリンを部分構造として有する化合物が好ましく、トリアジン、ホスフィンオキシド、ベンゾフロピリジンおよびジベンゾオキサシリンを部分構造として有する化合物がより好ましく、トリアジンを有する化合物がさらに好ましい。
より具体的には、正孔輸送性ホスト材料は、HH-1-1、HH-1-2、HH-1-4~HH-1-12、HH-1-17、HH-1-18、HH-1-20~HH-1-24、HH-1-82、HH-1-84~HH-1-89、HH-1-91、HH-1-92およびHH-1-106~HH-1-108からなる群より選択されることが好ましく、電子輸送性ホスト材料は、EH-1-1~EH-1-4、EH-1-10、EH-1-21~EH-1-25、EH-1-32、EH-1-33、EH-1-51~EH-1-59、EH-1-61、EH-1-71、EH-1-72、EH-1-90、EH-1-100、EH-1-101、EH-1-104、EH-1-117、EH-1-120、EH-1-122、EH-1-123、およびEH-1-127~EH-1-130からなる群より選択されることが好ましい。組み合わせとして好ましい例としては、化合物HH-1-1および化合物EH-1-22、化合物HH-1-1および化合物EH-1-23、化合物HH-1-1および化合物EH-1-24、化合物HH-1-2および化合物EH-1-22、化合物HH-1-2および化合物EH-1-23、化合物HH-1-2および化合物EH-1-24、または化合物HH-1-1および化合物EH-1-128があげられる。
エキサイプレックスを形成する正孔輸送性ホスト材料および電子輸送性ホスト材料の組み合わせの具体例としては以下の組み合わせをあげることができる。前記、HOMO、LUMOおよびET1の物性値を満たすために、正孔輸送性ホスト材料においては、カルバゾール、トリアリールアミン、インデロカルバゾールおよびベンゾオキサジノフェノキサジンを部分構造として有する化合物が好ましく、トリアリールアミン、インデロカルバゾールおよびベンゾオキサジノフェノキサジンを部分構造として有する化合物がより好ましく、トリアリールアミンを部分構造として有する化合物がさらに好ましい。同様に、電子輸送性ホスト材料においては、ピリジン、トリアジン、ホスフィンオキシドおよびベンゾフロピリジンを部分構造として有する化合物が好ましく、トリアジン、ホスフィンオキシド、ベンゾフロピリジンおよびジベンゾオキサシリンを部分構造として有する化合物がより好ましく、ホスフィンオキシドおよびトリアジンを有する化合物がさらに好ましい。
より具体的には、正孔輸送性ホスト材料は、HH-1-1、HH-1-2、HH-1-11、HH-1-12、HH-1-17、HH-1-18、HH-1-23およびHH-1-24からなる群より選択されることが好ましく、電子輸送性ホスト材料は、EH-1-1~EH-1-4、EH-1-21~EH-1-25、EH-1-51~EH-1-57、EH-1-59、EH-1-66、EH-1-68、EH-1-90、EH-1-94、EH-1-100、EH-1-101、EH-1-104、EH-1-117、EH-1-120、EH-1-122、EH-1-123、およびEH-1-127~EH-1-130からなる群より選択されることが好ましい。組み合わせとして好ましい例としては、化合物HH-1-1および化合物EH-1-21、化合物HH-1-2および化合物EH-1-21、化合物HH-1-12および化合物EH-1-94、化合物HH-1-12および化合物EH-1-117、化合物HH-1-1および化合物EH-1-130、化合物HH-1-33および化合物EH-1-117、化合物HH-1-48および化合物EH-1-117または化合物HH-1-49および化合物EH-1-117があげられる。
その他、具体的な正孔輸送性ホスト材料と電子輸送性ホスト材料との組み合わせについては、Organic Electronics 66(2019)227-24、Advanced.Functional Materals 25(2015)361-366.、Advanced Materials 26(2014)4730-4734.、ACS Applied Materials and Interfaces 8(2016)32984-32991.、ACS Applied Materals and Interfaces 2016,8,9806-9810、ACS Applied Materials and Interfaces 2016,8,32984-32991、Journal of Materials Chemisty C,2018,6,8784-8792、Angewante Chemie International Edition.2018,57,12380-12384、Advanced Functional Materials,24,2014,3970,Advanced Materials,26,2014,5684,および、Synthetic Metals,201,2015,49などの記載を参照することができる。
<ドーパント材料>
式(1)で表される本発明の金属錯体はドーパント材料(エミッティングドーパントまたはアシスティングドーパントとして用いることが好ましい。そのほか、使用することができるドーパント材料としては、既知の化合物を用いることができ、所望の発光色に応じて様々な材料の中から選択することができる。
具体的には、例えば、フェナンスレン、アントラセン、ピレン、テトラセン、ペンタセン、ペリレン、ナフトピレン、ジベンゾピレン、ルブレンおよびクリセンなどの縮合環誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、イミダゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラゾリン誘導体、スチルベン誘導体、チオフェン誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体(特開平1-245087号公報)、ビススチリルアリーレン誘導体(特開平2-247278号公報)、ジアザインダセン誘導体、フラン誘導体、ベンゾフラン誘導体、フェニルイソベンゾフラン、ジメシチルイソベンゾフラン、ジ(2-メチルフェニル)イソベンゾフラン、ジ(2-トリフルオロメチルフェニル)イソベンゾフラン、フェニルイソベンゾフランなどのイソベンゾフラン誘導体、ジベンゾフラン誘導体、7-ジアルキルアミノクマリン誘導体、7-ピペリジノクマリン誘導体、7-ヒドロキシクマリン誘導体、7-メトキシクマリン誘導体、7-アセトキシクマリン誘導体、3-ベンゾチアゾリルクマリン誘導体、3-ベンゾイミダゾリルクマリン誘導体、3-ベンゾオキサゾリルクマリン誘導体などのクマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、ポリメチン誘導体、シアニン誘導体、オキソベンゾアントラセン誘導体、キサンテン誘導体、ローダミン誘導体、フルオレセイン誘導体、ピリリウム誘導体、カルボスチリル誘導体、アクリジン誘導体、オキサジン誘導体、フェニレンオキサイド誘導体、キナクリドン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、フロピリジン誘導体、1,2,5-チアジアゾロピレン誘導体、ピロメテン誘導体、ペリノン誘導体、ピロロピロール誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、アクリドン誘導体、デアザフラビン誘導体、フルオレン誘導体およびベンゾフルオレン誘導体などがあげられる。
エミッティングドーパント材料、特に本発明の金属錯体をアシスティングドーパントとして用いるときのエミッティングドーパント材料としては、国際公開第2015/102118号、国際公開第2020/162600号、特開2021-077890号公報の段落0097~0269等に記載のホウ素を含む多環芳香族化合物を用いることも好ましい。ホウ素原子を有する多環芳香族化合物は蛍光体であっても、TADF材料(熱活性型遅延蛍光体)であってもよい。ホウ素原子を有する多環芳香族化合物は青色発光化合物であることが好ましい。
ホウ素を含む多環芳香族化合物の好ましい例として、下記式(12)、式(13)または式(14)で表される化合物をあげることができる。
Figure 2023148087000089
A環、B環、C環およびD環は、それぞれ独立して、置換もしくは無置換のアリール環または置換もしくは無置換のヘテロアリール環であり、
YはB(ホウ素)であり、
1、X2、X3およびX4は、それぞれ独立して、>O、>N-R、>Sまたは>Seであり、前記>N-RのRは、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリールまたは置換もしくは無置換のアルキルであり、また、前記>N-RのRは連結基または単結合により前記A環、B環、C環および/またはD環と結合していてもよく、
1およびR2は、それぞれ独立して、水素、炭素数1~6のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリールまたはジアリールアミノ(ただしアリールは炭素数6~12のアリール)であり、
1およびZ2は、それぞれ独立して、置換基群Zより選択されるいずれかの置換基であり、Z1は連結基または単結合で前記A環と結合してもよく、Z2は連結基または単結合で前記C環と結合してもよく、そして、
式(12)で表される化合物における少なくとも1つの水素は重水素で置き換えられていてもよい。
式(12)のA環、B環、C環およびD環における、アリール環またはヘテロアリール環が置換されているときの置換基およびZ1、Z2としては置換基群Zより選択される置換基があげられる。
式(12)におけるX1、X2、X3およびX4は、それぞれ独立して、>O、>N-R、>Sまたは>Seであり、前記>N-RのRは、それぞれ独立して、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~12のシクロアルキルまたは炭素数1~6のアルキルである。
式(12)で表される化合物においては、高いTADF性の観点から、Z1およびZ2が置換基を有してもよいジフェニルアミノまたは置換基を有してもよいN-カルバゾリルであることが好ましく、置換基を有してもよいジフェニルアミノであることがより好ましい。置換基を有してもよいジフェニルアミノとしては、無置換のジフェニルアミノまたは少なくとも一つの炭素数1~4のアルキルを有するジフェニルアミノであることが好ましく、無置換のジフェニルアミノまたはNに対してm位またはo位に少なくとも一つメチルを有するジフェニルアミノがより好ましい。合成の容易さおよび発光波長の観点から、A環、B環、C環およびD環におけるアリール環またはヘテロアリール環はZ1およびZ2以外は置換を有していないか、炭素数1~6のアルキルのみをその他の置換基として有していることが好ましく、Z1およびZ2以外は置換を有していないことがより好ましい。
式(12)で表される化合物の例を以下に示す。
Figure 2023148087000090
Figure 2023148087000091
Figure 2023148087000092
Figure 2023148087000093
式(13)および式(14)中、
11環、A21環、A31環、B11環、B21環、C11環、およびC31環は、それぞれ独立して、置換もしくは無置換のアリール環または置換もしくは無置換のヘテロアリール環であり、
11、Y21、Y31はB(ホウ素)であり、
11、X12、X21、X22、X31、およびX32は、それぞれ独立して、>O、>N-R、>Sまたは>Seであり、前記>N-RのRは、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリールまたは置換もしくは無置換のアルキルであり、また、前記>N-RのRは連結基または単結合によりA11環、A21環、A31環、B11環、B21環、C11環、および/またはC31環と結合していてもよく、
式(13)および式(14)で表される化合物における少なくとも1つの水素は重水素で置き換えられていてもよい。
式(13)および式(14)のA11環、A21環、A31環、B11環、B21環、C11環、およびC31における、アリール環またはヘテロアリール環が置換されているときの置換基およびZ1、Z2としては、置換基群Zより選択される置換基があげられる。
式(13)および式(14)におけるX11、X12、X21、X22、X31、およびX32は、それぞれ独立して、>O、>N-R、>Sまたは>Seであり、前記>N-RのRは、それぞれ独立して、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~12のシクロアルキルまたは炭素数1~6のアルキルである。
式(13)または式(14)で表される化合物の例を以下に示す。
Figure 2023148087000095
<2-1-6.有機電界発光素子における電子注入層、電子輸送層>
電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たす。電子輸送層106は、陰極108から注入された電子または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たす。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合するか、電子輸送・注入材料と高分子結着剤の混合物により形成される。
電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することをつかさどる層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。
電子輸送層106または電子注入層107を形成する材料(電子輸送材料)としては、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機EL素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。
電子輸送層または電子注入層に用いられる材料としては、炭素、水素、酸素、硫黄、ケイ素およびリンの中から選ばれる一種以上の原子で構成される芳香族環または複素芳香族環からなる化合物、ピロール誘導体およびその縮合環誘導体および電子受容性窒素を有する金属錯体の中から選ばれる少なくとも一種を含有することが好ましい。具体的には、ナフタレン、アントラセンなどの縮合環系芳香族環誘導体、4,4'-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香族環誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、ホスフィンオキサイド誘導体、アリールニトリル誘導体およびインドール誘導体などがあげられる。電子受容性窒素を有する金属錯体としては、例えば、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
また、他の電子伝達化合物の具体例として、ピリジン誘導体、ナフタレン誘導体、アントラセン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体(1,3-ビス[(4-t-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなど)、チオフェン誘導体、トリアゾール誘導体(N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなど)、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノリノール系金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体(2,2'-ビス(ベンゾ[h]キノリン-2-イル)-9,9'-スピロビフルオレンなど)、イミダゾピリジン誘導体、ボラン誘導体、ベンゾイミダゾール誘導体(トリス(N-フェニルベンゾイミダゾール-2-イル)ベンゼンなど)、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、テルピリジンなどのオリゴピリジン誘導体、ビピリジン誘導体、テルピリジン誘導体(1,3-ビス(2,2’:6’,2”-テルピリジン-4'-イル)ベンゼンなど)、ナフチリジン誘導体(ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなど)、アルダジン誘導体、カルバゾール誘導体、インドール誘導体、ホスフィンオキサイド誘導体、ビススチリル誘導体などがあげられる。
また、電子受容性窒素を有する金属錯体を用いることもでき、例えば、キノリノール系金属錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。
上述した材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
上述した材料の中でも、ボラン誘導体、ピリジン誘導体、フルオランテン誘導体、BO系誘導体、アントラセン誘導体、ベンゾフルオレン誘導体、ホスフィンオキサイド誘導体、ピリミジン誘導体、アリールニトリル誘導体、トリアジン誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体、およびキノリノール系金属錯体が好ましい。
<還元性物質>
電子輸送層または電子注入層には、さらに、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有する物質であれば、様々な物質が用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを好適に使用することができる。
好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0~2.5eV)またはBa(同2.52eV)などのアルカリ土類金属があげられ、仕事関数が2.9eV以下の物質が特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
<2-1-7.有機電界発光素子における陰極>
陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たす。
陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様の材料を用いることができる。なかでも、スズ、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウムおよびマグネシウムなどの金属またはそれらの合金(マグネシウム-銀合金、マグネシウム-インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム-リチウム合金など)などが好ましい。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウムおよび酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されない。
さらに、電極保護のために白金、金、銀、銅、鉄、スズ、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例としてあげられる。これらの電極の作製法も、抵抗加熱、電子ビーム蒸着、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。
<2-1-8.有機電界発光素子の作製方法>
有機EL素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法またはキャスト法、コーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、ボート加熱温度+50~+400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚2nm~5μmの範囲で適宜設定することが好ましい。
このようにして得られた有機EL素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として印加すればよく、電圧2~40V程度を印加すると、透明または半透明の電極側(陽極または陰極、および両方)より発光が観測できる。また、この有機EL素子は、パルス電流や交流電流を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。
次に、有機EL素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法について説明する。
<蒸着法>
適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上にホスト材料とドーパント材料を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機EL素子が得られる。なお、上述の有機EL素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
<湿式成膜法>
湿式成膜法は、有機EL素子の各有機層を形成し得る低分子化合物を液状の有機層形成用組成物として準備し、これを用いることによって実施される。この低分子化合物を溶解する適当な有機溶媒がない場合には、当該低分子化合物に反応性置換基を置換させた反応性化合物として溶解性機能を有する他のモノマーや主鎖型高分子と共に高分子化させた高分子化合物などから有機層形成用組成物を準備してもよい。
湿式成膜法は、一般的には、基板に有機層形成用組成物を塗布する塗布工程および塗布された有機層形成用組成物から溶媒を取り除く乾燥工程を経ることで塗膜を形成する。上記高分子化合物が架橋性置換基を有する場合(これを架橋性高分子化合物ともいう)には、この乾燥工程によりさらに架橋して高分子架橋体が形成される。塗布工程の違いにより、スピンコーターを用いる方法をスピンコート法、スリットコーターを用いる方法をスリットコート法、版を用いる方法をグラビア、オフセット、リバースオフセット、フレキソ印刷法、インクジェットプリンタを用いる方法をインクジェット法、霧状に吹付ける方法をスプレー法と呼ぶ。乾燥工程には、風乾、加熱、減圧乾燥などの方法がある。乾燥工程は1回のみ行なってもよく、異なる方法や条件を用いて複数回行なってもよい。また、例えば、減圧下での焼成のように、異なる方法を併用してもよい。
湿式成膜法とは溶液を用いた成膜法であり、例えば、一部の印刷法(インクジェット法)、スピンコート法またはキャスト法、コーティング法などである。湿式成膜法は真空蒸着法と異なり高価な真空蒸着装置を用いる必要が無く、大気圧下で成膜することができる。加えて、湿式成膜法は大面積化や連続生産が可能であり、製造コストの低減につながる。
一方で、真空蒸着法と比較した場合には、湿式成膜法は積層化が難しい場合がある。湿式成膜法を用いて積層膜を作製する場合、上層の組成物による下層の溶解を防ぐ必要があり、溶解性を制御した組成物、下層の架橋および直交溶媒(Orthogonal solvent、互いに溶解し合わない溶媒)などが駆使される。しかしながら、それらの技術を用いても、全ての膜の塗布に湿式成膜法を用いるのは難しい場合がある。
そこで、一般的には、幾つかの層だけを湿式成膜法を用い、残りを真空蒸着法で有機EL素子を作製するという方法が採用される。
例えば、湿式成膜法を一部適用し有機EL素子を作製する手順を以下に示す。
(手順1)陽極の真空蒸着法による成膜
(手順2)正孔注入層用材料を含む正孔注入層形成用組成物の湿式成膜法による成膜
(手順3)正孔輸送層用材料を含む正孔輸送層形成用組成物の湿式成膜法による成膜
(手順4)ホスト材料とドーパント材料を含む発光層形成用組成物の湿式成膜法による成膜
(手順5)電子輸送層の真空蒸着法による成膜
(手順6)電子注入層の真空蒸着法による成膜
(手順7)陰極の真空蒸着法による成膜
この手順を経ることで、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機EL素子が得られる。
もちろん、電子輸送層および電子注入層についても、それぞれ電子輸送層用材料および電子注入層用材料を含む層形成用組成物を用いて湿式成膜法により成膜してもよい。その際、下層の発光層の溶解を防ぐ手段、または上記手順とは逆に陰極側から成膜する手段を用いることが好ましい。
<その他の成膜法>
有機層形成用組成物の成膜化には、レーザー加熱描画法(LITI)を用いることができる。LITIとは基材に付着させた化合物をレーザーで加熱蒸着する方法で、基材へ塗布される材料に有機層形成用組成物を用いることができる。
<任意の工程>
成膜の各工程の前後に、適切な処理工程、洗浄工程および乾燥工程を適宜入れてもよい。処理工程としては、例えば、露光処理、プラズマ表面処理、超音波処理、オゾン処理、適切な溶媒を用いた洗浄処理および加熱処理等があげられる。さらには、バンクを作製する一連の工程もあげられる。
バンクの作製にはフォトリソグラフィ技術を用いることができる。フォトリソグラフィの利用可能なバンク材としては、ポジ型レジスト材料およびネガ型レジスト材料を用いることができる。また、インクジェット法、グラビアオフセット印刷、リバースオフセット印刷、スクリーン印刷などのパターン可能な印刷法も用いることができる。その際には永久レジスト材料を用いることもできる。
バンクに用いられる材料としては、多糖類およびその誘導体、ヒドロキシルを有するエチレン性モノマーの単独重合体および共重合体、生体高分子化合物、ポリアクリロイル化合物、ポリエステル、ポリスチレン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルフィド、ポリスルホン、ポリフェニレン、ポリフェニルエーテル、ポリウレタン、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、ポリオレフィン、環状ポリオレフィン、アクリロニトリル-ブタジエン-スチレン共重合ポリマー(ABS)、シリコーン樹脂、ポリ塩化ビニル、塩素化ポリエチレン、塩素化ポリプロピレン、ポリアセテート、ポリノルボルネン、合成ゴム、ポリフルオロビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン等のフッ化ポリマー、フルオロオレフィン-ヒドロカーボンオレフィンの共重合ポリマー、フルオロカーボンポリマーがあげられるが、それだけに限定されない。
<湿式成膜法に使用される有機層形成用組成物>
有機層形成用組成物は、有機EL素子の各有機層を形成し得る低分子化合物、または当該低分子化合物を高分子化させた高分子化合物を有機溶媒に溶解させて得られる。例えば、発光層形成用組成物は、第1成分として少なくとも1種のドーパント材料である金属錯体(またはその高分子化合物)と、第2成分として少なくとも1種のホスト材料と、第3成分として少なくとも1種の有機溶媒とを含有する。第1成分は、該組成物から得られる発光層のドーパント成分として機能し、第2成分は発光層のホスト成分として機能する。第3成分は、組成物中の第1成分と第2成分を溶解する溶媒として機能し、塗布時には第3成分自身の制御された蒸発速度により平滑で均一な表面形状を与える。
<有機溶媒>
有機層形成用組成物は少なくとも一種の有機溶媒を含む。成膜時に有機溶媒の蒸発速度を制御することで、成膜性および塗膜の欠陥の有無、表面粗さ、平滑性を制御および改善することができる。また、インクジェット法を用いた成膜時は、インクジェットヘッドのピンホールでのメニスカス安定性を制御し、吐出性を制御・改善することができる。加えて、膜の乾燥速度および誘導体分子の配向を制御することで、該有機層形成用組成物より得られる有機層を有する有機EL素子の電気特性、発光特性、効率、および寿命を改善することができる。
(1)有機溶媒の物性
少なくとも1種の有機溶媒の沸点は、130℃~300℃であり、140℃~270℃がより好ましく、150℃~250℃がさらに好ましい。沸点が130℃より高い場合、インクジェットの吐出性の観点から好ましい。また、沸点が300℃より低い場合、塗膜の欠陥、表面粗さ、残留溶媒および平滑性の観点から好ましい。有機溶媒は、良好なインクジェットの吐出性、成膜性、平滑性および低い残留溶媒の観点から、2種以上の有機溶媒を含む構成がより好ましい。一方で、場合によっては、運搬性などを考慮し、有機層形成用組成物中から溶媒を除去することで固形状態とした組成物であってもよい。
さらに、有機溶媒が溶質の少なくとも1種に対する良溶媒(GS)と貧溶媒(PS)とを含み、良溶媒(GS)の沸点(BPGS)が貧溶媒(PS)の沸点(BPPS)よりも低い、構成が特に好ましい。
高沸点の貧溶媒を加えることで成膜時に低沸点の良溶媒が先に揮発し、組成物中の含有物の濃度と貧溶媒の濃度が増加し速やかな成膜が促される。これにより、欠陥が少なく、表面粗さが小さい、平滑性の高い塗膜が得られる。
溶解度の差(SGS-SPS)は、1%以上であることが好ましく、3%以上であることがより好ましく、5%以上であることがさらに好ましい。沸点の差(BPPS-BPGS)は、10℃以上であることが好ましく、30℃以上であることがより好ましく、50℃以上であることがさらに好ましい。
有機溶媒は、成膜後に、真空、減圧、加熱などの乾燥工程により塗膜より取り除かれる。加熱を行う場合、塗布成膜性改善の観点からは、溶質の少なくとも1種のガラス転移温度(Tg)+30℃以下で行うことが好ましい。また、残留溶媒の削減の観点からは、溶質の少なくとも1種のガラス転移点(Tg)-30℃以上で加熱することが好ましい。加熱温度が有機溶媒の沸点より低くても膜が薄いために、有機溶媒は十分に取り除かれる。また、異なる温度で複数回乾燥を行ってもよく、複数の乾燥方法を併用してもよい。
(2)有機溶媒の具体例
有機層形成用組成物に用いられる有機溶媒としては、アルキルベンゼン系溶媒、フェニルエーテル系溶媒、アルキルエーテル系溶媒、環状ケトン系溶媒、脂肪族ケトン系溶媒、単環性ケトン系溶媒、ジエステル骨格を有する溶媒および含フッ素系溶媒などがあげられ、具体例として、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、テトラデカノール、ヘキサン-2-オール、ヘプタン-2-オール、オクタン-2-オール、デカン-2-オール、ドデカン-2-オール、シクロヘキサノール、α-テルピネオール、β-テルピネオール、γ-テルピネオール、δ-テルピネオール、テルピネオール(混合物)、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、ポリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、p-キシレン、m-キシレン、o-キシレン、2,6-ルチジン、2-フルオロ-m-キシレン、3-フルオロ-o-キシレン、2-クロロベンゾ三フッ化物、クメン、トルエン、2-クロロ-6-フルオロトルエン、2-フルオロアニソール、アニソール、2,3-ジメチルピラジン、ブロモベンゼン、4-フルオロアニソール、3-フルオロアニソール、3-トリフルオロメチルアニソール、メシチレン、1,2,4-トリメチルベンゼン、t-ブチルベンゼン、2-メチルアニソール、フェネトール、ベンゾジオキソール、4-メチルアニソール、s-ブチルベンゼン、3-メチルアニソール、4-フルオロ-3-メチルアニソール、シメン、1,2,3-トリメチルベンゼン、1,2-ジクロロベンゼン、2-フルオロベンゾニトリル、4-フルオロベラトロール、2,6-ジメチルアニソール、n-ブチルベンゼン、3-フルオロベンゾニトリル、デカリン(デカヒドロナフタレン)、ネオペンチルベンゼン、2,5-ジメチルアニソール、2,4-ジメチルアニソール、ベンゾニトリル、3,5-ジメチルアニソール、ジフェニルエーテル、1-フルオロ-3,5-ジメトキシベンゼン、安息香酸メチル、イソペンチルベンゼン、3,4-ジメチルアニソール、o-トルニトリル、n-アミルベンゼン、ベラトロール、1,2,3,4-テトラヒドロナフタレン、安息香酸エチル、n-ヘキシルベンゼン、安息香酸プロピル、シクロヘキシルベンゼン、1-メチルナフタレン、安息香酸ブチル、2-メチルビフェニル、3-フェノキシトルエン、2,2'-ビトリル、ドデシルベンゼン、ジペンチルベンゼン、テトラメチルベンゼン、トリメトキシベンゼン、トリメトキシトルエン、2,3-ジヒドロベンゾフラン、1-メチル-4-(プロポキシメチル)ベンゼン、1-メチル-4-(ブチルオキシメチル)ベンゼン、1-メチル-4-(ペンチルオキシメチル)ベンゼン、1-メチル-4-(ヘキシルオキシメチル)ベンゼン、1-メチル-4-(ヘプチルオキシメチル)ベンゼン、ベンジルブチルエーテル、ベンジルペンチルエーテル、ベンジルヘキシルエーテル、ベンジルヘプチルエーテル、ベンジルオクチルエーテルなどがあげられるが、それだけに限定されない。また、溶媒は単一で用いてもよく、混合してもよい。
<任意成分>
有機層形成用組成物は、その性質を損なわない範囲で、任意成分を含んでいてもよい。任意成分としては、バインダーおよび界面活性剤等があげられる。
(1)バインダー
有機層形成用組成物は、バインダーを含有していてもよい。バインダーは、成膜時には膜を形成するとともに、得られた膜を基板と接合する。また、該有機層形成用組成物中で他の成分を溶解および分散および結着させる役割を果たす。
有機層形成用組成物に用いられるバインダーとしては、例えば、アクリル樹脂、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、アクリロニトリル-エチレン-スチレン共重合体(AES)樹脂、アイオノマー、塩素化ポリエーテル、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、テフロン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、アクリロニトリル-スチレン共重合体(AS)樹脂、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、ポリウレタン、および、上記樹脂およびポリマーの共重合体、があげられるが、それだけに限定されない。
有機層形成用組成物に用いられるバインダーは、1種のみであってもよく複数種を混合して用いてもよい。
(2)界面活性剤
有機層形成用組成物は、例えば、有機層形成用組成物の膜面均一性、膜表面の親溶媒性および撥液性の制御のために界面活性剤を含有してもよい。界面活性剤は、親水性基の構造からイオン性および非イオン性に分類され、さらに、疎水性基の構造からアルキル系およびシリコーン系およびフッ素系に分類される。また、分子の構造から、分子量が比較的小さく単純な構造を有する単分子系および分子量が大きく側鎖や枝分かれを有する高分子系に分類される。また、組成から、単一系、二種以上の界面活性剤および基材を混合した混合系に分類される。該有機層形成用組成物に用いることのできる界面活性剤としては、全ての種類の界面活性剤を用いることができる。
界面活性剤としては、例えば、ポリフローNo.45、ポリフローKL-245、ポリフローNo.75、ポリフローNo.90、ポリフローNo.95(商品名、共栄社化学工業(株)製)、ディスパーベイク(Disperbyk)161、ディスパーベイク162、ディスパーベイク163、ディスパーベイク164、ディスパーベイク166、ディスパーベイク170、ディスパーベイク180、ディスパーベイク181、ディスパーベイク182、BYK300、BYK306、BYK310、BYK320、BYK330、BYK342、BYK344、BYK346(商品名、ビックケミー・ジャパン(株)製)、KP-341、KP-358、KP-368、KF-96-50CS、KF-50-100CS(商品名、信越化学工業(株)製)、サーフロンSC-101、サーフロンKH-40(商品名、セイミケミカル(株)製)、フタージェント222F、フタージェント251、FTX-218(商品名、(株)ネオス製)、EFTOP EF-351、EFTOP EF-352、EFTOP EF-601、EFTOP EF-801、EFTOP EF-802(商品名、三菱マテリアル(株)製)、メガファックF-470、メガファックF-471、メガファックF-475、メガファックR-08、メガファックF-477、メガファックF-479、メガファックF-553、メガファックF-554(商品名、DIC(株)製)、フルオロアルキルベンゼンスルホン酸塩、フルオロアルキルカルボン酸塩、フルオロアルキルポリオキシエチレンエーテル、フルオロアルキルアンモニウムヨージド、フルオロアルキルベタイン、フルオロアルキルスルホン酸塩、ジグリセリンテトラキス(フルオロアルキルポリオキシエチレンエーテル)、フルオロアルキルトリメチルアンモニウム塩、フルオロアルキルアミノスルホン酸塩、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンラウレート、ポリオキシエチレンオレエート、ポリオキシエチレンステアレート、ポリオキシエチレンラウリルアミン、ソルビタンラウレート、ソルビタンパルミテート、ソルビタンステアレート、ソルビタンオレエート、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタンラウレート、ポリオキシエチレンソルビタンパルミテート、ポリオキシエチレンソルビタンステアレート、ポリオキシエチレンソルビタンオレエート、ポリオキシエチレンナフチルエーテル、アルキルベンゼンスルホン酸塩およびアルキルジフェニルエーテルジスルホン酸塩をあげることができる。
また、界面活性剤は1種で用いてもよく、2種以上を併用してもよい。
<有機層形成用組成物の組成および物性>
有機層形成用組成物における各成分の含有量は、有機層形成用組成物中の各成分の良好な溶解性、保存安定性および成膜性、ならびに、該有機層形成用組成物から得られる塗膜の良質な膜質、また、インクジェット法を用いた場合の良好な吐出性、該組成物を用いて作製された有機層を有する有機EL素子の、良好な電気特性、発光特性、効率、寿命の観点を考慮して決定される。例えば、発光層形成用組成物の場合には、第1成分が発光層形成用組成物の全質量に対して、0.0001質量%~2.0質量%、第2成分が発光層形成用組成物の全質量に対して、0.0999質量%~8.0質量%、第3成分が発光層形成用組成物の全質量に対して、90.0質量%~99.9質量%が好ましい。
より好ましくは、第1成分が発光層形成用組成物の全質量に対して、0.005質量%~1.0質量%、第2成分が発光層形成用組成物の全質量に対して、0.095質量%~4.0質量%、第3成分が発光層形成用組成物の全質量に対して、95.0質量%~99.9質量%である。さらに好ましくは、第1成分が発光層形成用組成物の全質量に対して、0.05質量%~0.5質量%、第2成分が発光層形成用組成物の全質量に対して、0.25質量%~2.5質量%、第3成分が発光層形成用組成物の全質量に対して、97.0質量%~99.7質量%である。
有機層形成用組成物は、上述した成分を、公知の方法で撹拌、混合、加熱、冷却、溶解、分散等を適宜選択して行うことによって製造できる。また、調製後に、ろ過、脱ガス(デガスとも言う)、イオン交換処理および不活性ガス置換・封入処理等を適宜選択して行ってもよい。
有機層形成用組成物の粘度としては、高粘度である方が、良好な成膜性とインクジェット法を用いた場合の良好な吐出性が得られる。一方、低粘度である方が薄い膜を作りやすい。このことから、該有機層形成用組成物の粘度は、25℃における粘度が0.3~3mPa・sであることが好ましく、1~3mPa・sであることがより好ましい。本発明において、粘度は円錐平板型回転粘度計(コーンプレートタイプ)を用いて測定した値である。
有機層形成用組成物の表面張力としては、低い方が良好な成膜性および欠陥のない塗膜が得られる。一方、高い方が良好なインクジェット吐出性を得られる。このことから、該有機層形成用組成物は、25℃における表面張力が20~40mN/mであることが好ましく、20~30mN/mであることがより好ましい。本発明において、表面張力は懸滴法を用いて測定した値である。
<架橋性高分子化合物:式(XLP-1)で表される化合物>
次に、上述した高分子化合物が架橋性置換基を有する場合について説明する。このような架橋性高分子化合物は例えば下記式(XLP-1)で表される化合物である。
Figure 2023148087000096
式(XLP-1)において、
MUxはそれぞれ独立して芳香族化合物から任意の2つの水素原子を除いて表される2価の基、ECxはそれぞれ独立して芳香族化合物から任意の1つの水素原子を除いて表される1価の基であり、MUx中の2つの水素がECxまたはMUxと置換され、kは2~50000の整数である。ただし、式(XLP-1)で表される化合物は少なくとも1つの架橋性置換基(XLS)を有し、好ましくは架橋性置換基を有する1価または2価の芳香族化合物の含有量は、分子中0.1~80質量%である。
より具体的には、
MUxは、それぞれ独立して、アリーレン、ヘテロアリーレン、ジアリーレンアリールアミノ、ジアリーレンアリールボリル、オキサボリン-ジイル、アザボリン-ジイルであり、
ECxは、それぞれ独立して、水素、アリール、ヘテロアリール、ジアリールアミノ、ジヘテロアリールアミノ、アリールヘテロアリールアミノまたはアリールオキシであり、
MUおよびECにおける少なくとも1つの水素はさらに、アリール、ヘテロアリール、ジアリールアミノ、アルキルおよびシクロアルキルで置換されていてもよく、
kは2~50000の整数である。
kは20~50000の整数であることが好ましく、100~50000の整数であることがより好ましい。
式(XLP-1)中のMUxおよびECxにおける少なくとも1つの水素は、炭素数1~24のアルキル、炭素数3~24のシクロアルキル、ハロゲンまたは重水素で置換されていてもよく、さらに、前記アルキルにおける任意の-CH2-は-O-または-Si(CH32-で置換されていてもよく、前記アルキルにおける式(XLP-1)中のECに直結している-CH2-を除く任意の-CH2-は炭素数6~24のアリーレンで置換されていてもよく、前記アルキルにおける任意の水素はフッ素で置換されていてもよい。
MUxとしては、例えば、以下のいずれかの化合物から任意の2つの水素原子を除いて表される2価の基があげられる。
Figure 2023148087000097
より具体的には、以下のいずれかの構造で表される2価の基があげられる。これらにおいて、MUxは*において他のMUxまたはECxと結合する。
Figure 2023148087000098
Figure 2023148087000099
Figure 2023148087000100
Figure 2023148087000101
Figure 2023148087000102
Figure 2023148087000103
Figure 2023148087000104
Figure 2023148087000105
Figure 2023148087000106
また、ECxとしては、例えば以下のいずれかの構造で表される1価の基があげられる。これらにおいて、ECは*においてMUxと結合する。
Figure 2023148087000107
Figure 2023148087000108
式(XLP-1)で表される化合物は、溶解性および塗布製膜性の観点から、分子中のMU総数(k)の10~100%のMUが炭素数1~24のアルキルを有することが好ましく、分子中のMU総数(k)の30~100%のMUが炭素数1~18のアルキル(炭素数3~18の分岐鎖アルキル)を有することがより好ましく、分子中のMU総数(k)の50~100%のMUが炭素数1~12のアルキル(炭素数3~12の分岐鎖アルキル)を有することがさらに好ましい。一方、面内配向性および電荷輸送の観点からは、分子中のMU総数(k)の10~100%のMUが炭素数7~24のアルキルを有することが好ましく、分子中のMU総数(k)の30~100%のMUが炭素数7~24のアルキル(炭素数7~24の分岐鎖アルキル)を有することがより好ましい。
架橋性置換基を有する1価または2価の芳香族化合物の含有量は、0.5~50質量%が好ましく、1~20質量%がより好ましい。
架橋性置換基(XLS)としては、上述した高分子化合物をさらに架橋化できる基であれば特に限定されないが、以下の構造の置換基が好ましい。各構造式中の*は結合位置を示す。
Figure 2023148087000109
Lは、それぞれ独立して、単結合、-O-、-S-、>C=O、-O-C(=O)-、炭素数1~12のアルキレン、炭素数1~12のオキシアルキレンおよび炭素数1~12のポリオキシアルキレンである。上記置換基の中でも、式(XLS-1)、式(XLS-2)、式(XLS-3)、式(XLS-9)、式(XLS-10)または式(XLS-17)で表される基が好ましく、式(XLS-1)、式(XLS-3)または式(XLS-17)で表される基がより好ましい。
架橋性置換基を有する2価の芳香族化合物としては、例えば下記部分構造を有する化合物があげられる。下記構造式中の*は結合位置を表す。
Figure 2023148087000110
Figure 2023148087000111
Figure 2023148087000112
Figure 2023148087000113
<高分子化合物および架橋性高分子化合物の製造方法>
高分子化合物および架橋性高分子化合物の製造方法について、上述した式(XLP-1)で表される化合物を例にして説明する。これらの化合物は、公知の製造方法を適宜組み合わせて合成することができる。
反応で用いられる溶媒としては、芳香族溶媒、飽和/不飽和炭化水素溶媒、アルコール溶媒、エーテル系溶媒などがあげられ、例えば、ジメトキシエタン、2-(2-メトキシエトキシ)エタン、2-(2-エトキシエトキシ)エタン等があげられる。
また、反応は2相系で行ってもよい。2相系で反応させる場合は、必要に応じて、第4級アンモニウム塩等の相間移動触媒を加えてもよい。
式(XLP-1)の化合物を製造する際、一段階で製造してもよいし、多段階を経て製造してもよい。また、原料を反応容器に全て入れてから反応を開始する一括重合法により行ってもよいし、原料を反応容器に滴下し加える滴下重合法により行ってもよいし、生成物が反応の進行に伴い沈殿する沈殿重合法により行ってもよく、これらを適宜組み合わせて合成することができる。例えば、式(XLP-1)で表される化合物を一段階で合成する際、モノマーユニット(MU)に重合性基が結合したモノマーおよびエンドキャップユニット(EC)に重合性基が結合したモノマーを反応容器に加えた状態で反応を行うことで目的物を得る。また、式(XLP-1)で表される化合物を多段階で合成する際、モノマーユニット(MU)に重合性基が結合したモノマーを目的の分子量まで重合した後、エンドキャップユニット(EC)に重合性基が結合したモノマーを加えて反応させることで目的物を得る。多段階で異なる種類のモノマーユニット(MU)に重合性基が結合したモノマーを加えて反応を行えば、モノマーユニットの構造について濃度勾配を有するポリマーを作ることができる。また、前駆体ポリマーを調製した後、あと反応により目的物ポリマーを得ることができる。
また、モノマーユニット(MU)の重合性基を選べばポリマーの一次構造を制御することができる。例えば、合成スキームの1~3に示すように、ランダムな一次構造を有するポリマー(合成スキームの1)、規則的な一次構造を有するポリマー(合成スキームの2および3)などを合成することが可能であり、目的物に応じて適宜組み合わせて用いることができる。さらには、重合性基を3つ以上有するモノマーを用いれば、ハイパーブランチポリマーやデンドリマーを合成することができる。
Figure 2023148087000114
本発明で用いることのできるモノマーは、特開2010-189630号公報、国際公開第2012/086671号、国際公開第2013/191088号、国際公開第2002/045184号、国際公開第2011/049241号、国際公開第2013/146806号、国際公開第2005/049546号、国際公開第2015/145871号、特開2010-215886号公報、特開2008-106241号公報、国際公開第2016/031639号、特開2011-174062号公報に記載の方法に準じて合成することができる。
また、具体的なポリマー合成手順については、特開2012-036388号公報、国際公開第2015/008851号、特開2012-36381号公報、特開2012-144722号公報、国際公開第2015/194448号、国際公開第2013/146806号、国際公開第2015/145871号、国際公開第2016/031639号、国際公開第2016/125560号、国際公開第2011/049241号に記載の方法を参照することができる。
<2-1-9.有機電界発光素子の応用例>
本発明は、有機EL素子を備えた表示装置または有機EL素子を備えた照明装置などにも応用することができる。
有機EL素子を備えた表示装置または照明装置は、本実施形態にかかる有機EL素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどがあげられる(例えば、特開平10-335066号公報、特開2003-321546号公報、特開2004-281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクスおよびセグメント方式などがあげられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
マトリクスでは、表示のための画素が格子状やモザイク状など二次元的に配置されており、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などがあげられる。
照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどがあげられる(例えば、特開2003-257621号公報、特開2003-277741号公報、特開2004-119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式が蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本実施形態に係る発光素子を用いたバックライトは薄型で軽量が特徴になる。
<2-2.その他の有機デバイス>
本発明に係る金属錯体は、上述した有機電界発光素子の他に、有機電界効果トランジスタまたは有機薄膜太陽電池などの作製に用いることができる。
有機電界効果トランジスタは、電圧入力によって発生させた電界により電流を制御するトランジスタのことであり、ソース電極とドレイン電極の他にゲート電極が設けられている。ゲート電極に電圧を印加すると電界が生じ、ソース電極とドレイン電極間を流れる電子(あるいはホール)の流れを任意にせき止めて電流を制御することができるトランジスタである。電界効果トランジスタは、単なるトランジスタ(バイポーラトランジスタ)に比べて小型化が容易であり、集積回路などを構成する素子としてよく用いられている。
有機電界効果トランジスタの構造は、通常、本発明に係る金属錯体を用いて形成される有機半導体活性層に接してソース電極およびドレイン電極が設けられており、さらに有機半導体活性層に接した絶縁層(誘電体層)を挟んでゲート電極が設けられていればよい。その素子構造としては、例えば以下の構造があげられる。
(1)基板/ゲート電極/絶縁体層/ソース電極・ドレイン電極/有機半導体活性層
(2)基板/ゲート電極/絶縁体層/有機半導体活性層/ソース電極・ドレイン電極
(3)基板/有機半導体活性層/ソース電極・ドレイン電極/絶縁体層/ゲート電極
(4)基板/ソース電極・ドレイン電極/有機半導体活性層/絶縁体層/ゲート電極
このように構成された有機電界効果トランジスタは、アクティブマトリックス駆動方式の液晶ディスプレイや有機エレクトロルミネッセンスディスプレイの画素駆動スイッチング素子などとして適用できる。
有機薄膜太陽電池は、ガラスなどの透明基板上にITOなどの陽極、ホール輸送層、光電変換層、電子輸送層、陰極が積層された構造を有する。光電変換層は陽極側にp型半導体層を有し、陰極側にn型半導体層を有している。本発明に係る金属錯体は、その物性に応じて、ホール輸送層、p型半導体層、n型半導体層、電子輸送層の材料として用いることが可能である。本発明に係る金属錯体は、有機薄膜太陽電池においてホール輸送材料や電子輸送材料として機能しうる。有機薄膜太陽電池は、上記の他にホールブロック層、電子ブロック層、電子注入層、ホール注入層、平滑化層などを適宜備えていてもよい。有機薄膜太陽電池には、有機薄膜太陽電池に用いられる既知の材料を適宜選択して組み合わせて用いることができる。
3.波長変換材料
本発明の金属錯体は、波長変換材料として使用することができる。 現在、色変換方式によるマルチカラー化技術を、液晶ディスプレイや有機ELディスプレイ、照明などへ応用することが盛んに検討されている。色変換とは、発光体からの発光をより長波長の光へと波長変換することであり、例えば、紫外光や青色光を緑色光や赤色発光へと変換することを表す。この色変換機能を有する波長変換材料をフィルム化し、例えば青色光源と組み合わせることにより、青色光源から、青、緑、赤色の3原色を取り出すこと、すなわち白色光を取り出すことが可能となる。このような青色光源と色変換機能を有する波長変換フィルムを組み合わせた白色光源を光源ユニットとし、液晶駆動部分と、カラーフィルターと組み合わせることで、フルカラーディスプレイの作製が可能になる。また、液晶駆動部分が無ければ、そのまま白色光源として用いることができ、例えばLED照明などの白色光源として応用できる。また、青色有機EL素子を光源として、青色光を緑色光および赤色光に変換する波長変換フィルムと組み合わせて用いることでメタルマスクを用いないフルカラー有機ELディスプレイの作製が可能になる。さらに、青色マイクロLEDを光源として、青色光を緑色光および赤色光に変換する波長変換フィルムと組み合わせて用いることで低コストのフルカラーマイクロLEDディスプレイの作製が可能になる。
本発明の金属錯体は、この波長変換材料として使用することができる。本発明の金属錯体を含む波長変換材料を用いて、紫外光やより短波長の青色光を生成する光源や発光素子からの光を、表示装置(有機EL素子を利用した表示装置や液晶表示装置)での利用に適した色純度の高い青色光や緑色光に変換することができる。変換される色の調整は、本発明の金属錯体の置換基、後述の波長変換用組成物で用いるバインダー樹脂等を適宜選択することにより行うことができる。波長変換材料は本発明の金属錯体を含む波長変換用組成物として調製することができる。また、この波長変換用組成物を用いて波長変換フィルムを形成してもよい。
波長変換用組成物は、本発明の金属錯体のほか、バインダー樹脂、その他の添加剤、および溶媒を含んでいてもよい。バインダー樹脂としては、例えば国際公開第2016/190283号の段落0173~0176に記載のものを用いることができる。その他の添加剤としては、国際公開第2016/190283号の段落0177~0181に記載の化合物を用いることができる。溶媒としては、上記の発光層形成用組成物に含まれる溶媒の記載を参照することができる。
波長変換フィルムは波長変換用組成物の硬化により形成される波長変換層を含む。波長変換用組成物からの波長変換層の作製方法としては公知のフィルム形成方法を参照することができる。波長変換フィルムは本発明の金属錯体を含む組成物から形成される波長変換層のみからなっていてもよく、他の波長変換層(例えば、青色光を緑色光や赤色光に変換する波長変換層、青色光や緑色光を赤色光に変換する波長変換層)を含んでいてもよい。さらに波長変換フィルムは基材層や、色変換層の酸素、水分、または熱による劣化を防ぐためのバリア層を含んでいてもよい。
以下、実施例により本発明をさらに具体的に説明していくが、本発明はこれらに限定されるものではない。
合成例(NHC-1):
化合物(NHC-I-1)の合成
Figure 2023148087000115
2-ブロモアニリン(1.50g)およびメタノール(12ml)の入ったフラスコに、窒素雰囲気下、4℃で、8.8Mのグリオキサール水溶液(0.5ml)、ギ酸(0.2ml)を加えた。室温まで昇温して17時間撹拌した。溶媒を減圧留去し、反応残渣を減圧で除去して、N1,N2-ビス(2-ブロモフェニル)エタン-1,2-ジイミンを得た。N1,N2-ビス(2-ブロモフェニル)エタン-1,2-ジイミン(全量)および脱水THF(9ml)の入ったフラスコに、窒素雰囲気下、4℃で、4MのHClジオキサン溶液(1.6ml)にパラホルムアルデヒド(0.278g)を溶かした溶液を滴下した後、室温まで昇温して1時間半撹拌した。生成物をろ過し、ジエチルエーテルで洗浄して、化合物(NHC-I-1)(0.090g)を得た。
NMR測定により得られた化合物(NHC-I-1)の構造を確認した。
1H-NMR(500MHz,DMSO-D6):δ=7.67(td,2H)、7.74(td,2H)、7.89(dd,2H)、8.02(dd,2H)、8.42(d,2H)、10.16(d,1H)
合成例(1):
化合物(1-1)の合成
Figure 2023148087000116
窒素置換した容器に、化合物(I-1)(50mg)、酸化銅(I)(1.4mg)、NMP(1mL)、28%アンモニア水(0.13mL)を加え、80℃で1時間加熱撹拌を行ったあと、t-BuOK(44mg)を加えて160℃で4時間加熱撹拌を行った。生成物をろ過してメタノール、トルエンで洗浄したのち、ジクロロメタンに溶解させシリカゲルクロマトグラフィー(展開溶媒:ジクロロメタン)で精製し、溶媒を減圧留去して得た固体をヘキサンで洗浄して、化合物(1-1)(12mg)を得た。
MALDI-TOF-MS(M+)=659.14
合成例(2):
化合物(1-2)の合成
Figure 2023148087000117
合成例(1)に準じた方法で合成した。
MALDI-TOF-MS(M+)=883.39
合成例(3):
化合物(1-3)の合成
Figure 2023148087000118
合成例(1)に準じた方法で合成した。
MALDI-TOF-MS(M+)=759.17
合成例(4):
化合物(1-4)の合成
Figure 2023148087000119
合成例(1)に準じた方法で合成した。
MALDI-TOF-MS(M+)=853.02
合成例(5):
化合物(1-5)の合成
Figure 2023148087000120
合成例(1)に準じた方法で合成した。
MALDI-TOF-MS(M+)=819.12
合成例(6):
化合物(1-6)の合成
Figure 2023148087000121
合成例(1)に準じた方法で合成した。
MALDI-TOF-MS(M+)=663.12
合成例(7):
化合物(1-7)の合成
Figure 2023148087000122
合成例(1)に準じた方法で合成した。
MALDI-TOF-MS(M+)=667.10
合成例(8):
化合物(1-8)の合成
Figure 2023148087000123
合成例(1)に準じた方法で合成した。
MALDI-TOF-MS(M+)=859.20
合成例(9):
化合物(1-9)の合成
Figure 2023148087000124
合成例(1)に準じた方法で合成した。
MALDI-TOF-MS(M+)=1019.18
合成例(10):
化合物(1-10)の合成
Figure 2023148087000125
合成例(1)に準じた方法で合成した。
MALDI-TOF-MS(M+)=759.12
合成例(11):
化合物(1-11)の合成
Figure 2023148087000126
合成例(1)に準じた方法で合成した。
MALDI-TOF-MS(M+)=731.10
合成例(12):
化合物(1-12)の合成
Figure 2023148087000127
合成例(1)に準じた方法で合成した。
MALDI-TOF-MS(M+)=715.20
合成例(13):
化合物(1-13)の合成
Figure 2023148087000128
合成例(1)に準じた方法で合成した。
MALDI-TOF-MS(M+)=1063.41
合成例(14):
化合物(1-14)の合成
Figure 2023148087000129
合成例(1)に準じた方法で合成した。
MALDI-TOF-MS(M+)=995.33
原料の化合物を適宜変更することにより、上述した合成例に準じた方法で、本発明の他の化合物を合成することができる。
<有機EL素子の作製と評価>
次に、本発明の金属錯体を用いた有機EL素子の作製と評価について記載する。
評価項目としては、駆動電圧(V)、発光波長(nm)、CIE色度(x,y)、外部量子効率(%)、発光スペクトルの最大波長(nm)および半値幅(nm)などがある。これらの評価項目は、適切な発光輝度時の値を用いることができる。
発光素子の量子効率には、内部量子効率と外部量子効率とがあるが、内部量子効率は、発光素子の発光層に電子(または正孔)として注入される外部エネルギーが純粋に光子に変換される割合を示している。一方、外部量子効率は、この光子が発光素子の外部にまで放出された量に基づいて算出され、発光層において発生した光子は、その一部が発光素子の内部で吸収されたりあるいは反射され続けたりして、発光素子の外部に放出されないため、外部量子効率は内部量子効率よりも低くなる。
分光放射輝度(発光スペクトル)と外部量子効率の測定方法は次の通りである。アドバンテスト社製電圧/電流発生器R6144を用いて、電圧を印加することにより素子を発光させた。TOPCON社製分光放射輝度計SR-3ARを用いて、発光面に対して垂直方向から可視光領域の分光放射輝度を測定した。発光面が完全拡散面であると仮定して、測定した各波長成分の分光放射輝度の値を波長エネルギーで割ってπを掛けた数値が各波長におけるフォトン数である。次いで、観測した全波長領域でフォトン数を積算し、素子から放出された全フォトン数とした。印加電流値を素電荷で割った数値を素子へ注入したキャリア数として、素子から放出された全フォトン数を素子へ注入したキャリア数で割った数値が外部量子効率である。また、発光スペクトルの半値幅は、極大発光波長を中心として、その強度が50%になる上下の波長間の幅として求められる。
<実施例1-1~14および比較例1-1、
実施例2-1~14および比較例2-1、
実施例3-1~14および比較例3-1>
[比較例1-1]
スパッタリングにより200nmの厚さに製膜したITOを50nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HAT-CN、HTL-1,HTL-2、Host-1、ETL-1、ETL-2、Liqおよび化合物(Ref-1)をそれぞれ入れたモリブデン製蒸着用ボート、アルミニウムをそれぞれ入れたタングステン製蒸着用ボートを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HAT-CNを加熱して膜厚10nmになるように蒸着して正孔注入層を形成した。次に、HTL-1を加熱して膜厚55nmになるように蒸着して正孔輸送層1を形成し、さらにHTL-2を加熱して膜厚5nmになるように蒸着して正孔輸送層2を形成した。次に、Host-1と化合物(Ref-1)を同時に加熱して膜厚30nmになるように蒸着して発光層を形成した。Host-1と化合物(Ref-1)の体積比がおよそ90対10になるように蒸着速度を調節した。次に、ETL-1を加熱して膜厚5nmになるように蒸着して電子輸送層1を形成し、さらにETL-2とLiqを同時に加熱して膜厚30nmになるように蒸着して電子輸送層2を形成した。ETL-2とLiqの体積比がおよそ35対65になるように蒸着速度を調節した。各層の蒸着速度は0.01~1nm/秒であった。その後、Liqを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着し、次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成し、有機EL素子を得た。このとき、アルミニウムの蒸着速度は1~10nm/秒になるように調節した。
[実施例1-1~14]
比較例1-1の化合物(Ref-1)を表1に記載の化合物に変更する以外は比較例1-1と同様の手順で実施例1-1~14の有機EL素子を得た。
Figure 2023148087000130
[実施例2-1~14、実施例3-1~14、比較例2-1、および比較例3-1]
比較例1-1のHost-1を表2に記載の、Host-1およびETL-1(ホスト1およびホスト2)に、化合物(Ref-1)を表2に記載のエミッティングドーパント、またはアシスティングドーパントおよびエミッティングドーパントに変更する以外は比較例1-1と同様の手順で実施例2-1~14、実施例3-1~14、比較例2-1、および比較例3-1の有機EL素子を得た。
なお、以下各表において、「ホスト1」は正孔輸送性ホスト材料に該当し、「ホスト2」は電子輸送性ホスト材料に該当する。
Figure 2023148087000131
Figure 2023148087000132
上記各素子の製造に用いた化合物の化学構造を以下に示す。
Figure 2023148087000133
実施例1-1~14、比較例1-1、実施例2-1~14、実施例3-1~14、比較例2-1、および比較例3-1の有機EL素子について、ITO電極を陽極、Liq/アルミニウム電極を陰極として、直流電圧を印加し、100cd/m2発光時および1000cd/m2発光時における、外部量子効率(EQE)を測定した。また、LT50(初期輝度1000cd/m2における電流密度で連続駆動させたときの500cd/m2になるまでの時間)を測定した。結果を表3に示す。
Figure 2023148087000134
比較例との比較から、本発明の金属錯体を用いると、半値幅が狭い発光、高EQE、長寿命が得られることがわかる。正孔輸送性ホスト材料および電子輸送性ホスト材料を用いる実施例2または実施例3の構成で、1つのホスト材料のみを用いる実施例1よりも高効率の素子が得られた。さらに本発明の金属錯体をアシスティングドーパントとして用いた実施例3の構成で最も高効率であった。
<塗布型有機EL素子の作製と評価>
次に、有機層を塗布形成して得られる有機EL素子について説明する。
<高分子ホスト化合物:SPH-101の合成>
国際公開第2015/008851号に記載の方法に従い、SPH-101を合成した。M1の隣にはM2またはM3が結合した共重合体が得られ、仕込み比より各ユニットは50:26:24(モル比)であると推測される。下記構造式中、Bpinはピナコラートボリル、*は各ユニットの連結箇所である。
Figure 2023148087000135
<高分子正孔輸送化合物:XLP-101の合成>
特開2018-61028号公報に記載の方法に従い、XLP-101を合成した。M4の隣にはM5またはM6が結合した共重合体が得られ、仕込み比より各ユニットは40:10:50(モル比)であると推測される。Bpinはピナコラートボリル、*は各ユニットの連結箇所である。
Figure 2023148087000136
<実施例5-1~実施例5-9>
各層を形成する材料の塗布用溶液を調製して塗布型有機EL素子を作製する。
<実施例5-1~実施例5-3の有機EL素子の作製>
有機EL素子における、各層の材料構成を表4に示す。
Figure 2023148087000137
表4における、「ET1」の構造を以下に示す。
Figure 2023148087000138
<発光層形成用組成物(1)の調製>
下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(1)を調製する。調製した発光層形成用組成物をガラス基板にスピンコートし、減圧下で加熱乾燥することによって、膜欠陥がなく平滑性に優れた塗布膜が得られる。
化合物(A) 0.04 質量%
SPH-101 1.96 質量%
キシレン 69.00 質量%
デカリン 29.00 質量%
なお、化合物(A)は、式(1)で表される金属錯体(例えば、化合物(1-1))、前記金属錯体をモノマー(すなわち当該モノマーは反応性置換基を有する)として高分子化させた高分子化合物、または当該高分子化合物をさらに架橋させた高分子架橋体である。高分子架橋体を得るための高分子化合物は架橋性置換基を有する。
<PEDOT:PSS溶液>
市販のPEDOT:PSS溶液(Clevios(TM) P VP AI4083、PEDOT:PSSの水分散液、Heraeus Holdings社製)を用いる。
Figure 2023148087000139
<OTPD溶液の調製>
OTPD(LT-N159、Luminescence Technology Corp社製)およびIK-2(光カチオン重合開始剤、サンアプロ社製)をトルエンに溶解させ、OTPD濃度0.7質量%、IK-2濃度0.007質量%のOTPD溶液を調製する。
Figure 2023148087000140
<XLP-101溶液の調製>
キシレンにXLP-101を0.6質量%の濃度で溶解させ、0.6質量%XLP-101溶液を調製する。
<PCz溶液の調製>
PCz(ポリビニルカルバゾール)をジクロロベンゼンに溶解させ、0.7質量%PCz溶液を調製する。
Figure 2023148087000141
<実施例5-1>
ITOが150nmの厚さに蒸着されたガラス基板上に、PEDOT:PSS溶液をスピンコートし、200℃のホットプレート上で1時間焼成することで、膜厚40nmのPEDOT:PSS膜を成膜する(正孔注入層)。次いで、OTPD溶液をスピンコートし、80℃のホットプレート上で10分間乾燥した後、露光機で露光強度100mJ/cm2で露光し、100℃のホットプレート上で1時間焼成することで、溶液に不溶な膜厚30nmのOTPD膜を成膜する(正孔輸送層)。次いで、発光層形成用組成物(1)をスピンコートし、120℃のホットプレート上で1時間焼成することで、膜厚20nmの発光層を成膜する。
作製した多層膜を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、ET1を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボート、アルミニウムを入れたタングステン製蒸着用ボートを装着する。真空槽を5×10-4Paまで減圧した後、ET1を加熱して膜厚30nmになるように蒸着して電子輸送層を形成する。電子輸送層を形成する際の蒸着速度は1nm/秒とする。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着する。次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成する。このようにして有機EL素子を得る。
<実施例5-2>
実施例5-1と同様の方法で有機EL素子を得る。なお、正孔輸送層は、XLP-101溶液をスピンコートし、200℃のホットプレート上で1時間焼成することで、膜厚30nmの膜を成膜する。
<実施例5-3>
実施例5-1と同様の方法で有機EL素子を得る。なお、正孔輸送層は、PCz溶液をスピンコートし、120℃のホットプレート上で1時間焼成することで、膜厚30nmの膜を成膜する。
<実施例5-1~実施例5-3の有機EL素子の評価>
上記のようにして得られた塗布型有機EL素子も蒸着型有機EL素子と同様に優れた駆動電圧および外部量子効率を有すると予想できる。
<実施例5-4~実施例5-6の有機EL素子の作製>
有機EL素子における、各層の材料構成を表5に示す。
Figure 2023148087000142
<発光層形成用組成物(2)~(4)の調製>
下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(2)を調製する。
化合物(A) 0.02 質量%
mCBP 1.98 質量%
トルエン 98.00 質量%
下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(3)を調製する。
化合物(A) 0.02 質量%
SPH-101 1.98 質量%
キシレン 98.00 質量%
下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(4)を調製する。
化合物(A) 0.02 質量%
DOBNA 1.98 質量%
トルエン 98.00 質量%
表5において、「mCBP」は3,3’-ビス(N-カルバゾリル)-1,1’-ビフェニルであり、「DOBNA」は3,11-ジ-o-トリル-5,9-ジオキサ-13b-ボラナフト[3,2,1-de]アントラセンであり、「TSPO1」はジフェニル[4-(トリフェニルシリル)フェニル]ホスフィンオキシドである。以下に化学構造を示す。
Figure 2023148087000143
<実施例5-4>
ITOが45nmの厚さに成膜されたガラス基板上に、ND-3202(日産化学工業製)溶液をスピンコートした後、大気雰囲気下において、50℃、3分間加熱し、更に230℃、15分間加熱することで、膜厚50nmのND-3202膜を成膜する(正孔注入層)。次いで、XLP-101溶液をスピンコートし、窒素ガス雰囲気下において、ホットプレート上で200℃、30分間加熱させることで、膜厚20nmのXLP-101膜を成膜する(正孔輸送層)。次いで、発光層形成用組成物(2)をスピンコートし、窒素ガス雰囲気下において、130℃、10分間加熱させることで、20nmの発光層を成膜する。
作製した多層膜を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、TSPO1を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボート、アルミニウムを入れたタングステン製蒸着用ボートを装着する。真空槽を5×10-4Paまで減圧した後、TSPO1を加熱して膜厚30nmになるように蒸着して電子輸送層を形成する。電子輸送層を形成する際の蒸着速度は1nm/秒とする。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着する。次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成する。このようにして有機EL素子を得る。
<実施例5-5および実施例5-6>
発光層形成用組成物(3)または(4)を用いて、実施例5-4と同様の方法で有機EL素子を得る。
<実施例5-4~実施例5-6の有機EL素子の評価>
上記のようにして得られた塗布型有機EL素子も蒸着型有機EL素子と同様に優れた駆動電圧および外部量子効率を有すると予想できる。
<実施例5-7~実施例5-9の有機EL素子の作製>
有機EL素子における、各層の材料構成を表6に示す。
Figure 2023148087000144
<発光層形成用組成物(5)~(7)の調製>
下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(5)を調製する。
化合物(A) 0.02 質量%
2PXZ-TAZ 0.18 質量%
mCBP 1.80 質量%
トルエン 98.00 質量%
下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(6)を調製する。
化合物(A) 0.02 質量%
2PXZ-TAZ 0.18 質量%
SPH-101 1.80 質量%
キシレン 98.00 質量%
下記成分を均一な溶液になるまで撹拌することで発光層形成用組成物(7)を調製する。
化合物(A) 0.02 質量%
2PXZ-TAZ 0.18 質量%
DOBNA 1.80 質量%
トルエン 98.00 質量%
表6において、「2PXZ-TAZ」は10,10’-((4-フェニル-4H-1,2,4-トリアゾール-3,5-ジイル)ビス(4,1-フェニレン))ビス(10H-フェノキサジン)である。以下に化学構造を示す。
Figure 2023148087000145
<実施例5-7>
ITOが45nmの厚さに成膜されたガラス基板上に、ND-3202(日産化学工業製)溶液をスピンコートした後、大気雰囲気下において、50℃、3分間加熱し、更に230℃、15分間加熱することで、膜厚50nmのND-3202膜を成膜する(正孔注入層)。次いで、XLP-101溶液をスピンコートし、窒素ガス雰囲気下において、ホットプレート上で200℃、30分間加熱させることで、膜厚20nmのXLP-101膜を成膜する(正孔輸送層)。次いで、発光層形成用組成物(5)をスピンコートし、窒素ガス雰囲気下において、130℃、10分間加熱させることで、20nmの発光層を成膜する。
作製した多層膜を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、TSPO1を入れたモリブデン製蒸着用ボート、LiFを入れたモリブデン製蒸着用ボート、アルミニウムを入れたタングステン製蒸着用ボートを装着する。真空槽を5×10-4Paまで減圧した後、TSPO1を加熱して膜厚30nmになるように蒸着して電子輸送層を形成する。電子輸送層を形成する際の蒸着速度は1nm/秒とする。その後、LiFを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着する。次いで、アルミニウムを加熱して膜厚100nmになるように蒸着して陰極を形成する。このようにして有機EL素子を得る。
<実施例5-8および実施例5-9>
発光層形成用組成物(6)または(7)を用いて、実施例5-7と同様の方法で有機EL素子を得る。
<実施例5-7~実施例5-9の有機EL素子の評価>
上記のようにして得られた塗布型有機EL素子も蒸着型有機EL素子と同様に優れた駆動電圧および外部量子効率を有すると予想できる。

Claims (15)

  1. 下記式(1)で表される金属錯体;
    Figure 2023148087000146
    式(1)中、
    A環、B環、C環およびD環はそれぞれ独立して、置換もしくは無置換のアリール環または置換もしくは無置換のヘテロアリール環であり、
    E環およびF環は置換または無置換の含窒素ヘテロ環カルベンであり、
    Xはそれぞれ独立してNまたはPであり、
    MはNi、Pd、またはPtであり、
    A環、B環、C環、D環、E環およびF環のうち、直接またはXを介して結合している少なくとも1組の2つの環は追加の単結合または連結基で互いに結合していてもよく、
    式(1)における少なくとも1つの水素は重水素で置き換えられていてもよい。
  2. 下記式(2)で表される、請求項1に記載の金属錯体;
    Figure 2023148087000147
    式(2)中、
    Zはそれぞれ独立して、-C(-RZ)=または-N=であり、
    Zは、それぞれ独立して、水素もしくは置換基群Zαから選択されるいずれかの置換基であるか、または
    隣接する2つのRZが互いに結合してそれらが結合する炭素とともに置換基群Zαから選択される少なくとも1つの置換基を有していてもよいアリール環または置換基群Zαから選択される少なくとも1つの置換基を有していてもよいヘテロアリール環を形成しているか、または
    隣接する1つまたは2つのRZが互いに結合して、2価または3価の置換基を形成しており、
    少なくとも1つのZ=Zは>N-RZN、>O、>C(-RZC2、>Si(-RZI2、>S、または>Seであってもよく、RZN、RZC、RZIはそれぞれ独立して水素、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のアルキル、または置換もしくは無置換のシクロアルキルであり、2つのRZCは互いに結合して環を形成していてもよく、2つのRZIは互いに結合して環を形成していてもよく、
    eは、それぞれ独立して、水素もしくは置換基群Zαから選択される置換基であるか、または
    2つのReが互いに結合してそれらが結合する炭素とともに置換基群Zαから選択される少なくとも1つの置換基を有していてもよいアリール環または置換基群Zαから選択される少なくとも1つの置換基を有していてもよいヘテロアリール環を形成しており、
    fは、それぞれ独立して、水素もしくは置換基群Zαから選択される置換基であるか、または
    2つのRfが互いに結合してそれらが結合する炭素とともに置換基群Zαから選択される少なくとも1つの置換基を有していてもよいアリール環または置換基群Zαから選択される少なくとも1つの置換基を有していてもよいヘテロアリール環を形成しており、
    式(2)における、アリール環およびヘテロアリール環からなる群より選択される少なくとも1つの環は、アルキレンの置換により、シクロアルカンとの縮合環を形成していてもよく、前記アルキレンは置換基を有していてもよく、前記アルキレンの少なくとも1つの-CH2-は-O-で置き換えられてもよく、
    式(2)における少なくとも1つの水素は重水素で置き換えられていてもよく;
    置換基群Zαは、
    アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアリール;
    アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいヘテロアリール;
    アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいジアリールアミノ(2つのアリールは互いに連結基を介して結合していてもよい);
    アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいジヘテロアリールアミノ(2つのヘテロアリールは互いに連結基を介して結合していてもよい);
    アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアリールヘテロアリールアミノ(アリールとヘテロアリールとは互いに連結基を介して結合していてもよい);
    アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいジアリールボリル(2つのアリールは単結合または連結基を介して結合していてもよい);
    アリール、ヘテロアリール、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアルキル;
    アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいシクロアルキル;
    アリール、ヘテロアリール、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアルコキシ;
    アリール、ヘテロアリール、アルキル、シクロアルキル、シアノ、およびハロゲンからなる群より選択される少なくとも1つの基で置換されていてもよいアリールオキシ、
    置換シリル、
    式(A30)で表される基、
    シアノ、ならびに
    ハロゲンからなり、
    Figure 2023148087000148
    式(A30)中、
    Akは水素、置換もしくは無置換のアルキル、置換もしくは無置換のアルケニル、置換もしくは無置換のシクロアルキルまたは置換もしくは無置換のシクロアルケニルであり、当該アルキルおよびシクロアルキルにおける少なくとも1つの-CH2-は-O-または-S-で置換されていてもよく、
    Akは、置換もしくは無置換のアリール、置換もしくは無置換のヘテロアリール、置換もしくは無置換のアルキルまたは置換もしくは無置換のシクロアルキルであり、RAkは連結基または単結合によりAkと結合していてもよく、*は結合位置である。
  3. MがPtである、請求項2に記載の金属錯体。
  4. 置換基群Zαから選択される置換基がいずれも、アルキル、アルキルで置換されていてもよいフェニル、アルキルで置換されていてもよいジフェニルアミノ、アルキルで置換されていてもよいカルバゾリル、シアノ、またはフッ素である、請求項2または3に記載の金属錯体。
  5. eおよびRfがいずれも水素であるか、いずれもメチルであるか、または
    2つのReおよび2つのRfがいずれも互いに結合してそれらが結合する炭素とともにベンゼン環を形成している、請求項2~4のいずれか一項に記載の金属錯体。
  6. 下記いずれかの式で表される、請求項1に記載の金属錯体;
    Figure 2023148087000149
    式中、Meはメチル、tBuはt-ブチルである。
  7. 請求項1~6のいずれか一項に記載の金属錯体に反応性置換基が置換した反応性化合物をモノマーとして高分子化させた数平均分子量2000~1.0×108の高分子化合物。
  8. 請求項1~6のいずれか一項に記載の金属錯体を含有する、有機デバイス用材料。
  9. 前記有機デバイス用材料が、有機電界発光素子用材料、有機電界効果トランジスタ用材料、有機薄膜太陽電池用材料、または波長変換フィルタ用材料である、請求項8に記載の有機デバイス用材料。
  10. 陽極および陰極からなる一対の電極と該一対の電極間に配置される有機層とを有し、前記有機層が請求項1~6のいずれか一項に記載の金属錯体を含有する、有機電界発光素子。
  11. 前記有機層が発光層である、請求項10に記載の有機電界発光素子。
  12. 請求項10または11に記載の有機電界発光素子を備えた表示装置または照明装置。
  13. 式(1-Int)で表される化合物のアミノ化反応を行なうことを含む請求項1~6のいずれか一項に記載の金属錯体の製造方法;
    Figure 2023148087000150
    式(1-Int)中、Halはそれぞれ独立して、塩素、臭素またはヨウ素である。
  14. 式(1-Int)で表される化合物;
    Figure 2023148087000151
    式(1-Int)中、
    A環、B環、C環およびD環はそれぞれ独立して、置換もしくは無置換のアリール環または置換もしくは無置換のヘテロアリール環であり、
    E環およびF環は置換または無置換の含窒素ヘテロ環カルベンであり、
    MはNi、Pd、またはPtであり、
    Halはそれぞれ独立して、塩素、臭素またはヨウ素であり、
    A環およびE環、E環およびB環、C環およびF環、ならびにD環およびF環からなる群より選択される少なくとも1組の2つの環は追加の単結合または連結基で互いに結合していてもよく、
    式(1-Int)における少なくとも1つの水素は重水素で置き換えられていてもよい。
  15. 式(1-preNHC)で表される化合物;
    Figure 2023148087000152
    式(1-preNHC)中、
    A環およびB環はそれぞれ独立して、置換もしくは無置換のアリール環または置換もしくは無置換のヘテロアリール環であり、
    E環は置換または無置換の含窒素ヘテロ環であり、
    Halはそれぞれ独立して、塩素、臭素またはヨウ素であり、
    HalXはそれぞれ独立して、塩素、臭素またはヨウ素であり、
    A環およびE環またはE環およびB環の少なくとも1組の2つの環は追加の単結合または連結基で互いに結合していてもよく、
    式(1-preNHC)における少なくとも1つの水素は重水素で置き換えられていてもよい。
JP2022055942A 2022-03-30 2022-03-30 金属錯体 Pending JP2023148087A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022055942A JP2023148087A (ja) 2022-03-30 2022-03-30 金属錯体
KR1020230040567A KR20230141579A (ko) 2022-03-30 2023-03-28 금속착체
CN202310309127.0A CN116891505A (zh) 2022-03-30 2023-03-28 金属络合物及其制法、高分子化合物、材料、发光元件、显示装置、照明装置及化合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022055942A JP2023148087A (ja) 2022-03-30 2022-03-30 金属錯体

Publications (1)

Publication Number Publication Date
JP2023148087A true JP2023148087A (ja) 2023-10-13

Family

ID=88288551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022055942A Pending JP2023148087A (ja) 2022-03-30 2022-03-30 金属錯体

Country Status (3)

Country Link
JP (1) JP2023148087A (ja)
KR (1) KR20230141579A (ja)
CN (1) CN116891505A (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101837095B1 (ko) 2009-10-28 2018-03-09 바스프 에스이 이종 리간드 카르벤 착체 및 유기 전자장치에서의 이의 용도
US10135008B2 (en) 2014-01-07 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
KR20230141579A (ko) 2023-10-10
CN116891505A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
JP7445923B2 (ja) ターシャリーアルキル置換多環芳香族化合物
WO2020162600A1 (ja) 多環芳香族化合物
WO2019198699A1 (ja) シクロアルキル置換多環芳香族化合物
JP2021038206A (ja) 多環芳香族化合物
JP2024037742A (ja) シクロアルキル置換多環芳香族化合物
JP7445927B2 (ja) 多環芳香族化合物
CN114437121A (zh) 多环芳香族化合物、反应性化合物、有机器件用材料、油墨组合物、及有机电致发光元件
JP7376892B2 (ja) 多環芳香族化合物
JP2021063067A (ja) 多環芳香族化合物、有機デバイス用材料、有機電界発光素子、表示装置および照明装置
JP2022133578A (ja) 多環芳香族化合物
JP2023148087A (ja) 金属錯体
WO2022185896A1 (ja) 多環芳香族化合物および有機電界発光素子
JP2023152686A (ja) 有機電界発光素子
JP2023138328A (ja) 多環芳香族化合物
JP2023180606A (ja) 多環芳香族化合物
JP2023114978A (ja) 有機電界発光素子
JP2023095774A (ja) 多環芳香族化合物
JP2023093330A (ja) 多環芳香族化合物
KR20230141577A (ko) 유기 전계 발광 소자
JP2023095770A (ja) 多環芳香族化合物
KR20230098036A (ko) 다환 방향족 화합물
KR20230136039A (ko) 다환방향족 화합물
KR20240047307A (ko) 다환방향족 화합물
KR20230095841A (ko) 다환 방향족 화합물
JP2023044631A (ja) 多環芳香族化合物