KR20230141577A - 유기 전계 발광 소자 - Google Patents

유기 전계 발광 소자 Download PDF

Info

Publication number
KR20230141577A
KR20230141577A KR1020230040534A KR20230040534A KR20230141577A KR 20230141577 A KR20230141577 A KR 20230141577A KR 1020230040534 A KR1020230040534 A KR 1020230040534A KR 20230040534 A KR20230040534 A KR 20230040534A KR 20230141577 A KR20230141577 A KR 20230141577A
Authority
KR
South Korea
Prior art keywords
ring
substituted
formula
compound
aryl
Prior art date
Application number
KR1020230040534A
Other languages
English (en)
Inventor
타쿠지 하타케야마
료스케 카와스미
Original Assignee
가꼬우 호징 관세이 가쿠잉
에스케이머티리얼즈제이엔씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023007273A external-priority patent/JP2023152686A/ja
Application filed by 가꼬우 호징 관세이 가쿠잉, 에스케이머티리얼즈제이엔씨 주식회사 filed Critical 가꼬우 호징 관세이 가쿠잉
Publication of KR20230141577A publication Critical patent/KR20230141577A/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

[과제] 새로운 재료를 조합시켜서 발광층을 구성함으로써, 바람직하게는 높은 양자 효율 및 장수명을 가지는 유기 전계 발광 소자를 제공한다.
[해결 수단] 이미팅 도펀트로서의 식(1)으로 나타내어지는 다환 방향족 화합물과, 정공 수송성 호스트 재료, 전자 수송성 호스트 재료, 및 어시스팅 도펀트로 이루어지는 군에서 선택되는 적어도 2개를 포함하는 발광층을 가지는 유기 전계 발광 소자는, 높은 외부 양자 효율을 가지며, 장수명이다.

(A환, B환, D환, 및 E환은, 치환 또는 무치환의 아릴환 등, Z는 -C(-H)= 등, Y는 B 등, X는, >N-RNX, >O, 또는 >S 등, RNX는 치환 또는 무치환의 아릴 등이며, 식(1)으로 나타내어지는 화합물에 있어서의 아릴환 및 헤테로아릴환으로 이루어지는 군에서 선택되는 적어도 하나는 적어도 하나의 시클로알칸으로 축합되어 있어도 되고, 식(1)으로 나타내어지는 화합물에 있어서의 적어도 하나의 수소는 할로겐 또는 중수소로 치환되어 있어도 되며, 식(1)으로 나타내어지는 화합물에 있어서의 적어도 하나의 수소는 시아노로 치환되어 있음.)

Description

유기 전계 발광 소자 {ORGANIC ELECTROLUMINESCENT ELEMENT}
본 발명은, 유기 전계 발광 소자, 이를 사용한 표시 장치 및 조명 장치에 관한 것이다.
종래, 전계 발광하는 발광 소자를 사용한 표시 장치는, 저전력화나 박형화가 가능하기 때문에, 다양하게 연구되고, 또한, 유기 재료로부터 이루어지는 유기 전계 발광 소자는, 경량화나 대형화가 용이하여 활발하게 검토되어 왔다. 특히, 광의 삼원색 중 하나인 청색 등의 발광 특성을 가지는 유기 재료의 개발, 및 정공, 전자 등의 전하 수송 능력(반도체나 초전도체가 될 가능성을 가짐)을 구비한 유기 재료의 개발에 대해서는, 고분자 화합물, 저분자 화합물을 막론하고 지금까지 활발하게 연구되어 왔다.
유기 전계 발광 소자는, 양극 및 음극으로 이루어지는 한 쌍의 전극과, 해당 한 쌍의 전극 사이에 배치되어, 유기 화합물을 포함하는 한 층 또는 복수의 층으로 이루어지는 구조를 가진다. 유기 화합물을 포함하는 층에는, 발광층이나, 정공, 전자 등의 전하를 수송 또는 주입하는 전하 수송/주입층 등이 있으며, 이들 층에 적당한 다양한 유기 재료가 개발되고 있다.
특허문헌 1에서는, 붕소를 함유하는 다환 방향족 화합물이, 유기 전계 발광 소자 등의 재료로서 유용한 것이 개시되고 있다. 특허문헌 1에서는, 일반적으로 발광 효율이 높지만 색순도가 낮다고 여겨지고 있었던 TADF 재료의 색순도를 비약적으로 향상시키는 새로운 구조가 제안되고 있다.
TADF 재료의 호스트 재료로서는, 전자 수송성 호스트 재료와 정공 수송성 호스트 재료를 조합시켜서 사용하는 것이 검토되고 있다(비특허문헌 1~3).
특허문헌 1: 국제공개 제2015/102118호
비특허문헌 1: Advanced Functional Materials, 24, 2014, 3970 비특허문헌 2: Advanced Materials, 26, 2014, 5684 비특허문헌 3: Synthetic Metals, 201,2015, 49
상술한 바와 같이, 유기 EL 소자에 사용되는 재료로서는 다양한 것이 개발되고 있지만, 유기 EL 소자용 재료의 선택지를 늘리기 위해서, 종래의 것과 다른 화합물로 이루어지는 재료의 개발이 기대되고 있다. 본 발명의 과제는, 새로운 재료의 조합을 사용한 유기 EL 소자를 제공하는 것이다. 본 발명은, 높은 외부 양자 효율을 가지는 유기 EL 소자를 제공하는 것을 과제로 한다.
본 발명자들은, 상기 과제를 해결하기 위해서 예의 검토하여, 발광층의 형성에 복수의 방향족환을 축합한 다환 방향족 화합물과 함께 복수의 호스트 재료나 어시스팅 도펀트를 사용함으로써, 뛰어난 유기 EL 소자가 얻어지는 것을 찾아내고, 본 발명을 완성시켰다. 즉 본 발명은, 이하와 같은 유기 전계 발광 소자를 제공한다.
항 1.
양극 및 음극으로 이루어지는 한 쌍의 전극과, 해당 한 쌍의 전극 사이에 배치되는 발광층을 가지는 유기 전계 발광 소자로서,
상기 발광층은, 이미팅 도펀트와, 정공 수송성 호스트 재료, 전자 수송성 호스트 재료, 및 어시스팅 도펀트로 이루어지는 군에서 선택되는 적어도 2개를 포함하고,
상기 이미팅 도펀트가, 하기 일반식(1)으로 나타내어지는 다환 방향족 화합물, 하기 일반식(1)으로 나타내어지는 단위 구조를 복수 가지는 다환 방향족 화합물의 다량체, 상기 다환 방향족 화합물 또는 상기 다량체를 모노머로 하여 고분자화시킨 고분자 화합물, 상기 고분자 화합물을 더 가교시킨 고분자 가교체, 상기 다환 방향족 화합물 또는 상기 다량체를 주사슬형 고분자와 반응시킨 펜던트형 고분자 화합물, 및 상기 펜던트형 고분자 화합물을 더 가교시킨 펜던트형 고분자 가교체로 이루어지는 군에서 선택되는 적어도 하나를 포함하는, 유기 전계 발광 소자.
식(1) 중,
A환, B환, D환, 및 E환은, 각각 독립적으로, 치환 또는 무치환의 아릴환 또는 치환 또는 무치환의 헤테로아릴환이며,
Z는, 각각 독립적으로, -C(-RZ)= 또는 -N=이고,
RZ는, 각각 독립적으로, 수소 또는 치환기이며,
Y는, 각각 독립적으로, B, P, P=O, 또는 P=S이고,
X는, 각각 독립적으로, >N-RNX, >O, >C(-RCX)2, >Si(-RIX)2, >S, 또는 >Se이며, RNX는, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이고, RCX 및 RIX는, 각각 독립적으로, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이며, 2개의 RCX는 서로 결합하여 환을 형성하고 있어도 되고, 2개의 RIX는 서로 결합하여 환을 형성하고 있어도 되며, RNX, RCX, 및 RIX는, 각각 자신을 포함하는 X가 결합하는 1개 또는 2개의 환과 단결합 또는 연결기에 의해 결합하고 있어도 되고,
식(1)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 아릴환 및 헤테로아릴환 중 적어도 하나는, 적어도 하나의 시클로알칸으로 축합되어 있어도 되며, 해당 시클로알칸에 있어서의 적어도 하나의 수소는 치환기로 치환되어 있어도 되고, 해당 시클로알칸에 있어서의 적어도 하나의 -CH2-는 -O-로 치환되어 있어도 되며,
식(1)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 적어도 하나의 수소는, 할로겐 또는 중수소로 치환되어 있어도 되고, 그리고,
식(1)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 적어도 하나의 수소는 시아노로 치환되어 있다.
항 2.
상기 일반식(1)이 하기 일반식(1A)으로 나타내어지는, 항 1에 기재된 유기 전계 발광 소자.
식(1A) 중,
Y, X는 식(1) 중의 Y, X와 각각 동일한 의미이며,
Z는 식(1) 중의 Z와 동일한 의미이며, 단, Z=Z 중의 Z가 모두 -C(-RZ)=일 때 2개의 RZ는 서로 결합하여 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 상기 형성된 아릴환 또는 헤테로아릴환은, 각각 독립적으로, 치환기를 가지고 있어도 되며, 또한, Z=Z는, 각각 독립적으로, >N-R, >O, >C(-R)2, >Si(-R)2, >S, 또는 >Se여도 되고, 상기 >N-R, 상기 >C(-R)2, 및 상기 >Si(-R)2의 R은, 각각 독립적으로, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이며, 상기 >C(-R)2 및 상기 >Si(-R)2의 2개의 R은 서로 결합하여 환을 형성하고 있어도 되고,
식(1A)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 아릴환 및 헤테로아릴환 중 적어도 하나는, 적어도 하나의 시클로알칸으로 축합되어 있어도 되며, 해당 시클로알칸에 있어서의 적어도 하나의 수소는 치환기로 치환되어 있어도 되고, 해당 시클로알칸에 있어서의 적어도 하나의 -CH2-는 -O-로 치환되어 있어도 되며,
식(1A)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 적어도 하나의 수소는, 할로겐 또는 중수소로 치환되어 있어도 되고, 그리고,
식(1A)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 적어도 하나의 수소는 시아노로 치환되어 있다.
항 3.
Z가 모두 -C(-RZ)=인, 항 2에 기재된 유기 전계 발광 소자.
항 4.
RZ가, 각각 독립적으로, 수소, 알킬, 알킬로 치환되어 있어도 되는 페닐, 알킬로 치환되어 있어도 되는 디페닐아미노, 또는 알킬로 치환되어 있어도 되는 카르바졸릴인, 항 2 또는 3에 기재된 유기 전계 발광 소자.
항 5.
X가, 각각 독립적으로, >O, >N-RNX, 또는 >S인, 항 1~4 중 어느 한 항에 기재된 유기 전계 발광 소자.
항 6.
상기 다환 방향족 화합물이 하기 어느 하나의 구조식으로 나타내어지는, 항 1에 기재된 유기 전계 발광 소자.
식 중, Me는 메틸, tBu는 t-부틸이다.
항 7.
상기 이미팅 도펀트가 상기 일반식(1)으로 나타내어지는 다환 방향족 화합물 또는 그 다량체를 포함하는, 항 1~6중 어느 한 항에 기재된 유기 전계 발광 소자.
항 8.
상기 이미팅 도펀트가, 상기 일반식(1)으로 나타내어지는 다환 방향족 화합물 또는 그 다량체를 모노머로 하여 고분자화시킨 고분자 화합물, 상기 고분자 화합물을 더 가교시킨 고분자 가교체, 상기 다환 방향족 화합물 또는 그 다량체를 주사슬형 고분자와 반응시킨 펜던트형 고분자 화합물, 및 상기 펜던트형 고분자 화합물을 더 가교시킨 펜던트형 고분자 가교체로 이루어지는 군에서 선택되는 하나 이상을 포함하는, 항 1~6중 어느 한 항에 기재된 유기 전계 발광 소자.
항 9.
상기 발광층이 상기 정공 수송성 호스트 재료 및 상기 전자 수송성 호스트 재료의 쌍방을 포함하는, 항 1~8 중 어느 한 항에 기재된 유기 전계 발광 소자.
항 10.
상기 정공 수송성 호스트 재료가, 하기 일반식(HH-1)으로 나타내어지거나, 또는 하기 일반식(HH-1)으로 나타내어지는 부분 구조를 가지고, 아릴환 및 헤테로아릴환으로 이루어지는 군에서 선택되는 적어도 3개의 환을 포함하는 구조를 갖는 화합물이며,
상기 전자 수송성 호스트 재료가, 하기 일반식(EH-1A)~일반식(EH-1D) 중 어느 하나로 나타내어지거나, 또는 하기 일반식(EH-1A)~일반식(EH-1D) 중 어느 하나로 나타내어지는 부분 구조를 가지고, 아릴환 및 헤테로아릴환으로 이루어지는 군에서 선택되는 적어도 3개의 환을 포함하는 구조를 갖는 화합물, 또는 하기 일반식(EH-1b)으로 나타내어지는 다환 방향족 화합물 또는 하기 일반식(EH-1b)으로 나타내어지는 단위 구조를 복수 가지는 다환 방향족 화합물의 다량체인, 항 1~9 중 어느 한 항에 기재된 유기 전계 발광 소자.
식(HH-1)에 있어서,
Q는, >O, >S, 또는 >N-AH이며,
식(HH-1)에 있어서의 2개의 페닐 각각에 있어서의 Q가 결합하는 탄소 원자의 옆의 하나의 탄소 원자는, 서로, L로 결합하고 있어도 되고,
L은, 단결합, >O, >S, 또는 >C(-AH)2이며,
AH는, 수소, 아릴, 또는 헤테로아릴이고, >C(-AH)2에 있어서의 2개의 AH는 서로 결합하고 있어도 되며;
식(EH-1A)~식(EH-1D)에 있어서,
Ar은, 환을 구성하는 부분 구조로서 N=C를 포함하는 헤테로아릴환이고,
Z는, 단결합, -O-, -S-, 또는 -N(-AE)-이며,
Z가 결합하는 탄소 원자의 옆의 탄소 원자와 Z가 결합하는 AE와는, 서로, L로 결합하고 있어도 되고,
L은, 단결합, >O, >S, 또는 >C(-AE)2이며,
AE는, 아릴, 헤테로아릴, 또는 트리아릴실릴이고, >C(-AE)2에 있어서의 2개의 AE는 서로 결합하고 있어도 되며,
X는 C, P, 또는 S이고,
X가 C인 경우, n=2, m=1이며,
X가 P인 경우, n=3, m=1이고,
X가 S인 경우, n=2, m=1~2이며;
식(EH-1b)에 있어서,
R1, R2, R3, R4 및 R5는, 각각 독립적으로, 수소 또는 치환기이고,
X1 및 X2는, 각각 독립적으로, >N-RNX2, >O, >C(-RCX2)2, >S, 또는 >Se이며, X1 및 X2가 모두 >C(-RCX2)2가 되는 경우는 없고,
RNX2 및 RCX2는, 각각 독립적으로, 수소 또는 치환기이며, RNX2 및 RCX2는 각각 독립적으로 연결기 또는 단결합에 의해 상기 a환, b환, 및 c환 중 적어도 하나의 환과 결합하고 있어도 되고,
Y1, Y2, Y3, Y4, Y5, 및 Y6은, 각각 독립적으로, =C(-RY)- 또는 =N-이며, 적어도 하나는 =N-이고,
RY는, 각각 독립적으로, 수소 또는 치환기이며,
상기 R1, R2, R3, R4, 및 R5, 및 RY 중 인접하는 기끼리가 결합하여 a환, b환 및 c환 중 적어도 하나의 환과 함께 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에 있어서의 적어도 하나의 수소는, 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 디아릴보릴(2개의 아릴은 단결합 또는 연결기를 통하여 결합하고 있어도 됨), 알킬, 시클로알킬, 알콕시, 또는 아릴옥시로 치환되어 있어도 되며, 이들에 있어서의 적어도 하나의 수소는 아릴, 헤테로아릴, 알킬 또는 시클로알킬로 더 치환되어 있어도 되고,
식(EH-1b)으로 나타내어지는 화합물 및 단위 구조에 있어서의 적어도 하나의 수소는, 시아노, 할로겐 또는 중수소로 치환되어 있어도 된다.
항 11.
상기 정공 수송성 호스트 재료가 하기 식(HH-1-12)이며, 상기 전자 수송성 호스트 재료가 하기 식(EH-1-94)인, 항 10에 기재된 유기 전계 발광 소자.
항 12.
상기 발광층이, 상기 어시스팅 도펀트로서 열활성형 지연 형광을 방사할 수 있는 화합물을 포함하는, 항 1~11 중 어느 한 항에 기재된 유기 전계 발광 소자.
항 13.
상기 발광층이, 상기 어시스팅 도펀트로서 인광을 방사할 수 있는 화합물을 포함하는, 항 1~11 중 어느 한 항에 기재된 유기 전계 발광 소자.
항 14.
항 1~13 중 어느 한 항에 기재된 유기 전계 발광 소자를 구비한 표시 장치 또는 조명 장치.
항 15.
하기 일반식(2)으로 나타내어지는 다환 방향족 화합물, 또는 하기 일반식(2)으로 나타내어지는 단위 구조를 복수 가지는 다환 방향족 화합물의 다량체.
식(2) 중,
B환 및 E환은, 각각 독립적으로, 치환 또는 무치환의 아릴환 또는 치환 또는 무치환의 헤테로아릴환이며,
Z 및 ZCN은, 각각 독립적으로, -C(-RZ)= 또는 -N=이고,
RZ는, 각각 독립적으로, 수소 또는 치환기이며,
Y는, 각각 독립적으로, B, P, P=O, 또는 P=S이고,
X는, 각각 독립적으로, >N-RNX, >O, >C(-RCX)2, >Si(-RIX)2, >S, 또는 >Se이며, RNX는, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이고, RCX 및 RIX는, 각각 독립적으로, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이며, 2개의 RCX는 서로 결합하여 환을 형성하고 있어도 되고, 2개의 RIX는 서로 결합하여 환을 형성하고 있어도 되며, RNX, RCX, 및 RIX는, 각각 자신을 포함하는 X가 결합하는 1개 또는 2개의 환과 단결합 또는 연결기에 의해 결합하고 있어도 되고,
식(2)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 아릴환 및 헤테로아릴환 중 적어도 하나는, 적어도 하나의 시클로알칸으로 축합되어 있어도 되며, 해당 시클로알칸에 있어서의 적어도 하나의 수소는 치환기로 치환되어 있어도 되고, 해당 시클로알칸에 있어서의 적어도 하나의 -CH2-는 -O-로 치환되어 있어도 되며,
식(2)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 적어도 하나의 수소는, 할로겐 또는 중수소로 치환되어 있어도 되고, 그리고,
B환, E환, 및 c환에 있어서의 적어도 하나의 수소가 시아노로 치환되어 있고, 및/또는, ZCN 중 적어도 하나가 -C(-CN)=이다.
항 16.
상기 일반식(2)이 하기 일반식(2A)으로 나타내어지는, 항 15에 기재된 다환 방향족 화합물 또는 그 다량체.
식(2A) 중,
Y, X는 식(2) 중의 Y, X와 각각 동일한 의미이며,
Z, ZCN은 식(2) 중의 Z, ZCN과 동일한 의미이고, 단, Z=Z 중의 Z가 모두 -C(-RZ)=일 때 2개의 RZ는 서로 결합하여 아릴환 또는 헤테로아릴환을 형성하고 있어도 되며, 상기 형성된 아릴환 또는 헤테로아릴환은, 각각 독립적으로, 치환기를 가지고 있어도 되고, 또한, Z=Z는, 각각 독립적으로, >N-R, >O, >C(-R)2, >Si(-R)2, >S, 또는 >Se여도 되며, 상기 >N-R, 상기 >C(-R)2, 및 상기 >Si(-R)2의 R은, 각각 독립적으로, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이고, 상기 >C(-R)2 및 상기 >Si(-R)2의 2개의 R은 서로 결합하여 환을 형성하고 있어도 되며,
식(2A)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 아릴환 및 헤테로아릴환 중 적어도 하나는, 적어도 하나의 시클로알칸으로 축합되어 있어도 되고, 해당 시클로알칸에 있어서의 적어도 하나의 수소는 치환기로 치환되어 있어도 되며, 해당 시클로알칸에 있어서의 적어도 하나의 -CH2-는 -O-로 치환되어 있어도 되고,
식(2A)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 적어도 하나의 수소는, 할로겐 또는 중수소로 치환되어 있어도 되며, 그리고,
b환, e환, 및 c환에 있어서의 적어도 하나의 수소가 시아노로 치환되어 있고, 및/또는, ZCN 중 적어도 하나가 -C(-CN)=이다.
항 17.
Z 및 ZCN이 모두 -C(-RZ)=이며, 동시에,
b환, e환, 및 c환에 있어서의 적어도 하나의 수소가 시아노로 치환되어 있고, 및/또는, ZCN 중 적어도 하나가 -C(-CN)=인, 항 16에 기재된 다환 방향족 화합물 또는 그 다량체.
항 18.
RZ가, 각각 독립적으로, 수소, 알킬, 알킬로 치환되어 있어도 되는 페닐, 알킬로 치환되어 있어도 되는 디페닐아미노, 또는 알킬로 치환되어 있어도 되는 카르바졸릴이며, 동시에, b환, e환, 및 c환에 있어서의 적어도 하나의 수소가 시아노로 치환되어 있고, 및/또는, ZCN 중 적어도 하나가 -C(-CN)=인, 항 16 또는 17에 기재된 다환 방향족 화합물 또는 그 다량체.
항 19.
X가, 각각 독립적으로, >O, >N-RNX, 또는 >S인, 항 15~18 중 어느 한 항에 기재된 다환 방향족 화합물 또는 그 다량체.
항 20.
상기 다환 방향족 화합물이 하기 어느 하나의 구조식으로 나타내어지는, 항 15에 기재된 다환 방향족 화합물.
식 중, Me는 메틸, tBu는 t-부틸이다.
본 발명에 의해 새로운 재료의 조합을 사용한 유기 EL 소자가 제공된다. 본 발명의 유기 EL 소자는, 높은 외부 양자 효율을 가지며, 장수명이다.
도 1은 유기 전계 발광 소자에 일 예를 제시하는 개략 단면도이다.
도 2는 일반적인 형광 도펀트를 사용한 TAF 소자의 호스트, 어시스팅 도펀트 및 이미팅 도펀트의 에너지 관계를 나타내는 에너지 준위도이다.
도 3은 본 발명의 일 양태 유기 전계 발광 소자에 있어서의, 호스트, 어시스팅 도펀트 및 이미팅 도펀트의 에너지 관계의 일 예를 제시하는 에너지 준위도이다.
이하에 있어서, 본 발명에 대해서 상세하게 설명한다. 이하에 기재하는 구성 요건의 설명은, 대표적인 실시 형태나 구체예에 기초하여 이루어지는 경우가 있지만, 본 발명은 그와 같은 실시 형태에 한정되는 것은 아니다. 또한, 본 명세서에 있어서 「~」을 사용하여 나타내어지는 수치 범위는 「~」 전후에 기재되는 수치를 하한값 및 상한값으로서 포함하는 범위를 의미한다. 또한, 본 명세서에 있어서 구조식의 설명에 있어서의 「수소」는 「수소 원자(H)」를 의미한다. 마찬가지로 「탄소 원자(C)」를 「탄소」라고 하는 경우가 있다.
본 명세서에 있어서, 「인접하는 기」라고 할 때는, 구조식 중에서 인접하는 2개의 원자(공유 결합으로 직접 결합하는 2개의 원자)에 각각 결합하고 있는 2개의 기를 의미한다.
본 명세서에 있어서 「Me」는 메틸, 「Et」는 에틸, 「nBu」는 n-부틸(노말부틸), 「tBu」는 t-부틸(터셔리부틸), 「iBu」는 이소부틸, 「secBu」는 세컨더리부틸, 「nPr」은 n-프로필(노말프로필), 「iPr」은 이소프로필, 「tAm」은 t-아밀, 「2EH」는 2-에틸헥실, 「tOct」는 t-옥틸, 「Ph」는 페닐, 「Mes」는 메시틸(2,4,6-트리메틸페닐), 「Ad」는 1-아다만틸 또는 2-아다만틸(보다 바람직하게는 1-아다만틸), 「Tf」는 트리플루오로메탄술포닐, 「TMS」는 트리메틸실릴, 「D」는 중수소를 나타낸다.
본 명세서에 있어서, 유기 전계 발광 소자를 유기 EL 소자라고 하는 경우가 있다.
본 명세서에 있어서 화학 구조나 치환기를 탄소수로 나타낸 것이 있으나, 화학 구조에 치환기가 치환한 경우나, 치환기에 치환기가 더 치환한 경우 등에 있어서의 탄소수는, 화학 구조나 치환기 각각의 탄소수를 의미하고, 화학 구조와 치환기의 합계 탄소수나, 치환기와 치환기의 합계 탄소수를 의미하는 것이 아니다. 예를 들면, 「탄소수 X의 치환기 A로 치환된 탄소수 Y의 치환기 B」란, 「탄소수 Y의 치환기 B」에 「탄소수 X의 치환기 A」가 치환하는 것을 의미하고, 탄소수 Y는 치환기 A 및 치환기 B의 합계의 탄소수가 아니다. 또한 예를 들면, 「치환기 A로 치환된 탄소수 Y의 치환기 B」란, 「탄소수 Y의 치환기 B」에 「(탄소수 한정이 없는) 치환기 A」가 치환하는 것을 의미하고, 탄소수 Y는 치환기 A 및 치환기 B의 합계의 탄소수가 아니다.
0. 환 및 치환기의 설명
먼저, 본 명세서에 있어서 사용하는 환 및 치환기의 상세에 대해서 이하에 설명한다.
본 명세서에 있어서의 「아릴환」으로서는, 예를 들면, 탄소수 6~30의 아릴환을 들 수 있으며, 탄소수 6~18의 아릴환이 바람직하고, 탄소수 6~16의 아릴환이 보다 바람직하고, 탄소수 6~12의 아릴환이 보다 더 바람직하고, 탄소수 6~10의 아릴환이 특히 바람직하다.
구체적인 「아릴환」으로서는, 단환계인 벤젠환, 2환계인 비페닐환, 축합 2환계인 나프탈렌환, 인덴환, 3환계인 터페닐환(m-터페닐, o-터페닐, p-터페닐), 축합 3환계인, 아세나프틸렌환, 플루오렌환, 페날렌환, 페난트렌환, 안트라센환, 축합 4환계인 트리페닐렌환, 피렌환, 나프타센환, 크리센환, 축합 5환계인 페릴렌환, 펜타센환 등을 들 수 있다. 또한, 플루오렌환, 벤조플루오렌환, 인덴환에는, 각각 플루오렌환, 벤조플루오렌환, 시클로펜탄환 등이 스피로 결합한 구조도 포함된다. 또한, 플루오렌환, 벤조플루오렌환 및 인덴환에는, 그 구조 중의 메틸렌의 2개의 수소 중 2개가 각각 후술하는 제1 치환기로서의 메틸 등의 알킬로 치환되어, 디메틸플루오렌환, 디메틸벤조플루오렌환, 디메틸인덴환 등으로 되어 있는 것도 포함된다.
본 명세서에 있어서의 「헤테로아릴환」으로서는, 예를 들면, 탄소수 2~30의 헤테로아릴환을 들 수 있으며, 탄소수 2~25의 헤테로아릴환이 바람직하고, 탄소수 2~20의 헤테로아릴환이 보다 바람직하고, 탄소수 2~15의 헤테로아릴환이 보다 더 바람직하고, 탄소수 2~10의 헤테로아릴환이 특히 바람직하다. 또한, 「헤테로아릴환」으로서는, 예를 들면 환구성 원자로서 탄소 이외에 산소, 황, 질소, 셀렌, 인, 텔루리움으로부터 선택되는 헤테로 원자를 1 내지 5개 함유하는 복소환 등을 들 수 있다.
구체적인 「헤테로아릴환」으로서는, 예를 들면, 피롤환, 옥사졸환, 이소옥사졸환, 티아졸환, 이소티아졸환, 이미다졸환, 옥사디아졸환, 티아디아졸환, 트리아졸환, 테트라졸환, 피라졸환, 피리딘환, 피리미딘환, 피리다진환, 피라진환, 트리아진환, 인돌환, 이소인돌환, 1H-인다졸환, 벤조이미다졸환, 벤조옥사졸환, 벤조티아졸환, 1H-벤조트리아졸환, 퀴놀린환, 이소퀴놀린환, 신놀린환, 퀴나졸린환, 퀴녹살린환, 프탈라진환, 나프트리딘환, 퓨린환, 프테리딘환, 카르바졸환, 아크리딘환, 페녹사티인환, 페녹사진환, 페노티아진환, 페나진환, 페나자실린환, 인돌리진환, 푸란환, 벤조푸란환, 이소벤조푸란환, 디벤조푸란환, 티오펜환, 벤조티오펜환, 디벤조티오펜환, 푸라잔환, 티안트렌환, 인돌로카르바졸환, 벤조인돌로카르바졸환, 디벤조인돌로카르바졸환, 나프토벤조푸란환, 디옥신환, 디히드로아크리딘환, 잔텐환, 티오잔텐환, 디벤조디옥신환, 벤조셀레노펜환 등을 들 수 있다. 또한, 디히드로아크리딘환, 잔텐환, 티오잔텐환은, 그 구조 중의 메틸렌의 2개의 수소 중 2개가 각각 후술하는 제1 치환기로서의 메틸 등의 알킬로 치환되어, 디메틸디히드로아크리딘환, 디메틸잔텐환, 디메틸티오잔텐환 등으로 되어 있는 것도 바람직하다. 또한 2환계인 비피리딘환, 페닐피리딘환, 피리딜페닐환, 3환계인 터피리딘환, 비스피리딜페닐환, 피리딜비페닐환도 「헤테로아릴환」으로서 들 수 있다. 또한, 「헤테로아릴환」에는 피란환도 포함되는 것으로 한다.
본 명세서에 있어서, 치환기는, 다른 치환기로 치환되어 있는 경우가 있다. 예를 들면, 특정한 치환기에 관하여, 「치환 또는 무치환의」이라고 설명이 되는 경우가 있다. 이는 그 특정한 치환기가 적어도 하나의 다른 치환기로 치환되어 있거나, 또는 치환되어 있지 않는 것을 의미한다. 동일한 의미로 「치환되어 있어도 된다」라고 하는 경우도 있다. 본 명세서에 있어서, 이 때의 상기 특정의 치환기를 「제1 치환기」, 상기의 다른 치환기를 「제2 치환기」라고 하는 경우가 있다.
본 명세서에 있어서, 치환기군 Z는,
아릴, 헤테로아릴, 알킬 및 시클로알킬로 이루어지는 군에서 선택되는 적어도 하나의 기로 치환되어 있어도 되는 아릴,
아릴, 헤테로아릴, 알킬 및 시클로알킬로 이루어지는 군에서 선택되는 적어도 하나의 기로 치환되어 있어도 되는 헤테로아릴,
아릴, 헤테로아릴, 알킬 및 시클로알킬로 이루어지는 군에서 선택되는 적어도 하나의 기로 치환되어 있어도 되는 디아릴아미노(2개의 아릴은 서로 연결기를 통하여 결합하고 있어도 됨),
아릴, 헤테로아릴, 알킬 및 시클로알킬로 이루어지는 군에서 선택되는 적어도 하나의 기로 치환되어 있어도 되는 디헤테로아릴아미노(2개의 헤테로아릴은 서로 연결기를 통하여 결합하고 있어도 됨),
아릴, 헤테로아릴, 알킬 및 시클로알킬로 이루어지는 군에서 선택되는 적어도 하나의 기로 치환되어 있어도 되는 아릴헤테로아릴아미노(아릴과 헤테로아릴과는 서로 연결기를 통하여 결합하고 있어도 됨),
아릴, 헤테로아릴, 알킬 및 시클로알킬로 이루어지는 군에서 선택되는 적어도 하나의 기로 치환되어 있어도 되는 디아릴보릴(2개의 아릴은 단결합 또는 연결기를 통하여 결합하고 있어도 됨),
아릴, 헤테로아릴 및 시클로알킬로 이루어지는 군에서 선택되는 적어도 하나의 기로 치환되어 있어도 되는 알킬,
아릴, 헤테로아릴, 알킬 및 시클로알킬로 이루어지는 군에서 선택되는 적어도 하나의 기로 치환되어 있어도 되는 시클로알킬,
아릴, 헤테로아릴 및 시클로알킬로 이루어지는 군에서 선택되는 적어도 하나의 기로 치환되어 있어도 되는 알콕시,
아릴, 헤테로아릴, 알킬 및 시클로알킬로 이루어지는 군에서 선택되는 적어도 하나의 기로 치환되어 있어도 되는 아릴옥시, 및
치환 실릴로부터 이루어진다.
치환기군 Z의 각 기에 있어서의 제2 치환기인 아릴은, 아릴, 헤테로아릴, 알킬, 또는 시클로알킬로 더 치환되어 있어도 되며, 마찬가지로, 제2 치환기인 헤테로아릴은 아릴, 헤테로아릴, 알킬, 또는 시클로알킬로 치환되어 있어도 된다.
본 명세서에 있어서, 「치환기」라고 하는 경우, 특별히 별도의 설명(예를 들면, A환 등에 있어서의 아릴환 등의 치환기나 RZ에 관한 별도의 설명)이 없을 때는, 치환기군 Z로부터 선택되는 어느 하나의 기라면 된다. 예를 들면, 「치환 또는 무치환의」로 여겨지는 기가 치환되어 있을 때, 해당 기는 치환기군 Z로부터 선택되는 적어도 하나의 기로 치환되어 있으면 된다.
본 명세서에 있어서, 「아릴」은, 예를 들면 탄소수 6~30의 아릴이며, 바람직하게는, 탄소수 6~20의 아릴, 탄소수 6~16의 아릴, 탄소수 6~12의 아릴, 또는 탄소수 6~10의 아릴 등이다.
구체적인 「아릴」은, 예를 들면, 단환계인 페닐, 2환계인 비페닐릴(2-비페닐릴, 3-비페닐릴, 또는 4-비페닐릴), 축합 2환계인 나프틸(1-나프틸 또는 2-나프틸), 3환계인 터페닐릴(m-터페닐-2'-일, m-터페닐-4'-일, m-터페닐-5'-일, o-터페닐-3'-일, o-터페닐-4'-일, p-터페닐-2'-일, m-터페닐-2-일, m-터페닐-3-일, m-터페닐-4-일, o-터페닐-2-일, o-터페닐-3-일, o-터페닐-4-일, p-터페닐-2-일, p-터페닐-3-일, 또는 p-터페닐-4-일), 축합 3환계인, 아세나프틸렌-(1-, 3-, 4-, 또는 5-)일, 플루오렌-(1-, 2-, 3-, 4-, 또는 9-)일, 페날렌-(1- 또는 2-)일, 페난트렌-(1-, 2-, 3-, 4-, 또는 9-)일, 또는 안트라센-(1-, 2-, 또는 9-)일, 4환계인 쿼터페닐릴(5'-페닐-m-터페닐-2-일, 5'-페닐-m-터페닐-3-일, 5'-페닐-m-터페닐-4-일, 또는 m-쿼터페닐), 축합 4환계인, 트리페닐렌-(1- 또는 2-)일, 피렌-(1-, 2-, 또는 4-)일, 또는 나프타센-(1-, 2-, 또는 5-)일, 또는, 축합 5환계인, 페릴렌-(1-, 2-, 또는 3-)일, 또는 펜타센-(1-, 2-, 5-, 또는 6-)일 등이다. 그 밖에, 스피로플루오렌의 1가의 기 등을 들 수 있다.
또한, 제2 치환기로서의 아릴에는, 해당 아릴이, 페닐 등의 아릴(구체예는 상술한 기), 메틸 등의 알킬(구체예는 후술하는 기), 및 시클로헥실 또는 아다만틸 등의 시클로알킬(구체예는 후술하는 기)로 이루어지는 군에서 선택되는 적어도 하나의 기로 치환된 구조도 포함된다.
그 일 예로서는, 제2 치환기로서의 플루오레닐의 9위가, 페닐 등의 아릴, 메틸 등의 알킬, 또는 시클로헥실 또는 아다만틸 등의 시클로알킬로 치환된 기를 들 수 있다.
「아릴렌」은, 예를 들면 탄소수 6~30의 아릴렌이며, 바람직하게는, 탄소수 6~20의 아릴렌, 탄소수 6~16의 아릴렌, 탄소수 6~12의 아릴렌, 또는 탄소수 6~10의 아릴렌 등이다.
구체적인 「아릴렌」은, 예를 들면, 상술한 「아릴」(1가의 기)로부터 하나의 수소를 제거한 2가의 기를 들 수 있다.
「헤테로아릴」은, 예를 들면 탄소수 2~30의 헤테로아릴이며, 바람직하게는, 탄소수 2~25의 헤테로아릴, 탄소수 2~20의 헤테로아릴, 탄소수 2~15의 헤테로아릴, 또는 탄소수 2~10의 헤테로아릴 등이다. 「헤테로아릴」은, 환구성 원자로서 탄소 이외에 산소, 황, 및 질소 등으로부터 선택되는 헤테로 원자를, 하나 이상, 바람직하게는 1~5개 함유한다.
구체적인 「헤테로아릴」로서는, 예를 들면, 피롤일, 옥사졸릴, 이소옥사졸릴, 티아졸릴, 이소티아졸릴, 이미다졸릴, 옥사디아졸릴, 티아디아졸릴, 트리아졸릴, 테트라졸릴, 피라졸릴, 피리딜, 피리미디닐, 피리다지닐, 피라지닐, 트리아지닐, 인돌일, 이소인돌일, 1H-인다졸일, 벤조이미다졸릴, 벤조옥사졸릴, 벤조티아졸릴, 1H-벤조트리아졸릴, 퀴놀리닐, 이소퀴놀리닐, 신놀리닐, 퀴나졸리닐, 퀴녹살리닐, 페난트롤리닐, 프탈라지닐, 나프티리디닐, 퓨리닐, 프테리디닐, 카르바졸릴, 아크리디닐, 페녹사티이닐, 페녹사지닐, 페노티아지닐, 페나지닐, 페나자실리닐, 인돌리지닐, 푸라닐, 벤조푸라닐, 이소벤조푸라닐, 디벤조푸라닐, 나프토벤조푸라닐, 티에닐, 벤조티에닐, 이소벤조티에닐, 디벤조티에닐, 나프토벤조티에닐, 벤조포스포릴, 디벤조포스포릴, 벤조포스폴옥사이드환의 1가의 기, 디벤조포스폴옥사이드환의 1가의 기, 푸라자닐, 티안트레닐, 인돌로카르바졸릴, 벤조인돌로카르바졸릴, 디벤조인돌로카르바졸릴, 이미다졸리닐, 또는 옥사졸리닐 등이다. 그 밖에, 스피로[플루오렌-9,9'-잔텐]의 1가의 기, 스피로비[실라플루오렌]의 1가의 기, 벤조셀레노펜의 1가의 기를 들 수 있다.
또한, 제2 치환기로서의 헤테로아릴에는, 해당 헤테로아릴이, 페닐 등의 아릴(구체예는 상술한 기), 메틸 등의 알킬(구체예는 후술하는 기) 및 시클로헥실 또는 아다만틸 등의 시클로알킬(구체예는 후술하는 기)로 이루어지는 군에서 선택되는 적어도 하나의 기로 치환된 구조도 포함된다.
그 일 예로서는, 제2 치환기로서의 카르바졸릴의 9위가, 페닐 등의 아릴, 메틸 등의 알킬, 또는 시클로헥실 또는 아다만틸 등의 시클로알킬로 치환된 기를 들 수 있다. 또한, 피리딜, 피리미디닐, 트리아지닐, 카르바졸릴 등의 함질소 헤테로아릴이 페닐 또는 비페닐릴 등으로 더 치환된 기도 제2 치환기로서의 헤테로아릴에 포함된다.
「헤테로아릴렌」은, 예를 들면 탄소수 2~30의 헤테로아릴렌이며, 바람직하게는, 탄소수 2~25의 헤테로아릴렌, 탄소수 2~20의 헤테로아릴렌, 탄소수 2~15의 헤테로아릴렌, 또는 탄소수 2~10의 헤테로아릴렌 등이다. 또한, 「헤테로아릴렌」은, 예를 들면 환구성 원자로서 탄소 이외에 산소, 황, 및 질소로부터 선택되는 헤테로 원자를 1~5개 함유하는 복소환 등의 2가의 기이다.
구체적인 「헤테로아릴렌」은, 예를 들면, 상술한 「헤테로아릴」(1가의 기)으로부터 하나의 수소를 제거한 2가의 기를 들 수 있다.
「디아릴아미노」는, 2개의 아릴이 치환된 아미노이며, 이 아릴의 상세에 대해서는 상술한 「아릴」의 설명을 인용할 수 있다.
「디헤테로아릴아미노」는, 2개의 헤테로아릴이 치환된 아미노기이며, 이 헤테로아릴의 상세에 대해서는 상술한 「헤테로아릴」의 설명을 인용할 수 있다.
「아릴헤테로아릴아미노」는, 아릴 및 헤테로아릴이 치환된 아미노기이며, 이 아릴 및 헤테로아릴의 상세에 대해서는 상술한 「아릴」 및 「헤테로아릴」의 설명을 인용할 수 있다.
제1 치환기로서의 디아릴아미노에 있어서의 2개의 아릴은 서로 연결기를 통하여 결합하고 있어도 되고, 제1 치환기로서의 디헤테로아릴아미노에 있어서의 2개의 헤테로아릴은 서로 연결기를 통하여 결합하고 있어도 되고, 제1 치환기로서의 아릴헤테로아릴아미노의 아릴과 헤테로아릴은 서로 연결기를 통하여 결합하고 있어도 된다. 여기서, 「연결기를 통하여 결합」이라고 하는 기재는, 하기에 나타낸 바와 같이 예를 들면 디페닐아미노의 2개의 페닐이 연결기로 결합을 형성하는 것을 나타낸다. 또한 이 설명은 아릴이나 헤테로아릴로 형성된, 디헤테로아릴아미노 및 아릴헤테로아릴아미노에 대해서도 적용된다.
Figure pat00011
연결기로서는 구체적으로는, >O, >N-RX, >C(-RX)2, >Si(-RX)2, >S, >CO, >CS, >SO, >SO2, 및 >Se를 들 수 있다. RX는 각각 독립적으로 알킬, 시클로알킬, 아릴, 또는 헤테로아릴이며, 이들은 알킬, 시클로알킬, 아릴, 또는 헤테로아릴로 치환되어 있어도 된다. 또한 >C(-RX)2, >Si(-RX)2,에 있어서의 RX는, 단결합 또는 연결기 XY를 통하여 결합하여 환을 형성해도 된다. XY로서는 >O, >N-RY, >C(-RY)2, >Si(-RY)2, >S, >CO, >CS, >SO, >SO2, 및 >Se를 들 수 있으며, RY는 각각 독립적으로 알킬, 시클로알킬, 아릴 또는 헤테로아릴이고, 이들은 알킬, 시클로알킬, 아릴, 또는 헤테로아릴로 치환되어 있어도 된다. 단, XY가 >C(-RY)2 및 >Si(-RY)2인 경우에는, 2개의 RY는 결합하여 환을 더 형성하지 않는다. 나아가 연결기로서는, 알케닐렌도 들 수 있다. 해당 알케닐렌의 임의의 수소는 각각 독립적으로 RX로 치환되어 있어도 되고, RX는 각각 독립적으로 알킬, 시클로알킬, 치환 실릴, 아릴 및 헤테로아릴이며, 이들은 알킬, 시클로알킬, 치환 실릴, 아릴로 치환되어 있어도 된다.
또한, 본 명세서에서 단순히 「디아릴아미노」, 「디헤테로아릴아미노」, 또는 「아릴헤테로아릴아미노」라고 기재되어 있는 경우는, 특별히 한정하지 않는 한, 각각 「디아릴아미노의 2개의 아릴은 서로 연결기를 통하여 결합하고 있어도 된다」, 「상기 디헤테로아릴아미노의 2개의 헤테로아릴은 서로 연결기를 통하여 결합하고 있어도 된다」 및 「상기 아릴헤테로아릴아미노의 아릴과 헤테로아릴은 서로 연결기를 통하여 결합하고 있어도 된다」라고 하는 설명이 더해져 있는 것이라고 한다.
「디아릴보릴」은, 2개의 아릴이 치환된 보릴이며, 이 아릴의 상세에 대해서는 상술한 「아릴」의 설명을 인용할 수 있다. 또한, 이 2개의 아릴은, 단결합 또는 연결기(예를 들면, -CH=CH-, -CR=CR-, -C≡C-, >N-R, >O, >S, >C(-R)2, >Si(-R)2, 또는 >Se)를 통하여 결합하고 있어도 된다. 여기서, 상기 -CR=CR-의 R, >N-R의 R, >C(-R)2의 R, 및 >Si(-R)의 R은, 아릴, 헤테로아릴, 디아릴아미노, 알킬, 알케닐, 알키닐, 시클로알킬, 알콕시, 또는 아릴옥시이며, 해당 R에 있어서의 적어도 하나의 수소는, 아릴, 헤테로아릴, 알킬, 알케닐, 알키닐, 또는 시클로알킬로 더 치환되어 있어도 된다. 또한, 인접하는 2개의 R끼리가 결합하여 환을 형성하고, 시클로알킬렌, 아릴렌, 및 헤테로아릴렌을 형성하고 있어도 된다. 여기서 열거한 치환기의 상세에 대해서는, 상술한 「아릴」, 「아릴렌」, 「헤테로아릴」, 「헤테로아릴렌」, 및 「디아릴아미노」의 설명, 및, 후술하는 「알킬」, 「알케닐」, 「알키닐」, 「시클로알킬」, 「시클로알킬렌」, 「알콕시」, 및 「아릴옥시」의 설명을 인용할 수 있다. 또한, 본 명세서에서 단순히 「디아릴보릴」이라고 기재되어 있는 경우는, 특별히 한정하지 않는 한, 「디아릴보릴에 2개의 아릴은 서로 단결합 또는 연결기를 통하여 결합하고 있어도 된다」라고 하는 설명이 더해져 있는 것이라고 한다.
「알킬」은, 직쇄 및 분기쇄 중 어느 것이라도 되며, 예를 들면 탄소수 1~24의 직쇄 알킬 또는 탄소수 3~24의 분기쇄 알킬이며, 바람직하게는, 탄소수 1~18의 알킬(탄소수 3~18의 분기쇄 알킬), 탄소수 1~12의 알킬(탄소수 3~12의 분기쇄 알킬), 탄소수 1~6의 알킬(탄소수 3~6의 분기쇄 알킬), 탄소수 1~5의 알킬(탄소수 3~5의 분기쇄 알킬), 탄소수 1~4의 알킬(탄소수 3~4의 분기쇄 알킬) 등이다.
구체적인 「알킬」은, 예를 들면, 메틸, 에틸, n-프로필, 이소프로필, 1-에틸-1-메틸프로필, 1,1-디에틸프로필, 1,1,2-트리메틸프로필, 1,1,2,2-테트라메틸프로필, 1-에틸-1,2,2-트리메틸프로필, n-부틸, 이소부틸, s-부틸, t-부틸, 2-에틸부틸, 1,1-디메틸부틸, 3,3-디메틸부틸, 1,1-디에틸부틸, 1-에틸-1-메틸부틸, 1-프로필-1-메틸부틸, 1,1,3-트리메틸부틸, 1-에틸-1,3-디메틸부틸, n-펜틸, 이소펜틸, 네오펜틸, t-펜틸(t-아밀), 1-메틸펜틸, 2-프로필펜틸, 1,1-디메틸펜틸, 1-에틸-1-메틸펜틸, 1-프로필-1-메틸펜틸, 1-부틸-1-메틸펜틸, 1,1,4-트리메틸펜틸, n-헥실, 1-메틸헥실, 2-에틸헥실, 1,1-디메틸헥실, 1-에틸-1-메틸헥실, 1,1,5-트리메틸헥실, 3,5,5-트리메틸헥실, n-헵틸, 1-메틸헵틸, 1-헥실헵틸, 1,1-디메틸헵틸, 2,2-디메틸헵틸, 2,6-디메틸-4-헵틸, n-옥틸, t-옥틸(1,1,3,3-테트라메틸부틸), 1,1-디메틸옥틸, n-노닐, n-데실, 1-메틸데실, n-운데실, n-도데실, n-트리데실, n-테트라데실, n-펜타데실, n-헥사데실, n-헵타데실, n-옥타데실, 또는 n-에이코실 등이다.
「알킬렌」은, 「알킬」 중 어느 하나의 수소를 제거하여 얻어지는 2가의 기이며, 예를 들면 메틸렌, 에틸렌, 프로필렌이다.
「알케닐」에 대해서는, 상술한 「알킬」의 설명을 참고로 할 수 있고, 「알킬」의 구조 중의 C-C 단결합을 C=C 이중 결합으로 치환한 기이며, 1개뿐만 아니라 2개 이상의 단결합이 이중 결합으로 치환된 기(알카디엔-일이나 알카트리엔-일이라고도 불림)도 포함시킨다.
「알케닐렌」은 「알케닐」 중 어느 하나의 수소를 제거하여 얻어지는 2가의 기이며, 예를 들면 비닐렌을 들 수 있다.
「알키닐」에 대해서는, 상술한 「알킬」의 설명을 참고로 할 수 있고, 「알킬」의 구조 중의 C-C 단결합을 C≡C 삼중 결합으로 치환한 기이며, 1개뿐만 아니라 2개 이상의 단결합이 삼중 결합으로 치환된 기(알카디인-일이나 알카트리인-일이라고도 불림)도 포함시킨다.
「시클로알킬」은, 예를 들면 탄소수 3~24의 시클로알킬이며, 바람직하게는, 탄소수 3~20의 시클로알킬, 탄소수 3~16의 시클로알킬, 탄소수 3~14의 시클로알킬, 탄소수 3~12의 시클로알킬, 탄소수 5~10의 시클로알킬, 탄소수 5~8의 시클로알킬, 탄소수 5~6의 시클로알킬, 또는 탄소수 5의 시클로알킬 등이다.
구체적인 「시클로알킬」은, 예를 들면, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵틸, 시클로옥틸, 시클로노닐, 시클로데실, 또는 이들 탄소수 1~5나 탄소수 1~4의 알킬(특히 메틸) 치환체, 노보네닐, 비시클로[1.1.0]부틸, 비시클로[1.1.1]펜틸, 비시클로[2.1.0]펜틸, 비시클로[2.1.1]헥실, 비시클로[3.1.0]헥실, 비시클로[2.2.1]헵틸, 비시클로[2.2.2]옥틸, 아다만틸, 디아만틸, 데카히드로나프타레닐, 또는 데카히드로아줄레닐 등이다.
「시클로알킬렌」은, 예를 들면 탄소수 3~24의 시클로알킬렌이며, 바람직하게는, 탄소수 3~20의 시클로알킬렌, 탄소수 3~16의 시클로알킬렌, 탄소수 3~14의 시클로알킬렌, 탄소수 3~12의 시클로알킬렌, 탄소수 5~10의 시클로알킬렌, 탄소수 5~8의 시클로알킬렌, 탄소수 5~6의 시클로알킬렌, 또는 탄소수 5의 시클로알킬렌 등이다.
구체적인 「시클로알킬렌」은, 예를 들면, 상술한 「시클로알킬」(1가의 기)로부터 하나의 수소를 제거하여 2가의 기로 한 구조를 들 수 있다.
「시클로알케닐」은, 상술한 「시클로알킬」에 있어서의 적어도 하나의 조의 2개의 탄소의 사이의 단결합이 이중 결합이 된 구조를 갖는 기(예를 들면, -CH2-CH2-가 -CH=CH-로 치환된 기)이며, 아릴에 해당하지 않는 기를 들 수 있다. 구체적으로는, 1-시클로헥세닐, 1-시클로펜테닐 등을 들 수 있다.
「알콕시」는, 「Alk-O-(Alk는 알킬)」로 나타내어지는 기이며, 이 알킬의 상세에 대해서는 상술한 「알킬」의 설명을 인용할 수 있다.
「아릴옥시」는, 「Ar-O-(Ar은 아릴)」로 나타내어지는 기이며, 이 아릴의 상세에 대해서는 상술한 「아릴」의 설명을 인용할 수 있다.
「치환 실릴」은, 예를 들면, 아릴, 알킬, 및 시클로알킬 중 적어도 하나로 치환된 실릴이며, 바람직하게는, 트리아릴실릴, 트리알킬실릴, 트리시클로알킬실릴, 디알킬시클로알킬실릴, 또는 알킬디시클로알킬실릴이다.
「트리아릴실릴」은, 3개의 아릴로 치환된 실릴기이며, 이 아릴의 상세에 대해서는 상술한 「아릴」의 설명을 인용할 수 있다.
구체적인 「트리아릴실릴」은, 예를 들면, 트리페닐실릴, 디페닐모노나프틸실릴, 모노페닐디나프틸실릴, 또는 트리나프틸실릴 등이다.
「트리알킬실릴」은, 3개의 알킬로 치환된 실릴기이며, 이 알킬의 상세에 대해서는 상술한 「알킬」의 설명을 인용할 수 있다.
구체적인 「트리알킬실릴」은, 예를 들면, 트리메틸실릴, 트리에틸실릴, 트리n-프로필실릴, 트리이소프로필실릴, 트리n-부틸실릴, 트리이소부틸실릴, 트리s-부틸실릴, 트리t-부틸실릴, 에틸디메틸실릴, n-프로필디메틸실릴, 이소프로필디메틸실릴, n-부틸디메틸실릴, 이소부틸디메틸실릴, s-부틸디메틸실릴, t-부틸디메틸실릴, 메틸디에틸실릴, n-프로필디에틸실릴, 이소프로필디에틸실릴, n-부틸디에틸실릴, s-부틸디에틸실릴, t-부틸디에틸실릴, 메틸디n-프로필실릴, 에틸디n-프로필실릴, n-부틸디n-프로필실릴, s-부틸디n-프로필실릴, t-부틸디n-프로필실릴, 메틸이소프로필실릴, 에틸디이소프로필실릴, n-부틸디이소프로필실릴, s-부틸디이소프로필실릴, 또는 t-부틸디이소프로필실릴 등이다.
「트리시클로알킬실릴」은, 3개의 시클로알킬로 치환된 실릴기이며, 이 시클로알킬의 상세에 대해서는 상술한 「시클로알킬」의 설명을 인용할 수 있다.
구체적인 「트리시클로알킬실릴」은, 예를 들면, 트리시클로펜틸실릴 또는 트리시클로헥실실릴 등이다.
「디알킬시클로알킬실릴」은, 2개의 알킬 및 1개의 시클로알킬로 치환된 실릴기이며, 이 알킬 및 시클로알킬의 상세에 대해서는 상술한 「알킬」 및 「시클로알킬」의 설명을 인용할 수 있다.
「알킬디시클로알킬실릴」은, 1개의 알킬 및 2개의 시클로알킬로 치환된 실릴기이며, 이 알킬 및 시클로알킬의 상세에 대해서는 상술한 「알킬」 및 「시클로알킬」의 설명을 인용할 수 있다.
<동일한 원자에 결합하는 2개의 기가 서로 결합하는 경우>
본 명세서에 있어서 동일한 원자에 결합하는 2개의 기에 대해서 서로 결합하여 환을 형성하고 있어도 된다라고 하는 경우, 단결합 또는 연결기(이들을 정리하여 결합기라고도 함)에 의해 결합하고 있으면 되고, 연결기로서는, -CH2-CH2-, -CHR-CHR-, -CR2-CR2-, -CH=CH-, -CR=CR-, -C≡C-, -N(-R)-, -O-, -S-, -C(-R)2-, -Si(-R)2-, 또는 -Se-를 들 수 있으며, 예를 들면 이하의 구조를 들 수 있다. 또한, 상기 -CHR-CHR-의 R, -CR2-CR2-의 R, -CR=CR-의 R, -N(-R)-의 R, -C(-R)2-의 R, 및 -Si(-R)2-의 R은, 각각 독립적으로, 수소, 알킬 또는 시클로알킬로 치환되어 있어도 되는 아릴, 알킬 또는 시클로알킬로 치환되어 있어도 되는 헤테로아릴, 시클로알킬로 치환되어 있어도 되는 알킬, 알킬 또는 시클로알킬로 치환되어 있어도 되는 알케닐, 알킬 또는 시클로알킬로 치환되어 있어도 되는 알키닐, 또는 알킬 또는 시클로알킬로 치환되어 있어도 되는 시클로알킬이다. 또한, 인접하는 2개의 R끼리가 결합하여 환을 형성하고, 시클로알킬렌, 아릴렌, 또는 헤테로아릴렌을 형성하고 있어도 된다.
결합기로서는, 단결합, 연결기로서의 -CR=CR-, -N(-R)-, -O-, -S-, -C(-R)2-, -Si(-R)2-, 및 -Se-가 바람직하고, 단결합, 연결기로서의 -CR=CR-, -N(-R)-, -O-, -S-, 및 -C(-R)2-가 보다 바람직하고, 단결합, 연결기로서의 -CR=CR-, -N(-R)-, -O-, 및 -S-이 보다 더 바람직하고, 단결합이 가장 바람직하다.
결합기에 의해 2개의 R이 결합하는 위치는, 결합 가능한 위치라면 특별히 한정되지 않지만, 가장 인접하는 위치에서 결합하는 것이 바람직하고, 예를 들면 2개의 기가 페닐인 경우, 페닐에 있어서의 「C」나 「Si」의 결합 위치(1위)를 기준으로서 오르토(2위)의 위치끼리 결합하는 것이 바람직하다(상기 구조식을 참조).
1. 유기 전계 발광 소자의 발광층의 구성 재료
본 발명의 유기 전계 발광 소자는, 양극 및 음극으로 이루어지는 한 쌍의 전극과, 해당 한 쌍의 전극 사이에 배치되는 발광층을 가진다. 본 발명의 유기 전계 발광 소자에 포함되는 적어도 하나의 발광층은, 이미팅 도펀트와, 정공 수송성 호스트 재료, 전자 수송성 호스트 재료, 및 어시스팅 도펀트 재료로 이루어지는 군에서 선택되는 적어도 2개를 포함한다.
이 각 재료에 대해서 이하에 설명한다.
1-1. 이미팅 도펀트
본 발명의 유기 전계 발광 소자에 있어서, 이미팅 도펀트는 식(1)으로 나타내어지는 다환 방향족 화합물, 식(1)으로 나타내어지는 단위 구조를 복수 가지는 다환 방향족 화합물의 다량체, 상기 다환 방향족 화합물 또는 상기 다량체를 모노머로 하여 고분자화시킨 고분자 화합물, 상기 고분자 화합물을 더 가교시킨 고분자 가교체, 상기 다환 방향족 화합물 또는 상기 다량체를 주사슬형 고분자와 반응시킨 펜던트형 고분자 화합물, 및 상기 펜던트형 고분자 화합물을 더 가교시킨 펜던트형 고분자 가교체로 이루어지는 군에서 선택되는 적어도 하나를 포함한다. 본 명세서에 있어서, 이들을 정리하여 「식(1)으로 나타내어지는 다환 방향족 화합물 등」이라고 하는 경우가 있다.
식(1)으로 나타내어지는 다환 방향족 화합물 등은 「열활성형 지연 형광체」로서, 열활성형 지연 형광(TADF)을 나타낼 수 있다. 「열활성형 지연 형광체」에서는, 최저 여기 일중항 상태와 최저 여기 삼중항 상태와의 에너지 차를 작게 함으로써, 통상은 천이 확률이 낮은 최저 여기 삼중항 상태로부터 최저 여기 일중항 상태로의 역항간 교차 이동을 고효율로 생기게 하고, 일중항으로부터의 발광(열활성형 지연 형광, TADF)이 발현된다. 통상의 형광 발광에서는 전류 여기에 의해 생긴 75%의 삼중항 여기자는 열실활 경로를 거치기 때문에 형광으로서 취출할 수는 없다. 한편, TADF에서는 모든 여기자를 형광 발광에 이용할 수 있고, 고효율인 유기 EL 소자가 실현된다. 본 발명에서는 이와 같은 「열활성형 지연 형광체」를 상기 호스트 재료나 어시스팅 도펀트와 함께 사용함으로써 높은 소자 효율 및 긴 소자 수명을 실현하고 있다.
일반적으로 지연 형광이 빠른 쪽이 좋은 TADF성을 가지는 것으로 여겨진다. 구체적으로는 지연 형광 수명이 20μsec 이하인 발광 재료를 발광 소자에 있어서의 이미팅 도펀트로서 사용했을 때에 높은 소자 효율 및 긴 소자 수명을 줄 수 있다. 지연 형광 수명은 20μsec 미만이 바람직하고, 10μsec 이하가 더 바람직하고, 5μsec 이하가 가장 바람직하다.
또한, 일반적으로 ΔES1T1의 값이 작을 수록, 뛰어난 TADF성을 가진다. 또한, ΔES1T1은 최저 여기 일중항 에너지 준위(ES1)와 최저 여기 삼중항 에너지 준위(ET1)와의 에너지 차이다. 구체적으로는, ΔES1T1의 값이 0.20eV 이하인 것이 바람직하고, 0.15eV 이하인 것이 보다 더 바람직하고, 0.10eV 이하인 것이 특히 바람직하다.
식(1)으로 나타내어지는 다환 방향족 화합물 등은, 본 발명의 유기 전계 발광 소자에 있어서, 정공 수송성 호스트 재료 및 전자 수송성 호스트 재료를 사용하는 TADF의 소자의 이미팅 도펀트, 별도의 열활성형 지연 형광체를 어시스팅 도펀트로서 사용하는 유기 전계 발광 소자(TADF 어시스트 형광(TADF-assisted fluorescent)소자, TAF 소자)의 이미팅 도펀트, 인광 재료를 어시스팅 도펀트로서 사용하는 유기 전계 발광 소자(인광 증감 형광(phosphor-sensitized fluorescent)소자, PSF 소자)의 이미팅 도펀트로서 사용된다. 본 발명자들은, 식(1)으로 나타내어지는 다환 방향족 화합물 등을, 정공 수송성 호스트 재료, 전자 수송성 호스트 재료, 및 어시스팅 도펀트 재료로 이루어지는 군에서 선택되는 적어도 2개와 함께 발광층의 형성에 사용함으로써, 고효율의 녹색 발광을 주는 장수명의 유기 EL 소자를 제조할 수 있는 것을 알아냈다.
1-1-1. 식(1)으로 나타내어지는 다환 방향족 화합물
<화합물의 전체 구조의 설명>
식(1)으로 나타내어지는 다환 방향족 화합물은 바람직하게는 식(1A)으로 나타내어진다. 식(1A)은, 식(1)의 A환, B환, D환, 및 E환으로서 특정한 환이 선택된 구조에 대응한다. 그 의미로, 각 식에 있어서의 각 환을 소문자의 「a」, 「b」, 「c」, 「d」, 및 「e」로 나타냈다.
식(1)으로 나타내어지는 다환 방향족 화합물은 바람직하게는 식(2)로 나타내어진다. 식(2)은, 식(1)의 A환 및 D환으로서 특정한 환이 선택된 구조에 대응한다. 그 의미로, 각 식에 있어서의 각 환을 소문자의 「a」, 「c」, 및 「d」로 나타냈다.
식(1)으로 나타내어지는 다환 방향족 화합물은 바람직하게는 식(2A)으로 나타내어진다. 식(2A)은, 식(1)의 A환, B환, D환, 및 E환으로서 특정한 환이 선택된 구조에 대응한다. 그 의미로, 각 식에 있어서의 각 환을 소문자의 「a」, 「b」, 「c」, 「d」, 및 「e」로 나타냈다.
식(1), 식(1A), 식(2), 또는 식(2A)(이하, 이들을 총칭하여 「식(1) 등」이라고도 함)으로 나타내어지는 다환 방향족 화합물은, 방향환을 붕소, 질소, 산소, 황 등의 헤테로 원소로 연결한 구조를 가지고, 큰 HOMO-LUMO 갭(박막에 있어서의 밴드갭 Eg)을 가진다. 헤테로 원소를 포함하는 6원환은 방향족성이 낮고, 공역계의 확장에 따른 HOMO-LUMO 갭의 감소가 억제되기 때문이다. 식(1) 등으로 나타내어지는 다환 방향족 화합물에 있어서는, 헤테로 원소의 종류 및 연결 방법에 따라 HOMO-LUMO 갭을 임의로 변경할 수 있다. 이는, 헤테로 원소의 공궤도 또는 론 페어의 공간적 퍼짐 및 에너지에 따라 HOMO, LUMO의 에너지를 임의로 움직일 수 있는 것이 원인이 되고 있다고 생각된다.
이들 다환 방향족 화합물은, 헤테로 원소의 전자적인 섭동에 의해 여기 상태의 SOMO1 및 SOMO2가 각 원자 위에 국재화함으로써, 형광 발광 피크의 반치폭이 좁고, 유기 EL 소자의 도펀트로서 이용했을 경우에 높은 색순도의 발광이 얻어진다. 같은 이유로 ΔES1T1이 작아져서 열활성형 지연 형광을 나타내고, 유기 EL 소자의 이미팅 도펀트로서 이용했을 경우에 높은 효율을 얻을 수 있다.
더욱이, 치환기의 도입에 의해, HOMO와 LUMO의 에너지를 임의로 움직일 수 있기 때문에, 이온화 포텐셜이나 전자 친화력을 주변 재료에 따라 최적화하는 것이 가능하다. 특히, 시아노기는 전자 구인성이 크고, HOMO 또는 LUMO의 에너지에 큰 섭동을 줄 수 있다. 단, 본 발명은 특히 이 원리에 한정되는 것은 아니다.
이하, 식(1) 등으로 나타내어지는 구조에 대해서 설명한다.
<화합물 중의 환구조의 설명>
식(1) 등에 있어서, 원 내의 「A」, 「B」, 「D」, 및 「E」는 각 원으로 나타내어지는 환구조를 나타내는 부호이다. 식(1) 등으로 나타내어지는 구조는, A환(a환), B환(b환), c환, D환(d환), 및 E환(e환)으로서의 적어도 5개의 방향족환을 붕소, 산소, 질소, 황 등의 헤테로 원소로 연결하여 환구조가 더 형성된 구조를 가진다. 형성된 환구조는 적어도 9개의 환으로부터 구성되는 축합환 구조이다.
식(1) 등에 있어서, A환, B환, D환, 및 E환은, 각각 독립적으로, 치환 또는 무치환의 아릴환 또는 치환 또는 무치환의 헤테로아릴환이다. 식(1) 등으로 나타내어지는 구조의 A환, B환, D환, 및 E환에 있어서의 치환 또는 무치환의 아릴환 또는 치환 또는 무치환의 헤테로아릴환에 있어서, 「치환 혹는 무치환의(치환 또는 무치환의)」이라고 할 때의 치환기로서는, 치환기군 Z에 후술하는 식(A30)으로 나타내어지는 치환기를 더한 군에서 선택되는 적어도 하나의 치환기를 들 수 있다. 치환기의 바람직한 범위에 대해서는 후술하는 식(1A), 식(2), 및 식(2A)에 있어서의 RZ의 바람직한 범위를 참조할 수 있다.
A환 및 D환은, 각각, 그 구조 중의 아릴환 또는 헤테로아릴환의 환상에서 연속하는 3개의 탄소에 결합손을 가지는 3가의 기를 형성하고 있다. 이 3개의 결합손으로 각각, 2개의 X, 및 Y에 결합한다. A환, D환이 RNX, RCX 또는 RIX에 결합하고 있을 때는, 4가 또는 5가의 기로 되어 있어도 된다. A환, D환 중에서 상기의 3개의 결합손을 가지는 탄소를 환구성 원소로 하는 환은 5원환 또는 6원환인 것이 바람직하고, 6원환인 것이 보다 바람직하다. 이 환은 다른 환과 더 축합하고 있어도 된다. 6원환의 예로서는, 벤젠환, 피리딘환, 피라진환, 피리미딘환 등을 들 수 있다. 6원환이 다른 환과 더 축합하고 있는 예로서는, 나프탈렌환, 퀴놀린환, 디벤조푸란환, 디벤조티오펜환, 카르바졸환 등을 들 수 있다. 5원환의 예로서는, 푸란환, 티오펜환, 피롤환, 티아졸환 등을 들 수 있다. 5원환이 다른 환과 더 축합하고 있는 예로서는, 벤조푸란환, 벤조티오펜환, 인돌환 등을 들 수 있다.
B환 및 E환은 모두, 그 구조 중의 아릴환 또는 헤테로아릴환의 환상에서 서로 인접하는 2개의 탄소에 결합손을 가지는 2가의 기를 형성하고 있다. B환 및 E환은 각각 상기의 2개의 결합손으로 X 및 Y에 결합하고 있다. B환 및 E환이 각각 RNX, RCX 또는 RIX에 더 결합하고 있을 때는, 3가 또는 4가의 기로 되어 있어도 된다. B환 및 E환 중에서 상기의 2개의 결합손을 가지는 탄소를 환구성 원소로 하는 환은 5원환 또는 6원환인 것이 바람직하고, 6원환인 것이 보다 바람직하다. 이 환은 다른 환과 더 축합하고 있어도 된다. 6원환의 예로서는, 벤젠환, 피리딘환, 피라진환, 피리미딘환 등을 들 수 있다. 6원환이 다른 환과 더 축합하고 있는 예로서는, 나프탈렌환, 퀴놀린환, 디벤조푸란환, 디벤조티오펜환, 카르바졸환 등을 들 수 있다. 5원환의 예로서는, 푸란환, 티오펜환, 피롤환, 티아졸환 등을 들 수 있다. 5원환이 다른 환과 더 축합하고 있는 예로서는, 벤조푸란환, 벤조티오펜환, 인돌환 등을 들 수 있다.
식(1) 등에 있어서의 A환, B환, D환, 및 E환의 바람직한 환구조가, 각각 식(1A), 식(2), 및 식(2A)에 있어서의 a환, b환, d환, 및 e환으로서 나타내어진다.
<Z의 설명>
식(1)의 c환 중의 Z는, 각각 독립적으로, -C(-RZ)= 또는 -N=이다. RZ는, 각각 독립적으로, 수소 또는 치환기이다. 치환기로서는, 치환기군 Z로 후술하는 식(A30)으로 나타내어지는 치환기를 더한 군에서 선택되는 적어도 하나의 치환기를 들 수 있으며, 무치환의 알킬이 바람직하고, 메틸이 보다 바람직하다. RZ는 수소인 것이 바람직하다. c환 중의 Z로서는, -C(-H)=이 바람직하다.
식(1A), 식(2), 및 식(2A)의 c환 중의 Z는, 식(1)의 c환 중의 Z와 동일한 의미이며, 바람직한 범위도 동일하다. 그 밖의 Z는, 식(1) 중의 Z와 동일한 의미이지만, 인접하는 Z는 함께 이하의 구조일 수 있다.
먼저, Z=Z 중의 Z가 모두 -C(-RZ)=일 때 2개의 RZ는 서로 결합하여 아릴환 또는 헤테로아릴환을 형성하고 있어도 된다. 형성된 아릴환 또는 헤테로아릴환은, 각각 독립적으로, 치환기를 가지고 있어도 된다. 이 때의 치환기로서는, 치환기군 Z로 후술하는 식(A30)으로 나타내어지는 치환기를 더한 군에서 선택되는 적어도 하나의 치환기를 들 수 있다. 바람직한 범위는 RZ의 바람직한 범위와 동일하다. 또한, Z=Z는, 각각 독립적으로, >N-R, >O, >C(-R)2, >Si(-R)2, >S, 또는 >Se여도 된다. 이 때의 >N-R, >C(-R)2 및 >Si(-R)2의 R은, 각각 독립적으로, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이다. >C(-R)2의 2개의 R은 서로 결합하여 환을 형성하고 있어도 되고, >Si(-R)2의 2개의 R은 서로 결합하여 환을 형성하고 있어도 된다.
식(1A), 식(2), 및 식(2A)에 있어서의 Z를 포함하는 환의 구조예를, Z를 4개 포함하고, X 및 Y에 결합하는 구조의 예로서 이하에 나타낸다. 또한, 하기 식 중, R은 RZ와 동일한 의미이지만, 수소를 의미하지 않고, R끼리 결합하는 것을 의미하지 않는 것으로 한다. 또한, n은 0~4의 정수이며, RN 및 Rc는, 수소, 알킬 또는 시클로알킬로 치환되어 있어도 되는 아릴, 알킬 또는 시클로알킬로 치환되어 있어도 되는 헤테로아릴, 시클로알킬로 치환되어 있어도 되는 알킬, 또는 알킬로 치환되어 있어도 되는 시클로알킬이며, 2개의 Rc는 서로 결합하여 환을 형성하고 있어도 된다.
상기 각 부분 구조에 있어서, R은 알킬, 알킬로 치환되어 있어도 되는 페닐, 또는 식(A30)으로 나타내어지는 치환기인 것이 바람직하다. n은 0 또는 1이 바람직하고, 0인 것이 보다 바람직하다.
N 및 Y에 결합하는 구조나 Z를 3개 포함하는 구조에 대해서도 마찬가지의 구조예를 들 수 있다.
식(1A), 식(2), 및 식(2A) 중의 a~e환의 각 환에 있어서 Z는, 0~2개가 -N=이며 나머지가 -C(-RZ)=인 것이 바람직하고, 0~1개가 -N=이며 나머지가 -C(-RZ)=인 것이 보다 바람직하고, 모두 -C(-RZ)=인 것이 보다 더 바람직하다. 식(1A), 식(2), 및 식(2A)에 있어서 Z는, 0~8개가 -N=이며 나머지가 -C(-RZ)=인 것이 바람직하고, 0~3개가 -N=이며 나머지가 -C(-RZ)=인 것이 보다 바람직하고, 0~1개가 -N=이며 나머지가 -C(-RZ)=인 것이 보다 더 바람직하고, 모두 -C(-RZ)=인 것이 특히 바람직하다. RZ인 치환기군 Z 로부터 선택되는 어느 하나의 치환기로서는, 알킬, 알킬로 치환되어 있어도 되는 페닐, 알킬 또는 페닐로 치환되어 있어도 되는 디페닐아미노, 알킬 또는 페닐로 치환되어 있어도 되는 카르바졸릴인 것이 바람직하다. 치환기인 RZ로서는 후술하는 바람직한 치환기의 기재도 참조할 수 있다. 각 식에 있어서 RZ는 0~3개가 치환기이며, 그 밖이 수소인 것이 바람직하다. 특히, 치환기인 RZ는, Y의 파라 자리에 있는 것이 바람직하다.
<Y의 설명>
식(1) 등에 있어서, Y는, 각각 독립적으로, B, P, P=O 또는 P=S이며, B인 것이 바람직하다.
<X의 설명>
식(1) 등에 있어서, X는, 각각 독립적으로, >N-RNX, >O, >C(-RCX)2, >Si(-RIX)2, >S, 또는 >Se이다. RNX는, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이며, RCX 및 RIX는, 각각 독립적으로, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이며, 2개의 RCX는 서로 결합하여 환을 형성하고 있어도 되고, 2개의 RIX는 서로 결합하여 환을 형성하고 있어도 되며, RNX, RCX, 및 RIX는, 각각 자신을 포함하는 X가 결합하는 1개 또는 2개의 환과 결합하고 있어도 된다.
X로서는, 각각 독립적으로, >O, >N-RNX, 또는 >S가 바람직하다. >N-RNX에 있어서의 RNX는 치환 또는 무치환의 페닐이 바람직하다. Y가 B인 구조에 있어서, 녹색 발광을 얻기 위해서는, X 중 적어도 하나는 >N-RNX인 것이 바람직하고, 모두 X가 >N-RNX인 것이 보다 바람직하다. TADF성의 관점에서는 적어도 하나는 S인 것이 바람직하다.
<X와 환과의 결합에 의한 환구조의 변화 설명>
X 중의 RNX, RCX, 및 RIX는, 각각 자신을 포함하는 X가 결합하는 1개 또는 2개의 환과 단결합 또는 연결기에 의해 결합하고 있어도 된다.
구체적으로는, 식(1)에 있어서, A환과 B환에 결합하는 X 중의 RNX, RCX, 및 RIX는, 단결합 또는 연결기에 의해, A환 또는 B환 중 적어도 일방과 결합하고 있어도 되고, D환과 E환에 결합하는 X 중의 RNX, RCX, 및 RIX는, 단결합 또는 연결기에 의해, D환 또는 E환 중 적어도 일방과 결합하고 있어도 되며, A환과 c환에 결합하는 X 중의 RNX, RCX, 및 RIX는, 단결합 또는 연결기에 의해, A환 또는 c환 중 적어도 일방과 결합하고 있어도 되고(c환의 경우에는 X가 결합하는 탄소에 인접하는 Z와 결합), D환과 c환에 결합하는 X 중의 RNX, RCX, 및 RIX는, 단결합 또는 연결기에 의해, D환 또는 c환 중 적어도 일방과 결합하고 있어도 된다(c환의 경우에는 X가 결합하는 탄소에 인접하는 Z와 결합).
또한, 구체적으로는, 식(1A) 또는 식(2A)에 있어서, a환과 b환에 결합하는 X 중의 RNX, RCX, 및 RIX는, 단결합 또는 연결기에 의해, a환 또는 b환 중 적어도 일방에 있어서의 Z(X가 결합하는 탄소에 인접하는 Z)와 결합하고 있어도 되고, d환과 e환에 결합하는 X 중의 RNX, RCX, 및 RIX는, 단결합 또는 연결기에 의해, d환 또는 e환 중 적어도 일방에 있어서의 Z(X가 결합하는 탄소에 인접하는 Z)와 결합하고 있어도 되며, a환과 c환에 결합하는 X 중의 RNX, RCX, 및 RIX는, 단결합 또는 연결기에 의해, a환 또는 c환 중 적어도 일방에 있어서의 Z(X가 결합하는 탄소에 인접하는 Z)와 결합하고 있어도 되고, d환과 c환에 결합하는 X 중의 RNX, RCX, 및 RIX는, 단결합 또는 연결기에 의해, d환 또는 c환 중 적어도 일방에 있어서의 Z(X가 결합하는 탄소에 인접하는 Z)와 결합하고 있어도 된다.
또한, 구체적으로는, 식(2)에 있어서, a환과 B환에 결합하는 X 중의 RNX, RCX, 및 RIX는, 단결합 또는 연결기에 의해, a환 또는 B환 중 적어도 일방과 결합하고 있어도 되고(a환의 경우에는 X가 결합하는 탄소에 인접하는 Z와 결합), d환과 E환에 결합하는 X 중의 RNX, RCX, 및 RIX는, 단결합 또는 연결기에 의해, d환 또는 E환 중 적어도 일방과 결합하고 있어도 되며(d환의 경우에는 X가 결합하는 탄소에 인접하는 Z와 결합), a환과 c환에 결합하는 X 중의 RNX, RCX, 및 RIX는, 단결합 또는 연결기에 의해, a환 또는 c환 중 적어도 일방에 있어서의 Z(X가 결합하는 탄소에 인접하는 Z)와 결합하고 있어도 되고, d환과 c환에 결합하는 X 중의 RNX, RCX, 및 RIX는, 단결합 또는 연결기에 의해, d환 또는 c환 중 적어도 일방에 있어서의 Z(X가 결합하는 탄소에 인접하는 Z)와 결합하고 있어도 된다.
RNX, RCX, 및 RIX가 각각 환과 결합하는 경우의 연결기로서는, -CH2-CH2-, -CHR-CHR-, -CR2-CR2-, -CH=CH-, -CR=CR-, -C≡C-, -N(-R)-, -O-, -S-, -C(-R)2-, -Si(-R)2-, 또는 -Se- 등을 들 수 있다. 이들 중, -CH=CH-, -CR=CR-, -N(-R)-, -O-, -S-, 및 -C(-R)2-가 바람직하고, -CH=CH-, -CR=CR-, -N(-R)-, -O-, 및 -S-이 보다 바람직하고, -CR=CR-, -N(-R)-, -O-, 및 -S-이 보다 더 바람직하다. 상기 「-CHR-CHR-」의 R, 「-CR2-CR2-」의 R, 「-CR=CR-」의 R, 「-N(-R)-」의 R, 「-C(-R)2-」의 R, 및 「-Si(-R)2-」의 R은, 각각 독립적으로, 수소, 알킬 또는 시클로알킬로 치환되어 있어도 되는 아릴, 알킬 또는 시클로알킬로 치환되어 있어도 되는 헤테로아릴, 알킬 또는 시클로알킬로 치환되어 있어도 되는 알킬, 알킬 또는 시클로알킬로 치환되어 있어도 되는 알케닐, 알킬 또는 시클로알킬로 치환되어 있어도 되는 알키닐, 또는 알킬 또는 시클로알킬로 치환되어 있어도 되는 시클로알킬이다. 또한, 동일한 원소에 결합하는 2개의 R끼리가 결합하여 환을 형성하고 있어도 된다. 더욱이, 인접하는 2개의 R끼리가 결합하여, 시클로알킬렌환, 아릴렌환, 및 헤테로아릴렌환을 형성하고 있어도 된다. 이들 환도 또한, 알킬 또는 시클로알킬로 치환되어 있어도 된다.
RNX, RCX, 및 RIX가 각각 환과 결합하고 있는 구조의 예로서는, 하기 식(1"-A3)으로 나타내어지는, X가 축합환 B' 및 축합환 E'에 넣어진 환구조를 갖는 화합물을 들 수 있다. 즉, 예를 들면 식(1)에 있어서의 B환(또는 E환)에 대하여 X가 넣어지도록 하여 다른 환이 축합하여 형성되는 B'환(또는 E'환)을 가지는 화합물이다. 이 화합물은, 예를 들면 후술하는 구체적 화합물로서 열거한, 식(1-161)으로 나타내어지는 것과 같은 화합물에 대응하고, 형성된 축합환 B'(또는 축합환 E')은 예를 들면 카르바졸환, 페녹사진환, 페노티아진환, 또는 아크리딘환 등이다. 식(1"-A3)에서는 축합환 B' 및 축합환 E'가 형성된 예를 나타내었지만, 축합환 B' 또는 축합환 E' 중 일방이 형성되어도 되고, 또한 RNX, RCX, 또는 RIX는 마찬가지로 A환이나 D환, c환과도 더 결합할 수 있고, 결합한 경우에는 상기 B'환 및 E'환과 마찬가지로 환구조가 변화하게 된다. 또한, 이 환구조의 변화 설명은, 식(1A), 식(2), 및 식(2A)에도 마찬가지로 적용된다.
환구조와 환구조를 연결하는 X 중 적어도 하나가, >N-RNX이며, 이 RNX가, 치환되어 있어도 되는 알킬 또는 치환되어 있어도 되는 시클로알킬이며, 연결기 또는 단결합에 의해, A환, B환, D환, 또는 E환에 있어서의 아릴환 또는 헤테로아릴환이나 c환과 연결한 구조를 가지고 있어도 된다.
예를 들면, 상기와 같은 연결에 의해, 이하의 부분 구조(A10)가 형성되어도 된다.
식(A10) 중, RA1~RA4는 각각 독립적으로, 수소, 치환되어 있어도 되는 알킬 또는 치환되어 있어도 되는 시클로알킬이며, RA1~RA4 중 임의의 2~4개는 연결기 또는 단결합에 의해 서로 결합하고 있어도 되고, 2개의 *의 위치에서 X가 결합하는 2개의 환 중 일방 환에, **의 위치에서 타방의 환에 결합하고 있다. 즉, 식(A10) 중의 N은 X가 >N-RX일 때의 >N-RX의 N이다. 2개의 *의 위치에서 결합하는 환상의 원자는 서로 인접하는 원자(탄소 원자가 바람직함)이면 된다. 식(A10)으로 나타내어지는 부분 구조는 결합 해리 에너지(BDE)가 약한 N-C 결합을 포함하지만, 환을 형성하는 또 하나의 결합이 있음으로써 N-C 결합의 절단 시에도 역반응(재결합 반응)이 촉진되기 때문에, 보다 안정한 구조가 된다. 따라서, 이와 같은 구조를 갖는 다환 방향족 화합물을 사용하여 제조되는 유기 EL 소자에서는 소자 수명이 길어지는 것이 기대된다. 다환 방향족 화합물에 식(A10)으로 나타내어지는 구조가 포함될 때, 그 수는 1개 또는 2개이면 된다.
식(A10) 중, RA1~RA4 중 임의의 2~4개는 연결기에 의해 서로 연결되어 있어도 된다.
RA1~RA4는, 임의의 2개(RA1 및 RA4, RA1 및 RA4 그리고 RA1 및 RA4, RA1 및 RA2, RA3 및 RA4, RA1 및 RA4 그리고 RA1 및 RA4)가 연결기 또는 단결합에 의해 서로 결합하고 있는 것이 바람직하고, RA1 및 RA4가 연결기 또는 단결합에 의해 서로 결합하고 있는 것이 보다 바람직하다. 서로 결합하여 형성된 2가의 기로서는, 알킬렌을 들 수 있다. 해당 알킬렌에 있어서의 적어도 하나의 수소는 알킬 또는 시클로알킬로 치환되어 있어도 되고, 해당 알킬렌에 있어서의 적어도 하나(바람직하게는 1개)의 -CH2-는 -O- 및 -S-으로 치환되어 있어도 된다. 서로 결합하여 형성된 2가의 기로서는, 탄소수 2~5의 직쇄 알킬렌이 바람직하고, 탄소수 3 또는 4의 직쇄 알킬렌이 보다 바람직하고, 탄소수 4의 직쇄 알킬렌(-(CH2)4-)이 보다 더 바람직하다. 탄소수 4의 직쇄 알킬렌(-(CH2)4-)은 무치환인 것이 특히 바람직하다.
연결기에 의한 연결에 관여하지 않고 있는 나머지의 RA1~RA4는, 각각 독립적으로, 수소 또는 치환되어 있어도 되는 알킬인 것이 바람직하고, 치환되어 있어도 되는 탄소수 1~6의 알킬인 것이 보다 바람직하고, 무치환의 탄소수 1~6의 알킬인 것이 보다 더 바람직하고, 모두 메틸인 것이 가장 바람직하다.
즉, 식(A10)으로 나타내어지는 부분 구조로서는, 이하 식(A11)으로 나타내어지는 구조가 바람직하다.
식(A11) 중, Me는 메틸이며, 2개의 *의 위치에서 X가 결합하는 2개의 환 중 일방 환에, **의 위치에서 타방의 환에 결합하고 있다.
<바람직한 치환기>
이미팅 도펀트로서 사용되는 다환 방향족 화합물에 있어서(그 밖에 도펀트로서 사용되는 화합물에 있어서), 「알킬」을 포함하는 치환기로서, 하기 식(tR)으로 나타내어지는 터셔리알킬은 A환(a환), B환(b환), c환, D환(d환), 및 E환(e환)에 있어서의 아릴환 또는 헤테로아릴환의 치환기로서, 특히 바람직한 것 중 하나이다. 이와 같은 부피가 큰 치환기에 의해 분자간 거리가 증가하기 때문에 발광양자수율(PLQY)이 향상되기 때문이다. 또한, 식(tR)으로 나타내어지는 터셔리알킬이 제2 치환기로서 다른 치환기에 치환하고 있는 치환기도 바람직하다. 구체적으로는, 식(tR)으로 나타내어지는 터셔리알킬로 치환된 디아릴아미노, 식(tR)으로 나타내어지는 터셔리알킬로 치환된 카르바졸릴(바람직하게는, N-카르바졸릴) 또는 식(tR)으로 나타내어지는 터셔리알킬로 치환된 벤조카르바졸릴(바람직하게는, N-벤조카르바졸릴)을 들 수 있다. 디아릴아미노, 카르바졸릴 및 벤조카르바졸릴에의 식(tR)의 기의 치환 형태로서는, 이들 기에 있어서의 아릴환 또는 벤젠환의 일부 또는 모든 수소가 식(tR)의 기로 치환된 예를 제시할 수 있다.
식(tR) 중, Ra, Rb, 및 Rc는 각각 독립적으로 탄소수 1~24의 알킬이며, 상기 알킬에 있어서의 임의의 -CH2-는 -O-로 치환되어 있어도 되고, 식(tR)으로 나타내어지는 기는 *을 결합 위치로 한다.
Ra, Rb 및 Rc의 「탄소수 1~24의 알킬」로서는, 직쇄 및 분기쇄 중 어느 것이라도 되며, 예를 들면, 탄소수 1~24의 직쇄 알킬 또는 탄소수 3~24의 분기쇄 알킬, 탄소수 1~18의 알킬(탄소수 3~18의 분기쇄 알킬), 탄소수 1~12의 알킬(탄소수 3~12의 분기쇄 알킬), 탄소수 1~6의 알킬(탄소수 3~6의 분기쇄 알킬), 탄소수 1~4의 알킬(탄소수 3~4의 분기쇄 알킬)을 들 수 있다.
식(tR)에 있어서의 Ra, Rb, 및 Rc의 탄소수의 합계는 탄소수 3~20이 바람직하고, 탄소수 3~10이 특히 바람직하다.
Ra, Rb, 및 Rc의 구체적인 알킬로서는, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, s-부틸, t-부틸, n-펜틸, 이소펜틸, 네오펜틸, t-펜틸, n-헥실, 1-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, n-헵틸, 1-메틸헥실, n-옥틸, t-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 2,6-디메틸-4-헵틸, 3,5,5-트리메틸헥실, n-데실, n-운데실, 1-메틸데실, n-도데실, n-트리데실, 1-헥실헵틸, n-테트라데실, n-펜타데실, n-헥사데실, n-헵타데실, n-옥타데실, n-에이코실 등을 들 수 있다.
식(tR)으로 나타내어지는 기로서는, 예를 들면 t-부틸, t-아밀, 1-에틸-1-메틸프로필, 1,1-디에틸프로필, 1,1-디메틸부틸, 1-에틸-1-메틸부틸, 1,1,3,3-테트라메틸부틸, 1,1,4-트리메틸펜틸, 1,1,2-트리메틸프로필, 1,1-디메틸옥틸, 1,1-디메틸펜틸, 1,1-디메틸헵틸, 1,1,5-트리메틸헥실, 1-에틸-1-메틸헥실, 1-에틸-1,3-디메틸부틸, 1,1,2,2-테트라메틸프로필, 1-부틸-1-메틸펜틸, 1,1-디에틸부틸, 1-에틸-1-메틸펜틸, 1,1,3-트리메틸부틸, 1-프로필-1-메틸펜틸, 1,1,2-트리메틸프로필, 1-에틸-1,2,2-트리메틸프로필, 1-프로필-1-메틸부틸, 1,1-디메틸헥실 등을 들 수 있다. 이들 중, t-부틸 및 t-아밀이 바람직하다.
치환기로서는 식(A30)으로 나타내어지는 치환기도 바람직하다.
식(A30) 중,
Ak는 수소, 치환 또는 무치환의 알킬, 치환 또는 무치환의 알케닐, 치환 또는 무치환의 시클로알킬 또는 치환 또는 무치환의 시클로알케닐이며, 해당 알킬, 시클로알킬 및 시클로알케닐에 있어서의 적어도 하나의 -CH2-는 -O- 또는 -S-으로 치환되어 있어도 되고,
RAk는, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬 또는 치환 또는 무치환의 시클로알킬이며, RAk는 연결기 또는 단결합에 의해 Ak와 결합하고 있어도 되고, *은 결합 위치이다.
식(A30) 중, Ak가 상기의 치환기인 것에 의해 N상의 비공유 전자쌍과 공역 하지 않기 때문에, 비공유 전자쌍을 결합처의 π전자와 공역시킬 수 있고, 동일한 위치에 아릴 등이 있을 경우와 비교하여 보다 큰 파장 변경이 가능하다. 또한, 다중 공명 효과에의 영향에 대해서도 마찬가지여서, 열활성형 지연 형광(TADF)성의 보다 큰 개선이 가능하다.
RAk는 알킬 또는 시클로알킬로 치환되어 있어도 되는 아릴, 알킬 또는 시클로알킬로 치환되어 있어도 되는 헤테로아릴, 알킬 또는 시클로알킬인 것이 바람직하고, 알킬로 치환되어 있어도 되는 아릴, 알킬로 치환되어 있어도 되는 헤테로아릴, 알킬 또는 시클로알킬인 것이 보다 바람직하고, 알킬로 치환되어 있어도 되는 아릴인 것이 보다 더 바람직하고, 메틸로 치환되어 있어도 되는 페닐인 것이 특히 바람직하다.
식(A30) 중, Ak는 탄소수 1~6의 알킬 또는 탄소수 3~14의 시클로알킬인 것이 바람직하고, 탄소수 1~4의 알킬 또는 탄소수 3~8의 시클로알킬인 것이 바람직하고, 탄소수 1~4의 알킬인 것이 보다 바람직하고, 메틸인 것이 보다 더 바람직하다.
식(A30) 중의 L이 >N-R일 때의 R은 Ak와 동일하여도 달라도 되고, 다른 것이 바람직하다.
RAk는 연결기 또는 단결합에 의해 Ak와 결합하고 있어도 된다. 이 때의 연결기로서는 >O, >S 또는 >Si(-R)2 등을 들 수 있다. >Si(-R)2의 R은, 수소, 탄소수 6~12의 아릴, 탄소수 1~6의 알킬 또는 탄소수 3~14의 시클로알킬이다. RAk가 연결기 또는 단결합에 의해 Ak와 결합한 구조의 예로서는 이하를 들 수 있다.
상기 각 식 중, *은 결합 위치이다.
도펀트(어시스팅 도펀트 또는 이미팅 도펀트)로서 사용되는 화합물이 가지는 치환기의 구조 입체 장해성, 전자 공여성 및 전자 구인성에 의해, 발광 파장을 조정할 수 있다. 바람직하게는 이하의 구조식으로 나타내어지는 기이며, 보다 바람직하게는, 메틸, t-부틸, t-아밀, t-옥틸, 네오펜틸, 아다만틸, 페닐, o-톨릴, p-톨릴, 2,4-크실릴, 2,5-크실릴, 2,6-크실릴, 2,4,6-메시틸, 디페닐아미노, 디-p-톨릴아미노, 비스(p-(t-부틸)페닐)아미노, 카르바졸릴, 3,6-디메틸카르바졸릴, 3,6-디-t-부틸카르바졸릴 및 페녹시이며, 보다 더 바람직하게는, 메틸, t-부틸, t-아밀, t-옥틸, 네오펜틸, 아다만틸, 페닐, o-톨릴, 2,6-크실릴, 2,4,6-메시틸, 디페닐아미노, 디-p-톨릴아미노, 비스(p-(t-부틸)페닐)아미노, 카르바졸릴, 3,6-디메틸카르바졸릴, 3,6-디-t-부틸카르바졸릴, 및 트리벤조아제피닐이다. 합성의 쉬움의 관점에서는, 입체 장해가 큰 편이 선택적인 합성을 위해서 바람직하고, 구체적으로는, t-부틸, t-아밀, t-옥틸, 아다만틸, o-톨릴, p-톨릴, 2,4-크실릴, 2,5-크실릴, 2,6-크실릴, 2,4,6-메시틸, 디-p-톨릴아미노, 비스(p-(t-부틸)페닐)아미노, 3,6-디메틸카르바졸릴 및 3,6-디-t-부틸카르바졸릴이 바람직하다.
하기 구조식에 있어서, *은 결합 위치를 나타낸다.
식(1) 등으로 나타내어지는 다환 방향족 화합물은, 상술한 식(tR)으로 나타내어지는 터셔리알킬(t-부틸또는 t-아밀 등), 네오펜틸 또는 아다만틸을 적어도 하나 포함하는 구조인 것이 바람직하고, 식(tR)으로 나타내어지는 터셔리알킬(t-부틸 또는 t-아밀 등)을 포함하는 것이 바람직하다. 이와 같은 부피가 큰 치환기에 의해 분자간 거리가 증가하기 때문에 발광양자수율(PLQY)이 향상하기 때문이다. 또한, 치환기로서는, 디아릴아미노도 바람직하다. 식(tR)의 기로 더 치환된 디아릴아미노, 식(tR)의 기로 치환된 카르바졸릴(바람직하게는, N-카르바졸릴) 또는 식(tR)의 기로 치환된 벤조카르바졸릴(바람직하게는, N-벤조카르바졸릴)도 바람직하다. 디아릴아미노, 카르바졸릴 및 벤조카르바졸릴에의 식(tR)의 기의 치환 형태로서는, 이들 기에 있어서의 아릴환 또는 벤젠환의 일부 또는 모든 수소가 식(tR)의 기로 치환된 예를 들 수 있다.
식(1) 등에 있어서, A환, B환, D환, 및 E환에 있어서의 아릴환 또는 헤테로아릴환의 치환기는 이하의 식(A20)으로 나타내어지는 치환기여도 된다.
식(A20)으로 나타내어지는 치환기는, 2개의 *에서 아릴환 또는 헤테로아릴환의 환상에서 인접하는 2개의 원자에 각각 결합하고,
식(A20) 중, L은 >N-R, >O, >Si(-R)2 또는 >S이며, 상기 >N-R의 R은, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬 또는 치환 또는 무치환의 시클로알킬이고, 상기 >Si(-R)2의 R은, 수소, 치환되어 있어도 되는 아릴, 치환되어 있어도 되는 알킬 또는 치환되어 있어도 되는 시클로알킬이며, 또한 연결기에 의해 서로 결합하고 있어도 되고, 또한, 상기 >N-R 및 상기 >Si(-R)2의 R 중 적어도 하나는 연결기 또는 단결합에 의해 상기 A환, B환, RXC 및 RA로 이루어지는 군에서 선택되는 적어도 하나와 결합하고 있어도 되며,
r은 1~4의 정수이고,
RA는 각각 독립적으로 수소, 치환 또는 무치환의 알킬 또는 치환 또는 무치환의 시클로알킬이며, 임의의 RA는 다른 임의의 RA와 연결기 또는 단결합에 의해 서로 결합하고 있어도 된다.
상기의 치환기의 예로서는 이하 중 어느 하나로 나타내어지는 치환기를 들 수 있다.
각 식 중, *에서, 어느 하나의 아릴환 또는 헤테로아릴환의 환상에서 연속(인접)하는 2개 또는 3개의 원자에 각각 결합하고 있으면 된다.
<시클로알칸 축합>
식(1)으로 나타내어지는 다환 방향족 화합물에 있어서의 아릴환 및 헤테로아릴환으로 이루어지는 군에서 선택되는 적어도 하나는, 적어도 하나의 시클로알칸으로 축합되어 있어도 된다. 식(1A), 식(2), 또는 식(2A)으로 나타내어지는 다환 방향족 화합물도 마찬가지이며, 이 후의 설명은 이들 중 어느 하나의 식으로 나타내어지는 다환 방향족 화합물에도 마찬가지로 적용된다.
시클로알칸으로서는, 탄소수 3~24의 시클로알칸이면 된다. 이 때의 시클로알칸에 있어서의 적어도 하나의 수소는, 탄소수 6~30의 아릴, 탄소수 2~30의 헤테로아릴, 탄소수 1~24의 알킬 또는 탄소수 3~24의 시클로알킬로 치환되어 있어도 되고, 해당 시클로알칸에 있어서의 적어도 하나의 -CH2-는 -O-로 치환되어 있어도 된다.
시클로알칸은, 탄소수 3~20의 시클로알칸이며, 해당 시클로알칸에 있어서의 적어도 하나의 수소가, 탄소수 6~16의 아릴, 탄소수 2~22의 헤테로아릴, 탄소수 1~12의 알킬 또는 탄소수 3~16의 시클로알킬로 치환되어 있어도 되는 시클로알칸인 것이 바람직하다.
「시클로알칸」으로는, 탄소수 3~24의 시클로알칸, 탄소수 3~20의 시클로알칸, 탄소수 3~16의 시클로알칸, 탄소수 3~14의 시클로알칸, 탄소수 5~10의 시클로알칸, 탄소수 5~8의 시클로알칸, 탄소수 5~6의 시클로알칸, 탄소수 5의 시클로알칸 등을 들 수 있다.
구체적인 시클로알칸으로서는, 시클로프로판, 시클로부탄, 시클로펜탄, 시클로헥산, 시클로헵탄, 시클로옥탄, 시클로노난, 시클로데칸, 노보난(비시클로[2.2.1]헵탄), 비시클로[1.1.0]부탄, 비시클로[1.1.1]펜탄, 비시클로[2.1.0]펜탄, 비시클로[2.1.1]헥산, 비시클로[3.1.0]헥산, 비시클로[2.2.2]옥탄, 아다만탄, 디아만탄, 데카히드로나프탈렌 및 데카히드로아줄렌, 및, 이들 탄소수 1~5의 알킬(특히 메틸) 치환체, 할로겐(특히 불소) 치환체 및 중수소 치환체 등을 들 수 있다.
상기 예 중에서도, 예를 들면 하기 구조식에 나타내는 것과 같은, 시클로알칸의 α위치의 탄소(아릴환 또는 헤테로아릴환에 축합하는 시클로알킬에 있어서, 축합 부위의 탄소에 인접하는 위치의 탄소)에 적어도 하나의 치환기를 갖는 구조가 바람직하고, α위치의 탄소에 2개의 치환기를 갖는 구조가 보다 바람직하고, 2개의 α위치의 탄소가 모두 2개의 치환기를 갖는(합계 4개의 치환기를 갖는) 구조가 보다 더 바람직하다. 이 치환기로서는, 탄소수 1~5의 알킬(특히 메틸), 할로겐(특히 불소) 및 중수소 등을 들 수 있다. 특히, 아릴환 또는 헤테로아릴환에 있어서 인접하는 탄소 원자에 하기 식(B)으로 나타내어지는 부분 구조가 결합한 구조로 되어 있는 것이 바람직하다.
식(B) 중, *은 결합 위치를 나타낸다.
하나의 아릴환 또는 헤테로아릴환에 축합하는 시클로알칸의 수는, 1~3개가 바람직하고, 1개 또는 2개가 보다 바람직하고, 하나가 보다 더 바람직하다. 예를 들면 하나의 벤젠환(페닐)에 하나 또는 복수의 시클로알칸이 축합된 예를 이하에 나타낸다. *은 결합 위치를 나타내고, 그 위치는 벤젠환을 구성하면서 또한 시클로알칸을 구성하지 않은 탄소 중 어느 것이어도 된다. 식(Cy-1-4) 및 식(Cy-2-4)과 같이 축합된 시클로알칸끼리가 축합해도 된다. 축합되는 환(기)이 벤젠환(페닐) 이외의 다른 아릴환 또는 헤테로아릴환의 경우여도, 축합하는 시클로알칸이 시클로펜탄 또는 시클로헥산 이외의 다른 시클로알칸인 경우여도, 마찬가지이다.
시클로알칸에 있어서의 적어도 하나의 -CH2-는 -O-로 치환되어 있어도 된다. 단 복수의 -CH2-가 -O-로 치환되는 경우는, 인접하는 -CH2-가 -O-로 치환되는 일은 없다. 예를 들면 하나의 벤젠환(페닐)에 축합된 시클로알칸에 있어서의 하나 또는 복수의 -CH2-가 -O-로 치환된 예를 이하에 나타낸다. 각 구조식에 있어서의 *은, 벤젠환일 경우에는 화합물의 골격 구조에 포함되는 벤젠환인 것을 의미하고, 페닐기일 경우에는 화합물의 골격 구조에 치환되는 결합손을 의미한다. 축합되는 환(기)이 벤젠환(페닐) 이외의 다른 아릴환 또는 헤테로아릴환인 경우여도, 축합하는 시클로알칸이 시클로펜탄 또는 시클로헥산 이외의 다른 시클로알칸인 경우여도, 마찬가지이다.
시클로알칸은 적어도 하나의 치환기로 치환되어 있어도 되고, 이 치환기로서는, 치환기군 Z에서 선택되는 어느 하나의 치환기를 들 수 있다. 이들 치환기 중에서도, 알킬(예를 들면 탄소수 1~6의 알킬), 시클로알킬(예를 들면 탄소수 3~14의 시클로알킬)이 바람직하다. 또한, 어느 하나의 수소가 할로겐(예를 들면 불소) 또는 중수소로 치환되어 있는 것도 바람직하다. 또한, 시클로알킬이 치환되는 경우는 스피로 구조를 형성하는 치환 형태여도 되고, 예를 들면 하나의 벤젠환(페닐)에 축합된 시클로알칸에 스피로 구조가 형성된 예를 이하에 나타낸다. 각 구조식에 있어서의 *은, 벤젠환일 경우에는 화합물의 골격 구조에 포함되는 벤젠환인 것을 의미하고, 페닐일 경우에는 화합물의 골격 구조에 치환되는 결합손을 의미한다.
시클로알칸 축합의 형태로서는, 먼저, 식(1) 등으로 나타내어지는 다환 방향족 화합물에 있어서의 A환, B환, D환, 및 E환 각각에 있어서의 아릴환 및 헤테로아릴환이 시클로알칸으로 축합된 형태를 들 수 있다.
시클로알칸 축합의 다른 형태로서는, 식(1) 등으로 나타내어지는 다환 방향족 화합물이, 예를 들면, RX가 시클로알칸으로 축합된 아릴인 >N-RX, 시클로알칸으로 축합된 디아릴아미노(이 아릴 부분에 축합), 시클로알칸으로 축합된 카르바졸릴(이 벤젠환 부분에 축합) 또는 시클로알칸으로 축합된 벤조카르바졸릴(이 벤젠환 부분에 축합)을 가지는 예를 들 수 있다.
또한, 식(1) 등으로 나타내어지는 다환 방향족 화합물에 시클로알칸 구조를 도입함으로써, 융점이나 승화 온도의 추가적인 저하를 기대할 수 있다. 이는, 높은 순도가 요구되는 유기 EL 소자 등의 유기 디바이스용의 재료의 정제법으로서 거의 불가결한 승화 정제에 있어서, 비교적 저온으로 정제할 수 있기 때문에 재료의 열분해 등을 피할 수 있는 것을 의미한다. 또한 이는, 유기 EL 소자 등의 유기 디바이스를 제작하는데 유력한 수단인 진공 증착 프로세스에 대해서도 마찬가지이며, 비교적 저온으로 프로세스를 실시할 수 있기 때문에서, 재료의 열분해를 피할 수 있고, 결과적으로 고성능 유기 디바이스를 얻을 수 있다. 또한, 시클로알칸 구조의 도입에 의해 유기 용매로의 용해성이 향상되기 때문에, 도포 프로세스를 이용한 소자 제작에도 적용하는 것이 가능해진다. 단, 본 발명은 특히 이 원리에 한정되는 것은 아니다.
<중수소 또는 할로겐에 의한 치환>
식(1) 등으로 나타내어지는 구조 중의 수소는, 그 모두 또는 일부가 중수소 또는 할로겐이어도 된다.
예를 들면, 식(1) 등으로 나타내어지는 구조에 있어서는, A환, B환, D환, 및 E환에 있어서의 아릴환 또는 헤테로아릴환, A~E환에 있어서의 아릴환 또는 헤테로아릴환의 치환기, c환에의 치환기, 및, X가, >N-RNX, >C(-RCX)2, 또는 >Si(-RIX)2일 때의 RNX, RCX, 또는 RIX(=알킬, 시클로알킬, 아릴, 또는 헤테로아릴)에 있어서의 수소가, 중수소 또는 할로겐으로 치환될 수 있는데, 이들 중에서도 아릴이나 헤테로아릴에 있어서의 모두 또는 일부의 수소가, 중수소 또는 할로겐으로 치환된 양태를 들 수 있다. 할로겐은, 불소, 염소, 브롬 또는 요오드이며, 바람직하게는 불소, 염소, 또는 브롬, 보다 바람직하게는 불소 또는 염소이며, 불소가 보다 더 바람직하다. 또한 내구성의 관점에서, 식(1) 등으로 나타내어지는 구조 중의 수소는, 그 모두 또는 일부가 중수소화되어 있는 것도 바람직하다.
<시아노기에 의한 치환>
식(1) 또는 식(1A)으로 나타내어지는 다환 방향족 화합물에 있어서의 적어도 하나의 수소(모두 또는 일부의 수소)는 시아노로 치환되어 있다. 시아노의 치환 위치는 한정되지 않지만, 특히 A환(a환), B환(b환), c환, D환(d환), 및/또는 E환(e환)이 바람직하고, A환(a환) 및 D환(d환)에 치환하는 경우에는, 각 환에 있어서의 Y가 결합하는 위치의 파라 자리가 바람직하다. 식(1)의 A환 및 D환은 6원환(예를 들면 벤젠환)에 한정되지 않고, 다양한 아릴환이나 헤테로아릴환이지만, 이들 환에 시아노가 치환되는 경우에는, Y가 결합하는 위치로부터 비교적 떨어진 위치에 치환되는 것이 바람직하고, 가장 떨어진 위치에 치환되는 것이 보다 바람직하다. 예를 들면 A환이 나프탈렌환이나 플루오렌환 등인 경우에 대해서, 시아노의 바람직한 치환 위치를 이하에 예시한다.
.
식 중의 A는, >NR2, >O, >S, >CR2, 또는 >SiR2이며, R은 수소, 알킬(바람직하게는 탄소수 1~4의 알킬) 또는 페닐이다.
식(2) 또는 식(2A)으로 나타내어지는 다환 방향족 화합물에서는, 시아노의 치환 위치는 보다 한정되며, B환(b환), E환(e환), 및 c환에 있어서의 적어도 하나의 수소가 시아노로 치환되어 있고, 및/또는, ZCN 중 적어도 하나가 -C(-CN)=이다.
<다환 방향족 화합물의 다량체>
본 발명은, 식(1), 식(1A), 식(2), 또는 식(2A)으로 나타내어지는 단위 구조를 복수 가지는 다환 방향족 화합물의 다량체를 포함한다. 다량체는, 2~6량체가 바람직하고, 2~3량체가 보다 바람직하고, 2량체가 특히 바람직하다. 다량체는, 하나의 화합물 중에 상기 단위 구조를 복수 가지는 형태이면 되고, 예를 들면, 상기 단위 구조가 단결합, 탄소수 1~3의 알킬렌기, 페닐렌기, 나프틸렌기 등의 연결기로 복수 결합한 형태(연결형 다량체)에 더하여, 상기 단위 구조에 포함되는 임의의 환(A환, B환, D환, E환, a환, b환, d환, 또는 e환)을 복수의 단위 구조에서 공유하도록 하여 결합한 형태(환공유형 다량체)여도 되고, 또한, 상기 단위 구조에 포함되는 임의의 환(A환, B환, D환, E환, a환, b환, d환, 또는 e환)끼리가 축합하도록 하여 결합한 형태(환축합형 다량체)여도 되지만, 환공유형 다량체 및 환축합형 다량체가 바람직하고, 환공유형 다량체가 보다 바람직하다. 다량체의 일반적인 구조는, 국제공개 제2015/102118호 공보를 비롯한 많은 공지 문헌의 설명을 참조할 수 있다.
<다환 방향족 화합물의 구체예>
본 발명의 다환 방향족 화합물의 예로서, 하기 구조식 중 어느 하나로 나타내어지는 화합물을 들 수 있다.
1-1-2. 고분자량화 다환 방향족 화합물
본 발명의 유기 전계 발광 소자의 발광층에 포함되는 이미팅 도펀트는, 식(1) 등으로 나타내어지는 다환 방향족 화합물 또는 그 다량체의 이외에, 이에 반응성 치환기가 치환된 반응성 화합물을 모노머로 하여 고분자화시킨 고분자 화합물(이 고분자 화합물을 얻기 위한 상기 모노머는 중합성 치환기를 가짐), 또는 해당 고분자 화합물을 더 가교시킨 고분자 가교체(이 고분자 가교체를 얻기 위한 상기 고분자 화합물은 가교성 치환기를 가짐), 또는, 주사슬형 고분자와 상기 반응성 화합물을 반응시킨 펜던트형 고분자 화합물(이 펜던트형 고분자 화합물을 얻기 위한 상기 반응성 화합물은 반응성 치환기를 가짐), 또는 해당 펜던트형 고분자 화합물을 더 가교시킨 펜던트형 고분자 가교체(이 펜던트형 고분자 가교체를 얻기 위한 상기 펜던트형 고분자 화합물은 가교성 치환기를 가짐)여도 된다.
또한, 본 명세서에 있어서, 「고분자 화합물」이란, 분자량 분포를 가지고, 또한 폴리스티렌 환산의 수평균 분자량이 1×103~1×108(1×10^3~1×10^8)인 중합체를 의미한다. 고분자 화합물의 폴리스티렌 환산의 수평균 분자량(Mn)은, 이동상에 테트라히드로푸란을 사용하고, 크기 배제 크로마토그래피 1(SEC)에 의해 구할 수 있다. 구체적으로는 측정하는 고분자 화합물을 약 0.05질량%의 농도로 테트라히드로푸란에 용해시키고, SEC에 10μL 주입한다. 이동상의 유량은, 1.0mL/분, 컬럼으로서는 PLgelMIXED_B(폴리머 래브러토리즈제)를 사용한다. 검출기에는 UV_VIS 검출기(토소제, 상품명:UV-8320GPC)를 사용할 수 있다.
고분자 화합물은 수평균 분자량이 2000~1×108인 것이 바람직하고, 5000~1×108인 것이 보다 바람직하다.
상술한 반응성 치환기(상기 중합성 치환기, 상기 가교성 치환기, 및, 펜던트형 고분자를 얻기 위한 반응성 치환기를 포함하고, 이하, 단순히 「반응성 치환기」라고도 함)로서는, 상기 다환 방향족 화합물 또는 그 다량체를 고분자량화할 수 있는 치환기, 그와 같이 하여 얻어진 고분자 화합물을 더 가교화할 수 있는 치환기, 또한, 주사슬형 고분자에 펜던트 반응할 수 있는 치환기라면 특별히 한정되지 않지만, 이하의 구조의 치환기가 바람직하다. 각 구조식 중의 *은 결합 위치를 나타낸다.
L은, 각각 독립적으로, 단결합, -O-, -S-, >C=O, -O-C(=O)-, 탄소수 1~12의 알킬렌, 탄소수 1~12의 옥시알킬렌 및 탄소수 1~12의 폴리옥시알킬렌이다. 상기 치환기 중에서도, 식(XLS-1), 식(XLS-2), 식(XLS-3), 식(XLS-9), 식(XLS-10) 또는 식(XLS-17)으로 나타내어지는 기가 바람직하고, 식(XLS-1), 식(XLS-3) 또는 식(XLS-17)으로 나타내어지는 기가 보다 바람직하다.
이와 같은 고분자 화합물, 고분자 가교체, 펜던트형 고분자 화합물, 및 펜던트형 고분자 가교체는, 상기 다환 방향족 화합물 또는 그 다량체의 반복 단위 이외에도, 치환 또는 무치환의 트리아릴아민, 치환 또는 무치환의 플루오렌, 치환 또는 무치환의 안트라센, 치환 또는 무치환의 테트라센, 치환 또는 무치환의 트리아진, 치환 또는 무치환의 카르바졸, 치환 또는 무치환의 테트라페닐실란, 치환 또는 무치환의 스피로플루오렌, 치환 또는 무치환의 트리페닐포스핀, 치환 또는 무치환의 디벤조티오펜, 및 치환 또는 무치환의 디벤조푸란으로 이루어지는 군에서 선택되는 적어도 1종을 반복 단위로서 포함해도 된다.
이들 반복 단위에 있어서의 치환기로서는, 예를 들면, 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 디아릴보릴(2개의 아릴은 단결합 또는 연결기를 통하여 결합하고 있어도 됨), 알킬, 시클로알킬, 알콕시, 아릴옥시, 트리아릴실릴, 트리알킬실릴, 트리시클로알킬실릴, 디알킬시클로알킬실릴, 또는 알킬디시클로알킬실릴 등을 들 수 있다. 트리아릴아민의 「아릴」이나, 이들 치환기의 상세에 대해서는, 식(1) 등으로 나타내어지는 다환 방향족 화합물에 있어서의 설명을 인용할 수 있다.
이와 같은 고분자 화합물, 고분자 가교체, 펜던트형 고분자 화합물 및 펜던트형 고분자 가교체(이하, 단순히 「고분자 화합물 및 고분자 가교체」라고도 함)의 용도의 상세에 대해서는 후술한다.
1-1-3. 다환 방향족 화합물의 제조 방법
식(1), 식(1A), 식(2), 또는 식(2A)으로 나타내어지는 다환 방향족 화합물은, 국제공개 제2015/102118호 공보를 비롯한 많은 공지 문헌에 기재되어 있는 방법에 따라 제조할 수 있다.
기본적으로는, 먼저 각각의 환구조끼리를 결합시킴으로써 중간체를 제조하여 (제1 반응), 그 후에, 각각의 환구조를 Y(예를 들면 붕소 원자)로 결합시킴으로써 최종 생성물을 제조할 수 있다(제2 반응). 제1 반응에서는, 예를 들면, 구핵 치환 반응, 울만 반응과 같은 일반적인 에테르화 반응이나, 버치왈드-하트윅 반응, 구핵 치환 반응 및 골드버그 아미노화와 같은 일반적인 아미노화 반응 등을 이용할 수 있다. 또한, 제2 반응에서는, 탠덤 헤테로 프리델 크래프츠 반응(연속적인 방향족 구전자 치환 반응, 이하 마찬가지)을 이용할 수 있다.
제2 반응은, 하기 스킴(1)에 나타낸 바와 같이, 각각의 환구조를 결합하는 Y(예를 들면 붕소 원자)를 도입하는 반응이다. 먼저, 환상의 2개의 X의 사이의 수소 원자를 n-부틸리튬, sec-부틸리튬 또는 t-부틸리튬 등으로 오르토 메탈화한다. 이어서, Y의 염화물이나 브롬화물(예를 들면 삼염화붕소나 삼브롬화붕소) 등을 가하여, 리튬-Y(예를 들면 붕소)의 금속 교환을 행한 후, N,N-디이소프로필에틸아민 등의 브뢴스테드 염기를 가함으로써, 탠덤 보라 프리델 크래프츠 반응시켜, 목적물을 얻을 수 있다. 제2 반응에 있어서는 반응을 촉진시키기 위해서 삼염화알루미늄 등의 루이스 산을 가해도 된다.
스킴(1)에 있어서는, 오르토 메탈화에 의해 원하는 위치에 리튬을 도입했지만, 하기 스킴(2)과 같이 리튬을 도입하고 싶은 위치에 미리 할로겐 원자(Hal)를 도입하고, 할로겐-메탈 교환에 의해서도 원하는 위치에 리튬을 도입할 수 있다. 이 방법에 의하면, 치환기의 영향으로 오르토 메탈화를 할 수 없는 경우에도 목적물을 합성할 수 있어 유용하다. 식 중의 할로겐 원자(Hal)는, F, Cl, Br, I 중 어느 것이라도 되며, 기질의 반응성을 고려하여 적절히 선택할 수 있다.
또한, 중간체에 있어서의 예를 들면 아미노기의 회전에 의해 탠덤 보라 프리델 크래프츠 반응이 일어나는 위치가 다른 경우가 있기 때문에, 부생물이 생성할 가능성도 있다. 이와 같은 경우에는, 크로마토그래피나 재결정 등에 의해, 이들 혼합물로 원하는 다환 방향족 화합물을 단리할 수 있다.
상술한 합성법을 적절히 선택하고, 사용하는 원료도 적절히 선택함으로써, 원하는 위치에 치환기를 가지며, Y가, B, P, P=O, 또는 P=S, X가, >N-RNX, >O, >C(-RCX)2, >Si(-RIX)2, >S, 또는 >Se인 다환 방향족 화합물을 합성할 수 있다.
또한, 본 발명의 다환 방향족 화합물에는, 적어도 일부의 수소 원자가 할로겐 또는 중수소로 치환되어 있는 화합물도 포함되지만, 이와 같은 화합물 등은 원하는 위치가 할로겐화 또는 중수소화된 원료를 사용함으로써, 상기와 마찬가지로 합성할 수 있다.
또한, 본 발명의 다환 방향족 화합물은, 적어도 일부의 수소 원자가 시아노로 치환되어 있지만, 이와 같은 화합물 등은 원하는 위치가 시아노화된 원료를 사용함으로써, 상기와 마찬가지로 합성할 수 있다. 또한, 적절한 위치에 할로겐을 가지는 전구체를 사용함으로써, 할로겐을 가지는 다환 방향족 화합물을 얻은 후, 시아노기를 일반적인 방법으로 도입하거나, 시아노기를 가지는 치환기를 크로스 커플링에 의해 도입함으로써도 마찬가지로 합성할 수 있다.
또한, 상기 스킴과 마찬가지의 방법으로, 식(2) 또는 식(2A)으로 나타내어지는 다환 방향족 화합물도 합성할 수 있다.
또한, 상기 스킴과 마찬가지의 방법으로, 식(1), 식(1A), 식(2), 또는 식(2A)으로 나타내어지는 다환 방향족 화합물의 다량체도 합성할 수 있다. 다량체의 합성 방법도, 국제공개 제2015/102118호 공보를 비롯한 많은 공지 문헌에 기재되어 있다.
상기 스킴에서 사용하는 용매로서는, t-부틸벤젠이나 크실렌 등을 들 수 있다.
상기 스킴에서 사용하는 오르토 메탈화 시약으로서는, 예를 들면, 메틸리튬, n-부틸리튬, sec-부틸리튬, t-부틸리튬 등의 알킬리튬, 리튬디이소프로필아미드, 리튬테트라메틸피페리디드, 리튬헥사메틸디실라지드, 칼륨헥사메틸디실라지드 등의 유기 알칼리 화합물을 들 수 있다.
상기 스킴에서 사용하는 메탈-Y(예를 들면 붕소)의 금속 교환 시약으로서는, Y의 삼불화물, 삼염화물, 삼브롬화물, 삼요오드화물 등의 붕소 할로겐화물, CIPN(NEt2)2 등의 Y의 아미노화 할로겐화물, Y의 알콕시화물, Y의 아릴옥시화물 등을 들 수 있다.
상기 스킴에서 사용하는 브뢴스테드 염기로서는, N,N-디이소프로필에틸아민, 트리에틸아민, 2,2,6,6-테트라메틸피페리딘, 1,2,2,6,6-펜타메틸피페리딘, N,N-디메틸아닐린, N,N-디메틸톨루이딘, 2,6-루티딘, 테트라페닐붕산나트륨, 테트라페닐붕산칼륨, 트리페닐보란, 테트라페닐실란, Ar4BNa, Ar4BK, Ar3B, Ar4Si (또한, Ar은 페닐 등의 아릴) 등을 들 수 있다.
상기 스킴에서 사용하는 루이스 산으로서는, AlCl3, AlBr3, AlF3, BF3·OEt2, BI3, BCl3, BBr3, GaCl3, GaBr3, InCl3, InBr3, In(OTf)3, SnCl4, SnBr4, AgOTf, ScCl3, Sc(OTf)3, ZnCl2, ZnBr2, Zn(OTf)2, MgCl2, MgBr2, Mg(OTf)2, LiOTf, NaOTf, KOTf, Me3SiOTf, Cu(OTf)2, CuCl2, YCl3, Y(OTf)3, TiCl4, TiBr4, ZrCl4, ZrBr4, FeCl3, FeBr3, CoCl3, CoBr3 등을 들 수 있다.
상기 스킴에서는, 탠덤 헤테로 프리델 크래프츠 반응의 촉진을 위해 브뢴스테드 염기 또는 루이스 산을 사용해도 된다. 단, Y의 삼불화물, 삼염화물, 삼브롬화물, 삼요오드화물 등의 할로겐화물을 사용한 경우에는, 방향족 구전자 치환 반응의 진행과 함께, 불화수소, 염화수소, 브롬화수소, 요오드화수소와 같은 산이 생성되기 때문에, 산을 포착하는 브뢴스테드 염기의 사용이 효과적이다. 한편, Y의 아미노화 할로겐화물, Y의 알콕시화물을 사용한 경우는, 방향족 구전자 치환 반응의 진행과 함께, 아민, 알코올이 생성되기 때문에, 대부분의 경우, 브뢴스테드 염기를 사용할 필요는 없지만, 아미노기나 알콕시기의 탈리 능력이 낮기 때문에, 그 탈리를 촉진하는 루이스 산의 사용이 효과적이다.
1-2. 호스트 재료(정공 수송성 호스트 재료 및 전자 수송성 호스트 재료)
본 발명의 유기 전계 발광 소자의 발광층은, 이미팅 도펀트와, 정공 수송성 호스트 재료, 전자 수송성 호스트 재료, 및 어시스팅 도펀트 재료로 이루어지는 군에서 선택되는 적어도 2개를 포함한다. 즉, 발광층은 정공 수송성 호스트 재료 또는 전자 수송성 호스트 재료 중 적어도 하나를 포함한다. 발광층은 정공 수송성 호스트 재료 및 전자 수송성 호스트 재료 모두를 포함하는 것이 바람직하다.
정공 수송성 호스트 재료(HH) 및 전자 수송성 호스트 재료(EH)는, HOMO(Highest Occupied Molecular Orbital) 및 LUMO(Lowest Unoccupied Molecular Orbital)에 대해서, 이하의 관계를 만족시킨다.
정공 수송성 호스트 재료(HH)의 HOMO는 전자 수송성 호스트 재료(EH)의 HOMO보다 얕고, 또한 전자 수송성 호스트 재료(EH)의 LUMO는 정공 수송성 호스트 재료(HH)의 LUMO보다 깊다.
또한, 이미팅 도펀트의 HOMO가 정공 수송성 호스트 재료(HH)의 HOMO보다 얕거나, 또는, 이미팅 도펀트의 LUMO가 전자 수송성 호스트 재료(EH)의 LUMO보다 깊은 것이 바람직하다.
또한, 정공 수송성 호스트 재료(HH) 및 전자 수송성 호스트 재료(EH)의 최저 여기 삼중항 에너지 준위(ET1)는, 발광층 내에서의 TADF의 발생을 저해하지 않고 촉진시키는 관점에서, 발광층 내에 있어서 가장 높은 ET1을 가지는 이미팅 도펀트 또는 어시스팅 도펀트의 ET1에 비해 높은 것이 바람직하고, 구체적으로는, 호스트 재료의 ET1은, 상기의 이미팅 도펀트 또는 어시스팅 도펀트의 ET1에 비해 0.01eV 이상 높은 것이 바람직하고, 0.03eV 이상 높은 것이 보다 바람직하고, 0.1eV 이상 높은 것이 보다 더 바람직하다. 또한, 호스트 재료의 ET1은 2.47eV 이상이 바람직하고, 2.49eV 이상이 보다 바람직하고, 2.56eV 이상이 더 바람직하다.
또한, 발광층에 인접하는 정공 수송층에 정공 수송성 호스트 재료를 사용하고, 또한 이 발광층에 인접하는 전자 수송층에 전자 수송성 호스트 재료를 사용하는 것도 바람직하다. 발광층으로부터 인접층으로의 캐리어 누설·에너지 누설이 일어나기 어려워져, 높은 효율의 유기 EL 소자가 얻어지기 때문이다. 발광층 중의 호스트 재료(정공 수송성 호스트 재료)와 정공 수송층 재료는 동일해도 되고, 달라도 된다. 또한, 발광층 중의 호스트 재료(전자 수송성 호스트 재료)와 전자 수송층의 재료는 동일해도 되고, 달라도 된다.
[정공 수송성 호스트 재료(HH)]
바람직한 정공 수송성 호스트 재료(HH)의 예로서는, 식(HH-1)으로 나타내어지거나, 또는 식(HH-1)으로 나타내어지는 부분 구조를 가지고, 아릴환 및 헤테로아릴환으로 이루어지는 군에서 선택되는 적어도 3개의 환을 포함하는 구조를 갖는 화합물을 들 수 있다. 이 화합물은, 이민 구조(-N=C-; 헤테로아릴환의 부분 구조를 포함함), 붕소(>B-), 및 시아노(CN)를 모두 포함하지 않는 것이 바람직하다.
식(HH-1)에 있어서,
Q는, >O, >S, 또는, >N-AH이며,
식(HH-1)에 있어서의 2개의 페닐 각각에 있어서의 Q가 결합하는 탄소 원자의 옆의 하나의 탄소 원자는, 서로 L로 결합하고 있어도 되고,
L은, 단결합, >O, >S, 또는 >C(-AH)2이며,
AH는, 수소, 아릴, 또는 헤테로아릴이고, >C(-AH)2에 있어서의 2개의 AH는 서로 결합하고 있어도 된다.
정공 수송성 호스트 재료가 식(HH-1)으로 나타내어지는 구조를 부분 구조로서 포함할 때, 이 부분 구조를 하나 포함하는 것이어도 되지만 2개 이상 포함하는 것도 바람직하다. 2개 이상 포함하는 경우, 그 2개 이상의 부분 구조는 서로 동일해도 되고, 달라도 된다. 2개 이상의 부분 구조는 서로 단결합으로 결합하고 있어도 되고, 부분 구조에 포함되는 임의의 환을 공유하도록 하여 결합하고 있어도 되고, 부분 구조에 포함되는 임의의 환끼리가 축합하도록 하여 결합하고 있어도 된다. 부분 구조는 아릴, 헤테로아릴, 디아릴아미노, 또는 아릴옥시로부터 선택되는 치환기를 더 가지고 있어도 된다.
상기의 식(HH-1)으로 나타내어지거나, 또는 식(HH-1)으로 나타내어지는 부분 구조를 갖는 화합물은 아릴환 및 헤테로아릴환으로 이루어지는 군에서 선택되는 적어도 3개의 환을 포함하는 구조를 가진다. 포함되는 환의 수는 6 이상인 것이 바람직하고, 8 이상인 것이 보다 바람직하다. 또한, 20 이하인 것이 바람직하고, 15 이하인 것이 보다 바람직하고, 10 이하인 것이 보다 더 바람직하다. 환의 수는 단환으로서의 수를 의미하고, 축합환에 대해서는, 축합환을 구성하는 단환을 카운트한 수로 한다.
정공 수송성 호스트 재료는, 트리아릴아민 구조, 카르바졸환, 디벤조푸란환, 디벤조티오펜환, 및 페녹사진 또는 페노티아진을 포함하는 축합 다환으로 이루어지는 군에서 선택되는 하나 이상의 부분 구조를 포함하는 화합물인 것이 바람직하다. 정공 수송성 호스트 재료는 이와 같은 부분 구조를 하나 포함하는 것이어도 되지만 2개 이상 포함하는 것도 바람직하다. 2개 이상 포함하는 경우, 그 2개 이상의 부분 구조는 서로 동일해도 되고, 달라도 된다.
정공 수송성 호스트 재료의 구체예로서는, 이하의 화합물을 들 수 있다.
상기 중, HH-1-1, HH-1-2, HH-1-4~HH-1-12, HH-1-17, HH-1-18, HH-1-20~HH-1-24, HH-1-82, HH-1-84~HH-1-89, HH-1-91, HH-1-92, HH-1-106~HH-1-108, 및 HH-1-109~HH-1-113이 바람직하다.
[전자 수송성 호스트 재료(EH)]
전자 수송성 호스트 재료(EH)의 예로서는, 식(EH-1A)~(EH-1D)으로 나타내어지거나, 또는 식(EH-1A)~(EH-1D)으로 나타내어지는 부분 구조를 가지며, 아릴환 및 헤테로아릴환으로 이루어지는 군에서 선택되는 적어도 3개의 환을 포함하는 구조를 갖는 화합물을 들 수 있다.
식(EH-1A)~(EH-1D)에 있어서,
Ar은, N=C를 환을 구성하는 부분 구조로서 포함하는 헤테로아릴환이며,
Z는, 단결합, -O-, -S-, 또는 -N(-AE)-이고,
Z가 결합하는 탄소 원자의 옆의 탄소 원자와 Z가 결합하는 AE와는, 서로 L로 결합하고 있어도 되며,
L은, 단결합, >O, >S 또는 >C(-AE)2이고,
AE는, 아릴, 헤테로아릴, 또는 트리아릴실릴이며, >C(-AE)2에 있어서의 2개의 AE는 서로 결합하고 있어도 되고,
X는 C, P 또는 S이며,
X가 C일 때, n=2, m=1이고,
X가 P일 때, n=3, m=1이며,
X가 S일 때, n=2, m=1~2이다.
상기 식(EH-1A)~(EH-1D)으로 나타내어지거나, 또는 식(EH-1A)~(EH-1D)으로 나타내어지는 부분 구조를 갖는 화합물은 아릴환 및 헤테로아릴환으로 이루어지는 군에서 선택되는 적어도 3개의 환을 포함하는 구조를 가진다. 포함되는 환의 수는 4 이상인 것이 바람직하고, 6 이상인 것이 보다 바람직하고, 8 이상인 것이 보다 더 바람직하다. 또한, 20 이하인 것이 바람직하고, 15 이하인 것이 보다 바람직하고, 10 이하인 것이 보다 더 바람직하다. 환의 수는 단환으로서의 수를 의미하고, 축합환에 대해서는, 축합환을 구성하는 단환을 카운트한 수로 한다.
전자 수송성 호스트 재료가 식(EH-1A)~(EH-1D)으로 나타내어지는 구조를 부분 구조로서 포함할 때, 이 부분 구조를 하나 포함하는 것이어도 되지만 2개 이상 포함하는 것도 바람직하다. 2개 이상 포함하는 경우, 그 2개 이상의 부분 구조는 서로 동일해도 되고, 달라도 된다. 2개 이상의 부분 구조는 서로 단결합으로 결합하고 있어도 되고, 부분 구조에 포함되는 임의의 환을 공유하도록 하여 결합하고 있어도 되고, 부분 구조에 포함되는 임의의 환끼리가 축합하도록 하여 결합하고 있어도 된다. 부분 구조는 아릴, 헤테로아릴, 디아릴아미노, 또는 아릴옥시로부터 선택되는 치환기를 더 가지고 있어도 된다.
전자 수송성 호스트 재료의 구체예로서는, 이하의 화합물을 들 수 있다.
전자 수송성 호스트 재료(식(EH-1)으로 나타내어지는 부분 구조를 갖는 화합물)의 다른 바람직한 예로서, 하기 식(EH-1b)으로 나타내어지는 다환 방향족 화합물, 또는 하기 식(EH-1b)으로 나타내어지는 단위 구조를 복수 가지는 다환 방향족 화합물의 다량체를 들 수 있다.
식(EH-1b)에 있어서,
R1, R2, R3, R4 및 R5(이후, 「R1 등」이라고도 함)는, 각각 독립적으로, 수소 또는 치환기이다. 이 치환기는 치환기군 Z로부터 선택되는 것이면 된다.
식(EH-1b)에 있어서, X1 및 X2는, 각각 독립적으로, >N-R(아민성 질소), >O, >C(-R)2, >S 또는 >Se이며, X1 및 X2가 모두 >C(-R)2가 되는 경우는 없고,
상기 >N-R 및 >C(-R)2에 있어서의 R은, 각각 독립적으로, 수소 또는 치환기군 Z 로부터 선택되는 치환기이며, 아릴, 헤테로아릴, 알킬 또는 시클로알킬(이상, 제2 치환기)로 더 치환되어 있어도 되고, 상기 >N-R 및 >C(-R)2의 R은 각각 독립적으로 연결기 또는 단결합에 의해 상기 a환, b환 및 c환 중 적어도 하나의 환과 결합하고 있어도 된다.
Y1, Y2, Y3, Y4, Y5 및 Y6(이후, 「Y1 등」 모두 함)은, 각각 독립적으로, =C(-R)- 또는 =N-(피리딘성 질소)이며, 적어도 하나는 =N-(피리딘성 질소)이다.
상기 =C(-R)-에 있어서의 R은, 각각 독립적으로, 수소 또는 치환기군 Z 로부터 선택되는 치환기이다.
상기 R1, R2, R3, R4 및 R5, 및, 상기 Y1~Y6으로서의 =C(-R)-의 R중 인접하는 기끼리가 결합하여 a환, b환 및 c환 중 적어도 하나의 환과 함께 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에 있어서의 적어도 하나의 수소는, 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 디아릴보릴(2개의 아릴은 단결합 또는 연결기를 통하여 결합하고 있어도 됨), 알킬, 시클로알킬, 알콕시 또는 아릴옥시(이상, 제1 치환기)로 치환되어 있어도 되며, 이들에 있어서의 적어도 하나의 수소는 아릴, 헤테로아릴, 알킬 또는 시클로알킬(이상, 제2 치환기)로 더 치환되어 있어도 된다.
식(EH-1b)으로 나타내어지는 화합물 및 구조에 있어서의 적어도 하나의 수소는, 시아노, 할로겐 또는 중수소로 치환되어 있어도 된다.
식(EH-1b)에 있어서, R1, R2, R3, R4 및 R5는 모두 수소이거나, 또는, R3 및 R4가 모두 수소이며, 또한 R1, R2 및 R5로 이루어지는 군에서 선택되는 임의의 하나 이상이 수소 이외의 치환기이며, 그 밖이 수소인 것이 바람직하다. 치환기로서는, 알킬, 알킬 또는 헤테로아릴로 치환되어 있어도 되는 아릴, 알킬 또는 아릴로 치환되어 있어도 되는 헤테로아릴, 또는 알킬 또는 아릴로 치환되어 있어도 되는 디아릴아미노가 바람직하다. 이 때, 알킬로서는, 탄소수 1~6의 알킬(메틸, t-부틸 등)이 바람직하고, 아릴로서는 페닐 또는 비페닐이 바람직하고, 헤테로아릴로서는, 트리아지닐, 카르바졸릴(2-카르바졸릴, 3-카르바졸릴, 9-카르바졸릴 등), 피리미디닐, 피리디닐, 디벤조푸라닐 또는 디벤조티에닐이 바람직하다. 구체예로서는, 페닐, 비페닐, 디페닐 트리아지닐, 카르바졸릴 트리아지닐, 모노페닐피리미디닐, 디페닐피리미디닐, 카르바졸릴 트리아지닐, 피리디닐, 디벤조푸라닐 및 디벤조티에닐을 들 수 있다.
Y1 등은, 각각 독립적으로, =C(-R)- 또는 =N-이며, 적어도 하나는 =N-이다. Y1~Y6 중 어느 것이 =N-이어도 된다. 바람직하게는, Y1 및 Y6이 =N-(a환이 피리미딘환), Y1 또는 Y6이 =N-(a환이 피리딘환), Y2 및 Y5가 =N-(b환 및 c환이 피리딘환), Y3 및 Y4가 =N-(b환 및 c환이 피리딘환), Y2~Y5가 =N-(b환 및 c환이 피리미딘환), Y1, Y3, Y4 및 Y6이 =N-(a환이 피리미딘환, b환 및 c환이 피리딘환), Y1, Y2, Y5 및 Y6이 =N-(a환이 피리미딘환, b환 및 c환이 피리딘환), Y1~Y6이 =N-(a환, b환 및 c환이 피리미딘환), Y2 또는 Y5가 =N-(b환 또는 c환이 피리딘환)이다.
또한, 이상의 =N-의 배치 관계에 더하여, X1 및 X2가 >O인 것이 바람직하고, 하기 식 중 어느 하나로 나타내어지는 부분 구조를 포함하는 다환 방향족 화합물이 바람직하다.
특히, 식(EH-1b-N1)으로 나타내어지는 부분 구조를 포함하는 다환 방향족 화합물은, N이 없는 구조와 비교하여, 높은 ES1, 높은 ET1, 작은 ΔES1T1을 갖는다.
식(EH-1b)으로 나타내어지는 다환 방향족 화합물의 구체예를 이하에 나타낸다.
상기 중, EH-1-1~EH-1-4, EH-1-10, EH-1-21~EH-1-25, EH-1-32, EH-1-33, EH-1-51~EH-1-59, EH-1-61, EH-1-66, EH-1-68, EH-1-71, EH-1-72, EH-1-90, EH-1-94~EH-1-98, EH-1-100, EH-1-101, EH-1-104, EH-1-115, EH-1-117, EH-1-120, EH-1-122, EH-1-123, EH-1-127~EH-1-130이 바람직하다.
[정공 수송성 호스트 재료 및 전자 수송성 호스트 재료의 조합]
정공 수송성 호스트 재료 및 전자 수송성 호스트 재료의 조합은, 정공 수송성 호스트 재료, 전자 수송성 호스트 재료 및 도펀트 재료의 HOMO, LUMO 및 최저 여기 삼중항 에너지 준위(ET1)에 의해 선택된다.
HOMO 및 LUMO에 관해서는, 정공 수송성 호스트 재료의 HOMO(HH)가 전자 수송성 호스트 재료의 HOMO(EH)보다 얕고, 전자 수송성 호스트 재료의 LUMO(EH)가 정공 수송성 호스트 재료의 LUMO(HH)보다 깊은 조합을 선택하고, 보다 구체적으로는, HOMO(HH)가 HOMO(EH)보다 0.10eV 이상 얕고, LUMO(HH)가 HOMO(EH)보다 0.10eV 이상 깊은 조합이 바람직하고, HOMO(HH)가 HOMO(EH)보다 0.20eV 이상 얕고, LUMO(HH)가 HOMO(EH)보다 0.20eV 이상 깊은 조합이 보다 바람직하고, HOMO(HH)가 HOMO(EH)보다 0.25eV 이상 얕고, LUMO(HH)가 HOMO(EH)보다 0.25eV 이상 깊은 조합이 보다 더 바람직하다.
정공 수송성 호스트 재료 및 전자 수송성 호스트 재료는 엑사이플렉스(exciplex)이라고 불리는 회합체를 형성하는 조합이어도 된다. 엑사이플렉스는, 비교적 깊은 LUMO 준위를 갖는 재료와, 얕은 HOMO 준위를 갖는 재료 사이에서 형성하기 쉬운 것이 일반적으로 알려져 있다. 정공 수송성 호스트 재료 및 전자 수송성 호스트 재료의 상호 작용, 구체적으로는 엑사이플렉스를 형성하고 있는지의 여부는, 정공 수송성 호스트 재료 및 전자 수송성 호스트 재료만으로 이루어지는 단층 막을 발광층의 형성 조건과 동일하게 형성하여 발광 스펙트럼(형광, 인광 스펙트럼)을 측정하고, 얻어진 발광 스펙트럼을, 정공 수송성 호스트 재료 및 전자 수송성 호스트 재료 각각이 단독으로 나타내는 발광 스펙트럼을 비교함으로써 판단할 수 있다. 정공 수송성 호스트 재료 및 전자 수송성 호스트 재료를 포함하는 혼합 막의 스펙트럼이, 정공 수송성 호스트 재료의 막 스펙트럼, 및 전자 수송성 호스트 재료의 막 스펙트럼 어느 것과도 다른 발광 파장을 나타냄으로써 판단할 수 있다. 구체적으로는, 스펙트럼의 피크 파장이 10nm 이상 다르다는 것을 지표로 하면 된다.
엑사이플렉스를 형성하지 않는 정공 수송성 호스트 재료 및 전자 수송성 호스트 재료의 조합의 구체예로서는 이하의 조합을 들 수 있다. 상기의 HOMO, LUMO 및 ET1의 물성값을 만족시키기 위해, 정공 수송성 호스트 재료에 있어서는, 카르바졸, 디벤조푸란, 디벤조티오펜, 트리아릴아민, 인돌로카르바졸 및 벤조옥사지노페녹사진을 부분 구조로서 갖는 화합물이 바람직하고, 카르바졸, 디벤조푸란 및 디벤조티오펜을 부분 구조로서 갖는 화합물이 보다 바람직하고, 카르바졸을 부분 구조로서 갖는 화합물이 보다 더 바람직하다. 마찬가지로, 전자 수송성 호스트 재료에 있어서는, 피리딘, 트리아진, 포스핀옥사이드, 벤조푸로피리딘 및 디벤조옥사실린을 부분 구조로서 갖는 화합물이 바람직하고, 트리아진, 포스핀옥사이드, 벤조푸로피리딘 및 디벤조옥사실린을 부분 구조로서 갖는 화합물이 보다 바람직하고, 트리아진을 갖는 화합물이 보다 더 바람직하다.
보다 구체적으로는, 정공 수송성 호스트 재료는, HH-1-1, HH-1-2, HH-1-4~HH-1-12, HH-1-17, HH-1-18, HH-1-20~HH-1-24, HH-1-82, HH-1-84~HH-1-89, HH-1-91, HH-1-92 및 HH-1-106~HH-1-108로 이루어지는 군에서 선택되는 것이 바람직하고, 전자 수송성 호스트 재료는, EH-1-1~EH-1-4, EH-1-10, EH-1-21~EH-1-25, EH-1-32, EH-1-33, EH-1-51~EH-1-59, EH-1-61, EH-1-71, EH-1-72, EH-1-90, EH-1-100, EH-1-101, EH-1-104, EH-1-117, EH-1-120, EH-1-122, EH-1-123, 및 EH-1-127~EH-1-130으로 이루어지는 군에서 선택되는 것이 바람직하다. 조합으로서 바람직한 예로서는, 화합물 HH-1-1 및 화합물 EH-1-22, 화합물 HH-1-1 및 화합물 EH-1-23, 화합물 HH-1-1 및 화합물 EH-1-24, 화합물 HH-1-2 및 화합물 EH-1-22, 화합물 HH-1-2 및 화합물 EH-1-23, 화합물 HH-1-2 및 화합물 EH-1-24, 또는 화합물 HH-1-1 및 화합물 EH-1-128을 들 수 있다.
엑사이플렉스를 형성하는 정공 수송성 호스트 재료 및 전자 수송성 호스트 재료의 조합의 구체예로서는 이하의 조합을 들 수 있다. 상기, HOMO, LUMO 및 ET1의 물성값을 만족시키기 위해, 정공 수송성 호스트 재료에 있어서는, 카르바졸, 트리아릴아민, 인돌로카르바졸 및 벤조옥사지노페녹사진을 부분 구조로서 갖는 화합물이 바람직하고, 트리아릴아민, 인돌로카르바졸 및 벤조옥사지노페녹사진을 부분 구조로서 갖는 화합물이 보다 바람직하고, 트리아릴아민을 부분 구조로서 갖는 화합물이 보다 더 바람직하다. 마찬가지로, 전자 수송성 호스트 재료에 있어서는, 피리딘, 트리아진, 포스핀옥사이드 및 벤조푸로피리딘을 부분 구조로서 갖는 화합물이 바람직하고, 트리아진, 포스핀옥사이드, 벤조푸로피리딘 및 디벤조옥사실린을 부분 구조로서 갖는 화합물이 보다 바람직하고, 포스핀옥사이드 및 트리아진을 가지는 화합물이 보다 더 바람직하다.
보다 구체적으로는, 정공 수송성 호스트 재료는, HH-1-1, HH-1-2, HH-1-11, HH-1-12, HH-1-17, HH-1-18, HH-1-23 및 HH-1-24로 이루어지는 군에서 선택되는 것이 바람직하고, 전자 수송성 호스트 재료는, EH-1-1~EH-1-4, EH-1-21~EH-1-25, EH-1-51~EH-1-57, EH-1-59, EH-1-66, EH-1-68, EH-1-90, EH-1-94, EH-1-100, EH-1-101, EH-1-104, EH-1-117, EH-1-120, EH-1-122, EH-1-123, 및 EH-1-127~EH-1-130으로 이루어지는 군에서 선택되는 것이 바람직하다. 조합으로서 바람직한 예로서는, 화합물 HH-1-1 및 화합물 EH-1-21, 화합물 HH-1-2 및 화합물 EH-1-21, 화합물 HH-1-12 및 화합물 EH-1-94, 화합물 HH-1-12 및 화합물 EH-1-117, 화합물 HH-1-1 및 화합물 EH-1-130, 화합물 HH-1-33 및 화합물 EH-1-117, 화합물 HH-1-48 및 화합물 EH-1-117 또는 화합물 HH-1-49 및 화합물 EH-1-117을 들 수 있다.
그 밖에, 구체적인 정공 수송성 호스트 재료와 전자 수송성 호스트 재료와의 조합에 대해서는, Organic Electronics 66(2019)227-24, Advanced.Functional Materals 25(2015)361-366., Advanced Materials 26(2014) 4730-4734., ACS Applied Materials and Interfaces 8(2016)32984-32991., ACS Applied Materals and Interfaces 2016, 8, 9806-9810, ACS Applied Materials and Interfaces 2016, 8, 32984-32991, Journal of Materials Chemisty C, 2018, 6, 8784-8792, Angewante Chemie International Edition.2018, 57, 12380-12384, Advanced Functional Materials, 24, 2014, 3970, Advanced Materials, 26, 2014, 5684, 및, Synthetic Metals, 201,2015, 49 등의 기재를 참조할 수 있다.
1-3. 어시스팅 도펀트(열활성형 지연 형광체 또는 인광 재료)
발광층은, 이미팅 도펀트 및 호스트 재료와 함께 어시스팅 도펀트를 포함하는 것이 바람직하다. 어시스팅 도펀트로서는 열활성형 지연 형광체 또는 인광 재료가 바람직하다.
[열활성형 지연 형광체]
「열활성형 지연 형광체」란, 열 에너지를 흡수하여 최저 여기 삼중항 상태로부터 최저 여기 일중항 상태로의 역항간 교차를 일으키고, 그 최저 여기 일중항 상태로부터 방사 실활하여 지연 형광을 방사할 수 있는 화합물을 의미한다. 단, 「열활성형 지연 형광」이란, 최저 여기 삼중항 상태로부터 최저 여기 일중항 상태로의 여기 과정에서 고차 삼중항을 거치는 것도 포함한다. 예를 들면, Durham 대학 Monkman들에 의한 논문(NATURE COMMUNICATIONS, 7:13680, DOI:10.1038/ncomms13680), 산업기술종합연구소 호소가이들에 의한 논문(Hosokai et al., Sci.Adv.2017;3: e1603282), 교토대학 사토들에 의한 논문(Scientific Reports, 7:4820, DOI:10.1038/s41598-017-05007-7), 마찬가지로 교토대학 사토들에 의한 학회 발표(일본화학회 제98춘계 연회, 발표 번호:2I4-15, DABNA를 발광 분자로서 사용한 유기 전계 발광에 있어서의 고효율 발광의 기구, 교토 대학 대학원 공학 연구과), Bui들에 의한 리뷰(DOI:10.3762/bjoc.14.18), Duan들에 의한 리뷰(DOI:10.1063/1.5143501), Ding들에 의한 리뷰(DOI:10.1088/1674-4926/42/5/050201) 및 Xie들에 의한 리뷰(DOI:10.1002/adom.202002204) 등을 들 수 있다. 본 발명에서는, 대상 화합물을 포함하는 샘플에 대해, 300K에서 형광 수명을 측정했을 때, 느린 형광 성분이 관측된 것을 가지고 해당 대상 화합물이 「열활성형 지연 형광체」라고 판정하는 것으로 한다. 여기서, 느린 형광 성분이란, 형광 수명이 0.1μsec 이상의 것을 말한다. 형광 수명의 측정은, 예를 들면 형광 수명 측정 장치(하마마츠포토닉스사제, C11367-01)를 사용하여 행할 수 있다.
어시스팅 도펀트로서의 「열활성형 지연 형광체」를 더 포함하는 발광층에 있어서는 본 발명의 다환 방향족 화합물 등은, 이미팅 도펀트로서 기능시킬 수 있다. 즉, 「열활성형 지연 형광체」는, 본 발명의 다환 방향족 화합물 등의 발광을 어시스트하는 어시스팅 도펀트로서 기능시킬 수 있다.
본 명세서에서는, 열활성형 지연 형광체를 어시스팅 도펀트로서 사용하는 유기 전계 발광 소자를, 「TAF 소자」(TADF Assisting Fluorescence소자)라고 하는 경우가 있다.
TAF 소자에 있어서의 「호스트 화합물」이란, 형광 스펙트럼의 피크 단파장 측의 어깨로부터 구해지는 최저 여기 일중항 에너지 준위가, 어시스팅 도펀트로서의 열활성형 지연 형광체, 및, 이미팅 도펀트보다 높은 화합물을 의미한다.
도 2에 일반적인 형광 도펀트를 이미팅 도펀트(ED)에 사용한 TAF 소자의 발광층의 에너지 준위도를 나타낸다. 도면 중, 호스트의 기저 상태의 에너지 준위를 E(1, G), 호스트의 형광 스펙트럼의 단파장 측의 어깨로부터 구해지는 최저 여기 일중항 에너지 준위를 E(1, S, Sh), 호스트의 인광 스펙트럼의 단파장 측의 어깨로부터 구해지는 최저 여기 삼중항 에너지 준위를 E(1, T, Sh), 어시스팅 도펀트의 기저 상태의 에너지 준위를 E(2, G), 어시스팅 도펀트의 형광 스펙트럼의 단파장 측의 어깨로부터 구해지는 최저 여기 일중항 에너지 준위를 E(2, S, Sh), 어시스팅 도펀트의 인광 스펙트럼의 단파장 측의 어깨로부터 구해지는 최저 여기 삼중항 에너지 준위를 E(2, T, Sh), 이미팅 도펀트의 기저 상태의 에너지 준위를 E(3, G), 이미팅 도펀트의 형광 스펙트럼의 단파장 측의 어깨로부터 구해지는 최저 여기 일중항 에너지 준위를 E(3, S, Sh), 이미팅 도펀트의 인광 스펙트럼의 단파장 측의 어깨로부터 구해지는 최저 여기 삼중항 에너지 준위를 E(3, T, Sh), 정공을 h+, 전자를 e-, 형광 공명 에너지 이동을 FRET(Fluorescence Resonance Energy Transfer)로 한다. TAF 소자에 있어서, 일반적인 형광 도펀트를 이미팅 도펀트(ED)로서 사용한 경우, 어시스팅 도펀트에서 업컨버전된 에너지는 이미팅 도펀트의 최저 여기 일중항 에너지 준위 E(3, S, Sh)로 이동하여 발광한다. 그러나, 어시스팅 도펀트상의 일부의 최저 여기 삼중항 에너지 E(2, T, Sh)가 이미팅 도펀트의 최저 여기 삼중항 에너지 준위 E(3, T, Sh)로 이동하거나, 이미팅 도펀트 상에서 최저 여기 일중항 에너지 준위 E(3, S, Sh)로부터 최저 여기 삼중항 에너지 준위 E(3, T, Sh)로의 항간 교차가 일어나고, 계속하여 기저 상태 E(3, G)로 열적(熱的)으로 실활한다. 이 경로에 의해 일부의 에너지는 발광에 이용되지 않아, 에너지의 낭비가 생긴다.
이에 대하여, 본 양태의 유기 전계 발광 소자에서는, 어시스팅 도펀트로부터 이미팅 도펀트로 이동한 에너지를 효율적으로 발광에 이용할 수 있고, 이에 따라 높은 발광 효율을 실현할 수 있다. 이는, 이하의 발광 메커니즘에 의한 것으로 추측된다.
본 양태의 유기 전계 발광 소자에 있어서의 바람직한 에너지 관계를 도 3에 나타낸다. 본 양태의 유기 전계 발광 소자에 있어서는, 이미팅 도펀트로서의, 붕소 원자를 갖는 화합물이 높은 최저 여기 삼중항 에너지 준위 E(3, T, Sh)를 갖는다. 이 때문에, 어시스팅 도펀트에서 업컨버전된 최저 여기 일중항 에너지가, 예를 들어, 이미팅 도펀트에서 최저 여기 삼중항 에너지 준위 E(3, T, Sh)로 항간 교차한 경우에도, 이미팅 도펀트 상에서 업컨버전되거나, 어시스팅 도펀트(열활성형 지연 형광체) 상의 최저 여기 삼중항 에너지 준위 E(2, T, Sh)로 회수된다. 따라서, 생성한 여기 에너지를 낭비없이 발광에 이용할 수 있다. 또한, 업컨버전 및 발광의 기능을 각각 양호하게 할 수 있는 2종의 분자로 나눔으로써, 높은 에너지의 체류 시간이 감소하고, 화합물에 대한 부담이 감소할 것으로 예상된다.
본 양태에 있어서, 호스트 화합물로서는, 공지의 것을 사용할 수 있고, 예를 들면 카르바졸환 및 푸란환 중 적어도 일방을 가지는 화합물을 들 수 있고, 그 중에서도, 푸라닐 및 카르바졸릴 중 적어도 일방과, 아릴렌 및 헤테로아릴렌 중 적어도 일방이 결합한 화합물을 사용하는 것이 바람직하다. 구체예로서, mCP나 mCBP 등을 들 수 있다.
호스트 화합물의 인광 스펙트럼의 피크 단파장 측의 어깨로부터 구해지는 최저 여기 삼중항 에너지 준위 E(1, T, Sh)는, 발광층 내에서의 TADF의 발생을 저해하지 않고 촉진시키는 관점에서, 발광층 내에 있어서 가장 높은 최저 여기 삼중항 에너지 준위를 가지는 이미팅 도펀트 또는 어시스팅 도펀트의 최저 여기 삼중항 에너지 준위 E(2, T, Sh), E(3, T, Sh)에 비해 높은 것이 바람직하고, 구체적으로는, 호스트 화합물의 최저 여기 삼중항 에너지 준위 E(1, T, Sh)는 E(2, T, Sh), E(3, T, Sh)에 비해, 0.01eV 이상 높은 것이 바람직하고, 0.03eV 이상 높은 것이 보다 바람직하고, 0.1eV 이상 높은 것이 보다 더 바람직하다. 또한, 호스트 화합물에 TADF 활성인 화합물을 사용해도 된다.
TAF 소자에서 사용하는 열활성형 지연 형광체(TADF 화합물)는, 도너라고 불리는 전자 공여성의 치환기와 억셉터라고 불리는 전자 수용성의 치환기를 사용하여 분자 내의 HOMO(Highest Occupied Molecular Orbital)와 LUMO(Lowest Unoccupied Molecular Orbital)를 국재화(局在化)시켜서, 효율적인 역항간 교차(reverse intersystem crossing)가 일어나도록 디자인된, 도너-억셉터형 열활성형 지연 형광체(D-A형 TADF 화합물)인 것이 바람직하다.
여기서, 본 명세서 중에 있어서 「전자 공여성의 치환기」(도너)란, 열활성형 지연 형광체 분자 중에서 HOMO가 국재하는 치환기 및 부분 구조를 의미하고, 「전자 수용성의 치환기」(억셉터)란, 열활성형 지연 형광체 분자 중에서 LUMO가 국재하는 치환기 및 부분 구조를 의미하는 것으로 한다.
일반적으로, 도너나 억셉터를 사용한 열활성형 지연 형광체는, 구조에 기인하여 스핀 궤도 결합(SOC: Spin Orbit Coupling)이 크고, 동시에, HOMO와 LUMO의 교환 상호 작용이 작고 ΔES1T1이 작으므로, 매우 빠른 역항간 교차 속도가 얻어진다. 한편, 도너나 억셉터를 사용한 열활성형 지연 형광체는, 여기 상태에서의 구조 완화가 커지고(어떤 분자에 있어서는, 기저 상태와 여기 상태에서는 안정 구조가 상이하므로, 외부 자극에 의해 기저 상태로부터 여기 상태로의 변환이 일어나면, 그 후, 여기 상태에 있어서의 안정 구조로 구조가 변화됨), 폭이 넓은 발광 스펙트럼을 제공하므로, 발광 재료로서 사용하면 색순도를 저하시킬 가능성이 있다.
TAF 소자에 있어서의 열활성형 지연 형광체로서, 예를 들면 도너 및 억셉터가 직접 또는 스페이서를 통하여 결합하고 있는 화합물을 사용할 수 있다. 본 발명의 열활성형 지연 형광체에 사용되는 전자 공여성기(도너성의 구조) 및 전자 수용성기(억셉터성의 구조)로서는, 예를 들면, Chemistry of Materials, 2017, 29, 1946-1963에 기재된 구조를 사용할 수 있다. 도너성의 구조로서는, 카르바졸, 디메틸카르바졸, 디-tert-부틸카르바졸, 디메톡시카르바졸, 테트라메틸카르바졸, 벤조플루오로카르바졸, 벤조티에노카르바졸, 페닐디히드로인돌로카르바졸, 페닐비카르바졸, 비카르바졸, 터카르바졸, 디페닐카르바졸릴아민, 테트라페닐카르바졸릴디아민, 페녹사진, 디히드로페나진, 페노티아진, 디메틸디히드로아크리딘, 디페닐아민, 비스(tert-부틸페닐)아민, N1-(4-(디페닐아미노)페닐)-N4,N4-디페닐벤젠-1,4-디아민, 디메틸테트라페닐디히드로아크리딘디아민, 테트라메틸-디히드로인데노아크리딘 및 디페닐디히드로디벤조아자실린 등을 들 수 있다. 억셉터성의 구조로서는, 술포닐디벤젠, 벤조페논, 페닐렌비스(페닐메타논), 벤조니트릴, 이소니코티노니트릴, 프탈로니트릴, 이소프탈로니트릴, 파라프탈로니트릴, 벤젠트리카르보니트릴, 트리아졸, 옥사졸, 티아디아졸, 벤조티아졸, 벤조비스(티아졸), 벤조옥사졸, 벤조비스(옥사졸), 퀴놀린, 벤조이미다졸, 디벤조퀴녹살린, 헵타아자페날렌, 티옥산톤디옥사이드, 디메틸안트라세논, 안트라센디온, 5H-시클로펜타[1,2-b:5,4-b']디피리딘, 플루오렌디카르보니트릴, 트리페닐트리아진, 피라진디카르보니트릴, 피리미딘, 페닐피리미딘, 메틸피리미딘, 피리딘디카르보니트릴, 디벤조퀴녹살린디카르보니트릴, 비스(페닐술포닐)벤젠, 디메틸티옥산텐디옥사이드, 티안트렌테트라옥사이드 및 트리스(디메틸페닐)보란을 들 수 있다. 특히, TAF 소자에 있어서의 열활성형 지연 형광을 가지는 화합물은, 부분 구조로서, 카르바졸, 페녹사진, 아크리딘, 트리아진, 피리미딘, 피라진, 티오잔텐, 벤조니트릴, 프탈로니트릴, 이소프탈로니트릴, 디페닐술폰, 트리아졸, 옥사디아졸, 티아디아졸 및 벤조페논으로부터 선택되는 적어도 하나를 가지는 화합물인 것이 바람직하다.
TAF 소자에 있어서의 발광층의 어시스팅 도펀트로서 사용하는 화합물은, 열활성형 지연 형광체이며, 그 발광 스펙트럼이 이미팅 도펀트의 흡수 피크와 적어도 일부 중첩되는 화합물인 것이 바람직하다.
[인광 재료(어시스팅 도펀트)]
발광층에 있어서는, 어시스팅 도펀트로서 인광 재료를 사용해도 된다. 인광 재료는 금속 원자에 의한 분자 내 스핀-궤도 상호 작용(중원자 효과)을 이용하여, 여기 삼중항 상태로부터의 발광을 얻는다. 이와 같은 인광 재료로서는, 예를 들면, 발광성 금속 착체를 사용할 수 있다. 발광성 금속 착체로서는, 예를 들면 하기 식(B-1) 및 하기 식(B-2)으로 나타내어지는 화합물을 들 수 있다.
식(B-1)에 있어서, M은, Ir, Pt, Au, Eu, Ru, Re, Ag 및 Cu로 이루어지는 군에서 선택되는 적어도 1종이며, n은 1~3의 정수이고, 「X-Y」는 각각 독립적으로 2좌의 리간드이다.
식(B-2)에 있어서, M은, Pt, Re 및 Cu로 이루어지는 군에서 선택되는 적어도 1종이며, 「W-X-Y-Z」는 4좌의 리간드이다.
식(B-1)에 있어서, 효율과 수명의 관점에서, M은 Ir이 바람직하고, n은 3이 바람직하다.
식(B-2)에 있어서, 효율과 수명의 관점에서 M은 Pt가 바람직하다.
식(B-1)에 있어서의 리간드(X-Y)는, 이하로 이루어지는 군에서 선택된 적어도 하나의 리간드를 가진다. 식(B-2)에 있어서의 리간드(W-X-Y-Z)는, 이하로 이루어지는 군에서 선택되는 적어도 하나의 리간드를 일부로서 가진다.
식 중,
---에 있어서 중심 금속 M과 결합하고,
Y는, 각각 독립적으로, BRe, NRe, PRe, O, S, Se, C=O, S=O, SO2, CReRf, SiReRf, 또는 GeReRf이며
환에 있어서의 방향족 탄소 C-H는, 각각 독립적으로, N으로 치환되어도 되고,
Re 및 Rf는, 임의로 축합 또는 결합하여 환을 형성하여도 되며,
Ra, Rb, Rc, 및 Rd는, 각각 독립적으로, 무치환 또는 1~치환 가능한 최대수까지 치환해도 되고,
Ra, Rb, Rc, Rd, Re, 및 Rf가, 각각 독립적으로, 수소, 중수소, 할로겐화물, 알킬, 시클로알킬, 헤테로알킬, 알콕시, 아릴옥시, 아미노, 실릴, 알케닐, 시클로알케닐, 헤테로알케닐, 아릴, 헤테로아릴, 니트릴, 이소니트릴, 술파닐, 또는, 이들 조합이며,
단, Ra, Rb, Rc, 및 Rd에 있어서의 임의의 2개의 인접하는 치환기가 축합 또는 결합하여 환을 형성거나, 또는 다좌 리간드를 형성해도 된다.
식(B-1)으로 나타내어지는 화합물로서는, 예를 들면, Ir(ppy)3, Ir(ppy)2(acac), Ir(mppy)3, Ir(PPy)2(m-bppy), BtpIr(acac), Ir(btp)2(acac), Ir(2-phq)3, Hex-Ir(phq)3, Ir(fbi)2(acac), fac-Tris(2-(3-p-xylyl)phenyl)pyridine iridium(III), Eu(dbm)3(Phen), Ir(piq)3, Ir(piq)2(acac), Ir(Fliq)2(acac), Ir(Flq)2(acac), Ru(dtb-bpy)3·2(PF6), Ir(2-phq)3, Ir(BT)2(acac), Ir(DMP)3, Ir(Mphq)3IR(phq)2tpy, fac-Ir(ppy)2Pc, Ir(dp)PQ2, Ir(Dpm)(Piq)2, Hex-Ir(piq)2(acac), Hex-Ir(piq)3, Ir(dmpq)3, Ir(dmpq)2(acac), FPQIrpic 등을 들 수 있다.
식(B-1)으로 나타내어지는 화합물로서는, 그 밖에는, 예를 들면 이하의 화합물을 들 수 있다.
또한, 일본특허공개 2006-089398호 공보, 일본특허공개 2006-080419호 공보, 일본특허공개 2005-298483호 공보, 일본특허공개 2005-097263호 공보, 및 일본특허공개 2004-111379호 공보, 미국특허출원공개 제2019/0051845호 명세서 등에 기재된 이리듐 착체, 또는, Advanced Materials, 26:7116-7121, NPG Asia Materials 13,53(2021), Applied Physics Letters, 117, 253301(2020), Light-Emitting Diode - An Outlook On the Empirical Features and Its Recent Technological Advancements, Chapter 5에 기재된 백금 착체를 사용해도 된다.
1-4. 그 밖의 도펀트 재료
상기의 이미팅 도펀트는 다른 도펀트 재료와 조합시켜서 사용되어도 된다. 단, 다른 도펀트 재료는 하나의 발광층 중에 있어서 상기의 이미팅 도펀트의 총 질량에 대하여, 100질량% 미만인 것이 바람직하고, 50질량% 이하인 것이 보다 바람직하고, 30질량% 이하인 것이 보다 더 바람직하고, 10질량% 이하인 것이 특히 바람직하다. 다른 도펀트 재료로서는, 공지의 화합물을 사용할 수 있고, 원하는 발광색에 따라 여러 가지 재료 중에서 선택할 수 있다. 구체적으로는, 예를 들면, 페난트렌, 안트라센, 피렌, 테트라센, 펜타센, 페릴렌, 나프토피렌, 디벤조피렌, 루브렌 및 크리센 등의 축합환 유도체, 벤조옥사졸 유도체, 벤조티아졸 유도체, 벤조이미다졸 유도체, 벤조트리아졸 유도체, 옥사졸 유도체, 옥사디아졸 유도체, 티아졸 유도체, 이미다졸 유도체, 티아디아졸 유도체, 트리아졸 유도체, 피라졸린 유도체, 스틸벤 유도체, 티오펜 유도체, 테트라페닐부타디엔 유도체, 시클로펜타디엔 유도체, 비스스티릴안트라센 유도체나 디스티릴벤젠 유도체 등의 비스스티릴 유도체(일본특허공개 평1-245087호 공보), 비스스티릴아릴렌 유도체(일본특허공개 평2-247278호 공보), 디아자인다센 유도체, 푸란 유도체, 벤조푸란 유도체, 페닐이소벤조푸란, 디메시틸이소벤조푸란, 디(2-메틸페닐)이소벤조푸란, 디(2-트리플루오로메틸페닐)이소벤조푸란, 페닐이소벤조푸란 등의 이소벤조푸란 유도체, 디벤조푸란 유도체, 7-디알킬아미노쿠마린 유도체, 7-피페리디노쿠마린 유도체, 7-히드록시쿠마린 유도체, 7-메톡시쿠마린 유도체, 7-아세톡시쿠마린 유도체, 3-벤조티아졸릴쿠마린 유도체, 3-벤조이미다졸릴쿠마린 유도체, 3-벤조옥사졸릴쿠마린 유도체 등의 쿠마린 유도체, 디시아노메틸렌피란 유도체, 디시아노메틸렌티오피란 유도체, 폴리 메틴 유도체, 시아닌 유도체, 옥소벤조안트라센 유도체, 잔텐 유도체, 로다민 유도체, 플루오레세인 유도체, 피릴리움 유도체, 카르보스티릴 유도체, 아크리딘 유도체, 옥사진 유도체, 페닐렌옥사이드 유도체, 퀴나크리돈 유도체, 퀴나졸린 유도체, 피롤로피리딘 유도체, 푸로피리딘 유도체, 1,2,5-티아디아졸로피렌 유도체, 피로메텐 유도체, 페리논 유도체, 피롤로피롤 유도체, 스쿠아릴륨 유도체, 비오란트론 유도체, 페나진 유도체, 아크리돈 유도체, 데아자플라빈 유도체, 플루오렌 유도체 및 벤조플루오렌 유도체 등을 들 수 있다.
다른 도펀트 재료로서는, 국제공개 제2015/102118호, 국제공개 제2020/162600호, 일본특허공개 2021-077890호 공보의 단락 0097~0269 등에 기재된 붕소를 포함하는 다환 방향족 화합물을 사용하는 것도 바람직하다.
2. 유기 전계 발광 소자
본 발명의 유기 전계 발광 소자는, 양극 및 음극으로 이루어지는 한 쌍의 전극과, 해당 한 쌍의 전극 사이에 배치되는 발광층을 가진다. 유기 전계 발광 소자는, 다른 유기층을 더 가지고 있어도 된다.
2-1. 유기 전계 발광 소자의 구조
도 1은, 유기 EL 소자에 일 예를 제시하는 개략 단면도이다.
도 1에 나타내어진 유기 EL 소자(100)는, 기판(101)과, 기판(101) 상에 설치된 양극(102)과, 양극(102) 상에 설치된 정공 주입층(103)과, 정공 주입층(103) 상에 설치된 정공 수송층(104)과, 정공 수송층(104) 상에 설치된 발광층(105)과, 발광층(105) 상에 설치된 전자 수송층(106)과, 전자 수송층(106) 상에 설치된 전자 주입층(107)과, 전자 주입층(107) 상에 설치된 음극(108)을 갖는다.
또한, 유기 EL 소자(100)는, 제작 순서를 반대로 하여, 예를 들면, 기판(101)과, 기판(101) 상에 설치된 음극(108)과, 음극(108) 상에 설치된 전자 주입층(107)과, 전자 주입층(107) 상에 설치된 전자 수송층(106)과, 전자 수송층(106) 상에 설치된 발광층(105)과, 발광층(105) 상에 설치된 정공 수송층(104)과, 정공 수송층(104) 상에 설치된 정공 주입층(103)과, 정공 주입층(103) 상에 설치된 양극(102)을 가지는 구성으로 해도 된다.
상기 각 층 모두가 없으면 안되는 것은 아니고, 최소 구성 단위를 양극(102)과 발광층(105)과 음극(108)으로 이루어지는 구성으로서, 정공 주입층(103), 정공 수송층(104), 전자 수송층(106), 전자 주입층(107)은 임의로 설치되는 층이다. 또한, 상기 각 층은, 각각 단일층으로 이루어져도 되고, 복수층으로 이루어져도 된다.
유기 EL 소자를 구성하는 층의 양태로서는, 상술하는 「기판/양극/정공 주입층/정공 수송층/발광층/전자 수송층/전자 주입층/음극」의 구성 양태의 이외에, 「기판/양극/정공 수송층/발광층/전자 수송층/전자 주입층/음극」, 「기판/양극/정공 주입층/발광층/전자 수송층/전자 주입층/음극」, 「기판/양극/정공 주입층/정공 수송층/발광층/전자 주입층/음극」, 「기판/양극/정공 주입층/정공 수송층/발광층/전자 수송층/음극」, 「기판/양극/발광층/전자 수송층/전자 주입층/음극」, 「기판/양극/정공 수송층/발광층/전자 주입층/음극」, 「기판/양극/정공 수송층/발광층/전자 수송층/음극」, 「기판/양극/정공 주입층/발광층/전자 주입층/음극」, 「기판/양극/정공 주입층/발광층/전자 수송층/음극」, 「기판/양극/발광층/전자 수송층/음극」, 「기판/양극/발광층/전자 주입층/음극」의 구성 양태여도 된다.
유기 EL 소자는 전자 저지층(전자 블로킹층) 및 정공 저지층(정공 블로킹층)으로부터 선택되는 어느 하나 또는 쌍방을 더 가지고 있어도 된다. 전자 저지층은 발광층보다 얕은 LUMO 및 발광층 또는 정공 수송층과 가까운 HOMO를 가지고, 발광층과 정공 수송층의 사이에 배치된다. 전자가 발광층 내에 머물러 정공 수송층으로 새어 나오지 않기 때문에, 정공 수송층의 열화에 의한 단수명화와 재결합 효율 저하에 의한 효율의 저하를 막을 수 있다. 정공 저지층은 발광층보다 깊은 HOMO 및 발광층 또는 정공 수송층과 가까운 LUMO를 가지고, 발광층과 전자 수송층의 사이에 배치된다. 정공이 발광층 내에 머물러 전자 수송층으로 새어 나오지 않기 때문에, 전자 수송층의 열화에 의한 단수명화와 재결합 효율 저하에 의한 효율의 저하를 막을 수 있다. 정공 주입·수송층이 전자 저지층을 겸하고 있어도 된다. 전자 주입·수송층이 정공 저지층을 겸하고 있어도 된다.
유기 EL 소자는 고T1층을 더 가지고 있어도 된다. 고T1층은, 발광층에 사용되는 호스트 화합물, 어시스팅 도펀트 화합물 또는 이미팅 도펀트 화합물보다 높은 T1을 가지고, 발광층과 정공 수송층의 사이 및/또는 발광층과 전자 저지층의 사이에 배치된다. T1 에너지의 값은 소자의 발광 기구에 따라 다르지만, 호스트에 사용되는 화합물보다 높은 T1을 가진다. 발광층의 주위에 고T1층을 가짐으로써, 삼중항 에너지를 가두고, 통상 형광 분자에서는 발광으로 연결되지 않는 삼중항 에너지를 일중항 에너지로 변환하여, 높은 효율을 얻을 수 있다. 정공 주입·수송층 또는 전자 저지층이 고T1층을 겸하고 있어도 된다. 전자 주입·수송층 또는 정공 저지층이 고T1층을 겸하고 있어도 된다.
2-2. 유기 전계 발광 소자에 있어서의 기판
기판(101)은, 유기 EL 소자(100)의 지지체이며, 통상, 석영, 유리, 금속, 플라스틱 등이 사용된다. 기판(101)은, 목적에 따라 판형, 필름상, 또는 시트상으로 형성되고, 예를 들면, 유리판, 금속판, 금속박, 플라스틱 필름, 플라스틱 시트 등이 사용된다. 그 중에서도, 유리판, 및, 폴리에스테르, 폴리메타크릴레이트, 폴리카보네이트, 폴리설폰 등의 투명한 합성 수지제의 판이 바람직하다. 유리 기판인 경우에는, 소다 석회 유리나 무알칼리 유리 등이 사용되며, 또한, 두께도 기계적 강도를 유지하는데에 충분한 두께가 있으면 된다. 또한, 기판(101)에는, 가스 배리어성을 높이기 위해, 적어도 편면(片面)에 치밀한 실리콘 산화막 등의 가스 배리어 막을 형성해도 되고, 특히 가스 배리어성이 낮은 합성 수지제의 판, 필름 또는 시트를 기판(101)으로 사용하는 경우에는 가스 배리어 막을 형성하는 것이 바람직하다.
2-3. 유기 전계 발광 소자에 있어서의 양극
양극(102)은, 발광층(105)에 정공을 주입하는 역할을 한다. 또한, 양극(102)과 발광층(105)과의 사이에 정공 주입층(103) 및 정공 수송층(104) 중 적어도 하나의 층이 설치되어 있는 경우에는, 이들을 통하여 발광층(105)에 정공을 주입하게 된다.
양극(102)을 형성하는 재료로서는, 무기 화합물 및 유기 화합물을 들 수 있다. 무기 화합물로서는, 예를 들면, 금속(알루미늄, 금, 은, 니켈, 팔라듐, 크롬 등), 금속 산화물(인듐의 산화물, 주석의 산화물, 인듐-주석 산화물(ITO), 인듐-아연 산화물(IZO) 등), 할로겐화 금속(요오드화 구리 등), 황화 구리, 카본블랙, ITO 유리나 네사 유리 등을 들 수 있다. 유기 화합물로서는, 예를 들면, 폴리(3-메틸티오펜) 등의 폴리티오펜, 폴리피롤, 폴리아닐린 등의 도전성 폴리머 등을 들 수 있다. 그 밖에, 유기 EL 소자의 양극으로서 사용되고 있는 물질 중에서 적절히 선택하여 사용할 수 있다.
2-4. 유기 전계 발광 소자에 있어서의 정공 주입층, 정공 수송층
정공 주입층(103)은, 양극(102)으로부터 이동해 오는 정공을, 효율적으로 발광층(105) 내 또는 정공 수송층(104) 내로 주입하는 역할을 한다. 정공 수송층(104)은, 양극(102)으로부터 주입된 정공 또는 양극(102)으로부터 정공 주입층(103)을 통하여 주입된 정공을, 효율적으로 발광층(105)으로 수송하는 역할을 한다. 정공 주입층(103) 및 정공 수송층(104)은, 각각, 정공 주입·수송 재료의 1종 또는 2종 이상을 적층 또는 혼합에 의해 형성된다. 또한, 정공 주입·수송 재료에 염화철(III)과 같은 무기염을 첨가하여 층을 형성해도 된다.
정공 주입·수송성 물질로서는 전계가 부여된 전극 사이에서 정극(正極)으로부터의 정공을 효율적으로 주입·수송하는 것이 필요하고, 정공 주입 효율이 높고, 주입된 정공을 효율적으로 수송하는 것이 바람직하다. 그러기 위해서는 이온화 포텐셜이 작고, 게다가 정공 이동도가 크고, 더욱 안정성이 우수하며, 트랩이 되는 불순물이 제조시 및 사용시에 발생하기 어려운 물질인 것이 바람직하다.
정공 주입층(103) 및 정공 수송층(104)을 형성하는 재료로서는, 광도전 재료에 있어서, 정공의 전하 수송 재료로서 종래부터 관용되고 있는 화합물, p형 반도체, 유기 EL 소자의 정공 주입층 및 정공 수송층에 사용되고 있는 공지의 화합물 중에서 임의의 화합물을 선택하여 사용할 수 있다. 이들의 구체예는, 카르바졸 유도체(N-페닐카르바졸, 폴리비닐카르바졸 등), 비스(N-아릴카르바졸) 또는 비스(N-알킬카르바졸) 등의 비스카르바졸 유도체, 트리아릴아민 유도체(방향족 제3급 아미노를 주사슬 또는 측사슬에 갖는 폴리머, 1,1-비스(4-디-p-톨릴아미노페닐)시클로헥산, N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4'-디아미노비페닐, N,N'-디페닐-N,N'-디나프틸-4,4'-디아미노비페닐, N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4'-디페닐-1,1'-디아민, N,N'-디나프틸-N,N'-디페닐-4,4'-디페닐-1,1'-디아민, N4,N4'-디페닐-N4,N4'-비스(9-페닐-9H-카르바졸-3-일)-[1,1'-비페닐]-4,4'-디아민, N4,N4,N4',N4'-테트라([1,1'-비페닐]-4-일)-[1,1'-비페닐]-4,4'-디아민, 4,4',4"-트리스(3-메틸페닐(페닐)아미노)트리페닐아민 등의 트리페닐아민 유도체, 스타버스트아민 유도체 등), 스틸벤 유도체, 프탈로시아닌 유도체(무금속, 구리 프탈로시아닌 등), 피라졸린 유도체, 히드라존계 화합물, 벤조푸란 유도체나 티오펜 유도체, 옥사디아졸 유도체, 퀴녹살린 유도체(예를 들면, 1,4,5,8,9,12-헥사아자트리페닐렌-2,3,6,7,10,11-헥사카르보니트릴 등), 포르피린 유도체 등의 복소환 화합물, 폴리실란 등이다. 폴리머계에서는 상기 단량체를 측사슬에 갖는 폴리카보네이트나 스티렌 유도체, 폴리비닐카르바졸 및 폴리실란 등이 바람직하지만, 발광 소자의 제작에 필요한 박막을 형성하고, 양극으로부터 정공을 주입할 수 있으며, 나아가 정공을 수송할 수 있는 화합물이라면 특별히 한정되지 않는다.
또한, 유기 반도체의 도전성은, 그 도핑에 의해, 강한 영향을 받는 것도 알려져 있다. 이와 같은 유기 반도체 매트릭스 물질은, 전자 공여성이 양호한 화합물, 또는, 전자 수용성이 양호한 화합물로 구성되어 있다. 전자 공여 물질의 도핑을 위해, 테트라시아노퀴논디메탄(TCNQ) 또는 2,3,5,6-테트라플루오로테트라시아노-1,4-벤조퀴논디메탄(F4TCNQ) 등의 강한 전자 수용체가 알려져 있다(예를 들면, 문헌 「M.Pfeiffer, A.Beyer, T.Fritz, K.Leo, Appl.Phys.Lett., 73(22), 3202-3204(1998)」 및 문헌 「J.Blochwitz, M.Pfeiffer, T.Fritz, K.Leo, Appl.Phys.Lett., 73(6), 729-731(1998)」을 참조). 이들은, 전자 공여형 베이스 물질(정공 수송 물질)에 있어서의 전자 이동 프로세스에 의해, 소위 정공을 생성한다. 정공의 수 및 이동도에 따라, 베이스 물질의 전도성이, 상당히 크게 변화된다. 정공 수송 특성을 갖는 매트릭스 물질로서는, 예를 들면 벤지딘 유도체(TPD 등) 또는 스타버스트아민 유도체(TDATA 등), 또는, 특정한 금속 프탈로시아닌(특히, 아연 프탈로시아닌(ZnPc) 등)이 알려져 있다(일본특허공개 2005-167175호 공보).
상술한 정공 주입층용 재료 및 정공 수송층용 재료는, 이들에 반응성 치환기가 치환된 반응성 화합물을 모노머로 하여 고분자화시킨 고분자 화합물, 또는 그 고분자 가교체, 또는, 주사슬형 고분자와 상기 반응성 화합물을 반응시킨 펜던트형 고분자 화합물, 또는 그 펜던트형 고분자 가교체로서도, 정공층용 재료에 사용할 수 있다. 이 경우의 반응성 치환기로서는, 상기 식(1)으로 나타내어지는 다환 방향족 화합물에서의 설명을 인용할 수 있다.
이와 같은 고분자 화합물 및 고분자 가교체의 용도의 상세에 대해서는 후술한다.
2-5. 유기 전계 발광 소자에 있어서의 발광층
발광층(105)은, 전계가 부여된 전극 사이에 있어서, 양극(102)으로부터 주입된 정공과, 음극(108)으로부터 주입된 전자를 재결합시킴으로써 발광하는 층이다. 발광층(105)을 형성하는 재료는, 정공과 전자와의 재결합에 의해 여기되어서 발광하는 화합물(발광성 화합물)이면 되고, 안정한 박막 형상을 형성할 수 있으며, 또한, 고체 상태에서 강한 발광(형광) 효율을 나타내는 화합물이 바람직하고, 사용된다.
본 발명의 유기 전계 발광 소자에 포함되는 발광층은, 이미팅 도펀트와, 정공 수송성 호스트 재료, 전자 수송성 호스트 재료, 및 어시스팅 도펀트 재료로 이루어지는 군에서 선택되는 적어도 2개를 포함한다. 발광층은 단일층이어도 복수층으로 되어 있어도 어느 것이라도 되고, 각각 발광층용 재료에 의해 형성된다. 발광층이 복수층으로 되어 있는 경우, 본 발명의 유기 전계 발광 소자에 있어서는 임의의 하나의 층이 상기의 구성 재료를 포함하는 것이면 된다. 발광층은 단일층인 것이 바람직하다. 이미팅 도펀트는 호스트 재료의 전체적으로 포함되어 있어도, 부분적으로 포함되어 있어도, 어느 쪽이어도 된다. 도핑 방법으로서는, 호스트 재료와의 공증착법에 의해 형성할 수 있지만, 호스트 재료와 미리 혼합하고 나서 동시에 증착해도 된다.
호스트 재료의 사용량은 호스트 재료의 종류에 따라 다르고, 그 호스트 재료의 특성에 맞춰서 정하면 된다. 호스트 재료의 사용량의 기준은, 바람직하게는 발광층용 재료 전 질량의 50~99.999질량%이며, 보다 바람직하게는 80~99.95질량%이며, 보다 더 바람직하게는 90~99.9질량%이다. 호스트 재료가, 정공 수송성 호스트 재료와 전자 수송성 호스트 재료와의 조합인 경우는, 호스트 재료의 사용량은 정공 수송성 호스트 재료의 사용량과 전자 수송성 호스트 재료의 사용량을 합한 질량이다. 정공 수송성 호스트 재료와 전자 수송성 호스트 재료와의 사용량의 비는 질량비로 1:9~9:1이면 되고, 4:6~6;4인 것이 바람직하고, 대략 1:1인 것이 보다 바람직하다.
이미팅 도펀트의 사용량은 이미팅 도펀트의 종류에 따라 다르고, 그 특성에 맞춰서 정하면 된다. 이미팅 도펀트의 사용량의 기준은, 바람직하게는 발광층용 재료 전 질량의 0.001~50질량%이며, 보다 바람직하게는 0.05~20질량%이며, 보다 더 바람직하게는 0.1~10질량%이다. 상기의 범위라면, 예를 들면, 농도 소광 현상을 방지할 수 있다고 하는 점에서 바람직하다.
이미팅 도펀트에 더해서 어시스팅 도펀트(열활성형 지연 형광체 또는 인광 재료)를 사용하는 유기 전계 발광 소자에 있어서는, 이미팅 도펀트 재료의 사용량은 저농도인 쪽이 농도 소광 현상을 방지할 수 있다는 점에서 바람직하다. 어시스팅 도펀트의 사용량이 고농도인 쪽이 에너지 이동의 효율의 점에서는 바람직하다. 어시스팅 도펀트의 사용량이 고농도인 쪽이 열활성형 지연 형광 기구의 효율의 점에서는 바람직하다. 어시스팅 도펀트로서 열활성형 지연 형광체를 사용한 유기 전계 발광 소자에 있어서는, 어시스팅 도펀트의 열활성형 지연 형광 기구의 효율의 점에서는, 어시스팅 도펀트의 사용량에 비해 이미팅 도펀트의 사용량이 저농도인 것이 바람직하다.
어시스팅 도펀트 재료가 사용되는 경우에 있어서의, 호스트 재료, 어시스팅 도펀트 재료 및 이미팅 도펀트 재료의 사용량의 기준은, 각각, 발광층용 재료 전 질량에 대하여 40~99질량%, 59~1질량% 및 20~0.001질량%이며, 바람직하게는, 각각, 60~95질량%, 39~5질량% 및 10~0.01질량%이며, 보다 바람직하게는, 70~90질량%, 29~10질량% 및 5~0.05질량%이다.
2-6. 유기 전계 발광 소자에 있어서의 전자 주입층, 전자 수송층
전자 주입층(107)은, 음극(108)으로부터 이동해 오는 전자를, 효율적으로 발광층(105) 내 또는 전자 수송층(106) 내로 주입하는 역할을 한다. 전자 수송층(106)은, 음극(108)으로부터 주입된 전자 또는 음극(108)으로부터 전자 주입층(107)을 통하여 주입된 전자를, 효율적으로 발광층(105)으로 수송하는 역할을 한다. 전자 수송층(106) 및 전자 주입층(107)은, 각각, 전자 수송·주입 재료의 1종 또는 2종 이상을 적층, 혼합하거나, 전자 수송·주입 재료와 고분자 결착제의 혼합물에 의해 형성된다.
전자 주입·수송층이란, 음극으로 전자가 주입되고, 또한 전자를 수송하는 것을 담당하는 층이며, 전자 주입 효율이 높고, 주입된 전자를 효율적으로 수송하는 것이 바람직하다. 이를 위해서는 전자 친화력이 크고, 게다가 전자 이동도가 크고, 나아가 안정성이 우수하고, 트랩이 되는 불순물이 제조시 및 사용시에 발생하기 어려운 물질인 것이 바람직하다. 그러나, 정공과 전자의 수송 밸런스를 고려한 경우, 양극으로의 정공이 재결합하지 않고 음극 측으로 흐르는 것을 효율적으로 저지할 수 있는 역할을 주로 하는 경우에는, 전자 수송 능력이 그다지 높지 않더라도, 발광 효율을 향상시키는 효과는 전자 수송 능력이 높은 재료와 동등하게 갖는다. 따라서, 본 실시 형태에 있어서의 전자 주입·수송층은, 정공의 이동을 효율적으로 저지할 수 있는 층의 기능도 포함되어도 된다.
전자 수송층(106) 또는 전자 주입층(107)을 형성하는 재료(전자 수송 재료)로서는, 광도전 재료에 있어서 전자 전달 화합물로서 종래부터 관용되고 있는 화합물, 유기 EL 소자의 전자 주입층 및 전자 수송층에 사용되고 있는 공지의 화합물 중에서 임의로 선택하여 사용할 수 있다.
전자 수송층 또는 전자 주입층에 사용되는 재료로서는, 탄소, 수소, 산소, 황, 규소 및 인 중에서 선택되는 1종 이상의 원자로 구성되는 방향족환 또는 복소 방향족환으로 이루어지는 화합물, 피롤 유도체 및 그 축합환 유도체 및 전자 수용성 질소를 갖는 금속 착체 중에서 선택되는 적어도 1종을 함유하는 것이 바람직하다. 구체적으로는, 나프탈렌, 안트라센 등의 축합환계 방향족환 유도체, 4,4'-비스(디페닐에테닐)비페닐로 대표되는 스티릴계 방향족환 유도체, 페리논 유도체, 쿠마린 유도체, 나프탈이미드 유도체, 안트라퀴논이나 디페노퀴논 등의 퀴논 유도체, 포스핀옥사이드 유도체, 아릴니트릴 유도체 및 인돌 유도체 등을 들 수 있다. 전자 수용성 질소를 갖는 금속 착체로서는, 예를 들면, 히드록시페닐옥사졸 착체 등의 히드록시아졸 착체, 아조메틴 착체, 트로폴론 금속 착체, 플라보놀 금속 착체 및 벤조퀴놀린 금속 착체 등을 들 수 있다. 이들 재료는 단독으로도 사용되지만, 다른 재료와 혼합하여 사용해도 상관없다.
또한, 다른 전자 전달 화합물의 구체예로서, 피리딘 유도체, 나프탈렌 유도체, 안트라센 유도체, 페난트롤린 유도체, 페리논 유도체, 쿠마린 유도체, 나프탈이미드 유도체, 안트라퀴논 유도체, 디페노퀴논 유도체, 디페닐퀴논 유도체, 페릴렌 유도체, 옥사디아졸 유도체(1,3-비스[(4-t-부틸페닐)1,3,4-옥사디아졸릴]페닐렌 등), 티오펜 유도체, 트리아졸 유도체(N-나프틸-2,5-디페닐-1,3,4-트리아졸 등), 티아디아졸 유도체, 옥신 유도체의 금속 착체, 퀴놀리놀계 금속 착체, 퀴녹살린 유도체, 퀴녹살린 유도체의 폴리머, 벤자졸류 화합물, 갈륨 착체, 피라졸 유도체, 퍼플루오로화 페닐렌 유도체, 트리아진 유도체, 피라진 유도체, 벤조퀴놀린 유도체(2,2'-비스(벤조[h]퀴놀린-2-일)-9,9'-스피로플루오렌 등), 이미다조피리딘 유도체, 보란 유도체, 벤조이미다졸 유도체(트리스(N-페닐벤조이미다졸-2-일)벤젠 등), 벤조옥사졸 유도체, 벤조티아졸 유도체, 퀴놀린 유도체, 터피리딘 등의 올리고 피리딘 유도체, 비피리딘 유도체, 터피리딘 유도체(1,3-비스(2,2':6',2"-터피리딘-4'-일)벤젠 등), 나프티리딘 유도체(비스(1-나프틸)-4-(1,8-나프티리딘-2-일)페닐 포스핀옥사이드 등), 알다진 유도체, 카르바졸 유도체, 인돌 유도체, 포스핀옥사이드 유도체, 비스스티릴 유도체 등을 들 수 있다.
또한, 전자 수용성 질소를 갖는 금속 착체를 사용할 수도 있고, 예를 들면, 퀴놀리놀계 금속 착체나 히드록시페닐옥사졸 착체 등의 히드록시아졸 착체, 아조메틴 착체, 트로폴론 금속 착체, 플라보놀 금속 착체 및 벤조퀴놀린 금속 착체 등을 들 수 있다.
상술한 재료는 단독으로도 사용되지만, 다른 재료와 혼합하여 사용해도 상관없다.
상술한 재료 중에서도, 보란 유도체, 피리딘 유도체, 플루오란텐 유도체, BO계 유도체, 안트라센 유도체, 벤조플루오렌 유도체, 포스핀옥사이드 유도체, 피리미딘 유도체, 아릴니트릴 유도체, 트리아진 유도체, 벤조이미다졸 유도체, 페난트롤린 유도체, 및 퀴놀리놀계 금속 착체가 바람직하다.
<환원성 물질>
전자 수송층 또는 전자 주입층에는, 전자 수송층 또는 전자 주입층을 형성하는 재료를 환원할 수 있는 물질을 더 포함하고 있어도 된다. 이 환원성 물질은, 일정한 환원성을 가지는 물질이라면, 다양한 물질이 사용되고, 예를 들면, 알칼리 금속, 알칼리토류 금속, 희토류 금속, 알칼리 금속의 산화물, 알칼리 금속의 할로겐화물, 알칼리토류 금속의 산화물, 알칼리토류 금속의 할로겐화물, 희토류 금속의 산화물, 희토류 금속의 할로겐화물, 알칼리 금속의 유기 착체, 알칼리토류 금속의 유기 착체 및 희토류 금속의 유기 착체로 이루어지는 군에서 선택되는 적어도 하나를 바람직하게 사용할 수 있다.
바람직한 환원성 물질로서는, Na(일함수 2.36eV), K(일함수 2.28eV), Rb(일함수 2.16eV) 또는 Cs(일함수 1.95eV) 등의 알칼리 금속이나, Ca(일함수 2.9eV), Sr(일함수 2.0~2.5eV) 또는 Ba(일함수 2.52eV) 등의 알칼리토류 금속을 들 수 있으며, 일함수가 2.9eV 이하의 물질이 특히 바람직하다. 이들 중, 더 바람직한 환원성 물질은, K, Rb 또는 Cs의 알칼리 금속이며, 보다 더 바람직하게는 Rb 또는 Cs이며, 가장 바람직한 것은 Cs이다. 이들 알칼리 금속은, 특히 환원 능력이 높고, 전자 수송층 또는 전자 주입층을 형성하는 재료에의 비교적 소량의 첨가에 의해, 유기 EL 소자에 있어서의 발광 휘도의 향상이나 장수명화가 도모된다. 또한, 일함수가 2.9eV 이하의 환원성 물질로서, 이들 2종 이상의 알칼리 금속의 조합도 바람직하고, 특히, Cs를 포함한 조합, 예를 들면, Cs과 Na, Cs과 K, Cs과 Rb, 또는 Cs과 Na과 K과의 조합이 바람직하다. Cs를 포함함으로써, 환원 능력을 효율적으로 발휘할 수 있고, 전자 수송층 또는 전자 주입층을 형성하는 재료에의 첨가에 의해, 유기 EL 소자에 있어서의 발광 휘도의 향상이나 장수명화가 도모된다.
상술한 전자 주입층용 재료 및 전자 수송층용 재료는, 이들에 반응성 치환기가 치환된 반응성 화합물을 모노머로 하여 고분자화시킨 고분자 화합물, 또는 그 고분자 가교체, 또는, 주사슬형 고분자와 상기 반응성 화합물을 반응시킨 펜던트형 고분자 화합물, 또는 그 펜던트형 고분자 가교체로서도, 전자층용 재료로 사용할 수 있다. 이 경우의 반응성 치환기로서는, 상기 식(1)으로 나타내어지는 다환 방향족 화합물에서의 설명을 인용할 수 있다.
이와 같은 고분자 화합물 및 고분자 가교체의 용도의 상세에 대해서는 후술한다.
2-7. 유기 전계 발광 소자에 있어서의 음극
음극(108)은, 전자 주입층(107) 및 전자 수송층(106)을 통하여, 발광층(105)에 전자를 주입하는 역할을 한다.
음극(108)을 형성하는 재료로서는, 전자를 유기층에 효율적으로 주입할 수 있는 물질이라면 특별히 한정되지 않지만, 양극(102)을 형성하는 재료와 동일한 재료를 사용할 수 있다. 그 중에서도, 주석, 인듐, 칼슘, 알루미늄, 은, 구리, 니켈, 크롬, 금, 백금, 철, 아연, 리튬, 나트륨, 칼륨, 세슘 및 마그네슘 등의 금속 또는 그들의 합금(마그네슘-은 합금, 마그네슘-인듐 합금, 불화리튬/알루미늄 등의 알루미늄-리튬 합금 등) 등이 바람직하다. 전자 주입 효율을 높여 소자 특성을 향상시키기 위해서는, 리튬, 나트륨, 칼륨, 세슘, 칼슘, 마그네슘 또는 이들 저(低)일함수 금속을 포함하는 합금이 유효하다. 그러나, 이들 저일함수 금속은 일반적으로 대기 중에서 불안정한 경우가 많다. 이러한 점을 개선하기 위해, 예를 들면, 유기층에 미량의 리튬, 세슘이나 마그네슘을 도핑하여, 안정성이 높은 전극을 사용하는 방법이 알려져 있다. 그 밖의 도펀트로서는, 불화리튬, 불화세슘, 산화리튬 및 산화세슘과 같은 무기염도 사용할 수 있다. 단, 이들에 한정되지 않는다.
나아가, 전극 보호를 위해 백금, 금, 은, 구리, 철, 주석, 알루미늄 및 인듐 등의 금속, 또는 이들 금속을 사용한 합금, 그리고 실리카, 티타니아 및 질화규소 등의 무기물, 폴리비닐알콜, 염화비닐, 탄화수소계 고분자 화합물 등을 적층하는 것을, 바람직한 예로서 들 수 있다. 이들 전극의 제작법도, 저항 가열, 전자빔 증착, 스퍼터링, 이온 플레이팅 및 코팅 등, 도통(導通)을 취할 수 있으면 특별히 제한되지 않는다.
3. 유기 전계 발광 소자의 제작 방법
유기 EL 소자를 구성하는 각 층은, 각 층을 구성하는 재료를 증착법, 저항 가열 증착, 전자빔 증착, 스퍼터링, 분자 적층법, 인쇄법, 스핀 코트법 또는 캐스트법, 코팅법 등의 방법으로 박막으로 함으로써, 형성할 수 있다. 이와 같이 하여 형성된 각 층의 막 두께에 대해서는 특별히 한정은 없고, 재료의 성질에 따라 적절히 설정할 수 있지만, 통상 2nm~5000nm의 범위이다. 막 두께는 통상, 수정 발진식 막 두께 측정 장치 등으로 측정할 수 있다. 증착법을 사용하여 박막화하는 경우, 그 증착 조건은, 재료의 종류, 막의 목적으로 하는 결정 구조 및 회합 구조 등에 따라 다르다. 증착 조건은 일반적으로, 보트 가열 온도 +50~+400℃, 진공도 10-6~10-3Pa, 증착 속도 0.01~50nm/초, 기판 온도 -150~+300℃, 막 두께 2nm~5㎛의 범위에서 적절히 설정하는 것이 바람직하다.
이와 같이 하여 얻어진 유기 EL 소자에 직류 전압을 인가하는 경우에는, 양극을 +, 음극을 -의 극성으로 하여 인가하면 되고, 전압 2~40V 정도를 인가하면, 투명 또는 반투명의 전극 측(양극 또는 음극, 및 양쪽)에서 발광을 관측할 수 있다. 또한, 이 유기 EL 소자는, 펄스 전류나 교류 전류를 인가한 경우에도 발광한다. 또한, 인가하는 교류의 파형은 임의여도 된다.
다음으로, 유기 EL 소자를 제작하는 방법의 일 예로서, 양극/정공 주입층/정공 수송층/호스트 재료와 도펀트 재료로 이루어지는 발광층/전자 수송층/전자 주입층/음극으로 이루어지는 유기 EL 소자의 제작법에 대하여 설명한다.
<증착법>
적당한 기판 상에, 양극 재료의 박막을 증착법 등에 의해 형성시켜 양극을 제작한 후, 이 양극 상에 정공 주입층 및 정공 수송층의 박막을 형성시킨다. 이 위로 호스트 재료와 도펀트 재료를 공증착하고 박막을 형성시켜 발광층으로 하고 이 발광층 상에 전자 수송층, 전자 주입층을 형성시키고, 또한 음극용 물질로 이루어지는 박막을 증착법 등에 의해 형성시켜 음극으로 함으로써, 원하는 유기 EL 소자가 얻어진다. 또한, 상술한 유기 EL 소자의 제작에 있어서는, 제작 순서를 반대로 하여, 음극, 전자 주입층, 전자 수송층, 발광층, 정공 수송층, 정공 주입층, 양극의 순으로 제작하는 것도 가능하다.
<습식 성막법>
습식 성막법은, 유기 EL 소자의 각 유기층을 형성할 수 있는 저분자 화합물을 액상의 유기층 형성용 조성물로서 준비하여, 이를 사용함으로써 실시된다. 이 저분자 화합물을 용해하는 적당한 유기 용매가 없을 경우에는, 해당 저분자 화합물에 반응성 치환기를 치환시킨 반응성 화합물로서 용해성 기능을 가지는 다른 모노머나 주사슬형 고분자와 함께 고분자화시킨 고분자 화합물 등으로부터 유기층 형성용 조성물을 준비해도 된다.
습식 성막법은, 일반적으로는, 기판에 유기층 형성용 조성물을 도포하는 도포 공정 및 도포된 유기층 형성용 조성물로부터 용매를 제거하는 건조 공정을 거침으로써 도막을 형성한다. 상기 고분자 화합물이 가교성 치환기를 갖는 경우(이를 가교성 고분자 화합물이라고도 함)에는, 이 건조 공정에 의해 더 가교하여 고분자 가교체가 형성된다. 도포 공정의 차이에 따라, 스핀 코터를 사용하는 방법을 스핀 코트법, 슬릿 코터를 사용하는 방법을 슬릿 코트법, 판을 사용하는 방법을 그라비아, 오프셋, 리버스 오프셋, 플렉소 인쇄법, 잉크젯 프린터를 사용하는 방법을 잉크젯법, 안개 형상으로 내뿜는 방법을 스프레이법이라고 부른다. 건조 공정에는, 풍건, 가열, 감압 건조 등의 방법이 있다. 건조 공정은 1회만 행해도 되고, 다른 방법이나 조건을 이용하여 복수 회 행 해도 된다. 또한, 예를 들면, 감압 하에서의 소성과 같이, 다른 방법을 병용해도 된다.
습식 성막법이란 용액을 사용한 성막법으로서, 예를 들면, 일부의 인쇄법(잉크젯법), 스핀 코트법 또는 캐스트법, 코팅법 등이다. 습식 성막법은 진공 증착법과 달리 고가인 진공 증착 장치를 사용할 필요가 없고, 대기압 하에서 성막할 수 있다. 추가로, 습식 성막법은 대면적화나 연속 생산이 가능하여, 제조 비용의 저감으로 이어진다.
한편, 진공 증착법과 비교하는 경우에는, 습식 성막법은 적층화가 어려운 경우가 있다. 습식 성막법을 이용하여 적층막을 제작하는 경우, 상층의 조성물에 의한 하층의 용해를 방지할 필요가 있어, 용해성을 제어한 조성물, 하층의 가교 및 직교 용매(Orthogonal solvent, 서로 용해되지 않는 용매) 등이 구사된다. 그러나, 이들 기술을 사용하더라도, 모든 막의 도포에 습식 성막법을 이용하는 것은 어려운 경우가 있다.
이에, 일반적으로는, 몇 개의 층만을 습식 성막법을 이용하고, 나머지를 진공 증착법으로 유기 EL 소자를 제작하는 방법이 채용된다.
예를 들면, 습식 성막법을 일부 적용하여 유기 EL 소자를 제작하는 절차를 이하에 나타낸다.
(절차 1) 양극의 진공 증착법에 의한 성막
(절차 2) 정공 주입층용 재료를 포함하는 정공 주입층 형성용 조성물의 습식 성막법에 의한 성막
(절차 3) 정공 수송층용 재료를 포함하는 정공 수송층 형성용 조성물의 습식 성막법에 의한 성막
(절차 4) 호스트 재료와 도펀트 재료를 포함하는 발광층 형성용 조성물의 습식 성막법에 의한 성막
(절차 5) 전자 수송층의 진공 증착법에 의한 성막
(절차 6) 전자 주입층의 진공 증착법에 의한 성막
(절차 7) 음극의 진공 증착법에 의한 성막
이 절차를 거침으로써, 양극/정공 주입층/정공 수송층/호스트 재료와 도펀트 재료로 이루어지는 발광층/전자 수송층/전자 주입층/음극으로 이루어지는 유기 EL 소자가 얻어진다.
물론, 전자 수송층 및 전자 주입층에 대해서도, 각각 전자 수송층용 재료 및 전자 주입층용 재료를 포함하는 층형성용 조성물을 사용하여 습식 성막법에 의해 성막해도 된다. 이 때, 하층의 발광층의 용해를 막는 수단, 또는 상기 절차와는 반대로 음극 측에서부터 성막하는 수단을 사용하는 것이 바람직하다.
<그 밖의 성막법>
유기층 형성용 조성물의 성막화에는, 레이저 가열 묘화법(LITI)을 이용할 수 있다. LITI란 기재에 부착시킨 화합물을 레이저로 가열 증착하는 방법으로, 기재에 도포되는 재료에 유기층 형성용 조성물을 사용할 수 있다.
<임의의 공정>
성막의 각 공정의 전후에, 적절한 처리 공정, 세정 공정 및 건조 공정을 적절히 넣어도 된다. 처리 공정으로서는, 예를 들면, 노광 처리, 플라스마 표면 처리, 초음파 처리, 오존 처리, 적절한 용매를 사용한 세정 처리 및 가열 처리 등을 들 수 있다. 또한, 뱅크를 제작하는 일련의 공정도 들 수 있다.
뱅크의 제작에는 포토리소그래피 기술을 이용할 수 있다. 포토리소그래피의 이용 가능한 뱅크 재료로서는, 포지티브형 레지스트 재료 및 네가티브형 레지스트 재료를 사용할 수 있다. 또한, 잉크젯법, 그라비아 오프셋 인쇄, 리버스 오프셋 인쇄, 스크린 인쇄 등의 패턴 가능한 인쇄법도 사용할 수 있다. 이 때는 영구 레지스트 재료를 사용할 수도 있다.
뱅크에 사용되는 재료로서는, 다당류 및 그 유도체, 히드록실을 가지는 에틸렌성 모노머의 단독 중합체 및 공중합체, 생체 고분자 화합물, 폴리아크릴로일 화합물, 폴리에스테르, 폴리스티렌, 폴리이미드, 폴리아미드이미드, 폴리에테르이미드, 폴리술피드, 폴리설폰, 폴리페닐렌, 폴리페닐에테르, 폴리우레탄, 에폭시(메타)아크릴레이트, 멜라민(메타)아크릴레이트, 폴리올레핀, 환상 폴리올레핀, 아크릴로니트릴-부타디엔-스티렌 공중합 폴리머(ABS), 실리콘 수지, 폴리염화비닐, 염소화 폴리에틸렌, 염소화 폴리프로필렌, 폴리아세테이트, 폴리노보넨, 합성 고무, 폴리플루오로비닐리덴, 폴리테트라플루오로에틸렌, 폴리헥사플루오로프로필렌 등의 불화 폴리머, 플루오로올레핀-히드로카본올레핀의 공중합 폴리머, 플루오로카본 폴리머를 들 수 있지만, 그것에만 한정되지 않는다.
<습식 성막법에 사용되는 유기층 형성용 조성물>
유기층 형성용 조성물은, 유기 EL 소자의 각 유기층을 형성할 수 있는 저분자 화합물, 또는 해당 저분자 화합물을 고분자화시킨 고분자 화합물을 유기 용매에 용해시켜 얻어진다. 예를 들면, 발광층 형성용 조성물은, 제1 성분으로서 적어도 1종의 도펀트 재료인 다환 방향족 화합물(또는 그 고분자 화합물)과, 제2 성분으로서 적어도 1종의 호스트 재료와, 제3 성분으로서 적어도 1종의 유기 용매를 함유한다. 제1 성분은, 해당 조성물로부터 얻어지는 발광층의 도펀트 성분으로서 기능하고, 제2 성분은 발광층의 호스트 성분으로서 기능한다. 제3 성분은, 조성물 중의 제1 성분과 제2 성분을 용해하는 용매로서 기능하고, 도포시에는 제3 성분 자체의 제어된 증발 속도에 의해 평활하고 균일한 표면 형상을 부여한다.
<유기 용매>
유기층 형성용 조성물은 적어도 1종의 유기 용매를 포함한다. 성막 시에 유기 용매의 증발 속도를 제어함으로써, 성막성 및 도막의 결함 유무, 표면 거칠기, 평활성을 제어 및 개선할 수 있다. 또한, 잉크젯법을 사용한 성막 시는, 잉크젯 헤드의 핀홀에서의 메니스커스 안정성을 제어하여, 토출성을 제어·개선할 수 있다. 추가로, 막의 건조 속도 및 유도체 분자의 배향을 제어함으로써, 해당 유기층 형성용 조성물로부터 얻어지는 유기층을 갖는 유기 EL 소자의 전기 특성, 발광 특성, 효율, 및 수명을 개선할 수 있다.
(1) 유기 용매의 물성
적어도 1종의 유기 용매의 비점은, 130℃~300℃이며, 140℃~270℃가 보다 바람직하고, 150℃~250℃가 보다 더 바람직하다. 비점이 130℃보다 높을 경우, 잉크젯의 토출성의 관점에서 바람직하다. 또한, 비점이 300℃보다 낮을 경우, 도막의 결함, 표면 거칠기, 잔류 용매 및 평활성의 관점에서 바람직하다. 유기 용매는, 양호한 잉크젯의 토출성, 성막성, 평활성 및 낮은 잔류 용매의 관점에서, 2종 이상의 유기 용매를 포함하는 구성이 보다 바람직하다. 한편, 경우에 따라서는, 운반성 등을 고려하여, 유기층 형성용 조성물 중으로부터 용매를 제거함으로써 고형 상태로 한 조성물이라도 된다.
나아가, 유기 용매가 용질 중 적어도 1종에 대한 양용매(GS)과 빈용매(PS)를 포함하고, 양용매(GS)의 비점(BPGS)이 빈용매(PS)의 비점(BPPS)보다 낮은, 구성이 특히 바람직하다.
고비점의 빈용매를 가함으로써 성막 시에 저비점의 양용매가 먼저 휘발하고, 조성물 중의 함유물의 농도와 빈용매의 농도가 증가하여 신속한 성막이 촉진된다. 이에 의해, 결함이 적고, 표면 거칠기가 작은, 평활성이 높은 도막이 얻어진다.
용해도의 차(SGS-SPS)는, 1% 이상인 것이 바람직하고, 3% 이상인 것이 보다 바람직하고, 5% 이상인 것이 보다 더 바람직하다. 비점의 차(BPPS-BPGS)는, 10℃ 이상인 것이 바람직하고, 30℃ 이상인 것이 보다 바람직하고, 50℃ 이상인 것이 보다 더 바람직하다.
유기 용매는, 성막 후에, 진공, 감압, 가열 등의 건조 공정에 의해 도막에서 제거된다. 가열을 행하는 경우, 도포 성막성 개선의 관점에서는, 용질 중 적어도 1종의 유리 전이 온도(Tg) +30℃ 이하로 행하는 것이 바람직하다. 또한, 잔류 용매의 삭감 관점에서는, 용질 중 적어도 1종의 유리 전이점(Tg) -30℃ 이상으로 가열하는 것이 바람직하다. 가열 온도가 유기 용매의 비점보다 낮아도 막이 얇기 때문에, 유기 용매는 충분히 제거된다. 또한, 다른 온도에서 복수 회 건조를 행해도 되고, 복수의 건조 방법을 병용해도 된다.
(2)유기 용매의 구체예
유기층 형성용 조성물에 사용되는 유기 용매로서는, 알킬벤젠계 용매, 페닐에테르계 용매, 알킬에테르계 용매, 환상 케톤계 용매, 지방족 케톤계 용매, 단환성 케톤계 용매, 디에스테르 골격을 가지는 용매 및 함불소계 용매 등을 들 수 있으며, 구체예로서, 펜타놀, 헥사놀, 헵타놀, 옥타놀, 노나놀, 데카놀, 운데카놀, 도데카놀, 테트라데카놀, 헥산-2-올, 헵탄-2-올, 옥탄-2-올, 데칸-2-올, 도데칸-2-올, 시클로헥사놀, α-터피네올, β-터피네올, γ-터피네올, δ-터피네올, 터피네올(혼합물), 에틸렌글리콜모노메틸에테르아세테이트, 프로필렌글리콜모노메틸에테르아세테이트, 디에틸렌글리콜다이메틸에테르, 디프로필렌글리콜디메틸에테르, 디에틸렌글리콜에틸메틸에테르, 디에틸렌글리콜이소프로필메틸에테르, 디프로필렌글리콜모노메틸에테르, 디에틸렌글리콜디에틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜부틸메틸에테르, 트리프로필렌글리콜디메틸에테르, 트리에틸렌글리콜디메틸에테르, 디에틸렌글리콜모노부틸에테르, 에틸렌글리콜모노페닐에테르, 트리에틸렌글리콜모노메틸에테르, 디에틸렌글리콜디부틸에테르, 트리에틸렌글리콜부틸메틸에테르, 폴리에틸렌글리콜디메틸에테르, 테트라에틸렌글리콜디메틸에테르, p-크실렌, m-크실렌, o-크실렌, 2,6-루티딘, 2-플루오로-m-크실렌, 3-플루오로-o-크실렌, 2-클로로벤조삼불화물, 쿠멘, 톨루엔, 2-클로로-6-플루오로톨루엔, 2-플루오로아니솔, 아니솔, 2,3-디메틸피라진, 브로모벤젠, 4-플루오로아니솔, 3-플루오로아니솔, 3-트리플루오로메틸아니솔, 메시틸렌, 1,2,4-트리메틸벤젠, t-부틸벤젠, 2-메틸아니솔, 페네톨, 벤조디옥솔, 4-메틸아니솔, s-부틸벤젠, 3-메틸아니솔, 4-플루오로-3-메틸아니솔, 시멘, 1,2,3-트리메틸벤젠, 1,2-디클로로벤젠, 2-플루오로벤조니트릴, 4-플루오로베라트롤, 2,6-디메틸아니솔, n-부틸벤젠, 3-플루오로벤조니트릴, 데칼린(데카히드로나프탈렌), 네오펜틸벤젠, 2,5-디메틸아니솔, 2,4-디메틸아니솔, 벤조니트릴, 3,5-디메틸아니솔, 디페닐에테르, 1-플루오로-3,5-디메톡시벤젠, 안식향산메틸, 이소펜틸벤젠, 3,4-디메틸아니솔, o-톨니트릴, n-아밀벤젠, 베라트롤, 1,2,3,4-테트라히드로나프탈렌, 안식향산에틸, n-헥실벤젠, 안식향산프로필, 시클로헥실벤젠, 1-메틸나프탈렌, 안식향산부틸, 2-메틸비페닐, 3-페녹시톨루엔, 2,2'-비트릴, 도데실벤젠, 디펜틸벤젠, 테트라메틸벤젠, 트리메톡시벤젠, 트리메톡시톨루엔, 2,3-디히드로벤조푸란, 1-메틸-4-(프로폭시메틸)벤젠, 1-메틸-4-(부틸옥시메틸)벤젠, 1-메틸-4-(펜틸옥시메틸)벤젠, 1-메틸-4-(헥실옥시메틸)벤젠, 1-메틸-4-(헵틸옥시메틸)벤젠, 벤질부틸에테르, 벤질펜틸에테르, 벤질헥실에테르, 벤질헵틸에테르, 벤질옥틸에테르 등을 들 수 있지만, 그것에만 한정되지 않는다. 또한, 용매는 단일로 사용해도 되고, 혼합해도 된다.
<임의 성분>
유기층 형성용 조성물은, 그 성질을 손상하지 않는 범위에서, 임의 성분을 포함하고 있어도 된다. 임의 성분으로서는, 바인더 및 계면 활성제 등을 들 수 있다.
(1) 바인더
유기층 형성용 조성물은, 바인더를 함유하고 있어도 된다. 바인더는, 성막 시에는 막을 형성함과 함께, 얻어진 막을 기판과 접합한다. 또한, 해당 유기층 형성용 조성물 중에서 다른 성분을 용해 및 분산 및 결착시키는 역할을 한다.
유기층 형성용 조성물에 사용되는 바인더로서는, 예를 들면, 아크릴 수지, 폴리에틸렌테레프탈레이트, 에틸렌-초산비닐 공중합체, 에틸렌-비닐알콜 공중합체, 아크릴로니트릴-에틸렌-스티렌 공중합체(AES) 수지, 아이오노머, 염소화 폴리에테르, 디아릴프탈레이트 수지, 불포화 폴리에스테르 수지, 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리염화비닐리덴, 폴리스티렌, 폴리초산비닐, 테프론, 아크릴로니트릴-부타디엔-스티렌 공중합체(ABS) 수지, 아크릴로니트릴-스티렌 공중합체(AS) 수지, 페놀 수지, 에폭시 수지, 멜라민 수지, 요소 수지, 알키드 수지, 폴리우레탄, 및, 상기 수지 및 폴리머의 공중합체를 들 수 있지만, 그것에만 한정되지 않는다.
유기층 형성용 조성물에 사용되는 바인더는, 1종만이어도 되고 복수종을 혼합하여 사용해도 된다.
(2) 계면 활성제
유기층 형성용 조성물은, 예를 들면, 유기층 형성용 조성물의 막면 균일성, 막 표면의 친용매성 및 발액성의 제어를 위해서 계면 활성제를 함유해도 된다. 계면 활성제는, 친수성기의 구조로부터 이온성 및 비이온성으로 분류되고, 나아가, 소수성기의 구조로부터 알킬계 및 실리콘계 및 불소계로 분류된다. 또한, 분자의 구조로부터, 분자량이 비교적 작고 단순한 구조를 갖는 단분자계 및 분자량이 크고 측쇄나 분기를 가지는 고분자계로 분류된다. 또한, 조성으로부터, 단일계, 2종 이상의 계면 활성제 및 기재를 혼합한 혼합계로 분류된다. 해당 유기층 형성용 조성물에 사용할 수 있는 계면 활성제로서는, 모든 종류의 계면 활성제를 사용할 수 있다.
계면 활성제로서는, 예를 들면, 폴리플로우 No.45, 폴리플로우 KL-245, 폴리플로우 No.75, 폴리플로우 No.90, 폴리플로우 No.95(상품명, 교에이샤화학공업(주)제), 디스퍼베이크(Disperbyk) 161, 디스퍼베이크 162, 디스퍼베이크 163, 디스퍼베이크 164, 디스퍼베이크 166, 디스퍼베이크 170, 디스퍼베이크 180, 디스퍼베이크 181, 디스퍼베이크 182, BYK 300, BYK 306, BYK 310, BYK 320, BYK 330, BYK 342, BYK 344, BYK 346(상품명, 빅케미·재팬(주)제), KP-341, KP-358, KP-368, KF-96-50CS, KF-50-100CS(상품명, 신에츠화학공업(주)제), 서프레온SC-101, 서프레온KH-40(상품명, 세이미케미컬(주)제), 프타젠트 222F, 프타젠트 251, FTX-218(상품명, (주) 네오스제), EFTOP EF-351, EFTOP EF-352, EFTOP EF-601, EFTOP EF-801, EFTOP EF-802(상품명, 미쓰비시머티리얼(주)제), 메가팩 F-470, 메가팩 F-471, 메가팩 F-475, 메가팩 R-08, 메가팩 F-477, 메가팩 F-479, 메가팩 F-553, 메가팩 F-554(상품명, DIC(주)제), 플루오로알킬벤젠술폰산염, 플루오로알킬카르본산염, 플루오로알킬폴리옥시에틸렌에테르, 플루오로알킬암모늄아이오다이드, 플루오로알킬베타인, 플루오로알킬술폰산염, 디글리세린테트라키스(플루오로알킬폴리옥시에틸렌에테르), 플루오로알킬트리메틸암모늄염, 플루오로알킬아미노술폰산염, 폴리옥시에틸렌노닐페닐에테르, 폴리옥시에틸렌옥틸페닐에테르, 폴리옥시에틸렌알킬에테르, 폴리옥시에틸렌라우레이트, 폴리옥시에틸렌올리에이트, 폴리옥시에틸렌스테아레이트, 폴리옥시에틸렌라우릴아민, 소르비탄라우레이트, 소르비탄팔미테이트, 소르비탄스테아레이트, 소르비탄올레이트, 소르비탄지방산 에스테르, 폴리옥시에틸렌소르비탄라우레이트, 폴리옥시에틸렌 소르비탄팔미테이트, 폴리옥시에틸렌 소르비탄스테아레이트, 폴리옥시에틸렌소르비탄올레이트, 폴리옥시에틸렌나프틸에테르, 알킬벤젠술폰산염 및 알킬디페닐에테르디술폰산염을 들 수 있다.
또한, 계면 활성제는 1종으로 사용해도 되고, 2종 이상을 병용해도 된다.
<유기층 형성용 조성물의 조성 및 물성>
유기층 형성용 조성물에 있어서의 각 성분의 함유량은, 유기층 형성용 조성물 중의 각 성분의 양호한 용해성, 보존 안정성 및 성막성, 및, 해당 유기층 형성용 조성물로부터 얻어지는 도막의 양질인 막질, 또한, 잉크젯법을 사용한 경우의 양호한 토출성, 해당 조성물을 사용하여 제작된 유기층을 갖는 유기 EL 소자의, 양호한 전기 특성, 발광 특성, 효율, 수명의 관점을 고려하여 결정된다. 예를 들면, 발광층 형성용 조성물의 경우에는, 제1 성분이 발광층 형성용 조성물의 전 질량에 대하여, 0.0001질량%~2.0질량%, 제2 성분이 발광층 형성용 조성물의 전 질량에 대하여, 0.0999질량%~8.0질량%, 제3 성분이 발광층 형성용 조성물의 전 질량에 대하여, 90.0질량%~99.9질량%가 바람직하다.
보다 바람직하게는, 제1 성분이 발광층 형성용 조성물의 전 질량에 대하여, 0.005질량%~1.0질량%, 제2 성분이 발광층 형성용 조성물의 전 질량에 대하여, 0.095질량%~4.0질량%, 제3 성분이 발광층 형성용 조성물의 전 질량에 대하여, 95.0질량%~99.9질량%이다. 보다 더 바람직하게는, 제1 성분이 발광층 형성용 조성물의 전 질량에 대하여, 0.05질량%~0.5질량%, 제2 성분이 발광층 형성용 조성물의 전 질량에 대하여, 0.25질량%~2.5질량%, 제3 성분이 발광층 형성용 조성물의 전 질량에 대하여, 97.0질량%~99.7질량%이다.
유기층 형성용 조성물은, 상술한 성분을, 공지의 방법으로 교반, 혼합, 가열, 냉각, 용해, 분산 등을 적절히 선택하여 행함으로써 제조할 수 있다. 또한, 조제 후에, 여과, 탈가스(디가스라고도 함), 이온 교환 처리 및 불활성 가스 치환·봉입 처리 등을 적절히 선택하여 행해도 된다.
유기층 형성용 조성물의 점도로서는, 고점도인 것이, 양호한 성막성과 잉크젯법을 사용한 경우의 양호한 토출성이 얻어진다. 한편, 저점도인 것이 얇은 막을 만들기 쉽다. 이로부터, 해당 유기층 형성용 조성물의 점도는, 25℃에 있어서의 점도가 0.3~3mPa·s인 것이 바람직하고, 1~3mPa·s인 것이 보다 바람직하다. 본 발명에 있어서, 점도는 원추 평판형 회전 점도계(콘플레이트형)을 사용하여 측정한 값이다.
유기층 형성용 조성물의 표면 장력으로서는, 낮은 것이 양호한 성막성 및 결함이 없는 도막이 얻어진다. 한편, 높은 것이 양호한 잉크젯 토출성을 얻을 수 있다. 이로부터, 해당 유기층 형성용 조성물은, 25℃에 있어서의 표면 장력이 20~40mN/m인 것이 바람직하고, 20~30mN/m인 것이 보다 바람직하다. 본 발명에 있어서, 표면 장력은 현적법을 사용하여 측정한 값이다.
<가교성 고분자 화합물: 식(XLP-1)으로 나타내어지는 화합물>
다음으로, 상술한 고분자 화합물이 가교성 치환기를 갖는 경우에 대해서 설명한다. 이와 같은 가교성 고분자 화합물은 예를 들면 하기 식(XLP-1)으로 나타내어지는 화합물이다.
식(XLP-1)에 있어서,
MUx는 각각 독립적으로 방향족 화합물로부터 임의의 2개의 수소 원자를 제거하여 나타내어지는 2가의 기, ECx는 각각 독립적으로 방향족 화합물로부터 임의의 1개의 수소 원자를 제거하여 나타내어지는 1가의 기이며, MUx 중의 2개의 수소가 ECx 또는 MUx로 치환되고, k는 2~50000의 정수이다. 단, 식(XLP-1)으로 나타내어지는 화합물은 적어도 하나의 가교성 치환기(XLS)를 가지고, 바람직하게는 가교성 치환기를 갖는 1가 또는 2가의 방향족 화합물의 함유량은, 분자 중 0.1~80질량%이다.
보다 구체적으로는,
MUx는, 각각 독립적으로, 아릴렌, 헤테로아릴렌, 디아릴렌아릴아미노, 디아릴렌아릴보릴, 옥사보린-디일, 아자보린-디일이며,
ECx는, 각각 독립적으로, 수소, 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노 또는 아릴옥시이고,
MU 및 EC에 있어서의 적어도 하나의 수소는 아릴, 헤테로아릴, 디아릴아미노, 알킬 및 시클로알킬로 더 치환되어 있어도 되며,
k는 2~50000의 정수이다.
k는 20~50000의 정수인 것이 바람직하고, 100~50000의 정수인 것이 보다 바람직하다.
식(XLP-1) 중의 MUx 및 ECx에 있어서의 적어도 하나의 수소는, 탄소수 1~24의 알킬, 탄소수 3~24의 시클로알킬, 할로겐 또는 중수소로 치환되어 있어도 되고, 상기 알킬에 있어서의 임의의 -CH2-는 -O- 또는 -Si(CH3)2-로 더 치환되어 있어도 되며, 상기 알킬에 있어서의 식(XLP-1) 중의 EC에 직결되어 있는 -CH2-를 제외한 임의의 -CH2-는 탄소수 6~24의 아릴렌으로 치환되어 있어도 되고, 상기 알킬에 있어서의 임의의 수소는 불소로 치환되어 있어도 된다.
MUx로서는, 예를 들면, 이하 중 어느 하나의 화합물로부터 임의의 2개의 수소 원자를 제거하여 나타내어지는 2가의 기를 들 수 있다.
보다 구체적으로는, 이하 중 어느 하나의 구조로 나타내어지는 2가의 기를 들 수 있다. 이들에 있어서, MUx는 *에 있어서 다른 MUx 또는 ECx와 결합한다.
또한, ECx로서는, 예를 들면 이하 중 어느 하나의 구조로 나타내어지는 1가의 기를 들 수 있다. 이들에 있어서, EC는 *에 있어서 MUx와 결합한다.
식(XLP-1)으로 나타내어지는 화합물은, 용해성 및 도포제 막성의 관점에서, 분자 중의 MU 총수(k)의 10~100%의 MU가 탄소수 1~24의 알킬을 가지는 것이 바람직하고, 분자 중의 MU 총수(k)의 30~100%의 MU가 탄소수 1~18의 알킬(탄소수 3~18의 분기쇄 알킬)을 가지는 것이 보다 바람직하고, 분자 내의 MU 총수(k)의 50~100%의 MU가 탄소수 1~12의 알킬(탄소수 3~12의 분기쇄 알킬)을 가지는 것이 보다 더 바람직하다. 한편, 면내 배향성 및 전하 수송의 관점에서는, 분자 중의 MU 총수(k)의 10~100%의 MU가 탄소수 7~24의 알킬을 가지는 것이 바람직하고, 분자 중의 MU 총수(k)의 30~100%의 MU가 탄소수 7~24의 알킬(탄소수 7~24의 분기쇄 알킬)을 가지는 것이 보다 바람직하다.
가교성 치환기를 갖는 1가 또는 2가의 방향족 화합물의 함유량은, 0.5~50질량%가 바람직하고, 1~20질량%가 보다 바람직하다.
가교성 치환기(XLS)로서는, 상술한 고분자 화합물을 더 가교화할 수 있는 기라면 특별히 한정되지 않지만, 이하의 구조의 치환기가 바람직하다. 각 구조식 중의 *은 결합 위치를 나타낸다.
L은, 각각 독립적으로, 단결합, -O-, -S-, >C=O, -O-C(=O)-, 탄소수 1~12의 알킬렌, 탄소수 1~12의 옥시알킬렌 및 탄소수 1~12의 폴리옥시알킬렌이다. 상기 치환기 중에서도, 식(XLS-1), 식(XLS-2), 식(XLS-3), 식(XLS-9), 식(XLS-10) 또는 식(XLS-17)으로 나타내어지는 기가 바람직하고, 식(XLS-1), 식(XLS-3) 또는 식(XLS-17)으로 나타내어지는 기가 보다 바람직하다.
가교성 치환기를 갖는 2가의 방향족 화합물로서는, 예를 들면 하기 부분 구조를 갖는 화합물을 들 수 있다. 하기 구조식 중의 *은 결합 위치를 나타낸다.
<고분자 화합물 및 가교성 고분자 화합물의 제조 방법>
고분자 화합물 및 가교성 고분자 화합물의 제조 방법에 대해서, 상술한 식(XLP-1)으로 나타내어지는 화합물을 예로 하여 설명한다. 이들 화합물은, 공지의 제조 방법을 적절히 조합하여 합성할 수 있다.
반응에서 사용되는 용매로서는, 방향족 용매, 포화/불포화 탄화수소 용매, 알코올 용매, 에테르계 용매 등을 들 수 있으며, 예를 들면, 디메톡시에탄, 2-(2-메톡시에톡시)에탄, 2-(2-에톡시에톡시)에탄 등을 들 수 있다.
또한, 반응은 2상계로 행해도 된다. 2상계로 반응시키는 경우에는, 필요에 따라, 제4급 암모늄염 등의 상간 이동 촉매를 가해도 된다.
식(XLP-1)의 화합물을 제조할 때, 1단계로 제조하여도 되고, 다단계를 거쳐 제조하여도 된다. 또한, 원료를 반응 용기에 모두 넣고 나서 반응을 시작하는 일괄 중합법에 의해 행해도 되고, 원료를 반응 용기에 적하하여 가하는 적하 중합법에 의해 행해도 되고, 생성물이 반응의 진행에 따른 침전하는 침전 중합법에 의해 행해도 되고, 이들을 적절히 조합하여 합성할 수 있다. 예를 들면, 식(XLP-1)으로 나타내어지는 화합물을 1단계로 합성할 때, 모노머 유닛(MU)에 중합성기가 결합한 모노머 및 엔드캡 유닛(EC)에 중합성기가 결합한 모노머를 반응 용기에 가한 상태에서 반응을 행함으로써 목적물을 얻는다. 또한, 식(XLP-1)으로 나타내어지는 화합물을 다단계로 합성할 때, 모노머 유닛(MU)에 중합성기가 결합한 모노머를 원하는 분자량까지 중합한 후, 엔드캡 유닛(EC)에 중합성기가 결합한 모노머를 가하여 반응시킴으로써 목적물을 얻는다. 다단계로 다른 종류의 모노머 유닛(MU)에 중합성기가 결합한 모노머를 가하여 반응을 행하면, 모노머 유닛의 구조에 대해서 농도 구배를 가지는 폴리머를 만들 수 있다. 또한, 전구체 폴리머를 조제한 후, 후반응에 의해 목적물 폴리머를 얻을 수 있다.
또한, 모노머 유닛(MU)의 중합성기를 선택하면 폴리머의 1차 구조를 제어할 수 있다. 예를 들면, 합성 스킴의 1~3에 나타낸 바와 같이, 랜덤한 1차 구조를 갖는 폴리머(합성 스킴의 1), 규칙적인 1차 구조를 갖는 폴리머(합성 스킴의 2 및 3) 등을 합성하는 것이 가능하고, 목적물에 따라 적절히 조합하여 사용할 수 있다. 나아가, 중합성기를 3개 이상 가지는 모노머를 사용하면, 하이퍼브랜치 폴리머나 덴드리머를 합성할 수 있다.
본 발명에서 사용할 수 있는 모노머는, 일본특허공개 2010-189630호 공보, 국제공개 제2012/086671호, 국제공개 제2013/191088호, 국제공개 제2002/045184호, 국제공개 제2011/049241호, 국제공개 제2013/146806호, 국제공개 제2005/049546호, 국제공개 제2015/145871호, 일본특허공개 2010-215886호 공보, 일본특허공개 2008-106241호 공보, 국제공개 제2016/031639호, 일본특허공개 2011-174062호 공보에 기재된 방법에 준하여 합성할 수 있다.
또한, 구체적인 폴리머 합성 순서에 대해서는, 일본특허공개 2012-036388호 공보, 국제공개 제2015/008851호, 일본특허공개 2012-36381호 공보, 일본특허공개 2012-144722호 공보, 국제공개 제2015/194448호, 국제공개 제2013/146806호, 국제공개 제2015/145871호, 국제공개 제2016/031639호, 국제공개 제2016/125560호, 국제공개 제2011/049241호에 기재된 방법을 참조할 수 있다.
4. 유기 전계 발광 소자의 응용예
본 발명은, 유기 EL 소자를 구비한 표시 장치 또는 유기 EL 소자를 구비한 조명 장치 등에도 응용할 수 있다.
유기 EL 소자를 구비한 표시 장치 또는 조명 장치는, 본 실시 형태에 따른 유기 EL 소자와 공지의 구동 장치를 접속하는 등 공지의 방법에 의해 제조할 수 있고, 직류 구동, 펄스 구동, 교류 구동 등 공지의 구동 방법을 적절히 사용하여 구동할 수 있다.
표시 장치로서는, 예를 들면, 컬러 플랫 패널 디스플레이 등의 패널 디스플레이, 플렉서블 컬러 유기 전계 발광(EL) 디스플레이 등의 플렉서블 디스플레이 등을 들 수 있다(예를 들면, 일본특허공개 평10-335066호 공보, 일본특허공개 2003-321546호 공보, 일본특허공개 2004-281086호 공보 등 참조). 또한, 디스플레이의 표시 방식으로서는, 예를 들면, 매트릭스 및 세그먼트 방식 등을 들 수 있다. 또한, 매트릭스 표시와 세그먼트 표시는 같은 패널 안에 공존하고 있어도 된다.
매트릭스에서는, 표시를 위한 화소가 격자상이나 모자이크상 등 2차원적으로 배치되어 있고, 화소의 집합으로 문자나 화상을 표시한다. 화소의 형상이나 사이즈는 용도로 따라 결정된다. 예를 들면, 컴퓨터, 모니터, 텔레비전의 화상 및 문자 표시에는, 통상 한 변이 300㎛ 이하의 사각형의 화소가 사용되며, 또한, 표시 패널과 같은 대형 디스플레이의 경우는, 한 변이 mm 오더의 화소를 사용하게 된다. 모노크롬 표시의 경우는, 같은 색의 화소를 배열하면 되지만, 컬러 표시의 경우에는, 적색, 녹색, 청색 화소를 나열하여 표시시킨다. 이 경우, 전형적으로는 델타 타입과 스트라이프 타입이 있다. 그리고, 이 매트릭스의 구동 방법으로서는, 선순차(線順次) 구동 방법이나 액티브 매트릭스 중 어느 것이어도 된다. 선순차 구동이 구조가 간단하다는 이점이 있지만, 동작 특성을 고려한 경우, 액티브 매트릭스법이 우수한 경우가 있으므로, 이것도 용도에 따라 구분하여 사용하는 것이 필요하다.
세그먼트 방식(타입)에서는, 미리 정해진 정보를 표시하도록 패턴을 형성하고, 정해진 영역을 발광시키게 된다. 예를 들면, 디지털 시계나 온도계에 있어서의 시각이나 온도 표시, 오디오 기기나 전자 조리기 등의 동작 상태 표시 및 자동차의 패널 표시 등을 들 수 있다.
조명 장치로서는, 예를 들면, 실내 조명 등의 조명 장치, 액정 표시 장치의 백라이트 등을 들 수 있다(예를 들면, 일본특허공개 2003-257621호 공보, 일본특허공개 2003-277741호 공보, 일본특허공개 2004-119211호 공보 등 참조). 백라이트는, 주로 자발광 하지 않는 표시 장치의 시인성을 향상시키는 목적으로 사용되며, 액정 표시 장치, 시계, 오디오 장치, 자동차 패널, 표시판 및 표식 등에 사용된다. 특히, 액정 표시 장치, 그 중에서도 박형화가 과제가 되고 있는 컴퓨터 용도의 백라이트로서는, 종래 방식이 형광등이나 도광판으로 이루어지고 있기 때문에 박형화가 곤란하다는 것을 고려하면, 본 실시 형태에 따른 발광 소자를 사용한 백라이트는 박형에고 경량인 것이 특징이 된다.
[실시예]
이하, 본 발명을 실시예에 의해 구체적으로 설명하지만, 본 발명은 이들 실시예에 의해 전혀 한정되지 않는다.
합성예(1)
화합물(1-1)의 합성
화합물(S-1)(1.32g) 및 오르토디클로로벤젠(400ml)이 담긴 플라스크에, 질소 분위기하, 실온에서 삼브롬화붕소(1.00g)를 가하였다. 적하 종료 후, 180℃까지 승온하여 20시간 교반하였다. 그 후, 다시 실온까지 냉각하고, N-디이소프로필에틸아민(2.6ml)을 더하여, 발열이 수습될 때까지 교반하였다. 그 후, 60℃로 감압 하, 반응 용액을 증류 제거하여 조생성물을 얻었다. 얻어진 조생성물을, 아세토니트릴, 메탄올, 및 톨루엔의 순서대로 세정하고, 실리카겔 컬럼(용리액: 톨루엔)으로 정제한 후, 용매를 감압 증류 제거하여 얻어진 고체를 톨루엔에 녹이고, 헵탄을 가하여 재침전시켜, 화합물(I-1)(0.35g)을 얻었다.
질소 분위기하, 화합물(I-1)(0.332g, 0.25mmol), 헥사시아노철(II)산칼륨 (0.191g, 0.52mmol), 비스[디-tert-부틸(4-디메틸아미노페닐)포스핀]디클로로팔라디움(II)(PdCl2(amphos)2)(11.6mg, 0.016mmol), 탄산나트륨(23.9mg, 0.22mmol), 및 N,N-디메틸아세트아미드(accetamide)(DMAc)(2.5ml)가 담긴 플라스크를 140℃에서 가열하여, 24시간 교반하였다. 반응 용액을 실온까지 냉각한 후, 물에 붓고, 수층을 톨루엔으로 추출하였다. 얻어진 유기층을 물 및 식염수로 순차 세정하여, 무수황산마그네슘으로 건조하였다. 이 용액을 여과 후, 감압 하에서 농축하여, 잔사를 실리카겔 컬럼(용리액: 헥산/디클로로메탄=1/2(용량비))으로 정제하고, 헵탄으로 더 세정함으로써, 화합물(1-1)(15.2mg)을 오렌지색 고체로서 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(500MHz, CDCl3): δ=2.12(s, 24H), 2.31(s, 12H), 5.50(d, J=1.7Hz, 2H), 5.67(s, 1H), 5.73(d, J=1.7Hz, 2H), 6.56(s, 8H), 6.60(s, 6H), 6.77(s, 4H), 6.97(s, 2H), 6.98-7.05(m, 10H), 7.47(dd, J=1.2, 8.0Hz, 2H), 9.10(d, J=8.0Hz, 2H), 10.1(s, 1H)
합성예(2)
화합물(1-2)의 합성
합성예(1)에 준한 방법으로 화합물(I-2)을 합성하였다.
질소 분위기하, 화합물(I-2)(0.145g, 0.15mmol), 헥사시아노철(II)산칼륨 (59.6mg, 0.16mmol), PdCl2(amphos)2(6.7mg, 94㎛ol), 탄산나트륨(13.6mg, 0.12mmol), 및 DMAc(1.5ml)가 담긴 플라스크를 140℃에서 가열하여, 24시간 교반하였다. 반응 용액을 실온까지 냉각한 후, 물에 붓고, 수층을 톨루엔으로 추출하였다. 얻어진 유기층을 물 및 식염수로 순차 세정하고, 무수황산마그네슘으로 건조하였다. 이 용액을 여과 후, 감압 하에서 농축하여, 잔사를 실리카겔 컬럼(용리액: 헥산/디클로로메탄=3/1(용량비), 그 후 1/1(용량비))으로 정제함으로써, 화합물(1-2)(7.8mg)을 오렌지색 고체로서 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(500MHz, CDCl3): δ=2.34(s, 12H), 2.42(s, 6H), 2.47(s, 12H), 5.84(s, 1H), 6.40(dd, 4H), 6.70(s, 2H), 6.73(s, 4H), 6.96(s, 4H), 7.11(s, 2H), 7.23-7.27(m, 4H), 9.07(d, 2H), 10.5(s, 1H)
13C-NMR(126MHz, CDCl3): δ=21.2(4C), 21.4(4C), 22.3(2C), 103.8(2C), 107.8(2C), 108.9(2C), 114.0(2C), 117.7(2C), 120.1(2C), 122.5(2C), 126.8(4C), 127.3(4C), 129.9(2C), 130.8(2C), 135.0(2C), 140.8(4C), 140.9(2C), 141.1(2C), 141.2(4C), 142.1(2C), 144.2(2C), 146.6(2C), 146.8(2C), 147.6(2C), 149.9(2C)
11B-NMR(160MHz, CDCl3): δ=39.6
합성예(3)
화합물(1-3)의 합성
합성예(1)에 준한 방법으로 화합물(1-3)을 합성하였다.
MALDI-TOF-MS(M+)=830.40
합성예(4)
화합물(1-4)의 합성
질소 분위기하, 화합물(I-2)(96.2mg, 0.10mmol), 4-시아노페닐보론산(92.6mg, 0.63mmol), PdCl2(amphos)2(7.1mg, 10㎛ol), 인산삼칼륨(0.176g, 0.80mmol), 및 DMAc(1.5ml)가 담긴 플라스크를 120℃에서 가열하여, 12시간 교반하였다. 반응 용액을 실온까지 냉각한 후, 물에 붓고, 수층을 톨루엔으로 추출하였다. 얻어진 유기층을 물 및 식염수로 순차 세정하고, 무수황산마그네슘으로 건조하였다. 이 용액을 여과 후, 감압 하에서 농축하여, 잔사를 실리카겔 컬럼(용리액: 헥산/톨루엔=1/2(용량비))으로 정제하고, 헵탄으로 더 세정함으로써, 화합물(1-4)(38.2mg)을 오렌지색 고체로서 얻었다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(500MHz, CDCl3): δ=2.33(s, 12H), 2.42(s, 6H), 2.45(s, 12H), 5.81(s, 1H), 6.32(s, 2H), 6.34(s, 2H), 6.68(s, 2H), 6.81(s, 4H), 7.04(s, 4H), 7.08(s, 2H) 7.22-7.24(m, 4H), 7.33(d, J=7.8Hz, 4H), 7.58(d, J=7.8Hz, 4H), 9.15(d, J=8.0Hz, 2H), 10.5(s, 1H)
MALDI-TOF-MS(M+)
calcd for C78H62B2N6 1104.5232
observed 1104.5239.
합성예(5)
화합물(1-5)의 합성
합성예(1)의 제1 반응에 준한 방법으로 화합물(1-5)을 합성하였다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(500MHz, CDCl3): δ=6.83(s, 1H), 7.00(d, 4H), 7.08(t, 8H), 7.18-7.24(m, 12H), 7.25(s, 1H), 7.29(d, 2H), 7.43(t, 2H), 7.71(d, 2H)
MALDI-TOF-MS(M+)=862.29
합성예(6)
화합물(1-6)의 합성
합성예(1)의 제1 반응에 준한 방법으로 화합물(1-6)을 합성하였다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(500MHz, CDCl3): δ=6.83(s, 1H), 7.00(d, 4H), 7.01(s, 1H), 7.07(s, 1H), 7.08(m, 6H), 7.18-7.24(m, 7H), 7.25(s, 1H), 7.29(s, 1H), 7.35(s, 1H), 7.43(t, 2H), 7.71(d, 2H)
MALDI-TOF-MS(M+)=787.25
합성예(7)
화합물(1-7)의 합성
합성예(1)의 제1 반응에 준한 방법으로 화합물(1-7)을 합성하였다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(500MHz, CDCl3): δ=6.65(s, 1H), 7.00(d, 2H), 7.07(d, 2H), 7.25(s, 1H), 7.35(d, 2H), 7.71(d, 2H)
MALDI-TOF-MS(M+)=562.10
합성예(8)
화합물(1-8)의 합성
합성예(1)의 제1 반응에 준한 방법으로 화합물(1-8)을 합성하였다.
NMR 측정에 의해 얻어진 화합물의 구조를 확인하였다.
1H-NMR(500MHz, CDCl3): δ=6.83(s, 1H), 7.00(d, 4H), 7.01(d, 2H), 7.02(d, 2H), 7.08(t, 8H), 7.18-7.24(m, 10H), 7.25(s, 1H), 7.29(d, 2H), 7.52(d, 2H), 7.71(d, 2H)
MALDI-TOF-MS(M+)=812.30
원료의 화합물을 적절히 변경함으로써, 상술한 합성예에 준한 방법으로, 본 발명의 다른 화합물을 합성할 수 있다.
<유기 EL 소자(1)의 제작>
이 유기 EL 소자(1)은, 발광층을 1종의 호스트 재료와 1종의 도펀트 재료로 형성한 소자이다.
[비교예 1-1]
스퍼터링에 의해 200nm의 두께로 제막한 ITO를 120nm까지 연마한, 26mm×28mm×0.7mm의 유리 기판((주)옵토사이언스제)을 투명 지지 기판으로 하였다. 이 투명 지지 기판을 시판의 증착 장치(쇼와진공(주)제)의 기판 홀더에 고정하고, HAT-CN, HTL-1, TcTa, ETL-1, new-DABNA, 및 ET7을 각각 넣은 몰리브덴제 증착용 보트, LiF 및 알루미늄을 각각 넣은 텅스텐제 증착용 보트를 장착하였다.
투명 지지 기판의 ITO 막 상에 순차로, 하기 각 층을 형성하였다. 진공조를 5×10-4Pa까지 감압하고, 먼저, HAT-CN을 가열해서 막 두께 5nm가 되도록 증착하여 정공 주입층을 형성하였다. 다음으로, HTL-1을 가열해서 막 두께 90nm가 되도록 증착하여 정공 수송층 1을 형성하고, 나아가 TcTa를 가열해서 막 두께 10nm가 되도록 증착하여 정공 수송층 2를 형성하였다. 다음으로, ETL-1과 new-DABNA를 동시에 가열해서 막 두께 20nm가 되도록 증착하여 발광층을 형성하였다. ETL-1과 new-DABNA의 질량비가 약 99 대 1이 되도록 증착 속도를 조절하였다. 다음으로, ETL-1을 가열해서 막 두께 20nm가 되도록 증착하여 전자 수송층 1을 형성하고, 나아가 ET7을 가열해서 막 두께 10nm가 되도록 증착하여 전자 수송층 2를 형성하였다. 각 층의 증착 속도는 0.01~1nm/초였다. 그 후, LiF를 가열하여 막 두께 1nm가 되도록 0.01~0.1nm/초의 증착 속도로 증착하고, 이어서, 알루미늄을 가열하여 막 두께 100nm가 되도록 증착해서 음극을 형성하여, 유기 EL 소자를 얻었다. 이 때, 알루미늄의 증착 속도는 1~10nm/초가 되도록 조절하였다.
비교예 1-1의 유기 EL 소자의 층구성
정공 주입층 : HAT-CN(5nm)
정공 수송층 1: HTL-1(90nm)
정공 수송층 2: TcTa(10nm)
발광층 : ETL-1 및 new-DABNA(20nm)
전자 수송층 1: ETL-1(20nm)
전자 수송층 2: ET7(10nm)
음극 : LiF(1nm)+Al(100nm)
[실시예 1-1~실시예 1-3, 비교예 1-11~비교예 1-15]
비교예 1-1의 도펀트 재료 「new-DABNA」를 표 1A에 기재된 화합물로 변경한 것 이외에는 비교예 1-1과 마찬가지의 순서로, 유기 EL 소자(1)의 실시예 및 다른 비교예를 제작하였다.
[표 1A]
<유기 EL 소자(2)의 제작>
이 유기 EL 소자(2)은, 발광층을 2종의 호스트 재료와 1종의 이미팅 도펀트 재료로 형성한 소자이다(하기 표 1B).
[비교예 2-1, 실시예 2-1~실시예 2-8]
상기 소자(1)의 비교예 1-1의 ETL-1(호스트 재료)을 TcTa 및 ETL-1(호스트 1 및 호스트 2)로 변경하고, 비교예 1-1의 new-DABNA(도펀트 재료)를 각 이미팅 도펀트로 변경한 것 이외에는, 비교예 1-1과 마찬가지의 순서로, 유기 EL 소자(2)의 비교예 및 실시예를 제작하였다.
또한, 표 1B에 있어서, 「호스트 1」은 정공 수송성 호스트 재료에 해당하고, 「호스트 2」는 전자 수송성 호스트 재료에 해당한다.
[표 1B]
<유기 EL 소자(3)의 제작>
이 유기 EL 소자(3)은, 발광층을 2종의 호스트 재료와 1종의 어시스팅 도펀트 재료(BCC-TPTA)와 1종의 이미팅 도펀트 재료로 형성한 소자이다(하기 표 1C).
[비교예 3-1, 실시예 3-1~실시예 3-8]
상기 소자(1)의 비교예 1-1의 ETL-1(호스트 재료)을 TcTa 및 ETL-1(호스트 1 및 호스트 2)로 변경하고, 비교예 1-1의 new-DABNA(도펀트 재료)를 BCC-TPTA(어시스팅 도펀트) 및 각 이미팅 도펀트로 변경한 것 이외에는, 비교예 1-1과 마찬가지의 순서로, 유기 EL 소자(3)의 비교예 및 실시예를 제작하였다.
또한, 표 1C에 있어서, 「호스트 1」은 정공 수송성 호스트 재료에 해당하고, 「호스트 2」는 전자 수송성 호스트 재료에 해당한다.
[표 1C]
<유기 EL 소자(4)의 제작>
이 유기 EL 소자(4)은, 발광층을 2종의 호스트 재료와 1종의 어시스팅 도펀트 재료(PtON7)와 1종의 이미팅 도펀트 재료로 형성한 소자이다(하기 표 1D).
[비교예 4-1, 실시예 4-1~실시예 4-8]
상기 소자(1)의 비교예 1-1의 ETL-1(호스트 재료)을 TcTa 및 ETL-1(호스트 1 및 호스트 2)로 변경하고, 비교예 1-1의 new-DABNA(도펀트 재료)을 PtON7(어시스팅 도펀트) 및 각 이미팅 도펀트로 변경한 것 이외에는, 비교예 1-1과 마찬가지의 순서로, 유기 EL 소자(4)의 비교예 및 실시예를 제작하였다.
또한, 표 1D에 있어서, 「호스트 1」은 정공 수송성 호스트 재료에 해당하고, 「호스트 2」는 전자 수송성 호스트 재료에 해당한다.
[표 1D]
상기 각 소자의 제작에 사용한 재료의 화학 구조를 이하에 나타낸다.
<평가 항목 및 평가 방법>
평가 항목으로서는, 구동 전압(V), 발광 파장(nm), CIE 색도(x, y), 외부 양자 효율(%), 발광 스펙트럼의 최대 파장(nm) 및 반치폭(nm) 등이 있다. 이들 평가 항목은, 예를 들면 1000cd/m2 발광 시의 값을 사용할 수 있다.
발광 소자의 양자 효율에는, 내부 양자 효율과 외부 양자 효율이 있는데, 내부 양자 효율은, 발광 소자의 발광층에 전자(또는 정공)로서 주입되는 외부 에너지가 순수하게 광자로 변환되는 비율을 나타내고 있다. 한편, 외부 양자 효율은, 이 광자가 발광 소자의 외부에까지 방출된 양에 기초하여 산출되는데, 발광층에 있어서 발생한 광자는, 그 일부가 발광 소자의 내부에서 흡수되거나 또는 계속 반사되거나 하여, 발광 소자의 외부로 방출되지 않기 때문에, 외부 양자 효율은 내부 양자 효율보다도 낮아진다.
분광 방사 휘도(발광 스펙트럼)와 외부 양자 효율의 측정 방법은 다음과 같다. 어드밴티스트사제 전압/전류발생기 R6144를 사용하여, 소자의 휘도가 1000cd/m2이 되는 전압을 인가하여 소자를 발광시켰다. TOPCON사제 분광 방사 휘도계 SR-3AR을 사용하여, 발광면에 대하여 수직 방향으로부터 가시광 영역의 분광 방사 휘도를 측정하였다. 발광면이 완전 확산면이라고 가정하고, 측정한 각 파장 성분의 분광 방사 휘도의 값을 파장 에너지로 나누어 π를 곱한 수치가 각 파장에 있어서의 광자수이다. 그 다음에, 관측한 전 파장 영역에서 광자수를 적산하고, 소자로부터 방출된 전 광자수로 하였다. 인가 전류값을 기본 전하로 나눈 수치를 소자에 주입한 캐리어수로 하여, 소자로부터 방출된 전 광자수를 소자에 주입한 캐리어수로 나눈 수치가 외부 양자 효율이다. 또한, 발광 스펙트럼의 반치폭은, 극대 발광 파장을 중심으로 하여, 그 강도가 50%가 되는 상하의 파장 간의 폭으로서 구해진다.
상술한 유기 EL 소자 (1)~(4)에 대해서, ITO 전극을 양극, LiF/알루미늄 전극을 음극으로 하여 직류 전압을 인가하고, 휘도 1000cd/m2에서의, 극대 발광 파장(EL), 외부 양자 효율(EQE) 및 소자 수명 LT80(초기 휘도 1000cd/m2에서의 전류 밀도로 연속 구동시켰을 때에 800cd/m2이 될 때까지의 시간)을 측정하였다. 각 소자의 평가 결과를 표 2A~표 2D에 나타낸다.
[표 2A]
[표 2B]
[표 2C]
[표 2D]
new-DABNA를 사용한 비교예와, 화합물(1-1), 화합물(1-2), 및 화합물(1-3)을 사용한 실시예와의 비교로부터, 식(1) 등으로 나타내어지는 구조를 갖는 다환 방향족 화합물을 사용한 유기 EL 소자에서는 고효율의 녹색 발광이 얻어지고, 동시에, 장수명이 되는 것을 알 수 있다.
화합물(1-4)~화합물(1-8)을 사용한, 종래 소자인 유기 EL 소자(1)의 비교예와, 발명 소자인 유기 EL 소자(2)~(4)의 실시예와의 비교로부터, 식(1) 등으로 나타내어지는 구조를 갖는 다환 방향족 화합물은, 정공 수송성 호스트 재료, 전자 수송성 호스트 재료, 및 어시스팅 도펀트로 이루어지는 군에서 선택되는 적어도 2개를 발광층에 포함하는 유기 EL 소자에 있어서, 고효율인 동시에 장수명이 되는 것을 알 수 있다.
<도포형 유기 EL 소자의 평가>
다음으로, 유기층을 도포 형성하여 얻어지는 유기 EL 소자에 대해서 설명한다.
<고분자 호스트 화합물: SPH-101의 합성>
국제공개 제2015/008851호에 기재된 방법에 따라, SPH-101을 합성하였다. M1의 옆에는 M2 또는 M3이 결합한 공중합체가 얻어지고, 투입비로부터 각 유닛은 50:26:24(몰비)인 것으로 추측된다. 하기 구조식 중, Me는 메틸기, Bpin은 피나콜라트보릴기, *은 각 유닛의 연결 위치이다.
<고분자정공 수송 화합물: XLP-101의 합성>
일본특허공개 2018-61028호 공보에 기재된 방법에 따라, XLP-101을 합성하였다. M4의 옆에는 M5 또는 M6이 결합한 공중합체가 얻어지고, 투입비로부터 각 유닛은 40:10:50(몰비)인 것으로 추측된다. 하기 구조식 중, Me는 메틸기, Bpin은 피나콜라트보릴기, *은 각 유닛의 연결 위치이다.
<실시예 5-1~실시예 5-9>
각 층을 형성하는 재료의 도포용 용액을 조제하여 도포형 유기 EL 소자를 제작한다.
<실시예 5-1~실시예 5-3의 유기 EL 소자의 제작>
유기 EL 소자에 있어서의, 각 층의 재료 구성을 표 3에 나타낸다.
[표 3]
표 3에 있어서의, 「ET1」의 구조를 이하에 나타낸다.
<발광층 형성용 조성물(1)의 조제>
하기 성분을 균일한 용액이 될 때까지 교반함으로써 발광층 형성용 조성물(1)을 조제한다. 조제한 발광층 형성용 조성물을 유리 기판에 스핀 코트하고, 감압 하에서 가열 건조함으로써, 막 결함이 없고 평활성이 뛰어난 도포막이 얻어진다.
화합물(A) 0.04중량%
SPH-101 1.96중량%
크실렌 69.00중량%
데칼린 29.00중량%
또한, 화합물(A)은, 식(1) 등으로 나타내어지는 다환 방향족 화합물(예를 들면, 화합물(1-1)), 상기 다환 방향족 화합물을 모노머(즉 해당 모노머는 반응성 치환기를 가짐)로 하여 고분자화시킨 고분자 화합물, 또는 해당 고분자 화합물을 더 가교시킨 고분자 가교체이다. 고분자 가교체를 얻기 위한 고분자 화합물은 가교성 치환기를 가진다.
<PEDOT:PSS 용액>
시판의 PEDOT:PSS 용액(Clevios(TM) P VP AI4083, PEDOT:PSS의 수분산액, Heraeus Holdings사제)을 사용한다.
<OTPD 용액의 조제>
OTPD(LT-N159, Luminescence Technology Corp사제) 및 IK-2(광 양이온 중합 개시제, 산아프로사제)를 톨루엔에 용해시켜, OTPD 농도 0.7중량%, IK-2 농도 0.007중량%의 OTPD 용액을 조제한다.
<XLP-101 용액의 조제>
크실렌에 XLP-101을 0.6중량%의 농도로 용해시켜, 0.6중량% XLP-101 용액을 조제한다.
<PCz 용액의 조제>
PCz(폴리비닐카르바졸)을 디클로로벤젠에 용해시켜, 0.7중량% PCz 용액을 조제한다.
<실시예 5-1>
ITO가 150nm의 두께로 증착된 유리 기판 상에, PEDOT:PSS 용액을 스핀 코트하고, 200℃의 핫 플레이트 상에서 1시간 소성함으로써, 막 두께 40nm의 PEDOT:PSS 막을 성막한다(정공 주입층). 그 다음에, OTPD 용액을 스핀 코트하고, 80℃의 핫 플레이트 상에서 10분간 건조한 후, 노광기로 노광 강도 100mJ/cm2으로 노광하고, 100℃의 핫 플레이트 상에서 1시간 소성함으로써, 용액에 불용인 막 두께 30nm의 OTPD 막을 성막한다(정공 수송층). 그 다음에, 발광층 형성용 조성물(1)을 스핀 코트하고, 120℃의 핫 플레이트 상에서 1시간 소성함으로써, 막 두께 20nm의 발광층을 성막한다.
제작한 다층막을 시판의 증착 장치(쇼와진공(주)제)의 기판 홀더에 고정하고, ET1을 넣은 몰리브덴제 증착용 보트, LiF를 넣은 몰리브덴제 증착용 보트, 알루미늄을 넣은 텅스텐제 증착용 보트를 장착한다. 진공조를 5×10-4Pa까지 감압한 후, ET1을 가열해서 막 두께 30nm가 되도록 증착하여 전자 수송층을 형성한다. 전자 수송층을 형성할 때의 증착 속도는 1nm/초로 한다. 그 후, LiF를 가열하여 막 두께 1nm가 되도록 0.01~0.1nm/초의 증착 속도로 증착한다. 그 다음에, 알루미늄을 가열해서 막 두께 100nm가 되도록 증착하여 음극을 형성한다. 이와 같이하여 유기 EL 소자를 얻는다.
<실시예 5-2>
실시예 5-1과 마찬가지의 방법으로 유기 EL 소자를 얻는다. 또한, 정공 수송층은, XLP-101 용액을 스핀 코트하고, 200℃의 핫 플레이트 상에서 1시간 소성함으로써, 막 두께 30nm의 막을 성막한다.
<실시예 5-3>
실시예 5-1과 마찬가지의 방법으로 유기 EL 소자를 얻는다. 또한, 정공 수송층은, PCz 용액을 스핀 코트하고, 120℃의 핫 플레이트 상에서 1시간 소성함으로써, 막 두께 30nm의 막을 성막한다.
<실시예 5-1~실시예 5-3의 유기 EL 소자의 평가>
상기한 바와 같이 하여 얻어진 도포형 유기 EL 소자도 증착형 유기 EL 소자와 마찬가지로 뛰어난 구동 전압 및 외부 양자 효율을 가질 것으로 예상할 수 있다.
<실시예 5-4~실시예 5-6의 유기 EL 소자의 제작>
유기 EL 소자에 있어서의, 각 층의 재료 구성을 표 4에 나타낸다.
[표 4]
<발광층 형성용 조성물(2)~(4)의 조제>
하기 성분을 균일한 용액이 될 때까지 교반함으로써 발광층 형성용 조성물(2)을 조제한다.
화합물(A) 0.02중량%
mCBP 1.98중량%
톨루엔 98.00중량%
하기 성분을 균일한 용액이 될 때까지 교반함으로써 발광층 형성용 조성물(3)을 조제한다.
화합물(A) 0.02중량%
SPH-101 1.98중량%
크실렌 98.00중량%
하기 성분을 균일한 용액이 될 때까지 교반함으로써 발광층 형성용 조성물(4)을 조제한다.
화합물(A) 0.02중량%
DOBNA 1.98중량%
톨루엔 98.00중량%
표 4에서, 「mCBP」는 3,3'-비스(N-카르바졸릴)-1,1'-비페닐이며, 「DOBNA」는 3,11-디-o-톨릴-5,9-디옥사-13b-bora나프토[3,2,1-de]안트라센이고, 「TSPO1」은 디페닐[4-(트리페닐실릴)페닐]포스핀옥사이드이다. 이하에 화학 구조를 나타낸다.
<실시예 5-4>
ITO가 45nm의 두께로 성막된 유리 기판 상에, ND-3202(닛산화학공업제) 용액을 스핀 코트한 후, 대기 분위기하에서, 50℃, 3분간 가열하고, 230℃, 15분간 더 가열함으로써, 막 두께 50nm의 ND-3202 막을 성막한다(정공 주입층). 그 다음에, XLP-101 용액을 스핀 코트하고, 질소 가스 분위기하에서, 핫 플레이트 상에서 200℃, 30분간 가열시킴으로써, 막 두께 20nm의 XLP-101 막을 성막한다(정공 수송층). 그 다음에, 발광층 형성용 조성물(2)을 스핀 코트하고, 질소 가스 분위기하에서, 130℃, 10분간 가열시킴으로써, 20nm의 발광층을 성막한다.
제작한 다층막을 시판의 증착 장치(쇼와진공(주)제)의 기판 홀더에 고정하고, TSPO1을 넣은 몰리브덴제 증착용 보트, LiF를 넣은 몰리브덴제 증착용 보트, 알루미늄을 넣은 텅스텐제 증착용 보트를 장착한다. 진공조를 5×10-4Pa까지 감압한 후, TSPO1을 가열해서 막 두께 30nm가 되도록 증착하여 전자 수송층을 형성한다. 전자 수송층을 형성할 때의 증착 속도는 1nm/초로 한다. 그 후, LiF를 가열하여 막 두께 1nm가 되도록 0.01~0.1nm/초의 증착 속도로 증착한다. 그 다음에, 알루미늄을 가열해서 막 두께 100nm가 되도록 증착하여 음극을 형성한다. 이와 같이 하여 유기 EL 소자를 얻는다.
<실시예 5-5 및 실시예 5-6>
발광층 형성용 조성물(3) 또는 (4)을 사용하여, 실시예 5-4와 마찬가지의 방법으로 유기 EL 소자를 얻는다.
<실시예 5-4~실시예 5-6의 유기 EL 소자의 평가>
상기한 바와 같이 하여 얻어진 도포형 유기 EL 소자도 증착형 유기 EL 소자와 마찬가지로 뛰어난 구동 전압 및 외부 양자 효율을 가질 것으로 예상할 수 있다.
<실시예 5-7~실시예 5-9의 유기 EL 소자의 제작>
유기 EL 소자에 있어서의, 각 층의 재료 구성을 표 5에 나타낸다.
[표 5]
<발광층 형성용 조성물(5)~(7)의 조제>
하기 성분을 균일한 용액이 될 때까지 교반함으로써 발광층 형성용 조성물(5)을 조제한다.
화합물(A) 0.02중량%
2PXZ-TAZ 0.18중량%
mCBP 1.80중량%
톨루엔 98.00중량%
하기 성분을 균일한 용액이 될 때까지 교반함으로써 발광층 형성용 조성물(6)을 조제한다.
화합물(A) 0.02중량%
2PXZ-TAZ 0.18중량%
SPH-101 1.80중량%
크실렌 98.00중량%
하기 성분을 균일한 용액이 될 때까지 교반함으로써 발광층 형성용 조성물(7)을 조제한다.
화합물(A) 0.02중량%
2PXZ-TAZ 0.18중량%
DOBNA 1.80중량%
톨루엔 98.00중량%
표 5에서, 「2PXZ-TAZ」는 10,10'-((4-페닐-4H-1,2,4-트리아졸-3,5-디일)비스(4,1-페닐렌))비스(10H-페녹사진)이다. 이하에 화학 구조를 나타낸다.
<실시예 5-7>
ITO가 45nm의 두께로 성막된 유리 기판 상에, ND-3202(닛산화학공업제) 용액을 스핀 코트한 후, 대기 분위기하에서, 50℃, 3분간 가열하고, 230℃, 15분간 더 가열함으로써, 막 두께 50nm의 ND-3202 막을 성막한다(정공 주입층). 그 다음에, XLP-101 용액을 스핀 코트하고, 질소 가스 분위기하에서, 핫 플레이트 상에서 200℃, 30분간 가열시킴으로써, 막 두께 20nm의 XLP-101 막을 성막한다(정공 수송층). 그 다음에, 발광층 형성용 조성물(5)을 스핀 코트하고, 질소 가스 분위기하에서, 130℃, 10분간 가열시킴으로써, 20nm의 발광층을 성막한다.
제작한 다층막을 시판의 증착 장치(쇼와진공(주)제)의 기판 홀더에 고정하고, TSPO1을 넣은 몰리브덴제 증착용 보트, LiF를 넣은 몰리브덴제 증착용 보트, 알루미늄을 넣은 텅스텐제 증착용 보트를 장착한다. 진공조를 5×10-4Pa까지 감압한 후, TSPO1을 가열해서 막 두께 30nm가 되도록 증착하여 전자 수송층을 형성한다. 전자 수송층을 형성할 때의 증착 속도는 1nm/초로 한다. 그 후, LiF를 가열하여 막 두께 1nm가 되도록 0.01~0.1nm/초의 증착 속도로 증착한다. 그 다음에, 알루미늄을 가열해서 막 두께 100nm가 되도록 증착하여 음극을 형성한다. 이와 같이 하여 유기 EL 소자를 얻는다.
<실시예 5-8 및 실시예 5-9>
발광층 형성용 조성물(6) 또는 (7)을 사용하여, 실시예 5-7과 마찬가지의 방법으로 유기 EL 소자를 얻는다.
<실시예 5-7~실시예 5-9의 유기 EL 소자의 평가>
상기한 바와 같이 하여 얻어진 도포형 유기 EL 소자도 증착형 유기 EL 소자와 마찬가지로 뛰어난 구동 전압 및 외부 양자 효율을 가질 것으로 예상할 수 있다.
이상, 본 발명에 따른 화합물의 일부에 대해서, 유기 EL 소자용 재료로서의 평가를 행하고, 뛰어난 재료인 것을 나타냈으나, 평가를 행하지 않은 다른 화합물도 같은 기본 골격을 가지며, 전체적으로도 유사한 구조를 갖는 화합물이며, 당업자에 있어서는 마찬가지로 뛰어난 유기 EL 소자용 재료인 것을 이해할 수 있다.
본 발명이 바람직한 양태에 의하면, 식(1) 등으로 나타내어지는 다환 방향족 화합물 또는 그 다량체의 이미팅 도펀트와, 정공 수송성 호스트 재료, 전자 수송성 호스트 재료, 및 어시스팅 도펀트로 이루어지는 군에서 선택되는 적어도 2개를 포함하는 발광층을 구비한 유기 EL 소자를 제작함으로써, 외부 양자 효율 및 소자 수명이 뛰어난 유기 EL 소자를 제공할 수 있다.
100 유기 전계 발광 소자
101 기판
102 양극
103 정공 주입층
104 정공 수송층
105 발광층
106 전자 수송층
107 전자 주입층
108 음극

Claims (20)

  1. 양극 및 음극으로 이루어지는 한 쌍의 전극과, 해당 한 쌍의 전극 사이에 배치되는 발광층을 가지는 유기 전계 발광 소자로서,
    상기 발광층은, 이미팅 도펀트와, 정공 수송성 호스트 재료, 전자 수송성 호스트 재료, 및 어시스팅 도펀트로 이루어지는 군에서 선택되는 적어도 2개를 포함하고,
    상기 이미팅 도펀트가, 하기 일반식(1)으로 나타내어지는 다환 방향족 화합물, 하기 일반식(1)으로 나타내어지는 단위 구조를 복수 가지는 다환 방향족 화합물의 다량체, 상기 다환 방향족 화합물 또는 상기 다량체를 모노머로 하여 고분자화시킨 고분자 화합물, 상기 고분자 화합물을 더 가교시킨 고분자 가교체, 상기 다환 방향족 화합물 또는 상기 다량체를 주사슬형 고분자와 반응시킨 펜던트형 고분자 화합물, 및 상기 펜던트형 고분자 화합물을 더 가교시킨 펜던트형 고분자 가교체로 이루어지는 군에서 선택되는 적어도 하나를 포함하는, 유기 전계 발광 소자.

    식(1) 중,
    A환, B환, D환, 및 E환은, 각각 독립적으로, 치환 또는 무치환의 아릴환 또는 치환 또는 무치환의 헤테로아릴환이며,
    Z는, 각각 독립적으로, -C(-RZ)= 또는 -N=이고,
    RZ는, 각각 독립적으로, 수소 또는 치환기이며,
    Y는, 각각 독립적으로, B, P, P=O, 또는 P=S이고,
    X는, 각각 독립적으로, >N-RNX, >O, >C(-RCX)2, >Si(-RIX)2, >S, 또는 >Se이며, RNX는, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이고, RCX 및 RIX는, 각각 독립적으로, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이며, 2개의 RCX는 서로 결합하여 환을 형성하고 있어도 되고, 2개의 RIX는 서로 결합하여 환을 형성하고 있어도 되며, RNX, RCX, 및 RIX는, 각각 자신을 포함하는 X가 결합하는 1개 또는 2개의 환과 단결합 또는 연결기에 의해 결합하고 있어도 되고,
    식(1)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 아릴환 및 헤테로아릴환 중 적어도 하나는, 적어도 하나의 시클로알칸으로 축합되어 있어도 되며, 해당 시클로알칸에 있어서의 적어도 하나의 수소는 치환기로 치환되어 있어도 되고, 해당 시클로알칸에 있어서의 적어도 하나의 -CH2-는 -O-로 치환되어 있어도 되며,
    식(1)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 적어도 하나의 수소는, 할로겐 또는 중수소로 치환되어 있어도 되고, 그리고,
    식(1)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 적어도 하나의 수소는 시아노로 치환되어 있다.
  2. 제1항에 있어서,
    상기 일반식(1)이 하기 일반식(1A)으로 나타내어지는, 유기 전계 발광 소자.

    식(1A) 중,
    Y, X는 식(1) 중의 Y, X와 각각 동일한 의미이며,
    Z는 식(1) 중의 Z와 동일한 의미이며, 단, Z=Z 중의 Z가 모두 -C(-RZ)=일 때 2개의 RZ는 서로 결합하여 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 상기 형성된 아릴환 또는 헤테로아릴환은, 각각 독립적으로, 치환기를 가지고 있어도 되며, 또한, Z=Z는, 각각 독립적으로, >N-R, >O, >C(-R)2, >Si(-R)2, >S, 또는 >Se여도 되고, 상기 >N-R, 상기 >C(-R)2, 및 상기 >Si(-R)2의 R은, 각각 독립적으로, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이며, 상기 >C(-R)2 및 상기 >Si(-R)2의 2개의 R은 서로 결합하여 환을 형성하고 있어도 되고,
    식(1A)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 아릴환 및 헤테로아릴환 중 적어도 하나는, 적어도 하나의 시클로알칸으로 축합되어 있어도 되며, 해당 시클로알칸에 있어서의 적어도 하나의 수소는 치환기로 치환되어 있어도 되고, 해당 시클로알칸에 있어서의 적어도 하나의 -CH2-는 -O-로 치환되어 있어도 되며,
    식(1A)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 적어도 하나의 수소는, 할로겐 또는 중수소로 치환되어 있어도 되고, 그리고,
    식(1A)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 적어도 하나의 수소는 시아노로 치환되어 있다.
  3. 제2항에 있어서,
    Z가 모두 -C(-RZ)=인, 유기 전계 발광 소자.
  4. 제2항 또는 제3항에 있어서,
    RZ가, 각각 독립적으로, 수소, 알킬, 알킬로 치환되어 있어도 되는 페닐, 알킬로 치환되어 있어도 되는 디페닐아미노, 또는 알킬로 치환되어 있어도 되는 카르바졸릴인, 유기 전계 발광 소자.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    X가, 각각 독립적으로, >O, >N-RNX, 또는 >S인, 유기 전계 발광 소자.
  6. 제1항에 있어서,
    상기 다환 방향족 화합물이 하기 어느 하나의 구조식으로 나타내어지는, 유기 전계 발광 소자.

    식 중, Me는 메틸, tBu는 t-부틸이다.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 이미팅 도펀트가 상기 일반식(1)으로 나타내어지는 다환 방향족 화합물 또는 그 다량체를 포함하는, 유기 전계 발광 소자.
  8. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 이미팅 도펀트가, 상기 일반식(1)으로 나타내어지는 다환 방향족 화합물 또는 그 다량체를 모노머로 하여 고분자화시킨 고분자 화합물, 상기 고분자 화합물을 더 가교시킨 고분자 가교체, 상기 다환 방향족 화합물 또는 그 다량체를 주사슬형 고분자와 반응시킨 펜던트형 고분자 화합물, 및 상기 펜던트형 고분자 화합물을 더 가교시킨 펜던트형 고분자 가교체로 이루어지는 군에서 선택되는 하나 이상을 포함하는, 유기 전계 발광 소자.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 발광층이 상기 정공 수송성 호스트 재료 및 상기 전자 수송성 호스트 재료의 쌍방을 포함하는, 유기 전계 발광 소자.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 정공 수송성 호스트 재료가, 하기 일반식(HH-1)으로 나타내어지거나, 또는 하기 일반식(HH-1)으로 나타내어지는 부분 구조를 가지고, 아릴환 및 헤테로아릴환으로 이루어지는 군에서 선택되는 적어도 3개의 환을 포함하는 구조를 갖는 화합물이며,
    상기 전자 수송성 호스트 재료가, 하기 일반식(EH-1A)~일반식(EH-1D) 중 어느 하나로 나타내어지거나, 또는 하기 일반식(EH-1A)~일반식(EH-1D) 중 어느 하나로 나타내어지는 부분 구조를 가지고, 아릴환 및 헤테로아릴환으로 이루어지는 군에서 선택되는 적어도 3개의 환을 포함하는 구조를 갖는 화합물, 또는 하기 일반식(EH-1b)으로 나타내어지는 다환 방향족 화합물 또는 하기 일반식(EH-1b)으로 나타내어지는 단위 구조를 복수 가지는 다환 방향족 화합물의 다량체인, 항 1~9 중 어느 한 항에 기재된 유기 전계 발광 소자.

    식(HH-1)에 있어서,
    Q는, >O, >S, 또는 >N-AH이며,
    식(HH-1)에 있어서의 2개의 페닐 각각에 있어서의 Q가 결합하는 탄소 원자의 옆의 하나의 탄소 원자는, 서로, L로 결합하고 있어도 되고,
    L은, 단결합, >O, >S, 또는 >C(-AH)2이며,
    AH는, 수소, 아릴, 또는 헤테로아릴이고, >C(-AH)2에 있어서의 2개의 AH는 서로 결합하고 있어도 되며;

    식(EH-1A)~식(EH-1D)에 있어서,
    Ar은, 환을 구성하는 부분 구조로서 N=C를 포함하는 헤테로아릴환이고,
    Z는, 단결합, -O-, -S-, 또는 -N(-AE)-이며,
    Z가 결합하는 탄소 원자의 옆의 탄소 원자와 Z가 결합하는 AE와는, 서로, L로 결합하고 있어도 되고,
    L은, 단결합, >O, >S, 또는 >C(-AE)2이며,
    AE는, 아릴, 헤테로아릴, 또는 트리아릴실릴이고, >C(-AE)2에 있어서의 2개의 AE는 서로 결합하고 있어도 되며,
    X는 C, P, 또는 S이고,
    X가 C인 경우, n=2, m=1이며,
    X가 P인 경우, n=3, m=1이고,
    X가 S인 경우, n=2, m=1~2이며;

    식(EH-1b)에 있어서,
    R1, R2, R3, R4 및 R5는, 각각 독립적으로, 수소 또는 치환기이고,
    X1 및 X2는, 각각 독립적으로, >N-RNX2, >O, >C(-RCX2)2, >S, 또는 >Se이며, X1 및 X2가 모두 >C(-RCX2)2가 되는 경우는 없고,
    RNX2 및 RCX2는, 각각 독립적으로, 수소 또는 치환기이며, RNX2 및 RCX2는 각각 독립적으로 연결기 또는 단결합에 의해 a환, b환, 및 c환 중 적어도 하나의 환과 결합하고 있어도 되고,
    Y1, Y2, Y3, Y4, Y5, 및 Y6은, 각각 독립적으로, =C(-RY)- 또는 =N-이며, 적어도 하나는 =N-이고,
    RY는, 각각 독립적으로, 수소 또는 치환기이며,
    상기 R1, R2, R3, R4, 및 R5, 및 RY 중 인접하는 기끼리가 결합하여 a환, b환 및 c환 중 적어도 하나의 환과 함께 아릴환 또는 헤테로아릴환을 형성하고 있어도 되고, 형성된 환에 있어서의 적어도 하나의 수소는, 아릴, 헤테로아릴, 디아릴아미노, 디헤테로아릴아미노, 아릴헤테로아릴아미노, 디아릴보릴(2개의 아릴은 단결합 또는 연결기를 통하여 결합하고 있어도 됨), 알킬, 시클로알킬, 알콕시, 또는 아릴옥시로 치환되어 있어도 되며, 이들에 있어서의 적어도 하나의 수소는 아릴, 헤테로아릴, 알킬 또는 시클로알킬로 더 치환되어 있어도 되고,
    식(EH-1b)으로 나타내어지는 화합물 및 단위 구조에 있어서의 적어도 하나의 수소는, 시아노, 할로겐 또는 중수소로 치환되어 있어도 된다.
  11. 제10항에 있어서,
    상기 정공 수송성 호스트 재료가 하기 식(HH-1-12)이며, 상기 전자 수송성 호스트 재료가 하기 식(EH-1-94)인, 유기 전계 발광 소자.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서,
    상기 발광층이, 상기 어시스팅 도펀트로서 열활성형 지연 형광을 방사할 수 있는 화합물을 포함하는, 유기 전계 발광 소자.
  13. 제1항 내지 제11항 중 어느 한 항에 있어서,
    상기 발광층이, 상기 어시스팅 도펀트로서 인광을 방사할 수 있는 화합물을 포함하는, 유기 전계 발광 소자.
  14. 제1항 내지 제13항 중 어느 한 항에 기재된 유기 전계 발광 소자를 구비한 표시 장치 또는 조명 장치.
  15. 하기 일반식(2)으로 나타내어지는 다환 방향족 화합물, 또는 하기 일반식(2)으로 나타내어지는 단위 구조를 복수 가지는 다환 방향족 화합물의 다량체.

    식(2) 중,
    B환 및 E환은, 각각 독립적으로, 치환 또는 무치환의 아릴환 또는 치환 또는 무치환의 헤테로아릴환이며,
    Z 및 ZCN은, 각각 독립적으로, -C(-RZ)= 또는 -N=이고,
    RZ는, 각각 독립적으로, 수소 또는 치환기이며,
    Y는, 각각 독립적으로, B, P, P=O, 또는 P=S이고,
    X는, 각각 독립적으로, >N-RNX, >O, >C(-RCX)2, >Si(-RIX)2, >S, 또는 >Se이며, RNX는, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이고, RCX 및 RIX는, 각각 독립적으로, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이며, 2개의 RCX는 서로 결합하여 환을 형성하고 있어도 되고, 2개의 RIX는 서로 결합하여 환을 형성하고 있어도 되며, RNX, RCX, 및 RIX는, 각각 자신을 포함하는 X가 결합하는 1개 또는 2개의 환과 단결합 또는 연결기에 의해 결합하고 있어도 되고,
    식(2)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 아릴환 및 헤테로아릴환 중 적어도 하나는, 적어도 하나의 시클로알칸으로 축합되어 있어도 되며, 해당 시클로알칸에 있어서의 적어도 하나의 수소는 치환기로 치환되어 있어도 되고, 해당 시클로알칸에 있어서의 적어도 하나의 -CH2-는 -O-로 치환되어 있어도 되며,
    식(2)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 적어도 하나의 수소는, 할로겐 또는 중수소로 치환되어 있어도 되고, 그리고,
    B환, E환, 및 c환에 있어서의 적어도 하나의 수소가 시아노로 치환되어 있고, 및/또는, ZCN 중 적어도 하나가 -C(-CN)=이다.
  16. 제15항에 있어서,
    상기 일반식(2)이 하기 일반식(2A)으로 나타내어지는, 다환 방향족 화합물 또는 그 다량체.

    식(2A) 중,
    Y, X는 식(2) 중의 Y, X와 각각 동일한 의미이며,
    Z, ZCN은 식(2) 중의 Z, ZCN과 동일한 의미이고, 단, Z=Z 중의 Z가 모두 -C(-RZ)=일 때 2개의 RZ는 서로 결합하여 아릴환 또는 헤테로아릴환을 형성하고 있어도 되며, 상기 형성된 아릴환 또는 헤테로아릴환은, 각각 독립적으로, 치환기를 가지고 있어도 되고, 또한, Z=Z는, 각각 독립적으로, >N-R, >O, >C(-R)2, >Si(-R)2, >S, 또는 >Se여도 되며, 상기 >N-R, 상기 >C(-R)2, 및 상기 >Si(-R)2의 R은, 각각 독립적으로, 수소, 치환 또는 무치환의 아릴, 치환 또는 무치환의 헤테로아릴, 치환 또는 무치환의 알킬, 또는 치환 또는 무치환의 시클로알킬이고, 상기 >C(-R)2 및 상기 >Si(-R)2의 2개의 R은 서로 결합하여 환을 형성하고 있어도 되며,
    식(2A)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 아릴환 및 헤테로아릴환 중 적어도 하나는, 적어도 하나의 시클로알칸으로 축합되어 있어도 되고, 해당 시클로알칸에 있어서의 적어도 하나의 수소는 치환기로 치환되어 있어도 되며, 해당 시클로알칸에 있어서의 적어도 하나의 -CH2-는 -O-로 치환되어 있어도 되고,
    식(2A)으로 나타내어지는 화합물 또는 단위 구조에 있어서의 적어도 하나의 수소는, 할로겐 또는 중수소로 치환되어 있어도 되며, 그리고,
    b환, e환, 및 c환에 있어서의 적어도 하나의 수소가 시아노로 치환되어 있고, 및/또는, ZCN 중 적어도 하나가 -C(-CN)=이다.
  17. 제16항에 있어서,
    Z 및 ZCN이 모두 -C(-RZ)=이며, 동시에,
    b환, e환, 및 c환에 있어서의 적어도 하나의 수소가 시아노로 치환되어 있고, 및/또는, ZCN 중 적어도 하나가 -C(-CN)=인, 다환 방향족 화합물 또는 그 다량체.
  18. 제16항 또는 제17항에 있어서,
    RZ가, 각각 독립적으로, 수소, 알킬, 알킬로 치환되어 있어도 되는 페닐, 알킬로 치환되어 있어도 되는 디페닐아미노, 또는 알킬로 치환되어 있어도 되는 카르바졸릴이며, 동시에, b환, e환, 및 c환에 있어서의 적어도 하나의 수소가 시아노로 치환되어 있고, 및/또는, ZCN 중 적어도 하나가 -C(-CN)=인, 다환 방향족 화합물 또는 그 다량체.
  19. 제15항 내지 제18항 중 어느 한 항에 있어서,
    X가, 각각 독립적으로, >O, >N-RNX, 또는 >S인, 다환 방향족 화합물 또는 그 다량체.
  20. 제15항에 있어서,
    상기 다환 방향족 화합물이 하기 어느 하나의 구조식으로 나타내어지는, 다환 방향족 화합물.

    식 중, Me는 메틸, tBu는 t-부틸이다.
KR1020230040534A 2022-03-31 2023-03-28 유기 전계 발광 소자 KR20230141577A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022059305 2022-03-31
JPJP-P-2022-059305 2022-03-31
JP2023007273A JP2023152686A (ja) 2022-03-31 2023-01-20 有機電界発光素子
JPJP-P-2023-007273 2023-01-20

Publications (1)

Publication Number Publication Date
KR20230141577A true KR20230141577A (ko) 2023-10-10

Family

ID=88292258

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230040534A KR20230141577A (ko) 2022-03-31 2023-03-28 유기 전계 발광 소자

Country Status (1)

Country Link
KR (1) KR20230141577A (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102118A (ja) 2013-11-22 2015-06-04 矢崎総業株式会社 締結部材付き部品とその取付方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102118A (ja) 2013-11-22 2015-06-04 矢崎総業株式会社 締結部材付き部品とその取付方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
비특허문헌 1: Advanced Functional Materials, 24, 2014, 3970
비특허문헌 2: Advanced Materials, 26, 2014, 5684
비특허문헌 3: Synthetic Metals, 201,2015, 49

Similar Documents

Publication Publication Date Title
EP3626722A1 (en) Polycyclic aromatic compound
US11877506B2 (en) Polycyclic aromatic compound
WO2019198699A1 (ja) シクロアルキル置換多環芳香族化合物
KR102661365B1 (ko) 터셔리 알킬 치환 다환 방향족 화합물
JP2021038206A (ja) 多環芳香族化合物
WO2020080528A1 (ja) 多環芳香族化合物
JP2022074041A (ja) 多環芳香族化合物
JP7376892B2 (ja) 多環芳香族化合物
KR20210043466A (ko) 다환 방향족 화합물, 유기 디바이스용 재료, 유기전계 발광소자, 표시 장치 및 조명 장치
KR20230141577A (ko) 유기 전계 발광 소자
JP2023152686A (ja) 有機電界発光素子
KR20230136039A (ko) 다환방향족 화합물
KR20230119604A (ko) 유기 전계 발광 소자
JP2023114978A (ja) 有機電界発光素子
JP2023093330A (ja) 多環芳香族化合物
KR20230141579A (ko) 금속착체
KR20240047307A (ko) 다환방향족 화합물
JP2023138328A (ja) 多環芳香族化合物
KR20230095841A (ko) 다환 방향족 화합물
KR20230098036A (ko) 다환 방향족 화합물
KR20230098035A (ko) 다환 방향족 화합물
JP2023095774A (ja) 多環芳香族化合物
JP2023059234A (ja) 多環芳香族化合物
KR20240052689A (ko) 다환 방향족 화합물
CN116891491A (zh) 有机电致发光元件、显示装置、照明装置、多环芳香族化合物或其多聚体