WO2019088194A1 - 新規化合物及び有機エレクトロルミネッセンス素子 - Google Patents

新規化合物及び有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2019088194A1
WO2019088194A1 PCT/JP2018/040575 JP2018040575W WO2019088194A1 WO 2019088194 A1 WO2019088194 A1 WO 2019088194A1 JP 2018040575 W JP2018040575 W JP 2018040575W WO 2019088194 A1 WO2019088194 A1 WO 2019088194A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
formula
carbon atoms
unsubstituted
Prior art date
Application number
PCT/JP2018/040575
Other languages
English (en)
French (fr)
Inventor
敬太 瀬田
良多 高橋
裕基 中野
祐一郎 河村
池田 秀嗣
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020207012077A priority Critical patent/KR20200083463A/ko
Priority to CN201880070756.XA priority patent/CN111263762A/zh
Priority to JP2019550469A priority patent/JPWO2019088194A1/ja
Priority to US16/759,803 priority patent/US20200377513A1/en
Publication of WO2019088194A1 publication Critical patent/WO2019088194A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel compound and an organic electroluminescent device using the same.
  • an organic electroluminescent element hereinafter sometimes referred to as an organic EL element
  • holes are injected from the anode and electrons from the cathode to the light emitting layer. Then, in the light emitting layer, the injected holes and electrons recombine to form excitons.
  • the organic EL element includes a light emitting layer between the anode and the cathode. Moreover, it may have a laminated structure including organic layers such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer.
  • Patent documents 1 to 3 disclose compounds used as materials for organic electroluminescent devices.
  • An object of the present invention is to provide a novel compound which has a high fluorescence quantum yield and can be used as a material for an organic electroluminescent device, and an organic electroluminescent device using the same.
  • a compound represented by the following formula (1) is provided.
  • One set of R 1 and R 2 , R 2 and R 3 , and R 3 and R 4 is a bond to be bonded to a divalent group represented by the following formula (11).
  • X 1 and X 2 are each independently O, S or C (R ′) 2 .
  • At least one set of R 11 and R 12 , R 12 and R 13 , and R 13 and R 14 is a bond to be bonded to a divalent group represented by the following formula (12a).
  • At least one set of R 5 and R 6 , R 6 and R 7 , and R 7 and R 8 is a bond to be bonded to a divalent group represented by the following formula (12b).
  • R 11 to R 14 which is not a bond and R 5 to R 8 which is not a bond which bonds to a divalent group represented by the formula (12b) are each independently a hydrogen atom or a substituted or unsubstituted group Alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, substituted or unsubstituted alkynyl having 2 to 50 carbon atoms Group,
  • At least one of R 11 to R 14 which is not a bond and R 5 to R 8 which is not a bond which bonds to a divalent group represented by the above formula (12b) is represented by the following formula (13) It is a represented group.
  • the two R's may be identical or different.
  • R 31 to R 35 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted group It is a monovalent heterocyclic group having 5 to 50 ring atoms. If R 31 ⁇ R 35 there are a plurality, each of the plurality of R 31 ⁇ R 35 may be the same or may be different. When there are a plurality of groups represented by the following formula (13), the plurality of groups represented by the following formula (13) may be the same or different.
  • L 1 to L 3 each independently represent a single bond, a substituted or unsubstituted alkylene group having 1 to 30 carbon atoms, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted ring It is a divalent heterocyclic group having 5 to 30 ring atoms.
  • Ar 1 and Ar 2 each independently represent a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted ring forming atom
  • Ar 1 and Ar 2 may be a single bond or may be bonded to each other via -O-, -S- or -C (R) 2- .
  • R is a substituent, and two R may be the same as or different from each other. )]
  • a material for an organic electroluminescent device which comprises the compound represented by the above formula (1).
  • At least one organic layer disposed between the cathode and the anode;
  • Have An organic electroluminescent device is provided, wherein at least one of the at least one organic layers contains a compound represented by the formula (1).
  • an electronic device comprising the organic electroluminescent device.
  • a fluorescence quantum yield is high and can provide the novel compound which can be used as a material for organic electroluminescent elements.
  • the hydrogen atom includes isotopes having different numbers of neutrons, ie, protium, deuterium, and tritium.
  • the number of carbon atoms forming a ring constitutes the ring itself of a compound having a structure in which atoms are cyclically bonded (for example, a single ring compound, a fused ring compound, a crosslinking compound, a carbocyclic compound, a heterocyclic compound) It represents the number of carbon atoms among the atoms.
  • carbon contained in the substituent is not included in the number of carbon atoms forming a ring.
  • the “number of ring-forming carbon atoms” described below is the same unless otherwise stated.
  • the benzene ring has 6 ring carbon atoms
  • the naphthalene ring has 10 ring carbon atoms
  • the pyridinyl group has 5 ring carbon atoms
  • the furanyl group has 4 ring carbon atoms.
  • a benzene ring or a naphthalene ring is substituted by, for example, an alkyl group as a substituent, the number of carbons of the alkyl group is not included in the number of ring-forming carbons.
  • a fluorene ring is bound to a fluorene ring as a substituent (including a spirofluorene ring)
  • the number of carbon atoms of the fluorene ring as a substituent is not included in the number of ring-forming carbons.
  • the number of ring-forming atoms means a compound (for example, a single ring compound, a fused ring compound, a crosslinking compound, a carbocyclic compound, a hetero ring) having a structure (for example, a single ring, a fused ring, a ring assembly) in which atoms are cyclically bound. It represents the number of atoms constituting the ring itself of the ring compound).
  • the number of ring-forming atoms does not include an atom that does not form a ring (for example, a hydrogen atom that terminates the bond of atoms that form the ring) or a substituent that is included when the ring is substituted by a substituent.
  • the “number of ring-forming atoms” described below is the same unless otherwise stated.
  • the number of ring-forming atoms of the pyridine ring is 6, the number of ring-forming atoms of the quinazoline ring is 10, and the number of ring-forming atoms of the furan ring is 5.
  • bonded with the carbon atom of a pyridine ring or a quinazoline ring it does not include in the number of ring formation atoms.
  • a fluorene ring is bound to a fluorene ring as a substituent (including a spirofluorene ring)
  • the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
  • carbon number XX to YY in the expression “substituted or unsubstituted ZZ group having carbon atoms of XX to YY” represents the carbon number when the ZZ group is unsubstituted, and is substituted It does not include the carbon number of the substituent when it is substituted.
  • YY is larger than “XX”, and “XX” and “YY” mean integers of 1 or more.
  • number of atoms XX to YY in the expression “substituted or unsubstituted number of atoms XX to ZZ of ZZ group” represents the number of atoms when the ZZ group is unsubstituted, and is substituted Do not include the number of atoms of the substituent if it is substituted.
  • YY is larger than “XX”, and “XX” and “YY” mean integers of 1 or more.
  • each substituent in the present specification includes the following.
  • Examples of the unsubstituted alkyl group having 1 to 50 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, n And -butyl, s-butyl, isobutyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and the like.
  • Examples of the substituted alkyl group having 1 to 50 (preferably 1 to 30, more preferably 1 to 18, further preferably 1 to 5) carbon atoms include a hydroxymethyl group, a 1-hydroxyethyl group and a 2-hydroxy group.
  • the substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms is a group in which one or more hydrogen atoms of the above alkyl group are substituted with a halogen atom.
  • Examples of the substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms include groups in which one or more halogen atoms are substituted in the above-mentioned substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • unsubstituted alkenyl group having 2 to 50 (preferably 2 to 30, more preferably 2 to 18) carbon atoms a vinyl group, an allyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, And 3-butanedienyl group, 1-methylvinyl group, 1-methylallyl group, 1,1-dimethylallyl group, 2-methylallyl group, 1,2-dimethylallyl group and the like.
  • Examples of the unsubstituted alkynyl group having 2 to 50 (preferably 2 to 30, more preferably 2 to 18) carbon atoms include ethynyl group and the like.
  • a cycloalkyl group having 3 to 50 (preferably 3 to 30, more preferably 3 to 18 and further preferably 3 to 6) carbon atoms forming unsubstituted ring, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group And 4-methylcyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group, 2-norbornyl group and the like.
  • the unsubstituted alkoxy group having 1 to 50 carbon atoms (preferably 1 to 30, more preferably 1 to 18) is represented by -OX, and as X, for example, the alkyl group having 1 to 50 carbon atoms mentioned above is exemplified.
  • the unsubstituted C1-C50 (preferably 1-30, more preferably 1-18) alkylthio group is represented by -SX, and as X, for example, the above C1-C50 alkyl group is It can be mentioned.
  • Examples of the aryl group having 6 to 50 (preferably 6 to 30, more preferably 6 to 18) carbon atoms which do not have a substituent include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terphenyl 4-yl group, p-terphenyl 3-yl group P-terphenyl 2-yl group, m-
  • phenyl group preferred are phenyl group, naphthyl group, biphenylyl group, terphenyl group, pyrenyl group, phenanthryl group and fluorenyl group, and more preferred are phenyl group, naphthyl group, biphenylyl group, terphenyl group, pyrenyl group And fluorenyl groups.
  • Examples of the aryl group having 6 to 50 (preferably 6 to 30, more preferably 6 to 18) carbon atoms forming a substituted ring include o-tolyl, m-tolyl, p-tolyl and para-isopropyl.
  • Examples of the arylene group having 6 to 50 (preferably 6 to 30, more preferably 6 to 18) carbon atoms forming an unsubstituted ring include the aryl groups having 6 to 50 ring carbon atoms exemplified above.
  • the bivalent group formed from an aromatic hydrocarbon ring is mentioned.
  • the aryloxy group having 6 to 50 (preferably 6 to 30, more preferably 6 to 18) carbon atoms which is unsubstituted is represented by -OY, and as Y, for example, 6 to 50 ring carbon atoms mentioned above can be mentioned.
  • Y for example, 6 to 50 ring carbon atoms mentioned above can be mentioned.
  • arylthio group having 6 to 50 (preferably 6 to 30, and more preferably 6 to 18) ring-forming carbon atoms which is unsubstituted is represented by -SY, and Y is, for example, 6 to 50 ring-forming carbon atoms described above. And aryl groups.
  • the unsubstituted aralkyl group having 7 to 50 carbon atoms includes, for example, benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group , 2-phenylisopropyl group, phenyl-t-butyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group Groups, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group and the like
  • Examples of the substituted aralkyl group having 7 to 50 (preferably 7 to 30, more preferably 7 to 18) carbon atoms include p-methylbenzyl, m-methylbenzyl, o-methylbenzyl and p- Chlorobenzyl, m-chlorobenzyl, o-chlorobenzyl, p-bromobenzyl, m-bromobenzyl, o-bromobenzyl, p-iodobenzyl, m-iodobenzyl, o-iodobenzyl Group, p-hydroxybenzyl group, m-hydroxybenzyl group, o-hydroxybenzyl group, p-nitrobenzyl group, m-nitrobenzyl group, o-nitrobenzyl group, p-cyanobenzyl group, m-cyanobenzyl group, o-cyanobenzyl group etc. may be mentioned.
  • Examples of the monovalent heterocyclic group having 5 to 50 (preferably 5 to 30, more preferably 5 to 18) ring-forming atoms which may be substituted include pyrrolyl group, pyrazinyl group, pyridinyl group, indolyl group, isoindolyl group and furyl group.
  • benzofuranyl group isobenzofuranyl group, dibenzofuranyl group, dibenzothiophenyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, carbazolyl group, phenanthrizinyl group, acridinyl group, phenanthrolinyl group, thienyl And the like, as well as pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, indole ring, quinoline ring, acridine ring, pyrrolidine ring, dioxane ring, piperidine ring, morpholine ring, piperazine ring, carbazole ring, furan ring, Thiophene ring, oxazole ring, oxadiazole ring, Ring oxazole ring, thiazole ring, thiadiazole ring,
  • Examples of the divalent heterocyclic group having 5 to 50 (preferably 5 to 30, more preferably 5 to 18) ring-forming atoms which are unsubstituted are formed of the groups exemplified above, a monovalent heterocyclic ring, etc. And a divalent group.
  • the following groups are also included as the substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • examples of the divalent heterocyclic group having 5 to 50 ring atoms include groups in which the following groups are divalent groups.
  • X 1A to X 6A and Y 1A to Y 6A each represent an oxygen atom, a sulfur atom, an -NZ- group, or an -NH- group.
  • Z represents a substituted or unsubstituted ring carbon having 6 to 6 carbon atoms 50 aryl groups, substituted or unsubstituted monovalent heterocyclic groups having 5 to 50 ring atoms, or substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms When two or more Z are present, Two or more Z may be the same or different.
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned.
  • novel compound according to one aspect of the present invention is represented by the following formula (1).
  • R 1 and R 2 , R 2 and R 3 , and R 3 and R 4 is a bond to be bonded to a divalent group represented by the following formula (11).
  • X 1 and X 2 are each independently O, S or C (R ′) 2 .
  • At least one set of R 11 and R 12 , R 12 and R 13 , and R 13 and R 14 is a bond to be bonded to a divalent group represented by the following formula (12a).
  • At least one set of R 5 and R 6 , R 6 and R 7 , and R 7 and R 8 is a bond to be bonded to a divalent group represented by the following formula (12b).
  • the plurality of divalent groups represented by the following formulas (12a) and (12b) may be the same. , May be different.
  • R 11 to R 14 which is not a bond and R 5 to R 8 which is not a bond which bonds to a divalent group represented by the formula (12b) are each independently a hydrogen atom or a substituted or unsubstituted group Alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, substituted or unsubstituted alkenyl group having 2 to 50 carbon atoms, substituted or unsubstituted alkynyl having 2 to 50 carbon atoms Group, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a
  • At least one of R 11 to R 14 which is not a bond and R 5 to R 8 which is not a bond which bonds to a divalent group represented by the above formula (12b) is represented by the following formula (13) It is a represented group.
  • the two R's may be identical or different.
  • R 31 to R 35 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted group It is a monovalent heterocyclic group having 5 to 50 ring atoms. If R 31 ⁇ R 35 there are a plurality, each of the plurality of R 31 ⁇ R 35 may be the same or may be different. When there are a plurality of groups represented by the following formula (13), the plurality of groups represented by the following formula (13) may be the same or different.
  • L 1 to L 3 each independently represent a single bond, a substituted or unsubstituted alkylene group having 1 to 30 carbon atoms, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted ring It is a divalent heterocyclic group having 5 to 30 ring atoms.
  • Ar 1 and Ar 2 each independently represent a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted ring forming atom
  • Ar 1 and Ar 2 may be a single bond or may be bonded to each other via -O-, -S- or -C (R) 2- .
  • R is a substituent, and two R may be the same as or different from each other. )]
  • the compound represented by the formula (1) is, for example, a divalent group in which a divalent group represented by the formula (12a) is represented by the formula (11) A naphthalene ring formed by condensation to a group, and a bivalent group represented by the formula (12b) having a naphthalene ring formed by condensation to a skeleton represented by the formula (1) at both ends, And it has at least one group (substituted amino group) represented by Formula (13).
  • “*” (asterisk) in the formula (11) is, for example, each of R 1 and R 2 , R 2 and R 3 , or R 3 and R 4 which is a bond with the formula (11) It shows that it is the other party to join.
  • “*” in the formula (11) for example, when the bond is R 1 and R 2 , the bond of the formula (1) and the formula (11) as shown in the following formula In the above, the two “*” s may be bonded to any of R 1 and R 2 .
  • At least one set of R 11 and R 12 , R 12 and R 13 , and R 13 and R 14 respectively represents one set, two sets or three sets simultaneously with a bond with formula (12a) It means to become.
  • a structure represented by the following formula is obtained.
  • R 11 and R 12 and if the two sets of bonds of R 12 and R 13 are bonded at the same time as the formula (12a), and R 11 and R 12, R 12 and R 13 and R 13 and R 14, In the case where three pairs of bonds are simultaneously bonded to Formula (12a), a structure represented by the following Formula is obtained by condensing two or three groups represented by Formula (12a).
  • R 5 and R 6 , R 6 and R 7 , and at least one set of R 7 and R 8 one, two or three of them may be simultaneously selected from the group of formula (12b) It means that it becomes a bond, and the same applies to the case where two or three pairs of bonds are simultaneously bonded.
  • the compound (1) can also be represented by the following formulas (1-1) to (1-6) based on the binding mode of the formula (11) to the skeleton represented by the formula (1).
  • the compound (1) is selected from the group consisting of compounds represented by the following formulas (1-1H) to (1-6H), wherein R 1 to R 4 are hydrogen atoms.
  • the compound (1) is preferably a compound represented by the above formula (1-2H).
  • the divalent group represented by the formula (11) is represented by the following formulas (11-1) to (11-3) based on the bonding mode with the formula (12a) It is selected from the group consisting of divalent groups. [In the formulas (11-1) to (11-3), X 2 , R 11 to R 14 and R 21 to R 24 are as defined in the formula (1). ]
  • R 11 to R 14 each represent a hydrogen atom, represented by the following formulas (11-1H) to (11-3H) It is selected from the group consisting of valence groups.
  • the group represented by Formula (11) is preferably a divalent group represented by Formula (11-2H).
  • the compound (1) is selected from the group consisting of compounds represented by the following formulas (1-21) to (1-23).
  • the compound (1) is a compound represented by the above formula (1-22).
  • the compound (1) can also be represented by the following formulas (1-11) to (1-13) based on the bonding mode of the formula (12b) to the skeleton represented by the formula (1).
  • the compound (1) is selected from the group consisting of compounds represented by the following formulas (1-11H) to (1-13H), wherein R 5 to R 8 are hydrogen atoms.
  • the compound (1) is a compound represented by the above formula (1-12H).
  • the compound represented by the formula (1-2) is selected from the group consisting of compounds represented by the following formulas (1-24) to (1-26).
  • the compound represented by Formula (1-2) is a compound represented by Formula (1-25).
  • the compound (1) is selected from the group consisting of compounds represented by the following formulas (1-31) to (1-35).
  • the compound (1) is a compound represented by the above formula (1-32).
  • one of R 21 to R 24 and one of R 25 to R 28 are each independently a group represented by the above formula (13).
  • the compound represented by Formula (1-32) is a compound represented by the following Formula (1-40).
  • X 1 , X 2 , R 1 , R 4 , R 5 , R 8 , R 11 , R 14 , R 21 , R 22 , R 24 to R 26 , R 28 , L 1 -L 3 , Ar 1 and Ar 2 are as defined in the formula (1).
  • Plural L 1 to L 3 , Ar 1 and Ar 2 may be identical to or different from one another.
  • the compounds represented by the formulas (1-31) and (1-33) to (1-35) are compounds represented by the following formulas (1-41) to (1-44) It is.
  • X 1 , X 2 , R 1 to R 5 , R 8 , R 11 , R 14 , R 21 , R 22 , R 24 to R 26 , R 28 , L 1 to L 3 , Ar 1 and Ar 2 are as defined in the formula (1).
  • Plural L 1 to L 3 , Ar 1 and Ar 2 may be identical to or different from one another.
  • X 1 and X 2 are O (oxygen atom).
  • two R's are each independently a hydrogen atom or a methyl group.
  • L 3 is a single bond.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • one of Ar 1 and Ar 2 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, and the other is a substituted or unsubstituted monovalent ring having 5 to 50 ring atoms. It is a heterocyclic group.
  • the group represented by the formula (13) is selected from the group consisting of groups represented by the following formulas (13-1) to (13-3).
  • R is a substituent.
  • m is an integer of 0 to 8
  • n is an integer of 0 to 4.
  • X 3 is —O—, —S— or —C (R) 2 —, and two Rs may be the same as or different from each other.
  • L 1 to L 3 are single bonds, Ar 1 and Ar 2 are phenyl groups, and these are bonded to each other by a single bond to form a carbazole ring It is formed.
  • L 1 to L 3 are single bonds, Ar 1 and Ar 2 are ethyl groups, and these are bonded to each other via -O- It forms morpholine ring.
  • L 1 to L 3 are a single bond, Ar 1 and Ar 2 are a phenyl group, and they are mutually bonded via X 3 Form a membered ring.
  • the substituent in the case of “substituted or unsubstituted” in compound (1), and the substituent represented by R are each an alkyl group having 1 to 50 carbon atoms and having 6 to 50 ring carbon atoms. And a heterocyclic group having 5 to 50 ring atoms.
  • the substituent in the case of “substituted or unsubstituted” in compound (1), and the substituent represented by R are an alkyl group having 1 to 18 carbon atoms, and 6 to 18 ring carbon atoms. Are selected from the group consisting of aryl groups having 5 to 18 ring atoms, and aryl groups having 5 to 18 ring atoms.
  • the compound (1) can be synthesized, for example, using known alternative reactions and starting materials tailored to the desired product, following the reactions of Examples described later.
  • the compound (1) is useful as a material for an organic electroluminescent device.
  • the compound (1) is useful as a material of a light emitting layer of an organic electroluminescent device, and particularly useful as a fluorescent material (also referred to as a fluorescent dopant) of the light emitting layer.
  • the compound (1) has a high fluorescence quantum yield, and the luminous efficiency of the obtained organic EL device can be improved by using it as a material for an organic electroluminescent device.
  • the material for an organic electroluminescent device according to one aspect of the present invention is characterized by containing the compound (1).
  • the organic electroluminescent device is With the cathode, With the anode, At least one organic layer disposed between the cathode and the anode; Have At least one of the at least one organic layers contains the compound (1).
  • the organic electroluminescent device is With the cathode, With the anode, At least one organic layer disposed between the cathode and the anode; Have At least one layer of the at least one organic layer contains a compound (1) as a fluorescent material.
  • the luminous efficiency of the organic EL element can be improved by using the compound represented by the above formula (1) in a predetermined organic layer, particularly a light emitting layer.
  • the at least one organic layer comprises a light emitting layer
  • the light emitting layer contains the compound (1).
  • At least one organic layer disposed between the cathode and the anode refers to one or more organic layers, if any, between the cathode and the anode; When a layer is present, it refers to at least one of them.
  • at least one organic layer includes a light emitting layer means that, when there is one organic layer between the cathode and the anode, the layer is a light emitting layer and a plurality of organic layers are present. In the latter case, it means that at least one of them is a light emitting layer.
  • the organic EL element has a hole transport layer between the anode and the light emitting layer. In one embodiment, the organic EL element has an electron transport layer between the cathode and the light emitting layer.
  • At least one layer between the light emitting layer and the anode refers to one organic layer, if present, between the light emitting layer and the anode, and in the case where a plurality of organic layers are present. Refers to at least one of them.
  • the organic layer closer to the light emitting layer is referred to as a "hole transport layer” and the organic layer closer to the anode is referred to as "hole injection It is called "layer”.
  • Each of the “hole transport layer” and the “hole injection layer” may be one layer, or two or more layers each, and one is one layer, and the other is two or more layers. It is also good.
  • At least one layer between the light emitting layer and the cathode refers to one organic layer, if present, between the light emitting layer and the cathode, and a plurality of organic layers, if any. Refers to at least one of them.
  • the organic layer closer to the light emitting layer is referred to as the "electron transport layer” and the organic layer closer to the cathode is the "electron injection layer” Call it
  • Each of the “electron transport layer” and the “electron injection layer” may be one layer, or two or more layers, or one may be one layer and the other may be two or more layers. .
  • the light emitting layer further contains a compound represented by the following formula (2) (hereinafter sometimes referred to as a compound (2)).
  • R 101 to R 110 may form a substituted or unsubstituted saturated or unsaturated ring.
  • R 101 to R 110 which do not form a substituted or unsubstituted saturated or unsaturated ring each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted carbon number 2 to 50 alkenyl, substituted or unsubstituted alkynyl having 2 to 50 carbon atoms, substituted or unsubstituted cycloalkyl having 3 to 50 ring carbon atoms, substituted or unsubstituted alkoxy having 1 to 50 carbons Group, substituted or unsubstituted alkylthio having 1 to 50 carbon atoms, substituted or unsubstituted aryloxy having 6 to 50 ring carbon atoms, substituted or unsubstituted arylthio having 6 to
  • R 121 to R 127 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted group It is a heterocyclic group having 5 to 50 ring atoms. If R 121 ⁇ R 127 is present 2 or more, each of the two or more R 121 ⁇ R 127 may be the same or may be different. However, at least one of R 101 to R 110 which does not form a substituted or unsubstituted saturated or unsaturated ring is a group represented by the following formula (21).
  • L 101 is a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms.
  • Ar 101 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms.
  • R 101 to R 110 may form a substituted or unsubstituted saturated or unsaturated ring.
  • One pair of two or more adjacent of R 101 to R 110 is, for example, R 101 and R 102 , R 102 and R 103 , R 103 and R 104 , R 105 and R 106 , R 106 and R 107 , R 107 and R 108 , R 108 and R 109 , R 101 and R 102 and R 103, and the like.
  • Substituents at the time of “substitution” of “substituted or unsubstituted” with respect to the above saturated or unsaturated ring are the same as the above-mentioned optional substituents in the formula (2).
  • the “saturated or unsaturated ring” means, for example, when R 101 and R 102 form a ring, a carbon atom to which R 101 is bonded, a carbon atom to which R 102 is bonded, and one or more arbitrary elements And means a ring formed by Specifically, in the case where R 101 and R 102 form a ring, the carbon atom to which R 101 is bonded, the carbon atom to which R 102 is bonded, and four carbon atoms form an unsaturated ring.
  • the ring formed by R 101 and R 102 is a benzene ring.
  • the “arbitrary element” is preferably a C element, an N element, an O element, or an S element. In any element (for example, in the case of the element C or the element N), a bond which does not form a ring may be terminated by a hydrogen atom or the like.
  • the “one or more arbitrary elements” is preferably any two or more and fifteen or less, more preferably three or more and twelve or less, and still more preferably three or more and five or less.
  • R 101 and R 102 may form a ring, and R 105 and R 106 may simultaneously form a ring.
  • the compound represented by Formula (2) turns into a compound represented, for example by following formula (2A).
  • R 101 to R 110 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or no substituent. It is a substituted heterocyclic group having 5 to 50 ring atoms, or a group represented by the formula (21).
  • R 101 to R 110 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms. Or a group represented by formula (21).
  • R 101 to R 110 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 18 ring atoms. Or a group represented by formula (21).
  • At least one of R 109 and R 110 is preferably a group represented by Formula (21).
  • R 109 and R 110 are preferably each independently a group represented by Formula (21).
  • the compound represented by the above-mentioned formula (2) (hereinafter sometimes referred to as compound (2)) is a compound represented by the following formula (2-1).
  • R 101 to R 108 , L 101 and Ar 101 are as defined in the formula (2).
  • the compound (2) is a compound represented by the following formula (2-2).
  • R 101 , R 103 to R 108 , L 101 and Ar 101 are as defined in formula (2).
  • the compound (2) is a compound represented by the following formula (2-3).
  • R 101 ′ to R 108 ′ each independently represent a hydrogen atom or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • L 101 ′ is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.
  • the two L 101 's may be identical or different.
  • Ar 101 ′ is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the two Ar 101 's may be identical or different.
  • the compound (2) is a compound represented by the following formula (2-4).
  • R 101 ′ to R 108 ′ each independently represent a hydrogen atom or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • L 101 ′ is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.
  • L 101 ′ ′ is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted divalent heterocyclic group having 5 to 50 ring atoms.
  • Ar 101 ′ ′ is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted monovalent heterocyclic group having 5 to 50 ring atoms.
  • X 11 is O, S or N (R 61 ).
  • R 61 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. Any one of R 62 to R 69 is a bond that bonds to L 101 ′ .
  • R 62 to R 69 which are not bonded to L 101 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. It is. One or more adjacent pairs of R 62 to R 69 which do not bond to L 101 ′ may bond to each other to form a substituted or unsubstituted saturated or unsaturated ring.
  • the compound represented by the formula (2) is represented by the following formula (2-4A).
  • L 101 and Ar 101 are as defined in the formula (2).
  • R 101 ′ to R 108 ′ are each independently a hydrogen atom or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • X 11 is O, S or N (R 61 ).
  • R 61 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • R 62 ′ to R 69 ′ may form a substituted or unsubstituted saturated or unsaturated ring, and adjacent to R 62 ′ to R 69 ′ The two form a ring represented by the following formula (2-4A-1).
  • R 62 ′ to R 69 ′ which do not form a substituted or unsubstituted saturated or unsaturated ring are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted It is an aryl group having 6 to 50 ring carbon atoms.
  • R 70 to R 73 is a bond which bonds to L 101 .
  • R 70 to R 73 which are not bonded to L 101 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. is there. )
  • the compound (2) is selected from the group consisting of compounds represented by the following formulas (2-5-1) to (2-5-3).
  • L 101 is as defined in formula (2), and R 101 ′ to R 108 ′ and Ar 101 ′ are each represented by the formula (2- As defined in 3).
  • the compounds represented by the above formulas (2-5-1) to (2-5-3) are represented by the following formulas (2-5-1H) to (2-5-3H): Compound.
  • L 101 is as defined in the formula (2), and Ar 101 ′ is as defined in the formula (2-3). .
  • the compound (2) is a compound represented by the following formula (2-6).
  • L 101 and Ar 101 are as defined in formula (2).
  • R 101 ′ to R 108 ′ are as defined in the formula (2-4).
  • R 66 to R 69 are as defined in the above formula (2-4). However, R 66 and R 67 , R 67 and R 68 , and R 69 and R 67 are not bonded to each other to form a ring.
  • X 12 is O or S.
  • the compound represented by the above formula (2-6) is a compound represented by the following formula (2-6H).
  • L 101 and Ar 101 are as defined in formula (2).
  • R 66 to R 69 are as defined in the above formula (2-4). However, R 66 and R 67 , R 67 and R 68 , and R 69 and R 67 are not bonded to each other to form a ring.
  • X 12 is O or S.
  • the compound represented by the above formula (2-6H) is a compound represented by the following formula (2-6Ha).
  • L 101 and Ar 101 are as defined in formula (2).
  • X 12 is as defined in the formula (2-6).
  • the compound represented by the above formula (2-6Ha) is a compound represented by the following formula (2-6Hb-1) or (2-6Ha-2).
  • L 101 and Ar 101 are as defined in the formula (2).
  • X 12 is as defined in the formula (2-6).
  • the compound (2) is a compound represented by the following formula (2-7).
  • L 101 and Ar 101 are as defined in the formula (2).
  • R 101 ′ to R 108 ′ each independently represent a hydrogen atom or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. Any one of R 62 to R 69 is a bond that bonds to L 101 .
  • R 62 to R 69 which are not bonded to L 101 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. is there.
  • any one pair of R 66 and R 67 , R 67 and R 68 , and R 68 and R 69 is bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring. It is preferable that any one pair of R 66 and R 67 , R 67 and R 68 , and R 68 and R 69 be bonded to each other to form an unsubstituted benzene ring.
  • the compound represented by the formula (2-7) is a compound represented by the following formula (2-7H).
  • L 101 and Ar 101 are as defined in the formula (2).
  • R 62 to R 69 are as defined in the above formula (2-7).
  • any one pair of R 66 and R 67 , R 67 and R 68 , and R 68 and R 69 combine with each other to form a substituted or unsubstituted, saturated or unsaturated ring. It is preferable that any one pair of R 66 and R 67 , R 67 and R 68 , and R 68 and R 69 be bonded to each other to form an unsubstituted benzene ring.
  • the compound (2) is a compound represented by the following formula (2-8).
  • L 101 and Ar 101 are as defined in formula (2).
  • R 101 ′ to R 108 ′ are as defined in the formula (2-7).
  • R 66 to R 69 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • any one pair of R 66 and R 67 , R 67 and R 68 , or R 68 and R 69 is bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring.
  • any one pair of R 66 and R 67 , R 67 and R 68 , or R 68 and R 69 is bonded to each other to form a non-substituted benzene ring.
  • the compound represented by the above formula (2-8) is a compound represented by the following formula (2-8H).
  • L 101 and Ar 101 are as defined in the formula (2).
  • R 66 to R 69 are as defined in the above formula (2-8). However, any one pair of R 66 and R 67 , R 67 and R 68 , or R 68 and R 69 is bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring. Preferably, any one pair of R 66 and R 67 , R 67 and R 68 , or R 68 and R 69 is bonded to each other to form a non-substituted benzene ring.
  • any one pair of R 66 and R 67 , R 67 and R 68 , or R 68 and R 69 is bonded to each other to give a compound of the following formula (2-8-1) or (2-8) Form a ring represented by -2), R 66 to R 69 which do not form a ring represented by the above formula (2-8-1) or (2-8-2) do not form a substituted or unsubstituted saturated or unsaturated ring.
  • R 80 to R 83 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • X 13 is O or S.
  • the compound represented by the formula (2) is represented by the following formula (2-9).
  • L 101 and Ar 101 are as defined in the formula (2).
  • R 101 ′ to R 108 ′ are as defined in the formula (2-4).
  • R 66 to R 69 are as defined in the above formula (2-4). However, R 66 and R 67 , R 67 and R 68 , and R 69 and R 67 do not bind to each other, and do not form a substituted or unsubstituted saturated or unsaturated ring.
  • X 12 is O or S.
  • the compound (2) is selected from the group consisting of compounds represented by the following formulas (2-9-1) to (2-9-4).
  • L 101 is as defined in the formula (2).
  • Ar 101 ′ and R 101 ′ to R 108 ′ are as defined in the formula (2-4).
  • the compounds represented by the above formulas (2-9-1) to (2-9-4) are represented by the following formulas (2-9-1H) to (2-9-4H) Compound.
  • L 101 is as defined in the formula (2).
  • Ar 101 ′ is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the two Ar 101 's may be identical or different.
  • the content of the compound represented by the formula (1) is the light emission 1 mass% or more and 20 mass% or less are preferable with respect to the whole layer. In one embodiment, when the light emitting layer contains the compound represented by Formula (1) and the compound represented by Formula (2), the content of the compound represented by Formula (2) is 80 mass% or more and 99 mass% or less are preferable with respect to the whole light emitting layer.
  • the organic EL device includes a cathode, an anode, and an organic layer provided therebetween, the organic layer includes a light emitting layer, and at least one of the organic layers is a compound (1 )including.
  • the organic EL device includes an organic layer between a pair of electrodes consisting of a cathode and an anode.
  • the organic layer includes at least one layer composed of an organic compound.
  • the organic layer is formed by laminating a plurality of layers composed of organic compounds.
  • the organic layer may further contain an inorganic compound in addition to the organic compound.
  • at least one of the organic layers is a light emitting layer.
  • the organic layer may be configured as, for example, a light emitting layer as one layer, and may include other layers that can be adopted in the layer configuration of the organic EL element.
  • the layer that can be employed in the layer configuration of the organic EL element is not particularly limited, and, for example, a hole transport zone (hole transport layer, hole injection layer, or the like) provided between the anode and the light emitting layer Electron blocking layer, exciton blocking layer, etc., light emitting layer, space layer, electron transport zone (electron transporting layer, electron injection layer, hole blocking layer, etc.) provided between the cathode and the light emitting layer, etc. may be mentioned.
  • a hole transport zone hole transport layer, hole injection layer, or the like
  • the organic EL device may be, for example, a fluorescent or phosphorescent single-color light emitting device, or a fluorescent / phosphorescent hybrid white light emitting device.
  • it may be a simple type having a single light emitting unit or may be a tandem type having a plurality of light emitting units.
  • the “light emitting unit” described in the present specification includes an organic layer, and at least one of the organic layers is a light emitting layer, and light is emitted by recombination of injected holes and electrons. Say the smallest unit.
  • the “light emitting layer” described in the present specification is an organic layer having a light emitting function.
  • the light emitting layer is, for example, a phosphorescent light emitting layer, a fluorescent light emitting layer or the like, and may be a single layer or a plurality of layers.
  • the light emitting unit may be a laminated type having a plurality of phosphorescent light emitting layers or fluorescent light emitting layers, in which case, for example, a space layer for preventing excitons generated in the phosphorescent light emitting layer from diffusing into the fluorescent light emitting layer May be provided between each light emitting layer.
  • the layer configuration of the organic EL element according to one aspect of the present invention is not limited to these.
  • the organic EL element has a hole injection layer and a hole transport layer
  • a hole injection layer be provided between the hole transport layer and the anode.
  • an electron injection layer be provided between the electron transport layer and the cathode.
  • each of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer may be composed of one layer or may be composed of a plurality of layers.
  • the plurality of phosphorescent light emitting layers, and the phosphorescent light emitting layer and the fluorescent light emitting layer may be light emitting layers of different colors.
  • the light emitting unit (f) comprises: hole transport layer / first phosphorescence light emitting layer (red light emission) / second phosphorescence light emitting layer (green light emission) / space layer / fluorescent light emission layer (blue light emission) / electron transport layer
  • An electron blocking layer may be provided between each light emitting layer and the hole transport layer or the space layer.
  • a hole blocking layer may be provided between each light emitting layer and the electron transporting layer.
  • an element configuration such as an anode / first light emitting unit / intermediate layer / second light emitting unit / cathode is mentioned.
  • the first light emitting unit and the second light emitting unit can be, for example, independently selected from the light emitting units described above.
  • the intermediate layer is also generally referred to as an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, a connector layer, or an intermediate insulating layer.
  • the intermediate layer is a layer that supplies electrons to the first light emitting unit and holes to the second light emitting unit, and can be formed of a known material.
  • FIG. 1 the outline of an example of the laminated constitution of an organic EL element is shown.
  • the organic EL element 1 has a substrate 2, an anode 3, a cathode 4, and a light emitting unit (organic layer) 10 disposed between the anode 3 and the cathode 4.
  • the light emitting unit 10 has at least one light emitting layer 5.
  • electron transport zone (electron injection layer, electron transport layer etc.) between the light emitting layer 5 and the cathode 4 ) 7 may be formed.
  • an electron blocking layer (not shown) may be provided on the anode 3 side of the light emitting layer 5, and a hole blocking layer (not shown) may be provided on the cathode 4 side of the light emitting layer 5.
  • FIG. 2 schematically shows another example of the layer configuration of the organic EL element.
  • the hole transport layer of the hole transport zone 6 and the electron transport layer of the electron transport zone 7 of the light emitting unit 10 of the organic EL element 1 of FIG. It has a two-layer structure.
  • the hole transport zone 6 has a first hole transport layer 6 a on the anode side and a second hole transport layer 6 b on the cathode side.
  • the electron transport zone 7 has a first electron transport layer 7a on the anode side and a second hole transport layer 7b on the cathode side.
  • the other reference numerals are the same as those in FIG.
  • the substrate is used as a support of the organic EL element.
  • the substrate preferably has a light transmittance of 50% or more for light in the visible light region with a wavelength of 400 to 700 nm, and a smooth substrate is preferable.
  • the material of the substrate include soda lime glass, aluminosilicate glass, quartz glass, plastics and the like.
  • a flexible substrate can be used as the substrate.
  • the flexible substrate refers to a bendable (flexible) substrate, and examples thereof include a plastic substrate and the like.
  • the material for forming the plastic substrate include polycarbonate, polyarylate, polyether sulfone, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyimide, polyethylene naphthalate and the like.
  • an inorganic vapor deposition film can also be used.
  • anode As the anode, it is preferable to use, for example, metals, alloys, conductive compounds, mixtures thereof and the like, which have a large work function (specifically, 4.0 eV or more).
  • the material of the anode include indium oxide-tin oxide (ITO: Indium Tin Oxide), silicon or indium oxide-tin oxide containing silicon oxide, indium oxide-zinc oxide, tungsten oxide, oxide containing zinc oxide Indium, graphene and the like can be mentioned.
  • gold, silver, platinum, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, nitrides of these metals (for example, titanium nitride) and the like can be mentioned.
  • the anode is usually formed by depositing these materials on a substrate by sputtering.
  • indium oxide-zinc oxide can be formed by a sputtering method using a target to which 1 to 10% by mass of zinc oxide is added with respect to indium oxide.
  • indium oxide containing tungsten oxide or zinc oxide is formed using a target to which 0.5 to 5% by mass of tungsten oxide or 0.1 to 1% by mass of zinc oxide is added with respect to indium oxide And the sputtering method.
  • Examples of another method of forming the anode include a vacuum evaporation method, a coating method, an inkjet method, a spin coating method, and the like.
  • a coating method, an inkjet method, or the like can be used.
  • the hole injection layer formed in contact with the anode is formed using a material that facilitates hole injection regardless of the work function of the anode. Therefore, common electrode materials such as metals, alloys, conductive compounds, and mixtures thereof can be used for the anode.
  • alkali metals such as lithium and cesium; magnesium; alkaline earth metals such as calcium and strontium; alloys containing these metals (eg, magnesium-silver, aluminum-lithium); and rare earth metals such as europium and ytterbium Materials having a small work function such as alloys containing rare earth metals can also be used for the anode.
  • the hole injection layer is a layer containing a substance having a high hole injection property, and has a function of injecting holes from the anode to the organic layer.
  • the substance having a high hole injection property for example, molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide , Tungsten oxides, manganese oxides, aromatic amine compounds, electron-withdrawing (acceptor) compounds, polymer compounds (oligomers, dendrimers, polymers, etc.), and the like.
  • aromatic amine compounds and compounds having acceptor properties are preferable, and compounds having acceptor properties are more preferable.
  • aromatic amine compound examples include 4,4 ′, 4 ′ ′-tris (N, N-diphenylamino) triphenylamine (abbreviation: TDATA), 4,4 ′, 4 ′ ′-tris [N- (3) -Methylphenyl) -N-phenylamino] triphenylamine (abbreviation: MTDATA), 4,4′-bis [N- (4-diphenylaminophenyl) -N-phenylamino] biphenyl (abbr .: DPAB), 4, 4'-bis (N- ⁇ 4- [N '-(3-methylphenyl) -N'-phenylamino] phenyl ⁇ -N-phenylamino) biphenyl (abbreviation: DNTPD), 1,3,5-tris [ N- (4-Diphenylaminophenyl) -N-phenylamino] benzene (abbreviation: DPA3B
  • the acceptor compound for example, a heterocyclic derivative having an electron withdrawing group, a quinone derivative having an electron withdrawing group, an arylborane derivative, a heteroarylborane derivative and the like are preferable, and specific examples thereof include hexacyanohexaazatriphenylene, 2, 3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (abbreviation: F4TCNQ), 1,2,3-tris [(cyano) (4-cyano-2,3,5, 6-tetrafluorophenyl) methylene] cyclopropane and the like.
  • the hole injection layer preferably further contains a matrix material.
  • the matrix material materials known as materials for organic EL devices can be used.
  • an electron donating (donor) compound more preferably the above-mentioned aromatic amine compound is used .
  • the hole transport layer is a layer containing a substance having a high hole transportability, and has a function of transporting holes from the anode to the organic layer.
  • the substance having a high hole transporting property is preferably a substance having a hole mobility of 10 ⁇ 6 cm 2 / (V ⁇ s) or more, and, for example, an aromatic amine compound, a carbazole derivative, an anthracene derivative, high Molecular compounds and the like can be mentioned.
  • aromatic amine compound examples include 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB), N, N′-bis (3-methylphenyl)- N, N'-diphenyl- [1,1'-biphenyl] -4,4'-diamine (abbreviation: TPD), 4-phenyl-4 '-(9-phenylfluoren-9-yl) triphenylamine (abbreviation) : BAFLP), 4,4'-bis [N- (9,9-dimethylfluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: DFLDPBi), 4,4 ', 4 "-tris (N, N-diphenylamino) triphenylamine (abbreviation: TDATA), 4,4 ′, 4 ′ ′-tris [N- (3-methylphenyl) -N-phenyl
  • carbazole derivatives include 4,4′-di (9-carbazolyl) biphenyl (abbreviation: CBP), 9- [4- (9-carbazolyl) phenyl] -10-phenylanthracene (abbreviation: CzPA), 9 And -phenyl-3- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: PCzPA) and the like.
  • CBP 4,4′-di (9-carbazolyl) biphenyl
  • CzPA 9- [4- (9-carbazolyl) phenyl] -10-phenylanthracene
  • PCzPA 9 And -phenyl-3- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole
  • anthracene derivative examples include 2-t-butyl-9,10-di (2-naphthyl) anthracene (abbreviation: t-BuDNA), 9,10-di (2-naphthyl) anthracene (abbreviation: DNA), 9,10-diphenylanthracene (abbreviation: DPAnth) and the like.
  • polymer compound examples include poly (N-vinylcarbazole) (abbreviation: PVK), and poly (4-vinyltriphenylamine) (abbreviation: PVTPA).
  • the hole transport layer may be a single layer or two or more layers may be stacked. In this case, it is preferable to dispose a layer containing a substance having a large energy gap among substances having high hole transportability, on the side closer to the light emitting layer.
  • the light emitting layer is a layer containing a substance having high light emitting property (dopant material).
  • dopant material various materials can be used, and for example, a fluorescent compound (fluorescent dopant), a phosphorescent compound (phosphorescent dopant), and the like can be used.
  • a fluorescent compound is a compound capable of emitting light from a singlet excited state, and a light emitting layer including this is called a fluorescent light emitting layer.
  • a phosphorescent compound is a compound capable of emitting light from a triplet excited state, and a light emitting layer including this is called a phosphorescent light emitting layer.
  • the light emitting layer usually contains a dopant material and a host material for efficiently emitting the light.
  • the dopant material may be referred to as a guest material, an emitter, or a light emitting material in some documents.
  • the host material may also be referred to as the matrix material in the literature.
  • One light emitting layer may include a plurality of dopant materials and a plurality of host materials. In addition, a plurality of light emitting layers may be provided.
  • fluorescent hosts host materials combined with fluorescent dopants
  • phosphorescent hosts host materials combined with phosphorescent dopants
  • the fluorescent host and the phosphorescent host are not distinguished only by the molecular structure.
  • the phosphorescent host is a material for forming a phosphorescent light emitting layer containing a phosphorescent dopant, but does not mean that it can not be used as a material for forming a fluorescent light emitting layer. The same is true for fluorescent hosts.
  • the light emitting layer preferably contains the compound (1), more preferably as a dopant material. Moreover, it is preferable that a compound (1) is contained in a light emitting layer as a fluorescence dopant.
  • the content of the compound (1) in the light emitting layer as a dopant material is not particularly limited, but is preferably, for example, 0.1 to 70% by mass from the viewpoint of sufficient light emission and concentration quenching.
  • the amount is more preferably 0.1 to 30% by mass, still more preferably 1 to 30% by mass, still more preferably 1 to 20% by mass, and particularly preferably 1 to 10% by mass.
  • fluorescent dopants other than the compound (1) include fused polycyclic aromatic derivatives, styrylamine derivatives, fused ring amine derivatives, boron-containing compounds, pyrrole derivatives, indole derivatives, carbazole derivatives and the like. Among these, fused ring amine derivatives, boron-containing compounds, and carbazole derivatives are preferable.
  • fused ring amine derivative examples include diaminopyrene derivatives, diaminochrysene derivatives, diaminoanthracene derivatives, diaminofluorene derivatives, diaminofluorene derivatives in which one or more benzofuro skeletons are condensed, and the like.
  • diaminopyrene derivatives diaminochrysene derivatives, diaminoanthracene derivatives, diaminofluorene derivatives, diaminofluorene derivatives in which one or more benzofuro skeletons are condensed, and the like.
  • a boron containing compound a pyrromethene derivative, a triphenyl borane derivative, etc. are mentioned, for example.
  • blue-based fluorescent dopants include pyrene derivatives, styrylamine derivatives, chrysene derivatives, fluoranthene derivatives, fluorene derivatives, diamine derivatives, triarylamine derivatives and the like.
  • N, N'-bis [4- (9H-carbazol-9-yl) phenyl] -N, N'-diphenylstilbene-4,4'-diamine (abbreviation: YGA2S)
  • 4- (9H) -Carbazol-9-yl) -4 '-(10-phenyl-9-anthryl) triphenylamine (abbreviation: YGAPA)
  • 4- (10-phenyl-9-anthryl) -4'-(9-phenyl-9H) And -carbazol-3-yl) triphenylamine abbreviation: PCBAPA
  • green-based fluorescent dopants include aromatic amine derivatives. Specifically, N- (9,10-diphenyl-2-anthryl) -N, 9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCAPA), N- [9,10-bis (1,1) '-Biphenyl-2-yl) -2-anthryl] -N, 9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCABPhA), N- (9,10-diphenyl-2-anthryl) -N, N ', N'-triphenyl-1,4-phenylenediamine (abbreviation: 2DPAPA), N- [9,10-bis (1,1'-biphenyl-2-yl) -2-anthryl] -N, N' N'-triphenyl-1,4-phenylenediamine (abbreviation: 2DPABPhA), N- [9,10-bis (1,1'
  • red-based fluorescent dopants examples include tetracene derivatives and diamine derivatives. Specifically, N, N, N ', N'-tetrakis (4-methylphenyl) tetracene-5,11-diamine (abbreviation: p-mPhTD), 7,14-diphenyl-N, N, N', N'-tetrakis (4-methylphenyl) acenaphtho [1,2-a] fluoranthene-3,10-diamine (abbreviation: p-mPhAFD) and the like can be mentioned.
  • p-mPhTD N, N, N ', N'-tetrakis (4-methylphenyl) tetracene-5,11-diamine
  • p-mPhTD 7,14-diphenyl-N
  • the phosphorescent dopant includes, for example, a phosphorescent heavy metal complex and a phosphorescent rare earth metal complex.
  • a heavy metal complex an iridium complex, an osmium complex, a platinum complex etc. are mentioned, for example.
  • the heavy metal complex is preferably an orthometalated complex of a metal selected from iridium, osmium and platinum.
  • a rare earth metal complex a terbium complex, a europium complex, etc. are mentioned, for example.
  • These rare earth metal complexes are preferred as phosphorescent dopants because the rare earth metal ions emit light due to electronic transitions between different multiplicitys.
  • an iridium complex As a blue type phosphorescence dopant, an iridium complex, an osmium complex, a platinum complex etc. are mentioned, for example.
  • an iridium complex etc. are mentioned, for example. Specifically, tris (2-phenylpyridinato-N, C2 ') iridium (III) (abbreviation: Ir (ppy) 3 ), bis (2-phenylpyridinato-N, C2') iridium (III) ) Acetylacetonate (abbreviation: Ir (ppy) 2 (acac)), bis (1,2-diphenyl-1H-benzoimidazolato) iridium (III) acetylacetonate (abbreviation: Ir (pbi) 2 (acac)) And bis (benzo [h] quinolinato) iridium (III) acetylacetonate (abbreviation: Ir (bzq) 2 (acac)).
  • red-based phosphorescent dopants include iridium complexes, platinum complexes, terbium complexes, and europium complexes. Specifically, bis [2- (2′-benzo [4,5- ⁇ ] thienyl) pyridinato-N, C3 ′] iridium (III) acetylacetonate (abbreviation: Ir (btp) 2 (acac)), Bis (1-phenylisoquinolinato-N, C2 ') iridium (III) acetylacetonate (abbreviation: Ir (piq) 2 (acac)), (acetylacetonato) bis [2,3-bis (4-fluoro) Phenyl) quinoxarinato] iridium (III) (abbreviation: Ir (Fdpq) 2 (acac)), 2,3,7,8,12,13,17,18-octaethyl-21H, 23H
  • Host materials include, for example, metal complexes such as aluminum complexes, beryllium complexes and zinc complexes; indole derivatives, pyridine derivatives, pyrimidine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, isoquinoline derivatives, quinazoline derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, oxadi Heterocyclic compounds such as azole derivatives, benzimidazole derivatives, phenanthroline derivatives; naphthalene derivatives, triphenylene derivatives, carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, chrysene derivatives, naphthacene derivatives, condensed aromatic compounds such as fluoranthene derivatives; And aromatic amine compounds such as amine derivatives and condensed polycyclic aromatic amine derivatives.
  • a host material may use
  • the metal complex examples include tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), tris (4-methyl-8-quinolinolato) aluminum (III) (abbreviation: Almq3), and bis (10-hydroxybenzo) [H] Quinolinato) beryllium (II) (abbreviation: BeBq 2), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq), bis (8-quinolinolato) zinc (h) II) (abbreviation: Znq), bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ) and the like.
  • BeBq bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (
  • heterocyclic compound examples include 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis [5 -(P-tert-butylphenyl) -1,3,4-oxadiazol-2-yl] benzene (abbreviation: OXD-7), 3- (4-biphenylyl) -4-phenyl-5- (4-) tert-Butylphenyl) -1,2,4-triazole (abbreviation: TAZ), 2,2 ′, 2 ′ ′-(1,3,5-benzenetriyl) tris (1-phenyl-1H-benzimidazole) (Abbreviation: TPBI), bathophenanthroline (abbreviation: BPhen), vasocuproin (abbreviation: BCP), and the like.
  • PBD 2- (4-biphenylyl) -5- (4
  • fused aromatic compound examples include 9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: CzPA), 3,6-diphenyl-9- [4- (10-) Phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: DPCzPA), 9,10-bis (3,5-diphenylphenyl) anthracene (abbreviation: DPPA), 9,10-di (2-naphthyl) anthracene (abbreviation: DPPA) Abbreviations: DNA), 2-tert-butyl-9,10-di (2-naphthyl) anthracene (abbreviation: t-BuDNA), 9,9'-bianthryl (abbreviation: BANT), 9,9 '-(stilbene- 3,3'-diyl) diphenanthrene (abbreviation: DPNS), 9,
  • aromatic amine compound examples include N, N-diphenyl-9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: CzA1PA), 4- (10) -Phenyl-9-anthryl) triphenylamine (abbreviation: DPhPA), N, 9-diphenyl-N- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: PCAPAP) N) 9-Diphenyl-N- ⁇ 4- [4- (10-phenyl-9-anthryl) phenyl] phenyl ⁇ -9H-carbazol-3-amine (abbreviation: PCAPBA), N- (9, 10-) Diphenyl-2-anthryl) -N, 9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCAPA), 4,4'-bis [N- (1
  • the fluorescent host is preferably a compound having a singlet level higher than that of the fluorescent dopant, and examples thereof include heterocyclic compounds and fused aromatic compounds.
  • the fused aromatic compound for example, anthracene derivatives, pyrene derivatives, chrysene derivatives, naphthacene derivatives and the like are preferable.
  • the phosphorescent host is preferably a compound having a triplet level higher than that of the phosphorescent dopant, and examples thereof include metal complexes, heterocyclic compounds, fused aromatic compounds and the like.
  • metal complexes for example, indole derivatives, carbazole derivatives, pyridine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, isoquinoline derivatives, quinazoline derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, naphthalene derivatives, triphenylene derivatives, phenanthrene derivatives, fluoranthene derivatives, etc. preferable.
  • the electron transporting layer is a layer containing a substance having a high electron transporting property.
  • the substance having a high electron transporting property is preferably a substance having an electron mobility of 10 -6 cm 2 / Vs or more, and, for example, a metal complex, an aromatic heterocyclic compound, an aromatic hydrocarbon compound, a polymer compound Etc.
  • an aluminum complex As a metal complex, an aluminum complex, a beryllium complex, a zinc complex etc. are mentioned, for example.
  • tris (8-quinolinolato) aluminum (III) abbreviation: Alq
  • tris (4-methyl-8-quinolinolato) aluminum abbreviation: Almq3
  • bis (10-hydroxybenzo [h] quinolinato) beryllium Abbreviation: BeBq2
  • bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) abbreviation: BAlq
  • bis (8-quinolinolato) zinc (II) abbreviation: Znq
  • bis Examples thereof include [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ) and the like.
  • aromatic heterocyclic compounds include imidazole derivatives such as benzimidazole derivatives, imidazopyridine derivatives and benzimidazophenanthridine derivatives; azine derivatives such as pyrimidine derivatives and triazine derivatives; quinoline derivatives, isoquinoline derivatives, phenanthroline derivatives and the like Examples thereof include compounds having a nitrogen six-membered ring structure (including a compound having a phosphine oxide-based substituent in a heterocycle).
  • an aromatic hydrocarbon compound an anthracene derivative, a fluoranthene derivative, etc. are mentioned, for example.
  • polymer compound examples include poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF-Py), poly [(9) , 9-dioctylfluorene-2,7-diyl) -co- (2,2'-bipyridine-6,6'-diyl)] (abbreviation: PF-BPy) and the like.
  • the electron transport layer may be a single layer, or two or more layers may be stacked. In this case, it is preferable to dispose a layer containing a substance having a larger energy gap among substances having a high electron-transport property on the side closer to the light emitting layer.
  • the configuration may include a first electron transport layer 7 a on the anode side and a second electron transport layer 7 b on the cathode side.
  • the electron transport layer examples include metals such as alkali metals, magnesium, alkaline earth metals, and alloys containing two or more of these metals; alkali metal compounds such as 8-quinolinolatolithium (abbr .: Liq); Metal compounds such as alkaline earth metal compounds may be included.
  • a metal such as an alkali metal, magnesium, an alkaline earth metal, or an alloy containing two or more of these metals is contained in the electron transport layer, the content thereof is not particularly limited, but The content is preferably 1 to 50% by mass, more preferably 0.1 to 20% by mass, and still more preferably 1 to 10% by mass.
  • the content is preferably 1 to 99% by mass, more preferably 10 to 90% by mass It is.
  • the layer in the light emitting layer side in case an electron carrying layer is multiple layers can also be formed only with these metal compounds.
  • the electron injecting layer is a layer containing a substance having a high electron injecting property, and has a function of efficiently injecting electrons from the cathode to the light emitting layer.
  • the substance having a high electron injecting property include alkali metals, magnesium, alkaline earth metals, and compounds thereof. Specifically, lithium, cesium, calcium, lithium fluoride, cesium fluoride, calcium fluoride, lithium oxide and the like can be mentioned.
  • an alkali metal, magnesium, an alkaline earth metal, or a compound in which these compounds are contained in a substance having an electron transporting property for example, a compound in which magnesium is contained in Alq can be used.
  • a composite material containing an organic compound and a compound having a donor property can also be used for the electron injecting layer.
  • Such a composite material is excellent in electron injecting property and electron transporting property because the organic compound receives electrons from the donor compound.
  • the organic compound a substance excellent in the transport property of the received electron is preferable.
  • the above-described metal complex having high electron transport property, an aromatic heterocyclic compound, and the like can be used.
  • the donor compound may be any substance capable of donating electrons to the organic compound, and examples thereof include alkali metals, magnesium, alkaline earth metals, and rare earth metals. Specifically, lithium, cesium, magnesium, calcium, erbium, ytterbium and the like can be mentioned.
  • alkali metal oxides and alkaline earth metal oxides are preferable, and specifically, lithium oxide, calcium oxide, barium oxide and the like can be mentioned. Also, Lewis bases such as magnesium oxide can be used. Alternatively, an organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
  • TTF tetrathiafulvalene
  • the cathode is preferably a metal, an alloy, a conductive compound, a mixture thereof, or the like, which has a small work function (specifically, 3.8 eV or less).
  • Materials of the cathode include, for example, alkali metals such as lithium and cesium; magnesium; alkaline earth metals such as calcium and strontium; alloys containing these metals (for example, magnesium-silver, aluminum-lithium); europium, ytterbium, etc. Rare earth metals; and alloys containing the rare earth metals.
  • the cathode is usually formed by vacuum evaporation or sputtering. In the case of using a silver paste or the like, a coating method, an inkjet method, or the like can be used.
  • the cathode is formed using various conductive materials, such as aluminum, silver, ITO, graphene, indium oxide-tin oxide containing silicon or silicon oxide, regardless of the magnitude of work function. It can be formed. These conductive materials can be deposited by a sputtering method, an inkjet method, a spin coating method, or the like.
  • a thin film insulating layer may be inserted between the pair of electrodes.
  • the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, oxide Silicon, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide and the like can be mentioned.
  • a mixture of these may be used, or a stack of a plurality of layers containing these substances may be used.
  • the space layer when laminating a fluorescent light emitting layer and a phosphorescent light emitting layer, the space layer is used to prevent diffusion of excitons generated in the phosphorescent light emitting layer to the fluorescent light emitting layer or to adjust carrier balance.
  • a space layer can also be provided between multiple phosphorescent light emitting layers. Since the space layer is provided between a plurality of light emitting layers, it is preferable that the space layer be formed of a substance having both electron transporting property and hole transporting property. From the viewpoint of preventing the diffusion of triplet energy in the adjacent phosphorescent light emitting layer, the triplet energy is preferably 2.6 eV or more.
  • the substance used for a space layer the thing similar to the substance used for the hole transport layer mentioned above is mentioned.
  • An electron blocking layer, a hole blocking layer, an exciton (triplet) blocking layer, and the like may be provided adjacent to the light emitting layer.
  • the electron blocking layer is a layer having a function of blocking the leakage of electrons from the light emitting layer to the hole transport layer.
  • the hole blocking layer is a layer having a function of blocking the leakage of holes from the light emitting layer to the electron transporting layer.
  • the exciton blocking layer is a layer having a function of blocking the diffusion of excitons generated in the light emitting layer to the adjacent layer and confining the excitons in the light emitting layer.
  • the formation method of each layer of the organic EL element is not particularly limited unless otherwise described.
  • a formation method a known method such as a dry film formation method or a wet film formation method can be used.
  • Specific examples of the dry film forming method include a vacuum evaporation method, a sputtering method, a plasma method, an ion plating method and the like.
  • Specific examples of the wet film formation method include various coating methods such as spin coating method, dipping method, flow coating method, and ink jet method.
  • the film thickness of each layer of the organic EL element is not particularly limited unless otherwise described. If the film thickness is too small, defects such as pinholes are likely to occur, and sufficient light emission luminance can not be obtained. On the other hand, if the film thickness is too large, a high drive voltage is required and the efficiency is reduced. From such a viewpoint, the film thickness is usually preferably 5 nm to 10 ⁇ m, more preferably 10 nm to 0.2 ⁇ m.
  • An electronic device includes the organic EL element according to the aspect of the present invention described above.
  • Specific examples of the electronic device include display components such as an organic EL panel module; display devices such as a television, a mobile phone, a smartphone, and a personal computer; lighting; and light emitting devices of vehicle lamps.
  • the obtained residue was purified by silica gel column chromatography to give compound 1 (37 mg, yield 69%).
  • PLQY Fluorescence quantum yield
  • a toluene solution was prepared and evaluated for each of the compounds obtained in Examples 2 to 24 in the same manner as in Example 1. The results are shown in Table 1.
  • the obtained residue was purified by silica gel column chromatography to obtain Intermediate 4A (2.4 g, yield 46%).
  • the obtained residue was purified by silica gel column chromatography to obtain compound 4A (67 mg, yield 20%).
  • the obtained residue was purified by silica gel column chromatography to obtain compound 1D (0.54 g, yield 47%).
  • the obtained residue was purified by silica gel column chromatography and recrystallization to give compound 1E (1.27 g, yield 87%).
  • the obtained residue was purified by silica gel column chromatography and recrystallization to obtain Intermediate 5B (5.4 g, yield 86%).
  • the target product had a molecular weight of 500.54, and the mass spectrum analysis result of the obtained compound was identified as the target product because m / z (ratio of mass to charge) was 500.
  • the resulting reaction solution is cooled to room temperature and extracted with toluene, and then the organic phase is washed with water and dried over anhydrous sodium sulfate, and the solvent is evaporated under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography to obtain compound 5A (0.3 g, yield 33%).
  • the obtained residue was purified by silica gel column chromatography and recrystallization to give compound 2D (0.24 g, yield 30%).
  • the obtained residue was recrystallized with dioxane to give compound 2F (2.1 g, yield 40%).
  • the obtained residue was recrystallized with dioxane, dimethylformamide, dimethylacetamide or the like to give compound 2F (4.4 g, yield 55%).
  • the resulting reaction solution is cooled to room temperature and extracted with toluene, and then the organic phase is washed with water and dried over anhydrous sodium sulfate, and the solvent is evaporated under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography to obtain Intermediate 2E (9.7 g, yield 77%).
  • the resulting reaction solution was cooled to room temperature, filtered through a short column packed with silica gel, and the solvent was evaporated under reduced pressure.
  • the obtained residue was recrystallized with dioxane and cyclohexane to give compound 2H (5.0 g, yield 79%).
  • the obtained residue was recrystallized with isopropyl alcohol, dimethylacetamide, cyclohexanone and the like to give compound 2I (0.85 g, yield 20%).
  • the obtained residue was purified by silica gel column chromatography and recrystallization to obtain Intermediate 2H (82 g, yield 52%).
  • the obtained residue was recrystallized with cyclohexane, dimethylacetamide, tert-amyl alcohol and the like to give compound 2J (0.67 g, yield 13%).
  • the obtained residue was recrystallized with dioxane, tert-butanol, ethyl acetate, cyclohexane, isopropyl alcohol, chloroform or the like to give compound 3E (2.9 g, yield 39%).
  • the resulting reaction solution was cooled to room temperature, filtered through celite, and the solvent was evaporated under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography to obtain Intermediate 3E (10 g, yield 96%).
  • the obtained residue was recrystallized with dioxane, cyclohexane, dibutyl ether, chloroform or the like to give compound 3F (2.1 g, yield 28%).
  • Comparative Examples 1 to 3 A toluene solution was prepared and evaluated in the same manner as in Example 1 using the following Comparative Examples 1 to 3. The results are shown in Table 1.
  • Examples 1 to 24 had higher values of fluorescence quantum yield (PLQY) compared to Comparative Examples 1 to 3. In addition, in Examples 1 to 24, compared with Comparative Examples 1 to 3, a fluorescence spectrum having a long fluorescence peak wavelength (FL-peak) and high blue purity was obtained.
  • PLQY fluorescence quantum yield
  • Example 25 ⁇ Fabrication of organic EL element> A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick ITO transparent electrode (anode) -attached glass substrate (manufactured by Geomatec) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. The film thickness of ITO was 130 nm. The cleaned glass substrate is mounted on a substrate holder of a vacuum deposition apparatus, and first, compound HI-1 is deposited on the surface on which the transparent electrode line is formed so as to cover the transparent electrode, and the film thickness is 5 nm. A hole injection layer was formed.
  • the compound HT-1 was vapor-deposited to form a first hole transport layer with a thickness of 80 nm.
  • the compound HT-2 was vapor-deposited on the first hole transport layer to form a 10-nm-thick second hole transport layer.
  • a combination of compound 2E (dopant material) and compound BH-1 (host material) is co-evaporated so that the ratio (weight ratio) of the dopant material is 2%.
  • a light emitting layer with a film thickness of 25 nm was formed.
  • ET-1 was vapor-deposited on the light emitting layer to form a first electron transporting layer having a thickness of 10 nm.
  • ET-2 was vapor-deposited on the first electron transport layer to form a second electron transport layer having a thickness of 15 nm.
  • lithium fluoride (LiF) was vapor-deposited on the second electron transport layer to form an electron injecting electrode with a thickness of 1 nm.
  • metal aluminum (Al) was vapor-deposited on the electron injecting electrode to form a metal cathode having a thickness of 80 nm.
  • Examples 26 to 32 and Comparative Examples 4 to 10 An organic EL device was produced and evaluated in the same manner as in Example 25 except that the host material (BH) and the dopant material (BD) shown in Table 2 below were used. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

下記式(1)で表される化合物。

Description

新規化合物及び有機エレクトロルミネッセンス素子
 本発明は、新規化合物及びそれを用いた有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス素子(以下、有機EL素子ということがある)に電圧を印加すると、陽極から正孔が、また陰極から電子が、それぞれ発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。
 有機EL素子は、陽極と陰極の間に、発光層を含む。また、正孔注入層、正孔輸送層、電子注入層、電子輸送層等の有機層を含む積層構造を有する場合もある。
 特許文献1~3には、有機エレクトロルミネッセンス素子用材料として使用する化合物が開示されている。
WO2006122630A1 特開2010-045281号公報 特開2012-028548号公報
 本発明の目的は、蛍光量子収率が高く、有機エレクトロルミネッセンス素子用材料として使用できる新規化合物、及びそれを用いた有機エレクトロルミネッセンス素子を提供することである。
 本発明の一態様によれば、下記式(1)で表される化合物が提供される。
Figure JPOXMLDOC01-appb-C000024
[式(1)中、
 R及びR、R及びR、並びにR及びRのうちの1組は、下記式(11)で表される2価の基とそれぞれ結合する結合手である。
Figure JPOXMLDOC01-appb-C000025
 X及びXは、それぞれ独立に、O、S又はC(R’)である。
 R11及びR12、R12及びR13、並びにR13及びR14のうちの少なくとも1組は、下記式(12a)で表される2価の基とそれぞれ結合する結合手である。
 R及びR、R及びR、並びにR及びRのうちの少なくとも1組は、下記式(12b)で表される2価の基とそれぞれ結合する結合手である。
 下記式(12a)及び(12b)で表される2価の基が複数存在する場合、複数の下記式(12a)及び(12b)で表される2価の基は同一であってもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000026
 R’、R21~R28、前記式(11)で表される2価の基と結合する結合手ではないR~R、前記式(12a)で表される2価の基と結合する結合手ではないR11~R14、及び前記式(12b)で表される2価の基と結合する結合手ではないR~Rは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R31)(R32)(R33)、-C(=O)R34、-COOR35、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(13)で表される基を示す。
 但し、R21~R28、前記式(11)で表される2価の基と結合する結合手ではないR~R、前記式(12a)で表される2価の基と結合する結合手ではないR11~R14、及び前記式(12b)で表される2価の基と結合する結合手ではないR~Rのうちの少なくとも1つは、下記式(13)で表される基である。
 2つのR’は、同一であってもよいし、異なっていてもよい。
 R31~R35は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R31~R35が複数存在する場合、複数のR31~R35のそれぞれは同一でもよく、異なっていてもよい。
 下記式(13)で表される基が複数存在する場合、複数存在する下記式(13)で表される基は同一であってもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000027
(式(13)中、
 L~Lは、それぞれ独立に、単結合、置換もしくは無置換の炭素数1~30のアルキレン基、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
 Ar及びArは、それぞれ独立に、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基であり、ArとArは単結合で、又は-O-、-S-もしくは-C(R)-を介して互いに結合してもよい。
 Rは置換基であり、2つのRは互いに同一でもよいし、異なっていてもよい。)]
 本発明の一態様によれば、上記式(1)で表される化合物を含む有機エレクトロルミネッセンス素子用材料が提供される。
 本発明の一態様によれば、
 陰極と、
 陽極と、
 前記陰極と前記陽極との間に配置された少なくとも1層の有機層と、
を有し、
 前記少なくとも1層の有機層のうちの少なくとも1層が、前記式(1)で表される化合物を含有する有機エレクトロルミネッセンス素子が提供される。
 本発明の一態様によれば、前記有機エレクトロルミネッセンス素子を備える電子器機が提供される。
 本発明によれば、蛍光量子収率が高く、有機エレクトロルミネッセンス素子用材料として使用できる新規化合物が提供できる。
本発明の有機EL素子の一実施形態の概略構成を示す図である。 本発明の有機EL素子の別の実施形態の概略構成を示す図である。
 本明細書において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、三重水素(tritium)、を包含する。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば環を構成する原子の結合手を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環は環形成原子数が10であり、フラン環の環形成原子数が5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表すものであり、置換されている場合の置換基の炭素数は含めない。ここで、「YY」は「XX」よりも大きく、「XX」と「YY」はそれぞれ1以上の整数を意味する。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表すものであり、置換されている場合の置換基の原子数は含めない。ここで、「YY」は「XX」よりも大きく、「XX」と「YY」はそれぞれ1以上の整数を意味する。
 「置換もしくは無置換の」という場合における「無置換」とは前記置換基で置換されておらず、水素原子が結合していることを意味する。
 本明細書における各置換基の具体例としては、以下のものが挙げられる。
 無置換の炭素数1~50(好ましくは1~30、より好ましくは1~18、さらに好ましくは1~5)のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられる。
 置換された炭素数1~50(好ましくは1~30、より好ましくは1~18、さらに好ましくは1~5)のアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒドロキシ-t-ブチル基、1,2,3-トリヒドロキシプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ-t-ブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプロピル基、2,3-ジブロモ-t-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジヨードエチル基、1,3-ジヨードイソプロピル基、2,3-ジヨード-t-ブチル基、1,2,3-トリヨードプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプロピル基、2,3-ジシアノ-t-ブチル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソブチル基、1,2-ジニトロエチル基、1,3-ジニトロイソプロピル基、2,3-ジニトロ-t-ブチル基、1,2,3-トリニトロプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基等が挙げられる。
 置換もしくは無置換の炭素数1~50のハロアルキル基は、上記アルキル基の水素原子の1つ以上がハロゲン原子で置換された基である。置換もしくは無置換の炭素数1~50のハロアルキル基としては、上記置換もしくは無置換の炭素数1~50のアルキル基において、1つ以上のハロゲン原子が置換した基が挙げられる。
 無置換の炭素数2~50(好ましくは2~30、より好ましくは2~18)のアルケニル基としては、ビニル基、アリル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1,3-ブタンジエニル基、1-メチルビニル基、1-メチルアリル基、1,1-ジメチルアリル基、2-メチルアリル基、1,2-ジメチルアリル基等が挙げられる。
 無置換の炭素数2~50(好ましくは2~30、より好ましくは2~18)のアルキニル基としては、エチニル基等が挙げられる。
 無置換の環形成炭素数3~50(好ましくは3~30、より好ましくは3~18、さらに好ましくは3~6)のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等が挙げられる。
 無置換の炭素数1~50(好ましくは1~30、より好ましくは1~18)のアルコキシ基は-OXで表され、Xとしては、例えば、上記の炭素数1~50のアルキル基が挙げられる。
 無置換の炭素数1~50の(好ましくは1~30、より好ましくは1~18)のアルキルチオ基は-SXで表され、Xとしては、例えば、上記の炭素数1~50のアルキル基が挙げられる。
 無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~18)のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-ナフタセニル基、9-ナフタセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、p-テルフェニル4-イル基、p-テルフェニル3-イル基、p-テルフェニル2-イル基、m-テルフェニル4-イル基、m-テルフェニル3-イル基、m-テルフェニル2-イル基、フルオレニル基等が挙げられる。
 これらの中で、好ましくはフェニル基、ナフチル基、ビフェニルイル基、テルフェニル基、ピレニル基、フェナントリル基及びフルオレニル基であり、より好ましくはフェニル基、ナフチル基、ビフェニルイル基、テルフェニル基、ピレニル基及びフルオレニル基である。
 置換された環形成炭素数6~50(好ましくは6~30、より好ましくは6~18)のアリール基としては、例えば、o-トリル基、m-トリル基、p-トリル基、パラ-イソプロピルフェニル基、メタ-イソプロピルフェニル基、オルト-イソプロピルフェニル基、p-t-ブチルフェニル基、メタ-t-ブチルフェニル基、オルト-t-ブチルフェニル基、3,4,5-トリメチルフェニル基、4-フェノキシフェニル基、4-メトキシフェニル基、3,4-ジメトキシフェニル基、3,4,5-トリメトキシフェニル基、4-(フェニルスルファニル)フェニル基、4-(メチルスルファニル)フェニル基、N',N'-ジメチル-N-フェニル基、N',N'-ジメチル-N-フェニル基、2,6-ジメチルフェニル基、(2-フェニルプロピル)フェニル基、3-メチル-2-ナフチル基、4-メチル-1-ナフチル基、4-メチル-1-アントリル基、4’-メチルビフェニルイル基、4”-t-ブチル-p-テルフェニル4-イル基、9,9-ジメチルフルオレニル基、9,9-ジフェニルフルオレニル基、9,9’-スピロビフルオレニル基、9,9-ジ(4-メチルフェニル)フルオレニル基、9,9-ジ(4-イソプロピルフェニル)フルオレニル基、9,9-ジ(4-tブチルフェニル)フルオレニル基、クリセニル基、フルオランテニル基等が挙げられる。
 無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~18)のアリーレン基としては、例えば、上記に例示された環形成炭素数6~50のアリール基を構成する芳香族炭化水素環から形成される2価の基が挙げられる。
 無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~18)のアリールオキシ基は-OYで表され、Yとしては、例えば、上記の環形成炭素数6~50のアリール基が挙げられる。
 無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~18)のアリールチオ基は-SYで表され、Yとしては、例えば、上記の環形成炭素数6~50のアリール基が挙げられる。
 無置換の炭素数7~50(好ましくは7~30、より好ましくは7~18)のアラルキル基としては、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基等が挙げられる。
 置換された炭素数7~50(好ましくは7~30、より好ましくは7~18)のアラルキル基としては、例えば、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基等が挙げられる。
 無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~18)の1価の複素環基としては、ピロリル基、ピラジニル基、ピリジニル基、インドリル基、イソインドリル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、ジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、カルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、及びチエニル基等、並びにピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、インドール環、キノリン環、アクリジン環、ピロリジン環、ジオキサン環、ピペリジン環、モルフォリン環、ピペラジン環、カルバゾール環、フラン環、チオフェン環、オキサゾール環、オキサジアゾール環、ベンゾオキサゾール環、チアゾール環、チアジアゾール環、ベンゾチアゾール環、トリアゾール環、イミダゾール環、ベンゾイミダゾール環、ピラン環、ジベンゾフラン環、ベンゾ[a]ジベンゾフラン環、ベンゾ[b]ジベンゾフラン環及びベンゾ[c]ジベンゾフラン環、1,3-ベンゾジオキソール環、2,3-ジヒドロ-1,4-ベンゾジオキシン環、フェナントロ[4,5-bcd]フラン環、ベンゾフェノキサジン環等から形成される1価の基が挙げられる。
 尚、複素環基を構成するヘテロ原子としては、S、O及びN等の典型的なヘテロ原子の他、Si、Ge及びSe等も挙げられる。
 無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~18)の2価の複素環基としては、上記に例示された基及び1価の複素環等から形成される2価の基が挙げられる。
 置換もしくは無置換の環形成原子数5~50の1価の複素環基としては、以下の基も含まれる。また、環形成原子数5~50の2価の複素環基としては、以下の基を2価の基にした基も含まれる。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
(式中、X1A~X6A,Y1A~Y6Aはそれぞれ酸素原子、硫黄原子、-NZ-基、又は-NH-基である。Zは、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は置換もしくは無置換の炭素数1~50のアルキル基である。Zが2以上存在する場合、2以上のZは同一でもよく、異なっていてもよい。)
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 本発明の一態様による新規化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000030
[式(1)中、
 R及びR、R及びR、並びにR及びRのうちの1組は、下記式(11)で表される2価の基とそれぞれ結合する結合手である。
Figure JPOXMLDOC01-appb-C000031
 X及びXは、それぞれ独立に、O、S又はC(R’)である。
 R11及びR12、R12及びR13、並びにR13及びR14のうちの少なくとも1組は、下記式(12a)で表される2価の基とそれぞれ結合する結合手である。
 R及びR、R及びR、並びにR及びRのうちの少なくとも1組は、下記式(12b)で表される2価の基とそれぞれ結合する結合手である。
 下記式(12a)及び(12b)で表される2価の基が複数存在する場合、複数の下記式(12a)及び(12b)で表される2価の基は同一であってもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000032
 R’、R21~R28、前記式(11)で表される2価の基と結合する結合手ではないR~R、前記式(12a)で表される2価の基と結合する結合手ではないR11~R14、及び前記式(12b)で表される2価の基と結合する結合手ではないR~Rは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R31)(R32)(R33)、-C(=O)R34、-COOR35、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(13)で表される基を示す。
 但し、R21~R28、前記式(11)で表される2価の基と結合する結合手ではないR~R、前記式(12a)で表される2価の基と結合する結合手ではないR11~R14、及び前記式(12b)で表される2価の基と結合する結合手ではないR~Rのうちの少なくとも1つは、下記式(13)で表される基である。
 2つのR’は、同一であってもよいし、異なっていてもよい。
 R31~R35は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R31~R35が複数存在する場合、複数のR31~R35のそれぞれは同一でもよく、異なっていてもよい。
 下記式(13)で表される基が複数存在する場合、複数存在する下記式(13)で表される基は同一であってもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000033
(式(13)中、
 L~Lは、それぞれ独立に、単結合、置換もしくは無置換の炭素数1~30のアルキレン基、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
 Ar及びArは、それぞれ独立に、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基であり、ArとArは単結合で、又は-O-、-S-もしくは-C(R)-を介して互いに結合してもよい。
 Rは置換基であり、2つのRは互いに同一でもよいし、異なっていてもよい。)]
 前記式(1)で表される化合物(以下、化合物(1)ということがある)は、例えば、式(12a)で表される2価の基が式(11)で表される2価の基に縮合して形成されるナフタレン環、及び式(12b)で表される2価の基が式(1)で表される骨格に縮合して形成されるナフタレン環を両末端に有し、かつ、式(13)で表される基(置換アミノ基)を少なくとも1つ有する。
 ここで、式(11)中の「*」(アスタリスク)は、例えば、式(11)との結合手であるR及びR、R及びR、又はR及びRのそれぞれが結合する相手方であることを示している。
 尚、式(11)中には2つの「*」があるが、例えば、結合手がR及びRのとき、下記式で示すように、式(1)と式(11)との結合において、前記2つの「*」がR及びRのいずれと結合してもよい。
Figure JPOXMLDOC01-appb-C000034
 式(12a)及び(12b)中の「*」も、上記式(11)中の「*」と同様の意味である。
 「R11及びR12、R12及びR13、並びにR13及びR14のうちの少なくとも1組」とは、それぞれ1組、2組又は3組が、同時に式(12a)との結合手となることを意味する。
 例えば、R11及びR12、並びにR13及びR14の2組の結合手が、式(12a)と同時に結合する場合は下記式で示される構造となる。
Figure JPOXMLDOC01-appb-C000035
 例えば、R11及びR12、並びにR12及びR13の2組の結合手が式(12a)と同時に結合する場合、並びにR11及びR12、R12及びR13、並びにR13及びR14の3組の結合手が式(12a)と同時に結合する場合は、それぞれ2つ若しくは3つの式(12a)で表される基が縮合した下記式で示される構造となる。
Figure JPOXMLDOC01-appb-C000036
 「R及びR、R及びR、並びにR及びRのうちの少なくとも1組」とは、これらのうちの1組、2組又は3組が、同時に式(12b)との結合手となることを意味し、2組又は3組の結合手が同時に結合する場合も、上記と同様である。
 化合物(1)は、前記式(1)で表される骨格に対する前記式(11)の結合様式に基づき、下記式(1-1)~(1-6)で表すこともできる。
Figure JPOXMLDOC01-appb-C000037
[式(1-1)~(1-6)中、X、X、R~R及びR11~R14は、前記式(1)で定義した通りである。]
 一実施形態においては、化合物(1)は、R~Rが水素原子である、下記式(1-1H)~(1-6H)で表される化合物からなる群から選択される。
Figure JPOXMLDOC01-appb-C000038
[式(1-1H)~(1-6H)中、X、X、R~R及びR11~R14は、前記式(1)で定義した通りである。]
 一実施形態においては、化合物(1)は、前記式(1-2H)で表される化合物であることが好ましい。
 一実施形態においては、前記式(12a)との結合様式に基づき、前記式(11)で表される2価の基が、下記式(11-1)~(11-3)で表される2価の基からなる群から選択される。
Figure JPOXMLDOC01-appb-C000039
[式(11-1)~(11-3)中、X、R11~R14及びR21~R24は、前記式(1)で定義した通りである。]
 一実施形態においては、前記式(11)で表される2価の基において、R11~R14が水素原子である、下記式(11-1H)~(11-3H)で表される2価の基からなる群から選択される。
Figure JPOXMLDOC01-appb-C000040
[式(11-1H)~(11-3H)中、X及びR21~R24は、前記式(1)で定義した通りである。]
 一実施形態においては、前記式(11)で表される基が、前記式(11-2H)で表される2価の基であることが好ましい。
 一実施形態においては、化合物(1)が、下記式(1-21)~(1-23)で表される化合物からなる群から選択される。
Figure JPOXMLDOC01-appb-C000041
[式(1-21)~(1-23)中、X、X、R、R~R、R11~R14及びR21~R24は、前記式(1)で定義した通りである。]
 一実施形態においては、化合物(1)が、前記式(1-22)で表される化合物である。
 また、化合物(1)は、前記式(1)で表される骨格に対する前記式(12b)の結合様式に基づき、下記式(1-11)~(1-13)で表すこともできる。
Figure JPOXMLDOC01-appb-C000042
[式(1-11)~(1-13)中、X、R~R及びR25~R28は、前記式(1)で定義した通りである。]
 一実施形態においては、化合物(1)が、R~Rが水素原子である、下記式(1-11H)~(1-13H)で表される化合物からなる群から選択される。
Figure JPOXMLDOC01-appb-C000043
[式(1-11H)~(1-13H)中、X、R~R及びR25~R28は、前記式(1)で定義した通りである。]
 一実施形態においては、化合物(1)は、前記式(1-12H)で表される化合物である。
 一実施形態においては、前記式(1-2)で表される化合物が、下記式(1-24)~(1-26)で表される化合物からなる群から選択される。
Figure JPOXMLDOC01-appb-C000044
[式(1-24)~(1-26)中、X、X、R、R~R、R11~R14及びR25~R28は、前記式(1)で定義した通りである。]
 一実施形態においては、前記式(1-2)で表される化合物が、前記式(1-25)で表される化合物である。
 一実施形態においては、化合物(1)は、下記式(1-31)~(1-35)で表される化合物からなる群から選択される。
Figure JPOXMLDOC01-appb-C000045
[式(1-31)~(1-35)中、X、X、R~R、R、R11、R14及びR21~R28は、前記式(1)で定義した通りである。]
 一実施形態においては、化合物(1)は、前記式(1-32)で表される化合物である。
 一実施形態においては、R21~R24のうちの1つ及びR25~R28のうちの1つが、それぞれ独立に、前記式(13)で表される基である。
 一実施形態においては、前記式(1-32)で表される化合物が、下記式(1-40)で表される化合物である。
Figure JPOXMLDOC01-appb-C000046
[式(1-40)中、X、X、R、R、R、R、R11、R14、R21、R22、R24~R26、R28、L~L、Ar及びArは、前記式(1)で定義した通りである。
 それぞれ複数存在するL~L、Ar及びArは、互いに同一であってもよいし、異なっていてもよい。]
 一実施形態においては、前記式(1-31)及び(1-33)~(1-35)で表される化合物は、下記式(1-41)~(1-44)で表される化合物である。
Figure JPOXMLDOC01-appb-C000047
[式(1-41)~(1-44)中、X、X、R~R、R、R11、R14、R21、R22、R24~R26、R28、L~L、Ar及びArは、前記式(1)で定義した通りである。
 それぞれ複数存在するL~L、Ar及びArは、互いに同一であってもよいし、異なっていてもよい。]
 一実施形態においては、X及びXがO(酸素原子)である。
 一実施形態においては、2つのR’が、それぞれ独立に、水素原子又はメチル基である。
 一実施形態においては、R21~R28、前記式(11)で表される2価の基と結合する結合手ではないR~R、前記式(12a)で表される2価の基と結合する結合手ではないR11~R14、及び前記式(12b)で表される2価の基と結合する結合手ではないR~Rのうち、前記式(13)で表される基であるもの以外が水素原子である。
 一実施形態においては、Lが単結合である。
 一実施形態においては、Ar及びArが、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 一実施形態においては、Ar及びArの一方が置換もしくは無置換の環形成炭素数6~50のアリール基であり、他方が置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 一実施形態においては、前記式(13)で表される基が、下記式(13-1)~(13-3)で表される基からなる群から選択される。
Figure JPOXMLDOC01-appb-C000048
[式(13-1)~(13-3)中、Rは、置換基である。mは0~8の整数であり、nは0~4の整数である。m又はnが2以上の場合、複数存在するRは互いに同一でもよいし、異なっていてもよい。
 式(13-3)中のXは、-O-、-S-又は-C(R)-であり、2つのRは互いに同一でもよいし、異なっていてもよい。]
 上記式(13-1)は、式(13)において、L~Lが単結合であり、Ar及びArがフェニル基であり、これらが単結合で互いに結合して、カルバゾール環を形成したものである。
 上記式(13-2)は、式(13)において、L~Lが単結合であり、Ar及びArがエチル基であり、これらが-O-を介して互いに結合して、モルホリン環を形成したものである。
 上記式(13-3)は、式(13)において、L~Lが単結合であり、Ar及びArがフェニル基であり、これらがXを介して互いに結合して、六員環を形成したものである。
 化合物(1)における「置換もしくは無置換の」という場合における置換基(以下、任意置換基ということがある)、及びRで表される置換基は、炭素数1~50のアルキル基、炭素数1~50のハロアルキル基、炭素数2~50のアルケニル基、炭素数2~50のアルキニル基、環形成炭素数3~50のシクロアルキル基、炭素数1~50のアルコキシ基、炭素数1~50のアルキルチオ基、環形成炭素数6~50のアリールオキシ基、環形成炭素数6~50のアリールチオ基、炭素数7~50のアラルキル基、-Si(R41)(R42)(R43)、-C(=O)R44、-COOR45、-S(=O)46、-P(=O)(R47)(R48)、-Ge(R49)(R50)(R51)、-N(R52)(R53)(ここで、R41~R53は、それぞれ独立に、水素原子、炭素数1~50のアルキル基、環形成炭素数6~50のアリール基、又は環形成原子数5~50の複素環基である。R41~R53が2以上存在する場合、2以上のR41~R53のそれぞれは同一でもよく、異なっていてもよい。)、ヒドロキシ基、ハロゲン原子、シアノ基、ニトロ基、環形成炭素数6~50のアリール基、及び環形成原子数5~50の複素環基からなる群から選択される。
 一実施形態においては、化合物(1)における「置換もしくは無置換の」という場合の置換基、及びRで表される置換基は、炭素数1~50のアルキル基、環形成炭素数6~50のアリール基、及び環形成原子数5~50の複素環基である。
 一実施形態においては、化合物(1)における「置換もしくは無置換の」という場合の置換基、及びRで表される置換基は、炭素数1~18のアルキル基、環形成炭素数6~18のアリール基、及び環形成原子数5~18の複素環基からなる群から選択される。
 化合物(1)の各置換基、任意置換基及びハロゲン原子の具体例は、それぞれ前述したものと同様である。
 化合物(1)の具体例としては、例えば、以下に示す化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000218
 化合物(1)は、例えば、後述する実施例の反応に倣い、目的物に合わせた既知の代替反応や原料を用いて合成することができる。
 化合物(1)は、有機エレクトロルミネッセンス素子用材料として有用である。
 化合物(1)は、有機エレクトロルミネッセンス素子の発光層の材料として有用であり、特に、発光層の蛍光発光材料(蛍光ドーパントともいう)として有用である。
 化合物(1)は蛍光量子収率が高く、を有機エレクトロルミネッセンス素子用材料として使用することで、得られる有機EL素子の発光効率を向上させることができる。
 また、本発明の一態様による有機エレクトロルミネッセンス素子用材料は、化合物(1)を含むことを特徴とする。
 本発明の一態様による有機エレクトロルミネッセンス素子は、
 陰極と、
 陽極と、
 前記陰極と前記陽極との間に配置された少なくとも1層の有機層と、
を有し、
 前記少なくとも1層の有機層のうちの少なくとも1層が、化合物(1)を含有することを特徴とする。
 本発明の一態様による有機エレクトロルミネッセンス素子は、
 陰極と、
 陽極と、
 前記陰極と前記陽極との間に配置された少なくとも1層の有機層と、
を有し、
 前記少なくとも1層の有機層のうちの少なくとも1層が、蛍光発光材料として化合物(1)を含有することを特徴とする。
 上記式(1)で表される化合物を所定の有機層、特に発光層に用いることにより、有機EL素子の発光効率を向上させることができる。
 一実施形態においては、前記少なくとも1層の有機層が発光層を含み、
 前記発光層が化合物(1)を含有する。
 本明細書において「陰極と陽極との間に配置された少なくとも1層の有機層」とは、陰極と陽極の間に1層の有機層が存在する場合にはその層を指し、複数の有機層が存在する場合には、そのうちの少なくとも1層を指す。
 また、「少なくとも1層の有機層が発光層を含む」とは、陰極と陽極の間に1層の有機層が存在する場合には、当該層が発光層であり、複数の有機層が存在する場合には、そのうちの少なくとも1つが発光層であることを意味する。
 一実施形態においては、有機EL素子は、前記陽極と前記発光層との間に正孔輸送層を有する。
 一実施形態においては、有機EL素子は、前記陰極と前記発光層との間に電子輸送層を有する。
 本明細書において「発光層と陽極の間にある少なくとも1層」は、発光層と陽極の間に1層の有機層が存在する場合にはその層を指し、複数の有機層が存在する場合にはそのうちの少なくとも1層を指す。例えば、発光層と陽極の間に2つ以上の有機層が存在する場合、発光層に近い側の有機層を「正孔輸送層」と呼び、陽極に近い側の有機層を「正孔注入層」と呼ぶ。「正孔輸送層」及び「正孔注入層」はそれぞれ1層であってもよいし、それぞれ2層以上であってもよいし、一方が1層であり、他方が2層以上であってもよい。
 同様に、「発光層と陰極の間にある少なくとも1層」は、発光層と陰極の間に1層の有機層が存在する場合にはその層を指し、複数の有機層が存在する場合にはそのうちの少なくとも1層を指す。例えば、発光層と陰極の間に2つ以上の有機層が存在する場合、発光層に近い側の有機層を「電子輸送層」と呼び、陰極に近い側の有機層を「電子注入層」と呼ぶ。「電子輸送層」及び「電子注入層」はそれぞれ1層であってもよいし、それぞれ2層以上であってもよいし、一方が1層であり、他方が2層以上であってもよい。
 一実施形態においては、前記発光層が、さらに下記式(2)で表される化合物(以下、化合物(2)ということがある)を含む。
Figure JPOXMLDOC01-appb-C000219
[式(2)中、
 R101~R110のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成してもよい。
 前記置換もしくは無置換の飽和又は不飽和の環を形成しないR101~R110は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R121)(R122)(R123)、-C(=O)R124、-COOR125、-N(R126)(R127)、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、又は下記式(21)で表される基である。
 R121~R127は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。R121~R127が2以上存在する場合、2以上のR121~R127のそれぞれは同一でもよく、異なっていてもよい。
 但し、前記置換もしくは無置換の飽和又は不飽和の環を形成しないR101~R110の少なくとも1つは、下記式(21)で表される基である。下記式(21)が2以上存在する場合、2以上の下記式(21)で表される基は同一であってもよいし、異なっていてもよい。
     -L101-Ar101     (21)
(式(21)中、
 L101は、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基である。)]
 化合物(2)の各置換基、任意置換基及びハロゲン原子の具体例は、それぞれ前述したものと同様である。
 以下、「R101~R110のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成してもよい」について説明する。
 「R101~R110のうち隣接する2つ以上の1組」は、例えば、R101とR102、R102とR103、R103とR104、R105とR106、R106とR107、R107とR108、R108とR109、R101とR102とR103等の組合せである。
 上記飽和又は不飽和の環に対する「置換もしくは無置換の」の「置換」のときの置換基は、式(2)における上記任意置換基と同様である。
 「飽和又は不飽和の環」とは、例えばR101とR102で環を形成する場合には、R101が結合する炭素原子と、R102が結合する炭素原子と、1以上の任意の元素とで形成する環を意味する。具体的には、R101とR102で環を形成する場合において、R101が結合する炭素原子と、R102が結合する炭素原子と、4つの炭素原子とで不飽和の環を形成する場合、R101とR102とで形成する環はベンゼン環となる。
 「任意の元素」は、好ましくは、C元素、N元素、O元素、S元素である。任意の元素において(例えばC元素又はN元素の場合)、環を形成しない結合手は、水素原子等で終端されてもよい。
 「1以上の任意の元素」は、好ましくは2個以上15個以下、より好ましくは3個以上12個以下、さらに好ましくは、3個以上5個以下の任意の元素である。
 例えば、R101とR102が環を形成し、同時にR105とR106が環を形成してもよい。その場合、式(2)で表される化合物は、例えば下記式(2A)で表される化合物となる。
Figure JPOXMLDOC01-appb-C000220
 R101~R110は、好ましくは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、又は式(21)で表される基である。
 R101~R110は、より好ましくは、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、又は式(21)で表される基である。
 R101~R110は、さらに好ましくは、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~18のアリール基、置換もしくは無置換の環形成原子数5~18の複素環基、又は式(21)で表される基である。
 一実施形態において、R109及びR110の少なくとも1つは、式(21)で表される基であることが好ましい。
 一実施形態において、R109及びR110は、それぞれ独立に、式(21)で表される基であることが好ましい。
 一実施形態においては、上記式(2)で表される化合物(以下、化合物(2)ということがある。)は、下記式(2-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000221
 式(2-1)中、R101~R108、L101及びAr101は、式(2)で定義した通りである。
 一実施形態においては、化合物(2)は、下記式(2-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000222
 式(2-2)中、R101、R103~R108、L101及びAr101は、式(2)で定義した通りである。
 一実施形態においては、化合物(2)は、下記式(2-3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000223
 式(2-3)中、
 R101’~R108’は、それぞれ独立に、水素原子又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 L101’は、置換もしくは無置換の環形成炭素数6~50のアリーレン基である。2つのL101’は、同一でもよく、異なっていてもよい。
 Ar101’は、置換もしくは無置換の環形成炭素数6~50のアリール基である。2つのAr101’は、同一でもよく、異なっていてもよい。
 一実施形態においては、化合物(2)は、下記式(2-4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000224
 式(2-4)中、
 R101’~R108’は、それぞれ独立に、水素原子又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 L101’は、置換もしくは無置換の環形成炭素数6~50のアリーレン基である。
 L101”は、置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
 Ar101”は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 X11は、O、S、又はN(R61)である。
 R61は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 R62~R69のいずれか1つは、L101’と結合する結合手である。
 L101’と結合しないR62~R69は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 L101’と結合しないR62~R69のうちの隣接する1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成してもよい。
 一実施形態においては、前記式(2)で表される化合物が、下記式(2-4A)で表される。
Figure JPOXMLDOC01-appb-C000225
(式(2-4A)中、
 L101及びAr101は、前記式(2)で定義した通りである。
 R101’~R108’は、それぞれ独立に、水素原子、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 X11は、O、S、又はN(R61)である。
 R61は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 R62’~R69’のうちの隣接する2つ以上の1組以上は、置換もしくは無置換の飽和又は不飽和の環を形成してもよく、R62’~R69’のうちの隣接する2つは、下記式(2-4A-1)で表される環を形成する。
 置換もしくは無置換の飽和又は不飽和の環を形成しないR62’~R69’は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。)
Figure JPOXMLDOC01-appb-C000226
(式(2-4A-1)中、
 2つの結合手*のそれぞれは、R62’~R69’のうちの隣接する2つと結合する。
 R70~R73の1つは、L101と結合する結合手である。
 L101と結合しないR70~R73は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。)
 一実施形態においては、化合物(2)は、下記式(2-5-1)~(2-5-3)で表される化合物からなる群から選択される。
Figure JPOXMLDOC01-appb-C000227
 式(2-5-1)~(2-5-3)中、L101は式(2)で定義した通りであり、R101’~R108’及びAr101’は、前記式(2-3)で定義した通りである。
 一実施形態においては、前記式(2-5-1)~(2-5-3)で表される化合物は、下記式(2-5-1H)~(2-5-3H)で表される化合物である。
Figure JPOXMLDOC01-appb-C000228
 式(2-5-1H)~(2-5-3H)中、L101は式(2)で定義した通りであり、Ar101’は、前記式(2-3)で定義した通りである。
 一実施形態においては、化合物(2)は、下記式(2-6)で表される化合物である。
Figure JPOXMLDOC01-appb-C000229
 式(2-6)中、L101及びAr101は、式(2)で定義した通りである。
 R101’~R108’は、前記式(2-4)で定義した通りである。
 R66~R69は、前記式(2-4)で定義した通りである。但し、R66及びR67、R67及びR68、並びにR69及びR67は、いずれも互いに結合して環を形成しない。
 X12は、O又はSである。
 一実施形態においては、前記式(2-6)で表される化合物は、下記式(2-6H)で表される化合物である。
Figure JPOXMLDOC01-appb-C000230
 式(2-6H)中、L101及びAr101は、式(2)で定義した通りである。
 R66~R69は、前記式(2-4)で定義した通りである。但し、R66及びR67、R67及びR68、並びにR69及びR67は、いずれも互いに結合して環を形成しない。
 X12は、O又はSである。
 一実施形態においては、前記式(2-6H)で表される化合物は、下記式(2-6Ha)で表される化合物である。
Figure JPOXMLDOC01-appb-C000231
 式(2-6Ha)中、L101及びAr101は、式(2)で定義した通りである。
 X12は、前記式(2-6)で定義した通りである。
 一実施形態においては、前記式(2-6Ha)で表される化合物は、下記式(2-6Hb-1)又は(2-6Ha-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000232
 式(2-6Ha-1)及び(2-6Ha-2)中、L101及びAr101は、式(2)で定義した通りである。
 X12は、前記式(2-6)で定義した通りである。
 一実施形態においては、化合物(2)は、下記式(2-7)で表される化合物である。
Figure JPOXMLDOC01-appb-C000233
 式(2-7)中、L101及びAr101は、式(2)で定義した通りである。
 R101’~R108’は、それぞれ独立に、水素原子又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 R62~R69のいずれか1つは、L101と結合する結合手である。
 L101と結合しないR62~R69は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。但し、R66及びR67、R67及びR68、並びにR68及びR69のうちのいずれか1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。R66及びR67、R67及びR68、並びにR68及びR69のうちのいずれか1組は、互いに結合して、無置換のベンゼン環を形成することが好ましい。
 一実施形態においては、前記式(2-7)で表される化合物は、下記式(2-7H)で表される化合物である。
Figure JPOXMLDOC01-appb-C000234
 式(2-7H)中、L101及びAr101は、式(2)で定義した通りである。
 R62~R69は、前記式(2-7)で定義した通りである。但し、R66及びR67、R67及びR68、並びにR68及びR69のうちのいずれか1組は、互いに結合して、置換もしくは無置換の、飽和又は不飽和の環を形成する。R66及びR67、R67及びR68、並びにR68及びR69のうちのいずれか1組は、互いに結合して、無置換のベンゼン環を形成することが好ましい。
 一実施形態においては、化合物(2)は、下記式(2-8)で表される化合物である。
Figure JPOXMLDOC01-appb-C000235
 式(2-8)中、L101及びAr101は、式(2)で定義した通りである。
 R101’~R108’は、前記式(2-7)で定義した通りである。
 R66~R69は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。但し、R66及びR67、R67及びR68、又はR68及びR69のうちのいずれか1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。R66及びR67、R67及びR68、又はR68及びR69のうちのいずれか1組は、互いに結合して、無置換のベンゼン環を形成することが好ましい。
 一実施形態においては、前記式(2-8)で表される化合物は、下記式(2-8H)で表される化合物である。
Figure JPOXMLDOC01-appb-C000236
 式(2-8H)中、L101及びAr101は、式(2)で定義した通りである。
 R66~R69は、前記式(2-8)で定義した通りである。但し、R66及びR67、R67及びR68、又はR68及びR69のうちのいずれか1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。R66及びR67、R67及びR68、又はR68及びR69のうちのいずれか1組は、互いに結合して、無置換のベンゼン環を形成することが好ましい。
 一実施形態においては、R66及びR67、R67及びR68、又はR68及びR69のいずれか1組が、互いに結合して、下記式(2-8-1)又は(2-8-2)で表される環を形成し、
 前記式(2-8-1)又は(2-8-2)で表される環を形成しないR66~R69は、置換もしくは無置換の飽和又は不飽和の環を形成しない。
Figure JPOXMLDOC01-appb-C000237
(式(2-8-1)及び(2-8-2)中、
 2つの結合手*は、それぞれ、R66及びR67、R67及びR68、又はR68及びR69の1組と結合する。
 R80~R83は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
 X13は、O又はSである。)
 一実施形態においては、前記式(2)で表される化合物が、下記式(2-9)で表される。
Figure JPOXMLDOC01-appb-C000238
(式(2-9)中、
 L101及びAr101は、前記式(2)で定義した通りである。
 R101’~R108’は、前記式(2-4)で定義した通りである。
 R66~R69は、前記式(2-4)で定義した通りである。但し、R66及びR67、R67及びR68、並びにR69及びR67は、いずれも互いに結合せず、置換もしくは無置換の飽和又は不飽和の環を形成しない。
 X12は、O又はSである。)
 一実施形態においては、化合物(2)は、下記式(2-9-1)~(2-9-4)で表される化合物からなる群から選択される。
Figure JPOXMLDOC01-appb-C000239
 式(2-9-1)~(2-9-4)中、L101は、前記式(2)で定義した通りである。
 Ar101’及びR101’~R108’は、前記式(2-4)で定義した通りである。
 一実施形態においては、上記式(2-9-1)~(2-9-4)で表される化合物は、下記式(2-9-1H)~(2-9-4H)で表される化合物である。
Figure JPOXMLDOC01-appb-C000240
 式(2-9-1H)~(2-9-4H)中、L101は、前記式(2)で定義した通りである。
 Ar101’は、置換もしくは無置換の環形成炭素数6~50のアリール基である。2つのAr101’は、同一でもよく、異なっていてもよい。
 式(2)で表される化合物は、例えば、以下に示す化合物が具体例として挙げられる。
Figure JPOXMLDOC01-appb-C000241
Figure JPOXMLDOC01-appb-C000242
Figure JPOXMLDOC01-appb-C000243
Figure JPOXMLDOC01-appb-C000244
Figure JPOXMLDOC01-appb-C000245
Figure JPOXMLDOC01-appb-C000246
Figure JPOXMLDOC01-appb-C000247
Figure JPOXMLDOC01-appb-C000248
Figure JPOXMLDOC01-appb-C000249
Figure JPOXMLDOC01-appb-C000250
Figure JPOXMLDOC01-appb-C000251
Figure JPOXMLDOC01-appb-C000252
Figure JPOXMLDOC01-appb-C000253
Figure JPOXMLDOC01-appb-C000254
Figure JPOXMLDOC01-appb-C000255
Figure JPOXMLDOC01-appb-C000256
Figure JPOXMLDOC01-appb-C000257
Figure JPOXMLDOC01-appb-C000258
Figure JPOXMLDOC01-appb-C000259
Figure JPOXMLDOC01-appb-C000260
Figure JPOXMLDOC01-appb-C000261
Figure JPOXMLDOC01-appb-C000262
Figure JPOXMLDOC01-appb-C000263
Figure JPOXMLDOC01-appb-C000264
 一実施形態においては、発光層が、式(1)で表される化合物と、式(2)で表される化合物とを含む場合、式(1)で表される化合物の含有量は、発光層全体に対して、1質量%以上20質量%以下が好ましい。
 また、一実施形態においては、発光層が、式(1)で表される化合物と、式(2)で表される化合物とを含む場合、式(2)で表される化合物の含有量は、発光層全体に対して、80質量%以上99質量%以下が好ましい。
[有機EL素子]
 本発明の一態様に係る有機EL素子は、陰極、陽極、及びこれらの間に設けられた有機層を有し、前記有機層が発光層を含み、前記有機層の少なくとも1層が化合物(1)を含む。
 以下、本発明の一態様に係る有機EL素子の層構成について説明する。
 本発明の一態様に係る有機EL素子は、陰極及び陽極からなる1対の電極間に有機層を備えている。有機層は、有機化合物で構成される層を少なくとも1層含む。あるいはまた、有機層は、有機化合物で構成される複数の層が積層されてなる。有機層は、有機化合物に加えて、無機化合物をさらに含んでいてもよい。
 一実施形態においては、有機層のうちの少なくとも1層が、発光層である。有機層は、例えば、1層の発光層として構成されていてもよく、また、有機EL素子の層構成で採用され得る他の層を含んでいてもよい。有機EL素子の層構成で採用され得る層としては、特に限定されるものではないが、例えば、陽極と発光層との間に設けられる正孔輸送帯域(正孔輸送層、正孔注入層、電子阻止層、励起子阻止層等)、発光層、スペース層、陰極と発光層との間に設けられる電子輸送帯域(電子輸送層、電子注入層、正孔阻止層等)等が挙げられる。
 本発明の一態様に係る有機EL素子は、例えば、蛍光又は燐光発光型の単色発光素子であってもよく、蛍光/燐光ハイブリッド型の白色発光素子であってもよい。また、単独の発光ユニットを有するシンプル型であってもよく、複数の発光ユニットを有するタンデム型であってもよい。
 なお、本明細書に記載の「発光ユニット」とは、有機層を含み、該有機層のうちの少なくとも1層が発光層であり、注入された正孔と電子が再結合することにより発光する最小単位を言う。
 また、本明細書に記載の「発光層」とは、発光機能を有する有機層である。発光層は、例えば、燐光発光層、蛍光発光層等であり、また、1層でも複数層でもよい。
 発光ユニットは、燐光発光層や蛍光発光層を複数有する積層型であってもよく、この場合、例えば、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐためのスペース層を各発光層の間に有していてもよい。
 シンプル型有機EL素子としては、例えば、陽極/発光ユニット/陰極のような素子構成が挙げられる。
 発光ユニットの代表的な層構成を以下に示す。カッコ内の層は任意である。
(a)(正孔注入層/)正孔輸送層/蛍光発光層(/電子輸送層/電子注入層)
(b)(正孔注入層/)正孔輸送層/燐光発光層(/電子輸送層/電子注入層)
(c)(正孔注入層/)正孔輸送層/第1蛍光発光層/第2蛍光発光層(/電子輸送層/電子注入層)
(d)(正孔注入層/)正孔輸送層/第1燐光発光層/第2燐光発光層(/電子輸送層/電子注入層)
(e)(正孔注入層/)正孔輸送層/燐光発光層/スペース層/蛍光発光層(/電子輸送層/電子注入層)
(f)(正孔注入層/)正孔輸送層/第1燐光発光層/第2燐光発光層/スペース層/蛍光発光層(/電子輸送層/電子注入層)
(g)(正孔注入層/)正孔輸送層/第1燐光発光層/スペース層/第2燐光発光層/スペース層/蛍光発光層(/電子輸送層/電子注入層)
(h)(正孔注入層/)正孔輸送層/燐光発光層/スペース層/第1蛍光発光層/第2蛍光発光層(/電子輸送層/電子注入層)
(i)(正孔注入層/)正孔輸送層/電子阻止層/蛍光発光層(/電子輸送層/電子注入層)
(j)(正孔注入層/)正孔輸送層/電子阻止層/燐光発光層(/電子輸送層/電子注入層)
(k)(正孔注入層/)正孔輸送層/励起子阻止層/蛍光発光層(/電子輸送層/電子注入層)
(l)(正孔注入層/)正孔輸送層/励起子阻止層/燐光発光層(/電子輸送層/電子注入層)
(m)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/蛍光発光層(/電子輸送層/電子注入層)
(n)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/蛍光発光層(/第1電子輸送層/第2電子輸送層/電子注入層)
(o)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/燐光発光層(/電子輸送層/電子注入層)
(p)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/燐光発光層(/第1電子輸送層/第2電子輸送層/電子注入層)
(q)(正孔注入層/)正孔輸送層/蛍光発光層/正孔阻止層(/電子輸送層/電子注入層)
(r)(正孔注入層/)正孔輸送層/燐光発光層/正孔阻止層(/電子輸送層/電子注入層)
(s)(正孔注入層/)正孔輸送層/蛍光発光層/励起子阻止層(/電子輸送層/電子注入層)
(t)(正孔注入層/)正孔輸送層/燐光発光層/励起子阻止層(/電子輸送層/電子注入層)
 ただし、本発明の一態様に係る有機EL素子の層構成は、これらに限定されるものではない。例えば、有機EL素子が、正孔注入層及び正孔輸送層を有する場合には、正孔輸送層と陽極との間に正孔注入層が設けられていることが好ましい。また、有機EL素子が、電子注入層及び電子輸送層を有する場合には、電子輸送層と陰極との間に電子注入層が設けられていることが好ましい。また、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層のそれぞれは、1層で構成されていてもよく、複数の層で構成されていてもよい。
 複数の燐光発光層、及び、燐光発光層と蛍光発光層は、それぞれ互いに異なる色の発光層であってもよい。例えば、前記発光ユニット(f)は、正孔輸送層/第1燐光発光層(赤色発光)/第2燐光発光層(緑色発光)/スペース層/蛍光発光層(青色発光)/電子輸送層とすることもできる。
 なお、各発光層と、正孔輸送層又はスペース層との間に、電子阻止層を設けてもよい。また、各発光層と電子輸送層との間に、正孔阻止層を設けてもよい。電子阻止層や正孔阻止層を設けることにより、電子又は正孔を発光層内に閉じ込めて、発光層における電荷の再結合確率を高め、発光効率を向上させることができる。
 タンデム型有機EL素子の代表的な素子構成としては、例えば、陽極/第1発光ユニット/中間層/第2発光ユニット/陰極のような素子構成が挙げられる。
 第1発光ユニット及び第2発光ユニットは、例えば、それぞれ独立に、上述した発光ユニットから選択することができる。
 中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、コネクター層、又は中間絶縁層とも呼ばれる。中間層は、第1発光ユニットに電子を、第2発光ユニットに正孔を供給する層であり、公知の材料により形成することができる。
 図1に、有機EL素子の層構成の一例の概略を示す。有機EL素子1は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット(有機層)10とを有する。発光ユニット10は、少なくとも1つの発光層5を有する。
 発光層5と陽極3との間に正孔輸送帯域(正孔注入層、正孔輸送層等)6、発光層5と陰極4との間に電子輸送帯域(電子注入層、電子輸送層等)7を形成してもよい。また、発光層5の陽極3側に電子阻止層(図示せず)を、発光層5の陰極4側に正孔阻止層(図示せず)をそれぞれ設けてもよい。これにより、電子や正孔を発光層5に閉じ込めて、発光層5における励起子の生成効率をさらに高めることができる。
 図2に、有機EL素子の層構成の他の一例の概略を示す。図2に示す有機EL素子11では、発光ユニット20において、図1の有機EL素子1の発光ユニット10の正孔輸送帯域6の正孔輸送層、及び電子輸送帯域7の電子輸送層を、それぞれ2層構造としている。正孔輸送帯域6は、陽極側の第1正孔輸送層6a、及び陰極側の第2正孔輸送層6bを有している。電子輸送帯域7は、陽極側の第1電子輸送層7a、及び陰極側の第2正孔輸送層7bを有している。なお、その他の符号については、図1と同じであるため、説明を省略する。
 以下、本明細書に記載の有機EL素子の各層の機能や材料等について説明する。
(基板)
 基板は、有機EL素子の支持体として用いられる。基板は、波長400~700nmの可視光領域の光の透過率が50%以上であることが好ましく、また、平滑な基板が好ましい。基板の材料としては、例えば、ソーダライムガラス、アルミノシリケートガラス、石英ガラス、プラスチック等が挙げられる。また、基板として、可撓性基板を用いることができる。可撓性基板とは、折り曲げることができる(フレキシブルな)基板を指し、例えば、プラスチック基板等が挙げられる。プラスチック基板を形成する材料の具体例としては、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリイミド、ポリエチレンナフタレート等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
 陽極としては、例えば、金属、合金、導電性化合物、及びこれらの混合物等であって、仕事関数の大きい(具体的には、4.0eV以上)ものを用いることが好ましい。陽極の材料の具体例としては、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、ケイ素もしくは酸化ケイ素を含有する酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン、酸化亜鉛を含有する酸化インジウム、グラフェン等が挙げられる。また、金、銀、白金、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、及びこれらの金属の窒化物(例えば、窒化チタン)等が挙げられる。
 陽極は、通常、これらの材料をスパッタリング法により基板上に成膜することにより形成される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対して1~10質量%の酸化亜鉛を添加したターゲットを用いて、スパッタリング法により形成することができる。また、例えば、酸化タングステン、又は酸化亜鉛を含有する酸化インジウムは、酸化インジウムに対して酸化タングステンを0.5~5質量%、又は酸化亜鉛を0.1~1質量%添加したターゲットを用いて、スパッタリング法により形成することができる。
 陽極の他の形成方法としては、例えば、真空蒸着法、塗布法、インクジェット法、スピンコート法等が挙げられる。例えば、銀ペースト等を用いる場合は、塗布法やインクジェット法等を用いることができる。
 なお、陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔注入が容易である材料を用いて形成される。このため、陽極には、一般的な電極材料、例えば、金属、合金、導電性化合物、これらの混合物を用いることができる。具体的には、リチウム、セシウム等のアルカリ金属;マグネシウム;カルシウム、ストロンチウム等のアルカリ土類金属;これらの金属を含む合金(例えば、マグネシウム-銀、アルミニウム-リチウム);ユーロピウム、イッテルビウム等の希土類金属;希土類金属を含む合金等の仕事関数の小さい材料を陽極に用いることもできる。
(正孔注入層)
 正孔注入層は、正孔注入性の高い物質を含む層であり、陽極から有機層に正孔を注入する機能を有する。正孔注入性の高い物質としては、例えば、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物、芳香族アミン化合物、電子吸引性(アクセプター性)の化合物、高分子化合物(オリゴマー、デンドリマー、ポリマー等)等が挙げられる。これらの中でも、芳香族アミン化合物、アクセプター性の化合物が好ましく、より好ましくはアクセプター性の化合物である。
 芳香族アミン化合物の具体例としては、4,4’,4”-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4”-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等が挙げられる。
 アクセプター性の化合物としては、例えば、電子吸引基を有する複素環誘導体、電子吸引基を有するキノン誘導体、アリールボラン誘導体、ヘテロアリールボラン誘導体等が好ましく、具体例としては、ヘキサシアノヘキサアザトリフェニレン、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(略称:F4TCNQ)、1,2,3-トリス[(シアノ)(4-シアノ-2,3,5,6-テトラフルオロフェニル)メチレン]シクロプロパン等が挙げられる。
 アクセプター性の化合物を用いる場合、正孔注入層は、さらにマトリックス材料を含むことが好ましい。マトリックス材料としては、有機EL素子用の材料として公知の材料を用いることができ、例えば、電子供与性(ドナー性)の化合物を用いることが好ましく、より好ましくは上述の芳香族アミン化合物が用いられる。
(正孔輸送層)
 正孔輸送層は、正孔輸送性の高い物質を含む層であり、陽極から有機層に正孔を輸送する機能を有する。
 正孔輸送性の高い物質としては、10-6cm/(V・s)以上の正孔移動度を有する物質であることが好ましく、例えば、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体、高分子化合物等が挙げられる。
 芳香族アミン化合物の具体例としては、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4”-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4”-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)等が挙げられる。
 カルバゾール誘導体の具体例としては、4,4’-ジ(9-カルバゾリル)ビフェニル(略称:CBP)、9-[4-(9-カルバゾリル)フェニル]-10-フェニルアントラセン(略称:CzPA)、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCzPA)等が挙げられる。
 アントラセン誘導体の具体例としては、2-t-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、9,10-ジフェニルアントラセン(略称:DPAnth)などが挙げられる。
 高分子化合物の具体例としては、ポリ(N-ビニルカルバゾール)(略称:PVK)、及びポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等が挙げられる。
 電子輸送性よりも正孔輸送性の方が高い化合物であれば、正孔輸送層に、これら以外の物質を用いてもよい。
 正孔輸送層は、単層でもよく、2層以上が積層されていてもよい。この場合、発光層に近い側に、正孔輸送性の高い物質のうち、エネルギーギャップのより大きい物質を含む層を配置することが好ましい。
(発光層)
 発光層は、発光性の高い物質(ドーパント材料)を含む層である。ドーパント材料としては、種々の材料を用いることができ、例えば、蛍光発光性化合物(蛍光ドーパント)、燐光発光性化合物(燐光ドーパント)等を用いることができる。蛍光発光性化合物とは、一重項励起状態から発光可能な化合物であり、これを含む発光層は蛍光発光層と呼ばれる。また、燐光発光性化合物とは、三重項励起状態から発光可能な化合物であり、これを含む発光層は、燐光発光層と呼ばれる。
 発光層は、通常、ドーパント材料、及びこれを効率よく発光させるためのホスト材料を含有する。なお、ドーパント材料は、文献によっては、ゲスト材料、エミッター、又は発光材料と称する場合もある。また、ホスト材料は、文献によっては、マトリックス材料と称する場合もある。
 1つの発光層に、複数のドーパント材料、及び複数のホスト材料を含んでもよい。また、発光層が複数であってもよい。
 本明細書では、蛍光ドーパントと組み合わされたホスト材料を、「蛍光ホスト」と称し、燐光ドーパントと組み合わされたホスト材料を「燐光ホスト」と称する。なお、蛍光ホストと燐光ホストとは、分子構造のみで区分されるものではない。燐光ホストとは、燐光ドーパントを含有する燐光発光層を形成する材料であるが、蛍光発光層を形成する材料として利用できないことを意味するものではない。蛍光ホストについても同様である。
 発光層には、化合物(1)が含まれていることが好ましく、より好ましくはドーパント材料として含まれる。また、化合物(1)は、蛍光ドーパントとして、発光層に含まれることが好ましい。
 ドーパント材料としての発光層における化合物(1)の含有量は、特に限定されるものではないが、十分な発光及び濃度消光の観点から、例えば、0.1~70質量%であることが好ましく、より好ましくは0.1~30質量%、さらに好ましくは1~30質量%、よりさらに好ましくは1~20質量%、特に好ましくは1~10質量%である。
<蛍光ドーパント>
 化合物(1)以外の蛍光ドーパントとしては、例えば、縮合多環芳香族誘導体、スチリルアミン誘導体、縮合環アミン誘導体、ホウ素含有化合物、ピロール誘導体、インドール誘導体、カルバゾール誘導体等が挙げられる。これらの中でも、縮合環アミン誘導体、ホウ素含有化合物、カルバゾール誘導体が好ましい。
 縮合環アミン誘導体としては、例えば、ジアミノピレン誘導体、ジアミノクリセン誘導体、ジアミノアントラセン誘導体、ジアミノフルオレン誘導体、ベンゾフロ骨格が1つ以上縮環したジアミノフルオレン誘導体等が挙げられる。
 ホウ素含有化合物としては、例えば、ピロメテン誘導体、トリフェニルボラン誘導体等が挙げられる。
 青色系の蛍光ドーパントとしては、例えば、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体等が挙げられる。具体的には、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)等が挙げられる。
 緑色系の蛍光ドーパントとしては、例えば、芳香族アミン誘導体等が挙げられる。具体的には、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)]-N-[4-(9H-カルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)等が挙げられる。
 赤色系の蛍光ドーパントとしては、テトラセン誘導体、ジアミン誘導体等が挙げられる。具体的には、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)等が挙げられる。
<燐光ドーパント>
 燐光ドーパントとしては、例えば、燐光発光性の重金属錯体、燐光発光性の希土類金属錯体が挙げられる。
 重金属錯体としては、例えば、イリジウム錯体、オスミウム錯体、白金錯体等が挙げられる。重金属錯体は、イリジウム、オスミウム、及び白金から選択される金属のオルトメタル化錯体が好ましい。
 希土類金属錯体としては、例えば、テルビウム錯体、ユーロピウム錯体等が挙げられる。具体的には、トリス(アセチルアセトナート)(モノフェナントロリン)テルビウム(III)(略称:Tb(acac)(Phen))、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)(Phen))、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)(Phen))等が挙げられる。これらの希土類金属錯体は、異なる多重度間の電子遷移により、希土類金属イオンが発光するため、燐光ドーパントとして好ましい。
 青色系の燐光ドーパントとしては、例えば、イリジウム錯体、オスミウム錯体、白金錯体等が挙げられる。具体的には、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス[2-(3’,5’-ビストリフルオロメチルフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:Ir(CF3ppy)(pic))、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)等が挙げられる。
 緑色系の燐光ドーパントとしては、例えば、イリジウム錯体等が挙げられる。具体的には、トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(略称:Ir(ppy))、ビス(2-フェニルピリジナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(ppy)(acac))、ビス(1,2-ジフェニル-1H-ベンゾイミダゾラト)イリジウム(III)アセチルアセトナート(略称:Ir(pbi)(acac))、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)(acac))等が挙げられる。
 赤色系の燐光ドーパントとしては、例えば、イリジウム錯体、白金錯体、テルビウム錯体、ユーロピウム錯体等が挙げられる。具体的には、ビス[2-(2’-ベンゾ[4,5-α]チエニル)ピリジナト-N,C3’]イリジウム(III)アセチルアセトナート(略称:Ir(btp)(acac))、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)(acac))、(アセチルアセトナート)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)(acac))、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtOEP)等が挙げられる。
<ホスト材料>
 ホスト材料としては、例えば、アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体;インドール誘導体、ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、イソキノリン誘導体、キナゾリン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、オキサジアゾール誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体等の複素環化合物;ナフタレン誘導体、トリフェニレン誘導体、カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、クリセン誘導体、ナフタセン誘導体、フルオランテン誘導体等の縮合芳香族化合物;トリアリールアミン誘導体、縮合多環芳香族アミン誘導体等の芳香族アミン化合物等が挙げられる。ホスト材料は、複数種を併用してもよい。
 金属錯体の具体例としては、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(III)(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)等が挙げられる。
 複素環化合物の具体例としては、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)等が挙げられる。
 縮合芳香族化合物の具体例としては、9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:CzPA)、3,6-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:DPCzPA)、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,9’-ビアントリル(略称:BANT)、9,9’-(スチルベン-3,3’-ジイル)ジフェナントレン(略称:DPNS)、9,9’-(スチルベン-4,4’-ジイル)ジフェナントレン(略称:DPNS2)、3,3’,3”-(ベンゼン-1,3,5-トリイル)トリピレン(略称:TPB3)、9,10-ジフェニルアントラセン(略称:DPAnth)、6,12-ジメトキシ-5,11-ジフェニルクリセン等が挙げられる。
 芳香族アミン化合物の具体例としては、N,N-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:CzA1PA)、4-(10-フェニル-9-アントリル)トリフェニルアミン(略称:DPhPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、N,9-ジフェニル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H-カルバゾール-3-アミン(略称:PCAPBA)、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPBまたはα-NPD)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)等が挙げられる。
 蛍光ホストとしては、蛍光ドーパントよりも高い一重項準位を有する化合物が好ましく、例えば、複素環化合物、縮合芳香族化合物等が挙げられる。縮合芳香族化合物としては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、ナフタセン誘導体等が好ましい。
 燐光ホストとしては、燐光ドーパントよりも高い三重項準位を有する化合物が好ましく、例えば、金属錯体、複素環化合物、縮合芳香族化合物等が挙げられる。これらの中でも、例えば、インドール誘導体、カルバゾール誘導体、ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、イソキノリン誘導体、キナゾリン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、ナフタレン誘導体、トリフェニレン誘導体、フェナントレン誘導体、フルオランテン誘導体等が好ましい。
(電子輸送層)
 電子輸送層は、電子輸送性の高い物質を含む層である。電子輸送性の高い物質としては、10-6cm/Vs以上の電子移動度を有する物質であることが好ましく、例えば、金属錯体、芳香族複素環化合物、芳香族炭化水素化合物、高分子化合物等が挙げられる。
 金属錯体としては、例えば、アルミニウム錯体、ベリリウム錯体、亜鉛錯体等が挙げられる。具体的には、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)等が挙げられる。
 芳香族複素環化合物としては、例えば、ベンズイミダゾール誘導体、イミダゾピリジン誘導体、ベンズイミダゾフェナントリジン誘導体等のイミダゾール誘導体;ピリミジン誘導体、トリアジン誘導体等のアジン誘導体;キノリン誘導体、イソキノリン誘導体、フェナントロリン誘導体等の含窒素六員環構造を含む化合物(複素環にホスフィンオキサイド系の置換基を有するものも含む。)等が挙げられる。具体的には、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)等が挙げられる。
 芳香族炭化水素化合物としては、例えば、アントラセン誘導体、フルオランテン誘導体等が挙げられる。
 高分子化合物の具体例としては、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)等が挙げられる。
 正孔輸送性よりも電子輸送性の方が高い化合物であれば、電子輸送層に、これら以外の物質を用いてもよい。
 電子輸送層は、単層でもよく、2層以上が積層されていてもよい。この場合、発光層に近い側に、電子輸送性の高い物質のうち、エネルギーギャップのより大きい物質を含む層を配置することが好ましい。
 例えば、図2に示すように、陽極側の第1電子輸送層7a、及び陰極側の第2電子輸送層7bを含む構成であってもよい。
 電子輸送層には、例えば、アルカリ金属、マグネシウム、アルカリ土類金属、これらのうちの2以上の金属を含む合金等の金属;8-キノリノラトリチウム(略称:Liq)等のアルカリ金属化合物、アルカリ土類金属化合物等の金属化合物が含まれていてもよい。 アルカリ金属、マグネシウム、アルカリ土類金属、又はこれらのうちの2以上の金属を含む合金等の金属が、電子輸送層に含まれる場合、その含有量は、特に限定されるものではないが、0.1~50質量%であることが好ましく、より好ましくは0.1~20質量%、さらに好ましくは1~10質量%である。
 アルカリ金属化合物、又はアルカリ土類金属化合物等の金属化合物の金属化合物が電子輸送層に含まれる場合、その含有量は、1~99質量%であることが好ましく、より好ましくは10~90質量%である。なお、電子輸送層が複数層である場合の発光層側にある層は、これらの金属化合物のみで形成することもできる。
(電子注入層)
 電子注入層は、電子注入性の高い物質を含む層であり、陰極から発光層へ効率よく電子注入する機能を有する。電子注入性の高い物質としては、例えば、アルカリ金属、マグネシウム、アルカリ土類金属、これらの化合物等が挙げられる。具体的には、リチウム、セシウム、カルシウム、フッ化リチウム、フッ化セシウム、フッ化カルシウム、リチウム酸化物等が挙げられる。その他、電子輸送性を有する物質に、アルカリ金属、マグネシウム、アルカリ土類金属、又はこれらの化合物を含有させたもの、例えば、Alqにマグネシウムを含有させたもの等を用いることもできる。
 また、電子注入層には、有機化合物及びドナー性の化合物を含む複合材料を用いることもできる。有機化合物がドナー性の化合物から電子を受け取るため、このような複合材料は電子注入性及び電子輸送性に優れている。
 有機化合物としては、受け取った電子の輸送性に優れた物質が好ましく、例えば、上述した電子輸送性の高い物質である金属錯体や芳香族複素環化合物等を用いることができる。
 ドナー性の化合物としては、有機化合物に電子を供与することができる物質であればよく、例えば、アルカリ金属、マグネシウム、アルカリ土類金属、希土類金属等が挙げられる。具体的には、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、具体的には、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(陰極)
 陰極は、金属、合金、導電性化合物、及びこれらの混合物等であって、仕事関数の小さい(具体的には、3.8eV以下)ものを用いることが好ましい。陰極の材料としては、例えば、リチウム、セシウム等のアルカリ金属;マグネシウム;カルシウム、ストロンチウム等のアルカリ土類金属;これらの金属を含む合金(例えば、マグネシウム-銀、アルミニウム-リチウム);ユーロピウム、イッテルビウム等の希土類金属;希土類金属を含む合金等が挙げられる。
 陰極は、通常、真空蒸着法やスパッタリング法で形成される。また、銀ペースト等を用いる場合は、塗布法やインクジェット法等を用いることができる。
 また、電子注入層が設けられる場合、仕事関数の大小に関わらず、アルミニウム、銀、ITO、グラフェン、ケイ素もしくは酸化ケイ素を含有する酸化インジウム-酸化スズ等、種々の導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
(絶縁層)
 有機EL素子は、薄膜に電界を印加するため、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に薄膜絶縁層を挿入してもよい。
 絶縁層に用いられる物質の具体例としては、酸化アルミニウム、フッ化リチウム、酸化リチウム、フッ化セシウム、酸化セシウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、窒化アルミニウム、酸化チタン、酸化ケイ素、酸化ゲルマニウム、窒化ケイ素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられる。絶縁層には、これらの混合物を用いることもでき、また、これらの物質を含む複数の層の積層体とすることもできる。
(スペース層)
 スペース層は、例えば、蛍光発光層と燐光発光層とを積層する場合に、燐光発光層で生成する励起子の蛍光発光層への拡散の防止や、キャリアバランスの調整のために、両層間に設けられる。スペース層は、複数の燐光発光層の間等に設けることもできる。
 スペース層は、複数の発光層間に設けられるため、電子輸送性及び正孔輸送性を兼ね備えた物質で形成することが好ましい。また、隣接する燐光発光層内の三重項エネルギーの拡散を防止する観点から、三重項エネルギーが2.6eV以上であることが好ましい。
 スペース層に用いられる物質としては、上述した正孔輸送層に用いられる物質と同様のものが挙げられる。
(電子阻止層、正孔阻止層、励起子阻止層)
 発光層に隣接して、電子阻止層、正孔阻止層、励起子(トリプレット)阻止層等を設けてもよい。
 電子阻止層とは、発光層から正孔輸送層へ電子が漏出することを阻止する機能を有する層である。正孔阻止層とは、発光層から電子輸送層へ正孔が漏出することを阻止する機能を有する層である。励起子阻止層は、発光層で生成した励起子が隣接する層へ拡散することを阻止し、励起子を発光層内に閉じ込める機能を有する層である。
(層形成方法)
 有機EL素子の各層の形成方法は、別途の記載がない限り、特に限定されるものではない。形成方法としては、乾式成膜法、湿式成膜法等の公知の方法を用いることができる。乾式成膜法の具体例としては、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法等が挙げられる。湿式成膜法の具体例としては、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法等の各種塗布法が挙げられる。
(膜厚)
 有機EL素子の各層の膜厚は、別途の記載がない限り、特に限定されるものではない。膜厚が小さすぎると、ピンホール等の欠陥が生じやすく、十分な発光輝度が得られない。一方、膜厚が大きすぎると、高い駆動電圧が必要となり、効率が低下する。このような観点から、膜厚は、通常、5nm~10μmが好ましく、より好ましくは10nm~0.2μmである。
[電子機器]
 本発明の一態様に係る電子機器は、上述した本発明の一態様に係る有機EL素子を備えている。電子機器の具体例としては、有機ELパネルモジュール等の表示部品;テレビ、携帯電話、スマートフォン、パーソナルコンピュータ等の表示装置;照明、車両用灯具の発光装置等が挙げられる。
 次に、合成例、実施例及び比較例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例の記載内容に何ら制限されるものではない。
実施例1
(化合物1Aの合成)
Figure JPOXMLDOC01-appb-C000265
(1-1)中間体1Aの合成
 アルゴン雰囲気下、2,7-ジメトキシナフタレン(10g)のテトラヒドロフラン350mL溶液を0℃に冷却し、そこに1.55Mのn-ブチルリチウムヘキサン溶液(34.3mL)を20分かけて滴下した後、0℃でさらに1時間攪拌した。次いで反応溶液を-78℃に冷却し、トリイソプロピルボレート(17.1mL)を滴下した。室温に戻しながら2時間攪拌した後、4N塩酸50mLを加えた。反応液から溶媒を除去し、析出してきた結晶を水及びヘキサンで洗浄し、中間体1Aを得た(10.9g、収率88%)。
(1-2)中間体1Bの合成
 アルゴン雰囲気下、(1-1)で得られた中間体1A(1.9g)、1,5-ジブロモ-2,4-ジフルオロベンゼン(0.13g)、ビス[4-[ビス(tert-ブチル)ホスフィノ]-N,N-ジメチルベンゼンアミノ]ジクロロパラジウム(PdCl(Amphos))(0.23g)、リン酸カリウム(1.7g)、トルエン120mL、イソプロピルアルコール40mL、及び水20mLの混合物を18時間還流(reflux)した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、中間体1Bを得た(1.5g、収率83%)。
(1-3)中間体1Cの合成
 アルゴン雰囲気下、(1-2)で得られた中間体1B(1.4g)の10mL塩化メチレン溶液を-10℃(内温)に冷却し、そこに1M三臭化ホウ素の塩化メチレン溶液(12.1mL)を滴下した。-10℃のまま、1時間反応させ、室温に戻しながら2時間攪拌した。得られた溶液を氷水中に投入し、酢酸エチルで抽出を行った後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去することで、中間体1Cを得た(1.3g、収率100%)
(1-4)中間体1Dの合成
 アルゴン雰囲気下、(1-3)で得られた中間体1C(1.3g)、炭酸カリウム(1.7g)、及びN-メチルピロリドン150mLの混合物を150℃で5時間攪拌した。得られた反応液を室温に冷却し、不溶物をろ別除去し、飽和塩化アンモニウム水溶液200mL及び酢酸エチル200mLを加えた。有機層をさらに水洗し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去することで中間体1Dを得た(1.1g、収率95%)。目的物の分子量は390.39であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=390であったことから、目的物と同定した。
(1-5)中間体1Eの合成
 アルゴン雰囲気下、(1-4)で得られた中間体1D(2.0g)、N,N-ジメチル-4-アミノピリジン(0.63g)、ピリジン20mL及び塩化メチレン100mLの混合物を氷冷下攪拌後、トリフルオロメタンスルホン酸無水物(2.2mL)を滴下した。氷冷下で15分反応させた後、室温に戻しながら7時間反応させた。
得られた反応溶液を氷冷下でメタノール及び水を加えて攪拌し、濃縮後に析出してきた結晶をろ別した。その結晶を水、メタノール及び酢酸エチルで洗浄して、中間体1Eを得た(2.4g、収率71%)。目的物の分子量は654.50であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=654であったことから、目的物と同定した。
(1-6)化合物1Aの合成
 アルゴン雰囲気下、(1-5)で得られた中間体1E(50mg)、ジフェニルアミン 39mg(0.23mmol)、酢酸パラジウム(Pd(OAc))(0.86mg)、(±)-2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(BINAP)(4.8mg)、炭酸セシウム(100mg)、及びトルエン5mLの混合物を20時間還流した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物1を得た(37mg、収率69%)。化合物1Aの分子量は692.82であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=692であったことから、目的物と同定した。
 上記反応に倣い、目的物に合わせた既知の代替反応や原料を用いることで、本願発明の範囲内の化合物を合成することができる。
(トルエン溶液の調製)
 得られた化合物1Aを、濃度が5μmol/Lになるように、トルエンに溶解し、化合物1のトルエン溶液を調製した。
(蛍光量子収率(PLQY)の測定)
 得られた化合物1Aのトルエン溶液について、絶対PL(フォトルミネッセンス)量子収率測定装置 Quantaurus-QY(浜松ホトニクス株式会社製)を用いて、PLQYを測定した。化合物1のPLQYの値は80%であった。
(蛍光発光ピーク波長(FL-peak)の測定)
 得られた化合物1Aのトルエン溶液を、蛍光スペクトル測定装置 分光蛍光光度計F-7000(株式会社日立ハイテクサイエンス製)を用いて測定したところ、360nmで励起した場合の蛍光発光ピーク波長が、427nmにて観測された。
 実施例2~24で得られた各化合物について、実施例1と同様に、トルエン溶液を調製し、評価した。結果を表1に示す。
実施例2
(化合物1Bの合成)
Figure JPOXMLDOC01-appb-C000266
 アルゴン雰囲気下、中間体1E(0.7g)、ビス-(4-(tert-ブチル)フェニル)アミン(1.8g)、酢酸パラジウム(Pd(OAc))(0.024g)、BINAP(0.133g)、炭酸セシウム(2.79g)、及びトルエン100mLの混合物を6時間還流した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物1Bを得た(0.2g、収率20%)。化合物1Bの分子量は917.25であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=917であったことから、目的物と同定した。
実施例3
(化合物1Cの合成)
Figure JPOXMLDOC01-appb-C000267
 アルゴン雰囲気下、中間体1E(30mg)、ビス(3,4,5-トリメチルフェニル)アミン(69.7mg)、酢酸パラジウム(Pd(OAc))(1.03mg)、BINAP(5.71mg)、炭酸セシウム(119mg)、及びトルエン5mLの混合物を6時間還流した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物1Cを得た(10mg、収率25%)。化合物1Cの分子量は861.14であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=861であったことから、目的物と同定した。
実施例4
(化合物2Aの合成)
Figure JPOXMLDOC01-appb-C000268
(4-1)中間体2Aの合成
 中間体1Bの合成において、1,5-ジブロモ-2,4-ジフルオロベンゼンの代わりに、1,4-ジブロモ-2,5-ジフルオロベンゼン(1.6g)を用いて、中間体2Aを得た(1.85g、収率65%)。
(4-2)中間体2Bの合成
 中間体1Cの合成において、中間体1Bの代わりに、中間体2A(2.5g)を用いて、中間体2Bを得た(2.2g、収率100%)。
(4-3)中間体2Cの合成
 中間体1Dの合成において、中間体1Cの代わりに、中間体2B(2.2g)を用いて、中間体2Cを得た(1.7g、収率85%)。目的物の分子量は390.39であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=390であったことから、目的物と同定した。
(4-4)中間体2Dの合成
 中間体1Eの合成において、中間体1Dの代わりに、中間体2C(1.7g)を用いて、中間体2Dを得た(2.2g、収率77%)。目的物の分子量は654.50であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=654であったことから、目的物と同定した。
(4-5)化合物2Aの合成
 化合物1Aの合成において、中間体1Eの代わりに、中間体2D(30mg)を用いて、化合物2Aを得た(2mg、収率5%)。化合物2Aの分子量は872.98であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=872であったことから、目的物と同定した。
実施例5
(化合物3Aの合成)
Figure JPOXMLDOC01-appb-C000269
(5-1)中間体3Aの合成
 中間体1Bの合成において、1,5-ジブロモ-2,4-ジフルオロベンゼンの代わりに、1,4-ジブロモ-2,3-ジフルオロベンゼン(3.7g)を用いて、中間体3Aを得た(1.8g、収率50%)。
(5-2)中間体3Bの合成
 中間体1Cの合成において、中間体1Bの代わりに、中間体3A(1.8g)を用いて、中間体3Bを得た(1.1g、収率69%)。
(5-3)中間体3Cの合成
 中間体1Dの合成において、中間体1Cの代わりに、中間体3B(1.1g)を用いて、中間体3Cを得た(0.6g、収率60%)。目的物の分子量は390.39であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=390であったことから、目的物と同定した。
(5-4)中間体3Dの合成
 中間体1Eの合成において、中間体1Dの代わりに、中間体3C(0.6g)を用いて、中間体3Dを得た(0.5g、収率50%)。目的物の分子量は654.50であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=654であったことから、目的物と同定した。
(5-5)化合物3Aの合成
 化合物1Aの合成において、中間体1Eの代わりに、中間体3D(0.05g)を用いて、化合物3Aを得た(12.3mg、収率23%)。化合物3Aの分子量は692.82であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=692であったことから、目的物と同定した。
実施例6
(化合物4Aの合成)
Figure JPOXMLDOC01-appb-C000270
(6-1)中間体4Aの合成
 アルゴン雰囲気下、中間体1A(10.2g)、2,3-ジブロモ-1,4-ジフルオロベンゼン(3.0g)、(PdCl(Amphos))(0.39g)リン酸カリウム(9.3g)、トルエン(72ml)、ジメチルスルホキシド(DMSO)(24ml)、水(12ml)の混合物を18時間還流(reflux)した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥し、溶剤を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、中間体4Aを得た(2.4g、収率46%)。目的物の分子量は486.51であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=486であったことから、目的物と同定した。
(6-2)中間体4Bの合成
 中間体1Cの合成において、中間体1Bの代わりに、中間体4A(1.6g)を用いて、中間体4Bを得た(1.4g、収率96%)。目的物の分子量は430.41であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=430であったことから、目的物と同定した。
(6-3)中間体4Cの合成
 中間体1Dの合成において、中間体1Cの代わりに、中間体4B(2.3g)を用いて、中間体4Cを得た(1.2g、収率59%)。目的物の分子量は390.39であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=390であったことから、目的物と同定した。
(6-4)中間体4Dの合成
 中間体1Eの合成において、中間体1Dの代わりに、中間体4C(1.2g)を用いて、中間体4Dを得た(0.7g、収率36%)。目的物の分子量は654.50であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=654であったことから、目的物と同定した。
(6-5)化合物4Aの合成
 アルゴン雰囲気下、中間体4D(250mg)、N-フェニルジベンゾフラン-4-アミン(248mg)、XPhos Pd G2(Sigma-Aldrich社製)(9mg)、炭酸セシウム(498mg)、キシレン(25ml)、tert-ブタノール(tBuOH)(5ml)の混合物を110℃で4時間攪拌した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸マグネシウムで乾燥し、溶剤を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物4Aを得た(67mg、収率20%)。化合物4Aの分子量は872.980であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=872であったことから、目的物と同定した。
実施例7
(化合物1Dの合成)
Figure JPOXMLDOC01-appb-C000271
化合物1Dの合成
 アルゴン雰囲気下、中間体1E(1.0g)、ジ-p-トルイルアミン(0.754g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))(0.028g)、XPhos(0.058g)、炭酸セシウム(1.99g)、キシレン(100ml)、tert-ブタノール(20ml)の混合物を110℃で5時間攪拌した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物1Dを得た(0.54g、収率47%)。化合物1Dの分子量は748.926であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=748であったことから、目的物と同定した。
実施例8
(化合物1Eの合成)
Figure JPOXMLDOC01-appb-C000272
 アルゴン雰囲気下、中間体1E(1.0g)、N-[4-(プロパン-2-イル) フェニル]ジベンゾ[b,d]フラン-2-アミン(1.1g)、XPhos Pd G4(Sigma-Aldrich社製)(0.039g)、炭酸セシウム(1.9g)、キシレン(100ml)、tert-ブタノール(20ml)の混合物を110℃で4時間攪拌した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸マグネシウムで乾燥し、溶剤を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーおよび再結晶で精製し、化合物1Eを得た(1.27g、収率87%)。化合物1Eの分子量は957.142であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=957であったことから、目的物と同定した。
実施例9
(化合物5Aの合成)
Figure JPOXMLDOC01-appb-C000273
(9-1)中間体5Aの合成
 アルゴン雰囲気下、氷浴中で1,3-ジフルオロ-2-メチルベンゼン(9.9g)を0℃まで冷やした後、鉄粉(0.51g)を加えた。続いて、臭素(29.6g)をゆっくりと滴下して、10時間室温で攪拌した。得られた反応液にヘキサンを加えて抽出後、有機相を亜硫酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥し、溶剤を減圧留去して、中間体5Aを得た(20g、収率93%)。目的物の分子量は285.91であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=285であったことから、目的物と同定した。
(9-2)中間体5Bの合成
 アルゴン雰囲気下、中間体5A(3.6g)、中間体1A(6.4g)、PdCl(Amphos)(0.44g)、リン酸カリウム(5.8g)、トルエン(168ml)、イソプロピルアルコール(56ml)、水(28ml)の混合物を80℃で6時間攪拌した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥し、溶剤を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーおよび再結晶で精製し、中間体5Bを得た(5.4g、収率86%)。目的物の分子量は500.54であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=500であったことから、目的物と同定した。
(9-3)中間体5Cの合成
 中間体1Cの合成において、中間体1Bの代わりに、中間体5B(5.4g)を用いて、中間体5Cを得た(4.4g、収率92%)。目的物の分子量は444.43であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=444であったことから、目的物と同定した。
(9-4)中間体5Dの合成
 中間体1Dの合成において、中間体1Cの代わりに、中間体5C(5.1g)を用いて、中間体5Dを得た(3.9g、収率84%)。目的物の分子量は404.42であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=404であったことから、目的物と同定した。
(9-5)中間体5Eの合成
 中間体1Eの合成において、中間体1Dの代わりに、中間体5D(3.9g)を用いて、中間体5Eを得た(1.1g、収率16%)。目的物の分子量は668.53であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=668であったことから、目的物と同定した。
(9-6)化合物5Aの合成
 アルゴン雰囲気下、中間体5E(0.75g)、ジ-p-トルイルアミン(0.48g)、ジパラジウム-トリス(ジベンジリデンアセトン)クロロホルム錯体(Pd(dba)-CHCl)(0.11g)、XPhos(0.21g)炭酸セシウム(1.46g)、キシレン(93ml)、tert-ブタノール(18ml)の混合物を110℃で8時間攪拌した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥し、溶剤を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物5Aを得た(0.3g、収率33%)。化合物5Aの分子量は762.95であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=762であったことから、目的物と同定した。
実施例10
(化合物2Bの合成)
Figure JPOXMLDOC01-appb-C000274
 アルゴン雰囲気下、中間体2D(200mg)、カルバゾール(128mg)、XPhos Pd G2(Sigma-Aldrich社製)(38.5mg)、炭酸セシウム(398mg)、キシレン(28ml)、tert-ブタノール(12ml)の混合物を110℃で9時間攪拌した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥し、溶剤を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物2Bを得た(70mg、収率33%)。化合物7の分子量は688.786であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=688であったことから、目的物と同定した。
実施例11
(化合物2Cの合成)
Figure JPOXMLDOC01-appb-C000275
 アルゴン雰囲気下、中間体2D(4.0g)、ジフェニルアミン(2.1g)、Pd(dba)(0.56g)、XPhos(1.1g)、炭酸セシウム(7.9g)、トルエン(300ml)、tert-ブタノール(60ml)の混合物を90℃で4時間攪拌した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸マグネシウムで乾燥し、溶剤を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーおよび再結晶で精製し、化合物2Cを得た(0.27g、収率25%)。目的物の分子量は692.818であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=692であったことから、目的物と同定した。
実施例12
(化合物2Dの合成)
Figure JPOXMLDOC01-appb-C000276
 アルゴン雰囲気下、中間体2D(0.68g)、ジ-p-トルイルアミン(0.62g)、XPhos Pd G4(Sigma-Aldrich社製)(0.09g)、炭酸セシウム(1.36g)、キシレン(87ml)、tert-ブタノール(18ml)の混合物を110℃で6時間攪拌した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥し、溶剤を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーおよび再結晶で精製し、化合物2Dを得た(0.24g、収率30%)。目的物の分子量は748.926であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=748であったことから、目的物と同定した。
実施例13
(化合物2Eの合成)
Figure JPOXMLDOC01-appb-C000277
 アルゴン雰囲気下、中間体2D(4.0g)、6-tert-ブチル-N-フェニルジベンゾ[b,d]フラン-4-アミン(4.9g)、Pd(dba)-CHCl(0.64g)、XPhos(1.1g)炭酸セシウム(8.1g)、キシレン(518ml)、tert-ブタノール(104ml)の混合物を110℃で8時間攪拌した。得られた反応液を室温に冷却し、シリカゲルを充填したショートカラムでろ過した後、溶剤を減圧留去した。得られた残渣をジオキサンで再結晶を行い、化合物2Eを得た(1.6g、収率26%)。目的物の分子量は985.196であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=985であったことから、目的物と同定した。
実施例14
(化合物2Fの合成)
Figure JPOXMLDOC01-appb-C000278
 アルゴン雰囲気下、中間体2D(3.3g)、6-tert-ブチル-N-(2-メチルフェニル)ジベンゾ[b,d]フラン-4-アミン(3.7g)、Pd(dba)-CHCl(0.53g)、XPhos(0.97g)リチウムビス(トリメチルシリル)アミド・1mol/lトルエン溶液(LiHMDS(1M in Toluene))(15ml)、キシレン(512ml)の混合物を90℃で8時間攪拌した。得られた反応液を室温に冷却し、シリカゲルを充填したショートカラムでろ過した後、溶剤を減圧留去した。得られた残渣をジオキサンで再結晶を行い、化合物2Fを得た(2.1g、収率40%)。目的物の分子量は1013.250であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=1013であったことから、目的物と同定した。
実施例15
(化合物2Gの合成)
Figure JPOXMLDOC01-appb-C000279
 アルゴン雰囲気下、中間体2D(6.4g)、6-tert-ブチル-N-(2-メチルフェニル)ジベンゾ[b,d]フラン-4-アミン(4.8g)、Pd(dba)-CHCl(0.50g)、XPhos(0.93g)、LiHMDS 1M in Toluene(24ml)、キシレン(500ml)の混合物を90℃で8時間攪拌した。得られた反応液を室温に冷却し、シリカゲルを充填したショートカラムでろ過した後、溶剤を減圧留去した。得られた残渣をジオキサン、ジメチルホルムアミド、ジメチルアセトアミド、等で再結晶を行い、化合物2Fを得た(4.4g、収率55%)。目的物の分子量は805.034であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=805であったことから、目的物と同定した。
実施例16
(化合物2Hの合成)
Figure JPOXMLDOC01-appb-C000280
(16-1)中間体2Eの合成
 アルゴン雰囲気下、2-(tert-ブチル)アニリン(6.6g)、4-ブロモジベンゾ[b,d]フラン(10g)、Pd(dba)(0.37g)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(P(tBu)-HBF)(0.47g)、ナトリウム tert-ブトキシド(5.8g)、キシレン(100ml)の混合物を90℃で4時間攪拌した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥し、溶剤を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、中間体2Eを得た(9.7g、収率77%)。目的物の分子量は315.416であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=315であったことから、目的物と同定した。
(16-2)化合物2Hの合成
 アルゴン雰囲気下、中間体2D(4.2g)、中間体2E(4.4g)、Pd(dba)-CHCl(0.46g)、2-(ジシクロヘキシルホスフィノ)-3,6-ジメトキシ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル(BrettPhos)(0.96g)、LiHMDS 1M in Toluene(16ml)、トルエン(320ml)の混合物を90℃で7時間攪拌した。得られた反応液を室温に冷却し、シリカゲルを充填したショートカラムでろ過した後、溶剤を減圧留去した。得られた残渣をジオキサンとシクロヘキサンで再結晶を行い、化合物2Hを得た(5.0g、収率79%)。目的物の分子量は985.196であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=985であったことから、目的物と同定した。
実施例17
(化合物2Iの合成)
Figure JPOXMLDOC01-appb-C000281
 アルゴン雰囲気下、中間体2D(3.0g)、4-メチル-N-(2-メチルフェニル)[ビフェニル]-3-アミン(2.6g)、Pd(dba)(0.084g)、ジ-tert-ブチル(2,2-ジフェニル-1-メチル-1-シクロプロピル)ホスフィン(cBRIDP)(0.12g)、LiHMDS 1M in Toluene(18ml)、キシレン(150ml)の混合物を110℃で3時間攪拌した。得られた反応液を室温に冷却し、シリカゲルを充填したショートカラムでろ過した後、溶剤を減圧留去した。得られた残渣をイソプロピルアルコール、ジメチルアセトアミド、シクロへキサノン等で再結晶を行い、化合物2Iを得た(0.85g、収率20%)。目的物の分子量は901.122であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=901であったことから、目的物と同定した。
実施例18
(化合物2Jの合成)
Figure JPOXMLDOC01-appb-C000282
(18-1)中間体2Fの合成
 アルゴン雰囲気下、2-ブロモ-4-(tert-ブチル)-1-メチルベンゼン(527g)、ヨウ化銅(I)(CuI)(835g)、N,N’-ジメチルエチレンジアミン(DMEDA)(193g)、アセトアミド(205g)、炭酸カリウム(606g)、ジメチルアセトアミド(DMAc)(7.9L)の混合物を120℃で14時間攪拌した。得られた反応液を室温に冷却し、トルエンで抽出を行った後、有機相を水で洗浄し、無水硫酸マグネシウムで乾燥し、溶剤を減圧留去した。得られた残渣をヘプタンで加熱懸洗して中間体2Fを得た(130g、収率29%)。
(18-2)中間体2Gの合成
 中間体2F(111g)を塩酸(6N HCl aq.)中で、100℃で15時間攪拌した。得られた反応液にトルエン(450ml)をゆっくりと加えて室温まで冷却し、析出した固体をろ取した。水酸化ナトリウム水溶液中に、先にろ取した固体を加えて、トルエンで抽出した後、無水硫酸マグネシウムで乾燥し、溶剤を減圧留去して中間体2Gを得た(85g、収率96%)。
(18-3)中間体2Hの合成
 アルゴン雰囲気下、中間体2H(85g)、3-ヨード-4-メチル[ビフェニル](139g)、Pd(dba)(6.5g)、(±)-(1,1’-ビナフタレン-2,2’-ジイル)ビス(ジフェニルホスフィン)(rac-BINAP)(8.8g)、ナトリウム tert-ブトキシド(90g)、キシレン(2.2L)の混合物を130℃で26時間攪拌した。得られた反応液を室温に冷却し、有機相を水で洗浄し、無水硫酸マグネシウムで乾燥し、溶剤を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーおよび再結晶で精製し、中間体2Hを得た(82g、収率52%)。目的物の分子量は329.487であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=329であったことから、目的物と同定した。
(18-4)化合物2Jの合成
 アルゴン雰囲気下、中間体2D(3.1g)、中間体2H(3.4g)、Pd(dba)-CHCl(0.24g)、1-(ジシクロヘキシルホスフィノ)-2,2-ジフェニル-1-メチルシクロプロパン(Cy-cBRIDP)(0.38g)、LiHMDS 1M in Toluene(11ml)、トルエン(237ml)の混合物を100℃で8時間攪拌した。得られた反応液を室温に冷却し、シリカゲルを充填したショートカラムでろ過した後、溶剤を減圧留去した。得られた残渣をシクロヘキサン、ジメチルアセトアミド、tert-アミルアルコール等で再結晶を行い、化合物2Jを得た(0.67g、収率13%)。目的物の分子量は1013.338であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=1013であったことから、目的物と同定した。
実施例19
(化合物2Kの合成)
Figure JPOXMLDOC01-appb-C000283
 アルゴン雰囲気下、中間体2D(2.0g)、5-tert-ブチル-2-メチル-N-(2-メチルフェニル)アニリン(1.6g)、Pd(dba)(0.056g)、XPhos(0.11g)、LiHMDS 1M in Toluene(12ml)、キシレン(200ml)の混合物を110℃で3時間攪拌した。得られた反応液を室温に冷却し、溶剤を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーおよび再結晶で精製を行い、化合物2Kを得た(0.68g、収率25%)。目的物の分子量は861.142であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=861であったことから、目的物と同定した。
実施例20
(化合物3Bの合成)
Figure JPOXMLDOC01-appb-C000284
 アルゴン雰囲気下、中間体3D(6.5g)、ジ-p-トルイルアミン(4.9g)、Pd(dba)-CHCl(1.5g)、XPhos(2.8g)炭酸セシウム(13g)、キシレン(333ml)、tert-ブタノール(66ml)の混合物を110℃で6時間攪拌した。得られた反応液を室温に冷却し、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥し、溶剤を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーおよび再結晶で精製し、化合物3Bを得た(2.2g、収率29%)。目的物の分子量は748.926であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=748であったことから、目的物と同定した。
実施例21
(化合物3Cの合成)
Figure JPOXMLDOC01-appb-C000285
 アルゴン雰囲気下、中間体3D(3.3g)、ビス-(4-(tert-ブチル)フェニル)アミン(3.1g)、Pd(dba)-CHCl(0.26g)、XPhos(0.48g)、LiHMDS 1M in Toluene(12ml)、キシレン(504ml)の混合物を110℃で6時間攪拌した。得られた反応液を室温に冷却し、シリカゲルを充填したショートカラムでろ過した後、溶剤を減圧留去した。得られた残渣をシクロヘキサン、ジオキサン等で再結晶を行い、化合物3Cを得た(3.6g、収率77%)。目的物の分子量は917.250であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=917であったことから、目的物と同定した。
実施例22
(化合物3Dの合成)
Figure JPOXMLDOC01-appb-C000286
 アルゴン雰囲気下、中間体3D(3.2g)、ビス(4-イソプロピルフェニル)アミン(2.7g)、Pd(dba)(0.22g)、XPhos(0.47g)、LiHMDS 1M in Toluene(12.5ml)、トルエン(500ml)の混合物を110℃で4時間攪拌した。得られた反応液を室温に冷却し、シリカゲルを充填したショートカラムでろ過した後、溶剤を減圧留去した。得られた残渣をジオキサンで再結晶を行い、化合物3Dを得た(1.6g、収率39%)。目的物の分子量は861.142であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=861であったことから、目的物と同定した。
実施例23
(化合物3Eの合成)
Figure JPOXMLDOC01-appb-C000287
 アルゴン雰囲気下、中間体3D(5.5g)、3-(プロパン-2-イル)-N-[4-(プロパン-2-イル)フェニル]アニリン(4.7g)、Pd(dba)-CHCl(0.43g)、XPhos(0.80g)、LiHMDS 1M in Toluene(21ml)、トルエン(500ml)の混合物を70℃で7時間攪拌した。得られた反応液を室温に冷却し、シリカゲルを充填したショートカラムでろ過した後、溶剤を減圧留去した。得られた残渣をジオキサン、tert-ブタノール、酢酸エチル、シクロヘキサン、イソプロピルアルコール、クロロホルム等で再結晶を行い、化合物3Eを得た(2.9g、収率39%)。目的物の分子量は861.142であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=861であったことから、目的物と同定した。
実施例24
(化合物3Fの合成)
Figure JPOXMLDOC01-appb-C000288
(24-1)中間体3Eの合成
 アルゴン雰囲気下、4-ヨード-1,2-ジメチルベンゼン(10g)、3-イソプロピルアニリン(6.4g)、ジクロロ[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II) ジクロロメタン付加物(Pd(dppf)Cl-DCM)(0.35g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(dppf)(0.72g)、ナトリウム tert-ブトキシド(6.2g)、トルエン(174ml)の混合物を130℃で7時間攪拌した。得られた反応液を室温に冷却し、セライトろ過を行い、溶剤を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、中間体3Eを得た(10g、収率96%)。目的物の分子量は239.362であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=239であったことから、目的物と同定した。
(24-2)化合物3Fの合成
 アルゴン雰囲気下、中間体2D(5.8g)、中間体3E(4.7g)、Pd(dba)-CHCl(0.92g)、XPhos(1.7g)、LiHMDS 1M in Toluene(22ml)、トルエン(500ml)の混合物を70℃で7時間攪拌した。得られた反応液を室温に冷却し、シリカゲルを充填したショートカラムでろ過した後、溶剤を減圧留去した。得られた残渣をジオキサン、シクロヘキサン、ジブチルエーテル、クロロホルム等で再結晶を行い、化合物3Fを得た(2.1g、収率28%)。目的物の分子量は833.088であり、得られた化合物のマススペクトルの分析結果は、m/z(質量と電荷の比)=833であったことから、目的物と同定した。
比較例1~3
 下記比較例化合物1~3を用いて、実施例1と同様に、トルエン溶液を調製し、評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000289
Figure JPOXMLDOC01-appb-T000290
 実施例1~24は、比較例1~3と比べて、蛍光量子収率(PLQY)の値が高かった。また、実施例1~24は、比較例1~3と比べて、蛍光ピーク波長(FL-peak)が長く、青色純度の高い蛍光スペクトルが得られた。
実施例25
<有機EL素子の作製>
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマテック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。ITOの膜厚は、130nmとした。
洗浄後の前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HI-1を蒸着し、膜厚5nmの正孔注入層を形成した。
 この正孔注入層の成膜の上に、化合物HT-1を蒸着し、膜厚80nmの第1正孔輸送層を形成した。
 続けて、この第1正孔輸送層の上に、化合物HT-2を蒸着し、膜厚10nmの第2正孔輸送層を形成した。
 続けて、この第2正孔輸送層の上に、化合物2E(ドーパント材料)と化合物BH-1(ホスト材料)の組み合わせで、ドーパント材料の割合(重量比)が2%となるように共蒸着し、膜厚25nmの発光層を形成した。
 続けて、この発光層の上に、ET-1を蒸着し、膜厚10nmの第一電子輸送層を形成した。
 続けて、この第1電子輸送層の上に、ET-2を蒸着し、膜厚15nmの第2電子輸送層を形成した。
 さらに、この第2電子輸送層の上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極を形成した。
 そして、この電子注入性電極の上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属陰極を形成した。
<有機EL素子の評価>
 得られた有機EL素子の初期特性を、室温下、DC(直流)定電流10mA/cm駆動で測定した。
 電流密度が10mA/cmとなるように有機EL素子に電圧を印加し、EL発光スペクトルを分光放射輝度計CS-1000(コニカミノルタ株式会社製)にて計測した。得られた分光放射輝度スペクトルから、外部量子効率EQE(%)を算出した。結果を表2に示す。
 さらに電流密度が50mA/cmとなるように有機EL素子に電圧を印加し、初期輝度に対して輝度が95%となるまでの時間を測定した寿命LT95(h)の結果を表2に示す。
実施例26~32及び比較例4~10
 下記表2に示すホスト材料(BH)及びドーパント材料(BD)を用いた他は実施例25と同様にして有機EL素子を作製し、評価した。結果を表2に示す。
 実施例25~32及び比較例4~10の有機EL素子の作製に用いた化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000291
Figure JPOXMLDOC01-appb-C000292
Figure JPOXMLDOC01-appb-T000293
 表2の結果から、式(1)で表される化合物をドーパント材料として発光層に用いた実施例25~32の有機EL素子は、比較例4~11の素子と比較して顕著に高い外部量子効率EQEを有するだけでなく、素子寿命も大きく向上することがわかる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。

Claims (44)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、
     R及びR、R及びR、並びにR及びRのうちの1組は、下記式(11)で表される2価の基とそれぞれ結合する結合手である。
    Figure JPOXMLDOC01-appb-C000002
     X及びXは、それぞれ独立に、O、S又はC(R’)である。
     R11及びR12、R12及びR13、並びにR13及びR14のうちの少なくとも1組は、下記式(12a)で表される2価の基とそれぞれ結合する結合手である。
     R及びR、R及びR、並びにR及びRのうちの少なくとも1組は、下記式(12b)で表される2価の基とそれぞれ結合する結合手である。
     下記式(12a)及び(12b)で表される2価の基が複数存在する場合、複数の下記式(12a)及び(12b)で表される2価の基は同一であってもよいし、異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000003
     R’、R21~R28、前記式(11)で表される2価の基と結合する結合手ではないR~R、前記式(12a)で表される2価の基と結合する結合手ではないR11~R14、及び前記式(12b)で表される2価の基と結合する結合手ではないR~Rは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のハロアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R31)(R32)(R33)、-C(=O)R34、-COOR35、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(13)で表される基を示す。
     但し、R21~R28、前記式(11)で表される2価の基と結合する結合手ではないR~R、前記式(12a)で表される2価の基と結合する結合手ではないR11~R14、及び前記式(12b)で表される2価の基と結合する結合手ではないR~Rのうちの少なくとも1つは、下記式(13)で表される基である。
     2つのR’は、同一であってもよいし、異なっていてもよい。
     R31~R35は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     R31~R35が複数存在する場合、複数のR31~R35のそれぞれは同一でもよく、異なっていてもよい。
     下記式(13)で表される基が複数存在する場合、複数存在する下記式(13)で表される基は同一であってもよいし、異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000004
    (式(13)中、
     L~Lは、それぞれ独立に、単結合、置換もしくは無置換の炭素数1~30のアルキレン基、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
     Ar及びArは、それぞれ独立に、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基であり、ArとArは単結合で、又は-O-、-S-もしくは-C(R)-を介して互いに結合してもよい。
     Rは置換基であり、2つのRは互いに同一でもよいし、異なっていてもよい。)]
  2.  前記式(1)で表される化合物が、下記式(1-1H)~(1-6H)で表される化合物からなる群から選択される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    [式(1-1H)~(1-6H)中、X、X、R~R及びR11~R14は、前記式(1)で定義した通りである。]
  3.  前記式(1)で表される化合物が、前記式(1-2H)で表される化合物である、請求項2に記載の化合物。
  4.  前記式(11)で表される2価の基が、下記式(11-1H)~(11-3H)で表される2価の基からなる群から選択される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    [式(11-1H)~(11-3H)中、X及びR21~R24は、前記式(1)で定義した通りである。]
  5.  前記式(11)で表される基が、前記式(11-2H)で表される2価の基である、請求項4に記載の化合物。
  6.  前記式(1)で表される化合物が、下記式(1-21)~(1-23)で表される化合物からなる群から選択される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    [式(1-21)~(1-23)中、X、X、R、R~R、R11~R14及びR21~R24は、前記式(1)で定義した通りである。]
  7.  前記式(1)で表される化合物が、前記式(1-22)で表される化合物である、請求項6に記載の化合物。
  8.  前記式(1)で表される化合物が、下記式(1-11H)~(1-13H)で表される化合物からなる群から選択される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008
    [式(1-11H)~(1-13H)中、X、R~R及びR25~R28は、前記式(1)で定義した通りである。]
  9.  前記式(1)で表される化合物が、前記式(1-12H)で表される化合物である、請求項8に記載の化合物。
  10.  前記式(1)で表される化合物が、下記式(1-24)~(1-26)で表される化合物からなる群から選択される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000009
    [式(1-24)~(1-26)中、X、X、R、R~R、R11~R14及びR25~R28は、前記式(1)で定義した通りである。]
  11.  前記式(1)で表される化合物が、前記式(1-25)で表される化合物である、請求項10に記載の化合物。
  12.  前記式(1)で表される化合物が、下記式(1-31)~(1-35)で表される化合物からなる群から選択される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000010
    [式(1-31)~(1-35)中、X、X、R~R、R、R11、R14及びR21~R28は、前記式(1)で定義した通りである。]
  13.  前記式(1)で表される化合物が、前記式(1-32)で表される化合物である、請求項12に記載の化合物。
  14.  R21~R24のうちの1つ及びR25~R28のうちの1つが、それぞれ独立に、前記式(13)で表される基である、請求項1~13のいずれかに記載の化合物。
  15.  前記式(1-32)で表される化合物が、下記式(1-40)で表される化合物である、請求項12~14のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000011
    [式(1-40)中、X、X、R、R、R、R、R11、R14、R21、R22、R24~R26、R28、L~L、Ar及びArは、前記式(1)で定義した通りである。
     それぞれ複数存在するL~L、Ar及びArは、互いに同一であってもよいし、異なっていてもよい。]
  16.  X及びXがOである、請求項1~15のいずれかに記載の化合物。
  17.  2つのR’が、それぞれ独立に、水素原子又はメチル基である、請求項1~15のいずれかに記載の化合物。
  18.  R21~R28、前記式(11)で表される2価の基と結合する結合手ではないR~R、前記式(12a)で表される2価の基と結合する結合手ではないR11~R14、及び前記式(12b)で表される2価の基と結合する結合手ではないR~Rのうち、前記式(13)で表される基であるもの以外が水素原子である、請求項1~17のいずれかに記載の化合物。
  19.  Lが単結合である、請求項1~18のいずれかに記載の化合物。
  20.  Ar及びArが、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である、請求項1~19のいずれかに記載の化合物。
  21.  Ar及びArの一方が置換もしくは無置換の環形成炭素数6~50のアリール基であり、他方が置換もしくは無置換の環形成原子数5~50の1価の複素環基である、請求項1~19のいずれかに記載の化合物。
  22.  前記式(13)で表される基が、下記式(13-1)~(13-3)で表される基からなる群から選択される、請求項1~19のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000012
    [式(13-1)~(13-3)中、Rは、置換基である。mは0~8の整数であり、nは0~4の整数である。m又はnが2以上の場合、複数存在するRは互いに同一でもよいし、異なっていてもよい。
     式(13-3)中のXは、-O-、-S-又は-C(R)-であり、2つのRは互いに同一でもよいし、異なっていてもよい。]
  23.  「置換もしくは無置換の」という場合における置換基、及びRで表される置換基が、炭素数1~50のアルキル基、炭素数1~50のハロアルキル基、炭素数2~50のアルケニル基、炭素数2~50のアルキニル基、環形成炭素数3~50のシクロアルキル基、炭素数1~50のアルコキシ基、炭素数1~50のアルキルチオ基、環形成炭素数6~50のアリールオキシ基、環形成炭素数6~50のアリールチオ基、炭素数7~50のアラルキル基、-Si(R41)(R42)(R43)、-C(=O)R44、-COOR45、-S(=O)46、-P(=O)(R47)(R48)、-Ge(R49)(R50)(R51)、-N(R52)(R53)(ここで、R41~R53は、それぞれ独立に、水素原子、炭素数1~50のアルキル基、環形成炭素数6~50のアリール基、又は環形成原子数5~50の1価の複素環基である。R41~R53が2以上存在する場合、2以上のR41~R53のそれぞれは同一でもよく、異なっていてもよい。)、ヒドロキシ基、ハロゲン原子、シアノ基、ニトロ基、環形成炭素数6~50のアリール基、及び環形成原子数5~50の1価の複素環基からなる群から選択される、請求項1~22のいずれかに記載の化合物。
  24.  「置換もしくは無置換の」という場合の置換基、及びRで表される置換基が、炭素数1~50のアルキル基、環形成炭素数6~50のアリール基、及び環形成原子数5~50の1価の複素環基からなる群から選択される、請求項23に記載の化合物。
  25.  「置換もしくは無置換の」という場合の置換基、及びRで表される置換基が、炭素数1~18のアルキル基、環形成炭素数6~18のアリール基、及び環形成原子数5~18の1価の複素環基からなる群から選択される、請求項23又は24に記載の化合物。
  26.  有機エレクトロルミネッセンス素子用材料である、請求項1~25のいずれかに記載の化合物。
  27.  請求項1~25のいずれかに記載の化合物を含む、有機エレクトロルミネッセンス素子用材料。
  28.  陰極と、
     陽極と、
     前記陰極と前記陽極との間に配置された少なくとも1層の有機層と、
    を有し、
     前記少なくとも1層の有機層のうちの少なくとも1層が、請求項1~25のいずれかに記載の化合物を含有する、有機エレクトロルミネッセンス素子。
  29.  前記少なくとも1層の有機層が発光層を含み、
     前記発光層が、前記化合物を含有する、請求項28に記載の有機エレクトロルミネッセンス素子。
  30.  前記発光層が、さらに下記式(2)で表される化合物を含む請求項29に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000013
    [式(2)中、
     R101~R110のうち隣接する2つ以上の1組以上が、置換もしくは無置換の飽和又は不飽和の環を形成してもよい。
     前記置換もしくは無置換の飽和又は不飽和の環を形成しないR101~R110は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数2~50のアルケニル基、置換もしくは無置換の炭素数2~50のアルキニル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数1~50のアルキルチオ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、置換もしくは無置換の環形成炭素数6~50のアリールチオ基、置換もしくは無置換の炭素数7~50のアラルキル基、-Si(R121)(R122)(R123)、-C(=O)R124、-COOR125、-N(R126)(R127)、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の1価の複素環基、又は下記式(21)で表される基である。
     R121~R127は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。R121~R127が2以上存在する場合、2以上のR121~R127のそれぞれは同一でもよく、異なっていてもよい。
     但し、前記置換もしくは無置換の飽和又は不飽和の環を形成しないR101~R110の少なくとも1つは、下記式(21)で表される基である。下記式(21)が2以上存在する場合、2以上の下記式(21)で表される基は同一であってもよいし、異なっていてもよい。
         -L101-Ar101     (21)
    (式(21)中、
     L101は、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
    Ar101は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。)]
  31.  R109及びR110の少なくとも1つが、前記式(21)で表される基である請求項30に記載の有機エレクトロルミネッセンス素子。
  32.  R109及びR110が、それぞれ独立に、前記式(21)で表される基である請求項30又は31に記載の有機エレクトロルミネッセンス素子。
  33.  前記式(2)で表される化合物が、下記式(2-1)又は(2-2)で表される化合物である、請求項30~32のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000014
    (式(2-1)中、R101~R108、L101及びAr101は、式(2)で定義した通りである。
     式(2-2)中、R101、R103~R108、L101及びAr101は、式(2)で定義した通りである。)
  34.  前記式(2)で表される化合物が、下記式(2-3)で表される化合物である、請求項30~33のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000015
    (式(2-3)中、
     R101’~R108’は、それぞれ独立に、水素原子又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
     L101’は、置換もしくは無置換の環形成炭素数6~50のアリーレン基である。2つのL101’は、同一でもよく、異なっていてもよい。
     Ar101’は、置換もしくは無置換の環形成炭素数6~50のアリール基である。2つのAr101’は、同一でもよく、異なっていてもよい。)
  35.  前記式(2)で表される化合物が、下記式(2-4)で表される化合物である、請求項30~33のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000016
    (式(2-4)中、
     R101’~R108’は、それぞれ独立に、水素原子又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
     L101’は、置換もしくは無置換の環形成炭素数6~50のアリーレン基である。
     L101”は、置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は置換もしくは無置換の環形成原子数5~50の2価の複素環基である。
     Ar101”は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
     X11は、O、S、又はN(R61)である。
     R61は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
     R62~R69のいずれか1つは、L101’と結合する結合手である。
     L101’と結合しないR62~R69は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
     L101’と結合しないR62~R69のうちの隣接する1組以上は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成してもよい。)
  36.  前記式(2)で表される化合物が、下記式(2-6)で表される化合物である、請求項30~33及び35のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000017
    (式(2-6)中、L101及びAr101は、式(2)で定義した通りである。
     R101’~R108’は、前記式(2-4)で定義した通りである。
     R66~R69は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。但し、R66及びR67、R67及びR68、並びにR69及びR67は、いずれも互いに結合して環を形成しない。
     X12は、O又はSである。)
  37.  前記式(2)で表される化合物が、下記式(2-7)で表される化合物である、請求項30~33のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000018
    (式(2-7)中、L101及びAr101は、式(2)で定義した通りである。
     R101’~R108’は、それぞれ独立に、水素原子又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
     R62~R69のいずれか1つは、L101と結合する結合手である。
     L101と結合しないR62~R69は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。但し、R66及びR67、R67及びR68、並びにR68及びR69のうちのいずれか1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。)
  38.  前記式(2)で表される化合物が、下記式(2-8)で表される化合物である、請求項30~33及び37のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000019
    (式(2-8)中、L101及びAr101は、式(2)で定義した通りである。
     R101’~R108’は、前記式(2-7)で定義した通りである。
     R66~R69は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。但し、R66及びR67、R67及びR68、又はR68及びR69のうちのいずれか1組は、互いに結合して、置換もしくは無置換の飽和又は不飽和の環を形成する。)
  39.  R66及びR67、R67及びR68、又はR68及びR69のいずれか1組が、互いに結合して、下記式(2-8-1)又は(2-8-2)で表される環を形成し、
     前記式(2-8-1)又は(2-8-2)で表される環を形成しないR66~R69は、置換もしくは無置換の飽和又は不飽和の環を形成しない、請求項37又は38に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000020
    (式(2-8-1)及び(2-8-2)中、
     2つの結合手*は、それぞれ、R66及びR67、R67及びR68、又はR68及びR69の1組と結合する。
     R80~R83は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
     X13は、O又はSである。)
  40.  前記式(2)で表される化合物が、下記式(2-9)で表される請求項30~33、35及び36のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000021
    (式(2-9)中、
     L101及びAr101は、前記式(2)で定義した通りである。
     R101’~R108’は、前記式(2-4)で定義した通りである。
     R66~R69は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。但し、R66及びR67、R67及びR68、並びにR69及びR67は、いずれも互いに結合せず、置換もしくは無置換の飽和又は不飽和の環を形成しない。
     X12は、O又はSである。)
  41.  前記式(2)で表される化合物が、下記式(2-4A)で表される請求項30又は31に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000022
    (式(2-4A)中、
     L101及びAr101は、前記式(2)で定義した通りである。
     R101’~R108’は、それぞれ独立に、水素原子、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
     X11は、O、S、又はN(R61)である。
     R61は、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。
     R62’~R69’のうちの隣接する2つ以上の1組以上は、置換もしくは無置換の飽和又は不飽和の環を形成してもよく、R62’~R69’のうちの隣接する2つは、下記式(2-4A-1)で表される環を形成する。
     置換もしくは無置換の飽和又は不飽和の環を形成しないR62’~R69’は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。)
    Figure JPOXMLDOC01-appb-C000023
    (式(2-4A-1)中、
     2つの結合手*のそれぞれは、R62’~R69’のうちの隣接する2つと結合する。
     R70~R73の1つは、L101と結合する結合手である。
     L101と結合しないR70~R73は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は置換もしくは無置換の環形成炭素数6~50のアリール基である。)
  42.  前記陽極と前記発光層との間に正孔輸送層を有する請求項29~41のいずれかに記載の有機エレクトロルミネッセンス素子。
  43.  前記陰極と前記発光層との間に電子輸送層を有する請求項29~42のいずれかに記載の有機エレクトロルミネッセンス素子。
  44.  請求項28~43のいずれかに記載の有機エレクトロルミネッセンス素子を備える電子機器。
PCT/JP2018/040575 2017-11-02 2018-10-31 新規化合物及び有機エレクトロルミネッセンス素子 WO2019088194A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207012077A KR20200083463A (ko) 2017-11-02 2018-10-31 신규 화합물 및 유기 일렉트로루미네센스 소자
CN201880070756.XA CN111263762A (zh) 2017-11-02 2018-10-31 新型化合物和有机电致发光元件
JP2019550469A JPWO2019088194A1 (ja) 2017-11-02 2018-10-31 新規化合物及び有機エレクトロルミネッセンス素子
US16/759,803 US20200377513A1 (en) 2017-11-02 2018-10-31 Novel compound and organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-213234 2017-11-02
JP2017213234 2017-11-02

Publications (1)

Publication Number Publication Date
WO2019088194A1 true WO2019088194A1 (ja) 2019-05-09

Family

ID=66332528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040575 WO2019088194A1 (ja) 2017-11-02 2018-10-31 新規化合物及び有機エレクトロルミネッセンス素子

Country Status (5)

Country Link
US (1) US20200377513A1 (ja)
JP (1) JPWO2019088194A1 (ja)
KR (1) KR20200083463A (ja)
CN (1) CN111263762A (ja)
WO (1) WO2019088194A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4122934A1 (en) 2021-11-25 2023-01-25 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172647A1 (ko) * 2018-03-06 2019-09-12 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538839A (ja) * 2006-06-02 2009-11-12 メルク パテント ゲーエムベーハー 有機エレクトロルミネセンス素子のための新規な材料
WO2015002208A1 (ja) * 2013-07-01 2015-01-08 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
WO2015022988A1 (ja) * 2013-08-16 2015-02-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、発光装置、照明装置、表示装置及び電子機器
WO2016031785A1 (ja) * 2014-08-26 2016-03-03 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
JP2016509369A (ja) * 2013-01-03 2016-03-24 メルク パテント ゲーエムベーハー 電子素子
WO2017010489A1 (ja) * 2015-07-14 2017-01-19 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
JP2017509164A (ja) * 2014-03-13 2017-03-30 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセント素子
WO2018097937A1 (en) * 2016-11-23 2018-05-31 E. I. Du Pont De Nemours And Company Electroactive compounds

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005023437A1 (de) 2005-05-20 2006-11-30 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
JP5493309B2 (ja) 2008-08-18 2014-05-14 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5499972B2 (ja) 2010-07-23 2014-05-21 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子用材料、および有機エレクトロルミネッセンス素子、これを用いた表示装置、照明装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538839A (ja) * 2006-06-02 2009-11-12 メルク パテント ゲーエムベーハー 有機エレクトロルミネセンス素子のための新規な材料
JP2016509369A (ja) * 2013-01-03 2016-03-24 メルク パテント ゲーエムベーハー 電子素子
WO2015002208A1 (ja) * 2013-07-01 2015-01-08 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
WO2015022988A1 (ja) * 2013-08-16 2015-02-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、発光装置、照明装置、表示装置及び電子機器
JP2017509164A (ja) * 2014-03-13 2017-03-30 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセント素子
WO2016031785A1 (ja) * 2014-08-26 2016-03-03 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2017010489A1 (ja) * 2015-07-14 2017-01-19 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2018097937A1 (en) * 2016-11-23 2018-05-31 E. I. Du Pont De Nemours And Company Electroactive compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4122934A1 (en) 2021-11-25 2023-01-25 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device

Also Published As

Publication number Publication date
US20200377513A1 (en) 2020-12-03
KR20200083463A (ko) 2020-07-08
CN111263762A (zh) 2020-06-09
JPWO2019088194A1 (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
JP6644951B2 (ja) 有機エレクトロルミネッセンス素子及び新規化合物
WO2019132040A1 (ja) 新規化合物及び有機エレクトロルミネッセンス素子
WO2019111971A1 (ja) 有機エレクトロルミネッセンス素子及び新規化合物
WO2019132028A1 (ja) 新規化合物及び有機エレクトロルミネッセンス素子
JP7044547B2 (ja) 新規化合物及び有機エレクトロルミネッセンス素子
WO2022009999A2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP2019119680A (ja) 新規化合物及び有機エレクトロルミネッセンス素子
WO2021193654A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2020209299A1 (ja) 有機エレクトロルミネッセンス素子及びそれを備える電子機器
EP4101847A1 (en) Organic electroluminescent element and electronic device
WO2022114115A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021157635A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2020262507A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2020241826A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JPWO2019070082A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2022114114A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021200876A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021201176A1 (ja) 有機エレクトロルミネッセンス素子、化合物及び電子機器
WO2021070963A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021060239A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021033730A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2019088194A1 (ja) 新規化合物及び有機エレクトロルミネッセンス素子
WO2021131657A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021145429A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2024071062A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873833

Country of ref document: EP

Kind code of ref document: A1