WO2024013004A1 - Materialien für elektronische vorrichtungen - Google Patents

Materialien für elektronische vorrichtungen Download PDF

Info

Publication number
WO2024013004A1
WO2024013004A1 PCT/EP2023/068808 EP2023068808W WO2024013004A1 WO 2024013004 A1 WO2024013004 A1 WO 2024013004A1 EP 2023068808 W EP2023068808 W EP 2023068808W WO 2024013004 A1 WO2024013004 A1 WO 2024013004A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic
radicals
groups
group
substituted
Prior art date
Application number
PCT/EP2023/068808
Other languages
English (en)
French (fr)
Inventor
Philipp Stoessel
Rouven LINGE
Stefan Schramm
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Publication of WO2024013004A1 publication Critical patent/WO2024013004A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer

Definitions

  • the present invention relates to materials for use in electronic devices, in particular in organic electroluminescent devices, as well as electronic devices, in particular organic electroluminescent devices, containing these materials.
  • Organic-based charge transport materials e.g. triarylamine-based hole transporters
  • organic or polymeric light-emitting diodes OLEDs or PLEDs
  • organic photoreceptors O-SC
  • organic solar cells O-SC
  • organic field effect transistors O-FET
  • organic thin film transistors O-TFT
  • organic switching elements O-IC
  • organic optical amplifiers and organic laser diodes O-Laser
  • electronic devices are understood to be organic electronic devices which contain organic semiconductor materials as functional materials.
  • the electronic devices represent electroluminescent devices such as OLEDs.
  • OLEDs in which organic compounds are used as functional materials, is known to those skilled in the art from the prior art.
  • OLEDs are understood to mean electronic devices that have one or more layers that comprise organic compounds and emit light when a voltage is applied.
  • Electronic devices usually include cathode, anode and at least one functional, preferably emissive, layer. In addition to these layers, they can also contain further layers, for example one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, exciton blocking layers, electron blocking layers and / or charge generation layers.
  • the hole transport layers and electron transport layers have a major influence on the performance data of electronic devices.
  • the object of the present invention is to provide compounds which are suitable for use in an electronic device, in particular an OLED, in particular as a material for hole transport layers or material for electron transport layers, and which lead to good properties there.
  • the subject of the present invention is a compound according to formulas (1) and (2),
  • X is the same or different for each occurrence of CR or N with the proviso that a maximum of two groups X per cycle represent N;
  • Z represents a group of formula (2), where the dashed bond in formula (2) represents the bond to the quaternary carbon;
  • Y is the same or different at each occurrence of CR' or N, with the proviso that 2 or 3 Y groups per cycle represent N, or that 1, 2 or 3 Y groups represent N, and two or more Y represent CR' stand, together form an aromatic or heteroaromatic ring system, preferably in each case 2 or 3 groups Y represent N;
  • Q represents a divalent alkylene group with 1 to 4 carbon atoms, a divalent alkenylene group with 2 to 4 carbon atoms or a divalent aryl or heteroaryl group with 5 to 60 ring atoms, the alkylene, alkenylene, aryl or heteroaryl groups having one or more Groups R can be substituted;
  • Ar' is, identically or differently, an aromatic or heteroaromatic ring system with 5 to 40 aromatic ring atoms, which can be substituted by one or more radicals R 1 , where two or more R 1 can together form an aromatic or heteroaromatic ring system;
  • R 2 is identical or different H, D, F, CN or an aliphatic, aromatic or heteroaromatic organic radical with 1 to 20 carbon atoms, in which one or more H atoms can also be replaced by D or F; Two or more substituents R 2 can be linked together and form a ring.
  • An aryl group in the sense of this invention contains 6 to 40 carbon atoms;
  • a heteroaryl group in the sense of this invention contains 5 to 40 carbon atoms and at least one heteroatom, with the proviso that the sum of carbon atoms and heteroatoms is at least 5.
  • the heteroatoms are preferably selected from N, O and/or S.
  • An aryl group or heteroaryl group is either a simple aromatic cycle, i.e.
  • benzene or a simple heteroaromatic cycle, for example pyridine, pyrimidine, thiophene, etc. or a fused (fused) aryl or heteroaryl group, for example naphthalene, anthracene, phenanthrene, quinoline, isoquinoline, etc., understood.
  • aromatics linked to each other by a single bond, such as biphenyl are not referred to as aryl or heteroaryl groups, but rather as aromatic ring systems.
  • An aromatic ring system in the sense of this invention contains 6 to 60 carbon atoms, preferably 6 to 40 carbon atoms in the ring system.
  • a heteroaromatic ring system in the sense of this invention contains 1 to 60 carbon atoms, preferably 1 to 40 carbon atoms and at least one heteroatom in the ring system, with the proviso that the sum of carbon atoms and heteroatoms is at least 5 results.
  • the heteroatoms are preferably selected from N, O and/or S.
  • An aromatic or heteroaromatic ring system in the context of this invention is to be understood as meaning a system which does not necessarily only contain aryl or heteroaryl groups, but also contains several aryl or heteroaryl groups a non-aromatic moiety (preferably less than 10% of the atoms other than H), such as B. a C, N or O atom or carbonyl group can be connected.
  • B. a C, N or O atom or carbonyl group can be connected.
  • systems such as fluorene, 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, stilbene, etc. should also be understood as aromatic ring systems in the sense of this invention, as well as systems in which two or more Aryl groups are connected, for example, by a linear or cyclic alkyl group or by a silyl group.
  • Preferred aromatic or Heteroaromatic ring systems are simple aryl or heteroaryl groups as well as groups in which two or more aryl or heteroaryl groups are directly linked to one another, for example biphenyl, terphenyl, quaterphenyl or bipyridine, as well as fluorene or spirobifluorene.
  • An electron-rich heteroaromatic ring system is characterized by the fact that it is a heteroaromatic ring system that does not contain any electron-poor heteroaryl groups.
  • An electron-deficient heteroaryl group is a six-membered heteroaryl group with at least one nitrogen atom or a five-membered heteroaryl group with at least two heteroatoms, one of which is a nitrogen atom and the other is oxygen, sulfur or a substituted nitrogen atom, with additional aryl or heteroaryl attached to these groups - groups can be condensed.
  • electron-rich heteroaryl groups are five-ring heteroaryl groups with exactly one heteroatom, selected from oxygen, sulfur or substituted nitrogen, to which further aryl groups and/or further electron-rich five-ring heteroaryl groups can be fused.
  • electron-rich heteroaryl groups are pyrrole, furan, thiophene, indole, benzofuran, benzothiophene, carbazole, dibenzofuran, dibenzothiophene or indenocarbazole.
  • An electron-rich heteroaryl group is also called an electron-rich heteroaromatic residue.
  • An electron-poor heteroaromatic ring system is characterized in that it contains at least one electron-poor heteroaryl group, and particularly preferably no electron-rich heteroaryl groups.
  • alkyl group is used as a generic term for both linear or branched alkyl groups as well as for cyclic alkyl groups.
  • alkenyl group or alkynyl group are used as generic terms for both linear or branched alkenyl or alkynyl groups as well as for cyclic alkenyl or alkynyl groups.
  • a cyclic alkyl, alkoxy or thioalkoxy group is understood to mean a monocyclic, a bicyclic or a polycyclic group.
  • an aliphatic hydrocarbon radical or an alkyl group or an alkenyl or alkynyl group which can contain 1 to 40 carbon atoms and in which individual H atoms or CH2 groups are also substituted by the above-mentioned groups can be, preferably the radicals methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, 2-methylbutyl, n-pentyl, s-pentyl, t-pentyl, 2-Pentyl, neo-Pentyl, cyclopentyl, n-hexyl, s-hexyl, t-hexyl, 2-hexyl, 3-hexyl, neo-hexyl, cyclohexyl, 1-methylcyclopentyl, 2-methylpentyl, n-
  • alkoxy group OR 1 with 1 to 40 carbon atoms, preference is given to methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, s- Pentoxy, 2-methylbutoxy, n-hexoxy, cyclohexyloxy, n-heptoxy, cycloheptyloxy, n-octyloxy, cyclooctyloxy, 2-ethylhexyloxy, pentafluorethoxy and 2,2, 2-trifluorethoxy understood.
  • a thioalkyl group SR 1 with 1 to 40 carbon atoms includes, in particular, methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, i-butylthio, s-butylthio, t-butylthio, n-pentylthio, s-pentylthio, n-Hexylthio, Cyclohexylthio, n-Heptylthio, Cycloheptylthio, n-Octylthio, Cyclooctylthio, 2-Ethylhexylthio, Trifluoro methylthio, pentafluoroethylthio, 2,2,2-trifluoroethylthio, ethenylthio, propenylthio, butenylthio, pentenylthio, cyclopentenyl
  • alkyl, alkoxy or thioalkyl groups may be straight chain, branched or cyclic, where one or more non-adjacent CH2 groups may be replaced by the above groups;
  • one or more H atoms can also be replaced by D, F, CI, Br, I, CN or NO2, preferably F, CI or CN, particularly preferably F or CN.
  • groups are understood that are derived from benzene, naphthalene, anthracene, benzanthracene, phenanthrene, pyrene, chrysene, perylene, fluoranthene, naphthacene, pentacene, benzopyrene, biphenyl, biphenylene, terphenyl, triphenylene, fluorene, spirobifluorene, dihydrophenanthrene, dihydropyrene, tetrahydropyrene , cis- or trans-indenofluorene, cis- or trans-lndenocarbazole, cis- or trans
  • the formulation that two or more radicals can form a ring system together is intended to mean, among other things, that the two radicals are linked to one another by a chemical bond with the formal elimination of two hydrogen atoms. This is illustrated by the following diagram:
  • a maximum of two symbols X per cycle represent N, particularly preferably a maximum of one symbol X.
  • X stands for CR.
  • all X are CR, where R is
  • Y is the same or different at each occurrence of CR' or N with the proviso that 2 or 3 groups Y per cycle stand for N, whereby if two or more Y, which stand for CR', are adjacent to one another form a fused aromatic or heteroaromatic ring system, 1, 2 or 3 groups Y stand for N.
  • the two CR' form, for example a fused five-membered ring, whereby the system can also include further aromatic or heteroaromatic rings.
  • Preferred embodiments of the compounds of the formulas (3), (4), (5) and (6) are the following compounds of the formulas (3-1) to (6-1): where the symbols, if available, have the meanings given for formulas (3) to (6).
  • the compounds of formulas (1), (3), (4), (5) or (6) or their preferred embodiments can form a pair of enantiomers depending on the substitution.
  • the compound according to the invention is preferably present as a racemate, but it can also be present as a pure enantiomer.
  • the group of formula (2) is selected from one of the formulas (2-1) to (2-9):
  • Y 1 stands for BR 1 , C(R 1 )2, NR 1 , O or S, preferably 0, in the same or different ways each time it occurs or S, most preferably O.
  • the group of formula (2) represents one of the formulas (2-1), (2-2), (2-3), (2-4) or (2-5).
  • the compound according to the invention is selected from one of the following compounds: In a preferred embodiment, the compound according to the invention is selected from the compounds in the table above, in which Z is one of the formulas (2-1), (2-2), (2-3), (2-4) or (2- 5) stands.
  • R, Ar', R', R 1 and R 2 are described below.
  • the preferences mentioned below for R, Ar', R', R 1 and R 2 occur simultaneously and apply to the structures of the formula (1) as well as to all preferred embodiments listed above.
  • R and R' if R, or R', and associated radicals comprise at least one heteroaromatic ring system comprising at least one nitrogen atom with three single bonds, for each of these heteroaromatic ring systems there are always at least two of the radicals bound to the respective nitrogen atom via single bonds to the respective nitrogen atom and are independently connected to the basic structure.
  • R radicals bound to the respective nitrogen atom via single bonds to the respective nitrogen atom and are independently connected to the basic structure.
  • the radicals R, or R', and radicals dependent thereon therefore, viewed from the basic structure, have no nitrogen atoms, in particular as part of a heteroaromatic ring system, which are only connected to the basic structure via a single single bond. these are in particular carbazoles and derivatives thereof attached via the nitrogen atom.
  • the basic structure is understood to mean the condensed structure, eg the triptycene, in formula (1) with formula (2), without radicals R and R'. Starting from the basic structure, no heteroaromatics are connected to the basic structure only via an N atom.
  • R or R' is selected identically or differently for each occurrence from the group consisting of H, D, F, CN, OR 1 , a straight-chain alkyl group with 1 to 10 carbon atoms or an alkenyl group with 2 to 10 carbon atoms or a branched or cyclic alkyl group with 3 to 10 carbon atoms, where the alkyl or alkenyl group can each be substituted with one or more radicals R 1 , but is preferably unsubstituted, and where one or more non-adjacent CH2 -Groups can be replaced by O, or an aromatic or heteroaromatic ring system with 6 to 30 aromatic ring atoms, which can each be substituted by one or more radicals R 1 ; Two radicals R or R' can also form an aliphatic, aromatic or heteroaromatic ring system with each other.
  • R or R ' is selected identically or differently for each occurrence from the group consisting of H, F, CN, a straight-chain alkyl group with 1 to 6 carbon atoms, in particular with 1, 2, 3 or 4 carbon atoms, or a branched or cyclic alkyl group with 3 to 6 carbon atoms, where the alkyl group can each be substituted with one or more R 1 radicals, but is preferably unsubstituted, or an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, which can each be substituted by one or more radicals R 1 , preferably non-aromatic radicals R 1 .
  • R or R' is selected identically or differently for each occurrence from the group consisting of H or an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, each of which is characterized by one or more radicals R 2 , preferably non-aromatic radicals R 2 , can be substituted.
  • Suitable aromatic or heteroaromatic ring systems R or R' are selected from phenyl, biphenyl, in particular ortho-, meta- or para-biphenyl, terphenyl, in particular ortho-, meta-, para- or branched terphenyl, quaterphenyl, in particular ortho-, meta-, para- or branched quaterphenyl, fluorene, which has the 1-, 2-, 3- or 4-position, spirobifluorene, which can be linked via the 1-, 2-, 3- or 4-position, naphthalene, which can be linked via the 1- or 2-position, indole, benzofuran, benzothiophene, which can be linked via the 1-, 2-, 3- or 4-position, dibenzofuran, carbazole, which can be linked via the 1-, 2-, 3- or 4-position, dibenzothiophene, which can be linked via the 1- , 2-, 3- or 4-position can be linked, indenocarbazole, indolocarbazol
  • R or R' if they represent an aromatic or heteroaromatic ring system, are preferably selected from the groups of the following formulas R-1 to R-147,
  • Ar 3 is, identically or differently, a divalent aromatic or heteroaromatic ring system with 6 to 18 aromatic ring atoms, which can each be substituted with one or more radicals R 1 ;
  • a 1 is the same or different on each occurrence as BR 1 , C(R 1 ) 2 , NR 1 , 0 or S, preferably C(R 1 ) 2 , 0 or S;
  • a 2 is the same or different on each occurrence as C(R 1 ) 2 , NR 1 , 0 or S;
  • Ar 3 comprises divalent aromatic or heteroaromatic ring systems based on the groups of R-1 to R-147, where p is equal to 0 and the dashed bond and an R 1 for the bond to the aromatic or heteroaromatic group is after R-1 to R-147.
  • the substituent R 1 which is bonded to the nitrogen atom, preferably represents an aromatic or heteroaromatic ring system with 5 to 24 aromatic ring atoms, which can also be substituted by one or more radicals R 2 .
  • this substituent R 1 represents, identically or differently on each occurrence, an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, preferably with 6 to 12 aromatic ring atoms, which does not contain any fused aryl groups or heteroaryl groups in which two or more aromatic or heteroaromatic 6-ring groups are fused directly to one another, and which can also be substituted by one or more R 2 radicals.
  • phenyl, biphenyl, terphenyl and quaterphenyl with linkage patterns as listed above for R-1 to R-35, whereby these structures can be substituted by one or more R 1 radicals, but are preferably unsubstituted.
  • the substituents R 1 that are bonded to this carbon atom preferably identically or differently, represent a linear alkyl group with 1 to 10 carbon atoms or a branched or cyclic alkyl group on each occurrence with 3 to 10 carbon atoms or for an aromatic or heteroaromatic ring system with 5 to 24 aromatic ring atoms, which can also be substituted by one or more radicals R 2 .
  • R 1 represents a methyl group or a phenyl group.
  • the radicals R 1 can also form a ring system with each other, which leads to a spiro system.
  • R' is selected the same or differently for each occurrence from the group consisting of D, F, CN, OR 1 or an aromatic or heteroaromatic ring system with 6 to 30 aromatic ring atoms, each separated by one or several radicals R 1 can be substituted.
  • R' is selected identically or differently for each occurrence from the group consisting of D, F, CN or an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, particularly preferably with 6 to 12 aromatic ring atoms, each represented by one or several radicals R 1 , preferably non-aromatic radicals R 1 , may be substituted.
  • Suitable aromatic or heteroaromatic ring systems R' are selected from phenyl, biphenyl, in particular ortho-, meta- or para-biphenyl, terphenyl, in particular ortho-, meta-, para- or branched terphenyl, quaterphenyl, in particular ortho-, meta -, para- or branched quaterphenyl, fluorene, which can be linked via the 1 -, 2-, 3- or 4-position, spirobifluorene, which can be linked via the 1 -, 2-, 3- or 4-position can, naphthalene, which can be linked via the 1 - or 2-position, indole, benzofuran, benzothiophene, which can be linked via the 1 -, 2-, 3- or 4-position, dibenzofuran, carbazole, which can be via the 1 -, 2-, 3- or 4-position can be linked, dibenzothiophene, which can be linked via the 1 -, 2-, 3- or 4-position,
  • the groups R' are preferably selected from the groups of the above formulas R-1 to R-147, particularly preferably selected the groups of the above formulas R-1 to R-147, where A 1 represents C(R 1 )2, O or S.
  • R 1 which is not bonded to the quaternary carbon atom of the backbone, is selected identically or differently at each occurrence from the group consisting of H, D, F, CN, OR 2 , a straight-chain alkyl group with 1 to 10 carbon atoms or an alkenyl group with 2 to 10 carbon atoms or a branched or cyclic alkyl group with 3 to 10 carbon atoms, where the alkyl or alkenyl group can each be substituted with one or more radicals R 2 and where one or more non-adjacent CH2 groups can be replaced by O, or an aromatic or heteroaromatic ring system with 6 to 30 aromatic ring atoms, each of which can be substituted by one or more R2 radicals; Two or more radicals R 1 can form an aliphatic ring system together.
  • R 1 is the same or different each time it occurs, selected from the group consisting of H, a straight-chain alkyl group with 1 to 6 carbon atoms, in particular with 1, 2, 3 or 4 carbon atoms, or one branched or cyclic alkyl group with 3 to 6 carbon atoms, where the alkyl group can be substituted with one or more R 2 radicals, but is preferably unsubstituted, or an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, each of which is represented by one or several radicals R 2 can be substituted, but is preferably unsubstituted.
  • R 2 is the same or different each time it occurs H, F, an alkyl group with 1 to 4 carbon atoms or an aryl group with 6 to 10 carbon atoms, which is linked to an alkyl group with 1 to 4 carbon atoms. Atoms can be substituted, but is preferably unsubstituted.
  • all radicals R 1 , insofar as they represent an aromatic or heteroaromatic ring system, or R 2, insofar as they represent aromatic or heteroaromatic groups are selected from the groups R-1 to R-147, which However, they are then substituted accordingly with R 2 or the groups mentioned for R 2 .
  • all aromatic or heteroaromatic groups of the radicals R, R', R 1 or R 2 are selected from the corresponding groups R-1 to R-147, preferably selected from the groups R-1 to R- 147, where A 1 stands for 0, S or C(R 1 ) 2 or the corresponding radical C(R 2 ) 2 or C(R 3 ) 2 .
  • radicals R do not form any further aromatic or heteroaromatic groups fused to the basic structure of the formula (1).
  • R represents H, D, F, CN or a group selected from the groups R-1 to R-147 and R 1 for these groups represents H, D, F or CN
  • R-1 to R-47, R-104 to R-110 are preferred.
  • R represents H, D, F or CN, preferably H or D, on every occurrence, the same or different, on all cycles of the compound of formula (1).
  • the cycle with the Y and optionally with the radicals R' forms a group selected from the groups R-70, R-71, R-72, R-73, R-74, R-75, R-76 , R-80, R-81, R-113, R-133, R-134, R-135, R-136, R-145, R-146, R-147, where p is equal to 0.
  • the group R 1 which is bonded to the quaternary carbon atom of the backbone is H, D, F, CN, OR 2 , a straight-chain alkyl group with 1 to 10 carbon atoms or an alkenyl group with 2 to 10 C atoms or a branched or cyclic alkyl group with 3 to 10 C atoms, where the alkyl or alkenyl group can each be substituted with one or more R 2 radicals and where one or more non-adjacent CH 2 groups are replaced by O can, or a heteroaromatic ring system with 5 to 30 aromatic ring atoms, each of which can be substituted by one or more R 2 radicals, where two or more R 1 radicals can together form an aliphatic, heteroaliphatic, aromatic or heteroaromatic ring system.
  • This R 1 on the bridge is preferably selected from the groups R-1 to R-147 with the proviso that they are substituted with R 2 , particularly preferably selected from the groups R-1 to R-147 with the proviso that they are substituted with R 2 and A 1 is C(R 2 )2, 0 or S.
  • R' in the groups of the formulas (2-1) to (2-9) represents an aromatic or heteroaromatic ring system with 5 to 60 aromatic ring atoms, preferably with 5 to 40 aromatic ring atoms, in each occurrence, identically or differently, which can each be substituted by one or more R 1 radicals, whereby two or more preferably R radicals bound to the same cycle can form an aliphatic, heteroaliphatic, aromatic or heteroaromatic ring system with one another, which can be substituted by one or more R 1 radicals, preferably a group selected from R-1 to R-147, identically or differently, for each occurrence.
  • the radicals R 1 preferably represent H, D, F, CN or an aliphatic, aromatic or heteroaromatic organic radical with 1 to 20 carbon atoms, in which one or more H atoms are also replaced by D or F can; Two or more substituents R 1 can be linked together and form a ring.
  • R' in formula (2) or one of the formulas (2-1) to (2-9) represents a group selected from R-1, R-2, R-3 in each occurrence, identically or differently ,R-44, R-45, R-46, R-47, R-112, R-114.
  • at least one group represents R-1, while at least one further group R' is selected from R-2, R-3, R-44, R-45, R-46, R-47, R-112, R-114.
  • one group can also stand for CN.
  • the alkyl groups in compounds according to the invention which are processed by vacuum evaporation preferably have not more than five carbon atoms, particularly preferably not more than 4 carbon atoms, very particularly preferably not more than 1 carbon atom.
  • the compounds according to the invention can be carried out according to synthesis steps known to those skilled in the art, such as. B. bromination, Suzuki coupling, Ullmann coupling, Heck reaction, Hartwig-Buchwald coupling, etc., are shown.
  • a further subject of the present invention is therefore a process for producing the compounds according to the invention, characterized by the following steps:
  • the compounds according to the invention can therefore be prepared starting from literature-known bicycles brominated or iodinated at the bridgehead C atom according to M. Oi et al., Chem. Sei., 2019, 10, 6107. This is shown in Schemes 1 and 2 using triptycene as an example.
  • the bridgehead carbon atom is first lithiated by reacting the bromide with n-butyllithium, followed by transmetalation with a copper(l) halide, preferably CuCl, and subsequent palladium-catalyzed CC coupling with a halogen heteroaromatic, such as a 2-chlorotriazine, 2- or 4-chloropyrimidine, 2-chloropyrazine, 2-quinazoline, 2-quinoxaline, 2-chloro-benzofuro[2,3- d]pyrimidine, 2-Chlorobenzofuro[3,2-d]pyrimidine, 2-Chloro[1 ]benzothieno-[2,3-d]pyrimidine, 2-Chloro[1]benzothieno-[3,2-d]pyrimidine, etc.
  • a halogen heteroaromatic such as a 2-chlorotriazine, 2- or 4-chloropyrimidine, 2-chloropyrazine, 2-quinazo
  • the heteroaromatic corresponds to the group containing Y in formula (1).
  • the corresponding bromine or iodine heteroaromatics can be used analogously.
  • Electron-rich phosphines such as Tis(o-tolyl), tris(o-methoxyphenyl), tricyclohexyl, tri-tert-butylphosphine or S-Phos, X-Phos, RuPhos, Amphos etc. are preferably used as phosphines.
  • activation can be carried out by adding stoichiometric amounts of anhydrous lithium bromide or lithium iodide.
  • 9,10-Dibromo-triptycene can be selectively mono-lithiated (see G. Märkl et al., Tetrahedron Lett., 1974, 20, 1817) and then coupled with a first Hal-HetAr as described above. HetAr corresponds to the group containing Y in formula (1).
  • the remaining Br function can be coupled with another halogen-aromatic Hal-Ar or halogen-heteroaromatic Hal-HetAr, so that symmetrically and asymmetrically 9,10-substituted triptycenes can be obtained, see Scheme 2.
  • Formulations of the compounds according to the invention are required for processing the compounds according to the invention from the liquid phase, for example by spin coating or by printing processes. These formulations can be, for example, solutions, dispersions or emulsions. It may be preferred to use mixtures of two or more solvents for this purpose.
  • Suitable and preferred solvents are, for example, toluene, anisole, o-, m- or p-xylene, methyl benzoate, mesitylene, tetralin, veratrol, THF, methyl-THF, THP, chlorobenzene, dioxane, phenoxytoluene, especially 3-phenoxytoluene , (-)-Fenchone, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, 1-methyl-naphthalene, 2-methylbenzothiazole, 2-phenoxyethanol, 2-pyrrolidinone, 3-methylanisole, 4 -Methylanisole, 3,4-dimethylanisole, 3,5-dimethylanisole, acetophenone, ⁇ -terpineol, benzothiazole, butyl benzoate, cumene, cyclohexanol, cyclohexanone, cyclohexylbenzene
  • a further subject of the present invention is therefore a formulation, in particular a solution, dispersion or emulsion, comprising at least one compound according to the invention and at least one further compound.
  • the further compound can be, for example, a solvent, in particular one of the above-mentioned solvents or a mixture of these solvents.
  • the production of such solutions is known to those skilled in the art and is described, for example, in WO 2002/072714, WO 2003/019694 and the literature cited therein.
  • the further compound can also be at least one further organic or inorganic compound that is also used in the electronic device, for example an emitting compound and/or a matrix material. This further compound can also be polymeric.
  • the compounds according to the invention are suitable for use in an electronic device, in particular in an organic electroluminescent device (OLED). Depending on the substitution, the compounds can be used in different functions and layers.
  • OLED organic electroluminescent device
  • a further subject of the present invention is therefore the use of a compound according to the invention in an electronic device.
  • Another subject of the present invention is an electronic device containing at least one compound according to the invention.
  • the compounds according to the invention can be present, in particular when used, as a racemate or as a pure enantiomer.
  • An electronic device in the sense of the present invention is a device which contains at least one layer which contains at least one organic compound.
  • the component can also contain inorganic materials or layers that are made entirely of inorganic materials.
  • the electronic device is preferably selected from the group consisting of organic electroluminescent devices (OLEDs), organic integrated circuits (O-ICs), organic field effect transistors (O-FETs), organic thin film transistors (O-TFTs), organic light-emitting transistors ( O-LETs), organic solar cells (O-SCs), dye-sensitized organic solar cells (DSSCs), organic optical detectors, organic photoreceptors, organic field quench devices (O-FQDs), light-emitting electrochemical cells (LECs ), organic laser diodes (O-lasers) and “organic plasmon emitting devices”, but preferably organic electroluminescence devices (OLEDs).
  • O-ICs organic integrated circuits
  • O-FETs organic field effect transistors
  • OF-TFTs organic thin film transistors
  • O-LETs organic light-emitting transistors
  • O-SCs organic solar cells
  • DSSCs dye-sensitized organic solar cells
  • organic optical detectors organic photore
  • the device is particularly preferably an organic electroluminescence device comprising cathode, anode and at least one emitting layer, wherein at least one organic layer, which can be an emitting layer, hole transport layer, electron transport layer, hole blocking layer, electron blocking layer or another functional layer, at least one Compound according to the invention comprises.
  • the layer depends on the substitution of the compound.
  • the organic electroluminescent device can also contain further layers, for example one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, exciton blocking layers, electron blocking layers, charge generation layers and/or organic or inorganic layers p/n transitions.
  • interlayers can be introduced between two emitting layers, which, for example, have an exciton-blocking function. Be it but noted that each of these layers does not necessarily have to be present.
  • the organic electroluminescent device can contain one emitting layer, or it can contain several emitting layers. If there are several emission layers, they preferably have a total of several emission maxima between 380 nm and 750 nm, so that overall white emission results, i.e. H.
  • Various emitting compounds that can fluoresce or phosphorescent are used in the emitting layers. Systems with three emitting layers are particularly preferred, with the three layers showing blue, green and orange or red emission (the basic structure is described, for example, in WO 2005/011013).
  • the organic electroluminescence device according to the invention can also be a tandem OLED, in particular for white-emitting OLEDs.
  • the compound according to formula (1) is preferably used in an organic electroluminescence device which comprises one or more phosphorescent emitters.
  • the compound according to the invention according to the embodiments listed above can be used in different layers, depending on the exact structure.
  • the organic electroluminescence device can contain an emitting layer, or it can contain several emitting layers, with at least one layer containing at least one compound according to the invention. Furthermore, the compound according to the invention can also be used in an electron transport layer and/or in a hole blocking layer and/or in a hole transport layer and/or in an exciton blocking layer.
  • phosphorescent compound typically refers to compounds in which the emission of light occurs through a spin-forbidden transition, e.g. B. a transition from an excited triplet state or a state with a higher spin quantum number, e.g. B. a quintet state.
  • Suitable phosphorescent compounds are, in particular, compounds which, upon suitable excitation, emit light, preferably in the visible range, and also at least one atom with an atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and less than 80 included.
  • luminescent complexes with transition metals or lanthanides are preferred as phosphorescent compounds, especially if they contain copper, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, indium, palladium, platinum, silver, gold or europium, in particular compounds containing indium, Contain platinum or copper.
  • all luminescent indium, platinum or copper complexes are considered to be phosphorescent emitting compounds.
  • Examples of the emitters described above can be found in the applications WO 00/70655, WO 2001/41512, WO 2002/02714, WO 2002/15645, EP 1191613, EP 1191612, EP 1191614, WO 05/033244, WO 05/019373, US 20 05/ 0258742, WO 2009/146770, WO 2010/015307, WO 2010/031485, WO 2010/054731, WO 2010/054728, WO 2010/086089, WO 2010/099852, WO 2010/1 02709, WO 2011/032626, WO 2011/ 066898, WO 2011/157339, WO 2012/007086, WO 2014/008982, WO 2014/023377, WO 2014/094961, WO 2014/094960, WO 2015/036074, WO 2015/10 4045, WO 2015/117718, WO 2016/ 015815, WO 2016/124304, WO 2017/03
  • all phosphorescent complexes such as those used in the prior art for phosphorescent OLEDs and those known to the person skilled in the art in the field of organic electroluminescence are suitable, and the person skilled in the art can use further phosphorescent complexes without any inventive intervention. It is also possible for the person skilled in the art to use further phosphorescent complexes in combination with the compounds of formula (1) in organic electroluminescent devices without any inventive activity. Further examples are listed in a table below. According to the invention, it is also possible to use the compound of formula (1) in an electronic device containing one or more fluorescent emitting compounds.
  • the compounds of formula (1) are used as electron-transporting material.
  • the compounds are preferably contained in an electron transport layer or a hole blocking layer or an electron-conducting or bipolar host material. Use in an electron transport layer is particularly preferred.
  • An electron transport layer in the sense of the present application is a layer with an electron-transporting function between the cathode and the emitting layer.
  • electron injection layers and hole blocking layers are understood to mean certain embodiments of electron transport layers.
  • an electron injection layer is an electron transport layer that is directly adjacent to the cathode or is only separated from it by a single coating on the cathode.
  • a hole blocking layer is the electron transport layer that directly adjoins the emitting layer on the cathode side.
  • the OLED according to the invention preferably comprises two, three or four electron-transporting layers between the cathode and the emitting layer, of which preferably at least one, particularly preferably exactly one or two, contain a compound of the formula (1).
  • the compound of formula (1) is used as an electron transport material in an electron transport layer, an electron injection layer or a hole blocking layer, the compound can be used as a pure material, ie in a proportion of 100%, in the electron transport layer can be used, or it can be used in combination with one or more other compounds.
  • Hole transport layers or electron blocking layers of the electronic devices according to the invention can additionally comprise one or more p-type dopants.
  • p-type dopants used in accordance with the present invention are preferably those organic electron acceptor compounds capable of oxidizing one or more of the other compounds in the mixture.
  • p-dopants are those in WO 2011/073149, EP 1968131, EP 2276085, EP 2213662, EP 1722602, EP 2045848, DE 102007031220, US 8044390, US 8057712, WO 2009/00 3455, WO 2010/094378, WO 2011/120709, US 2010/0096600, WO 2012/095143 and DE 102012209523 disclosed compounds.
  • Particularly preferred p-dopants are quinodimethane compounds, azaindenofluorenediones, azaphenylenes, azatriphenylenes, I 2 , metal halides, preferably transition metal halides, metal oxides, preferably metal oxides which contain at least one transition metal or a metal of the 3rd main group, and transition metal complexes, preferably complexes of Cu, Co, Ni, Pd and Pt with ligands that contain at least one oxygen atom as a binding site.
  • Transition metal oxides are also preferred as dopants, preferably oxides of rhenium, molybdenum and tungsten, particularly preferably Re 2 O 7 , MoO 3 , WO 3 and ReO 3 .
  • the p-type dopants are preferably present in a substantially homogeneous distribution in the p-doped layers. This can e.g. B. can be achieved by coevaporation of the p-dopant and the hole transport material matrix.
  • Preferred p-type dopants are in particular the following compounds: J
  • the hole transport materials used can be used in combination with a hexaazatriphenylene derivative, as described in US 2007/0092755.
  • the hexaazatriphenylene derivative is particularly preferably used in a separate layer.
  • the compound of formula (1) is used in an emitting layer as a matrix material in combination with one or more emitting compounds, preferably phosphorescent compounds.
  • the proportion of the matrix material in the emitting layer in this case is between 50.0 and 99.9% by volume, preferably between 80.0 and 99.5% by volume, particularly preferably between 92.0 and 99.5% by volume -%. for fluorescent emitting layers and between 85.0 and 97.0 vol.% for phosphorescent emitting layers.
  • the proportion of the emitting compound is between 0.1 and 50.0% by volume, preferably between 0.5 and 20.0% by volume, particularly preferably between 0.5 and 8.0% by volume for fluorescent ones emitting layers and between 3.0 and 15.0 vol.% for phosphorescent emitting layers.
  • An emitting layer of an organic electroluminescent device can also include systems that contain a variety of matrix materials (mixed matrix systems) and/or a variety of emitting compounds.
  • the emitting compounds are generally those that have the smaller share in the system and the matrix materials are those that have the larger share in the system.
  • the proportion of a single matrix material in the system can be lower than the proportion of a single emitting compound.
  • the compounds of formula (1) are preferably used as components of mixed matrix systems.
  • the mixed matrix systems preferably consist of two or three different matrix materials, particularly preferably made of two different matrix materials.
  • one of the two materials is a material with hole-transporting properties and the other material is a material with electron-transporting properties.
  • the compound of formula (1) is preferably the matrix material with electron-transporting properties.
  • the desired electron-transporting and hole-transporting properties of the mixed matrix components can also be predominantly or completely combined in a single mixed matrix component, with the further mixed matrix component(s) fulfilling other functions.
  • the two different matrix materials can be present in a ratio of 1:50 to 1:1, preferably 1:20 to 1:1, even more preferably 1:10 to 1:1 and most preferably 1:4 to 1:1.
  • Mixed matrix systems are preferably used in phosphorescent organic electroluminescence devices. A source for more detailed information about mixed matrix systems is the application WO 2010/108579.
  • the mixed matrix systems can contain one or more emitting compounds, preferably one or more phosphorescent compounds.
  • mixed matrix systems are preferably used in phosphorescent organic electroluminescent devices.
  • Particularly suitable matrix materials that can be used in combination with the compounds according to the invention as matrix components of a mixed matrix system are selected from the preferred matrix materials for phosphorescent compounds or the preferred matrix materials for fluorescent compounds mentioned below, depending on which type of emitting compound is used in the mixed matrix system becomes.
  • Preferred phosphorescent compounds for use in mixed matrix systems are the same as those described above as generally preferred phosphorescent emitter materials.
  • Preferred embodiments of the various functional materials in the electronic device are listed below.
  • Examples of phosphorescent compounds are listed below.
  • Preferred fluorescent emitting compounds are selected from the class of arylamines.
  • an arylamine or an aromatic amine is understood to mean a compound that contains three substituted or unsubstituted aromatic or heteroaromatic ring systems that are bonded directly to the nitrogen.
  • at least one of these aromatic or heteroaromatic ring systems is a fused ring system, particularly preferably with at least 14 aromatic ring atoms.
  • Preferred examples of this are aromatic anthracene amines, aromatic anthracene diamines, aromatic pyrenamines, aromatic pyrenediamines, aromatic chrysenamines or aromatic chrysenediamines.
  • An aromatic anthracenamine is a compound in which a diarylamino group is bonded directly to an anthracene group, preferably in position 9.
  • An aromatic anthracenediamine is to be understood as meaning a compound in which two diarylamino groups are bonded directly to an anthracene group, preferably in positions 9, 10.
  • Aromatic pyrenamines, pyrenediamines, chrysenamines and chrysenediamines are defined analogously, in which the diarylamino groups are preferably in the 1 position or 1,6-position are bound to the pyrene.
  • emitting compounds are indenofluorenamines or fluorenediamines, for example according to WO 2006/108497 or WO 2006/122630, benzoindenofluorenamines or -fluorenediamines, for example according to WO 2008/006449, and dibenzoindenofluorenamines or diamines, for example according to WO 2007/140847, as well as the indenofluorene derivatives with fused aryl groups disclosed in WO 2010/012328.
  • the pyrenearylamines disclosed in WO 2012/048780 and in WO 2013/185871 are also preferred.
  • benzoindenofluorenamines disclosed in WO 2014/037077 are also preferred.
  • the benzoindenofluorenamines disclosed in WO 2014/106522 are also preferred.
  • the extended benzoindenofluorenes disclosed in WO 2014/111269 and in WO 2017/036574 those in WO 2017/028940 and in WO 2017 /028941 revealed Phenoxazines and the fluorine derivatives bound to furan units or to thiophene units disclosed in WO 2016/150544.
  • boron compounds according to WO2020208051, W02015102118, WO2016152418, WO201 8095397, WO2019004248, WO2019132040, US20200161552, WO2021 089450 can be used.
  • Useful matrix materials include materials of different substance classes.
  • Preferred matrix materials are selected from the classes of oligoaryls (e.g. 2,2',7,7'-tetraphenylspirobifluorene according to EP 676461 or dinaphthylanthracene), in particular the oligoaryls with fused aromatic groups, the oligoarylenevinylenes (e.g.
  • DPVBi or spiro-DPVBi according to EP 676461 the polypodal metal complexes (for example according to WO 2004/081017), the hole-conducting compounds (for example according to WO 2004/058911), the electron-conducting compounds, in particular ketones, phosphine oxides, sulfoxides etc. (for example according to WO 2005/084081 and WO 2005/084082 ), the atropisomers (for example according to WO 2006/048268), the boronic acid derivatives (for example according to WO 2006/117052) or the benzanthracenes (for example according to WO 2008/145239).
  • Particularly preferred matrix materials are selected from the classes of oligoarylenes with naphthalene, anthracene, benzanthracene and/or pyrene or atropisomers of these compounds, the oligoarylene vinylenes, the ketones, the phosphine oxides and the sulfoxides.
  • Very particularly preferred matrix materials are selected from the classes of oligoarylenes, which include anthracene, benzanthracene, benzophenanthrene and/or pyrene or atropisomers of these compounds.
  • Under an oligoarylene is in the frame
  • the present invention is to be understood as meaning a compound in which at least three aryl or arylene groups are linked together.
  • WO 2006/097208, WO 2006/131192, WO 2007/065550, WO 2007/110129, WO 2007/065678, WO 2008/145239, WO 2009/100925, WO 2011/054442 and EP 1553154 disclosed anthracene derivatives, the pyrene compounds disclosed in EP 1749809, EP 1905754 and US 2012/0187826, the benzanthracenylanthracene compounds disclosed in WO 2015/158409, the indenobenzofurans disclosed in WO 2017/025165 and the phenanthrylanth disclosed in WO 2017/036573 racene.
  • Preferred matrix materials for phosphorescent compounds are aromatic ketones, aromatic phosphine oxides or aromatic sulfoxides or sulfones, e.g. B. according to WO 2004/013080, WO 2004/093207, WO 2006/005627 or WO 2010/006680, triarylamines, carbazole derivatives, e.g. B. CBP (N,N-bis-carbazolylbiphenyl) or WO 2005/039246, US 2005/0069729, JP 2004/288381, EP 1205527, WO 2008/086851 or WO 2013/041176, indolocarbazole derivatives, e.g. B.
  • indenocarbazole derivatives e.g. B. according to WO 2010/136109, WO 2011/000455, WO 2013/041176 or WO 2013/056776, azacarbazole derivatives, e.g. B. according to EP 1617710, EP 1617711, EP 1731584, JP 2005/347160, bipolar matrix materials, e.g. B. according to WO 2007/137725, silanes, e.g. B. according to WO 2005/111172, azaboroles or boron esters, e.g. B. according to WO 2006/117052, triazine derivatives, e.g. B.
  • WO 2011/042107 WO 2011/060867, WO 2011/088877 and WO 2012/143080
  • triphenylene derivatives e.g. B. according to WO 2012/048781
  • lactams e.g. B. according to WO 2011/116865 or WO 2011/137951
  • dibenzofuran derivatives e.g. B. according to WO 2015/169412, WO 2016/015810, WO 2016/023608, WO 2017/148564 or WO 2017/148565.
  • another phosphorescent emitter which has a shorter wavelength than the actual emitter emitted, be present as a co-host in the mixture or a compound that does not participate or does not participate to a significant extent in the charge transport, as described for example in WO 2010/108579.
  • Suitable charge transport materials such as those which can be used in the hole injection or hole transport layer or in the electron barrier layer or in the electron transport layer of the electronic component according to the invention, are, in addition to the compounds of formula (1), for example those in Y. Shirota et al., Chem. Rev .2007, 107(4), 953-1010, or other materials used in these layers according to the prior art.
  • Aromatic amine compounds can be used.
  • Further compounds that are preferably used in hole-transporting layers of the OLEDs according to the invention are, in particular, indenofluorenamine derivatives (e.g. according to WO 06/122630 or WO 06/100896), the amine derivatives disclosed in EP 1661888, hexaazatriphenylene derivatives (e.g.
  • amine derivatives with fused aromatics for example according to US 5,061,569), the amine derivatives disclosed in WO 95/09147, monobenzoindenofluorenamines (for example according to WO 08/006449), dibenzoindenofluorenamines (for example according to WO 07/140847), spirobifluorenamines (for Example according to WO 2012/034627 or WO 2013/120577), fluorenamines (for example according to WO 2014/015937, WO 2014/015938, WO 2014/015935 and WO 2015/082056), spirodibenzopyranamines (for example according to WO 2013/08321 6), Dihydroacridine derivatives (for example according to WO 2012/150001), spirodibenzofurans and spirodibenzothiophenes (for example according to WO 2015/022051, WO 2016/102048 and WO 2016/131521)
  • spirobifluorenes substituted by diarylamino groups in the 4-position are used as hole-transporting compounds, in particular the use of those compounds that are claimed and disclosed in WO 2013/120577, and the use of spirobifluorenes substituted by diarylamino groups in the 2-position as hole-transporting ones Compounds, in particular the use of those compounds claimed and disclosed in WO 2012/034627.
  • the OLED according to the invention preferably comprises two or more different electron-transporting layers.
  • the compound of formula (1) can be used in one or more or in all electron-transporting layers.
  • the compound of formula (1) is used in exactly one or exactly two electron-transporting layers, and other compounds are used in the other electron-transporting layers present.
  • Further compounds that can be used in addition to the compounds of formula (1) are all materials that are used in the electron transport layer according to the prior art.
  • Particularly suitable are aluminum complexes, e.g. Alq3, zirconium complexes, e.g. Zrq4, lithium complexes, e.g.
  • Liq Liq, benzimidazole derivatives, triazine derivatives, pyrimidine derivatives, pyridine derivatives, pyrazine derivatives, quinoxaline derivatives, quinoline derivatives, oxadiazole derivatives, aromatic ketones, lactams, boranes, diazaphosphole derivatives and phosphine oxide derivatives.
  • Other suitable materials are derivatives of the aforementioned compounds, as disclosed in JP 2000/053957, WO 2003/060956, WO 2004/028217, WO 2004/080975 and WO 2010/072300.
  • Preferred cathodes of the electronic component are metals with a low work function, metal alloys or multilayer structures made of different metals, e.g. B. alkaline earth metals, alkali metals, Main group metals or lanthanoids (e.g. Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.). Additionally suitable are alloys made of an alkali or alkaline earth metal and silver, e.g. B. an alloy of magnesium and silver.
  • other metals with a relatively high work function can also be used, e.g. B. Ag or Al, usually combinations of the metals such as. B.
  • Ca/Ag, Mg/Ag or Ba/Ag can be used. It may also be advantageous to introduce a thin intermediate layer of a material with a high dielectric constant between a metallic cathode and the organic semiconductor.
  • suitable materials are alkali or alkaline earth metal fluorides, but also the corresponding oxides or carbonates (e.g. LiF, Li2Ü, BaF2, MgO, NaF, CsF, CS2CO3, etc.). It is also possible to use lithium quinolinate (LiQ) for this purpose.
  • the thickness of this layer is preferably between 0.5 and 5 nm.
  • Preferred anodes are materials with a high work function.
  • the anode has a work function of greater than 4.5 eV versus vacuum.
  • metals with a high redox potential are suitable for this, e.g. B. Ag, Pt or Au.
  • metal/metal oxide electrodes e.g. Al/Ni/NiOx, Al/PtOx
  • at least one of the electrodes must be transparent or partially transparent to enable the irradiation of the organic material (organic solar cell) or the emission of light (OLED, 0-laser).
  • Preferred anode materials here are conductive mixed metal oxides.
  • ITO Indium tin oxide
  • IZO indium zinc oxide
  • the anode can also consist of two or more layers, for example an inner layer made of ITO and an outer layer made of a metal oxide, preferably tungsten oxide, molybdenum oxide or vanadium oxide.
  • the device is structured accordingly (depending on the application), contacted and finally sealed to exclude harmful influences from water and air. All materials can be used in the further layers of the organic electroluminescence device according to the invention, as are usually used according to the prior art. The person skilled in the art can therefore use all materials known for organic electroluminescence devices in combination with the compounds according to the invention according to formula (1) or the preferred embodiments set out above without any inventive intervention.
  • an organic electroluminescence device characterized in that one or more layers are coated using a sublimation process.
  • the materials are vapor-deposited in vacuum sublimation systems at an initial pressure of less than 10' 5 mbar, preferably less than 10' 6 mbar. However, it is also possible for the initial pressure to be even lower, for example less than 10'7 mbar.
  • An organic electroluminescence device is also preferred, characterized in that one or more layers are coated using the OVPD (Organic Vapor Phase Deposition) process or with the aid of carrier gas sublimation.
  • the materials are applied at a pressure between 10 -5 mbar and 1 bar.
  • OVPD Organic Vapor Phase Deposition
  • OVJP Organic Vapor Jet Printing
  • an organic electroluminescence device characterized in that one or more layers of solution, such as. B. by spin coating, or with any printing process, such as. B. Screen printing, flexographic printing, offset printing, LITI (Light Induced Thermal Imaging, thermal transfer printing), ink-jet printing (inkjet printing) or nozzle printing.
  • any printing process such as. B. Screen printing, flexographic printing, offset printing, LITI (Light Induced Thermal Imaging, thermal transfer printing), ink-jet printing (inkjet printing) or nozzle printing.
  • This requires soluble compounds, which are obtained, for example, through suitable substitution.
  • hybrid processes are possible in which, for example, one or more layers are applied from solution and one or more further layers are vapor-deposited.
  • the electronic devices containing one or more compounds of formula (1) can be used in displays, as light sources in lighting applications and as light sources in medical and/or cosmetic applications (e.g. light therapy).
  • the compounds according to the invention lead to high efficiencies, in particular to a high EQE.
  • Variant B via organo-copper connection
  • OLEDs according to the invention takes place according to a general process according to WO 2004/058911, which is adapted to the circumstances described here (layer thickness variation, materials used).
  • the compounds B according to the invention can be used in the electron transport layer (ETL) and the hole blocking layer (HBL). All materials are thermally vapor deposited in a vacuum chamber.
  • the emission layer (EML) always consists of at least one matrix material (host material, host material) SMB (see Table 1) and an emitting dopant (dopant, emitter) D, which is added to the matrix material or materials by co-evaporation in a certain volume fraction is mixed in.
  • SMB:D 97:3%
  • the electron transport layer also consists of a mixture of two materials, see Table 1. The materials used to produce the OLEDs are shown in Table 5.
  • the OLEDs are characterized as standard.
  • the electroluminescence spectra, the current efficiency (measured in cd/A), the power efficiency (measured in Im/W) and the external quantum efficiency (EQE, measured in percent) are calculated as a function of the luminance from current-voltage-luminance characteristics (IUL characteristics) assuming a Lambertian radiation characteristic and the service life are determined.
  • the EQE is specified in (%) and the voltage in (V) at a luminance of 1000 cd/m 2
  • the service life is determined at a starting luminance of 1000 cd/m 2 .
  • the measured time in which the brightness of the reference fell to 90% of the initial brightness is set to 100%.
  • the service life of the OLED components containing the compounds B according to the invention is given in percent for reference.
  • the OLEDs have the following layer structure:
  • HIL Hole injection layer made of HTM1 doped with 5% NDP-9 (commercially available from Novaled), 20 nm
  • HTL Hole transport layer
  • Electron blocking layer (EBL) made of EBM1, 10 nm Emission layer (EML), see Table 1
  • HBL Hole blocking layer
  • Electron transport layer see Table 1
  • Electron injection layer made of ETM2, 1 nm
  • Table 1 Structure of blue fluorescence OLED components
  • Table 2 Results Blue Fluorescence OLED components
  • the compounds B according to the invention can be used in the electron transport layer (ETL), the hole blocking layer (HBL) and in the emission layer (EML) as matrix material (host material, host material).
  • matrix material host material, host material
  • all materials are thermally vapor-deposited in a vacuum chamber.
  • the emission layer always consists of at least one or more matrix materials M and a phosphorescent dopant Ir, which is mixed into the matrix material or materials by co-evaporation in a certain volume fraction.
  • a specification like M1 :M2:lr (55%:35%:10%) means that the material M1 is in a volume fraction of 55%, M2 in a volume fraction of 35% and Ir in a volume fraction of 10% in the layer is present.
  • the electron transport layer can also be made from a mixture of two materials consist.
  • the exact structure of the OLEDs can be found in Table 3.
  • the materials used to produce the OLEDs are shown in Table 5.
  • the OLEDs are characterized as standard.
  • the electroluminescence spectra, the current efficiency (measured in cd/A), the power efficiency (measured in Im/W) and the external quantum efficiency (EQE, measured in percent) are calculated as a function of the luminance from current-voltage-luminance characteristics (IUL characteristics) assuming a Lambertian radiation characteristic and the service life are determined.
  • the EQE is specified in (%) and the voltage in (V) at a luminance of 1000 cd/m 2
  • the service life is given at a starting luminance of 1000 cd/m 2 (blue and red devices) or 10,000 cd/m 2 (Yellow and Green Devices).
  • the measured time in which the brightness of the reference fell to 80% of the initial brightness is set to 100%.
  • the service life of the OLED components containing the compounds B according to the invention is given in percent for reference.
  • the OLEDs have the following layer structure:
  • HIL Hole injection layer made of HTM1 doped with 5% NDP-9 (commercially available from Novaled), 20 nm
  • HTL Hole transport layer made of HTM1, 180 nm for blue, 50 nm for green, 40 nm for yellow, 90 nm for red
  • Electron blocking layer (EBL) 20 nm of EBM2 for blue, 20 nm of EBM1 for green and yellow, 10 nm for red
  • Emission layer see Table 3
  • HBL Hole blocking layer
  • Electron transport layer see Table 3
  • Electron injection layer made of ETM2, 1 nm

Abstract

Die vorliegende Erfindung betrifft Verbindungen, die sich für die Verwendung in elektronischen Vorrichtungen eignen, sowie elektronische Vorrichtungen, insbesondere organischen Elektrolumineszenzvorrichtungen, enthaltend diese Verbindungen.

Description

Materialien für elektronische Vorrichtungen
Die vorliegende Erfindung betrifft Materialien für die Verwendung in elektronischen Vorrichtungen, insbesondere in organischen Elektrolumi- neszenzvorrichtungen, sowie elektronische Vorrichtungen, insbesondere organische Elektrolumineszenzvorrichtungen enthaltend diese Materialien.
Elektronische Vorrichtungen, welche organische, metallorganische und/oder polymere Halbleiter enthalten, gewinnen zunehmend an Bedeutung, wobei diese aus Kostengründen und aufgrund ihrer Leistungsfähigkeit in vielen kommerziellen Produkten eingesetzt werden. Als Beispiele seien hier Ladungstransportmatenalien auf organischer Basis (z.B. Lochtransporter auf Triarylamin-Basis) in Kopiergeräten, organischen oder polymeren Leuchtdioden (OLEDs oder PLEDs) in Anzeige- und Displayvorrichtungen oder organische Photorezeptoren in Kopierern genannt. Organische Solarzellen (O-SC), organische Feldeffekt- Transistoren (O-FET), organische Dünnfilm-Transistoren (O-TFT), organische Schaltelemente (O-IC), organische optische Verstärker und organische Laserdioden (O-Laser) sind in einem fortgeschrittenen Entwicklungsstand und können in der Zukunft große Bedeutung erlangen.
Als elektronische Vorrichtungen im Sinne dieser Erfindung werden organische elektronische Vorrichtungen verstanden, welche organische Halbleitermaterialien als funktionelle Materialien enthalten. Insbesondere stehen die elektronischen Vorrichtungen für Elektrolumineszenzvor- richtungen wie OLEDs.
Der Aufbau von OLEDs, in welchen organische Verbindungen als funktionelle Materialien verwendet werden, ist dem Fachmann aus dem Stand der Technik bekannt. Im Allgemeinen werden unter OLEDs elektronische Vorrichtungen verstanden, welche eine oder mehrere Schichten haben, welche organische Verbindungen umfassen, und beim Anlegen einer Spannung Licht emittieren.
In elektronischen Vorrichtungen, insbesondere OLEDs, gibt es einen großen Bedarf die Leistungsdaten, insbesondere Lebensdauer, Effizienz und Betriebsspannung zu verbessern. Für diese Aspekte konnte bisher keine zufriedenstellende Lösung gefunden werden.
Elektronische Vorrichtungen umfassen üblicherweise Kathode, Anode und mindestens eine funktionale, bevorzugt emittierende Schicht. Außer diesen Schichten können sie noch weitere Schichten enthalten, beispielsweise jeweils eine oder mehrere Lochinjektionsschichten, Lochtransportschichten, Lochblockierschichten, Elektronentransport- schichten, Elektroneninjektionsschichten, Exzitonenblockierschichten, Elektronenblockierschichten und/oder Ladungserzeugungsschichten (Charge-Generation Layers).
Einen großen Einfluss auf die Leistungsdaten von elektronischen Vorrichtungen haben die Lochtransportschichten und Elektronen- transportschichten.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung von Verbin- dungen, welche sich für den Einsatz in einer elektronischen Vorrichtung, insbesondere einer OLED, eignen, insbesondere als Material von Lochtransportschichten oder Material von Elektronentransportschichten, und dort zu guten Eigenschaften führen.
Überraschend wurde gefunden, dass bestimmte, unten näher beschrie- bene Triptycene diese Aufgabe lösen und sich gut für die Verwendung in elektronischen Vorrichtungen, insbesondere OLEDs eignen. Dabei weisen die OLEDs insbesondere eine lange Lebensdauer, eine hohe Effizienz und eine geringere Betriebsspannung auf. Diese Verbindungen sowie elektronische Vorrichtungen, insbesondere organische Elektrolumines- zenzvorrichtungen, welche diese Verbindungen enthalten, sind daher der Gegenstand der vorliegenden Erfindung.
Gegenstand der vorliegenden Erfindung ist eine Verbindung gemäß Formeln (1 ) und (2),
Figure imgf000004_0001
wobei für die verwendeten Symbole gilt:
X ist gleich oder verschieden bei jedem Auftreten CR oder N mit der Maßgabe, dass maximal zwei Gruppen X pro Zyklus für N stehen;
Z steht für eine Gruppe der Formel (2), wobei die gestrichelte Bindung in Formel (2) für die Bindung zum quartären Kohlenstoff steht;
Y ist gleich oder verschieden bei jedem Auftreten CR' oder N mit der Maßgabe, dass 2 oder 3 Gruppen Y pro Zyklus für N stehen oder dass 1 , 2 oder 3 Gruppen Y für N stehen, und zwei oder mehr Y, welche für CR' stehen, miteinander ein aromatisches oder heteroaromatisches Ringsystem bilden, bevorzugt stehen in jedem Fall 2 oder 3 Gruppen Y für N;
Q steht für eine bivalente Alkylengruppe mit 1 bis 4 Kohlenstoffatomen, eine bivalente Alkenylengruppe mit 2 bis 4 Kohlenstoffatomen oder eine bivalente Aryl- oder Heteroarylgruppe mit 5 bis 60 Ringatomen, wobei die Alkylen-, Alkenylen-, Aryl- bzw. Heteroarylgruppen mit einer oder mehreren Gruppen R substituiert sein können;
R ist bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, OAr‘, SAr‘, B(OR1)2, CHO, C(=O)R1 , CR1=C(R1)2, CN, C(=O)OR1 , C(=O)NR1, Si(R1)3, NO2, P(=O)(R1)2, OSO2R1 , OR1, S(=O)R1, S(=O)2R1 , SR1 , eine geradkettige Alkylgruppe mit 1 bis 20 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 20 C-Atomen oder eine verzweigte oder zyklische Alkylgruppe mit 3 bis 20 C-Atomen, wobei die Alkyl-, Alkenyl- oder Alkinylgruppe jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch -R1C=CR1-, -C=C-, Si(R1 )2, CONR1 , C=O, C=S, -C(=O)O-, P(=O)(R1), -0-, -S-, SO oder SO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, bevorzugt mit 5 bis 40 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, wobei zwei oder mehr bevorzugt an den gleichen Zyklus gebundene Reste R miteinander ein aliphatisches, heteroaliphatisches, aromatisches oder heteroaromatisches Ringsystem bilden können, das mit einem oder mehreren Resten R1 substituiert sein kann, wobei falls R und zugehörige Reste mindestens ein heteroaromatisches Ringsystem umfassend mindestens ein Stickstoffatom mit drei Einfachbindungen umfassen, für jedes dieser heteroaromatischen Ringsysteme, dass immer mindestens zwei der über Einfachbindungen an das jeweilige Stickstoffatom gebundenen Reste an das jeweilige Stickstoffatom und davon unabhängig mit dem Grundgerüst verbunden sind;
R‘ ist bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, OAr‘, SAr‘, B(OR1)2, CHO, C(=O)R1 , CR1=C(R1)2, CN, C(=O)OR1 , C(=O)NR1, Si(R1)3, NO2, P(=O)(R1)2, OSO2R1 , OR1, S(=O)R1, S(=O)2R1 , SR1 , eine geradkettige Alkylgruppe mit 1 bis 20 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 20 C-Atomen oder eine verzweigte oder zyklische Alkylgruppe mit 3 bis 20 C-Atomen, wobei die Alkyl-, Alkenyl- oder Alkinylgruppe jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch -R1C=CR1-, -C=C-, Si(R1 )2, CONR1 , C=O, C=S, -C(=O)O-, P(=O)(R1), -O-, -S-, SO oder SO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, bevorzugt mit 5 bis 40 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, wobei zwei oder mehr bevorzugt an den gleichen Zyklus gebundene Reste R miteinander ein aliphatisches, heteroaliphatisches, aromatisches oder heteroaromatisches Ringsystem bilden können, das mit einem oder mehreren Resten R1 substituiert sein kann, wobei falls R‘ und zugehörige Reste mindestens ein heteroaromatisches Ringsystem umfassend mindestens ein Stickstoffatom mit drei Einfachbindungen umfassen, für jedes dieser heteroaromatischen Ringsysteme, dass immer mindestens zwei der über Einfachbindungen an das jeweilige Stickstoffatom gebundenen Reste an das jeweilige Stickstoffatom und davon unabhängig mit dem Grundgerüst verbunden sind;
Ar' ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 40 aromatischen Ringatomen, das durch einen oder mehrere Reste R1 substituiert sein kann, wobei zwei oder mehr R1 miteinander ein aromatisches oder heteroaromatisches Ringsystem bilden können;
R1 ist bei jedem Auftreten gleich oder verschieden H, D, F, I, B(OR2)2, CHO, C(=O)R2, CR2=C(R2)2, CN, C(=O)OR2, Si(R2)3, NO2, P(=O)(R2)2, OSO2R2, SR2, OR2, S(=O)R2, S(=O)2R2, eine gerad- kettige Alkylgruppe mit 1 bis 20 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 20 C-Atomen oder eine verzweigte oder zyklische Alkylgruppe mit 3 bis 20 C-Atomen, wobei die Alkyl-, Alkenyl- oder Alkinylgruppe jeweils mit einem oder mehreren Resten R2 substituiert sein kann und wobei eine oder mehrere CH2-Gruppen in den oben genannten Gruppen durch -R2C=CR2-, -C=C-, Si(R2)2, C=O, C=S, -C(=O)O-, CONR2, P(=O)(R2), -O-, -S-, SO oder SO2 ersetzt sein können und wobei ein oder mehrere H-Atome in den oben genannten Gruppen durch D, F, CI, Br, I, CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ring- system mit 5 bis 30 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 substituiert sein kann, wobei zwei oder mehr Reste R1 miteinander ein aliphatisches, heteroaliphatisches, aromatisches oder heteroaromatisches Ringsystem bilden können;
R2 ist bei jedem Auftreten gleich oder verschieden H, D, F, CN oder ein aliphatischer, aromatischer oder heteroaromatischer organischer Rest mit 1 bis 20 C-Atomen, in dem auch ein oder mehrere H-Atome durch D oder F ersetzt sein können; dabei können zwei oder mehr Substituenten R2 miteinander verknüpft sein und einen Ring bilden. Eine Arylgruppe im Sinne dieser Erfindung enthält 6 bis 40 C-Atome; eine Heteroarylgruppe im Sinne dieser Erfindung enthält 5 bis 40 C-Atome und mindestens ein Heteroatom, mit der Maßgabe, dass die Summe aus C-Atomen und Heteroatomen mindestens 5 ergibt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Dabei wird unter einer Aryl- gruppe bzw. Heteroarylgruppe entweder ein einfacher aromatischer Zyklus, also Benzol, bzw. ein einfacher heteroaromatischer Zyklus, beispielsweise Pyridin, Pyrimidin, Thiophen, etc., oder eine kondensierte (anellierte) Aryl- oder Heteroarylgruppe, beispielsweise Naphthalin, Anthracen, Phenanthren, Chinolin, Isochinolin, etc., verstanden. Mitein- ander durch Einfachbindung verknüpfte Aromaten, wie zum Beispiel Biphenyl, werden dagegen nicht als Aryl- oder Heteroarylgruppe, sondern als aromatisches Ringsystem bezeichnet.
Ein aromatisches Ringsystem im Sinne dieser Erfindung enthält 6 bis 60 C-Atome, bevorzugt 6 bis 40 C-Atome im Ringsystem. Ein heteroaroma- tisches Ringsystem im Sinne dieser Erfindung enthält 1 bis 60 C-Atome, bevorzugt 1 bis 40 C-Atome und mindestens ein Heteroatom im Ring- system, mit der Maßgabe, dass die Summe aus C-Atomen und Hetero- atomen mindestens 5 ergibt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Unter einem aromatischen oder heteroaromatischen Ringsystem im Sinne dieser Erfindung soll ein System verstanden werden, das nicht notwendigerweise nur Aryl- oder Heteroarylgruppen enthält, sondern in dem auch mehrere Aryl- oder Heteroarylgruppen durch eine nicht-aromatische Einheit (bevorzugt weniger als 10 % der von H verschiedenen Atome), wie z. B. ein C-, N- oder O-Atom oder Carbonyl- gruppe, verbunden sein können. Ebenso sollen hierunter Systeme verstanden werden, in denen zwei oder mehr Aryl- bzw. Heteroaryl- gruppen direkt miteinander verknüpft sind, wie z. B. Biphenyl, Terphenyl, Bipyridin oder Phenylpyridin. So sollen beispielsweise auch Systeme wie Fluoren, 9,9‘-Spirobifluoren, 9,9-Diarylfluoren, Triarylamin, Diarylether, Stilben, etc. als aromatische Ringsysteme im Sinne dieser Erfindung ver- standen werden, und ebenso Systeme, in denen zwei oder mehrere Aryl- gruppen beispielsweise durch eine lineare oder cyclische Alkylgruppe oder durch eine Silylgruppe verbunden sind. Bevorzugte aromatische bzw. heteroaromatische Ringsysteme sind einfache Aryl- bzw. Heteroaryl- gruppen sowie Gruppen, in denen zwei oder mehr Aryl- bzw. Heteroaryl- gruppen direkt miteinander verknüpft sind, beispielsweise Biphenyl, Terphenyl, Quaterphenyl oder Bipyridin, sowie Fluoren oder Spirobi- fluoren.
Ein elektronenreiches heteroaromatisches Ringsystem ist dadurch ge- kennzeichnet, dass es sich dabei um ein heteroaromatisches Ringsystem handelt, das keine elektronenarmen Heteroarylgruppen enthält. Eine elektronenarme Heteroarylgruppe ist eine Sechsring-Heteroarylgruppe mit mindestens einem Stickstoffatom oder eine Fünfring-Heteroarylgruppe mit mindestens zwei Heteroatomen, von denen eines ein Stickstoffatom und das andere Sauerstoff, Schwefel oder ein substituiertes Stickstoffatom ist, wobei an diese Gruppen jeweils noch weitere Aryl- oder Heteroaryl- gruppen ankondensiert sein können. Dagegen sind elektronenreiche Heteroarylgruppen Fünfring-Heteroarylgruppen mit genau einem Hetero- atom, ausgewählt aus Sauerstoff, Schwefel oder substituiertem Stickstoff, an welche noch weitere Arylgruppen und/oder weitere elektronenreiche Fünfring-Heteroarylgruppen ankondensiert sein können. So sind Beispiele für elektronenreiche Heteroarylgruppen Pyrrol, Furan, Thiophen, Indol, Benzofuran, Benzothiophen, Carbazol, Dibenzofuran, Dibenzothiophen oder Indenocarbazol. Eine elektronenreiche Heteroarylgruppe wird auch als elektronenreicher heteroaromatischer Rest bezeichnet.
Ein elektronenarmes heteroaromatisches Ringsystem ist dadurch gekenn- zeichnet, dass es mindestens eine elektronenarme Heteroarylgruppe enthält, und insbesondere bevorzugt keine elektronenreiche Heteroaryl- gruppen.
Im Rahmen der vorliegenden Erfindung wird der Begriff Alkylgruppe als Oberbegriff sowohl für lineare oder verzweigte Alkylgruppen wie auch für zyklische Alkylgruppen verwendet. Analog werden die Begriffe Alkenyl- gruppe bzw. Alkinylgruppe als Oberbegriffe sowohl für lineare oder ver- zweigte Alkenyl- bzw. Alkinylgruppen wie auch für zyklische Alkenyl- bzw. Alkinylgruppen verwendet. Unter einer cyclischen Alkyl-, Alkoxy- oder Thioalkoxygruppe im Sinne dieser Erfindung wird eine monocyclische, eine bicyclische oder eine polycyclische Gruppe verstanden.
Im Rahmen der vorliegenden Erfindung werden unter einem aliphatischen Kohlenwasserstoffrest bzw. einer Alkylgruppe bzw. einer Alkenyl- oder Alkinylgruppe, die 1 bis 40 C-Atome enthalten kann, und in der auch einzelne H-Atome oder CH2-Gruppen durch die oben genannten Gruppen substituiert sein können, bevorzugt die Reste Methyl, Ethyl, n-Propyl, i- Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, 2-Methylbutyl, n-Pentyl, s-Pentyl, t- Pentyl, 2-Pentyl, neo-Pentyl, Cyclopentyl, n-Hexyl, s-Hexyl, t-Hexyl, 2-Hexyl, 3-Hexyl, neo-Hexyl, Cyclohexyl, 1 -Methylcyclopentyl, 2- Methylpentyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 4-Heptyl, Cycloheptyl, 1 - Methylcyclohexyl, n-Octyl, Cyclooctyl, 2-Ethylhexyl, 1 -Bicyclo[2,2,2]octyl, 2-Bicyclo[2,2,2]octyl, 2-(2,6-Dimethyl)octyl, 3-(3,7-Dimethyl)octyl, Adamantyl, Trifluormethyl, Pentafluorethyl, 2,2,2-Trifluorethyl, 1 ,1 - Dimethyl-n-hex-1 -yl, 1 ,1 -Dimethyl-n-hept-1 -yl, 1 ,1 -Dimethyl-n-oct-1 -yl, 1 ,1 - Dimethyl-n-dec-1 -yl, 1 , 1 -Dimethyl-n-dodec-1 -yl, 1 , 1 -Dimethyl-n-tetradec-1 - yl, 1 ,1 -Dimethyl-n-hexadec-1 -yl, 1 ,1 -Dimethyl-n-octadec-1 -yl, 1 ,1 -Diethyl- n-hex-1 -yl, 1 , 1 -Diethyl-n-hept-1 -yl, 1 , 1 -Diethyl-n-oct-1 -yl, 1 , 1 -Diethyl-n- dec-1 -yl, 1 ,1 -Diethyl-n-dodec-1 -yl, 1 ,1 -Diethyl-n-tetradec-1 -yl, 1 ,1 -Diethyl- n-hexadec-1 -yl, 1 ,1 -Diethyl-n-octadec-1 -yl, 1 -(n-Propyl)-cyclohex-1 -yl, 1 - (n-Butyl)-cyclohex-l -yl, 1 -(n-Hexyl)-cyclohex-l -yl, 1 -(n-Octyl)-cyclohex-l -yl und 1 -(n-Decyl)-cyclohex-1 -yl, Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Heptenyl, Cycloheptenyl, Octenyl, Cyclooctenyl, Cyclooctadienyl, Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl, Heptinyl oder Octinyl verstanden. Unter einer Alkoxygruppe OR1 mit 1 bis 40 C-Atomen werden bevorzugt Methoxy, Trifluormethoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy, t-Butoxy, n-Pentoxy, s-Pentoxy, 2-Methylbutoxy, n-Hexoxy, Cyclohexyloxy, n-Heptoxy, Cyclo- heptyloxy, n-Octyloxy, Cyclooctyloxy, 2-Ethylhexyloxy, Pentafluorethoxy und 2,2, 2-Trifluorethoxy verstanden. Unter einer Thioalkylgruppe SR1 mit 1 bis 40 C-Atomen werden insbesondere Methylthio, Ethylthio, n- Propylthio, i-Propylthio, n-Butylthio, i-Butylthio, s-Butylthio, t-Butylthio, n- Pentylthio, s-Pentylthio, n-Hexylthio, Cyclohexylthio, n-Heptylthio, Cycloheptylthio, n-Octylthio, Cyclooctylthio, 2-Ethylhexylthio, Trifluor- methylthio, Pentafluorethylthio, 2,2,2-Trifluorethylthio, Ethenylthio, Propenylthio, Butenylthio, Pentenylthio, Cyclopentenylthio, Hexenylthio, Cyclohexenylthio, Heptenylthio, Cycloheptenylthio, Octenylthio, Cyclo- octenylthio, Ethinylthio, Propinylthio, Butinylthio, Pentinylthio, Hexinylthio, Heptinylthio oder Octinylthio verstanden. Allgemein können Alkyl-, Alkoxy- oder Thioalkylgruppen gemäß der vorliegenden Erfindung geradkettig, verzweigt oder zyklisch sein, wobei eine oder mehrere nicht-benachbarte CH2-Gruppen durch die oben genannten Gruppen ersetzt sein können; weiterhin können auch ein oder mehrere H-Atome durch D, F, CI, Br, I, CN oder NO2, bevorzugt F, CI oder CN, besonders bevorzugt F oder CN ersetzt sein.
Unter einem aromatischen oder heteroaromatischen Ringsystem mit 5 - 60 aromatischen Ringatomen, vorzugsweise 5 - 40 aromatischen Ring- atomen, welches noch jeweils mit den oben genannten Resten oder einem Kohlenwasserstoffrest substituiert sein kann und welches über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, die abgeleitet sind von Benzol, Naphthalin, Anthracen, Benzanthracen, Phenanthren, Pyren, Chrysen, Perylen, Fluoranthen, Naphthacen, Pentacen, Benzpyren, Biphenyl, Biphenylen, Terphenyl, Triphenylen, Fluoren, Spirobifluoren, Dihydrophenanthren, Dihydropyren, Tetrahydropyren, cis- oder trans- Indenofluoren, cis- oder trans-lndenocarbazol, cis- oder trans-lndolo- carbazol, cis- oder trans-Monobenzoindenofluoren, cis- oder trans- Dibenzoindenofluoren, Truxen, Isotruxen, Spirotruxen, Spiroisotruxen, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothio- phen, Isobenzothiophen, Dibenzothiophen, Pyrrol, Indol, Isoindol, Carba- zol, Pyridin, Chinolin, Isochinolin, Acridin, Phenanthridin, Benzo-5,6-chino- lin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimi- dazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Oxazol, Benz- oxazol, Naphthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, 1 ,2- Thiazol, 1 ,3-Thiazol, Benzothiazol, Pyridazin, Hexaazatriphenylen, Benzo- pyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, 1 ,5-Diazaanthracen, 2,7- Diazapyren, 2,3-Diazapyren, 1 ,6-Diazapyren, 1 ,8-Diazapyren, 4,5-Diaza- pyren, 4,5,9, 10-Tetraazaperylen, Pyrazin, Phenazin, Phenoxazin, Pheno- thiazin, Fluorubin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenan- throlin, 1 ,2,3-Triazol, 1 ,2,4-Triazol, Benzotriazol, 1 ,2,3-Oxadiazol, 1 ,2,4- Oxadiazol, 1 ,2,5-Oxadiazol, 1 ,3,4-Oxadiazol, 1 ,2,3-Thiadiazol, 1 ,2,4-Thia- diazol, 1 ,2,5-Thiadiazol, 1 ,3,4-Thiadiazol, 1 ,3,5-Triazin, 1 ,2,4-Triazin, 1 ,2,3-Triazin, Tetrazol, 1 ,2,4,5-Tetrazin, 1 ,2,3,4-Tetrazin, 1 ,2,3,5-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol oder Gruppen, die abgeleitet sind von Kombinationen dieser Systeme.
Unter der Formulierung, dass zwei oder mehr Reste miteinander ein Ring- system bilden können, soll im Rahmen der vorliegenden Beschreibung unter anderem verstanden werden, dass die beiden Reste miteinander durch eine chemische Bindung unter formaler Abspaltung von zwei Wasserstoffatomen verknüpft sind. Dies wird durch das folgende Schema verdeutlicht:
Figure imgf000011_0001
Weiterhin soll unter der oben genannten Formulierung aber auch ver- standen werden, dass für den Fall, dass einer der beiden Reste Wasser- stoff darstellt, der zweite Rest unter Bildung eines Rings an die Position, an die das Wasserstoffatom gebunden war, bindet. Dies soll durch das folgende Schema verdeutlicht werden:
Figure imgf000011_0002
Weitere bevorzugte Ausführungsformen zeigen die folgenden Formeln (3) bis (6):
Figure imgf000012_0001
Figure imgf000012_0002
wobei die verwendeten Symbole die oben für Formel (1 ) genannten Bedeutungen aufweisen.
In einer bevorzugten Ausführungsform der Erfindung stehen maximal zwei Symbole X pro Zyklus für N, besonders bevorzugt maximal ein Symbol X.
In einer bevorzugten Ausführungsform der Erfindung steht X für CR.
In einer bevorzugten Ausführungsform stehen alle X für CR, wobei R für
H, D, F oder CN steht.
In einer bevorzugten Ausführungsform der Erfindung ist Y gleich oder verschieden bei jedem Auftreten CR' oder N mit der Maßgabe, dass 2 oder 3 Gruppen Y pro Zyklus für N stehen, wobei wenn zwei oder mehr jeweils benachbarte Y, welche für CR' stehen, miteinander ein ankonden- siertes aromatisches oder heteroaromatisches Ringsystem bilden, 1 , 2 oder 3 Gruppen Y für N stehen. Die beiden CR‘ bilden beispielsweises einen ankondensierten Fünfring, wobei das System noch weitere aromatische oder heteroaromatische Ringe umfassen kann.
Bevorzugte Ausführungsformen der Verbindungen der Formeln (3), (4), (5) und (6) sind die folgenden Verbindungen der Formeln (3-1 ) bis (6-1 ):
Figure imgf000013_0001
wobei die Symbole soweit vorhanden die für die Formeln (3) bis (6) genannten Bedeutungen aufweisen.
Die Verbindungen der Formeln (1 ), (3), (4), (5) oder (6) oder ihre bevorzugten Ausführungsformen können abhängig von der Substitution ein Enantiomerenpaar bilden. Bevorzugt liegt die erfindungsgemäße Verbindung als Racemat vor, sie kann aber auch als reines Enantiomer vorliegen. In einer bevorzugten Ausführungsform ist die Gruppe der Formel (2) ausgewählt aus einer der Formeln (2-1 ) bis (2-9):
Figure imgf000014_0001
Figure imgf000015_0001
wobei die Symbole soweit vorhanden die für die Formel (2) genannten Bedeutungen aufweisen und zusätzlich gilt, dass Y1 bei jedem Auftreten gleich oder verschieden für BR1, C(R1)2, NR1, O oder S steht, bevorzugt für 0 oder S, ganz besonders bevorzugt für O.
In einer bevorzugten Ausführungsform steht die Gruppe der Formel (2) für eine der Formeln (2-1 ), (2-2), (2-3), (2-4) oder (2-5).
In einer bevorzugten Ausführungsform ist die erfindungsgemäße Verbindung ausgewählt aus eine der folgenden Verbindungen:
Figure imgf000015_0002
Figure imgf000016_0001
In einer bevorzugten Ausführungsform ist die erfindungsgemäße Verbindung ausgewählt aus den Verbindungen der vorstehenden Tabelle, bei denen Z für eine der Formeln (2-1 ), (2-2), (2-3), (2-4) oder (2-5) steht.
Im Folgenden werden bevorzugte Substituenten R, Ar‘, R‘, R1 und R2 beschrieben. In einer besonders bevorzugten Ausführungsform der Erfin- dung treten die nachfolgend genannten Bevorzugungen für R, Ar‘, R‘, R1 und R2 gleichzeitig auf und gelten für die Strukturen der Formel (1 ) sowie für alle oben aufgeführten bevorzugten Ausführungsformen.
Zusätzlich gilt für R und R‘ falls R, bzw. R‘, und zugehörige Reste mindestens ein heteroaromatisches Ringsystem umfassend mindestens ein Stickstoffatom mit drei Einfachbindungen umfassen, für jedes dieser heteroaromatischen Ringsysteme, dass immer mindestens zwei der über Einfachbindungen an das jeweilige Stickstoffatom gebundenen Reste an das jeweilige Stickstoffatom und davon unabhängig mit dem Grundgerüst verbunden sind. Dies bedeutet, dass im Falle eines heteroaromatischen Ringsystems mit einem Stickstoffatom der Formel N(R“)3, wobei die Reste R“ auch miteinander einen Ring bilden können und ein R“ das Grundgerüst umfasst, immer mindestens zwei Reste R“ über eine oder mehrere kovalente Bindungen unabhängig vom Stickstoffatom mit dem Grundgerüst verbunden sind. Bei einem Carbazol sind beispielsweise zwei Reste R“ miteinander mit einer Einfachbindung verbunden. Ist das Grundgerüst nun Teil des dritten Restes R“, so weisen die beiden anderen miteinander verbundenen Reste keine vom Stickstoff unabhängige Verbindung mit dem Grundgerüst auf. Ist das Grundgerüst Teil eines der verbundenen Reste, so weist jeder dieser Reste eine Verbindung zum Stickstoff und eine davon unabhängige Verbindung zum Grundgerüst auf. Die Verbindung mit dem Grundgerüst ist eine kovalente Verbindung. Eine unabhängige Verbindung bedeutet, dass der jeweilige Stickstoff nicht Teil der Verbindung zum Grundgerüst ist.
Die Reste R, bzw. R‘, und davon abhängige Reste weisen daher gesehen vom Grundgerüst keine Stickstoffatome, insbesondere als Teil eines heteroaromatischen Ringsystems, auf, welche nur über eine einzige Einfachbindung mit dem Grundgerüst verbunden sind. Dies sind insbesondere über das Stickstoffatom angebundene Carbazole und Derivate davon. Unter Grundgerüst wird dabei der kondensierte Struktur, e.g. das Triptycen, in Formel (1 ) mit Formel (2), ohne Reste R und R‘ verstanden. So sind ausgehend vom Grundgerüst keine Heteroaromaten nur über ein N-Atom mit dem Grundgerüst verbunden.
In einer bevorzugten Ausführungsform der Erfindung ist R oder R‘ bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus H, D, F, CN, OR1, einer geradkettigen Alkylgruppe mit 1 bis 10 C-Atomen oder einer Alkenylgruppe mit 2 bis 10 C-Atomen oder einer verzweigten oder zyklischen Alkylgruppe mit 3 bis 10 C-Atomen, wobei die Alkyl- bzw. Alkenylgruppe jeweils mit einem oder mehreren Resten R1 substituiert sein kann, bevorzugt jedoch unsubstituiert ist, und wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch O ersetzt sein können, oder einem aromatischen oder heteroaromatischen Ringsystem mit 6 bis 30 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann; dabei können zwei Reste R, bzw. R‘, auch miteinander ein aliphatisches, aromatisches oder heteroaroma- tisches Ringsystem bilden. Besonders bevorzugt ist R oder R‘ bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus H, F, CN, einer geradkettigen Alkylgruppe mit 1 bis 6 C-Atomen, insbesondere mit 1 , 2, 3 oder 4 C-Atomen, oder einer verzweigten oder zyklischen Alkylgruppe mit 3 bis 6 C-Atomen, wobei die Alkylgruppe jeweils mit einem oder mehreren Resten R1 substituiert sein kann, bevor- zugt aber unsubstituiert ist, oder einem aromatischen oder heteroaroma- tischen Ringsystem mit 6 bis 24 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 , bevorzugt nicht-aromatische Reste R1 , substituiert sein kann. Ganz besonders bevorzugt ist R oder R‘ bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus H oder einem aromatischen oder heteroaromatischen Ringsystem mit 6 bis 24 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R2, bevorzugt nicht-aromatische Reste R2, substituiert sein kann.
Geeignete aromatische bzw. heteroaromatische Ringsysteme R oder R‘ sind ausgewählt aus Phenyl, Biphenyl, insbesondere ortho-, meta- oder para-Biphenyl, Terphenyl, insbesondere ortho-, meta-, para- oder ver- zweigtem Terphenyl, Quaterphenyl, insbesondere ortho-, meta-, para- oder verzweigtem Quaterphenyl, Fluoren, welches über die 1-, 2-, 3- oder 4-Position verknüpft sein kann, Spirobifluoren, welches über die 1-, 2-, 3- oder 4-Position verknüpft sein kann, Naphthalin, welches über die 1 - oder 2-Position verknüpft sein kann, Indol, Benzofuran, Benzothiophen, welches über die 1-, 2-, 3- oder 4-Position verknüpft sein kann, Dibenzo- furan, Carbazol, welches über die 1-, 2-, 3- oder 4-Position verknüpft sein kann, Dibenzothiophen, welches über die 1-, 2-, 3- oder 4-Position ver- knüpft sein kann, Indenocarbazol, Indolocarbazol, Pyridin, Pyrimidin, Pyrazin, Pyridazin, Triazin, Chinolin, Chinazolin, Benzimidazol, Phenanthren, Triphenylen oder einer Kombination aus zwei oder drei dieser Gruppen, welche jeweils mit einem oder mehreren Resten R1 sub- stituiert sein können. Wenn R für eine Heteroarylgruppe, insbesondere für Triazin, Pyrimidin oder Chinazolin steht, können auch aromatische oder heteroaromatische Reste R1 an dieser Heteroarylgruppe bevorzugt sein.
Dabei sind die Gruppen R oder R‘, wenn sie für ein aromatisches bzw. heteroaromatisches Ringsystem stehen, bevorzugt gewählt aus den Gruppen der folgenden Formeln R-1 bis R-147,
Figure imgf000019_0001
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
wobei R1 die oben genannten Bedeutungen aufweist, die gestrichelte Bindung die Bindung zu Formel (1 ) darstellt und weiterhin gilt:
Ar3 ist bei jedem Auftreten gleich oder verschieden ein bivalentes aroma- tisches oder heteroaromatisches Ringsystem mit 6 bis 18 aroma- tischen Ringatomen, welches jeweils mit einem oder mehreren Resten R1 substituiert sein kann;
A1 ist bei jedem Auftreten gleich oder verschieden BR1 , C(R1)2, NR1, 0 oder S, bevorzugt C(R1)2, 0 oder S;
A2 ist bei jedem Auftreten gleich oder verschieden C(R1)2, NR1, 0 oder S; p ist 0 oder 1 , wobei p = 0 bedeutet, dass die Gruppe Ar3 nicht vorhan- den ist und dass die entsprechende aromatische bzw. heteroaroma- tische Gruppe direkt an das zugehörige Atom, beispielsweise ein Kohlenstoffatom oder an ein Heteroatom wie ein Stickstoff gebunden ist. r ist 0 oder 1 , wobei r = 0 bedeutet, dass an dieser Position keine Gruppe A1 gebunden ist und an die entsprechenden Kohlenstoffatome stattdessen Reste R1 gebunden sind.
In einer bevorzugten Ausführungsform umfasst Ar3 bivalente aromatische oder heteroaromatische Ringsysteme basierend auf den Gruppen der R-1 bis R-147, wobei p gleich 0 gilt und die gestrichelte Bindung und ein R1 für die Bindung zur aromatischen oder heteroaromatischen Gruppe nach R-1 bis R-147 steht.
Wenn die oben genannten Gruppen R-1 bis R-147 für R mehrere Gruppen A1 aufweisen, so kommen hierfür alle Kombinationen aus der Definition von A1 in Frage. Bevorzugte Ausführungsformen sind dann solche, in denen eine Gruppe A1 für C(R1)2, NR1, O oder S und die andere Gruppe A1 für C(R1)2 steht oder in denen beide Gruppen A1 für S oder O stehen oder in denen beide Gruppen A1 für 0 bzw. S stehen.
Wenn A1 für NR1 steht, steht der Substituent R1 , der an das Stickstoffatom gebunden ist, bevorzugt für ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 24 aromatischen Ringatomen, welches auch durch einen oder mehrere Reste R2 substituiert sein kann. In einer besonders bevorzugten Ausführungsform steht dieser Substituent R1 gleich oder ver- schieden bei jedem Auftreten für ein aromatisches oder heteroaroma- tisches Ringsystem mit 6 bis 24 aromatischen Ringatomen, bevorzugt mit 6 bis 12 aromatischen Ringatomen, welches keine kondensierten Arylgruppen oder Heteroarylgruppen, in denen zwei oder mehr aromatische bzw. heteroaromatische 6-Ring-Gruppen direkt aneinander ankondensiert sind, aufweist, und welches jeweils auch durch einen oder mehrere Reste R2 substituiert sein kann. Besonders bevorzugt sind Phenyl, Biphenyl, Terphenyl und Quaterphenyl mit Verknüpfungsmustern, wie vorne für R-1 bis R-35 aufgeführt, wobei diese Strukturen durch einen oder mehrere Reste R1 substituiert sein können, bevorzugt aber unsubstituiert sind.
Wenn A1 für C(R1)2 steht, stehen die Substituenten R1, die an dieses Kohlenstoffatom gebunden sind, bevorzugt gleich oder verschieden bei jedem Auftreten für eine lineare Alkylgruppe mit 1 bis 10 C-Atomen oder für eine verzweigte oder zyklische Alkylgruppe mit 3 bis 10 C-Atomen oder für ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 24 aromatischen Ringatomen, welches auch durch einen oder mehrere Reste R2 substituiert sein kann. Ganz besonders bevorzugt steht R1 für eine Methylgruppe oder für eine Phenylgruppe. Dabei können die Reste R1 auch miteinander ein Ringsystem bilden, was zu einem Spirosystem führt. In einer bevorzugten Ausführungsform der Erfindung ist R‘ bei jedem Auf- treten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus D, F, CN, OR1 oder einem aromatischen oder heteroaromatischen Ring- system mit 6 bis 30 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann.
Besonders bevorzugt ist R‘ bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus D, F, CN oder einem aroma- tischen oder heteroaromatischen Ringsystem mit 6 bis 24 aromatischen Ringatomen, besonders bevorzugt mit 6 bis 12 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1, bevorzugt nicht- aromatische Reste R1, substituiert sein kann.
Geeignete aromatische bzw. heteroaromatische Ringsysteme R‘ sind aus- gewählt aus Phenyl, Biphenyl, insbesondere ortho-, meta- oder para- Biphenyl, Terphenyl, insbesondere ortho-, meta-, para- oder verzweigtem Terphenyl, Quaterphenyl, insbesondere ortho-, meta-, para- oder ver- zweigtem Quaterphenyl, Fluoren, welches über die 1 -, 2-, 3- oder 4- Position verknüpft sein kann, Spirobifluoren, welches über die 1 -, 2-, 3- oder 4-Position verknüpft sein kann, Naphthalin, welches über die 1 - oder 2-Position verknüpft sein kann, Indol, Benzofuran, Benzothiophen, welches über die 1 -, 2-, 3- oder 4-Position verknüpft sein kann, Dibenzo- furan, Carbazol, welches über die 1 -, 2-, 3- oder 4-Position verknüpft sein kann, Dibenzothiophen, welches über die 1 -, 2-, 3- oder 4-Position ver- knüpft sein kann, Indenocarbazol, Indolocarbazol, Pyridin, Pyrimidin, Pyrazin, Pyridazin, Triazin, Chinolin, Chinazolin, Benzimidazol, Phenanthren, Triphenylen oder einer Kombination aus zwei oder drei dieser Gruppen, welche jeweils mit einem oder mehreren Resten R1 sub- stituiert sein können. Wenn R‘ für eine Heteroarylgruppe, insbesondere für Triazin, Pyrimidin oder Chinazolin steht, können auch aromatische oder heteroaromatische Reste R1 an dieser Heteroarylgruppe bevorzugt sein.
Dabei sind die Gruppen R‘, wenn sie für ein aromatisches bzw. heteroaro- matisches Ringsystem stehen, bevorzugt gewählt aus den Gruppen der vorstehenden Formeln R-1 bis R-147, besonders bevorzugt gewählt aus den Gruppen der vorstehenden Formeln R-1 bis R-147, wobei A1 für C(R1)2, O oder S steht.
In einer weiteren bevorzugten Ausführungsform der Erfindung ist R1, welches nicht an das quartäre Kohlenstoffatom des Grundgerüsts gebunden ist, gleich oder verschieden bei jedem Auftreten ausgewählt aus der Gruppe bestehend aus H, D, F, CN, OR2, einer geradkettigen Alkyl- gruppe mit 1 bis 10 C-Atomen oder einer Alkenylgruppe mit 2 bis 10 C- Atomen oder einer verzweigten oder zyklischen Alkylgruppe mit 3 bis 10 C-Atomen, wobei die Alkyl- bzw. Alkenylgruppe jeweils mit einem oder mehreren Resten R2 substituiert sein kann und wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch O ersetzt sein können, oder einem aromatischen oder heteroaromatischen Ringsystem mit 6 bis 30 aroma- tischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 sub- stituiert sein kann; dabei können zwei oder mehrere Reste R1 miteinander ein aliphatisches Ringsystem bilden. In einer besonders bevorzugten Ausführungsform der Erfindung ist R1 gleich oder verschieden bei jedem Auftreten ausgewählt aus der Gruppe bestehend aus H, einer geradkettigen Alkylgruppe mit 1 bis 6 C-Atomen, insbesondere mit 1 , 2, 3 oder 4 C-Atomen, oder einer verzweigten oder zyklischen Alkylgruppe mit 3 bis 6 C-Atomen, wobei die Alkylgruppe mit einem oder mehreren Resten R2 substituiert sein kann, bevorzugt aber unsubstituiert ist, oder einem aromatischen oder heteroaromatischen Ringsystem mit 6 bis 24 aroma- tischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 sub- stituiert sein kann, bevorzugt aber unsubstituiert ist.
In einer weiteren bevorzugten Ausführungsform der Erfindung ist R2 gleich oder verschieden bei jedem Auftreten H, F, eine Alkylgruppe mit 1 bis 4 C- Atomen oder eine Arylgruppe mit 6 bis 10 C-Atomen, welche mit einer Alkylgruppe mit 1 bis 4 C-Atomen substituiert sein kann, bevorzugt aber unsubstituiert ist.
In einer weiteren bevorzugten Ausführungsform der Erfindung sind alle Reste R1 , soweit sie für ein aromatisches oder heteroaromatisches Ringsystem, bzw. R2 soweit sie für aromatische oder heteroaromatische Gruppen stehen, ausgewählt aus den Gruppen R-1 bis R-147, welche allerdings dann jeweils entsprechend mit R2, bzw. den bei R2 genannten Gruppen substituiert sind.
In einer bevorzugten Ausführungsform der Erfindung sind alle aroma- tischen oder heteroaromatischen Gruppen der Reste R, R‘, R1 oder R2 ausgewählt aus den entsprechenden Gruppen R-1 bis R-147, bevorzugt ausgewählt aus den Gruppen R-1 bis R-147, wobei A1 für 0, S oder C(R1)2 bzw. den entsprechenden Rest C(R2)2 oder C(R3)2 steht.
In einer bevorzugten Ausführungsform bilden die Reste R keine weiteren an das Grundgerüst der Formel (1 ) ankondensierten aromatischen oder heteroaromatischen Gruppen.
In einer bevorzugten Ausführungsform der Erfindung steht R bei jedem Auftreten gleich oder verschieden für H, D, F, CN oder eine Gruppe ausgewählt aus den Gruppen R-1 bis R-147 und R1 für diese Gruppen für H, D, F oder CN steht, bevorzugt sind die Gruppen R-1 bis R-47, R-104 bis R-110.
In einer bevorzugten Ausführungsform steht R bei jedem Auftreten gleich oder verschieden an allen Zyklen der Verbindung der Formel (1 ) für H, D, F oder CN, bevorzugt H oder D.
In einer bevorzugten Ausführungsform bildet der Zyklus mit den Y sowie gegebenenfalls mit den Resten R‘ eine Gruppe ausgewählt aus den Gruppen R-70, R-71 , R-72, R-73, R-74, R-75, R-76, R-80, R-81 , R-113, R- 133, R-134, R-135, R-136, R-145, R-146, R-147, wobei p gleich 0 gilt.
In einer weiteren Ausführungsform der Erfindung ist die Gruppe R1 , welche an das quartäre Kohlenstoffatom des Grundgerüsts gebunden ist, H, D, F, CN, OR2, einer geradkettigen Alkylgruppe mit 1 bis 10 C-Atomen oder einer Alkenylgruppe mit 2 bis 10 C-Atomen oder einer verzweigten oder zyklischen Alkylgruppe mit 3 bis 10 C-Atomen, wobei die Alkyl- bzw. Alkenylgruppe jeweils mit einem oder mehreren Resten R2 substituiert sein kann und wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch O ersetzt sein können, oder ein heteroaromatisches Ringsystem mit 5 bis 30 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 substituiert sein kann, wobei zwei oder mehr Reste R1 miteinander ein aliphatisches, heteroaliphatisches, aromatisches oder heteroaromatisches Ringsystem bilden können.
Bevorzugt ist dieses R1 an der Brücke ausgewählt aus den Gruppen R-1 bis R-147 mit der Maßgabe, dass sie mit R2 substituiert sind, besonders bevorzugt ausgewählt aus den Gruppen R-1 bis R-147 mit der Maßgabe, dass sie mit R2 substituiert sind und A1 für C(R2)2, 0 oder S steht.
In einer bevorzugten Ausführungsform steht R‘ in den Gruppen der Formeln (2-1 ) bis (2-9) bei jedem Auftreten gleich oder verschieden für ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, bevorzugt mit 5 bis 40 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, wobei zwei oder mehr bevorzugt an den gleichen Zyklus gebundene Reste R miteinander ein aliphatisches, heteroaliphatisches, aromatisches oder heteroaromatisches Ringsystem bilden können, das mit einem oder mehreren Resten R1 substituiert sein kann, bevorzugt bei jedem Auftreten gleich oder verschieden eine Gruppe ausgewählt aus R-1 bis R-147. Bevorzugt stehen die Reste R1 in diesem Fall dann für H, D, F, CN oder ein aliphatischer, aromatischer oder heteroaromatischer organischer Rest mit 1 bis 20 C-Atomen, in dem auch ein oder mehrere H-Atome durch D oder F ersetzt sein können; dabei können zwei oder mehr Substituenten R1 miteinander verknüpft sein und einen Ring bilden.
In einer Ausführungsform der Erfindung steht R‘ in Formel (2) oder eine der Formeln (2-1 ) bis (2-9) bei jedem Auftreten gleich oder verschieden für eine Gruppe ausgewählt aus R-1 , R-2, R-3,R-44, R-45, R-46, R-47, R- 112, R-114. In einer bevorzugten Ausführungsform steht im Falle von mehreren Gruppen R‘ mindestens eine Gruppe für R-1 , während mindestens eine weitere Gruppe R‘ ausgewählt ist aus R-2, R-3,R-44, R- 45, R-46, R-47, R-112, R-114. Im Falle von drei Gruppen R‘ kann eine Gruppe auch für CN stehen. Dabei haben die Alkylgruppen in erfindungsgemäßen Verbindungen, die durch Vakuumverdampfung verarbeitet werden, bevorzugt nicht mehr als fünf C-Atome, besonders bevorzugt nicht mehr als 4 C-Atome, ganz besonders bevorzugt nicht mehr als 1 C-Atom. Für Verbindungen, die aus Lösung verarbeitet werden, eignen sich auch Verbindungen, die mit Alkyl- gruppen, insbesondere verzweigten Alkylgruppen, mit bis zu 10 C-Atomen substituiert sind oder die mit Oligoarylengruppen, beispielsweise ortho-, meta-, para- oder verzweigten Terphenyl- oder Quaterphenylgruppen, substituiert sind.
Die oben genannten bevorzugten Ausführungsformen können beliebig innerhalb der in Anspruch 1 definierten Einschränkungen miteinander kombiniert werden. In einer besonders bevorzugten Ausführungsform der Erfindung treten die oben genannten Bevorzugungen gleichzeitig auf.
Beispiele für bevorzugte Verbindungen gemäß den oben aufgeführten Ausführungsformen sind die in der folgenden Tabelle aufgeführten Verbin- dungen.
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Die erfindungsgemäßen Verbindungen können nach dem Fachmann bekannten Syntheseschritten, wie z. B. Bromierung, Suzuki-Kupplung, Ullmann-Kupplung, Heck-Reaktion, Hartwig-Buchwald-Kupplung, etc., dargestellt werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein Ver- fahren zur Herstellung der erfindungsgemäßen Verbindungen, gekenn- zeichnet durch die folgenden Schritte:
(A) Synthese des kondensierten Grundgerüsts nach Formel (1 );
(B) Einführen der aromatischen oder heteroaromatischen Gruppen an den Brückenatomen durch Kupplungsreaktionen.
Die erfindungsgemäßen Verbindungen können daher ausgehend von literaturbekannten, am Brückenkopf-C-Atom bromierten oder iodierten Bicyclen nach M. Oi et al., Chem. Sei., 2019, 10, 6107 dargestellt werden. In Schema 1 und 2 ist dies am Beispiel von Triptycen gezeigt. In Schritt 1 erfolgt zunächst die Lithiierung des Brückenkopf-C-Atoms durch Umsetzung des Bromids mit n-Butyllithium, gefolgt von einer Transmetallierung mit einem Kupfer(l)halogenid, bevorzugt CuCI, und anschließender Palladium-katalysierter C-C-Kupplung mit einem Halogen- Heteroaromaten, wie z.B. einem 2-Chlortriazin, 2- bzw. 4-Chlorpyrimidin, 2-Chlorpyrazin, 2-Chinazolin, 2-Chinoxalin, 2-Chlor-benzofuro[2,3- d]pyrimidin, 2-Chlorobenzofuro[3,2-d]pyrimidin, 2-Chloro[1 ]benzothieno- [2,3-d]pyrimidin, 2-Chloro[1]benzothieno-[3,2-d]pyrimidin, etc.. Dabei entspricht der Heteroaromat der Gruppe enthaltend Y in Formel (1 ). Analog können die entsprechenden Brom- oder lod-Heteroaromaten eingesetzt werden. Als Phosphine werden bevorzugt elektronenreiche Phosphine wie Tis(o-tolyl)-, Tris(o-methoxyphenyl)-, Tricyclohexyl-, Tri- tert-butyl-phosphin oder S-Phos, X-Phos, RuPhos, Amphos etc. eingesetzt. Bei der Verwendung reaktionsträger Chlor-Heteroaromaten kann eine Aktivierung durch Zugabe von stöchiometrischen Mengen an wasserfreiem Lithiumbromid oder Lithiumiodid erfolgen.
Figure imgf000046_0001
9,10-Dibrom-triptycen kann selektiv mono-lithiiert (s. G. Märkl et al., Tetrahedron Lett., 1974, 20, 1817) und anschließend wie oben beschrieben mit einem ersten Hal-HetAr gekuppelt werden. Dabei entspricht HetAr der Gruppe enthaltend Y in Formel (1 ). In einem zweiten Schritt kann die verbliebene Br-Funktion mit einem weiteren Halogen- Aromaten Hal-Ar oder Halogen-Heteroaromaten Hal-HetAr gekuppelt werden, so dass symmetrisch und unsymmetrisch 9,10-substituierte Triptycene erhalten werden können, s. Schema 2.
Figure imgf000047_0001
Für die Verarbeitung der erfindungsgemäßen Verbindungen aus flüssiger Phase, beispielsweise durch Spin-Coating oder durch Druckverfahren, sind Formulierungen der erfindungsgemäßen Verbindungen erforderlich. Diese Formulierungen können beispielsweise Lösungen, Dispersionen oder Emulsionen sein. Es kann bevorzugt sein, hierfür Mischungen aus zwei oder mehr Lösemitteln zu verwenden. Geeignete und bevorzugte Lösemittel sind beispielsweise Toluol, Anisol, o-, m- oder p-Xylol, Methyl- benzoat, Mesitylen, Tetralin, Veratrol, THF, Methyl-THF, THP, Chlor- benzol, Dioxan, Phenoxytoluol, insbesondere 3-Phenoxytoluol, (-)- Fenchon, 1 ,2,3,5-Tetramethylbenzol, 1 ,2,4,5-Tetramethylbenzol, 1 -Methyl- naphthalin, 2-Methylbenzothiazol, 2-Phenoxyethanol, 2-Pyrrolidinon, 3- Methylanisol, 4-Methylanisol, 3,4-Dimethylanisol, 3,5-Dimethylanisol, Acetophenon, α-Terpineol, Benzothiazol, Butylbenzoat, Cumol, Cyclo- hexanol, Cyclohexanon, Cyclohexylbenzol, Decalin, Dodecylbenzol, Ethyl- benzoat, Indan, NMP, p-Cymol, Phenetol, 1 ,4-Diisopropylbenzol, Di- benzylether, Diethylenglycolbutylmethylether, Triethylenglycolbutylmethyl- ether, Diethylenglycoldibutylether, Triethylenglycoldimethylether, Di- ethylenglycolmonobutylether, Tripropyleneglycoldimethylether, Tetra- ethylenglycoldimethylether, 2-lsopropylnaphthalin, Pentylbenzol, Hexyl- benzol, Heptylbenzol, Octylbenzol, 1 ,1 -Bis(3,4-dimethylphenyl)ethan, 2- Methylbiphenyl, 3-Methylbiphenyl, 1 -Methylnaphthalin, 1 -Ethylnaphthalin, Ethyloctanoat, Sebacinsäure-diethylester, Octyloctanoat, Heptylbenzol, Menthyl-isovalerat, Cyclohexylhexanoat oder Mischungen dieser Löse- mittel.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher eine For- mulierung, insbesondere eine Lösung, Dispersion oder Emulsion, umfassend mindestens eine erfindungsgemäße Verbindung und mindes- tens eine weitere Verbindung. Die weitere Verbindung kann beispiels- weise ein Lösemittel sein, insbesondere eines der oben genannten Löse- mittel oder eine Mischung dieser Lösemittel. Die Herstellung solcher Lösungen ist dem Fachmann bekannt und ist beispielsweise beschrieben in WO 2002/072714, WO 2003/019694 und der darin zitierten Literatur. Die weitere Verbindung kann aber auch mindestens eine weitere organische oder anorganische Verbindung sein, die ebenfalls in der elektronischen Vorrichtung eingesetzt wird, beispielsweise eine emittierende Verbindung und/oder ein Matrixmaterial. Diese weitere Verbindung kann auch polymer sein.
Die erfindungsgemäßen Verbindungen eignen sich für die Verwendung in einer elektronischen Vorrichtung, insbesondere in einer organischen Elektrolumineszenzvorrichtung (OLED). Abhängig von der Substituierung können die Verbindungen in unterschiedlichen Funktionen und Schichten verwendet werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwen- dung einer erfindungsgemäßen Verbindung in einer elektronischen Vor- richtung.
Ein nochmals weiterer Gegenstand der vorliegenden Erfindung ist eine elektronische Vorrichtung enthaltend mindestens eine erfindungsgemäße Verbindung.
Die erfindungsgemäßen Verbindungen können insbesondere bei ihrer Verwendung als Racemat oder als reines Enantiomer vorliegen. Eine elektronische Vorrichtung im Sinne der vorliegenden Erfindung ist eine Vorrichtung, welche mindestens eine Schicht enthält, die mindestens eine organische Verbindung enthält. Das Bauteil kann dabei auch anorga- nische Materialien enthalten oder auch Schichten, welche vollständig aus anorganischen Materialien aufgebaut sind.
Die elektronische Vorrichtung ist bevorzugt ausgewählt aus der Gruppe bestehend aus organischen Elektrolumineszenzvorrichtungen (OLEDs), organischen integrierten Schaltungen (O-ICs), organischen Feld-Effekt- Transistoren (O-FETs), organischen Dünnfilmtransistoren (O-TFTs), organischen lichtemittierenden Transistoren (O-LETs), organischen Solar- zellen (O-SCs), farbstoffsensibilisierten organischen Solarzellen (DSSCs), organischen optischen Detektoren, organischen Photorezeptoren, orga- nischen Feld-Quench-Devices (O-FQDs), lichtemittierenden elektro- chemischen Zellen (LECs), organischen Laserdioden (O-Laser) und „organic plasmon emitting devices“, bevorzugt aber organischen Elektro- lumineszenzvorrichtungen (OLEDs).
Die Vorrichtung ist besonders bevorzugt eine organische Elektrolumines- zenzvorrichtung umfassend Kathode, Anode und mindestens eine emittierende Schicht, wobei mindestens eine organische Schicht, welche eine emittierende Schicht, Lochtransportschicht, Elektronentransport- schicht, Lochblockierschicht, Elektronenblockierschicht oder eine andere funktionelle Schicht sein kann, mindestens eine erfindungsgemäße Verbindung umfasst. Die Schicht ist abhängig von der Substitution der Verbindung.
Außer diesen Schichten kann die organische Elektrolumineszenzvor- richtung noch weitere Schichten enthalten, beispielsweise jeweils eine oder mehrere Lochinjektionsschichten, Lochtransportschichten, Lochblockierschichten, Elektronentransportschichten, Elektronen- injektionsschichten, Exzitonenblockierschichten, Elektronenblockier- schichten, Ladungserzeugungsschichten (Charge-Generation Layers) und/oder organische oder anorganische p/n Übergänge. Ebenso können zwischen zwei emittierende Schichten Interlayer eingebracht sein, welche beispielsweise eine exzitonenblockierende Funktion aufweisen. Es sei aber darauf hingewiesen, dass nicht notwendigerweise jede dieser Schichten vorhanden sein muss.
Dabei kann die organische Elektrolumineszenzvorrichtung eine emittierende Schicht enthalten, oder sie kann mehrere emittierende Schichten enthalten. Wenn mehrere Emissionsschichten vorhanden sind, weisen diese bevorzugt insgesamt mehrere Emissionsmaxima zwischen 380 nm und 750 nm auf, sodass insgesamt weiße Emission resultiert, d. h. in den emittierenden Schichten werden verschiedene emittierende Verbindungen verwendet, die fluoreszieren oder phosphoreszieren können. Insbesondere bevorzugt sind Systeme mit drei emittierenden Schichten, wobei die drei Schichten blaue, grüne und orange oder rote Emission zeigen (Der prinzipielle Aufbau ist beispielsweise in WO 2005/011013 beschrieben). Es kann sich bei der erfindungsgemäßen organischen Elektrolumineszenzvorrichtung auch um eine Tandem-OLED handeln, insbesondere für weiß emittierende OLEDs.
Bevorzugt wird die Verbindung gemäß Formel (1 ) in einer organischen Elektrolumineszenzvorrichtung verwendet, welche eine oder mehrere phosphoreszierende Emitter umfasst. Die erfindungsgemäße Verbindung gemäß den oben aufgeführten Ausführungsformen kann dabei in unterschiedlichen Schichten eingesetzt werden, je nach genauer Struktur.
Dabei kann die organische Elektrolumineszenzvorrichtung eine emittieren- de Schicht enthalten, oder sie kann mehrere emittierende Schichten ent- halten, wobei mindestens eine Schicht mindestens eine erfindungs- gemäße Verbindung enthält. Weiterhin kann die erfindungsgemäße Verbindung auch in einer Elektronentransportschicht und/oder in einer Lochblockierschicht und/oder in einer Lochtransportschicht und/oder in einer Exzitonenblockierschicht eingesetzt werden.
Der Ausdruck „phosphoreszierende Verbindung“ bezeichnet typischerweise Verbindungen, bei denen die Aussendung von Licht durch einen spin-verbotenen Übergang erfolgt, z. B. einen Übergang von einem angeregten Triplett-Zustand oder einem Zustand mit einer höheren Spin- Quantenzahl, z. B. einem Quintett-Zustand. Geeignete phosphoreszierende Verbindungen (= Triplett-Emitter) sind insbesondere Verbindungen, die bei geeigneter Anregung Licht, vorzugsweise im sichtbaren Bereich, emittieren und außerdem mindestens ein Atom der Ordnungszahl größer als 20, vorzugsweise größer als 38 und kleiner als 84, besonders bevorzugt größer als 56 und kleiner als 80 enthalten. Bevorzugt werden als phosphoreszierende Verbindungen alle lumineszierenden Komplexe mit Übergangsmetallen oder Lanthaniden angesehen, insbesondere wenn sie Kupfer, Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Rhodium, Indium, Palladium, Platin, Silber, Gold oder Europium enthalten, insbesondere Verbindungen, die Indium, Platin oder Kupfer enthalten. Im Rahmen der vorliegenden Erfindung werden alle lumineszierenden Indium-, Platin- oder Kupferkomplexe als phosphoreszierende emittierende Verbindungen betrachtet.
Beispiele der oben beschriebenen Emitter können den Anmeldungen WO 00/70655, WO 2001/41512, WO 2002/02714, WO 2002/15645, EP 1191613, EP 1191612, EP 1191614, WO 05/033244, WO 05/019373, US 2005/0258742, WO 2009/146770, WO 2010/015307, WO 2010/031485, WO 2010/054731 , WO 2010/054728, WO 2010/086089, WO 2010/099852, WO 2010/102709, WO 2011/032626, WO 2011/066898, WO 2011/157339, WO 2012/007086, WO 2014/008982, WO 2014/023377, WO 2014/094961 , WO 2014/094960, WO 2015/036074, WO 2015/104045, WO 2015/117718, WO 2016/015815, WO 2016/124304, WO 2017/032439, WO 2018/011186, WO 2018/041769, WO 2019/020538, WO 2018/178001 , WO 2019/115423 und WO 2019/158453 entnommen werden. Generell eignen sich alle phosphoreszierenden Komplexe, wie sie gemäß dem Stand der Technik für phosphoreszierende OLEDs verwendet werden und wie sie dem Fach- mann auf dem Gebiet der organischen Elektrolumineszenz bekannt sind, und der Fachmann kann ohne erfinderisches Zutun weitere phosphores- zierende Komplexe verwenden. Für den Fachmann ist es auch ohne erfinderische Tätigkeit möglich, weitere phosphoreszierende Komplexe in Kombination mit den Verbindungen der Formel (1 ) in organischen Elektrolumineszenzvorrichtungen zu verwenden. Weitere Beispiele sind in einer nachfolgenden Tabelle aufgeführt. Erfindungsgemäß ist es auch möglich, die Verbindung der Formel (1 ) in einer elektronischen Vorrichtung zu verwenden, die eine oder mehrere fluoreszierende emittierende Verbindungen enthält.
In einer bevorzugten Ausführungsform der Erfindung werden die Verbindungen der Formel (1 ) als elektronentransportierendes Material verwendet. In diesem Fall sind die Verbindungen vorzugsweise in einer Elektronentransportschicht oder einer Lochblockierschicht oder einem elektronenleitendem oder bipolaren Hostmaterial enthalten. Besonders bevorzugt ist die Verwendung in einer Elektronentransportschicht.
Eine Elektronentransportschicht im Sinne der vorliegenden Anmeldung ist eine Schicht mit elektronentransportierender Funktion zwischen der Kathode und der emittierenden Schicht.
Unter Elektroneninjektionsschichten und Lochblockierschichten werden im Rahmen der vorliegenden Anmeldung bestimmte Ausführungsformen von Elektronentransportschichten verstanden. Eine Elektroneninjektions- schicht ist im Falle einer Mehrzahl von Elektronentransportschichten zwischen Kathode und emittierender Schicht eine Elektronentransport- schicht, die direkt an die Kathode angrenzt oder nur durch eine einzige Beschichtung der Kathode von dieser getrennt ist. Eine Lochblockier- schicht ist im Falle mehrerer Elektronentransportschichten zwischen Kathode und emittierender Schicht diejenige Elektronentransportschicht, die kathodenseitig direkt an die emittierende Schicht angrenzt. Vorzugs- weise umfasst die erfindungsgemäße OLED zwischen Kathode und emittierender Schicht zwei, drei oder vier elektronentransportierende Schichten, von denen vorzugsweise mindestens eine, besonders bevorzugt genau eine oder zwei eine Verbindung der Formel (1 ) enthalten.
Wird die Verbindung der Formel (1 ) als Elektronentransportmaterial in einer Elektronentransportschicht, einer Elektroneninjektionsschicht oder einer Lochblockierschicht verwendet, so kann die Verbindung als reines Material, d.h. in einem Anteil von 100 %, in der Elektronentransportschicht eingesetzt werden, oder sie kann in Kombination mit einer oder mehreren weiteren Verbindungen verwendet werden.
Lochtransportschichten oder Elektronenblockierschichten der erfindungsgemäßen elektronischen Vorrichtungen können zusätzlich ein oder mehrere p-Dotiermittel umfassen. p-Dotiermittel, die gemäß der vorliegenden Erfindung verwendet werden, sind vorzugsweise solche organischen Elektronenakzeptorverbindungen, die in der Lage sind, eine oder mehrere der anderen Verbindungen in der Mischung zu oxidieren.
Besonders bevorzugte Ausführungsformen von p-Dotiermitteln sind die in WO 2011/073149, EP 1968131 , EP 2276085, EP 2213662, EP 1722602, EP 2045848, DE 102007031220, US 8044390, US 8057712, WO 2009/003455, WO 2010/094378, WO 2011/120709, US 2010/0096600, WO 2012/095143 und DE 102012209523 offenbarten Verbindungen.
Besonders bevorzugte p-Dotiermittel sind Chinodimethanverbindungen, Azaindenofluorendione, Azaphenylene, Azatriphenylene, I2, Metallhalogenide, vorzugsweise Übergangsmetallhalogenide, Metalloxide, vorzugsweise Metalloxide, die mindestens ein Übergangsmetall oder ein Metall der 3. Hauptgruppe enthalten, und Übergangsmetallkomplexe, vorzugsweise Komplexe von Cu, Co, Ni, Pd und Pt mit Liganden, die mindestens ein Sauerstoffatom als Bindungsstelle enthalten. Bevorzugt werden ferner Übergangsmetalloxide als Dotiermittel, vorzugsweise Oxide von Rhenium, Molybdän und Wolfram, besonders bevorzugt Re2O7, MoO3, WO3 und ReO3.
Die p-Dotiermittel liegen vorzugsweise in einer im Wesentlichen homogenen Verteilung in den p-dotierten Schichten vor. Dies kann z. B. durch Coevaporation des p-Dotiermittels und der Lochtransportmaterialmatrix erreicht werden.
Bevorzugte p-Dotiermittel sind insbesondere die folgenden Verbindungen: J
II N d
" /
Figure imgf000054_0001
ill d d
NO^^ON N
-09- Die verwendeten Lochtransportmaterialien können in Kombination mit einem Hexaazatriphenylenderivat, wie in US 2007/0092755 beschrieben, eingesetzt werden. Besonders bevorzugt wird hier das Hexaaza- triphenylen-Derivat in einer separaten Schicht eingesetzt.
In einer weiteren Ausführungsform der vorliegenden Erfindung wird die Verbindung der Formel (1 ) in einer emittierenden Schicht als Matrixmaterial in Kombination mit einer oder mehreren emittierenden Verbindungen, vorzugsweise phosphoreszierenden Verbindungen, eingesetzt.
Der Anteil des Matrixmaterials in der emittierenden Schicht liegt in diesem Fall zwischen 50,0 und 99,9 Vol.-%, bevorzugt zwischen 80,0 und 99,5 Vol.-%, besonders bevorzugt zwischen 92,0 und 99,5 Vol-%. für fluoreszierende emittierende Schichten und zwischen 85,0 und 97,0 Vol.- % für phosphoreszierende emittierende Schichten.
Entsprechend liegt der Anteil der emittierenden Verbindung zwischen 0,1 und 50,0 Vol.-%, bevorzugt zwischen 0,5 und 20,0 Vol.-%, besonders bevorzugt zwischen 0,5 und 8,0 Vol.-% für fluoreszierende emittierende Schichten und zwischen 3,0 und 15,0 Vol.-% für phosphoreszierende emittierende Schichten.
Eine emittierende Schicht einer organischen Elektrolumineszenzvor- richtung kann auch Systeme umfassen, die eine Vielzahl von Matrix- materialien (Mischmatrixsysteme) und/oder eine Vielzahl von emittierenden Verbindungen enthalten. Auch in diesem Fall sind in der Regel die emittierenden Verbindungen diejenigen, die den kleineren Anteil im System haben und die Matrixmaterialien diejenigen, die den größeren Anteil im System haben. In Einzelfällen kann jedoch der Anteil eines einzelnen Matrixmaterials im System geringer sein als der Anteil einer einzelnen emittierenden Verbindung.
Vorzugsweise werden die Verbindungen der Formel (1 ) als Bestandteil von Mischmatrixsystemen eingesetzt. Die Mischmatrixsysteme bestehen vorzugsweise aus zwei oder drei verschiedenen Matrixmaterialien, besonders bevorzugt aus zwei verschiedenen Matrixmaterialien. Vorzugsweise ist in diesem Fall eines der beiden Materialien ein Material mit löchertransportierenden Eigenschaften und das andere Material ist ein Material mit elektronentransportierenden Eigenschaften. Die Verbindung der Formel (1 ) ist vorzugsweise das Matrixmaterial mit elektronentranspor- tierenden Eigenschaften. Die gewünschten elektronentransportierenden und löchertransportierenden Eigenschaften der gemischten Matrix- komponenten können jedoch auch überwiegend oder vollständig in einer einzigen gemischten Matrixkomponente kombiniert sein, wobei die weitere(n) gemischte(n) Matrixkomponente(n) andere Funktionen erfüllt (erfüllen). Die beiden unterschiedlichen Matrixmaterialien können in einem Verhältnis von 1 :50 bis 1 : 1 , bevorzugt 1 :20 bis 1 : 1 , noch bevorzugter 1 :10 bis 1 :1 und am meisten bevorzugt 1 :4 bis 1 :1 vorliegen. Bevorzugt werden Mischmatrixsysteme in phosphoreszierenden organischen Elektrolumines- zenzvorrichtungen eingesetzt. Eine Quelle für detailliertere Informationen über Mischmatrixsysteme ist die Anmeldung WO 2010/108579.
Die Mischmatrixsysteme können eine oder mehrere emittierende Verbindungen enthalten, vorzugsweise eine oder mehrere phosphoreszierende Verbindungen. Im Allgemeinen werden Mischmatrixsysteme bevorzugt in phosphoreszierenden organischen Elektrolumineszenzvorrichtungen eingesetzt.
Besonders geeignete Matrixmaterialien, die in Kombination mit den erfindungsgemäßen Verbindungen als Matrixbestandteile eines Mischmatrixsystems verwendet werden können, werden aus den unten genannten bevorzugten Matrixmaterialien für phosphoreszierende Verbindungen oder den bevorzugten Matrixmaterialien für fluoreszierende Verbindungen ausgewählt, je nachdem, welche Art von emittierender Verbindung in dem Mischmatrixsystem verwendet wird.
Bevorzugte phosphoreszierende Verbindungen zur Verwendung in gemischten Matrixsystemen sind die gleichen, wie weiter oben als allgemein bevorzugte phosphoreszierende Emittermaterialien beschrieben. Bevorzugte Ausführungsformen der verschiedenen Funktionsmatenalien in der elektronischen Vorrichtung sind im Folgenden aufgeführt.
Beispiele für phosphoreszierende Verbindungen sind nachfolgend aufgeführt.
Figure imgf000057_0001
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Bevorzugte fluoreszierende emittierende Verbindungen sind ausgewählt aus der Klasse der Arylamine. Unter einem Arylamin oder einem aromatischen Amin wird im Rahmen der vorliegenden Erfindung eine Verbindung verstanden, die drei substituierte oder unsubstituierte aromatische oder heteroaromatische Ringsysteme enthält, die direkt an den Stickstoff gebunden sind. Vorzugsweise ist mindestens eines dieser aromatischen oder heteroaromatischen Ringsysteme ein kondensiertes Ringsystem, besonders bevorzugt mit mindestens 14 aromatischen Ringatomen. Bevorzugte Beispiele hierfür sind aromatische Anthracenamine, aromatische Anthracendiamine, aromatische Pyrenamine, aromatische Pyrenediamine, aromatische Chrysenamine oder aromatische Chrysendiamine. Unter einem aromatischen Anthracenamin versteht man eine Verbindung, bei der eine Diarylaminogruppe direkt an eine Anthracengruppe, vorzugsweise in Position 9, gebunden ist. Unter einem aromatischen Anthracendiamin ist eine Verbindung zu verstehen, in der zwei Diarylaminogruppen direkt an eine Anthracengruppe gebunden sind, vorzugsweise in den Positionen 9, 10. Analog sind aromatische Pyrenamine, Pyrendiamine, Chrysenamine und Chrysendiamine definiert, bei denen die Diarylaminogruppen vorzugsweise in 1 -Position oder 1 ,6-Position an das Pyren gebunden sind. Weitere bevorzugte emittierende Verbindungen sind Indenofluorenamine oder Fluorendiamine, beispielsweise nach WO 2006/108497 oder WO 2006/122630, Benzoindenofluorenamine oder -fluorendiamine, beispielsweise nach WO 2008/006449, und Dibenzoindenofluorenamine oder -diamine, beispielsweise nach WO 2007/140847, sowie die in WO 2010/012328 offenbarten Indenofluorenderivate mit kondensierten Arylgruppen. Ebenso bevorzugt sind die in WO 2012/048780 und in WO 2013/185871 offenbarten Pyrenearylamine. Ebenfalls bevorzugt sind die in WO 2014/037077 offenbarten Benzoindenofluorenamine, die in WO 2014/106522 offenbarten Benzofluorenamine, die in WO 2014/111269 und in WO 2017/036574 offenbarten verlängerten Benzoindenofluorene, die in WO 2017/028940 und in WO 2017/028941 offenbarten Phenoxazine und die in WO 2016/150544 offenbarten an Furaneinheiten oder an Thiopheneinheiten gebundenen Fluorderivate. Weiterhin können Bor- Verbindung gemäß W02020208051 , W02015102118, WO2016152418 , WO201 8095397, WO2019004248 , WO2019132040, US20200161552, WO2021 089450 Verwendung finden.
Nützliche Matrixmaterialien, vorzugsweise für fluoreszierende Verbindungen, umfassen Materialien verschiedener Substanzklassen. Bevorzugte Matrixmaterialien sind ausgewählt aus den Klassen der Oligoaryle (z.B. 2,2',7,7'-Tetraphenylspirobifluoren nach EP 676461 oder Dinaphthylanthracen), insbesondere der Oligoaryle mit anellierten aromatischen Gruppen, der Oligoarylenvinylene (z.B. DPVBi oder Spiro- DPVBi gemäß EP 676461 ), der polypodalen Metallkomplexe (z.B. gemäß WO 2004/081017), der lochleitenden Verbindungen (z.B. gemäß WO 2004/058911 ), der elektronenleitenden Verbindungen, insbesondere Ketone, Phosphinoxide, Sulfoxide etc. (zum Beispiel nach WO 2005/084081 und WO 2005/084082), die Atropisomere (zum Beispiel nach WO 2006/048268), die Boronsäurederivate (zum Beispiel nach WO 2006/117052) oder die Benzanthracene (zum Beispiel nach WO 2008/145239). Besonders bevorzugte Matrixmaterialien sind ausgewählt aus den Klassen der Oligoarylene mit Naphthalin, Anthracen, Benzanthracen und/oder Pyren oder Atropisomeren dieser Verbindungen, den Oligoarylenvinylenen, den Ketonen, den Phosphinoxiden und den Sulfoxiden. Ganz besonders bevorzugte Matrixmaterialien sind ausgewählt aus den Klassen der Oligoarylene, die Anthracen, Benzanthracen, Benzophenanthren und/oder Pyren oder Atropisomere dieser Verbindungen umfassen. Unter einem Oligoarylen ist im Rahmen der vorliegenden Erfindung eine Verbindung zu verstehen, in der mindestens drei Aryl- oder Arylengruppen miteinander verbunden sind. Weiter bevorzugt sind die in WO 2006/097208, WO 2006/131192, WO 2007/065550, WO 2007/110129, WO 2007/065678, WO 2008/145239, WO 2009/100925, WO 2011/054442 und EP 1553154 offenbarten Anthracenderivate, die in EP 1749809, EP 1905754 und US 2012/0187826 offenbarten Pyrenverbindungen, die in WO 2015/158409 offenbarten Benzanthracenylanthracenverbindungen, die in WO 2017/025165 offenbarten Indenobenzofurane und die in WO 2017/036573 offenbarten Phenanthrylanthracene.
Bevorzugte Matrixmaterialien für phosphoreszierende Verbindungen sind, ebenso wie Verbindungen gemäß Formel (1 ), aromatische Ketone, aromatische Phosphinoxide oder aromatische Sulfoxide oder Sulfone, z. B. gemäß WO 2004/013080, WO 2004/093207, WO 2006/005627 oder WO 2010/006680, Triarylamine, Carbazolderivate, z. B. CBP (N,N-Bis- carbazolylbiphenyl) oder WO 2005/039246, US 2005/0069729, JP 2004/288381 , EP 1205527, WO 2008/086851 oder WO 2013/041176, Indolocarbazolderivate, z. B. gemäß WO 2007/063754 oder WO 2008/056746, Indenocarbazolderivate, z. B. gemäß WO 2010/136109, WO 2011/000455, WO 2013/041176 oder WO 2013/056776, Azacarbazol- derivate, z. B. gemäß EP 1617710, EP 1617711 , EP 1731584, JP 2005/347160, bipolare Matrixmaterialien, z. B. gemäß WO 2007/137725, Silane, z. B. gemäß WO 2005/111172, Azaborole oder Boronester, z. B. gemäß WO 2006/117052, Triazinderivate, z. B. gemäß WO 2007/063754, WO 2008/056746, WO 2010/015306, WO 2011/057706, WO 2011/060859 oder WO 2011/060877, Zinkkomplexe, z. B. gemäß EP 652273 oder WO 2009/062578, Diazasilol- bzw. Tetraazasilol-Derivate, z. B. gemäß WO 2010/054729, Diazaphosphol-Derivate, z. B. gemäß WO 2010/054730, verbrückte Carbazol-Derivate, z. B. gemäß WO 2011/042107, WO 2011/060867, WO 2011/088877 und WO 2012/143080, Triphenylen- derivate, z. B. gemäß WO 2012/048781 , Lactame, z. B. gemäß WO 2011/116865 oder WO 2011/137951 , oder Dibenzofuranderivate, z. B. gemäß WO 2015/169412, WO 2016/015810, WO 2016/023608, WO 2017/148564 oder WO 2017/148565. Ebenso kann ein weiterer phos- phoreszierender Emitter, welcher kürzerwellig als der eigentliche Emitter emittiert, als Co-Host in der Mischung vorhanden sein oder eine Verbin- dung, die nicht oder nicht in wesentlichem Umfang am Ladungstransport teilnimmt, wie beispielsweise in WO 2010/108579 beschrieben.
Geeignete Ladungstransportmatenalien, wie sie in der Lochinjektions- oder Lochtransportschicht oder in der Elektronensperrschicht oder in der Elektronentransportschicht des erfindungsgemäßen elektronischen Bauelements verwendet werden können, sind neben den Verbindungen der Formel (1 ) zum Beispiel die in Y. Shirota et al., Chem. Rev. 2007, 107(4), 953-1010, oder andere Materialien, wie sie in diesen Schichten gemäß dem Stand der Technik verwendet werden.
Als Materialien für die Löchertransportschicht können alle Materialien verwendet werden, die nach dem Stand der Technik als Lochtransportmaterialien in der Lochtransportschicht eingesetzt werden. Es können aromatische Aminverbindungen, eingesetzt werden. Weitere Verbindungen, die vorzugsweise in löchertransportierenden Schichten der erfindungsgemäßen OLEDs eingesetzt werden, sind insbesondere Indenofluorenamin-Derivate (z.B. nach WO 06/122630 oder WO 06/100896), die in EP 1661888 offenbarten Aminderivate, Hexaazatriphenylen-Derivate (z.B. nach WO 01/049806), Aminderivate mit anellierten Aromaten (zum Beispiel nach US 5,061 ,569), die in WO 95/09147 offenbarten Aminderivate, Monobenzoindenofluorenamine (zum Beispiel nach WO 08/006449), Dibenzoindenofluorenamine (zum Beispiel nach WO 07/140847), Spirobifluorenamine (zum Beispiel nach WO 2012/034627 oder WO 2013/120577), Fluorenamine (zum Beispiel nach WO 2014/015937, WO 2014/015938, WO 2014/015935 und WO 2015/082056), Spirodibenzopyranamine (zum Beispiel gemäß WO 2013/083216), Dihydroacridin-Derivate (zum Beispiel gemäß WO 2012/150001 ), Spirodibenzofurane und Spirodibenzothiophene (zum Beispiel nach WO 2015/022051 , WO 2016/102048 und WO 2016/131521 ), Phenanthrendiarylamine (zum Beispiel nach WO 2015/131976), Spirotribenzotropolone (zum Beispiel gemäß WO 2016/087017), Spirobifluorene mit meta-Phenyldiamingruppen (zum Beispiel gemäß WO 2016/078738), Spirobisacridine (zum Beispiel gemäß WO 2015/158411 ), Xanthendiarylamine (zum Beispiel gemäß WO 2014/072017), und 9,10-Dihydroanthracen-Spiroverbindungen mit Diarylaminogruppen gemäß WO 2015/086108.
Ganz besonders bevorzugt ist die Verwendung von durch Diarylaminogruppen in 4-Position substituierten Spirobifluorenen als löchertransportierende Verbindungen, insbesondere die Verwendung derjenigen Verbindungen, die in WO 2013/120577 beansprucht und offenbart sind, und die Verwendung von durch Diarylaminogruppen in 2- Position substituierten Spirobifluorenen als löchertransportierende Verbindungen, insbesondere die Verwendung derjenigen Verbindungen, die in WO 2012/034627 beansprucht und offenbart sind.
Vorzugsweise umfasst die erfindungsgemäße OLED zwei oder mehr verschiedene elektronentransportierende Schichten. Die Verbindung der Formel (1 ) kann dabei in einer oder mehreren oder in allen elektronentransportierenden Schichten verwendet werden. In einer bevorzugten Ausführungsform wird die Verbindung der Formel (1 ) in genau einer oder genau zwei elektronentransportierenden Schichten eingesetzt, und in den weiteren vorhandenen elektronentransportierenden Schichten werden andere Verbindungen, eingesetzt. Weitere Verbindungen, die neben den Verbindungen der Formel (1 ) verwendet werden können, sind alle Materialien, die nach dem Stand der Technik als Elektronentransportmatenalien in der Elektronentransportschicht eingesetzt werden. Besonders geeignet sind Aluminiumkomplexe, z.B. Alq3, Zirkoniumkomplexe, z.B. Zrq4, Lithiumkomplexe, z.B. Liq, Benzimidazol-Derivate, Triazin-Derivate, Pyrimidin-Derivate, Pyridin- Derivate, Pyrazin-Derivate, Chinoxalin-Derivate, Chinolin-Derivate, Oxadiazol-Derivate, aromatische Ketone, Lactame, Borane, Diazaphosphol-Derivate und Phosphinoxid-Derivate. Weitere geeignete Materialien sind Derivate der vorgenannten Verbindungen, wie sie in JP 2000/053957, WO 2003/060956, WO 2004/028217, WO 2004/080975 und WO 2010/072300 offenbart sind.
Bevorzugte Kathoden des elektronischen Bauelements sind Metalle mit geringer Austrittsarbeit, Metalllegierungen oder Mehrschichtstrukturen aus verschiedenen Metallen, z. B. Erdalkalimetallen, Alkalimetallen, Hauptgruppenmetallen oder Lanthanoiden (z. B. Ca, Ba, Mg, AI, In, Mg, Yb, Sm, etc.). Zusätzlich geeignet sind Legierungen aus einem Alkali- oder Erdalkalimetall und Silber, z. B. eine Legierung aus Magnesium und Silber. Bei Mehrschichtstrukturen können neben den genannten Metallen auch weitere Metalle mit einer relativ hohen Austrittsarbeit verwendet werden, z. B. Ag oder AI, wobei in der Regel Kombinationen der Metalle wie z. B. Ca/Ag, Mg/Ag oder Ba/Ag eingesetzt werden. Es kann auch vorteilhaft sein, eine dünne Zwischenschicht aus einem Material mit einer hohen Dielektrizitätskonstante zwischen einer metallischen Kathode und dem organischen Halbleiter einzuführen. Beispiele für geeignete Materialien sind Alkali- oder Erdalkalimetallfluoride, aber auch die entsprechenden Oxide oder Carbonate (z. B. LiF, Li2Ü, BaF2, MgO, NaF, CsF, CS2CO3 usw.). Es ist auch möglich, Lithiumchinolinat (LiQ) zu diesem Zweck zu verwenden. Die Schichtdicke dieser Schicht liegt vorzugsweise zwischen 0,5 und 5 nm.
Bevorzugte Anoden sind Materialien mit einer hohen Austrittsarbeit. Vorzugsweise hat die Anode eine Austrittsarbeit von mehr als 4,5 eV gegen Vakuum. Dazu eignen sich erstens Metalle mit hohem Redoxpotential, z. B. Ag, Pt oder Au. Zum anderen können auch Metall/Metalloxid-Elektroden (z. B. AI/Ni/NiOx, Al/PtOx) bevorzugt werden. Für einige Anwendungen muss mindestens eine der Elektroden transparent oder teiltransparent sein, um die Bestrahlung des organischen Materials (organische Solarzelle) oder die Emission von Licht (OLED, 0- Laser) zu ermöglichen. Bevorzugte Anodenmaterialien sind hier leitfähige Metallmischoxide. Besonders bevorzugt werden Indiumzinnoxid (ITO) oder Indiumzinkoxid (IZO). Weiter bevorzugt werden leitfähig dotierte organische Materialien, insbesondere leitfähig dotierte Polymere. Darüber hinaus kann die Anode auch aus zwei oder mehr Schichten bestehen, zum Beispiel aus einer inneren Schicht aus ITO und einer äußeren Schicht aus einem Metalloxid, vorzugsweise Wolframoxid, Molybdänoxid oder Vanadiumoxid.
Die Vorrichtung wird entsprechend (je nach Anwendung) strukturiert, kontaktiert und abschließend versiegelt, um schädliche Einflüsse durch Wasser und Luft auszuschließen. In den weiteren Schichten der erfindungsgemäßen organischen Elektro- lumineszenzvorrichtung können alle Materialien verwendet werden, wie sie üblicherweise gemäß dem Stand der Technik eingesetzt werden. Der Fachmann kann daher ohne erfinderisches Zutun alle für organische Elektrolumineszenzvorrichtungen bekannten Materialien in Kombination mit den erfindungsgemäßen Verbindungen gemäß Formel (1 ) bzw. den oben ausgeführten bevorzugten Ausführungsformen einsetzen.
Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit einem Sublimationsverfahren beschichtet werden. Dabei werden die Materialien in Vakuum-Sublimationsanlagen bei einem Anfangsdruck kleiner 10’5 mbar, bevorzugt kleiner 10’6 mbar aufgedampft. Es ist aber auch möglich, dass der Anfangsdruck noch geringer ist, beispielsweise kleiner 10’7 mbar.
Bevorzugt ist ebenfalls eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit dem OVPD (Organic Vapour Phase Deposition) Verfahren oder mit Hilfe einer Trägergassublimation beschichtet werden. Dabei werden die Materialien bei einem Druck zwischen 10-5 mbar und 1 bar aufgebracht. Ein Spezialfall dieses Verfahrens ist das OVJP (Organic Vapour Jet Printing) Verfahren, bei dem die Materialien direkt durch eine Düse aufgebracht und so strukturiert werden.
Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten aus Lösung, wie z. B. durch Spincoating, oder mit einem beliebigen Druckverfahren, wie z. B. Siebdruck, Flexodruck, Offsetdruck, LITI (Light Induced Thermal Imaging, Thermotransferdruck), Ink-Jet Druck (Tintenstrahldruck) oder Nozzle Printing, hergestellt werden. Hierfür sind lösliche Verbindungen nötig, welche beispielsweise durch geeignete Substitution erhalten werden. Weiterhin sind Hybridverfahren möglich, bei denen beispielsweise eine oder mehrere Schichten aus Lösung aufgebracht werden und eine oder mehrere weitere Schichten aufgedampft werden.
Diese Verfahren sind dem Fachmann generell bekannt und können von ihm ohne erfinderisches Zutun auf organische Elektrolumineszenzvor- richtungen enthaltend die erfindungsgemäßen Verbindungen angewandt werden.
Erfindungsgemäß können die elektronischen Vorrichtungen, die eine oder mehrere Verbindungen der Formel (1 ) enthalten, in Displays, als Lichtquellen in Beleuchtungsanwendungen und als Lichtquellen in medizinischen und/oder kosmetischen Anwendungen (z.B. Lichttherapie) eingesetzt werden.
Die erfindungsgemäßen Verbindungen und die erfindungsgemäßen orga- nischen Elektrolumineszenzvorrichtungen zeichnen sich durch einen oder mehrere der folgenden Eigenschaften aus:
1 . Die erfindungsgemäßen Verbindungen führen zu langen Lebensdauern.
2. Die erfindungsgemäßen Verbindungen führen zu hohen Effizienzen, insbesondere zu einer hohen EQE.
3. Die erfindungsgemäßen Verbindungen führen zu geringen Betriebs- spannungen.
Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert, ohne sie dadurch einschränken zu wollen. Der Fachmann kann aus den Schilderungen die Erfindung im gesamten offenbarten Bereich ausführen und ohne erfinderisches Zutun weitere erfindungsgemäße Verbindungen herstellen und diese in elektronischen Vorrichtungen verwenden bzw. das erfindungsgemäße Verfahren anwenden.
Beispiele: Die nachfolgenden Synthesen werden, sofern nicht anders angegeben, unter einer Schutzgasatmosphäre in getrockneten Lösungsmitteln durch-geführt. Die Metall komplexe werden zusätzlich unter Ausschluss von Licht bzw. unter Gelblicht gehandhabt. Die Lösungs-m ittel und Reagenzien können z. B. von Sigma-ALDRICH bzw. ABCR bezogen werden. Die jeweiligen Angaben in eckigen Klammem bzw. die zu einzelnen Verbindungen angegebenen Nummern beziehen sich auf die CAS-Nummern der literaturbekannten Verbindungen. Bei Verbindungen, die mehrere enantiomere, diastereomere oder tautomere Formen aufweisen können, wird eine Form stellvertretend gezeigt.
Figure imgf000068_0001
Figure imgf000069_0001
A) Synthese von erfindungsgemäßen Verbindungen B und Synthonen S:
Beispiel B1 :
Figure imgf000070_0001
Variante A: via Organo-Iithium-Verbindung
Eine auf -78 °C gekühlte Lösung von 3.3 g (10 mmol) LS1 in einem Gemisch aus 100 ml THF und 150 ml Toluol wird während 30 min. tropfenweise mit 4.0. ml (10.5 mmol) n-BuLi (2.6 molar in n-Hexan) versetzt und 1.5 h nachgerührt. Man tropft eine Lösung von 2.8 g (10.5 mmol) 2- Chloro-4,6-diphenyl-1 ,3,5-triazin [3842-55-5] in 100 ml THF zu, rührt 30 min. nach, lässt die Reaktionsmischung dann langsam auf Raumtemperatur erwärmen und rührt 2 h nach. Man gibt unter gutem Rühren 2 ml Wasser zu, engt die Reaktionsmischung zur Trockene ein, rührt den Rückstand mit 30 ml Methanol aus und chromatographiert (Torrent, Säulenautomat der Fa. A. Semrau). Die weitere Reinigung erfolgt jeweils durch wiederholte Heißextraktionskristallisation (übliche org. Lösungsmittel bzw. deren Kombinationen, bevorzugt Acetonitril-DCM, 1 :3 bis 3:1 vv) und fraktioniere Sublimation bzw. Tempern im Hochvakuum. Ausbeute: 1.7 g (3.4 mmol) 34 %; Reinheit: ca. 99.9 % ig n. HPLC.
Variante B: via Organo-Kupfer-Verbindung
Durchführung nach M. Oi et al., Chem. Sei., 2019, 10, 6107, Bsp. 16. Ansatz: 33.3 g (100 mmol) LS1 , 39.5 g (110 mmol) 2-lod-4,6-diphenyl- 1 ,3,5-triazin [83819-97-0], im Rührautoklaven, 140 °C, 35 h. Die weitere Reinigung erfolgt jeweils durch Chromatographie und/oder wiederholte Heißextraktionskristallisation (übliche org. Lösungsmittel bzw. deren Kombinationen, bevorzugt Acetonitril-DCM, 1 :3 bis 3:1 vv) und fraktioniere Sublimation bzw. Tempern im Hochvakuum. Ausbeute: 34.3 g (71 mmol)
71 %; Reinheit: ca. 99.9 % ig n. HPLC.
Analog können folgende Verbindungen dargestellt werden. Soweit nicht anders vermerkt, wird nachfolgend Variante B verwendet. Die Ausbeuten für Chloride liegen typischerweise im Bereich von 30-70 %, die der Bromide im Bereich von 50-80 % und die der Iodide im Bereich von 60-90 %.
Figure imgf000071_0001
Figure imgf000072_0001
Figure imgf000073_0001
Figure imgf000074_0001
Figure imgf000075_0001
Figure imgf000076_0001
Figure imgf000077_0001

Figure imgf000078_0001
Figure imgf000079_0001
Figure imgf000080_0001
Figure imgf000081_0001
Figure imgf000082_0001
Figure imgf000083_0001
Figure imgf000084_0001
Figure imgf000085_0001
Figure imgf000086_0001
Figure imgf000087_0001
Figure imgf000088_0001
Figure imgf000089_0001
Figure imgf000090_0001
Figure imgf000091_0001
Figure imgf000092_0001
Figure imgf000093_0001
Figure imgf000094_0001
Figure imgf000095_0001
Figure imgf000096_0001
Figure imgf000097_0001
Figure imgf000098_0001
Figure imgf000099_0001
Figure imgf000100_0001
Figure imgf000101_0001
Figure imgf000102_0001
Figure imgf000103_0001
Figure imgf000104_0001
Figure imgf000105_0001
Figure imgf000106_0001
Figure imgf000107_0001
Figure imgf000108_0001
Figure imgf000109_0001
Figure imgf000110_0001
Figure imgf000111_0001
Figure imgf000112_0001
Figure imgf000113_0001
Figure imgf000114_0001
Figure imgf000115_0001
Figure imgf000116_0001
Figure imgf000117_0001
Figure imgf000118_0001
Figure imgf000119_0001
Figure imgf000120_0001
Beispiel: Herstellung der OLEDs
1) Vakuum-prozessierte Devices:
Die Herstellung von erfindungsgemäßen OLEDs sowie OLEDs nach dem Stand der Technik erfolgt nach einem allgemeinen Verfahren gemäß WO 2004/058911 , das auf die hier beschriebenen Gegebenheiten (Schichtdickenvariation, verwendete Materialien) angepasst wird.
In den folgenden Beispielen werden die Ergebnisse verschiedener OLEDs vorgestellt. Gereinigte Glasplättchen (Reinigung in Miele Laborspül- maschine, Reiniger Merck Extran), die mit strukturiertem ITO (Indium Zinn Oxid) der Dicke 50 nm beschichtet sind, werden 25 Minuten mit UV-Ozon vorbehandelt (UV-Ozon Generator PR-100, Firma UVP). Diese beschichteten Glasplättchen bilden die Substrate, auf welche die OLEDs aufgebracht werden. 1a) Blaue Fluoreszenz-OLED- Bauteile - BF:
Die erfindungsgemäßen Verbindungen B können in der Elektronentransportschicht (ETL) und der Lochblockierschicht (HBL) verwendet werden. Alle Materialien werden in einer Vakuumkammer thermisch aufgedampft. Dabei besteht die Emissionsschicht (EML) immer aus mindestens einem Matrixmaterial (Hostmaterial, Wirtsmaterial) SMB (s. Tabelle 1 ) und einem emittierenden Dotierstoff (Dotand, Emitter) D, der dem Matrixmaterial bzw. den Matrixmaterialien durch Co-Verdampfung in einem bestimmten Volumenanteil beigemischt wird. Eine Angabe wie SMB:D (97:3%) bedeutet hierbei, dass das Material SMB in einem Volumenanteil von 97% und der Dotand D in einem Anteil von 3% in der Schicht vorliegt. Analog besteht auch die Elektronentransportschicht aus einer Mischung zweier Materialien bestehen, s. Tabelle 1. Die zur Herstellung der OLEDs verwendeten Materialien sind in Tabelle 5 gezeigt.
Die OLEDs werden standardmäßig charakterisiert. Hierfür werden die Elektrolumineszenzspektren, die Strom effizienz (gemessen in cd/A), die Leistungseffizienz (gemessen in Im/W) und die externe Quanteneffizienz (EQE, gemessen in Prozent) in Abhängigkeit der Leuchtdichte, berechnet aus Strom-Spannungs-Leuchtdichte-Kennlinien (IUL-Kennlinien) unter Annahme einer lambertschen Abstrahlcharakteristik sowie die Lebens- dauer bestimmt. Die Angabe der EQE in (%) und der Spannung in (V) erfolgt bei einer Leuchtdichte von 1000 cd/m2 Die Lebensdauer wird bei einer Startleuchtdichte von 1000 cd/m2 bestimmt. Die gemessene Zeit, in der die Helligkeit der Referenz auf 90 % der Anfangshelligkeit abgefallen ist, wird zu 100% gesetzt. Die Lebensdauer der OLED-Bauteile enthaltend die erfindungsgemäßen Verbindungen B wird in Prozent zur Referenz angegeben.
Die OLEDs haben folgenden Schichtaufbau:
Substrat
Lochinjektionsschicht (HIL) aus HTM1 dotiert mit 5 % NDP-9 (kommerziell erhältlich von der Fa. Novaled), 20 nm
Lochtransportschicht (HTL) aus HTM1 , 160 nm
Elektronenblockierschicht (EBL) aus EBM1 , 10 nm Emissionsschicht (EML), s. Tabelle 1
Lochblockerschicht (HBL), s. Tabelle 1
Elektronentransportschicht (ETL), s. Tabelle 1
Elektroneninjektionsschicht (EIL) aus ETM2, 1 nm
Kathode aus Aluminium, 100 nm
Tabelle 1 : Aufbau Blaue Fluoreszenz-OLED- Bauteile
Figure imgf000122_0001
Tabelle 2: Ergebnisse Blaue Fluoreszenz-OLED- Bauteile
Figure imgf000123_0001
1 b) Phosphoreszenz-OLED-Bauteile:
Die erfindungsgemäßen Verbindungen B können in der Elektronentransportschicht (ETL), der Lochblockierschicht (HBL) und in der Emissionsschicht (EML) als Matrixmaterial (Hostmaterial, Wirtsmaterial) verwendet werden. Hierfür werden alle Materialien in einer Vakuumkammer thermisch aufgedampft. Dabei besteht die Emissionsschicht immer aus mindestens einem bzw. mehreren Matrix- materialien M und einem phosphoreszierenden Dotierstoff Ir, der dem Matrixmaterial bzw. den Matrixmaterialien durch Co-Verdampfung in einem bestimmten Volumenanteil beigemischt wird. Eine Angabe wie M1 :M2:lr (55%:35%:10%) bedeutet hierbei, dass das Material M1 in einem Volumenanteil von 55%, M2 in einem Volumenanteil von 35% und Ir in einem Volumenanteil von 10% in der Schicht vorliegt. Analog kann auch die Elektronentransportschicht aus einer Mischung zweier Materialien bestehen. Der genaue Aufbau der OLEDs ist Tabelle 3 zu entnehmen. Die zur Herstellung der OLEDs verwendeten Materialien sind in Tabelle 5 gezeigt.
Die OLEDs werden standardmäßig charakterisiert. Hierfür werden die Elektrolumineszenzspektren, die Strom effizienz (gemessen in cd/A), die Leistungseffizienz (gemessen in Im/W) und die externe Quanteneffizienz (EQE, gemessen in Prozent) in Abhängigkeit der Leuchtdichte, berechnet aus Strom-Spannungs-Leuchtdichte-Kennlinien (IUL-Kennlinien) unter Annahme einer lambertschen Abstrahlcharakteristik sowie die Lebens- dauer bestimmt. Die Angabe der EQE in (%) und der Spannung in (V) erfolgt bei einer Leuchtdichte von 1000 cd/m2 Die Lebensdauer wird bei einer Startleuchtdichte von 1000 cd/m2 (Blaue und Rote Devices) bzw. 10000 cd/m2 (Gelbe und Grüne Devices) bestimmt. Die gemessene Zeit, in der die Helligkeit der Referenz auf 80 % der Anfangshelligkeit abgefallen ist, wird zu 100% gesetzt. Die Lebensdauer der OLED-Bauteile enthaltend die erfindungsgemäßen Verbindungen B wird in Prozent zur Referenz angegeben.
Die OLEDs haben folgenden Schichtaufbau:
Substrat
Lochinjektionsschicht (HIL) aus HTM1 dotiert mit 5 % NDP-9 (kommerziell erhältlich von der Fa. Novaled), 20 nm
Lochtransportschicht (HTL) aus HTM1 , 180 nm für Blau, 50 nm für Grün, 40 nm für Gelb, 90 nm für Rot
Elektronenblockierschicht (EBL) 20 nm aus EBM2 für Blau, 20 nm aus EBM1 für Grün und Gelb, 10 nm für Rot
Emissionsschicht (EML), s. Tabelle 3
Lochblockerschicht (HBL), s. Tabelle 3
Elektronentransportschicht (ETL), s. Tabelle 3
Elektroneninjektionsschicht (EIL) aus ETM2, 1 nm
Kathode aus Aluminium, 100 nm Tabelle 3: Aufbau Phosphoreszenz-OLED-Bautei e
Figure imgf000125_0001
Figure imgf000126_0001
Figure imgf000127_0001
Figure imgf000128_0001
Figure imgf000129_0001
Figure imgf000130_0001
Figure imgf000131_0001
Figure imgf000132_0001
Tabelle 5: Strukturformeln der verwendeten Materialien
Figure imgf000133_0001
Figure imgf000134_0001
Figure imgf000135_0001
Figure imgf000136_0001

Claims

Patentansprüche
1 . Verbindung gemäß Formel (1 ) und Formel (2),
Formel (1 ) Formel (2) wobei für die verwendeten Symbole gilt:
X ist gleich oder verschieden bei jedem Auftreten CR oder N mit der Maßgabe, dass maximal zwei Gruppen X pro Zyklus für N stehen;
Z steht für eine Gruppe der Formel (2), wobei die gestrichelte Bindung in Formel (2) für die Bindung zum quartären Kohlenstoff steht;
Y ist gleich oder verschieden bei jedem Auftreten CR' oder N mit der Maßgabe, dass 2 oder 3 Gruppen Y pro Zyklus für N stehen oder dass 1 , 2 oder 3 Gruppen Y für N stehen, und zwei oder mehr Y, welche für CR' stehen, miteinander ein aromatisches oder heteroaromatisches Ringsystem bilden, bevorzugt stehen in jedem Fall 2 oder 3 Gruppen Y für N;
Q steht für eine bivalente Alkylengruppe mit 1 bis 4 Kohlenstoffatomen, eine bivalente Alkenylengruppe mit 2 bis 4 Kohlenstoffatomen oder eine bivalente Aryl- oder Heteroarylgruppe mit 5 bis 60 Ringatomen, wobei die Alkylen-, Alkenylen-, Aryl- bzw. Heteroarylgruppen mit einer oder mehreren Gruppen R substituiert sein können;
R ist bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, OAr‘, SAr‘, B(OR1)2, CHO, C(=O)R1, CR1=C(R1)2, CN, C(=O)OR1, C(=O)NR1, Si(R1)3, NO2, P(=O)(R1)2, OSO2R1, OR1, S(=O)R1, S(=O)2R1 , SR1 , eine geradkettige Alkylgruppe mit 1 bis 20 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 20 C-Atomen oder eine verzweigte oder zyklische Alkylgruppe mit 3 bis 20 C-Atomen, wobei die Alkyl-, Alkenyl- oder Alkinylgruppe jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch -R1C=CR1-, -C=C-, Si(R1 )2, CONR1 , C=O, C=S, -C(=O)O-, P(=O)(R1), -O-, -S-, SO oder SO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, bevorzugt mit 5 bis 40 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, wobei zwei oder mehr bevorzugt an den gleichen Zyklus gebundene Reste R miteinander ein aliphatisches, heteroaliphatisches, aromatisches oder heteroaromatisches Ringsystem bilden können, das mit einem oder mehreren Resten R1 substituiert sein kann, wobei falls R und zugehörige Reste mindestens ein heteroaromatisches Ringsystem umfassend mindestens ein Stickstoffatom mit drei Einfachbindungen umfassen, für jedes dieser heteroaromatischen Ringsysteme, dass immer mindestens zwei der über Einfachbindungen an das jeweilige Stickstoffatom gebundenen Reste an das jeweilige Stickstoffatom und davon unabhängig mit dem Grundgerüst verbunden sind;
R‘ ist bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, OAr‘, SAr‘, B(OR1)2, CHO, C(=O)R1 , CR1=C(R1)2, CN, C(=O)OR1 , C(=O)NR1, Si(R1)3, NO2, P(=O)(R1)2, OSO2R1 , OR1, S(=O)R1, S(=O)2R1 , SR1 , eine geradkettige Alkylgruppe mit 1 bis 20 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 20 C-Atomen oder eine verzweigte oder zyklische Alkylgruppe mit 3 bis 20 C-Atomen, wobei die Alkyl-, Alkenyl- oder Alkinylgruppe jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch -R1C=CR1-, -C=C-, Si(R1 )2, CONR1 , C=O, C=S, -C(=O)O-, P(=O)(R1), -O-, -S-, SO oder SO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, bevorzugt mit 5 bis 40 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, wobei zwei oder mehr bevorzugt an den gleichen Zyklus gebundene Reste R miteinander ein aliphatisches, heteroaliphatisches, aromatisches oder heteroaromatisches Ringsystem bilden können, das mit einem oder mehreren Resten R1 substituiert sein kann, wobei falls R‘ und zugehörige Reste mindestens ein heteroaromatisches Ringsystem umfassend mindestens ein Stickstoffatom mit drei Einfachbindungen umfassen, für jedes dieser heteroaromatischen Ringsysteme, dass immer mindestens zwei der über Einfachbindungen an das jeweilige Stickstoffatom gebundenen Reste an das jeweilige Stickstoffatom und davon unabhängig mit dem Grundgerüst verbunden sind;
Ar' ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 40 aromatischen Ringatomen, das durch einen oder mehrere Reste R1 substituiert sein kann, wobei zwei oder mehr R1 miteinander ein aromatisches oder heteroaromatisches Ringsystem bilden können;
R1 ist bei jedem Auftreten gleich oder verschieden H, D, F, I, B(OR2)2, CHO, C(=O)R2, CR2=C(R2)2, CN, C(=O)OR2, Si(R2)3, NO2, P(=O)(R2)2, OSO2R2, SR2, OR2, S(=O)R2, S(=O)2R2, eine gerad- kettige Alkylgruppe mit 1 bis 20 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 20 C-Atomen oder eine verzweigte oder zyklische Alkylgruppe mit 3 bis 20 C-Atomen, wobei die Alkyl-, Alkenyl- oder Alkinylgruppe jeweils mit einem oder mehreren Resten R2 substituiert sein kann und wobei eine oder mehrere CH2-Gruppen in den oben genannten Gruppen durch -R2C=CR2-, -C=C-, Si(R2)2, C=O, C=S, -C(=O)O-, CONR2, P(=O)(R2), -O-, -S-, SO oder SO2 ersetzt sein können und wobei ein oder mehrere H-Atome in den oben genannten Gruppen durch D, F, CI, Br, I, CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ring- system mit 5 bis 30 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 substituiert sein kann, wobei zwei oder mehr Reste R1 miteinander ein aliphatisches, heteroaliphatisches, aromatisches oder heteroaromatisches Ringsystem bilden können; R2 ist bei jedem Auftreten gleich oder verschieden H, D, F, CN oder ein aliphatischer, aromatischer oder heteroaromatischer organischer Rest mit 1 bis 20 C-Atomen, in dem auch ein oder mehrere H-Atome durch D oder F ersetzt sein können; dabei können zwei oder mehr Substituenten R2 miteinander verknüpft sein und einen Ring bilden.
2. Verbindung nach Anspruch 1 , ausgewählt aus den Verbindungen der Formeln (3), (4), (5) oder (6),
Figure imgf000140_0001
wobei die verwendeten Symbole die in Anspruch 1 genannten Bedeutungen aufweisen.
3. Verbindung nach einem oder mehreren der Ansprüche 1 oder 2, ausgewählt aus den Verbindungen der Formeln (3-1 ), (4-1 ), (5-1 ) oder (6-1 ),
Figure imgf000141_0001
wobei die verwendeten Symbole die in Anspruch 2 genannten Bedeutungen aufweisen.
4. Verbindung nach einem oder mehreren der Ansprüche 1 oder 3, wobei die Gruppe der Formel (2) ausgewählt ist aus einer der Formeln (2-1) bis (2-9):
Figure imgf000142_0001
Figure imgf000143_0001
wobei die verwendeten Symbole die in Anspruch 1 genannten Bedeutungen aufweisen und zusätzlich gilt, dass Y1 bei jedem Auftreten gleich oder verschieden für BR1, C(R1)2, NR1 , 0 oder S steht.
5. Verfahren zur Herstellung einer Verbindung nach einem oder mehreren der Ansprüche 1 bis 4, gekennzeichnet durch die folgenden Schritte:
(A) Synthese des kondensierten Grundgerüsts nach Formel (1 );
(B) Einführen der aromatischen oder heteroaromatischen Gruppen an den Brückenatomen durch Kupplungsreaktionen.
6. Oligomer, Polymer oder Dendrimer umfassend eine oder mehrere Verbindungen gemäß Formel (1 ) nach einem oder mehreren der Ansprüche 1 bis 4, wobei die Bindung(en) zu dem Oligomer, Polymer oder Dendrimer an beliebigen Positionen in Formel (1 ) erfolgen kann (können).
7. Formulierung, enthaltend mindestens eine Verbindung nach einem oder mehreren der Ansprüche 1 bis 4 und mindestens eine weitere Verbindung und/oder mindestens ein Lösemittel.
8. Verwendung einer Verbindung nach einem oder mehreren der Ansprüche 1 bis 4 und oder einer Formulierung nach Anspruch 7 in einer elektronischen Vorrichtung.
9. Elektronische Vorrichtung, enthaltend mindestens eine Verbindung nach einem oder mehreren der Ansprüche 1 bis 4 und/oder mindestens ein Oligomer, Polymer oder Dendrimer nach Anspruch 6.
10. Elektronische Vorrichtung nach Anspruch 9, wobei es sich um eine organische Elektrolumineszenzvorrichtung handelt, dadurch gekenn- zeichnet, dass die Vorrichtung Anode, Kathode und mindestens eine emittierende Schicht umfasst, wobei mindestens eine organische Schicht, welche eine emittierende Schicht, Lochtransportschicht, Elektronentransportschicht, Lochblockierschicht, Elektronen- blockierschicht oder eine andere funktionelle Schicht sein kann, mindestens eine Verbindung nach Formel (1 ) umfasst.
PCT/EP2023/068808 2022-07-11 2023-07-07 Materialien für elektronische vorrichtungen WO2024013004A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP22184199.2 2022-07-11
EP22184199 2022-07-11

Publications (1)

Publication Number Publication Date
WO2024013004A1 true WO2024013004A1 (de) 2024-01-18

Family

ID=82404221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/068808 WO2024013004A1 (de) 2022-07-11 2023-07-07 Materialien für elektronische vorrichtungen

Country Status (1)

Country Link
WO (1) WO2024013004A1 (de)

Citations (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
WO1995009147A1 (fr) 1993-09-29 1995-04-06 Idemitsu Kosan Co., Ltd. Element electroluminescent organique et derive d'arylenediamine
EP0652273A1 (de) 1993-11-09 1995-05-10 Shinko Electric Industries Co. Ltd. Organisches Material für elektrolumineszente Vorrichtung und elektrolumineszente Vorrichtung
EP0676461A2 (de) 1994-04-07 1995-10-11 Hoechst Aktiengesellschaft Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
DE19806037A1 (de) * 1998-02-13 1999-08-19 Aventis Res & Tech Gmbh & Co Triptycen-Polymere und -Copolymere
JP2000053957A (ja) 1998-06-23 2000-02-22 Koto Gijutsu Kenkyuin Kenkyu Kumiai 新規な有機金属発光物質およびそれを含む有機電気発光素子
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
WO2001049806A1 (en) 1999-12-31 2001-07-12 Lg Chemical Co., Ltd Electronic device comprising organic compound having p-type semiconducting characteristics
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
EP1191612A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
EP1191614A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung und dafür verwendete Metallkoordinationsverbindung
EP1191613A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
EP1205527A1 (de) 2000-03-27 2002-05-15 Idemitsu Kosan Co., Ltd. Organische elektrolumineszierende vorrichtung
WO2002072714A1 (de) 2001-03-10 2002-09-19 Covion Organic Semiconductors Gmbh Lösung und dispersionen organischer halbleiter
WO2002002714A3 (en) 2000-06-30 2002-10-24 Du Pont Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
WO2003019694A2 (de) 2001-08-24 2003-03-06 Covion Organic Semiconductors Gmbh Lösungen polymerer halbleiter
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
WO2004013080A1 (en) 2002-08-01 2004-02-12 Covion Organic Semiconductors Gmbh Spirobifluorene derivatives, their preparation and uses thereof
WO2004028217A1 (ja) 2002-09-20 2004-04-01 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2004058911A2 (de) 2002-12-23 2004-07-15 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2004080975A1 (ja) 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2004081017A1 (de) 2003-03-11 2004-09-23 Covion Organic Semiconductors Gmbh Metallkomplexe
JP2004288381A (ja) 2003-03-19 2004-10-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
WO2004093207A2 (de) 2003-04-15 2004-10-28 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialien, deren verwendung und elektronikbauteile enthaltend diese mischungen
WO2005011013A1 (de) 2003-07-21 2005-02-03 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
US20050069729A1 (en) 2003-09-30 2005-03-31 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
WO2005033244A1 (de) 2003-09-29 2005-04-14 Covion Organic Semiconductors Gmbh Metallkomplexe
EP1553154A1 (de) 2002-08-23 2005-07-13 Idemitsu Kosan Co., Ltd. Organische elektrolumineszenzvorrichtung und anthracenderivat
WO2005084081A1 (de) 2004-02-20 2005-09-09 Merck Patent Gmbh Organische elektronische vorrichtungen
WO2005111172A2 (de) 2004-05-11 2005-11-24 Merck Patent Gmbh Neue materialmischungen für die elektrolumineszenz
US20050258742A1 (en) 2004-05-18 2005-11-24 Yui-Yi Tsai Carbene containing metal complexes as OLEDs
JP2005347160A (ja) 2004-06-04 2005-12-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
EP1617710A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Material für ein organisches elektrolumineszenzgerät, organisches elektrolumineszenzgerät, beleuchtungsvorrichtung und anzeige
WO2006005627A1 (en) 2004-07-15 2006-01-19 Merck Patent Gmbh Oligomeric derivatives of spirobifluorene, their preparation and use
WO2006048268A1 (de) 2004-11-06 2006-05-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
EP1661888A1 (de) 2004-11-29 2006-05-31 Samsung SDI Co., Ltd. Phenylcarbazole basierte Verbindungen und deren Verwendung als organische Elektroluminiszierende Vorrichtung
WO2006097208A1 (de) 2005-03-16 2006-09-21 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2006100896A1 (ja) 2005-03-18 2006-09-28 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006108497A1 (de) 2005-04-14 2006-10-19 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006117052A1 (de) 2005-05-03 2006-11-09 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung und in deren herstellung verwendete boronsäure- und borinsäure-derivate
EP1722602A1 (de) 2004-03-05 2006-11-15 Idemitsu Kosan Co., Ltd. Organische elektrolumineszenzeinrichtung und organisches elektrolumineszenzdisplay
WO2006122630A1 (de) 2005-05-20 2006-11-23 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
EP1731584A1 (de) 2004-03-31 2006-12-13 Konica Minolta Holdings, Inc. Organischer elektrolumineszenzvorrichtungsstoff, organische elektrolumineszenzvorrichtung, display und beleuchtungsvorrichtung
WO2006131192A1 (de) 2005-06-09 2006-12-14 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
EP1749809A1 (de) 2004-05-27 2007-02-07 Idemitsu Kosan Co., Ltd. Asymmetrisches pyrenderivat und organische elektrolumineszente vorrichtung, bei der dieses verwendet wird
US20070092755A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2007065550A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007065678A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Neue materialien für organische elektroluminieszenzvorrichtungen
WO2007110129A1 (de) 2006-03-24 2007-10-04 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007137725A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007140847A1 (de) 2006-06-02 2007-12-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2008006449A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
EP1905754A1 (de) 2005-07-06 2008-04-02 Idemitsu Kosan Co., Ltd. Pyrenderivat und gerät mit organischer elektrolumineszenz, bei dem dieses verwendet wird
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2008086851A1 (de) 2007-01-18 2008-07-24 Merck Patent Gmbh Carbazol-derivate für organische elektrolumineszenzvorrichtungen
EP1968131A1 (de) 2005-12-27 2008-09-10 Idemitsu Kosan Co., Ltd. Material für ein organisches elektrolumineszenzgerät und organisches elektrolumineszenzgerät
WO2008145239A2 (de) 2007-05-29 2008-12-04 Merck Patent Gmbh Benzanthracen-derivate für organische elektrolumineszenzvorrichtungen
WO2009003455A1 (de) 2007-07-04 2009-01-08 Novaled Ag Chinoide verbindungen und deren verwendung in halbleitenden matrixmaterialien, elektronischen und optoelektronischen bauelementen
EP2045848A1 (de) 2007-07-18 2009-04-08 Idemitsu Kosan Co., Ltd. Material für ein organisches elektrolumineszenzgerät und organisches elektrolumineszenzgerät
WO2009062578A1 (de) 2007-11-12 2009-05-22 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen enthaltend azomethin-metall-komplexe
WO2009100925A1 (de) 2008-02-13 2009-08-20 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2009146770A2 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe
WO2010006680A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010012328A1 (de) 2008-07-29 2010-02-04 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2010015306A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh, Organische elektrolumineszenzvorrichtung
WO2010015307A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden
WO2010031485A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US20100096600A1 (en) 2008-10-16 2010-04-22 Novaled Ag Square Planar Transition Metal Complexes and Organic Semiconductive Materials Using Them as Well as Electronic or Optoelectric Components
WO2010054731A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010054729A2 (de) 2008-11-11 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010054730A1 (de) 2008-11-11 2010-05-20 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
WO2010054728A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010072300A1 (de) 2008-12-22 2010-07-01 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung mit triazinderivaten
EP2213662A1 (de) 2007-11-30 2010-08-04 Idemitsu Kosan Co., Ltd. Azaindenofluorendionderivat, material für ein organisches elektrolumineszierendes gerät und organisches lumineszierendes gerät
WO2010086089A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
WO2010094378A1 (de) 2009-02-17 2010-08-26 Merck Patent Gmbh Organische elektronische vorrichtung
WO2010099852A1 (de) 2009-03-02 2010-09-10 Merck Patent Gmbh Metallkomplexe mit azaborol-liganden und elektronische vorrichtung damit
WO2010102709A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010108579A1 (de) 2009-03-23 2010-09-30 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2010136109A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011000455A1 (de) 2009-06-30 2011-01-06 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
EP2276085A1 (de) 2008-03-27 2011-01-19 Nippon Steel Chemical Co., Ltd. Organisches elektrolumineszenzbauelement
WO2011032626A1 (de) 2009-09-16 2011-03-24 Merck Patent Gmbh Metallkomplexe
WO2011042107A2 (de) 2009-10-08 2011-04-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011054442A2 (de) 2009-11-06 2011-05-12 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011057706A2 (de) 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011060867A1 (de) 2009-11-18 2011-05-26 Merck Patent Gmbh Stickstoffhaltige kondensierte heterozyklen für oleds
WO2011060859A1 (de) 2009-11-17 2011-05-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011060877A2 (de) 2009-11-17 2011-05-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011066898A1 (de) 2009-12-05 2011-06-09 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe
WO2011073149A1 (de) 2009-12-14 2011-06-23 Basf Se Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
WO2011088877A1 (de) 2010-01-25 2011-07-28 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2011116865A1 (de) 2010-03-25 2011-09-29 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011120709A1 (de) 2010-03-31 2011-10-06 Osram Opto Semiconductors Gmbh Dotierstoff für eine lochleiterschicht für organische halbleiterbauelemente und verwendung dazu
US8044390B2 (en) 2007-05-25 2011-10-25 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device, organic electroluminescent device, and organic electroluminescent display
WO2011137951A1 (de) 2010-05-04 2011-11-10 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
US8057712B2 (en) 2008-04-29 2011-11-15 Novaled Ag Radialene compounds and their use
EP2388842A1 (de) * 2009-01-19 2011-11-23 Nippon Steel Chemical Co., Ltd. Organisches elektrolumineszenzelement
WO2011157339A1 (de) 2010-06-15 2011-12-22 Merck Patent Gmbh Metallkomplexe
WO2012002630A1 (ko) 2010-06-29 2012-01-05 현대제철 주식회사 가열로용 이송장치
WO2012007086A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
WO2012034627A1 (de) 2010-09-15 2012-03-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012048781A1 (de) 2010-10-15 2012-04-19 Merck Patent Gmbh Materialien auf basis von triphenylen für organische elektrolumineszenzvorrichtungen
WO2012048780A1 (de) 2010-10-15 2012-04-19 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012095143A1 (de) 2011-01-13 2012-07-19 Merck Patent Gmbh Verbindungen für organische elektrolumineszenzvorrichtungen
US20120187826A1 (en) 2009-12-21 2012-07-26 Idemitsu Kosan Co., Ltd. Organic electroluminescent element using pyrene derivative
WO2012143080A2 (de) 2011-04-18 2012-10-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012150001A1 (de) 2011-05-05 2012-11-08 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2013041176A1 (de) 2011-09-21 2013-03-28 Merck Patent Gmbh Carbazolderivate für organische elektrolumineszenzvorrichtungen
WO2013056776A1 (de) 2011-10-20 2013-04-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2013083216A1 (de) 2011-11-17 2013-06-13 Merck Patent Gmbh Spiro -dihydroacridinderivate und ihre verwendung als materialien für organische elektrolumineszenzvorrichtungen
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
DE102012209523A1 (de) 2012-06-06 2013-12-12 Osram Opto Semiconductors Gmbh Hauptgruppenmetallkomplexe als p-Dotanden für organische elektronische Matrixmaterialien
WO2013185871A1 (en) 2012-06-12 2013-12-19 Merck Patent Gmbh Compounds for electronic devices
WO2014008982A1 (de) 2012-07-13 2014-01-16 Merck Patent Gmbh Metallkomplexe
WO2014015937A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektrolumineszierende vorrichtungen
WO2014015935A2 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektronische vorrichtungen
WO2014015938A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Derivate von 2-diarylaminofluoren und diese enthaltnde organische elektronische verbindungen
WO2014023377A2 (de) 2012-08-07 2014-02-13 Merck Patent Gmbh Metallkomplexe
WO2014037077A1 (de) 2012-09-04 2014-03-13 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2014072017A1 (de) 2012-11-12 2014-05-15 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2014094960A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
WO2014094961A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
WO2014106522A1 (de) 2013-01-03 2014-07-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2014111269A2 (de) 2013-10-14 2014-07-24 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015022051A1 (de) 2013-08-15 2015-02-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015036074A1 (de) 2013-09-11 2015-03-19 Merck Patent Gmbh Metallkomplexe
WO2015082056A1 (de) 2013-12-06 2015-06-11 Merck Patent Gmbh Verbindungen und organische elektronische vorrichtungen
WO2015086108A1 (de) 2013-12-12 2015-06-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015102118A1 (ja) 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
WO2015104045A1 (de) 2014-01-13 2015-07-16 Merck Patent Gmbh Metallkomplexe
WO2015117718A1 (de) 2014-02-05 2015-08-13 Merck Patent Gmbh Metallkomplexe
WO2015131976A1 (de) 2014-03-07 2015-09-11 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015158411A1 (de) 2014-04-14 2015-10-22 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015158409A1 (de) 2014-04-16 2015-10-22 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015169412A1 (de) 2014-05-05 2015-11-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016015810A1 (de) 2014-07-29 2016-02-04 Merck Patent Gmbh Materialien f?r organische elektrolumineszenzvorrichtungen
WO2016015815A1 (de) 2014-07-28 2016-02-04 Merck Patent Gmbh Metallkomplexe
WO2016023608A1 (de) 2014-08-13 2016-02-18 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016078738A1 (en) 2014-11-18 2016-05-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2016087017A1 (de) 2014-12-01 2016-06-09 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016102048A1 (de) 2014-12-22 2016-06-30 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2016124304A1 (de) 2015-02-03 2016-08-11 Merck Patent Gmbh Metallkomplexe
WO2016131521A1 (de) 2015-02-16 2016-08-25 Merck Patent Gmbh Materialien auf basis von spirobifluorenderivaten für elektronische vorrichtungen
WO2016150544A1 (en) 2015-03-25 2016-09-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2016152418A1 (ja) 2015-03-25 2016-09-29 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
WO2017025165A1 (de) 2015-08-12 2017-02-16 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2017028940A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
WO2017028941A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
WO2017032439A1 (de) 2015-08-25 2017-03-02 Merck Patent Gmbh Metallkomplexe
WO2017036573A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Compounds for electronic devices
WO2017036574A1 (de) 2015-08-28 2017-03-09 Merck Patent Gmbh 6,9,15,18-tetrahydro-s-indaceno[1,2-b:5,6-b']difluoren- derivate und ihre verwendung in elektronischen vorrichtungen
WO2017148565A1 (de) 2016-03-03 2017-09-08 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018011186A1 (de) 2016-07-14 2018-01-18 Merck Patent Gmbh Metallkomplexe
WO2018041769A1 (de) 2016-08-30 2018-03-08 Merck Patent Gmbh Bl- und trinukleare metallkomplexe aufgebaut aus zwei miteinander verknüpften tripodalen hexadentaten liganden zur verwendung in elektrolumineszenzvorrichtungen
WO2018095397A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 含硼有机化合物及应用、有机混合物、有机电子器件
WO2018178001A1 (de) 2017-03-29 2018-10-04 Merck Patent Gmbh Metallkomplexe
WO2019004248A1 (ja) 2017-06-30 2019-01-03 住友化学株式会社 高分子化合物及びそれを用いた発光素子
WO2019020538A1 (de) 2017-07-25 2019-01-31 Merck Patent Gmbh Metallkomplexe
WO2019115423A1 (de) 2017-12-13 2019-06-20 Merck Patent Gmbh Metallkomplexe
WO2019132040A1 (ja) 2017-12-28 2019-07-04 出光興産株式会社 新規化合物及び有機エレクトロルミネッセンス素子
WO2019158453A1 (de) 2018-02-13 2019-08-22 Merck Patent Gmbh Metallkomplexe
US20200161552A1 (en) 2018-11-21 2020-05-21 Sfc Co., Ltd. Indolocarbazole derivatives and organic electroluminescent devices using the same
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices

Patent Citations (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
WO1995009147A1 (fr) 1993-09-29 1995-04-06 Idemitsu Kosan Co., Ltd. Element electroluminescent organique et derive d'arylenediamine
EP0652273A1 (de) 1993-11-09 1995-05-10 Shinko Electric Industries Co. Ltd. Organisches Material für elektrolumineszente Vorrichtung und elektrolumineszente Vorrichtung
EP0676461A2 (de) 1994-04-07 1995-10-11 Hoechst Aktiengesellschaft Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
DE19806037A1 (de) * 1998-02-13 1999-08-19 Aventis Res & Tech Gmbh & Co Triptycen-Polymere und -Copolymere
JP2000053957A (ja) 1998-06-23 2000-02-22 Koto Gijutsu Kenkyuin Kenkyu Kumiai 新規な有機金属発光物質およびそれを含む有機電気発光素子
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
WO2001049806A1 (en) 1999-12-31 2001-07-12 Lg Chemical Co., Ltd Electronic device comprising organic compound having p-type semiconducting characteristics
EP1205527A1 (de) 2000-03-27 2002-05-15 Idemitsu Kosan Co., Ltd. Organische elektrolumineszierende vorrichtung
WO2002002714A3 (en) 2000-06-30 2002-10-24 Du Pont Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
EP1191612A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
EP1191614A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung und dafür verwendete Metallkoordinationsverbindung
EP1191613A2 (de) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Lumineszente Vorrichtung, Bildanzeigevorrichtung und Metallkoordinationsverbindung
WO2002072714A1 (de) 2001-03-10 2002-09-19 Covion Organic Semiconductors Gmbh Lösung und dispersionen organischer halbleiter
WO2003019694A2 (de) 2001-08-24 2003-03-06 Covion Organic Semiconductors Gmbh Lösungen polymerer halbleiter
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
WO2004013080A1 (en) 2002-08-01 2004-02-12 Covion Organic Semiconductors Gmbh Spirobifluorene derivatives, their preparation and uses thereof
EP1553154A1 (de) 2002-08-23 2005-07-13 Idemitsu Kosan Co., Ltd. Organische elektrolumineszenzvorrichtung und anthracenderivat
WO2004028217A1 (ja) 2002-09-20 2004-04-01 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2004058911A2 (de) 2002-12-23 2004-07-15 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2004081017A1 (de) 2003-03-11 2004-09-23 Covion Organic Semiconductors Gmbh Metallkomplexe
WO2004080975A1 (ja) 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2004288381A (ja) 2003-03-19 2004-10-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
WO2004093207A2 (de) 2003-04-15 2004-10-28 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialien, deren verwendung und elektronikbauteile enthaltend diese mischungen
EP1617711A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Organisches elektrolumineszenzbauelement und anzeige
EP1617710A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Material für ein organisches elektrolumineszenzgerät, organisches elektrolumineszenzgerät, beleuchtungsvorrichtung und anzeige
WO2005011013A1 (de) 2003-07-21 2005-02-03 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
WO2005033244A1 (de) 2003-09-29 2005-04-14 Covion Organic Semiconductors Gmbh Metallkomplexe
US20050069729A1 (en) 2003-09-30 2005-03-31 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
WO2005039246A1 (ja) 2003-09-30 2005-04-28 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、照明装置、表示装置
WO2005084082A1 (de) 2004-02-20 2005-09-09 Merck Patent Gmbh Organische elektronische vorrichtungen
WO2005084081A1 (de) 2004-02-20 2005-09-09 Merck Patent Gmbh Organische elektronische vorrichtungen
EP1722602A1 (de) 2004-03-05 2006-11-15 Idemitsu Kosan Co., Ltd. Organische elektrolumineszenzeinrichtung und organisches elektrolumineszenzdisplay
EP1731584A1 (de) 2004-03-31 2006-12-13 Konica Minolta Holdings, Inc. Organischer elektrolumineszenzvorrichtungsstoff, organische elektrolumineszenzvorrichtung, display und beleuchtungsvorrichtung
WO2005111172A2 (de) 2004-05-11 2005-11-24 Merck Patent Gmbh Neue materialmischungen für die elektrolumineszenz
US20050258742A1 (en) 2004-05-18 2005-11-24 Yui-Yi Tsai Carbene containing metal complexes as OLEDs
EP1749809A1 (de) 2004-05-27 2007-02-07 Idemitsu Kosan Co., Ltd. Asymmetrisches pyrenderivat und organische elektrolumineszente vorrichtung, bei der dieses verwendet wird
JP2005347160A (ja) 2004-06-04 2005-12-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2006005627A1 (en) 2004-07-15 2006-01-19 Merck Patent Gmbh Oligomeric derivatives of spirobifluorene, their preparation and use
WO2006048268A1 (de) 2004-11-06 2006-05-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
EP1661888A1 (de) 2004-11-29 2006-05-31 Samsung SDI Co., Ltd. Phenylcarbazole basierte Verbindungen und deren Verwendung als organische Elektroluminiszierende Vorrichtung
WO2006097208A1 (de) 2005-03-16 2006-09-21 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2006100896A1 (ja) 2005-03-18 2006-09-28 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006108497A1 (de) 2005-04-14 2006-10-19 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006117052A1 (de) 2005-05-03 2006-11-09 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung und in deren herstellung verwendete boronsäure- und borinsäure-derivate
WO2006122630A1 (de) 2005-05-20 2006-11-23 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006131192A1 (de) 2005-06-09 2006-12-14 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
EP1905754A1 (de) 2005-07-06 2008-04-02 Idemitsu Kosan Co., Ltd. Pyrenderivat und gerät mit organischer elektrolumineszenz, bei dem dieses verwendet wird
US20070092755A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2007065550A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007065678A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Neue materialien für organische elektroluminieszenzvorrichtungen
EP1968131A1 (de) 2005-12-27 2008-09-10 Idemitsu Kosan Co., Ltd. Material für ein organisches elektrolumineszenzgerät und organisches elektrolumineszenzgerät
WO2007110129A1 (de) 2006-03-24 2007-10-04 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007137725A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2007140847A1 (de) 2006-06-02 2007-12-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2008006449A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2008086851A1 (de) 2007-01-18 2008-07-24 Merck Patent Gmbh Carbazol-derivate für organische elektrolumineszenzvorrichtungen
US8044390B2 (en) 2007-05-25 2011-10-25 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device, organic electroluminescent device, and organic electroluminescent display
WO2008145239A2 (de) 2007-05-29 2008-12-04 Merck Patent Gmbh Benzanthracen-derivate für organische elektrolumineszenzvorrichtungen
WO2009003455A1 (de) 2007-07-04 2009-01-08 Novaled Ag Chinoide verbindungen und deren verwendung in halbleitenden matrixmaterialien, elektronischen und optoelektronischen bauelementen
DE102007031220A1 (de) 2007-07-04 2009-01-08 Novaled Ag Chinoide Verbindungen und deren Verwendung in halbleitenden Matrixmaterialien, elektronischen und optoelektronischen Bauelementen
EP2045848A1 (de) 2007-07-18 2009-04-08 Idemitsu Kosan Co., Ltd. Material für ein organisches elektrolumineszenzgerät und organisches elektrolumineszenzgerät
WO2009062578A1 (de) 2007-11-12 2009-05-22 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen enthaltend azomethin-metall-komplexe
EP2213662A1 (de) 2007-11-30 2010-08-04 Idemitsu Kosan Co., Ltd. Azaindenofluorendionderivat, material für ein organisches elektrolumineszierendes gerät und organisches lumineszierendes gerät
WO2009100925A1 (de) 2008-02-13 2009-08-20 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
EP2276085A1 (de) 2008-03-27 2011-01-19 Nippon Steel Chemical Co., Ltd. Organisches elektrolumineszenzbauelement
US8057712B2 (en) 2008-04-29 2011-11-15 Novaled Ag Radialene compounds and their use
WO2009146770A2 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe
WO2010006680A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010012328A1 (de) 2008-07-29 2010-02-04 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2010015307A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden
WO2010015306A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh, Organische elektrolumineszenzvorrichtung
WO2010031485A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US20100096600A1 (en) 2008-10-16 2010-04-22 Novaled Ag Square Planar Transition Metal Complexes and Organic Semiconductive Materials Using Them as Well as Electronic or Optoelectric Components
WO2010054729A2 (de) 2008-11-11 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010054730A1 (de) 2008-11-11 2010-05-20 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
WO2010054731A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010054728A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010072300A1 (de) 2008-12-22 2010-07-01 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung mit triazinderivaten
EP2388842A1 (de) * 2009-01-19 2011-11-23 Nippon Steel Chemical Co., Ltd. Organisches elektrolumineszenzelement
WO2010086089A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
WO2010094378A1 (de) 2009-02-17 2010-08-26 Merck Patent Gmbh Organische elektronische vorrichtung
WO2010099852A1 (de) 2009-03-02 2010-09-10 Merck Patent Gmbh Metallkomplexe mit azaborol-liganden und elektronische vorrichtung damit
WO2010102709A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010108579A1 (de) 2009-03-23 2010-09-30 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2010136109A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011000455A1 (de) 2009-06-30 2011-01-06 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011032626A1 (de) 2009-09-16 2011-03-24 Merck Patent Gmbh Metallkomplexe
WO2011042107A2 (de) 2009-10-08 2011-04-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011054442A2 (de) 2009-11-06 2011-05-12 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011057706A2 (de) 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2011060859A1 (de) 2009-11-17 2011-05-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011060877A2 (de) 2009-11-17 2011-05-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011060867A1 (de) 2009-11-18 2011-05-26 Merck Patent Gmbh Stickstoffhaltige kondensierte heterozyklen für oleds
WO2011066898A1 (de) 2009-12-05 2011-06-09 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe
WO2011073149A1 (de) 2009-12-14 2011-06-23 Basf Se Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
US20120187826A1 (en) 2009-12-21 2012-07-26 Idemitsu Kosan Co., Ltd. Organic electroluminescent element using pyrene derivative
WO2011088877A1 (de) 2010-01-25 2011-07-28 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2011116865A1 (de) 2010-03-25 2011-09-29 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011120709A1 (de) 2010-03-31 2011-10-06 Osram Opto Semiconductors Gmbh Dotierstoff für eine lochleiterschicht für organische halbleiterbauelemente und verwendung dazu
WO2011137951A1 (de) 2010-05-04 2011-11-10 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
WO2011157339A1 (de) 2010-06-15 2011-12-22 Merck Patent Gmbh Metallkomplexe
WO2012002630A1 (ko) 2010-06-29 2012-01-05 현대제철 주식회사 가열로용 이송장치
WO2012007086A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
WO2012034627A1 (de) 2010-09-15 2012-03-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012048781A1 (de) 2010-10-15 2012-04-19 Merck Patent Gmbh Materialien auf basis von triphenylen für organische elektrolumineszenzvorrichtungen
WO2012048780A1 (de) 2010-10-15 2012-04-19 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2012095143A1 (de) 2011-01-13 2012-07-19 Merck Patent Gmbh Verbindungen für organische elektrolumineszenzvorrichtungen
WO2012143080A2 (de) 2011-04-18 2012-10-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2012150001A1 (de) 2011-05-05 2012-11-08 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2013041176A1 (de) 2011-09-21 2013-03-28 Merck Patent Gmbh Carbazolderivate für organische elektrolumineszenzvorrichtungen
WO2013056776A1 (de) 2011-10-20 2013-04-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2013083216A1 (de) 2011-11-17 2013-06-13 Merck Patent Gmbh Spiro -dihydroacridinderivate und ihre verwendung als materialien für organische elektrolumineszenzvorrichtungen
WO2013120577A1 (en) 2012-02-14 2013-08-22 Merck Patent Gmbh Spirobifluorene compounds for organic electroluminescent devices
DE102012209523A1 (de) 2012-06-06 2013-12-12 Osram Opto Semiconductors Gmbh Hauptgruppenmetallkomplexe als p-Dotanden für organische elektronische Matrixmaterialien
WO2013185871A1 (en) 2012-06-12 2013-12-19 Merck Patent Gmbh Compounds for electronic devices
WO2014008982A1 (de) 2012-07-13 2014-01-16 Merck Patent Gmbh Metallkomplexe
WO2014015937A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektrolumineszierende vorrichtungen
WO2014015935A2 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Verbindungen und organische elektronische vorrichtungen
WO2014015938A1 (de) 2012-07-23 2014-01-30 Merck Patent Gmbh Derivate von 2-diarylaminofluoren und diese enthaltnde organische elektronische verbindungen
WO2014023377A2 (de) 2012-08-07 2014-02-13 Merck Patent Gmbh Metallkomplexe
WO2014037077A1 (de) 2012-09-04 2014-03-13 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2014072017A1 (de) 2012-11-12 2014-05-15 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2014094960A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
WO2014094961A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
WO2014106522A1 (de) 2013-01-03 2014-07-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015022051A1 (de) 2013-08-15 2015-02-19 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015036074A1 (de) 2013-09-11 2015-03-19 Merck Patent Gmbh Metallkomplexe
WO2014111269A2 (de) 2013-10-14 2014-07-24 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015082056A1 (de) 2013-12-06 2015-06-11 Merck Patent Gmbh Verbindungen und organische elektronische vorrichtungen
WO2015086108A1 (de) 2013-12-12 2015-06-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015104045A1 (de) 2014-01-13 2015-07-16 Merck Patent Gmbh Metallkomplexe
WO2015117718A1 (de) 2014-02-05 2015-08-13 Merck Patent Gmbh Metallkomplexe
WO2015102118A1 (ja) 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
WO2015131976A1 (de) 2014-03-07 2015-09-11 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015158411A1 (de) 2014-04-14 2015-10-22 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015158409A1 (de) 2014-04-16 2015-10-22 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2015169412A1 (de) 2014-05-05 2015-11-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016015815A1 (de) 2014-07-28 2016-02-04 Merck Patent Gmbh Metallkomplexe
WO2016015810A1 (de) 2014-07-29 2016-02-04 Merck Patent Gmbh Materialien f?r organische elektrolumineszenzvorrichtungen
WO2016023608A1 (de) 2014-08-13 2016-02-18 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016078738A1 (en) 2014-11-18 2016-05-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2016087017A1 (de) 2014-12-01 2016-06-09 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2016102048A1 (de) 2014-12-22 2016-06-30 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2016124304A1 (de) 2015-02-03 2016-08-11 Merck Patent Gmbh Metallkomplexe
WO2016131521A1 (de) 2015-02-16 2016-08-25 Merck Patent Gmbh Materialien auf basis von spirobifluorenderivaten für elektronische vorrichtungen
WO2016152418A1 (ja) 2015-03-25 2016-09-29 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
WO2016150544A1 (en) 2015-03-25 2016-09-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017025165A1 (de) 2015-08-12 2017-02-16 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2017028940A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
WO2017028941A1 (en) 2015-08-14 2017-02-23 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
WO2017032439A1 (de) 2015-08-25 2017-03-02 Merck Patent Gmbh Metallkomplexe
WO2017036573A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Compounds for electronic devices
WO2017036574A1 (de) 2015-08-28 2017-03-09 Merck Patent Gmbh 6,9,15,18-tetrahydro-s-indaceno[1,2-b:5,6-b']difluoren- derivate und ihre verwendung in elektronischen vorrichtungen
WO2017148565A1 (de) 2016-03-03 2017-09-08 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2017148564A1 (de) 2016-03-03 2017-09-08 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018011186A1 (de) 2016-07-14 2018-01-18 Merck Patent Gmbh Metallkomplexe
WO2018041769A1 (de) 2016-08-30 2018-03-08 Merck Patent Gmbh Bl- und trinukleare metallkomplexe aufgebaut aus zwei miteinander verknüpften tripodalen hexadentaten liganden zur verwendung in elektrolumineszenzvorrichtungen
WO2018095397A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 含硼有机化合物及应用、有机混合物、有机电子器件
WO2018178001A1 (de) 2017-03-29 2018-10-04 Merck Patent Gmbh Metallkomplexe
WO2019004248A1 (ja) 2017-06-30 2019-01-03 住友化学株式会社 高分子化合物及びそれを用いた発光素子
WO2019020538A1 (de) 2017-07-25 2019-01-31 Merck Patent Gmbh Metallkomplexe
WO2019115423A1 (de) 2017-12-13 2019-06-20 Merck Patent Gmbh Metallkomplexe
WO2019132040A1 (ja) 2017-12-28 2019-07-04 出光興産株式会社 新規化合物及び有機エレクトロルミネッセンス素子
WO2019158453A1 (de) 2018-02-13 2019-08-22 Merck Patent Gmbh Metallkomplexe
US20200161552A1 (en) 2018-11-21 2020-05-21 Sfc Co., Ltd. Indolocarbazole derivatives and organic electroluminescent devices using the same
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CARRERAS ABEL ET AL: "Conformational analysis of enantiomerization coupled to internal rotation in triptycyl- n -helicenes", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 21, no. 21, 29 May 2019 (2019-05-29), pages 11395 - 11404, XP093078745, ISSN: 1463-9076, DOI: 10.1039/C8CP07164K *
G. MÄRKL ET AL., TETRAHEDRON LETT., vol. 20, 1974, pages 1817
M. OI ET AL., CHEM. SCI., vol. 10, no. 6107, 2019, pages 6107
OI MIKU ET AL: "Organocopper cross-coupling reaction for C-C bond formation on highly sterically hindered structures", CHEMICAL SCIENCE, vol. 10, no. 24, 19 June 2019 (2019-06-19), United Kingdom, pages 6107 - 6112, XP093078672, ISSN: 2041-6520, DOI: 10.1039/C9SC00891H *
WANG HAILONG ET AL: "Theoretical research of covalent and controllable molecular brake based on 9-triptycene", THEORETICAL CHEMISTRY ACCOUNTS : THEORY, COMPUTATION, AND MODELING ; THEORETICA CHIMICA ACTA, SPRINGER, BERLIN, DE, vol. 140, no. 5, 1 May 2021 (2021-05-01), XP037459042, ISSN: 1432-881X, [retrieved on 20210505], DOI: 10.1007/S00214-021-02762-9 *
Y. SHIROTA ET AL., CHEM. REV., vol. 107, no. 4, 2007, pages 953 - 1010

Similar Documents

Publication Publication Date Title
EP3080229B1 (de) Materialien für elektronische vorrichtungen
EP3227269B1 (de) Materialien für organische elektrolumineszenzvorrichtungen
WO2017148565A1 (de) Materialien für organische elektrolumineszenzvorrichtungen
EP2791105A1 (de) Verbindungen für elektronische vorrichtungen
EP2858980A1 (de) Phenanthrenverbindungen für organische elektronische vorrichtungen
WO2014079527A1 (de) Materialien für elektronische vorrichtungen
WO2015049022A1 (de) Triarylamin-substituierte benzo[h]chinolin-derivate als materialien für elektronische vorrichtungen
WO2015197156A1 (de) Materialien für organische elektrolumineszenzvorrichtungen
EP3347354B1 (de) Materialien für organische elektrolumineszenzvorrichtungen
EP3016952A1 (de) Spirokondensierte lact amverbi ndungen für organische elektrolumineszenzvorrichtungen
WO2019052933A1 (de) Materialien für organische elektrolumineszenzvorrichtungen
WO2016128103A1 (de) Elektronische vorrichtung enthaltend cyclische lactame
WO2022079067A1 (de) Verbindungen mit heteroatomen für organische elektrolumineszenzvorrichtungen
WO2011160758A1 (de) Materialien für organische elektrolumineszenzvorrichtungen
EP4077315B1 (de) Materialien für organische elektrolumineszenzvorrichtungen
WO2022200638A1 (de) Materialien für organische elektrolumineszenzvorrichtungen
WO2024013004A1 (de) Materialien für elektronische vorrichtungen
WO2023052272A1 (de) Materialien für elektronische vorrichtungen
WO2023052314A1 (de) Materialien für elektronische vorrichtungen
WO2023094412A1 (de) Materialien für elektronische vorrichtungen
WO2023052313A1 (de) Materialien für elektronische vorrichtungen
WO2023052275A1 (de) Materialien für elektronische vorrichtungen
WO2023152346A1 (de) Materialien für elektronische vorrichtungen
WO2023117837A1 (de) Verfahren zur herstellung von deuterierten organischen verbindungen
WO2023222559A1 (de) Verfahren zur herstellung von deuterierten organischen verbindungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23738768

Country of ref document: EP

Kind code of ref document: A1