WO2019132040A1 - 新規化合物及び有機エレクトロルミネッセンス素子 - Google Patents

新規化合物及び有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2019132040A1
WO2019132040A1 PCT/JP2018/048602 JP2018048602W WO2019132040A1 WO 2019132040 A1 WO2019132040 A1 WO 2019132040A1 JP 2018048602 W JP2018048602 W JP 2018048602W WO 2019132040 A1 WO2019132040 A1 WO 2019132040A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
ring
Prior art date
Application number
PCT/JP2018/048602
Other languages
English (en)
French (fr)
Inventor
加藤 朋希
敬太 瀬田
良多 高橋
池田 秀嗣
裕基 中野
シェーファー,トーマス
ミュラー,ペーター
ローテ,カーステン
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US16/958,054 priority Critical patent/US20210062078A1/en
Publication of WO2019132040A1 publication Critical patent/WO2019132040A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1055Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene

Definitions

  • the present invention relates to a novel compound and an organic electroluminescent device using the same.
  • an organic electroluminescent element hereinafter sometimes referred to as an organic EL element
  • holes are injected from the anode and electrons from the cathode to the light emitting layer. Then, in the light emitting layer, the injected holes and electrons recombine to form excitons.
  • the organic EL element includes a light emitting layer between the anode and the cathode. Moreover, it may have a laminated structure including organic layers such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer.
  • Patent Document 1 discloses a compound used as a material for an organic electroluminescent device.
  • An object of the present invention is to provide a novel compound that can be used as a material for an organic electroluminescent device with high luminous efficiency, and an organic electroluminescent device with high luminous efficiency using the same.
  • a compound represented by the following formula (1) is provided.
  • Two or more adjacent ones among R 1 to R 11 form a substituted or unsubstituted saturated or unsaturated ring, or do not form a substituted or unsubstituted saturated or unsaturated ring .
  • R 1 to R 11 , R 12 and R 13 which do not form a substituted or unsubstituted saturated or unsaturated ring each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted group Or an unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, and a substituted or unsubstituted ring forming carbon number 3 to 50 cycloalkyl group, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted alkylthio group having 1 to 50 carbon atoms, substituted or unsubstituted aryl having 6 to 50 ring carbon atoms forming ring oxy group, a
  • R 31 to R 37 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted group It is a monovalent heterocyclic group having 5 to 50 ring atoms. If R 31 ⁇ R 37 is present 2 or more, each of the two or more R 31 ⁇ R 37 may be the same or may be different. However, at least one of R 1 to R 8 is a group represented by the following formula (2). When two or more groups represented by the following formula (2) exist, two or more groups represented by the following formula (2) may be identical or different.
  • L 1 is a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms.
  • HAr is a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • a material for an organic electroluminescent device which comprises the compound represented by the above formula (1).
  • At least one organic layer disposed between the cathode and the anode;
  • Have An organic electroluminescent device is provided, wherein at least one of the at least one organic layers contains a compound represented by the formula (1).
  • an electronic device comprising the organic electroluminescent device.
  • the novel compound which can be used as an organic electroluminescent element material with high luminous efficiency, and the organic electroluminescent element with high luminous efficiency using it can be provided.
  • the hydrogen atom includes isotopes having different numbers of neutrons, ie, protium, deuterium, and tritium.
  • the number of carbon atoms forming a ring constitutes the ring itself of a compound having a structure in which atoms are cyclically bonded (for example, a single ring compound, a fused ring compound, a crosslinking compound, a carbocyclic compound, a heterocyclic compound) It represents the number of carbon atoms among the atoms.
  • carbon contained in the substituent is not included in the number of carbon atoms forming a ring.
  • the “number of ring-forming carbon atoms” described below is the same unless otherwise stated.
  • the benzene ring has 6 ring carbon atoms
  • the naphthalene ring has 10 ring carbon atoms
  • the pyridinyl group has 5 ring carbon atoms
  • the furanyl group has 4 ring carbon atoms.
  • a benzene ring or a naphthalene ring is substituted by, for example, an alkyl group as a substituent, the number of carbons of the alkyl group is not included in the number of ring-forming carbons.
  • a fluorene ring is bound to a fluorene ring as a substituent (including a spirofluorene ring)
  • the number of carbon atoms of the fluorene ring as a substituent is not included in the number of ring-forming carbons.
  • the number of ring-forming atoms means a compound (for example, a single ring compound, a fused ring compound, a crosslinking compound, a carbocyclic compound, a hetero ring) having a structure (for example, a single ring, a fused ring, a ring assembly) in which atoms are cyclically bound. It represents the number of atoms constituting the ring itself of the ring compound).
  • the number of ring-forming atoms does not include an atom that does not form a ring (for example, a hydrogen atom that terminates the bond of atoms that form the ring) or a substituent that is included when the ring is substituted by a substituent.
  • the “number of ring-forming atoms” described below is the same unless otherwise stated.
  • the number of ring-forming atoms of the pyridine ring is 6, the number of ring-forming atoms of the quinazoline ring is 10, and the number of ring-forming atoms of the furan ring is 5.
  • bonded with the carbon atom of a pyridine ring or a quinazoline ring it does not include in the number of ring formation atoms.
  • a fluorene ring is bound to a fluorene ring as a substituent (including a spirofluorene ring)
  • the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
  • carbon number XX to YY in the expression “substituted or unsubstituted ZZ group having carbon atoms of XX to YY” represents the carbon number when the ZZ group is unsubstituted, and is substituted It does not include the carbon number of the substituent when it is substituted.
  • YY is larger than “XX”, and “XX” and “YY” mean integers of 1 or more.
  • number of atoms XX to YY in the expression “substituted or unsubstituted number of atoms XX to ZZ of ZZ group” represents the number of atoms when the ZZ group is unsubstituted, and is substituted Do not include the number of atoms of the substituent if it is substituted.
  • YY is larger than “XX”, and “XX” and “YY” mean integers of 1 or more.
  • substituted in the case of “substituted or unsubstituted” means being substituted by a substituent other than a hydrogen atom.
  • unsubstituted in the case of “substituted or unsubstituted” means that a hydrogen atom is bonded without being substituted by the substituent.
  • each of the two or more R 41 ⁇ R 53 may be the same or different.), hydroxy group, a halogen atom, a cyano group, a nitro group, ring formation It is selected from the group consisting of an aryl group having 6 to 50 carbon atoms and a monovalent heterocyclic group having 5 to 50 ring atoms.
  • adjacent adjacent optional substituents form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated substituent. Or do not form an unsaturated ring.
  • the “form a substituted or unsubstituted saturated or unsaturated ring” is the same as the description of the “substituted or unsubstituted” and the “saturated or unsaturated ring” below.
  • an optional substituent may further have a substituent. Examples of the substituent further possessed by the optional substituent include the same as the optional substituent described above.
  • each group and each substituent in the present specification include the following.
  • Examples of the unsubstituted alkyl group having 1 to 50 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, n And -butyl, s-butyl, isobutyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and the like.
  • Examples of the substituted alkyl group having 1 to 50 (preferably 1 to 30, more preferably 1 to 18, further preferably 1 to 5) carbon atoms include a hydroxymethyl group, a 1-hydroxyethyl group and a 2-hydroxy group.
  • the substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms is a group in which one or more hydrogen atoms of the above alkyl group are substituted with a halogen atom.
  • Examples of the substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms include groups in which one or more halogen atoms are substituted in the above-mentioned substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • unsubstituted alkenyl group having 2 to 50 (preferably 2 to 30, more preferably 2 to 18) carbon atoms a vinyl group, an allyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, And 3-butanedienyl group, 1-methylvinyl group, 1-methylallyl group, 1,1-dimethylallyl group, 2-methylallyl group, 1,2-dimethylallyl group and the like.
  • Examples of the unsubstituted alkynyl group having 2 to 50 (preferably 2 to 30, more preferably 2 to 18) carbon atoms include ethynyl group and the like.
  • a cycloalkyl group having 3 to 50 (preferably 3 to 30, more preferably 3 to 18 and further preferably 3 to 6) carbon atoms forming unsubstituted ring, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group And 4-methylcyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group, 2-norbornyl group and the like.
  • the unsubstituted alkoxy group having 1 to 50 carbon atoms (preferably 1 to 30, more preferably 1 to 18) is represented by -OX, and as X, for example, the alkyl group having 1 to 50 carbon atoms mentioned above is exemplified.
  • the unsubstituted C1-C50 (preferably 1-30, more preferably 1-18) alkylthio group is represented by -SX, and as X, for example, the C1-C50 alkyl group mentioned above is exemplified.
  • Examples of the aryl group having 6 to 50 (preferably 6 to 30, and more preferably 6 to 18) carbon atoms forming unsubstituted ring include a phenyl group, a p-biphenylyl group, an m-biphenylyl group and an o-biphenyl group.
  • a phenyl group preferred are a phenyl group, biphenylyl group, terphenyl group, naphthyl group, phenanthryl group and fluorenyl group, and more preferred are phenyl group, naphthyl group and biphenylyl group.
  • Examples of the aryl group having 6 to 50 (preferably 6 to 30, more preferably 6 to 18) carbon atoms forming a substituted ring include o-tolyl, m-tolyl, p-tolyl and para-xylyl.
  • the substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms includes, for example, the unsubstituted ring carbon atoms 6 to 50 exemplified above. And a divalent group formed from an aromatic hydrocarbon ring constituting a substituted aryl group having 6 to 50 ring carbon atoms.
  • Examples of the substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms include a substituted or unsubstituted phenylene group represented by the following formulas (L1-1a) to (L1-1c); A substituted or unsubstituted biphenylyl group represented by 2a) to (L1-2g), a substituted or unsubstituted dialkylfluorenylene group represented by the following formulas (L1-3a) to (L1-3k), It is selected from the group consisting of substituted or unsubstituted naphthylene groups represented by the following formulas (L1-4a) to (L1-4j). In formulas (L1-4a) to (L1-4j), (R a ) p is bonded to any carbon atom.
  • each R a independently represents an optional substituent.
  • Each R b is independently a substituted or unsubstituted alkyl group having 1 to 50 (preferably 1 to 30, more preferably 1 to 18, further preferably 1 to 5) carbon atoms.
  • m is each independently an integer of 0 to 4
  • n is each independently an integer of 0 to 3
  • p is each independently an integer of 0 to 6.
  • m is 2 or more, 2 or more of R a may be the same or different.
  • n 2 or more, 2 or more of R a may be the same or different.
  • p 2 or more, 2 or more of R a may be the same or different.
  • m 2 or more, 2 or more R a is not to bind to each other.
  • n 2 or more, 2 or more R a is not to bind to each other.
  • p 2 or more, two or more R a do not bind to each other.
  • m is preferably 0.
  • n is preferably 0.
  • p is preferably 0.
  • Two * (asterisk) in each formula is a bond.
  • the aryloxy group having 6 to 50 (preferably 6 to 30, more preferably 6 to 18) carbon atoms which is unsubstituted is represented by -OY, and as Y, for example, 6 to 50 ring carbon atoms mentioned above can be mentioned.
  • Y for example, 6 to 50 ring carbon atoms mentioned above can be mentioned.
  • arylthio group having 6 to 50 (preferably 6 to 30, and more preferably 6 to 18) ring-forming carbon atoms which is unsubstituted is represented by -SY, and Y is, for example, 6 to 50 ring-forming carbon atoms described above. And aryl groups.
  • the unsubstituted aralkyl group having 7 to 50 carbon atoms includes, for example, benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group , 2-phenylisopropyl group, phenyl-t-butyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group Groups, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group and the like
  • Examples of the substituted aralkyl group having 7 to 50 (preferably 7 to 30, more preferably 7 to 18) carbon atoms include p-methylbenzyl, m-methylbenzyl, o-methylbenzyl and p- Chlorobenzyl, m-chlorobenzyl, o-chlorobenzyl, p-bromobenzyl, m-bromobenzyl, o-bromobenzyl, p-iodobenzyl, m-iodobenzyl, o-iodobenzyl Group, p-hydroxybenzyl group, m-hydroxybenzyl group, o-hydroxybenzyl group, p-nitrobenzyl group, m-nitrobenzyl group, o-nitrobenzyl group, p-cyanobenzyl group, m-cyanobenzyl group, o-cyanobenzyl group etc. may be mentioned.
  • Examples of the monovalent heterocyclic group having 5 to 50 (preferably 5 to 30, more preferably 5 to 18) ring-forming atoms which may be substituted include Pyrrolyl group, imidazolyl group, pyrazolyl group, triazolyl group, tetrazolyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, pyridyl group, pyridazinyl group, pyrimidinyl group which is a heterocyclic group containing a nitrogen element , Pyrazinyl group, triazinyl group, indolyl group, isoindolyl group, indolizinyl group, quinolizinyl group, quinolyl group, isoquinolyl group, cinnolyl group, phthalazinyl group, quinazolinyl group, quinoxalinyl
  • Thienyl group which is an unsubstituted heterocyclic group containing a sulfur element, thiazolyl group, isothiazolyl group, thiadiazolyl group, benzothiophenyl group, isobenzothiophenyl group, dibenzothiophenyl group, naphthobenzothiophenyl group, benzothiazolyl group, benzo Examples thereof include isothiazolyl group, phenothiazinyl group, dinaphthothiophenyl group, azadibenzothiophenyl group, diazadibenzothiophenyl group, azanaphthobenzothiophenyl group, diazanaphthobenzothiophenyl group and the like.
  • hetero atoms such as S, O and N
  • hetero atoms such as Si, Ge and Se may also be mentioned as hetero atoms constituting the heterocyclic group.
  • the “heterocyclic group” described in the present specification may be a single ring group or a condensed ring group.
  • the “heterocyclic group” described in the present specification may be an aromatic heterocyclic group or an aliphatic heterocyclic group.
  • Examples of the substituted or unsubstituted monovalent heterocyclic group having 5 to 50 (preferably 5 to 30, more preferably 5 to 18) ring atoms 9-phenyl) carbazolyl, (9-biphenylyl) carbazolyl, (9-phenyl) phenylcarbazolyl, (9-naphthyl) carbazolyl, diphenylcarbazole-9 which is a substituted heterocyclic group containing a nitrogen element -Yl, phenylcarbazol-9-yl, methylbenzimidazolyl, ethylbenzoimidazolyl, phenyltriazinyl, biphenylyltriazinyl, diphenyltriazinyl, phenylquinazolinyl, biphenylylquinazolinyl etc, It is formed from phenyldibenzofuranyl group, methyldibenzofuranyl group, t-butyldibenzo
  • Examples of the substituted or unsubstituted divalent heterocyclic group having 5 to 30 (preferably 5 to 20, more preferably 5 to 18) ring-forming atoms include, for example, the unsubstituted ring-forming atoms exemplified above. Examples thereof include a divalent group formed from a heterocyclic ring constituting a monovalent heterocyclic group of the number 5 to 50 and a monovalent heterocyclic group having 5 to 50 ring atoms forming a substituted ring.
  • the following groups are also included as the substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms. Further, examples of the divalent heterocyclic group having 5 to 30 ring atoms include a group in which the following groups are divalent groups.
  • X 1A to X 6A and Y 1A to Y 6A each represent an oxygen atom, a sulfur atom, an -NZ- group, or an -NH- group.
  • Z represents a substituted or unsubstituted ring carbon having 6 to 6 carbon atoms 50 aryl groups, substituted or unsubstituted monovalent heterocyclic groups having 5 to 50 ring atoms, or substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms When two or more Z are present, Two or more Z may be the same or different.
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned.
  • the novel compound according to one aspect of the present invention is represented by the following formula (1).
  • Two or more adjacent ones among R 1 to R 11 form a substituted or unsubstituted saturated or unsaturated ring, or do not form a substituted or unsubstituted saturated or unsaturated ring .
  • R 1 to R 11 , R 12 and R 13 which do not form a substituted or unsubstituted saturated or unsaturated ring each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted group Or an unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, and a substituted or unsubstituted ring forming carbon number 3 to 50 cycloalkyl group, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted alkylthio group having 1 to 50 carbon atoms, substituted or unsubstituted aryl having 6 to 50 ring carbon atoms forming ring oxy group, a
  • R 1 and R 8 each represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted carbon atom having 2 to 6 carbon atoms 50 alkenyl groups, substituted or unsubstituted alkynyl groups having 2 to 50 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 50 ring carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 50 carbon atoms, A substituted or unsubstituted alkylthio group having 1 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, a substituted or unsubstituted arylthio group having 6 to 50 ring carbon atoms, a substituted or
  • R 31 ⁇ R 37 is present 2 or more, each of the two or more R 31 ⁇ R 37 may be the same or may be different. However, at least one of R 1 to R 8 is a group represented by the following formula (2). When two or more groups represented by the following formula (2) exist, two or more groups represented by the following formula (2) may be identical or different.
  • L 1 is a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms.
  • HAr is a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 1 to R 8 is a group represented by the following formula (2)
  • at least one of R 1 to R 8 is a substituted or unsubstituted saturated or unsaturated group. It means that it is a group represented by Formula (2) without forming a ring of
  • R 1 to R 11 form a substituted or unsubstituted saturated or unsaturated ring.
  • a pair of two or more adjacent groups among R 1 to R 11 is, for example, R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 1 , R 2 , R 3 and the like.
  • Substituents at the time of “substitution” of “substituted or unsubstituted” with respect to the above saturated or unsaturated ring are the same as the above-mentioned optional substituents.
  • the “saturated or unsaturated ring” means, for example, when R 1 and R 2 form a ring, a carbon atom to which R 1 is bonded, a carbon atom to which R 2 is bonded, and one or more optional elements And means a ring formed by Specifically, in the case where R 1 and R 2 form a ring, the carbon atom to which R 1 is bonded, the carbon atom to which R 2 is bonded, and four carbon atoms to form an unsaturated ring
  • the ring formed by R 1 and R 2 is a benzene ring.
  • the “arbitrary element” is preferably a C element, an N element, an O element, or an S element. In any element (for example, in the case of the element C or the element N), a bond which does not form a ring may be terminated by a hydrogen atom or the like.
  • the “one or more arbitrary elements” is preferably any two or more and fifteen or less, more preferably three or more and twelve or less, and still more preferably three or more and five or less.
  • the compound represented by Formula (1) is represented by the following Formula (3). (In the formula (3), R 1 , R 3 to R 13 , L 1 and HAr are as defined in the above formula (1).)
  • the compound represented by Formula (1) is represented by the following Formula (4).
  • R 1 , R 3 to R 13 and HAr are as defined in the above formula (1).
  • R 1 , R 3 to R 11 which do not form the substituted or unsubstituted saturated or unsaturated ring, R 12 and R 13 are each independently A hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, and a substituted or unsubstituted monovalent ring having 5 to 50 ring atoms.
  • a group represented by the formula (2) is a group represented by the formula (2).
  • the compound represented by Formula (1) is represented by the following Formula (5).
  • R 7 , R 10 , R 12 , R 13 and HAr are as defined in the above formula (1).
  • R 7 , R 10 , R 12 and R 13 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted ring-forming carbon number 6 And an aryl group of ⁇ 50, a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms, or a group represented by the above formula (2).
  • the compound represented by Formula (1) is represented by the following Formula (6). (In the formula (6), R 2 to R 13 , L 1 and HAr are as defined in the formula (1)).
  • the compound represented by Formula (1) is represented by the following Formula (7).
  • R 2 to R 13 and HAr are as defined in the above formula (1).
  • HAr is a substituted or unsubstituted monovalent heterocyclic group having 5 to 18 ring atoms.
  • the substituent in the case of “substituted or unsubstituted” in the compound represented by the formula (1) is an alkyl group having 1 to 50 carbon atoms, a haloalkyl group having 1 to 50 carbon atoms, or the carbon number Alkenyl group of 2 to 50, alkynyl group having 2 to 50 carbon atoms, cycloalkyl group having 3 to 50 ring carbon atoms, alkoxy group having 1 to 50 carbon atoms, alkylthio group having 1 to 50 carbon atoms, ring forming carbon number
  • a substituent in the case of “substituted or unsubstituted” in the compound represented by the formula (1) is an alkyl group having 1 to 50 carbon atoms, an aryl group having 6 to 50 ring carbon atoms, And a monovalent heterocyclic group having 5 to 50 ring atoms.
  • HAr is a substituted or unsubstituted carbazolyl group.
  • the compound represented by Formula (1) is useful as a material for organic EL elements.
  • the compound represented by Formula (1) as a material of the light emitting layer of an organic EL element, the luminous efficiency of the organic EL element obtained can be improved.
  • the material for an organic EL device includes a compound represented by Formula (1).
  • An organic EL device comprises a cathode, an anode, and at least one organic layer disposed between the cathode and the anode, and the organic layer of the at least one organic layer At least one of the layers contains the compound represented by the formula (1).
  • the compound represented by the above formula (1) in a predetermined organic layer, for example, a light emitting layer, the light emission efficiency of the organic EL element can be improved.
  • At least one of the at least one organic layers is a light emitting layer.
  • An organic EL device comprises a cathode, an anode, and at least one organic layer disposed between the cathode and the anode, and the organic layer of the at least one organic layer At least one of the layers contains a dopant material, and the dopant material contains a compound represented by Formula (1).
  • At least one organic layer disposed between the cathode and the anode refers to one or more organic layers, if present, between the cathode and the anode, and two or more organic layers are present. When an organic layer is present, it refers to at least one of them. Further, “at least one of the at least one organic layers is a light emitting layer” means that, when there is one organic layer between the cathode and the anode, the layer is the light emitting layer, When two or more organic layers are present, it means that at least one of them is a light emitting layer.
  • the organic EL element has a hole transport layer between the anode and the light emitting layer. In one embodiment, the organic EL element has an electron transport layer between the cathode and the light emitting layer.
  • At least one layer between the light emitting layer and the anode refers to one organic layer, if present, between the light emitting layer and the anode, and two or more organic layers are present. In some cases it refers to at least one of them.
  • the organic layer closer to the light emitting layer is referred to as a "hole transport layer” and the organic layer closer to the anode is referred to as "hole injection It is called "layer”.
  • Each of the “hole transport layer” and the “hole injection layer” may be one layer, or two or more layers each, and one is one layer, and the other is two or more layers. It is also good.
  • At least one layer between the light emitting layer and the cathode refers to one organic layer, if present, between the light emitting layer and the cathode, where two or more organic layers are present. Refers to at least one of them.
  • the organic layer closer to the light emitting layer is referred to as the "electron transport layer” and the organic layer closer to the cathode is the "electron injection layer” Call it
  • Each of the “electron transport layer” and the “electron injection layer” may be one layer, or two or more layers, or one may be one layer and the other may be two or more layers.
  • the light emitting layer further contains a compound represented by the following formula (10) (hereinafter sometimes referred to as compound (10)).
  • compound (10) a compound represented by the following formula (10) (hereinafter sometimes referred to as compound (10)).
  • compound (10) Two or more adjacent ones of R 101 to R 110 form a substituted or unsubstituted saturated or unsaturated ring, or do not form a substituted or unsubstituted saturated or unsaturated ring .
  • R 101 to R 110 which do not form a substituted or unsubstituted saturated or unsaturated ring each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted carbon number 1 to 50 haloalkyl group, substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 50 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 50 ring carbon atoms.
  • R 121 to R 127 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted group It is an aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms. If R 121 ⁇ R 127 is present 2 or more, each of the two or more R 121 ⁇ R 127 may be the same or may be different.
  • R 101 to R 110 which does not form a substituted or unsubstituted saturated or unsaturated ring is a group represented by the following formula (31).
  • the groups represented by the two or more following formula (31) may be the same or different.
  • L 101 is a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms.
  • Ar 101 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • R 101 to R 110 form a substituted or unsubstituted saturated or unsaturated ring
  • One pair of two or more adjacent of R 101 to R 110 is, for example, R 101 and R 102 , R 102 and R 103 , R 103 and R 104 , R 105 and R 106 , R 106 and R 107 , R 107 and R 108 , R 108 and R 109 , R 101 and R 102 and R 103, and the like.
  • Substituents at the time of “substitution” of “substituted or unsubstituted” with respect to the above saturated or unsaturated ring are the same as the above-mentioned optional substituents in Formula (10).
  • the “saturated or unsaturated ring” means, for example, when R 101 and R 102 form a ring, a carbon atom to which R 101 is bonded, a carbon atom to which R 102 is bonded, and one or more arbitrary elements And means a ring formed by Specifically, in the case where R 101 and R 102 form a ring, the carbon atom to which R 101 is bonded, the carbon atom to which R 102 is bonded, and four carbon atoms form an unsaturated ring.
  • the ring formed by R 101 and R 102 is a benzene ring.
  • the “arbitrary element” is preferably a C element, an N element, an O element, or an S element. In any element (for example, in the case of the element C or the element N), a bond which does not form a ring may be terminated by a hydrogen atom or the like.
  • the “one or more arbitrary elements” is preferably any two or more and fifteen or less, more preferably three or more and twelve or less, and still more preferably three or more and five or less.
  • R 101 and R 102 may form a ring, and R 105 and R 106 may simultaneously form a ring.
  • the compound represented by Formula (10) turns into a compound represented, for example by following formula (10A).
  • R 101 to R 110 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, A substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, or a group represented by the formula (31).
  • R 101 to R 110 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted ring having 5 to 50 ring atoms. It is a ring group or a group represented by formula (31).
  • R 101 to R 110 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms, or a substituted or unsubstituted ring having 5 to 18 ring atoms. It is a ring group or a group represented by formula (31).
  • At least one of R 109 and R 110 is a group represented by Formula (31).
  • R 109 and R 110 are each independently a group represented by Formula (31).
  • the compound (10) is a compound represented by the following formula (10-1).
  • R 101 to R 108 , L 101 and Ar 101 are as defined in the formula (10).
  • the compound (10) is a compound represented by the following formula (10-2).
  • R 101 , R 103 to R 108 , L 101 and Ar 101 are as defined in the formula (10).
  • the compound (10) is a compound represented by the following formula (10-3).
  • Each of R 101A to R 108A independently is a hydrogen atom or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • L 101A is a single bond or a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms. The two L 101A may be identical or different.
  • Ar 101A is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the two Ars 101A may be identical or different.
  • the compound (10) is a compound represented by the following formula (10-4).
  • L 101 and Ar 101 are as defined in the formula (10).
  • Each of R 101A to R 108A independently is a hydrogen atom or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • X 11 is O, S or N (R 61 ).
  • R 61 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • One of R 62 to R 69 is a bond that bonds to L 101 .
  • R 62 to R 69 which do not bind to L 101 form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring Do not form.
  • R 62 to R 69 which do not bind to L 101 and do not form the substituted or unsubstituted saturated or unsaturated ring each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms Or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the compound (10) is a compound represented by the following formula (10-4A).
  • L 101 and Ar 101 are as defined in the formula (10).
  • Each of R 101A to R 108A independently is a hydrogen atom or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • X 11 is O, S or N (R 61 ).
  • R 61 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 62A to R 69A may form a substituted or unsubstituted saturated or unsaturated ring, and adjacent two of R 62A to R 69A may be Form a ring represented by the following formula (10-4A-1).
  • R 62A to R 69A which do not form a substituted or unsubstituted saturated or unsaturated ring each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted ring formation It is an aryl group having 6 to 50 carbon atoms.
  • R 70 to R 73 is a bond which bonds to L 101 .
  • R 70 to R 73 which are not bonded to L 101 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. is there. )
  • the compound (10) is a compound represented by the following formula (10-6).
  • L 101 and Ar 101 are as defined in the formula (10).
  • R 101A to R 108A are as defined in the above formula (10-4).
  • R 66 to R 69 are as defined in the above formula (10-4).
  • X 12 is O or S.
  • the compound represented by the formula (10-6) is selected from the compounds represented by the following formula (10-6-1) to the following formula (10-6-4).
  • L 101 and Ar 101 are as defined in the formula (10).
  • R 101A to R 108A are as defined in the above formula (10-4).
  • R 66 to R 69 are as defined in the above formula (10-4).
  • X 12 is O or S.
  • the compound represented by the above formula (10-6) is a compound represented by the following formula (10-6H).
  • L 101 and Ar 101 are as defined in the formula (10).
  • R 66 to R 69 are as defined in the above formula (10-4).
  • X 12 is O or S.
  • the compound represented by the formula (10-6) or (10-6H) is a compound represented by the following formula (10-6Ha).
  • L 101 and Ar 101 are as defined in the formula (10).
  • X 12 is O or S.
  • the compound represented by the formula (10-6), (10-6H) or (10-6Ha) is represented by the following formula (10-6Ha-1) or (10-6Ha-2) It is a compound represented.
  • L 101 and Ar 101 are as defined in the formula (10).
  • X 12 is O or S.
  • the compound (10) is a compound represented by the following formula (10-7).
  • L 101 and Ar 101 are as defined in the formula (10).
  • R 101A to R 108A are as defined in the above formula (10-4).
  • X 11 is as defined in the above formula (10-4).
  • R 62 to R 69 are as defined in the above formula (10-4). However, any one pair of R 66 and R 67 , R 67 and R 68 , and R 68 and R 69 is bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring.
  • the compound (10) is a compound represented by the following formula (10-7H).
  • L 101 and Ar 101 are as defined in the formula (10).
  • X 11 is as defined in the above formula (10-4).
  • R 62 to R 69 are as defined in the above formula (10-4). However, any one pair of R 66 and R 67 , R 67 and R 68 , and R 68 and R 69 is bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring.
  • the compound (10) is a compound represented by the following formula (10-8).
  • L 101 and Ar 101 are as defined in the formula (10).
  • R 101A to R 108A are as defined in the above formula (10-4).
  • X 12 is O or S.
  • R 66 to R 69 are as defined in the above formula (10-4). However, any one pair of R 66 and R 67 , R 67 and R 68 , or R 68 and R 69 is bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring.
  • the compound represented by compound (10-8) is a compound represented by the following formula (10-8H).
  • L 101 and Ar 101 are as defined in the formula (10).
  • R 66 to R 69 are as defined in the above formula (10-4). However, any one pair of R 66 and R 67 , R 67 and R 68 , or R 68 and R 69 is bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring. Preferably, any one pair of R 66 and R 67 , R 67 and R 68 , or R 68 and R 69 is bonded to each other to form a non-substituted benzene ring.
  • X 12 is O or S.
  • the compound represented by the formula (10-7), (10-7H), (10-8) or (10-8H) is R 66 and R 67 , R 67 and R 68 , or Any one pair of R 68 and R 69 is bonded to each other to form a ring represented by the following formula (10-8-1) or (10-8-2), and the above formula (10-8-) R 66 to R 69 which do not form a ring represented by 1) or (10-8-2) do not form a substituted or unsubstituted saturated or unsaturated ring.
  • Two bonds * bind to one set of R 66 and R 67 , R 67 and R 68 , or R 68 and R 69 , respectively.
  • R 80 to R 83 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • X 13 is O or S.
  • the compound (10) is a compound represented by the following formula (10-9).
  • L 101 and Ar 101 are as defined in the formula (10).
  • R 101A to R 108A are as defined in the above formula (10-4).
  • R 66 to R 69 are as defined in the above formula (10-4). However, R 66 and R 67 , R 67 and R 68 , and R 69 and R 67 do not bind to each other, and do not form a substituted or unsubstituted saturated or unsaturated ring.
  • X 12 is O or S.
  • the compound (10) is selected from the group consisting of compounds represented by the following formulas (10-10-1) to (10-10-4).
  • L 101A , Ar 101A and R 101A to R 108A are as defined in the formula (10-3).
  • the compounds represented by the above formulas (10-10-1) to (10-10-4) are represented by the following formulas (10-10-1H) to (10-10-4H) Compound.
  • L 101A and Ar 101A are as defined in the formula (10-3).
  • the content of the compound represented by the formula (1) is light emission 1 mass% or more and 20 mass% or less are preferable with respect to the whole layer. In one embodiment, when the light emitting layer contains the compound represented by Formula (1) and the compound represented by Formula (10), the content of the compound represented by Formula (10) is 80 mass% or more and 99 mass% or less are preferable with respect to the whole light emitting layer.
  • the organic EL device includes an organic layer between a pair of electrodes consisting of a cathode and an anode.
  • the organic layer includes at least one layer composed of an organic compound.
  • the organic layer is formed by laminating two or more layers composed of an organic compound.
  • the organic layer may further contain an inorganic compound in addition to the organic compound.
  • at least one of the organic layers is a light emitting layer.
  • the organic layer may be configured as, for example, a light emitting layer as one layer, and may include other layers that can be adopted in the layer configuration of the organic EL element.
  • the layer that can be employed in the layer configuration of the organic EL element is not particularly limited, and, for example, a hole transport zone (hole transport layer, hole injection layer, or the like) provided between the anode and the light emitting layer Electron blocking layer, exciton blocking layer, etc., light emitting layer, space layer, electron transport zone (electron transporting layer, electron injection layer, hole blocking layer, etc.) provided between the cathode and the light emitting layer, etc. may be mentioned.
  • a hole transport zone hole transport layer, hole injection layer, or the like
  • the organic EL device may be, for example, a fluorescent or phosphorescent single-color light emitting device, or a fluorescent / phosphorescent hybrid white light emitting device. In addition, it may be a simple type having a single light emitting unit, or may be a tandem type having two or more light emitting units.
  • the “light emitting unit” described in the present specification includes an organic layer, and at least one of the organic layers is a light emitting layer, and emits light by recombination of injected holes and electrons. Say the smallest unit.
  • the “light emitting layer” described in the present specification is an organic layer having a light emitting function.
  • the light emitting layer is, for example, a phosphorescent light emitting layer, a fluorescent light emitting layer or the like, and may be a single layer or two or more layers.
  • the light emitting unit may be a laminated type having two or more phosphorescent light emitting layers or fluorescent light emitting layers, and in this case, for example, a space for preventing excitons generated in the phosphorescent light emitting layer from diffusing into the fluorescent light emitting layer A layer may be provided between each light emitting layer.
  • the layer configuration of the organic EL element according to one aspect of the present invention is not limited to these.
  • a hole injection layer be provided between the hole transport layer and the anode.
  • an electron injection layer be provided between the electron transport layer and the cathode.
  • Each of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer may be composed of one layer or may be composed of two or more layers.
  • the two or more phosphorescent light emitting layers, and the phosphorescent light emitting layer and the fluorescent light emitting layer may be light emitting layers of different colors.
  • the light emitting unit (f) comprises: hole transport layer / first phosphorescence light emitting layer (red light emission) / second phosphorescence light emitting layer (green light emission) / space layer / fluorescent light emission layer (blue light emission) / electron transport layer
  • An electron blocking layer may be provided between each light emitting layer and the hole transport layer or the space layer.
  • a hole blocking layer may be provided between each light emitting layer and the electron transporting layer.
  • an element configuration such as an anode / first light emitting unit / intermediate layer / second light emitting unit / cathode is mentioned.
  • the first light emitting unit and the second light emitting unit can be, for example, independently selected from the light emitting units described above.
  • the intermediate layer is also generally referred to as an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, a connector layer, or an intermediate insulating layer.
  • the intermediate layer is a layer that supplies electrons to the first light emitting unit and holes to the second light emitting unit, and can be formed of a known material.
  • FIG. 1 the outline of an example of the laminated constitution of an organic EL element is shown.
  • the organic EL element 1 has a substrate 2, an anode 3, a cathode 4, and a light emitting unit (organic layer) 10 disposed between the anode 3 and the cathode 4.
  • the light emitting unit 10 has at least one light emitting layer 5.
  • electron transport zone (electron injection layer, electron transport layer etc.) between the light emitting layer 5 and the cathode 4 ) 7 may be formed.
  • an electron blocking layer (not shown) may be provided on the anode 3 side of the light emitting layer 5, and a hole blocking layer (not shown) may be provided on the cathode 4 side of the light emitting layer 5.
  • FIG. 2 schematically shows another example of the layer configuration of the organic EL element.
  • the hole transport layer of the hole transport zone 6 and the electron transport layer of the electron transport zone 7 of the light emitting unit 10 of the organic EL element 1 of FIG. It has a two-layer structure.
  • the hole transport zone 6 has a first hole transport layer 6 a on the anode side and a second hole transport layer 6 b on the cathode side.
  • the electron transport zone 7 has a first electron transport layer 7a on the anode side and a second hole transport layer 7b on the cathode side.
  • the other reference numerals are the same as those in FIG.
  • the substrate is used as a support of the organic EL element.
  • the substrate preferably has a light transmittance of 50% or more for light in the visible light region with a wavelength of 400 to 700 nm, and a smooth substrate is preferable.
  • the material of the substrate include soda lime glass, aluminosilicate glass, quartz glass, plastics and the like.
  • a flexible substrate can be used as the substrate.
  • the flexible substrate refers to a bendable (flexible) substrate, and examples thereof include a plastic substrate and the like.
  • the material for forming the plastic substrate include polycarbonate, polyarylate, polyether sulfone, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyimide, polyethylene naphthalate and the like.
  • an inorganic vapor deposition film can also be used.
  • anode As the anode, it is preferable to use, for example, metals, alloys, conductive compounds, mixtures thereof and the like, which have a large work function (specifically, 4.0 eV or more).
  • the material of the anode include indium oxide-tin oxide (ITO: Indium Tin Oxide), silicon or indium oxide-tin oxide containing silicon oxide, indium oxide-zinc oxide, tungsten oxide, oxide containing zinc oxide Indium, graphene and the like can be mentioned.
  • gold, silver, platinum, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, nitrides of these metals (for example, titanium nitride) and the like can be mentioned.
  • the anode is usually formed by depositing these materials on a substrate by sputtering.
  • indium oxide-zinc oxide can be formed by a sputtering method using a target to which 1 to 10% by mass of zinc oxide is added with respect to indium oxide.
  • indium oxide containing tungsten oxide or zinc oxide is formed using a target to which 0.5 to 5% by mass of tungsten oxide or 0.1 to 1% by mass of zinc oxide is added with respect to indium oxide And the sputtering method.
  • Examples of another method of forming the anode include a vacuum evaporation method, a coating method, an inkjet method, a spin coating method, and the like.
  • a coating method, an inkjet method, or the like can be used.
  • the hole injection layer formed in contact with the anode is formed using a material that facilitates hole injection regardless of the work function of the anode. Therefore, common electrode materials such as metals, alloys, conductive compounds, and mixtures thereof can be used for the anode.
  • alkali metals such as lithium and cesium; magnesium; alkaline earth metals such as calcium and strontium; alloys containing these metals (eg, magnesium-silver, aluminum-lithium); and rare earth metals such as europium and ytterbium Materials having a small work function such as alloys containing rare earth metals can also be used for the anode.
  • the hole injection layer is a layer containing a substance having a high hole injection property, and has a function of injecting holes from the anode to the organic layer.
  • the substance having a high hole injection property for example, molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide , Tungsten oxides, manganese oxides, aromatic amine compounds, electron-withdrawing (acceptor) compounds, polymer compounds (oligomers, dendrimers, polymers, etc.), and the like.
  • aromatic amine compounds and compounds having acceptor properties are preferable, and compounds having acceptor properties are more preferable.
  • aromatic amine compound examples include 4,4 ′, 4 ′ ′-tris (N, N-diphenylamino) triphenylamine (abbreviation: TDATA), 4,4 ′, 4 ′ ′-tris [N- (3) -Methylphenyl) -N-phenylamino] triphenylamine (abbreviation: MTDATA), 4,4′-bis [N- (4-diphenylaminophenyl) -N-phenylamino] biphenyl (abbr .: DPAB), 4, 4'-bis (N- ⁇ 4- [N '-(3-methylphenyl) -N'-phenylamino] phenyl ⁇ -N-phenylamino) biphenyl (abbreviation: DNTPD), 1,3,5-tris [ N- (4-Diphenylaminophenyl) -N-phenylamino] benzene (abbreviation: DPA3B
  • the acceptor compound for example, a heterocyclic derivative having an electron withdrawing group, a quinone derivative having an electron withdrawing group, an arylborane derivative, a heteroarylborane derivative and the like are preferable, and specific examples thereof include hexacyanohexaazatriphenylene, 2, 3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (abbreviation: F4TCNQ), 1,2,3-tris [(cyano) (4-cyano-2,3,5, 6-tetrafluorophenyl) methylene] cyclopropane and the like.
  • the hole injection layer preferably further contains a matrix material.
  • the matrix material materials known as materials for organic EL devices can be used.
  • an electron donating (donor) compound more preferably the above-mentioned aromatic amine compound is used .
  • the hole transport layer is a layer containing a substance having a high hole transportability, and has a function of transporting holes from the anode to the organic layer.
  • the substance having a high hole transporting property is preferably a substance having a hole mobility of 10 ⁇ 6 cm 2 / (V ⁇ s) or more, and, for example, an aromatic amine compound, a carbazole derivative, an anthracene derivative, high Molecular compounds and the like can be mentioned.
  • aromatic amine compound examples include 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB), N, N′-bis (3-methylphenyl)- N, N'-diphenyl- [1,1'-biphenyl] -4,4'-diamine (abbreviation: TPD), 4-phenyl-4 '-(9-phenylfluoren-9-yl) triphenylamine (abbreviation) : BAFLP), 4,4'-bis [N- (9,9-dimethylfluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: DFLDPBi), 4,4 ', 4 "-tris (N, N-diphenylamino) triphenylamine (abbreviation: TDATA), 4,4 ′, 4 ′ ′-tris [N- (3-methylphenyl) -N-phenyl
  • carbazole derivatives include 4,4′-di (9-carbazolyl) biphenyl (abbreviation: CBP), 9- [4- (9-carbazolyl) phenyl] -10-phenylanthracene (abbreviation: CzPA), 9 And -phenyl-3- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: PCzPA) and the like.
  • CBP 4,4′-di (9-carbazolyl) biphenyl
  • CzPA 9- [4- (9-carbazolyl) phenyl] -10-phenylanthracene
  • PCzPA 9 And -phenyl-3- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole
  • anthracene derivative examples include 2-t-butyl-9,10-di (2-naphthyl) anthracene (abbreviation: t-BuDNA), 9,10-di (2-naphthyl) anthracene (abbreviation: DNA), Examples include 9,10-diphenylanthracene (abbreviation: DPAnth) and the like.
  • polymer compound examples include poly (N-vinylcarbazole) (abbreviation: PVK), and poly (4-vinyltriphenylamine) (abbreviation: PVTPA).
  • the hole transport layer may be a single layer or two or more layers may be stacked. In this case, it is preferable to dispose a layer containing a substance having a large energy gap among substances having high hole transportability, on the side closer to the light emitting layer.
  • the light emitting layer is a layer containing a substance having high light emitting property (dopant material).
  • dopant material various materials can be used, and for example, a fluorescent compound (fluorescent dopant), a phosphorescent compound (phosphorescent dopant), and the like can be used.
  • a fluorescent compound is a compound capable of emitting light from a singlet excited state, and a light emitting layer including this is called a fluorescent light emitting layer.
  • a phosphorescent compound is a compound capable of emitting light from a triplet excited state, and a light emitting layer including this is called a phosphorescent light emitting layer.
  • the light emitting layer usually contains a dopant material and a host material for efficiently emitting the light.
  • the dopant material is also referred to as a guest material, an emitter, or a light emitting material.
  • the host material may also be referred to as the matrix material in the literature.
  • One light emitting layer may contain two or more dopant materials and two or more host materials. In addition, the number of light emitting layers may be two or more.
  • fluorescent hosts host materials combined with fluorescent dopants
  • phosphorescent hosts host materials combined with phosphorescent dopants
  • the fluorescent host and the phosphorescent host are not distinguished only by the molecular structure.
  • the phosphorescent host is a material for forming a phosphorescent light emitting layer containing a phosphorescent dopant, but does not mean that it can not be used as a material for forming a fluorescent light emitting layer. The same is true for fluorescent hosts.
  • the light emitting layer preferably contains a compound represented by the formula (1) (hereinafter, these compounds may be referred to as “compound (1)”), and is more preferably contained as a dopant material. Moreover, it is preferable that a compound (1) is contained in a light emitting layer as a fluorescence dopant.
  • the content of the compound (1) in the light emitting layer as a dopant material is not particularly limited, but is preferably, for example, 0.1 to 70% by mass from the viewpoint of sufficient light emission and concentration quenching.
  • the amount is more preferably 0.1 to 30% by mass, still more preferably 1 to 30% by mass, still more preferably 1 to 20% by mass, and particularly preferably 1 to 10% by mass.
  • fluorescent dopants other than the compound (1) include fused polycyclic aromatic derivatives, styrylamine derivatives, fused ring amine derivatives, boron-containing compounds, pyrrole derivatives, indole derivatives, carbazole derivatives and the like. Among these, fused ring amine derivatives, boron-containing compounds, and carbazole derivatives are preferable.
  • fused ring amine derivative examples include diaminopyrene derivatives, diaminochrysene derivatives, diaminoanthracene derivatives, diaminofluorene derivatives, diaminofluorene derivatives in which one or more benzofuro skeletons are condensed, and the like.
  • diaminopyrene derivatives diaminochrysene derivatives, diaminoanthracene derivatives, diaminofluorene derivatives, diaminofluorene derivatives in which one or more benzofuro skeletons are condensed, and the like.
  • a boron containing compound a pyrromethene derivative, a triphenyl borane derivative, etc. are mentioned, for example.
  • blue-based fluorescent dopants include pyrene derivatives, styrylamine derivatives, chrysene derivatives, fluoranthene derivatives, fluorene derivatives, diamine derivatives, triarylamine derivatives and the like.
  • N, N'-bis [4- (9H-carbazol-9-yl) phenyl] -N, N'-diphenylstilbene-4,4'-diamine (abbreviation: YGA2S)
  • 4- (9H) -Carbazol-9-yl) -4 '-(10-phenyl-9-anthryl) triphenylamine (abbreviation: YGAPA)
  • 4- (10-phenyl-9-anthryl) -4'-(9-phenyl-9H) And -carbazol-3-yl) triphenylamine abbreviation: PCBAPA
  • green-based fluorescent dopants include aromatic amine derivatives. Specifically, N- (9,10-diphenyl-2-anthryl) -N, 9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCAPA), N- [9,10-bis (1,1) '-Biphenyl-2-yl) -2-anthryl] -N, 9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCABPhA), N- (9,10-diphenyl-2-anthryl) -N, N ', N'-triphenyl-1,4-phenylenediamine (abbreviation: 2DPAPA), N- [9,10-bis (1,1'-biphenyl-2-yl) -2-anthryl] -N, N' N'-triphenyl-1,4-phenylenediamine (abbreviation: 2DPABPhA), N- [9,10-bis (1,1'
  • red-based fluorescent dopants examples include tetracene derivatives and diamine derivatives. Specifically, N, N, N ', N'-tetrakis (4-methylphenyl) tetracene-5,11-diamine (abbreviation: p-mPhTD), 7,14-diphenyl-N, N, N', N'-tetrakis (4-methylphenyl) acenaphtho [1,2-a] fluoranthene-3,10-diamine (abbreviation: p-mPhAFD) and the like can be mentioned.
  • p-mPhTD N, N, N ', N'-tetrakis (4-methylphenyl) tetracene-5,11-diamine
  • p-mPhTD 7,14-diphenyl-N
  • the phosphorescent dopant includes, for example, a phosphorescent heavy metal complex and a phosphorescent rare earth metal complex.
  • a heavy metal complex an iridium complex, an osmium complex, a platinum complex etc. are mentioned, for example.
  • the heavy metal complex is preferably an orthometalated complex of a metal selected from iridium, osmium and platinum.
  • a rare earth metal complex a terbium complex, a europium complex, etc. are mentioned, for example.
  • These rare earth metal complexes are preferred as phosphorescent dopants because the rare earth metal ions emit light due to electronic transitions between different multiplicitys.
  • an iridium complex As a blue type phosphorescence dopant, an iridium complex, an osmium complex, a platinum complex etc. are mentioned, for example.
  • an iridium complex etc. are mentioned, for example. Specifically, tris (2-phenylpyridinato-N, C2 ') iridium (III) (abbreviation: Ir (ppy) 3 ), bis (2-phenylpyridinato-N, C2') iridium (III) ) Acetylacetonate (abbreviation: Ir (ppy) 2 (acac)), bis (1,2-diphenyl-1H-benzoimidazolato) iridium (III) acetylacetonate (abbreviation: Ir (pbi) 2 (acac)) And bis (benzo [h] quinolinato) iridium (III) acetylacetonate (abbreviation: Ir (bzq) 2 (acac)).
  • red-based phosphorescent dopants include iridium complexes, platinum complexes, terbium complexes, and europium complexes. Specifically, bis [2- (2′-benzo [4,5- ⁇ ] thienyl) pyridinato-N, C3 ′] iridium (III) acetylacetonate (abbreviation: Ir (btp) 2 (acac)), Bis (1-phenylisoquinolinato-N, C2 ') iridium (III) acetylacetonate (abbreviation: Ir (piq) 2 (acac)), (acetylacetonato) bis [2,3-bis (4-fluoro) Phenyl) quinoxarinato] iridium (III) (abbreviation: Ir (Fdpq) 2 (acac)), 2,3,7,8,12,13,17,18-octaethyl-21H, 23H
  • Host materials include, for example, metal complexes such as aluminum complexes, beryllium complexes and zinc complexes; indole derivatives, pyridine derivatives, pyrimidine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, isoquinoline derivatives, quinazoline derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, oxadi Heterocyclic compounds such as azole derivatives, benzimidazole derivatives, phenanthroline derivatives; naphthalene derivatives, triphenylene derivatives, carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, chrysene derivatives, naphthacene derivatives, condensed aromatic compounds such as fluoranthene derivatives; And aromatic amine compounds such as amine derivatives and condensed polycyclic aromatic amine derivatives.
  • the host material may use two
  • the metal complex examples include tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), tris (4-methyl-8-quinolinolato) aluminum (III) (abbreviation: Almq3), and bis (10-hydroxybenzo) [H] Quinolinato) beryllium (II) (abbreviation: BeBq 2), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq), bis (8-quinolinolato) zinc (h) II) (abbreviation: Znq), bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ) and the like.
  • BeBq bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (
  • heterocyclic compound examples include 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis [5 -(P-tert-butylphenyl) -1,3,4-oxadiazol-2-yl] benzene (abbreviation: OXD-7), 3- (4-biphenylyl) -4-phenyl-5- (4-) tert-Butylphenyl) -1,2,4-triazole (abbreviation: TAZ), 2,2 ′, 2 ′ ′-(1,3,5-benzenetriyl) tris (1-phenyl-1H-benzimidazole) (Abbreviation: TPBI), bathophenanthroline (abbreviation: BPhen), vasocuproin (abbreviation: BCP), and the like.
  • PBD 2- (4-biphenylyl) -5- (4
  • fused aromatic compound examples include 9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: CzPA), 3,6-diphenyl-9- [4- (10-) Phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: DPCzPA), 9,10-bis (3,5-diphenylphenyl) anthracene (abbreviation: DPPA), 9,10-di (2-naphthyl) anthracene (abbreviation: DPPA) Abbreviations: DNA), 2-tert-butyl-9,10-di (2-naphthyl) anthracene (abbreviation: t-BuDNA), 9,9'-bianthryl (abbreviation: BANT), 9,9 '-(stilbene- 3,3'-diyl) diphenanthrene (abbreviation: DPNS), 9,
  • aromatic amine compound examples include N, N-diphenyl-9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: CzA1PA), 4- (10) -Phenyl-9-anthryl) triphenylamine (abbreviation: DPhPA), N, 9-diphenyl-N- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: PCAPAP) N) 9-Diphenyl-N- ⁇ 4- [4- (10-phenyl-9-anthryl) phenyl] phenyl ⁇ -9H-carbazol-3-amine (abbreviation: PCAPBA), N- (9, 10-) Diphenyl-2-anthryl) -N, 9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCAPA), 4,4'-bis [N- (1
  • the fluorescent host is preferably a compound having a singlet level higher than that of the fluorescent dopant, and examples thereof include heterocyclic compounds and fused aromatic compounds.
  • the fused aromatic compound for example, anthracene derivatives, pyrene derivatives, chrysene derivatives, naphthacene derivatives and the like are preferable.
  • the phosphorescent host is preferably a compound having a triplet level higher than that of the phosphorescent dopant, and examples thereof include metal complexes, heterocyclic compounds, fused aromatic compounds and the like.
  • metal complexes for example, indole derivatives, carbazole derivatives, pyridine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, isoquinoline derivatives, quinazoline derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, naphthalene derivatives, triphenylene derivatives, phenanthrene derivatives, fluoranthene derivatives, etc. preferable.
  • the electron transporting layer is a layer containing a substance having a high electron transporting property.
  • the substance having a high electron transporting property is preferably a substance having an electron mobility of 10 -6 cm 2 / Vs or more, and, for example, a metal complex, an aromatic heterocyclic compound, an aromatic hydrocarbon compound, a polymer compound Etc.
  • an aluminum complex As a metal complex, an aluminum complex, a beryllium complex, a zinc complex etc. are mentioned, for example.
  • tris (8-quinolinolato) aluminum (III) abbreviation: Alq
  • tris (4-methyl-8-quinolinolato) aluminum abbreviation: Almq3
  • bis (10-hydroxybenzo [h] quinolinato) beryllium Abbreviation: BeBq2
  • bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) abbreviation: BAlq
  • bis (8-quinolinolato) zinc (II) abbreviation: Znq
  • bis Examples thereof include [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ) and the like.
  • aromatic heterocyclic compounds include imidazole derivatives such as benzimidazole derivatives, imidazopyridine derivatives and benzimidazophenanthridine derivatives; azine derivatives such as pyrimidine derivatives and triazine derivatives; quinoline derivatives, isoquinoline derivatives, phenanthroline derivatives and the like Examples thereof include compounds having a nitrogen six-membered ring structure (including a compound having a phosphine oxide-based substituent in a heterocycle).
  • an aromatic hydrocarbon compound an anthracene derivative, a fluoranthene derivative, etc. are mentioned, for example.
  • polymer compound examples include poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF-Py), poly [(9) , 9-dioctylfluorene-2,7-diyl) -co- (2,2'-bipyridine-6,6'-diyl)] (abbreviation: PF-BPy) and the like.
  • the electron transport layer may be a single layer, or two or more layers may be stacked. In this case, it is preferable to dispose a layer containing a substance having a larger energy gap among substances having a high electron-transport property on the side closer to the light emitting layer.
  • the configuration may include a first electron transport layer 7 a on the anode side and a second electron transport layer 7 b on the cathode side.
  • the electron transport layer examples include metals such as alkali metals, magnesium, alkaline earth metals, and alloys containing two or more of these metals; alkali metal compounds such as 8-quinolinolatolithium (abbr .: Liq); Metal compounds such as alkaline earth metal compounds may be included.
  • a metal such as an alkali metal, magnesium, an alkaline earth metal, or an alloy containing two or more of these metals is contained in the electron transport layer, the content thereof is not particularly limited, but The content is preferably 1 to 50% by mass, more preferably 0.1 to 20% by mass, and still more preferably 1 to 10% by mass.
  • the content is preferably 1 to 99% by mass, more preferably 10 to 90% by mass It is.
  • the layer in the light emitting layer side in case an electron carrying layer is two or more layers can also be formed only with these metal compounds.
  • the electron injecting layer is a layer containing a substance having a high electron injecting property, and has a function of efficiently injecting electrons from the cathode to the light emitting layer.
  • the substance having a high electron injecting property include alkali metals, magnesium, alkaline earth metals, and compounds thereof. Specifically, lithium, cesium, calcium, lithium fluoride, cesium fluoride, calcium fluoride, lithium oxide and the like can be mentioned.
  • an alkali metal, magnesium, an alkaline earth metal, or a compound in which these compounds are contained in a substance having an electron transporting property for example, a compound in which magnesium is contained in Alq can be used.
  • a composite material containing an organic compound and a compound having a donor property can also be used for the electron injecting layer.
  • Such a composite material is excellent in electron injecting property and electron transporting property because the organic compound receives electrons from the donor compound.
  • the organic compound a substance excellent in the transport property of the received electron is preferable.
  • the above-described metal complex having high electron transport property, an aromatic heterocyclic compound, and the like can be used.
  • the donor compound may be any substance capable of donating electrons to the organic compound, and examples thereof include alkali metals, magnesium, alkaline earth metals, and rare earth metals. Specifically, lithium, cesium, magnesium, calcium, erbium, ytterbium and the like can be mentioned.
  • alkali metal oxides and alkaline earth metal oxides are preferable, and specifically, lithium oxide, calcium oxide, barium oxide and the like can be mentioned. Also, Lewis bases such as magnesium oxide can be used. Alternatively, an organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
  • TTF tetrathiafulvalene
  • the cathode is preferably a metal, an alloy, a conductive compound, a mixture thereof, or the like, which has a small work function (specifically, 3.8 eV or less).
  • Materials of the cathode include, for example, alkali metals such as lithium and cesium; magnesium; alkaline earth metals such as calcium and strontium; alloys containing these metals (for example, magnesium-silver, aluminum-lithium); europium, ytterbium, etc. Rare earth metals; and alloys containing the rare earth metals.
  • the cathode is usually formed by vacuum evaporation or sputtering. In the case of using a silver paste or the like, a coating method, an inkjet method, or the like can be used.
  • the cathode is formed using various conductive materials, such as aluminum, silver, ITO, graphene, indium oxide-tin oxide containing silicon or silicon oxide, regardless of the magnitude of work function. It can be formed. These conductive materials can be deposited by a sputtering method, an inkjet method, a spin coating method, or the like.
  • a thin film insulating layer may be inserted between the pair of electrodes.
  • the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, oxide Silicon, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide and the like can be mentioned. A mixture of these can be used for the insulating layer, or a laminate of two or more layers containing these substances can be used.
  • the space layer when laminating a fluorescent light emitting layer and a phosphorescent light emitting layer, the space layer is used to prevent diffusion of excitons generated in the phosphorescent light emitting layer to the fluorescent light emitting layer or to adjust carrier balance.
  • the space layer can also be provided between two or more phosphorescent light emitting layers. Since the space layer is provided between two or more light emitting layers, the space layer is preferably formed of a substance having both electron transportability and hole transportability. From the viewpoint of preventing the diffusion of triplet energy in the adjacent phosphorescent light emitting layer, the triplet energy is preferably 2.6 eV or more.
  • a substance used for a space layer the thing similar to the substance used for the hole transport layer mentioned above is mentioned.
  • An electron blocking layer, a hole blocking layer, an exciton (triplet) blocking layer, and the like may be provided adjacent to the light emitting layer.
  • the electron blocking layer is a layer having a function of blocking the leakage of electrons from the light emitting layer to the hole transport layer.
  • the hole blocking layer is a layer having a function of blocking the leakage of holes from the light emitting layer to the electron transporting layer.
  • the exciton blocking layer is a layer having a function of blocking the diffusion of excitons generated in the light emitting layer to the adjacent layer and confining the excitons in the light emitting layer.
  • the formation method of each layer of the organic EL element is not particularly limited unless otherwise described.
  • a formation method a known method such as a dry film formation method or a wet film formation method can be used.
  • Specific examples of the dry film forming method include a vacuum evaporation method, a sputtering method, a plasma method, an ion plating method and the like.
  • Specific examples of the wet film formation method include various coating methods such as spin coating method, dipping method, flow coating method, and ink jet method.
  • the film thickness of each layer of the organic EL element is not particularly limited unless otherwise described. If the film thickness is too small, defects such as pinholes are likely to occur, and sufficient light emission luminance can not be obtained. On the other hand, if the film thickness is too large, a high drive voltage is required and the efficiency is reduced. From such a viewpoint, the film thickness is usually preferably 0.1 nm to 10 ⁇ m, more preferably 5 nm to 10 ⁇ m, and still more preferably 10 nm to 0.2 ⁇ m.
  • An electronic device includes the organic EL element according to the aspect of the present invention described above.
  • Specific examples of the electronic device include display components such as an organic EL panel module; display devices such as a television, a mobile phone, a smartphone, and a personal computer; lighting; and light emitting devices of vehicle lamps.
  • Example 11 (Preparation of organic EL element) A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick ITO transparent electrode (anode) -attached glass substrate (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. The film thickness of ITO was 130 nm. The cleaned glass substrate with a transparent electrode was mounted on a substrate holder of a vacuum deposition apparatus. First, the compound HI was vapor deposited on the surface on which the transparent electrode was formed so as to cover the transparent electrode, to form a compound HI film having a film thickness of 5 nm. This HI film functions as a hole injection layer.
  • the compound HT1 was vapor deposited, and an HT1 film having a thickness of 80 nm was formed on the HI film.
  • This HT1 film functions as a first hole transport layer.
  • the compound HT2 was vapor deposited, and a 10 nm-thick HT2 film was deposited on the HT1 film.
  • This HT2 film functions as a second hole transport layer.
  • BH-1 (host material) and compound 1 (dopant material) obtained in Example 1 are co-deposited on the HT2 film so that the ratio (mass ratio) of compound 1 is 4%, and the film thickness is 25 nm A light emitting layer was formed.
  • HBL was vapor-deposited on this light emitting layer to form an electron transporting layer with a thickness of 10 nm.
  • ET which is an electron injection material was vapor-deposited to form an electron injection layer with a film thickness of 15 nm.
  • LiF was vapor-deposited on this electron injection layer to form a 1 nm thick LiF film.
  • Metal Al was vapor-deposited on this LiF film to form a metal cathode having a film thickness of 80 nm.
  • the organic EL element was produced as mentioned above. The compounds used are shown below.
  • Example 12 and Comparative Example 1 An organic EL device was produced and evaluated in the same manner as in Example 11 except that the compounds shown in Table 1 were used as a dopant material. The results are shown in Table 1.
  • Examples 13 to 17 and Comparative Examples 11 to 12 An organic EL device was produced and evaluated in the same manner as in Example 11 except that the compounds shown in Table 2 were used as a dopant material. The results are shown in Table 2.

Abstract

下記式(1)で表される化合物(R1~R8の少なくとも1つは、下記式(2)で表される基である)。

Description

新規化合物及び有機エレクトロルミネッセンス素子
 本発明は、新規化合物及びそれを用いた有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス素子(以下、有機EL素子ということがある)に電圧を印加すると、陽極から正孔が、また、陰極から電子が、それぞれ発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。
 有機EL素子は、陽極と陰極の間に、発光層を含む。また、正孔注入層、正孔輸送層、電子注入層、電子輸送層等の有機層を含む積層構造を有する場合もある。
 特許文献1には、有機エレクトロルミネッセンス素子用材料として使用する化合物が開示されている。
国際公開第2015/102118号
 本発明の目的は、発光効率の高い有機エレクトロルミネッセンス素子用材料として使用できる新規化合物、及びそれを用いた発光効率の高い有機エレクトロルミネッセンス素子を提供することである。
 本発明の一態様によれば、下記式(1)で表される化合物が提供される。
Figure JPOXMLDOC01-appb-C000019
(式(1)中、
 R~R11のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は、置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR~R11、R12及びR13は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R31)(R32)(R33)、-C(=O)R34、-COOR35、-N(R36)(R37)、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(2)で表される基を示す。
 R31~R37は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R31~R37が2以上存在する場合、2以上のR31~R37のそれぞれは同一でもよく、異なっていてもよい。
 但し、R~Rの少なくとも1つは、下記式(2)で表される基である。下記式(2)で表される基が2以上存在する場合、2以上の下記式(2)で表される基は同一であってもよく、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000020
(式(2)中、
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
 HArは、置換もしくは無置換の環形成原子数5~50の1価の複素環基である。)
 本発明の一態様によれば、上記式(1)で表される化合物を含む有機エレクトロルミネッセンス素子用材料が提供される。
 本発明の一態様によれば、
 陰極と、
 陽極と、
 前記陰極と前記陽極との間に配置された少なくとも1層の有機層と、
を有し、
 前記少なくとも1層の有機層のうちの少なくとも1層が、前記式(1)で表される化合物を含有する有機エレクトロルミネッセンス素子が提供される。
 本発明の一態様によれば、前記有機エレクトロルミネッセンス素子を備える電子器機が提供される。
 本発明によれば、発光効率の高い有機エレクトロルミネッセンス素子用材料として使用できる新規化合物、及びそれを用いた発光効率の高い有機エレクトロルミネッセンス素子が提供できる。
本発明の有機EL素子の一実施形態の概略構成を示す図である。 本発明の有機EL素子の別の実施形態の概略構成を示す図である。
 本明細書において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、三重水素(tritium)、を包含する。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば環を構成する原子の結合手を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環は環形成原子数が10であり、フラン環の環形成原子数が5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表すものであり、置換されている場合の置換基の炭素数は含めない。ここで、「YY」は「XX」よりも大きく、「XX」と「YY」はそれぞれ1以上の整数を意味する。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表すものであり、置換されている場合の置換基の原子数は含めない。ここで、「YY」は「XX」よりも大きく、「XX」と「YY」はそれぞれ1以上の整数を意味する。
 本明細書において、「置換もしくは無置換の」という場合における「置換」とは、水素原子以外の置換基で置換されていることを意味する。
 本明細書において、「置換もしくは無置換の」という場合における「無置換」とは前記置換基で置換されておらず、水素原子が結合していることを意味する。
 本明細書において、「置換もしくは無置換の」という場合における置換基(以下、任意置換基ともいう。)としては、例えば、炭素数1~50のアルキル基、炭素数1~50のハロアルキル基、炭素数2~50のアルケニル基、炭素数2~50のアルキニル基、環形成炭素数3~50のシクロアルキル基、炭素数1~50のアルコキシ基、炭素数1~50のアルキルチオ基、環形成炭素数6~50のアリールオキシ基、環形成炭素数6~50のアリールチオ基、炭素数7~50のアラルキル基、-Si(R41)(R42)(R43)、-C(=O)R44、-COOR45、-S(=O)46、-P(=O)(R47)(R48)、-Ge(R49)(R50)(R51)、-N(R52)(R53)(ここで、R41~R53は、それぞれ独立に、水素原子、炭素数1~50のアルキル基、環形成炭素数6~50のアリール基、又は環形成原子数5~50の1価の複素環基である。R41~R53が2以上存在する場合、2以上のR41~R53のそれぞれは同一でもよく、異なっていてもよい。)、ヒドロキシ基、ハロゲン原子、シアノ基、ニトロ基、環形成炭素数6~50のアリール基、及び環形成原子数5~50の1価の複素環基からなる群から選択される。
 本明細書において、隣接する任意置換基同士(又は隣接しない環形成可能な任意置換基同士)で、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は、置換もしくは無置換の飽和又は不飽和の環を形成しない。「置換もしくは無置換の飽和又は不飽和の環を形成する」については、後述の「置換もしくは無置換の」及び「飽和又は不飽和の環」の説明と同様である。
 本明細書において、任意置換基は、さらに置換基を有してもよい。任意置換基がさらに有する置換基としては、上記任意置換基と同様のものが挙げられる。
 本明細書における各基及び各置換基の具体例としては、以下のものが挙げられる。
 無置換の炭素数1~50(好ましくは1~30、より好ましくは1~18、さらに好ましくは1~5)のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられる。
 置換された炭素数1~50(好ましくは1~30、より好ましくは1~18、さらに好ましくは1~5)のアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロキシ-t-ブチル基、1,2,3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ-t-ブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプロピル基、2,3-ジブロモ-t-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジヨードエチル基、1,3-ジヨードイソプロピル基、2,3-ジヨード-t-ブチル基、1,2,3-トリヨードプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプロピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1,2-ジニトロエチル基、1,3-ジニトロイソプロピル基、2,3-ジニトロ-t-ブチル基、1,2,3-トリニトロプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基等が挙げられる。
 置換もしくは無置換の炭素数1~50のハロアルキル基は、上記アルキル基の水素原子の1つ以上がハロゲン原子で置換された基である。置換もしくは無置換の炭素数1~50のハロアルキル基としては、上記置換もしくは無置換の炭素数1~50のアルキル基において、1つ以上のハロゲン原子が置換した基が挙げられる。
 無置換の炭素数2~50(好ましくは2~30、より好ましくは2~18)のアルケニル基としては、ビニル基、アリル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1,3-ブタンジエニル基、1-メチルビニル基、1-メチルアリル基、1,1-ジメチルアリル基、2-メチルアリル基、1,2-ジメチルアリル基等が挙げられる。
 無置換の炭素数2~50(好ましくは2~30、より好ましくは2~18)のアルキニル基としては、エチニル基等が挙げられる。
 無置換の環形成炭素数3~50(好ましくは3~30、より好ましくは3~18、さらに好ましくは3~6)のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等が挙げられる。
 無置換の炭素数1~50(好ましくは1~30、より好ましくは1~18)のアルコキシ基は-OXで表され、Xとしては、例えば、上記の炭素数1~50のアルキル基が挙げられる。
 無置換の炭素数1~50(好ましくは1~30、より好ましくは1~18)のアルキルチオ基は-SXで表され、Xとしては、例えば、上記の炭素数1~50のアルキル基が挙げられる。
 無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~18)のアリール基としては、例えば、フェニル基、p-ビフェニルイル基、m-ビフェニルイル基、o-ビフェニルイル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-ターフェニル-4-イル基、o-ターフェニル-3-イル基、o-ターフェニル-2-イル基、1-ナフチル基、2-ナフチル基、アントリル基、ベンゾアントリル基、フェナントリル基、ベンゾフェナントリル基、フェナレニル基、ピレニル基、クリセニル基、ベンゾクリセニル基、トリフェニレニル基、ベンゾトリフェニレニル基、テトラセニル基、ペンタセニル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フルオランテニル基、ベンゾフルオランテニル基等が挙げられる。
 これらの中で、好ましくはフェニル基、ビフェニルイル基、ターフェニル基、ナフチル基、フェナントリル基及びフルオレニル基であり、より好ましくはフェニル基、ナフチル基、ビフェニルイル基である。
 置換された環形成炭素数6~50(好ましくは6~30、より好ましくは6~18)のアリール基としては、例えば、o-トリル基、m-トリル基、p-トリル基、パラ-キシリル基、メタ-キシリル基、オルト-キシリル基、パラ-イソプロピルフェニル基、メタ-イソプロピルフェニル基、オルト-イソプロピルフェニル基、パラ-t-ブチルフェニル基、メタ-t-ブチルフェニル基、オルト-t-ブチルフェニル基、3,4,5-トリメチルフェニル基、9,9-ジメチルフルオレニル基、9,9-ジフェニルフルオレニル基、9,9’-スピロビフルオレニル基、9,9-ジ(4-メチルフェニル)フルオレニル基、9,9-ジ(4-イソプロピルフェニル)フルオレニル基、9,9-ジ(4-tブチルフェニル)フルオレニル基、シアノフェニル基、トリフェニルシリルフェニル基、トリメチルシリルフェニル基等が挙げられる。
 置換もしくは無置換の環形成炭素数6~30(好ましくは6~20、より好ましくは6~18)のアリーレン基としては、例えば、上記に例示された、無置換の環形成炭素数6~50のアリール基及び置換された環形成炭素数6~50のアリール基を構成する芳香族炭化水素環から形成される2価の基が挙げられる。
 置換もしくは無置換の環形成炭素数6~30のアリーレン基としては、例えば、下記式(L1-1a)~(L1-1c)で表される置換もしくは無置換のフェニレン基、下記式(L1-2a)~(L1-2g)で表される置換もしくは無置換のビフェニルイル基、下記式(L1-3a)~(L1-3k)で表される置換もしくは無置換のジアルキルフルオレニレン基、及び下記式(L1-4a)~(L1-4j)で表される置換もしくは無置換のナフチレン基からなる群から選択される。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 式(L1-4a)~(L1-4j)において、(R)pは任意の炭素原子に結合する。
 式(L1-1a)~(L1-1c)、式(L1-2a)~(L1-2g)、式(L1-3a)~(L1-3k)及び式(L1-4a)~(L1-4j)中、Rはそれぞれ独立に、任意置換基である。
 Rはそれぞれ独立に、置換もしくは無置換の炭素数1~50(好ましくは1~30、より好ましくは1~18、さらに好ましくは1~5)のアルキル基である。
 mはそれぞれ独立に、0~4の整数であり、nはそれぞれ独立に、0~3の整数であり、pはそれぞれ独立に、0~6の整数である。
 mが2以上の場合、2以上のRは同一であってもよいし、異なっていてもよい。nが2以上の場合、2以上のRは同一であってもよいし、異なっていてもよい。pが2以上の場合、2以上のRは同一であってもよいし、異なっていてもよい。mが2以上の場合、2以上のRは互いに結合することはない。nが2以上の場合、2以上のRは互いに結合することはない。pが2以上の場合、2以上のRは互いに結合することはない。
 mは0が好ましい。nは0が好ましい。pは0が好ましい。
 各式中の2つの*(アスタリスク)は、結合手である。
 無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~18)のアリールオキシ基は-OYで表され、Yとしては、例えば、上記の環形成炭素数6~50のアリール基が挙げられる。
 無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~18)のアリールチオ基は-SYで表され、Yとしては、例えば、上記の環形成炭素数6~50のアリール基が挙げられる。
 無置換の炭素数7~50(好ましくは7~30、より好ましくは7~18)のアラルキル基としては、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基等が挙げられる。
 置換された炭素数7~50(好ましくは7~30、より好ましくは7~18)のアラルキル基としては、例えば、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基等が挙げられる。
 無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~18)の1価の複素環基としては、例えば、
 窒素元素を含む複素環基であるピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、テトラゾリル基、オキサゾリル基、イソオキサゾリル基、オキサジアゾリル基、チアゾリル基、イソチアゾリル基、チアジアゾリル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、インドリル基、イソインドリル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンゾイミダゾリル基、インダゾリル基、フェナントロリニル基、フェナントリジニル基、アクリジニル基、フェナジニル基、カルバゾリル基、ベンゾカルバゾリル基、モルホリノ基、フェノキサジニル基、フェノチアジニル基、アザカルバゾリル基、ジアザカルバゾリル基等、
 酸素元素を含む無置換の複素環基であるフリル基、オキサゾリル基、イソオキサゾリル基、オキサジアゾリル基、キサンテニル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、ナフトベンゾフラニル基、ベンゾオキサゾリル基、ベンゾイソキサゾリル基、フェノキサジニル基、モルホリノ基、ジナフトフラニル基、アザジベンゾフラニル基、ジアザジベンゾフラニル基、アザナフトベンゾフラニル基、ジアザナフトベンゾフラニル基等、
 硫黄元素を含む無置換の複素環基であるチエニル基、チアゾリル基、イソチアゾリル基、チアジアゾリル基、ベンゾチオフェニル基、イソベンゾチオフェニル基、ジベンゾチオフェニル基、ナフトベンゾチオフェニル基、ベンゾチアゾリル基、ベンゾイソチアゾリル基、フェノチアジニル基、ジナフトチオフェニル基、アザジベンゾチオフェニル基、ジアザジベンゾチオフェニル基、アザナフトベンゾチオフェニル基、ジアザナフトベンゾチオフェニル基等、が挙げられる。
 尚、複素環基を構成するヘテロ原子としては、S、O及びN等のヘテロ原子の他、Si、Ge及びSe等のヘテロ原子も挙げられる。
 本明細書に記載の「複素環基」は、単環の基であってもよく、縮合環の基であってもよい。本明細書に記載の「複素環基」は、芳香族複素環基であってもよく、脂肪族複素環基であってもよい。
 置換された環形成原子数5~50(好ましくは5~30、より好ましくは5~18)の1価の複素環基としては、例えば、
 窒素元素を含む置換の複素環基である(9-フェニル)カルバゾリル基、(9-ビフェニリル)カルバゾリル基、(9-フェニル)フェニルカルバゾリル基、(9-ナフチル)カルバゾリル基、ジフェニルカルバゾール-9-イル基、フェニルカルバゾール-9-イル基、メチルベンゾイミダゾリル基、エチルベンゾイミダゾリル基、フェニルトリアジニル基、ビフェニリルトリアジニル基、ジフェニルトリアジニル基、フェニルキナゾリニル基、ビフェニリルキナゾリニル基等、
 酸素元素を含む置換の複素環基であるフェニルジベンゾフラニル基、メチルジベンゾフラニル基、t-ブチルジベンゾフラニル基、スピロ[9H-キサンテン-9,9’-[9H]フルオレン]から形成される1価の基等、
 硫黄元素を含む置換の複素環基であるフェニルジベンゾチオフェニル基、メチルジベンゾチオフェニル基、t-ブチルジベンゾチオフェニル基、スピロ[9H-チオキサンテン-9,9’-[9H]フルオレン]から形成される1価の基等が挙げられる。
 置換もしくは無置換の環形成原子数5~30(好ましくは5~20、より好ましくは5~18)の2価の複素環基としては、例えば、上記に例示された、無置換の環形成原子数5~50の1価の複素環基及び置換された環形成原子数5~50の1価の複素環基を構成する複素環から形成される2価の基が挙げられる。
 置換もしくは無置換の環形成原子数5~50の1価の複素環基としては、以下の基も含まれる。また、環形成原子数5~30の2価の複素環基としては、以下の基を2価の基にした基も含まれる。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
(式中、X1A~X6A,Y1A~Y6Aはそれぞれ酸素原子、硫黄原子、-NZ-基、又は-NH-基である。Zは、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は置換もしくは無置換の炭素数1~50のアルキル基である。Zが2以上存在する場合、2以上のZは同じでもよく、異なっていてもよい。)
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
<化合物>
 本発明の一態様に係る新規化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000026
(式(1)中、
 R~R11のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は、置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR~R11、R12及びR13は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R31)(R32)(R33)、-C(=O)R34、-COOR35、-N(R36)(R37)、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(2)で表される基を示す。(例えば、R及びRは、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R31)(R32)(R33)、-C(=O)R34、-COOR35、-N(R36)(R37)、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(2)で表される基を示し、
 R及びRは、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R31)(R32)(R33)、-C(=O)R34、-COOR35、-N(R36)(R37)、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(2)で表される基を示し、
 R及びRは、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R31)(R32)(R33)、-C(=O)R34、-COOR35、-N(R36)(R37)、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(2)で表される基を示し、
 R及びRは、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R31)(R32)(R33)、-C(=O)R34、-COOR35、-N(R36)(R37)、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(2)で表される基を示し、
 R12及びR13は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R31)(R32)(R33)、-C(=O)R34、-COOR35、-N(R36)(R37)、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(2)で表される基を示し、
 R及びR11は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R31)(R32)(R33)、-C(=O)R34、-COOR35、-N(R36)(R37)、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(2)で表される基を示し、
 R10は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R31)(R32)(R33)、-C(=O)R34、-COOR35、-N(R36)(R37)、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(2)で表される基を示す。)
 R31~R37は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R31~R37が2以上存在する場合、2以上のR31~R37のそれぞれは同一でもよく、異なっていてもよい。
 但し、R~Rの少なくとも1つは、下記式(2)で表される基である。下記式(2)で表される基が2以上存在する場合、2以上の下記式(2)で表される基は同一であってもよく、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000027
(式(2)中、
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
 HArは、置換もしくは無置換の環形成原子数5~50の1価の複素環基である。)
 これにより、発光効率の高い有機エレクトロルミネッセンス素子用材料を得ることができる。
 上述の「R~Rの少なくとも1つは、下記式(2)で表される基である」とは、R~Rの少なくとも1つは、置換もしくは無置換の飽和又は不飽和の環を形成せず、式(2)で表される基であることを意味する。
 「R~R11のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成する」について説明する。
 「R~R11のうち隣接する2つ以上の1組」は、例えば、RとR、RとR、RとR、RとR、RとR、RとRとR等の組合せである。
 上記飽和又は不飽和の環に対する「置換もしくは無置換の」の「置換」のときの置換基は、上述の任意置換基と同様である。
 「飽和又は不飽和の環」とは、例えばRとRで環を形成する場合には、Rが結合する炭素原子と、Rが結合する炭素原子と、1以上の任意の元素とで形成する環を意味する。具体的には、RとRで環を形成する場合において、Rが結合する炭素原子と、Rが結合する炭素原子と、4つの炭素原子とで不飽和の環を形成する場合、RとRとで形成する環はベンゼン環となる。
 「任意の元素」は、好ましくは、C元素、N元素、O元素、S元素である。任意の元素において(例えばC元素又はN元素の場合)、環を形成しない結合手は、水素原子等で終端されてもよい。
 「1以上の任意の元素」は、好ましくは2個以上15個以下、より好ましくは3個以上12個以下、さらに好ましくは、3個以上5個以下の任意の元素である。
 本明細書において、「X~Yのうち隣接する2つ以上の1組以上は、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は、置換もしくは無置換の飽和又は不飽和の環を形成しない」という表現は、Xを上記Rに,Yを上記R11に置き換えたときと同じ意味である。
 一実施形態においては、式(1)で表される化合物は、下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000028
(式(3)中、R、R~R13、L及びHArは、前記式(1)で定義した通りである。)
 一実施形態においては、式(1)で表される化合物は、下記式(4)で表される。
Figure JPOXMLDOC01-appb-C000029
(式(4)中、R、R~R13及びHArは、前記式(1)で定義した通りである。)
 一実施形態においては、式(1)で表される化合物は、R、前記置換もしくは無置換の飽和又は不飽和の環を形成しないR~R11、R12及びR13が、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は前記式(2)で表される基である。
 一実施形態においては、式(1)で表される化合物は、下記式(5)で表される。
Figure JPOXMLDOC01-appb-C000030
(式(5)中、R、R10、R12、R13及びHArは、前記式(1)で定義した通りである。)
 一実施形態においては、R、R10、R12及びR13が、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は前記式(2)で表される基である。
 一実施形態においては、式(1)で表される化合物は、下記式(6)で表される。
Figure JPOXMLDOC01-appb-C000031
(式(6)中、R~R13、L及びHArは、前記式(1)で定義した通りである。)
 一実施形態においては、式(1)で表される化合物は、下記式(7)で表される。
Figure JPOXMLDOC01-appb-C000032
(式(7)中、R~R13及びHArは、前記式(1)で定義した通りである。)
 一実施形態においては、HArが、置換もしくは無置換の環形成原子数5~18の1価の複素環基である。
 一実施形態においては、式(1)で表される化合物における「置換もしくは無置換の」という場合における置換基が、炭素数1~50のアルキル基、炭素数1~50のハロアルキル基、炭素数2~50のアルケニル基、炭素数2~50のアルキニル基、環形成炭素数3~50のシクロアルキル基、炭素数1~50のアルコキシ基、炭素数1~50のアルキルチオ基、環形成炭素数6~50のアリールオキシ基、環形成炭素数6~50のアリールチオ基、炭素数7~50のアラルキル基、-Si(R41)(R42)(R43)、-C(=O)R44、-COOR45、-S(=O)46、-P(=O)(R47)(R48)、-Ge(R49)(R50)(R51)、-N(R52)(R53)(ここで、R41~R53は、それぞれ独立に、水素原子、炭素数1~50のアルキル基、環形成炭素数6~50のアリール基、又は環形成原子数5~50の1価の複素環基である。R41~R53が2以上存在する場合、2以上のR41~R53のそれぞれは同一でもよく、異なっていてもよい。)、ヒドロキシ基、ハロゲン原子、シアノ基、ニトロ基、環形成炭素数6~50のアリール基、及び環形成原子数5~50の1価の複素環基からなる群から選択される。
 一実施形態においては、式(1)で表される化合物における「置換もしくは無置換の」という場合の置換基が、炭素数1~50のアルキル基、環形成炭素数6~50のアリール基、及び環形成原子数5~50の1価の複素環基からなる群から選択される。
 式(1)で表される化合物の各基、任意置換基及びハロゲン原子の具体例は、それぞれ前述したものと同様である。
 一実施形態においては、HArが、置換もしくは無置換のカルバゾリル基である。
 式(1)で表される化合物の具体例としては、例えば、以下に示す化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
 式(1)で表される化合物は、有機EL素子用材料として有用である。
 式(1)で表される化合物を有機EL素子の発光層の材料として使用することで、得られる有機EL素子の発光効率を向上させることができる。
 本発明の一態様に係る有機EL素子用材料は、式(1)で表される化合物を含む。
<有機エレクトロルミネッセンス素子>
 本発明の一態様に係る有機EL素子は、陰極と、陽極と、前記陰極と前記陽極との間に配置された少なくとも1層の有機層と、を有し、前記少なくとも1層の有機層のうちの少なくとも1層が、式(1)で表される化合物を含有する。
 上記式(1)で表される化合物を所定の有機層、例えば発光層に用いることにより、有機EL素子の発光効率を向上させることができる。
 一実施形態においては、前記少なくとも1層の有機層のうちの少なくとも1層が発光層である。
 本発明の一態様に係る有機EL素子は、陰極と、陽極と、前記陰極と前記陽極との間に配置された少なくとも1層の有機層と、を有し、前記少なくとも1層の有機層のうちの少なくとも1層が、ドーパント材料を含有し、前記ドーパント材料が式(1)で表される化合物を含有する。
 本明細書において「陰極と陽極との間に配置された少なくとも1層の有機層」とは、陰極と陽極の間に1層の有機層が存在する場合にはその層を指し、2以上の有機層が存在する場合には、そのうちの少なくとも1層を指す。
 また、「少なくとも1層の有機層のうちの少なくとも1層が発光層である」とは、陰極と陽極の間に1層の有機層が存在する場合には、当該層が発光層であり、2以上の有機層が存在する場合には、そのうちの少なくとも1つが発光層であることを意味する。
 一実施形態においては、有機EL素子は、前記陽極と前記発光層との間に正孔輸送層を有する。
 一実施形態においては、有機EL素子は、前記陰極と前記発光層との間に電子輸送層を有する。
 本明細書において「発光層と陽極の間にある少なくとも1層」は、発光層と陽極の間に1層の有機層が存在する場合にはその層を指し、2以上の有機層が存在する場合にはそのうちの少なくとも1層を指す。例えば、発光層と陽極の間に2つ以上の有機層が存在する場合、発光層に近い側の有機層を「正孔輸送層」と呼び、陽極に近い側の有機層を「正孔注入層」と呼ぶ。「正孔輸送層」及び「正孔注入層」はそれぞれ1層であってもよいし、それぞれ2層以上であってもよいし、一方が1層であり、他方が2層以上であってもよい。
 同様に、「発光層と陰極の間にある少なくとも1層」は、発光層と陰極の間に1層の有機層が存在する場合にはその層を指し、2以上の有機層が存在する場合にはそのうちの少なくとも1層を指す。例えば、発光層と陰極の間に2つ以上の有機層が存在する場合、発光層に近い側の有機層を「電子輸送層」と呼び、陰極に近い側の有機層を「電子注入層」と呼ぶ。「電子輸送層」及び「電子注入層」はそれぞれ1層であってもよいし、それぞれ2層以上であってもよいし、一方が1層であり、他方が2層以上であってもよい。
 一実施形態においては、前記発光層が、さらに下記式(10)で表される化合物(以下、化合物(10)ということがある)を含む。
Figure JPOXMLDOC01-appb-C000054
[式(10)中、
 R101~R110のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は、置換もしくは無置換の飽和又は不飽和の環を形成しない。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR101~R110は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R121)(R122)(R123)、-C(=O)R124、-COOR125、-N(R126)(R127)、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(31)で表される基である。
 R121~R127は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。R121~R127が2以上存在する場合、2以上のR121~R127のそれぞれは同一でもよく、異なっていてもよい。
 但し、前記置換もしくは無置換の飽和又は不飽和の環を形成しないR101~R110の少なくとも1つは、下記式(31)で表される基である。下記式(31)が2以上存在する場合、2以上の下記式(31)で表される基は同一であってもよいし、異なっていてもよい。
     -L101-Ar101     (31)
(式(31)中、
 L101は、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
 Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。)]
 化合物(10)の各基、任意置換基及びハロゲン原子の具体例は、それぞれ前述したものと同様である。
 以下、「R101~R110のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成する」について説明する。
 「R101~R110のうち隣接する2つ以上の1組」は、例えば、R101とR102、R102とR103、R103とR104、R105とR106、R106とR107、R107とR108、R108とR109、R101とR102とR103等の組合せである。
 上記飽和又は不飽和の環に対する「置換もしくは無置換の」の「置換」のときの置換基は、式(10)における上記任意置換基と同様である。
 「飽和又は不飽和の環」とは、例えばR101とR102で環を形成する場合には、R101が結合する炭素原子と、R102が結合する炭素原子と、1以上の任意の元素とで形成する環を意味する。具体的には、R101とR102で環を形成する場合において、R101が結合する炭素原子と、R102が結合する炭素原子と、4つの炭素原子とで不飽和の環を形成する場合、R101とR102とで形成する環はベンゼン環となる。
 「任意の元素」は、好ましくは、C元素、N元素、O元素、S元素である。任意の元素において(例えばC元素又はN元素の場合)、環を形成しない結合手は、水素原子等で終端されてもよい。
 「1以上の任意の元素」は、好ましくは2個以上15個以下、より好ましくは3個以上12個以下、さらに好ましくは、3個以上5個以下の任意の元素である。
 例えば、R101とR102が環を形成し、同時にR105とR106が環を形成してもよい。その場合、式(10)で表される化合物は、例えば下記式(10A)で表される化合物となる。
Figure JPOXMLDOC01-appb-C000055
 一実施形態においては、R101~R110は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、又は式(31)で表される基である。
 一実施形態においては、R101~R110は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、又は式(31)で表される基である。
 一実施形態においては、R101~R110は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~18のアリール基、置換もしくは無置換の環形成原子数5~18の複素環基、又は式(31)で表される基である。
 一実施形態において、R109及びR110の少なくとも1つは、式(31)で表される基である。
 一実施形態において、R109及びR110は、それぞれ独立に、式(31)で表される基である。
 一実施形態においては、化合物(10)は、下記式(10-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000056
 式(10-1)中、R101~R108、L101及びAr101は、前記式(10)で定義した通りである。
 一実施形態においては、化合物(10)は、下記式(10-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000057
 式(10-2)中、R101、R103~R108、L101及びAr101は、前記式(10)で定義した通りである。
 一実施形態においては、化合物(10)は、下記式(10-3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000058
 式(10-3)中、
 R101A~R108Aは、それぞれ独立に、水素原子、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 L101Aは、単結合、又は置換もしくは無置換の環形成炭素数6~30のアリーレン基である。2つのL101Aは、同一でもよく、異なっていてもよい。
 Ar101Aは、置換もしくは無置換の環形成炭素数6~50のアリール基である。2つのAr101Aは、同一でもよく、異なっていてもよい。
 一実施形態においては、化合物(10)は、下記式(10-4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000059
 式(10-4)中、
 L101及びAr101は、前記式(10)で定義した通りである。
 R101A~R108Aは、それぞれ独立に、水素原子、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 X11は、O、S、又はN(R61)である。
 R61は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 R62~R69の1つは、L101と結合する結合手である。
 L101と結合しないR62~R69のうちの隣接する1組以上は、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は、置換もしくは無置換の飽和又は不飽和の環を形成しない。
 L101と結合せず、かつ前記置換もしくは無置換の飽和又は不飽和の環を形成しないR62~R69は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態においては、化合物(10)は、下記式(10-4A)で表される化合物である。
Figure JPOXMLDOC01-appb-C000060
 式(10-4A)中、
 L101及びAr101は、前記式(10)で定義した通りである。
 R101A~R108Aは、それぞれ独立に、水素原子、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 X11は、O、S、又はN(R61)である。
 R61は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 R62A~R69Aのうちの隣接する2つ以上の1組以上は、置換もしくは無置換の飽和又は不飽和の環を形成してもよく、R62A~R69Aのうちの隣接する2つは、下記式(10-4A-1)で表される環を形成する。
 置換もしくは無置換の飽和又は不飽和の環を形成しないR62A~R69Aは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
Figure JPOXMLDOC01-appb-C000061
(式(10-4A-1)中、
 2つの結合手*のそれぞれは、R62A~R69Aのうちの隣接する2つと結合する。
 R70~R73の1つは、L101と結合する結合手である。
 L101と結合しないR70~R73は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。)
 一実施形態においては、化合物(10)は、下記式(10-6)で表される化合物である。
Figure JPOXMLDOC01-appb-C000062
 式(10-6)中、
 L101及びAr101は、前記式(10)で定義した通りである。
 R101A~R108Aは、前記式(10-4)で定義した通りである。
 R66~R69は、前記式(10-4)で定義した通りである。
 X12は、O又はSである。
 一実施形態においては、前記式(10-6)で表される化合物は、下記式(10-6-1)~下記式(10-6-4)で表される化合物から選択される。
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
 式(10-6-1)~式(10-6-4)中、
 L101及びAr101は、前記式(10)で定義した通りである。
 R101A~R108Aは、前記式(10-4)で定義した通りである。
 R66~R69は、前記式(10-4)で定義した通りである。
 X12は、O又はSである。
 一実施形態においては、前記式(10-6)で表される化合物は、下記式(10-6H)で表される化合物である。
Figure JPOXMLDOC01-appb-C000065
 式(10-6H)中、
 L101及びAr101は、前記式(10)で定義した通りである。
 R66~R69は、前記式(10-4)で定義した通りである。
 X12は、O又はSである。
 一実施形態においては、前記式(10-6)又は(10-6H)で表される化合物は、下記式(10-6Ha)で表される化合物である。
Figure JPOXMLDOC01-appb-C000066
 式(10-6Ha)中、
 L101及びAr101は、前記式(10)で定義した通りである。
 X12は、O又はSである。
 一実施形態においては、前記式(10-6)、(10-6H)又は(10-6Ha)で表される化合物は、下記式(10-6Ha-1)又は(10-6Ha-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000067
 式(10-6Ha-1)及び(10-6Ha-2)中、
 L101及びAr101は、前記式(10)で定義した通りである。
 X12は、O又はSである。
 一実施形態においては、化合物(10)は、下記式(10-7)で表される化合物である。
Figure JPOXMLDOC01-appb-C000068
 式(10-7)中、
 L101及びAr101は、前記式(10)で定義した通りである。
 R101A~R108Aは、前記式(10-4)で定義した通りである。
 X11は、前記式(10-4)で定義した通りである。
 R62~R69は、前記式(10-4)で定義した通りである。但し、R66及びR67、R67及びR68、並びにR68及びR69のいずれか1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。
 一実施形態においては、化合物(10)は、下記式(10-7H)で表される化合物である。
Figure JPOXMLDOC01-appb-C000069
 式(10-7H)中、
 L101及びAr101は、前記式(10)で定義した通りである。
 X11は、前記式(10-4)で定義した通りである。
 R62~R69は、前記式(10-4)で定義した通りである。但し、R66及びR67、R67及びR68、並びにR68及びR69のいずれか1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。
 一実施形態においては、化合物(10)は、下記式(10-8)で表される化合物である。
Figure JPOXMLDOC01-appb-C000070
 式(10-8)中、
 L101及びAr101は、前記式(10)で定義した通りである。
 R101A~R108Aは、前記式(10-4)で定義した通りである。
 X12は、O又はSである。
 R66~R69は、前記式(10-4)で定義した通りである。但し、R66及びR67、R67及びR68、又はR68及びR69のいずれか1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。
 一実施形態においては、化合物(10-8)で表される化合物は、下記式(10-8H)で表される化合物である。
Figure JPOXMLDOC01-appb-C000071
 式(10-8H)中、
 L101及びAr101は、前記式(10)で定義した通りである。
 R66~R69は、前記式(10-4)で定義した通りである。但し、R66及びR67、R67及びR68、又はR68及びR69のうちのいずれか1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。R66及びR67、R67及びR68、又はR68及びR69のうちのいずれか1組は、互いに結合して、無置換のベンゼン環を形成することが好ましい。
 X12は、O又はSである。
 一実施形態において、前記式(10-7)、(10-7H)、(10-8)又は(10-8H)で表される化合物は、R66及びR67、R67及びR68、又はR68及びR69のいずれか1組が、互いに結合して、下記式(10-8-1)又は(10-8-2)で表される環を形成し、前記式(10-8-1)又は(10-8-2)で表される環を形成しないR66~R69は、置換もしくは無置換の飽和又は不飽和の環を形成しない。
Figure JPOXMLDOC01-appb-C000072
(式(10-8-1)及び(10-8-2)中、
 2つの結合手*は、それぞれ、R66及びR67、R67及びR68、又はR68及びR69の1組と結合する。
 R80~R83は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 X13は、O又はSである。)
 一実施形態においては、化合物(10)は、下記式(10-9)で表される化合物である。
Figure JPOXMLDOC01-appb-C000073
 式(10-9)中、
 L101及びAr101は、前記式(10)で定義した通りである。
 R101A~R108Aは、前記式(10-4)で定義した通りである。
 R66~R69は、前記式(10-4)で定義した通りである。但し、R66及びR67、R67及びR68、並びにR69及びR67は、いずれも互いに結合せず、置換もしくは無置換の飽和又は不飽和の環を形成しない。
 X12は、O又はSである。
 一実施形態においては、化合物(10)は、下記式(10-10-1)~(10-10-4)で表される化合物からなる群から選択される。
Figure JPOXMLDOC01-appb-C000074
 式(10-10-1)~(10-10-4)中、L101A、Ar101A及びR101A~R108Aは、前記式(10-3)で定義した通りである。
 一実施形態においては、上記式(10-10-1)~(10-10-4)で表される化合物は、下記式(10-10-1H)~(10-10-4H)で表される化合物である。
Figure JPOXMLDOC01-appb-C000075
 式(10-10-1H)~(10-10-4H)中、L101A及びAr101Aは、前記式(10-3)で定義した通りである。
 式(10)で表される化合物は、例えば、以下に示す化合物が具体例として挙げられる。
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
 一実施形態においては、発光層が、式(1)で表される化合物と、式(10)で表される化合物とを含む場合、式(1)で表される化合物の含有量は、発光層全体に対して、1質量%以上20質量%以下が好ましい。
 また、一実施形態においては、発光層が、式(1)で表される化合物と、式(10)で表される化合物とを含む場合、式(10)で表される化合物の含有量は、発光層全体に対して、80質量%以上99質量%以下が好ましい。
 以下、本発明の一態様に係る有機EL素子の層構成について説明する。
 本発明の一態様に係る有機EL素子は、陰極及び陽極からなる1対の電極間に有機層を備えている。有機層は、有機化合物で構成される層を少なくとも1層含む。あるいはまた、有機層は、有機化合物で構成される2以上の層が積層されてなる。有機層は、有機化合物に加えて、無機化合物をさらに含んでいてもよい。
 一実施形態においては、有機層のうちの少なくとも1層が、発光層である。有機層は、例えば、1層の発光層として構成されていてもよく、また、有機EL素子の層構成で採用され得る他の層を含んでいてもよい。有機EL素子の層構成で採用され得る層としては、特に限定されるものではないが、例えば、陽極と発光層との間に設けられる正孔輸送帯域(正孔輸送層、正孔注入層、電子阻止層、励起子阻止層等)、発光層、スペース層、陰極と発光層との間に設けられる電子輸送帯域(電子輸送層、電子注入層、正孔阻止層等)等が挙げられる。
 本発明の一態様に係る有機EL素子は、例えば、蛍光又は燐光発光型の単色発光素子であってもよく、蛍光/燐光ハイブリッド型の白色発光素子であってもよい。また、単独の発光ユニットを有するシンプル型であってもよく、2以上の発光ユニットを有するタンデム型であってもよい。
 尚、本明細書に記載の「発光ユニット」とは、有機層を含み、該有機層のうちの少なくとも1層が発光層であり、注入された正孔と電子が再結合することにより発光する最小単位を言う。
 また、本明細書に記載の「発光層」とは、発光機能を有する有機層である。発光層は、例えば、燐光発光層、蛍光発光層等であり、また、1層でも2以上の層でもよい。
 発光ユニットは、燐光発光層や蛍光発光層を2以上有する積層型であってもよく、この場合、例えば、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐためのスペース層を各発光層の間に有していてもよい。
 シンプル型有機EL素子としては、例えば、陽極/発光ユニット/陰極のような素子構成が挙げられる。
 発光ユニットの代表的な層構成を以下に示す。カッコ内の層は任意である。
(a)(正孔注入層/)正孔輸送層/蛍光発光層(/電子輸送層/電子注入層)
(b)(正孔注入層/)正孔輸送層/燐光発光層(/電子輸送層/電子注入層)
(c)(正孔注入層/)正孔輸送層/第1蛍光発光層/第2蛍光発光層(/電子輸送層/電子注入層)
(d)(正孔注入層/)正孔輸送層/第1燐光発光層/第2燐光発光層(/電子輸送層/電子注入層)
(e)(正孔注入層/)正孔輸送層/燐光発光層/スペース層/蛍光発光層(/電子輸送層/電子注入層)
(f)(正孔注入層/)正孔輸送層/第1燐光発光層/第2燐光発光層/スペース層/蛍光発光層(/電子輸送層/電子注入層)
(g)(正孔注入層/)正孔輸送層/第1燐光発光層/スペース層/第2燐光発光層/スペース層/蛍光発光層(/電子輸送層/電子注入層)
(h)(正孔注入層/)正孔輸送層/燐光発光層/スペース層/第1蛍光発光層/第2蛍光発光層(/電子輸送層/電子注入層)
(i)(正孔注入層/)正孔輸送層/電子阻止層/蛍光発光層(/電子輸送層/電子注入層)
(j)(正孔注入層/)正孔輸送層/電子阻止層/燐光発光層(/電子輸送層/電子注入層)
(k)(正孔注入層/)正孔輸送層/励起子阻止層/蛍光発光層(/電子輸送層/電子注入層)
(l)(正孔注入層/)正孔輸送層/励起子阻止層/燐光発光層(/電子輸送層/電子注入層)
(m)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/蛍光発光層(/電子輸送層/電子注入層)
(n)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/蛍光発光層(/第1電子輸送層/第2電子輸送層/電子注入層)
(o)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/燐光発光層(/電子輸送層/電子注入層)
(p)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/燐光発光層(/第1電子輸送層/第2電子輸送層/電子注入層)
(q)(正孔注入層/)正孔輸送層/蛍光発光層/正孔阻止層(/電子輸送層/電子注入層)
(r)(正孔注入層/)正孔輸送層/燐光発光層/正孔阻止層(/電子輸送層/電子注入層)
(s)(正孔注入層/)正孔輸送層/蛍光発光層/励起子阻止層(/電子輸送層/電子注入層)
(t)(正孔注入層/)正孔輸送層/燐光発光層/励起子阻止層(/電子輸送層/電子注入層)
 ただし、本発明の一態様に係る有機EL素子の層構成は、これらに限定されるものではない。例えば、有機EL素子が、正孔注入層及び正孔輸送層を有する場合には、正孔輸送層と陽極との間に正孔注入層が設けられていることが好ましい。また、有機EL素子が、電子注入層及び電子輸送層を有する場合には、電子輸送層と陰極との間に電子注入層が設けられていることが好ましい。また、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層のそれぞれは、1層で構成されていてもよく、2以上の層で構成されていてもよい。
 2以上の燐光発光層、及び、燐光発光層と蛍光発光層は、それぞれ互いに異なる色の発光層であってもよい。例えば、前記発光ユニット(f)は、正孔輸送層/第1燐光発光層(赤色発光)/第2燐光発光層(緑色発光)/スペース層/蛍光発光層(青色発光)/電子輸送層とすることもできる。
 尚、各発光層と、正孔輸送層又はスペース層との間に、電子阻止層を設けてもよい。また、各発光層と電子輸送層との間に、正孔阻止層を設けてもよい。電子阻止層や正孔阻止層を設けることにより、電子又は正孔を発光層内に閉じ込めて、発光層における電荷の再結合確率を高め、発光効率を向上させることができる。
 タンデム型有機EL素子の代表的な素子構成としては、例えば、陽極/第1発光ユニット/中間層/第2発光ユニット/陰極のような素子構成が挙げられる。
 第1発光ユニット及び第2発光ユニットは、例えば、それぞれ独立に、上述した発光ユニットから選択することができる。
 中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、コネクター層、又は中間絶縁層とも呼ばれる。中間層は、第1発光ユニットに電子を、第2発光ユニットに正孔を供給する層であり、公知の材料により形成することができる。
 図1に、有機EL素子の層構成の一例の概略を示す。有機EL素子1は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット(有機層)10とを有する。発光ユニット10は、少なくとも1つの発光層5を有する。
 発光層5と陽極3との間に正孔輸送帯域(正孔注入層、正孔輸送層等)6、発光層5と陰極4との間に電子輸送帯域(電子注入層、電子輸送層等)7を形成してもよい。また、発光層5の陽極3側に電子阻止層(図示せず)を、発光層5の陰極4側に正孔阻止層(図示せず)をそれぞれ設けてもよい。これにより、電子や正孔を発光層5に閉じ込めて、発光層5における励起子の生成効率をさらに高めることができる。
 図2に、有機EL素子の層構成の他の一例の概略を示す。図2に示す有機EL素子11では、発光ユニット20において、図1の有機EL素子1の発光ユニット10の正孔輸送帯域6の正孔輸送層、及び電子輸送帯域7の電子輸送層を、それぞれ2層構造としている。正孔輸送帯域6は、陽極側の第1正孔輸送層6a、及び陰極側の第2正孔輸送層6bを有している。電子輸送帯域7は、陽極側の第1電子輸送層7a、及び陰極側の第2正孔輸送層7bを有している。尚、その他の符号については、図1と同じであるため、説明を省略する。
 以下、本明細書に記載の有機EL素子の各層の機能や材料等について説明する。
(基板)
 基板は、有機EL素子の支持体として用いられる。基板は、波長400~700nmの可視光領域の光の透過率が50%以上であることが好ましく、また、平滑な基板が好ましい。基板の材料としては、例えば、ソーダライムガラス、アルミノシリケートガラス、石英ガラス、プラスチック等が挙げられる。また、基板として、可撓性基板を用いることができる。可撓性基板とは、折り曲げることができる(フレキシブルな)基板を指し、例えば、プラスチック基板等が挙げられる。プラスチック基板を形成する材料の具体例としては、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリイミド、ポリエチレンナフタレート等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
 陽極としては、例えば、金属、合金、導電性化合物、及びこれらの混合物等であって、仕事関数の大きい(具体的には、4.0eV以上)ものを用いることが好ましい。陽極の材料の具体例としては、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、ケイ素もしくは酸化ケイ素を含有する酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、酸化亜鉛を含有する酸化インジウム、グラフェン等が挙げられる。また、金、銀、白金、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、及びこれらの金属の窒化物(例えば、窒化チタン)等が挙げられる。
 陽極は、通常、これらの材料をスパッタリング法により基板上に成膜することにより形成される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対して1~10質量%の酸化亜鉛を添加したターゲットを用いて、スパッタリング法により形成することができる。また、例えば、酸化タングステン、又は酸化亜鉛を含有する酸化インジウムは、酸化インジウムに対して酸化タングステンを0.5~5質量%、又は酸化亜鉛を0.1~1質量%添加したターゲットを用いて、スパッタリング法により形成することができる。
 陽極の他の形成方法としては、例えば、真空蒸着法、塗布法、インクジェット法、スピンコート法等が挙げられる。例えば、銀ペースト等を用いる場合は、塗布法やインクジェット法等を用いることができる。
 尚、陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔注入が容易である材料を用いて形成される。このため、陽極には、一般的な電極材料、例えば、金属、合金、導電性化合物、これらの混合物を用いることができる。具体的には、リチウム、セシウム等のアルカリ金属;マグネシウム;カルシウム、ストロンチウム等のアルカリ土類金属;これらの金属を含む合金(例えば、マグネシウム-銀、アルミニウム-リチウム);ユーロピウム、イッテルビウム等の希土類金属;希土類金属を含む合金等の仕事関数の小さい材料を陽極に用いることもできる。
(正孔注入層)
 正孔注入層は、正孔注入性の高い物質を含む層であり、陽極から有機層に正孔を注入する機能を有する。正孔注入性の高い物質としては、例えば、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物、芳香族アミン化合物、電子吸引性(アクセプター性)の化合物、高分子化合物(オリゴマー、デンドリマー、ポリマー等)等が挙げられる。これらの中でも、芳香族アミン化合物、アクセプター性の化合物が好ましく、より好ましくはアクセプター性の化合物である。
 芳香族アミン化合物の具体例としては、4,4’,4”-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4”-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等が挙げられる。
 アクセプター性の化合物としては、例えば、電子吸引基を有する複素環誘導体、電子吸引基を有するキノン誘導体、アリールボラン誘導体、ヘテロアリールボラン誘導体等が好ましく、具体例としては、ヘキサシアノヘキサアザトリフェニレン、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(略称:F4TCNQ)、1,2,3-トリス[(シアノ)(4-シアノ-2,3,5,6-テトラフルオロフェニル)メチレン]シクロプロパン等が挙げられる。
 アクセプター性の化合物を用いる場合、正孔注入層は、さらにマトリックス材料を含むことが好ましい。マトリックス材料としては、有機EL素子用の材料として公知の材料を用いることができ、例えば、電子供与性(ドナー性)の化合物を用いることが好ましく、より好ましくは上述の芳香族アミン化合物が用いられる。
(正孔輸送層)
 正孔輸送層は、正孔輸送性の高い物質を含む層であり、陽極から有機層に正孔を輸送する機能を有する。
 正孔輸送性の高い物質としては、10-6cm/(V・s)以上の正孔移動度を有する物質であることが好ましく、例えば、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体、高分子化合物等が挙げられる。
 芳香族アミン化合物の具体例としては、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4”-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4”-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)等が挙げられる。
 カルバゾール誘導体の具体例としては、4,4’-ジ(9-カルバゾリル)ビフェニル(略称:CBP)、9-[4-(9-カルバゾリル)フェニル]-10-フェニルアントラセン(略称:CzPA)、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCzPA)等が挙げられる。
 アントラセン誘導体の具体例としては、2-t-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、9,10-ジフェニルアントラセン(略称:DPAnth)等が挙げられる。
 高分子化合物の具体例としては、ポリ(N-ビニルカルバゾール)(略称:PVK)、及びポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等が挙げられる。
 電子輸送性よりも正孔輸送性の方が高い化合物であれば、正孔輸送層に、これら以外の物質を用いてもよい。
 正孔輸送層は、単層でもよく、2層以上が積層されていてもよい。この場合、発光層に近い側に、正孔輸送性の高い物質のうち、エネルギーギャップのより大きい物質を含む層を配置することが好ましい。
(発光層)
 発光層は、発光性の高い物質(ドーパント材料)を含む層である。ドーパント材料としては、種々の材料を用いることができ、例えば、蛍光発光性化合物(蛍光ドーパント)、燐光発光性化合物(燐光ドーパント)等を用いることができる。蛍光発光性化合物とは、一重項励起状態から発光可能な化合物であり、これを含む発光層は蛍光発光層と呼ばれる。また、燐光発光性化合物とは、三重項励起状態から発光可能な化合物であり、これを含む発光層は、燐光発光層と呼ばれる。
 発光層は、通常、ドーパント材料、及びこれを効率よく発光させるためのホスト材料を含有する。尚、ドーパント材料は、文献によっては、ゲスト材料、エミッター、又は発光材料と称する場合もある。また、ホスト材料は、文献によっては、マトリックス材料と称する場合もある。
 1つの発光層に、2以上のドーパント材料、及び2以上のホスト材料を含んでもよい。また、発光層が2以上であってもよい。
 本明細書では、蛍光ドーパントと組み合わされたホスト材料を、「蛍光ホスト」と称し、燐光ドーパントと組み合わされたホスト材料を「燐光ホスト」と称する。尚、蛍光ホストと燐光ホストとは、分子構造のみで区分されるものではない。燐光ホストとは、燐光ドーパントを含有する燐光発光層を形成する材料であるが、蛍光発光層を形成する材料として利用できないことを意味するものではない。蛍光ホストについても同様である。
 発光層には、式(1)で表される化合物(以下、これら化合物を「化合物(1)」という場合がある)が含まれていることが好ましく、より好ましくはドーパント材料として含まれる。また、化合物(1)は、蛍光ドーパントとして、発光層に含まれることが好ましい。
 ドーパント材料としての発光層における化合物(1)の含有量は、特に限定されるものではないが、十分な発光及び濃度消光の観点から、例えば、0.1~70質量%であることが好ましく、より好ましくは0.1~30質量%、さらに好ましくは1~30質量%、よりさらに好ましくは1~20質量%、特に好ましくは1~10質量%である。
(蛍光ドーパント)
 化合物(1)以外の蛍光ドーパントとしては、例えば、縮合多環芳香族誘導体、スチリルアミン誘導体、縮合環アミン誘導体、ホウ素含有化合物、ピロール誘導体、インドール誘導体、カルバゾール誘導体等が挙げられる。これらの中でも、縮合環アミン誘導体、ホウ素含有化合物、カルバゾール誘導体が好ましい。
 縮合環アミン誘導体としては、例えば、ジアミノピレン誘導体、ジアミノクリセン誘導体、ジアミノアントラセン誘導体、ジアミノフルオレン誘導体、ベンゾフロ骨格が1つ以上縮環したジアミノフルオレン誘導体等が挙げられる。
 ホウ素含有化合物としては、例えば、ピロメテン誘導体、トリフェニルボラン誘導体等が挙げられる。
 青色系の蛍光ドーパントとしては、例えば、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体等が挙げられる。具体的には、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)等が挙げられる。
 緑色系の蛍光ドーパントとしては、例えば、芳香族アミン誘導体等が挙げられる。具体的には、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)]-N-[4-(9H-カルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)等が挙げられる。
 赤色系の蛍光ドーパントとしては、テトラセン誘導体、ジアミン誘導体等が挙げられる。具体的には、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)等が挙げられる。
(燐光ドーパント)
 燐光ドーパントとしては、例えば、燐光発光性の重金属錯体、燐光発光性の希土類金属錯体が挙げられる。
 重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、白金錯体等が挙げられる。重金属錯体は、イリジウム、オスミウム、及び白金から選択される金属のオルトメタル化錯体が好ましい。
 希土類金属錯体としては、例えば、テルビウム錯体、ユーロピウム錯体等が挙げられる。具体的には、トリス(アセチルアセトナート)(モノフェナントロリン)テルビウム(III)(略称:Tb(acac)(Phen))、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)(Phen))、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)(Phen))等が挙げられる。これらの希土類金属錯体は、異なる多重度間の電子遷移により、希土類金属イオンが発光するため、燐光ドーパントとして好ましい。
 青色系の燐光ドーパントとしては、例えば、イリジウム錯体、オスミウム錯体、白金錯体等が挙げられる。具体的には、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス[2-(3’,5’-ビストリフルオロメチルフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:Ir(CF3ppy)(pic))、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)等が挙げられる。
 緑色系の燐光ドーパントとしては、例えば、イリジウム錯体等が挙げられる。具体的には、トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(略称:Ir(ppy))、ビス(2-フェニルピリジナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(ppy)(acac))、ビス(1,2-ジフェニル-1H-ベンゾイミダゾラト)イリジウム(III)アセチルアセトナート(略称:Ir(pbi)(acac))、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)(acac))等が挙げられる。
 赤色系の燐光ドーパントとしては、例えば、イリジウム錯体、白金錯体、テルビウム錯体、ユーロピウム錯体等が挙げられる。具体的には、ビス[2-(2’-ベンゾ[4,5-α]チエニル)ピリジナト-N,C3’]イリジウム(III)アセチルアセトナート(略称:Ir(btp)(acac))、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)(acac))、(アセチルアセトナート)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)(acac))、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtOEP)等が挙げられる。
(ホスト材料)
 ホスト材料としては、例えば、アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体;インドール誘導体、ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、イソキノリン誘導体、キナゾリン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、オキサジアゾール誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体等の複素環化合物;ナフタレン誘導体、トリフェニレン誘導体、カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、クリセン誘導体、ナフタセン誘導体、フルオランテン誘導体等の縮合芳香族化合物;トリアリールアミン誘導体、縮合多環芳香族アミン誘導体等の芳香族アミン化合物等が挙げられる。ホスト材料は、2以上の種を併用してもよい。
 金属錯体の具体例としては、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(III)(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)等が挙げられる。
 複素環化合物の具体例としては、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)等が挙げられる。
 縮合芳香族化合物の具体例としては、9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:CzPA)、3,6-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:DPCzPA)、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,9’-ビアントリル(略称:BANT)、9,9’-(スチルベン-3,3’-ジイル)ジフェナントレン(略称:DPNS)、9,9’-(スチルベン-4,4’-ジイル)ジフェナントレン(略称:DPNS2)、3,3’,3”-(ベンゼン-1,3,5-トリイル)トリピレン(略称:TPB3)、9,10-ジフェニルアントラセン(略称:DPAnth)、6,12-ジメトキシ-5,11-ジフェニルクリセン等が挙げられる。
 芳香族アミン化合物の具体例としては、N,N-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:CzA1PA)、4-(10-フェニル-9-アントリル)トリフェニルアミン(略称:DPhPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、N,9-ジフェニル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H-カルバゾール-3-アミン(略称:PCAPBA)、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB又はα-NPD)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)等が挙げられる。
 蛍光ホストとしては、蛍光ドーパントよりも高い一重項準位を有する化合物が好ましく、例えば、複素環化合物、縮合芳香族化合物等が挙げられる。縮合芳香族化合物としては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、ナフタセン誘導体等が好ましい。
 燐光ホストとしては、燐光ドーパントよりも高い三重項準位を有する化合物が好ましく、例えば、金属錯体、複素環化合物、縮合芳香族化合物等が挙げられる。これらの中でも、例えば、インドール誘導体、カルバゾール誘導体、ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、イソキノリン誘導体、キナゾリン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、ナフタレン誘導体、トリフェニレン誘導体、フェナントレン誘導体、フルオランテン誘導体等が好ましい。
(電子輸送層)
 電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送性の高い物質としては、10-6cm/Vs以上の電子移動度を有する物質であることが好ましく、例えば、金属錯体、芳香族複素環化合物、芳香族炭化水素化合物、高分子化合物等が挙げられる。
 金属錯体としては、例えば、アルミニウム錯体、ベリリウム錯体、亜鉛錯体等が挙げられる。具体的には、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)等が挙げられる。
 芳香族複素環化合物としては、例えば、ベンズイミダゾール誘導体、イミダゾピリジン誘導体、ベンズイミダゾフェナントリジン誘導体等のイミダゾール誘導体;ピリミジン誘導体、トリアジン誘導体等のアジン誘導体;キノリン誘導体、イソキノリン誘導体、フェナントロリン誘導体等の含窒素六員環構造を含む化合物(複素環にホスフィンオキサイド系の置換基を有するものも含む。)等が挙げられる。具体的には、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)等が挙げられる。
 芳香族炭化水素化合物としては、例えば、アントラセン誘導体、フルオランテン誘導体等が挙げられる。
 高分子化合物の具体例としては、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)等が挙げられる。
 正孔輸送性よりも電子輸送性の方が高い化合物であれば、電子輸送層に、これら以外の物質を用いてもよい。
 電子輸送層は、単層でもよく、2層以上が積層されていてもよい。この場合、発光層に近い側に、電子輸送性の高い物質のうち、エネルギーギャップのより大きい物質を含む層を配置することが好ましい。
 例えば、図2に示すように、陽極側の第1電子輸送層7a、及び陰極側の第2電子輸送層7bを含む構成であってもよい。
 電子輸送層には、例えば、アルカリ金属、マグネシウム、アルカリ土類金属、これらのうちの2以上の金属を含む合金等の金属;8-キノリノラトリチウム(略称:Liq)等のアルカリ金属化合物、アルカリ土類金属化合物等の金属化合物が含まれていてもよい。 アルカリ金属、マグネシウム、アルカリ土類金属、又はこれらのうちの2以上の金属を含む合金等の金属が、電子輸送層に含まれる場合、その含有量は、特に限定されるものではないが、0.1~50質量%であることが好ましく、より好ましくは0.1~20質量%、さらに好ましくは1~10質量%である。
 アルカリ金属化合物、又はアルカリ土類金属化合物等の金属化合物の金属化合物が電子輸送層に含まれる場合、その含有量は、1~99質量%であることが好ましく、より好ましくは10~90質量%である。尚、電子輸送層が2以上の層である場合の発光層側にある層は、これらの金属化合物のみで形成することもできる。
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層であり、陰極から発光層へ効率よく電子注入する機能を有する。電子注入性の高い物質としては、例えば、アルカリ金属、マグネシウム、アルカリ土類金属、これらの化合物等が挙げられる。具体的には、リチウム、セシウム、カルシウム、フッ化リチウム、フッ化セシウム、フッ化カルシウム、リチウム酸化物等が挙げられる。その他、電子輸送性を有する物質に、アルカリ金属、マグネシウム、アルカリ土類金属、又はこれらの化合物を含有させたもの、例えば、Alqにマグネシウムを含有させたもの等を用いることもできる。
 また、電子注入層には、有機化合物及びドナー性の化合物を含む複合材料を用いることもできる。有機化合物がドナー性の化合物から電子を受け取るため、このような複合材料は電子注入性及び電子輸送性に優れている。
 有機化合物としては、受け取った電子の輸送性に優れた物質が好ましく、例えば、上述した電子輸送性の高い物質である金属錯体や芳香族複素環化合物等を用いることができる。
 ドナー性の化合物としては、有機化合物に電子を供与することができる物質であればよく、例えば、アルカリ金属、マグネシウム、アルカリ土類金属、希土類金属等が挙げられる。具体的には、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、具体的には、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(陰極)
 陰極は、金属、合金、導電性化合物、及びこれらの混合物等であって、仕事関数の小さい(具体的には、3.8eV以下)ものを用いることが好ましい。陰極の材料としては、例えば、リチウム、セシウム等のアルカリ金属;マグネシウム;カルシウム、ストロンチウム等のアルカリ土類金属;これらの金属を含む合金(例えば、マグネシウム-銀、アルミニウム-リチウム);ユーロピウム、イッテルビウム等の希土類金属;希土類金属を含む合金等が挙げられる。
 陰極は、通常、真空蒸着法やスパッタリング法で形成される。また、銀ペースト等を用いる場合は、塗布法やインクジェット法等を用いることができる。
 また、電子注入層が設けられる場合、仕事関数の大小に関わらず、アルミニウム、銀、ITO、グラフェン、ケイ素もしくは酸化ケイ素を含有する酸化インジウム-酸化スズ等、種々の導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
(絶縁層)
 有機EL素子は、薄膜に電界を印加するため、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に薄膜絶縁層を挿入してもよい。
 絶縁層に用いられる物質の具体例としては、酸化アルミニウム、フッ化リチウム、酸化リチウム、フッ化セシウム、酸化セシウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、窒化アルミニウム、酸化チタン、酸化ケイ素、酸化ゲルマニウム、窒化ケイ素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられる。絶縁層には、これらの混合物を用いることもでき、また、これらの物質を含む2以上の層の積層体とすることもできる。
(スペース層)
 スペース層は、例えば、蛍光発光層と燐光発光層とを積層する場合に、燐光発光層で生成する励起子の蛍光発光層への拡散の防止や、キャリアバランスの調整のために、両層間に設けられる。スペース層は、2以上の燐光発光層の間等に設けることもできる。
 スペース層は、2以上の発光層間に設けられるため、電子輸送性及び正孔輸送性を兼ね備えた物質で形成することが好ましい。また、隣接する燐光発光層内の三重項エネルギーの拡散を防止する観点から、三重項エネルギーが2.6eV以上であることが好ましい。
 スペース層に用いられる物質としては、上述した正孔輸送層に用いられる物質と同様のものが挙げられる。
(電子阻止層、正孔阻止層、励起子阻止層)
 発光層に隣接して、電子阻止層、正孔阻止層、励起子(トリプレット)阻止層等を設けてもよい。
 電子阻止層とは、発光層から正孔輸送層へ電子が漏出することを阻止する機能を有する層である。正孔阻止層とは、発光層から電子輸送層へ正孔が漏出することを阻止する機能を有する層である。励起子阻止層は、発光層で生成した励起子が隣接する層へ拡散することを阻止し、励起子を発光層内に閉じ込める機能を有する層である。
(層形成方法)
 有機EL素子の各層の形成方法は、別途の記載がない限り、特に限定されるものではない。形成方法としては、乾式成膜法、湿式成膜法等の公知の方法を用いることができる。乾式成膜法の具体例としては、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法等が挙げられる。湿式成膜法の具体例としては、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法等の各種塗布法が挙げられる。
(膜厚)
 有機EL素子の各層の膜厚は、別途の記載がない限り、特に限定されるものではない。膜厚が小さすぎると、ピンホール等の欠陥が生じやすく、十分な発光輝度が得られない。一方、膜厚が大きすぎると、高い駆動電圧が必要となり、効率が低下する。このような観点から、膜厚は、通常、0.1nm~10μmが好ましく、より好ましくは5nm~10μmであり、さらに好ましくは10nm~0.2μmである。
[電子機器]
 本発明の一態様に係る電子機器は、上述した本発明の一態様に係る有機EL素子を備えている。電子機器の具体例としては、有機ELパネルモジュール等の表示部品;テレビ、携帯電話、スマートフォン、パーソナルコンピュータ等の表示装置;照明、車両用灯具の発光装置等が挙げられる。
 次に、合成例、実施例及び比較例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例の記載内容に何ら制限されるものではない。
実施例1
(化合物1の合成)
(1)中間体1Aの合成
Figure JPOXMLDOC01-appb-C000104
 アルゴン雰囲気下、4-ブロモ-6-tert-ブチル-ジベンゾフラン(10g、33mmol)をテトラヒドロフラン(THF)(200mL)に溶解させ、-78℃で1.6mol/Lのn-ブチルリチウム(n-BuLi)ヘキサン溶液(25mL)を加えて1時間攪拌した。その後、ホウ酸トリメチル(B(OMe))(5.5mL)を滴下し室温で1時間攪拌した。1mol/L塩酸を加え2時間攪拌した後、酢酸エチルを加え分液し有機層を回収した。集めた有機層を硫酸マグネシウムで乾燥し、濃縮して得られた残渣をカラムクロマトグラフィで精製して白色固体(7.2g、収率92%)を得た。得られた固体は目的物である中間体1Aであり、マススペクトル分析の結果、分子量268に対し、m/e(質量と電荷の比)=268であった。
(2)中間体1Bの合成
Figure JPOXMLDOC01-appb-C000105
 アルゴン雰囲気下、得られた中間体1A(6.2g、23mmol)、4-ブロモ-N-(4-ブロモフェニル)アニリン(3.0g、9.2mmol)、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh)(532mg、0.46mmol)、炭酸カリウム(3.9g、28mmol)に、1,2-ジメトキシエタン(DME)(60mL)と水(15mL)を加え、8時間還流した。反応終了後、酢酸エチルで抽出し、有機層を回収した。得られた有機層を硫酸ナトリウムで乾燥した。固体をろ過で取り除き、ろ液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィーで精製し白色固体(4.0g、収率71%)を得た。得られた固体は目的物である中間体1Bであり、マススペクトル分析の結果、分子量613に対し、m/e=613であった。
(3)中間体1Cの合成
Figure JPOXMLDOC01-appb-C000106
 アルゴン雰囲気下、得られた中間体1B(4.0g、6.5mmol)、2,3-ジクロロ-N,N-ジフェニルアニリン(2.0g、6.4mmol)、ビス{ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン}ジクロロパラジウム(II)(PdCl(AmPhos))(227mg、0.32mmol)、ナトリウムt-ブトキシド(NaOt-Bu)(738mg、7.7mmol)に、キシレン(xylene)(20mL)を加え、5時間還流した。反応終了後、酢酸エチルで抽出し、有機層を回収した。得られた有機層を硫酸ナトリウムで乾燥した。固体をろ過で取り除き、ろ液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィーで精製し白色固体(4.6g、収率81%)を得た。得られた固体は目的物である中間体1Cであり、マススペクトル分析の結果、分子量891に対し、m/e=891であった。
(4)化合物1の合成
Figure JPOXMLDOC01-appb-C000107
 アルゴン雰囲気下、得られた中間体1C(4.0g、4.5mmol)をt-ブチルベンゼン(30mL)に溶解させ、-40℃に冷却し、1.9mol/Lのt-ブチルリチウム(t-BuLi)ペンタン溶液(4.8mL)を滴下した。-40℃で30分攪拌した後、60℃に昇温して3時間攪拌した。その後、再度-40℃に冷却し、三臭化ホウ素(1.2g)を滴下した。室温で1時間攪拌し、N,N-ジイソプロピルエチルアミン(2mL)を加え、120℃で1時間加熱攪拌した。反応終了後、酢酸ナトリウム水溶液を加え、トルエンで抽出し、有機層を回収した。得られた有機層を濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製し黄色固体(427mg、収率11%)を得た。得られた固体は目的物である化合物1であり、マススペクトル分析の結果、分子量864に対し、m/e=864であった。
実施例2
(化合物2の合成)
(1)中間体2Aの合成
Figure JPOXMLDOC01-appb-C000108
 アルゴン雰囲気下、3-フルオロ-N-フェニルアニリン(15g、80mmol)、3,6-ジフェニルカルバゾール(25.5g、80mmol)、炭酸セシウム(32.5g、100mmol)に、N-メチル-2-ピロリドン(NMP)(200mL)を加え、2日間還流した。反応終了後、酢酸エチルで抽出し、有機層を回収した。得られた有機層を硫酸ナトリウムで乾燥した。固体をろ過で取り除き、ろ液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィーで精製し白色固体(32g、収率83%)を得た。得られた固体は目的物である中間体2Aであり、マススペクトル分析の結果、分子量486に対し、m/e=486であった。
(2)中間体2Bの合成
Figure JPOXMLDOC01-appb-C000109
 アルゴン雰囲気下、得られた中間体2A(20g、41mmol)、2,3-ジクロロ-N,N-ジフェニルアニリン(12.6g、40mmol)、PdCl(AmPhos)(1.4g、2.0mmol)、NaOt-Bu(5.8g、60mmol)に、キシレン(200mL)を加え、5時間還流した。反応終了後、酢酸エチルで抽出し、有機層を回収した。得られた有機層を硫酸ナトリウムで乾燥した。固体をろ過で取り除き、ろ液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィーで精製し白色固体(23g、収率75%)を得た。得られた固体は目的物である中間体2Bであり、マススペクトル分析の結果、分子量764に対し、m/e=764であった。
(3)化合物2の合成
Figure JPOXMLDOC01-appb-C000110
 アルゴン雰囲気下、得られた中間体2B(10g、13mmol)をt-ブチルベンゼン(100mL)に溶解させ、-40℃に冷却し、1.99mol/Lのt-BuLiペンタン溶液(13.7mL)を滴下した。-40℃で30分攪拌した後、60℃に昇温して3時間攪拌した。その後、再度-40℃に冷却し、三臭化ホウ素(3.4g)を滴下した。室温で1時間攪拌し、N,N-ジイソプロピルエチルアミン(5mL)を加え、120℃で1時間加熱攪拌した。反応終了後、酢酸ナトリウム水溶液を加え、トルエンで抽出し、有機層を回収した。得られた有機層を濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製し黄色固体(2.5g、収率26%)を得た。得られた固体は目的物である化合物2であり、マススペクトル分析の結果、分子量737に対し、m/e=737であった。
実施例3
(化合物3の合成)
(1)中間体3Aの合成
Figure JPOXMLDOC01-appb-C000111
 アルゴン雰囲気下、1,3-ジブロモー2-クロロベンゼン(2.00g、7.40mmol)、3-(9H-カルバゾール-9-イル)-N-フェニルアニリン(5.15g、15.4mmol)、ナトリウムt-ブトキシド(5.69g、15.4mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(Pddba)(135mg、0.148mmol)、トリ-t-ブチルホスホニウムテトラフルオロボラート(P(t-Bu)HBF)(172mg、0.592mmol)をo-キシレン(o-xylene)(40mL)に懸濁させ、100℃で4時間攪拌した。反応終了後、メタノールを加え、沈殿した固体をろ別した。この固体を水とメタノールで洗浄し目的物である中間体3A(5.11g、収率84%)を得た。マススペクトル分析の結果、分子量777に対し、m/e=778であった。
(2)化合物3の合成
Figure JPOXMLDOC01-appb-C000112
 アルゴン雰囲気下、中間体3A(5.00g、6.43mmol)をt-ブチルベンゼン(60mL)に溶解させ、1.7mol/Lのt-ブチルリチウムのペンタン溶液(7.57mL、12.9mmol)を0℃で加えた。その後、60℃に昇温し3時間攪拌しながらペンタンを除去した。この溶液を-50度に冷却し、三臭化ホウ素(3.22g、12.9mmol)を加えた後、25℃で30分攪拌し、0℃でN,N-ジイソプロピルエチルアミン(DIPEA)(1.65g、12.9mmol)を加えた。この溶液を120℃で3時間攪拌した。反応終了後、反応溶液を15%酢酸ナトリウム水溶液に注ぎ、酢酸エチルで抽出した。有機層を硫酸マグネシウムで乾燥させ、溶媒を留去した。この残渣をカラムクロマトグラフィーで精製し、目的物である化合物3(740mg、収率15%)を得た。マススペクトル分析の結果、分子量750に対し、m/e=751であった。
実施例4
(化合物4の合成)
(1)中間体4Aの合成
Figure JPOXMLDOC01-appb-C000113
 アルゴン雰囲気下、2,6-ジブロモー4-メチルアニリン(40.0g、151mmol)を濃塩酸(conc.HCl)(370mL)に懸濁させた。この懸濁液を0℃に冷却し、水(68mL)に溶かした亜硝酸ナトリウム(12.5g、181mmol)を加えた後、濃塩酸120mLに溶かした塩化銅(I)(22.4g、226mmol)を滴下した。滴下終了後、室温まで昇温し90分攪拌し、水600mLを加えた。この懸濁液をろ過し、得られた固体を水と10%アンモニア水溶液で洗浄した後ヘプタンで抽出した。ショートパスシリカゲルカラムクロマトグラフィーを通し、溶媒を濃縮した。得られた残渣をエタノールで再結晶し目的物である中間体4A(28.5g、収率66%)を得た。マススペクトル分析の結果、分子量284に対し、m/e=285であった。
(2)中間体4Bの合成
Figure JPOXMLDOC01-appb-C000114
 1,3-ジブロモー2-クロロベンゼンに代えて、中間体4A(12.1g、36.0mmol)を用いた以外、中間体3Aの合成と同様に合成を行い、目的物である中間体4B(4.1g、収率29%)を得た。マススペクトル分析の結果、分子量791に対し、m/e=792であった。
(3)化合物4の合成
Figure JPOXMLDOC01-appb-C000115
 中間体3Aに代えて、中間体4B(4.00g、5.05mmol)を用いた以外、化合物3の合成と同様に合成を行い、目的物である化合物4(0.31g、収率8%)を得た。マススペクトル分析の結果、分子量764に対し、m/e=765であった。
実施例5
(化合物5の合成)
(1)中間体5Aの合成
Figure JPOXMLDOC01-appb-C000116
 アルゴン雰囲気下、9-(3-ブロモフェニル)-9H-カルバゾール(50.0g、155mmol)、4-t-ブチルアニリン(25.5g、171mmol)、ナトリウムt-ブトキシド(44.7g、466mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(2.84g、3.10mmol)、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(BINAP)(3.87g、6.21mmol)をトルエン(toluene)(300mL)に懸濁させ、100℃で1時間攪拌した。反応終了後、ショートパスシリカゲルカラムクロマトグラフィーを通し、溶媒を濃縮した。得られた残渣をエタノールで再結晶し、目的物である中間体5A(36.8g、収率61%)を得た。マススペクトル分析の結果、分子量390に対し、m/e=391であった。
(2)中間体5Bの合成
Figure JPOXMLDOC01-appb-C000117
 3-(9H-カルバゾール-9-イル)-N-フェニルアニリンに代えて、中間体5A(28.2g、72.1mmol)を用いた以外、中間体4Bの合成と同様に合成を行い、目的物である中間体5B(15.1g、収率43%)を得た。マススペクトル分析の結果、分子量903に対し、m/e=904であった。
(3)化合物5の合成
Figure JPOXMLDOC01-appb-C000118
 中間体4Bに代えて、中間体5B(6.00g、6.64mmol)を用いた以外、化合物4の合成と同様に合成を行い、目的物である化合物5(0.64g、収率11%)を得た。マススペクトル分析の結果、分子量877に対し、m/e=878であった。
実施例6
(化合物6の合成)
(1)中間体6Aの合成
Figure JPOXMLDOC01-appb-C000119
 アルゴン雰囲気下、1ーブロモー2,3ージクロロベンゼン(8.68g、38.4mmol)、中間体5A(10.0g、72.1mmol)、ナトリウムt-ブトキシド(6.15g、64.0mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(234mg、0.260mmol)、トリ-t-ブチルホスホニウムテトラフルオロボラート(297mg、1.02mmol)をo-キシレン(100mL)に懸濁させ、100℃で2時間攪拌した。反応終了後、水を加え、トルエンで抽出した。有機層を濃縮し、得られた残渣をカラムクロマトグラフィーで精製して目的物である中間体6A(9.6g、収率71%)を得た。マススペクトル分析の結果、分子量535に対し、m/e=536であった。
(2)中間体6Bの合成
Figure JPOXMLDOC01-appb-C000120
 アルゴン雰囲気下、中間体6A(9.60g、17.9mmol)、ビス(4-t-ブチルフェニル)アミン(5.30g、18.8mmol)、ナトリウムt-ブトキシド(4.31g、44.8mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(328mg、0.360mmol)、トリ-t-ブチルホスホニウムテトラフルオロボラート(416mg、1.43mmol)をo-キシレン(80mL)に懸濁させ、120℃で3時間攪拌した。反応終了後、水を加え、トルエンで抽出した。有機層を濃縮し、得られた残渣をカラムクロマトグラフィーで精製して目的物である中間体6B(5.94g、収率43%)を得た。マススペクトル分析の結果、分子量780に対し、m/e=781であった。
(化合物6の合成)
Figure JPOXMLDOC01-appb-C000121
 中間体3Aに代えて、中間体6B(5.80g、7.43mmol)を用いた以外、化合物3の合成と同様に合成を行い、目的物である化合物6(1.66g、収率29%)を得た。マススペクトル分析の結果、分子量754に対し、m/e=755であった。
実施例7
(化合物7の合成)
(1)中間体7Aの合成
Figure JPOXMLDOC01-appb-C000122
 アルゴン雰囲気下、中間体5B(8.80g、9.74mmol)、ナトリウムt-ブトキシド(468mg、4.87mmol)、ジメチルスルホキシドーd(DMSO-d)(24.6g、292mmol)を4-t-ブチルベンゼン(30mL)に懸濁させ、130℃で6時間攪拌した。反応終了後、室温に冷却しエタノールを加え、固体を濾別した。この固体をエタノール、ジクロロメタンで洗浄した後、カラムクロマトグラフィーで精製して目的物である化合物7A(4.98g、収率63%)を得た。マススペクトル分析の結果、分子量905に対し、m/e=906であった。
(2)化合物7の合成
Figure JPOXMLDOC01-appb-C000123
 中間体5Bに代えて、中間体7A(4.80g、5.29mmol)を用いた以外、化合物5の合成と同様に合成を行い、目的物である化合物7(325mg、収率7%)を得た。マススペクトル分析の結果、分子量880に対し、m/e=881であった。
 上記反応に倣い、目的物に合わせた既知の代替反応や原料を用いることで、本願発明の範囲内の化合物を合成することができる。
実施例11
(有機EL素子の作製)
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITOの膜厚は、130nmとした。
 洗浄後の透明電極付きガラス基板を真空蒸着装置の基板ホルダーに装着した。まず透明電極が形成されている側の面上に透明電極を覆うようにして化合物HIを蒸着し、膜厚5nmの化合物HI膜を形成した。このHI膜は、正孔注入層として機能する。
 このHI膜の成膜に続けて化合物HT1を蒸着し、HI膜上に膜厚80nmのHT1膜を成膜した。このHT1膜は第1の正孔輸送層として機能する。
 HT1膜の成膜に続けて化合物HT2を蒸着し、HT1膜上に膜厚10nmのHT2膜を成膜した。このHT2膜は第2の正孔輸送層として機能する。
 HT2膜上にBH-1(ホスト材料)及び実施例1で得られた化合物1(ドーパント材料)を、化合物1の割合(質量比)が4%となるように共蒸着し、膜厚25nmの発光層を成膜した。
 この発光層上にHBLを蒸着し、膜厚10nmの電子輸送層を形成した。この電子輸送層上に電子注入材料であるETを蒸着して、膜厚15nmの電子注入層を形成した。この電子注入層上にLiFを蒸着して、膜厚1nmのLiF膜を形成した。このLiF膜上に金属Alを蒸着して、膜厚80nmの金属陰極を形成した。
 以上のようにして有機EL素子を作製した。用いた化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
(有機EL素子の評価)
 得られた有機EL素子について、電流密度が10mA/cmとなるように有機EL素子に電圧を印加し、EL発光スペクトルを分光放射輝度計CS-1000(コニカミノルタ株式会社製)にて計測した。得られた分光放射輝度スペクトルから、外部量子効率EQE(%)を算出した。結果を表1に示す。
実施例12及び比較例1
 ドーパント材料として、表1に示す化合物を用いた以外、実施例11と同様に、有機EL素子を作製し、評価した。結果を表1に示す。
 用いた化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-T000128
実施例13~17及び比較例11~12
 ドーパント材料として、表2に示す化合物を用いた以外、実施例11と同様に、有機EL素子を作製し、評価した。結果を表2に示す。
 用いた化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-T000131
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。

Claims (29)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、
     R~R11のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は、置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR~R11、R12及びR13は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R31)(R32)(R33)、-C(=O)R34、-COOR35、-N(R36)(R37)、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(2)で表される基を示す。
     R31~R37は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R31~R37が2以上存在する場合、2以上のR31~R37のそれぞれは同一でもよく、異なっていてもよい。
     但し、R~Rの少なくとも1つは、下記式(2)で表される基である。下記式(2)で表される基が2以上存在する場合、2以上の下記式(2)で表される基は同一であってもよく、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、
     Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
     HArは、置換もしくは無置換の環形成原子数5~50の1価の複素環基である。)
  2.  下記式(3)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R、R~R13、L及びHArは、前記式(1)で定義した通りである。)
  3.  下記式(4)で表される請求項1又は2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、R、R~R13及びHArは、前記式(1)で定義した通りである。)
  4.  R、前記置換もしくは無置換の飽和又は不飽和の環を形成しないR~R11、R12及びR13が、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は前記式(2)で表される基である請求項1~3のいずれかに記載の化合物。
  5.  下記式(5)で表される請求項1~3のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    (式(5)中、R、R10、R12、R13及びHArは、前記式(1)で定義した通りである。)
  6.  R、R10、R12及びR13が、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は前記式(2)で表される基である請求項5に記載の化合物。
  7.  下記式(6)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    (式(6)中、R~R13、L及びHArは、前記式(1)で定義した通りである。)
  8.  下記式(7)で表される請求項1又は7に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    (式(7)中、R~R13及びHArは、前記式(1)で定義した通りである。)
  9.  HArが、置換もしくは無置換の環形成原子数5~18の1価の複素環基である請求項1~8のいずれかに記載の化合物。
  10.  「置換もしくは無置換の」という場合における置換基が、炭素数1~50のアルキル基、炭素数1~50のハロアルキル基、炭素数2~50のアルケニル基、炭素数2~50のアルキニル基、環形成炭素数3~50のシクロアルキル基、炭素数1~50のアルコキシ基、炭素数1~50のアルキルチオ基、環形成炭素数6~50のアリールオキシ基、環形成炭素数6~50のアリールチオ基、炭素数7~50のアラルキル基、-Si(R41)(R42)(R43)、-C(=O)R44、-COOR45、-S(=O)46、-P(=O)(R47)(R48)、-Ge(R49)(R50)(R51)、-N(R52)(R53)(ここで、R41~R53は、それぞれ独立に、水素原子、炭素数1~50のアルキル基、環形成炭素数6~50のアリール基、又は環形成原子数5~50の1価の複素環基である。R41~R53が2以上存在する場合、2以上のR41~R53のそれぞれは同一でもよく、異なっていてもよい。)、ヒドロキシ基、ハロゲン原子、シアノ基、ニトロ基、環形成炭素数6~50のアリール基、及び環形成原子数5~50の1価の複素環基からなる群から選択される請求項1~9のいずれかに記載の化合物。
  11.  「置換もしくは無置換の」という場合の置換基が、炭素数1~50のアルキル基、環形成炭素数6~50のアリール基、及び環形成原子数5~50の1価の複素環基からなる群から選択される請求項10に記載の化合物。
  12.  HArが、置換もしくは無置換のカルバゾリル基である請求項1~11のいずれかに記載の化合物。
  13.  有機エレクトロルミネッセンス素子用材料である請求項1~12のいずれかに記載の化合物。
  14.  請求項1~13のいずれかに記載の化合物を含む有機エレクトロルミネッセンス素子用材料。
  15.  陰極と、
     陽極と、
     前記陰極と前記陽極との間に配置された少なくとも1層の有機層と、
    を有し、
     前記少なくとも1層の有機層のうちの少なくとも1層が、請求項1~13のいずれかに記載の化合物を含有する有機エレクトロルミネッセンス素子。
  16.  前記少なくとも1層の有機層のうちの少なくとも1層が発光層である請求項15に記載の有機エレクトロルミネッセンス素子。
  17.  前記発光層が、さらに下記式(10)で表される化合物を含む請求項16に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000008
    [式(10)中、
     R101~R110のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は、置換もしくは無置換の飽和又は不飽和の環を形成しない。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR101~R110は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R121)(R122)(R123)、-C(=O)R124、-COOR125、-N(R126)(R127)、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(31)で表される基である。
     R121~R127は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。R121~R127が2以上存在する場合、2以上のR121~R127のそれぞれは同一でもよく、異なっていてもよい。
     但し、前記置換もしくは無置換の飽和又は不飽和の環を形成しないR101~R110の少なくとも1つは、下記式(31)で表される基である。下記式(31)が2以上存在する場合、2以上の下記式(31)で表される基は同一であってもよいし、異なっていてもよい。
         -L101-Ar101     (31)
    (式(31)中、
     L101は、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
     Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。)]
  18.  前記式(10)で表される化合物が、下記式(10-1)又は(10-2)で表される請求項17に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000009
    (式(10-1)中、R101~R108、L101及びAr101は、前記式(10)で定義した通りである。
     式(10-2)中、R101、R103~R108、L101及びAr101は、前記式(10)で定義した通りである。)
  19.  前記式(10)で表される化合物が、下記式(10-3)で表される請求項17又は18に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000010
    (式(10-3)中、
     R101A~R108Aは、それぞれ独立に、水素原子、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
     L101Aは、単結合、又は置換もしくは無置換の環形成炭素数6~30のアリーレン基である。2つのL101Aは、同一でもよく、異なっていてもよい。
     Ar101Aは、置換もしくは無置換の環形成炭素数6~50のアリール基である。2つのAr101Aは、同一でもよく、異なっていてもよい。)
  20.  前記式(10)で表される化合物が、下記式(10-4)で表される請求項17又は18に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000011
    (式(10-4)中、
     L101及びAr101は、前記式(10)で定義した通りである。
     R101A~R108Aは、それぞれ独立に、水素原子、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
     X11は、O、S、又はN(R61)である。
     R61は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
     R62~R69の1つは、L101と結合する結合手である。
     L101と結合しないR62~R69のうちの隣接する1組以上は、置換もしくは無置換の飽和又は不飽和の環を形成するか、又は、置換もしくは無置換の飽和又は不飽和の環を形成しない。
     L101と結合せず、かつ前記置換もしくは無置換の飽和又は不飽和の環を形成しないR62~R69は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。)
  21.  前記式(10)で表される化合物が、下記式(10-6)で表される請求項20に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000012
    (式(10-6)中、
     L101及びAr101は、前記式(10)で定義した通りである。
     R101A~R108Aは、前記式(10-4)で定義した通りである。
     R66~R69は、前記式(10-4)で定義した通りである。
     X12は、O又はSである。)
  22.  前記式(10)で表される化合物が、下記式(10-7)で表される請求項20に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000013
    (式(10-7)中、
     L101及びAr101は、前記式(10)で定義した通りである。
     R101A~R108Aは、前記式(10-4)で定義した通りである。
     X11は、前記式(10-4)で定義した通りである。
     R62~R69は、前記式(10-4)で定義した通りである。但し、R66及びR67、R67及びR68、並びにR68及びR69のいずれか1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。)
  23.  前記式(10)で表される化合物が、下記式(10-8)で表される請求項20~22のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000014
    (式(10-8)中、
     L101及びAr101は、前記式(10)で定義した通りである。
     R101A~R108Aは、前記式(10-4)で定義した通りである。
     X12は、O又はSである。
     R66~R69は、前記式(10-4)で定義した通りである。但し、R66及びR67、R67及びR68、又はR68及びR69のいずれか1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。)
  24.  R66及びR67、R67及びR68、又はR68及びR69のいずれか1組が、互いに結合して、下記式(10-8-1)又は(10-8-2)で表される環を形成し、
     前記式(10-8-1)又は(10-8-2)で表される環を形成しないR66~R69は、置換もしくは無置換の飽和又は不飽和の環を形成しない、請求項22又は23に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000015
    (式(10-8-1)及び(10-8-2)中、
     2つの結合手*は、それぞれ、R66及びR67、R67及びR68、又はR68及びR69の1組と結合する。
     R80~R83は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
     X13は、O又はSである。)
  25.  前記式(10)で表される化合物が、下記式(10-9)で表される請求項20又は21に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000016
    (式(10-9)中、
     L101及びAr101は、前記式(10)で定義した通りである。
     R101A~R108Aは、前記式(10-4)で定義した通りである。
     R66~R69は、前記式(10-4)で定義した通りである。但し、R66及びR67、R67及びR68、並びにR69及びR67は、いずれも互いに結合せず、置換もしくは無置換の飽和又は不飽和の環を形成しない。
     X12は、O又はSである。)
  26.  前記式(10)で表される化合物が、下記式(10-4A)で表される請求項17又は18に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000017
    (式(10-4A)中、
     L101及びAr101は、前記式(10)で定義した通りである。
     R101A~R108Aは、それぞれ独立に、水素原子、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
     X11は、O、S、又はN(R61)である。
     R61は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
     R62A~R69Aのうちの隣接する2つ以上の1組以上は、置換もしくは無置換の飽和又は不飽和の環を形成してもよく、R62A~R69Aのうちの隣接する2つは、下記式(10-4A-1)で表される環を形成する。
     置換もしくは無置換の飽和又は不飽和の環を形成しないR62A~R69Aは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。)
    Figure JPOXMLDOC01-appb-C000018
    (式(10-4A-1)中、
     2つの結合手*のそれぞれは、R62A~R69Aのうちの隣接する2つと結合する。
     R70~R73の1つは、L101と結合する結合手である。
     L101と結合しないR70~R73は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。)
  27.  前記陽極と前記発光層との間に正孔輸送層を有する請求項16~26のいずれかに記載の有機エレクトロルミネッセンス素子。
  28.  前記陰極と前記発光層との間に電子輸送層を有する請求項16~27のいずれかに記載の有機エレクトロルミネッセンス素子。
  29.  請求項15~28のいずれかに記載の有機エレクトロルミネッセンス素子を備える電子機器。
PCT/JP2018/048602 2017-12-28 2018-12-28 新規化合物及び有機エレクトロルミネッセンス素子 WO2019132040A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/958,054 US20210062078A1 (en) 2017-12-28 2018-12-28 Novel compound and organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017253215 2017-12-28
JP2017-253215 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019132040A1 true WO2019132040A1 (ja) 2019-07-04

Family

ID=67067608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048602 WO2019132040A1 (ja) 2017-12-28 2018-12-28 新規化合物及び有機エレクトロルミネッセンス素子

Country Status (2)

Country Link
US (1) US20210062078A1 (ja)
WO (1) WO2019132040A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054676A1 (ja) * 2018-09-10 2020-03-19 学校法人関西学院 有機電界発光素子
CN112500298A (zh) * 2019-12-27 2021-03-16 陕西莱特光电材料股份有限公司 芳胺化合物和有机电致发光器件
KR20210030888A (ko) * 2019-09-10 2021-03-18 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2021107741A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 유기 발광 소자
CN112898325A (zh) * 2019-12-03 2021-06-04 北京鼎材科技有限公司 一种化合物及其应用、包含其的有机电致发光器件
CN112898323A (zh) * 2019-12-03 2021-06-04 北京鼎材科技有限公司 一种化合物及其应用、包含其的有机电致发光器件
WO2021115945A1 (en) * 2019-12-10 2021-06-17 Cynora Gmbh Organic molecules for optoelectronic devices
JP2022514108A (ja) * 2019-11-29 2022-02-09 エルジー・ケム・リミテッド 化合物およびこれを含む有機発光素子
WO2022103049A1 (ko) * 2020-11-16 2022-05-19 주식회사 엘지화학 안트라센계 화합물 및 이를 포함하는 유기 발광 소자
WO2022145773A1 (ko) * 2021-01-04 2022-07-07 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
US11548877B2 (en) 2018-11-30 2023-01-10 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence device, organic electroluminescence device, and electronic device
EP4151697A1 (en) 2021-09-17 2023-03-22 Idemitsu Kosan Co., Ltd. Compound and an organic electroluminescence device comprising the compound
WO2023052275A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052313A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052314A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052272A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
US11744149B2 (en) 2019-05-31 2023-08-29 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
WO2024013004A1 (de) 2022-07-11 2024-01-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200111962A1 (en) * 2018-10-03 2020-04-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic apparatus provided with the same
JP7260642B2 (ja) * 2018-11-19 2023-04-18 エスエフシー カンパニー リミテッド 新規なホウ素化合物及びこれを含む有機発光素子
KR20200075986A (ko) * 2018-12-18 2020-06-29 삼성디스플레이 주식회사 붕소 및 질소를 포함하는 헤테로고리 화합물을 포함하는 유기 발광 소자
KR20220126479A (ko) * 2021-03-09 2022-09-16 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20220126481A (ko) * 2021-03-09 2022-09-16 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20220126480A (ko) * 2021-03-09 2022-09-16 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102494350B1 (ko) * 2021-07-27 2023-02-07 주식회사 로오딘 유기발광다이오드
WO2023018016A1 (ko) * 2021-08-10 2023-02-16 주식회사 로오딘 고효율의 에너지 다운 컨버젼 시스템
KR102494358B1 (ko) * 2021-08-10 2023-02-07 주식회사 로오딘 고효율의 에너지 다운 컨버젼 시스템
WO2023104285A1 (en) * 2021-12-07 2023-06-15 Huawei Technologies Co., Ltd. Boron doped polycyclic aromatic hydrocarbon emitting compound (b-pah) and method of synthesizing b-pah
EP4199130A1 (en) * 2021-12-15 2023-06-21 Idemitsu Kosan Co.,Ltd. An organic electroluminescence device comprising a light emitting layer comprising three different compounds and an electronic equipment comprising said organic electroluminescence device
WO2024013709A1 (en) 2022-07-14 2024-01-18 Idemitsu Kosan Co., Ltd. Compound and an organic electroluminescence device comprising the compound

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102118A1 (ja) * 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
WO2017092508A1 (zh) * 2015-12-04 2017-06-08 广州华睿光电材料有限公司 D-a型化合物及其应用
WO2017188111A1 (ja) * 2016-04-26 2017-11-02 学校法人関西学院 有機電界発光素子
WO2017195669A1 (ja) * 2016-05-13 2017-11-16 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2018043984A (ja) * 2016-09-07 2018-03-22 学校法人関西学院 多環芳香族化合物
WO2018095394A1 (zh) * 2016-11-23 2018-05-31 广州华睿光电材料有限公司 有机混合物、组合物及有机电子器件和应用
WO2018181188A1 (ja) * 2017-03-31 2018-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2018203666A1 (ko) * 2017-05-02 2018-11-08 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2018216990A1 (ko) * 2017-05-22 2018-11-29 머티어리얼사이언스 주식회사 유기화합물 및 이를 포함하는 유기전계발광소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101670193B1 (ko) * 2013-03-15 2016-10-27 이데미쓰 고산 가부시키가이샤 안트라센 유도체 및 그것을 사용한 유기 전계 발광 소자
KR102633050B1 (ko) * 2015-03-25 2024-02-02 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물 및 발광층 형성용 조성물

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102118A1 (ja) * 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
WO2017092508A1 (zh) * 2015-12-04 2017-06-08 广州华睿光电材料有限公司 D-a型化合物及其应用
WO2017188111A1 (ja) * 2016-04-26 2017-11-02 学校法人関西学院 有機電界発光素子
WO2017195669A1 (ja) * 2016-05-13 2017-11-16 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2018043984A (ja) * 2016-09-07 2018-03-22 学校法人関西学院 多環芳香族化合物
WO2018095394A1 (zh) * 2016-11-23 2018-05-31 广州华睿光电材料有限公司 有机混合物、组合物及有机电子器件和应用
WO2018181188A1 (ja) * 2017-03-31 2018-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2018203666A1 (ko) * 2017-05-02 2018-11-08 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2018216990A1 (ko) * 2017-05-22 2018-11-29 머티어리얼사이언스 주식회사 유기화합물 및 이를 포함하는 유기전계발광소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAO, YING ET AL.: "Realizing performance improvement of blue thermally activated delayed fluorescence molecule DABNA by introducing substituents on the para-position of boron atom", CHEMICAL PHYSICS LETTERS, vol. 701, 17 April 2018 (2018-04-17), pages 98 - 102, XP055624209, ISSN: 0009-2614 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054676A1 (ja) * 2018-09-10 2020-03-19 学校法人関西学院 有機電界発光素子
US11548877B2 (en) 2018-11-30 2023-01-10 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence device, organic electroluminescence device, and electronic device
US11744149B2 (en) 2019-05-31 2023-08-29 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
CN113727985A (zh) * 2019-09-10 2021-11-30 株式会社Lg化学 化合物及包含其的有机发光器件
WO2021049889A1 (ko) * 2019-09-10 2021-03-18 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
CN113727985B (zh) * 2019-09-10 2024-04-16 株式会社Lg化学 化合物及包含其的有机发光器件
KR20210030888A (ko) * 2019-09-10 2021-03-18 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR102424710B1 (ko) * 2019-09-10 2022-07-25 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
JP7143570B2 (ja) 2019-11-29 2022-09-29 エルジー・ケム・リミテッド 化合物およびこれを含む有機発光素子
WO2021107741A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 유기 발광 소자
JP2022514108A (ja) * 2019-11-29 2022-02-09 エルジー・ケム・リミテッド 化合物およびこれを含む有機発光素子
JP7184242B2 (ja) 2019-11-29 2022-12-06 エルジー・ケム・リミテッド 化合物およびこれを含む有機発光素子
JP2022534828A (ja) * 2019-11-29 2022-08-04 エルジー・ケム・リミテッド 化合物およびこれを含む有機発光素子
CN112898325A (zh) * 2019-12-03 2021-06-04 北京鼎材科技有限公司 一种化合物及其应用、包含其的有机电致发光器件
CN112898323A (zh) * 2019-12-03 2021-06-04 北京鼎材科技有限公司 一种化合物及其应用、包含其的有机电致发光器件
WO2021115945A1 (en) * 2019-12-10 2021-06-17 Cynora Gmbh Organic molecules for optoelectronic devices
CN112500298A (zh) * 2019-12-27 2021-03-16 陕西莱特光电材料股份有限公司 芳胺化合物和有机电致发光器件
CN112500298B (zh) * 2019-12-27 2022-03-04 陕西莱特光电材料股份有限公司 芳胺化合物和有机电致发光器件
WO2022103049A1 (ko) * 2020-11-16 2022-05-19 주식회사 엘지화학 안트라센계 화합물 및 이를 포함하는 유기 발광 소자
WO2022145773A1 (ko) * 2021-01-04 2022-07-07 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023042574A1 (en) 2021-09-17 2023-03-23 Idemitsu Kosan Co., Ltd. Compound and an organic electroluminescence device comprising the compound
EP4151697A1 (en) 2021-09-17 2023-03-22 Idemitsu Kosan Co., Ltd. Compound and an organic electroluminescence device comprising the compound
WO2023052275A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052313A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052314A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052272A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2024013004A1 (de) 2022-07-11 2024-01-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Also Published As

Publication number Publication date
US20210062078A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
WO2019132040A1 (ja) 新規化合物及び有機エレクトロルミネッセンス素子
JP6644951B2 (ja) 有機エレクトロルミネッセンス素子及び新規化合物
WO2019111971A1 (ja) 有機エレクトロルミネッセンス素子及び新規化合物
WO2019132028A1 (ja) 新規化合物及び有機エレクトロルミネッセンス素子
JP7044547B2 (ja) 新規化合物及び有機エレクトロルミネッセンス素子
JP2019119680A (ja) 新規化合物及び有機エレクトロルミネッセンス素子
WO2019163826A1 (ja) 新規化合物及びそれを用いた有機エレクトロルミネッセンス素子
EP4101847A1 (en) Organic electroluminescent element and electronic device
EP4101851A1 (en) Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
WO2020075760A1 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2020075758A1 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2020096053A1 (ja) 新規化合物、それを用いた有機エレクトロルミネッセンス素子及び電子機器
WO2020262507A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
CN111183141A (zh) 化合物、有机电致发光元件用材料、有机电致发光元件、以及电子设备
WO2022114114A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
EP4129972A1 (en) Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
WO2021033730A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2019088194A1 (ja) 新規化合物及び有機エレクトロルミネッセンス素子
WO2020075757A1 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2021131657A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2020241826A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2024071062A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2023182323A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2022080477A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
KR20230129418A (ko) 화합물, 유기 전기발광 소자용 재료, 유기 전기발광소자 및 전자 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP